WO2024075286A1 - センサシステム及び気液比の測定方法 - Google Patents

センサシステム及び気液比の測定方法 Download PDF

Info

Publication number
WO2024075286A1
WO2024075286A1 PCT/JP2022/037664 JP2022037664W WO2024075286A1 WO 2024075286 A1 WO2024075286 A1 WO 2024075286A1 JP 2022037664 W JP2022037664 W JP 2022037664W WO 2024075286 A1 WO2024075286 A1 WO 2024075286A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
sensor system
gas
liquid ratio
flow pattern
Prior art date
Application number
PCT/JP2022/037664
Other languages
English (en)
French (fr)
Inventor
直希 武田
直道 神保
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to PCT/JP2022/037664 priority Critical patent/WO2024075286A1/ja
Publication of WO2024075286A1 publication Critical patent/WO2024075286A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
    • G01N22/04Investigating moisture content

Definitions

  • This disclosure relates to a sensor system and a method for measuring the gas-liquid ratio.
  • Patent Document 1 discloses a method for calculating the porosity in a two-phase mixture extracted at a geothermal power plant. Patent Document 1 discloses that in the method for calculating the porosity in a two-phase mixture, a radio frequency signal is transmitted into a transport pipe, the radio frequency signal is received, an average signal strength attenuation is calculated, and the porosity of the two-phase mixture is calculated based on the average signal strength attenuation.
  • the strength of the reflected waves changes depending on the temperature and flow pattern of the internal fluid (usually water or steam), which can lead to errors when measuring the gas-liquid ratio from the attenuation strength of the radio waves.
  • the present disclosure aims to provide a sensor system and a method for measuring the gas-liquid ratio that is less affected by the flow pattern when radio waves are transmitted inside a pipe to measure the gas-liquid ratio.
  • a sensor system for measuring the gas-liquid ratio of a two-phase fluid flowing inside a pipe, the sensor system comprising: a transmitter for transmitting radio waves into the inside of the pipe; a receiver for receiving the radio waves from inside the pipe; a flow pattern acquisition unit for acquiring the flow pattern inside the pipe; and a controller for calculating the gas-liquid ratio based on the radio wave intensity of the radio waves received by the receiver and the flow pattern.
  • the sensor system and gas-liquid ratio measurement method disclosed herein can reduce the effects of flow patterns when transmitting radio waves inside a pipe to measure the gas-liquid ratio.
  • FIG. 1 is a diagram illustrating an outline of the configuration of a sensor system according to the first embodiment.
  • FIG. 2 is a diagram for explaining the definition of the gas-liquid ratio.
  • FIG. 3 is a flow regime diagram showing the flow regime of a two-phase flow.
  • FIG. 4 is a diagram illustrating a calibration curve used in the sensor system according to the first embodiment.
  • FIG. 5 is a flow diagram illustrating the processing of the sensor system according to the first embodiment.
  • FIG. 6 is a diagram illustrating an outline of the configuration of a sensor system according to the second embodiment.
  • FIG. 7 is a diagram illustrating the influence of temperature on the calibration curve used in the sensor system according to the second embodiment.
  • FIG. 8 is a flow diagram illustrating the processing of the sensor system according to the second embodiment.
  • FIG. 1 is a diagram illustrating an outline of the configuration of a sensor system according to the first embodiment.
  • FIG. 2 is a diagram for explaining the definition of the gas-liquid ratio.
  • FIG. 3 is a
  • FIG. 9 is a diagram illustrating an outline of the configuration of a sensor system according to the third embodiment.
  • FIG. 10 is a flow diagram illustrating the processing of the sensor system according to the third embodiment.
  • FIG. 11 is a diagram illustrating an outline of the configuration of a sensor system according to the fourth embodiment.
  • FIG. 12 is a flow diagram illustrating the processing of the sensor system according to the fourth embodiment.
  • the sensor system according to the first embodiment is a sensor system for measuring the gas-liquid ratio of a two-phase fluid flowing inside a pipe.
  • the sensor system according to the first embodiment includes a transmitter that transmits radio waves into the inside of the pipe, a receiver that receives radio waves from the inside of the pipe, and a flow pattern acquisition unit that acquires the flow pattern inside the pipe.
  • the sensor system according to the first embodiment also includes a controller that calculates the gas-liquid ratio based on the radio waves received by the receiver and the flow pattern inside the pipe.
  • FIG. 1 is a diagram for explaining an outline of the configuration of a sensor system 1, which is an example of a sensor system according to the first embodiment.
  • the sensor system 1 is a system that measures the gas-liquid ratio of a two-phase fluid flowing inside a pipe P.
  • the sensor system 1 measures the gas-liquid ratio in a geothermal flow, for example.
  • the sensor system 1 emits a high-frequency signal (radio wave) into the inside of the pipe P, and calculates the gas-liquid ratio of the two-phase fluid flowing inside the pipe P based on the received wave that is propagated inside the pipe P and received.
  • the gas-liquid ratio calculated by the sensor system 1 will now be described.
  • the gas-liquid ratio is the proportion of the liquid volume in the two-phase fluid flowing through the pipe P.
  • Figure 2 is a diagram explaining the definition of the gas-liquid ratio.
  • the gas-liquid ratio is the ratio between the volume of gas and the volume of liquid.
  • the gas-liquid ratio can be calculated, for example, from the ratio of areas in the cross section of the pipe in a stationary state.
  • SA indicates the cross section of the gas phase
  • SW indicates the cross section of the liquid phase.
  • Figure 2 shows an example of the gas-liquid ratio in a pipe P with a circular internal cross section. If the radius of the pipe P is R (unit: meters) and the cross-sectional area of the pipe P is S (unit: square meters), the cross-sectional area S can be calculated using Equation 1.
  • Equation 2 the cross-sectional area of the gas phase cross section SA in Figure 2 is Sa (unit: square meters) and the cross-sectional area of the liquid phase cross section SW is Sw (unit: square meters), then the void ratio ⁇ (unit: dimensionless) is given by Equation 2.
  • the moisture content ⁇ (unit: dimensionless) is given by Equation 3.
  • the gas-liquid ratio Raw (unit: dimensionless) is given by Equation 4.
  • the sensor system 1 in FIG. 1 includes an antenna 10, a transmitter 20, a receiver 30, a directional coupling unit 40, a controller 50, and a flow pattern acquisition unit 60.
  • the antenna 10 transmits and receives radio waves inside the pipe P.
  • the antenna 10 has a rod-like shape.
  • a tip 10a of the antenna 10 is inserted into the pipe P through a hole provided in the pipe P.
  • the antenna 10 transmits radio waves from the tip 10a into the inside of the pipe P.
  • the antenna 10 also receives radio waves reflected back from the tip 10a after being reflected inside the pipe P.
  • a rear end 10b of the antenna 10 is connected to the transmitting unit 20 and the receiving unit 30 via a directional coupling unit 40.
  • the sensor system 1 includes one antenna 10 for transmitting and receiving radio waves, but may include, for example, a separate antenna for transmission and a separate antenna for reception.
  • the shape of the antenna 10 is not limited to the shape shown in FIG. 1, as long as it is capable of transmitting and receiving radio waves inside the pipe P.
  • the transmitter 20 generates a transmission signal Tx, which is an electric signal for transmitting radio waves to the inside of the pipe P via the antenna 10.
  • the transmitter 20 operates based on a control signal Ctl1 output from the control unit 50.
  • the transmitter 20 includes a high-frequency signal generating circuit.
  • the high-frequency signal generating circuit generates a high-frequency signal that is a continuous wave (usually of a constant amplitude) with a frequency of, for example, 1 gigahertz and whose output is controlled by the control unit 50.
  • the high-frequency signal generating circuit is, for example, a voltage-controlled oscillator (VCO). It is desirable that the high-frequency signal generating circuit can adjust the frequency within a desired frequency range, for example, a range from 700 megahertz to 1 gigahertz.
  • VCO voltage-controlled oscillator
  • the receiving unit 30 receives a receiving signal Rx, which is an electrical signal based on radio waves received via the antenna 10.
  • the receiving unit 30 converts the receiving signal Rx from analog to digital, thereby converting the receiving signal Rx into a radio wave intensity RP that can be calculated by the control unit 50.
  • the receiving unit 30 outputs the radio wave intensity RP to the control unit 50.
  • the directional coupling unit 40 outputs the transmission signal Tx input from the transmitter 20 to the antenna 10.
  • the directional coupling unit 40 also outputs the reception signal Rx input from the antenna 10 to the receiver 30.
