WO2024075251A1 - Data generation system, industrial machine, data generation method, and data generation program - Google Patents

Data generation system, industrial machine, data generation method, and data generation program Download PDF

Info

Publication number
WO2024075251A1
WO2024075251A1 PCT/JP2022/037462 JP2022037462W WO2024075251A1 WO 2024075251 A1 WO2024075251 A1 WO 2024075251A1 JP 2022037462 W JP2022037462 W JP 2022037462W WO 2024075251 A1 WO2024075251 A1 WO 2024075251A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
data generation
pseudo
evaluation value
data
Prior art date
Application number
PCT/JP2022/037462
Other languages
French (fr)
Japanese (ja)
Inventor
浩貴 太刀掛
智大 元田
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to PCT/JP2022/037462 priority Critical patent/WO2024075251A1/en
Publication of WO2024075251A1 publication Critical patent/WO2024075251A1/en

Links

Images

Definitions

  • One aspect of the present disclosure relates to a data generation system, an industrial machine, a data generation method, and a data generation program.
  • Patent Document 1 describes an information processing system that trains a pseudo image generation model, which is a machine learning model that converts a first domain image, which is an image in a first domain of an object to be recognized, into a pseudo second domain image, which is an image similar to a second domain image, which is an image in a second domain.
  • a pseudo image generation model which is a machine learning model that converts a first domain image, which is an image in a first domain of an object to be recognized, into a pseudo second domain image, which is an image similar to a second domain image, which is an image in a second domain.
  • a data generation system includes an acquisition unit that acquires an evaluation value corresponding to an evaluation of an object, and a data generation unit that generates pseudo data representing a pseudo object corresponding to the acquired evaluation value based on the acquired evaluation value and a trained model that has been trained to output pseudo data representing an object when an evaluation value is input.
  • a data generation method is a data generation method executed by a data generation system having at least one processor, and includes the steps of acquiring an evaluation value corresponding to an evaluation of an object, and generating pseudo data representing a pseudo object corresponding to the acquired evaluation value based on the acquired evaluation value and a trained model trained to output pseudo data representing an object when an evaluation value is input.
  • a data generation program causes a computer to execute the steps of acquiring an evaluation value corresponding to an evaluation of an object, and generating pseudo data representing a pseudo object corresponding to the acquired evaluation value based on the acquired evaluation value and a trained model that has been trained to output pseudo data representing an object when an evaluation value is input.
  • pseudo data of an object can be easily generated.
  • FIG. 1 is a diagram illustrating an example of an application and a functional configuration of a data generation system.
  • FIG. 2 is a diagram illustrating an example of a hardware configuration of a computer used in the data generation system.
  • FIG. 1 is a diagram illustrating an example of a machine learning model (trained model).
  • FIG. 1 is a diagram showing an overview of a learning phase.
  • 13 is a flowchart illustrating an example of a learning phase.
  • a data generation system is a computer system that generates pseudo data representing a pseudo object.
  • the data generation system acquires an evaluation value corresponding to an evaluation of the object, and generates the pseudo data based on the evaluation value and a trained model that is at least partially generated by machine learning.
  • An object refers to a tangible object of some kind.
  • an object is a tangible object of variable appearance.
  • Various appearance means that the individual appearances are not exactly the same.
  • An example of a tangible object of variable appearance is fresh produce, so the object may be a type of vegetable, fruit, fish, or meat.
  • a pseudo object refers to a virtual object that is generated on a computer system to resemble a real object.
  • Pseudo data is electronic data that represents a pseudo object.
  • the pseudo data may be an image that depicts the object, and in this disclosure, the image is referred to as a pseudo image.
  • the pseudo data may be model data that shows the three-dimensional shape of the object, and in this disclosure, the model data is referred to as a pseudo three-dimensional model.
  • the evaluation of an object refers to the value of the object judged qualitatively.
  • the evaluation of an object is a classification of the appearance.
  • the classification is determined comprehensively based on various elements of the object's appearance, such as color, size, shape, gloss, etc.
  • the evaluation of an object may be related to quality.
  • the evaluation value refers to a value that quantitatively indicates the evaluation of the object.
  • the evaluation value indicates the quality of the object.
  • the evaluation value is represented by a continuous value or a discrete value. Regardless of whether the evaluation value is a continuous value or a discrete value, the evaluation value may indicate a classification of the appearance or quality of the object.
  • the classification may be a class (grade) such as rank A, B, C, etc.
  • the class “Rank C” may correspond to an evaluation value of 0 or more and less than 1
  • the class “Rank B” may correspond to an evaluation value of 1 or more and less than 2
  • the class “Rank A” may correspond to an evaluation value of 2 or more and less than 3.
  • the evaluation value is a discrete value
  • the correspondence between the discrete value and the class may be 1:1 or N:1.
  • Machine learning is a method of autonomously finding laws or rules by repeatedly learning based on given information.
  • a trained model is constructed using algorithms and data structures. At least a portion of the trained model is generated by machine learning.
  • Generative Adversarial Networks may be used as a machine learning architecture for generating pseudo data. By using a trained model, the task of generating pseudo data can be quantified from evaluation values, which are qualitative indicators.
  • the data generation system generates pseudo data based on an evaluation value input by a user and a trained model.
  • the data generation system When a user specifies an evaluation value based on an ambiguous judgment based on their own intuition or tacit knowledge, the data generation system generates pseudo data corresponding to that evaluation value.
  • the data generation system can automate the generation of pseudo data involving such ambiguous judgments.
  • the user can compare the generated pseudo data with the ambiguous judgment based on their own intuition or tacit knowledge, and specify or change the evaluation value or its range so that pseudo data closer to their own judgment is generated.
  • FIG. 1 is a diagram showing an example of application and functional configuration of a data generation system 10 according to an example.
  • the data generation system 10 includes a model generation unit 11, an acquisition unit 12, and a data generation unit 13 as functional modules.
  • the model generation unit 11 is a functional module that generates at least a part of a trained model 20.
  • the trained model 20 is a computational model trained to output pseudo data in response to an input of an evaluation value.
  • the acquisition unit 12 is a functional module that acquires an evaluation value corresponding to an evaluation of an object.
  • the data generation unit 13 is a functional module that generates pseudo data representing a pseudo object corresponding to the evaluation value based on the acquired evaluation value and the generated trained model 20.
  • the "pseudo object corresponding to the evaluation value” refers to a pseudo object generated so as to be determined to have a value indicated by the evaluation value.
  • the generation of the trained model 20 by the model generation unit 11 corresponds to a learning phase.
  • the use of the trained model 20 by the acquisition unit 12 and the data generation unit 13 corresponds to an operation phase or an inference phase.
  • the data generation system 10 can be realized by any type of computer.
  • the computer may be a general-purpose computer such as a personal computer or a business server, or may be incorporated into a dedicated device that executes specific processing.
  • the data generation system 10 may be realized by a single computer, or may be realized by a distributed system having multiple computers.
  • the data generation system 10 connects to the first database 30 and the second database 40 via a communication network.
  • the first database 30 is a device that stores a training dataset used to generate the trained model 20.
  • the training dataset includes a plurality of records corresponding to a plurality of real objects.
  • Each record includes data items necessary for generating the trained model 20.
  • each record includes an RGB image, a mask image, a three-dimensional model, an evaluation value, and a class for a given real object.
  • the RGB image represents the projected shape and texture of the object.
  • the mask image represents the two-dimensional shape of the object.
  • the mask image is a binary image in which pixel values representing the object are a first color (e.g., white) and other pixel values are a second color (e.g., black).
  • the three-dimensional model represents the three-dimensional shape and texture of the object. Texture refers to elements other than shape that characterize an object. For example, texture is represented by color, gloss, etc.
  • the second database 40 is a device that stores the pseudo data generated by the data generation system 10.
  • the second database 40 stores at least one of a pseudo image and a pseudo three-dimensional model for each pseudo object.
  • the pseudo data is used to operate the industrial machine 60.
  • the second database 40 is connected to the control model generating device 50 via a communication network.
  • the control model generating device 50 is a computer that generates a control model 70 by executing machine learning based on the pseudo data stored in the second database 40.
  • the control model 70 learned based on the pseudo data has a function of, for example, evaluating a real object corresponding to the pseudo object and estimating a control value related to the evaluation.
  • the control model 70 is provided to the industrial machine 60 via a communication network.
  • the industrial machine 60 is a device that executes a predetermined process based on the control model 70.
  • the industrial machine 60 can be any device such as a judger, a robot controller, or a robot.
  • the industrial machine 60 includes an output unit 61 that outputs a control value by the control model 70.
  • the output unit 61 may output the control value to another device such as a monitor or a robot.
  • the communication network connecting the devices may be a wired network or a wireless network.
  • the communication network may be configured to include at least one of the Internet and an intranet. Alternatively, the communication network may be realized simply by a single communication cable.
  • FIG. 2 is a diagram showing an example of the hardware configuration of a computer 100 used in the data generation system 10.
  • the computer 100 includes a main unit 110, a monitor 120, and an input device 130.
  • the main body 110 is a device that executes the main functions of the computer.
  • the main body 110 has a circuit 160.
  • the circuit 160 has at least one processor 161, a memory 162, a storage 163, an input/output port 164, and a communication port 165.
  • the storage 163 records programs for configuring each functional module of the main body 110.
  • the storage 163 is a computer-readable recording medium such as a hard disk, a non-volatile semiconductor memory, a magnetic disk, or an optical disk.
  • the memory 162 temporarily stores programs loaded from the storage 163, the results of calculations by the processor 161, and the like.
  • the processor 161 configures each functional module by executing programs in cooperation with the memory 162.
  • the input/output port 164 inputs/outputs electrical signals between the monitor 120 or the input device 130 in response to instructions from the processor 161.
  • the input/output port 164 may input/output electrical signals between other devices.
  • the communication port 165 performs data communication with other devices via the communication network N in response to instructions from the processor 161.
  • Monitor 120 is a device for displaying information output from main body 110.
  • Monitor 120 may be any device capable of displaying graphics, a specific example of which is a liquid crystal panel.
  • the input device 130 is a device for inputting information to the main body 110.
  • the input device 130 may be any device capable of inputting desired information, and specific examples include operation interfaces such as a keypad, a mouse, and an operation controller.
  • the monitor 120 and the input device 130 may be integrated as a touch panel.
  • the main body 110, the monitor 120, and the input device 130 may be integrated as in a tablet computer.
  • Each functional module of data generation system 10 is realized by loading a data generation program onto processor 161 or memory 162 and having processor 161 execute the program.
  • the data generation program includes code for realizing each functional module of data generation system 10.
  • Processor 161 operates input/output port 164 or communication port 165 in accordance with the data generation program, and executes reading and writing of data in memory 162 or storage 163.
  • the data generation program may be provided in a state where it is permanently recorded on a non-transitory recording medium such as a CD-ROM, DVD-ROM, or semiconductor memory.
  • the data generation program may be provided via a communications network as a data signal superimposed on a carrier wave.
  • [Trained model] 3 is a diagram showing an example of a machine learning model 200 used to generate the trained model 20.
  • the machine learning model 200 can be said to be a pre-complete trained model 20.
  • the machine learning model 200 includes a conversion model 210, a data generation model 220, and an evaluation model 230.
  • the conversion model 210 is a computational model that converts the evaluation value into a latent variable.
  • the conversion model 210 can be said to be a mapping from the evaluation value to the latent variable.
  • the latent variable is data indicating n-dimensional features for generating pseudo data.
  • the conversion model 210 includes a converter 211 and an adder 212.
  • the converter 211 is a component that converts the evaluation value into a latent variable.
  • the adder 212 is a component that applies another latent variable Z s set by a probability distribution such as a uniform distribution to the converted latent variable.
  • the conversion model 210 outputs a latent variable to which the other latent variable Z s has been applied.
  • the data generation model 220 is a computational model that generates pseudo data based on the latent variables generated by the transformation model 210.
  • the data generation model 220 includes a shape generation model 221, a texture generation model 223, and a three-dimensional shape generation model 224.
  • the shape generation model 221 is a computational model that outputs a mask image 301 that indicates the shape of an object based on the latent variables generated by the transformation model 210.
  • the texture generation model 223 is a computational model that outputs a pseudo image 302 that represents the projected shape and texture of an object based on the mask image 301 and a latent variable Z t that is set by a probability distribution such as a uniform distribution.
  • the pseudo image 302 may be an RGB image.
  • the three-dimensional shape generation model 224 is a computational model that outputs a pseudo three-dimensional model 303 that represents the three-dimensional shape and texture of a pseudo object based on the pseudo image 302.
  • the evaluation model 230 is a computational model that calculates an evaluation value based on pseudo data.
  • the evaluation value input to the conversion model 210 is also referred to as the "first evaluation value”
  • the evaluation value output from the evaluation model 230 is referred to as the "second evaluation value,” to distinguish between the two types of evaluation values as necessary.
  • a strawberry is shown as an example of an object.
  • Mask image 301 represents the two-dimensional shape of the strawberry
  • pseudo image 302 represents the projected shape and texture of the strawberry
  • pseudo 3D model 303 represents the three-dimensional shape and texture of the strawberry.
  • FIG. 4 is a diagram showing an overview of the training phase.
  • FIG. 4 shows the feature space 410 and latent space 420 in addition to the transformation model 210, the data generation model 220, and the evaluation model 230.
  • the feature space 410 is a coordinate space that defines the evaluation value.
  • each point in the feature space 410 indicates an evaluation value that changes continuously. That is, the evaluation value in this example is expressed as a continuous value.
