WO2024075275A1 - Screw compressor - Google Patents

Screw compressor Download PDF

Info

Publication number
WO2024075275A1
WO2024075275A1 PCT/JP2022/037604 JP2022037604W WO2024075275A1 WO 2024075275 A1 WO2024075275 A1 WO 2024075275A1 JP 2022037604 W JP2022037604 W JP 2022037604W WO 2024075275 A1 WO2024075275 A1 WO 2024075275A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw
slide valve
groove
protrusion
rotor
Prior art date
Application number
PCT/JP2022/037604
Other languages
French (fr)
Japanese (ja)
Inventor
駿 岡田
雅章 上川
雅浩 神田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/037604 priority Critical patent/WO2024075275A1/en
Publication of WO2024075275A1 publication Critical patent/WO2024075275A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/10Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • F04C28/12Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using sliding valves

Definitions

  • This disclosure relates to a screw compressor.
  • a screw compressor is known as one type of positive displacement compressor, and is used as a component of a refrigerant circuit built into a refrigerator or the like.
  • One known screw compressor is a single screw compressor in which, for example, one screw rotor with a spiral tooth groove and two gate rotors with multiple gate rotor teeth that fit into the tooth grooves of the screw rotor are housed inside a casing.
  • multiple compression chambers are formed by mutually meshing and engaging the tooth grooves of the screw rotor and the gate rotor teeth of the gate rotor.
  • One end of the screw rotor in the rotation axis direction is the refrigerant intake side, and the other end is the refrigerant discharge side.
  • the inside of the casing is partitioned into a low pressure space provided on the suction side of the compression chamber, and a high pressure space provided on the discharge side of the compression chamber.
  • the screw rotor is fixed to a screw shaft that is rotated by a drive unit provided inside the casing. Both ends of the screw shaft are rotatably supported by bearing housings having bearings inside.
  • the screw shaft is also connected to the drive unit on the refrigerant suction side.
  • Some screw compressors are equipped with a pair of slide valves that are arranged in slide grooves formed on the inner cylindrical surface of the casing and are slidably movable in the direction of the rotation axis of the screw rotor.
  • the slide valves slide in the direction of the rotation axis of the screw rotor to change the discharge start position of the high-pressure gas refrigerant compressed in the compression chamber, thereby changing the discharge opening timing and changing the internal volume ratio.
  • This slide valve has a valve body portion that faces the screw rotor, and a guide portion that forms a sliding surface facing the outer circumferential surface of the bearing housing.
  • a gap is provided between the sliding surface of the guide portion and the outer circumferential surface of the bearing housing to drive the slide valve in the direction of the rotation axis of the screw rotor. Also, a gap is provided between the valve body portion of the slide valve and the outer circumferential surface of the screw rotor to allow the screw rotor to be driven to rotate.
  • the screw rotor and slide valve when the screw rotor and slide valve thermally expand due to an increase in the temperature of the refrigerant gas compressed in the compression chamber, the gap between the guide part of the slide valve and the outer peripheral surface of the bearing housing, and the gap between the valve body part of the slide valve and the outer peripheral surface of the screw rotor may decrease.
  • the screw rotor may rotate in the reverse direction due to the high and low pressure difference inside the casing after operation is stopped.
  • the valve body part of the slide valve When the screw rotor rotates in the reverse direction, the valve body part of the slide valve may rotate circumferentially due to the influence of changes in the internal pressure of the compression chamber, etc., and the slide valve may come into contact with the screw rotor, resulting in seizure, etc.
  • the valve body part of the slide valve may rotate circumferentially due to changes in pressure acting from the compression chamber even during normal operation.
  • a protrusion is provided on the guide portion of the slide valve that protrudes relatively further in the circumferential direction than the valve body portion, and when the slide valve rotates in the circumferential direction, the protrusion comes into contact with the bearing holder, thus preventing contact between the slide valve and the screw rotor.
  • Patent Document 1 the protrusions on the guide portion of the slide valve are provided on the surface facing the bearing holder, so the gap between the slide valve and the bearing holder required to drive the slide valve in the axial direction is small. In this case, there is a concern that the gap between the slide valve and the bearing holder may be further reduced due to thermal expansion of the slide valve or the bearing holder, causing the slide valve to come into contact with the bearing holder, deteriorating the drivability of the slide valve in the axial direction.
  • This disclosure has been made to solve the above problems, and aims to provide a screw compressor that can prevent contact between the slide valve and the screw rotor.
  • the screw compressor according to the present disclosure includes a casing forming an outer shell, a screw shaft disposed within the casing and driven to rotate, a screw rotor having a spiral tooth groove on its outer circumferential surface and fixed to the screw shaft, a gate rotor having a plurality of gate rotor teeth that fit into the tooth grooves of the screw rotor and forming a compression chamber together with the casing and the screw rotor, a slide valve configured to slide freely in the direction of the rotation axis of the screw rotor, and a bearing housing having a bearing therein that rotatably supports an end of the screw shaft, the slide valve having a valve body portion facing the screw rotor and a guide portion having a sliding surface facing the outer circumferential surface of the bearing housing, one of the sliding surface of the guide portion and the outer circumferential surface of the bearing housing has a groove portion formed along the sliding direction, and the other has a protrusion portion that fits into the groove portion, and the slide valve is configured to slide freely in the direction
  • a groove formed on one of the guide portion of the slide valve and the outer circumferential surface of the bearing housing fits into a protrusion formed on the other, thereby restricting circumferential rotation of the slide valve. Therefore, even if the pressure acting on the valve body portion of the slide valve facing the outer circumferential surface of the screw rotor fluctuates, the slide valve will not rotate circumferentially, and contact between the slide valve and the screw rotor can be suppressed.
  • FIG. 1 is a vertical cross-sectional view showing an internal structure of a screw compressor according to a first embodiment.
  • 2 is an enlarged cross-sectional view showing a main part taken along line AA in FIG. 1.
  • 2 is an enlarged cross-sectional view showing a main part taken along line BB in FIG. 1.
  • FIG. 2 is a perspective view showing a slide valve of the screw compressor according to the first embodiment.
  • 3 is a side view showing a guide portion of a slide valve of the screw compressor according to the first embodiment.
  • FIG. 6 is a cross-sectional view taken along the line CC shown in FIG. 5.
  • FIG. 2 is a perspective view showing a bearing housing of the screw compressor according to the first embodiment.
  • FIG. 4 is an enlarged cross-sectional view showing a main part of a first modified example of the screw compressor according to the first embodiment.
  • FIG. FIG. 11 is a perspective view showing a bearing housing of a second modified example of the screw compressor according to the first embodiment.
  • 4 is an enlarged cross-sectional view showing a main part of a second modified example of the screw compressor according to the first embodiment.
  • FIG. FIG. 4 is an explanatory diagram showing the operation of the compression section of the screw compressor according to the first embodiment, illustrating a suction stroke.
  • FIG. 4 is an explanatory diagram showing the operation of the compression section of the screw compressor according to the first embodiment, illustrating a compression process.
  • FIG. 11 is a perspective view showing a bearing housing of a screw compressor according to a second embodiment.
  • FIG. 11 is a perspective view showing a modified example of the bearing housing of the screw compressor according to the second embodiment.
  • FIG 1 is a vertical cross-sectional view showing an internal structure of a screw compressor 100 according to a first embodiment.
  • FIG 2 is an enlarged cross-sectional view showing a main part along the line A-A shown in FIG 1.
  • FIG 3 is an enlarged cross-sectional view showing a main part along the line B-B shown in FIG 1.
  • FIG 4 is a perspective view showing a slide valve 7 of the screw compressor 100 according to the first embodiment.
  • FIG 5 is a side view showing a guide portion 71 of the slide valve 7 of the screw compressor 100 according to the first embodiment.
  • FIG 6 is a cross-sectional view along the line C-C shown in FIG 5.
  • FIG 7 is a perspective view showing a bearing housing 8 of the screw compressor 100 according to the first embodiment.
  • the screw compressor 100 has a cylindrical casing 1 that forms the outer shell, and a compression section 2 and a drive section 3 that are provided inside the casing 1.
  • the inside of the casing 1 is partitioned into a low-pressure space 10 and a high-pressure space 11.
  • the compression section 2 includes a screw shaft 4, a screw rotor 5, a pair of gate rotors 6, a gate rotor support (not shown), a pair of slide valves 7, and a bearing housing 8.
  • the screw shaft 4 is disposed within the casing 1 and is driven to rotate by the drive unit 3.
  • the screw shaft 4 extends in the axial direction of the casing 1, with one shaft end rotatably supported by a bearing 8a disposed opposite the discharge side of the screw rotor 5, and the other shaft end rotatably supported by a bearing (not shown) disposed on the suction side of the refrigerant.
  • the screw shaft 4 is also connected to the drive unit 3 on the suction side of the refrigerant.
  • the screw rotor 5 has a plurality of helical tooth grooves 5a on the outer circumferential surface of a cylinder.
  • the screw rotor 5 is fixed to the screw shaft 4 and rotates together with the screw shaft 4 which is rotated by the drive unit 3.
  • the low pressure space 10 side of the screw rotor 5 in the direction of the rotation shaft is the refrigerant intake side
  • the high pressure space 11 side is the refrigerant discharge side.
  • a predetermined gap 75 is formed between the screw rotor 5 and the slide valve 7. This is to prevent contact when assembling the screw compressor 100, for example, or to prevent contact between the slide valve 7 and the screw rotor 5 during operation of the screw compressor 100, which may cause seizure or the like.
  • the gate rotor 6 has a number of gate rotor teeth 6a formed on its outer periphery that fit into the tooth grooves 5a of the screw rotor 5, and is arranged to radially sandwich the screw rotor 5 as shown in FIG. 1.
  • the compression section 2 has a compression chamber 20 formed by the tooth grooves 5a of the screw rotor 5 and the gate rotor teeth 6a of the gate rotor 6 meshing with each other.
  • the screw compressor 100 has a configuration in which two gate rotors 6 are arranged facing one screw rotor 5 with a 180 degree shift. Therefore, two compression chambers 20 are formed on the upper side of the screw shaft 4 and the lower side of the screw shaft 4.
  • the gate rotor support (not shown) has a number of gate rotor support teeth that are arranged facing the number of gate rotor teeth 6a, and supports the gate rotor 6.
  • the slide valve 7 is provided in a slide groove formed on the inner cylindrical surface of the casing 1, and is configured to be freely slidable in the direction of the rotation axis of the screw rotor 5.
  • One example of the slide valve 7 is an internal volume ratio adjustment valve.
  • the slide valve 7 includes a valve body portion 70 facing the screw rotor 5, a guide portion 71 having a sliding surface 710 facing the outer peripheral surface of the bearing housing 8, and a guide rod 77 supported by the slide groove end portion 12.
  • the guide portion 71 is provided on one end side of the valve body portion 70 in the direction of the rotation axis of the screw rotor 5, and is connected to the valve body portion 70 by a connecting portion 72.
  • a predetermined gap 75 is formed between the valve body portion 70 and the screw rotor 5.
  • a gap 76 is formed between the sliding surface 710 of the guide portion 71 and the outer peripheral surface of the bearing housing 8 to drive the slide valve 7 in the direction of the rotation axis of the screw rotor 5.
  • a discharge port 7a for the refrigerant compressed in the compression chamber 20 is provided between the valve body portion 70 and the guide portion 71. The refrigerant discharged from the discharge port 7a is discharged into the high-pressure space 11.
  • the slide valve 7 is connected to the slide valve drive device 74 via a rod 73 fixed to the end face of the guide portion 71.
  • the slide valve 7 moves along the direction of the rotation axis of the screw rotor 5 by the rod 73 which moves axially when driven by the slide valve drive device 74.
  • the slide valve drive device 74 is, for example, configured to be driven by gas pressure, hydraulic pressure, or a motor.
  • the guide rod 77 is provided on the other end side of the valve body portion 70 in the direction of the rotation axis of the screw rotor 5.
  • the guide rod 77 is inserted into a hole 12a formed in the slide groove end portion 12 so as to be freely slidable.
  • the slide groove end portion 12 is a portion formed to protrude inward from the inner wall surface of the casing 1 toward the screw shaft 4 and face the slide valve 7.
  • the guide rod 77 is inserted in the hole 12a of the slide groove end portion 12 without coming out even when the slide valve 7 slides, and is provided to prevent the axial displacement of the slide valve 7.
  • the outer surface of the guide rod 77 may be circular or semicircular, or may be polygonal, for example, to prevent the slide valve 7 from rotating.
  • the valve body portion 70 of the slide valve 7 moves along the direction of the rotational axis of the screw rotor 5, thereby adjusting the discharge timing of the refrigerant sucked into the compression chamber 20.
  • the slide valve 7 can be positioned on the suction side to advance the opening of the discharge port 7a, thereby advancing the discharge timing, and can be moved to the discharge side to delay the opening of the discharge port 7a, thereby delaying the discharge timing.
  • the screw compressor 100 operates with a low internal volume ratio when the discharge timing is advanced, and operates with a high internal volume ratio when the discharge timing is delayed.
  • the bearing housing 8 is provided close to the discharge end of the screw rotor 5.
  • the bearing housing 8 has a bearing 8a therein that rotatably supports the end of the screw shaft 4.
  • the outer diameter of the bearing housing 8 is larger than the outer diameter of the screw rotor 5.
  • the outer diameter of the bearing housing 8 may be smaller than the outer diameter of the screw rotor 5, but it is preferable that it is larger than the outer diameter of the screw rotor 5.
  • the drive unit 3 is composed of an electric motor 30.
  • the electric motor 30 is composed of a stator 31, which is fixed in contact with the inside of the casing 1 and has a radial gap, and a motor rotor 32, which is rotatably arranged inside the stator 31.
  • the motor rotor 32 is connected to the refrigerant suction side of the screw shaft 4 and is arranged on the same axis as the screw rotor 5.
  • the screw compressor 100 rotates the screw rotor 5 by the electric motor 30 driving the screw shaft 4.
  • the electric motor 30 is driven at a variable rotation speed by an inverter (not shown), and is operated by accelerating and decelerating the rotation speed of the screw shaft 4.
  • the screw compressor 100 when the screw rotor 5 and the slide valve 7 thermally expand due to an increase in the temperature of the refrigerant gas compressed in the compression chamber 20, the gap 76 between the sliding surface 710 of the guide portion 71 of the slide valve 7 and the outer peripheral surface of the bearing housing 8, and the gap 75 between the valve body portion 70 of the slide valve 7 and the outer peripheral surface of the screw rotor 5 may decrease.
  • the screw rotor 5 may rotate in the reverse direction due to the high and low pressure difference in the casing.