  • the directional coupling unit 40 is, for example, a unidirectional coupler.
  • the directional coupler is, for example, a loop directional coupler or a distributed coupling type directional coupler.
  • the directional coupling unit 40 prevents the transmission signal Tx from being input to the receiving unit 30, and prevents the reception signal Rx from being input to the transmitting unit 20.
  • FIG. 3 is a flow regime diagram showing the flow regime of a two-phase flow, so-called Baker diagram.
  • the horizontal axis of FIG. 3 indicates a variable P1 obtained by correcting the mass velocity ratio of each phase of gas and liquid with a physical property value.
  • the vertical axis of FIG. 3 indicates a variable P2 which is the gas phase mass velocity.
  • FIG. 2 shows the existence range of each flow regime from the observation results.
  • ST indicates the region where the flow pattern is stratified flow.
  • W indicates the region where the flow pattern is wavy flow.
  • A indicates the region where the flow pattern is annular flow.
  • AM indicates the region where the flow pattern is disperse flow.
  • SL indicates the region where the flow pattern is slug flow.
  • P indicates the region where the flow pattern is plug flow.
  • B indicates the region where the flow pattern is bubbly or froth.
  • Geothermal flow which is an example of a measurement target of the sensor system 1, is generally a steam-dominated flow due to its intended use. Therefore, the two-phase fluid flowing through the pipe P in the sensor system 1 is classified, for example, into either wavy flow or stratified flow, or into either annular flow or annular mist flow in the Baker diagram shown in Figure 3. Note that when the flow pattern is either wavy flow or stratified flow, it is referred to as flow pattern FR1. When the flow pattern is either annular flow or annular mist flow, it is referred to as flow pattern FR2.
  • the flow pattern acquisition unit 60 may set the flow pattern based on the results of past tracer flow tests (TFTs (Tracer Flow Tests)) or operational records, for example, performed by a power plant operator.
  • TFTs Tracer Flow Tests
  • the flow pattern acquisition unit 60 may also acquire information on the flow pattern from higher-level equipment. Furthermore, the flow pattern acquisition unit 60 may acquire results from a measuring instrument that determines the flow pattern.
  • the flow pattern acquisition unit 60 outputs the acquired flow pattern FRG to the control unit 50.
  • Control unit 50 The control unit 50 controls each of the transmitting unit 20 and the receiving unit 30. In addition, the control unit 50 calculates the gas-liquid ratio of the two-phase fluid flowing inside the pipe P based on the radio wave intensity RP received from the receiving unit 30 and the flow pattern FRG acquired from the flow pattern acquisition unit 60.
  • the control unit 50 includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), and a ROM (Read Only Memory).
  • the control unit 50 executes processing by, for example, executing a program stored in the ROM with the CPU.
  • the control unit 50 transmits a control signal Ctl1 to the transmitting unit 20.
  • the control signal Ctl1 includes, for example, the set values for the transmission frequency and transmission output of the radio waves.
  • the control unit 50 transmits a control signal Ctl2 to the receiving unit 30.
  • the control signal Ctl2 includes, for example, set values for setting the time width of the radio wave strength RP captured by the receiving unit 30, the averaging time, etc.
  • the control unit 50 also receives the radio wave intensity RP from the receiving unit 30.
  • the control unit 50 selects a calibration curve to be used from at least two calibration curves based on the flow pattern FRG acquired from the flow pattern acquisition unit 60.
  • An example of the calibration curve is shown in FIG. 4.
  • FIG. 4 is a diagram illustrating the calibration curve used in the sensor system 1, which is an example of the sensor system according to the first embodiment.
  • the calibration curve is a line showing the relationship between the moisture content ⁇ and the radio wave intensity RP of the radio wave.
  • the line Lfr1 in FIG. 4 is a calibration curve when the flow pattern is either a wavy flow or a stratified flow, that is, when the flow pattern is the flow pattern FR1.
  • the line Lfr2 in FIG. 4 is a calibration curve when the flow pattern is either annular flow or annular mist flow, that is, when the flow pattern is the flow pattern FR2. Note that FIG. 4 shows the results when the temperature of the two-phase fluid flowing through the pipe
  • the radio wave intensity varies greatly depending on the flow pattern.
  • the moisture content i.e., the gas-liquid ratio, can be accurately determined by selecting from multiple calibration curves based on the flow pattern in the control unit 50 of the sensor system 1.
  • a process in the sensor system 1, which is an example of the sensor system according to the first embodiment will be described.
  • a method for measuring a gas-liquid ratio according to the first embodiment will be described by describing the process in the sensor system 1.
  • Fig. 5 is a flow diagram for describing the process in the sensor system 1, which is an example of the sensor system according to the first embodiment.
  • Step S10 the sensor system 1 performs measurement initialization (step of performing measurement initialization). Specifically, the control unit 50 initializes the calculation memory.
  • Step S20 the sensor system 1 measures radio wave intensity (step of measuring radio wave intensity).
  • the sensor system 1 transmits radio waves from the antenna 10 to the inside of the pipe P, and receives the radio waves by the antenna 10. Then, the sensor system 1 measures the radio wave intensity received by the antenna 10.
  • control unit 50 transmits a control signal Ctl1 to the transmitting unit 20. Then, upon receiving the control signal Ctl1, the transmitting unit 20 outputs a transmission signal Tx to the antenna 10. The transmitting unit 20 outputs the transmission signal Tx to the antenna 10 based on the frequency and output strength set by the control signal Ctl1 transmitted from the control unit 50. Then, the antenna 10 emits radio waves based on the transmission signal Tx into the inside of the pipe P.
  • the receiving unit 30 receives the received signal Rx from the antenna 10.
  • the receiving unit 30 measures the radio wave intensity RP inside the pipe P based on the received signal Rx. Specifically, the receiving unit 30 measures the radio wave intensity RP by performing analog-to-digital conversion on the received signal Rx directly or after detection.
  • the receiving unit 30 transfers the measured radio wave intensity RP to the control unit 50. Note that when calculating the radio wave intensity RP, the receiving unit 30 may average the signal over a time period set in advance by the control unit 50 and transfer the averaged result to the control unit 50 as the radio wave intensity RP.
  • Step S30 the sensor system 1 acquires the flow pattern (step of acquiring the flow pattern). Specifically, the flow pattern acquisition unit 60 acquires the flow pattern of the two-phase fluid flowing through the pipe P. The flow pattern acquisition unit 60 then transmits the flow pattern FRG to the control unit 50. The control unit 50 acquires the flow pattern FRG from the flow pattern acquisition unit 60.
  • Step S40 the sensor system 1 selects a calibration curve based on the acquired flow pattern (a step of selecting a calibration curve based on the acquired flow pattern). Specifically, the control unit 50 selects a calibration curve based on the acquired flow pattern FRG from a plurality of calibration curves showing the relationship between the radio wave intensity RP and the moisture content ⁇ .
  • the calibration curve showing the relationship between radio wave intensity RP and moisture content ⁇ is determined based on the shape, length, material, etc. of the pipe P. Furthermore, since the tendency of the calibration curve differs depending on the flow pattern as shown in Figure 4, multiple calibration curves are prepared based on the type of flow pattern expected. For example, a calibration curve is prepared when the flow pattern is either wavy flow or stratified flow, i.e., when the flow pattern is flow pattern FR1, and a calibration curve is prepared when the flow pattern is either annular flow or annular spray flow, i.e., when the flow pattern is flow pattern FR2.
  • the calibration curve showing the relationship between radio wave intensity RP and moisture content ⁇ may be obtained in advance at the time of installation by conducting a tracer flow test or the like. Also, if the system at the installation location can be reproduced as a simulation model, it may be obtained by simulation. Furthermore, if the flow pattern changes for some reason, the control unit 50 may change the frequency to one at which the relationship between radio wave intensity RP and moisture content obtained in advance is closer to linear.
  • Step S50 the sensor system 1 calculates the gas-liquid ratio from the radio wave intensity based on the selected calibration curve (a step of calculating the gas-liquid ratio from the radio wave intensity based on the selected calibration curve). Specifically, the control unit 50 calculates the moisture percentage ⁇ from the radio wave intensity RP based on the calibration curve selected in step S40. Then, the control unit 50 calculates the gas-liquid ratio Raw from the calculated moisture percentage ⁇ based on Equation 4.