  • these evaluation values are classified into three classes Qa, Qb, and Qc.
  • the latent space 420 is a coordinate space that defines the latent variables. Each point in the latent space 420 indicates a latent variable.
  • the data generation model 220 is generated by machine learning using individual latent variables and a training dataset.
  • the evaluation model 230 is generated by machine learning using a training dataset.
  • the conversion model 210 is generated by machine learning using evaluation values. In training the conversion model 210, the conversion model 210 converts the input first evaluation value into a latent variable, the data generation model 220 generates pseudo data based on the latent variable, and the evaluation model 230 outputs a second evaluation value based on the pseudo data.
  • the evaluation model 230 is updated based on the first evaluation value and the second evaluation value in the feature space 410.
  • FIG. 5 is a flowchart showing an example of the learning phase as processing flow S1. That is, the data generation system 10 executes processing flow S1.
  • the model generation unit 11 generates the shape generation model 221.
  • the model generation unit 11 generates the shape generation model 221 by machine learning (e.g., machine learning using GAN) based on multiple latent variables and multiple mask images of a training dataset.
  • machine learning e.g., machine learning using GAN
  • step S12 the model generation unit 11 generates the texture generation model 223.
  • the model generation unit 11 generates the texture generation model 223 by machine learning (e.g., machine learning using a GAN) based on multiple RGB images and mask images of the training dataset.
  • machine learning e.g., machine learning using a GAN
  • the model generation unit 11 generates the three-dimensional shape generation model 224.
  • the model generation unit 11 generates the three-dimensional shape generation model 224 by machine learning (e.g., machine learning using a GAN) based on multiple RGB images and multiple three-dimensional models of the training dataset.
  • machine learning e.g., machine learning using a GAN
  • the model generation unit 11 generates a data generation model 220 to output pseudo data based on latent variables.
  • a data generation model 220 that generates pseudo data of pseudo objects that are likely to exist in reality.
  • step S14 the model generation unit 11 generates the evaluation model 230.
  • the model generation unit 11 generates the evaluation model 230 by machine learning based on multiple RGB images and multiple evaluation values of the training dataset.
  • step S15 the model generation unit 11 generates the conversion model 210.
  • the model generation unit 11 completes the conversion model by executing the following process.
  • the model generation unit 11 inputs the first evaluation value into the uncompleted conversion model 210 to generate a latent variable.
  • the model generation unit 11 generates a pseudo image (e.g., a pseudo RGB image) corresponding to the first evaluation value based on the latent variable and the data generation model 220.
  • the model generation unit 11 inputs the latent variable into the data generation model 220.
  • processing is executed using the shape generation model 221 and the texture generation model 223.
  • the model generation unit 11 obtains a pseudo image obtained by the processing.
  • the model generation unit 11 inputs the pseudo image into the evaluation model 230 to calculate a second evaluation value.
  • the model generation unit 11 updates the uncompleted conversion model 210 based on the first evaluation value and the second evaluation value.
  • the model generation unit 11 executes this series of processes for each of the multiple first evaluation values, and finally generates the conversion model 210. For example, the model generation unit 11 generates the conversion model 210 so that the first evaluation value and the second evaluation value match. Alternatively, the model generation unit 11 may generate the conversion model 210 so that the error between the first evaluation value and the second evaluation value is less than a predetermined threshold. In this way, by repeatedly updating the uncompleted conversion model 210 while comparing the second evaluation value with the first evaluation value, and finally generating the conversion model 210, the correspondence between the first evaluation value and the second evaluation value becomes one-to-one. In other words, the conversion model 210 becomes able to output latent variables for generating pseudo data corresponding to the specified evaluation value.
  • the model generation unit 11 may generate the conversion model 210 after generating the data generation model 220. That is, the model generation unit 11 may execute steps S11 to S13 and then execute step S15.
  • the model generation unit 11 may generate the evaluation model 230 after generating the data generation model 220, and then generate the conversion model 210 using the data generation model 220 and the evaluation model 230. That is, the model generation unit 11 may execute steps S11 to S13 and then execute step S14, and execute step S15 after executing step S14.
  • the trained model 20 is obtained by the process flow S1. Please note that the trained model 20 is a computational model that is estimated to be optimal, and is not necessarily a "computational model that is actually optimal.”
  • a combination of the conversion model 210 and the data generation model 220 obtained by the learning phase is provided as a trained model 20.
  • the trained model 20 may or may not include an evaluation model 230.
  • pseudo data is generated using the trained model 20.
  • Fig. 6 is a diagram showing an overall view of the operation phase.
  • an evaluation value 411 for generating pseudo data is input to the trained model 20.
  • the evaluation value 411 is also referred to as a specified evaluation value.
  • the evaluation value 411 is a value specified in the feature space 410.
  • the conversion model 210 converts the evaluation value 411 into a latent variable 421 in the latent space 420.
  • the data generation model 220 generates at least one of the pseudo image 302 and the pseudo 3D model 303 as pseudo data based on the latent variable 421.
  • FIG. 7 is a flowchart showing an example of the operation phase as processing flow S2. That is, the data generation system 10 executes processing flow S2.
  • step S21 the acquisition unit 12 acquires an evaluation value (specified evaluation value).
  • the acquisition unit 12 acquires an evaluation value input by a user.
  • the acquisition unit 12 may receive an evaluation value transmitted from another computer, or may read an evaluation value stored in a specified storage device.
  • step S22 the data generation unit 13 converts the evaluation value into a latent variable.
  • the data generation unit 13 generates a latent variable based on the evaluation value and the conversion model 210.
  • the data generation unit 13 inputs the evaluation value into the conversion model 210 and obtains the latent variable output from the conversion model 210.
  • step S23 the data generation unit 13 generates a mask image corresponding to the evaluation value based on the latent variables and the shape generation model 221.
  • the data generation unit 13 inputs the latent variables to the shape generation model 221 and obtains the mask image output from the shape generation model 221.
  • step S24 the data generation unit 13 generates a pseudo image corresponding to the evaluation value based on the mask image and the texture generation model 223.
  • the data generation unit 13 inputs the mask image 301 and the latent variable Zt to the texture generation model 223 and obtains a pseudo image output from the texture generation model 223.
  • step S25 the data generation unit 13 generates a pseudo three-dimensional model corresponding to the evaluation value based on the pseudo image and the three-dimensional shape generation model 224.
  • the data generation unit 13 inputs the pseudo image to the three-dimensional shape generation model 224 and obtains the pseudo three-dimensional model output from the three-dimensional shape generation model 224.
  • step S26 the data generation unit 13 stores the pseudo 3D model in the second database 40. As described above, the pseudo 3D model is used to generate the control model 70.
  • step S27 the user adjusts the evaluation value or its range as necessary.
  • the user compares the generated pseudo data (pseudo image or pseudo 3D model) with his/her own judgment based on intuition or tacit knowledge.
  • the user then adjusts the evaluation value or its range so that pseudo data that is closer to his/her own judgment is generated. For example, the user specifies or changes the evaluation value or its range. Since the user makes the adjustment as necessary, step S27 may be omitted.
  • Process flow S2 can be executed repeatedly. Through this repeated processing, multiple pseudo 3D models of a certain type of object (e.g., strawberries) are accumulated in the second database 40.
  • a certain type of object e.g., strawberries
  • the control model generating device 50 performs machine learning based on the pseudo three-dimensional model stored in the second database 40 to generate a control model 70.
  • the industrial machine 60 outputs a control value based on the control model 70.
  • the pseudo three-dimensional model in the second database 40 may be used for other purposes.
  • the data generation system 10 may display the pseudo three-dimensional model on the monitor 120 in the form of a computer graphic (CG) video or still image.
  • CG computer graphic
  • the data generation unit 13 generates a pseudo three-dimensional model based on the latent variables and the data generation model 220.
  • the data generation unit 13 inputs the latent variables to the data generation model 220 and obtains a pseudo three-dimensional model output from the data generation model 220. Therefore, in this example, the data generation unit 13 generates a pseudo three-dimensional model as pseudo data.
  • the data generation unit 13 may store a pseudo image in the second database 40 in addition to or instead of the pseudo three-dimensional model. That is, the data generation unit 13 may generate at least one of the pseudo image and the pseudo three-dimensional model as pseudo data.
  • the texture generation model may output a pseudo image based on the latent variable obtained by the transformation model in addition to the mask image and the latent variable Zt .
  • the data generation unit inputs the mask image, the latent variable Zt , and the latent variable obtained by the transformation model to the texture generation model, and obtains a pseudo image output from the texture generation model.
  • the texture generation model may output a pseudo image based on the latent variable obtained by the transformation model without using the mask image.
  • the shape generation model is omitted.
  • the data generation unit inputs the latent variable obtained by the transformation model to the texture generation model, and obtains a pseudo image output from the texture generation model.
  • the conversion model may be generated without using machine learning. For example, a function that converts the evaluation value into a latent variable so that the first evaluation value and the second evaluation value match, or so that the error between the two evaluation values is less than a predetermined threshold, may be prepared as the conversion model.
  • the data generation model does not have to include a three-dimensional shape generation model.
  • the data generation unit generates a pseudo image as pseudo data.
  • the data generation system does not need to include a model generation unit. Trained models are portable between computer systems. Therefore, the data generation unit may use a trained model generated in another computer system.
  • the hardware configuration of the system is not limited to a configuration in which each functional module is realized by executing a program.
  • each functional module may be configured with a logic circuit specialized for that function, or may be configured with an ASIC (Application Specific Integrated Circuit) that integrates the logic circuit.
  • ASIC Application Specific Integrated Circuit
  • processing steps of the method executed by at least one processor are not limited to the above examples. For example, some of the steps or processes described above may be omitted, or the steps may be executed in a different order. Also, two or more of the steps described above may be combined, or some of the steps may be modified or deleted. Alternatively, other steps may be executed in addition to the steps described above.
  • the present disclosure includes the following aspects.
  • (Appendix 1) an acquisition unit that acquires an evaluation value corresponding to an evaluation of an object; a data generation unit that generates pseudo data representing a pseudo object corresponding to the acquired evaluation value based on the acquired evaluation value and a trained model that has been trained to output pseudo data representing the object when the evaluation value is input; and
  • a data generation system comprising: (Appendix 2) the object is an object with an indefinite appearance, The evaluation is a classification of the appearance. 2.
  • the data generation system of claim 1. (Appendix 3) The acquisition unit acquires the evaluation value input by a user. 3.
  • the trained model includes a data generation model that outputs the pseudo data based on a latent variable, The data generation unit converting the evaluation values into latent variables; generating the pseudo data based on the latent variables and the data generation model; 4.
  • the model generation unit After generating the data generation model, an evaluation model is generated to calculate the evaluation value based on the pseudo data; after generating the evaluation model, generating the transformation model using the data generation model and the evaluation model; 6.
  • the data generation system of claim 5. (Appendix 7) The model generation unit, in generating the conversion model, inputting the first evaluation value into the uncompleted transformation model to generate the latent variables; generating the pseudo data corresponding to the first evaluation value based on the latent variables and the data generation model; inputting the pseudo data into the evaluation model to calculate a second evaluation value; updating the uncompleted transformation model based on the first evaluation value and the second evaluation value to generate the transformation model; 7.
  • the data generation unit generates a pseudo image as the pseudo data.
  • a data generation system according to any one of claims 1 to 7. (Appendix 9) The data generation unit generates a pseudo three-dimensional model as the pseudo data.
  • the data generation model is a shape generation model that outputs a mask image indicating the shape of the object based on the latent variables; a texture generation model that outputs the pseudo data representing the shape and texture of the object based on the mask image; Equipped with The data generation unit generating the mask image corresponding to the obtained evaluation value based on the latent variables and the shape generation model; generating the pseudo data based on the generated mask image and the texture generation model; 10.
  • a data generation system according to any one of claims 4 to 9.
  • An industrial machine comprising an output unit that outputs a control value according to a control model trained on the basis of pseudo data generated by the data generation system according to any one of appendixes 1 to 10.
  • Appendix 12 1.
  • a data generation method comprising: (Appendix 13) obtaining an evaluation value corresponding to an evaluation of the object; generating the pseudo data representing a pseudo object corresponding to the acquired evaluation value based on the acquired evaluation value and a trained model trained to output pseudo data representing the object when the evaluation value is input;
  • a data generation program that causes a computer to execute the above.
  • pseudo data representing a pseudo object corresponding to an evaluation value is automatically obtained based on a trained model, so that pseudo data of the object can be easily generated.
  • pseudo data is generated for objects with variations in appearance, where classification of appearance is impossible or very difficult to quantify.
  • the configuration of Appendix 2 makes it possible to generate pseudo data that corresponds to assessments that are impossible or difficult to quantify.
  • pseudo data can be generated that corresponds to an evaluation based on a qualitative judgment by the user (e.g., an ambiguous judgment based on the user's intuition).
  • the conversion model is updated based on the first evaluation value input to generate the pseudo data and the second evaluation value calculated based on the generated pseudo data. This update can improve the accuracy of the conversion model for obtaining latent variables.
  • 10...data generation system 11...model generation unit, 12...acquisition unit, 13...data generation unit, 20...trained model, 30...first database, 40...second database, 50...control model generation device, 60...industrial machine, 61...output unit, 70...control model, 200...machine learning model, 210...conversion model, 220...data generation model, 221...shape generation model, 223...texture generation model, 224...3D shape generation model, 230...evaluation model, 301...mask image, 302...pseudo image, 303...pseudo 3D model.

