WO2024075231A1 - Terminal, base station, and communication method - Google Patents

Terminal, base station, and communication method Download PDF

Info

Publication number
WO2024075231A1
WO2024075231A1 PCT/JP2022/037341 JP2022037341W WO2024075231A1 WO 2024075231 A1 WO2024075231 A1 WO 2024075231A1 JP 2022037341 W JP2022037341 W JP 2022037341W WO 2024075231 A1 WO2024075231 A1 WO 2024075231A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
terminal
pdcch
control channel
information
Prior art date
Application number
PCT/JP2022/037341
Other languages
French (fr)
Japanese (ja)
Inventor
優元 ▲高▼橋
翔平 吉岡
真哉 岡村
真由子 岡野
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2022/037341 priority Critical patent/WO2024075231A1/en
Publication of WO2024075231A1 publication Critical patent/WO2024075231A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to a terminal, a base station, and a communication method in a wireless communication system.
  • Non-Patent Document 1 For NR (New Radio) (also known as “5G”), the successor system to LTE (Long Term Evolution), technologies are being considered that meet the requirements of a large-capacity system, high data transmission speed, low latency, simultaneous connection of many terminals, low cost, and low power consumption (for example, Non-Patent Document 1).
  • future networks e.g., 6G
  • 6G future networks
  • bands above 71 GHz i.e., sub-THz bands such as 100 GHz to 300 GHz
  • a single carrier waveform as the DL (downlink) waveform (which may also be called the modulation method).
  • the control channel is important for communication, it is particularly desirable to realize communication using a DL control channel that applies a single carrier waveform.
  • the present invention has been made in consideration of the above points, and aims to provide a technology for realizing communication using a DL control channel that applies a single carrier waveform.
  • a control unit that determines a size of a frequency resource of a downlink control channel to which a single carrier waveform is applied;
  • a receiving unit that receives information via the downlink control channel assuming a frequency resource of the size is provided.
  • the disclosed technology provides a technique for realizing communication using a DL control channel that uses a single carrier waveform.
  • FIG. 13 is a diagram for explaining processing for single-carrier waveforms and multi-carrier waveforms.
  • FIG. 13 is a diagram illustrating an example of a sequence.
  • FIG. 13 is a diagram illustrating an example of a table in the third embodiment.
  • FIG. 13 is a diagram illustrating an example of a table in the fourth embodiment.
  • FIG. 13 is a diagram illustrating an example of a table in the fifth embodiment.
  • FIG. 13 is a diagram illustrating an example of a table in the fifth embodiment.
  • FIG. 13 is a diagram illustrating an example of mapping in the fifth embodiment.
  • FIG. 13 is a diagram for explaining processing for single-carrier waveforms and multi-carrier waveforms.
  • FIG. 13 is a diagram illustrating an example of a sequence.
  • FIG. 13 is a diagram illustrating an example of a table in the third embodiment.
  • FIG. 13 is a diagram illustrating an example of a table in the fourth embodiment.
  • FIG. 13 is a diagram
  • FIG. 13 is a diagram illustrating an example of mapping in the fifth embodiment.
  • FIG. 13 is a diagram illustrating an example of mapping in the fifth embodiment.
  • FIG. 13 is a diagram illustrating an example of mapping in the fifth embodiment.
  • FIG. 13 is a diagram illustrating an example of mapping in the fifth embodiment.
  • FIG. 13 is a diagram illustrating an example of mapping in the fifth embodiment.
  • FIG. 13 is a diagram illustrating an example of mapping in the fifth embodiment.
  • FIG. 13 is a diagram illustrating an example of mapping in the fifth embodiment.
  • FIG. 13 is a diagram illustrating an example of mapping in the fifth embodiment.
  • FIG. 2 is a diagram illustrating an example of the configuration of a base station 10.
  • FIG. 2 is a diagram illustrating an example of the configuration of a terminal 20.
  • 2 is a diagram illustrating an example of a hardware configuration of a base station 10 or a terminal 20 according to an embodiment of the present invention.
  • FIG. 1 is a diagram illustrating an example of the configuration
  • existing technologies are used as appropriate.
  • the existing technologies are, for example, existing LTE or existing NR, but are not limited to existing LTE and NR.
  • the duplex method may be a TDD (Time Division Duplex) method, an FDD (Frequency Division Duplex) method, or another method (e.g., Flexible Duplex, etc.).
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • another method e.g., Flexible Duplex, etc.
  • radio parameters and the like when radio parameters and the like are “configured,” this may mean that predetermined values are pre-configured, or that radio parameters notified from the base station 10 or the terminal 20 are configured.
  • FIG. 1 is a diagram showing a configuration example (1) of a wireless communication system in an embodiment of the present invention.
  • the wireless communication system in the embodiment of the present invention includes a base station 10 and a terminal 20.
  • FIG. 1 shows one base station 10 and one terminal 20, this is an example, and there may be multiple of each.
  • the base station 10 is a communication device that provides one or more cells and performs wireless communication with the terminal 20.
  • the physical resources of a wireless signal are defined in the time domain and the frequency domain, and the time domain may be defined by the number of OFDM (Orthogonal Frequency Division Multiplexing) symbols, and the frequency domain may be defined by the number of subcarriers or the number of resource blocks.
  • the base station 10 transmits a synchronization signal and system information to the terminal 20.
  • the synchronization signal is, for example, NR-PSS and NR-SSS.
  • the system information is, for example, transmitted by NR-PBCH and is also called broadcast information.
  • the synchronization signal and system information may be called SSB (SS/PBCH block).
  • the SSB may be called a synchronization signal or a synchronization signal block.
  • the base station 10 transmits a control signal or data to the terminal 20 in DL (Downlink) and receives a control signal or data from the terminal 20 in UL (Uplink).
  • Both the base station 10 and the terminal 20 are capable of transmitting and receiving signals by performing beamforming.
  • both the base station 10 and the terminal 20 can apply MIMO (Multiple Input Multiple Output) communication to DL or UL.
  • both the base station 10 and the terminal 20 may communicate via a secondary cell (SCell: Secondary Cell) and a primary cell (PCell: Primary Cell) using CA (Carrier Aggregation).
  • the terminal 20 may communicate via a primary cell of the base station 10 and a primary secondary cell group cell (PSCell: Primary SCG Cell) of another base station 10 using DC (Dual Connectivity).
  • SCell Secondary Cell
  • PCell Primary Cell
  • CA Carrier Aggregation
  • the terminal 20 is a communication device equipped with a wireless communication function, such as a smartphone, a mobile phone, a tablet, a wearable terminal, an IoT terminal, or a communication module for M2M (Machine-to-Machine). As shown in FIG. 1, the terminal 20 receives control signals or data from the base station 10 in DL and transmits control signals or data to the base station 10 in UL, thereby utilizing various communication services provided by the wireless communication system. The terminal 20 also receives various reference signals transmitted from the base station 10, and performs measurement of the propagation path quality based on the reception results of the reference signals.
  • a wireless communication function such as a smartphone, a mobile phone, a tablet, a wearable terminal, an IoT terminal, or a communication module for M2M (Machine-to-Machine).
  • M2M Machine-to-Machine
  • the terminal 20 is capable of performing carrier aggregation, which bundles multiple cells (multiple CCs (Component Carriers)) together to communicate with the base station 10.
  • carrier aggregation one PCell (Primary cell) and one or more SCells (Secondary cells) are used.
  • a PUCCH-SCell having a PUCCH may also be used.
  • FIG. 2 is a diagram for explaining an example (2) of a wireless communication system in an embodiment of the present invention.
  • FIG. 2 shows an example of the configuration of a wireless communication system when DC (Dual connectivity) is implemented.
  • a base station 10A serving as an MN (Master Node) and a base station 10B serving as an SN (Secondary Node) are provided.
  • Base station 10A and base station 10B are each connected to a core network.
  • Terminal 20 can communicate with both base station 10A and base station 10B.
  • the cell group provided by base station 10A which is an MN
  • the MCG Master Cell Group
  • the cell group provided by base station 10B which is an SN
  • the SCG Secondary Cell Group
  • the MCG is composed of one PCell and one or more SCells
  • the SCG is composed of one PSCell (Primary SCG Cell) and one or more SCells.
  • processing operations in this embodiment may be executed in the system configuration shown in FIG. 1, in the system configuration shown in FIG. 2, or in other system configurations.
  • "/" means “or” unless otherwise specified or unless it is clear from the context that it has a different meaning.
  • future networks e.g., 6G
  • 6G future networks
  • bands above 71 GHz i.e., sub-THz bands such as 100 GHz to 300 GHz
  • the high frequency bands mentioned above have the following characteristics (1) to (4), for example.
  • a wide bandwidth can be used.
  • the radio waves have a high degree of directionality, resulting in low frequency selectivity.
  • Doppler shift is large.
  • CP-OFDM multi-carrier modulation methods
  • the advantages of multi-carrier are small in high frequency bands. Therefore, it is desirable to use a single-carrier modulation method (e.g., DFT-s-OFDM, pure single carrier) in high frequency bands.
  • a single-carrier modulation method e.g., DFT-s-OFDM, pure single carrier
  • control channel is important for proper communication, but in conventional technology, the design of the DL control channel is not clear. Therefore, in this embodiment, the design (configuration, operation, etc.) of the DL control channel that applies the single carrier modulation method is described.
  • the multi-carrier modulation method is referred to as the multi-carrier waveform
  • the single-carrier modulation method is referred to as the single-carrier waveform.
  • both the single-carrier modulation method and the single-carrier waveform can also be referred to as DFT-s-OFDM, pure single carrier, or transform precoding.
  • NSA Non-Stand Alone
  • CA Carrier waveform
  • NR CC component carrier
  • the CC of the DL single carrier waveform may be operated independently of the NR.
  • the slot format of the CC of the DL single carrier waveform may be determined independently of the slot format of the CC in the NR.
  • the first to fifth embodiments will be described below. Each of the first to fifth embodiments may be implemented alone, or any two or more of the embodiments may be combined, or all of the embodiments may be combined.
  • the DL control channel in the following description is assumed to be a PDCCH, but is not limited to a PDCCH.
  • the frequency band in which the DL control channel to which a single carrier waveform is applied is a high frequency band of 71 GHz or higher (i.e., sub-THz band such as 100 GHz to 300 GHz), but is not limited to this assumption.
  • a downlink control channel to which a single carrier waveform is applied may be used in a frequency band lower than the high frequency band.
  • FIG. 3 shows the processing contents (processing blocks) at the base station 10 for multi-carrier waveforms and single-carrier waveforms, which are common to the first to fifth embodiments.
  • FIG. 3(a) shows the processing when transmitting a DL control channel to which a multi-carrier waveform is applied. The transmission data is mapped to resources, IFFT is performed, a CP is inserted, and transmission is performed.
  • Figure 3(b) shows the processing when transmitting a DL control channel using a single-carrier waveform. Compared to Figure 3(a), it differs from the processing of a multi-carrier waveform in that transform precoding is added before resource mapping.
  • Transform precoding spreads the transmitted data to reduce the PAPR.
  • Transform precoding is equivalent to DFT (Digital Fourier Transform).
  • the receiving side obtains information by performing the reverse process of the process shown in Figures 3(a) and (b).
  • first to fifth embodiments are directed to DL control channels
  • contents described below for DL control channels may also be applied to other DL channels or DL signals.
  • the first embodiment will be described.
  • the judgment (which may be called a criterion) of whether or not to apply a single carrier waveform to the DL control channel will be described.
  • the following options 1 to 4 are available as operation options, and each of them will be described. Any of a plurality of the following options 1 to 4 may be combined for implementation. Also, which of the options 1 to 4 is to be applied may be specified in the specifications, or may be set/notified to the terminal 20 by the base station 10.
  • the method of setting/notifying the information may be any one of MIB, SIB, RRC, MAC CE, and DCI, or any combination of multiple of these.
  • multiple combinations for example, multiple pieces of information may be set/notified from the base station 10 to the terminal 20 by RRC, and any one of the multiple pieces of information may be activated by MAC CE or DCI.
  • the terminal 20 uses the activated information.
  • ⁇ Option 1> in the high frequency band assumed in this embodiment (for example, referred to as a frequency range FRx), a single carrier waveform is always applied to all DL control channels (for example, PDCCH).
  • DL control channels for example, PDCCH
  • the base station 10 transmits information (specifically, control information) to the terminal 20 via a DL control channel in the FRx carrier (which may be a CC), the base station 10 uses a DL control channel with a single carrier waveform.
  • the terminal 20 receives information from the base station 10 via a DL control channel in the FRx carrier (which may be a CC)
  • the terminal 20 receives the information via the DL control channel, assuming that the information is being transmitted via a DL control channel with a single carrier waveform.
  • transmitting information on a DL control channel /"receiving information on a DL control channel” may be rephrased as “transmitting a DL control channel”/"receiving a DL control channel”, “transmitting a signal on a DL control channel”/"receiving a signal on a DL control channel”, etc.
  • a single carrier waveform is always applied only to one or more specific DL control channels.
  • the specific PDCCH is, for example, a group-common PDCCH or a UE-specific PDCCH, or both a group-common PDCCH and a UE-specific PDCCH.
  • Option 2 may be applied only to the high frequency band (FRx) assumed in this embodiment, or may be applied to a frequency band other than the high frequency band (FRx).
  • the base station 10 determines to use a group-common PDCCH (or a UE-specific PDCCH) with a single carrier waveform, and transmits the information via that group-common PDCCH (or UE-specific PDCCH).
  • the terminal 20 When the terminal 20 receives information from the base station 10 on the group-common PDCCH (or UE-specific PDCCH), it determines that a group-common PDCCH (or UE-specific PDCCH) with a single carrier waveform is being used, and receives the information on that channel, assuming that a group-common PDCCH (or UE-specific PDCCH) with a single carrier waveform is being used.
  • a single carrier waveform is applied to the DL control channel is determined according to the speed (which may be called velocity) at which the terminal 20 moves. For example, when the base station 10 detects that the speed of the terminal 20 is equal to or greater than a predefined threshold, the base station 10 transmits information to the terminal 20 on a DL control channel with a multicarrier waveform. When the base station 10 detects that the speed of the terminal 20 is less than the threshold, the base station 10 transmits information to the terminal 20 on a DL control channel with a single carrier waveform.
  • the terminal 20 when the terminal 20 detects that the speed of the terminal 20 is equal to or greater than a predefined threshold, it receives information from the base station 10 on a DL control channel with a multi-carrier waveform. When the terminal 20 detects that the speed of the terminal 20 is less than the threshold, it receives information from the base station 10 on a DL control channel with a single-carrier waveform.
  • the single-carrier waveform and multi-carrier waveform may be interchanged for threshold-based decisions.
  • ⁇ Option 4> whether or not to apply a single carrier waveform to the DL control channel is configured/notified to the terminal 20 from the base station 10 by MIB or RRC signaling.
  • MIB is used when the terminal 20 is in an RRC IDLE/INACTIVE/CONNECTED state.
  • RRC signaling is used when the terminal 20 is in an RRC CONNECTED state.
  • the base station 10 transmits, by RRC signaling/MIB, information indicating whether or not a single carrier waveform is applied to the DL control channel to the terminal 20. Based on the information received from the base station 10, the terminal 20 determines whether or not a single carrier waveform is applied to the DL control channel transmitted from the base station 10.
  • the information indicating whether to apply a single carrier waveform to the DL control channel may be information indicating whether to perform transform precoding.
  • Option 4-1 and Option 4-2 assume the use of the group-common PDCCH/UE-specific PDCCH in Option 2 above.
  • option 4-1 information as to whether or not to apply a single carrier waveform is configured/notified to the terminal 20 by RRC signaling from the base station 10 separately for group-common DCI (group-common PDCCH) and UE-specific DCI (UE-specific PDCCH).
  • group-common PDCCH group-common PDCCH
  • UE-specific DCI UE-specific PDCCH
  • option 4-2 information as to whether or not to apply a single carrier waveform is configured/notified to the terminal 20 from the base station 10 by RRC signaling, jointly for the group-common DCI (group-common PDCCH) and the UE-specific DCI (UE-specific PDCCH).
  • group-common PDCCH group-common PDCCH
  • UE-specific PDCCH UE-specific PDCCH
  • transform precoding for the DL control channel executed in the base station 10 will be described.
  • the terminal 20 receives (decodes) information transmitted in the DL control channel, assuming that such transform precoding is performed.
  • the process described below basically corresponds to the process disclosed in Non-Patent Document 2, where transform precoding in UL is replaced with DL.
  • transform precoding is not applied (transform precoding is not enabled)
  • the base station 10 When transform precoding is applied, the base station 10 performs transform precoding on a block of complex-valued symbols x(0), . . . , x(M symb ⁇ 1) as follows.
  • MRBPDCCH indicates the bandwidth (number of RBs ) of the PDCCH.
  • NSCRB indicates the number of subcarriers per resource block.
  • the first embodiment can be applied to whether or not to apply transform precoding.
  • the technology according to the second embodiment makes it possible to specifically realize a DL control channel using a single carrier waveform.
  • the PDCCH has one or more control channel elements (CCEs). Specifically, the number of CCEs per PDCCH is determined according to the aggregation level applied to the PDCCH, as shown in the table in Figure 5.
  • CCEs control channel elements
  • the base station 10 transmits a PDCCH at aggregation level 2, the number of CCEs in the PDCCH is set to 2.
  • the terminal 20 receives (decodes) the PDCCH (DCI), for example, assuming each aggregation level (corresponding number of CCEs).
  • control channel element consists of X resource element groups (REGs).
  • One resource element group is equal to one resource block in one OFDM symbol.
  • the REGs in one control resource set are numbered in ascending order in a time-first manner, starting with 0 for the lowest numbered resource block in the first OFDM symbol.