  • the slide valve 7 When the screw rotor 5 rotates in the reverse direction, the slide valve 7 may rotate in the circumferential direction due to the influence of the change in the internal pressure of the compression chamber 20, and the valve body portion 70 may come into contact with the screw rotor 5, which may cause seizure, etc. Furthermore, even during normal operation, the screw compressor 100 may rotate the slide valve 7 in the circumferential direction due to the change in pressure acting from the compression chamber 20, and the valve body portion 70 may come into contact with the screw rotor 5, which may cause seizure, etc.
  • a groove 71a is formed along the sliding direction on the sliding surface 710 of the guide portion 71 of the slide valve 7, and as shown in Figs. 3 and 7, a cylindrical protrusion 80 is provided on the outer peripheral surface of the bearing housing 8 to fit into the groove 71a.
  • the slide valve 7 is configured to be able to slide freely in the rotation axis direction of the screw rotor 5 with the protrusion 80 fitted into the groove 71a. In other words, the slide valve 7 is restricted from rotating in the circumferential direction by fitting the protrusion 80 into the groove 71a, while maintaining a gap 76 between the sliding surface 710 of the guide portion 71 and the outer peripheral surface of the bearing housing 8.
  • a gap S is formed between the bottom surface of the groove 71a and the tip surface of the protrusion 80 in order to improve the drivability of the slide valve 7.
  • a small gap is also formed between the side wall surface of the groove 71a and the side surface of the protrusion 80 in order to improve the drivability of the slide valve 7.
  • the groove portion 71a may be formed in a range that takes into account the amount of movement of the slide valve 7, and may be formed from one end of the guide portion 71 to the other end along the sliding direction of the slide valve 7 as shown in FIG. 6, or may be formed only in a partial range.
  • the groove portion 71a is not limited to a rectangular shape as shown in FIG. 5, and may be another shape.
  • the protrusion 80 is provided in the range of the outer circumferential surface of the bearing housing 8 where the guide portion 71 of the slide valve 7 slides (the range indicated by the dotted line in FIG. 7), and is located within the groove portion 71a even when the slide valve 7 slides.
  • the protrusion 80 is provided in the center of the range of the outer circumferential surface of the bearing housing 8 where the guide portion 71 slides, but it may be provided in any other position within the range where the guide portion 71 slides.
  • the protrusion 80 is provided by forming a cylindrical through hole or groove on the outer surface of the bearing housing 8 and joining a cylindrical pin by pressing or shrink fitting into the through hole or groove.
  • the side wall surface of the groove 71a and the side surface of the protrusion 80 are in line contact.
  • the contact area between the groove 71a and the protrusion 80 can be reduced, so that frictional resistance can be suppressed and the drivability of the slide valve 7 can be improved.
  • the range of line contact between the side wall surface of the groove 71a and the side surface of the protrusion 80 can be reduced.
  • the protrusion 80 is not limited to the cylindrical shape shown in the figure, but may be rectangular or have other shapes.
  • the protrusion 80 may also be integrally formed by machining a part of the bearing housing 8.
  • the protrusion 80 is formed from a material with a smaller linear expansion coefficient than the material of the slide valve 7 and the bearing housing 8.
  • the parts around the screw rotor 5 may become hot, causing the slide valve 7, the bearing housing 8, and the protrusion 80 to thermally expand. Even in such a case, a small gap can be secured between the groove 71a and the protrusion 80, so deterioration of the drivability of the slide valve 7 can be suppressed.
  • FIG. 8 is an enlarged cross-sectional view of a main part of the first modified example of the screw compressor 100 according to the first embodiment.
  • a groove 81 may be formed on the outer peripheral surface of the bearing housing 8 along the sliding direction of the slide valve 7, and a protrusion 71b that fits into the groove 81 may be formed on the sliding surface 710 of the guide portion 71 of the slide valve 7.
  • the slide valve 7 is configured to be freely slidable in the direction of the rotation axis of the screw rotor 5 with the protrusion 71b fitted into the groove 81.
  • the protrusion 71b may be formed integrally with the guide portion 71 of the slide valve 7, or may be provided by forming a groove in the guide portion 71 of the slide valve 7 and pressing a cylindrical pin into the groove or joining it by shrink fitting or the like.
  • FIG. 9 is a perspective view showing the bearing housing 8 in a second modified example of the screw compressor 100 according to the first embodiment.
  • FIG. 10 is a cross-sectional view showing an enlarged view of the main parts of the second modified example of the screw compressor 100 according to the first embodiment.
  • the tip surface 80a of the cylindrical protrusion 80 is configured to be hemispherical. For example, even if the slide valve 7 and the bearing housing 8 thermally expand and the tip surface 80a of the protrusion 80 comes into contact with the bottom surface of the groove 71a of the guide portion 71, the tip surface 80a of the protrusion 80 and the bottom surface of the groove 71a can be brought into point contact.
  • the tip surface 80a of the protrusion 80 is not limited to being hemispherical, but may be, for example, curved, other than flat, or may have a tip portion tapered toward the bottom surface of the groove 71a.
  • Figure 11 is an explanatory diagram showing the operation of the compression section 2 of the screw compressor 100 according to the first embodiment, illustrating the suction process.
  • Figure 12 is an explanatory diagram showing the operation of the compression section 2 of the screw compressor 100 according to the first embodiment, illustrating the compression process.
  • Figure 13 is an explanatory diagram showing the operation of the compression section 2 of the screw compressor 100 according to the first embodiment, illustrating the discharge process. Note that in Figures 11 to 13, each process will be described with a focus on the compression chamber 20 indicated by dotted hatching.
  • Figure 11 shows the state of the compression chamber 20 during the suction stroke.
  • the screw rotor 5 is driven by the electric motor 30 and rotates in the direction of the solid arrow. This causes the volume of the compression chamber 20 to decrease, as shown in Figure 12.
  • the compression chamber 20 is connected to the discharge port 7a as shown in FIG. 13. This causes the high-pressure refrigerant gas compressed in the compression chamber 20 to be discharged to the outside through the discharge port 7a. The same compression then occurs again on the back surface of the screw rotor 5.
  • Conventional rotation prevention structures of the slide valve include, for example, a structure in which a key groove is formed in the valve body of the slide valve and the high and low pressure partitions of the casing, and a common key is inserted into the key groove.
  • a key groove is formed in one of the valve body of the slide valve and the high and low pressure partitions of the casing, and a protrusion that fits into the key groove is formed in the other.
  • the conventional anti-rotation structure is provided on the outer surface of the valve body 70 that faces the high and low pressure partitions of the casing 1. Therefore, when the pressure compressing the refrigerant by the screw rotor 5 acts on the valve body, the valve body 70 is pressed against the casing 1, which increases the airtightness of the anti-rotation structure, but may deteriorate the drivability of the slide valve 7.
  • a groove 71a is formed along the sliding direction on one of the sliding surface 710 of the guide portion 71 and the outer peripheral surface of the bearing housing 8, and a protrusion 80 that fits into the groove 71a is formed on the other.
  • the rotation prevention structure since the rotation prevention structure is provided in the high pressure space 11, high pressure refrigerant gas does not leak into the low pressure space 10. Therefore, for example, a gap S can be formed between the groove bottom surface of the groove 71a and the tip surface of the protrusion 80, thereby reducing contact between the protrusion 80 and the groove 71a. Therefore, in the screw compressor 100 according to the first embodiment, it is possible to prevent circumferential rotation while improving the drivability of the slide valve 7.
  • the screw compressor 100 when the pressure compressing the refrigerant by the screw rotor 5 acts on the valve body 70 and the valve body 70 is pressed against the inner wall surface of the casing 1, the airtightness of the groove 71a and the protrusion 80 decreases, improving the drivability of the slide valve 7.
  • the screw compressor 100 includes a casing 1 forming an outer shell, a screw shaft 4 arranged in the casing 1 and driven to rotate, a screw rotor 5 having a spiral tooth groove 5a on its outer circumferential surface and fixed to the screw shaft 4, a gate rotor 6 having a plurality of gate rotor teeth 6a that fit into the tooth grooves 5a of the screw rotor 5 and forming a compression chamber 20 together with the casing 1 and the screw rotor 5, a slide valve 7 configured to slide freely in the rotation axis direction of the screw rotor 5, and a bearing housing 8 having a bearing 8a therein that rotatably supports the end of the screw shaft 4.
  • the slide valve 7 has a valve body portion 70 facing the screw rotor 5, and a guide portion 71 having a sliding surface 710 facing the outer circumferential surface of the bearing housing 8.
  • a groove portion 71a is formed along the sliding direction on one of the sliding surface 710 of the guide portion 71 and the outer circumferential surface of the bearing housing 8, and a protrusion portion 80 that fits into the groove portion 71a is provided on the other.
  • the slide valve 7 is configured to be freely slidable in the direction of the rotation axis of the screw rotor 5 with the protrusion 80 fitted into the groove 71a.
  • the projection 80 fits into the groove 71a, so that the circumferential rotation of the slide valve 7 can be restricted. Therefore, even if the pressure acting on the valve body 70 that faces the outer circumferential surface of the screw rotor 5 fluctuates, the slide valve 7 will not rotate in the circumferential direction, and contact between the slide valve 7 and the screw rotor 5 can be suppressed. In addition, the gap 76 between the sliding surface 710 of the guide portion 71 and the outer circumferential surface of the bearing housing 8 can be maintained, so deterioration of the drivability of the slide valve can be suppressed.
  • the protrusion 80 is cylindrical. This allows the side wall surface of the groove 71a and the side surface of the protrusion 80 to be in line contact. This reduces the contact area between the groove 71a and the protrusion 80, suppressing frictional resistance and improving the drivability of the slide valve 7.
  • the tip surface 80a of the protrusion 80 that fits into the groove 71a is semispherical or curved. Therefore, even if the slide valve 7 and the bearing housing 8 thermally expand and the tip surface 80a of the protrusion 80 comes into contact with the bottom surface of the groove 71a of the guide part 71, the tip surface 80a of the protrusion 80 and the bottom surface of the groove 71a can be in point contact. This reduces the contact area between the protrusion 80 and the groove 71a, thereby preventing deterioration of the drivability of the slide valve 7.
  • a gap S is formed between the bottom surface of the groove 71a and the tip surface 80a of the protrusion 80, improving the drivability of the slide valve 7.
  • a screw compressor 100 according to a second embodiment will be described based on Fig. 14 and Fig. 15 while referring to Figs. 1 to 13.
  • Fig. 14 is a perspective view showing a bearing housing 8 of the screw compressor 100 according to the second embodiment. Note that the same components as those of the screw compressor 100 described in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted as appropriate.
  • a groove 71a is formed along the sliding direction on the sliding surface 710 of the guide portion 71 of the slide valve 7.
  • a protrusion 82 that fits into the groove 71a is formed on the outer circumferential surface of the bearing housing 8.
  • the protrusion 82 of the screw compressor 100 according to the second embodiment is configured as a rod extending along the sliding direction of the slide valve 7. With the protrusion 82 fitted into the groove 71a, the slide valve 7 is configured to be freely slidable in the direction of the rotation axis of the screw rotor 5.
  • the slide valve 7 is restricted from rotating in the circumferential direction by the protrusion 82 fitting into the groove 71a.
  • a gap is formed between the bottom surface of the groove 71a and the tip surface of the protrusion 82 in order to improve the drivability of the slide valve 7.
  • a small gap is also formed between the side wall surface of the groove 71a and the side surface of the protrusion 82 in order to improve the drivability of the slide valve 7.
  • the protrusion 82 is provided on the outer circumferential surface of the bearing housing 8 in the range where the guide portion 71 of the slide valve 7 slides (the range indicated by the dotted line in FIG. 14).
  • the protrusion 82 is provided by forming a groove on the outer surface of the bearing housing 8 along the sliding direction of the slide valve 7 and pressing a rod-shaped key into the groove or joining a rod-shaped key by shrink fitting or the like.
  • the protrusion 82 only needs to be provided in a range that takes into account the amount of movement of the slide valve 7, and may be formed from one end to the other end along the axial direction of the bearing housing 8, or may be provided only in a partial range.
  • the protrusion 82 may also be provided by forming a through hole on the outer surface of the bearing housing 8 and pressing a rod-shaped key into the through hole or joining it by shrink fitting or the like.
  • the protrusion 82 is configured as a rod extending along the sliding direction of the slide valve 7, so that the rotation of the slide valve 7 in the circumferential direction can be more effectively restricted.
  • the protrusion 82 is made of a material with a smaller linear expansion coefficient than the materials of the slide valve 7 and the bearing housing 8.
  • the parts around the screw rotor 5 may become hot, causing the slide valve 7, the bearing housing 8, and the protrusion 82 to thermally expand. Even in such a case, a small gap can be secured between the groove 71a and the protrusion 82, thereby preventing deterioration of the drivability of the slide valve 7.
  • a groove may be formed on the outer peripheral surface of the bearing housing 8 along the sliding direction, and a protrusion that fits into the groove may be formed on the sliding surface 710 of the guide portion 71 of the slide valve 7.
  • the slide valve 7 With the protrusion fitted into the groove, the slide valve 7 is configured to be able to slide freely in the direction of the rotation axis of the screw rotor 5.
  • the protrusion may be formed integrally with the guide portion 71 of the slide valve 7, or may be provided by forming a groove in the guide portion 71 of the slide valve 7 and pressing a rod-shaped key into the groove or joining it by shrink fitting, etc.
  • the tip surface 82a of the protrusion 82 is configured to have a curved shape, which is a surface other than a flat surface. For example, even if the slide valve 7 and the bearing housing 8 thermally expand and the tip surface 82a of the protrusion 82 comes into contact with the bottom surface of the groove 71a of the guide portion 71, the tip surface 82a of the protrusion 82 and the bottom surface of the groove 71a can be in line contact.
  • the protrusion 82 is not limited to having the tip surface 82a in a curved shape, and the tip portion may be configured to have a tapered shape toward the bottom surface of the groove 71a.
  • the screw compressor 100 has been described above based on the embodiment, but the screw compressor 100 is not limited to the configuration of the above-mentioned embodiment.
  • the above-mentioned configuration of the screw compressor 100 is an example, and some of the components may be omitted or other components may be included.
  • the screw compressor 100 has been described using a single-stage single screw compressor as an example, it may be, for example, a two-stage single screw compressor.
  • the slide valve 7 is not limited to an internal volume ratio adjustment valve, and may be configured to adjust the compression capacity, for example.
  • the gate rotor 6 is not limited to the two-piece configuration shown in the figure, and may be one.
  • the screw compressor 100 includes the range of design changes and application variations that are normally made by a person skilled in the art, within the scope of the technical concept.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