Abstract

This data generation system comprises an acquisition unit that acquires an evaluation value corresponding to an evaluation of a target object, and a data generation unit that generates pseudo data representing a pseudo object corresponding to the acquired evaluation value on the basis of the acquired evaluation value and a trained model trained to receive input of an evaluation value to output pseudo data representing a target object.

Description

データ生成システム、産業機械、データ生成方法、およびデータ生成プログラムDATA GENERATION SYSTEM, INDUSTRIAL MACHINERY, DATA GENERATION METHOD, AND DATA GENERATION PROGRAM
 本開示の一側面はデータ生成システム、産業機械、データ生成方法、およびデータ生成プログラムに関する。 One aspect of the present disclosure relates to a data generation system, an industrial machine, a data generation method, and a data generation program.
 特許文献1には、認識対象の物体である対象物を撮影した第1ドメインにおける画像である第1ドメイン画像を、第2ドメインにおける画像である第2ドメイン画像に似せた画像である疑似第2ドメイン画像に変換する機械学習モデルである疑似画像生成モデルの学習を行う情報処理システムが記載されている。 Patent Document 1 describes an information processing system that trains a pseudo image generation model, which is a machine learning model that converts a first domain image, which is an image in a first domain of an object to be recognized, into a pseudo second domain image, which is an image similar to a second domain image, which is an image in a second domain.
特開2020-95364号公報JP 2020-95364 A
 対象物の疑似データを容易に生成するための仕組みが望まれている。 There is a need for a mechanism to easily generate pseudo-data of objects.
 本開示の一側面に係るデータ生成システムは、対象物の評価に対応する評価値を取得する取得部と、取得された評価値と、評価値が入力されると対象物を表す疑似データを出力するように学習された学習済みモデルとに基づいて、取得された評価値に対応する疑似対象物を表す疑似データを生成するデータ生成部とを備える。 A data generation system according to one aspect of the present disclosure includes an acquisition unit that acquires an evaluation value corresponding to an evaluation of an object, and a data generation unit that generates pseudo data representing a pseudo object corresponding to the acquired evaluation value based on the acquired evaluation value and a trained model that has been trained to output pseudo data representing an object when an evaluation value is input.
 本開示の一側面に係るデータ生成方法は、少なくとも一つのプロセッサを備えるデータ生成システムによって実行されるデータ生成方法であって、対象物の評価に対応する評価値を取得するステップと、取得された評価値と、評価値が入力されると対象物を表す疑似データを出力するように学習された学習済みモデルとに基づいて、取得された評価値に対応する疑似対象物を表す疑似データを生成するステップとを含む。 A data generation method according to one aspect of the present disclosure is a data generation method executed by a data generation system having at least one processor, and includes the steps of acquiring an evaluation value corresponding to an evaluation of an object, and generating pseudo data representing a pseudo object corresponding to the acquired evaluation value based on the acquired evaluation value and a trained model trained to output pseudo data representing an object when an evaluation value is input.
 本開示の一側面に係るデータ生成プログラムは、対象物の評価に対応する評価値を取得するステップと、取得された評価値と、評価値が入力されると対象物を表す疑似データを出力するように学習された学習済みモデルとに基づいて、取得された評価値に対応する疑似対象物を表す疑似データを生成するステップとをコンピュータに実行させる。 A data generation program according to one aspect of the present disclosure causes a computer to execute the steps of acquiring an evaluation value corresponding to an evaluation of an object, and generating pseudo data representing a pseudo object corresponding to the acquired evaluation value based on the acquired evaluation value and a trained model that has been trained to output pseudo data representing an object when an evaluation value is input.
 本開示の一側面によれば、対象物の疑似データを容易に生成できる。 According to one aspect of the present disclosure, pseudo data of an object can be easily generated.
データ生成システムの適用および機能構成の一例を示す図である。FIG. 1 is a diagram illustrating an example of an application and a functional configuration of a data generation system. データ生成システムで用いられるコンピュータのハードウェア構成の一例を示す図である。FIG. 2 is a diagram illustrating an example of a hardware configuration of a computer used in the data generation system. 機械学習モデル(学習済みモデル)の一例を示す図である。FIG. 1 is a diagram illustrating an example of a machine learning model (trained model). 学習フェーズの全体像を示す図である。FIG. 1 is a diagram showing an overview of a learning phase. 学習フェーズの一例を示すフローチャートである。13 is a flowchart illustrating an example of a learning phase. 運用フェーズの全体像を示す図である。FIG. 1 is a diagram showing an overall view of the operation phase. 運用フェーズの一例を示すフローチャートである。13 is a flowchart illustrating an example of an operation phase.
 以下、添付図面を参照しながら本開示での実施形態を詳細に説明する。図面の説明において同一または同等の要素には同一の符号を付し、重複する説明を省略する。 Below, an embodiment of the present disclosure will be described in detail with reference to the attached drawings. In the description of the drawings, identical or equivalent elements are given the same reference numerals, and duplicate descriptions will be omitted.
 [システムの概要]
 本開示に係るデータ生成システムは、疑似対象物を表す疑似データを生成するコンピュータシステムである。データ生成システムは、対象物の評価に対応する評価値を取得し、その評価値と、少なくとも一部が機械学習によって生成された学習済みモデルとに基づいて疑似データを生成する。
[System Overview]
A data generation system according to the present disclosure is a computer system that generates pseudo data representing a pseudo object. The data generation system acquires an evaluation value corresponding to an evaluation of the object, and generates the pseudo data based on the evaluation value and a trained model that is at least partially generated by machine learning.
 対象物とは或る種類の有体物をいう。一例では、対象物は外観が不定な有体物である。「外観が不定」とは、個々の外観が完全に同じではないことをいう。外観が不定な有体物の例として生鮮食品が挙げられ、したがって、対象物は或る種類の野菜、果物、魚、または精肉であり得る。疑似対象物とは、現実の対象物に似せるようにコンピュータシステム上で生成される仮想の対象物をいう。疑似データは、疑似対象物を表す電子データである。疑似データは対象物を映す画像でもよく、本開示ではその画像を疑似画像という。疑似データは対象物の3次元形状を示すモデルデータでもよく、本開示ではそのモデルデータを疑似3次元モデルという。 An object refers to a tangible object of some kind. In one example, an object is a tangible object of variable appearance. "Various appearance" means that the individual appearances are not exactly the same. An example of a tangible object of variable appearance is fresh produce, so the object may be a type of vegetable, fruit, fish, or meat. A pseudo object refers to a virtual object that is generated on a computer system to resemble a real object. Pseudo data is electronic data that represents a pseudo object. The pseudo data may be an image that depicts the object, and in this disclosure, the image is referred to as a pseudo image. The pseudo data may be model data that shows the three-dimensional shape of the object, and in this disclosure, the model data is referred to as a pseudo three-dimensional model.
 対象物の評価とは、定性的に判断された対象物の価値をいう。一例では、対象物の評価は、外観についての分類である。例えば、その分類は、色、大きさ、形状、艶などのような、対象物の外観についての諸要素に基づいて総合的に決定される。対象物の評価は品質に関係し得る。評価値とは対象物の評価を定量的に示す値をいう。一例では、評価値は対象物の品質を示す。例えば、評価値は連続値または離散値によって表される。評価値が連続値か離散値かに関わらず、評価値は対象物の外観または品質についての分類を示してもよい。例えば、分類はランクA,B,Cなどのようなクラス(等級)であってもよい。評価値が連続値である場合には、例えば、クラス「ランクC」が0以上1未満の評価値に対応し、クラス「ランクB」が1以上2未満の評価値に対応し、クラス「ランクA」が2以上3以下の評価値に対応してもよい。評価値が離散値である場合には、離散値とクラスとの対応関係が1対1であってもよいし、N対1であってもよい。 The evaluation of an object refers to the value of the object judged qualitatively. In one example, the evaluation of an object is a classification of the appearance. For example, the classification is determined comprehensively based on various elements of the object's appearance, such as color, size, shape, gloss, etc. The evaluation of an object may be related to quality. The evaluation value refers to a value that quantitatively indicates the evaluation of the object. In one example, the evaluation value indicates the quality of the object. For example, the evaluation value is represented by a continuous value or a discrete value. Regardless of whether the evaluation value is a continuous value or a discrete value, the evaluation value may indicate a classification of the appearance or quality of the object. For example, the classification may be a class (grade) such as rank A, B, C, etc. When the evaluation value is a continuous value, for example, the class "Rank C" may correspond to an evaluation value of 0 or more and less than 1, the class "Rank B" may correspond to an evaluation value of 1 or more and less than 2, and the class "Rank A" may correspond to an evaluation value of 2 or more and less than 3. When the evaluation value is a discrete value, the correspondence between the discrete value and the class may be 1:1 or N:1.
 機械学習とは、与えられた情報に基づいて反復的に学習することで、法則またはルールを自律的に見つけ出す手法をいう。学習済みモデルはアルゴリズムおよびデータ構造を用いて構築される。学習済みモデルの少なくとも一部は機械学習によって生成される。疑似データを生成するための機械学習のアーキテクチャとしてGAN(Generative Adversarial Networks)が用いられてもよい。学習済みモデルを用いることで、定性的な指標である評価値から疑似データを生成する作業を定量化できる。 Machine learning is a method of autonomously finding laws or rules by repeatedly learning based on given information. A trained model is constructed using algorithms and data structures. At least a portion of the trained model is generated by machine learning. Generative Adversarial Networks (GAN) may be used as a machine learning architecture for generating pseudo data. By using a trained model, the task of generating pseudo data can be quantified from evaluation values, which are qualitative indicators.
 一例では、データ生成システムは、ユーザによって入力された評価値と学習済みモデルとに基づいて疑似データを生成する。ユーザが自身の感覚または暗黙知に基づく曖昧な判断によって評価値を指定した場合に、データ生成システムはその評価値に対応する疑似データを生成する。データ生成システムによって、そのような曖昧な判断を伴う疑似データの生成を自動化できる。また、ユーザは、生成された疑似データと自身の感覚または暗黙知に基づく曖昧な判断とを比較し、自身の判断により近い疑似データが生成されるように,評価値またはその範囲を指定もしくは変更することができる。 In one example, the data generation system generates pseudo data based on an evaluation value input by a user and a trained model. When a user specifies an evaluation value based on an ambiguous judgment based on their own intuition or tacit knowledge, the data generation system generates pseudo data corresponding to that evaluation value. The data generation system can automate the generation of pseudo data involving such ambiguous judgments. In addition, the user can compare the generated pseudo data with the ambiguous judgment based on their own intuition or tacit knowledge, and specify or change the evaluation value or its range so that pseudo data closer to their own judgment is generated.
 [システムの構成]
 図1は一例に係るデータ生成システム10の適用および機能構成の一例を示す図である。この例では、データ生成システム10は機能モジュールとしてモデル生成部11、取得部12、およびデータ生成部13を備える。モデル生成部11は学習済みモデル20の少なくとも一部を生成する機能モジュールである。学習済みモデル20は、評価値が入力されることに応答して疑似データを出力するように学習された計算モデルである。取得部12は対象物の評価に対応する評価値を取得する機能モジュールである。データ生成部13は、取得された評価値と、生成された学習済みモデル20とに基づいて、該評価値に対応する疑似対象物を表す疑似データを生成する機能モジュールである。「評価値に対応する疑似対象物」とは、評価値によって示される価値を有すると判断されるように生成された疑似対象物をいう。モデル生成部11による学習済みモデル20の生成は学習フェーズに相当する。取得部12およびデータ生成部13による学習済みモデル20の利用は、運用フェーズまたは推論フェーズに相当する。
[System Configuration]
FIG. 1 is a diagram showing an example of application and functional configuration of a data generation system 10 according to an example. In this example, the data generation system 10 includes a model generation unit 11, an acquisition unit 12, and a data generation unit 13 as functional modules. The model generation unit 11 is a functional module that generates at least a part of a trained model 20. The trained model 20 is a computational model trained to output pseudo data in response to an input of an evaluation value. The acquisition unit 12 is a functional module that acquires an evaluation value corresponding to an evaluation of an object. The data generation unit 13 is a functional module that generates pseudo data representing a pseudo object corresponding to the evaluation value based on the acquired evaluation value and the generated trained model 20. The "pseudo object corresponding to the evaluation value" refers to a pseudo object generated so as to be determined to have a value indicated by the evaluation value. The generation of the trained model 20 by the model generation unit 11 corresponds to a learning phase. The use of the trained model 20 by the acquisition unit 12 and the data generation unit 13 corresponds to an operation phase or an inference phase.
 データ生成システム10は任意の種類のコンピュータによって実現され得る。そのコンピュータは、パーソナルコンピュータ、業務用サーバなどの汎用コンピュータでもよいし、特定の処理を実行する専用装置に組み込まれてもよい。データ生成システム10は一つのコンピュータによって実現されてもよいし、複数のコンピュータを有する分散システムによって実現されてもよい。 The data generation system 10 can be realized by any type of computer. The computer may be a general-purpose computer such as a personal computer or a business server, or may be incorporated into a dedicated device that executes specific processing. The data generation system 10 may be realized by a single computer, or may be realized by a distributed system having multiple computers.
 一例では、データ生成システム10は通信ネットワークを介して第1データベース30および第2データベース40に接続する。 In one example, the data generation system 10 connects to the first database 30 and the second database 40 via a communication network.
 第1データベース30は、学習済みモデル20を生成するために用いられる学習用データセットを記憶する装置である。一例では、学習用データセットは複数の現実の対象物に対応する複数のレコードを含む。個々のレコードは学習済みモデル20の生成に必要なデータ項目を含む。例えば、各レコードは、或る一つの現実の対象物についてのRGB画像、マスク画像、3次元モデル、評価値、およびクラスを含む。RGB画像は対象物の投影形状およびテクスチャを表す。マスク画像は対象物の2次元形状を表す。一例では、マスク画像は、対象物を表す画素値が第1の色(例えば白)であり、それ以外の画素値が第2の色(例えば黒)である二値画像である。3次元モデルは対象物の立体形状およびテクスチャを表す。テクスチャは、対象物を特徴付ける、形状以外の要素をいう。例えば、テクスチャは色、艶などによって表される。 The first database 30 is a device that stores a training dataset used to generate the trained model 20. In one example, the training dataset includes a plurality of records corresponding to a plurality of real objects. Each record includes data items necessary for generating the trained model 20. For example, each record includes an RGB image, a mask image, a three-dimensional model, an evaluation value, and a class for a given real object. The RGB image represents the projected shape and texture of the object. The mask image represents the two-dimensional shape of the object. In one example, the mask image is a binary image in which pixel values representing the object are a first color (e.g., white) and other pixel values are a second color (e.g., black). The three-dimensional model represents the three-dimensional shape and texture of the object. Texture refers to elements other than shape that characterize an object. For example, texture is represented by color, gloss, etc.