  • X above is, for example, 6. However, X may be a number other than 6.
  • the PDCCH When a single carrier waveform is applied to the PDCCH, the PDCCH does not consist of CCEs but consists of multiple resource blocks. Details of the frequency resources of the PDCCH with a single carrier waveform will be described in the fourth embodiment.
  • the first embodiment can be applied to whether or not to apply a single carrier waveform to the PDCCH.
  • the base station 10 can properly transmit a PDCCH having a multicarrier waveform, and the terminal 20 can properly receive a PDCCH having a multicarrier waveform.
  • a frequency resource of a DL control channel (here, PDCCH is taken as an example) when a single carrier waveform is applied to the PDCCH will be described.
  • PDCCH DL control channel
  • the size of the frequency resource of the PDCCH is the same as the system bandwidth, i.e., the size of the frequency resource of the PDCCH applying the single carrier waveform is equal to the system bandwidth of the serving cell in which the PDCCH is transmitted.
  • the base station 10 determines the bandwidth of the PDCCH to be 100 MHz and transmits information on the PDCCH of that bandwidth.
  • the terminal 20 determines the bandwidth of the PDCCH to be 100 MHz and receives (decodes) information assuming that the PDCCH is being transmitted on a bandwidth of 100 MHz.
  • the size of the frequency resource of the PDCCH (which may also be referred to as the bandwidth) is smaller than the system bandwidth and is equal to a portion of the system bandwidth.
  • the size of the frequency resource of a PDCCH that uses a single carrier waveform is equal to a portion of the system bandwidth of the serving cell in which the PDCCH is transmitted.
  • the size of the frequency resource of the PDCCH is the system bandwidth x K (0 ⁇ K ⁇ 1)
  • 50 MHz is used as the size of the frequency resource of the PDCCH.
  • K is determined, for example, in the specifications. K may be set/instructed to the terminal 20 by the base station 10, as described in Option 3.
  • the "part of the system bandwidth” may also be a BWP (Bandwidth part).
  • the BWP may be, for example, an active BWP.
  • BWP_A is set in terminal 20 (or a group of terminals) as the BWP of the active DL, and the bandwidth of BWP_A is bandwidth A
  • base station 10 determines the bandwidth of the PDCCH to be bandwidth A and transmits information on the PDCCH of bandwidth A.
  • Terminal 20 determines the bandwidth of the PDCCH to be bandwidth A, and receives (decodes) information, assuming that the PDCCH is being transmitted on bandwidth A.
  • information regarding the frequency resource of the PDCCH is configured/notified to the terminal 20 from the base station 10.
  • information regarding the frequency resource of the PDCCH is notified to the terminal 20 from the base station 10 by an MIB. Note that using the MIB is just one example.
  • the size of the frequency resource of the PDCCH to which a single carrier waveform is applied is notified from the base station 10 to the terminal 20 by the MIB. Details of the notification method include option 3-1 and option 3-2 below.
  • the relationship between the information notified by the MIB (here, an index is used as an example) and the frequency resource of the PDCCH is defined in the specifications, etc.
  • the terminal 20 and the base station 10 each hold information representing the relationship and operate according to the information.
  • the information representing the relationship is referred to as a "table" here.
  • the information in this table may be predetermined in the specifications as described above, or may be determined by the base station 10 and set/notified to the terminal 20.
  • Figure 6 shows an example of this table.
  • the table shown in Figure 6 has a row index, a number of RBs indicating the bandwidth of the PDCCH, and an offset (in RBs) from a reference point that corresponds to the start position of the frequency resources of the PDCCH.
  • the reference point is, for example, the start RB of the SSB (i.e., the MIB).
  • the table may also include the number of PDCCH symbols corresponding to the index.
  • An example of operation using the table will be described with reference to the sequence diagram in FIG. 4.
  • the base station 10 transmits an MIB, and the terminal 20 receives the MIB.
  • the MIB includes an index.
  • the terminal 20 reads the index from the MIB and refers to the table to ascertain the frequency resource of the PDCCH corresponding to the index.
  • the base station 10 transmits information on a PDCCH to which a single carrier waveform is applied, using the frequency resource corresponding to the index.
  • the terminal 20 can receive (decode) the PDCCH transmitted from the base station 10 using the frequency resource.
  • the base station 10 notifies the terminal 20 of information on the frequency resource of the PDCCH to which a single carrier waveform is applied, by using a resource indicator value (RIV).
  • the RIV may be transmitted by RRC signaling, may be transmitted by DCI, may be transmitted by MIB, or may be transmitted by MAC CE.
  • a and C are constants defined in specifications, etc.
  • F represents the continuous length of the PDCCH frequency resource (i.e. the number of RBs)
  • S indicates the starting position of the PDCCH frequency resource.
  • RIV one numerical value
  • the terminal 20 determines the frequency resource of the PDCCH based on the RIV received from the base station 10, and performs reception operations assuming that the PDCCH is being transmitted using that frequency resource.
  • information on the frequency resources of the PDCCH is set/notified to the terminal 20 from the base station 10 by higher layer parameters.
  • the higher layer parameters may be set/notified by RRC signaling or by MAC signaling.
  • the size and starting position of the frequency resource of the PDCCH to which a single carrier waveform is applied are set/notified to the terminal 20 by the base station 10 using higher layer parameters.
  • the terminal 20 determines the frequency resource of the PDCCH based on the parameters received from the base station 10, and performs reception operations assuming that the PDCCH is being transmitted using that frequency resource. As more specific processing, options 4-1 and 4-2 are explained below.
  • startingPRB is a parameter in PDCCH-Resource in PDCCH-Config.
  • startingPRB may be a parameter in ControlResourceSet.
  • startingPRB notifies the terminal 20 of the PRB ID indicating the starting position.
  • the length (bandwidth) of the frequency resource of the PDCCH is notified from the base station 10 to the terminal 20 by nrofPRBs, which is a parameter in PDCCH-Resource in PDCCH-Config.
  • nrofPRBs may be a parameter in ControlResourceSet.
  • an integer value indicating the length (number of RBs) of the frequency resource is notified by nrofPRBs.
  • Option 4-2 information (joint configuration) of the start position and length of the frequency resource of the PDCCH is configured/notified.
  • the information is, for example, a bitmap.
  • the starting position and length of the frequency resource of the PDCCH are notified from the base station 10 to the terminal 20 by the frequencyDomainResources, which is a bitmap parameter in the PDCCH-Resource in the PDCCH-Config.
  • frequencyDomainResources may be a bitmap parameter in the ControlResourceSet.
  • the bitmap parameter has multiple bits, each bit representing one or multiple PRB(s). Multiple PRB(s) may be referred to as a PRB group.
  • the most significant bit (MSB) in the bitmap indicates the first PRB (or the first PRB group) in the frequency resources of the PDCCH.
  • bitmaps are '0011111100', '11111111', '11110000', etc.
  • PRB1 is the first bit and 1 bit corresponds to 1 PRB
  • '0011111100' means that PRBs 3 to 8 are used as frequency resources for the PDCCH. Note that this is not limited to consecutive allocations as described above.
  • the base station 10 can properly transmit a PDCCH having a single carrier waveform, and the terminal 20 can properly receive a PDCCH having a single carrier waveform.
  • a mapping method of a reference signal (specifically, DMRS as an example) in a DL control channel (PDCCH is the target here) will be described.
  • a multicarrier waveform PDCCH and a single carrier waveform PDCCH will be described separately. Note that there are option 1 and option 2 for the single carrier waveform PDCCH, and each will be described.
  • the technique described in the first embodiment can be applied to determine whether to use a multi-carrier waveform PDCCH or a single-carrier waveform PDCCH.
  • ⁇ Multi-carrier waveform PDCCH> When using a multicarrier waveform PDCCH, the terminal 20 assumes that the reference signal sequence r l (m) is mapped to resource elements (k, l) p, ⁇ according to the following equation:
  • the mapping of the DMRS is the same as the mapping of the DMRS of the PDCCH disclosed in Non-Patent Document 2.
  • the base station 10 maps the reference signal sequence r l (m) to resource elements (k, l) p, ⁇ in accordance with the above equation and transmits it, and the terminal 20 reads out the reference signal sequence r l (m) based on this mapping assumption.
  • (k, l) p, ⁇ is a resource element with frequency domain index k and time domain index l in antenna port p and subcarrier spacing ⁇ .
  • a k,l (p, ⁇ ) is the value of resource element (k, l) at antenna port p and subcarrier spacing ⁇ .
  • is an amplitude scaling coefficient.
  • DMRS DMRS for the PDCCH of a single carrier waveform
  • TDM Time Division Multiplexing
  • the DMRS is mapped over the entire bandwidth of the PDCCH.
  • the DMRS may be mapped to the PDCCH using FDM (frequency division multiplexing).
  • the terminal 20 When using a PDCCH with a single carrier waveform, the terminal 20 assumes that a reference signal sequence r l (m) is mapped to resource elements (k, l) p, ⁇ according to the following equation.
  • the base station 10 maps the reference signal sequence r l (m) to the resource element (k, l) p, ⁇ according to the above formula and transmits it, and the terminal 20 acquires the reference signal sequence r l (m) based on the assumption of this mapping.
  • Each symbol in the formula is as described above.
  • the M SC PDCCH is as shown in "Equation 1".
  • k is defined as the relative value of the lowest-numbered resource block allocated to PDCCH transmission with respect to subcarrier 0.
  • the l (lowercase el) in the above formula is given by a table.
  • the table may be called relationship information.
  • the relationship information may be defined in the specifications, or may be set/notified from the base station 10 to the terminal 20.
  • the table has "PDCCH length and DMRS position in symbol units" in the time domain. Information on additional DMRS may be added to "PDCCH length and DMRS position in symbol units.”
  • options 1 and 2 are explained as examples of DMRS placement. Specific examples of mapping are also explained.
  • Option 1 basically, DMRS symbols are arranged between PDCCH symbols, or DMRS symbols and PDCCH symbols are arranged alternately. That is, the base station 10 transmits the DMRS in the above arrangement, and the terminal 20 reads the DMRS based on the assumption of this arrangement.
  • Figure 7 shows an example of the above table in option 1.
  • Option 2 the DMRS (reference signal sequence r l (m)) is placed in a symbol next to the last symbol of the PDCCH.
  • the base station 10 maps the DMRS to the symbols next to the final symbol of the PDCCH and transmits it, and the terminal 20 reads the DMRS based on this mapping assumption.
  • Figure 8 shows an example of a table for option 2.
  • the technology according to the fifth embodiment allows a reference signal to be appropriately mapped to a DL control channel to which a single carrier waveform is applied.
  • Fig. 18 is a diagram showing an example of the functional configuration of the base station 10.
  • the base station 10 has a transmitting unit 110, a receiving unit 120, a setting unit 130, and a control unit 140.
  • the functional configuration shown in Fig. 18 is merely an example. As long as the operation related to the embodiment of the present invention can be executed, the names of the functional divisions and the functional units may be any.
  • the transmitting unit 110 and the receiving unit 120 may be collectively referred to as a communication unit.
  • the transmitter 110 has a function of generating a signal to be transmitted to the terminal 20 and transmitting the signal wirelessly.
  • the receiver 120 has a function of receiving various signals transmitted from the terminal 20 and acquiring, for example, information of a higher layer from the received signals.
  • the transmitter 110 also has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL/UL control signals, DCI via PDCCH, data via PDSCH, etc. to the terminal 20.
  • the transmitter 110 can transmit both a DL control channel to which a single carrier waveform is applied and a DL control channel to which a multicarrier waveform is applied.
  • the setting unit 130 stores pre-set setting information and various setting information to be transmitted to the terminal 20 in a storage device provided in the setting unit 130, and reads it from the storage device as necessary.
  • the control unit 140 schedules DL reception or UL transmission of the terminal 20 via the transmission unit 110.
  • the control unit 140 can generate information indicating whether or not to apply a single carrier waveform to the downlink control channel.
  • the control unit 140 can also generate configuration information for the frequency resources of the downlink control channel to which a single carrier waveform is applied. At this time, the transmission unit 110 can transmit the downlink control channel using the frequency resources based on the configuration information.
  • the functional units in the control unit 140 related to signal transmission may be included in the transmitting unit 110, and the functional units in the control unit 140 related to signal reception may be included in the receiving unit 120.
  • the transmitting unit 110 may be called a transmitter
  • the receiving unit 120 may be called a receiver.
  • Fig. 19 is a diagram showing an example of the functional configuration of the terminal 20.
  • the terminal 20 has a transmitting unit 210, a receiving unit 220, a setting unit 230, and a control unit 240.
  • the functional configuration shown in Fig. 19 is merely an example. As long as the operation related to the embodiment of the present invention can be executed, the names of the functional divisions and the functional units may be any.
  • the transmitting unit 210 and the receiving unit 220 may be collectively referred to as a communication unit.
  • the transmitter 210 creates a transmission signal from the transmission data and transmits the transmission signal wirelessly.
  • the receiver 220 receives various signals wirelessly and obtains higher layer signals from the received physical layer signals.
  • the receiver 220 also has the function of receiving NR-PSS, NR-SSS, NR-PBCH, DL/UL/SL control signals, DCI via PDCCH, data via PDSCH, etc. transmitted from the base station 10.
  • the transmitting unit 210 may transmit a PSCCH (Physical Sidelink Control Channel), a PSSCH (Physical Sidelink Shared Channel), a PSDCH (Physical Sidelink Discovery Channel), a PSBCH (Physical Sidelink Broadcast Channel), or the like to another terminal 20 as D2D communication, and the receiving unit 220 may receive a PSCCH, a PSSCH, a PSDCH, or a PSBCH, or the like from the other terminal 20.
  • the receiving unit 220 may receive both a DL control channel to which a single carrier waveform is applied and a DL control channel to which a multicarrier waveform is applied.
  • the setting unit 230 stores various setting information received from the base station 10 or other terminals by the receiving unit 220 in a storage device provided in the setting unit 230, and reads it from the storage device as necessary.
  • the setting unit 230 also stores setting information that is set in advance.
  • the control unit 240 controls the terminal 20.
  • the control unit 240 can determine whether or not a single carrier waveform is applied to the downlink control channel.
  • the control unit 240 can also determine the size of the frequency resource of the downlink control channel to which the single carrier waveform is applied.
  • the receiving unit 220 receives information via the downlink control channel, assuming a frequency resource of the size.
  • ⁇ Appendix 1> a control unit that determines whether a single carrier waveform is applied to a downlink control channel; a receiving unit that receives information via the downlink control channel assuming that the single carrier waveform will be applied when it is determined that the single carrier waveform is applied to the downlink control channel.
  • the control unit determines whether or not the single carrier waveform is applied based on whether a specific downlink control channel is used, or determines whether or not the single carrier waveform is applied based on the speed of the terminal.
  • Additional Note 3 The terminal according to claim 1 or 2, wherein the control unit determines whether or not the single carrier waveform is applied based on information received from a base station through an MIB or RRC signaling.
  • a downlink control channel to which the single carrier waveform is applied does not have a control channel element but has a resource block.
  • a control unit that generates information indicating whether or not a single carrier waveform is to be applied to a downlink control channel;
  • a base station comprising: a transmitter that transmits the information to a terminal.
  • Supplementary Items 1 to 6 provide technology for achieving communications using a DL control channel to which a single carrier waveform is applied.
  • Supplementary Item 2 makes it possible to determine whether a single carrier waveform is being applied from various perspectives, such as a specific downlink control channel and speed.
  • Supplementary Item 3 makes it possible to determine whether a single carrier waveform is being applied appropriately based on information from a base station.
  • Supplementary Item 4 makes it possible to appropriately define the characteristics of a downlink control channel to which a single carrier waveform is applied.
  • a control unit that determines a size of a frequency resource of a downlink control channel to which a single carrier waveform is applied;
  • a terminal comprising: a receiving unit that receives information via the downlink control channel, assuming a frequency resource of the size.
  • the control unit determines a system bandwidth or a portion of the system bandwidth as the size.
  • a reference signal is arranged between symbols of the downlink control channel, the symbols of the downlink control channel and the reference signal are arranged alternately, or the reference signal is arranged adjacent to the last symbol of the downlink control channel.
  • a control unit that generates configuration information of a frequency resource of a downlink control channel to which a single carrier waveform is applied; a transmitter unit that transmits the downlink control channel using frequency resources based on the configuration information.
  • the control unit is generating the length of the frequency resource and the starting position of the frequency resource as separate parameters; or The base station according to claim 4, further comprising: generating the length of the frequency resource and the starting position of the frequency resource as one bitmap parameter.
  • Additional Note 6 determining a size of a frequency resource of a downlink control channel to which a single carrier waveform is applied; and receiving information via the downlink control channel, assuming a frequency resource of the size.
  • Supplementary Items 1 to 6 provide techniques for implementing communications using a DL control channel to which a single carrier waveform is applied.
  • Supplementary Item 2 makes it possible to determine an appropriate frequency resource size for a DL control channel to which a single carrier waveform is applied.
  • Supplementary Item 3 makes it possible to appropriately allocate a reference signal for a DL control channel to which a single carrier waveform is applied.
  • Supplementary Item 5 makes it possible to appropriately notify information regarding the frequency resource of a DL control channel to which a single carrier waveform is applied.
  • each functional block may be realized using one device that is physically or logically coupled, or may be realized using two or more devices that are physically or logically separated and directly or indirectly connected (for example, using wires, wirelessly, etc.) and these multiple devices.
  • the functional blocks may be realized by combining the one device or the multiple devices with software.
  • Functions include, but are not limited to, judgement, determination, judgment, calculation, computation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, election, establishment, comparison, assumption, expectation, regard, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assignment.