  • control unit 50 may perform a moving average over a certain time period since the radio wave strength RP may suddenly fluctuate due to splashes in the piping, etc.
  • the number of moving averages may be determined appropriately taking into account noise, etc. Note that if there is little noise, the number of moving averages may be set to one, i.e., processing may be performed using the captured radio wave strength RP itself.
  • the number of calibration curves was two, but the number of calibration curves may be three or more.
  • the sensor system according to the second embodiment further comprises a temperature acquisition unit in addition to the sensor system according to the first embodiment.
  • the control unit of the sensor system according to the second embodiment calculates the gas-liquid ratio based on the radio waves received by the receiving unit, the temperature inside the pipe, and the flow pattern inside the pipe.
  • Figure 6 is a diagram illustrating the outline of the configuration of sensor system 2, which is an example of the sensor system according to the second embodiment.
  • the sensor system 2 further includes a temperature acquisition unit 70 in addition to the sensor system 1, which is an example of the sensor system according to the first embodiment.
  • the sensor system 2 includes a control unit 150 instead of the control unit 50 of the sensor system 1.
  • the configuration of the sensor system 2 common to the sensor system 1 please refer to the description of the sensor system 1, and the description will be omitted here.
  • the temperature acquiring unit 70 measures the temperature inside the pipe P.
  • the temperature acquiring unit 70 measures the temperature of the two-phase fluid flowing through the pipe P.
  • the temperature acquiring unit 70 transmits the measured temperature PVT to the control unit 150.
  • the temperature acquisition unit 70 includes, for example, a thermocouple and a resistance temperature detector.
  • the temperature acquisition unit 70 may also acquire, for example, a temperature that is considered to represent the temperature near the antenna 10 from outside.
  • Control unit 150 In addition to the functions and configuration of the control unit 50, the control unit 150 performs temperature correction based on the temperature PVT acquired by the temperature acquisition unit 70 in the selected calibration curve.
  • FIG. 7 is a diagram illustrating the effect of temperature on the calibration curve used in sensor system 2, which is an example of a sensor system according to the second embodiment.
  • Figure 7 shows the effect of temperature when the flow pattern is either wavy flow or stratified flow, i.e., when the flow pattern is flow pattern FR1.
  • the horizontal axis of Figure 7 represents temperature PVT.
  • the vertical axis of Figure 7 represents radio wave intensity RP.
  • Line Lfr1a in Figure 7 represents the results when the moisture content ⁇ is 0%.
  • Line Lfr1b in Figure 7 represents the results when the moisture content ⁇ is 2%.
  • Line Lfr1c in Figure 7 represents the results when the moisture content ⁇ is 6%.
  • Line Lfr1d in Figure 7 represents the results when the moisture content ⁇ is 10%.
  • control unit 150 obtains in advance by actual measurement or simulation the change in the points on the calibration curve relative to the temperature PVT of the two-phase fluid flowing through the pipe P.
  • the control unit 150 then corrects the points on the calibration curve based on the obtained change in the points on the calibration curve relative to the temperature PVT of the two-phase fluid flowing through the pipe P.
  • Possible factors that cause the calibration curve to change with temperature include changes in the dielectric constant and dielectric tangent of the target fluid.
  • the points to be corrected on the calibration curve should be as accurate as possible, but the calculation of the correction formula and the calculation load from actual measurements increases. Therefore, for example, data for about four points within the expected range of moisture content ⁇ can be obtained by actual measurement or simulation, and the space between each moisture content ⁇ can be interpolated using a spline curve or similar. Also, since measuring or simulating the relationship between temperature and points on the calibration curve takes time and effort, it is also possible to obtain about four points within the corresponding temperature range and interpolate using a polynomial approximation.
  • a process in the sensor system 2 which is an example of the sensor system according to the second embodiment, will be described.
  • a method for measuring a gas-liquid ratio according to the second embodiment will be described by describing the process in the sensor system 2.
  • Fig. 8 is a flow diagram for describing the process in the sensor system 2, which is an example of the sensor system according to the second embodiment.
  • steps S10, S20, S30, and S40 please refer to the processing in sensor system 1 and the explanation will be omitted here.
  • Step S142 After step S40, the sensor system 2 measures the fluid temperature (step of measuring the fluid temperature). Specifically, the temperature acquisition unit 70 measures the temperature inside the pipe P. Then, the temperature acquisition unit 70 outputs the measurement result, that is, the temperature PVT, to the control unit 150. The control unit 150 acquires the temperature PVT from the temperature acquisition unit 70.
  • Step S144 the sensor system 2 corrects the calibration curve from the measured temperature (step of correcting the calibration curve from the measured temperature). Specifically, the control unit 150 corrects the selected calibration curve by using the temperature PVT.
  • Step S150 the sensor system 2 calculates the gas-liquid ratio from the radio wave intensity based on the corrected calibration curve (a step of calculating the gas-liquid ratio from the radio wave intensity based on the corrected calibration curve). Specifically, the control unit 150 calculates the moisture percentage ⁇ from the radio wave intensity RP based on the calibration curve corrected in step S144. Then, the control unit 150 calculates the gas-liquid ratio Raw from the calculated moisture percentage ⁇ based on Equation 4.
  • ⁇ Summary> when radio waves are transmitted into the inside of a pipe to measure the gas-liquid ratio, the influence of the flow pattern can be reduced. Furthermore, according to the sensor system of the second embodiment, the influence of temperature when measuring the gas-liquid ratio can be reduced.
  • the sensor system according to the third embodiment includes a pressure acquisition unit instead of the temperature acquisition unit of the sensor system according to the second embodiment.
  • the control unit of the sensor system according to the third embodiment calculates the gas-liquid ratio based on the radio waves received by the receiving unit, the pressure inside the pipe, and the flow pattern inside the pipe.
  • Fig. 9 is a diagram illustrating the outline of the configuration of sensor system 3, which is an example of the sensor system according to the third embodiment.
  • the sensor system 3 includes a pressure acquiring unit 80 instead of the temperature acquiring unit 70 of the sensor system 2, which is an example of the sensor system according to the second embodiment.
  • the sensor system 3 includes a control unit 250 instead of the control unit 150 of the sensor system 2.
  • the pressure acquiring unit 80 measures the pressure inside the pipe P.
  • the pressure acquiring unit 80 measures the pressure of the two-phase fluid flowing through the pipe P.
  • the pressure acquiring unit 80 transmits the measured pressure PVP to the control unit 250.
  • the pressure acquisition unit 80 may include, for example, a pressure gauge.
  • the pressure acquisition unit 80 may also acquire, for example, a pressure that is considered to represent the pressure near the antenna 10 from outside.
  • Control unit 250 The control unit 250 estimates the temperature based on the function and configuration of the control unit 150, as well as the pressure PVP acquired by the pressure acquisition unit 80. Then, the control unit 250 corrects the calibration curve using the estimated temperature.
  • Geothermal two-phase flow is basically a two-phase flow in which steam condenses due to the relationship between pressure and temperature. Therefore, geothermal two-phase flow can be considered to be in a saturated state.
  • a two-phase fluid is saturated, there is a certain relationship between the pressure and temperature of the two-phase fluid.
  • the temperature can be estimated by calculating the saturation temperature from the pressure using the practical international equations of state IAPWS-IF97, etc. The temperature estimated from the pressure is used to correct the calibration curve in the same way as the control unit 150 of the sensor system 2.
  • a process in the sensor system 3 which is an example of the sensor system according to the third embodiment, will be described.