 第2データベース40は、データ生成システム10によって生成された疑似データを記憶する装置である。一例では、第2データベース40は個々の疑似対象物について疑似画像および疑似3次元モデルの少なくとも一方を記憶する。 The second database 40 is a device that stores the pseudo data generated by the data generation system 10. In one example, the second database 40 stores at least one of a pseudo image and a pseudo three-dimensional model for each pseudo object.
 図1の例では、疑似データは産業機械60を動作させるために用いられる。第2データベース40は通信ネットワークを介して制御モデル生成装置50に接続される。制御モデル生成装置50は、第2データベース40に格納された疑似データに基づく機械学習を実行して制御モデル70を生成するコンピュータである。疑似データに基づいて学習された制御モデル70は、例えば、疑似対象物に対応する現実の対象物を評価して、該評価に関連する制御値を推定する機能を有する。制御モデル70は通信ネットワークを介して産業機械60に提供される。産業機械60は制御モデル70に基づく所定の処理を実行する装置である。産業機械60は判定器、ロボットコントローラ、ロボットなどの任意の装置であり得る。一例では、産業機械60は、制御モデル70によって制御値を出力する出力部61を備える。例えば、出力部61はその制御値をモニタ、ロボットなどの他の装置に出力してもよい。 In the example of FIG. 1, the pseudo data is used to operate the industrial machine 60. The second database 40 is connected to the control model generating device 50 via a communication network. The control model generating device 50 is a computer that generates a control model 70 by executing machine learning based on the pseudo data stored in the second database 40. The control model 70 learned based on the pseudo data has a function of, for example, evaluating a real object corresponding to the pseudo object and estimating a control value related to the evaluation. The control model 70 is provided to the industrial machine 60 via a communication network. The industrial machine 60 is a device that executes a predetermined process based on the control model 70. The industrial machine 60 can be any device such as a judger, a robot controller, or a robot. In one example, the industrial machine 60 includes an output unit 61 that outputs a control value by the control model 70. For example, the output unit 61 may output the control value to another device such as a monitor or a robot.
 装置間を接続する通信ネットワークは、有線ネットワークでも無線ネットワークでもよい。通信ネットワークはインターネットおよびイントラネットの少なくとも一方を含んで構成されてもよい。あるいは、通信ネットワークは単純に1本の通信ケーブルによって実現されてもよい。 The communication network connecting the devices may be a wired network or a wireless network. The communication network may be configured to include at least one of the Internet and an intranet. Alternatively, the communication network may be realized simply by a single communication cable.
 図2は、データ生成システム10で用いられるコンピュータ100のハードウェア構成の一例を示す図である。この例では、コンピュータ100は本体110、モニタ120、および入力デバイス130を備える。 FIG. 2 is a diagram showing an example of the hardware configuration of a computer 100 used in the data generation system 10. In this example, the computer 100 includes a main unit 110, a monitor 120, and an input device 130.
 本体110はコンピュータの主たる機能を実行する装置である。本体110は回路160を有する。回路160は、少なくとも一つのプロセッサ161、メモリ162、ストレージ163、入出力ポート164、および通信ポート165を有する。ストレージ163は、本体110の各機能モジュールを構成するためのプログラムを記録する。ストレージ163は、ハードディスク、不揮発性の半導体メモリ、磁気ディスク、光ディスクなどの、コンピュータ読み取り可能な記録媒体である。メモリ162は、ストレージ163からロードされたプログラム、プロセッサ161の演算結果などを一時的に記憶する。プロセッサ161は、メモリ162と協働してプログラムを実行することで、各機能モジュールを構成する。入出力ポート164は、プロセッサ161からの指令に応じて、モニタ120または入力デバイス130との間で電気信号の入出力を行う。入出力ポート164は他の装置との間で電気信号の入出力を行ってもよい。通信ポート165は、プロセッサ161からの指令に従って、通信ネットワークNを介して他の装置との間でデータ通信を行う。 The main body 110 is a device that executes the main functions of the computer. The main body 110 has a circuit 160. The circuit 160 has at least one processor 161, a memory 162, a storage 163, an input/output port 164, and a communication port 165. The storage 163 records programs for configuring each functional module of the main body 110. The storage 163 is a computer-readable recording medium such as a hard disk, a non-volatile semiconductor memory, a magnetic disk, or an optical disk. The memory 162 temporarily stores programs loaded from the storage 163, the results of calculations by the processor 161, and the like. The processor 161 configures each functional module by executing programs in cooperation with the memory 162. The input/output port 164 inputs/outputs electrical signals between the monitor 120 or the input device 130 in response to instructions from the processor 161. The input/output port 164 may input/output electrical signals between other devices. The communication port 165 performs data communication with other devices via the communication network N in response to instructions from the processor 161.
 モニタ120は、本体110から出力された情報を表示するための装置である。モニタ120は、グラフィック表示が可能であればいかなるものであってもよく、その具体例としては液晶パネルが挙げられる。 Monitor 120 is a device for displaying information output from main body 110. Monitor 120 may be any device capable of displaying graphics, a specific example of which is a liquid crystal panel.
 入力デバイス130は、本体110に情報を入力するための装置である。入力デバイス130は、所望の情報を入力可能であればいかなるものであってもよく、その具体例としてはキーパッド、マウス、操作コントローラなどの操作インタフェースが挙げられる。 The input device 130 is a device for inputting information to the main body 110. The input device 130 may be any device capable of inputting desired information, and specific examples include operation interfaces such as a keypad, a mouse, and an operation controller.
 モニタ120および入力デバイス130はタッチパネルとして一体化されていてもよい。例えばタブレットコンピュータのように、本体110、モニタ120、および入力デバイス130が一体化されていてもよい。 The monitor 120 and the input device 130 may be integrated as a touch panel. For example, the main body 110, the monitor 120, and the input device 130 may be integrated as in a tablet computer.
 データ生成システム10の各機能モジュールは、プロセッサ161またはメモリ162の上にデータ生成プログラムを読み込ませてプロセッサ161にそのプログラムを実行させることで実現される。データ生成プログラムは、データ生成システム10の各機能モジュールを実現するためのコードを含む。プロセッサ161はデータ生成プログラムに従って入出力ポート164または通信ポート165を動作させ、メモリ162またはストレージ163におけるデータの読み出しおよび書き込みを実行する。 Each functional module of data generation system 10 is realized by loading a data generation program onto processor 161 or memory 162 and having processor 161 execute the program. The data generation program includes code for realizing each functional module of data generation system 10. Processor 161 operates input/output port 164 or communication port 165 in accordance with the data generation program, and executes reading and writing of data in memory 162 or storage 163.
 データ生成プログラムは、CD-ROM、DVD-ROM、半導体メモリなどの非一時的な記録媒体に固定的に記録された上で提供されてもよい。あるいは、データ生成プログラムは、搬送波に重畳されたデータ信号として通信ネットワークを介して提供されてもよい。 The data generation program may be provided in a state where it is permanently recorded on a non-transitory recording medium such as a CD-ROM, DVD-ROM, or semiconductor memory. Alternatively, the data generation program may be provided via a communications network as a data signal superimposed on a carrier wave.
 [学習済みモデル]
 図3は学習済みモデル20を生成するために用いられる機械学習モデル200の一例を示す図である。機械学習モデル200は完成前の学習済みモデル20であるといえる。一例では、機械学習モデル200は変換モデル210、データ生成モデル220、および評価モデル230を備える。
[Trained model]
3 is a diagram showing an example of a machine learning model 200 used to generate the trained model 20. The machine learning model 200 can be said to be a pre-complete trained model 20. In one example, the machine learning model 200 includes a conversion model 210, a data generation model 220, and an evaluation model 230.
 変換モデル210は評価値を潜在変数に変換する計算モデルである。変換モデル210は評価値から潜在変数への写像といえる。潜在変数は、疑似データを生成するためのn次元の特徴を示すデータである。一例では、変換モデル210は変換器211および加算器212を備える。変換器211は評価値を潜在変数に変換する構成要素である。加算器212は、一様分布などの確率分布によって設定される別の潜在変数Zを、変換された潜在変数に適用する構成要素である。変換モデル210は、別の潜在変数Zが適用された潜在変数を出力する。 The conversion model 210 is a computational model that converts the evaluation value into a latent variable. The conversion model 210 can be said to be a mapping from the evaluation value to the latent variable. The latent variable is data indicating n-dimensional features for generating pseudo data. In one example, the conversion model 210 includes a converter 211 and an adder 212. The converter 211 is a component that converts the evaluation value into a latent variable. The adder 212 is a component that applies another latent variable Z s set by a probability distribution such as a uniform distribution to the converted latent variable. The conversion model 210 outputs a latent variable to which the other latent variable Z s has been applied.
 データ生成モデル220は、変換モデル210よって生成された潜在変数に基づいて疑似データを生成する計算モデルである。一例では、データ生成モデル220は形状生成モデル221、テクスチャ生成モデル223、および3次元形状生成モデル224を備える。形状生成モデル221は、変換モデル210によって生成された潜在変数に基づいて、対象物の形状を示すマスク画像301を出力する計算モデルである。テクスチャ生成モデル223は、マスク画像301と、一様分布などの確率分布によって設定される潜在変数Zとに基づいて、対象物の投影形状およびテスクチャを表す疑似画像302を出力する計算モデルである。疑似画像302はRGB画像であってもよい。3次元形状生成モデル224は、疑似画像302に基づいて、疑似対象物の3次元形状およびテクスチャを表す疑似3次元モデル303を出力する計算モデルである。 The data generation model 220 is a computational model that generates pseudo data based on the latent variables generated by the transformation model 210. In one example, the data generation model 220 includes a shape generation model 221, a texture generation model 223, and a three-dimensional shape generation model 224. The shape generation model 221 is a computational model that outputs a mask image 301 that indicates the shape of an object based on the latent variables generated by the transformation model 210. The texture generation model 223 is a computational model that outputs a pseudo image 302 that represents the projected shape and texture of an object based on the mask image 301 and a latent variable Z t that is set by a probability distribution such as a uniform distribution. The pseudo image 302 may be an RGB image. The three-dimensional shape generation model 224 is a computational model that outputs a pseudo three-dimensional model 303 that represents the three-dimensional shape and texture of a pseudo object based on the pseudo image 302.
 評価モデル230は、疑似データに基づいて評価値を算出する計算モデルである。本開示では、学習フェーズに関連して、変換モデル210に入力される評価値を「第1評価値」ともいい、評価モデル230から出力される評価値を「第2評価値」ということで、必要に応じて2種類の評価値を区別する。 The evaluation model 230 is a computational model that calculates an evaluation value based on pseudo data. In this disclosure, in relation to the learning phase, the evaluation value input to the conversion model 210 is also referred to as the "first evaluation value," and the evaluation value output from the evaluation model 230 is referred to as the "second evaluation value," to distinguish between the two types of evaluation values as necessary.
 図3では対象物としてイチゴを例示する。マスク画像301はイチゴの2次元形状を表し、疑似画像302はイチゴの投影形状およびテクスチャを表し、および疑似3次元モデル303はイチゴの3次元形状およびテクスチャを表す。 In Figure 3, a strawberry is shown as an example of an object. Mask image 301 represents the two-dimensional shape of the strawberry, pseudo image 302 represents the projected shape and texture of the strawberry, and pseudo 3D model 303 represents the three-dimensional shape and texture of the strawberry.
 [システムの動作]
 (学習済みモデルの生成)
 機械学習モデル200の少なくとも一部に対して機械学習が実行されて、学習済みモデル20が生成される。図4はその学習フェーズの全体像を示す図である。
[System Operation]
(Generating a trained model)
Machine learning is performed on at least a part of the machine learning model 200 to generate a trained model 20. Fig. 4 is a diagram showing an overview of the training phase.
 図4は、変換モデル210、データ生成モデル220、および評価モデル230に加えて、特徴量空間410および潜在空間420を示す。特徴量空間410は評価値を規定する座標空間である。図4の例では、特徴量空間410内の個々の点は、連続的に推移する評価値を示す。すなわち、この例での評価値は連続値で表される。図4の例では、これらの評価値が三つのクラスQa,Qb,Qcに分類される。潜在空間420は潜在変数を規定する座標空間である。潜在空間420内の個々の点は潜在変数を示す。 FIG. 4 shows the feature space 410 and latent space 420 in addition to the transformation model 210, the data generation model 220, and the evaluation model 230. The feature space 410 is a coordinate space that defines the evaluation value. In the example of FIG. 4, each point in the feature space 410 indicates an evaluation value that changes continuously. That is, the evaluation value in this example is expressed as a continuous value. In the example of FIG. 4, these evaluation values are classified into three classes Qa, Qb, and Qc. The latent space 420 is a coordinate space that defines the latent variables. Each point in the latent space 420 indicates a latent variable.
 データ生成モデル220は、個々の潜在変数と学習用データセットとを用いる機械学習によって生成される。評価モデル230は、学習用データセットを用いる機械学習によって生成される。変換モデル210は、評価値を用いる機械学習によって生成される。変換モデル210の学習においては、変換モデル210は入力された第1評価値を潜在変数に変換し、データ生成モデル220はその潜在変数に基づいて疑似データを生成し、評価モデル230はその疑似データに基づいて第2評価値を出力する。評価モデル230は、特徴量空間410内の第1評価値および第2評価値に基づいて更新される。 The data generation model 220 is generated by machine learning using individual latent variables and a training dataset. The evaluation model 230 is generated by machine learning using a training dataset. The conversion model 210 is generated by machine learning using evaluation values. In training the conversion model 210, the conversion model 210 converts the input first evaluation value into a latent variable, the data generation model 220 generates pseudo data based on the latent variable, and the evaluation model 230 outputs a second evaluation value based on the pseudo data. The evaluation model 230 is updated based on the first evaluation value and the second evaluation value in the feature space 410.
 図5は学習フェーズの一例を処理フローS1として示すフローチャートである。すなわち、データ生成システム10は処理フローS1を実行する。 FIG. 5 is a flowchart showing an example of the learning phase as processing flow S1. That is, the data generation system 10 executes processing flow S1.
 ステップS11では、モデル生成部11が形状生成モデル221を生成する。一例では、モデル生成部11は複数の潜在変数と学習用データセットの複数のマスク画像とに基づく機械学習(例えば、GANを用いた機械学習)によって形状生成モデル221を生成する。 In step S11, the model generation unit 11 generates the shape generation model 221. In one example, the model generation unit 11 generates the shape generation model 221 by machine learning (e.g., machine learning using GAN) based on multiple latent variables and multiple mask images of a training dataset.
 ステップS12では、モデル生成部11がテクスチャ生成モデル223を生成する。一例では、モデル生成部11は学習用データセットの複数のRGB画像およびマスク画像に基づく機械学習(例えば、GANを用いた機械学習)によってテクスチャ生成モデル223を生成する。 In step S12, the model generation unit 11 generates the texture generation model 223. In one example, the model generation unit 11 generates the texture generation model 223 by machine learning (e.g., machine learning using a GAN) based on multiple RGB images and mask images of the training dataset.
