WO2024075254A1 - 端末、無線通信方法及び基地局 - Google Patents
端末、無線通信方法及び基地局 Download PDFInfo
- Publication number
- WO2024075254A1 WO2024075254A1 PCT/JP2022/037486 JP2022037486W WO2024075254A1 WO 2024075254 A1 WO2024075254 A1 WO 2024075254A1 JP 2022037486 W JP2022037486 W JP 2022037486W WO 2024075254 A1 WO2024075254 A1 WO 2024075254A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- model
- positioning
- monitoring
- performance
- Prior art date
Links
- 238000004891 communication Methods 0.000 title description 78
- 238000000034 method Methods 0.000 title description 69
- 238000013473 artificial intelligence Methods 0.000 claims abstract description 216
- 238000012544 monitoring process Methods 0.000 claims abstract description 134
- 230000005540 biological transmission Effects 0.000 claims description 59
- 230000009467 reduction Effects 0.000 abstract description 4
- 238000005259 measurement Methods 0.000 description 58
- 238000012545 processing Methods 0.000 description 54
- 230000011664 signaling Effects 0.000 description 45
- 238000012549 training Methods 0.000 description 38
- 238000010801 machine learning Methods 0.000 description 36
- 230000006870 function Effects 0.000 description 26
- 238000004364 calculation method Methods 0.000 description 21
- 238000010586 diagram Methods 0.000 description 21
- 238000007726 management method Methods 0.000 description 21
- 230000004913 activation Effects 0.000 description 20
- 230000009849 deactivation Effects 0.000 description 17
- 238000005516 engineering process Methods 0.000 description 15
- 230000009471 action Effects 0.000 description 13
- 230000008569 process Effects 0.000 description 11
- 230000009977 dual effect Effects 0.000 description 10
- 238000003860 storage Methods 0.000 description 10
- 238000001914 filtration Methods 0.000 description 9
- 238000010295 mobile communication Methods 0.000 description 9
- 238000012546 transfer Methods 0.000 description 8
- 238000013507 mapping Methods 0.000 description 7
- 238000004422 calculation algorithm Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000001427 coherent effect Effects 0.000 description 5
- 230000001934 delay Effects 0.000 description 5
- 230000003321 amplification Effects 0.000 description 4
- 238000012937 correction Methods 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 238000013480 data collection Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000007667 floating Methods 0.000 description 4
- 238000010606 normalization Methods 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 238000007781 pre-processing Methods 0.000 description 4
- 238000010200 validation analysis Methods 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 238000010408 sweeping Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000003062 neural network model Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000011176 pooling Methods 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000013139 quantization Methods 0.000 description 2
- 238000000611 regression analysis Methods 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 238000013468 resource allocation Methods 0.000 description 2
- 238000012384 transportation and delivery Methods 0.000 description 2
- 235000015842 Hesperis Nutrition 0.000 description 1
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 1
- 235000012633 Iberis amara Nutrition 0.000 description 1
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 1
- 108700026140 MAC combination Proteins 0.000 description 1
- 101150071746 Pbsn gene Proteins 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013523 data management Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000007477 logistic regression Methods 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012913 prioritisation Methods 0.000 description 1
- 238000007637 random forest analysis Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 208000037918 transfusion-transmitted disease Diseases 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
Definitions
- This disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
- LTE Long Term Evolution
- UMTS Universal Mobile Telecommunications System
- Non-Patent Document 1 LTE-Advanced (3GPP Rel. 10-14) was specified for the purpose of achieving higher capacity and greater sophistication over LTE (Third Generation Partnership Project (3GPP (registered trademark)) Release (Rel.) 8, 9).
- LTE 5th generation mobile communication system
- 5G+ 5th generation mobile communication system
- 6G 6th generation mobile communication system
- NR New Radio
- E-UTRA Evolved Universal Terrestrial Radio Access
- E-UTRAN Evolved Universal Terrestrial Radio Access Network
- AI artificial intelligence
- ML machine learning
- UE User Equipment
- Performance monitoring of AI models is being considered. Performance monitoring of AI models may be performed at a terminal (user terminal, User Equipment (UE)) or at a base station (Base Station (BS)). However, with regard to positioning using AI models, specific life cycle management of performance monitoring at UE/BS has not yet been considered.
- UE User Equipment
- BS Base Station
- one of the objectives of this disclosure is to provide a terminal, a wireless communication method, and a base station that can achieve optimal overhead reduction/channel estimation/resource utilization.
- a terminal is characterized in that it has a receiving unit that receives performance indicators for performance monitoring with respect to artificial intelligence (AI)-based positioning, and a control unit that controls the performance monitoring.
- AI artificial intelligence
- FIG. 1 is a diagram illustrating an example of a framework for managing AI models.
- FIG. 2 is a diagram showing an example of specifying an AI model.
- FIG. 3 is a diagram illustrating an example of a UE positioning method.
- FIG. 4 is a diagram illustrating an example of a UE positioning method.
- FIG. 5 is a diagram illustrating an example of a UE positioning method.
- FIG. 6 is a diagram illustrating an example of a UE positioning method.
- FIG. 7 is a diagram illustrating an example of the start time/end time of latency according to the first embodiment.
- FIG. 8 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
- FIG. 9 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
- FIG. 10 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
- FIG. 11 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
- FIG. 12 is a diagram illustrating an example of a vehicle according to an embodiment.
- AI Artificial Intelligence
- ML machine learning
- CSI channel state information
- UE user equipment
- BS base stations
- CSI channel state information
- UE user equipment
- beam management e.g., improving accuracy, prediction in the time/space domain
- position measurement e.g., improving position estimation/prediction
- the AI model may output at least one piece of information such as an estimate, a prediction, a selected action, a classification, etc. based on the input information.
- the UE/BS may input channel state information, reference signal measurements, etc. to the AI model, and output highly accurate channel state information/measurements/beam selection/position, future channel state information/radio link quality, etc.
- AI may be interpreted as an object (also called a target, object, data, function, program, etc.) having (implementing) at least one of the following characteristics: - Estimation based on observed or collected information; - making choices based on observed or collected information; - Predictions based on observed or collected information.
- estimation, prediction, and inference may be interpreted as interchangeable. Also, in this disclosure, estimate, predict, and infer may be interpreted as interchangeable.
- an object may be, for example, an apparatus such as a UE or a BS, or a device. Also, in the present disclosure, an object may correspond to a program/model/entity that operates in the apparatus.
- an AI model may be interpreted as an object having (implementing) at least one of the following characteristics: - Producing estimates by feeding information, - Predicting estimates by providing information - Discover features by providing information, - Select an action by providing information.
- an AI model may refer to a data-driven algorithm that applies AI techniques to generate a set of outputs based on a set of inputs.
- AI model, model, ML model, predictive analytics, predictive analysis model, tool, autoencoder, encoder, decoder, neural network model, AI algorithm, scheme, etc. may be interchangeable.
- AI model may be derived using at least one of regression analysis (e.g., linear regression analysis, multiple regression analysis, logistic regression analysis), support vector machine, random forest, neural network, deep learning, etc.
- autoencoder may be interchangeably referred to as any autoencoder, such as a stacked autoencoder or a convolutional autoencoder.
- the encoder/decoder of this disclosure may employ models such as Residual Network (ResNet), DenseNet, and RefineNet.
- encoder encoding, encoding/encoded, modification/alteration/control by an encoder, compressing, compress/compressed, generating, generate/generated, etc. may be read as interchangeable terms.
- decoder decoding, decode/decoded, modification/alteration/control by a decoder, decompressing, decompress/decompressed, reconstructing, reconstruct/reconstructed, etc.
- decompressing decompress/decompressed, reconstructing, reconstruct/reconstructed, etc.
- a layer for an AI model
- a layer may be interpreted as a layer (input layer, intermediate layer, etc.) used in an AI model.
- a layer in the present disclosure may correspond to at least one of an input layer, intermediate layer, output layer, batch normalization layer, convolution layer, activation layer, dense layer, normalization layer, pooling layer, attention layer, dropout layer, fully connected layer, etc.
- methods for training an AI model may include supervised learning, unsupervised learning, reinforcement learning, federated learning, and the like.
- Supervised learning may refer to the process of training a model from inputs and corresponding labels.
- Unsupervised learning may refer to the process of training a model without labeled data.
- Reinforcement learning may refer to the process of training a model from inputs (i.e., states) and feedback signals (i.e., rewards) resulting from the model's outputs (i.e., actions) in the environment with which the model interacts.
- terms such as generate, calculate, derive, etc. may be interchangeable.
- terms such as implement, operate, operate, execute, etc. may be interchangeable.
- terms such as train, learn, update, retrain, etc. may be interchangeable.
- terms such as infer, after-training, live use, actual use, etc. may be interchangeable.
- terms such as signal and signal/channel may be interchangeable.
- FIG. 1 shows an example of a framework for managing an AI model.
- each stage related to the AI model is shown as a block.
- This example is also referred to as Life Cycle Management (LCM) of the AI model.
- LCM Life Cycle Management
- the data collection stage corresponds to the stage of collecting data for generating/updating an AI model.
- the data collection stage may include data organization (e.g., determining which data to transfer for model training/model inference), data transfer (e.g., transferring data to an entity (e.g., UE, gNB) that performs model training/model inference), etc.
- data collection may refer to a process in which data is collected by a network node, management entity, or UE for the purpose of AI model training/data analysis/inference.
- process and procedure may be interpreted as interchangeable.
- model training is performed based on the data (training data) transferred from the collection stage.
- This stage may include data preparation (e.g., performing data preprocessing, cleaning, formatting, conversion, etc.), model training/validation, model testing (e.g., checking whether the trained model meets performance thresholds), model exchange (e.g., transferring the model for distributed learning), model deployment/update (deploying/updating the model to the entities that will perform model inference), etc.
- AI model training may refer to a process for training an AI model in a data-driven manner and obtaining a trained AI model for inference.
- AI model validation may refer to a sub-process of training to evaluate the quality of an AI model using a dataset different from the dataset used to train the model. This sub-process helps select model parameters that generalize beyond the dataset used to train the model.
- AI model testing may refer to a sub-process of training to evaluate the performance of the final AI model using a dataset different from the dataset used for model training/validation. Note that testing, unlike validation, does not necessarily require subsequent model tuning.
- model inference is performed based on the data (inference data) transferred from the collection stage.
- This stage may include data preparation (e.g., performing data preprocessing, cleaning, formatting, transformation, etc.), model inference, model monitoring (e.g., monitoring the performance of model inference), model performance feedback (feeding back model performance to the entity performing the model training), and output (providing model output to the actor).
- AI model inference may refer to the process of using a trained AI model to produce a set of outputs from a set of inputs.
- a UE side model may refer to an AI model whose inference is performed entirely in the UE.
- a network side model may refer to an AI model whose inference is performed entirely in the network (e.g., gNB).
- a one-sided model may refer to a UE-side model or a network-side model.
- a two-sided model may refer to a pair of AI models where joint inference is performed.
- joint inference may include AI inference where the inference is performed jointly across the UE and the network, e.g., a first part of the inference may be performed first by the UE and the remaining part by the gNB (or vice versa).
- AI model monitoring may refer to the process of monitoring the inference performance of an AI model, and may be interchangeably read as model performance monitoring, performance monitoring, etc.
- model registration may refer to making a model executable through assigning a version identifier to the model and compiling it into the specific hardware used in the inference phase.
- Model deployment may refer to distributing (or activating at) a fully developed and tested run-time image (or image of the execution environment) of the model to the target (e.g., UE/gNB) where inference will be performed.
- Actor stages may include action triggers (e.g., deciding whether to trigger an action on another entity), feedback (e.g., feeding back information needed for training data/inference data/performance feedback), etc.
- action triggers e.g., deciding whether to trigger an action on another entity
- feedback e.g., feeding back information needed for training data/inference data/performance feedback
- training of a model for mobility optimization may be performed in, for example, Operation, Administration and Maintenance (Management) (OAM) in a network (NW)/gNodeB (gNB).
- OAM Operation, Administration and Maintenance
- NW network
- gNodeB gNodeB
- In the former case interoperability, large capacity storage, operator manageability, and model flexibility (feature engineering, etc.) are advantageous.
- the latency of model updates and the absence of data exchange for model deployment are advantageous.
- Inference of the above model may be performed in, for example, a gNB.
- the entity performing the training/inference may be different.
- the function of the AI model may include beam management, beam prediction, autoencoder (or information compression), CSI feedback, positioning, etc.
- the OAM/gNB may perform model training and the gNB may perform model inference.
- a Location Management Function may perform model training and the LMF may perform model inference.
- the OAM/gNB/UE may perform model training and the gNB/UE may (jointly) perform model inference.
- the OAM/gNB/UE may perform model training and the UE may perform model inference.
- model activation may mean activating an AI model for a particular function.
- Model deactivation may mean disabling an AI model for a particular function.
- Model switching may mean deactivating a currently active AI model for a particular function and activating a different AI model.
- Model transfer may also refer to distributing an AI model over the air interface. This may include distributing either or both of the parameters of the model structure already known at the receiving end, or a new model with the parameters. This may also include a complete model or a partial model.
- Model download may refer to model transfer from the network to the UE.
- Model upload may refer to model transfer from the UE to the network.
- Figure 2 shows an example of specifying an AI model.
- the UE and NW e.g., a base station (BS)
- NW e.g., a base station (BS)
- the UE may report, for example, the capabilities of model #1 and model #2 to the NW, and the NW may instruct the UE on the AI model to use.
- Fingerprinting localization which estimates the location of a wireless device by utilizing the propagation characteristics of a wireless signal, is widely used in both Line Of Site (LOS) and Non-Line Of Site (NLOS) scenarios.
- LOS Line Of Site
- NLOS Non-Line Of Site
- LOS may mean that the UE and base station are in an environment where they can see each other (or there is no obstruction)
- NLOS may mean that the UE and base station are not in an environment where they can see each other (or there is obstruction).
- Fingerprinting positioning estimates the UE's location based on a database/AI model using the fingerprints of the UE's multiple transmission paths (multipath).
- the multipath information may be, for example, information regarding the Angle of Arrival (AoA)/Angle of Departure (AoD) of the signal on optimal/candidate transmission paths.
- AoA Angle of Arrival
- AoD Angle of Departure
- the information on AoA may include, for example, information on at least one of the azimuth angles of arrival and the zenith angles of arrival.
- the information on AoD may include, for example, information on at least one of the azimuth angles of departure and the zenith angles of departure.
- 3GPP Rel. 16 NR supports the following positioning technologies: DL/UL Time Difference Of Arrival (TDOA) based positioning; Positioning based on angles (DL AoD/UL AoA); - Positioning based on multiple Round Trip Times (RTTs), - Positioning based on Enhanced Cell ID (E-CID).
- TDOA Time Difference Of Arrival
- RTT Round Trip Times
- E-CID Enhanced Cell ID
- FIG. 3 is a diagram showing an example of positioning based on DL/UL TDOA.
- TRP#0-#2 multiple base stations
- the location of the UE is estimated (measured) using a measurement value of the reception time difference (Reference Signal Time Difference (RSTD)) of the reference signal.
- RSTD Reference Signal Time Difference
- a hyperbola H i,j can be drawn by connecting points where the RSTD (T i -T j ) for two specific base stations (TRP#i, #j (i, j are integers)) takes a certain value (k i,j ) .
- the intersection of multiple such hyperbolae (in this example, the intersection of H 0,1, H 1,2, and H 2,0 ) may be estimated as the location of the UE.
- the location of the UE may be estimated using the RSRP of the reference signal.
- Figure 4 shows an example of positioning based on DL AoD/UL AoA.
- the UE's location is estimated using a DL AoD measurement value (e.g., ⁇ or ⁇ ) or a UL AoA measurement value (e.g., ⁇ or ⁇ ).
- the UE's location may also be estimated using RSRP.
- Figure 5 shows an example of multi-RTT based positioning.
- the UE's location is estimated using multiple RTTs calculated from the Tx/Rx time difference of the reference signal (and additionally RSRP, RSRQ, etc.). For example, geometric circles based on the RTTs can be drawn with each base station at the center. The intersection of these multiple circles may be estimated as the UE's location.
- Figure 6 shows an example of E-CID based positioning.
- the UE's location is estimated based on the geometrical location of the serving cell/neighbor cells and additional measurements (Tx-Rx time difference, RSRP, RSRQ, etc.).
- the positioning in the DL (DL TDOA, DL AoD) described above may be performed by the UE side or the LMF side.
- the UE may calculate the UE position based on various measurement results of the UE and assistance information from the LMF.
- the UE may report various measurement results to the LMF, and the LMF may calculate the UE position.
- the assistance information may be information for assisting in estimating the UE position.
- the above-mentioned UL (UL TDOA, UL AoA) positioning may be performed by the LMF.
- the base station may report various measurement results to the LMF, and the LMF may calculate the UE's position.
- the above-mentioned positioning in DL and UL may be performed by the LMF.
- the UE/base station may report various measurement results to the LMF, and the LMF may calculate the UE's position.
- 3GPP Rel. 17 proposes a positioning method using assistance information to further improve positioning accuracy.
- Assistance information may be transmitted between the UE, base station, and LMF as measurement information for the above-mentioned DL/UL-TDOA, DL-AoD/UL-AoA, multi-RTT, and E-CID.
- the assistance information may include information regarding at least one of the following: Timing Error Group (TEG), RSRPP (path-specific RSRP), Expected angle, Adjacent beam information, ⁇ TRP antenna/beam information, - LOS/NLOS indicator, ⁇ Additional path reporting.
- TAG Timing Error Group
- RSRPP path-specific RSRP
- Expected angle Adjacent beam information
- ⁇ TRP antenna/beam information - LOS/NLOS indicator
- ⁇ Additional path reporting may include information regarding at least one of the following: Timing Error Group (TEG), RSRPP (path-specific RSRP), Expected angle, Adjacent beam information, ⁇ TRP antenna/beam information, - LOS/NLOS indicator, ⁇ Additional path reporting.
- the TEG may indicate one or more Positioning Reference Signal (PRS) resources within which the Rx/Tx timing errors are within a certain margin.
- PRS Positioning Reference Signal
- RSRPP may indicate the RSRP measurement result on the first pass.
- assistance information regarding expected angles may indicate expected UL-AoA/ZoA.
- the assistance information may be transmitted from the LMF to the base station.
- the assistance information may also support at least one of UL TDOA, UL AoA, and multi-RTT positioning.
- the assistance information regarding expected angles may include information regarding expected DL-AoA/ZoA or DL-AoD/ZoD.
- the assistance information may be transmitted from the LMF to the UE.
- the assistance information may also support at least one of DL TDOA, DL AoA, and multi-RTT positioning. This improves the accuracy of angle-based UE positioning and enables optimization of Rx beamforming of the UE or base station.
- the assistance information regarding the predicted angles may include, in addition to the information on the values of AoA/ZoA/AoD/ZoD themselves as described above, information indicating the uncertainty range of these values.
- the neighboring beam information may include information on a subset of DL-PRS resources (option 1) for the purpose of prioritizing DL-AoD reports, or on the boresight direction of each DL-PRS resource (option 2), allowing optimization of the UE's Rx beam sweeping and DL-AoD measurements.
- the assistance information may also include PRS beam pattern information.
- This PRS beam pattern information may include information regarding the relative power between DL-PRS resources for each angle for each TRP.
- the LOS/NLOS indicator may show information regarding Line Of Site (LOS)/Non-Line Of Site (NLOS).
- pre-configured measurement gaps MG
- activation of the MG via lower layers MG-less position
- PRS Rx/Tx in RRC_INACTIVE state PRS Rx/Tx in RRC_INACTIVE state
- on-demand PRS may be configured for the UE (or may be used by the UE).
- the UE measures/reports the RSRP of adjacent beams to improve the accuracy of the UE's location estimation.
- the LMF can indicate at least one of the following options 1-2 in the assistance information.
- Option 1 A subset of PRS resources for DL-AOD reporting prioritization.
- the subset may be configured for each PRS resource depending on the UE capabilities.
- the UE may include requested PRS measurements for a subset of PRS in the DL-AoD additional measurements if requested PRS measurements for the associated PRS are reported.
- the requested PRS measurements may be DL PRS RSRP/path PRS RSRP.
- the UE may report PRS measurements only for a subset of PRS resources. Note that the associated subset of a PRS resource may be in the same/different PRS resource set as the PRS resource.
- Option 2 Information about the boresight direction configured for each PRS resource depending on the UE capabilities.
- PRU Positioning Reference Unit
- the PRU is being discussed as a reference device with a known location to mitigate transmission and reception timing errors of the UE/gNB.
- PRU may also be read as UE/gNB/TRP (transmission reception point)/TP (transmission point).
- a PRU may support at least one of the following: Measure DL PRS and report related measurements (e.g. RSTD/transmission time difference/RSRP) to the LMF; Transmitting SRS and enabling the TRP to measure and report measurements related to the reference device (e.g., Relative Time of Arrival (RTOA)/AOA) to the LMF; Operation, measurement and various parameters (parameters related to transmit/receive timing delays, AoD and AOA enhancements, and calibration of measurements); If the LMF does not have the position coordinate information, reporting the position coordinate information of the reference device to the LMF;
- the reference device with a known location is a UE/gNB; - The accuracy with which the position of the reference device can be known.
- Direct AI/ML positioning for example, outputs UE positioning.
- AI/ML assisted positioning for example, outputs intermediate features. These intermediate features may be input again into the AI/ML model.
- Example outputs of the AI/ML assisted positioning described above may include at least one of the following: LOS/NLOS identification (LOS/NLOS probability); ToA (time of arrival of PRS/SRS), - Rx-Tx (transmission and reception) time difference, ⁇ AoA/AoD, Number of waves, Rx-Tx (transmit/receive) phase difference (Rel. 18 phase measurement), DL RSTD/UL TDOA, DL-PRS/UL-SRS, RSRPs/RSRPPs, - Likelihood of the above numbers (e.g., probability of ToA).
- LOS/NLOS identification LOS/NLOS probability
- ToA time of arrival of PRS/SRS
- - Rx-Tx transmission and reception time difference
- ⁇ AoA/AoD Number of waves
- Rx-Tx transmit/receive phase difference
- DL RSTD/UL TDOA DL-PRS/UL-SRS
- Beam information for UE positioning As mentioned above, antenna configuration/beam information is considered useful for the AI/M1 model.
- the AI model requires metadata (antenna configuration information/beam information) as input to provide better performance.
- - Beam information is also used in interfaces other than positioning protocols (e.g., LTE Positioning Protocol (LPP)).
- LTP LTE Positioning Protocol
- PRS Positioning Reference Signal
- - Beam information at the UE is used.
- beam information indicating the direction of the beam (boresight direction) for each PRS is supported as beam information from the LMF to the UE (beam information for UE-based positioning, information on the transmission beam of the base station).
- the beam information may be information indicating the boresight direction for each PRS.
- the beam information indicating the beam direction for each PRS is "DL-PRS-BeamInfoElement" included in the common NR positioning information element "NR-DL-PRS-BeamInfo”.
- DL-PRS-BeamInfoElement includes information about the azimuth angle and elevation angle of the beam transmitted from the base station (TRP).
- dl-PRS-Azimuth Information regarding the azimuth angle is "dl-PRS-Azimuth” and “dl-PRS-Azimuth-fine”.
- dl-PRS-Azimuth is information expressed in units of 1 degree, with values ranging from 0° to 359°
- dl-PRS-Azimuth-fine is information expressed in units of 0.1 degree, with values ranging from 0° to 0.9°.
- dl-PRS-Elevation is information that is expressed in 1° units and values from 0° to 180°
- dl-PRS-Elevation-fine is information that is expressed in 0.1° units and values from 0° to 0.9°.
- Rel. 17 supports beam information indicating the relative power of DL PRS at each angle (azimuth angle/elevation angle) as beam information from the LMF to the UE (beam information for UE-based positioning, information on the base station's transmission beam).
- the beam information indicating the relative power is included in the beam antenna information of the TRP in the common NR positioning information element ("NR-TRP-BeamAntennaInfo").
- NR-TRP-BeamAntennaInfo includes information about the TRP's beam antenna information for azimuth and elevation angles, "NR-TRP-BeamAntennaInfoAzimuthElevation”.
- NR-TRP-BeamAntennaInfoAzimuthElevation includes “azimuth”, which indicates the azimuth angle in 1° increments, “azimuth-fine”, which indicates the azimuth angle in 0.1° increments, and “elevationList”, a list of elevation angles.
- the elevation list “elevationList” includes “elevation”, which indicates the elevation angle in 1° granularity, “elevation-fine”, which indicates the elevation angle in 0.1° granularity, and “beamPowerList”, which is a list of beam powers.
- the beam power list "beamPowerList” includes "nr-dl-prs-ResourceSetID” indicating the resource set ID of the DL PRS, "nr-dl-prs-ResourceID” indicating the resource ID of the DL PRS, "nr-dl-prs-RelativePower” indicating the relative power of the resource given by “nr-dl-prs-ResourceID” in 1 dB granularity, and "nr-dl-prs-RelativePowerFine” indicating the relative power of the resource given by "nr-dl-prs-ResourceID” in 0.1 dB granularity.
- Rel. 17 supports information indicating antenna reference points (ARPs) as beam (antenna) information (information about the base station's transmission beam) from the LMF to the UE.
- ARPs antenna reference points
- antenna reference points as beam (antenna) information (information about the base station's transmission beam)
- This information is indicated by the "referencePoint” in "NR-TRP-LocationInfo", which is the location information of the TRP in the common NR positioning information element.
- the TRP location information "NR-TRP-LocationInfo" is expressed by the relative positions between reference points.
- the ARP location of a PRS resource is expressed as a relative location associated with the ARP location of the PRS resource set.
- Antenna reference points are indicated by altitude, latitude and longitude.
- Rel. 17 supports information on the spatial direction of DL PRS as information from base stations (e.g., gNBs, NG-RAN (Next Generation-Radio Access Network) nodes) to the LMF (information on the base station's transmission beam).
- base stations e.g., gNBs, NG-RAN (Next Generation-Radio Access Network) nodes
- LMF Next Generation-Radio Access Network
- This information includes information indicating the azimuth and elevation boresight directions of the PRS resource.
- the information also includes transition information from the local coordinate system (LCS) to the global coordinate system (GCS).
- LCS local coordinate system
- GCS global coordinate system
- the GCS may be defined for a system including multiple base stations and multiple UEs.
- an array antenna for one base station or one UE may be defined.
- the LCS is used as a reference to define the vector far-field of each antenna element in the array, which is the pattern and polarization.
- the arrangement of the array within the GCS may be defined by a transformation between the GCS and the LCS.
- the GCS/LCS may be derived, for example, based on definitions and transformation formulas (specified in the specification) that would be recognizable to a person skilled in the art.
- Rel. 17 supports information indicating the beam/antenna of the TRP as information from the base station (e.g., gNB) to the LMF (information regarding the base station's transmission beam).
- the base station e.g., gNB
- the LMF information regarding the base station's transmission beam
- This information includes information showing the relative power of the DL PRS at each angle (azimuth/elevation).
- Rel. 17 supports information about the receiving beam when measuring UL signals as information from a base station (e.g., a gNB) to the LMF (information about the base station's receiving beam).
- a base station e.g., a gNB
- LMF information about the base station's receiving beam
- the information includes at least one of the PRS resource ID, the PRS resource set ID, and the SSB index.
- Rel. 17 supports information about spatial relationships as information transmitted from the UE to the NW (information about the UE's transmission beam).
- the information indicates the ID/index of a specific RS (e.g., SSB/CSI-RS/SRS/DL PRS).
- a specific RS e.g., SSB/CSI-RS/SRS/DL PRS.
- Rel. 17 specifies the number of receiving beams for a UE in beam sweeping for positioning.