This screw compressor comprises a casing, a screw shaft, a screw rotor, a gate rotor, a slide valve, and a bearing housing. The slide valve has a valve body part that faces the screw rotor, and a guide part that has a sliding surface that faces the outer circumferential surface of the bearing housing. A groove section is formed along the sliding direction on one among the sliding surface of the guide part and the outer circumferential surface of the bearing housing, and a protruding section that fits into the groove section is formed on the other. The slide valve is configured to be able to slide in the direction of the rotation axis of the screw rotor while the protruding section is fitted into the groove section.

Description

スクリュー圧縮機Screw Compressor
 本開示は、スクリュー圧縮機に関するものである。 This disclosure relates to a screw compressor.
 スクリュー圧縮機は、特許文献1に開示されているように、容積形圧縮機の一つの形式として知られており、例えば冷凍機等に内蔵された冷媒回路の構成部材として使用されるものである。スクリュー圧縮機としては、例えば螺旋状の歯溝を有する1つのスクリューロータと、スクリューロータの歯溝に嵌り合う複数のゲートロータ歯部を有する2つのゲートロータと、がケーシングの内部に収納されたシングルスクリュー圧縮機が知られている。シングルスクリュー圧縮機は、スクリューロータの歯溝とゲートロータのゲートロータ歯部とが相互に噛み合い係合されて複数の圧縮室が形成されている。スクリューロータは、回転軸方向における一端が冷媒の吸入側であり、他端が冷媒の吐出側となる。ケーシングの内部は、圧縮室の吸入側に設けられた低圧空間と、圧縮室の吐出側に設けられた高圧空間と、に区画されている。 As disclosed in Patent Document 1, a screw compressor is known as one type of positive displacement compressor, and is used as a component of a refrigerant circuit built into a refrigerator or the like. One known screw compressor is a single screw compressor in which, for example, one screw rotor with a spiral tooth groove and two gate rotors with multiple gate rotor teeth that fit into the tooth grooves of the screw rotor are housed inside a casing. In a single screw compressor, multiple compression chambers are formed by mutually meshing and engaging the tooth grooves of the screw rotor and the gate rotor teeth of the gate rotor. One end of the screw rotor in the rotation axis direction is the refrigerant intake side, and the other end is the refrigerant discharge side. The inside of the casing is partitioned into a low pressure space provided on the suction side of the compression chamber, and a high pressure space provided on the discharge side of the compression chamber.
 スクリューロータは、ケーシングの内部に設けられた駆動部によって回転するスクリュー軸に固定されている。スクリュー軸の両端部は、内部に軸受を有する軸受ハウジングによってそれぞれ回転自在に支持されている。また、スクリュー軸は、冷媒の吸込側において駆動部に連結されている。スクリュー圧縮機は、駆動部によって回転するスクリュー軸を介してスクリューロータが回転駆動すると、低圧空間内の冷媒が圧縮室へ吸入されて圧縮され、圧縮室で圧縮された冷媒が高圧空間に吐出される構成である。 The screw rotor is fixed to a screw shaft that is rotated by a drive unit provided inside the casing. Both ends of the screw shaft are rotatably supported by bearing housings having bearings inside. The screw shaft is also connected to the drive unit on the refrigerant suction side. When the screw rotor is rotated via the screw shaft that is rotated by the drive unit, the refrigerant in the low pressure space is sucked into the compression chamber and compressed, and the refrigerant compressed in the compression chamber is discharged into the high pressure space.
 ところで、スクリュー圧縮機には、ケーシングの内筒面に形成されたスライド溝内に配置され、スクリューロータの回転軸方向にスライド移動自在に設けられた一対のスライドバルブを備えたものがある。スライドバルブは、スクリューロータの回転軸方向にスライドし、圧縮室で圧縮された高圧ガス冷媒の吐出開始位置を変更させることで、吐出開口タイミングを変化させて、内部容積比を変更させるために設けられている。このスライドバルブは、スクリューロータに対向する弁体部と、軸受ハウジングの外周面に対向して摺動面を形成するガイド部と、を備えている。ガイド部の摺動面と軸受ハウジングの外周面との間には、スライドバルブをスクリューロータの回転軸方向に駆動させるための隙間が設けられている。また、スライドバルブの弁体部とスクリューロータの外周面との間には、スクリューロータが回転駆動できるための隙間が設けられている。 Some screw compressors are equipped with a pair of slide valves that are arranged in slide grooves formed on the inner cylindrical surface of the casing and are slidably movable in the direction of the rotation axis of the screw rotor. The slide valves slide in the direction of the rotation axis of the screw rotor to change the discharge start position of the high-pressure gas refrigerant compressed in the compression chamber, thereby changing the discharge opening timing and changing the internal volume ratio. This slide valve has a valve body portion that faces the screw rotor, and a guide portion that forms a sliding surface facing the outer circumferential surface of the bearing housing. A gap is provided between the sliding surface of the guide portion and the outer circumferential surface of the bearing housing to drive the slide valve in the direction of the rotation axis of the screw rotor. Also, a gap is provided between the valve body portion of the slide valve and the outer circumferential surface of the screw rotor to allow the screw rotor to be driven to rotate.
 しかしながら、スクリュー圧縮機は、スクリューロータ及びスライドバルブが圧縮室で圧縮した冷媒ガスの温度の上昇によって熱膨張すると、スライドバルブのガイド部と軸受ハウジングの外周面との間の隙間、及びスライドバルブの弁体部とスクリューロータの外周面との間の隙間が減少するおそれがある。また、スクリュー圧縮機は、運転を停止させた後にケーシング内の高低差圧によりスクリューロータが逆回転する場合があり、スクリューロータが逆回転すると圧縮室の内圧変化等の影響によって、スライドバルブの弁体部が周方向へ回転し、スライドバルブがスクリューロータと接触して、焼き付き等を招くおそれがある。更に、スクリュー圧縮機は、通常の運転時においても圧縮室から作用する圧力の変化によって、スライドバルブの弁体部が周方向へ回転する場合もある。 However, in a screw compressor, when the screw rotor and slide valve thermally expand due to an increase in the temperature of the refrigerant gas compressed in the compression chamber, the gap between the guide part of the slide valve and the outer peripheral surface of the bearing housing, and the gap between the valve body part of the slide valve and the outer peripheral surface of the screw rotor may decrease. In addition, in a screw compressor, the screw rotor may rotate in the reverse direction due to the high and low pressure difference inside the casing after operation is stopped. When the screw rotor rotates in the reverse direction, the valve body part of the slide valve may rotate circumferentially due to the influence of changes in the internal pressure of the compression chamber, etc., and the slide valve may come into contact with the screw rotor, resulting in seizure, etc. Furthermore, in a screw compressor, the valve body part of the slide valve may rotate circumferentially due to changes in pressure acting from the compression chamber even during normal operation.
 そこで、特許文献1では、スライドバルブのガイド部に弁体部よりも周方向に相対的に突出する突起部を設け、スライドバルブが周方向に回転すると突起部を軸受ホルダに当接させて、スライドバルブとスクリューロータの接触を回避する構造としている。 In view of this, in Patent Document 1, a protrusion is provided on the guide portion of the slide valve that protrudes relatively further in the circumferential direction than the valve body portion, and when the slide valve rotates in the circumferential direction, the protrusion comes into contact with the bearing holder, thus preventing contact between the slide valve and the screw rotor.
特開2013-60877号公報JP 2013-60877 A
 しかしながら、特許文献1では、スライドバルブのガイド部に設けられた突起部が、軸受ホルダと相対する面に設けられているため、スライドバルブを軸方向へ駆動させるために必要とされる軸受ホルダとの隙間が小さくなる。この場合、スライドバルブ又は軸受ホルダの熱膨張などにより、スライドバルブと軸受ホルダとの隙間が更に縮小し、スライドバルブが軸受ホルダに接触して、スライドバルブの軸方向への駆動性が悪化する懸念がある。 However, in Patent Document 1, the protrusions on the guide portion of the slide valve are provided on the surface facing the bearing holder, so the gap between the slide valve and the bearing holder required to drive the slide valve in the axial direction is small. In this case, there is a concern that the gap between the slide valve and the bearing holder may be further reduced due to thermal expansion of the slide valve or the bearing holder, causing the slide valve to come into contact with the bearing holder, deteriorating the drivability of the slide valve in the axial direction.
 本開示は、上記のような課題を解決するためになされたものであり、スライドバルブとスクリューロータとの接触を防止できる、スクリュー圧縮機を提供することを目的とする。 This disclosure has been made to solve the above problems, and aims to provide a screw compressor that can prevent contact between the slide valve and the screw rotor.
 本開示に係るスクリュー圧縮機は、外郭を構成するケーシングと、前記ケーシング内に配置されて回転駆動されるスクリュー軸と、外周面に螺旋状の歯溝を有し、前記スクリュー軸に固定されたスクリューロータと、前記スクリューロータの歯溝に嵌り合う複数のゲートロータ歯部を有し、前記ケーシング及び前記スクリューロータと共に圧縮室を形成するゲートロータと、前記スクリューロータの回転軸方向にスライド移動自在に構成されたスライドバルブと、前記スクリュー軸の端部を回転自在に支持する軸受を内部に有する軸受ハウジングと、を備え、前記スライドバルブは、前記スクリューロータに対向する弁体部と、前記軸受ハウジングの外周面に対向する摺動面を有するガイド部と、を有し、前記ガイド部の前記摺動面と前記軸受ハウジングの外周面のうち、一方にスライド方向に沿った溝部が形成され、他方に前記溝部に嵌まる突起部が設けられており、前記スライドバルブは、前記突起部が前記溝部に嵌まった状態で、前記スクリューロータの回転軸方向にスライド移動自在に構成されているものである。 The screw compressor according to the present disclosure includes a casing forming an outer shell, a screw shaft disposed within the casing and driven to rotate, a screw rotor having a spiral tooth groove on its outer circumferential surface and fixed to the screw shaft, a gate rotor having a plurality of gate rotor teeth that fit into the tooth grooves of the screw rotor and forming a compression chamber together with the casing and the screw rotor, a slide valve configured to slide freely in the direction of the rotation axis of the screw rotor, and a bearing housing having a bearing therein that rotatably supports an end of the screw shaft, the slide valve having a valve body portion facing the screw rotor and a guide portion having a sliding surface facing the outer circumferential surface of the bearing housing, one of the sliding surface of the guide portion and the outer circumferential surface of the bearing housing has a groove portion formed along the sliding direction, and the other has a protrusion portion that fits into the groove portion, and the slide valve is configured to slide freely in the direction of the rotation axis of the screw rotor with the protrusion portion fitted into the groove portion.
 本開示によれば、スライドバルブのガイド部と軸受ハウジングの外周面のうち、一方に形成された溝部に、他方に形成された突起部が嵌まることによって、スライドバルブの周方向の回転を拘束することができるので、スクリューロータの外周面に対向するスライドバルブの弁体部に作用する圧力が変動したとしても、スライドバルブが周方向へ回転することがなく、スライドバルブとスクリューロータとの接触を抑制できる。 According to the present disclosure, a groove formed on one of the guide portion of the slide valve and the outer circumferential surface of the bearing housing fits into a protrusion formed on the other, thereby restricting circumferential rotation of the slide valve. Therefore, even if the pressure acting on the valve body portion of the slide valve facing the outer circumferential surface of the screw rotor fluctuates, the slide valve will not rotate circumferentially, and contact between the slide valve and the screw rotor can be suppressed.
実施の形態1に係るスクリュー圧縮機の内部構造を示した縦断面図である。1 is a vertical cross-sectional view showing an internal structure of a screw compressor according to a first embodiment. 図1に示したA-A線矢視の要部を示した拡大断面図である。2 is an enlarged cross-sectional view showing a main part taken along line AA in FIG. 1. 図1に示したB-B線矢視の要部を示した拡大断面図である。2 is an enlarged cross-sectional view showing a main part taken along line BB in FIG. 1. 実施の形態1に係るスクリュー圧縮機のスライドバルブを示した斜視図である。FIG. 2 is a perspective view showing a slide valve of the screw compressor according to the first embodiment. 実施の形態1に係るスクリュー圧縮機のスライドバルブのガイド部を示した側面図である。3 is a side view showing a guide portion of a slide valve of the screw compressor according to the first embodiment. FIG. 図5に示したC-C線矢視断面図である。6 is a cross-sectional view taken along the line CC shown in FIG. 5. 実施の形態1に係るスクリュー圧縮機の軸受ハウジングを示した斜視図である。FIG. 2 is a perspective view showing a bearing housing of the screw compressor according to the first embodiment. 実施の形態1に係るスクリュー圧縮機の変形例1の要部を拡大して示した断面図である。4 is an enlarged cross-sectional view showing a main part of a first modified example of the screw compressor according to the first embodiment. FIG. 実施の形態1に係るスクリュー圧縮機の変形例2であって、軸受ハウジングを示した斜視図である。FIG. 11 is a perspective view showing a bearing housing of a second modified example of the screw compressor according to the first embodiment. 実施の形態1に係るスクリュー圧縮機の変形例2の要部を拡大して示した断面図である。4 is an enlarged cross-sectional view showing a main part of a second modified example of the screw compressor according to the first embodiment. FIG. 実施の形態1に係るスクリュー圧縮機の圧縮部の動作であって、吸込工程を示した説明図である。FIG. 4 is an explanatory diagram showing the operation of the compression section of the screw compressor according to the first embodiment, illustrating a suction stroke. 実施の形態1に係るスクリュー圧縮機の圧縮部の動作であって、圧縮工程を示した説明図である。FIG. 4 is an explanatory diagram showing the operation of the compression section of the screw compressor according to the first embodiment, illustrating a compression process. 実施の形態1に係るスクリュー圧縮機の圧縮部の動作であって、吐出工程を示した説明図である。FIG. 4 is an explanatory diagram showing the operation of the compression section of the screw compressor according to the first embodiment, illustrating a discharge process. 実施の形態2に係るスクリュー圧縮機の軸受ハウジングを示した斜視図である。FIG. 11 is a perspective view showing a bearing housing of a screw compressor according to a second embodiment. 実施の形態2に係るスクリュー圧縮機の軸受ハウジングの変形例を示した斜視図である。FIG. 11 is a perspective view showing a modified example of the bearing housing of the screw compressor according to the second embodiment.
 以下、図面を参照して、本開示の実施の形態について説明する。なお、各図中、同一又は相当する部分には、同一符号を付して、その説明を適宜省略又は簡略化する。また、各図に記載の構成について、その形状、大きさ、及び配置等は、適宜変更することができる。 Below, an embodiment of the present disclosure will be described with reference to the drawings. Note that in each drawing, the same or corresponding parts are given the same reference numerals, and their description will be omitted or simplified as appropriate. Furthermore, the shape, size, arrangement, etc. of the configurations shown in each drawing may be changed as appropriate.
 実施の形態1.
 図1は、実施の形態1に係るスクリュー圧縮機100の内部構造を示した縦断面図である。図2は、図1に示したA-A線矢視の要部を示した拡大断面図である。図3は、図1に示したB-B線矢視の要部を示した拡大断面図である。図4は、実施の形態1に係るスクリュー圧縮機100のスライドバルブ7を示した斜視図である。図5は、実施の形態1に係るスクリュー圧縮機100のスライドバルブ7のガイド部71を示した側面図である。図6は、図5に示したC-C線矢視断面図である。図7は、実施の形態1に係るスクリュー圧縮機100の軸受ハウジング8を示した斜視図である。
Embodiment 1.
FIG 1 is a vertical cross-sectional view showing an internal structure of a screw compressor 100 according to a first embodiment. FIG 2 is an enlarged cross-sectional view showing a main part along the line A-A shown in FIG 1. FIG 3 is an enlarged cross-sectional view showing a main part along the line B-B shown in FIG 1. FIG 4 is a perspective view showing a slide valve 7 of the screw compressor 100 according to the first embodiment. FIG 5 is a side view showing a guide portion 71 of the slide valve 7 of the screw compressor 100 according to the first embodiment. FIG 6 is a cross-sectional view along the line C-C shown in FIG 5. FIG 7 is a perspective view showing a bearing housing 8 of the screw compressor 100 according to the first embodiment.