 ステップS13では、モデル生成部11が3次元形状生成モデル224を生成する。一例では、モデル生成部11は学習用データセットの複数のRGB画像および複数の3次元モデルに基づく機械学習(例えば、GANを用いた機械学習)によって3次元形状生成モデル224を生成する。 In step S13, the model generation unit 11 generates the three-dimensional shape generation model 224. In one example, the model generation unit 11 generates the three-dimensional shape generation model 224 by machine learning (e.g., machine learning using a GAN) based on multiple RGB images and multiple three-dimensional models of the training dataset.
 ステップS11~S13に示すように、モデル生成部11は、潜在変数に基づいて疑似データを出力するようにデータ生成モデル220を生成する。この処理において、GANを用いた機械学習を導入することで、現実に存在しそうな疑似対象物の疑似データを生成するデータ生成モデル220を生成することが可能になる。 As shown in steps S11 to S13, the model generation unit 11 generates a data generation model 220 to output pseudo data based on latent variables. In this process, by introducing machine learning using GAN, it becomes possible to generate a data generation model 220 that generates pseudo data of pseudo objects that are likely to exist in reality.
 ステップS14では、モデル生成部11が評価モデル230を生成する。一例では、モデル生成部11は学習用データセットの複数のRGB画像および複数の評価値に基づく機械学習によって評価モデル230を生成する。 In step S14, the model generation unit 11 generates the evaluation model 230. In one example, the model generation unit 11 generates the evaluation model 230 by machine learning based on multiple RGB images and multiple evaluation values of the training dataset.
 ステップS15では、モデル生成部11が変換モデル210を生成する。一例では、モデル生成部11は以下の処理を実行して変換モデルを完成させる。 In step S15, the model generation unit 11 generates the conversion model 210. In one example, the model generation unit 11 completes the conversion model by executing the following process.
 モデル生成部11は第1評価値を完成前の変換モデル210に入力して潜在変数を生成する。モデル生成部11はその潜在変数とデータ生成モデル220とに基づいて、第1評価値に対応する疑似画像(例えば疑似RGB画像)を生成する。モデル生成部11はデータ生成モデル220に潜在変数を入力する。データ生成モデル220では形状生成モデル221およびテクスチャ生成モデル223を用いた処理が実行される。モデル生成部11はその処理によって得られる疑似画像を取得する。モデル生成部11はその疑似画像を評価モデル230に入力して第2評価値を算出する。モデル生成部11は第1評価値および第2評価値に基づいて完成前の変換モデル210を更新する。 The model generation unit 11 inputs the first evaluation value into the uncompleted conversion model 210 to generate a latent variable. The model generation unit 11 generates a pseudo image (e.g., a pseudo RGB image) corresponding to the first evaluation value based on the latent variable and the data generation model 220. The model generation unit 11 inputs the latent variable into the data generation model 220. In the data generation model 220, processing is executed using the shape generation model 221 and the texture generation model 223. The model generation unit 11 obtains a pseudo image obtained by the processing. The model generation unit 11 inputs the pseudo image into the evaluation model 230 to calculate a second evaluation value. The model generation unit 11 updates the uncompleted conversion model 210 based on the first evaluation value and the second evaluation value.
 モデル生成部11はこのような一連の処理を複数の第1評価値のそれぞれについて実行して、最終的に変換モデル210を生成する。例えば、モデル生成部11は第1評価値と第2評価値とが一致するように変換モデル210を生成する。あるいは、モデル生成部11は第1評価値と第2評価値との誤差が所定の閾値未満になるように変換モデル210を生成してもよい。このように第2評価値を第1評価値と比較しつつ完成前の変換モデル210の更新を繰り返して、最終的に変換モデル210を生成することで、第1評価値と第2評価値との対応関係が1対1になる。すなわち、変換モデル210は、指定された評価値に対応する疑似データを生成するための潜在変数を出力できるようになる。 The model generation unit 11 executes this series of processes for each of the multiple first evaluation values, and finally generates the conversion model 210. For example, the model generation unit 11 generates the conversion model 210 so that the first evaluation value and the second evaluation value match. Alternatively, the model generation unit 11 may generate the conversion model 210 so that the error between the first evaluation value and the second evaluation value is less than a predetermined threshold. In this way, by repeatedly updating the uncompleted conversion model 210 while comparing the second evaluation value with the first evaluation value, and finally generating the conversion model 210, the correspondence between the first evaluation value and the second evaluation value becomes one-to-one. In other words, the conversion model 210 becomes able to output latent variables for generating pseudo data corresponding to the specified evaluation value.
 処理フローS1において、モデル生成部11はデータ生成モデル220を生成した後に変換モデル210を生成してもよい。すなわち、モデル生成部11はステップS11~S13を実行した後にステップS15を実行してもよい。モデル生成部11は、データ生成モデル220を生成した後に評価モデル230を生成し、その後に、データ生成モデル220および評価モデル230を用いて変換モデル210を生成してもよい、すなわち、モデル生成部11はステップS11~S13を実行した後にステップS14を実行し、ステップS14を実行した後にステップS15を実行してもよい。 In process flow S1, the model generation unit 11 may generate the conversion model 210 after generating the data generation model 220. That is, the model generation unit 11 may execute steps S11 to S13 and then execute step S15. The model generation unit 11 may generate the evaluation model 230 after generating the data generation model 220, and then generate the conversion model 210 using the data generation model 220 and the evaluation model 230. That is, the model generation unit 11 may execute steps S11 to S13 and then execute step S14, and execute step S15 after executing step S14.
 処理フローS1によって学習済みモデル20が得られる。学習済みモデル20は最適であると推定される計算モデルであり、“現実に最適である計算モデル”とは限らないことに留意されたい。 The trained model 20 is obtained by the process flow S1. Please note that the trained model 20 is a computational model that is estimated to be optimal, and is not necessarily a "computational model that is actually optimal."
 (疑似データの生成)
 一例では、学習フェーズによって得られた変換モデル210およびデータ生成モデル220の組合せが学習済みモデル20として提供される。学習済みモデル20は評価モデル230を含んでもよいし含まなくてもよい。運用フェーズ(推論フェーズ)ではその学習済みモデル20を用いて疑似データが生成される。図6はその運用フェーズの全体像を示す図である。
(Generating pseudo data)
In one example, a combination of the conversion model 210 and the data generation model 220 obtained by the learning phase is provided as a trained model 20. The trained model 20 may or may not include an evaluation model 230. In the operation phase (inference phase), pseudo data is generated using the trained model 20. Fig. 6 is a diagram showing an overall view of the operation phase.
 運用フェーズでは、疑似データを生成するための評価値411が学習済みモデル20に入力される。本開示ではその評価値411を指定評価値ともいう。当然ながら、評価値411は特徴量空間410内で特定される値である。学習済みモデル20では、変換モデル210が評価値411を潜在空間420内の潜在変数421に変換する。続いて、データ生成モデル220がその潜在変数421に基づいて疑似画像302および疑似3次元モデル303の少なくとも一方を疑似データとして生成する。 In the operation phase, an evaluation value 411 for generating pseudo data is input to the trained model 20. In this disclosure, the evaluation value 411 is also referred to as a specified evaluation value. Naturally, the evaluation value 411 is a value specified in the feature space 410. In the trained model 20, the conversion model 210 converts the evaluation value 411 into a latent variable 421 in the latent space 420. Next, the data generation model 220 generates at least one of the pseudo image 302 and the pseudo 3D model 303 as pseudo data based on the latent variable 421.
 図7は運用フェーズの一例を処理フローS2として示すフローチャートである。すなわち、データ生成システム10は処理フローS2を実行する。 FIG. 7 is a flowchart showing an example of the operation phase as processing flow S2. That is, the data generation system 10 executes processing flow S2.
 ステップS21では、取得部12が評価値(指定評価値)を取得する。一例では、取得部12は、ユーザによって入力された評価値を取得する。あるいは、取得部12は他のコンピュータから送信された評価値を受信してもよいし、所定の記憶装置に記憶されている評価値を読み出してもよい。 In step S21, the acquisition unit 12 acquires an evaluation value (specified evaluation value). In one example, the acquisition unit 12 acquires an evaluation value input by a user. Alternatively, the acquisition unit 12 may receive an evaluation value transmitted from another computer, or may read an evaluation value stored in a specified storage device.
 ステップS22では、データ生成部13が評価値を潜在変数に変換する。データ生成部13は評価値と変換モデル210とに基づいて潜在変数を生成する。データ生成部13は評価値を変換モデル210に入力し、変換モデル210から出力される潜在変数を取得する。 In step S22, the data generation unit 13 converts the evaluation value into a latent variable. The data generation unit 13 generates a latent variable based on the evaluation value and the conversion model 210. The data generation unit 13 inputs the evaluation value into the conversion model 210 and obtains the latent variable output from the conversion model 210.
 ステップS23では、データ生成部13が潜在変数と形状生成モデル221とに基づいて、評価値に対応するマスク画像を生成する。データ生成部13は潜在変数を形状生成モデル221に入力し、形状生成モデル221から出力されるマスク画像を取得する。 In step S23, the data generation unit 13 generates a mask image corresponding to the evaluation value based on the latent variables and the shape generation model 221. The data generation unit 13 inputs the latent variables to the shape generation model 221 and obtains the mask image output from the shape generation model 221.
 ステップS24では、データ生成部13がマスク画像とテクスチャ生成モデル223とに基づいて、評価値に対応する疑似画像を生成する。データ生成部13はマスク画像301および潜在変数Zをテクスチャ生成モデル223に入力し、テクスチャ生成モデル223から出力される疑似画像を取得する。 In step S24, the data generation unit 13 generates a pseudo image corresponding to the evaluation value based on the mask image and the texture generation model 223. The data generation unit 13 inputs the mask image 301 and the latent variable Zt to the texture generation model 223 and obtains a pseudo image output from the texture generation model 223.
 ステップS25では、データ生成部13が疑似画像と3次元形状生成モデル224とに基づいて、評価値に対応する疑似3次元モデルを生成する。データ生成部13は疑似画像を3次元形状生成モデル224に入力し、3次元形状生成モデル224から出力される疑似3次元モデルを取得する。 In step S25, the data generation unit 13 generates a pseudo three-dimensional model corresponding to the evaluation value based on the pseudo image and the three-dimensional shape generation model 224. The data generation unit 13 inputs the pseudo image to the three-dimensional shape generation model 224 and obtains the pseudo three-dimensional model output from the three-dimensional shape generation model 224.
 ステップS26では、データ生成部13が疑似3次元モデルを第2データベース40に格納する。上述したように、疑似3次元モデルは制御モデル70を生成するために用いられる。 In step S26, the data generation unit 13 stores the pseudo 3D model in the second database 40. As described above, the pseudo 3D model is used to generate the control model 70.
 ステップS27では、ユーザが必要に応じて、評価値またはその範囲を調整する。ユーザは、生成された疑似データ(疑似画像または疑似3次元モデル)と、感覚または暗黙知に基づく自身の判断とを比較する。そして、ユーザは、自身の判断により近い疑似データが生成されるように評価値またはその範囲を調整する。例えば、ユーザは評価値またはその範囲を指定もしくは変更する。ユーザは必要に応じてその調整を行うので、ステップS27は省略され得る。 In step S27, the user adjusts the evaluation value or its range as necessary. The user compares the generated pseudo data (pseudo image or pseudo 3D model) with his/her own judgment based on intuition or tacit knowledge. The user then adjusts the evaluation value or its range so that pseudo data that is closer to his/her own judgment is generated. For example, the user specifies or changes the evaluation value or its range. Since the user makes the adjustment as necessary, step S27 may be omitted.
 処理フローS2は繰り返し実行され得る。その繰り返し処理によって、或る種類の対象物(例えばイチゴ)について複数の疑似3次元モデルが第2データベース40に蓄積される。 Process flow S2 can be executed repeatedly. Through this repeated processing, multiple pseudo 3D models of a certain type of object (e.g., strawberries) are accumulated in the second database 40.
 制御モデル生成装置50は、第2データベース40に格納された疑似3次元モデルに基づく機械学習を実行して制御モデル70を生成する。産業機械60はその制御モデル70によって制御値を出力する。 The control model generating device 50 performs machine learning based on the pseudo three-dimensional model stored in the second database 40 to generate a control model 70. The industrial machine 60 outputs a control value based on the control model 70.
 第2データベース40内の疑似3次元モデルは他の目的で用いられてもよい。例えば、データ生成システム10はコンピュータグラフィック(CG)による動画または静止画などの形式でその疑似3次元モデルをモニタ120上に表示してもよい。 The pseudo three-dimensional model in the second database 40 may be used for other purposes. For example, the data generation system 10 may display the pseudo three-dimensional model on the monitor 120 in the form of a computer graphic (CG) video or still image.
 ステップS22~S25で示すように、データ生成部13は潜在変数とデータ生成モデル220とに基づいて疑似3次元モデルを生成する。データ生成部13は潜在変数をデータ生成モデル220に入力し、データ生成モデル220から出力される疑似3次元モデルを取得する。したがって、この例ではデータ生成部13は疑似データとして疑似3次元モデルを生成する。 As shown in steps S22 to S25, the data generation unit 13 generates a pseudo three-dimensional model based on the latent variables and the data generation model 220. The data generation unit 13 inputs the latent variables to the data generation model 220 and obtains a pseudo three-dimensional model output from the data generation model 220. Therefore, in this example, the data generation unit 13 generates a pseudo three-dimensional model as pseudo data.
 ステップS26において、データ生成部13は疑似3次元モデルに加えてまたは代えて疑似画像を第2データベース40に格納してもよい。すなわち、データ生成部13は疑似画像および疑似3次元モデルの少なくとも一方を疑似データとして生成してもよい。 In step S26, the data generation unit 13 may store a pseudo image in the second database 40 in addition to or instead of the pseudo three-dimensional model. That is, the data generation unit 13 may generate at least one of the pseudo image and the pseudo three-dimensional model as pseudo data.
 [変形例]
 以上、本開示の様々な例を詳細に説明した。しかし、本開示はそれらの例に限定されるものではない。本開示については、その要旨を逸脱しない範囲で様々な変形が可能である。
[Modification]
Various examples of the present disclosure have been described in detail above. However, the present disclosure is not limited to these examples. Various modifications of the present disclosure are possible without departing from the spirit and scope of the present disclosure.
 テクスチャ生成モデルは、マスク画像および潜在変数Zに加えて、変換モデルによって得られた潜在変数にも基づいて疑似画像を出力してもよい。この場合には、データ生成部は、マスク画像と、潜在変数Zと、変換モデルによって得られた潜在変数とをテクスチャ生成モデルに入力し、テクスチャ生成モデルから出力される疑似画像を取得する。あるいは、テクスチャ生成モデルはマスク画像を用いることなく、変換モデルによって得られた潜在変数に基づいて疑似画像を出力してもよい。この例では、形状生成モデルは省略される。データ生成部は、変換モデルによって得られた潜在変数をテクスチャ生成モデルに入力し、テクスチャ生成モデルから出力される疑似画像を取得する。 The texture generation model may output a pseudo image based on the latent variable obtained by the transformation model in addition to the mask image and the latent variable Zt . In this case, the data generation unit inputs the mask image, the latent variable Zt , and the latent variable obtained by the transformation model to the texture generation model, and obtains a pseudo image output from the texture generation model. Alternatively, the texture generation model may output a pseudo image based on the latent variable obtained by the transformation model without using the mask image. In this example, the shape generation model is omitted. The data generation unit inputs the latent variable obtained by the transformation model to the texture generation model, and obtains a pseudo image output from the texture generation model.