- a UE may report support for UE capabilities to the LMF.
- the UE uses one receiving beam.
- the number of beams is used as indicated by the information "numberOfRxBeamSweepingFactor" indicating the number of Rx beam sweeping factors for FR2. Otherwise, the UE uses eight receiving beams.
- nr-DL-PRS-RxBeamIndex Information regarding the receiving beam that the UE uses for measurements.
- the UE may report measurements received on the same receiving beam.
- the beam information transmitted by the UE indicates whether the same beam is being used between resource sets.
- AI model information may mean information including at least one of the following: - AI model input/output information, - Pre-processing/post-processing information for input/output of AI models; ⁇ Information on the parameters of the AI model, - Training information for the AI model; - Inference information for AI models, ⁇ Performance information about the AI model.
- the input/output information of the AI model may include information regarding at least one of the following: Content of input/output data (e.g. RSRP, SINR, amplitude/phase information in the channel matrix (or precoding matrix), information on the Angle of Arrival (AoA), information on the Angle of Departure (AoD), location information); - auxiliary information of the data (which may be called meta-information); - Input/output data types (e.g. immutable values, floating point numbers), Quantization interval (quantization step size) of input/output data (e.g., 1 dBm for L1-RSRP); The range that the input/output data can take (e.g., [0, 1]).
- Content of input/output data e.g. RSRP, SINR, amplitude/phase information in the channel matrix (or precoding matrix), information on the Angle of Arrival (AoA), information on the Angle of Departure (AoD), location information
- - auxiliary information of the data
- GC Generalization Capability
- AI/ML AI/ML
- GC refers to the ability of an AI model to adapt (produce desired output, make good predictions) not only to the training data given during training, but also to unknown data (test data).
- GC performance is also called GC performance (or generalization performance).
- KPI Key performance indicators
- KPIs for evaluating the performance impact of AI/ML models: ⁇ Performance ⁇ Intermediate KPIs, - Link-level and system-level performance, ⁇ Generalization performance, Over-the-air (overhead) - Assistance information overhead, - Data collection overhead, Model delivery/transfer overhead, - Signaling overhead associated with other AI/ML models; Inference complexity, Computational complexity of model inference: floating point operations (FLOPs (note that s is lowercase)) (this means the amount of floating point operations), - Computational complexity of pre- and post-processing, -Model complexity (number of parameters/data size (e.g.
- KPIs are merely examples and other KPIs may be added to the list (e.g. KPIs related to model training, use case specific KPIs that are considered for a given use case, etc.).
- the percentiles of positioning error may be 50%, 67%, 80%, and 90%.
- the horizontal accuracy may indicate the difference between the calculated horizontal position of the UE and the actual horizontal position of the UE, for example, the horizontal accuracy may be less than 0.2 meters for 90% of the UEs.
- the vertical accuracy may indicate the difference between the calculated UE vertical position and the actual UE vertical position, for example, the vertical accuracy may be less than 1 meter for 90% of the UEs.
- the latency may be, for example, the end-to-end latency for the UE location estimation.
- the latency may be less than 100 ms (more preferably in the order of 10 ms).
- the latency may include processing delays of the various nodes involved (UE, gNB, AMF, LMF, etc.) and signalling delays between the nodes.
- Other latencies may include the physical layer latency for the UE location estimation.
- the latency may be, for example, less than 10 ms.
- Positioning Classification Positioning using AI models may be categorized as follows: (1) UE-based positioning; (2) AI/ML assisted positioning, (3) NG-RAN (Next Generation-Radio Access Network) Node Assisted Positioning.
- (1) UE-based positioning can be further classified as follows: (1-1) Direct AI/ML positioning in UE side model, (1-2) AI/ML assisted positioning in UE side model and non-AI based positioning in UE side algorithm.
- AI/ML assisted positioning can be further classified as follows: (2-1) AI/ML assisted positioning in the UE side model and non-AI based positioning in the LMF side algorithm; (2-2) Direct AI/ML positioning in LMF side model.
- (3) NG-RAN node assisted positioning can be further classified as follows: (3-1) AI/ML assisted positioning in the gNB side model and non-AI based positioning in the LMF side algorithm; (3-2) Direct AI/ML positioning in LMF side model.
- model monitoring for direct AI/ML positioning with UE-side models may be performed by at least one of the following: ⁇ 1> Performance metrics calculation in the UE; ⁇ 2> Performance metrics calculation in LMF.
- model monitoring for AI/ML assisted positioning with UE-side models may be performed by at least one of the following: ⁇ 3> Performance metrics calculation in the UE; ⁇ 4> Performance metrics calculation in LMF.
- model monitoring for AI/ML assisted positioning with UE side models may be done by: ⁇ 5> Performance metrics calculation in LMF.
- model monitoring for AI/ML assisted positioning by a gNB side model may be performed by at least one of the following: ⁇ 6> Performance metrics calculation in gNB, ⁇ 7> Performance metrics calculation in LMF.
- Step 1 The UE obtains a noisy ground truth UE position.
- Step 1' The UE obtains an estimated UE position from model inference.
- Step 2 The UE calculates the performance metrics of the model monitoring.
- Step 3 The UE reports performance metrics of the model monitoring.
- Step 3' The UE requests model activation/deactivation/switching to the LMF.
- Step 4 The UE receives model activation/deactivation/switching indication from the LMF.
- Step 5 The UE performs model activation/deactivation/switching.
- the performance metrics calculation (model monitoring) described above in ⁇ 2> may be performed according to the following steps.
- Step 1 The UE obtains and reports the UE position from model inference.
- Step 1' The LMF obtains a noisy ground truth UE position (the true value for the UE location).
- Step 2 The LMF computes the performance metrics of the model monitoring.
- Step 3 The UE receives model activation/deactivation/switching indication from the LMF.
- Step 1 The UE acquires noisy ground truth data (the true value for some data (e.g. UE position)).
- Step 1' The UE obtains estimation data from model inference.
- Step 2 The UE calculates the performance metrics of the model monitoring.
- Step 3 The UE reports performance metrics of the model monitoring.
- Step 3' The UE requests model activation/deactivation/switching to the LMF.
- Step 4 The UE receives model activation/deactivation/switching indication from the LMF.
- Step 5 The UE performs model activation/deactivation/switching.
- the performance metrics calculation (model monitoring) of ⁇ 4> and ⁇ 5> described above may be performed according to the following steps.
- Step 1 The UE obtains and reports estimation data from model inference.
- Step 2 The LMF obtains ground truth data (the true value for a certain data (e.g. UE position)).
- Step 3 The LMF computes the performance metrics of the model monitoring.
- Step 4 The UE receives model activation/deactivation/switching indication from the LMF.
- Step 5 The UE performs model activation/deactivation/switching.
- Step 1 The gNB obtains and reports estimated data from model inference.
- Step 1' The gNB obtains ground truth data (the true value for certain data (e.g., UE position)).
- Step 2 The gNB calculates performance metrics for the model monitoring.
- Step 3 The gNB reports performance metrics of the model monitoring.
- Step 3' The gNB requests model activation/deactivation/switching from the LMF.
- Step 4 The gNB receives a model activation/deactivation/switching instruction from the LMF.
- Step 5 The gNB performs model activation/deactivation/switching.
- the performance metrics calculation (model monitoring) of ⁇ 7> above may be performed according to the following steps.
- Step 1 The gNB obtains and reports estimated data from model inference.
- Step 2 The LMF obtains ground truth data (the true value for a certain data (e.g. UE position)).
- Step 3 The LMF computes the performance metrics of the model monitoring.
- Step 4 The gNB receives a model activation/deactivation/switching instruction from the LMF.
- Step 5 The gNB performs model activation/deactivation/switching.
- AI model #1 the output (ToA, RSTD, RSRP, Rx-Tx time difference, etc., which may be intermediate values of positioning) of one AI model (AI model #1) can be applied as input to another AI model (AI model #2)
- the performance of AI model #2 may be affected by the accuracy of the output of AI model #1. If AI model #2 does not converge/cannot be trained well, or the test performance does not meet the requirements, how to handle the joint training model may be an issue.
- the angle at which a signal arrives at a UE, the AoA at the UE, and the AoA at the base station may be read as interchangeable.
- the angle at which a signal is emitted at a UE, the AoD at the UE, and the AoD at the base station may be read as interchangeable.
- the AoA and the AoD may be read as interchangeable.
- the UE and the base station may be read as interchangeable.
- a terminal (user terminal, User Equipment (UE))/base station (BS) trains an ML model in a training mode and implements the ML model in an inference mode (also called an inference mode, etc.).
- an inference mode also called an inference mode, etc.
- the accuracy of the trained ML model in the training mode may be verified.
- an object may be, for example, an apparatus or device such as a terminal or base station. Also, in this disclosure, an object may correspond to a program/model/entity that operates in the apparatus.
- A/B and “at least one of A and B” may be interpreted as interchangeable. Also, in this disclosure, “A/B/C” may mean “at least one of A, B, and C.”
- Radio Resource Control RRC
- RRC parameters RRC parameters
- RRC messages higher layer parameters, fields, information elements (IEs), settings, etc.
- IEs information elements
- CE Medium Access Control
- update commands activation/deactivation commands, etc.
- the higher layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, positioning protocol (e.g., NR Positioning Protocol A (NRPPa)/LTE Positioning Protocol (LPP)) messages, or any combination thereof.
- RRC Radio Resource Control
- MAC Medium Access Control
- LPP LTE Positioning Protocol
- the MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), etc.
- the broadcast information may be, for example, a Master Information Block (MIB), a System Information Block (SIB), Remaining Minimum System Information (RMSI), Other System Information (OSI), etc.
- MIB Master Information Block
- SIB System Information Block
- RMSI Remaining Minimum System Information
- OSI System Information
- the physical layer signaling may be, for example, Downlink Control Information (DCI), Uplink Control Information (UCI), etc.
- DCI Downlink Control Information
- UCI Uplink Control Information
- index identifier
- indicator indicator
- resource ID etc.
- sequence list, set, group, cluster, subset, etc.
- TRP
- CSI-RS Non-Zero Power (NZP) CSI-RS, Zero Power (ZP) CSI-RS, and CSI Interference Measurement (CSI-IM) may be interchangeable.
- CSI-RS may include other reference signals.
- the measured/reported RS may refer to the RS measured/reported for CSI reporting.
- timing, time, duration, slot, subslot, symbol, subframe, etc. may be interpreted as interchangeable.
- direction, axis, dimension, domain, polarization, polarization component, etc. may be interpreted as interchangeable.
- estimation, prediction, and inference may be interpreted as interchangeable. Also, in this disclosure, estimate, predict, and infer may be interpreted as interchangeable.
- the autoencoder, encoder, decoder, etc. may be interpreted as at least one of a model, an ML model, a neural network model, an AI model, an AI algorithm, etc.
- the autoencoder may be interpreted as any autoencoder, such as a stacked autoencoder or a convolutional autoencoder.
- the encoder/decoder of the present disclosure may employ models such as Residual Network (ResNet), DenseNet, and RefineNet.
- bits, bit strings, bit series, series, values, information, values obtained from bits, information obtained from bits, etc. may be interpreted as interchangeable.
- a layer for an encoder
- a layer may be interchangeably read as a layer (input layer, intermediate layer, etc.) used in an AI model.
- a layer in the present disclosure may correspond to at least one of an input layer, intermediate layer, output layer, batch normalization layer, convolution layer, activation layer, dense layer, normalization layer, pooling layer, attention layer, dropout layer, fully connected layer, etc.
- RSRP may be interchangeably read as any parameter related to reception power/reception quality, etc. (e.g., RSRQ, SINR, CSI, etc.).
- positioning may be interchangeably read as position determination, position estimation, position prediction, etc.
- KPI Key Performance Indicator
- performance metrics may be interchangeably read as KPI (Key Performance Indicator)
- performance metrics calculation may be interchangeably read as KPI (Key Performance Indicator)
- KPI Key Performance Indicator
- the first embodiment relates to performance metrics for model monitoring.
- Performance metrics for model monitoring can include at least one of the following: ⁇ Performance Latency, ⁇ Complexity.
- Performance may include at least one of the following: - Horizontal accuracy of AI/ML based positioning (meters); Vertical accuracy of AI/ML based positioning (meters); - Accuracy of intermediate features for AI/ML-based positioning.
- Horizontal accuracy may indicate the difference between the calculated UE horizontal position and the actual UE horizontal position. For example, horizontal accuracy may be less than 0.2 m for 90% of the UEs.
- Vertical accuracy may indicate the difference between the calculated UE vertical position and the actual UE vertical position. For example, vertical accuracy may be less than 1 m for 90% of the UEs.
- the intermediate feature accuracy may indicate the difference between the inferred intermediate value and the intermediate value derived based on the actual UE location.
- the intermediate feature accuracy may be indicated by at least one of the following, for example: accuracy of LOS/NLOS indicator (error rate %), ToA (milliseconds), AoA (degrees), RSTD (milliseconds), RSRP (dBm), etc.
- Latency may include at least one of the following: - Physical layer latency (ms), - End-to-end latency (ms).
- the latency in the positioning procedure may be defined, for example, according to the diagram shown in FIG. 7.
- FIG. 7 is a diagram showing an example of the start time/end time of the latency of the physical layer according to the first embodiment. As shown in FIG. 7, the latency of the physical layer may be defined individually depending on the positioning method.
- the start time may be the timing when the UE transmits a PUSCH including an MG request (Alt1), the timing when the gNB transmits an LPP message including assistance data using the PDSCH (Alt2), or the timing when the UE starts receiving DL PRS (Alt3).
- the end time in this case may be the timing when the gNB successfully decodes a PUSCH including an LPP Provide Location Information message, or when the UE performs a location estimation calculation if not successful.
- the start time may be the timing when the gNB transmits a PDSCH including an LPP Request Location Information message.
- the end time in this case may be the timing when the gNB successfully decodes a PUSCH including an LPP Provide Location Information message.
- the start time may be the timing when the gNB receives the NRPPa measurement request message.
- the end time may be the timing when the gNB transmits the NRPPa measurement response message.
- the latency of the AI model is not limited to the example in FIG. 7.
- the start time may be the timing when the UE/NW receives the input of the model inference
- the end time may be the timing when the NW/UE receives the output of the AI model.
- the end-to-end latency may be the latency for UE location estimation.
- the latency may include higher layer latency as another latency.
- the latency may include processing delays of the various nodes involved (UE, gNB, AMF, LMF, etc.) and signaling delays between the nodes.
- the definition of each of the above latencies may follow the definition in Rel. 17.
- Complexity may be defined as the computational complexity of model inference (floating point operations (FLOPs)).
- the complexity of an AI model may also be defined, for example, by the data size (Mbytes) of the model and the number of parameters associated with the AI model.
- Embodiment 1.1 relates to a method for indicating (notifying) performance metrics.
- Performance metrics may be indicated to the UE/gNB that deploys the AI model.
- the NW may notify performance metrics via signaling such as LPP/MAC CE/DCI/RRC/NRPPa.
- the UE/NW may report performance metrics based on predefined rules.
- the entire LCM in AI-based positioning may include signal exchange via LPP between the UE and the LMF, and signal exchange via NRPPa between the gNB and the LMF.
- Embodiment 1.2 relates to the accuracy of performance metrics, etc.
- ⁇ Option 1.2.1.1> The geodesic distance difference between the one-shot inferenced value related to the horizontal/vertical position and the actual horizontal/vertical position at the UE/PRU.
- ⁇ Option 1.2.1.2> The average value of the difference in geodesic distance between the inferred values related to the horizontal/vertical position and the actual horizontal/vertical position of the UE/PRU within a certain time duration.
- the certain duration may be determined based on at least one of the following rules: - by predefined rules,
- the NW instructing the UE / gNB via signaling such as LPP / MAC CE / DCI / RRC / NRPPa, Depends on the implementation of the NW/UE (for example, continuing monitoring for a certain time unit).
- the UE may report its actual horizontal/vertical position to the NW via signaling such as LPP/MAC CE/DCI/RRC/NRPPa.
- the actual horizontal/vertical position of the PRU is recognized by the NW, and the NW/PRU can indicate the horizontal/vertical position to the UE/gNB via signaling such as LPP/MAC CE/DCI/RRC/NRPPa.
- the UE preferably has Global Navigation Satellite System (GNSS) capability.
- GNSS Global Navigation Satellite System
- the UE/PRU mentioned above may be defined as a monitoring device that is always involved in the inference/monitoring of the AI model and can always provide actual location information.
- the time difference (in milliseconds) of the inference information compared to the ground truth data may be a one-shot or an average value over a period of time (certain time duration as mentioned above).
- the ground truth data may be obtained from the actual location of the UE. This allows the actual location of the UE to be reused. This option may be applied when the intermediate value is ToA, RSTD, Rx-Tx time difference, etc.
- the ground truth data may be the true value of the value to be estimated or predicted, a value close to the true value, or a highly reliable predicted value.
- the data treated as ground truth data is expected to have an error from the true value, it may be called noisy ground truth data.
- the intermediate value described above is not limited to an actual measurement value and may be a likelihood (such as a probability distribution of ToA/AoA/RSRP).
- the output of the AI model may be a probability distribution of ToA where X% satisfies N milliseconds. In this case, it can be defined that X% satisfies N milliseconds as an output requirement.
- the performance metric is defined by probability, no operation may be required if X ⁇ X0.
- the performance metric is defined by a probability difference, no operation may be required if X0 ⁇ X ⁇ threshold.
- the reliability of these estimated accuracy may also be calculated/estimated.
- the UE may have GNSS capabilities and the ability to derive intermediate values based on the position available from the GNSS.
- Embodiment 1.3 relates to the performance metric Performance.
- the ability to apply a performance metric may be expressed in terms of at least one of the following: Performance of a single measured value (which may be an output value at a certain point in time (one-shot) or an average value over a certain period of time) applicable to model monitoring on the UE/NW side; Cumulative Distribution Function (CDF) percentage performance corresponding to multiple values applicable to the model monitoring at the UE/NW side.
- Performance of a single measured value which may be an output value at a certain point in time (one-shot) or an average value over a certain period of time
- CDF Cumulative Distribution Function
- the above mentioned value may be at least one of the following: - Output values of multiple AI models (corresponding to the same or different UEs) at a certain point in time (one-shot), or the average value of the output value of one AI model within a time period associated with multiple AI models; - Multiple values corresponding to the output of an AI model at a given time.
- the value may also be X% of the value monitored over a period of time, where the period of time and X may be determined based on at least one of the following: - by predefined rules,
- the NW instructing the UE / gNB via signaling such as LPP / MAC CE / DCI / RRC / NRPPa, Depends on the implementation of the NW/UE (for example, continuing monitoring for a certain time unit).
- the performance metric requirements may be predefined or may be set by the network. For example, the positioning requirements of Rel. 17 may be reused and various requirements may be determined based on the results of AI-based positioning. In this disclosure, the performance metric requirements may be interpreted as requirements regarding the applicability of performance metrics, model monitoring requirements, etc.
- performance metrics can be appropriately defined/indicated.
- the second embodiment relates to the application of model monitoring/performance metrics.
- monitoring information and output information of an AI model may be interchangeable.
- Embodiment 2.1 relates to the application of performance metrics on the UE side.
- the UE may determine whether the performance metrics requirements are met.
- the UE may report at least one of the following monitoring information to the NW via signaling such as LPP/MAC CE/DCI/RRC/NRPPa: - The accuracy of the output information of the monitored AI model, The difference between the inferred and actual horizontal/vertical positions, Difference between the inferred outputs (ToA, AoA, RSTD, RSRP, etc.) and those obtained from the actual location (ToA, AoA, RSTD, RSRP, etc.); -Latency difference, - Complexity of AI models and latency, required complexity) A binary indicator of whether a performance metric requirement is met; - Calculated estimated accuracy (horizontal accuracy/vertical accuracy/intermediate feature accuracy), - Information regarding the reliability (value) of the estimation accuracy.
- signaling such as LPP/MAC CE/DCI/RRC/NRPPa
- the above-mentioned monitoring information may be reported based on at least one of the following options: ⁇ Option 1> - When some of a set of conditions are met (for example, performance metrics do not meet certain requirements), ⁇ Option 2> ⁇ After monitoring, always report (report unconditionally), ⁇ Option 3> Report based on configuration/NW instructions (e.g., periodic, semi-permanent, non-periodic).
- Embodiment 2.2 relates to the application of performance metrics on the gNB side.
- the gNB may determine whether the performance metrics requirements are met.
- the UE/LMF may report at least one of the following AI model output information to the gNB/LMF via signaling such as LPP/MAC CE/DCI/RRC/NRPPa.
- the UE may report to the gNB via the LMF: Inferred UE coordinates, Inferred ToA, Inferred LOS/NLOS indicators; Inferred AoA, RSTD, RSRP, - The complexity of AI models, ⁇ Latency.
- the gNB may instruct the UE/LMF of at least one of the above-mentioned monitoring information (UE-side information) via signaling such as LPP/MAC CE/DCI/RRC/NRPPa.
- Embodiment 2.3 relates to the application of performance metrics on the LMF side.
- the LMF may determine whether the performance metrics requirements are met.
- the UE/gNB may report at least one of the following AI model output information to the NW via signaling such as LPP/MAC CE/DCI/RRC/NRPPa: Inferred UE coordinates, Inferred ToA, Inferred LOS/NLOS indicators; Inferred AoA, RSTD, RSRP, - The complexity of AI models, ⁇ Latency.
- the LMF may instruct the UE/gNB of at least one of the above-mentioned monitoring information (UE-side information) via signaling such as LPP/MAC CE/DCI/RRC/NRPPa.
- model monitoring and model inference are performed by the same entity (UE/gNB/LMF).
- model monitoring can be performed appropriately.
- the third embodiment relates to actions after model monitoring.
- the UE may take at least one of the following options after model monitoring: ⁇ Option 1> The UE may perform model switching/update (fine-tuning, re-training)/fallback. If the UE performs these operations, it may report the operations to the gNB/LMF. ⁇ Option 2> The UE may send a request regarding upcoming operations to the gNB/LMF.
- the gNB may take at least one of the following options after model monitoring: ⁇ Option 1> The gNB can perform model switching/update (fine-tuning, re-training)/fallback. ⁇ Option 2> -The gNB may instruct the UE / LMF of expected operations.
- Embodiment 3.1 a method for a UE to determine whether to perform an operation (a specific operation) as described in embodiment 3.0 will be described. In embodiments 3.1.1 to 3.1.3, variations of the method for determining the operation will be described.
- the UE may determine whether or not to perform a specific operation after monitoring based on information from the NW.
- the NW may indicate the above-mentioned monitoring information to the UE via signaling such as LPP/MAC CE/DCI/RRC/NRPPa.
- the monitoring information may include a monitoring information threshold for performing a certain specific operation. That is, the UE may determine a specific operation based on these monitoring information.
- the UE may report to the NW that it will perform/has performed the specific operation via signaling such as LPP/MAC CE/DCI/RRC/NRPPa.
- the UE may know whether or how to perform a specific action after monitoring and may send a request to the gNB/NW.
- the NW may indicate the monitoring information to the UE, similar to [Embodiment 3.1.1].
- the UE may send a request to the NW via signaling such as LPP/MAC CE/DCI/RRC/NRPPa, including the following information: A one-bit indicator to request model switch/update/fallback action; For AI models with outputs such as direct AI positioning and AI assisted positioning, the required functionality of the AI model to be switched; - The monitored AI model ID that cannot meet the performance metrics requirements; - AI model ID requesting switching, - Unqualified parameters in the AI model that need to be updated; - Datasets used to train/update (fine-tune) AI models; Timing information (e.g. timestamps) for applying a fallback scheme (a fallback scheme may be a configured positioning method); Desired/required PRS configuration, desired/required model inputs (e.g., number of PRS ports, multipath information).
- signaling such as LPP/MAC CE/DCI/RRC/NRPPa, including the following information: A one-bit indicator to request model switch/update/fallback action; For AI models
- the UE may determine the post-monitoring action after receiving an instruction from the NW.
- the UE may send a report to the NW via signaling such as LPP/MAC CE/DCI/RRC/NRPPa, including the following information: Among the monitored AI models, the monitored AI model ID that needs to be updated; ⁇ Switchable AI model ID, - Unqualified parameters in the AI model that need to be updated; - Datasets used to train/update (fine-tune) AI models; Timing information (e.g. timestamps) for applying a fallback scheme (a fallback scheme may be a configured positioning method); Input information for the updated AI model (number of PRS ports, multipath information, etc.), Desired/required PRS configuration, desired/required model inputs (e.g., number of PRS ports, multipath information).
- signaling such as LPP/MAC CE/DCI/RRC/NRPPa, including the following information: Among the monitored AI models, the monitored AI model ID that needs to be updated; ⁇ Switchable AI model ID, - Unqualified parameters in the AI model
- Embodiment 3.2 In embodiment 3.2, how the NW (gNB / LMF) determines the execution of the operation (specific operation) shown in the above-mentioned embodiment 3.0 will be described. In embodiments 3.2.1 to 3.2.3, variations of the method of determining the operation will be described.
- the NW may determine whether or not to execute a specific operation after monitoring.
- the UE/gNB may report the above-mentioned monitoring information to the NW via signaling such as LPP/MAC CE/DCI/RRC/NRPPa.
- the NW may recognize and instruct the UE whether to perform a specific operation after monitoring.
- the UE/gNB may report monitoring information to the NW in the same manner as in [Embodiment 3.2.1].
- the NW may send an indication including the following information to the UE/gNB via signaling such as LPP/MAC CE/DCI/RRC/NRPPa: A one-bit indicator to request model switch/update/fallback action; For AI models with outputs such as direct AI positioning and AI assisted positioning, the required functionality of the AI model to be switched; - The monitored AI model ID that cannot meet the performance metrics requirements; AI model ID for which the NW instructs/requests switching, - Unqualified parameters in the AI model that need to be updated; - Datasets used to train/update (fine-tune) AI models; Timing information (e.g. timestamps) for applying a fallback scheme (a fallback scheme can be a configured positioning scheme or a jointly-instructed specific positioning scheme); Updated PRS settings, model inputs updated (e.g. number of PRS ports, multipath information).
- signaling such as LPP/MAC CE/DCI/RRC/NRPPa: A one-bit indicator to request model switch/update/fallback
- the NW may determine the post-monitoring action after receiving a request from the UE.
- the NW may send an indication to the UE via signaling such as LPP/MAC CE/DCI/RRC/NRPPa, including the following information: The monitored AI model ID that needs to be updated; ⁇ Switchable AI model ID, - Unqualified parameters in the AI model that need to be updated; - Datasets used to train/update (fine-tune) AI models; Timing information (e.g. timestamps) for applying a fallback scheme (a fallback scheme can be a configured positioning scheme or a jointly-instructed specific positioning scheme); The number of newly configured PRS ports, - Input information for the updated AI model (number of PRS ports, multipath information, etc.).
- signaling such as LPP/MAC CE/DCI/RRC/NRPPa, including the following information: The monitored AI model ID that needs to be updated; ⁇ Switchable AI model ID, - Unqualified parameters in the AI model that need to be updated; - Datasets used to train/update (fine-tune) AI models;
- the operation after model monitoring can be appropriately controlled.
- the fourth embodiment relates to UE behavior when a one-sided model/two-sided model is deployed.
- specific requirements may be read as the performance metric requirements, model monitoring requirements, etc., described above.
- the behavior of the monitoring/responding UE may follow at least one of the following options 4-1 to 4-3.
- the AI models may be considered as coherent AI models/paired AI models.
- corresponding UE operation may mean the switching/update/fallback operation of the AI model described in the third embodiment, requests from the UE regarding upcoming operations, etc.
- the UE may report/indicate monitoring information of the AI model(s) and update the corresponding AI model(s).