  • a method for measuring a gas-liquid ratio according to the third embodiment will be described by describing the process in the sensor system 3.
  • Fig. 10 is a flow chart for describing the process in the sensor system 3, which is an example of the sensor system according to the third embodiment.
  • steps S10, S20, S30, and S40 the processing in sensor system 1 should be referred to and an explanation is omitted here.
  • step S150 the processing in sensor system 2 should be referred to and an explanation is omitted here.
  • Step S242 After step S40, the sensor system 3 measures the fluid pressure (a step of measuring the fluid pressure). Specifically, the pressure acquisition unit 80 measures the pressure inside the pipe P. Then, the pressure acquisition unit 80 outputs the measurement result, that is, the pressure PVP, to the control unit 250. The control unit 250 acquires the pressure PVP from the pressure acquisition unit 80.
  • Step S244 the sensor system 3 estimates the temperature from the measured pressure (step of estimating temperature from measured pressure). Specifically, the control unit 250 assumes that the two-phase fluid flowing through the pipe P is in a saturated state, and calculates the saturation temperature from the pressure using, for example, the practical international equations of state IAPWS-IF97, and estimates the temperature.
  • Step S246 the sensor system 3 corrects the calibration curve from the estimated temperature (step of correcting the calibration curve from the estimated temperature). Specifically, the control unit 250 corrects the selected calibration curve with the temperature PVT by using the temperature estimated in step S244.
  • the sensor system according to the fourth embodiment further comprises a temperature measurement unit, a pressure acquisition unit, and a flow rate acquisition unit in addition to the sensor system according to the first embodiment.
  • the control unit of the sensor system according to the fourth embodiment estimates the flow pattern based on the temperature, pressure, and flow velocity inside the pipe, and calculates the gas-liquid ratio based on the radio waves received by the receiving unit and the flow pattern inside the pipe.
  • Fig. 11 is a diagram illustrating the outline of the configuration of sensor system 4, which is an example of the sensor system according to the fourth embodiment.
  • the sensor system 4 further includes a temperature acquisition unit 70, a pressure acquisition unit 80, and a flow velocity acquisition unit 90 in addition to the components of the sensor system 1, which is an example of the sensor system according to the first embodiment.
  • the sensor system 4 also includes a flow pattern acquisition unit 360 instead of the flow pattern acquisition unit 60 of the sensor system 1.
  • the sensor system 4 also includes a control unit 350 instead of the control unit 50 of the sensor system 1.
  • components of the sensor system 4 that are common to any of the sensor systems 1, 2, and 3 please refer to the description of any of the sensor systems 1, 2, and 3, and therefore description thereof will be omitted here.
  • the flow velocity acquisition unit 90 measures the flow velocity of the liquid phase of the two-phase fluid flowing through the pipe P.
  • the flow velocity acquisition unit 90 transmits the measured flow velocity PVF to the flow pattern acquisition unit 360.
  • the flow velocity acquisition unit 90 includes, for example, a flow velocity meter.
  • the flow velocity acquisition unit 90 may also acquire the flow velocity of the water flowing through the pipe from an external source, for example.
  • the flow pattern acquisition unit 360 estimates the flow pattern based on the temperature PVT acquired by the temperature acquisition unit 70, the pressure PVP acquired by the pressure acquisition unit 80, and the flow velocity PVF acquired by the flow velocity acquisition unit 90. Then, the flow pattern acquisition unit 360 outputs the estimated flow pattern FRG2 to the control unit 350.
  • the density of air is ⁇ a (unit: kilogram per cubic meter)
  • the density of water is ⁇ w (unit: kilogram per cubic meter)
  • the density of the gas phase is ⁇ G (unit: kilogram per cubic meter)
  • the density of the liquid phase is ⁇ L (unit: kilogram per cubic meter).
  • the viscosity coefficient of water is ⁇ w (unit: Pascal second)
  • the viscosity coefficient of the liquid phase is ⁇ L (unit: Pascal second).
  • the density and viscosity coefficient are corrected using the temperature PVT (unit: °C) acquired by the temperature acquisition unit 70 and the pressure PVP (unit: Pascal) acquired by the pressure acquisition unit 80.
  • the ratio of the gas phase velocity to the liquid phase velocity is the slip ratio SR.
  • the slip ratio SR is determined from the temperature PVT acquired by the temperature acquisition unit 70, the pressure PVP acquired by the pressure acquisition unit 80, and the void fraction.
  • the void fraction is calculated with an expected range of width.
  • the gas phase flow velocity VG unit: meters per hour
  • liquid phase flow velocity VL unit: meters per hour
  • the flow velocity PVF unit: meters per hour
  • the mass flux (mass velocity) of the gas phase in a two-phase fluid is G (unit: kilograms per square meter per hour), and the mass flux of the liquid phase in a two-phase fluid is L (unit: kilograms per square meter per hour).
  • the total flow path cross-sectional area including the gas and liquid phases is S (unit: square meters), the flow path cross-sectional area of the gas phase is Sa (unit: square meters), and the flow path cross-sectional area of the liquid phase is Sw (unit: square meters).
  • the volumetric flow rate of the gas phase is VolG (unit: cubic meters per hour) and the volumetric flow rate of the liquid phase is VolW (unit: cubic meters per hour) are calculated using the following formulas.
  • the mass flow rate of the gas phase, MG (unit: kilograms per hour), and the mass flow rate of the liquid phase, ML (unit: kilograms per hour), can be expressed as follows, using the density of the gas phase, ⁇ G, and the density of the liquid phase, ⁇ L.
  • the mass flux G and mass flux L are calculated using the cross-sectional area S of the entire flow path according to the following formulas 7 and 8.
  • variable P1 unit: dimensionless
  • variable P2 unit: kilograms per square meter per hour
  • the flow pattern acquisition unit 360 determines where the determined variables P1 and P2 are located on the flow pattern diagram in FIG. 3. The flow pattern acquisition unit 360 then determines the flow pattern FRG2 from the positions on the flow pattern diagram in FIG. 3.
  • the flow pattern acquisition unit 360 may be configured to issue a warning that there is a possibility of a large error if the determined position is near the boundary of the flow pattern in the flow pattern diagram of FIG. 3.
  • the control unit 350 has the functions and configuration of the control unit 50.
  • the control unit 350 selects a calibration curve based on the flow pattern FRG2 acquired from the flow pattern acquisition unit 360. Although a detailed description will be omitted, the control unit 350 may correct the calibration curve using temperature as in the sensor system according to the second embodiment, or may correct the calibration curve using pressure as in the sensor system according to the third embodiment.
  • a process in the sensor system 4 which is an example of the sensor system according to the fourth embodiment, will be described.
  • a method for measuring a gas-liquid ratio according to the fourth embodiment will be described by describing the process in the sensor system 4.
  • Fig. 12 is a flow chart for describing the process in the sensor system 4, which is an example of the sensor system according to the fourth embodiment.
  • steps S10, S20, and S50 please refer to the processing in sensor system 1 and the explanation will be omitted here.
  • Step S330 The sensor system 4 estimates the flow pattern (step of estimating the flow pattern). Specifically, the flow pattern acquisition unit 360 estimates the flow pattern based on the temperature PVT acquired by the temperature acquisition unit 70, the pressure PVP acquired by the pressure acquisition unit 80, and the flow velocity PVF acquired by the flow velocity acquisition unit 90. Then, the flow pattern acquisition unit 360 transmits the flow pattern FRG2 to the control unit 350. The control unit 350 acquires the flow pattern FRG2 from the flow pattern acquisition unit 360.
  • Step S340 the sensor system 4 selects a calibration curve based on the estimated flow pattern (a step of selecting a calibration curve based on the estimated flow pattern). Specifically, the control unit 350 selects a calibration curve based on the flow pattern FRG2 acquired from the flow pattern acquisition unit 360.
  • the sensor system 4 includes a control unit 350 and a flow pattern acquisition unit 360, but the control unit 350 may perform the processing performed by the flow pattern acquisition unit 360.
  • ⁇ Summary> when radio waves are transmitted into the inside of a pipe to measure the gas-liquid ratio, the influence of the flow pattern can be reduced. Furthermore, according to the sensor system of the fourth embodiment, even if the flow pattern fluctuates, the influence on the estimation of the gas-liquid ratio can be reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Volume Flow (AREA)