 変換モデルは機械学習を用いることなく生成されてもよい。例えば、第1評価値と第2評価値とが一致するように、または双方の評価値の誤差が所定の閾値未満になるように評価値を潜在変数に変換する関数が、変換モデルとして用意されてもよい。 The conversion model may be generated without using machine learning. For example, a function that converts the evaluation value into a latent variable so that the first evaluation value and the second evaluation value match, or so that the error between the two evaluation values is less than a predetermined threshold, may be prepared as the conversion model.
 データ生成モデルは3次元形状生成モデルを備えなくてもよい。この場合には、データ生成部は疑似データとして疑似画像を生成する。 The data generation model does not have to include a three-dimensional shape generation model. In this case, the data generation unit generates a pseudo image as pseudo data.
 データ生成システムはモデル生成部を備えなくてもよい。学習済みモデルはコンピュータシステム間で移植可能である。したがって、データ生成部は別のコンピュータシステムで生成された学習済みモデルを用いてもよい。 The data generation system does not need to include a model generation unit. Trained models are portable between computer systems. Therefore, the data generation unit may use a trained model generated in another computer system.
 システムのハードウェア構成は、プログラムの実行により各機能モジュールを実現する態様に限定されない。例えば、上述した機能モジュール群の少なくとも一部は、その機能に特化した論理回路により構成されていてもよいし、該論理回路を集積したASIC(Application Specific Integrated Circuit)により構成されてもよい。 The hardware configuration of the system is not limited to a configuration in which each functional module is realized by executing a program. For example, at least a portion of the functional modules described above may be configured with a logic circuit specialized for that function, or may be configured with an ASIC (Application Specific Integrated Circuit) that integrates the logic circuit.
 少なくとも一つのプロセッサにより実行される方法の処理手順は上記の例に限定されない。例えば、上述したステップまたは処理の一部が省略されてもよいし、別の順序で各ステップが実行されてもよい。また、上述したステップのうちの2以上のステップが組み合わされてもよいし、ステップの一部が修正または削除されてもよい。あるいは、上記の各ステップに加えて他のステップが実行されてもよい。 The processing steps of the method executed by at least one processor are not limited to the above examples. For example, some of the steps or processes described above may be omitted, or the steps may be executed in a different order. Also, two or more of the steps described above may be combined, or some of the steps may be modified or deleted. Alternatively, other steps may be executed in addition to the steps described above.
 コンピュータシステムまたはコンピュータ内で二つの数値の大小関係を比較する際には、「以上」および「よりも大きい」という二つの基準のどちらを用いてもよく、「以下」および「未満」という二つの基準のうちのどちらを用いてもよい。 When comparing the magnitude of two numbers within a computer system or computer, you can use either of the two criteria of "greater than or equal to" and "greater than", or you can use either of the two criteria of "less than or equal to" and "less than".
 [付記]
 上記の様々な例から把握されるとおり、本開示は以下に示す態様を含む。
(付記1)
 対象物の評価に対応する評価値を取得する取得部と、
 前記取得された評価値と、前記評価値が入力されると前記対象物を表す疑似データを出力するように学習された学習済みモデルとに基づいて、前記取得された評価値に対応する疑似対象物を表す前記疑似データを生成するデータ生成部と、
を備えるデータ生成システム。
(付記2)
 前記対象物は、外観が不定な物体であり、
 前記評価は、前記外観についての分類である、
付記1に記載のデータ生成システム。
(付記3)
 前記取得部は、ユーザによって入力された前記評価値を取得する、
付記1または2に記載のデータ生成システム。
(付記4)
 前記学習済みモデルは、潜在変数に基づいて前記疑似データを出力するデータ生成モデルを含み、
 前記データ生成部は、
  前記評価値を前記潜在変数に変換し、
  前記潜在変数と前記データ生成モデルとに基づいて前記疑似データを生成する、
付記1~3のいずれか一つに記載のデータ生成システム。
(付記5)
 前記学習済みモデルの少なくとも一部を生成するモデル生成部を更に備え、
 前記モデル生成部は、
  前記潜在変数に基づいて前記疑似データを出力するように前記データ生成モデルを生成し、
  前記データ生成モデルを生成した後に、前記評価値を前記潜在変数に変換する変換モデルを生成する、
付記4に記載のデータ生成システム。
(付記6)
 前記モデル生成部は、
  前記データ生成モデルを生成した後に、前記疑似データに基づいて前記評価値を算出する評価モデルを生成し、
  前記評価モデルを生成した後に、前記データ生成モデルおよび前記評価モデルを用いて前記変換モデルを生成する、
付記5に記載のデータ生成システム。
(付記7)
 前記モデル生成部は、前記変換モデルの生成において、
  第1評価値を完成前の前記変換モデルに入力して前記潜在変数を生成し、
  前記潜在変数と前記データ生成モデルとに基づいて、該第1評価値に対応する前記疑似データを生成し、
  前記疑似データを前記評価モデルに入力して第2評価値を算出し、
  前記第1評価値および前記第2評価値に基づいて前記完成前の変換モデルを更新して、前記変換モデルを生成する、
付記6に記載のデータ生成システム。
(付記8)
 前記データ生成部は、前記疑似データとして疑似画像を生成する、
付記1~7のいずれか一つに記載のデータ生成システム。
(付記9)
 前記データ生成部は、前記疑似データとして疑似3次元モデルを生成する、
付記1~8のいずれか一つに記載のデータ生成システム。
(付記10)
 前記データ生成モデルは、
  前記潜在変数に基づいて、前記対象物の形状を示すマスク画像を出力する形状生成モデルと、
  前記マスク画像に基づいて、前記対象物の前記形状およびテスクチャを表す前記疑似データを出力するテクスチャ生成モデルと、
を備え、
 前記データ生成部は、
  前記潜在変数と前記形状生成モデルとに基づいて、前記取得された評価値に対応する前記マスク画像を生成し、
  前記生成されたマスク画像と前記テクスチャ生成モデルとに基づいて前記疑似データを生成する、
付記4~9のいずれか一つに記載のデータ生成システム。
(付記11)
 付記1~10のいずれか一つに記載のデータ生成システムによって生成された疑似データに基づいて学習された制御モデルによって制御値を出力する出力部を備える産業機械。
(付記12)
 少なくとも一つのプロセッサを備えるデータ生成システムによって実行されるデータ生成方法であって、
 対象物の評価に対応する評価値を取得するステップと、
 前記取得された評価値と、前記評価値が入力されると前記対象物を表す疑似データを出力するように学習された学習済みモデルとに基づいて、前記取得された評価値に対応する疑似対象物を表す前記疑似データを生成するステップと、
を含むデータ生成方法。
(付記13)
 対象物の評価に対応する評価値を取得するステップと、
 前記取得された評価値と、前記評価値が入力されると前記対象物を表す疑似データを出力するように学習された学習済みモデルとに基づいて、前記取得された評価値に対応する疑似対象物を表す前記疑似データを生成するステップと、
をコンピュータに実行させるデータ生成プログラム。
[Additional Notes]
As can be seen from the various examples above, the present disclosure includes the following aspects.
(Appendix 1)
an acquisition unit that acquires an evaluation value corresponding to an evaluation of an object;
a data generation unit that generates pseudo data representing a pseudo object corresponding to the acquired evaluation value based on the acquired evaluation value and a trained model that has been trained to output pseudo data representing the object when the evaluation value is input; and
A data generation system comprising:
(Appendix 2)
the object is an object with an indefinite appearance,
The evaluation is a classification of the appearance.
2. The data generation system of claim 1.
(Appendix 3)
The acquisition unit acquires the evaluation value input by a user.
3. The data generation system according to claim 1 or 2.
(Appendix 4)
The trained model includes a data generation model that outputs the pseudo data based on a latent variable,
The data generation unit
converting the evaluation values into latent variables;
generating the pseudo data based on the latent variables and the data generation model;
4. A data generation system according to any one of claims 1 to 3.
(Appendix 5)
Further comprising a model generation unit that generates at least a part of the trained model,
The model generation unit
generating the data generation model to output the pseudo data based on the latent variables;
After generating the data generation model, a conversion model is generated to convert the evaluation value into the latent variable.
5. The data generation system of claim 4.
(Appendix 6)
The model generation unit
After generating the data generation model, an evaluation model is generated to calculate the evaluation value based on the pseudo data;
after generating the evaluation model, generating the transformation model using the data generation model and the evaluation model;
6. The data generation system of claim 5.
(Appendix 7)
The model generation unit, in generating the conversion model,
inputting the first evaluation value into the uncompleted transformation model to generate the latent variables;
generating the pseudo data corresponding to the first evaluation value based on the latent variables and the data generation model;
inputting the pseudo data into the evaluation model to calculate a second evaluation value;
updating the uncompleted transformation model based on the first evaluation value and the second evaluation value to generate the transformation model;
7. The data generation system of claim 6.
(Appendix 8)
The data generation unit generates a pseudo image as the pseudo data.
8. A data generation system according to any one of claims 1 to 7.
(Appendix 9)
The data generation unit generates a pseudo three-dimensional model as the pseudo data.
9. A data generation system according to any one of claims 1 to 8.
(Appendix 10)
The data generation model is
a shape generation model that outputs a mask image indicating the shape of the object based on the latent variables;
a texture generation model that outputs the pseudo data representing the shape and texture of the object based on the mask image;
Equipped with
The data generation unit
generating the mask image corresponding to the obtained evaluation value based on the latent variables and the shape generation model;
generating the pseudo data based on the generated mask image and the texture generation model;
10. A data generation system according to any one of claims 4 to 9.
(Appendix 11)
An industrial machine comprising an output unit that outputs a control value according to a control model trained on the basis of pseudo data generated by the data generation system according to any one of appendixes 1 to 10.
(Appendix 12)
1. A data generation method performed by a data generation system comprising at least one processor, comprising:
obtaining an evaluation value corresponding to an evaluation of the object;
generating the pseudo data representing a pseudo object corresponding to the acquired evaluation value based on the acquired evaluation value and a trained model trained to output pseudo data representing the object when the evaluation value is input;
A data generation method comprising:
(Appendix 13)
obtaining an evaluation value corresponding to an evaluation of the object;
generating the pseudo data representing a pseudo object corresponding to the acquired evaluation value based on the acquired evaluation value and a trained model trained to output pseudo data representing the object when the evaluation value is input;
A data generation program that causes a computer to execute the above.
 付記1,12,13によれば、評価値に対応する疑似対象物を表す疑似データが学習済みモデルに基づいて自動的に得られるので、対象物の疑似データを用意に生成できる。 According to Supplementary Notes 1, 12, and 13, pseudo data representing a pseudo object corresponding to an evaluation value is automatically obtained based on a trained model, so that pseudo data of the object can be easily generated.
 付記2によれば、外観にばらつきがある対象物の疑似データが生成される。外観についての分類は定量化が不可能かまたは非常に困難である。付記2の構成により、定量化ができないかまたは困難な評価に対応する疑似データを生成できる。 According to Appendix 2, pseudo data is generated for objects with variations in appearance, where classification of appearance is impossible or very difficult to quantify. The configuration of Appendix 2 makes it possible to generate pseudo data that corresponds to assessments that are impossible or difficult to quantify.
 付記3によれば、ユーザによる定性的な判断(例えば、ユーザの感覚に基づく曖昧な判断)に基づく評価に対応する疑似データを生成できる。 According to Appendix 3, pseudo data can be generated that corresponds to an evaluation based on a qualitative judgment by the user (e.g., an ambiguous judgment based on the user's intuition).
 付記4によれば、潜在変数を用いることで、次元または範囲が限定された評価値から多様な疑似データを生成できる。 According to Appendix 4, by using latent variables, it is possible to generate diverse pseudo-data from evaluation values with limited dimensions or ranges.
 付記5によれば、データ生成モデルを生成した後に変換モデルを生成することで、精度の高い学習済みモデルを実現できる。 According to Appendix 5, by generating a conversion model after generating a data generation model, a highly accurate trained model can be achieved.
 付記6によれば、評価モデルを採用することで、潜在変数を得るために用いられた評価値に加えて、評価モデルによって算出される評価値が得られる。この2種類の評価値を用いることで、精度の高い変換モデルを実現できる。 According to Appendix 6, by adopting an evaluation model, in addition to the evaluation values used to obtain the latent variables, evaluation values calculated by the evaluation model are obtained. By using these two types of evaluation values, a highly accurate conversion model can be realized.
 付記7によれば、疑似データを生成するために入力された第1評価値と、生成された疑似データに基づいて算出された第2評価値とに基づいて変換モデルが更新される。この更新によって、潜在変数を得るための変換モデルの精度を向上させることができる。 According to Supplementary Note 7, the conversion model is updated based on the first evaluation value input to generate the pseudo data and the second evaluation value calculated based on the generated pseudo data. This update can improve the accuracy of the conversion model for obtaining latent variables.
 付記8によれば、対象物の疑似画像を容易に生成できる。 According to Appendix 8, it is easy to generate a pseudo-image of the object.
 付記9によれば、対象物の疑似3次元モデルを簡単に生成できる。 According to Appendix 9, it is easy to generate a pseudo 3D model of the object.
 付記10によれば、形状およびテクスチャが別々の計算モデルで生成されるので、現実に存在しそうな疑似対象物を示す疑似データをより確実に生成できる。 According to Appendix 10, since the shape and texture are generated using separate computational models, it is possible to more reliably generate pseudo data that represents pseudo objects that are likely to exist in reality.
 付記11によれば、疑似データが容易に得られるので、産業機械を動作させるための制御モデルの学習も容易に実行できる。その結果、所望の制御値を出力する産業機械を容易に実現できる。 According to Appendix 11, since pseudo data can be easily obtained, learning of a control model for operating industrial machinery can also be easily performed. As a result, industrial machinery that outputs desired control values can be easily realized.
 10…データ生成システム、11…モデル生成部、12…取得部、13…データ生成部、20…学習済みモデル、30…第1データベース、40…第2データベース、50…制御モデル生成装置、60…産業機械、61…出力部、70…制御モデル、200…機械学習モデル、210…変換モデル、220…データ生成モデル、221…形状生成モデル、223…テクスチャ生成モデル、224…3次元形状生成モデル、230…評価モデル、301…マスク画像、302…疑似画像、303…疑似3次元モデル。 10...data generation system, 11...model generation unit, 12...acquisition unit, 13...data generation unit, 20...trained model, 30...first database, 40...second database, 50...control model generation device, 60...industrial machine, 61...output unit, 70...control model, 200...machine learning model, 210...conversion model, 220...data generation model, 221...shape generation model, 223...texture generation model, 224...3D shape generation model, 230...evaluation model, 301...mask image, 302...pseudo image, 303...pseudo 3D model.