- the UE may abort the monitoring procedure, and in this case, the UE may report/indicate the monitoring information of the AI model and update all coherent AI models/paired AI models.
- the UE may interrupt the monitoring procedure of the AI model that does not meet the particular requirement and report/indicate monitoring information of the other model that meets the particular requirement, as long as the particular requirement is met in another AI model that outputs an intermediate value.
- UE operations corresponding to all coherent AI models/paired AI models may be performed.
- the UE may not need to report/indicate the monitoring information of the AI model, in which case, the corresponding UE operation may also be unnecessary.
- the UE does not need to report/indicate monitoring information of the AI model that does not meet the certain requirements, and does not need to update that AI model.
- This embodiment and the above-mentioned first to third embodiments may be applied in combination. Furthermore, when multiple coherent AI models are deployed on the same/different sides, this embodiment can also be followed for operations other than those described above. For example, it can also be applied to joint training of AI models. In this case, the test information can also adopt the monitoring information discussed in the second embodiment.
- the fourth embodiment it is possible to appropriately control UE operation when a one-sided model/two-sided model is deployed.
- any information may be notified to the UE (from a network (NW) (e.g., a base station (BS))) (in other words, the UE receives any information from the BS) using physical layer signaling (e.g., DCI), higher layer signaling (e.g., RRC signaling, MAC CE, LPP), a specific signal/channel (e.g., PDCCH, PDSCH, reference signal), or a combination thereof.
- NW network
- BS base station
- the MAC CE may be identified by including a new Logical Channel ID (LCID) in the MAC subheader that is not specified in existing standards.
- LCID Logical Channel ID
- the notification When the notification is made by a DCI, the notification may be made by a specific field of the DCI, a Radio Network Temporary Identifier (RNTI) used to scramble Cyclic Redundancy Check (CRC) bits assigned to the DCI, the format of the DCI, etc.
- RNTI Radio Network Temporary Identifier
- CRC Cyclic Redundancy Check
- notification of any information to the UE in the above-mentioned embodiments may be performed periodically, semi-persistently, or aperiodically.
- notification of any information from the UE (to the NW) may be performed using physical layer signaling (e.g., UCI), higher layer signaling (e.g., RRC signaling, MAC CE, LPP), a specific signal/channel (e.g., PUCCH, PUSCH, PRACH, reference signal), or a combination thereof.
- physical layer signaling e.g., UCI
- higher layer signaling e.g., RRC signaling, MAC CE, LPP
- a specific signal/channel e.g., PUCCH, PUSCH, PRACH, reference signal
- the MAC CE may be identified by including a new LCID in the MAC subheader that is not specified in existing standards.
- the notification may be transmitted using PUCCH or PUSCH.
- notification of any information from the UE may be performed periodically, semi-persistently, or aperiodically.
- At least one of the above-mentioned embodiments may be applied when a specific condition is satisfied, which may be specified in a standard or may be notified to a UE/BS using higher layer signaling/physical layer signaling.
- At least one of the above-described embodiments may be applied only to UEs that have reported or support a particular UE capability.
- the specific UE capabilities may indicate at least one of the following: Supporting specific processing/operations/control/information for at least one of the above embodiments; ⁇ Support model monitoring (performance monitoring), Support for updating/switching/fallback of AI models; -Support joint training.
- the above-mentioned specific UE capabilities may be capabilities that are applied across all frequencies (commonly regardless of frequency), capabilities per frequency (e.g., one or a combination of a cell, band, band combination, BWP, component carrier, etc.), capabilities per frequency range (e.g., Frequency Range 1 (FR1), FR2, FR3, FR4, FR5, FR2-1, FR2-2), capabilities per subcarrier spacing (SubCarrier Spacing (SCS)), or capabilities per Feature Set (FS) or Feature Set Per Component-carrier (FSPC).
- FR1 Frequency Range 1
- FR2 FR2, FR3, FR4, FR5, FR2-1, FR2-2
- SCS subcarrier Spacing
- FS Feature Set
- FSPC Feature Set Per Component-carrier
- the specific UE capabilities may be capabilities that are applied across all duplexing methods (commonly regardless of the duplexing method), or may be capabilities for each duplexing method (e.g., Time Division Duplex (TDD) and Frequency Division Duplex (FDD)).
- TDD Time Division Duplex
- FDD Frequency Division Duplex
- the above-mentioned embodiments may be applied when the UE configures/activates/triggers specific information related to the above-mentioned embodiments (or performs the operations of the above-mentioned embodiments) by higher layer signaling/physical layer signaling.
- the specific information may be information indicating enabling model monitoring, performance metrics, any RRC parameters for a particular release (e.g., Rel. 18/19), etc.
- the UE may, for example, apply Rel. 15/16 operations.
- Appendix A The following inventions are added to the embodiments (first and second embodiments) of the present disclosure.
- Appendix 1 A receiving unit for receiving a performance indicator for performance monitoring regarding artificial intelligence (AI)-based positioning; A control unit that controls the performance monitoring.
- Appendix 2 A receiving unit for receiving a performance indicator for performance monitoring regarding artificial intelligence (AI)-based positioning; A control unit that controls the performance monitoring.
- Appendix 2 2.
- Appendix 3 3.
- the terminal according to claim 1 or 2 comprising a transmitter configured to report monitoring information including information regarding requirements for the performance index.
- Appendix 4 4.
- Appendix B The following invention will be noted with respect to one embodiment (third and fourth embodiments) of the present disclosure.
- Appendix 1 A receiving unit for receiving a performance indicator for performance monitoring regarding artificial intelligence (AI)-based positioning; A control unit that controls the performance monitoring, The control unit is a terminal that determines whether or not a specific operation is to be executed after the performance monitoring.
- Appendix 2 The receiving unit receives monitoring information including information regarding requirements for the performance index; The terminal according to claim 1, wherein the control unit determines the specific operation based on the monitoring information.
- Appendix 3 The terminal of claim 1 or 2, wherein the specific operation is at least one of switching, updating, and falling back of an AI model.
- Appendix 4 The terminal of any one of Supplementary Note 1 to Supplementary Note 3, wherein the control unit controls the performance monitoring when one or more AI models are deployed based on specific requirements regarding the performance indicators.
- Wired communication system A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
- communication is performed using any one of the wireless communication methods according to the above embodiments of the present disclosure or a combination of these.
- FIG. 8 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
- the wireless communication system 1 (which may simply be referred to as system 1) may be a system that realizes communication using Long Term Evolution (LTE) specified by the Third Generation Partnership Project (3GPP), 5th generation mobile communication system New Radio (5G NR), or the like.
- LTE Long Term Evolution
- 3GPP Third Generation Partnership Project
- 5G NR 5th generation mobile communication system New Radio
- the wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
- MR-DC may include dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E-UTRA Dual Connectivity (NE-DC)), etc.
- RATs Radio Access Technologies
- MR-DC may include dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E-UTRA Dual Connectivity (NE-DC)), etc.
- E-UTRA Evolved Universal Terrestrial Radio Access
- EN-DC E-UTRA-NR Dual Connectivity
- NE-DC NR-E-UTRA Dual Connectivity
- the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN).
- the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
- the wireless communication system 1 may support dual connectivity between multiple base stations within the same RAT (e.g., dual connectivity in which both the MN and SN are NR base stations (gNBs) (NR-NR Dual Connectivity (NN-DC))).
- dual connectivity in which both the MN and SN are NR base stations (gNBs) (NR-NR Dual Connectivity (NN-DC))).
- gNBs NR base stations
- N-DC Dual Connectivity
- the wireless communication system 1 may include a base station 11 that forms a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) that are arranged within the macrocell C1 and form a small cell C2 that is narrower than the macrocell C1.
- a user terminal 20 may be located within at least one of the cells. The arrangement and number of each cell and user terminal 20 are not limited to the embodiment shown in the figure. Hereinafter, when there is no need to distinguish between the base stations 11 and 12, they will be collectively referred to as base station 10.
- the user terminal 20 may be connected to at least one of the multiple base stations 10.
- the user terminal 20 may utilize at least one of carrier aggregation (CA) using multiple component carriers (CC) and dual connectivity (DC).
- CA carrier aggregation
- CC component carriers
- DC dual connectivity
- Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
- Macro cell C1 may be included in FR1
- small cell C2 may be included in FR2.
- FR1 may be a frequency band below 6 GHz (sub-6 GHz)
- FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
- the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
- TDD Time Division Duplex
- FDD Frequency Division Duplex
- the multiple base stations 10 may be connected by wire (e.g., optical fiber conforming to the Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (e.g., NR communication).
- wire e.g., optical fiber conforming to the Common Public Radio Interface (CPRI), X2 interface, etc.
- NR communication e.g., NR communication
- base station 11 which corresponds to the upper station
- IAB Integrated Access Backhaul
- base station 12 which corresponds to a relay station
- the base station 10 may be connected to the core network 30 directly or via another base station 10.
- the core network 30 may include at least one of, for example, an Evolved Packet Core (EPC), a 5G Core Network (5GCN), a Next Generation Core (NGC), etc.
- EPC Evolved Packet Core
- 5GCN 5G Core Network
- NGC Next Generation Core
- the core network 30 may include network functions (Network Functions (NF)) such as, for example, a User Plane Function (UPF), an Access and Mobility management Function (AMF), a Session Management Function (SMF), a Unified Data Management (UDM), an Application Function (AF), a Data Network (DN), a Location Management Function (LMF), and Operation, Administration and Maintenance (Management) (OAM).
- NF Network Functions
- UPF User Plane Function
- AMF Access and Mobility management Function
- SMF Session Management Function
- UDM Unified Data Management
- AF Application Function
- DN Data Network
- LMF Location Management Function
- OAM Operation, Administration and Maintenance
- the user terminal 20 may be a terminal that supports at least one of the communication methods such as LTE, LTE-A, and 5G.
- a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
- OFDM Orthogonal Frequency Division Multiplexing
- CP-OFDM Cyclic Prefix OFDM
- DFT-s-OFDM Discrete Fourier Transform Spread OFDM
- OFDMA Orthogonal Frequency Division Multiple Access
- SC-FDMA Single Carrier Frequency Division Multiple Access
- the radio access method may also be called a waveform.
- other radio access methods e.g., other single-carrier transmission methods, other multi-carrier transmission methods
- a downlink shared channel (Physical Downlink Shared Channel (PDSCH)) shared by each user terminal 20, a broadcast channel (Physical Broadcast Channel (PBCH)), a downlink control channel (Physical Downlink Control Channel (PDCCH)), etc. may be used as the downlink channel.
- PDSCH Physical Downlink Shared Channel
- PBCH Physical Broadcast Channel
- PDCCH Physical Downlink Control Channel
- an uplink shared channel (Physical Uplink Shared Channel (PUSCH)) shared by each user terminal 20, an uplink control channel (Physical Uplink Control Channel (PUCCH)), a random access channel (Physical Random Access Channel (PRACH)), etc. may be used as an uplink channel.
- PUSCH Physical Uplink Shared Channel
- PUCCH Physical Uplink Control Channel
- PRACH Physical Random Access Channel
- SIB System Information Block
- PDSCH User data, upper layer control information, System Information Block (SIB), etc.
- SIB System Information Block
- PUSCH User data, upper layer control information, etc.
- MIB Master Information Block
- PBCH Physical Broadcast Channel
- Lower layer control information may be transmitted by the PDCCH.
- the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information for at least one of the PDSCH and the PUSCH.
- DCI Downlink Control Information
- the DCI for scheduling the PDSCH may be called a DL assignment or DL DCI
- the DCI for scheduling the PUSCH may be called a UL grant or UL DCI.
- the PDSCH may be interpreted as DL data
- the PUSCH may be interpreted as UL data.
- a control resource set (COntrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH.
- the CORESET corresponds to the resources to search for DCI.
- the search space corresponds to the search region and search method of PDCCH candidates.
- One CORESET may be associated with one or multiple search spaces. The UE may monitor the CORESET associated with a search space based on the search space configuration.
- a search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
- One or more search spaces may be referred to as a search space set. Note that the terms “search space,” “search space set,” “search space setting,” “search space set setting,” “CORESET,” “CORESET setting,” etc. in this disclosure may be read as interchangeable.
- the PUCCH may transmit uplink control information (UCI) including at least one of channel state information (CSI), delivery confirmation information (which may be called, for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and a scheduling request (SR).
- UCI uplink control information
- CSI channel state information
- HARQ-ACK Hybrid Automatic Repeat reQuest ACKnowledgement
- ACK/NACK ACK/NACK
- SR scheduling request
- the PRACH may transmit a random access preamble for establishing a connection with a cell.
- downlink, uplink, etc. may be expressed without adding "link.”
- various channels may be expressed without adding "Physical” to the beginning.
- a synchronization signal (SS), a downlink reference signal (DL-RS), etc. may be transmitted.
- a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DMRS), a positioning reference signal (PRS), a phase tracking reference signal (PTRS), etc. may be transmitted.
- the synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS).
- a signal block including an SS (PSS, SSS) and a PBCH (and a DMRS for PBCH) may be called an SS/PBCH block, an SS Block (SSB), etc.
- the SS, SSB, etc. may also be called a reference signal.
- a measurement reference signal Sounding Reference Signal (SRS)
- a demodulation reference signal DMRS
- UL-RS uplink reference signal
- DMRS may also be called a user equipment-specific reference signal (UE-specific Reference Signal).
- the base station 9 is a diagram showing an example of a configuration of a base station according to an embodiment.
- the base station 10 includes a control unit 110, a transceiver unit 120, a transceiver antenna 130, and a transmission line interface 140. Note that one or more of each of the control unit 110, the transceiver unit 120, the transceiver antenna 130, and the transmission line interface 140 may be provided.
- this example mainly shows the functional blocks of the characteristic parts of this embodiment, and the base station 10 may also be assumed to have other functional blocks necessary for wireless communication. Some of the processing of each part described below may be omitted.
- the control unit 110 controls the entire base station 10.
- the control unit 110 can be configured from a controller, a control circuit, etc., which are described based on a common understanding in the technical field to which this disclosure pertains.
- the control unit 110 may control signal generation, scheduling (e.g., resource allocation, mapping), etc.
- the control unit 110 may control transmission and reception using the transceiver unit 120, the transceiver antenna 130, and the transmission path interface 140, measurement, etc.
- the control unit 110 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transceiver unit 120.
- the control unit 110 may perform call processing of communication channels (setting, release, etc.), status management of the base station 10, management of radio resources, etc.
- the transceiver unit 120 may include a baseband unit 121, a radio frequency (RF) unit 122, and a measurement unit 123.
- the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
- the transceiver unit 120 may be composed of a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transceiver circuit, etc., which are described based on a common understanding in the technical field to which the present disclosure relates.
- the transceiver unit 120 may be configured as an integrated transceiver unit, or may be composed of a transmission unit and a reception unit.
- the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
- the reception unit may be composed of a reception processing unit 1212, an RF unit 122, and a measurement unit 123.
- the transmitting/receiving antenna 130 can be configured as an antenna described based on common understanding in the technical field to which this disclosure pertains, such as an array antenna.
- the transceiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
- the transceiver 120 may receive the above-mentioned uplink channel, uplink reference signal, etc.
- the transceiver 120 may form at least one of the transmit beam and the receive beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), etc.
- digital beamforming e.g., precoding
- analog beamforming e.g., phase rotation
- the transceiver 120 may perform Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (e.g., RLC retransmission control), Medium Access Control (MAC) layer processing (e.g., HARQ retransmission control), etc., on data and control information obtained from the control unit 110, and generate a bit string to be transmitted.
- PDCP Packet Data Convergence Protocol
- RLC Radio Link Control
- MAC Medium Access Control
- HARQ retransmission control HARQ retransmission control
- the transceiver 120 may perform transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, Discrete Fourier Transform (DFT) processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
- transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, Discrete Fourier Transform (DFT) processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
- channel coding which may include error correction coding
- DFT Discrete Fourier Transform
- IFFT Inverse Fast Fourier Transform
- the transceiver unit 120 may perform modulation, filtering, amplification, etc., on the baseband signal to a radio frequency band, and transmit the radio frequency band signal via the transceiver antenna 130.
- the transceiver unit 120 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transceiver antenna 130.
- the transceiver 120 may apply reception processing such as analog-to-digital conversion, Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal, and acquire user data, etc.
- reception processing such as analog-to-digital conversion, Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal, and acquire user data, etc.
- FFT Fast Fourier Transform
- IDFT Inverse Discrete Fourier Transform
- the transceiver 120 may perform measurements on the received signal.
- the measurement unit 123 may perform Radio Resource Management (RRM) measurements, Channel State Information (CSI) measurements, etc. based on the received signal.
- the measurement unit 123 may measure received power (e.g., Reference Signal Received Power (RSRP)), received quality (e.g., Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)), signal strength (e.g., Received Signal Strength Indicator (RSSI)), propagation path information (e.g., CSI), etc.
- RSRP Reference Signal Received Power
- RSSI Received Signal Strength Indicator
- the measurement results may be output to the control unit 110.
- the transmission path interface 140 may transmit and receive signals (backhaul signaling) between devices included in the core network 30 (e.g., network nodes providing NF), other base stations 10, etc., and may acquire and transmit user data (user plane data), control plane data, etc. for the user terminal 20.
- devices included in the core network 30 e.g., network nodes providing NF
- other base stations 10, etc. may acquire and transmit user data (user plane data), control plane data, etc. for the user terminal 20.
- the transmitter and receiver of the base station 10 in this disclosure may be configured with at least one of the transmitter/receiver 120, the transmitter/receiver antenna 130, and the transmission path interface 140.
- the transmission/reception unit 120 may transmit a performance indicator for performance monitoring regarding artificial intelligence (AI)-based positioning.
- the performance indicator may include information regarding at least one of the positioning accuracy, latency, and complexity.
- the transmission/reception unit 120 may transmit and receive monitoring information including information regarding the requirements of the performance indicator.
- the transmission/reception unit 120 may receive output information regarding the terminal positioning output from the AI model.
- the control unit 110 may control the performance monitoring.
- the control unit 110 may determine whether or not to execute a specific operation after the performance monitoring.
- the control unit 110 may determine the specific operation based on the monitoring information.
- the specific operation may be at least one of switching, updating, and falling back an AI model.
- the control unit 110 may control the performance monitoring when one or more AI models are deployed based on specific requirements regarding the performance indicators.
- the user terminal 10 is a diagram showing an example of the configuration of a user terminal according to an embodiment.
- the user terminal 20 includes a control unit 210, a transceiver unit 220, and a transceiver antenna 230. Note that the control unit 210, the transceiver unit 220, and the transceiver antenna 230 may each include one or more.
- this example mainly shows the functional blocks of the characteristic parts of this embodiment, and the user terminal 20 may also be assumed to have other functional blocks necessary for wireless communication. Some of the processing of each part described below may be omitted.
- the control unit 210 controls the entire user terminal 20.
- the control unit 210 can be configured from a controller, a control circuit, etc., which are described based on a common understanding in the technical field to which this disclosure pertains.
- the control unit 210 may control signal generation, mapping, etc.
- the control unit 210 may control transmission and reception using the transceiver unit 220 and the transceiver antenna 230, measurement, etc.
- the control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transceiver unit 220.
- the transceiver unit 220 may include a baseband unit 221, an RF unit 222, and a measurement unit 223.
- the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
- the transceiver unit 220 may be composed of a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transceiver circuit, etc., which are described based on a common understanding in the technical field to which the present disclosure relates.
- the transceiver unit 220 may be configured as an integrated transceiver unit, or may be composed of a transmission unit and a reception unit.
- the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
- the reception unit may be composed of a reception processing unit 2212, an RF unit 222, and a measurement unit 223.
- the transmitting/receiving antenna 230 can be configured as an antenna described based on common understanding in the technical field to which this disclosure pertains, such as an array antenna.
- the transceiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
- the transceiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, etc.
- the transceiver 220 may form at least one of the transmit beam and receive beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), etc.
- digital beamforming e.g., precoding
- analog beamforming e.g., phase rotation
- the transceiver 220 may perform PDCP layer processing, RLC layer processing (e.g., RLC retransmission control), MAC layer processing (e.g., HARQ retransmission control), etc. on the data and control information acquired from the controller 210, and generate a bit string to be transmitted.
- RLC layer processing e.g., RLC retransmission control
- MAC layer processing e.g., HARQ retransmission control
- the transceiver 220 may perform transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), IFFT processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
- transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), IFFT processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
- Whether or not to apply DFT processing may be based on the settings of transform precoding.
- the transceiver unit 220 transmission processing unit 2211
- the transceiver unit 220 may perform DFT processing as the above-mentioned transmission processing in order to transmit the channel using a DFT-s-OFDM waveform, and when transform precoding is not enabled, it is not necessary to perform DFT processing as the above-mentioned transmission processing.
- the transceiver unit 220 may perform modulation, filtering, amplification, etc., on the baseband signal to a radio frequency band, and transmit the radio frequency band signal via the transceiver antenna 230.
- the transceiver unit 220 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transceiver antenna 230.
- the transceiver 220 may apply reception processing such as analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal to acquire user data, etc.
- reception processing such as analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal to acquire user data, etc.
- the transceiver 220 may perform measurements on the received signal. For example, the measurement unit 223 may perform RRM measurements, CSI measurements, etc. based on the received signal.
- the measurement unit 223 may measure received power (e.g., RSRP), received quality (e.g., RSRQ, SINR, SNR), signal strength (e.g., RSSI), propagation path information (e.g., CSI), etc.
- the measurement results may be output to the control unit 210.
- the transmitting unit and receiving unit of the user terminal 20 in this disclosure may be configured by at least one of the transmitting/receiving unit 220 and the transmitting/receiving antenna 230.
- the transceiver 220 may receive performance indicators for performance monitoring regarding artificial intelligence (AI)-based positioning.
- the performance indicators may include information regarding at least one of the positioning accuracy, latency, and complexity.
- the transceiver 220 may report (transmit) or receive monitoring information including information regarding the requirements of the performance indicators.
- the transceiver 220 may report output information regarding the terminal positioning output from the AI model.
- the control unit 210 may control the performance monitoring.
- the control unit 210 may determine whether or not to execute a specific operation after the performance monitoring.
- the control unit 210 may determine the specific operation based on the monitoring information.
- the specific operation may be at least one of switching, updating, and falling back an AI model.
- the control unit 210 may control the performance monitoring when one or more AI models are deployed based on specific requirements regarding the performance indicators.
- each functional block may be realized using one device that is physically or logically coupled, or may be realized using two or more devices that are physically or logically separated and directly or indirectly connected (for example, using wires, wirelessly, etc.).
- the functional blocks may be realized by combining the one device or the multiple devices with software.
- the functions include, but are not limited to, judgement, determination, judgment, calculation, computation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, election, establishment, comparison, assumption, expectation, deeming, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assignment.
- a functional block (component) that performs the transmission function may be called a transmitting unit, a transmitter, and the like. In either case, as mentioned above, there are no particular limitations on the method of realization.
- a base station, a user terminal, etc. in one embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
- FIG. 11 is a diagram showing an example of the hardware configuration of a base station and a user terminal according to one embodiment.
- the above-mentioned base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc.
- the terms apparatus, circuit, device, section, unit, etc. may be interpreted as interchangeable.
- the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figures, or may be configured to exclude some of the devices.
- processor 1001 may be implemented by one or more chips.
- the functions of the base station 10 and the user terminal 20 are realized, for example, by loading specific software (programs) onto hardware such as the processor 1001 and memory 1002, causing the processor 1001 to perform calculations, control communications via the communication device 1004, and control at least one of the reading and writing of data in the memory 1002 and storage 1003.
- the processor 1001 for example, runs an operating system to control the entire computer.
- the processor 1001 may be configured as a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, etc.
- CPU central processing unit
- control unit 110 210
- transmission/reception unit 120 220
- etc. may be realized by the processor 1001.
- the processor 1001 also reads out programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
- the programs used are those that cause a computer to execute at least some of the operations described in the above embodiments.
- the control unit 110 (210) may be realized by a control program stored in the memory 1002 and running on the processor 1001, and similar implementations may be made for other functional blocks.
- Memory 1002 is a computer-readable recording medium and may be composed of at least one of, for example, Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. Memory 1002 may also be called a register, cache, main memory, etc. Memory 1002 can store executable programs (program codes), software modules, etc. for implementing a wireless communication method according to one embodiment of the present disclosure.
- ROM Read Only Memory
- EPROM Erasable Programmable ROM
- EEPROM Electrically EPROM
- RAM Random Access Memory
- Memory 1002 may also be called a register, cache, main memory, etc.
- Memory 1002 can store executable programs (program codes), software modules, etc. for implementing a wireless communication method according to one embodiment of the present disclosure.
- Storage 1003 is a computer-readable recording medium and may be composed of at least one of a flexible disk, a floppy disk, a magneto-optical disk (e.g., a compact disk (Compact Disc ROM (CD-ROM)), a digital versatile disk, a Blu-ray disk), a removable disk, a hard disk drive, a smart card, a flash memory device (e.g., a card, a stick, a key drive), a magnetic stripe, a database, a server, or other suitable storage medium.
- Storage 1003 may also be referred to as an auxiliary storage device.
- the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, etc.
- the communication device 1004 may be configured to include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc. to realize at least one of, for example, Frequency Division Duplex (FDD) and Time Division Duplex (TDD).
- FDD Frequency Division Duplex
- TDD Time Division Duplex
- the above-mentioned transmitting/receiving unit 120 (220), transmitting/receiving antenna 130 (230), etc. may be realized by the communication device 1004.
- the transmitting/receiving unit 120 (220) may be implemented as a transmitting unit 120a (220a) and a receiving unit 120b (220b) that are physically or logically separated.
- the input device 1005 is an input device (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside.
- the output device 1006 is an output device (e.g., a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
- the input device 1005 and the output device 1006 may be integrated into one structure (e.g., a touch panel).
- each device such as the processor 1001 and memory 1002 is connected by a bus 1007 for communicating information.
- the bus 1007 may be configured using a single bus, or may be configured using different buses between each device.
- the base station 10 and the user terminal 20 may be configured to include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA), and some or all of the functional blocks may be realized using the hardware.
- the processor 1001 may be implemented using at least one of these pieces of hardware.
- a channel, a symbol, and a signal may be read as mutually interchangeable.
- a signal may also be a message.
- a reference signal may be abbreviated as RS, and may be called a pilot, a pilot signal, or the like depending on the applied standard.
- a component carrier may also be called a cell, a frequency carrier, a carrier frequency, or the like.
- a radio frame may be composed of one or more periods (frames) in the time domain.
- Each of the one or more periods (frames) constituting a radio frame may be called a subframe.
- a subframe may be composed of one or more slots in the time domain.
- a subframe may have a fixed time length (e.g., 1 ms) that is independent of numerology.
- the numerology may be a communication parameter that is applied to at least one of the transmission and reception of a signal or channel.
- the numerology may indicate, for example, at least one of the following: SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, Transmission Time Interval (TTI), number of symbols per TTI, radio frame configuration, a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
- SCS SubCarrier Spacing
- TTI Transmission Time Interval
- radio frame configuration a specific filtering process performed by the transceiver in the frequency domain
- a specific windowing process performed by the transceiver in the time domain etc.
- a slot may consist of one or more symbols in the time domain (such as Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.).
- OFDM Orthogonal Frequency Division Multiplexing
- SC-FDMA Single Carrier Frequency Division Multiple Access
- a slot may also be a time unit based on numerology.
- a slot may include multiple minislots. Each minislot may consist of one or multiple symbols in the time domain. A minislot may also be called a subslot. A minislot may consist of fewer symbols than a slot.
- a PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be called PDSCH (PUSCH) mapping type A.
- a PDSCH (or PUSCH) transmitted using a minislot may be called PDSCH (PUSCH) mapping type B.