Abstract

配管の内部を流れる二相流体の気液比を測定するセンサシステムであって、前記配管の内部に電波を発信する送信部と、前記配管の内部から前記電波を受信する受信部と、前記配管の内部の流動様式を取得する流動様式取得部と、前記受信部が受信した前記電波の電波強度と前記流動様式に基づいて、前記気液比を算出する制御部と、を備えるセンサシステム。

Description

センサシステム及び気液比の測定方法
 本開示は、センサシステム及び気液比の測定方法に関する。
 特許文献1には、地熱発電所で抽出された二相混合体中の空隙率を計算する方法が開示されている。特許文献1には、二相混合体中の空隙率を計算する方法において、輸送管中に無線周波数信号を送信して、無線周波数信号を受信し、平均信号強度減衰を計算し、平均信号強度減衰を基にして二相混合体の空隙率を計算することが開示されている。
米国特許第10670541号明細書
 配管の内部に電波を送信した場合、内部流体(一般的には水、水蒸気)の温度や流動様式によって反射波の強度が変化するため、電波の減衰強度から気液比を測定したときに、誤差が生じる場合があった。
 本開示は、気液比を測定するために、配管の内部に電波を送信した場合に、流動様式による影響が少ないセンサシステム及び気液比の測定方法を提供することを目的とする。
 本開示の一の態様によれば、配管の内部を流れる二相流体の気液比を測定するセンサシステムであって、前記配管の内部に電波を発信する送信部と、前記配管の内部から前記電波を受信する受信部と、前記配管の内部の流動様式を取得する流動様式取得部と、前記受信部が受信した前記電波の電波強度と前記流動様式に基づいて、前記気液比を算出する制御部と、を備えるセンサシステムを提供する。
 本開示のセンサシステム及び気液比の測定方法によれば、気液比を測定するために、配管の内部に電波を送信した場合に、流動様式による影響を少なくできる。
図1は、第1実施形態に係るセンサシステムの構成の概要を説明する図である。 図2は、気液比の定義について説明する図である。 図3は、二相流の流動様式を示す流動様式線図である。 図4は、第1実施形態に係るセンサシステムに用いられる検量線を説明する図である。 図5は、第1実施形態に係るセンサシステムの処理を説明するフロー図である。 図6は、第2実施形態に係るセンサシステムの構成の概要を説明する図である。 図7は、第2実施形態に係るセンサシステムに用いられる検量線の温度に対する影響を説明する図である。 図8は、第2実施形態に係るセンサシステムの処理を説明するフロー図である。 図9は、第3実施形態に係るセンサシステムの構成の概要を説明する図である。 図10は、第3実施形態に係るセンサシステムの処理を説明するフロー図である。 図11は、第4実施形態に係るセンサシステムの構成の概要を説明する図である。 図12は、第4実施形態に係るセンサシステムの処理を説明するフロー図である。
 以下、実施形態について、添付の図面を参照しながら説明する。なお、本開示はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 なお、各実施形態に係る明細書及び図面の記載に関して、実質的に同一の又は対応する機能構成を有する構成要素については、同一の符号を付することにより重複した説明を省略する場合がある。また、理解を容易にするために、図面における各部の縮尺は、実際とは異なる場合がある。
 ≪第1実施形態≫
 第1実施形態に係るセンサシステムについて説明する。第1実施形態に係るセンサシステムは、配管の内部を流れる二相流体の気液比を測定するセンサシステムである。第1実施形態に係るセンサシステムは、配管の内部に電波を発信する送信部と、配管の内部から電波を受信する受信部と、配管の内部の流動様式を取得する流動様式取得部と、を備える。また、第1実施形態に係るセンサシステムは、受信部が受信した電波と配管の内部の流動様式に基づいて、気液比を算出する制御部を備える。図1は、第1実施形態に係るセンサシステムの一例であるセンサシステム1の構成の概要を説明する図である。
 <センサシステム1>
 センサシステム1は、配管Pの内部を流れる二相流体の気液比を測定するシステムである。センサシステム1は、例えば、地熱流における気液比を測定する。センサシステム1は、配管Pの内部に高周波信号(電波)を発射し、配管Pの内部を伝搬して受信された受信波に基づいて、配管Pの内部を流れる二相流体の気液比を算出する。
 センサシステム1が算出する気液比について説明する。気液比とは、配管Pを流れる二相流体のおける液体量の割合である。図2は、気液比の定義について説明する図である。気液比は、気体量と液体量との比率である。気液比は、例えば、静止状態における配管断面における面積の比率により求められる。図2において、SAは気相の断面、SWは液相の断面、を示す。
 図2は、例として、配管内部の断面が円形となる配管Pにおける気液比を説明する。配管Pの半径をR(単位:メートル)、配管Pの断面積をS(単位:平方メートル)とすると、断面積Sは、式1により求められる。
  S = π×R   ・・・ 式1
 図2における気相の断面SAの断面積をSa(単位:平方メートル)、液相の断面SWの断面積をSw(単位:平方メートル)とすると、空隙率α(単位:無次元)は式2のようになる。また、水分率β(単位:無次元)は式3のようになる。そして、気液比Raw(単位:無次元)は、式4のようになる。
  α   = Sa/S   ・・・ 式2
  β   = 1-α = Sw/S   ・・・ 式3
  Raw = α / β = (1-β)/β  ・・・ 式4
 図1のセンサシステム1は、アンテナ10と、送信部20と、受信部30と、方向性結合部40と、制御部50と、流動様式取得部60と、を備える。
 [アンテナ10]
 アンテナ10は、配管Pの内部において、電波を送受信する。アンテナ10は、棒状の形状を有する。アンテナ10の先端10aは、配管Pに設けられた孔から、配管Pに挿入される。アンテナ10は、先端10aから電波を配管Pの内部に発信する。また、アンテナ10は、先端10aより配管Pの内部を反射して戻ってきた反射波の電波を受信する。アンテナ10の後端10bは、方向性結合部40を介して送信部20及び受信部30に接続する。
 なお、センサシステム1は、電波の送受信を行う1個のアンテナ10を備えるが、例えば、送信用のアンテナと受信用のアンテナとを別に備えてもよい。また、アンテナ10の形状についても、配管Pの内部に電波を送信又は受信可能であれば、図1に示す形状に限定されない。
 [送信部20]
 送信部20は、アンテナ10を介して配管Pの内部に電波を送信するための電気信号である送信信号Txを生成する。送信部20は、制御部50から出力される制御信号Ctl1に基づいて動作する。送信部20は、高周波信号生成回路を備える。高周波信号生成回路は、例えば、周波数1ギガヘルツであって、制御部50により出力が制御された(通常は一定の振幅の)連続波である高周波信号を生成する。高周波信号生成回路は、例えば、電圧制御発振器(VCO:Voltage-controlled oscillator)である。高周波信号生成回路は、周波数を、所望の周波数範囲、例えば、700メガヘルツから1ギガヘルツまでの範囲等、において調整できることが望ましい。
 [受信部30]
 受信部30は、アンテナ10を介して受信した電波に基づく電気信号である受信信号Rxを受信する。受信部30は、受信信号Rxをアナログデジタル変換することにより、受信信号Rxを制御部50が演算可能な電波強度RPに変換する。受信部30は、電波強度RPを制御部50に出力する。
 [方向性結合部40]
 方向性結合部40は、送信部20から入力された送信信号Txをアンテナ10に出力する。また、方向性結合部40は、アンテナ10から入力された受信信号Rxを受信部30に出力する。方向性結合部40は、例えば、単方向性結合器である。方向性結合器は、例えば、ループ方向性結合器又は分布結合型方向性結合器である。
 なお、方向性結合部40は、送信信号Txが受信部30に入力されることを抑制し、受信信号Rxが送信部20に入力されることを抑制する。
 [流動様式取得部60]
 流動様式取得部60は、外部から配管内の流動様式(Flow regime)が入力される。Bakerによる流動様式線図(Baker線図)を図3に示す。図3は、二相流の流動様式を示す流動様式線図、いわゆる、Baker線図である。図3の横軸は、気液各相の質量速度比を物性値で補正した変数P1を示す。図3の縦軸は、気相質量速度である変数P2を示す。図2は、観察結果から各流動様式の存在範囲を示す。
 図3における各符号について説明する。STは流動様式が成層流(STRATIFIED)となる領域を示す。Wは流動様式が波状流(WAVE)となる領域を示す。Aは流動様式が環状流(ANNULAR FLOW)となる領域を示す。AMは環状噴霧流(DISPERSED FLOW)となる領域を示す。SLはスラグ流(SLUG)となる領域を示す。Pはせん状流(PLUG)となる領域を示す。Bは気泡流(BUBBULE OR FROTH)となる領域を示す。
 センサシステム1の測定対象の例である地熱流は、一般的に地熱流の用途から蒸気主体の流れとなる。したがって、センサシステム1における配管Pを流れる二相流体は、例えば、図3に示すBaker線図における波状流及び成層流のいずれか、又は、環状流及び環状噴霧流のいずれか、に分類される。なお、流動様式が波状流及び成層流のいずれかである場合を流動様式FR1という。また、流動様式が環状流及び環状噴霧流のいずれかである場合を流動様式FR2という。
 流動様式取得部60は、例えば、発電所のオペレータが過去のトレーサフロー試験(TFT(Tracer Flow Test))の結果又は稼働実績を元に、流動様式を設定してよい。また、流動様式取得部60は、上位の機器から、流動様式の情報を取得してもよい。さらに、流動様式取得部60は、流動様式を判定する計測器から結果を取得してもよい。
 流動様式取得部60は、取得した流動様式FRGを、制御部50に出力する。
 [制御部50]
 制御部50は、送信部20及び受信部30のそれぞれを制御する。また、制御部50は、受信部30から受信した電波強度RPと、流動様式取得部60から取得した流動様式FRGに基づいて、配管Pの内部を流れる二相流体の気液比を算出する。
 制御部50は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)及びROM(Read Only Memory)を含む。制御部50は、例えば、ROMに保存されたプログラムをCPUで実行することにより処理を実行する。
 制御部50は、送信部20に制御信号Ctl1を送信する。制御信号Ctl1は、例えば、電波の発信周波数や送信出力の設定値等を含む。制御部50は、受信部30に制御信号Ctl2を送信する。制御信号Ctl2は、例えば、受信部30が取り込む電波強度RPの時間幅、平均化時間等を設定する設定値等を含む。