 実施の形態1に係るスクリュー圧縮機100では、単段シングルスクリュー圧縮機を例に説明する。スクリュー圧縮機100は、図1に示すように、外郭を構成する円筒形状のケーシング1と、ケーシング1の内部に設けられた圧縮部2及び駆動部3と、を有している。ケーシング1の内部は、低圧空間10と、高圧空間11とに区画されている。 In the screw compressor 100 according to the first embodiment, a single-stage single-screw compressor will be described as an example. As shown in FIG. 1, the screw compressor 100 has a cylindrical casing 1 that forms the outer shell, and a compression section 2 and a drive section 3 that are provided inside the casing 1. The inside of the casing 1 is partitioned into a low-pressure space 10 and a high-pressure space 11.
 圧縮部2は、図1に示すように、スクリュー軸4と、スクリューロータ5と、一対のゲートロータ6と、ゲートロータサポート(図示は省略)と、一対のスライドバルブ7と、軸受ハウジング8と、を備えている。 As shown in FIG. 1, the compression section 2 includes a screw shaft 4, a screw rotor 5, a pair of gate rotors 6, a gate rotor support (not shown), a pair of slide valves 7, and a bearing housing 8.
 スクリュー軸4は、ケーシング1内に配置され、駆動部3によって回転駆動される。スクリュー軸4は、ケーシング1の管軸方向に延びており、一方の軸端部がスクリューロータ5の吐出側に対向して配置された軸受8aによって回転自在に支持され、他方の軸端部が冷媒の吸込側に配置された軸受(図示は省略)によって回転自在に支持されている。また、スクリュー軸4は、冷媒の吸込側において、駆動部3に連結されている。 The screw shaft 4 is disposed within the casing 1 and is driven to rotate by the drive unit 3. The screw shaft 4 extends in the axial direction of the casing 1, with one shaft end rotatably supported by a bearing 8a disposed opposite the discharge side of the screw rotor 5, and the other shaft end rotatably supported by a bearing (not shown) disposed on the suction side of the refrigerant. The screw shaft 4 is also connected to the drive unit 3 on the suction side of the refrigerant.
 スクリューロータ5は、図1及び図2に示すように、円柱体の外周面に複数の螺旋状の歯溝5aを有している。スクリューロータ5は、スクリュー軸4に固定されており、駆動部3によって回転するスクリュー軸4と共に回転する。図1に示すように、スクリューロータ5は、回転軸方向における低圧空間10側が冷媒の吸入側となり、高圧空間11側が冷媒の吐出側となる。また、スクリューロータ5は、スライドバルブ7との間に所定の隙間75が形成されている。これは、例えばスクリュー圧縮機100を組み立てる際に接触したり、スクリュー圧縮機100の運転中にスライドバルブ7とスクリューロータ5とが接触して焼き付き等を起こしたりしないようにするためである。 As shown in Figures 1 and 2, the screw rotor 5 has a plurality of helical tooth grooves 5a on the outer circumferential surface of a cylinder. The screw rotor 5 is fixed to the screw shaft 4 and rotates together with the screw shaft 4 which is rotated by the drive unit 3. As shown in Figure 1, the low pressure space 10 side of the screw rotor 5 in the direction of the rotation shaft is the refrigerant intake side, and the high pressure space 11 side is the refrigerant discharge side. In addition, a predetermined gap 75 is formed between the screw rotor 5 and the slide valve 7. This is to prevent contact when assembling the screw compressor 100, for example, or to prevent contact between the slide valve 7 and the screw rotor 5 during operation of the screw compressor 100, which may cause seizure or the like.
 ゲートロータ6は、スクリューロータ5の歯溝5aに嵌り合う複数のゲートロータ歯部6aが外周部に形成されており、図1に示すように、スクリューロータ5を径方向に挟むように配置されている。圧縮部2は、スクリューロータ5の歯溝5aと、ゲートロータ6のゲートロータ歯部6aが相互に噛み合い係合されて圧縮室20が形成されている。スクリュー圧縮機100は、1つのスクリューロータ5に対し、2つのゲートロータ6を180度ずらして対向させて配置した構成である。そのため、圧縮室20は、スクリュー軸4の上側と、スクリュー軸4の下側とで2つ形成されている。図示省略のゲートロータサポートは、複数のゲートロータ歯部6aと対向して設けられた複数のゲートロータサポート歯部を有しており、ゲートロータ6を支持するものである。 The gate rotor 6 has a number of gate rotor teeth 6a formed on its outer periphery that fit into the tooth grooves 5a of the screw rotor 5, and is arranged to radially sandwich the screw rotor 5 as shown in FIG. 1. The compression section 2 has a compression chamber 20 formed by the tooth grooves 5a of the screw rotor 5 and the gate rotor teeth 6a of the gate rotor 6 meshing with each other. The screw compressor 100 has a configuration in which two gate rotors 6 are arranged facing one screw rotor 5 with a 180 degree shift. Therefore, two compression chambers 20 are formed on the upper side of the screw shaft 4 and the lower side of the screw shaft 4. The gate rotor support (not shown) has a number of gate rotor support teeth that are arranged facing the number of gate rotor teeth 6a, and supports the gate rotor 6.
 スライドバルブ7は、図1に示すように、ケーシング1の内筒面に形成されたスライド溝内に設けられ、スクリューロータ5の回転軸方向にスライド移動自在に構成されている。スライドバルブ7は、一例として内部容積比調整弁である。スライドバルブ7は、図1及び図4に示すように、スクリューロータ5に対向する弁体部70と、軸受ハウジング8の外周面に対向する摺動面710を有するガイド部71と、スライド溝端部12に支持されるガイド棒77と、を備えている。 As shown in FIG. 1, the slide valve 7 is provided in a slide groove formed on the inner cylindrical surface of the casing 1, and is configured to be freely slidable in the direction of the rotation axis of the screw rotor 5. One example of the slide valve 7 is an internal volume ratio adjustment valve. As shown in FIG. 1 and FIG. 4, the slide valve 7 includes a valve body portion 70 facing the screw rotor 5, a guide portion 71 having a sliding surface 710 facing the outer peripheral surface of the bearing housing 8, and a guide rod 77 supported by the slide groove end portion 12.
 ガイド部71は、スクリューロータ5の回転軸方向における弁体部70の一端側に設けられており、連結部72によって弁体部70に連結されている。図2に示すように、弁体部70とスクリューロータ5との間には、所定の隙間75が形成されている。また、図3に示すように、ガイド部71の摺動面710と軸受ハウジング8の外周面との間には、スライドバルブ7をスクリューロータ5の回転軸方向に駆動させるための隙間76が形成されている。また、図1に示すように、弁体部70とガイド部71との間には、圧縮室20で圧縮された冷媒の吐出口7aが設けられている。吐出口7aから吐出された冷媒は、高圧空間11に吐出される。 The guide portion 71 is provided on one end side of the valve body portion 70 in the direction of the rotation axis of the screw rotor 5, and is connected to the valve body portion 70 by a connecting portion 72. As shown in FIG. 2, a predetermined gap 75 is formed between the valve body portion 70 and the screw rotor 5. Also, as shown in FIG. 3, a gap 76 is formed between the sliding surface 710 of the guide portion 71 and the outer peripheral surface of the bearing housing 8 to drive the slide valve 7 in the direction of the rotation axis of the screw rotor 5. Also, as shown in FIG. 1, a discharge port 7a for the refrigerant compressed in the compression chamber 20 is provided between the valve body portion 70 and the guide portion 71. The refrigerant discharged from the discharge port 7a is discharged into the high-pressure space 11.
 スライドバルブ7は、ガイド部71の端面に固定されたロッド73を介してスライドバルブ駆動装置74に接続されている。つまり、スライドバルブ7は、スライドバルブ駆動装置74の駆動により軸方向に動作するロッド73によって、スクリューロータ5の回転軸方向に沿って移動する。スライドバルブ駆動装置74は、例えばガス圧で駆動する構成、油圧で駆動する構成、又はモータで駆動する構成等である。 The slide valve 7 is connected to the slide valve drive device 74 via a rod 73 fixed to the end face of the guide portion 71. In other words, the slide valve 7 moves along the direction of the rotation axis of the screw rotor 5 by the rod 73 which moves axially when driven by the slide valve drive device 74. The slide valve drive device 74 is, for example, configured to be driven by gas pressure, hydraulic pressure, or a motor.
 ガイド棒77は、スクリューロータ5の回転軸方向における弁体部70の他端側に設けられている。ガイド棒77は、スライド溝端部12に形成された孔部12aに、スライド移動自在に挿入されている。スライド溝端部12は、ケーシング1の内壁面からスクリュー軸4に向かって内方に突き出してスライドバルブ7に対向させて形成された部分である。ガイド棒77は、スライドバルブ7がスライド移動してもスライド溝端部12の孔部12aから抜け出ずに挿入された状態とされており、スライドバルブ7の軸ずれを防止するため等に設けられている。なお、ガイド棒77の外面は、円形状又は半円形状でもよいし、例えば多角形状としてスライドバルブ7の回転を防止させる形状もよい。 The guide rod 77 is provided on the other end side of the valve body portion 70 in the direction of the rotation axis of the screw rotor 5. The guide rod 77 is inserted into a hole 12a formed in the slide groove end portion 12 so as to be freely slidable. The slide groove end portion 12 is a portion formed to protrude inward from the inner wall surface of the casing 1 toward the screw shaft 4 and face the slide valve 7. The guide rod 77 is inserted in the hole 12a of the slide groove end portion 12 without coming out even when the slide valve 7 slides, and is provided to prevent the axial displacement of the slide valve 7. The outer surface of the guide rod 77 may be circular or semicircular, or may be polygonal, for example, to prevent the slide valve 7 from rotating.
 スクリュー圧縮機100は、スライドバルブ7の弁体部70がスクリューロータ5の回転軸方向に沿って移動することで、圧縮室20に吸い込んだ冷媒の吐出タイミングが調整される。具体的には、スライドバルブ7は、吸込側に位置させて吐出口7aの開口を早くすることで、吐出タイミングを早めることができ、吐出側に移動させて吐出口7aの開口を遅くすることで、吐出タイミングを遅らせることができる。つまり、スクリュー圧縮機100は、吐出タイミングを早めると低内部容積比の運転となり、吐出タイミングを遅らせると高内部容積比の運転となる。 In the screw compressor 100, the valve body portion 70 of the slide valve 7 moves along the direction of the rotational axis of the screw rotor 5, thereby adjusting the discharge timing of the refrigerant sucked into the compression chamber 20. Specifically, the slide valve 7 can be positioned on the suction side to advance the opening of the discharge port 7a, thereby advancing the discharge timing, and can be moved to the discharge side to delay the opening of the discharge port 7a, thereby delaying the discharge timing. In other words, the screw compressor 100 operates with a low internal volume ratio when the discharge timing is advanced, and operates with a high internal volume ratio when the discharge timing is delayed.
 軸受ハウジング8は、図1に示すように、スクリューロータ5の吐出側の端部に近接して設けられている。軸受ハウジング8は、スクリュー軸4の端部を回転自在に支持する軸受8aを内部に有している。軸受ハウジング8の外径は、スクリューロータ5の外径よりも大きく形成されている。なお、軸受ハウジング8の外径は、スクリューロータ5の外径よりも小さくても良いが、スクリューロータ5の外径よりも大きい方が好ましい。 As shown in FIG. 1, the bearing housing 8 is provided close to the discharge end of the screw rotor 5. The bearing housing 8 has a bearing 8a therein that rotatably supports the end of the screw shaft 4. The outer diameter of the bearing housing 8 is larger than the outer diameter of the screw rotor 5. The outer diameter of the bearing housing 8 may be smaller than the outer diameter of the screw rotor 5, but it is preferable that it is larger than the outer diameter of the screw rotor 5.
 駆動部3は、電動機30によって構成されている。電動機30は、ケーシング1の内部に内接して固定され、径方向に隙間を有するステーター31と、ステーター31の内側に回転自在に配置されたモータロータ32と、で構成されている。モータロータ32は、スクリュー軸4における冷媒の吸込側に接続されており、スクリューロータ5と同一軸線上に配置されている。スクリュー圧縮機100は、電動機30が駆動してスクリュー軸4を回転させることで、スクリューロータ5を回転させる。なお、電動機30は、図示することは省略したインバータによって回転速度を可変に駆動されており、スクリュー軸4の回転速度を加減速させて運転される。 The drive unit 3 is composed of an electric motor 30. The electric motor 30 is composed of a stator 31, which is fixed in contact with the inside of the casing 1 and has a radial gap, and a motor rotor 32, which is rotatably arranged inside the stator 31. The motor rotor 32 is connected to the refrigerant suction side of the screw shaft 4 and is arranged on the same axis as the screw rotor 5. The screw compressor 100 rotates the screw rotor 5 by the electric motor 30 driving the screw shaft 4. The electric motor 30 is driven at a variable rotation speed by an inverter (not shown), and is operated by accelerating and decelerating the rotation speed of the screw shaft 4.
 ところで、スクリュー圧縮機100は、スクリューロータ5及びスライドバルブ7が圧縮室20で圧縮した冷媒ガスの温度の上昇によって熱膨張すると、スライドバルブ7のガイド部71の摺動面710と軸受ハウジング8の外周面との間の隙間76、及びスライドバルブ7の弁体部70とスクリューロータ5の外周面との間の隙間75が減少するおそれがある。また、スクリュー圧縮機100は、運転を停止させた後にケーシング内の高低差圧によりスクリューロータ5が逆回転する場合があり、スクリューロータ5が逆回転すると圧縮室20の内圧変化等の影響によってスライドバルブ7が周方向へ回転し、弁体部70がスクリューロータ5と接触して、焼き付き等を招くおそれがある。更に、スクリュー圧縮機100は、通常の運転時においても圧縮室20から作用する圧力の変化によってスライドバルブ7が周方向へ回転し、弁体部70がスクリューロータ5と接触して、焼き付き等を招くおそれもある。 In the screw compressor 100, when the screw rotor 5 and the slide valve 7 thermally expand due to an increase in the temperature of the refrigerant gas compressed in the compression chamber 20, the gap 76 between the sliding surface 710 of the guide portion 71 of the slide valve 7 and the outer peripheral surface of the bearing housing 8, and the gap 75 between the valve body portion 70 of the slide valve 7 and the outer peripheral surface of the screw rotor 5 may decrease. In addition, after the screw compressor 100 is stopped, the screw rotor 5 may rotate in the reverse direction due to the high and low pressure difference in the casing. When the screw rotor 5 rotates in the reverse direction, the slide valve 7 may rotate in the circumferential direction due to the influence of the change in the internal pressure of the compression chamber 20, and the valve body portion 70 may come into contact with the screw rotor 5, which may cause seizure, etc. Furthermore, even during normal operation, the screw compressor 100 may rotate the slide valve 7 in the circumferential direction due to the change in pressure acting from the compression chamber 20, and the valve body portion 70 may come into contact with the screw rotor 5, which may cause seizure, etc.
 そこで、実施の形態1に係るスクリュー圧縮機100では、図3~図6に示すように、スライドバルブ7のガイド部71の摺動面710に、スライド方向に沿った溝部71aが形成されており、図3及び図7に示すように、軸受ハウジング8の外周面に溝部71aに嵌まる円柱形状の突起部80が設けられている。スライドバルブ7は、突起部80が溝部71aに嵌まった状態で、スクリューロータ5の回転軸方向にスライド移動自在に構成されている。つまり、スライドバルブ7は、突起部80が溝部71aに嵌まることによって、ガイド部71の摺動面710と軸受ハウジング8の外周面との間の隙間76を維持しつつ、周方向への回転が拘束されている。また、図3に示すように、溝部71aの溝底面と突起部80の先端面との間には、スライドバルブ7の駆動性を高めるために隙間Sが形成されている。なお、溝部71aの側壁面と突起部80の側面との間にも、スライドバルブ7の駆動性を高めるために僅かな隙間が形成されている。 In the screw compressor 100 according to the first embodiment, as shown in Figs. 3 to 6, a groove 71a is formed along the sliding direction on the sliding surface 710 of the guide portion 71 of the slide valve 7, and as shown in Figs. 3 and 7, a cylindrical protrusion 80 is provided on the outer peripheral surface of the bearing housing 8 to fit into the groove 71a. The slide valve 7 is configured to be able to slide freely in the rotation axis direction of the screw rotor 5 with the protrusion 80 fitted into the groove 71a. In other words, the slide valve 7 is restricted from rotating in the circumferential direction by fitting the protrusion 80 into the groove 71a, while maintaining a gap 76 between the sliding surface 710 of the guide portion 71 and the outer peripheral surface of the bearing housing 8. In addition, as shown in Fig. 3, a gap S is formed between the bottom surface of the groove 71a and the tip surface of the protrusion 80 in order to improve the drivability of the slide valve 7. A small gap is also formed between the side wall surface of the groove 71a and the side surface of the protrusion 80 in order to improve the drivability of the slide valve 7.