- a radio frame, a subframe, a slot, a minislot, and a symbol all represent time units when transmitting a signal.
- a different name may be used for a radio frame, a subframe, a slot, a minislot, and a symbol, respectively.
- the time units such as a frame, a subframe, a slot, a minislot, and a symbol in this disclosure may be read as interchangeable.
- one subframe may be called a TTI
- multiple consecutive subframes may be called a TTI
- one slot or one minislot may be called a TTI.
- at least one of the subframe and the TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (e.g., 1-13 symbols), or a period longer than 1 ms.
- the unit representing the TTI may be called a slot, minislot, etc., instead of a subframe.
- TTI refers to, for example, the smallest time unit for scheduling in wireless communication.
- a base station schedules each user terminal by allocating radio resources (such as frequency bandwidth and transmission power that can be used by each user terminal) in TTI units.
- radio resources such as frequency bandwidth and transmission power that can be used by each user terminal
- the TTI may be a transmission time unit for a channel-coded data packet (transport block), a code block, a code word, etc., or may be a processing unit for scheduling, link adaptation, etc.
- the time interval e.g., the number of symbols
- the time interval in which a transport block, a code block, a code word, etc. is actually mapped may be shorter than the TTI.
- one or more TTIs may be the minimum time unit of scheduling.
- the number of slots (minislots) that constitute the minimum time unit of scheduling may be controlled.
- a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
- a TTI shorter than a normal TTI may be called a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
- a long TTI (e.g., a normal TTI, a subframe, etc.) may be interpreted as a TTI having a time length of more than 1 ms
- a short TTI e.g., a shortened TTI, etc.
- TTI length shorter than the TTI length of a long TTI and equal to or greater than 1 ms.
- a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
- the number of subcarriers included in an RB may be the same regardless of numerology, and may be, for example, 12.
- the number of subcarriers included in an RB may be determined based on numerology.
- an RB may include one or more symbols in the time domain and may be one slot, one minislot, one subframe, or one TTI in length.
- One TTI, one subframe, etc. may each be composed of one or more resource blocks.
- one or more RBs may be referred to as a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, an RB pair, etc.
- PRB Physical RB
- SCG sub-carrier Group
- REG resource element group
- PRB pair an RB pair, etc.
- a resource block may be composed of one or more resource elements (REs).
- REs resource elements
- one RE may be a radio resource area of one subcarrier and one symbol.
- a Bandwidth Part which may also be referred to as a partial bandwidth, may represent a subset of contiguous common resource blocks (RBs) for a given numerology on a given carrier, where the common RBs may be identified by an index of the RB relative to a common reference point of the carrier.
- PRBs may be defined in a BWP and numbered within the BWP.
- the BWP may include a UL BWP (BWP for UL) and a DL BWP (BWP for DL).
- BWP UL BWP
- BWP for DL DL BWP
- One or more BWPs may be configured for a UE within one carrier.
- At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
- BWP bitmap
- radio frames, subframes, slots, minislots, and symbols are merely examples.
- the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of subcarriers included in an RB, as well as the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
- the information, parameters, etc. described in this disclosure may be represented using absolute values, may be represented using relative values from a predetermined value, or may be represented using other corresponding information.
- a radio resource may be indicated by a predetermined index.
- the names used for parameters and the like in this disclosure are not limiting in any respect. Furthermore, the formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure.
- the various channels (PUCCH, PDCCH, etc.) and information elements may be identified by any suitable names, and therefore the various names assigned to these various channels and information elements are not limiting in any respect.
- the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
- the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
- information, signals, etc. may be output from a higher layer to a lower layer and/or from a lower layer to a higher layer.
- Information, signals, etc. may be input/output via multiple network nodes.
- Input/output information, signals, etc. may be stored in a specific location (e.g., memory) or may be managed using a management table. Input/output information, signals, etc. may be overwritten, updated, or added to. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to another device.
- a specific location e.g., memory
- Input/output information, signals, etc. may be overwritten, updated, or added to.
- Output information, signals, etc. may be deleted.
- Input information, signals, etc. may be transmitted to another device.
- the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
- the notification of information in this disclosure may be performed by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), higher layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB)), etc.), Medium Access Control (MAC) signaling), other signals, or a combination of these.
- DCI Downlink Control Information
- UCI Uplink Control Information
- RRC Radio Resource Control
- MIB Master Information Block
- SIB System Information Block
- MAC Medium Access Control
- the physical layer signaling may be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc.
- the RRC signaling may be called an RRC message, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, etc.
- the MAC signaling may be notified, for example, using a MAC Control Element (CE).
- CE MAC Control Element
- notification of specified information is not limited to explicit notification, but may be implicit (e.g., by not notifying the specified information or by notifying other information).
- the determination may be based on a value represented by a single bit (0 or 1), a Boolean value represented by true or false, or a comparison of numerical values (e.g., with a predetermined value).
- Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
- Software, instructions, information, etc. may also be transmitted and received via a transmission medium.
- a transmission medium For example, if the software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave, etc.), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
- wired technologies such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)
- wireless technologies such as infrared, microwave, etc.
- Network may refer to the devices included in the network (e.g., base stations).
- precoding "precoder,” “weight (precoding weight),” “Quasi-Co-Location (QCL),” “Transmission Configuration Indication state (TCI state),” "spatial relation,” “spatial domain filter,” “transmit power,” “phase rotation,” “antenna port,” “antenna port group,” “layer,” “number of layers,” “rank,” “resource,” “resource set,” “resource group,” “beam,” “beam width,” “beam angle,” “antenna,” “antenna element,” and “panel” may be used interchangeably.
- Base Station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, etc.
- a base station can accommodate one or more (e.g., three) cells.
- a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also provide communication services by a base station subsystem (e.g., a small base station for indoor use (Remote Radio Head (RRH))).
- RRH Remote Radio Head
- the term "cell” or “sector” refers to a part or the entire coverage area of at least one of the base station and base station subsystems that provide communication services in this coverage.
- a base station transmitting information to a terminal may be interpreted as the base station instructing the terminal to control/operate based on the information.
- MS Mobile Station
- UE User Equipment
- a mobile station may also be referred to as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
- At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc.
- at least one of the base station and the mobile station may be a device mounted on a moving object, the moving object itself, etc.
- the moving body in question refers to an object that can move, and the moving speed is arbitrary, and of course includes the case where the moving body is stationary.
- the moving body in question includes, but is not limited to, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, handcarts, rickshaws, ships and other watercraft, airplanes, rockets, artificial satellites, drones, multicopters, quadcopters, balloons, and objects mounted on these.
- the moving body in question may also be a moving body that moves autonomously based on an operating command.
- the moving object may be a vehicle (e.g., a car, an airplane, etc.), an unmanned moving object (e.g., a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned).
- a vehicle e.g., a car, an airplane, etc.
- an unmanned moving object e.g., a drone, an autonomous vehicle, etc.
- a robot manned or unmanned
- at least one of the base station and the mobile station may also include devices that do not necessarily move during communication operations.
- at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
- IoT Internet of Things
- FIG. 12 is a diagram showing an example of a vehicle according to an embodiment.
- the vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (including a current sensor 50, a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58), an information service unit 59, and a communication module 60.
- various sensors including a current sensor 50, a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58
- an information service unit 59 including a communication module 60.
- the drive unit 41 is composed of at least one of an engine, a motor, and a hybrid of an engine and a motor, for example.
- the steering unit 42 includes at least a steering wheel (also called a handlebar), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
- the electronic control unit 49 is composed of a microprocessor 61, memory (ROM, RAM) 62, and a communication port (e.g., an Input/Output (IO) port) 63. Signals are input to the electronic control unit 49 from various sensors 50-58 provided in the vehicle.
- the electronic control unit 49 may also be called an Electronic Control Unit (ECU).
- ECU Electronic Control Unit
- Signals from the various sensors 50-58 include a current signal from a current sensor 50 that senses the motor current, a rotation speed signal of the front wheels 46/rear wheels 47 acquired by a rotation speed sensor 51, an air pressure signal of the front wheels 46/rear wheels 47 acquired by an air pressure sensor 52, a vehicle speed signal acquired by a vehicle speed sensor 53, an acceleration signal acquired by an acceleration sensor 54, a depression amount signal of the accelerator pedal 43 acquired by an accelerator pedal sensor 55, a depression amount signal of the brake pedal 44 acquired by a brake pedal sensor 56, an operation signal of the shift lever 45 acquired by a shift lever sensor 57, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by an object detection sensor 58.
- the information service unit 59 is composed of various devices, such as a car navigation system, audio system, speakers, displays, televisions, and radios, for providing (outputting) various information such as driving information, traffic information, and entertainment information, and one or more ECUs that control these devices.
- the information service unit 59 uses information acquired from external devices via the communication module 60, etc., to provide various information/services (e.g., multimedia information/multimedia services) to the occupants of the vehicle 40.
- various information/services e.g., multimedia information/multimedia services
- the information service unit 59 may include input devices (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accept input from the outside, and may also include output devices (e.g., a display, a speaker, an LED lamp, a touch panel, etc.) that perform output to the outside.
- input devices e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.
- output devices e.g., a display, a speaker, an LED lamp, a touch panel, etc.
- the driving assistance system unit 64 is composed of various devices that provide functions for preventing accidents and reducing the driver's driving load, such as a millimeter wave radar, a Light Detection and Ranging (LiDAR), a camera, a positioning locator (e.g., a Global Navigation Satellite System (GNSS)), map information (e.g., a High Definition (HD) map, an Autonomous Vehicle (AV) map, etc.), a gyro system (e.g., an Inertial Measurement Unit (IMU), an Inertial Navigation System (INS), etc.), an Artificial Intelligence (AI) chip, and an AI processor, and one or more ECUs that control these devices.
- the driving assistance system unit 64 also transmits and receives various information via the communication module 60 to realize a driving assistance function or an autonomous driving function.
- the communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63.
- the communication module 60 transmits and receives data (information) via the communication port 63 between the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, left and right rear wheels 47, axles 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and the various sensors 50-58 that are provided on the vehicle 40.
- the communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with an external device. For example, it transmits and receives various information to and from the external device via wireless communication.
- the communication module 60 may be located either inside or outside the electronic control unit 49.
- the external device may be, for example, the above-mentioned base station 10 or user terminal 20.
- the communication module 60 may also be, for example, at least one of the above-mentioned base station 10 and user terminal 20 (it may function as at least one of the base station 10 and user terminal 20).
- the communication module 60 may transmit at least one of the signals from the various sensors 50-58 described above input to the electronic control unit 49, information obtained based on the signals, and information based on input from the outside (user) obtained via the information service unit 59 to an external device via wireless communication.
- the electronic control unit 49, the various sensors 50-58, the information service unit 59, etc. may be referred to as input units that accept input.
- the PUSCH transmitted by the communication module 60 may include information based on the above input.
- the communication module 60 receives various information (traffic information, signal information, vehicle distance information, etc.) transmitted from an external device and displays it on an information service unit 59 provided in the vehicle.
- the information service unit 59 may also be called an output unit that outputs information (for example, outputs information to a device such as a display or speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 60).
- the communication module 60 also stores various information received from external devices in memory 62 that can be used by the microprocessor 61. Based on the information stored in memory 62, the microprocessor 61 may control the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, left and right rear wheels 47, axles 48, various sensors 50-58, and the like provided on the vehicle 40.
- the base station in the present disclosure may be read as a user terminal.
- each aspect/embodiment of the present disclosure may be applied to a configuration in which communication between a base station and a user terminal is replaced with communication between multiple user terminals (which may be called, for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
- the user terminal 20 may be configured to have the functions of the base station 10 described above.
- terms such as "uplink” and "downlink” may be read as terms corresponding to terminal-to-terminal communication (for example, "sidelink").
- the uplink channel, downlink channel, etc. may be read as the sidelink channel.
- the user terminal in this disclosure may be interpreted as a base station.
- the base station 10 may be configured to have the functions of the user terminal 20 described above.
- operations that are described as being performed by a base station may in some cases be performed by its upper node.