Claims (13)

  1.  対象物の評価に対応する評価値を取得する取得部と、
     前記取得された評価値と、前記評価値が入力されると前記対象物を表す疑似データを出力するように学習された学習済みモデルとに基づいて、前記取得された評価値に対応する疑似対象物を表す前記疑似データを生成するデータ生成部と、
    を備えるデータ生成システム。
    an acquisition unit that acquires an evaluation value corresponding to an evaluation of an object;
    a data generation unit that generates pseudo data representing a pseudo object corresponding to the acquired evaluation value based on the acquired evaluation value and a trained model that has been trained to output pseudo data representing the object when the evaluation value is input; and
    A data generation system comprising:
  2.  前記対象物は、外観が不定な物体であり、
     前記評価は、前記外観についての分類である、
    請求項1に記載のデータ生成システム。
    the object is an object with an indefinite appearance,
    The evaluation is a classification of the appearance.
    The data generation system of claim 1 .
  3.  前記取得部は、ユーザによって入力された前記評価値を取得する、
    請求項1に記載のデータ生成システム。
    The acquisition unit acquires the evaluation value input by a user.
    The data generation system of claim 1 .
  4.  前記学習済みモデルは、潜在変数に基づいて前記疑似データを出力するデータ生成モデルを含み、
     前記データ生成部は、
      前記評価値を前記潜在変数に変換し、
      前記潜在変数と前記データ生成モデルとに基づいて前記疑似データを生成する、
    請求項1~3のいずれか一項に記載のデータ生成システム。
    The trained model includes a data generation model that outputs the pseudo data based on a latent variable,
    The data generation unit
    converting the evaluation values into latent variables;
    generating the pseudo data based on the latent variables and the data generation model;
    The data generation system according to any one of claims 1 to 3.
  5.  前記学習済みモデルの少なくとも一部を生成するモデル生成部を更に備え、
     前記モデル生成部は、
      前記潜在変数に基づいて前記疑似データを出力するように前記データ生成モデルを生成し、
      前記データ生成モデルを生成した後に、前記評価値を前記潜在変数に変換する変換モデルを生成する、
    請求項4に記載のデータ生成システム。
    Further comprising a model generation unit that generates at least a part of the trained model,
    The model generation unit
    generating the data generation model to output the pseudo data based on the latent variables;
    After generating the data generation model, a conversion model is generated to convert the evaluation value into the latent variable.
    The data generation system of claim 4.
  6.  前記モデル生成部は、
      前記データ生成モデルを生成した後に、前記疑似データに基づいて前記評価値を算出する評価モデルを生成し、
      前記評価モデルを生成した後に、前記データ生成モデルおよび前記評価モデルを用いて前記変換モデルを生成する、
    請求項5に記載のデータ生成システム。
    The model generation unit
    After generating the data generation model, an evaluation model is generated to calculate the evaluation value based on the pseudo data;
    after generating the evaluation model, generating the transformation model using the data generation model and the evaluation model;
    The data generation system of claim 5 .
  7.  前記モデル生成部は、前記変換モデルの生成において、
      第1評価値を完成前の前記変換モデルに入力して前記潜在変数を生成し、
      前記潜在変数と前記データ生成モデルとに基づいて、該第1評価値に対応する前記疑似データを生成し、
      前記疑似データを前記評価モデルに入力して第2評価値を算出し、
      前記第1評価値および前記第2評価値に基づいて前記完成前の変換モデルを更新して、前記変換モデルを生成する、
    請求項6に記載のデータ生成システム。
    The model generation unit, in generating the conversion model,
    inputting the first evaluation value into the uncompleted transformation model to generate the latent variables;
    generating the pseudo data corresponding to the first evaluation value based on the latent variables and the data generation model;
    inputting the pseudo data into the evaluation model to calculate a second evaluation value;
    updating the uncompleted transformation model based on the first evaluation value and the second evaluation value to generate the transformation model;
    The data generation system of claim 6.
  8.  前記データ生成部は、前記疑似データとして疑似画像を生成する、
    請求項1~3のいずれか一項に記載のデータ生成システム。
    The data generation unit generates a pseudo image as the pseudo data.
    The data generation system according to any one of claims 1 to 3.
  9.  前記データ生成部は、前記疑似データとして疑似3次元モデルを生成する、
    請求項1~3のいずれか一項に記載のデータ生成システム。
    The data generation unit generates a pseudo three-dimensional model as the pseudo data.
    The data generation system according to any one of claims 1 to 3.
  10.  前記データ生成モデルは、
      前記潜在変数に基づいて、前記対象物の形状を示すマスク画像を出力する形状生成モデルと、
      前記マスク画像に基づいて、前記対象物の前記形状およびテスクチャを表す前記疑似データを出力するテクスチャ生成モデルと、
    を備え、
     前記データ生成部は、
      前記潜在変数と前記形状生成モデルとに基づいて、前記取得された評価値に対応する前記マスク画像を生成し、
      前記生成されたマスク画像と前記テクスチャ生成モデルとに基づいて前記疑似データを生成する、
    請求項4に記載のデータ生成システム。
    The data generation model is
    a shape generation model that outputs a mask image indicating the shape of the object based on the latent variables;
    a texture generation model that outputs the pseudo data representing the shape and texture of the object based on the mask image;
    Equipped with
    The data generation unit
    generating the mask image corresponding to the obtained evaluation value based on the latent variables and the shape generation model;
    generating the pseudo data based on the generated mask image and the texture generation model;
    The data generation system of claim 4.
  11.  請求項1~3のいずれか一項に記載のデータ生成システムによって生成された疑似データに基づいて学習された制御モデルによって制御値を出力する出力部を備える産業機械。 An industrial machine having an output unit that outputs a control value based on a control model trained on the basis of pseudo data generated by the data generation system according to any one of claims 1 to 3.
  12.  少なくとも一つのプロセッサを備えるデータ生成システムによって実行されるデータ生成方法であって、
     対象物の評価に対応する評価値を取得するステップと、
     前記取得された評価値と、前記評価値が入力されると前記対象物を表す疑似データを出力するように学習された学習済みモデルとに基づいて、前記取得された評価値に対応する疑似対象物を表す前記疑似データを生成するステップと、
    を含むデータ生成方法。
    1. A data generation method performed by a data generation system comprising at least one processor, comprising:
    obtaining an evaluation value corresponding to an evaluation of the object;
    generating the pseudo data representing a pseudo object corresponding to the acquired evaluation value based on the acquired evaluation value and a trained model trained to output pseudo data representing the object when the evaluation value is input;
    A data generation method comprising:
  13.  対象物の評価に対応する評価値を取得するステップと、
     前記取得された評価値と、前記評価値が入力されると前記対象物を表す疑似データを出力するように学習された学習済みモデルとに基づいて、前記取得された評価値に対応する疑似対象物を表す前記疑似データを生成するステップと、
    をコンピュータに実行させるデータ生成プログラム。
    obtaining an evaluation value corresponding to an evaluation of the object;
    generating the pseudo data representing a pseudo object corresponding to the acquired evaluation value based on the acquired evaluation value and a trained model trained to output pseudo data representing the object when the evaluation value is input;
    A data generation program that causes a computer to execute the above.
PCT/JP2022/037462 2022-10-06 2022-10-06 Data generation system, industrial machine, data generation method, and data generation program WO2024075251A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/037462 WO2024075251A1 (en) 2022-10-06 2022-10-06 Data generation system, industrial machine, data generation method, and data generation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/037462 WO2024075251A1 (en) 2022-10-06 2022-10-06 Data generation system, industrial machine, data generation method, and data generation program