 溝部71aは、スライドバルブ7の移動量を考慮した範囲に形成すればよく、図6に示すように、スライドバルブ7のスライド方向に沿ってガイド部71の一端から他端まで形成してもよいし、一部の範囲にのみ形成してもよい。また、溝部71aは、図5に示すように矩形状に限定されず、その他の形状でもよい。 The groove portion 71a may be formed in a range that takes into account the amount of movement of the slide valve 7, and may be formed from one end of the guide portion 71 to the other end along the sliding direction of the slide valve 7 as shown in FIG. 6, or may be formed only in a partial range. In addition, the groove portion 71a is not limited to a rectangular shape as shown in FIG. 5, and may be another shape.
 突起部80は、軸受ハウジング8の外周面のうち、スライドバルブ7のガイド部71が摺動する範囲(図7の点線で示した範囲)であって、スライドバルブ7がスライド移動しても溝部71aの内部に収まる位置に設けられている。突起部80は、一例として軸受ハウジング8の外周面のうち、ガイド部71が摺動する範囲の中央に設けられているが、ガイド部71が摺動する範囲であればその他の位置に設けてもよい。 The protrusion 80 is provided in the range of the outer circumferential surface of the bearing housing 8 where the guide portion 71 of the slide valve 7 slides (the range indicated by the dotted line in FIG. 7), and is located within the groove portion 71a even when the slide valve 7 slides. As an example, the protrusion 80 is provided in the center of the range of the outer circumferential surface of the bearing housing 8 where the guide portion 71 slides, but it may be provided in any other position within the range where the guide portion 71 slides.
 突起部80は、軸受ハウジング8の外面に円柱形状の貫通穴又は溝を形成し、該貫通穴又は溝に、円柱形状のピンを圧入し又は焼嵌め等で接合することで設けられる。突起部80を円柱形状とすることで、溝部71aの側壁面と突起部80の側面とが線接触となる。つまり、突起部80を円柱形状とすることで、スライドバルブ7が回転して、溝部71aの側壁面に突起部80の側面が接触したとしても、溝部71aと突起部80との接触面積を減らすことができるので、摩擦抵抗を抑制することができ、スライドバルブ7の駆動性の向上を図ることができる。なお、突起部80の突き出す長さを短くすることで、溝部71aの側壁面と突起部80の側面とが線接触する範囲を小さくすることができる。 The protrusion 80 is provided by forming a cylindrical through hole or groove on the outer surface of the bearing housing 8 and joining a cylindrical pin by pressing or shrink fitting into the through hole or groove. By making the protrusion 80 cylindrical, the side wall surface of the groove 71a and the side surface of the protrusion 80 are in line contact. In other words, by making the protrusion 80 cylindrical, even if the slide valve 7 rotates and the side surface of the protrusion 80 comes into contact with the side wall surface of the groove 71a, the contact area between the groove 71a and the protrusion 80 can be reduced, so that frictional resistance can be suppressed and the drivability of the slide valve 7 can be improved. In addition, by shortening the protruding length of the protrusion 80, the range of line contact between the side wall surface of the groove 71a and the side surface of the protrusion 80 can be reduced.
 なお、突起部80は、図示した円柱形状に限定されず、矩形状でもよいし、その他の形状でもよい。また、突起部80は、軸受ハウジング8の一部を加工することで一体的に形成してもよい。 Note that the protrusion 80 is not limited to the cylindrical shape shown in the figure, but may be rectangular or have other shapes. The protrusion 80 may also be integrally formed by machining a part of the bearing housing 8.
 また、突起部80は、スライドバルブ7及び軸受ハウジング8の材質よりも線膨張係数が小さい材質で形成することが望ましい。スクリュー圧縮機100は、運転条件によってスクリューロータ5の周辺の部品が高温になり、スライドバルブ7、軸受ハウジング8及び突起部80が熱膨張する場合がある。このような場合であっても、溝部71aと突起部80との間に僅かな隙間を確保することができるので、スライドバルブ7の駆動性の悪化を抑制することができる。 Furthermore, it is preferable that the protrusion 80 is formed from a material with a smaller linear expansion coefficient than the material of the slide valve 7 and the bearing housing 8. In the screw compressor 100, depending on the operating conditions, the parts around the screw rotor 5 may become hot, causing the slide valve 7, the bearing housing 8, and the protrusion 80 to thermally expand. Even in such a case, a small gap can be secured between the groove 71a and the protrusion 80, so deterioration of the drivability of the slide valve 7 can be suppressed.
 図8は、実施の形態1に係るスクリュー圧縮機100の変形例1の要部を拡大して示した断面図である。実施の形態1に係るスクリュー圧縮機100では、図8に示すように、軸受ハウジング8の外周面に、スライドバルブ7のスライド方向に沿った溝部81を形成し、スライドバルブ7のガイド部71の摺動面710に溝部81に嵌まる突起部71bを形成した構成としてもよい。スライドバルブ7は、突起部71bが溝部81に嵌まった状態で、スクリューロータ5の回転軸方向にスライド移動自在に構成されている。突起部71bは、スライドバルブ7のガイド部71に一体的に形成してもよいし、スライドバルブ7のガイド部71に溝を設け、該溝に円柱形状のピンを圧入し、又は焼嵌め等で接合することで設けてもよい。 FIG. 8 is an enlarged cross-sectional view of a main part of the first modified example of the screw compressor 100 according to the first embodiment. In the screw compressor 100 according to the first embodiment, as shown in FIG. 8, a groove 81 may be formed on the outer peripheral surface of the bearing housing 8 along the sliding direction of the slide valve 7, and a protrusion 71b that fits into the groove 81 may be formed on the sliding surface 710 of the guide portion 71 of the slide valve 7. The slide valve 7 is configured to be freely slidable in the direction of the rotation axis of the screw rotor 5 with the protrusion 71b fitted into the groove 81. The protrusion 71b may be formed integrally with the guide portion 71 of the slide valve 7, or may be provided by forming a groove in the guide portion 71 of the slide valve 7 and pressing a cylindrical pin into the groove or joining it by shrink fitting or the like.
 図9は、実施の形態1に係るスクリュー圧縮機100の変形例2であって、軸受ハウジング8を示した斜視図である。図10は、実施の形態1に係るスクリュー圧縮機100の変形例2の要部を拡大して示した断面図である。図9及び図10に示したスクリュー圧縮機100の変形例2では、円柱形状の突起部80の先端面80aを半球面形状とした構成である。例えばスライドバルブ7及び軸受ハウジング8が熱膨張して、突起部80の先端面80aとガイド部71の溝部71aの溝底面が接触しても、突起部80の先端面80aと溝部71aの溝底面とを点接触にすることができる。これにより、突起部80と溝部71aとの接触面積を減らすことができるので、スライドバルブ7の駆動性の悪化を抑制することができる。なお、図示することは省略したが、突起部80は、先端面80aを半球面形状とすることに限定されず、例えば平面以外の面である曲面形状した構成、或いは先端部分を溝部71aの溝底面に向かって先細形状とした構成でもよい。 FIG. 9 is a perspective view showing the bearing housing 8 in a second modified example of the screw compressor 100 according to the first embodiment. FIG. 10 is a cross-sectional view showing an enlarged view of the main parts of the second modified example of the screw compressor 100 according to the first embodiment. In the second modified example of the screw compressor 100 shown in FIGS. 9 and 10, the tip surface 80a of the cylindrical protrusion 80 is configured to be hemispherical. For example, even if the slide valve 7 and the bearing housing 8 thermally expand and the tip surface 80a of the protrusion 80 comes into contact with the bottom surface of the groove 71a of the guide portion 71, the tip surface 80a of the protrusion 80 and the bottom surface of the groove 71a can be brought into point contact. This reduces the contact area between the protrusion 80 and the groove 71a, thereby suppressing deterioration of the drivability of the slide valve 7. Although not shown in the figures, the tip surface 80a of the protrusion 80 is not limited to being hemispherical, but may be, for example, curved, other than flat, or may have a tip portion tapered toward the bottom surface of the groove 71a.
 次に、図11~図13に基づいて、実施の形態1に係るスクリュー圧縮機100の動作について説明する。図11は、実施の形態1に係るスクリュー圧縮機100の圧縮部2の動作であって、吸込工程を示した説明図である。図12は、実施の形態1に係るスクリュー圧縮機100の圧縮部2の動作であって、圧縮工程を示した説明図である。図13は、実施の形態1に係るスクリュー圧縮機100の圧縮部2の動作であって、吐出工程を示した説明図である。なお、図11~図13では、ドットのハッチングで示した圧縮室20に着目して各行程について説明する。 Next, the operation of the screw compressor 100 according to the first embodiment will be described with reference to Figures 11 to 13. Figure 11 is an explanatory diagram showing the operation of the compression section 2 of the screw compressor 100 according to the first embodiment, illustrating the suction process. Figure 12 is an explanatory diagram showing the operation of the compression section 2 of the screw compressor 100 according to the first embodiment, illustrating the compression process. Figure 13 is an explanatory diagram showing the operation of the compression section 2 of the screw compressor 100 according to the first embodiment, illustrating the discharge process. Note that in Figures 11 to 13, each process will be described with a focus on the compression chamber 20 indicated by dotted hatching.
 スクリュー圧縮機100は、図11~図13に示すように、スクリューロータ5が電動機30によりスクリュー軸4を介して回転することで、ゲートロータ6のゲートロータ歯部6aが圧縮室20を構成する歯溝5a内を相対的に移動する。これにより、圧縮室20内では、吸込工程(図11)、圧縮工程(図12)及び吐出工程(図13)を一サイクルとして、このサイクルを繰り返すようになっている。 As shown in Figures 11 to 13, in the screw compressor 100, the screw rotor 5 is rotated by the electric motor 30 via the screw shaft 4, causing the gate rotor teeth 6a of the gate rotor 6 to move relatively within the tooth grooves 5a that form the compression chamber 20. As a result, within the compression chamber 20, a cycle consisting of a suction process (Figure 11), a compression process (Figure 12), and a discharge process (Figure 13) is repeated.
 図11は、吸込行程における圧縮室20の状態を示している。スクリューロータ5が電動機30により駆動されて実線矢印の方向に回転する。これにより、図12に示すように圧縮室20の容積が縮小する。 Figure 11 shows the state of the compression chamber 20 during the suction stroke. The screw rotor 5 is driven by the electric motor 30 and rotates in the direction of the solid arrow. This causes the volume of the compression chamber 20 to decrease, as shown in Figure 12.
 引き続き、スクリューロータ5が回転すると、図13に示すように、圧縮室20が吐出口7aに連通する。これにより、圧縮室20内で圧縮された高圧の冷媒ガスが吐出口7aより外部へ吐出される。そして、再びスクリューロータ5の背面で同様の圧縮が行われる。 As the screw rotor 5 continues to rotate, the compression chamber 20 is connected to the discharge port 7a as shown in FIG. 13. This causes the high-pressure refrigerant gas compressed in the compression chamber 20 to be discharged to the outside through the discharge port 7a. The same compression then occurs again on the back surface of the screw rotor 5.
 ここで、従来のスライドバルブの周方向の回転防止構造について説明する。従来のスライドバルブの回転防止構造として、例えばスライドバルブの弁体部とケーシングの高低圧隔壁とに相対するキー溝を形成し、該キー溝に共通のキーを挿入した構成がある。また、スライドバルブの弁体部とケーシングの高低圧隔壁のうち、一方にキー溝を形成し、他方にキー溝に嵌る凸部を形成した構成がある。これらのスライドバルブの回転防止構造は、ケーシング1の高低圧隔壁と、スライドバルブ7の弁体との間に設けられているので、高圧の冷媒ガスが低圧空間に漏れないように気密性を保つ必要がある。気密性を保つためには、スライドバルブの外面に形成されたキー溝とキーとを接触させ、且つその接触状態をスライドバルブのスライド方向に沿って、ある程度の寸法に渡って維持させる必要がある。これにより、スライドバルブ7の周方向の回転を防止することは可能であるが、スライドバルブ7の駆動性が悪化する問題が生じる。 Here, the conventional circumferential rotation prevention structure of the slide valve will be described. Conventional rotation prevention structures of the slide valve include, for example, a structure in which a key groove is formed in the valve body of the slide valve and the high and low pressure partitions of the casing, and a common key is inserted into the key groove. There is also a structure in which a key groove is formed in one of the valve body of the slide valve and the high and low pressure partitions of the casing, and a protrusion that fits into the key groove is formed in the other. These rotation prevention structures of the slide valve are provided between the high and low pressure partitions of the casing 1 and the valve body of the slide valve 7, so it is necessary to maintain airtightness so that high-pressure refrigerant gas does not leak into the low-pressure space. In order to maintain airtightness, it is necessary to make contact between the key groove and the key formed on the outer surface of the slide valve, and to maintain this contact state over a certain dimension along the sliding direction of the slide valve. This makes it possible to prevent the circumferential rotation of the slide valve 7, but it causes a problem of deterioration in the drivability of the slide valve 7.
 更に、上記従来の回転防止構造は、ケーシング1の高低圧隔壁に対向する弁体部70の外面に設けられている。そのため、スクリューロータ5で冷媒を圧縮する圧力が弁体部に作用すると、弁体部70がケーシング1に向かって押し付けられることで、回転防止構造の気密性は高まるが、スライドバルブ7の駆動性が悪化するおそれがある。 Furthermore, the conventional anti-rotation structure is provided on the outer surface of the valve body 70 that faces the high and low pressure partitions of the casing 1. Therefore, when the pressure compressing the refrigerant by the screw rotor 5 acts on the valve body, the valve body 70 is pressed against the casing 1, which increases the airtightness of the anti-rotation structure, but may deteriorate the drivability of the slide valve 7.
 これに対して、本実施の形態1に係るスクリュー圧縮機100では、周方向の回転防止構造として、ガイド部71の摺動面710と軸受ハウジング8の外周面のうち、一方にスライド方向に沿った溝部71aが形成され、他方に溝部71aに嵌まる突起部80が形成されている。つまり、本実施の形態1に係るスクリュー圧縮機100では、回転防止構造を高圧空間11に設けているため、高圧の冷媒ガスが低圧空間10に漏れることがない。そのため、例えば溝部71aの溝底面と突起部80の先端面との間に隙間Sを形成して、突起部80と溝部71aとの接触を少なくすることができる。よって、本実施の形態1に係るスクリュー圧縮機100では、周方向の回転を防止しつつ、且つスライドバルブ7の駆動性の向上を図ることができる。 In contrast, in the screw compressor 100 according to the first embodiment, as a circumferential rotation prevention structure, a groove 71a is formed along the sliding direction on one of the sliding surface 710 of the guide portion 71 and the outer peripheral surface of the bearing housing 8, and a protrusion 80 that fits into the groove 71a is formed on the other. In other words, in the screw compressor 100 according to the first embodiment, since the rotation prevention structure is provided in the high pressure space 11, high pressure refrigerant gas does not leak into the low pressure space 10. Therefore, for example, a gap S can be formed between the groove bottom surface of the groove 71a and the tip surface of the protrusion 80, thereby reducing contact between the protrusion 80 and the groove 71a. Therefore, in the screw compressor 100 according to the first embodiment, it is possible to prevent circumferential rotation while improving the drivability of the slide valve 7.
 また、本実施の形態1に係るスクリュー圧縮機100では、スクリューロータ5で冷媒を圧縮する圧力が弁体部70に作用し、弁体部70がケーシング1の内壁面に向かって押し付けられると、溝部71aと突起部80の気密性が低下するので、スライドバルブ7の駆動性が良好になる。 In addition, in the screw compressor 100 according to the first embodiment, when the pressure compressing the refrigerant by the screw rotor 5 acts on the valve body 70 and the valve body 70 is pressed against the inner wall surface of the casing 1, the airtightness of the groove 71a and the protrusion 80 decreases, improving the drivability of the slide valve 7.
 因みに、上記特許文献1では、スライドバルブのガイド部に突起部が設けられているので、スライドバルブのガイド部と軸受ハウジングの外周面との間の隙間が小さい。そのため、スライドバルブ及び軸受ハウジングが圧縮室で圧縮した冷媒ガスの温度の上昇によって熱膨張すると、ガイド部に設けられた突起部が軸受ハウジングの外周面に当接してしまい、スライドバルブの駆動性が悪化するおそれがある。 Incidentally, in the above-mentioned Patent Document 1, a protrusion is provided on the guide portion of the slide valve, so the gap between the guide portion of the slide valve and the outer peripheral surface of the bearing housing is small. Therefore, when the slide valve and the bearing housing thermally expand due to an increase in temperature of the refrigerant gas compressed in the compression chamber, the protrusion provided on the guide portion comes into contact with the outer peripheral surface of the bearing housing, which may deteriorate the drivability of the slide valve.