- a network that includes one or more network nodes having base stations, it is clear that various operations performed for communication with terminals may be performed by the base station, one or more network nodes other than the base station (such as, but not limited to, a Mobility Management Entity (MME) or a Serving-Gateway (S-GW)), or a combination of these.
- MME Mobility Management Entity
- S-GW Serving-Gateway
- each aspect/embodiment described in this disclosure may be used alone, in combination, or switched between depending on the implementation.
- the processing procedures, sequences, flow charts, etc. of each aspect/embodiment described in this disclosure may be rearranged as long as there is no inconsistency.
- the methods described in this disclosure present elements of various steps using an exemplary order, and are not limited to the particular order presented.
- LTE Long Term Evolution
- LTE-A LTE-Advanced
- LTE-B LTE-Beyond
- SUPER 3G IMT-Advanced
- 4th generation mobile communication system 4th generation mobile communication system
- 5G 5th generation mobile communication system
- 6G 6th generation mobile communication system
- xG x is, for example, an integer or decimal
- Future Radio Access FX
- GSM Global System for Mobile communications
- CDMA2000 Code Division Multiple Access
- UMB Ultra Mobile Broadband
- IEEE 802.11 Wi-Fi
- IEEE 802.16 WiMAX (registered trademark)
- IEEE 802.20 Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods, as well as next-generation systems that are expanded, modified,
- the phrase “based on” does not mean “based only on,” unless expressly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
- any reference to an element using a designation such as "first,” “second,” etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in some way.
- determining may encompass a wide variety of actions. For example, “determining” may be considered to be judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry (e.g., looking in a table, database, or other data structure), ascertaining, etc.
- Determining may also be considered to mean “determining” receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, accessing (e.g., accessing data in a memory), etc.
- “Judgment” may also be considered to mean “deciding” to resolve, select, choose, establish, compare, etc.
- judgment may also be considered to mean “deciding” to take some kind of action.
- the "maximum transmit power" referred to in this disclosure may mean the maximum value of transmit power, may mean the nominal UE maximum transmit power, or may mean the rated UE maximum transmit power.
- connection and “coupled,” or any variation thereof, refer to any direct or indirect connection or coupling between two or more elements, and may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
- the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, "connected” may be read as "accessed.”
- a and B are different may mean “A and B are different from each other.”
- the term may also mean “A and B are each different from C.”
- Terms such as “separate” and “combined” may also be interpreted in the same way as “different.”
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本開示の一態様に係る端末は、人工知能(Artificial Intelligence(AI))ベースドポジショニングに関して、性能モニタリングのための性能指標を受信する受信部と、前記性能モニタリングを制御する制御部と、を有することを特徴とする。本開示の一態様によれば、好適なオーバーヘッド低減/チャネル推定/リソースの利用を実現できる。
Description
本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。
Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP(登録商標)) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
将来の無線通信技術について、ネットワーク/デバイスの制御、管理などに、機械学習(Machine Learning(ML))のような人工知能(Artificial Intelligence(AI))技術を活用することが検討されている。例えば、AI技術を活用してユーザ端末(User terminal、ユーザ装置(User Equipment(UE)))の位置を決定(推定)すること(測位:ポジショニング)が検討されている。
また、AIモデルの性能モニタリング(モデルモニタリング)が検討されている。AIモデルの性能モニタリングは、端末(terminal、ユーザ端末(user terminal)、User Equipment(UE))において行われてもよいし、基地局(Base Station(BS))において行われてもよい。しかしながら、AIモデルを用いたポジショニングに関して、UE/BSにおける性能モニタリングの具体的なライフサイクル管理についてはまだ検討が進んでいない。
性能モニタリングの実現方法を適切に規定しなければ、適切なオーバーヘッド低減/高精度なチャネル推定/高効率なリソースの利用が達成できず、通信スループット/通信品質の向上が抑制されるおそれがある。
そこで、本開示は、好適なオーバーヘッド低減/チャネル推定/リソースの利用を実現できる端末、無線通信方法及び基地局を提供することを目的の1つとする。
本開示の一態様に係る端末は、人工知能(Artificial Intelligence(AI))ベースドポジショニングに関して、性能モニタリングのための性能指標を受信する受信部と、前記性能モニタリングを制御する制御部と、を有することを特徴とする。
本開示の一態様によれば、好適なオーバーヘッド低減/チャネル推定/リソースの利用を実現できる。
(無線通信への人工知能(Artificial Intelligence(AI))技術の適用)
将来の無線通信技術について、ネットワーク/デバイスの制御、管理などに、機械学習(Machine Learning(ML))のようなAI技術を活用することが検討されている。
将来の無線通信技術について、ネットワーク/デバイスの制御、管理などに、機械学習(Machine Learning(ML))のようなAI技術を活用することが検討されている。
例えば、チャネル状態情報(Channel State Information(CSI))フィードバックの向上(例えば、オーバーヘッド低減、正確度改善、予測)、ビームマネジメントの改善(例えば、正確度改善、時間/空間領域での予測)、位置測定の改善(例えば、位置推定/予測の改善)などのために、端末(terminal、ユーザ端末(user terminal)、User Equipment(UE))/基地局(Base Station(BS))がAI技術を活用することが検討されている。
AIモデルは、入力される情報に基づいて、推定値、予測値、選択される動作、分類、などの少なくとも1つの情報を出力してもよい。UE/BSは、AIモデルに対して、チャネル状態情報、参照信号測定値などを入力して、高精度なチャネル状態情報/測定値/ビーム選択/位置、将来のチャネル状態情報/無線リンク品質などを出力してもよい。
なお、本開示において、AIは、以下の少なくとも1つの特徴を有する(実施する)オブジェクト(対象、客体、データ、関数、プログラムなどとも呼ばれる)で読み替えられてもよい:
・観測又は収集される情報に基づく推定、
・観測又は収集される情報に基づく選択、
・観測又は収集される情報に基づく予測。
・観測又は収集される情報に基づく推定、
・観測又は収集される情報に基づく選択、
・観測又は収集される情報に基づく予測。
本開示において、推定(estimation)、予測(prediction)、推論(inference)は、互いに読み替えられてもよい。また、本開示において、推定する(estimate)、予測する(predict)、推論する(infer)は、互いに読み替えられてもよい。
本開示において、オブジェクトは、例えば、UE、BSなどの装置、デバイスなどであってもよい。また、本開示において、オブジェクトは、当該装置において動作するプログラム/モデル/エンティティに該当してもよい。
また、本開示において、AIモデルは、以下の少なくとも1つの特徴を有する(実施する)オブジェクトで読み替えられてもよい:
・情報を与えること(feeding)によって、推定値を生み出す、
・情報を与えることによって、推定値を予測する、
・情報を与えることによって、特徴を発見する、
・情報を与えることによって、動作を選択する。
・情報を与えること(feeding)によって、推定値を生み出す、
・情報を与えることによって、推定値を予測する、
・情報を与えることによって、特徴を発見する、
・情報を与えることによって、動作を選択する。
また、本開示において、AIモデルは、AI技術を適用し、入力のセットに基づいて出力のセットを生成するデータドリブンアルゴリズムを意味してもよい。
また、本開示において、AIモデル、モデル、MLモデル、予測分析(predictive analytics)、予測分析モデル、ツール、自己符号化器(オートエンコーダ(autoencoder))、エンコーダ、デコーダ、ニューラルネットワークモデル、AIアルゴリズム、スキームなどは、互いに読み替えられてもよい。また、AIモデルは、回帰分析(例えば、線形回帰分析、重回帰分析、ロジスティック回帰分析)、サポートベクターマシン、ランダムフォレスト、ニューラルネットワーク、ディープラーニングなどの少なくとも1つを用いて導出されてもよい。
本開示において、オートエンコーダは、積層オートエンコーダ、畳み込みオートエンコーダなど任意のオートエンコーダと互いに読み替えられてもよい。本開示のエンコーダ/デコーダは、Residual Network(ResNet)、DenseNet、RefineNetなどのモデルを採用してもよい。
また、本開示において、エンコーダ、エンコーディング(encoding)、エンコードする/される(encode/encoded)、エンコーダによる修正/変更/制御、圧縮(compressing)、圧縮する/される(compress/compressed)、生成(generating)、生成する/される(generate/generated)などは、互いに読み替えられてもよい。
また、本開示において、デコーダ、デコーディング(decoding)、デコードする/される(decode/decoded)、デコーダによる修正/変更/制御、展開(decompressing)、展開する/される(decompress/decompressed)、再構成(reconstructing)、再構成する/される(reconstruct/reconstructed)などは、互いに読み替えられてもよい。
本開示において、(AIモデルについての)レイヤは、AIモデルにおいて利用されるレイヤ(入力層、中間層など)と互いに読み替えられてもよい。本開示のレイヤ(層)は、入力層、中間層、出力層、バッチ正規化層、畳み込み層、活性化層、デンス(dense)層、正規化層、プーリング層、アテンション層、ドロップアウト層、全結合層などの少なくとも1つに該当してもよい。
本開示において、AIモデルの訓練方法には、教師あり学習(supervised learning)、教師なし学習(unsupervised learning)、強化学習(Reinforcement learning)、連合学習(federated learning)などが含まれてもよい。教師あり学習は、入力及び対応するラベルからモデルを訓練する処理を意味してもよい。教師なし学習は、ラベル付きデータなしでモデルを訓練する処理を意味してもよい。強化学習は、モデルが相互作用している環境において、入力(言い換えると、状態)と、モデルの出力(言い換えると、アクション)から生じるフィードバック信号(言い換えると、報酬)と、からモデルを訓練する処理を意味してもよい。
本開示において、生成、算出、導出などは、互いに読み替えられてもよい。本開示において、実施、運用、動作、実行などは、互いに読み替えられてもよい。本開示において、訓練、学習、更新、再訓練などは、互いに読み替えられてもよい。本開示において、推論、訓練後(after-training)、本番の利用、実際の利用、などは互いに読み替えられてもよい。本開示において、信号は、信号/チャネルと互いに読み替えられてもよい。
図1は、AIモデルの管理のフレームワークの一例を示す図である。本例では、AIモデルに関連する各ステージがブロックで示されている。本例は、AIモデルのライフサイクル管理(Life Cycle Manegement:LCM)とも表現される。
データ収集ステージは、AIモデルの生成/更新のためのデータを収集する段階に該当する。データ収集ステージは、データ整理(例えば、どのデータをモデル訓練/モデル推論のために転送するかの決定)、データ転送(例えば、モデル訓練/モデル推論を行うエンティティ(例えば、UE、gNB)に対して、データを転送)などを含んでもよい。
なお、データ収集は、AIモデル訓練/データ分析/推論を目的として、ネットワークノード、管理エンティティ又はUEによってデータが収集される処理を意味してもよい。本開示において、処理、手順は互いに読み替えられてもよい。
モデル訓練ステージでは、収集ステージから転送されるデータ(訓練用データ)に基づいてモデル訓練が行われる。このステージは、データ準備(例えば、データの前処理、クリーニング、フォーマット化、変換などの実施)、モデル訓練/バリデーション(検証)、モデルテスティング(例えば、訓練されたモデルが性能の閾値を満たすかの確認)、モデル交換(例えば、分散学習のためのモデルの転送)、モデルデプロイメント/更新(モデル推論を行うエンティティに対してモデルをデプロイ/更新)などを含んでもよい。
なお、AIモデル訓練(AI model training)は、データドリブンな方法でAIモデルを訓練し、推論のための訓練されたAIモデルを取得するための処理を意味してもよい。
また、AIモデルバリデーション(AI model validation)は、モデル訓練に使用したデータセットとは異なるデータセットを用いてAIモデルの品質を評価するための訓練のサブ処理を意味してもよい。当該サブ処理は、モデル訓練に使用したデータセットを超えて汎化するモデルパラメータの選択に役立つ。
また、AIモデルテスティング(AI model testing)は、モデル訓練/バリデーションに使用したデータセットとは異なるデータセットを使用して、最終的なAIモデルの性能を評価するための訓練のサブ処理を意味してもよい。なお、テスティングは、バリデーションとは異なり、その後のモデルチューニングを前提としなくてもよい。
モデル推論ステージでは、収集ステージから転送されるデータ(推論用データ)に基づいてモデル推論が行われる。このステージは、データ準備(例えば、データの前処理、クリーニング、フォーマット化、変換などの実施)、モデル推論、モデルモニタリング(例えば、モデル推論の性能をモニタ)、モデル性能フィードバック(モデル訓練を行うエンティティに対してモデル性能をフィードバック)、出力(アクターに対してモデルの出力を提供)などを含んでもよい。
なお、AIモデル推論(AI model inference)は、訓練されたAIモデルを用いて入力のセットから出力のセットを産み出すための処理を意味してもよい。
また、UE側(UE side)モデルは、その推論が完全にUEにおいて実施されるAIモデルを意味してもよい。ネットワーク側(Network side)モデルは、その推論が完全にネットワーク(例えば、gNB)において実施されるAIモデルを意味してもよい。
また、片側(one-sided)モデルは、UE側モデル又はネットワーク側モデルを意味してもよい。両側(two-sided)モデルは、共同推論(joint inference)が行われるペアのAIモデルを意味してもよい。ここで、共同推論は、その推論がUEとネットワークにわたって共同で行われるAI推論を含んでもよく、例えば、推論の第1の部分がUEによって最初に行われ、残りの部分がgNBによって行われてもよい(又はその逆が行われてもよい)。
また、AIモデルモニタリング(AI model monitoring)は、AIモデルの推論性能をモニタするための処理を意味してもよく、モデル性能モニタリング、性能モニタリングなどと互いに読み替えられてもよい。
なお、モデルレジストレーション(model registration)は、モデルにバージョン識別子を付与し、推論段階において利用される特定のハードウェアにコンパイルすることを介して当該モデルを実行可能にすることを意味してもよい。また、モデルデプロイメント(model deployment)は、完全に開発されテストされたモデルのランタイムイメージ(又は実行環境のイメージ)を、推論が実施されるターゲット(例えば、UE/gNB)に配信する(又は当該ターゲットにおいて有効化する)ことを意味してもよい。
アクターステージは、アクショントリガ(例えば、他のエンティティに対してアクションをトリガするか否かの決定)、フィードバック(例えば、訓練用データ/推論用データ/性能フィードバックのために必要な情報をフィードバック)などを含んでもよい。
なお、例えばモビリティ最適化のためのモデルの訓練は、例えば、ネットワーク(Network(NW))における保守運用管理(Operation、Administration and Maintenance(Management)(OAM))/gNodeB(gNB)において行われてもよい。前者の場合、相互運用、大容量ストレージ、オペレータの管理性、モデルの柔軟性(フィーチャーエンジニアリングなど)が有利である。後者の場合、モデル更新のレイテンシ、モデル展開のためのデータ交換などが不要な点が有利である。上記モデルの推論は、例えば、gNBにおいて行われてもよい。
ユースケース(言い換えると、AIモデルの機能)に応じて、訓練/推論を行うエンティティは異なってもよい。AIモデルの機能(function)は、ビーム管理、ビーム予測、オートエンコーダ(又は情報圧縮)、CSIフィードバック、位置測位などを含んでもよい。
例えば、メジャメントレポートに基づくAI支援ビーム管理については、OAM/gNBがモデル訓練を行い、gNBがモデル推論を行ってもよい。
AI支援UEアシステッドポジショニングについては、Location Management Function(LMF)がモデル訓練を行い、当該LMFがモデル推論を行ってもよい。
オートエンコーダを用いるCSIフィードバック/チャネル推定については、OAM/gNB/UEがモデル訓練を行い、gNB/UEが(共同で)モデル推論を行ってもよい。
ビーム測定に基づくAI支援ビーム管理又はAI支援UEベースドポジショニングについては、OAM/gNB/UEがモデル訓練を行い、UEがモデル推論を行ってもよい。
なお、モデルアクティベーションは、特定の機能のためのAIモデルを有効化することを意味してもよい。モデルディアクティベーションは、特定の機能のためのAIモデルを無効化することを意味してもよい。モデルスイッチングは、特定の機能のための現在アクティブなAIモデルをディアクティベートし、異なるAIモデルをアクティベートすることを意味してもよい。
また、モデル転送(model transfer)は、エアインターフェース上でAIモデルを配信することを意味してもよい。この配信は、受信側において既知のモデル構造のパラメータ、又はパラメータを有する新しいモデルの一方又は両方を配信することを含んでもよい。また、この配信は、完全なモデル又は部分的なモデルを含んでもよい。モデルダウンロードは、ネットワークからUEへのモデル転送を意味してもよい。モデルアップロードは、UEからネットワークへのモデル転送を意味してもよい。
図2は、AIモデルの指定の一例を示す図である。本例において、UE及びNW(例えば、基地局(Base Station(BS)))は、モデル#1及び#2を認識できる(モデルの詳細については完全には理解しなくてもよい)。UEは、例えばモデル#1の性能及びモデル#2の性能をNWに報告し、NWは、利用するAIモデルについてUEに指示してもよい。
(AI技術を用いたUE測位)
無線信号の伝搬特性を利用して無線機器の位置を推定するフィンガープリンティング定位(Fingerprinting localization)は、Line Of Site(LOS)/Non-Line Of Site(NLOS)のシナリオの両方で広く利用されている。
無線信号の伝搬特性を利用して無線機器の位置を推定するフィンガープリンティング定位(Fingerprinting localization)は、Line Of Site(LOS)/Non-Line Of Site(NLOS)のシナリオの両方で広く利用されている。
本開示において、LOSは、UE及び基地局が互いに見通せる環境にある(又は遮蔽物がない)ことを意味してもよく、NLOSは、UE及び基地局が互いに見通せる環境にない(又は遮蔽物がある)ことを意味してもよい。
フィンガープリンティング定位では、UEの複数の伝送経路(マルチパス)のフィンガープリントから、データベース/AIモデルに基づき、UEの位置を推定する。
マルチパスの情報は、例えば、最適な(optimal)/候補の伝送経路における信号の到来角度(Angle of Arrival(AoA))/放射角度(Angle of Departure(AoD))に関する情報であってもよい。
なお、本開示において、AoAに関する情報は、例えば、到来方位角度(azimuth angles of arrival)、及び、到来天頂角度(zenith angles of arrival)の少なくとも1つに関する情報を含んでもよい。また、AoDに関する情報は、例えば、放射方位角度(azimuth angles of departure)、及び、放射天頂角度(zenith angles of depature)の少なくとも1つに関する情報を含んでもよい。
3GPP Rel.16 NRでは、以下に示す測位(ポジショニング)技術がサポートされている。
・DL/UL Time Difference Of Arrival(TDOA)に基づくポジショニング、
・角度(DL AoD/UL AoA)に基づくポジショニング、
・マルチRound Trip Time(RTT)に基づくポジショニング、
・Enhanced Cell ID(E-CID)に基づくポジショニング。
・DL/UL Time Difference Of Arrival(TDOA)に基づくポジショニング、
・角度(DL AoD/UL AoA)に基づくポジショニング、
・マルチRound Trip Time(RTT)に基づくポジショニング、
・Enhanced Cell ID(E-CID)に基づくポジショニング。
図3は、DL/UL TDOAに基づくポジショニングの一例を示す図である。例えば、UEの周囲に複数の基地局(TRP#0-#2)が配置されている場合を想定する。この測位方法では、参照信号の受信時間差(Reference Signal Time Difference(RSTD))の測定値を用いてUEの位置が推定(測定)される。例えば、特定の2つの基地局(TRP#i、#j(i、jは整数))についてのRSTD(Ti-Tj)がある値(ki,j)を取る点を結んで双曲線Hi,jが描ける。複数のこのような双曲線の交点(本例では、H0,1、H1,2、H2,0の交点)がUEの位置として推定されてもよい。また、追加で当該参照信号のRSRPを用いてUEの位置が推定されてもよい。
図4は、DL AoD/UL AoAに基づくポジショニングの一例を示す図である。この測位方法では、DL AoDの測定値(例えばθ又はφ)、又はUL AoAの測定値(例えばθ又はφ)を用いてUEの位置が推定される。また、RSRPを用いてUEの位置が推定されてもよい。
図5は、マルチRTTに基づくポジショニングの一例を示す図である。この測位方法では、参照信号のTx/Rx時間差(及び追加でRSRP、RSRQ等)から算出された複数のRTTを用いてUEの位置が推定される。例えば、各基地局を中心にRTTに基づく幾何学的な円が描ける。これら複数の円の交点がUEの位置として推定されてもよい。
図6は、E-CIDに基づくポジショニングの一例を示す図である。この測位方法では、サービングセル/隣接セル(neighbor cell)の幾何学的位置と追加の測定結果(Tx-Rx時間差、RSRP、RSRQ等)に基づいてUEの位置が推定される。
上記したDL(DL TDOA、DL AoD)における測位は、UE側又はLMF側で実施されてもよい。例えば、UEベースの測位では、UEの各種測定結果とLMFからのアシスタンス情報(assistance information)に基づいて、UEがUE位置を算出してもよい。また、UEアシステッド測位(UE assisted potitioning)では、UEが各種測定結果をLMFに報告し、LMFがUEの位置を算出してもよい。アシスタンス情報は、UEの位置推定をアシストするための情報であってよい。
上記したUL(UL TDOA、UL AoA)における測位は、LMF側で実施されてもよい。この場合、基地局は、各種測定結果をLMFに報告し、LMFがUEの位置を算出してもよい。
上記したDL及びUL(マルチRTT、E-CID)における測位は、LMF側で実施されてもよい。この場合、UE/基地局は、各種測定結果をLMFに報告し、LMFがUEの位置を算出してもよい。
また、3GPP Rel.17では、測位精度の更なる向上を目的として、アシスタンス情報を用いた測位方法が提案されている。アシスタンス情報は、上記したDL/UL-TDOA、DL-AoD/UL-AoA、マルチRTT、E-CIDのための測定情報として、UE、基地局、及びLMF間で伝送されてもよい。
アシスタンス情報は、以下の少なくとも1つに関する情報を含んでもよい:
・Timing Error Group(TEG)、
・RSRPP(パス固有RSRP)、
・予想角度(Expected angle)、
・隣接ビーム情報(Adjacent beam information)、
・TRPアンテナ/ビーム情報、
・LOS/NLOSインジケーター、
・追加のパス報告。
・Timing Error Group(TEG)、
・RSRPP(パス固有RSRP)、
・予想角度(Expected angle)、
・隣接ビーム情報(Adjacent beam information)、
・TRPアンテナ/ビーム情報、
・LOS/NLOSインジケーター、
・追加のパス報告。
TEGは、送受信タイミング誤差(Rx/Tx timing errors)が一定のマージン内にある1つまたは複数のPRS(Positioning Reference Signal)リソースを示してもよい。
RSRPPは、最初のパスにおけるRSRPの測定結果を示してもよい。
UL測位において、予想角度に関するアシスタンス情報は、予想されるUL-AoA/ZoA(expected UL-AoA/ZoA)を示してもよい。当該アシスタンス情報は、LMFから基地局に送信されてもよい。また、当該アシスタンス情報は、UL TDOA、UL AoA、及びマルチRTTのうち、少なくとも1つのポジショニングをサポートしてもよい。
DL測位において、予想角度に関するアシスタンス情報は、予想されるDL-AoA/ZoA(expected DL-AoA/ZoA)、又はDL-AoD/ZoD(expected DL-AoD/ZoD)に関する情報を含んでもよい。当該アシスタンス情報は、LMFからUEに送信されてもよい。また、当該アシスタンス情報は、DL TDOA、DL AoA、及びマルチRTTのうち、少なくとも1つのポジショニングをサポートしてもよい。これにより、角度に基づくUEポジショニングの精度が向上されると共に、UE又は基地局のRxビームフォーミングの最適化が可能である。
なお、予想角度に関するアシスタンス情報は、上述のようなAoA/ZoA/AoD/ZoD自体の値の情報に加えて、これらの値の不確実性の範囲(Uncertainty Range)を示す情報を含んでもよい。
追加のビーム情報として、隣接ビーム情報は、DL-AoD レポートの優先順位付けを目的とした DL-PRS リソースのサブセット(オプション1)、又は各DL-PRSリソースのボアサイト(Boresight)方向(オプション2)に関する情報を含んでもよい。これにより、UEのRxビームスウィーピング及びDL-AoD測定の最適化が可能である。
また、追加のビーム情報として、アシスタンス情報は、PRSビームパターン情報を含んでもよい。このPRSビームパターン情報は、TRPごとに角度ごとのDL-PRSリソース間の相対電力に関する情報を含んでもよい。
LOS/NLOSインジケーターは、Line Of Site(LOS)/Non-Line Of Site(NLOS)に関する情報を示してもよい。
また、UEの測位遅延の改善を目的として、予め設定されるmeasurement gaps(MG)、下位レイヤを介するMGのアクティベーション、MG-lessの位置、RRC_INACTIVE状態のPRS Rx/Tx、又はオンデマンドPRSなどが、UEに対して設定されてもよい(UEによって利用されてもよい)。
3GPP Rel.17 NRでは、UEの位置推定精度を向上するために、UEが隣接ビームのRSRPを測定/報告することが合意されている。例えば、UEアシステッドDL AoDポジショニング方法(UE-assisted DL-AoD positioning method)では、LMFは、以下のオプション1~2の少なくとも1つをアシスタンス情報に含めて示すことができる。
・オプション1:DL-AOD報告の優先順位付けを目的とするPRSリソースのサブセット。当該サブセットは、UE能力に応じて、各PRSリソースに対して設定されてよい。UEは、関連するPRSに対して要求されるPRS測定が報告される場合、PRSのサブセットに対して要求されるPRS測定をDL-AoDの追加測定に含めてもよい。要求されるPRS測定は、DL PRS RSRP/path PRS RSRPであってもよい。UEは、PRSリソースのサブセットに対してのみPRS測定を報告してもよい。なお、PRSリソースに関連するサブセットは、当該PRSリソースと同じ/異なるPRSリソースセット内に存在してもよい。
・オプション2:UE能力に応じて、各PRSリソースに対して設定されるボアサイト方向に関する情報。
・オプション2:UE能力に応じて、各PRSリソースに対して設定されるボアサイト方向に関する情報。
3GPP Rel.16 NRでは、予想される(期待される)RSTD及びその不確実性の範囲(uncertainty range)がLMFからUEに示されることが合意されている。更にRel.17では、AoA/AoDの測定における誤差や複雑さを軽減するために、予想角度及びその不確実性の範囲がLMFからUEに示されることが合意されている。
3GPP Rel.17 NRでは、ポジショニングに関して、測位基準ユニット(Positioning Reference Unit:PRU)の導入が検討されている。PRUは、UE/gNBの送受信タイミング誤差を緩和するために、既知の位置を有する基準(参照)デバイスとして議論されているものである。PRUは、UE/gNB/TRP(transmission reception point)/TP(transmission point)で読み替えられてもよい。
例えばPRUは、以下の少なくとも1つをサポートしてもよい:
・DL PRSを測定し、関連する測定値(例えば、RSTD/送受信時間差/RSRP)をLMFに報告すること、
・SRSを送信し、TRPが基準デバイスに関連する測定値(例えば、Relative Time of Arrival:RTOA/送受信時間差、AOA)を測定してLMFに報告することを可能にすること、
・動作、測定、各種パラメータ(送受信タイミング遅延、AoD及びAOAの強化、及び測定値の較正に関連するパラメータ)、
・LMFが位置座標情報を有していない場合、LMFに対して基準デバイスの位置座標情報を報告すること、
・位置が既知の基準デバイスは、UE/gNBであること、
・基準デバイスの位置を知ることができる精度。
・DL PRSを測定し、関連する測定値(例えば、RSTD/送受信時間差/RSRP)をLMFに報告すること、
・SRSを送信し、TRPが基準デバイスに関連する測定値(例えば、Relative Time of Arrival:RTOA/送受信時間差、AOA)を測定してLMFに報告することを可能にすること、
・動作、測定、各種パラメータ(送受信タイミング遅延、AoD及びAOAの強化、及び測定値の較正に関連するパラメータ)、
・LMFが位置座標情報を有していない場合、LMFに対して基準デバイスの位置座標情報を報告すること、
・位置が既知の基準デバイスは、UE/gNBであること、
・基準デバイスの位置を知ることができる精度。
AIモデルを用いたポジショニングには、例えば以下の2つのユースケースが存在する:
・ダイレクトAI/MLポジショニング、
・AI/MLアシステッドポジショニング。
・ダイレクトAI/MLポジショニング、
・AI/MLアシステッドポジショニング。
ダイレクトAI/MLポジショニングによれば、例えばUEポジショニング(UE位置)が出力される。AI/MLアシステッドポジショニングによれば、例えば中間特徴(intermediate feature)が出力される。当該中間特徴は、再度AI/MLモデルに入力されてもよい。
上述したAI/MLアシステッドポジショニングの出力例として、以下の少なくとも1つが含まれてよい:
・LOS/NLOSの識別(identification)(LOS/NLOSの確率)、
・ToA(PRS/SRSの到着時刻)、
・Rx-Tx(送受信)時間差、
・AoA/AoD、
・波の数(Number of waves)、Rx-Tx(送受信)位相差(Rel.18の位相測定)、
・DL RSTD/UL TDOA、
・DL-PRS/UL-SRS、RSRPs/RSRPPs、
・上記数値の尤度(Likelihood)(例:ToAの確率)。
・LOS/NLOSの識別(identification)(LOS/NLOSの確率)、
・ToA(PRS/SRSの到着時刻)、
・Rx-Tx(送受信)時間差、
・AoA/AoD、
・波の数(Number of waves)、Rx-Tx(送受信)位相差(Rel.18の位相測定)、
・DL RSTD/UL TDOA、