  • a functional block (component) that performs the transmission function is called a transmitting unit or transmitter.
  • the base station 10, terminal 20, etc. in one embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 20 is a diagram showing an example of the hardware configuration of the base station 10 and terminal 20 in one embodiment of the present disclosure.
  • the above-mentioned base station 10 and terminal 20 may be physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc.
  • the term "apparatus" can be interpreted as a circuit, device, unit, etc.
  • the hardware configuration of the base station 10 and the terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured to exclude some of the devices.
  • the functions of the base station 10 and the terminal 20 are realized by loading specific software (programs) onto hardware such as the processor 1001 and the storage device 1002, causing the processor 1001 to perform calculations, control communications by the communication device 1004, and control at least one of the reading and writing of data in the storage device 1002 and the auxiliary storage device 1003.
  • the processor 1001 for example, operates an operating system to control the entire computer.
  • the processor 1001 may be configured as a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, etc.
  • CPU central processing unit
  • control unit 140, control unit 240, etc. may be realized by the processor 1001.
  • the processor 1001 reads out a program (program code), software module, data, etc. from at least one of the auxiliary storage device 1003 and the communication device 1004 to the storage device 1002, and executes various processes according to the program.
  • the program is a program that causes a computer to execute at least a part of the operations described in the above-mentioned embodiment.
  • the control unit 140 of the base station 10 shown in FIG. 18 may be stored in the storage device 1002 and realized by a control program that runs on the processor 1001.
  • the control unit 240 of the terminal 20 shown in FIG. 19 may be stored in the storage device 1002 and realized by a control program that runs on the processor 1001.
  • the processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from a network via a telecommunication line.
  • the storage device 1002 is a computer-readable recording medium and may be composed of, for example, at least one of a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically Erasable Programmable ROM), a RAM (Random Access Memory), etc.
  • the storage device 1002 may also be called a register, a cache, a main memory, etc.
  • the storage device 1002 can store executable programs (program codes), software modules, etc. for implementing a communication method relating to one embodiment of the present disclosure.
  • the auxiliary storage device 1003 is a computer-readable recording medium, and may be, for example, at least one of an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (e.g., a compact disk, a digital versatile disk, a Blu-ray (registered trademark) disk), a smart card, a flash memory (e.g., a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, etc.
  • the above-mentioned storage medium may be, for example, a database, a server, or other suitable medium that includes at least one of the storage device 1002 and the auxiliary storage device 1003.
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, etc.
  • the communication device 1004 may be configured to include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., to realize at least one of, for example, Frequency Division Duplex (FDD) and Time Division Duplex (TDD).
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmitting/receiving antenna, an amplifier unit, a transmitting/receiving unit, a transmission path interface, etc. may be realized by the communication device 1004.
  • the transmitting/receiving unit may be implemented as a transmitting unit or a receiving unit that is physically or logically separated.
  • the input device 1005 is an input device (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (e.g., a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may be integrated into one structure (e.g., a touch panel).
  • each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between each device.
  • the base station 10 and the terminal 20 may be configured to include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA), and some or all of the functional blocks may be realized by the hardware.
  • the processor 1001 may be implemented using at least one of these pieces of hardware.
  • the terminal 20 or the base station 10 may be provided in the vehicle 2001.
  • FIG. 21 shows an example of the configuration of the vehicle 2001.
  • the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, front wheels 2007, rear wheels 2008, an axle 2009, an electronic control unit 2010, various sensors 2021-2029, an information service unit 2012, and a communication module 2013.
  • the terminal 20 or the base station 10 according to each aspect/embodiment described in this disclosure may be applied to a communication device mounted on the vehicle 2001, for example, may be applied to the communication module 2013.
  • the drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
  • the steering unit 2003 includes at least a steering wheel (also called a handlebar), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
  • the electronic control unit 2010 is composed of a microprocessor 2031, memory (ROM, RAM) 2032, and a communication port (IO port) 2033. Signals are input to the electronic control unit 2010 from various sensors 2021 to 2029 provided in the vehicle 2001.
  • the electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
  • Signals from the various sensors 2021-2029 include a current signal from a current sensor 2021 that senses the motor current, a front and rear wheel rotation speed signal obtained by a rotation speed sensor 2022, a front and rear wheel air pressure signal obtained by an air pressure sensor 2023, a vehicle speed signal obtained by a vehicle speed sensor 2024, an acceleration signal obtained by an acceleration sensor 2025, an accelerator pedal depression amount signal obtained by an accelerator pedal sensor 2029, a brake pedal depression amount signal obtained by a brake pedal sensor 2026, a shift lever operation signal obtained by a shift lever sensor 2027, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. obtained by an object detection sensor 2028.
  • the information service unit 2012 is composed of various devices, such as a car navigation system, an audio system, speakers, a television, and a radio, for providing (outputting) various information such as driving information, traffic information, and entertainment information, and one or more ECUs for controlling these devices.
  • the information service unit 2012 uses information acquired from an external device via the communication module 2013 or the like to provide various multimedia information and multimedia services to the occupants of the vehicle 2001.
  • the information service unit 2012 may include input devices (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accept input from the outside, and may also include output devices (e.g., a display, a speaker, an LED lamp, a touch panel, etc.) that perform output to the outside.
  • input devices e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.
  • output devices e.g., a display, a speaker, an LED lamp, a touch panel, etc.
  • the driving assistance system unit 2030 is composed of various devices that provide functions for preventing accidents and reducing the driving burden on the driver, such as a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (e.g., GNSS, etc.), map information (e.g., high definition (HD) maps, autonomous vehicle (AV) maps, etc.), a gyro system (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chip, and AI processor, as well as one or more ECUs that control these devices.
  • the driving assistance system unit 2030 transmits and receives various information via the communication module 2013 to realize driving assistance functions or autonomous driving functions.
  • the communication module 2013 can communicate with the microprocessor 2031 and components of the vehicle 2001 via the communication port.
  • the communication module 2013 transmits and receives data via the communication port 2033 between the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheels 2007, rear wheels 2008, axle 2009, microprocessor 2031 and memory (ROM, RAM) 2032 in the electronic control unit 2010, and sensors 2021 to 29, which are provided on the vehicle 2001.
  • the communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with an external device. For example, it transmits and receives various information to and from the external device via wireless communication.
  • the communication module 2013 may be located either inside or outside the electronic control unit 2010.
  • the external device may be, for example, a base station, a mobile station, etc.
  • the communication module 2013 may transmit at least one of the signals from the various sensors 2021-2028 described above input to the electronic control unit 2010, information obtained based on the signals, and information based on input from the outside (user) obtained via the information service unit 2012 to an external device via wireless communication.
  • the electronic control unit 2010, the various sensors 2021-2028, the information service unit 2012, etc. may be referred to as input units that accept input.
  • the PUSCH transmitted by the communication module 2013 may include information based on the above input.
  • the communication module 2013 receives various information (traffic information, signal information, vehicle distance information, etc.) transmitted from an external device and displays it on the information service unit 2012 provided in the vehicle 2001.
  • the information service unit 2012 may be called an output unit that outputs information (for example, outputs information to a device such as a display or speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 2013).
  • the communication module 2013 also stores various information received from an external device in a memory 2032 that can be used by the microprocessor 2031.
  • the microprocessor 2031 may control the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheels 2007, rear wheels 2008, axles 2009, sensors 2021 to 2029, etc. provided in the vehicle 2001.
  • the operations of multiple functional units may be physically performed by one part, or the operations of one functional unit may be physically performed by multiple parts.
  • the order of processing procedures described in the embodiment may be changed as long as there is no contradiction.
  • the base station 10 and the terminal 20 have been described using functional block diagrams, but such devices may be realized by hardware, software, or a combination thereof.
  • the software operated by the processor possessed by the base station 10 in accordance with an embodiment of the present invention and the software operated by the processor possessed by the terminal 20 in accordance with an embodiment of the present invention may each be stored in random access memory (RAM), flash memory, read only memory (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server or any other suitable storage medium.
  • the notification of information is not limited to the aspects/embodiments described in the present disclosure and may be performed using other methods.
  • the notification of information may be performed by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), higher layer signaling (e.g., Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling), broadcast information (Master Information Block (MIB), System Information Block (SIB)), other signals, or a combination of these.
  • RRC signaling may be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, etc.
  • Each aspect/embodiment described in this disclosure may be a mobile communication system (mobile communications system) for mobile communications over a wide range of networks, including LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system), 6th generation mobile communication system (6G), xth generation mobile communication system (xG) (xG (x is, for example, an integer or a decimal number)), FRA (Future Ra).
  • the present invention may be applied to at least one of systems using IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other appropriate systems, and next-generation systems that are expanded, modified, created, or defined based on these. It may also be applied to a combination of multiple systems (for example, a combination of at least one
  • certain operations that are described as being performed by the base station 10 may in some cases be performed by its upper node.
  • various operations performed for communication with a terminal 20 may be performed by at least one of the base station 10 and other network nodes other than the base station 10 (such as, but not limited to, an MME or S-GW).
  • the base station 10 may be a combination of multiple other network nodes (such as an MME and an S-GW).
  • the information or signals described in this disclosure may be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). They may be input and output via multiple network nodes.
  • the input and output information may be stored in a specific location (e.g., memory) or may be managed using a management table.
  • the input and output information may be overwritten, updated, or added to.
  • the output information may be deleted.
  • the input information may be sent to another device.
  • the determination in this disclosure may be based on a value represented by one bit (0 or 1), a Boolean (true or false) value, or a comparison of numerical values (e.g., a comparison with a predetermined value).
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • Software, instructions, information, etc. may also be transmitted and received via a transmission medium.
  • a transmission medium For example, if the software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
  • wired technologies such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)
  • wireless technologies such as infrared, microwave
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
  • the channel and the symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be called a carrier frequency, a cell, a frequency carrier, etc.
  • system and “network” are used interchangeably.
  • a radio resource may be indicated by an index.
  • the names used for the above-mentioned parameters are not limiting in any respect. Furthermore, the formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure.
  • the various channels (e.g., PUCCH, PDCCH, etc.) and information elements may be identified by any suitable names, and therefore the various names assigned to these various channels and information elements are not limiting in any respect.
  • base station BS
  • radio base station base station
  • base station fixed station
  • NodeB eNodeB
  • gNodeB gNodeB
  • access point e.g., "transmission point”
  • gNodeB gNodeB
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, and picocell.
  • a base station can accommodate one or more (e.g., three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also provide communication services by a base station subsystem (e.g., a small indoor base station (RRH: Remote Radio Head)).
  • RRH Remote Radio Head
  • the term "cell” or “sector” refers to a part or the entire coverage area of at least one of the base station and base station subsystems that provide communication services in this coverage.
  • a base station transmitting information to a terminal may be interpreted as the base station instructing the terminal to control or operate based on the information.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station may also be referred to by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, etc.
  • At least one of the base station and the mobile station may be a device mounted on a moving object, the moving object itself, etc.
  • the moving object is a movable object, and the moving speed is arbitrary. It also includes the case where the moving object is stopped.
  • the moving object includes, but is not limited to, for example, a vehicle, a transport vehicle, an automobile, a motorcycle, a bicycle, a connected car, an excavator, a bulldozer, a wheel loader, a dump truck, a forklift, a train, a bus, a handcar, a rickshaw, a ship and other watercraft, an airplane, a rocket, an artificial satellite, a drone (registered trademark), a multicopter, a quadcopter, a balloon, and objects mounted thereon.
  • the moving object may also be a moving object that travels autonomously based on an operation command.
  • At least one of the base station and the mobile station may be a device that does not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a terminal.
  • each aspect/embodiment of the present disclosure may be applied to a configuration in which communication between a base station and a terminal is replaced with communication between multiple terminals 20 (which may be called, for example, D2D (Device-to-Device) or V2X (Vehicle-to-Everything)).
  • the terminal 20 may be configured to have the functions of the base station 10 described above.
  • terms such as "uplink” and "downlink” may be read as terms corresponding to communication between terminals (for example, "side”).
  • the uplink channel, downlink channel, etc. may be read as a side channel.
  • the terminal in this disclosure may be interpreted as a base station.
  • the base station may be configured to have the functions of the terminal described above.
  • determining may encompass a wide variety of actions.
  • Determining and “determining” may include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry (e.g., searching in a table, database, or other data structure), and considering ascertaining as “judging” or “determining.”
  • determining and “determining” may include receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, accessing (e.g., accessing data in memory), and considering ascertaining as “judging” or “determining.”
  • judgment” and “decision” can include considering resolving, selecting, choosing, establishing, comparing, etc., to have been “judged” or “decided.” In other words, “judgment” and “decision” can include considering some action to have been “judged” or “decided.” Additionally, “judgment (decision)” can be interpreted as “assuming,” “ex
  • connection refers to any direct or indirect connection or coupling between two or more elements, and may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
  • the coupling or connection between elements may be physical, logical, or a combination thereof.
  • “connected” may be read as "access.”
  • two elements may be considered to be “connected” or “coupled” to each other using at least one of one or more wires, cables, and printed electrical connections, as well as electromagnetic energy having wavelengths in the radio frequency range, microwave range, and optical (both visible and invisible) range, as some non-limiting and non-exhaustive examples.
  • the reference signal may also be abbreviated as RS (Reference Signal) or may be called a pilot depending on the applicable standard.
  • the phrase “based on” does not mean “based only on,” unless expressly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to an element using a designation such as "first,” “second,” etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and a second element does not imply that only two elements may be employed or that the first element must precede the second element in some way.
  • a radio frame may be composed of one or more frames in the time domain. Each of the one or more frames in the time domain may be called a subframe. A subframe may further be composed of one or more slots in the time domain. A subframe may have a fixed time length (e.g., 1 ms) that is independent of numerology.
  • Numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel. Numerology may indicate, for example, at least one of the following: subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame structure, a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • radio frame structure a specific filtering process performed by the transceiver in the frequency domain
  • a specific windowing process performed by the transceiver in the time domain etc.
  • a slot may consist of one or more symbols in the time domain (such as OFDM (Orthogonal Frequency Division Multiplexing) symbols, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols, etc.).
  • a slot may be a time unit based on numerology.
  • a slot may include multiple minislots. Each minislot may consist of one or multiple symbols in the time domain. A minislot may also be called a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be called PDSCH (or PUSCH) mapping type A.
  • a PDSCH (or PUSCH) transmitted using a minislot may be called PDSCH (or PUSCH) mapping type B.
  • Radio frame, subframe, slot, minislot, and symbol all represent time units for transmitting signals. Radio frame, subframe, slot, minislot, and symbol may each be referred to by a different name that corresponds to the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a transmission time interval (TTI), multiple consecutive subframes may be called a TTI, or one slot or one minislot may be called a TTI.
  • TTI transmission time interval
  • the subframe and the TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (e.g., 1-13 symbols), or a period longer than 1 ms.
  • the unit representing the TTI may be called a slot, minislot, etc., instead of a subframe.
  • one slot may be called a unit time. The unit time may differ for each cell depending on the numerology.
  • TTI refers to, for example, the smallest time unit for scheduling in wireless communication.
  • a base station performs scheduling to allocate wireless resources (such as frequency bandwidth and transmission power that can be used by each terminal 20) to each terminal 20 in TTI units.
  • wireless resources such as frequency bandwidth and transmission power that can be used by each terminal 20
  • TTI is not limited to this.
  • the TTI may be a transmission time unit for a channel-coded data packet (transport block), a code block, a code word, etc., or may be a processing unit for scheduling, link adaptation, etc.
  • the time interval e.g., the number of symbols
  • the time interval in which a transport block, a code block, a code word, etc. is actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit of scheduling.
  • the number of slots (minislots) that constitute the minimum time unit of scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI shorter than a normal TTI may be called a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • a long TTI (e.g., a normal TTI, a subframe, etc.) may be interpreted as a TTI having a time length of more than 1 ms
  • a short TTI e.g., a shortened TTI, etc.
  • TTI length shorter than the TTI length of a long TTI and equal to or greater than 1 ms.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers included in an RB may be determined based on the numerology.
  • the time domain of an RB may include one or more symbols and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs may be referred to as a physical resource block (PRB), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, an RB pair, etc.
  • PRB physical resource block
  • SCG sub-carrier group
  • REG resource element group
  • PRB pair an RB pair, etc.
  • a resource block may be composed of one or more resource elements (REs).
  • REs resource elements
  • one RE may be a radio resource area of one subcarrier and one symbol.
  • a Bandwidth Part which may also be referred to as a partial bandwidth, may represent a subset of contiguous common resource blocks (RBs) for a given numerology on a given carrier, where the common RBs may be identified by an index of the RB relative to a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within the BWP.
  • the BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be configured for a UE within one carrier.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots, and symbols are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of subcarriers included in an RB, as well as the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean “A and B are each different from C.”
  • Terms such as “separate” and “combined” may also be interpreted in the same way as “different.”
  • notification of specific information is not limited to being done explicitly, but may be done implicitly (e.g., not notifying the specific information).
  • Base station 110 Transmitter 120 Receiver 130 Setting unit 140 Control unit 20 Terminal 210 Transmitter 220 Receiver 230 Setting unit 240 Control unit 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device 2001 Vehicle 2002 Drive unit 2003 Steering unit 2004 Accelerator pedal 2005 Brake pedal 2006 Shift lever 2007 Front wheel 2008 Rear wheel 2009 Axle 2010 Electronic control unit 2012 Information service unit 2013 Communication module 2021 Current sensor 2022 Rotational speed sensor 2023 Air pressure sensor 2024 Vehicle speed sensor 2025 Acceleration sensor 2026 Brake pedal sensor 2027 Shift lever sensor 2028 Object detection sensor 2029 Accelerator pedal sensor 2030 Driving assistance system unit 2031 Microprocessor 2032 Memory (ROM, RAM) 2033 Communication port (IO port)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A terminal according to the present invention comprises: a control unit that determines a size of a frequency resource of a downlink control channel to which a single-carrier waveform is to be applied; and a reception unit that receives information via the downlink control channel by assuming a frequency resource of said size.