 以上のように、実施の形態1に係るスクリュー圧縮機100は、外郭を構成するケーシング1と、ケーシング1内に配置されて回転駆動されるスクリュー軸4と、外周面に螺旋状の歯溝5aを有し、スクリュー軸4に固定されたスクリューロータ5と、スクリューロータ5の歯溝5aに嵌り合う複数のゲートロータ歯部6aを有し、ケーシング1及びスクリューロータ5と共に圧縮室20を形成するゲートロータ6と、スクリューロータ5の回転軸方向にスライド移動自在に構成されたスライドバルブ7と、スクリュー軸4の端部を回転自在に支持する軸受8aを内部に有する軸受ハウジング8と、を備えている。スライドバルブ7は、スクリューロータ5に対向する弁体部70と、軸受ハウジング8の外周面に対向する摺動面710を有するガイド部71と、を有している。ガイド部71の摺動面710と軸受ハウジング8の外周面のうち、一方にスライド方向に沿った溝部71aが形成され、他方に溝部71aに嵌まる突起部80が設けられている。スライドバルブ7は、突起部80が溝部71aに嵌まった状態で、スクリューロータ5の回転軸方向にスライド移動自在に構成されている。 As described above, the screw compressor 100 according to the first embodiment includes a casing 1 forming an outer shell, a screw shaft 4 arranged in the casing 1 and driven to rotate, a screw rotor 5 having a spiral tooth groove 5a on its outer circumferential surface and fixed to the screw shaft 4, a gate rotor 6 having a plurality of gate rotor teeth 6a that fit into the tooth grooves 5a of the screw rotor 5 and forming a compression chamber 20 together with the casing 1 and the screw rotor 5, a slide valve 7 configured to slide freely in the rotation axis direction of the screw rotor 5, and a bearing housing 8 having a bearing 8a therein that rotatably supports the end of the screw shaft 4. The slide valve 7 has a valve body portion 70 facing the screw rotor 5, and a guide portion 71 having a sliding surface 710 facing the outer circumferential surface of the bearing housing 8. A groove portion 71a is formed along the sliding direction on one of the sliding surface 710 of the guide portion 71 and the outer circumferential surface of the bearing housing 8, and a protrusion portion 80 that fits into the groove portion 71a is provided on the other. The slide valve 7 is configured to be freely slidable in the direction of the rotation axis of the screw rotor 5 with the protrusion 80 fitted into the groove 71a.
 よって、実施の形態1に係るスクリュー圧縮機100は、溝部71aに突起部80が嵌まることにより、スライドバルブ7の周方向の回転を拘束することができるので、スクリューロータ5の外周面に対向する弁体部70に作用する圧力が変動したとしても、スライドバルブ7が周方向へ回転することがなく、スライドバルブ7とスクリューロータ5との接触を抑制できる。また、ガイド部71の摺動面710と軸受ハウジング8の外周面との間の隙間76を維持することもできるので、スライドバルブの駆動性の悪化を抑制できる。 Therefore, in the screw compressor 100 according to embodiment 1, the projection 80 fits into the groove 71a, so that the circumferential rotation of the slide valve 7 can be restricted. Therefore, even if the pressure acting on the valve body 70 that faces the outer circumferential surface of the screw rotor 5 fluctuates, the slide valve 7 will not rotate in the circumferential direction, and contact between the slide valve 7 and the screw rotor 5 can be suppressed. In addition, the gap 76 between the sliding surface 710 of the guide portion 71 and the outer circumferential surface of the bearing housing 8 can be maintained, so deterioration of the drivability of the slide valve can be suppressed.
 また、突起部80は、円柱形状である。これにより、溝部71aの側壁面と突起部80の側面とが線接触となる。よって、溝部71aと突起部80の接触面積を減らすことができるので、摩擦抵抗を抑制することができ、スライドバルブ7の駆動性を向上させることができる。 The protrusion 80 is cylindrical. This allows the side wall surface of the groove 71a and the side surface of the protrusion 80 to be in line contact. This reduces the contact area between the groove 71a and the protrusion 80, suppressing frictional resistance and improving the drivability of the slide valve 7.
 また、突起部80は、溝部71aに嵌まる先端面80aが半球面形状又は曲面形状である。よって、例えばスライドバルブ7及び軸受ハウジング8が熱膨張して、突起部80の先端面80aとガイド部71の溝部71aの溝底面が接触しても、突起部80の先端面80aと溝部71aの溝底面とを点接触にすることができる。これにより、突起部80と溝部71aとの接触面積を減らすことができるので、スライドバルブ7の駆動性の悪化を抑制することができる。 In addition, the tip surface 80a of the protrusion 80 that fits into the groove 71a is semispherical or curved. Therefore, even if the slide valve 7 and the bearing housing 8 thermally expand and the tip surface 80a of the protrusion 80 comes into contact with the bottom surface of the groove 71a of the guide part 71, the tip surface 80a of the protrusion 80 and the bottom surface of the groove 71a can be in point contact. This reduces the contact area between the protrusion 80 and the groove 71a, thereby preventing deterioration of the drivability of the slide valve 7.
 また、溝部71aの溝底面と突起部80の先端面80aとの間には、隙間Sが形成されているので、スライドバルブ7の駆動性を向上させることができる。 In addition, a gap S is formed between the bottom surface of the groove 71a and the tip surface 80a of the protrusion 80, improving the drivability of the slide valve 7.
 実施の形態2.
 次に、図1~図13を参照しつつ、図14及び図15に基づいて、本実施の形態2に係るスクリュー圧縮機100を説明する。図14は、実施の形態2に係るスクリュー圧縮機100の軸受ハウジング8を示した斜視図である。なお、実施の形態1で説明したスクリュー圧縮機100と同一の構成については、同一の符号を付して、その説明を適宜省略する。
Embodiment 2.
Next, a screw compressor 100 according to a second embodiment will be described based on Fig. 14 and Fig. 15 while referring to Figs. 1 to 13. Fig. 14 is a perspective view showing a bearing housing 8 of the screw compressor 100 according to the second embodiment. Note that the same components as those of the screw compressor 100 described in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted as appropriate.
 実施の形態2に係るスクリュー圧縮機100においても、図4~図6に示すように、スライドバルブ7のガイド部71の摺動面710に、スライド方向に沿った溝部71aが形成されている。また、図14に示すように、軸受ハウジング8の外周面には、溝部71aに嵌まる突起部82が形成されている。実施の形態2に係るスクリュー圧縮機100の突起部82は、スライドバルブ7のスライド方向に沿って延びる棒状とした構成である。スライドバルブ7は、突起部82が溝部71aに嵌まった状態で、スクリューロータ5の回転軸方向にスライド移動自在に構成されている。つまり、スライドバルブ7は、突起部82が溝部71aに嵌まることによって周方向への回転が拘束されている。また、溝部71aの溝底面と突起部82の先端面との間には、スライドバルブ7の駆動性を高めるために隙間が形成されている。なお、溝部71aの側壁面と突起部82の側面との間にも、スライドバルブ7の駆動性を高めるために僅かな隙間が形成されている。 In the screw compressor 100 according to the second embodiment, as shown in Figs. 4 to 6, a groove 71a is formed along the sliding direction on the sliding surface 710 of the guide portion 71 of the slide valve 7. As shown in Fig. 14, a protrusion 82 that fits into the groove 71a is formed on the outer circumferential surface of the bearing housing 8. The protrusion 82 of the screw compressor 100 according to the second embodiment is configured as a rod extending along the sliding direction of the slide valve 7. With the protrusion 82 fitted into the groove 71a, the slide valve 7 is configured to be freely slidable in the direction of the rotation axis of the screw rotor 5. In other words, the slide valve 7 is restricted from rotating in the circumferential direction by the protrusion 82 fitting into the groove 71a. In addition, a gap is formed between the bottom surface of the groove 71a and the tip surface of the protrusion 82 in order to improve the drivability of the slide valve 7. A small gap is also formed between the side wall surface of the groove 71a and the side surface of the protrusion 82 in order to improve the drivability of the slide valve 7.
 突起部82は、軸受ハウジング8の外周面のうち、スライドバルブ7のガイド部71が摺動する範囲(図14の点線で示した範囲)に設けられている。突起部82は、一例として、軸受ハウジング8の外面に、スライドバルブ7のスライド方向に沿った溝を形成し、該溝に棒状のキーを圧入し、又は棒状のキーを焼嵌め等で接合することで設けられる。突起部82は、スライドバルブ7の移動量を考慮した範囲に設けていればよく、軸受ハウジング8の管軸方向に沿って一端から他端まで形成してもよいし、一部の範囲にのみ設けてもよい。なお、突起部82は、軸受ハウジング8の外面に貫通穴を形成し、該貫通穴に棒状のキーを圧入し、又は焼嵌め等で接合して設けてもよい。 The protrusion 82 is provided on the outer circumferential surface of the bearing housing 8 in the range where the guide portion 71 of the slide valve 7 slides (the range indicated by the dotted line in FIG. 14). As an example, the protrusion 82 is provided by forming a groove on the outer surface of the bearing housing 8 along the sliding direction of the slide valve 7 and pressing a rod-shaped key into the groove or joining a rod-shaped key by shrink fitting or the like. The protrusion 82 only needs to be provided in a range that takes into account the amount of movement of the slide valve 7, and may be formed from one end to the other end along the axial direction of the bearing housing 8, or may be provided only in a partial range. The protrusion 82 may also be provided by forming a through hole on the outer surface of the bearing housing 8 and pressing a rod-shaped key into the through hole or joining it by shrink fitting or the like.
 実施の形態2に係るスクリュー圧縮機100では、突起部82をスライドバルブ7のスライド方向に沿って延びる棒状とした構成なので、スライドバルブ7の周方向への回転をより拘束することができる。 In the screw compressor 100 according to the second embodiment, the protrusion 82 is configured as a rod extending along the sliding direction of the slide valve 7, so that the rotation of the slide valve 7 in the circumferential direction can be more effectively restricted.
 なお、突起部82は、スライドバルブ7及び軸受ハウジング8の材質よりも線膨張係数が小さい材質で形成することが望ましい。スクリュー圧縮機100は、運転条件によってスクリューロータ5の周辺の部品が高温になり、スライドバルブ7、軸受ハウジング8及び突起部82が熱膨張する場合がある。このような場合であっても、溝部71aと突起部82との間に僅かな隙間を確保することができるので、スライドバルブ7の駆動性の悪化を抑制することができる。 It is preferable that the protrusion 82 is made of a material with a smaller linear expansion coefficient than the materials of the slide valve 7 and the bearing housing 8. Depending on the operating conditions of the screw compressor 100, the parts around the screw rotor 5 may become hot, causing the slide valve 7, the bearing housing 8, and the protrusion 82 to thermally expand. Even in such a case, a small gap can be secured between the groove 71a and the protrusion 82, thereby preventing deterioration of the drivability of the slide valve 7.
 また、実施の形態2に係るスクリュー圧縮機100においても、例えば図8に示すように、軸受ハウジング8の外周面にスライド方向に沿った溝部を形成し、スライドバルブ7のガイド部71の摺動面710に溝部に嵌まる突起部を形成した構成でもよい。スライドバルブ7は、突起部が溝部に嵌まった状態で、スクリューロータ5の回転軸方向にスライド移動自在に構成されている。突起部は、スライドバルブ7のガイド部71に一体的に形成してもよいし、スライドバルブ7のガイド部71に溝を設け、該溝に棒状のキーを圧入し、又は焼嵌め等で接合することで設けてもよい。 Also, in the screw compressor 100 according to the second embodiment, as shown in FIG. 8, a groove may be formed on the outer peripheral surface of the bearing housing 8 along the sliding direction, and a protrusion that fits into the groove may be formed on the sliding surface 710 of the guide portion 71 of the slide valve 7. With the protrusion fitted into the groove, the slide valve 7 is configured to be able to slide freely in the direction of the rotation axis of the screw rotor 5. The protrusion may be formed integrally with the guide portion 71 of the slide valve 7, or may be provided by forming a groove in the guide portion 71 of the slide valve 7 and pressing a rod-shaped key into the groove or joining it by shrink fitting, etc.
 図15は、実施の形態2に係るスクリュー圧縮機100の軸受ハウジング8の変形例を示した斜視図である。図15に示したスクリュー圧縮機100の変形例では、突起部82の先端面82aを平面以外の面である曲面形状とした構成である。例えばスライドバルブ7及び軸受ハウジング8が熱膨張して、突起部82の先端面82aとガイド部71の溝部71aの溝底面が接触しても、突起部82の先端面82aと溝部71aの溝底面とを線接触にすることができる。これにより、突起部82と溝部71aとの接触面積を減らすことができるので、スライドバルブ7の駆動性の悪化を抑制することができる。なお、図示することは省略したが、突起部82は、先端面82aを曲面形状とすることに限定されず、先端部分を溝部71aの溝底面に向かって先細形状とした構成でもよい。 15 is a perspective view showing a modified example of the bearing housing 8 of the screw compressor 100 according to the second embodiment. In the modified example of the screw compressor 100 shown in FIG. 15, the tip surface 82a of the protrusion 82 is configured to have a curved shape, which is a surface other than a flat surface. For example, even if the slide valve 7 and the bearing housing 8 thermally expand and the tip surface 82a of the protrusion 82 comes into contact with the bottom surface of the groove 71a of the guide portion 71, the tip surface 82a of the protrusion 82 and the bottom surface of the groove 71a can be in line contact. This reduces the contact area between the protrusion 82 and the groove 71a, thereby suppressing deterioration of the drivability of the slide valve 7. Although not shown in the figure, the protrusion 82 is not limited to having the tip surface 82a in a curved shape, and the tip portion may be configured to have a tapered shape toward the bottom surface of the groove 71a.
 以上、実施の形態に基づいてスクリュー圧縮機100を説明したが、スクリュー圧縮機100は上述した実施の形態の構成に限定されるものではない。上記したスクリュー圧縮機100の構成は、一例であって、構成要素の一部を省略してもよいし、他の構成要素を含んでもよい。また、スクリュー圧縮機100は、単段シングルスクリュー圧縮機を例に説明したが、例えば二段シングルスクリュー圧縮機でもよい。また、スライドバルブ7は、内部容積比調整弁に限定されず、例えば圧縮容量を調整する構成でもよい。また、ゲートロータ6は、図示した2つ構成に限定されず、1つでもよい。要するに、スクリュー圧縮機100は、その技術的思想を逸脱しない範囲において、当業者が通常に行う設計変更及び応用のバリエーションの範囲を含むものである。 The screw compressor 100 has been described above based on the embodiment, but the screw compressor 100 is not limited to the configuration of the above-mentioned embodiment. The above-mentioned configuration of the screw compressor 100 is an example, and some of the components may be omitted or other components may be included. Although the screw compressor 100 has been described using a single-stage single screw compressor as an example, it may be, for example, a two-stage single screw compressor. The slide valve 7 is not limited to an internal volume ratio adjustment valve, and may be configured to adjust the compression capacity, for example. The gate rotor 6 is not limited to the two-piece configuration shown in the figure, and may be one. In short, the screw compressor 100 includes the range of design changes and application variations that are normally made by a person skilled in the art, within the scope of the technical concept.
 1 ケーシング、2 圧縮部、3 駆動部、4 スクリュー軸、5 スクリューロータ、5a 歯溝、6 ゲートロータ、6a ゲートロータ歯部、7 スライドバルブ、7a 吐出口、8 軸受ハウジング、8a 軸受、10 低圧空間、11 高圧空間、12 スライド溝端部、12a 孔部、20 圧縮室、30 電動機、31 ステーター、32 モータロータ、70 弁体部、71 ガイド部、71a 溝部、71b 突起部、72 連結部、73 ロッド、74 スライドバルブ駆動装置、75 隙間、76 隙間、77 ガイド棒、80 突起部、80a 先端面、81 溝部、82 突起部、82a 先端面、100 スクリュー圧縮機、710 摺動面、S 隙間。 1 casing, 2 compression section, 3 drive section, 4 screw shaft, 5 screw rotor, 5a tooth groove, 6 gate rotor, 6a gate rotor tooth section, 7 slide valve, 7a discharge port, 8 bearing housing, 8a bearing, 10 low pressure space, 11 high pressure space, 12 slide groove end, 12a hole, 20 compression chamber, 30 electric motor, 31 stator, 32 motor rotor, 70 valve body section, 71 guide section, 71a groove section, 71b protrusion section, 72 connection section, 73 rod, 74 slide valve drive device, 75 gap, 76 gap, 77 guide rod, 80 protrusion section, 80a tip surface, 81 groove section, 82 protrusion section, 82a tip surface, 100 screw compressor, 710 sliding surface, S gap.