・DL-PRS/UL-SRS、RSRPs/RSRPPs、
・上記数値の尤度(Likelihood)(例:ToAの確率)。
(UE測位用のビーム情報)
上述のように、アンテナ(配置)設定/ビーム情報は、AI/Mlモデルに有用であると考えられる。
上述のように、アンテナ(配置)設定/ビーム情報は、AI/Mlモデルに有用であると考えられる。
アンテナ(配置)設定/ビーム情報が利用されるシナリオとして、以下のシナリオA及びBが考えられる。
[シナリオA]
アンテナ設定/周波数/エリアに基づいて、より適切なAIモデルが選択される。
アンテナ設定/周波数/エリアに基づいて、より適切なAIモデルが選択される。
[シナリオB]
AIモデルが、よりよいパフォーマンスを提供するために、メタデータ(アンテナ設定情報/ビーム情報)を入力として必要とする。
AIモデルが、よりよいパフォーマンスを提供するために、メタデータ(アンテナ設定情報/ビーム情報)を入力として必要とする。
既存の仕様では、ネットワーク(NW)からUEに向けての基地局(gNB)のビーム情報のアシスタンス情報が、測位のためにのみ利用されることがサポートされている。
将来の無線通信方法に向けて、以下が検討されている:
・ビーム情報をビームマネジメントのために用いること。
・測位用プロトコル(例えば、LTE Positioning Protocol(LPP))以外のインターフェースでも同様に、ビーム情報が用いられること。
・測位用参照信号(Positioning Reference Signal(PRS))以外のRSのビーム情報が、測位に用いられること。
・UEにおける(UEの)ビーム情報が用いられること。
・ビーム情報をビームマネジメントのために用いること。
・測位用プロトコル(例えば、LTE Positioning Protocol(LPP))以外のインターフェースでも同様に、ビーム情報が用いられること。
・測位用参照信号(Positioning Reference Signal(PRS))以外のRSのビーム情報が、測位に用いられること。
・UEにおける(UEの)ビーム情報が用いられること。
Rel.17では、LMFからUEに対するビーム情報(UEベースの測位(UE-based positioning)用のビーム情報、基地局の送信ビームに関する情報)として、PRSごとのビームの方向(ボアサイト方向)を示すビーム情報がサポートされている。当該ビーム情報は、PRSごとのボアサイト方向を示す情報であってもよい。
PRSごとのビームの方向を示すビーム情報は、共通NR測位情報要素の「NR-DL-PRS-BeamInfo」に含まれる「DL-PRS-BeamInfoElement」である。
「DL-PRS-BeamInfoElement」は、基地局(TRP)から送信されるビームの方位角(azimuth angle)に関する情報と、仰角(elevation angle)に関する情報と、を含む。
方位角(azimuth angle)に関する情報は、「dl-PRS-Azimuth」及び「dl-PRS-Azimuth-fine」である。「dl-PRS-Azimuth」は1°単位で、0°から359°の値で示される情報であり、「dl-PRS-Azimuth-fine」は0.1°単位で、0°から0.9°の値で示される。
仰角(elevation angle)に関する情報は、「dl-PRS-Elevation」及び「dl-PRS-Elevation-fine」である。「dl-PRS-Elevation」は1°単位の粒度で、0°から180°の値で示される情報であり、「dl-PRS-Elevation-fine」は0.1°単位の粒度で、0°から0.9°の値で示される。
また、Rel.17では、LMFからUEに対するビーム情報(UEベースの測位用のビーム情報、基地局の送信ビームに関する情報)として、角度ごと(方位角/仰角)におけるDL PRSの相対電力を示すビーム情報がサポートされている。
当該相対電力を示すビーム情報は、共通NR測位情報要素内のTRPのビームアンテナ情報(「NR-TRP-BeamAntennaInfo」)に含まれる。
「NR-TRP-BeamAntennaInfo」は、方位角及び仰角に対するTRPのビームアンテナ情報に関する情報「NR-TRP-BeamAntennaInfoAzimuthElevation」を含む。
「NR-TRP-BeamAntennaInfoAzimuthElevation」は、1°単位の粒度の方位角を示す「azimuth」、0.1°単位の粒度の方位角を示す「azimuth-fine」、及び、仰角のリスト「elevationList」を含む。
仰角のリスト「elevationList」は、1°単位の粒度の仰角を示す「elevation」、0.1°単位の粒度の仰角を示す「elevation-fine」、及び、ビーム電力のリスト「beamPowerList」を含む。
ビーム電力のリスト「beamPowerList」は、DL PRSのリソースセットIDを示す「nr-dl-prs-ResourceSetID」、DL PRSのリソースIDを示す「nr-dl-prs-ResourceID」、1dB単位の粒度での「nr-dl-prs-ResourceID」で与えられるリソースの相対電力を示す「nr-dl-prs-RelativePower」、及び、0.1dB単位の粒度での「nr-dl-prs-ResourceID」で与えられるリソースの相対電力を示す「nr-dl-prs-RelativePowerFine」、が含まれる。
また、Rel.17では、LMFからUEに対するビーム(アンテナ)情報(基地局の送信ビームに関する情報)として、アンテナの参照ポイント(antenna reference point(ARP))を示す情報がサポートされている。
当該情報は、共通NR測位情報要素の、TRPの位置情報である「NR-TRP-LocationInfo」内の「referencePoint」で示される。
TRPの位置情報「NR-TRP-LocationInfo」は、参照ポイントと参照ポイントとの相対位置によって表現される。
PRSリソースのARPの位置(location)は、PRSリソースセットのARP位置に関連付けられる相対位置で表現される。
アンテナ参照ポイントは、高度、緯度及び経度で示される。
また、Rel.17では、基地局(例えば、gNB、NG-RAN(Next Generation‐Radio Access Network)ノード)からLMFに対する情報(基地局の送信ビームに関する情報)として、DL PRSの空間方向に関する情報がサポートされている。
当該情報は、PRSリソースの方位角及び仰角のボアサイト方向を示す情報を含む。
また、当該情報は、ローカル座標系(local coordinate system(LCS))からグローバル座標系(global coordinate system(GCS))への移行(transition)情報を含む。
GCSは、複数の基地局及び複数のUEを含むシステムのために定義されてもよい。また、LCSにおいて、1つの基地局又は1つのUEのためのアレーアンテナが定義されてもよい。
LCSは、アレーにおける各アンテナ素子のベクトル遠方界(vector far-field)を定義するための参照として用いられる。当該ベクトル遠方界は、パターン及び偏波(polarization)である。GCS内のアレーの配置は、GCSとLCSとの変換によって定義されてもよい。GCS/LCSは、例えば、当業者であれば認識しうる(仕様に規定される)定義、変換式に基づいて導出されてもよい。
また、Rel.17では、基地局(例えば、gNB)からLMFに対する情報(基地局の送信ビームに関する情報)として、TRPのビーム/アンテナを示す情報がサポートされている。
当該情報は、各角度(方位角/仰角)におけるDL PRSの相対電力を示す情報を含む。
また、Rel.17では、基地局(例えば、gNB)からLMFに対する情報(基地局の受信ビームに関する情報)として、UL信号測定時における受信ビームに関する情報がサポートされている。
当該情報は、PRSリソースID、PRSリソースセットID、及び、SSBインデックスの少なくとも1つを含む。
また、Rel.17では、UEからNWに対して送信される情報(UEの送信ビームに関する情報)として、空間関係に関する情報がサポートされている。
当該情報は、特定のRS(例えば、SSB/CSI-RS/SRS/DL PRS)のID/インデックスを示す。
また、Rel.17では、測位用のビームスイーピングにおけるUEの受信ビーム数が規定される。UEは、LMFに対してUE能力のサポートを報告してもよい。
例えば、FR1では、UEは1つの受信ビームを用いる。
また、FR2では、UEが特定のUE能力をサポートする場合には、FR2用のRxビームスイーピングファクタの数を示す情報「numberOfRxBeamSweepingFactor」で指示される値のビーム数を用いる。そうでない場合には、UEは、8つの受信ビームを用いる。
また、UEが測定に用いる受信ビームに関する情報(例えば、「nr-DL-PRS-RxBeamIndex」)がサポートされる。
当該情報について、DL PRSリソースセット内で異なるビームが使用されている場合に、UEは、同じ受信ビームで受信した測定値を報告してもよい。
言い換えれば、UEが送信するビーム情報は、リソースセット間で同一のビームが使用されているか否かを示す情報である。
(AIモデル情報)
本開示において、AIモデル情報は、以下の少なくとも1つを含む情報を意味してもよい:
・AIモデルの入力/出力の情報、
・AIモデルの入力/出力のための前処理/後処理の情報、
・AIモデルのパラメータの情報、
・AIモデルのための訓練情報(トレーニング情報)、
・AIモデルのための推論情報、
・AIモデルに関する性能情報。
本開示において、AIモデル情報は、以下の少なくとも1つを含む情報を意味してもよい:
・AIモデルの入力/出力の情報、
・AIモデルの入力/出力のための前処理/後処理の情報、
・AIモデルのパラメータの情報、
・AIモデルのための訓練情報(トレーニング情報)、
・AIモデルのための推論情報、
・AIモデルに関する性能情報。
ここで、上記AIモデルの入力/出力の情報は、以下の少なくとも1つに関する情報を含んでもよい:
・入力/出力データの内容(例えば、RSRP、SINR、チャネル行列(又はプリコーディング行列)における振幅/位相情報、到来角度(Angle of Arrival(AoA))に関する情報、放射角度(Angle of Departure(AoD))に関する情報、位置情報)、
・データの補助情報(メタ情報と呼ばれてもよい)、
・入力/出力データのタイプ(例えば、不変値(immutable value)、浮動小数点数)、
・入力/出力データの量子化間隔(量子化ステップサイズ)(例えば、L1-RSRPについて、1dBm)、
・入力/出力データが取り得る範囲(例えば、[0、1])。
・入力/出力データの内容(例えば、RSRP、SINR、チャネル行列(又はプリコーディング行列)における振幅/位相情報、到来角度(Angle of Arrival(AoA))に関する情報、放射角度(Angle of Departure(AoD))に関する情報、位置情報)、
・データの補助情報(メタ情報と呼ばれてもよい)、
・入力/出力データのタイプ(例えば、不変値(immutable value)、浮動小数点数)、
・入力/出力データの量子化間隔(量子化ステップサイズ)(例えば、L1-RSRPについて、1dBm)、
・入力/出力データが取り得る範囲(例えば、[0、1])。
(汎化能力(Generalization Capability(GC)))
AI/MLの分野において、GCとは、訓練時に与えられた訓練データだけでなく、未知のデータ(テストデータ)に適応する(望ましい出力を行える、うまく予測できる)AIモデルの能力のことをいう。GCの性能のことをGC性能(又は汎化性能)とも呼ぶ。
AI/MLの分野において、GCとは、訓練時に与えられた訓練データだけでなく、未知のデータ(テストデータ)に適応する(望ましい出力を行える、うまく予測できる)AIモデルの能力のことをいう。GCの性能のことをGC性能(又は汎化性能)とも呼ぶ。
(KPI)
AIモデルの性能モニタリングに関し、共通の重要性能指標(Key Performance Indicator(KPI))が検討されている。
AIモデルの性能モニタリングに関し、共通の重要性能指標(Key Performance Indicator(KPI))が検討されている。
以下に、AI/MLモデルによる性能効果を評価するための共通のKPIの初期リストを示す:
・性能(Performance)、
・中間(Intermediate)KPI、
・リンクレベル及びシステムレベルの性能、
・汎化(Generalization)性能、
・オーバージエア(over-the-air)オーバーヘッド、
・アシスタンス情報のオーバーヘッド、
・データ収集(collection)のオーバーヘッド、
・モデル配信(delivery)/転送(transfer)のオーバーヘッド、
・その他のAI/MLモデルに関連するシグナリングのオーバーヘッド、
・推論の複雑さ(Inference complexity)、
・モデル推論の計算複雑さ:浮動小数点演算(floating point operations(FLOPs(なお、sは小文字)))(これは、浮動小数点演算量を意味する)、
・プリポストプロセッシングの計算複雑さ(computational complexity)、
・モデルの複雑さ(パラメータ数/データサイズ(例えばMbyte)等)、
・訓練の複雑さ、
・LCM関連の複雑さ(LCM related complexity)とストレージオーバーヘッド、
・レイテンシ(例えば推論レイテンシ)。
なお、上述したKPIはあくまで一例を示すものであり、リストには他のKPI(例えばモデル訓練に関連するKPI、与えられるユースケースに対して考慮されるユースケース特有のKPI等)が追加されてもよい。
・性能(Performance)、
・中間(Intermediate)KPI、
・リンクレベル及びシステムレベルの性能、
・汎化(Generalization)性能、
・オーバージエア(over-the-air)オーバーヘッド、
・アシスタンス情報のオーバーヘッド、
・データ収集(collection)のオーバーヘッド、
・モデル配信(delivery)/転送(transfer)のオーバーヘッド、
・その他のAI/MLモデルに関連するシグナリングのオーバーヘッド、
・推論の複雑さ(Inference complexity)、
・モデル推論の計算複雑さ:浮動小数点演算(floating point operations(FLOPs(なお、sは小文字)))(これは、浮動小数点演算量を意味する)、
・プリポストプロセッシングの計算複雑さ(computational complexity)、
・モデルの複雑さ(パラメータ数/データサイズ(例えばMbyte)等)、
・訓練の複雑さ、
・LCM関連の複雑さ(LCM related complexity)とストレージオーバーヘッド、
・レイテンシ(例えば推論レイテンシ)。
なお、上述したKPIはあくまで一例を示すものであり、リストには他のKPI(例えばモデル訓練に関連するKPI、与えられるユースケースに対して考慮されるユースケース特有のKPI等)が追加されてもよい。
(ポジショニングに関する性能評価指標(Performance metrics))
Rel.17におけるポジショニングでは、性能評価のために、以下の評価指標(metrics)を適用することが規定されている(TR 38.857)。なお、測位誤差のパーセンタイルは、50%、67%、80%、90%を分析対象としてよい。
Rel.17におけるポジショニングでは、性能評価のために、以下の評価指標(metrics)を適用することが規定されている(TR 38.857)。なお、測位誤差のパーセンタイルは、50%、67%、80%、90%を分析対象としてよい。
・水平精度(Horizontal accuracy)
水平精度は、計算されたUEの水平位置と実際のUEの水平位置との差を示してよい。例えば、水平精度は、90%のUEにおいて0.2メートル未満であってよい。
水平精度は、計算されたUEの水平位置と実際のUEの水平位置との差を示してよい。例えば、水平精度は、90%のUEにおいて0.2メートル未満であってよい。
・垂直精度(Vertical accuracy)
垂直精度は、計算されたUEの垂直位置と実際のUEの垂直位置との差を示してよい。例えば、垂直精度は、90%のUEにおいて1メートル未満であってよい。
垂直精度は、計算されたUEの垂直位置と実際のUEの垂直位置との差を示してよい。例えば、垂直精度は、90%のUEにおいて1メートル未満であってよい。
・レイテンシ
レイテンシは、例えば、UEの位置推定(estimation)のためのエンドツーエンド(end-to-end)のレイテンシであってよい。当該レイテンシは、100ミリ秒未満(より好ましくは10ミリ秒オーダー)であってよい。当該レイテンシには、関係するさまざまなノード(UE、gNB、AMF、LMF等)の処理遅延(processing delays)及びノード間の信号遅延(signalling delays)が含まれてよい。他のレイテンシとして、UEの位置推定のための物理レイヤのレイテンシが含まれてよい。当該レイテンシは、例えば10ミリ秒未満であってよい。
レイテンシは、例えば、UEの位置推定(estimation)のためのエンドツーエンド(end-to-end)のレイテンシであってよい。当該レイテンシは、100ミリ秒未満(より好ましくは10ミリ秒オーダー)であってよい。当該レイテンシには、関係するさまざまなノード(UE、gNB、AMF、LMF等)の処理遅延(processing delays)及びノード間の信号遅延(signalling delays)が含まれてよい。他のレイテンシとして、UEの位置推定のための物理レイヤのレイテンシが含まれてよい。当該レイテンシは、例えば10ミリ秒未満であってよい。
(ポジショニングのための性能モニタリング(モデルモニタリング))
《ポジショニングの分類》
AIモデルを用いたポジショニングは、以下のように分類されてもよい:
(1)UEベースドポジショニング、
(2)AI/MLアシステッドポジショニング、
(3)NG-RAN(Next Generation‐Radio Access Network)ノードアシステッドポジショニング。
《ポジショニングの分類》
AIモデルを用いたポジショニングは、以下のように分類されてもよい:
(1)UEベースドポジショニング、
(2)AI/MLアシステッドポジショニング、
(3)NG-RAN(Next Generation‐Radio Access Network)ノードアシステッドポジショニング。
(1)UEベースドポジショニングは、更に以下のように分類することができる:
(1-1)UE側モデルにおけるダイレクトAI/MLポジショニング、
(1-2)UE側モデルにおけるAI/MLアシステッドポジショニング、及びUE側アルゴリズムにおける非AIベースドポジショニング。
(1-1)UE側モデルにおけるダイレクトAI/MLポジショニング、
(1-2)UE側モデルにおけるAI/MLアシステッドポジショニング、及びUE側アルゴリズムにおける非AIベースドポジショニング。
(2)AI/MLアシステッドポジショニングは、更に以下のように分類することができる:
(2-1)UE側モデルにおけるAI/MLアシステッドポジショニング、及びLMF側アルゴリズムにおける非AIベースドポジショニング、
(2-2)LMF側モデルにおけるダイレクトAI/MLポジショニング。
(2-1)UE側モデルにおけるAI/MLアシステッドポジショニング、及びLMF側アルゴリズムにおける非AIベースドポジショニング、
(2-2)LMF側モデルにおけるダイレクトAI/MLポジショニング。
(3)NG-RANノードアシステッドポジショニングは、更に以下のように分類することができる:
(3-1)gNB側モデルにおけるAI/MLアシステッドポジショニング、及びLMF側アルゴリズムにおける非AIベースドポジショニング、
(3-2)LMF側モデルにおけるダイレクトAI/MLポジショニング。
(3-1)gNB側モデルにおけるAI/MLアシステッドポジショニング、及びLMF側アルゴリズムにおける非AIベースドポジショニング、
(3-2)LMF側モデルにおけるダイレクトAI/MLポジショニング。
《性能指標(Performance metrics)計算》
UEベースドポジショニングにおいて、UE側モデルによるダイレクトAI/MLポジショニングのためのモデルモニタリングは、以下の少なくとも1つによって行われてよい:
<1>UEにおけるパフォーマンスメトリクス計算、
<2>LMFにおけるパフォーマンスメトリクス計算。
UEベースドポジショニングにおいて、UE側モデルによるダイレクトAI/MLポジショニングのためのモデルモニタリングは、以下の少なくとも1つによって行われてよい:
<1>UEにおけるパフォーマンスメトリクス計算、
<2>LMFにおけるパフォーマンスメトリクス計算。
UEベースドポジショニングにおいて、UE側モデルによるAI/MLアシステッドポジショニングのためのモデルモニタリングは、以下の少なくとも1つによって行われてよい:
<3>UEにおけるパフォーマンスメトリクス計算、
<4>LMFにおけるパフォーマンスメトリクス計算。
<3>UEにおけるパフォーマンスメトリクス計算、
<4>LMFにおけるパフォーマンスメトリクス計算。
UEアシステッドポジショニングにおいて、UE側モデルによるAI/MLアシステッドポジショニングのためのモデルモニタリングは、以下によって行われてよい:
<5>LMFにおけるパフォーマンスメトリクス計算。
<5>LMFにおけるパフォーマンスメトリクス計算。
NG-RANノードアシステッドポジショニングにおいて、gNB側モデルによるAI/MLアシステッドポジショニングのためのモデルモニタリングは、以下の少なくとも1つによって行われてよい:
<6>gNBにおけるパフォーマンスメトリクス計算、
<7>LMFにおけるパフォーマンスメトリクス計算。
<6>gNBにおけるパフォーマンスメトリクス計算、
<7>LMFにおけるパフォーマンスメトリクス計算。
《UE側モデルによるダイレクトAI/MLポジショニングにおける性能指標計算》
上述した<1>のパフォーマンスメトリクス計算(モデルモニタリング)は、以下のステップに従って行われてよい。
・ステップ1:UEは、ノイズの多いグランドトゥルースUEポジション(UE位置に関する真実の値)を取得する。
・ステップ1´:UEは、推定UEポジションをモデル推論から取得する。
・ステップ2:UEは、モデルモニタリングのパフォーマンスメトリクスを計算する。
・ステップ3:UEは、モデルモニタリングのパフォーマンスメトリクスを報告する。
・ステップ3´:UEは、モデルのアクティベーション/ディアクティベーション/スイッチングをLMFに要求する。
・ステップ4:UEは、モデルのアクティベーション/ディアクティベーション/スイッチングの指示をLMFから受信する。
・ステップ5:UEは、モデルのアクティベーション/ディアクティベーション/スイッチングを行う。
上述した<1>のパフォーマンスメトリクス計算(モデルモニタリング)は、以下のステップに従って行われてよい。
・ステップ1:UEは、ノイズの多いグランドトゥルースUEポジション(UE位置に関する真実の値)を取得する。
・ステップ1´:UEは、推定UEポジションをモデル推論から取得する。
・ステップ2:UEは、モデルモニタリングのパフォーマンスメトリクスを計算する。
・ステップ3:UEは、モデルモニタリングのパフォーマンスメトリクスを報告する。
・ステップ3´:UEは、モデルのアクティベーション/ディアクティベーション/スイッチングをLMFに要求する。
・ステップ4:UEは、モデルのアクティベーション/ディアクティベーション/スイッチングの指示をLMFから受信する。
・ステップ5:UEは、モデルのアクティベーション/ディアクティベーション/スイッチングを行う。
上述した<2>のパフォーマンスメトリクス計算(モデルモニタリング)は、以下のステップに従って行われてよい。
・ステップ1:UEは、UEポジションをモデル推論から取得し、報告する。
・ステップ1´:LMFは、ノイズの多いグランドトゥルースUEポジション(UE位置に関する真実の値)を取得する。
・ステップ2:LMFは、モデルモニタリングのパフォーマンスメトリクスを計算する。
・ステップ3:UEは、モデルのアクティベーション/ディアクティベーション/スイッチングの指示をLMFから受信する。
・ステップ4:UEは、モデルのアクティベーション/ディアクティベーション/スイッチングを行う。
・ステップ1:UEは、UEポジションをモデル推論から取得し、報告する。
・ステップ1´:LMFは、ノイズの多いグランドトゥルースUEポジション(UE位置に関する真実の値)を取得する。
・ステップ2:LMFは、モデルモニタリングのパフォーマンスメトリクスを計算する。
・ステップ3:UEは、モデルのアクティベーション/ディアクティベーション/スイッチングの指示をLMFから受信する。
・ステップ4:UEは、モデルのアクティベーション/ディアクティベーション/スイッチングを行う。
《UE側モデルによるAI/MLアシステッドポジショニングにおける性能指標計算》
上述した<3>のパフォーマンスメトリクス計算(モデルモニタリング)は、以下のステップに従って行われてよい。
・ステップ1:UEは、ノイズの多いグランドトゥルースデータ(あるデータ(例えばUEポジション)に関する真実の値)を取得する。
・ステップ1´:UEは、推定データをモデル推論から取得する。
・ステップ2:UEは、モデルモニタリングのパフォーマンスメトリクスを計算する。
・ステップ3:UEは、モデルモニタリングのパフォーマンスメトリクスを報告する。
・ステップ3´:UEは、モデルのアクティベーション/ディアクティベーション/スイッチングをLMFに要求する。
・ステップ4:UEは、モデルのアクティベーション/ディアクティベーション/スイッチングの指示をLMFから受信する。
・ステップ5:UEは、モデルのアクティベーション/ディアクティベーション/スイッチングを行う。
上述した<3>のパフォーマンスメトリクス計算(モデルモニタリング)は、以下のステップに従って行われてよい。
・ステップ1:UEは、ノイズの多いグランドトゥルースデータ(あるデータ(例えばUEポジション)に関する真実の値)を取得する。
・ステップ1´:UEは、推定データをモデル推論から取得する。
・ステップ2:UEは、モデルモニタリングのパフォーマンスメトリクスを計算する。
・ステップ3:UEは、モデルモニタリングのパフォーマンスメトリクスを報告する。
・ステップ3´:UEは、モデルのアクティベーション/ディアクティベーション/スイッチングをLMFに要求する。
・ステップ4:UEは、モデルのアクティベーション/ディアクティベーション/スイッチングの指示をLMFから受信する。
・ステップ5:UEは、モデルのアクティベーション/ディアクティベーション/スイッチングを行う。
上述した<4>、<5>のパフォーマンスメトリクス計算(モデルモニタリング)は、以下のステップに従って行われてよい。
・ステップ1:UEは、推定データをモデル推論から取得し、報告する。
・ステップ2:LMFは、グランドトゥルースデータ(あるデータ(例えばUEポジション)に関する真実の値)を取得する。
・ステップ3:LMFは、モデルモニタリングのパフォーマンスメトリクスを計算する。
・ステップ4:UEは、モデルのアクティベーション/ディアクティベーション/スイッチングの指示をLMFから受信する。
・ステップ5:UEは、モデルのアクティベーション/ディアクティベーション/スイッチングを行う。
・ステップ1:UEは、推定データをモデル推論から取得し、報告する。
・ステップ2:LMFは、グランドトゥルースデータ(あるデータ(例えばUEポジション)に関する真実の値)を取得する。
・ステップ3:LMFは、モデルモニタリングのパフォーマンスメトリクスを計算する。
・ステップ4:UEは、モデルのアクティベーション/ディアクティベーション/スイッチングの指示をLMFから受信する。
・ステップ5:UEは、モデルのアクティベーション/ディアクティベーション/スイッチングを行う。
《gNB側モデルによるAI/MLアシステッドポジショニングにおける性能指標計算》
上述した<6>のパフォーマンスメトリクス計算(モデルモニタリング)は、以下のステップに従って行われてよい。
・ステップ1:gNBは、推定データをモデル推論から取得し、報告する。
・ステップ1´:gNBは、グランドトゥルースデータ(あるデータ(例えばUEポジション)に関する真実の値)を取得する。
・ステップ2:gNBは、モデルモニタリングのパフォーマンスメトリクスを計算する。
・ステップ3:gNBは、モデルモニタリングのパフォーマンスメトリクスを報告する。
・ステップ3´:gNBは、モデルのアクティベーション/ディアクティベーション/スイッチングをLMFに要求する。
・ステップ4:gNBは、モデルのアクティベーション/ディアクティベーション/スイッチングの指示をLMFから受信する。
・ステップ5:gNBは、モデルのアクティベーション/ディアクティベーション/スイッチングを行う。
上述した<6>のパフォーマンスメトリクス計算(モデルモニタリング)は、以下のステップに従って行われてよい。
・ステップ1:gNBは、推定データをモデル推論から取得し、報告する。
・ステップ1´:gNBは、グランドトゥルースデータ(あるデータ(例えばUEポジション)に関する真実の値)を取得する。
・ステップ2:gNBは、モデルモニタリングのパフォーマンスメトリクスを計算する。
・ステップ3:gNBは、モデルモニタリングのパフォーマンスメトリクスを報告する。
・ステップ3´:gNBは、モデルのアクティベーション/ディアクティベーション/スイッチングをLMFに要求する。
・ステップ4:gNBは、モデルのアクティベーション/ディアクティベーション/スイッチングの指示をLMFから受信する。
・ステップ5:gNBは、モデルのアクティベーション/ディアクティベーション/スイッチングを行う。
上述した<7>のパフォーマンスメトリクス計算(モデルモニタリング)は、以下のステップに従って行われてよい。
・ステップ1:gNBは、推定データをモデル推論から取得し、報告する。
・ステップ2:LMFは、グランドトゥルースデータ(あるデータ(例えばUEポジション)に関する真実の値)を取得する。
・ステップ3:LMFは、モデルモニタリングのパフォーマンスメトリクスを計算する。
・ステップ4:gNBは、モデルのアクティベーション/ディアクティベーション/スイッチングの指示をLMFから受信する。
・ステップ5:gNBは、モデルのアクティベーション/ディアクティベーション/スイッチングを行う。
・ステップ1:gNBは、推定データをモデル推論から取得し、報告する。
・ステップ2:LMFは、グランドトゥルースデータ(あるデータ(例えばUEポジション)に関する真実の値)を取得する。
・ステップ3:LMFは、モデルモニタリングのパフォーマンスメトリクスを計算する。
・ステップ4:gNBは、モデルのアクティベーション/ディアクティベーション/スイッチングの指示をLMFから受信する。
・ステップ5:gNBは、モデルのアクティベーション/ディアクティベーション/スイッチングを行う。
(問題提起)
ところで、AIモデルをポジショニングに適用する場合、モデルの監視(モニタリング)及びモデルの更新(アップデート)が重要な手順である。そこで、AIによるモデル監視及びモデル更新の仕様に対する影響について、以下の課題を検討する。
ところで、AIモデルをポジショニングに適用する場合、モデルの監視(モニタリング)及びモデルの更新(アップデート)が重要な手順である。そこで、AIによるモデル監視及びモデル更新の仕様に対する影響について、以下の課題を検討する。
<課題1>
モデルモニタリングのためのパフォーマンスメトリクス(性能指標)をどのように定義するべきか。
<課題1-1>
UE/NW(gNB又はLMF)は、モニタリングのためのパフォーマンスメトリクスをどのように認識するのか。
<課題1-2>
UEは、パフォーマンスメトリクスをどのように利用するのか。
<課題2>
UEは、いつ/どのようにモニタリングを行うのか(例えば、モニタリングのための設定、比較の基準等)。
<課題3>
モニタリング後のUE/NWの具体的な動作はどうするか(例えば、モデルの切替/更新/フォールバック動作)。
<課題4>
片側(one-sided)モデル/両側(two-sided)モデルに複数(2つ以上)のAIモデルに配置(deploy)する場合、仕様上の影響はあるのか、監視/更新の基準はあるのか。例えば、あるAIモデル(AIモデル#1とする)の出力(ToA、RSTD、RSRP、Rx-Tx時間差等、測位の中間値であってよい)を別のAIモデル(AIモデル#2とする)の入力として適用できるような共同訓練(joint training)では、AIモデル#2の性能は、AIモデル#1の出力の精度に影響される可能性がある。AIモデル#2が収束しない/良好な訓練ができない、又はテストの性能が要求を満たさない場合、共同訓練のモデルをどのように処理するのかが問題と成り得る。
モデルモニタリングのためのパフォーマンスメトリクス(性能指標)をどのように定義するべきか。
<課題1-1>
UE/NW(gNB又はLMF)は、モニタリングのためのパフォーマンスメトリクスをどのように認識するのか。
<課題1-2>
UEは、パフォーマンスメトリクスをどのように利用するのか。
<課題2>
UEは、いつ/どのようにモニタリングを行うのか(例えば、モニタリングのための設定、比較の基準等)。
<課題3>
モニタリング後のUE/NWの具体的な動作はどうするか(例えば、モデルの切替/更新/フォールバック動作)。
<課題4>
片側(one-sided)モデル/両側(two-sided)モデルに複数(2つ以上)のAIモデルに配置(deploy)する場合、仕様上の影響はあるのか、監視/更新の基準はあるのか。例えば、あるAIモデル(AIモデル#1とする)の出力(ToA、RSTD、RSRP、Rx-Tx時間差等、測位の中間値であってよい)を別のAIモデル(AIモデル#2とする)の入力として適用できるような共同訓練(joint training)では、AIモデル#2の性能は、AIモデル#1の出力の精度に影響される可能性がある。AIモデル#2が収束しない/良好な訓練ができない、又はテストの性能が要求を満たさない場合、共同訓練のモデルをどのように処理するのかが問題と成り得る。
本発明者等は、上述の問題点を鑑み、ポジショニングに関するAIモデルモニタリングの方法を着想した。
(各種読み替え等)
以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
以降の実施形態において、UEにおいて信号が到来する角度、UEにおけるAoA、基地局におけるAoAは、互いに読み替えられてもよい。本開示において、UEにおいて信号が放射される角度、UEにおけるAoD、基地局におけるAoDは、互いに読み替えられてもよい。本開示において、AoA、AoDは互いに読み替えられてもよい。本開示において、UE、基地局は互いに読み替えられてもよい。
本開示の一実施形態では、端末(terminal、ユーザ端末(user terminal)、User Equipment(UE))/基地局(Base Station(BS))は、訓練モード(training mode)においてMLモデルの訓練を行い、推論モード(inference mode、inference modeなどとも呼ばれる)においてMLモデルを実施する。推論モードでは、訓練モードにおいて訓練されたMLモデル(trained ML model)の精度の検証(バリデーション)が行われてもよい。
本開示において、オブジェクトは、例えば、端末、基地局などの装置、デバイスなどであってもよい。また、本開示において、オブジェクトは、当該装置において動作するプログラム/モデル/エンティティに該当してもよい。
本開示において、「A/B」及び「A及びBの少なくとも一方」は、互いに読み替えられてもよい。また、本開示において、「A/B/C」は、「A、B及びCの少なくとも1つ」を意味してもよい。
本開示において、アクティベート、ディアクティベート、指示(又は指定(indicate))、選択(select)、設定(configure)、更新(update)、決定(determine)などは、互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できるなどは、互いに読み替えられてもよい。
本開示において、無線リソース制御(Radio Resource Control(RRC))、RRCパラメータ、RRCメッセージ、上位レイヤパラメータ、フィールド、情報要素(Information Element(IE))、設定などは、互いに読み替えられてもよい。本開示において、Medium Access Control制御要素(MAC Control Element(CE))、更新コマンド、アクティベーション/ディアクティベーションコマンドなどは、互いに読み替えられてもよい。
本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報、測位用プロトコル(例えば、NR Positioning Protocol A(NRPPa)/LTE Positioning Protocol(LPP))メッセージなどのいずれか、又はこれらの組み合わせであってもよい。
本開示において、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
本開示において、物理レイヤシグナリングは、例えば、下りリンク制御情報(Downlink Control Information(DCI))、上りリンク制御情報(Uplink Control Information(UCI))などであってもよい。
本開示において、インデックス、識別子(Identifier(ID))、インディケーター、リソースIDなどは、互いに読み替えられてもよい。本開示において、シーケンス、リスト、セット、グループ、群、クラスター、サブセットなどは、互いに読み替えられてもよい。