 また、制御部50は、受信部30から電波強度RPを受信する。制御部50は、流動様式取得部60から取得した流動様式FRGに基づいて少なくとも2つ以上の検量線の中から使用する検量線を選択する。検量線の例を図4に示す。図4は、第1実施形態に係るセンサシステムの一例であるセンサシステム1に用いられる検量線を説明する図である。検量線は、水分率βと、電波の電波強度RPとの関係を示す線である。図4の線Lfr1は、流動様式が波状流及び成層流のいずれかである場合、すなわち、流動様式が流動様式FR1である場合の検量線である。また、図4の線Lfr2は、流動様式が環状流及び環状噴霧流のいずれかである場合、すなわち、流動様式が流動様式FR2である場合の検量線である。なお、図4は、配管Pを流れる二相流体の温度が80℃の場合の結果である。
 発明者らは、図4に示すように、流動様式により、電波の電波強度が大きく変動することを見いだした。そこで、発明者らは、センサシステム1の制御部50において、複数の検量線から流動様式に基づいて選択することによって、水分率、すなわち、気液比を正確に求めることができることを見いだした。
 <センサシステム1における処理>
 次に、第1実施形態に係るセンサシステムの一例であるセンサシステム1における処理について説明する。センサシステム1における処理を説明することにより、第1実施形態に係る気液比の測定方法について説明する。図5は、第1実施形態に係るセンサシステムの一例であるセンサシステム1の処理を説明するフロー図である。
 (ステップS10)
 最初に、センサシステム1は、測定の初期化を行う(測定の初期化を行う工程)。具体的には、制御部50は、演算メモリを初期化する。
 (ステップS20)
 次に、センサシステム1は、電波強度を測定する(電波強度を測定する工程)。センサシステム1は、アンテナ10から配管Pの内部に電波を発信するとともに、アンテナ10により電波を受信する。そして、センサシステム1は、アンテナ10により受信した電波強度を測定する。
 具体的には、制御部50は、送信部20に制御信号Ctl1を送信する。そして、制御信号Ctl1を受信した送信部20は、送信信号Txをアンテナ10に出力する。送信部20は、制御部50から送信された制御信号Ctl1により設定された周波数、出力強度に基づいて、送信信号Txをアンテナ10に出力する。そして、アンテナ10は、配管Pの内部に、送信信号Txに基づく電波を発信する。
 次に、受信部30は、アンテナ10からの受信信号Rxを受信する。そして、受信部30は、受信信号Rxに基づいて、配管Pの内部における電波強度RPを測定する。具体的には、受信部30は、受信信号Rxを直接又は検波後、アナログデジタル変換を行い、電波強度RPを測定する。受信部30は、測定した電波強度RPを制御部50に転送する。なお、受信部30は、電波強度RPを算出する際に、あらかじめ制御部50から設定された時間幅で平均化して、平均化した結果を電波強度RPとして、制御部50に転送してよい。
 (ステップS30)
 次に、センサシステム1は、流動様式を取得する(流動様式を取得する工程)。具体的には、流動様式取得部60は、配管Pを流れる二相流体の流動様式を取得する。そして、流動様式取得部60は、制御部50に流動様式FRGを送信する。制御部50は、流動様式取得部60から流動様式FRGを取得する。
 (ステップS40)
 次に、センサシステム1は、取得した流動様式に基づいて、検量線を選択する(取得した流動様式に基づいて、検量線を選択する工程)。具体的には、制御部50は、電波強度RPと水分率βの関係を示す複数の検量線から、取得した流動様式FRGに基づいて、検量線を選択する。
 電波強度RPと水分率βの関係を示す検量線は、配管Pの配管の形状、長さ、材質等に基づいて定められる。また、検量線は、流動様式によって図4に示すように傾向が異なることから、想定される流動様式の種類に基づいて複数用意する。例えば、流動様式が波状流及び成層流のいずれかである場合、すなわち、流動様式が流動様式FR1である場合の検量線と、流動様式が環状流及び環状噴霧流のいずれかである場合、すなわち、流動様式が流動様式FR2である場合の検量線と、を用意する。
 電波強度RPと水分率βの関係を示す検量線は、設置時に事前にトレーサフロー試験などを行って取得してもよい。また、設置場所の系をシミュレーションモデルとして再現できる場合は、シミュレーションで求めてもよい。さらに、制御部50は、何らかの理由によって流動様式が変化した場合、事前に取得した電波強度RPと水分率との関係性が線形に近い周波数に変更してもよい。
 (ステップS50)
 次に、センサシステム1は、選択した検量線に基づいて、電波強度から気液比を算出する(選択した検量線に基づいて、電波強度から気液比を算出する工程)。具体的には、制御部50は、ステップS40で選択した検量線に基づいて、電波強度RPから水分率βを算出する。そして、制御部50は、算出した水分率βから、式4に基づいて、気液比Rawを算出する。
 なお、制御部50は、電波強度RPが配管中のしぶき等により突発的に変動することがあるため、ある一定の時間幅を設け移動平均してもよい。移動平均回数については、ノイズ等を考慮して適宜定めてもよい。なお、ノイズが少ない場合は、移動平均回数を1回、すなわち、取り込んだ電波強度RPそのものを用いて処理を行ってもよい。
 なお、上記の例では、検量線の数は2であったが、検量線の数は、3以上であってもよい。
 <まとめ>
 第1実施形態に係るセンサシステムによれば、気液比を測定するために、配管の内部に電波を送信した場合に、流動様式による影響を少なくできる。
 ≪第2実施形態≫
 第2実施形態に係るセンサシステムについて説明する。第2実施形態に係るセンサシステムは、第1実施形態に係るセンサシステムに、更に、温度取得部を備える。そして、第2実施形態に係るセンサシステムの制御部は、受信部が受信した電波と配管の内部の温度と配管の内部の流動様式に基づいて気液比を算出する。図6は、第2実施形態に係るセンサシステムの一例であるセンサシステム2の構成の概要を説明する図である。
 <センサシステム2>
 センサシステム2は、第1実施形態に係るセンサシステムの一例であるセンサシステム1に更に温度取得部70を備える。そして、センサシステム2は、センサシステム1の制御部50に換えて、制御部150を備える。センサシステム2におけるセンサシステム1と共通の構成についてはセンサシステム1の説明を参照することとして、ここでは説明を省略する。
 [温度取得部70]
 温度取得部70は、配管Pの内部の温度を測定する。温度取得部70は、配管Pを流れる二相流体の温度を測定する。温度取得部70は、測定した温度PVTを制御部150に伝送する。
 温度取得部70は、例えば、熱電対、測温抵抗体を備える。また、温度取得部70は、例えば、アンテナ10付近の温度を代表すると考えられる温度を外部から取得してよい。
 [制御部150]
 制御部150は、制御部50の機能、構成に加えて、選択した検量線において、温度取得部70により取得した温度PVTに基づいて、温度補正する。
 検量線における温度の影響を図7に示す。図7は、第2実施形態に係るセンサシステムの一例であるセンサシステム2に用いられる検量線の温度に対する影響を説明する図である。
 図7は、流動様式が波状流及び成層流のいずれかである場合、すなわち、流動様式が流動様式FR1である場合における温度の影響を示す図である。図7の横軸は温度PVTを示す。図7の縦軸は電波強度RPを示す。図7の線Lfr1aは、水分率βが0%の場合の結果である。図7の線Lfr1bは、水分率βが2%の場合の結果である。図7の線Lfr1cは、水分率βが6%の場合の結果である。図7の線Lfr1dは、水分率βが10%の場合の結果である。
 図7に示すように、水分率βが大きくなると、温度の影響を受けやすい。
 制御部150は、図7に示したように、配管Pを流れる二相流体の温度PVTに対する検量線上の点の変化を事前に実測又はシミュレーションで求める。そして、制御部150は、求めた配管Pを流れる二相流体の温度PVTに対する検量線上の点の変化に基づいて、検量線上の点を補正する。
 検量線が温度により変化する要因としては、対象となる流体の比誘電率及び誘電正接が変化することが考えられる。検量線上で補正する点はできるだけ測定の精度が高くなるが、より実測による補正式の算出や計算の負荷が高くなる。したがって、例えば、想定される水分率βの範囲内で4点程度のデータを実測又はシミュレーションにより取得し、各水分率βの間はスプライン曲線などで補間してもよい。また、温度と検量線上の点の関係も、多数の点を測定又はシミュレーションすると、時間と手間がかかるため、対応温度範囲で4点程度取得し、多項式近似で補間してもよい。
 <センサシステム2における処理>
 次に、第2実施形態に係るセンサシステムの一例であるセンサシステム2における処理について説明する。センサシステム2における処理を説明することにより、第2実施形態に係る気液比の測定方法について説明する。図8は、第2実施形態に係るセンサシステムの一例であるセンサシステム2の処理を説明するフロー図である。
 なお、ステップS10、ステップS20、ステップS30及びステップS40について、センサシステム1における処理を参照することとして、ここでは説明を省略する。
 (ステップS142)
 ステップS40の次に、センサシステム2は、流体温度を測定する(流体温度を測定する工程)。具体的には、温度取得部70は、配管Pの内部の温度を測定する。そして、温度取得部70は、測定した結果である温度PVTを制御部150に出力する。制御部150は、温度取得部70から温度PVTを取得する。
 (ステップS144)
 次に、センサシステム2は、測定した温度から検量線を補正する(測定した温度から検量線を補正する工程)。具体的には、制御部150は、温度PVTを用いて、選択した検量線を温度PVTにより補正する。
 (ステップS150)
 次に、センサシステム2は、補正した検量線に基づいて、電波強度から気液比を算出する(補正した検量線に基づいて、電波強度から気液比を算出する工程)。具体的には、制御部150は、ステップS144において補正した検量線に基づいて、電波強度RPから水分率βを算出する。そして、制御部150は、算出した水分率βから、式4に基づいて、気液比Rawを算出する。
 <まとめ>
 第2実施形態に係るセンサシステムによれば、気液比を測定するために、配管の内部に電波を送信した場合に、流動様式による影響を少なくできる。さらに、第2実施形態に係るセンサシステムによれば、気液比を測定する際の温度による影響を少なくできる。
 ≪第3実施形態≫
 第3実施形態に係るセンサシステムについて説明する。第3実施形態に係るセンサシステムは、第2実施形態に係るセンサシステムの温度取得部に換えて、圧力取得部を備える。そして、第3実施形態に係るセンサシステムの制御部は、受信部が受信した電波と配管の内部の圧力と配管の内部の流動様式に基づいて気液比を算出する。図9は、第3実施形態に係るセンサシステムの一例であるセンサシステム3の構成の概要を説明する図である。