Publications (1)

Publication Number Publication Date
WO2024075251A1 true WO2024075251A1 (en) 2024-04-11

Family

ID=90607937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037462 WO2024075251A1 (en) 2022-10-06 2022-10-06 Data generation system, industrial machine, data generation method, and data generation program

Country Status (1)

Country Link
WO (1) WO2024075251A1 (en)

Similar Documents

Publication Publication Date Title
CN111797753B (en) Training of image driving model, image generation method, device, equipment and medium
US20230367809A1 (en) Systems and Methods for Geolocation Prediction
JP7061536B2 (en) Optimization device, simulation system and optimization method
WO2016051640A1 (en) Information processing device, information processing method, and program
US10977549B2 (en) Object animation using generative neural networks
JP6872044B2 (en) Methods, devices, media and equipment for determining the circumscribed frame of an object
CN111433689B (en) Generation of control systems for target systems
WO2020240808A1 (en) Learning device, classification device, learning method, classification method, learning program, and classification program
TWI771106B (en) 3d data system and 3d data generation method
CN114925748A (en) Model training and modal information prediction method, related device, equipment and medium
KR20230028249A (en) Apparatuses and methods for 3D posture estimation
JP2020177495A (en) Moving image generator, moving image generation method, program, and storage medium
WO2024075251A1 (en) Data generation system, industrial machine, data generation method, and data generation program
JPWO2019188573A1 (en) Arithmetic logic unit, arithmetic method and program
JP7416170B2 (en) Learning methods, learning devices, programs and recording media
US20230268035A1 (en) Method and apparatus for generating chemical structure using neural network
WO2019142728A1 (en) Control device, control method and program storage medium
JPWO2018211602A1 (en) Learning device, estimation device, learning method, and program
WO2023053249A1 (en) Learning device, estimation device, learning method, estimation method, and program
US20220391698A1 (en) Training Recognition Device
US20220067487A1 (en) Electronic device for generating data and improving task performance by using only very small amount of data without prior knowledge of associative domain and operating method thereof
WO2022181252A1 (en) Joint detection device, training model generation device, joint detection method, training model generation method, and computer-readable recording medium
JP7379300B2 (en) Estimation device, estimation method and program
US20240078163A1 (en) Systems and methods for visualizing machine intelligence
JP7147874B2 (en) LEARNING DEVICE, LEARNING METHOD AND LEARNING PROGRAM