本開示において、パネル、UEパネル、パネルグループ、ビーム、ビームグループ、プリコーダ、Uplink(UL)送信エンティティ、送受信ポイント(Transmission/Reception Point(TRP))、基地局、空間関係情報(Spatial Relation Information(SRI))、空間関係、SRSリソースインディケーター(SRS Resource Indicator(SRI))、制御リソースセット(COntrol REsource SET(CORESET))、Physical Downlink Shared Channel(PDSCH)、コードワード(Codeword(CW))、トランスポートブロック(Transport Block(TB))、参照信号(Reference Signal(RS))、アンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)、アンテナポートグループ(例えば、DMRSポートグループ)、グループ(例えば、空間関係グループ、符号分割多重(Code Division Multiplexing(CDM))グループ、参照信号グループ、CORESETグループ、Physical Uplink Control Channel(PUCCH)グループ、PUCCHリソースグループ)、リソース(例えば、参照信号リソース、SRSリソース)、リソースセット(例えば、参照信号リソースセット)、CORESETプール、下りリンクのTransmission Configuration Indication state(TCI状態)(DL TCI状態)、上りリンクのTCI状態(UL TCI状態)、統一されたTCI状態(unified TCI state)、共通TCI状態(common TCI state)、擬似コロケーション(Quasi-Co-Location(QCL))、QCL想定などは、互いに読み替えられてもよい。
本開示において、CSI-RS、ノンゼロパワー(Non Zero Power(NZP))CSI-RS、ゼロパワー(Zero Power(ZP))CSI-RS及びCSI干渉測定(CSI Interference Measurement(CSI-IM))は、互いに読み替えられてもよい。また、CSI-RSは、その他の参照信号を含んでもよい。
本開示において、測定/報告されるRSは、CSIレポートのために測定/報告されるRSを意味してもよい。
本開示において、タイミング、時刻、時間、スロット、サブスロット、シンボル、サブフレームなどは、互いに読み替えられてもよい。
本開示において、方向、軸、次元、ドメイン、偏波、偏波成分などは、互いに読み替えられてもよい。
本開示において、推定(estimation)、予測(prediction)、推論(inference)は、互いに読み替えられてもよい。また、本開示において、推定する(estimate)、予測する(predict)、推論する(infer)は、互いに読み替えられてもよい。
本開示において、オートエンコーダ、エンコーダ、デコーダなどは、モデル、MLモデル、ニューラルネットワークモデル、AIモデル、AIアルゴリズムなどの少なくとも1つで読み替えられてもよい。また、オートエンコーダは、積層オートエンコーダ、畳み込みオートエンコーダなど任意のオートエンコーダと互いに読み替えられてもよい。本開示のエンコーダ/デコーダは、Residual Network(ResNet)、DenseNet、RefineNetなどのモデルを採用してもよい。
本開示において、ビット、ビット列、ビット系列、系列、値、情報、ビットから得られる値、ビットから得られる情報などは、互いに読み替えられてもよい。
本開示において、(エンコーダについての)レイヤは、AIモデルにおいて利用されるレイヤ(入力層、中間層など)と互いに読み替えられてもよい。本開示のレイヤ(層)は、入力層、中間層、出力層、バッチ正規化層、畳み込み層、活性化層、デンス(dense)層、正規化層、プーリング層、アテンション層、ドロップアウト層、全結合層などの少なくとも1つに該当してもよい。
本開示において、RSRPは、受信電力/受信品質などに関する任意のパラメータ(例えば、RSRQ、SINR、CSI)などと互いに読み替えられてもよい。
(無線通信方法)
本開示において、ポジショニング(測位)は、位置決定、位置推定、位置予測等と互いに読み替えられてもよい。本開示において、KPI(重要性能指標)、パフォーマンスメトリクス(性能指標)は、互いに読み替えられてよい。本開示において、性能指標(Performance metrics)計算、モデルモニタリング、及び性能モニタリングは、互いに読み替えられてよい。
本開示において、ポジショニング(測位)は、位置決定、位置推定、位置予測等と互いに読み替えられてもよい。本開示において、KPI(重要性能指標)、パフォーマンスメトリクス(性能指標)は、互いに読み替えられてよい。本開示において、性能指標(Performance metrics)計算、モデルモニタリング、及び性能モニタリングは、互いに読み替えられてよい。
<第1の実施形態>
第1の実施形態は、モデルモニタリングのためのパフォーマンスメトリクス(性能指標)に関する。
第1の実施形態は、モデルモニタリングのためのパフォーマンスメトリクス(性能指標)に関する。
[実施形態1.0]
モデルモニタリングのためのパフォーマンスメトリクスには、以下の少なくとも1つを用いることができる:
・性能(Performance)、
・レイテンシ(Latency)、
・複雑さ(Complexity)。
モデルモニタリングのためのパフォーマンスメトリクスには、以下の少なくとも1つを用いることができる:
・性能(Performance)、
・レイテンシ(Latency)、
・複雑さ(Complexity)。
性能(Performance)には、以下の少なくとも1つが含まれてよい:
・AI/MLベースドポジショニングの水平精度(Horizontal accuracy)(メートル)、
・AI/MLベースドポジショニングの垂直精度(Vertical accuracy)(メートル)、
・AI/MLベースドポジショニングの中間特徴精度(Accuracy of intermediate feature)。
・AI/MLベースドポジショニングの水平精度(Horizontal accuracy)(メートル)、
・AI/MLベースドポジショニングの垂直精度(Vertical accuracy)(メートル)、
・AI/MLベースドポジショニングの中間特徴精度(Accuracy of intermediate feature)。
水平精度は、計算されたUEの水平位置と実際のUEの水平位置との差を示してよい。例えば、水平精度は、90%のUEにおいて0.2m未満であってよい。
垂直精度は、計算されたUEの垂直位置と実際のUEの垂直位置との差を示してよい。例えば、垂直精度は、90%のUEにおいて1m未満であってよい。
中間特徴精度は、推論された中間値(inferenced intermediate value)と実際のUE位置に基づいて導出された中間値との差を示してよい。中間特徴精度は、例えばLOS/NLOSインジケーターの精度(エラー率%)、ToA(ミリ秒)、AoA(度)、RSTD(ミリ秒)、RSRP(dBm)等のうちの少なくとも1つで示されてよい。
レイテンシ(Latency)には、以下の少なくとも1つが含まれてよい:
・物理レイヤのレイテンシ(ミリ秒)、
・エンドツーエンドのレイテンシ(ミリ秒)。
・物理レイヤのレイテンシ(ミリ秒)、
・エンドツーエンドのレイテンシ(ミリ秒)。
ポジショニング手順におけるレイテンシは、例えば図7に示す図に従って定義されてもよい。図7は、第1の実施形態に係る物理レイヤのレイテンシにおける開始時間/終了時間の一例を示す図である。図7に示すように、物理レイヤのレイテンシは、ポジショニングの方式に応じて個別に定義されてよい。
例えば、UEベースドポジショニングの場合、開始時間は、MGリクエストを含むPUSCHをUEが送信するタイミング(Alt1)、アシスタンスデータを含むLPPメッセージをgNBがPDSCHを用いて送信するタイミング(Alt2)、UEがDL PRSの受信を開始するタイミング(Alt3)、のいずれかであってよい。また、この場合の終了時間は、LPP Provide Location Information(LPP提供位置情報)メッセージを含むPUSCHをgNBが復号に成功したタイミング、成功しない場合はUEが位置推定計算を行うタイミングであってよい。
UEアシステッドポジショニング/LMFベースドポジショニングの場合、開始時間は、LPP Request Location Information(LPP要求位置情報)メッセージを含むPDSCHをgNBが送信するタイミングであってよい。また、この場合の終了時間は、LPP Provide Location Informationメッセージを含むPUSCHをgNBが復号に成功したタイミングであってよい。
NG-RANノードアシステッドポジショニングの場合、開始時間は、NRPPa測定要求メッセージをgNBが受信したタイミングであってよい。また、この場合の終了時間は、NRPPa測定応答メッセージをgNBが送信したタイミングであってよい。
また、AIモデルのレイテンシにおいては、図7の例に限らず、例えばモデル推論の入力をUE/NWが受信したタイミングを開始時間としてもよく、AIモデルの出力をNW/UEが受信したタイミングを終了時間としてもよい。
エンドツーエンドのレイテンシは、UEの位置推定(estimation)のためのレイテンシであってもよい。
また、レイテンシには、他のレイテンシとして上位レイヤのレイテンシが含まれてもよい。当該レイテンシには、関係するさまざまなノード(UE、gNB、AMF、LMF等)の処理遅延(processing delays)及びノード間の信号遅延(signalling delays)が含まれてよい。また上述した各レイテンシの定義は、Rel.17の定義に従ってもよい。
複雑さ(Complexity)は、モデル推論の計算複雑さ(浮動小数点演算(floating point operations(FLOPs)))で定義されてもよい。また、AIモデルの複雑さは、例えばモデルのデータサイズ(Mbyte)、AIモデルに関連するパラメータの数で定義されてもよい。
[実施形態1.1]
実施形態1.1は、パフォーマンスメトリクスの指示(通知)方法に関する。
実施形態1.1は、パフォーマンスメトリクスの指示(通知)方法に関する。
パフォーマンスメトリクスは、AIモデルをデプロイ(配備/適用)するUE/gNBに対して指示されてもよい。
<選択肢1.1.1>
NW(gNB/LMF)は、LPP/MAC CE/DCI/RRC/NRPPa等のシグナリングを介してパフォーマンスメトリクスを通知してもよい。
NW(gNB/LMF)は、LPP/MAC CE/DCI/RRC/NRPPa等のシグナリングを介してパフォーマンスメトリクスを通知してもよい。
<選択肢1.1.2>
UE/NWは、予め定義された規則に基づいてパフォーマンスメトリクスを通知してもよい。
UE/NWは、予め定義された規則に基づいてパフォーマンスメトリクスを通知してもよい。
<バリエーション>
AIベースドポジショニングにおけるLCM全体では、UEとLMF間のLPPによる信号交換と、gNBとLMF間のNRPPaによる信号交換が含まれてもよい。
AIベースドポジショニングにおけるLCM全体では、UEとLMF間のLPPによる信号交換と、gNBとLMF間のNRPPaによる信号交換が含まれてもよい。
[実施形態1.2]
実施形態1.2は、パフォーマンスメトリクスの精度(accuracy)等に関する。
実施形態1.2は、パフォーマンスメトリクスの精度(accuracy)等に関する。
[実施形態1.2.1]
上述した水平精度/垂直精度は、以下の選択肢の少なくとも1つに基づいて定義されてよい。
上述した水平精度/垂直精度は、以下の選択肢の少なくとも1つに基づいて定義されてよい。
<選択肢1.2.1.1>
・水平位置/垂直位置に関連するワンショット推論値(one-shot inferenced value)とUE/PRUにおける実際の水平位置/垂直位置との測地距離(geodesic distance)の差。
・水平位置/垂直位置に関連するワンショット推論値(one-shot inferenced value)とUE/PRUにおける実際の水平位置/垂直位置との測地距離(geodesic distance)の差。
<選択肢1.2.1.2>
・ある一定の継続時間(certain time duration)内における水平位置/垂直位置に関連する推論値とUE/PRUにおける実際の水平位置/垂直位置との測地距離の差の平均値。
・ある一定の継続時間(certain time duration)内における水平位置/垂直位置に関連する推論値とUE/PRUにおける実際の水平位置/垂直位置との測地距離の差の平均値。
<選択肢1.2.1.2>において、ある一定の継続時間は、以下の規則の少なくとも1つに基づいて決定されてよい:
・予め定義された規則による、
・LPP/MAC CE/DCI/RRC/NRPPa等のシグナリングを介してNWがUE/gNBに指示することによる、
・NW/UEの実装次第による(例えば、ある時間単位でモニタリングを継続する)。
・予め定義された規則による、
・LPP/MAC CE/DCI/RRC/NRPPa等のシグナリングを介してNWがUE/gNBに指示することによる、
・NW/UEの実装次第による(例えば、ある時間単位でモニタリングを継続する)。
UEは、LPP/MAC CE/DCI/RRC/NRPPa等のシグナリングを介して実際の水平位置/垂直位置をNWに報告してもよい。
PRUの実際の水平位置/垂直位置はNWに認識され、NW/PRUは、LPP/MAC CE/DCI/RRC/NRPPa等のシグナリングを介して当該水平位置/垂直位置をUE/gNBに指示することができる。
バリエーションとして、UEは、Global Navigation Satellite System(GNSS)の能力を有することが好ましい。
他のバリエーションとして、上述したUE/PRUは、AIモデルの推論/モニタリングに常に関与し、実際の位置情報を常に提供できる監視装置(monitoring device)として定義されてもよい。
[実施形態1.2.2]
上述した中間特徴精度(Accuracy of intermediate feature)は、以下の選択肢の少なくとも1つに基づいて定義されてよい。
上述した中間特徴精度(Accuracy of intermediate feature)は、以下の選択肢の少なくとも1つに基づいて定義されてよい。
<選択肢1.2.2.1>
・グランドトゥルースデータと比較した推論情報の時間差(ミリ秒)。ここで、推論情報は、ある時点(ワンショット)又はある時間の平均値であってもよい(上述したある一定の継続時間(certain time duration)であってもよい)。グランドトゥルースデータは、UEの実際の位置から取得されてもよい。これにより、UEの実際の位置を再利用することができる。当該選択肢は、中間値がToA、RSTD、Rx-Tx時間差などの場合に適用されてもよい。グランドトゥルースデータは推定や予測をする値の真値/真値に近い値/信頼性が高い予測値としてもよい。また、グランドトゥルースデータとして扱うデータに真値からの誤差が想定される場合に、ノイジーグランドトゥルースデータと呼んでもよい。
・グランドトゥルースデータと比較した推論情報の時間差(ミリ秒)。ここで、推論情報は、ある時点(ワンショット)又はある時間の平均値であってもよい(上述したある一定の継続時間(certain time duration)であってもよい)。グランドトゥルースデータは、UEの実際の位置から取得されてもよい。これにより、UEの実際の位置を再利用することができる。当該選択肢は、中間値がToA、RSTD、Rx-Tx時間差などの場合に適用されてもよい。グランドトゥルースデータは推定や予測をする値の真値/真値に近い値/信頼性が高い予測値としてもよい。また、グランドトゥルースデータとして扱うデータに真値からの誤差が想定される場合に、ノイジーグランドトゥルースデータと呼んでもよい。
<選択肢1.2.2.2>
・グランドトゥルースデータと比較した推論情報の角度差(度)。当該選択肢は、中間値がAoA、AoD、予想AoA/AoDなどの場合に適用されてもよい。
・グランドトゥルースデータと比較した推論情報の角度差(度)。当該選択肢は、中間値がAoA、AoD、予想AoA/AoDなどの場合に適用されてもよい。
<選択肢1.2.2.3>
・グランドトゥルースデータと比較した推論情報の電力差(dBm)。当該選択肢は、中間値がRSRP、RSRQ、RSS、RSRPPなどの場合に適用されてもよい。
・グランドトゥルースデータと比較した推論情報の電力差(dBm)。当該選択肢は、中間値がRSRP、RSRQ、RSS、RSRPPなどの場合に適用されてもよい。
<選択肢1.2.2.4>
・グランドトゥルースデータと比較した推論情報の精度(%)。当該選択肢は、中間値がハード値/バイナリ指示を含むLOS/NLOS指示の場合に適用されてもよい。
・グランドトゥルースデータと比較した推論情報の精度(%)。当該選択肢は、中間値がハード値/バイナリ指示を含むLOS/NLOS指示の場合に適用されてもよい。
<選択肢1.2.2.5>
・グランドトゥルースデータと比較した推論情報の確率又は確率の差(%)。当該選択肢は、中間値がソフト値/パーセント指示を含むLOS/NLOS指示の場合に適用されてもよい。
・グランドトゥルースデータと比較した推論情報の確率又は確率の差(%)。当該選択肢は、中間値がソフト値/パーセント指示を含むLOS/NLOS指示の場合に適用されてもよい。
<バリエーション>
上述の中間値は、実測値に限らず尤度(ToA/AoA/RSRPの確率分布など)であってもよい。例えば、AIモデルの出力は、X%がNミリ秒を満たすToAの確率分布であってもよい。この場合、出力の要件としてX%がNミリ秒を満たすと定義することができる。なお、パフォーマンスメトリクスを確率で定義する場合、X≧X0であればオペレーションは不要としてもよい。また、パフォーマンスメトリクスを確率の差で定義した場合、X0-X≦閾値であればオペレーションは不要としてもよい。
上述の中間値は、実測値に限らず尤度(ToA/AoA/RSRPの確率分布など)であってもよい。例えば、AIモデルの出力は、X%がNミリ秒を満たすToAの確率分布であってもよい。この場合、出力の要件としてX%がNミリ秒を満たすと定義することができる。なお、パフォーマンスメトリクスを確率で定義する場合、X≧X0であればオペレーションは不要としてもよい。また、パフォーマンスメトリクスを確率の差で定義した場合、X0-X≦閾値であればオペレーションは不要としてもよい。
また、上述のように計算されるポジショニングに関する推定精度(水平精度/垂直精度/中間特徴精度)の他に、これらの推定精度の信頼性も計算/推定されてよい。
UEは、GNSSの能力、GNSSから取得できる位置に基づいて中間値を導き出す能力を有してもよい。
上述の各選択肢は組み合わせて適用されてもよい。
[実施形態1.3]
実施形態1.3は、パフォーマンスメトリクスの性能(Performance)に関する。
実施形態1.3は、パフォーマンスメトリクスの性能(Performance)に関する。
パフォーマンスメトリクスを適用する性能は、以下の少なくとも1つで表されてよい:
・UE/NW側におけるモデルモニタリングに適用可能な単一の実測値(ある時点(ワンショット)の出力値、又はある時間の平均値であってもよい)の性能、
・UE/NW側におけるモデルモニタリングに適用可能な複数の値に対応する累積分布関数(Cumulative Distribution Function(CDF)パーセンテージの性能。
・UE/NW側におけるモデルモニタリングに適用可能な単一の実測値(ある時点(ワンショット)の出力値、又はある時間の平均値であってもよい)の性能、
・UE/NW側におけるモデルモニタリングに適用可能な複数の値に対応する累積分布関数(Cumulative Distribution Function(CDF)パーセンテージの性能。
上述の値(value)は、以下の少なくとも1つであってもよい:
・複数のAIモデル(同一または異なるUEに対応する)のある時点(ワンショット)の出力値、または複数のAIモデルに関連付く時間内における1つのAIモデルの出力値の平均値、
・ある時間において1つのAIモデルの出力に対応する複数の値。
・複数のAIモデル(同一または異なるUEに対応する)のある時点(ワンショット)の出力値、または複数のAIモデルに関連付く時間内における1つのAIモデルの出力値の平均値、
・ある時間において1つのAIモデルの出力に対応する複数の値。
上述のような値を取り得ることにより、小さなの影響を低減しつつ、頻繁な操作(例えばモデルの更新/切替/フォールバック)を回避できる。また、単一UE以外のシステムから見たモデルモニタリングを適切に実現することができる。
また、上述の値は、ある時間モニタリングした値のX%の値であってもよい。ここで、ある時間、及びXは、以下の少なくとも1つに基づいて決定されてもよい:
・予め定義された規則による、
・LPP/MAC CE/DCI/RRC/NRPPa等のシグナリングを介してNWがUE/gNBに指示することによる、
・NW/UEの実装次第による(例えば、ある時間単位でモニタリングを継続する)。
・予め定義された規則による、
・LPP/MAC CE/DCI/RRC/NRPPa等のシグナリングを介してNWがUE/gNBに指示することによる、
・NW/UEの実装次第による(例えば、ある時間単位でモニタリングを継続する)。
パフォーマンスメトリクスの要件は、予め定義されてもよく、NWによって設定されてもよい。例えば、Rel.17のポジショニングの要件を再利用し、AIベースドポジショニングの結果に基づいて各種要件が決定されてもよい。本開示において、パフォーマンスメトリクスの要件は、パフォーマンスメトリクスの適用可否に関する要件、モデルモニタリングの要件、などと読み替えられてよい。
第1の実施形態によれば、パフォーマンスメトリクスを適切に定義/指示することができる。
<第2の実施形態>
第2の実施形態は、モデルモニタリング/パフォーマンスメトリクス(性能指標)の適用に関する。本開示において、モニタリング情報、AIモデルの出力情報は、互いに読み替えられてよい。
第2の実施形態は、モデルモニタリング/パフォーマンスメトリクス(性能指標)の適用に関する。本開示において、モニタリング情報、AIモデルの出力情報は、互いに読み替えられてよい。
[実施形態2.1]
実施形態2.1は、UE側におけるパフォーマンスメトリクスの適用に関する。
実施形態2.1は、UE側におけるパフォーマンスメトリクスの適用に関する。
NW/UE側でモデル推論を行う場合、UEは、パフォーマンスメトリクスの要件を満たすかどうかを判断してもよい。
UEは、LPP/MAC CE/DCI/RRC/NRPPa等のシグナリングを介して、以下のモニタリング情報の少なくとも1つをNWに報告してもよい:
・モニタされるAIモデルの出力情報の精度、
・推論された水平位置/垂直位置と実際の水平位置/垂直位置との差、
・推論された出力(ToA、AoA、RSTD、RSRP等)と実際の位置から得られる(ToA、AoA、RSTD、RSRP等)との差、
・レイテンシの差、
・AIモデルとレイテンシーの複雑さ、要件される複雑さ)、
・パフォーマンスメトリクスの要件を満たすかどうかを示すバイナリ指標(indicator)、
・計算される推定精度(水平精度/垂直精度/中間特徴精度)、
・当該推定精度の信頼性(値)に関する情報。
・モニタされるAIモデルの出力情報の精度、
・推論された水平位置/垂直位置と実際の水平位置/垂直位置との差、
・推論された出力(ToA、AoA、RSTD、RSRP等)と実際の位置から得られる(ToA、AoA、RSTD、RSRP等)との差、
・レイテンシの差、
・AIモデルとレイテンシーの複雑さ、要件される複雑さ)、
・パフォーマンスメトリクスの要件を満たすかどうかを示すバイナリ指標(indicator)、
・計算される推定精度(水平精度/垂直精度/中間特徴精度)、
・当該推定精度の信頼性(値)に関する情報。
また、上述したモニタリング情報は、以下の選択肢の少なくとも1つに基づいて報告されてもよい:
<選択肢1>
・複数ある条件のうち、いくつかの条件が満たされた場合(例えば、パフォーマンスメトリクスがある特定の要件を満たさない場合)、
<選択肢2>
・モニタリング後、常に報告する(無条件に報告する)、
<選択肢3>
・設定/NW指示に基づいて報告する(例えば、定期的、半永久的、非定期的)。
<選択肢1>
・複数ある条件のうち、いくつかの条件が満たされた場合(例えば、パフォーマンスメトリクスがある特定の要件を満たさない場合)、
<選択肢2>
・モニタリング後、常に報告する(無条件に報告する)、
<選択肢3>
・設定/NW指示に基づいて報告する(例えば、定期的、半永久的、非定期的)。
[実施形態2.2]
実施形態2.2は、gNB側におけるパフォーマンスメトリクスの適用に関する。
実施形態2.2は、gNB側におけるパフォーマンスメトリクスの適用に関する。
UE/gNB/LMF側でモデル推論を行う場合、gNBは、パフォーマンスメトリクスの要件を満たすかどうかを判断してもよい。
UE/LMFは、LPP/MAC CE/DCI/RRC/NRPPa等のシグナリングを介して、以下のAIモデルの出力情報の少なくとも1つをgNB/LMFに報告してもよい。このとき、UEは、LMFを介してgNBへ報告してもよい:
・推論されたUE座標、
・推論されたToA、
・推論されたLOS/NLOSインディケーター、
・推論されたAoA、RSTD、RSRP、
・AIモデルの複雑さ、
・レイテンシ。
・推論されたUE座標、
・推論されたToA、
・推論されたLOS/NLOSインディケーター、
・推論されたAoA、RSTD、RSRP、
・AIモデルの複雑さ、
・レイテンシ。
UEから報告された情報/LMFから指示された情報と実際の情報とを比較した後、gNBは、LPP/MAC CE/DCI/RRC/NRPPa等のシグナリングを介して、上述したモニタリング情報(UE側の情報)の少なくとも1つをUE/LMFに指示してもよい。
[実施形態2.3]
実施形態2.3は、LMF側におけるパフォーマンスメトリクスの適用に関する。
実施形態2.3は、LMF側におけるパフォーマンスメトリクスの適用に関する。
UE/gNB/LMF側でモデル推論を行う場合、LMFは、パフォーマンスメトリクスの要件を満たすかどうかを判断してもよい。
UE/gNBは、LPP/MAC CE/DCI/RRC/NRPPa等のシグナリングを介して、以下のAIモデルの出力情報の少なくとも1つをNWに報告してもよい:
・推論されたUE座標、
・推論されたToA、
・推論されたLOS/NLOSインディケーター、
・推論されたAoA、RSTD、RSRP、
・AIモデルの複雑さ、
・レイテンシ。
・推論されたUE座標、
・推論されたToA、
・推論されたLOS/NLOSインディケーター、
・推論されたAoA、RSTD、RSRP、
・AIモデルの複雑さ、
・レイテンシ。
UE/gNBから報告された情報と実際の情報とを比較した後、LMFは、LPP/MAC CE/DCI/RRC/NRPPa等のシグナリングを介して、上述したモニタリング情報(UE側の情報)の少なくとも1つをUE/gNBに指示してもよい。
上述した実施形態2.1-2.3において、モデルモニタリング及びモデル推論は、同じエンティティ(UE/gNB/LMF)で行われることが好ましい。
第2の実施形態によれば、モデルモニタリングを適切に行うことができる。
<第3の実施形態>
第3の実施形態は、モデルモニタリング後の動作に関する。
第3の実施形態は、モデルモニタリング後の動作に関する。
[実施形態3.0]
UEは、モデルモニタリング後に以下の選択肢の少なくとも1つの動作を行うことができる:
<選択肢1>
・UEは、モデルの切替/更新(微調整(fine-tuning)、再訓練(re-training))/フォールバックを実行することができる。UEは、これらの動作を実行する場合、実行する動作をgNB/LMFに報告してもよい。
<選択肢2>
・UEは、今後の動作(upcoming operations)に関するリクエストをgNB/LMFに送信してもよい。
UEは、モデルモニタリング後に以下の選択肢の少なくとも1つの動作を行うことができる:
<選択肢1>
・UEは、モデルの切替/更新(微調整(fine-tuning)、再訓練(re-training))/フォールバックを実行することができる。UEは、これらの動作を実行する場合、実行する動作をgNB/LMFに報告してもよい。
<選択肢2>
・UEは、今後の動作(upcoming operations)に関するリクエストをgNB/LMFに送信してもよい。
gNBは、モデルモニタリング後に以下の選択肢の少なくとも1つの動作を行うことができる:
<選択肢1>
・gNBは、モデルの切替/更新(微調整(fine-tuning)、再訓練(re-training))/フォールバックを実行することができる。
<選択肢2>
・gNBは、予想される動作(expected operations)をUE/LMFに指示してもよい。
<選択肢1>
・gNBは、モデルの切替/更新(微調整(fine-tuning)、再訓練(re-training))/フォールバックを実行することができる。
<選択肢2>
・gNBは、予想される動作(expected operations)をUE/LMFに指示してもよい。
[実施形態3.1]
実施形態3.1では、上述した実施形態3.0で示される動作(特定の動作)の実行をUEがどのように決定するかについて説明する。実施形態3.1.1-3.1.3では、当該動作の決定方法のバリエーションを説明する。
実施形態3.1では、上述した実施形態3.0で示される動作(特定の動作)の実行をUEがどのように決定するかについて説明する。実施形態3.1.1-3.1.3では、当該動作の決定方法のバリエーションを説明する。
[実施形態3.1.1]
NW/UE側でモデルモニタリングが行われている場合、UEは、NWからの情報に基づいて、モニタリング後の特定の動作の実行可否を決定してもよい。NWは、例えばNW側でモデルモニタリングを行う場合、LPP/MAC CE/DCI/RRC/NRPPa等のシグナリングを介して、上述したモニタリング情報をUEに示してもよい。当該モニタリング情報には、ある特定の動作を行うためのモニタリング情報の閾値が含まれてもよい。すなわち、UEは、これらのモニタリング情報に基づいて特定の動作を決定してもよい。
NW/UE側でモデルモニタリングが行われている場合、UEは、NWからの情報に基づいて、モニタリング後の特定の動作の実行可否を決定してもよい。NWは、例えばNW側でモデルモニタリングを行う場合、LPP/MAC CE/DCI/RRC/NRPPa等のシグナリングを介して、上述したモニタリング情報をUEに示してもよい。当該モニタリング情報には、ある特定の動作を行うためのモニタリング情報の閾値が含まれてもよい。すなわち、UEは、これらのモニタリング情報に基づいて特定の動作を決定してもよい。
UEは、上記のモニタリング情報に基づいて特定の動作を決定した場合、LPP/MAC CE/DCI/RRC/NRPPa等のシグナリングを介して、当該特定の動作を行うこと/行ったことをNWに報告してもよい。
[実施形態3.1.2]
NW/UE側でモデルモニタリングが行われている場合、UEは、モニタリング後に特定の動作を実行するかどうか、またはどのように実行するかを認識し、gNB/NWにその要求を送信してもよい。NWは、[実施形態3.1.1]と同様に、モニタリング情報をUEに示してもよい。
NW/UE側でモデルモニタリングが行われている場合、UEは、モニタリング後に特定の動作を実行するかどうか、またはどのように実行するかを認識し、gNB/NWにその要求を送信してもよい。NWは、[実施形態3.1.1]と同様に、モニタリング情報をUEに示してもよい。
UEは、LPP/MAC CE/DCI/RRC/NRPPa等のシグナリングを介して、以下の情報を含む要求(リクエスト)をNWに送信してもよい:
・モデルの切替/更新/フォールバック動作を要求するための1ビットのインジケータ、
・ダイレクトAIポジショニング、AIアシステッドポジショニング等の出力を伴うAIモデルに関し、切替の対象となるAIモデルの要求される機能(required functionality)、
・パフォーマンスメトリクスの要件を満たすことができないモニタリング対象のAIモデルID、
・切替を要求するAIモデルID、
・更新が必要とされるAIモデルにおけるパラメータ(unqualified parameters)、
・AIモデルの訓練/更新(ファインチューニング)に使用されるデータセット、
・あるフォールバックスキームを適用するためのタイミング情報(例えばタイムスタンプ)(あるフォールバックスキームは、ある設定されたポジショニング方式であってよい)、
・望まれる/要求されるPRS設定、望まれる/要求されるモデルの入力値(例えば、 PRSポート数、マルチパス情報)。
・モデルの切替/更新/フォールバック動作を要求するための1ビットのインジケータ、
・ダイレクトAIポジショニング、AIアシステッドポジショニング等の出力を伴うAIモデルに関し、切替の対象となるAIモデルの要求される機能(required functionality)、
・パフォーマンスメトリクスの要件を満たすことができないモニタリング対象のAIモデルID、
・切替を要求するAIモデルID、
・更新が必要とされるAIモデルにおけるパラメータ(unqualified parameters)、
・AIモデルの訓練/更新(ファインチューニング)に使用されるデータセット、
・あるフォールバックスキームを適用するためのタイミング情報(例えばタイムスタンプ)(あるフォールバックスキームは、ある設定されたポジショニング方式であってよい)、
・望まれる/要求されるPRS設定、望まれる/要求されるモデルの入力値(例えば、 PRSポート数、マルチパス情報)。
[実施形態3.1.3]
NW/UE側でモデルモニタリングが行われている場合、UEは、NWからの指示を受信した後、モニタリング後の動作を決定してもよい。
NW/UE側でモデルモニタリングが行われている場合、UEは、NWからの指示を受信した後、モニタリング後の動作を決定してもよい。
UEは、LPP/MAC CE/DCI/RRC/NRPPa等のシグナリングを介して、以下の情報を含む報告をNWに送信してもよい:
・モニタリング対象のAIモデルのうち、更新が必要なモニタされるAIモデルID、
・切替可能なAIモデルID、
・更新が必要とされるAIモデルにおけるパラメータ(unqualified parameters)、
・AIモデルの訓練/更新(微調整)に使用されるデータセット、
・あるフォールバックスキームを適用するためのタイミング情報(例えばタイムスタンプ)(あるフォールバックスキームは、ある設定されたポジショニング方式であってよい)、
・更新後のAIモデルの入力情報(PRSポート数、マルチパス情報など)、
・望まれる/要求されるPRS設定、望まれる/要求されるモデルの入力値(例えば、 PRSポート数、マルチパス情報)。
・モニタリング対象のAIモデルのうち、更新が必要なモニタされるAIモデルID、
・切替可能なAIモデルID、
・更新が必要とされるAIモデルにおけるパラメータ(unqualified parameters)、
・AIモデルの訓練/更新(微調整)に使用されるデータセット、
・あるフォールバックスキームを適用するためのタイミング情報(例えばタイムスタンプ)(あるフォールバックスキームは、ある設定されたポジショニング方式であってよい)、
・更新後のAIモデルの入力情報(PRSポート数、マルチパス情報など)、
・望まれる/要求されるPRS設定、望まれる/要求されるモデルの入力値(例えば、 PRSポート数、マルチパス情報)。
[実施形態3.2]
実施形態3.2では、上述した実施形態3.0で示される動作(特定の動作)の実行をNW(gNB/LMF)がどのように決定するかについて説明する。実施形態3.2.1-3.2.3では、当該動作の決定方法のバリエーションを説明する。
実施形態3.2では、上述した実施形態3.0で示される動作(特定の動作)の実行をNW(gNB/LMF)がどのように決定するかについて説明する。実施形態3.2.1-3.2.3では、当該動作の決定方法のバリエーションを説明する。
[実施形態3.2.1]
UE/gNB/LMF側でモデルモニタリングが行われている場合、NWは、モニタリング後の特定の動作の実行可否を決定してもよい。UE/gNBは、UE/gNB側でモデルモニタリングを行う場合、LPP/MAC CE/DCI/RRC/NRPPa等のシグナリングを介して、上述したモニタリング情報をNWに報告してもよい。
UE/gNB/LMF側でモデルモニタリングが行われている場合、NWは、モニタリング後の特定の動作の実行可否を決定してもよい。UE/gNBは、UE/gNB側でモデルモニタリングを行う場合、LPP/MAC CE/DCI/RRC/NRPPa等のシグナリングを介して、上述したモニタリング情報をNWに報告してもよい。
[実施形態3.2.2]
UE/gNB/LMF側でモデルモニタリングが行われている場合、NWは、モニタリング後に特定の動作を実行するかどうかを認識し、UEに指示してもよい。UE/gNBは、[実施形態3.2.1]と同様に、モニタリング情報をNWに報告してもよい。
UE/gNB/LMF側でモデルモニタリングが行われている場合、NWは、モニタリング後に特定の動作を実行するかどうかを認識し、UEに指示してもよい。UE/gNBは、[実施形態3.2.1]と同様に、モニタリング情報をNWに報告してもよい。
NWは、LPP/MAC CE/DCI/RRC/NRPPa等のシグナリングを介して、以下の情報を含む指示をUE/gNBに送信してもよい:
・モデルの切替/更新/フォールバック動作を要求するための1ビットのインジケータ、
・ダイレクトAIポジショニング、AIアシステッドポジショニング等の出力を伴うAIモデルに関し、切替の対象となるAIモデルの要求される機能(required functionality)、
・パフォーマンスメトリクスの要件を満たすことができないモニタリング対象のAIモデルID、
・NWが切替を指示/要求するAIモデルID、