Description

端末、基地局、及び通信方法Terminal, base station, and communication method
 本発明は、無線通信システムにおける端末、基地局、及び通信方法に関する。 The present invention relates to a terminal, a base station, and a communication method in a wireless communication system.
 LTE(Long Term Evolution)の後継システムであるNR(New Radio)(「5G」ともいう。)においては、要求条件として、大容量のシステム、高速なデータ伝送速度、低遅延、多数の端末の同時接続、低コスト、省電力等を満たす技術が検討されている(例えば非特許文献1)。 For NR (New Radio) (also known as "5G"), the successor system to LTE (Long Term Evolution), technologies are being considered that meet the requirements of a large-capacity system, high data transmission speed, low latency, simultaneous connection of many terminals, low cost, and low power consumption (for example, Non-Patent Document 1).
 また、将来のネットワーク(e.g., 6G)では、通信速度/通信容量/信頼性/遅延性能等のさらなる向上のために5Gよりもさらに高い周波数を利用していくことが想定される。例えば、71GHz以上の帯域(i.e.,100GHz~300GHz等のsub-THz帯)が利用されることが想定される。 Furthermore, future networks (e.g., 6G) are expected to use even higher frequencies than 5G in order to further improve communication speed, communication capacity, reliability, latency performance, etc. For example, it is expected that bands above 71 GHz (i.e., sub-THz bands such as 100 GHz to 300 GHz) will be used.
 高周波数帯では、DL(ダウンリンク)の波形(変調方式と呼んでもよい)としてシングルキャリア波形を適用することが望ましい。また、制御チャネルは通信を行う上で重要であるため、特に、シングルキャリア波形を適用したDL制御チャネルを使用した通信の実現が望まれる。 In high frequency bands, it is desirable to apply a single carrier waveform as the DL (downlink) waveform (which may also be called the modulation method). In addition, since the control channel is important for communication, it is particularly desirable to realize communication using a DL control channel that applies a single carrier waveform.
 しかし、非特許文献1等に開示された従来技術では、DLに関して、マルチキャリア波形を適用したチャネル/信号のみが規定されているだけである。 However, in the conventional technology disclosed in Non-Patent Document 1 and other publications, only channels/signals that use multicarrier waveforms are specified for DL.
 本発明は上記の点に鑑みてなされたものであり、シングルキャリア波形を適用したDLの制御チャネルを用いた通信を実現するための技術を提供することを目的とする。 The present invention has been made in consideration of the above points, and aims to provide a technology for realizing communication using a DL control channel that applies a single carrier waveform.
 開示の技術によれば、シングルキャリア波形が適用される下り制御チャネルの周波数リソースのサイズを決定する制御部と、
 前記サイズの周波数リソースを想定して、前記下り制御チャネルにより情報を受信する受信部と
 を備える端末が提供される。
According to the disclosed technology, a control unit that determines a size of a frequency resource of a downlink control channel to which a single carrier waveform is applied;
A receiving unit that receives information via the downlink control channel assuming a frequency resource of the size is provided.
 開示の技術によれば、シングルキャリア波形を適用したDLの制御チャネルを用いた通信を実現するための技術が提供される。 The disclosed technology provides a technique for realizing communication using a DL control channel that uses a single carrier waveform.
本発明の実施の形態における無線通信システムを説明するための図である。1 is a diagram illustrating a wireless communication system according to an embodiment of the present invention. 本発明の実施の形態における無線通信システムを説明するための図である。1 is a diagram illustrating a wireless communication system according to an embodiment of the present invention. シングルキャリア波形とマルチキャリア波形における処理を説明するための図である。FIG. 13 is a diagram for explaining processing for single-carrier waveforms and multi-carrier waveforms. シーケンスの例を示す図である。FIG. 13 is a diagram illustrating an example of a sequence. 第3実施形態におけるテーブルの例を示す図である。FIG. 13 is a diagram illustrating an example of a table in the third embodiment. 第4実施形態におけるテーブルの例を示す図である。FIG. 13 is a diagram illustrating an example of a table in the fourth embodiment. 第5実施形態におけるテーブルの例を示す図である。FIG. 13 is a diagram illustrating an example of a table in the fifth embodiment. 第5実施形態におけるテーブルの例を示す図である。FIG. 13 is a diagram illustrating an example of a table in the fifth embodiment. 第5実施形態におけるマッピングの例を示す図である。FIG. 13 is a diagram illustrating an example of mapping in the fifth embodiment. 第5実施形態におけるマッピングの例を示す図である。FIG. 13 is a diagram illustrating an example of mapping in the fifth embodiment. 第5実施形態におけるマッピングの例を示す図である。FIG. 13 is a diagram illustrating an example of mapping in the fifth embodiment. 第5実施形態におけるマッピングの例を示す図である。FIG. 13 is a diagram illustrating an example of mapping in the fifth embodiment. 第5実施形態におけるマッピングの例を示す図である。FIG. 13 is a diagram illustrating an example of mapping in the fifth embodiment. 第5実施形態におけるマッピングの例を示す図である。FIG. 13 is a diagram illustrating an example of mapping in the fifth embodiment. 第5実施形態におけるマッピングの例を示す図である。FIG. 13 is a diagram illustrating an example of mapping in the fifth embodiment. 第5実施形態におけるマッピングの例を示す図である。FIG. 13 is a diagram illustrating an example of mapping in the fifth embodiment. 第5実施形態におけるマッピングの例を示す図である。FIG. 13 is a diagram illustrating an example of mapping in the fifth embodiment. 基地局10の構成例を示す図である。FIG. 2 is a diagram illustrating an example of the configuration of a base station 10. 端末20の構成例を示す図である。FIG. 2 is a diagram illustrating an example of the configuration of a terminal 20. 本発明の実施の形態における基地局10又は端末20のハードウェア構成の一例を示す図である。2 is a diagram illustrating an example of a hardware configuration of a base station 10 or a terminal 20 according to an embodiment of the present invention. 車両の構成例を示す図である。FIG. 1 is a diagram illustrating an example of the configuration of a vehicle.
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。 Below, an embodiment of the present invention will be described with reference to the drawings. Note that the embodiment described below is an example, and the embodiment to which the present invention can be applied is not limited to the following embodiment.
 本発明の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用される。ただし、当該既存技術は、例えば既存のLTEあるいは既存のNRであるが、既存のLTE、NRに限られない。  In the operation of the wireless communication system according to the embodiment of the present invention, existing technologies are used as appropriate. However, the existing technologies are, for example, existing LTE or existing NR, but are not limited to existing LTE and NR.
 また、以下で説明する本発明の実施の形態では、既存のNR等で使用されているMIB、SSB、DCI、MAC、RRC等の用語を使用するが、これは記載の便宜上のためであり、これらと同様の信号、機能等が他の名称で呼ばれてもよい。 In addition, in the embodiment of the present invention described below, terms such as MIB, SSB, DCI, MAC, and RRC used in existing NRs, etc. are used, but this is for convenience of description, and similar signals, functions, etc. may be called by other names.
 また、本発明の実施の形態において、複信(Duplex)方式は、TDD(Time Division Duplex)方式でもよいし、FDD(Frequency Division Duplex)方式でもよいし、又はそれ以外(例えば、Flexible Duplex等)の方式でもよい。 Furthermore, in an embodiment of the present invention, the duplex method may be a TDD (Time Division Duplex) method, an FDD (Frequency Division Duplex) method, or another method (e.g., Flexible Duplex, etc.).
 また、本発明の実施の形態において、無線パラメータ等が「設定される(Configure)」とは、所定の値が予め設定(Pre-configure)されることであってもよいし、基地局10又は端末20から通知される無線パラメータが設定されることであってもよい。 In addition, in the embodiment of the present invention, when radio parameters and the like are "configured," this may mean that predetermined values are pre-configured, or that radio parameters notified from the base station 10 or the terminal 20 are configured.
 図1は、本発明の実施の形態における無線通信システムの構成例(1)を示す図である。本発明の実施の形態における無線通信システムは、図1に示されるように、基地局10及び端末20を含む。図1には、基地局10及び端末20が1つずつ示されているが、これは例であり、それぞれ複数であってもよい。 FIG. 1 is a diagram showing a configuration example (1) of a wireless communication system in an embodiment of the present invention. As shown in FIG. 1, the wireless communication system in the embodiment of the present invention includes a base station 10 and a terminal 20. Although FIG. 1 shows one base station 10 and one terminal 20, this is an example, and there may be multiple of each.
 基地局10は、1つ以上のセルを提供し、端末20と無線通信を行う通信装置である。無線信号の物理リソースは、時間領域及び周波数領域で定義され、時間領域はOFDM(Orthogonal Frequency Division Multiplexing)シンボル数で定義されてもよいし、周波数領域はサブキャリア数又はリソースブロック数で定義されてもよい。基地局10は、同期信号及びシステム情報を端末20に送信する。同期信号は、例えば、NR-PSS及びNR-SSSである。システム情報は、例えば、NR-PBCHにて送信され、報知情報ともいう。同期信号及びシステム情報は、SSB(SS/PBCH block)と呼ばれてもよい。SSBを同期信号と呼んでも良いし、同期信号ブロックと呼んでも良い。図1に示されるように、基地局10は、DL(Downlink)で制御信号又はデータを端末20に送信し、UL(Uplink)で制御信号又はデータを端末20から受信する。基地局10及び端末20はいずれも、ビームフォーミングを行って信号の送受信を行うことが可能である。また、基地局10及び端末20はいずれも、MIMO(Multiple Input Multiple Output)による通信をDL又はULに適用することが可能である。また、基地局10及び端末20はいずれも、CA(Carrier Aggregation)によるセカンダリセル(SCell:Secondary Cell)及びプライマリセル(PCell:Primary Cell)を介して通信を行ってもよい。さらに、端末20は、DC(Dual Connectivity)による基地局10のプライマリセル及び他の基地局10のプライマリセカンダリセルグループセル(PSCell:Primary SCG Cell)を介して通信を行ってもよい。 The base station 10 is a communication device that provides one or more cells and performs wireless communication with the terminal 20. The physical resources of a wireless signal are defined in the time domain and the frequency domain, and the time domain may be defined by the number of OFDM (Orthogonal Frequency Division Multiplexing) symbols, and the frequency domain may be defined by the number of subcarriers or the number of resource blocks. The base station 10 transmits a synchronization signal and system information to the terminal 20. The synchronization signal is, for example, NR-PSS and NR-SSS. The system information is, for example, transmitted by NR-PBCH and is also called broadcast information. The synchronization signal and system information may be called SSB (SS/PBCH block). The SSB may be called a synchronization signal or a synchronization signal block. As shown in FIG. 1, the base station 10 transmits a control signal or data to the terminal 20 in DL (Downlink) and receives a control signal or data from the terminal 20 in UL (Uplink). Both the base station 10 and the terminal 20 are capable of transmitting and receiving signals by performing beamforming. In addition, both the base station 10 and the terminal 20 can apply MIMO (Multiple Input Multiple Output) communication to DL or UL. In addition, both the base station 10 and the terminal 20 may communicate via a secondary cell (SCell: Secondary Cell) and a primary cell (PCell: Primary Cell) using CA (Carrier Aggregation). Furthermore, the terminal 20 may communicate via a primary cell of the base station 10 and a primary secondary cell group cell (PSCell: Primary SCG Cell) of another base station 10 using DC (Dual Connectivity).
 端末20は、スマートフォン、携帯電話機、タブレット、ウェアラブル端末、IoT端末、M2M(Machine-to-Machine)用通信モジュール、等の無線通信機能を備えた通信装置である。図1に示されるように、端末20は、DLで制御信号又はデータを基地局10から受信し、ULで制御信号又はデータを基地局10に送信することで、無線通信システムにより提供される各種通信サービスを利用する。また、端末20は、基地局10から送信される各種の参照信号を受信し、当該参照信号の受信結果に基づいて伝搬路品質の測定を実行する。 The terminal 20 is a communication device equipped with a wireless communication function, such as a smartphone, a mobile phone, a tablet, a wearable terminal, an IoT terminal, or a communication module for M2M (Machine-to-Machine). As shown in FIG. 1, the terminal 20 receives control signals or data from the base station 10 in DL and transmits control signals or data to the base station 10 in UL, thereby utilizing various communication services provided by the wireless communication system. The terminal 20 also receives various reference signals transmitted from the base station 10, and performs measurement of the propagation path quality based on the reception results of the reference signals.
 端末20は、複数のセル(複数のCC(Component Carrier, コンポーネントキャリア))を束ねて基地局10と通信を行うキャリアアグリゲーションを行うことが可能である。キャリアアグリゲーションでは、1つのPCell(Primary cell, プライマリセル)と1以上のSCell(Secondary cell, セカンダリセル)が使用される。また、PUCCHを有するPUCCH-SCellが使用されてもよい。 The terminal 20 is capable of performing carrier aggregation, which bundles multiple cells (multiple CCs (Component Carriers)) together to communicate with the base station 10. In carrier aggregation, one PCell (Primary cell) and one or more SCells (Secondary cells) are used. A PUCCH-SCell having a PUCCH may also be used.
 図2は、本発明の実施の形態における無線通信システムの例(2)を説明するための図である。図2は、DC(Dual connectivity)が実行される場合における無線通信システムの構成例を示す。図2に示されるとおり、MN(Master Node)となる基地局10Aと、SN(Secondary Node)となる基地局10Bが備えられる。基地局10Aと基地局10Bはそれぞれコアネットワークに接続される。端末20は基地局10Aと基地局10Bの両方と通信を行うことができる。 FIG. 2 is a diagram for explaining an example (2) of a wireless communication system in an embodiment of the present invention. FIG. 2 shows an example of the configuration of a wireless communication system when DC (Dual connectivity) is implemented. As shown in FIG. 2, a base station 10A serving as an MN (Master Node) and a base station 10B serving as an SN (Secondary Node) are provided. Base station 10A and base station 10B are each connected to a core network. Terminal 20 can communicate with both base station 10A and base station 10B.
 MNである基地局10Aにより提供されるセルグループをMCG(Master Cell Group)と呼び、SNである基地局10Bにより提供されるセルグループをSCG(Secondary Cell Group)と呼ぶ。また、DCにおいて、MCGは1つのPCellと1以上のSCellから構成され、SCGは1つのPSCell(Primary SCG Cell)と1以上のSCellから構成される。 The cell group provided by base station 10A, which is an MN, is called the MCG (Master Cell Group), and the cell group provided by base station 10B, which is an SN, is called the SCG (Secondary Cell Group). In addition, in DC, the MCG is composed of one PCell and one or more SCells, and the SCG is composed of one PSCell (Primary SCG Cell) and one or more SCells.
 本実施の形態における処理動作は、図1に示すシステム構成で実行されてもよいし、図2に示すシステム構成で実行されてもよいし、これら以外のシステム構成で実行されてもよい。なお、本明細書の説明において、「/」は、特に断らない限り、また、文脈から異なる意味であることが明らかである場合を除いて、「又は」を意味する。 The processing operations in this embodiment may be executed in the system configuration shown in FIG. 1, in the system configuration shown in FIG. 2, or in other system configurations. In the explanations in this specification, "/" means "or" unless otherwise specified or unless it is clear from the context that it has a different meaning.
 (課題について)
 前述したように、将来のネットワーク(e.g.,6G)では、通信速度/通信容量/信頼性/遅延性能等のさらなる向上のために5Gよりもさらに高い周波数を利用していくことが想定される。例えば、71GHz以上の帯域(i.e.,100GHz~300GHz等のsub-THz帯)が利用されることが想定される。
(Regarding the issues)
As mentioned above, future networks (e.g., 6G) are expected to use even higher frequencies than 5G in order to further improve communication speed, communication capacity, reliability, latency performance, etc. For example, it is expected that bands above 71 GHz (i.e., sub-THz bands such as 100 GHz to 300 GHz) will be used.
 上記のような高周波数帯は、例えば以下の(1)~(4)の特徴を持つ。 The high frequency bands mentioned above have the following characteristics (1) to (4), for example.
 (1)広い帯域幅を利用可能
 (2)電波の直進性が高いので周波数選択性が低い
 (3)パスロスが大きい
 (4)ドップラーシフトが大きい
 信号の送受信において、従来のマルチキャリア変調方式(i.e., CP-OFDM)を利用する場合、PAPR(Peak to average power ratio)が高いことが課題となる。
(1) A wide bandwidth can be used. (2) The radio waves have a high degree of directionality, resulting in low frequency selectivity. (3) There is a large path loss. (4) Doppler shift is large. When using conventional multi-carrier modulation methods (i.e., CP-OFDM) for transmitting and receiving signals, the high PAPR (Peak to average power ratio) is an issue.
 上記高周波数帯の特徴から、高周波数帯では、マルチキャリアの利点(周波数選択性が高い場合にチャネル変動の影響を受けにくい等)が小さい。従って、高周波数帯では、シングルキャリア変調方式(e.g., DFT-s-OFDM, pure single carrier)を使用することが望ましい。 Due to the characteristics of the high frequency bands mentioned above, the advantages of multi-carrier (such as being less susceptible to channel fluctuations when frequency selectivity is high) are small in high frequency bands. Therefore, it is desirable to use a single-carrier modulation method (e.g., DFT-s-OFDM, pure single carrier) in high frequency bands.