 <センサシステム3>
 センサシステム3は、第2実施形態に係るセンサシステムの一例であるセンサシステム2の温度取得部70に換えて、圧力取得部80を備える。そして、センサシステム3は、センサシステム2の制御部150に換えて、制御部250を備える。センサシステム3におけるセンサシステム1又はセンサシステム2と共通の構成についてはセンサシステム1又はセンサシステム2の説明を参照することとして、ここでは説明を省略する。
 [圧力取得部80]
 圧力取得部80は、配管Pの内部の圧力を測定する。圧力取得部80は、配管Pを流れる二相流体の圧力を測定する。圧力取得部80は、測定した圧力PVPを制御部250に伝送する。
 圧力取得部80は、例えば、圧力計を備える。また、圧力取得部80は、例えば、アンテナ10付近の圧力を代表すると考えられる圧力を外部から取得してよい。
 [制御部250]
 制御部250は、制御部150の機能、構成に加えて、圧力取得部80により取得した圧力PVPに基づいて、温度を推定する。そして、制御部250は、推定した温度を用いて、検量線を補正する。
 地熱二相流は、基本的に蒸気が圧力や温度の関係で凝縮した二相流である。したがって、地熱二相流は、飽和状態と見なすことができる。二相流体が飽和状態である場合、二相流体の圧力と温度の間には一定の関係がある。例えば、実用国際状態式IAPWS-IF97等を用いて圧力より飽和温度を算出して、温度を推定できる。圧力から推定した温度を用いて、センサシステム2の制御部150と同様の検量線の補正を行う。
 <センサシステム3における処理>
 次に、第3実施形態に係るセンサシステムの一例であるセンサシステム3における処理について説明する。センサシステム3における処理を説明することにより、第3実施形態に係る気液比の測定方法について説明する。図10は、第3実施形態に係るセンサシステムの一例であるセンサシステム3の処理を説明するフロー図である。
 なお、ステップS10、ステップS20、ステップS30及びステップS40について、センサシステム1における処理を参照することとして、ここでは説明を省略する。また、ステップS150について、センサシステム2における処理を参照することとして、ここでは説明を省略する。
 (ステップS242)
 ステップS40の次に、センサシステム3は、流体圧力を測定する(流体圧力を測定する工程)。具体的には、圧力取得部80は、配管Pの内部の圧力を測定する。そして、圧力取得部80は、測定した結果である圧力PVPを制御部250に出力する。制御部250は、圧力取得部80から圧力PVPを取得する。
 (ステップS244)
 次に、センサシステム3は、測定した圧力から温度を推定する(測定した圧力から温度を推定する工程)。具体的には、制御部250は、配管Pを流れる二相流体が飽和状態と見なして、例えば、実用国際状態式IAPWS-IF97等を用いて圧力より飽和温度を算出して、温度を推定する。
 (ステップS246)
 次に、センサシステム3は、推定した温度から検量線を補正する(推定した温度から検量線を補正する工程)。具体的には、制御部250は、ステップS244で推定した温度を用いて、選択した検量線を温度PVTにより補正する。
 <まとめ>
 第3実施形態に係るセンサシステムによれば、気液比を測定するために、配管の内部に電波を送信した場合に、流動様式による影響を少なくできる。さらに、第3実施形態に係るセンサシステムによれば、気液比を測定する際の温度による影響を少なくできる。
 ≪第4実施形態≫
 第4実施形態に係るセンサシステムについて説明する。第4実施形態に係るセンサシステムは、第1実施形態に係るセンサシステムに、更に、温度測定部と、圧力取得部と、流量取得部と、を備える。そして、第4実施形態に係るセンサシステムの制御部は、配管の内部の温度、圧力及び流速に基づいて流動様式を推定し、受信部が受信した電波と配管の内部の流動様式に基づいて気液比を算出する。図11は、第4実施形態に係るセンサシステムの一例であるセンサシステム4の構成の概要を説明する図である。
 <センサシステム4>
 センサシステム4は、第1実施形態に係るセンサシステムの一例であるセンサシステム1に、更に、温度取得部70と、圧力取得部80と、流速取得部90と、を備える。そして、センサシステム4は、センサシステム1の流動様式取得部60に換えて流動様式取得部360を備える。さらに、センサシステム4は、センサシステム1の制御部50に換えて、制御部350を備える。ここでは、センサシステム4におけるセンサシステム1、センサシステム2及びセンサシステム3のいずれかと共通の構成についてはセンサシステム1、センサシステム2及びセンサシステム3のいずれかの説明を参照することとして、ここでは説明を省略する。
 [流速取得部90]
 流速取得部90は、配管Pを流れる二相流体の液相の流速を測定する。流速取得部90は、測定した流速PVFを流動様式取得部360に伝送する。
 流速取得部90は、例えば、流速計を備える。また、流速取得部90は、例えば、配管流れている流速を外部から取得してよい。
 [流動様式取得部360]
 流動様式取得部360は、温度取得部70により取得した温度PVT、圧力取得部80により取得した圧力PVP及び流速取得部90により取得した流速PVFに基づいて、流動様式を推定する。そして、流動様式取得部360は、推定した流動様式FRG2を、制御部350に出力する。
 空気の密度をρa(単位:キログラム毎立方メートル)、水の密度をρw(単位:キログラム毎立方メートル)、気相の密度をρG(単位:キログラム毎立方メートル)、液相の密度をρL(単位:キログラム毎立方メートル)とする。また、水の粘性係数をμw(単位:パスカル秒)、液相の粘性係数をμL(単位:パスカル秒)とする。なお、密度及び粘性係数のそれぞれは、温度取得部70により取得した温度PVT(単位:℃)、圧力取得部80により取得した圧力PVP(単位:パスカル)により補正する。
 密度と粘性係数を用いて、式5及び式6に基づいて、係数λ及び係数ψを算出する。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 また、気相の速度と液相の速度の比率をスリップ比SRとする。スリップ比SRは、温度取得部70により取得した温度PVT、圧力取得部80により取得した圧力PVP、ボイド率から求められる。ボイド率は、想定される範囲の幅を持たせた形で計算する。スリップ比SRを用いることにより、流速取得部90により取得した流速PVF(単位:メートル毎時)から気相の流速VG(単位:メートル毎時)、液相の流速VL(単位:メートル毎時)を算出する。
 二相流体における気相の質量流束(Mass Velocity)をG(単位:キログラム毎平方メートル毎時)、二相流体における液相の質量流束をL(単位:キログラム毎平方メートル毎時)とする。気相、液相含んだ全体の流路断面積をS(単位:平方メートル)、気相の流路断面積をSa(単位:平方メートル)、液相の流路断面積をSw(単位:平方メートル)とする。
 気相の体積流量をVolG(単位:立方メートル毎時)、液相の体積流量をVolW(単位:立方メートル毎時)は下記の式のようになる。
  VolG = VG × Sa
  VolW = VL × Sw
 気相の質量流量MG(単位:キログラム毎時)、液相の質量流量ML(単位:キログラム毎時)は、気相の密度をρG、液相の密度ρLを用いて、以下のように表せる。
  MG = VolG × ρG
  ML = VolW × ρL
 質量流束G及び質量流束Lは、流路全体の断面積Sを用いて、下記の式7及び式8により求められる。
  G = MG ÷ S   ・・・式7
  L = ML ÷ S   ・・・式8
 そして、変数P1(単位:無次元)及び変数P2(単位:キログラム毎平方メートル毎時)を下記の式9及び式10に基づいて算出する。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 流動様式取得部360は、求めた変数P1及び変数P2が、図3の流動様式線図においてどの位置にあるかを求める。そして、流動様式取得部360は、図3の流動様式線図における位置から、流動様式FRG2を求める。
 また、流動様式取得部360は、図3の流動様式線図において、求めた位置が、流動様式の境界付近にある場合は、誤差が大きくなる可能性があるとして警告を発するようにしてもよい。
 [制御部350]
 制御部350は、制御部50の機能、構成を備える。そして、制御部350は、流動様式取得部360から取得した流動様式FRG2に基づいて検量線を選択する。なお、具体的な説明は省略するが、制御部350は、第2実施形態に係るセンサシステムと同様に温度を用いて検量線を補正してもよいし、第3実施形態に係るセンサシステムと同様に圧力を用いて検量線を補正してもよい。
 <センサシステム4における処理>
 次に、第4実施形態に係るセンサシステムの一例であるセンサシステム4における処理について説明する。センサシステム4における処理を説明することにより、第4実施形態に係る気液比の測定方法について説明する。図12は、第4実施形態に係るセンサシステムの一例であるセンサシステム4の処理を説明するフロー図である。
 なお、ステップS10、ステップS20及びステップS50について、センサシステム1における処理を参照することとして、ここでは説明を省略する。
 (ステップS330)
 センサシステム4は、流動様式を推定する(流動様式を推定する工程)。具体的には、流動様式取得部360は、温度取得部70により取得した温度PVT、圧力取得部80により取得した圧力PVP及び流速取得部90により取得した流速PVFに基づいて、流動様式を推定する。そして、流動様式取得部360は、制御部350に流動様式FRG2を送信する。制御部350は、流動様式取得部360から流動様式FRG2を取得する。
 (ステップS340)
 次に、センサシステム4は、推定した流動様式に基づいて、検量線を選択する(推定した流動様式に基づいて、検量線を選択する工程)。具体的には、制御部350は、流動様式取得部360から取得した流動様式FRG2に基づいて、検量線を選択する。
 なお、センサシステム4は、制御部350と、流動様式取得部360と、を備えるが、制御部350において、流動様式取得部360が行う処理を行ってよい。
 <まとめ>
 第4実施形態に係るセンサシステムによれば、気液比を測定するために、配管の内部に電波を送信した場合に、流動様式による影響を少なくできる。さらに、第4実施形態に係るセンサシステムによれば、流動様式が変動しても、気液比の推定への影響を少なくできる。
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
1、2、3、4 センサシステム
10 アンテナ
10a 先端
10b 後端
20 送信部
30 受信部
40 方向性結合部
50、150、250、350 制御部
60、360 流動様式取得部
70 温度取得部
80 圧力取得部
90 流速取得部
P 配管