・更新が必要とされるAIモデルにおけるパラメータ(unqualified parameters)、
・AIモデルの訓練/更新(微調整)に使用されるデータセット、
・あるフォールバックスキームを適用するためのタイミング情報(例えばタイムスタンプ)(あるフォールバックスキームは、ある設定されたポジショニング方式、又は共同で指示された特定のポジショニング方式であってよい)、
・更新されるPRS設定、更新されるモデルの入力値(例えば、 PRSポート数、マルチパス情報)。
・モデルの切替/更新/フォールバック動作を要求するための1ビットのインジケータ、
・ダイレクトAIポジショニング、AIアシステッドポジショニング等の出力を伴うAIモデルに関し、切替の対象となるAIモデルの要求される機能(required functionality)、
・パフォーマンスメトリクスの要件を満たすことができないモニタリング対象のAIモデルID、
・NWが切替を指示/要求するAIモデルID、
・更新が必要とされるAIモデルにおけるパラメータ(unqualified parameters)、
・AIモデルの訓練/更新(微調整)に使用されるデータセット、
・あるフォールバックスキームを適用するためのタイミング情報(例えばタイムスタンプ)(あるフォールバックスキームは、ある設定されたポジショニング方式、又は共同で指示された特定のポジショニング方式であってよい)、
・更新されるPRS設定、更新されるモデルの入力値(例えば、 PRSポート数、マルチパス情報)。
[実施形態3.2.3]
UE/gNB/LMF側でモデルモニタリングが行われている場合、NWは、UEからの要求を受信した後、モニタリング後の動作を決定してもよい。
UE/gNB/LMF側でモデルモニタリングが行われている場合、NWは、UEからの要求を受信した後、モニタリング後の動作を決定してもよい。
NWは、LPP/MAC CE/DCI/RRC/NRPPa等のシグナリングを介して、以下の情報を含む指示をUEに送信してもよい:
・更新が必要なモニタされるAIモデルID、
・切替可能なAIモデルID、
・更新が必要とされるAIモデルにおけるパラメータ(unqualified parameters)、
・AIモデルの訓練/更新(微調整)に使用されるデータセット、
・あるフォールバックスキームを適用するためのタイミング情報(例えばタイムスタンプ)(あるフォールバックスキームは、ある設定されたポジショニング方式、又は共同で指示された特定のポジショニング方式であってよい)、
・新たに設定されたPRSポートの数、
・更新後のAIモデルの入力情報(PRSポート数、マルチパス情報など)。
・更新が必要なモニタされるAIモデルID、
・切替可能なAIモデルID、
・更新が必要とされるAIモデルにおけるパラメータ(unqualified parameters)、
・AIモデルの訓練/更新(微調整)に使用されるデータセット、
・あるフォールバックスキームを適用するためのタイミング情報(例えばタイムスタンプ)(あるフォールバックスキームは、ある設定されたポジショニング方式、又は共同で指示された特定のポジショニング方式であってよい)、
・新たに設定されたPRSポートの数、
・更新後のAIモデルの入力情報(PRSポート数、マルチパス情報など)。
第3の実施形態によれば、モデルモニタリング後の動作を適切に制御することができる。
<第4の実施形態>
第4の実施形態は、片側(one-sided)モデル/両側(two-sided)モデルがデプロイ(配備)される場合のUE動作(UE behavior)に関する。本開示において、特定の要件は、上述したパフォーマンスメトリクスの要件、モデルモニタリングの要件、などと読み替えられてよい。
第4の実施形態は、片側(one-sided)モデル/両側(two-sided)モデルがデプロイ(配備)される場合のUE動作(UE behavior)に関する。本開示において、特定の要件は、上述したパフォーマンスメトリクスの要件、モデルモニタリングの要件、などと読み替えられてよい。
片側モデルにおいて、複数のコヒーレントAIモデル/ペアのAIモデルがデプロイされている場合、又は両側モデルが適用されている場合、モニタリングする/対応するUEの動作は、以下の選択肢4-1~4-3の少なくとも1つに従うことができる。
ここで、AIベースドポジショニングにおいて同一/異なる側に複数のAIモデルがデプロイされている場合、1つ又は複数のAIモデルの出力が他のAIモデルの出力によって影響を受け得るのであれば、そのAIモデルは、コヒーレントAIモデル/ペアのAIモデルとみなされてもよい。
また、上述の「対応するUEの動作」は、第3の実施形態で説明したAIモデルの切替/更新/フォールバック動作、UEからの今後の動作(upcoming operations)に関するリクエスト等、を意味してよい。
<選択肢4-1>
複数のAIモデルのうち1つまたは複数が特定の要件を満たさない場合、UEは、そのAIモデルのモニタリング情報を報告/指示し、該当するAIモデルを更新してもよい。
複数のAIモデルのうち1つまたは複数が特定の要件を満たさない場合、UEは、そのAIモデルのモニタリング情報を報告/指示し、該当するAIモデルを更新してもよい。
<選択肢4-2>
ある1つのAIモデルが特定の要件を満たさない場合、UEは、モニタリング手順を中断してもよい。また、この場合、UEは、当該AIモデルのモニタリング情報を報告/指示し、すべてのコヒーレントAIモデル/ペアのAIモデルを更新してもよい。
ある1つのAIモデルが特定の要件を満たさない場合、UEは、モニタリング手順を中断してもよい。また、この場合、UEは、当該AIモデルのモニタリング情報を報告/指示し、すべてのコヒーレントAIモデル/ペアのAIモデルを更新してもよい。
例えば、1つまたは複数のAIモデルの出力がUE座標である場合、それが特定の要件を満たさないのであれば、中間値を出力する他のAIモデルにおいて当該特定の要件を満たしさえすれば、UEは、特定の要件を満たさない前記AIモデルのモニタリング手順を中断し、特定の要件を満たす前記他のモデルのモニタリング情報を報告/指示してもよい。この場合、すべてのコヒーレントAIモデル/ペアのAIモデルに対応するUE動作が行われてよい。
<選択肢4-3>
ある1つのAIモデルが特定の要件を満たす場合、UEは、当該AIモデルのモニタリング情報を報告/指示しなくてもよい。この場合、対応するUE動作も不要であってよい。
ある1つのAIモデルが特定の要件を満たす場合、UEは、当該AIモデルのモニタリング情報を報告/指示しなくてもよい。この場合、対応するUE動作も不要であってよい。
例えば、ある1つのAIモデルの出力がUE座標である場合、当該AIモデルが特定の要件を満たし、且つ、中間値を出力する他のAIモデルが特定の要件を満たせないのであれば、UEは、特定の要件を満たさないAIモデルのモニタリング情報を報告/指示する必要はなく、当該AIモデルを更新する必要もない。
本実施形態と上述の第1-第3の実施形態は、組み合わせて適用されてもよい。また、複数のコヒーレントAIモデルを同一/異なる側にデプロイする場合、上述以外の動作についても、本実施形態に従うことができる。例えば、AIモデルの共同訓練にも適用可能である。この場合、テスト情報は第2の実施形態で節目したモニタリング情報を採用することもできる。
第4の実施形態によれば、片側(one-sided)モデル/両側(two-sided)モデルがデプロイされる場合のUE動作を適切に制御できる。
<補足>
[UEへの情報の通知]
上述の実施形態における(ネットワーク(Network(NW))(例えば、基地局(Base Station(BS)))から)UEへの任意の情報の通知(言い換えると、UEにおけるBSからの任意の情報の受信)は、物理レイヤシグナリング(例えば、DCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE、LPP)、特定の信号/チャネル(例えば、PDCCH、PDSCH、参照信号)、又はこれらの組み合わせを用いて行われてもよい。
[UEへの情報の通知]
上述の実施形態における(ネットワーク(Network(NW))(例えば、基地局(Base Station(BS)))から)UEへの任意の情報の通知(言い換えると、UEにおけるBSからの任意の情報の受信)は、物理レイヤシグナリング(例えば、DCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE、LPP)、特定の信号/チャネル(例えば、PDCCH、PDSCH、参照信号)、又はこれらの組み合わせを用いて行われてもよい。
上記通知がMAC CEによって行われる場合、当該MAC CEは、既存の規格では規定されていない新たな論理チャネルID(Logical Channel ID(LCID))がMACサブヘッダに含まれることによって識別されてもよい。
上記通知がDCIによって行われる場合、上記通知は、当該DCIの特定のフィールド、当該DCIに付与される巡回冗長検査(Cyclic Redundancy Check(CRC))ビットのスクランブルに用いられる無線ネットワーク一時識別子(Radio Network Temporary Identifier(RNTI))、当該DCIのフォーマットなどによって行われてもよい。
また、上述の実施形態におけるUEへの任意の情報の通知は、周期的、セミパーシステント又は非周期的に行われてもよい。
[UEからの情報の通知]
上述の実施形態におけるUEから(NWへ)の任意の情報の通知(言い換えると、UEにおけるBSへの任意の情報の送信/報告)は、物理レイヤシグナリング(例えば、UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE、LPP)、特定の信号/チャネル(例えば、PUCCH、PUSCH、PRACH、参照信号)、又はこれらの組み合わせを用いて行われてもよい。
上述の実施形態におけるUEから(NWへ)の任意の情報の通知(言い換えると、UEにおけるBSへの任意の情報の送信/報告)は、物理レイヤシグナリング(例えば、UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE、LPP)、特定の信号/チャネル(例えば、PUCCH、PUSCH、PRACH、参照信号)、又はこれらの組み合わせを用いて行われてもよい。
上記通知がMAC CEによって行われる場合、当該MAC CEは、既存の規格では規定されていない新たなLCIDがMACサブヘッダに含まれることによって識別されてもよい。
上記通知がUCIによって行われる場合、上記通知は、PUCCH又はPUSCHを用いて送信されてもよい。
また、上述の実施形態におけるUEからの任意の情報の通知は、周期的、セミパーシステント又は非周期的に行われてもよい。
[各実施形態の適用について]
上述の実施形態の少なくとも1つは、特定の条件を満たす場合に適用されてもよい。当該特定の条件は、規格において規定されてもよいし、上位レイヤシグナリング/物理レイヤシグナリングを用いてUE/BSに通知されてもよい。
上述の実施形態の少なくとも1つは、特定の条件を満たす場合に適用されてもよい。当該特定の条件は、規格において規定されてもよいし、上位レイヤシグナリング/物理レイヤシグナリングを用いてUE/BSに通知されてもよい。
上述の実施形態の少なくとも1つは、特定のUE能力(UE capability)を報告した又は当該特定のUE能力をサポートするUEに対してのみ適用されてもよい。
当該特定のUE能力は、以下の少なくとも1つを示してもよい:
・上記実施形態の少なくとも1つについての特定の処理/動作/制御/情報をサポートすること、
・モデルモニタリング(性能モニタリング)をサポートすること、
・AIモデルの更新/切替/フォールバックをサポートすること、
・共同訓練をサポートすること。
・上記実施形態の少なくとも1つについての特定の処理/動作/制御/情報をサポートすること、
・モデルモニタリング(性能モニタリング)をサポートすること、
・AIモデルの更新/切替/フォールバックをサポートすること、
・共同訓練をサポートすること。
また、上記特定のUE能力は、全周波数にわたって(周波数に関わらず共通に)適用される能力であってもよいし、周波数(例えば、セル、バンド、バンドコンビネーション、BWP、コンポーネントキャリアなどの1つ又はこれらの組み合わせ)ごとの能力であってもよいし、周波数レンジ(例えば、Frequency Range 1(FR1)、FR2、FR3、FR4、FR5、FR2-1、FR2-2)ごとの能力であってもよいし、サブキャリア間隔(SubCarrier Spacing(SCS))ごとの能力であってもよいし、Feature Set(FS)又はFeature Set Per Component-carrier(FSPC)ごとの能力であってもよい。
また、上記特定のUE能力は、全複信方式にわたって(複信方式に関わらず共通に)適用される能力であってもよいし、複信方式(例えば、時分割複信(Time Division Duplex(TDD))、周波数分割複信(Frequency Division Duplex(FDD)))ごとの能力であってもよい。
また、上述の実施形態の少なくとも1つは、UEが上位レイヤシグナリング/物理レイヤシグナリングによって、上述の実施形態に関連する特定の情報(又は上述の実施形態の動作を実施すること)を設定/アクティベート/トリガされた場合に適用されてもよい。例えば、当該特定の情報は、モデルモニタリング、パフォーマンスメトリクスを有効化することを示す情報、特定のリリース(例えば、Rel.18/19)向けの任意のRRCパラメータなどであってもよい。
UEは、上記特定のUE能力の少なくとも1つをサポートしない又は上記特定の情報を設定されない場合、例えばRel.15/16の動作を適用してもよい。
(付記A)
本開示の一実施形態(第1,第2の実施形態)に関して、以下の発明を付記する。
[付記1]
人工知能(Artificial Intelligence(AI))ベースドポジショニングに関して、性能モニタリングのための性能指標を受信する受信部と、
前記性能モニタリングを制御する制御部と、を有する端末。
[付記2]
前記性能指標は、ポジショニングの精度、レイテンシ、及び複雑さの少なくとも1つに関する情報を含む付記1に記載の端末。
[付記3]
前記性能指標の要件に関する情報を含むモニタリング情報を報告する送信部を有する付記1又は付記2に記載の端末。
[付記4]
AIモデルから出力される端末のポジショニングに関する出力情報を報告する送信部を有する付記1から付記3のいずれかに記載の端末。
本開示の一実施形態(第1,第2の実施形態)に関して、以下の発明を付記する。
[付記1]
人工知能(Artificial Intelligence(AI))ベースドポジショニングに関して、性能モニタリングのための性能指標を受信する受信部と、
前記性能モニタリングを制御する制御部と、を有する端末。
[付記2]
前記性能指標は、ポジショニングの精度、レイテンシ、及び複雑さの少なくとも1つに関する情報を含む付記1に記載の端末。
[付記3]
前記性能指標の要件に関する情報を含むモニタリング情報を報告する送信部を有する付記1又は付記2に記載の端末。
[付記4]
AIモデルから出力される端末のポジショニングに関する出力情報を報告する送信部を有する付記1から付記3のいずれかに記載の端末。
(付記B)
本開示の一実施形態(第3,第4の実施形態)に関して、以下の発明を付記する。
[付記1]
人工知能(Artificial Intelligence(AI))ベースドポジショニングに関して、性能モニタリングのための性能指標を受信する受信部と、
前記性能モニタリングを制御する制御部と、を有し、
前記制御部は、前記性能モニタリング後の特定の動作の実行可否を決定する端末。
[付記2]
前記受信部は、前記性能指標の要件に関する情報を含むモニタリング情報を受信し、
前記制御部は、前記モニタリング情報に基づいて前記特定の動作を決定する付記1に記載の端末。
[付記3]
前記特定の動作は、AIモデルの切替、更新、及びフォールバックの少なくとも1つである付記1又は付記2に記載の端末。
[付記4]
前記制御部は、前記性能指標に関する特定の要件に基づいて、1つ以上のAIモデルがデプロイされる場合の前記性能モニタリングを制御する付記1から付記3のいずれかに記載の端末。
本開示の一実施形態(第3,第4の実施形態)に関して、以下の発明を付記する。
[付記1]
人工知能(Artificial Intelligence(AI))ベースドポジショニングに関して、性能モニタリングのための性能指標を受信する受信部と、
前記性能モニタリングを制御する制御部と、を有し、
前記制御部は、前記性能モニタリング後の特定の動作の実行可否を決定する端末。
[付記2]
前記受信部は、前記性能指標の要件に関する情報を含むモニタリング情報を受信し、
前記制御部は、前記モニタリング情報に基づいて前記特定の動作を決定する付記1に記載の端末。
[付記3]
前記特定の動作は、AIモデルの切替、更新、及びフォールバックの少なくとも1つである付記1又は付記2に記載の端末。
[付記4]
前記制御部は、前記性能指標に関する特定の要件に基づいて、1つ以上のAIモデルがデプロイされる場合の前記性能モニタリングを制御する付記1から付記3のいずれかに記載の端末。
(無線通信システム)
以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
図8は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1(単にシステム1と呼ばれてもよい)は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
コアネットワーク30は、例えば、User Plane Function(UPF)、Access and Mobility management Function(AMF)、Session Management Function(SMF)、Unified Data Management(UDM)、Application Function(AF)、Data Network(DN)、Location Management Function(LMF)、保守運用管理(Operation、Administration and Maintenance(Management)(OAM))などのネットワーク機能(Network Functions(NF))を含んでもよい。なお、1つのネットワークノードによって複数の機能が提供されてもよい。また、DNを介して外部ネットワーク(例えば、インターネット)との通信が行われてもよい。
ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
図9は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
図9は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
伝送路インターフェース140は、コアネットワーク30に含まれる装置(例えば、NFを提供するネットワークノード)、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
なお、送受信部120は、人工知能(Artificial Intelligence(AI))ベースドポジショニングに関して、性能モニタリングのための性能指標を送信してもよい。なお、当該性能指標は、ポジショニングの精度、レイテンシ、及び複雑さの少なくとも1つに関する情報を含んでもよい。送受信部120は、前記性能指標の要件に関する情報を含むモニタリング情報を送受信してもよい。送受信部120は、AIモデルから出力される端末のポジショニングに関する出力情報を受信してもよい。
制御部110は、前記性能モニタリングを制御してもよい。制御部110は、前記性能モニタリング後の特定の動作の実行可否を決定してもよい。制御部110は、前記モニタリング情報に基づいて前記特定の動作を決定してよい。前記特定の動作は、AIモデルの切替、更新、及びフォールバックの少なくとも1つであってよい。制御部110は、前記性能指標に関する特定の要件に基づいて、1つ以上のAIモデルがデプロイされる場合の前記性能モニタリングを制御してもよい。
(ユーザ端末)
図10は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
図10は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
なお、送受信部220は、人工知能(Artificial Intelligence(AI))ベースドポジショニングに関して、性能モニタリングのための性能指標を受信してもよい。なお、当該性能指標は、ポジショニングの精度、レイテンシ、及び複雑さの少なくとも1つに関する情報を含んでもよい。送受信部220は、前記性能指標の要件に関する情報を含むモニタリング情報を報告(送信)又は受信してもよい。送受信部220は、AIモデルから出力される端末のポジショニングに関する出力情報を報告してもよい。
制御部210は、前記性能モニタリングを制御してもよい。制御部210は、前記性能モニタリング後の特定の動作の実行可否を決定してもよい。制御部210は、前記モニタリング情報に基づいて前記特定の動作を決定してもよい。前記特定の動作は、AIモデルの切替、更新、及びフォールバックの少なくとも1つであってよい。制御部210は、前記性能指標に関する特定の要件に基づいて、1つ以上のAIモデルがデプロイされる場合の前記性能モニタリングを制御してもよい。
(ハードウェア構成)
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図11は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
本開示において、基地局が端末に情報を送信することは、当該基地局が当該端末に対して、当該情報に基づく制御/動作を指示することと、互いに読み替えられてもよい。
本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体(moving object)に搭載されたデバイス、移動体自体などであってもよい。
当該移動体は、移動可能な物体をいい、移動速度は任意であり、移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン、マルチコプター、クアッドコプター、気球及びこれらに搭載される物を含み、またこれらに限られない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。
当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
図12は、一実施形態に係る車両の一例を示す図である。車両40は、駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49、各種センサ(電流センサ50、回転数センサ51、空気圧センサ52、車速センサ53、加速度センサ54、アクセルペダルセンサ55、ブレーキペダルセンサ56、シフトレバーセンサ57、及び物体検知センサ58を含む)、情報サービス部59と通信モジュール60を備える。
駆動部41は、例えば、エンジン、モータ、エンジンとモータのハイブリッドの少なくとも1つで構成される。操舵部42は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪46及び後輪47の少なくとも一方を操舵するように構成される。
電子制御部49は、マイクロプロセッサ61、メモリ(ROM、RAM)62、通信ポート(例えば、入出力(Input/Output(IO))ポート)63で構成される。電子制御部49には、車両に備えられた各種センサ50-58からの信号が入力される。電子制御部49は、Electronic Control Unit(ECU)と呼ばれてもよい。
各種センサ50-58からの信号としては、モータの電流をセンシングする電流センサ50からの電流信号、回転数センサ51によって取得された前輪46/後輪47の回転数信号、空気圧センサ52によって取得された前輪46/後輪47の空気圧信号、車速センサ53によって取得された車速信号、加速度センサ54によって取得された加速度信号、アクセルペダルセンサ55によって取得されたアクセルペダル43の踏み込み量信号、ブレーキペダルセンサ56によって取得されたブレーキペダル44の踏み込み量信号、シフトレバーセンサ57によって取得されたシフトレバー45の操作信号、物体検知センサ58によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。
情報サービス部59は、カーナビゲーションシステム、オーディオシステム、スピーカー、ディスプレイ、テレビ、ラジオ、といった、運転情報、交通情報、エンターテイメント情報などの各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部59は、外部装置から通信モジュール60などを介して取得した情報を利用して、車両40の乗員に各種情報/サービス(例えば、マルチメディア情報/マルチメディアサービス)を提供する。
情報サービス部59は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。
運転支援システム部64は、ミリ波レーダ、Light Detection and Ranging(LiDAR)、カメラ、測位ロケータ(例えば、Global Navigation Satellite System(GNSS)など)、地図情報(例えば、高精細(High Definition(HD))マップ、自動運転車(Autonomous Vehicle(AV))マップなど)、ジャイロシステム(例えば、慣性計測装置(Inertial Measurement Unit(IMU))、慣性航法装置(Inertial Navigation System(INS))など)、人工知能(Artificial Intelligence(AI))チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部64は、通信モジュール60を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。
通信モジュール60は、通信ポート63を介して、マイクロプロセッサ61及び車両40の構成要素と通信することができる。例えば、通信モジュール60は通信ポート63を介して、車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49内のマイクロプロセッサ61及びメモリ(ROM、RAM)62、各種センサ50-58との間でデータ(情報)を送受信する。
通信モジュール60は、電子制御部49のマイクロプロセッサ61によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール60は、電子制御部49の内部と外部のどちらにあってもよい。外部装置は、例えば、上述の基地局10、ユーザ端末20などであってもよい。また、通信モジュール60は、例えば、上述の基地局10及びユーザ端末20の少なくとも1つであってもよい(基地局10及びユーザ端末20の少なくとも1つとして機能してもよい)。
通信モジュール60は、電子制御部49に入力された上述の各種センサ50-58からの信号、当該信号に基づいて得られる情報、及び情報サービス部59を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部49、各種センサ50-58、情報サービス部59などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール60によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。
通信モジュール60は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部59へ表示する。情報サービス部59は、情報を出力する(例えば、通信モジュール60によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。
また、通信モジュール60は、外部装置から受信した種々の情報をマイクロプロセッサ61によって利用可能なメモリ62へ記憶する。メモリ62に記憶された情報に基づいて、マイクロプロセッサ61が車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、各種センサ50-58などの制御を行ってもよい。
また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。
同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張、修正、作成又は規定された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
本開示において、「以下」、「未満」、「以上」、「より多い」、「と等しい」などは、互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」、などを意味する文言は、原級、比較級及び最上級に限らず互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」などを意味する文言は、「i番目に」(iは任意の整数)を付けた表現として、原級、比較級及び最上級に限らず互いに読み替えられてもよい(例えば、「最高」は「i番目に最高」と互いに読み替えられてもよい)。
本開示において、「の(of)」、「のための(for)」、「に関する(regarding)」、「に関係する(related to)」、「に関連付けられる(associated with)」などは、互いに読み替えられてもよい。
以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。
Claims (6)
- 人工知能(Artificial Intelligence(AI))ベースドポジショニングに関して、性能モニタリングのための性能指標を受信する受信部と、
前記性能モニタリングを制御する制御部と、を有する端末。 - 前記性能指標は、ポジショニングの精度、レイテンシ、及び複雑さの少なくとも1つに関する情報を含む請求項1に記載の端末。
- 前記性能指標の要件に関する情報を含むモニタリング情報を報告する送信部を有する請求項1に記載の端末。
- AIモデルから出力される端末のポジショニングに関する出力情報を報告する送信部を有する請求項1に記載の端末。
- 人工知能(Artificial Intelligence(AI))ベースドポジショニングに関して、性能モニタリングのための性能指標を受信するステップと、
前記性能モニタリングを制御するステップと、を有する端末の無線通信方法。 - 人工知能(Artificial Intelligence(AI))ベースドポジショニングに関して、性能モニタリングのための性能指標を送信する送信部と、
前記性能モニタリングを制御する制御部と、を有する基地局。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/037486 WO2024075254A1 (ja) | 2022-10-06 | 2022-10-06 | 端末、無線通信方法及び基地局 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/037486 WO2024075254A1 (ja) | 2022-10-06 | 2022-10-06 | 端末、無線通信方法及び基地局 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024075254A1 true WO2024075254A1 (ja) | 2024-04-11 |
Family
ID=90607908
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/037486 WO2024075254A1 (ja) | 2022-10-06 | 2022-10-06 | 端末、無線通信方法及び基地局 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024075254A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019519755A (ja) * | 2016-04-15 | 2019-07-11 | 株式会社デンソー | リアルタイム位置を確立するためのシステムおよび方法 |
JP2019135817A (ja) * | 2018-02-05 | 2019-08-15 | ソフトバンク株式会社 | 情報処理装置及びプログラム |
-
2022
- 2022-10-06 WO PCT/JP2022/037486 patent/WO2024075254A1/ja unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019519755A (ja) * | 2016-04-15 | 2019-07-11 | 株式会社デンソー | リアルタイム位置を確立するためのシステムおよび方法 |
JP2019135817A (ja) * | 2018-02-05 | 2019-08-15 | ソフトバンク株式会社 | 情報処理装置及びプログラム |
Non-Patent Citations (2)
Title |
---|
NTT DOCOMO, INC.: "Discussion on AI/ML for positioning accuracy enhancement", 3GPP TSG RAN WG1 #110B-E R1-2209900, 30 September 2022 (2022-09-30), XP052259373 * |
VIVO: "Other aspects on AI/ML for positioning accuracy enhancement", 3GPP TSG RAN WG1 #110B-E R1-2208639, 30 September 2022 (2022-09-30), XP052276562 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024150434A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2024075254A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2024075255A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2024214186A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2024161472A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2024161471A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2024100725A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2024038617A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2024038616A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2024038613A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2024004219A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2024004220A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2024038615A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2024038614A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2024214194A1 (ja) | 端末、無線通信方法及びlmf | |
WO2024171465A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2024201942A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2024201928A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2024013851A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2024013852A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2024150414A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2024150433A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2024201960A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2024150432A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2024201961A1 (ja) | 端末、無線通信方法及び基地局 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22961441 Country of ref document: EP Kind code of ref document: A1 |