 しかし、従来のNRでは、ULでシングルキャリア変調方式を使用可能であるが、DLではマルチキャリア変調方式が使用されており、シングルキャリア変調方式は使用されていない。 However, in conventional NR, while single-carrier modulation can be used in the UL, multi-carrier modulation is used in the DL, and single-carrier modulation is not used.
 特に、適切に通信を行うためには、制御チャネルが重要であるが、従来技術では、DLの制御チャネルについてのデザインが明確ではない。そこで、本実施の形態では、シングルキャリア変調方式を適用したDLの制御チャネルについてのデザイン(構成、動作等)について説明する。 In particular, the control channel is important for proper communication, but in conventional technology, the design of the DL control channel is not clear. Therefore, in this embodiment, the design (configuration, operation, etc.) of the DL control channel that applies the single carrier modulation method is described.
 以下では、マルチキャリア変調方式をマルチキャリア波形(multi-carrier waveform)と呼び、シングルキャリア変調方式をシングルキャリア波形(single carrier waveform)と呼ぶ。なお、シングルキャリア変調方式とシングルキャリア波形はいずれも、DFT-s-OFDM、Pure single carrier、あるいはtransform precodingに言い換えてもよい。 In the following, the multi-carrier modulation method is referred to as the multi-carrier waveform, and the single-carrier modulation method is referred to as the single-carrier waveform. Note that both the single-carrier modulation method and the single-carrier waveform can also be referred to as DFT-s-OFDM, pure single carrier, or transform precoding.
 (本実施の形態の想定について)
 本実施の形態では、NSA(Non-Stand Alone)運用を想定する。具体的には、DLでシングルキャリア波形を使用し得るSub-THz帯のCCと、DLでマルチキャリア波形を使用するNRのCC(コンポーネントキャリア)との間のCAを行うことを想定している。また、NRとの互換性維持のため、DLシングルキャリア波形のCCのスロットフォーマットはNRと合わせることを想定している。
(Assumptions for this embodiment)
In this embodiment, NSA (Non-Stand Alone) operation is assumed. Specifically, it is assumed that CA is performed between a sub-THz band CC that can use a single carrier waveform in DL and an NR CC (component carrier) that uses a multicarrier waveform in DL. In addition, in order to maintain compatibility with NR, it is assumed that the slot format of the DL single carrier waveform CC is aligned with NR.
 ただし、本実施の形態に係る技術は、上記の想定に限定されるわけではない。DLシングルキャリア波形のCCを、NRとは独立に運用してもよい。また、DLシングルキャリア波形のCCのスロットフォーマットがNRでのCCのスロットフォーマットとは独立に定められてもよい。 However, the technology according to this embodiment is not limited to the above assumptions. The CC of the DL single carrier waveform may be operated independently of the NR. In addition, the slot format of the CC of the DL single carrier waveform may be determined independently of the slot format of the CC in the NR.
 以下、第1実施形態~第5実施形態について説明する。第1実施形態~第5実施形態はそれぞれ単独で実施してもよいし、いずれか複数の実施形態を組み合わせて実施してもよいし、全部の実施形態を組み合わせて実施してもよい。また、以下の説明におけるDL制御チャネルは、PDCCHであることを想定するが、PDCCHに限定されるわけではない。 The first to fifth embodiments will be described below. Each of the first to fifth embodiments may be implemented alone, or any two or more of the embodiments may be combined, or all of the embodiments may be combined. In addition, the DL control channel in the following description is assumed to be a PDCCH, but is not limited to a PDCCH.
 下記の第1実施形態~第5実施形態において、シングルキャリア波形を適用したDL制御チャネルが使用される周波数帯域は、71GHz以上の高周波数帯(i.e.,100GHz~300GHz等のsub-THz帯)であることを想定しているが、この想定に限定されない。例えば、当該高周波数帯よりも低い周波数の帯域でシングルキャリア波形を適用した下り制御チャネルが使用されてもよい。 In the first to fifth embodiments described below, it is assumed that the frequency band in which the DL control channel to which a single carrier waveform is applied is a high frequency band of 71 GHz or higher (i.e., sub-THz band such as 100 GHz to 300 GHz), but is not limited to this assumption. For example, a downlink control channel to which a single carrier waveform is applied may be used in a frequency band lower than the high frequency band.
 第1実施形態~第5実施形態で共通の、マルチキャリア波形とシングルキャリア波形に関する、基地局10での処理内容(処理ブロック)を図3に示す。図3(a)は、マルチキャリア波形を適用したDL制御チャネルを送信する際の処理を示す。送信データをリソースにマッピングし、IFFTを行って、CPを挿入し、送信を行う。 FIG. 3 shows the processing contents (processing blocks) at the base station 10 for multi-carrier waveforms and single-carrier waveforms, which are common to the first to fifth embodiments. FIG. 3(a) shows the processing when transmitting a DL control channel to which a multi-carrier waveform is applied. The transmission data is mapped to resources, IFFT is performed, a CP is inserted, and transmission is performed.
 図3(b)は、シングルキャリア波形を適用したDL制御チャネルを送信する際の処理を示す。図3(a)と比較して、トランスフォームプリコーディングがリソースマッピングの前に追加される点がマルチキャリア波形の処理と異なる。 Figure 3(b) shows the processing when transmitting a DL control channel using a single-carrier waveform. Compared to Figure 3(a), it differs from the processing of a multi-carrier waveform in that transform precoding is added before resource mapping.
 トランスフォームプリコーディングにより、PAPRを削減するために、送信データをspread(拡散)する処理が行われる。トランスフォームプリコーディングは、DFT(Digital Fourier Transform)に相当する。 Transform precoding spreads the transmitted data to reduce the PAPR. Transform precoding is equivalent to DFT (Digital Fourier Transform).
 マルチキャリア波形とシングルキャリア波形のいずれの場合も、受信側(DL制御チャネルで情報を受信する端末20の側)では、図3(a)、(b)に示す処理と逆の処理を行うことで、情報を取得する。 In both the multi-carrier and single-carrier waveform cases, the receiving side (terminal 20 that receives information on the DL control channel) obtains information by performing the reverse process of the process shown in Figures 3(a) and (b).
 また、第1実施形態~第5実施形態では、DL制御チャネルを対象としているが、以下でDL制御チャネル(PDCCHを含む)に対して説明する内容が、他のDLチャネルあるいはDLの信号に適用されてもよい。 In addition, although the first to fifth embodiments are directed to DL control channels, the contents described below for DL control channels (including PDCCH) may also be applied to other DL channels or DL signals.
 (第1実施形態)
 まず、第1実施形態を説明する。第1実施形態では、DL制御チャネルにシングルキャリア波形を適用するか否かの判断(基準と呼んでもよい)について説明する。第1実施形態では、動作のオプションとして、下記のオプション1~4があるので、それぞれについて説明する。下記のオプション1~4のうちのいずれか複数を組み合わせて実施してもよい。、また、オプション1~4のうちのどれを適用するかが、仕様で規定されていてもよいし、基地局10から端末20に設定/通知されてもよい。
First Embodiment
First, the first embodiment will be described. In the first embodiment, the judgment (which may be called a criterion) of whether or not to apply a single carrier waveform to the DL control channel will be described. In the first embodiment, the following options 1 to 4 are available as operation options, and each of them will be described. Any of a plurality of the following options 1 to 4 may be combined for implementation. Also, which of the options 1 to 4 is to be applied may be specified in the specifications, or may be set/notified to the terminal 20 by the base station 10.
 なお、本実施の形態全体において、「基地局10から端末20に対して情報を設定/通知する」場合において、特に断らない限り、その情報の設定/通知の方法については、MIB、SIB、RRC、MAC CE、DCIのうちのいずれか1つを用いてもよいし、これらのうちのいずれか複数の組み合わせを用いてもよい。複数の組み合わせを用いる場合、例えば、RRCにより複数の情報を基地局10から端末20に対して設定/通知しておき、MAC CE又はDCIで、当該複数の情報のうちのいずれか1つをアクティベートすることとしてもよい。端末20は、アクティベートされた情報を使用する。 Note that throughout this embodiment, when "information is set/notified from the base station 10 to the terminal 20," unless otherwise specified, the method of setting/notifying the information may be any one of MIB, SIB, RRC, MAC CE, and DCI, or any combination of multiple of these. When multiple combinations are used, for example, multiple pieces of information may be set/notified from the base station 10 to the terminal 20 by RRC, and any one of the multiple pieces of information may be activated by MAC CE or DCI. The terminal 20 uses the activated information.
 <オプション1>
 オプション1では、本実施の形態で想定する高周波数帯(例えば、周波数範囲FRxと呼ぶ)において、全てのDL制御チャネル(例えばPDCCH)に対して常にシングルキャリア波形が適用される。
<Option 1>
In option 1, in the high frequency band assumed in this embodiment (for example, referred to as a frequency range FRx), a single carrier waveform is always applied to all DL control channels (for example, PDCCH).
 例えば、基地局10は、FRxのキャリア(CCであってもよい)におけるDL制御チャネルで情報(具体的には制御情報)を端末20に送信する際に、シングルキャリア波形のDL制御チャネルを使用する。また、端末20は、FRxのキャリア(CCであってもよい)におけるDL制御チャネルで情報を基地局10から受信する際に、シングルキャリア波形のDL制御チャネルで情報が送信されていることを想定して、当該DL制御チャネルで情報を受信する。 For example, when the base station 10 transmits information (specifically, control information) to the terminal 20 via a DL control channel in the FRx carrier (which may be a CC), the base station 10 uses a DL control channel with a single carrier waveform. Also, when the terminal 20 receives information from the base station 10 via a DL control channel in the FRx carrier (which may be a CC), the terminal 20 receives the information via the DL control channel, assuming that the information is being transmitted via a DL control channel with a single carrier waveform.
 なお、本明細書において、「DL制御チャネルで情報を送信する」/「DL制御チャネルで情報を受信する」を、「DL制御チャネルを送信する」/「DL制御チャネルを受信する」、「DL制御チャネルで信号を送信する」/「DL制御チャネルで信号を受信する」などと言い換えてもよい。 In this specification, "transmitting information on a DL control channel"/"receiving information on a DL control channel" may be rephrased as "transmitting a DL control channel"/"receiving a DL control channel", "transmitting a signal on a DL control channel"/"receiving a signal on a DL control channel", etc.
 <オプション2>
 オプション2では、特定の1つ又は複数のDL制御チャネルのみに対して常にシングルキャリア波形が適用される。特定のPDCCHとは、例えば、group-common PDCCH又は UE-specific PDCCH、あるいは、group-common PDCCHとUE-specific PDCCHの両方である。オプション2は、本実施の形態で想定する高周波数帯(FRx)に限定して適用されてもよいし、高周波数帯(FRx)以外の周波数帯で適用されてもよい。
<Option 2>
In option 2, a single carrier waveform is always applied only to one or more specific DL control channels. The specific PDCCH is, for example, a group-common PDCCH or a UE-specific PDCCH, or both a group-common PDCCH and a UE-specific PDCCH. Option 2 may be applied only to the high frequency band (FRx) assumed in this embodiment, or may be applied to a frequency band other than the high frequency band (FRx).
 例えば、基地局10は、group-common PDCCH(又は UE-specific PDCCH)で情報を端末20に送信する際に、シングルキャリア波形のgroup-common PDCCH(又は UE-specific PDCCH)を使用することを決定し、当該group-common PDCCH(又は UE-specific PDCCH)で情報を送信する。 For example, when transmitting information to the terminal 20 via a group-common PDCCH (or a UE-specific PDCCH), the base station 10 determines to use a group-common PDCCH (or a UE-specific PDCCH) with a single carrier waveform, and transmits the information via that group-common PDCCH (or UE-specific PDCCH).
 端末20は、group-common PDCCH(又は UE-specific PDCCH)で情報を基地局10から受信する際に、シングルキャリア波形のgroup-common PDCCH(又は UE-specific PDCCH)が使用されていると判断し、シングルキャリア波形のgroup-common PDCCH(又は UE-specific PDCCH)が使用されていると想定して、当該チャネルで情報を受信する。 When the terminal 20 receives information from the base station 10 on the group-common PDCCH (or UE-specific PDCCH), it determines that a group-common PDCCH (or UE-specific PDCCH) with a single carrier waveform is being used, and receives the information on that channel, assuming that a group-common PDCCH (or UE-specific PDCCH) with a single carrier waveform is being used.
 <オプション3>
 オプション3では、端末20が移動する速さ(速度と呼んでもよい)に応じて、DL制御チャネルにシングルキャリア波形が適用されるか否かが判断される。例えば、基地局10は、端末20の速さが予め規定された閾値以上であることを検知すると、端末20に対し、マルチキャリア波形のDL制御チャネルで情報を送信する。基地局10は、端末20の速さが当該閾値未満であることを検知すると、端末20に対し、シングルキャリア波形のDL制御チャネルで情報を送信する。
<Option 3>
In option 3, whether or not a single carrier waveform is applied to the DL control channel is determined according to the speed (which may be called velocity) at which the terminal 20 moves. For example, when the base station 10 detects that the speed of the terminal 20 is equal to or greater than a predefined threshold, the base station 10 transmits information to the terminal 20 on a DL control channel with a multicarrier waveform. When the base station 10 detects that the speed of the terminal 20 is less than the threshold, the base station 10 transmits information to the terminal 20 on a DL control channel with a single carrier waveform.
 また、端末20は、端末20の速さが予め規定された閾値以上であることを検知すると、マルチキャリア波形のDL制御チャネルで情報を基地局10から受信する。端末20は、端末20の速さが当該閾値未満であることを検知すると、基地局10から、シングルキャリア波形のDL制御チャネルで情報を受信する。 In addition, when the terminal 20 detects that the speed of the terminal 20 is equal to or greater than a predefined threshold, it receives information from the base station 10 on a DL control channel with a multi-carrier waveform. When the terminal 20 detects that the speed of the terminal 20 is less than the threshold, it receives information from the base station 10 on a DL control channel with a single-carrier waveform.
 なお、オプション3において、閾値の基づく判断に関して、シングルキャリア波形とマルチキャリア波形とを入れ替えてもよい。 In addition, in option 3, the single-carrier waveform and multi-carrier waveform may be interchanged for threshold-based decisions.
 <オプション4>
 オプション4では、DL制御チャネルにシングルキャリア波形を適用するか否かが、MIB又はRRCシグナリングで、基地局10から端末20に設定/通知される。例えば、端末20が、RRC IDLE/INACTIVE/CONNECTEDの状態にあるときにMIBが使用される。また、例えば、端末20が、RRC CONNECTEDの状態にあるときにRRCシグナリングが使用される。
<Option 4>
In option 4, whether or not to apply a single carrier waveform to the DL control channel is configured/notified to the terminal 20 from the base station 10 by MIB or RRC signaling. For example, the MIB is used when the terminal 20 is in an RRC IDLE/INACTIVE/CONNECTED state. Also, for example, the RRC signaling is used when the terminal 20 is in an RRC CONNECTED state.
 オプション4でのシーケンスの例を図4に示す。S101において、基地局10は、RRCシグナリング/MIBにより、DL制御チャネルにシングルキャリア波形を適用するか否かを示す情報を端末20に送信する。端末20は、基地局10から受信した情報に基づいて、基地局10から送信されるDL制御チャネルにシングルキャリア波形が適用されているか否かを判断する。 An example of a sequence for option 4 is shown in Figure 4. In S101, the base station 10 transmits, by RRC signaling/MIB, information indicating whether or not a single carrier waveform is applied to the DL control channel to the terminal 20. Based on the information received from the base station 10, the terminal 20 determines whether or not a single carrier waveform is applied to the DL control channel transmitted from the base station 10.
 DL制御チャネルにシングルキャリア波形を適用するか否かを示す情報が、トランスフォームプリコーディングを行うか否かを示す情報であってもよい。 The information indicating whether to apply a single carrier waveform to the DL control channel may be information indicating whether to perform transform precoding.
 より詳細な例として、下記のオプション4-1とオプション4-2がある。オプション4-1とオプション4-2では、上記のオプション2でのgroup-common PDCCH/UE-specific PDCCHを使用することを想定している。 More detailed examples include Option 4-1 and Option 4-2 below. Option 4-1 and Option 4-2 assume the use of the group-common PDCCH/UE-specific PDCCH in Option 2 above.
  <オプション4-1>
 オプション4-1では、group-common DCI(group-common PDCCH)とUE-specific DCI(UE-specific PDCCH)とで別々に、シングルキャリア波形を適用するか否かの情報がRRCシグナリングで基地局10から端末20に設定/通知される。
<Option 4-1>
In option 4-1, information as to whether or not to apply a single carrier waveform is configured/notified to the terminal 20 by RRC signaling from the base station 10 separately for group-common DCI (group-common PDCCH) and UE-specific DCI (UE-specific PDCCH).
  <オプション4-2>
 オプション4-2では、group-common DCI(group-common PDCCH)とUE-specific DCI(UE-specific PDCCH)とで一緒に(jointly)、シングルキャリア波形を適用するか否かの情報がRRCシグナリングで基地局10から端末20に設定/通知される。
<Option 4-2>
In option 4-2, information as to whether or not to apply a single carrier waveform is configured/notified to the terminal 20 from the base station 10 by RRC signaling, jointly for the group-common DCI (group-common PDCCH) and the UE-specific DCI (UE-specific PDCCH).
 以上説明した第1実施形態によれば、DL制御チャネルにシングルキャリア波形が適用されるか否かを明確に判断できる。 According to the first embodiment described above, it is possible to clearly determine whether a single carrier waveform is applied to the DL control channel.