Claims (14)

  1.  配管の内部を流れる二相流体の気液比を測定するセンサシステムであって、
     前記配管の内部に電波を発信する送信部と、
     前記配管の内部から前記電波を受信する受信部と、
     前記配管の内部の流動様式を取得する流動様式取得部と、
     前記受信部が受信した前記電波の電波強度と前記流動様式に基づいて、前記気液比を算出する制御部と、
    を備える、
    センサシステム。
  2.  配管の内部を流れる二相流体の気液比を測定するセンサシステムであって、
     前記配管の内部に電波を発信する送信部と、
     前記配管の内部から前記電波を受信する受信部と、
     前記配管の内部の温度を測定する温度取得部と、
     前記配管の内部の流動様式を取得する流動様式取得部と、
     前記受信部が受信した前記電波の電波強度と前記温度と前記流動様式とに基づいて、前記気液比を算出する制御部と、
    を備える、
    センサシステム。
  3.  前記制御部は、前記温度に基づいて、前記気液比を補正する、
    請求項2に記載のセンサシステム。
  4.  配管の内部を流れる二相流体の気液比を測定するセンサシステムであって、
     前記配管の内部に電波を発信する送信部と、
     前記配管の内部から前記電波を受信する受信部と、
     前記配管の内部の圧力を測定する圧力取得部と、
     前記配管の内部の流動様式を取得する流動様式取得部と、
     前記受信部が受信した前記電波の電波強度と前記圧力と前記流動様式とに基づいて、前記気液比を算出する制御部と、
    を備える、
    センサシステム。
  5.  前記制御部は、前記圧力に基づいて、前記気液比を補正する、
    請求項4に記載のセンサシステム。
  6.  前記制御部は、前記流動様式に基づいて、前記電波強度から前記気液比を算出する少なくとも2つ以上の検量線の中から使用する検量線を選択する、
    請求項1から請求項5のいずれかに記載のセンサシステム。
  7.  配管の内部を流れる二相流体の気液比を測定するセンサシステムであって、
     前記配管の内部に電波を発信する送信部と、
     前記配管の内部から前記電波を受信する受信部と、
     前記配管の内部の温度を測定する温度取得部と、
     前記配管の内部の圧力を測定する圧力取得部と、
     前記配管の内部を流れる液相の流速を取得する流速取得部と、
     前記受信部が受信した前記電波の電波強度と前記温度、前記圧力及び前記流速とに基づいて、前記気液比を算出する制御部と、
    を備える、
    センサシステム。
  8.  前記制御部は、前記温度、前記圧力及び前記流速に基づいて、前記配管の内部の流動様式を推定し、推定した前記流動様式と前記受信部が受信した前記電波に基づいて、前記気液比を算出する、
    請求項7に記載のセンサシステム。
  9.  前記制御部は、前記流動様式から前記気液比を算出する少なくとも2つ以上の検量線の中から使用する検量線を選択し、前記気液比を算出する、
    請求項8に記載のセンサシステム。
  10.  前記制御部は、前記温度又は前記圧力に基づいて、前記気液比を補正する、
    請求項7から請求項9のいずれか一項に記載のセンサシステム。
  11.  配管の内部を流れる二相流体の気液比を測定する測定方法であって、
     前記配管の内部に電波を送信して、前記電波の反射波の電波強度から、流動様式に基づいて前記気液比を算出する、
    気液比の測定方法。
  12.  配管の内部を流れる二相流体の気液比を測定する測定方法であって、
     前記配管の内部に電波を送信して、前記電波の反射波の電波強度から、前記配管の内部の温度と流動様式に基づいて前記気液比を算出する、
    気液比の測定方法。
  13.  配管の内部を流れる二相流体の気液比を測定する測定方法であって、
     前記配管の内部に電波を送信して、前記電波の反射波の電波強度から、前記配管の内部の圧力と流動様式に基づいて前記気液比を算出する、
    気液比の測定方法。
  14.  前記配管の内部の温度、圧力及び液相の流速から前記流動様式を推定する、
    請求項11から請求項13のいずれかに記載の気液比の測定方法。
PCT/JP2022/037664 2022-10-07 2022-10-07 センサシステム及び気液比の測定方法 WO2024075286A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/037664 WO2024075286A1 (ja) 2022-10-07 2022-10-07 センサシステム及び気液比の測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/037664 WO2024075286A1 (ja) 2022-10-07 2022-10-07 センサシステム及び気液比の測定方法

Publications (1)

Publication Number Publication Date
WO2024075286A1 true WO2024075286A1 (ja) 2024-04-11

Family

ID=90607734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037664 WO2024075286A1 (ja) 2022-10-07 2022-10-07 センサシステム及び気液比の測定方法

Country Status (1)

Country Link
WO (1) WO2024075286A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0321854A (ja) * 1989-05-23 1991-01-30 Inst Fr Petrole 多相流体の特性測定法および装置
JPH0586793A (ja) * 1991-07-04 1993-04-06 Mitsubishi Materials Corp 地熱坑井の最大締切圧力および最高温度の予測法
JPH0843164A (ja) * 1994-07-05 1996-02-16 Inst Fr Petrole 多相流体の速度分布を測定するための装置及びその方法
JPH08193962A (ja) * 1994-07-08 1996-07-30 Inst Fr Petrole 多相流量測定
JP2009002564A (ja) * 2007-06-21 2009-01-08 Fuji Electric Holdings Co Ltd 冷媒冷却回路
CN107288627A (zh) * 2017-05-22 2017-10-24 天津大学 双平行线微波谐振腔传感器油水两相流高含水率测量方法
CN109085186A (zh) * 2018-09-19 2018-12-25 河北大学 基于微波测距法的油水两相流持水率检测装置及方法
JP2020504312A (ja) * 2016-11-04 2020-02-06 プロメコン・プロセス・メジャーメント・コントロール・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 二相流の負荷を決定するマイクロ波測定装置
CN110763704A (zh) * 2019-11-20 2020-02-07 天津工业大学 基于微波Wire mesh的油水两相流含水率测量系统
CN113280875A (zh) * 2021-05-08 2021-08-20 天津市天大泰和自控仪表技术有限公司 用于气液两相流测量的十字微波传感器及测量系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0321854A (ja) * 1989-05-23 1991-01-30 Inst Fr Petrole 多相流体の特性測定法および装置
JPH0586793A (ja) * 1991-07-04 1993-04-06 Mitsubishi Materials Corp 地熱坑井の最大締切圧力および最高温度の予測法
JPH0843164A (ja) * 1994-07-05 1996-02-16 Inst Fr Petrole 多相流体の速度分布を測定するための装置及びその方法
JPH08193962A (ja) * 1994-07-08 1996-07-30 Inst Fr Petrole 多相流量測定
JP2009002564A (ja) * 2007-06-21 2009-01-08 Fuji Electric Holdings Co Ltd 冷媒冷却回路
JP2020504312A (ja) * 2016-11-04 2020-02-06 プロメコン・プロセス・メジャーメント・コントロール・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 二相流の負荷を決定するマイクロ波測定装置
CN107288627A (zh) * 2017-05-22 2017-10-24 天津大学 双平行线微波谐振腔传感器油水两相流高含水率测量方法
CN109085186A (zh) * 2018-09-19 2018-12-25 河北大学 基于微波测距法的油水两相流持水率检测装置及方法
CN110763704A (zh) * 2019-11-20 2020-02-07 天津工业大学 基于微波Wire mesh的油水两相流含水率测量系统
CN113280875A (zh) * 2021-05-08 2021-08-20 天津市天大泰和自控仪表技术有限公司 用于气液两相流测量的十字微波传感器及测量系统

Similar Documents

Publication Publication Date Title
CA2697931C (en) Method and device for determining the level l of a liquid within a specified measuring range by means of radar signals transmitted to the liquid surface and radar signals reflected from the liquid surface
US20220136878A1 (en) Extended range adc flow meter
CN105556332B (zh) 管道或管中的fmcw雷达的频散校正
US8963769B2 (en) Guided wave radar interface measurement medium identification
US8319680B2 (en) Radar liquid level detection using stepped frequency pulses
JP2022106947A (ja) レーダセンサの高周波モジュールの位相を較正する方法
US7532992B2 (en) Measuring apparatuses and methods of using them
CN109633578B (zh) 一种双通道高精度相位标校系统及方法
US20160138956A1 (en) Level measuring instrument for determining moisture content
US11199429B2 (en) Method for measuring a speed of a fluid
US20210018350A1 (en) Envelope based sample correction for digital flow metrology
WO2024075286A1 (ja) センサシステム及び気液比の測定方法
US11366002B2 (en) Method for detecting a fault state at an FMCW-based filling level measuring device
JP4376390B2 (ja) Fm−cwレーダの周波数変調特性測定方法及び装置
JP6808105B2 (ja) 生体センサ装置
CN111684242B (zh) 检测基于fmcw的液位测量装置的潜在故障状态的方法
US20140118185A1 (en) Level measurement instrument fiducial diagnostics
US20200378811A1 (en) Gas volume determination in fluid
KR101960888B1 (ko) 온도 센서 보정 장치, 온도 센서 및 온도 센서 보정 방법
US20150323370A1 (en) Method for Evaluation for Measurement Signals of a Level Gauge
US20230280285A1 (en) Sensor system and method for measuring gas liquid ratio
KR102631133B1 (ko) 초음파 가스미터 유량 측정 장치 및 방법
WO2023243155A1 (ja) 測距装置
JP2023010244A (ja) 超音波流量計及び流量演算方法
CN114526832A (zh) 在仪表中测量水温的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 810410

Country of ref document: NZ

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22961472

Country of ref document: EP

Kind code of ref document: A1