Claims (7)

  1.  外郭を構成するケーシングと、
     前記ケーシング内に配置されて回転駆動されるスクリュー軸と、
     外周面に螺旋状の歯溝を有し、前記スクリュー軸に固定されたスクリューロータと、
     前記スクリューロータの歯溝に嵌り合う複数のゲートロータ歯部を有し、前記ケーシング及び前記スクリューロータと共に圧縮室を形成するゲートロータと、
     前記スクリューロータの回転軸方向にスライド移動自在に構成されたスライドバルブと、
     前記スクリュー軸の端部を回転自在に支持する軸受を内部に有する軸受ハウジングと、を備え、
     前記スライドバルブは、前記スクリューロータに対向する弁体部と、前記軸受ハウジングの外周面に対向する摺動面を有するガイド部と、を有し、
     前記ガイド部の前記摺動面と前記軸受ハウジングの外周面のうち、一方にスライド方向に沿った溝部が形成され、他方に前記溝部に嵌まる突起部が設けられており、
     前記スライドバルブは、前記突起部が前記溝部に嵌まった状態で、前記スクリューロータの回転軸方向にスライド移動自在に構成されている、スクリュー圧縮機。
    A casing that forms an outer shell;
    a screw shaft disposed within the casing and rotatably driven;
    a screw rotor having a spiral tooth groove on an outer circumferential surface and fixed to the screw shaft;
    a gate rotor having a plurality of gate rotor teeth that fit into tooth grooves of the screw rotor and that forms a compression chamber together with the casing and the screw rotor;
    a slide valve configured to be slidable in the direction of the rotation axis of the screw rotor;
    a bearing housing having a bearing therein for rotatably supporting an end of the screw shaft,
    the slide valve has a valve body portion facing the screw rotor and a guide portion having a sliding surface facing an outer circumferential surface of the bearing housing,
    a groove portion is formed along a sliding direction on one of the sliding surface of the guide portion and the outer peripheral surface of the bearing housing, and a protrusion portion that fits into the groove portion is provided on the other of the sliding surface of the guide portion and the outer peripheral surface of the bearing housing,
    the slide valve is configured to be slidably movable in the direction of the rotation axis of the screw rotor with the protrusion fitted in the groove.
  2.  前記突起部は、円柱形状である、請求項1に記載のスクリュー圧縮機。 The screw compressor according to claim 1, wherein the protrusion is cylindrical.
  3.  前記突起部は、前記溝部に嵌まる先端面が曲面形状である、請求項1又は2に記載のスクリュー圧縮機。 The screw compressor according to claim 1 or 2, wherein the tip surface of the protrusion that fits into the groove has a curved shape.
  4.  前記突起部は、前記溝部に嵌まる先端面が半球面形状である、請求項1~3のいずれか一項に記載のスクリュー圧縮機。 The screw compressor according to any one of claims 1 to 3, wherein the tip surface of the protrusion that fits into the groove is hemispherical.
  5.  前記突起部は、前記スライドバルブのスライド方向に沿って延びる棒状に形成されている、請求項1に記載のスクリュー圧縮機。 The screw compressor according to claim 1, wherein the protrusion is formed in a rod shape extending along the sliding direction of the slide valve.
  6.  前記突起部は、前記溝部に嵌まる先端面が曲面形状である、請求項5に記載のスクリュー圧縮機。 The screw compressor according to claim 5, wherein the tip surface of the protrusion that fits into the groove is curved.
  7.  前記溝部の溝底面と前記突起部の先端面との間には、隙間が形成されている、請求項1~6のいずれか一項に記載のスクリュー圧縮機。 The screw compressor according to any one of claims 1 to 6, wherein a gap is formed between the groove bottom surface of the groove portion and the tip surface of the protrusion portion.
PCT/JP2022/037604 2022-10-07 2022-10-07 Screw compressor WO2024075275A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/037604 WO2024075275A1 (en) 2022-10-07 2022-10-07 Screw compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/037604 WO2024075275A1 (en) 2022-10-07 2022-10-07 Screw compressor