 (第2実施形態)
 次に、第2実施形態を説明する。第2実施形態では、基地局10において実行される、DL制御チャネルに対するトランスフォームプリコーディングについて説明する。端末20は、このようなトランスフォームプリコーディングが行われていることを想定して、DL制御チャネルで送信された情報を受信(デコード)する。なお、以下で説明する処理は、基本的に、非特許文献2に開示されている、ULでのTransform precodingをDLに置き換えたものに相当する。
Second Embodiment
Next, a second embodiment will be described. In the second embodiment, transform precoding for the DL control channel executed in the base station 10 will be described. The terminal 20 receives (decodes) information transmitted in the DL control channel, assuming that such transform precoding is performed. The process described below basically corresponds to the process disclosed in Non-Patent Document 2, where transform precoding in UL is replaced with DL.
 基地局10は、トランスフォームプリコーディングを適用しない場合(transform precoding is not enabledの場合)、y(i)=x(i)とする。 If transform precoding is not applied (transform precoding is not enabled), the base station 10 sets y(i) = x(i).
 基地局10は、トランスフォームプリコーディングを適用する場合、block of complex-valued symbolsであるx(0),...,x(Msymb-1)に対して下記のとおりにトランスフォームプリコーディングを行う。 When transform precoding is applied, the base station 10 performs transform precoding on a block of complex-valued symbols x(0), . . . , x(M symb −1) as follows.
Figure JPOXMLDOC01-appb-M000001
 上記のようにトランスフォームプリコーディングを施すことで、block of complex-valued symbolsであるy(0),...,y(Msymb-1)を得る。MRB PDCCHは、PDCCHの帯域幅(RB数)を示す。NSC RBは、リソースブロックあたりのサブキャリア数を示す。
Figure JPOXMLDOC01-appb-M000001
By performing transform precoding as described above , a block of complex-valued symbols y(0), ..., y( Msymb -1) is obtained. MRBPDCCH indicates the bandwidth (number of RBs ) of the PDCCH. NSCRB indicates the number of subcarriers per resource block.
 なお、トランスフォームプリコーディングを適用するか否かについては、第1実施形態を適用することができる。 The first embodiment can be applied to whether or not to apply transform precoding.
 第2実施形態に係る技術によれば、シングルキャリア波形を適用したDL制御チャネルを具体的に実現できる。 The technology according to the second embodiment makes it possible to specifically realize a DL control channel using a single carrier waveform.
 (第3実施形態)
 第3実施形態では、DL制御チャネル(ここでは例としてPDCCHを対象とする)の構造について説明する。
Third Embodiment
In the third embodiment, a structure of a DL control channel (here, PDCCH is taken as an example) will be described.
 マルチキャリア波形が適用される場合、PDCCHは、1つ又は複数のコントロールチャネルエレメント(CCE)を有する。具体的には、PDCCHに適用されるアグリゲーションレベルに応じて、図5のテーブルに示すように、1つのPDCCHあたりのCCEの数が決定される。 When a multicarrier waveform is applied, the PDCCH has one or more control channel elements (CCEs). Specifically, the number of CCEs per PDCCH is determined according to the aggregation level applied to the PDCCH, as shown in the table in Figure 5.
 例えば、基地局10は、アグリゲーションレベル2でPDCCHの送信を行う場合、PDCCHのCCE数を2個とする。端末20は、例えば、各アグリゲーションレベル(対応する各CCE数)を想定して、PDCCH(DCI)の受信(デコード)を行う。 For example, when the base station 10 transmits a PDCCH at aggregation level 2, the number of CCEs in the PDCCH is set to 2. The terminal 20 receives (decodes) the PDCCH (DCI), for example, assuming each aggregation level (corresponding number of CCEs).
 なお、図5に示す値は一例に過ぎない。図5に示す値以外の値が使用されてもよい。 Note that the values shown in Figure 5 are merely examples. Values other than those shown in Figure 5 may be used.
 より詳細には、コントロールチャネルエレメントはX個のリソースエレメントグループ(REGs)からなる。1リソースエレメントグループは、1OFDMシンボルにおける1つのリソースブロックに等しい。1コントロールリソースセット内のREGsは、時間が最初の方式(time-first manner)で昇順に番号付けされており、1コントロールリソースセット内のREGsは、最初のOFDMシンボルにおける最も小さい番号のリソースブロックにおいて、0番から開始する。上記のXは例えば6である。ただし、Xが6以外の数値であってもよい。 More specifically, the control channel element consists of X resource element groups (REGs). One resource element group is equal to one resource block in one OFDM symbol. The REGs in one control resource set are numbered in ascending order in a time-first manner, starting with 0 for the lowest numbered resource block in the first OFDM symbol. X above is, for example, 6. However, X may be a number other than 6.
 PDCCHに対してシングルキャリア波形が適用される場合、PDCCHは、CCEsからなるのではなく、複数のリソースブロックからなる。シングルキャリア波形のPDCCHの周波数リソースの詳細については、第4実施形態で説明する。 When a single carrier waveform is applied to the PDCCH, the PDCCH does not consist of CCEs but consists of multiple resource blocks. Details of the frequency resources of the PDCCH with a single carrier waveform will be described in the fourth embodiment.
 なお、PDCCHに対してシングルキャリア波形を適用するか否かについては、第1実施形態を適用することができる。 The first embodiment can be applied to whether or not to apply a single carrier waveform to the PDCCH.
 第3実施形態に係る技術によれば、基地局10は、マルチキャリア波形のPDCCHを適切に送信でき、端末20は、マルチキャリア波形のPDCCHを適切に受信できる。 According to the technology of the third embodiment, the base station 10 can properly transmit a PDCCH having a multicarrier waveform, and the terminal 20 can properly receive a PDCCH having a multicarrier waveform.
 (第4実施形態)
 次に、第4実施形態を説明する。第4実施形態では、DL制御チャネル(ここでは例としてPDCCHを対象とする)に対してシングルキャリア波形が適用される場合における、当該PDCCHの周波数リソースについて説明する。第4実施形態では、下記のオプション1~4があるので、それぞれについて説明する。
Fourth Embodiment
Next, a fourth embodiment will be described. In the fourth embodiment, a frequency resource of a DL control channel (here, PDCCH is taken as an example) when a single carrier waveform is applied to the PDCCH will be described. In the fourth embodiment, there are the following options 1 to 4, and each of them will be described.
 <オプション1>
 オプション1では、PDCCHの周波数リソースのサイズはシステム帯域幅と同じである。すなわち、シングルキャリア波形を適用したPDCCHの周波数リソースのサイズは、PDCCHが送信されるサービングセルのシステム帯域幅に等しい。
<Option 1>
In option 1, the size of the frequency resource of the PDCCH is the same as the system bandwidth, i.e., the size of the frequency resource of the PDCCH applying the single carrier waveform is equal to the system bandwidth of the serving cell in which the PDCCH is transmitted.
 例えば、システム帯域幅が100MHzであるとすると、基地局10は、PDCCHの帯域幅を100MHzと決定し、その帯域幅のPDCCHで情報を送信する。端末20は、PDCCHの帯域幅を100MHzと決定し、100MHzの帯域幅でPDCCHが送信されていると想定して、情報を受信(デコード)する。 For example, if the system bandwidth is 100 MHz, the base station 10 determines the bandwidth of the PDCCH to be 100 MHz and transmits information on the PDCCH of that bandwidth. The terminal 20 determines the bandwidth of the PDCCH to be 100 MHz and receives (decodes) information assuming that the PDCCH is being transmitted on a bandwidth of 100 MHz.
 <オプション2>
 オプション2では、PDCCHの周波数リソースのサイズ(帯域幅と呼んでもよい)は、システム帯域幅よりも小さく、システム帯域幅の一部と同じである。
<Option 2>
In option 2, the size of the frequency resource of the PDCCH (which may also be referred to as the bandwidth) is smaller than the system bandwidth and is equal to a portion of the system bandwidth.
 すなわち、シングルキャリア波形を適用したPDCCHの周波数リソースのサイズは、PDCCHが送信されるサービングセルのシステム帯域幅の一部に等しい。 In other words, the size of the frequency resource of a PDCCH that uses a single carrier waveform is equal to a portion of the system bandwidth of the serving cell in which the PDCCH is transmitted.
 例えば、システム帯域幅×K(0<K<1)をPDCCHの周波数リソースのサイズとする場合において、システム帯域幅が100MHzであり、K=0.5である場合、PDCCHの周波数リソースのサイズとして50MHzが使用される。Kは、例えば仕様で定められる。Kは、オプション3で説明するように、基地局10から端末20に設定/指示されてもよい。 For example, when the size of the frequency resource of the PDCCH is the system bandwidth x K (0 < K < 1), if the system bandwidth is 100 MHz and K = 0.5, 50 MHz is used as the size of the frequency resource of the PDCCH. K is determined, for example, in the specifications. K may be set/instructed to the terminal 20 by the base station 10, as described in Option 3.
 また、「システム帯域幅の一部」が、BWP(Bandwidth part)であってもよい。BWPは、例えば、アクティブなBWPである。 The "part of the system bandwidth" may also be a BWP (Bandwidth part). The BWP may be, for example, an active BWP.
 例えば、アクティブなDLのBWPとしてBWP_Aが端末20(あるいは端末群)に設定されているとし、BWP_Aの帯域幅が帯域幅Aであるとすると、基地局10は、PDCCHの帯域幅を帯域幅Aと決定し、その帯域幅AのPDCCHで情報を送信する。端末20は、PDCCHの帯域幅を帯域幅Aと決定し、その帯域幅AでPDCCHが送信されていると想定して、情報を受信(デコード)する。 For example, if BWP_A is set in terminal 20 (or a group of terminals) as the BWP of the active DL, and the bandwidth of BWP_A is bandwidth A, base station 10 determines the bandwidth of the PDCCH to be bandwidth A and transmits information on the PDCCH of bandwidth A. Terminal 20 determines the bandwidth of the PDCCH to be bandwidth A, and receives (decodes) information, assuming that the PDCCH is being transmitted on bandwidth A.
 <オプション3>
 オプション3では、PDCCHの周波数リソースに関する情報が、基地局10から端末20に設定/通知される。例えば、PDCCHの周波数リソースに関する情報が、基地局10から端末20に対してMIBで通知される。なお、MIBを使用することは一例である。
<Option 3>
In option 3, information regarding the frequency resource of the PDCCH is configured/notified to the terminal 20 from the base station 10. For example, information regarding the frequency resource of the PDCCH is notified to the terminal 20 from the base station 10 by an MIB. Note that using the MIB is just one example.
 例えば、シングルキャリア波形を適用したPDCCHの周波数リソースのサイズが、MIBにより基地局10から端末20に通知される。通知方法の詳細として、下記のオプション3-1、オプション3-2がある。 For example, the size of the frequency resource of the PDCCH to which a single carrier waveform is applied is notified from the base station 10 to the terminal 20 by the MIB. Details of the notification method include option 3-1 and option 3-2 below.
 <オプション3-1>
 オプション3-1では、仕様等で、MIBにより通知される情報(ここでは例としてインデックスとする)と、PDCCHの周波数リソースとの関係が定められる。端末20と基地局10はそれぞれ当該関係を表す情報を保持しており、その情報に従って動作する。当該関係を表す情報をここでは「テーブル」と呼ぶ。
<Option 3-1>
In option 3-1, the relationship between the information notified by the MIB (here, an index is used as an example) and the frequency resource of the PDCCH is defined in the specifications, etc. The terminal 20 and the base station 10 each hold information representing the relationship and operate according to the information. The information representing the relationship is referred to as a "table" here.
 当該テーブルの情報は、上記のように仕様等で予め定めてもよいし、基地局10が決定して、端末20に対して設定/通知してもよい。 The information in this table may be predetermined in the specifications as described above, or may be determined by the base station 10 and set/notified to the terminal 20.
 図6に、当該テーブルの例を示す。図6に示すテーブルは、行のインデックス、PDCCHの帯域幅を示すRB数、及び、PDCCHの周波数リソースの開始位置に相当する、基準点(参照点)からのオフセット(RB単位)を有する。基準点は、例えば、SSBの開始RB(すなわちMIB)である。 Figure 6 shows an example of this table. The table shown in Figure 6 has a row index, a number of RBs indicating the bandwidth of the PDCCH, and an offset (in RBs) from a reference point that corresponds to the start position of the frequency resources of the PDCCH. The reference point is, for example, the start RB of the SSB (i.e., the MIB).
 また、テーブルには、インデックスに対応する、PDCCHのシンボル数が含まれていてもよい。テーブルを用いた動作例を図4のシーケンス図を参照して説明する。S101において、基地局10はMIBを送信し、端末20はMIBを受信する。MIBには、インデックスが含まれている。S102において、端末20は、MIBからインデックスを読み出し、テーブルを参照して、インデックスに対応するPDCCHの周波数リソースを把握する。 The table may also include the number of PDCCH symbols corresponding to the index. An example of operation using the table will be described with reference to the sequence diagram in FIG. 4. In S101, the base station 10 transmits an MIB, and the terminal 20 receives the MIB. The MIB includes an index. In S102, the terminal 20 reads the index from the MIB and refers to the table to ascertain the frequency resource of the PDCCH corresponding to the index.
 基地局10は、上記インデックスに対応する周波数リソースで、シングルキャリア波形を適用したPDCCHで情報を送信する。端末20は、当該周波数リソースで、基地局10から送信されたPDCCHを受信(デコード)することができる。 The base station 10 transmits information on a PDCCH to which a single carrier waveform is applied, using the frequency resource corresponding to the index. The terminal 20 can receive (decode) the PDCCH transmitted from the base station 10 using the frequency resource.
 <オプション3-2>
 オプション3-2では、基地局10は端末20に対して、RIV(Resource Indicator Value)により、シングルキャリア波形を適用したPDCCHの周波数リソースの情報を通知する。RIVは、RRCシグナリングで送信されてもよいし、DCIで送信されてもよいし、MIBで送信されてもよいし、MAC CEで送信されてもよい。
<Option 3-2>
In option 3-2, the base station 10 notifies the terminal 20 of information on the frequency resource of the PDCCH to which a single carrier waveform is applied, by using a resource indicator value (RIV). The RIV may be transmitted by RRC signaling, may be transmitted by DCI, may be transmitted by MIB, or may be transmitted by MAC CE.
 基本的に、RIV(数値)は、RIV=A×F+S+Cで表すことができる。ここで、AとCは仕様等で定められる定数である。Fは、PDCCHの周波数リソースの連続する長さ(つまりRB数)を表し、SはPDCCHの周波数リソースの開始位置を示す。すなわち、RIV(1つの数値)で、PDCCHの周波数リソースの長さと開始位置を通知できる。 Basically, RIV (a numerical value) can be expressed as RIV = A x F + S + C. Here, A and C are constants defined in specifications, etc. F represents the continuous length of the PDCCH frequency resource (i.e. the number of RBs), and S indicates the starting position of the PDCCH frequency resource. In other words, RIV (one numerical value) can notify the length and starting position of the PDCCH frequency resource.
 端末20は、基地局10から受信したRIVで、PDCCHの周波数リソースを決定し、当該周波数リソースでPDCCHが送信されていることを想定して、受信動作を行う。 The terminal 20 determines the frequency resource of the PDCCH based on the RIV received from the base station 10, and performs reception operations assuming that the PDCCH is being transmitted using that frequency resource.
 <オプション4>
 次に、シングルキャリア波形を適用したPDCCHの周波数リソースに関するオプション4を説明する。
<Option 4>
Next, Option 4 regarding frequency resources of PDCCH to which a single carrier waveform is applied will be described.
 オプション4では、PDCCHの周波数リソースの情報は、上位レイヤパラメータにより基地局10から端末20に設定/通知される。上位レイヤパラメータは、RRCシグナリングで設定/通知されてもよいし、MACシグナリングで設定/通知されてもよい。 In option 4, information on the frequency resources of the PDCCH is set/notified to the terminal 20 from the base station 10 by higher layer parameters. The higher layer parameters may be set/notified by RRC signaling or by MAC signaling.
 具体的には、シングルキャリア波形を適用したPDCCHの周波数リソースのサイズと開始位置が上位レイヤパラメータにより基地局10から端末20に設定/通知される。 Specifically, the size and starting position of the frequency resource of the PDCCH to which a single carrier waveform is applied are set/notified to the terminal 20 by the base station 10 using higher layer parameters.
 端末20は、基地局10から受信したパラメータで、PDCCHの周波数リソースを決定し、当該周波数リソースでPDCCHが送信されていることを想定して、受信動作を行う。より具体的な処理として、下記のオプション4-1とオプション4-2を説明する。 The terminal 20 determines the frequency resource of the PDCCH based on the parameters received from the base station 10, and performs reception operations assuming that the PDCCH is being transmitted using that frequency resource. As more specific processing, options 4-1 and 4-2 are explained below.
 <オプション4-1>
 オプション4-1では、PDCCHの周波数リソースの、開始位置と長さが別々に設定/通知される。
<Option 4-1>
In option 4-1, the starting position and length of the frequency resource of the PDCCH are set/notified separately.
 例えば、PDCCHの周波数リソースの開始位置は、PDCCH-Configの中のPDCCH-Resourceの中のパラメータであるstartingPRBにより、基地局10から端末20に通知される。なお、startingPRBは、ControlResourceSetの中のパラメータであってもよい。例えば、startingPRBにより、開始位置を示すPRB IDが通知される。 For example, the starting position of the PDCCH frequency resource is notified from the base station 10 to the terminal 20 by startingPRB, which is a parameter in PDCCH-Resource in PDCCH-Config. Note that startingPRB may be a parameter in ControlResourceSet. For example, startingPRB notifies the terminal 20 of the PRB ID indicating the starting position.
 また、例えば、PDCCHの周波数リソースの長さ(帯域幅)は、PDCCH-Configの中のPDCCH-Resourceの中のパラメータであるnrofPRBsにより、基地局10から端末20に通知される。なお、nrofPRBsは、ControlResourceSetの中のパラメータであってもよい。例えば、nrofPRBsにより、周波数リソースの長さ(RB数)を示す整数値が通知される。 Furthermore, for example, the length (bandwidth) of the frequency resource of the PDCCH is notified from the base station 10 to the terminal 20 by nrofPRBs, which is a parameter in PDCCH-Resource in PDCCH-Config. Note that nrofPRBs may be a parameter in ControlResourceSet. For example, an integer value indicating the length (number of RBs) of the frequency resource is notified by nrofPRBs.
 <オプション4-2>
 オプション4-2では、PDCCHの周波数リソースの、開始位置と長さが一緒になった情報(joint configuration)が設定/通知される。当該情報は例えばビットマップである。
<Option 4-2>
In option 4-2, information (joint configuration) of the start position and length of the frequency resource of the PDCCH is configured/notified. The information is, for example, a bitmap.
 例えば、PDCCHの周波数リソースの、開始位置と長さは、PDCCH-Configの中のPDCCH-Resourceの中のビットマップパラメータであるfrequencyDomainResourcesにより、基地局10から端末20に通知される。なお、frequencyDomainResourcesは、ControlResourceSetの中のビットマップパラメータであってもよい。 For example, the starting position and length of the frequency resource of the PDCCH are notified from the base station 10 to the terminal 20 by the frequencyDomainResources, which is a bitmap parameter in the PDCCH-Resource in the PDCCH-Config. Note that frequencyDomainResources may be a bitmap parameter in the ControlResourceSet.
 当該ビットマップパラメータは複数のビットを有し、各ビットは、1又は複数のPRB(s)を表す。複数のPRB(s)をPRBグループと呼んでもよい。例えば、当該ビットマップにおけるMSB(most significant bit)は、PDCCHの周波数リソースにおける最初のPRB(又は最初のPRBグループ)を示す。 The bitmap parameter has multiple bits, each bit representing one or multiple PRB(s). Multiple PRB(s) may be referred to as a PRB group. For example, the most significant bit (MSB) in the bitmap indicates the first PRB (or the first PRB group) in the frequency resources of the PDCCH.
 本例では、ビットマップでの連続する割り当てのみを想定する。例えば、ビットマップとして、'0011111100'、'11111111'、'11110000'などが考えられる。例えば、PRB1を最初のビットとし、1ビットが1PRBに対応する場合、'0011111100'は、PRB3~8が、PDCCHの周波数リソースとして使用されることを意味する。なお、上記のような連続する割り当てに限定されるわけではない。 In this example, only consecutive allocations in the bitmap are assumed. For example, possible bitmaps are '0011111100', '11111111', '11110000', etc. For example, if PRB1 is the first bit and 1 bit corresponds to 1 PRB, then '0011111100' means that PRBs 3 to 8 are used as frequency resources for the PDCCH. Note that this is not limited to consecutive allocations as described above.
 第4実施形態に係る技術によれば、基地局10は、シングルキャリア波形のPDCCHを適切に送信でき、端末20は、シングルキャリア波形のPDCCHを適切に受信できる。 According to the technology of the fourth embodiment, the base station 10 can properly transmit a PDCCH having a single carrier waveform, and the terminal 20 can properly receive a PDCCH having a single carrier waveform.
 (第5実施形態)
 次に、第5実施形態を説明する。第5実施形態では、DL制御チャネル(ここではPDCCHを対象とする)における参照信号(具体的には、例としてDMRSを対象とする)のマッピング方法について説明する。以下では、マルチキャリア波形のPDCCHと、シングルキャリア波形のPDCCHとを分けて説明する。なお、シングルキャリア波形のPDCCHについては、オプション1とオプション2があるので、それぞれを説明する。
Fifth Embodiment
Next, a fifth embodiment will be described. In the fifth embodiment, a mapping method of a reference signal (specifically, DMRS as an example) in a DL control channel (PDCCH is the target here) will be described. In the following, a multicarrier waveform PDCCH and a single carrier waveform PDCCH will be described separately. Note that there are option 1 and option 2 for the single carrier waveform PDCCH, and each will be described.
 マルチキャリア波形のPDCCHと、シングルキャリア波形のPDCCHのどちらを使用するかの判断については、第1実施形態で説明した技術を適用できる。 The technique described in the first embodiment can be applied to determine whether to use a multi-carrier waveform PDCCH or a single-carrier waveform PDCCH.
 <マルチキャリア波形のPDCCH>
 マルチキャリア波形のPDCCHを使用する場合、端末20は、下記の式に従って、参照信号系列r(m)がリソースエレメント(k,l)p,μにマッピングされると想定する。ここでのDMRSのマッピングは、非特許文献2に開示されているPDCCHのDMRSのマッピングと同じである。
<Multi-carrier waveform PDCCH>
When using a multicarrier waveform PDCCH, the terminal 20 assumes that the reference signal sequence r l (m) is mapped to resource elements (k, l) p,μ according to the following equation: Here, the mapping of the DMRS is the same as the mapping of the DMRS of the PDCCH disclosed in Non-Patent Document 2.
Figure JPOXMLDOC01-appb-M000002
 つまり、基地局10は、上記の式に従って、参照信号系列r(m)をリソースエレメント(k,l)p,μにマッピングして送信し、端末20は、このマッピングの想定に基づいて、参照信号系列r(m)を読み出す。
Figure JPOXMLDOC01-appb-M000002
That is, the base station 10 maps the reference signal sequence r l (m) to resource elements (k, l) p,μ in accordance with the above equation and transmits it, and the terminal 20 reads out the reference signal sequence r l (m) based on this mapping assumption.
 なお、(k,l)p,μは、アンテナポートp、サブキャリアスペーシングμにおける、周波数ドメインインデックスk、時間ドメインインデックスlのリソースエレメントである。 Here, (k, l) p, μ is a resource element with frequency domain index k and time domain index l in antenna port p and subcarrier spacing μ.
 ak,l (p,μ)は、アンテナポートp、サブキャリアスペーシングμにおける、リソースエレメント(k,l)の値である。βは、Amplitude scalingの係数である。 a k,l (p, μ) is the value of resource element (k, l) at antenna port p and subcarrier spacing μ. β is an amplitude scaling coefficient.
 <シングルキャリア波形のPDCCH>
 続いて、シングルキャリア波形のPDCCHに対するDMRSのマッピングを説明する。シングルキャリア波形のPDCCHに対するDMRSは、TDM(時分割多重)でPDCCHにマッピングされる。周波数ドメインにおいては、例えば、PDCCHの帯域幅全体にわたってDMRSがマッピングされる。
<Single-carrier waveform PDCCH>
Next, mapping of DMRS to a PDCCH of a single carrier waveform will be described. The DMRS for the PDCCH of a single carrier waveform is mapped to the PDCCH by TDM (Time Division Multiplexing). In the frequency domain, for example, the DMRS is mapped over the entire bandwidth of the PDCCH.
 ただし、上記のマッピングに限定されるわけではなく、DMRSがFDM(周波数分割多重)でPDCCHにマッピングされてもよい。 However, this is not limited to the above mapping, and the DMRS may be mapped to the PDCCH using FDM (frequency division multiplexing).
 シングルキャリア波形のPDCCHを使用する場合、端末20は、下記の式に従って、参照信号系列r(m)がリソースエレメント(k,l)p,μにマッピングされると想定する。 When using a PDCCH with a single carrier waveform, the terminal 20 assumes that a reference signal sequence r l (m) is mapped to resource elements (k, l) p,μ according to the following equation.
Figure JPOXMLDOC01-appb-M000003
 つまり、基地局10は、上記の式に従って、参照信号系列r(m)をリソースエレメント(k,l)p,μにマッピングして送信し、端末20は、このマッピングの想定に基づいて、参照信号系列r(m)を取得する。式の各記号は前述のとおりである。MSC PDCCHについては、「数1」のところで示したとおりである。
Figure JPOXMLDOC01-appb-M000003
That is, the base station 10 maps the reference signal sequence r l (m) to the resource element (k, l) p,μ according to the above formula and transmits it, and the terminal 20 acquires the reference signal sequence r l (m) based on the assumption of this mapping. Each symbol in the formula is as described above. The M SC PDCCH is as shown in "Equation 1".
 上記の式において、kは、PDCCH送信に割り得てられた最低番号のリソースブロックのサブキャリア0に対する相対値として定義される。 In the above formula, k is defined as the relative value of the lowest-numbered resource block allocated to PDCCH transmission with respect to subcarrier 0.
 上記の式のl(エルの小文字)は、テーブルにより与えられる。当該テーブルを関係情報と呼んでもよい。当該関係情報は仕様で規定されてもよいし、基地局10から端末20に対して設定/通知されてもよい。 The l (lowercase el) in the above formula is given by a table. The table may be called relationship information. The relationship information may be defined in the specifications, or may be set/notified from the base station 10 to the terminal 20.
 例えば、当該テーブルは、時間ドメインにおける、「PDCCHの長さ、及び、シンボル単位のDMRSの位置」を有する。「PDCCHの長さ、及び、シンボル単位のDMRSの位置」に、追加DMRS(additional DMRS)の情報が加えられてもよい。以下、DMRS配置の例として、オプション1とオプション2を説明する。また、マッピングの具体例を説明する。 For example, the table has "PDCCH length and DMRS position in symbol units" in the time domain. Information on additional DMRS may be added to "PDCCH length and DMRS position in symbol units." Below, options 1 and 2 are explained as examples of DMRS placement. Specific examples of mapping are also explained.
 (1)オプション1
 オプション1では、基本的に、DMRSのシンボルがPDCCHシンボルの間に配置される、又は、DMRSのシンボルとPDCCHシンボルとが交互に配置される。つまり、基地局10は、DMRSを、上記の配置で送信し、端末20は、この配置の想定に基づいて、DMRSを読み出す。図7に、オプション1での上記テーブルの例を示す。
(1) Option 1
In option 1, basically, DMRS symbols are arranged between PDCCH symbols, or DMRS symbols and PDCCH symbols are arranged alternately. That is, the base station 10 transmits the DMRS in the above arrangement, and the terminal 20 reads the DMRS based on the assumption of this arrangement. Figure 7 shows an example of the above table in option 1.
 (2)オプション2
 オプション2では、DMRS(参照信号系列r(m))は、PDCCHの最終シンボルの隣のシンボルに配置される。
(2) Option 2
In option 2, the DMRS (reference signal sequence r l (m)) is placed in a symbol next to the last symbol of the PDCCH.
 つまり、基地局10は、DMRSを、PDCCHの最終シンボルの隣のシンボル(symbols)にマッピングして送信し、端末20は、このマッピングの想定に基づいて、DMRSを読み出す。図8に、オプション2でのテーブルの例を示す。 In other words, the base station 10 maps the DMRS to the symbols next to the final symbol of the PDCCH and transmits it, and the terminal 20 reads the DMRS based on this mapping assumption. Figure 8 shows an example of a table for option 2.
 (3)オプション1の具体例
 図9は、図7のテーブルにおける(PDCCH length = 1,DMRS position l= 2)において、 no additional DMRSのケースに対応するマッピングの例を示す。図10は、図7のテーブルにおける(PDCCH length = 1, DMRS position l= 2, additional DMRS l=3)のケースに対応するマッピングの例を示す。
(3) Specific Example of Option 1 Figure 9 shows an example of mapping corresponding to the case of no additional DMRS in (PDCCH length = 1, DMRS position l = 2) in the table of Figure 7. Figure 10 shows an example of mapping corresponding to the case of (PDCCH length = 1, DMRS position l = 2, additional DMRS l = 3) in the table of Figure 7.
 図11は、図7のテーブルにおける(PDCCH length = 2, DMRS position l= 2, additional DMRS l=3)のケースに対応するマッピングの例を示す。図12は、図7のテーブルにおける(PDCCH length = 2, DMRS position l= 2, additional DMRS l=4)のケースに対応するマッピングの例を示す。 Figure 11 shows an example of mapping corresponding to the case of (PDCCH length = 2, DMRS position l = 2, additional DMRS l = 3) in the table of Figure 7. Figure 12 shows an example of mapping corresponding to the case of (PDCCH length = 2, DMRS position l = 2, additional DMRS l = 4) in the table of Figure 7.
 図13は、図7のテーブルにおける(PDCCH length = 3, DMRS position l= 2, additional DMRS l=3)のケースに対応するマッピングの例を示す。図14は、図7のテーブルにおける(PDCCH length = 3, DMRS position l= 2,additional DMRS l=4)のケースに対応するマッピングの例を示す。 Figure 13 shows an example of mapping corresponding to the case of (PDCCH length = 3, DMRS position l = 2, additional DMRS l = 3) in the table of Figure 7. Figure 14 shows an example of mapping corresponding to the case of (PDCCH length = 3, DMRS position l = 2, additional DMRS l = 4) in the table of Figure 7.
 (4)オプション2の具体例
 図15は、図8のテーブルにおける(PDCCH length = 1, DMRS position l= 2, additional DMRS l=3)のケースに対応するマッピングの例を示す。図16は、図8のテーブルにおける(PDCCH length = 2, DMRS position l= 3, additional DMRS l=4)のケースに対応するマッピングの例を示す。
(4) Specific Example of Option 2 Figure 15 shows an example of mapping corresponding to the case of (PDCCH length = 1, DMRS position l = 2, additional DMRS l = 3) in the table of Figure 8. Figure 16 shows an example of mapping corresponding to the case of (PDCCH length = 2, DMRS position l = 3, additional DMRS l = 4) in the table of Figure 8.
 図17は、図8のテーブルにおける(PDCCH length = 3, DMRS position l= 4, additional DMRS l=5)のケースに対応するマッピングの例を示す。 Figure 17 shows an example of mapping corresponding to the case of (PDCCH length = 3, DMRS position l = 4, additional DMRS l = 5) in the table of Figure 8.
 第5実施形態に係る技術によれば、シングルキャリア波形を適用したDL制御チャネルに対し、参照信号を適切にマッピングすることができる。 The technology according to the fifth embodiment allows a reference signal to be appropriately mapped to a DL control channel to which a single carrier waveform is applied.
 (装置構成)
 次に、これまでに説明した処理及び動作を実行する基地局10及び端末20の機能構成例を説明する。
(Device configuration)
Next, a description will be given of an example of the functional configuration of the base station 10 and the terminal 20 that execute the processes and operations described above.
 <基地局10>
 図18は、基地局10の機能構成の一例を示す図である。図18に示されるように、基地局10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図18に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。また、送信部110と、受信部120とをまとめて通信部と称してもよい。
<Base Station 10>
Fig. 18 is a diagram showing an example of the functional configuration of the base station 10. As shown in Fig. 18, the base station 10 has a transmitting unit 110, a receiving unit 120, a setting unit 130, and a control unit 140. The functional configuration shown in Fig. 18 is merely an example. As long as the operation related to the embodiment of the present invention can be executed, the names of the functional divisions and the functional units may be any. In addition, the transmitting unit 110 and the receiving unit 120 may be collectively referred to as a communication unit.
 送信部110は、端末20側に送信する信号を生成し、当該信号を無線で送信する機能を含む。受信部120は、端末20から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部110は、端末20へNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号、PDCCHによるDCI、PDSCHによるデータ等を送信する機能を有する。送信部110は、シングルキャリア波形を適用したDL制御チャネル、及び、マルチキャリア波形を適用したDL制御チャネルのいずれも送信できる。 The transmitter 110 has a function of generating a signal to be transmitted to the terminal 20 and transmitting the signal wirelessly. The receiver 120 has a function of receiving various signals transmitted from the terminal 20 and acquiring, for example, information of a higher layer from the received signals. The transmitter 110 also has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL/UL control signals, DCI via PDCCH, data via PDSCH, etc. to the terminal 20. The transmitter 110 can transmit both a DL control channel to which a single carrier waveform is applied and a DL control channel to which a multicarrier waveform is applied.
 設定部130は、予め設定される設定情報、及び、端末20に送信する各種の設定情報を設定部130が備える記憶装置に格納し、必要に応じて記憶装置から読み出す。 The setting unit 130 stores pre-set setting information and various setting information to be transmitted to the terminal 20 in a storage device provided in the setting unit 130, and reads it from the storage device as necessary.
 制御部140は、送信部110を介して端末20のDL受信あるいはUL送信のスケジューリング等を行う。制御部140は、下り制御チャネルに対して、シングルキャリア波形を適用するか否かを示す情報を生成することができる。 The control unit 140 schedules DL reception or UL transmission of the terminal 20 via the transmission unit 110. The control unit 140 can generate information indicating whether or not to apply a single carrier waveform to the downlink control channel.
 制御部140は、シングルキャリア波形が適用される下り制御チャネルの周波数リソースの設定情報を生成することもできる。このとき、送信部110は、前記設定情報に基づく周波数リソースで前記下り制御チャネルを送信することができる。 The control unit 140 can also generate configuration information for the frequency resources of the downlink control channel to which a single carrier waveform is applied. At this time, the transmission unit 110 can transmit the downlink control channel using the frequency resources based on the configuration information.
 制御部140における信号送信に関する機能部を送信部110に含め、制御部140における信号受信に関する機能部を受信部120に含めてもよい。また、送信部110を送信機と呼び、受信部120を受信機と呼んでもよい。 The functional units in the control unit 140 related to signal transmission may be included in the transmitting unit 110, and the functional units in the control unit 140 related to signal reception may be included in the receiving unit 120. Also, the transmitting unit 110 may be called a transmitter, and the receiving unit 120 may be called a receiver.