Publications (1)

Publication Number Publication Date
WO2024075275A1 true WO2024075275A1 (en) 2024-04-11

Family

ID=90607918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037604 WO2024075275A1 (en) 2022-10-07 2022-10-07 Screw compressor

Country Status (1)

Country Link
WO (1) WO2024075275A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673388U (en) * 1993-03-23 1994-10-18 株式会社神戸製鋼所 Screw compressor
JP2013060877A (en) * 2011-09-13 2013-04-04 Daikin Industries Ltd Screw compressor
JP2013117178A (en) * 2011-12-01 2013-06-13 Daikin Industries Ltd Screw compressor
WO2020021707A1 (en) * 2018-07-27 2020-01-30 三菱電機株式会社 Screw compressor
WO2020039548A1 (en) * 2018-08-23 2020-02-27 三菱電機株式会社 Screw compressor
WO2020240678A1 (en) * 2019-05-28 2020-12-03 三菱電機株式会社 Screw compressor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673388U (en) * 1993-03-23 1994-10-18 株式会社神戸製鋼所 Screw compressor
JP2013060877A (en) * 2011-09-13 2013-04-04 Daikin Industries Ltd Screw compressor
JP2013117178A (en) * 2011-12-01 2013-06-13 Daikin Industries Ltd Screw compressor
WO2020021707A1 (en) * 2018-07-27 2020-01-30 三菱電機株式会社 Screw compressor
WO2020039548A1 (en) * 2018-08-23 2020-02-27 三菱電機株式会社 Screw compressor
WO2020240678A1 (en) * 2019-05-28 2020-12-03 三菱電機株式会社 Screw compressor

Similar Documents

Publication Publication Date Title
KR100530662B1 (en) Scroll type fluid machine
CN112088250B (en) Scroll compressor having a discharge port
KR101368396B1 (en) Scroll compressor
US5145344A (en) Scroll-type fluid machinery with offset passage to the exhaust port
US20200158109A1 (en) Scroll compressor
US8523548B2 (en) Screw compressor having a gate rotor assembly with pressure introduction channels
WO2024075275A1 (en) Screw compressor
WO2020039548A1 (en) Screw compressor
WO2020240678A1 (en) Screw compressor
WO2020021707A1 (en) Screw compressor
EP0381061B1 (en) Fluid compressor
CN112384700B (en) Screw compressor
JP4821660B2 (en) Single screw compressor
US6186759B1 (en) Helical blade type compressor and a refrigeration cycle apparatus using the same
JP2010156249A (en) Scroll compressor
WO2018109939A1 (en) Screw compressor
US5368456A (en) Fluid compressor with bearing means disposed inside a rotary rod
EP4151858A1 (en) Screw compressor
JP2005163745A (en) Scroll compressor
JP4320906B2 (en) Screw compressor rotor structure
JPH08159051A (en) Scroll compressor
WO2019102615A1 (en) Single screw compressor and refrigeration cycle device with said single screw compressor
KR20120081488A (en) Scroll compressor with split type orbitting scroll
KR20120081489A (en) Scroll compressor with split type orbitting scroll
JP2726418B2 (en) Fluid compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22961461

Country of ref document: EP

Kind code of ref document: A1