 <端末20>
 図19は、端末20の機能構成の一例を示す図である。図19に示されるように、端末20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図19に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。送信部210と、受信部220をまとめて通信部と称してもよい。
<Terminal 20>
Fig. 19 is a diagram showing an example of the functional configuration of the terminal 20. As shown in Fig. 19, the terminal 20 has a transmitting unit 210, a receiving unit 220, a setting unit 230, and a control unit 240. The functional configuration shown in Fig. 19 is merely an example. As long as the operation related to the embodiment of the present invention can be executed, the names of the functional divisions and the functional units may be any. The transmitting unit 210 and the receiving unit 220 may be collectively referred to as a communication unit.
 送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部220は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、受信部220は、基地局10から送信されるNR-PSS、NR-SSS、NR-PBCH、DL/UL/SL制御信号、PDCCHによるDCI、PDSCHによるデータ等を受信する機能を有する。また、例えば、送信部210は、D2D通信として、他の端末20に、PSCCH(Physical Sidelink Control Channel)、PSSCH(Physical Sidelink Shared Channel)、PSDCH(Physical Sidelink Discovery Channel)、PSBCH(Physical Sidelink Broadcast Channel)等を送信し、受信部220は、他の端末20から、PSCCH、PSSCH、PSDCH又はPSBCH等を受信することとしてもよい。受信部220は、シングルキャリア波形を適用したDL制御チャネル、及び、マルチキャリア波形を適用したDL制御チャネルのいずれも受信できる。 The transmitter 210 creates a transmission signal from the transmission data and transmits the transmission signal wirelessly. The receiver 220 receives various signals wirelessly and obtains higher layer signals from the received physical layer signals. The receiver 220 also has the function of receiving NR-PSS, NR-SSS, NR-PBCH, DL/UL/SL control signals, DCI via PDCCH, data via PDSCH, etc. transmitted from the base station 10. Also, for example, the transmitting unit 210 may transmit a PSCCH (Physical Sidelink Control Channel), a PSSCH (Physical Sidelink Shared Channel), a PSDCH (Physical Sidelink Discovery Channel), a PSBCH (Physical Sidelink Broadcast Channel), or the like to another terminal 20 as D2D communication, and the receiving unit 220 may receive a PSCCH, a PSSCH, a PSDCH, or a PSBCH, or the like from the other terminal 20. The receiving unit 220 may receive both a DL control channel to which a single carrier waveform is applied and a DL control channel to which a multicarrier waveform is applied.
 設定部230は、受信部220により基地局10又は他の端末から受信した各種の設定情報を設定部230が備える記憶装置に格納し、必要に応じて記憶装置から読み出す。また、設定部230は、予め設定される設定情報も格納する。 The setting unit 230 stores various setting information received from the base station 10 or other terminals by the receiving unit 220 in a storage device provided in the setting unit 230, and reads it from the storage device as necessary. The setting unit 230 also stores setting information that is set in advance.
 制御部240は、端末20の制御を行う。制御部240は、下り制御チャネルに対して、シングルキャリア波形が適用されているか否かを判断することができる。制御部240は、シングルキャリア波形が適用される下り制御チャネルの周波数リソースのサイズを決定することもできる。その際、受信部220は、前記サイズの周波数リソースを想定して、前記下り制御チャネルにより情報を受信する。 The control unit 240 controls the terminal 20. The control unit 240 can determine whether or not a single carrier waveform is applied to the downlink control channel. The control unit 240 can also determine the size of the frequency resource of the downlink control channel to which the single carrier waveform is applied. At that time, the receiving unit 220 receives information via the downlink control channel, assuming a frequency resource of the size.
 本明細書には少なくとも下記の付記1~付記2が開示されている。 This specification discloses at least the following Supplementary Note 1 and Supplementary Note 2.
 <付記1>
(付記項1)
 下り制御チャネルに対して、シングルキャリア波形が適用されるか否かを判断する制御部と、
 前記下り制御チャネルに対して、前記シングルキャリア波形が適用されると判断された場合に、前記シングルキャリア波形が適用されることを想定して、前記下り制御チャネルにより情報を受信する受信部と
 を備える端末。
(付記項2)
 前記制御部は、特定の下り制御チャネルが使用されるか否かに基づいて、前記シングルキャリア波形が適用されるか否かを判断する、又は、前記端末の速さに基づいて、前記シングルキャリア波形が適用されるか否かを判断する
 付記項1に記載の端末。
(付記項3)
 前記制御部は、基地局からMIB又はRRCシグナリングで受信する情報に基づいて、前記シングルキャリア波形が適用されるか否かを判断する
 付記項1又は2に記載の端末。
(付記項4)
 前記シングルキャリア波形が適用される下り制御チャネルは、コントロールチャネルエレメントを有さず、リソースブロックを有する
 付記項1ないし3のうちいずれか1項に記載の端末。
(付記項5)
 下り制御チャネルに対して、シングルキャリア波形を適用するか否かを示す情報を生成する制御部と、
 前記情報を端末に送信する送信部と
 を備える基地局。
(付記項6)
 下り制御チャネルに対して、シングルキャリア波形が適用されるか否かを判断するステップと、
 前記下り制御チャネルに対して、前記シングルキャリア波形が適用されると判断された場合に、前記シングルキャリア波形が適用されることを想定して、前記下り制御チャネルにより情報を受信するステップと
 を備える、端末が実行する通信方法。
<Appendix 1>
(Additional Note 1)
a control unit that determines whether a single carrier waveform is applied to a downlink control channel;
a receiving unit that receives information via the downlink control channel assuming that the single carrier waveform will be applied when it is determined that the single carrier waveform is applied to the downlink control channel.
(Additional Note 2)
The control unit determines whether or not the single carrier waveform is applied based on whether a specific downlink control channel is used, or determines whether or not the single carrier waveform is applied based on the speed of the terminal.
(Additional Note 3)
The terminal according to claim 1 or 2, wherein the control unit determines whether or not the single carrier waveform is applied based on information received from a base station through an MIB or RRC signaling.
(Additional Note 4)
The terminal according to any one of appendixes 1 to 3, wherein a downlink control channel to which the single carrier waveform is applied does not have a control channel element but has a resource block.
(Additional Note 5)
a control unit that generates information indicating whether or not a single carrier waveform is to be applied to a downlink control channel;
A base station comprising: a transmitter that transmits the information to a terminal.
(Additional Note 6)
determining whether a single carrier waveform is applied to a downlink control channel;
and when it is determined that the single carrier waveform is to be applied to the downlink control channel, receiving information via the downlink control channel, assuming that the single carrier waveform is to be applied.
 付記項1~付記項6のいずれによっても、シングルキャリア波形を適用したDLの制御チャネルを用いた通信を実現するための技術が提供される。付記項2によれば、特定の下り制御チャネル、速さといった種々の観点からシングルキャリア波形が適用されているか否かを判断することができる。付記項3によれば、基地局からの情報に基づき、適切にシングルキャリア波形が適用されているか否かを判断することができる。付記項4によれば、シングルキャリア波形が適用される下り制御チャネルの特徴を適切に定義できる。 All of Supplementary Items 1 to 6 provide technology for achieving communications using a DL control channel to which a single carrier waveform is applied. Supplementary Item 2 makes it possible to determine whether a single carrier waveform is being applied from various perspectives, such as a specific downlink control channel and speed. Supplementary Item 3 makes it possible to determine whether a single carrier waveform is being applied appropriately based on information from a base station. Supplementary Item 4 makes it possible to appropriately define the characteristics of a downlink control channel to which a single carrier waveform is applied.
 <付記2>
(付記項1)
 シングルキャリア波形が適用される下り制御チャネルの周波数リソースのサイズを決定する制御部と、
 前記サイズの周波数リソースを想定して、前記下り制御チャネルにより情報を受信する受信部と
 を備える端末。
(付記項2)
 前記制御部は、システム帯域幅、又は、前記システム帯域幅の一部を前記サイズとして決定する
 付記項1に記載の端末。
(付記項3)
 前記下り制御チャネルのシンボル間に参照信号が配置される、前記下り制御チャネルのシンボルと前記参照信号が交互に配置される、又は、前記下り制御チャネルの最後のシンボルに隣接して前記参照信号が配置される
 付記項1又は2に記載の端末。
(付記項4)
 シングルキャリア波形が適用される下り制御チャネルの周波数リソースの設定情報を生成する制御部と、
 前記設定情報に基づく周波数リソースで前記下り制御チャネルを送信する送信部と
 を備える基地局。
(付記項5)
 前記制御部は、
 前記周波数リソースの長さと、前記周波数リソースの開始位置とを別々のパラメータとして生成する、又は、
 前記周波数リソースの長さと、前記周波数リソースの開始位置とを1つのビットマップパラメータとして生成する
 付記項4に記載の基地局。
(付記項6)
 シングルキャリア波形が適用される下り制御チャネルの周波数リソースのサイズを決定するステップと、
 前記サイズの周波数リソースを想定して、前記下り制御チャネルにより情報を受信するステップと
 を備える、端末が実行する方法。
<Appendix 2>
(Additional Note 1)
A control unit that determines a size of a frequency resource of a downlink control channel to which a single carrier waveform is applied;
A terminal comprising: a receiving unit that receives information via the downlink control channel, assuming a frequency resource of the size.
(Additional Note 2)
The terminal according to claim 1, wherein the control unit determines a system bandwidth or a portion of the system bandwidth as the size.
(Additional Note 3)
3. The terminal according to claim 1 or 2, wherein a reference signal is arranged between symbols of the downlink control channel, the symbols of the downlink control channel and the reference signal are arranged alternately, or the reference signal is arranged adjacent to the last symbol of the downlink control channel.
(Additional Note 4)
A control unit that generates configuration information of a frequency resource of a downlink control channel to which a single carrier waveform is applied;
a transmitter unit that transmits the downlink control channel using frequency resources based on the configuration information.
(Additional Note 5)
The control unit is
generating the length of the frequency resource and the starting position of the frequency resource as separate parameters; or
The base station according to claim 4, further comprising: generating the length of the frequency resource and the starting position of the frequency resource as one bitmap parameter.
(Additional Note 6)
determining a size of a frequency resource of a downlink control channel to which a single carrier waveform is applied;
and receiving information via the downlink control channel, assuming a frequency resource of the size.
 付記項1~付記項6のいずれによっても、シングルキャリア波形を適用したDLの制御チャネルを用いた通信を実現するための技術が提供される。付記項2によれば、シングルキャリア波形を適用したDL制御チャネルとして、適切な周波数リソースサイズを決定できる。付記項3によれば、シングルキャリア波形を適用したDL制御チャネルとして、適切に参照信号を配置できる。付記項5によれば、シングルキャリア波形を適用したDL制御チャネルの周波数リソースに関する情報を適切に通知できる。 All of Supplementary Items 1 to 6 provide techniques for implementing communications using a DL control channel to which a single carrier waveform is applied. Supplementary Item 2 makes it possible to determine an appropriate frequency resource size for a DL control channel to which a single carrier waveform is applied. Supplementary Item 3 makes it possible to appropriately allocate a reference signal for a DL control channel to which a single carrier waveform is applied. Supplementary Item 5 makes it possible to appropriately notify information regarding the frequency resource of a DL control channel to which a single carrier waveform is applied.
 (ハードウェア構成)
 上記実施形態の説明に用いたブロック図(図18~図19)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
The block diagrams (FIGS. 18 to 19) used in the description of the above embodiments show functional blocks. These functional blocks (components) are realized by any combination of at least one of hardware and software. The method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one device that is physically or logically coupled, or may be realized using two or more devices that are physically or logically separated and directly or indirectly connected (for example, using wires, wirelessly, etc.) and these multiple devices. The functional blocks may be realized by combining the one device or the multiple devices with software.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。 Functions include, but are not limited to, judgement, determination, judgment, calculation, computation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, election, establishment, comparison, assumption, expectation, regard, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assignment. For example, a functional block (component) that performs the transmission function is called a transmitting unit or transmitter. As mentioned above, there are no particular limitations on the method of realization for either of these.
 例えば、本開示の一実施の形態における基地局10、端末20等は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図20は、本開示の一実施の形態に係る基地局10及び端末20のハードウェア構成の一例を示す図である。上述の基地局10及び端末20は、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, the base station 10, terminal 20, etc. in one embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 20 is a diagram showing an example of the hardware configuration of the base station 10 and terminal 20 in one embodiment of the present disclosure. The above-mentioned base station 10 and terminal 20 may be physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。基地局10及び端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following description, the term "apparatus" can be interpreted as a circuit, device, unit, etc. The hardware configuration of the base station 10 and the terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured to exclude some of the devices.
 基地局10及び端末20における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 The functions of the base station 10 and the terminal 20 are realized by loading specific software (programs) onto hardware such as the processor 1001 and the storage device 1002, causing the processor 1001 to perform calculations, control communications by the communication device 1004, and control at least one of the reading and writing of data in the storage device 1002 and the auxiliary storage device 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部140、制御部240等は、プロセッサ1001によって実現されてもよい。 The processor 1001, for example, operates an operating system to control the entire computer. The processor 1001 may be configured as a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, etc. For example, the above-mentioned control unit 140, control unit 240, etc. may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータ等を、補助記憶装置1003及び通信装置1004の少なくとも一方から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図18に示した基地局10の制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図19に示した端末20の制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 The processor 1001 reads out a program (program code), software module, data, etc. from at least one of the auxiliary storage device 1003 and the communication device 1004 to the storage device 1002, and executes various processes according to the program. The program is a program that causes a computer to execute at least a part of the operations described in the above-mentioned embodiment. For example, the control unit 140 of the base station 10 shown in FIG. 18 may be stored in the storage device 1002 and realized by a control program that runs on the processor 1001. For example, the control unit 240 of the terminal 20 shown in FIG. 19 may be stored in the storage device 1002 and realized by a control program that runs on the processor 1001. Although the above-mentioned various processes have been described as being executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001. The processor 1001 may be implemented by one or more chips. The program may be transmitted from a network via a telecommunication line.
 記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本開示の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。 The storage device 1002 is a computer-readable recording medium and may be composed of, for example, at least one of a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically Erasable Programmable ROM), a RAM (Random Access Memory), etc. The storage device 1002 may also be called a register, a cache, a main memory, etc. The storage device 1002 can store executable programs (program codes), software modules, etc. for implementing a communication method relating to one embodiment of the present disclosure.
 補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つによって構成されてもよい。上述の記憶媒体は、例えば、記憶装置1002及び補助記憶装置1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The auxiliary storage device 1003 is a computer-readable recording medium, and may be, for example, at least one of an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (e.g., a compact disk, a digital versatile disk, a Blu-ray (registered trademark) disk), a smart card, a flash memory (e.g., a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, etc. The above-mentioned storage medium may be, for example, a database, a server, or other suitable medium that includes at least one of the storage device 1002 and the auxiliary storage device 1003.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、送受信アンテナ、アンプ部、送受信部、伝送路インターフェース等は、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, etc. The communication device 1004 may be configured to include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., to realize at least one of, for example, Frequency Division Duplex (FDD) and Time Division Duplex (TDD). For example, the transmitting/receiving antenna, an amplifier unit, a transmitting/receiving unit, a transmission path interface, etc. may be realized by the communication device 1004. The transmitting/receiving unit may be implemented as a transmitting unit or a receiving unit that is physically or logically separated.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (e.g., a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may be integrated into one structure (e.g., a touch panel).
 また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Furthermore, each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses between each device.
 また、基地局10及び端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Furthermore, the base station 10 and the terminal 20 may be configured to include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA), and some or all of the functional blocks may be realized by the hardware. For example, the processor 1001 may be implemented using at least one of these pieces of hardware.
 また、端末20あるいは基地局10を車両2001に備えてもよい。図21に車両2001の構成例を示す。図21に示すように、車両2001は駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010、各種センサ2021~2029、情報サービス部2012と通信モジュール2013を備える。本開示において説明した各態様/実施形態に係る端末20あるいは基地局10は、車両2001に搭載される通信装置に適用されてもよく、例えば、通信モジュール2013に適用されてもよい。 Furthermore, the terminal 20 or the base station 10 may be provided in the vehicle 2001. FIG. 21 shows an example of the configuration of the vehicle 2001. As shown in FIG. 21, the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, front wheels 2007, rear wheels 2008, an axle 2009, an electronic control unit 2010, various sensors 2021-2029, an information service unit 2012, and a communication module 2013. The terminal 20 or the base station 10 according to each aspect/embodiment described in this disclosure may be applied to a communication device mounted on the vehicle 2001, for example, may be applied to the communication module 2013.
 駆動部2002は例えば、エンジン、モータ、エンジンとモータのハイブリッドで構成される。操舵部2003は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪及び後輪の少なくとも一方を操舵するように構成される。 The drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor. The steering unit 2003 includes at least a steering wheel (also called a handlebar), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
 電子制御部2010は、マイクロプロセッサ2031、メモリ(ROM、RAM)2032、通信ポート(IOポート)2033で構成される。電子制御部2010には、車両2001に備えられた各種センサ2021~2029からの信号が入力される。電子制御部2010は、ECU(Electronic Control Unit)と呼んでも良い。 The electronic control unit 2010 is composed of a microprocessor 2031, memory (ROM, RAM) 2032, and a communication port (IO port) 2033. Signals are input to the electronic control unit 2010 from various sensors 2021 to 2029 provided in the vehicle 2001. The electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
 各種センサ2021~2029からの信号としては、モータの電流をセンシングする電流センサ2021からの電流信号、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者等を検出するための検出信号等がある。 Signals from the various sensors 2021-2029 include a current signal from a current sensor 2021 that senses the motor current, a front and rear wheel rotation speed signal obtained by a rotation speed sensor 2022, a front and rear wheel air pressure signal obtained by an air pressure sensor 2023, a vehicle speed signal obtained by a vehicle speed sensor 2024, an acceleration signal obtained by an acceleration sensor 2025, an accelerator pedal depression amount signal obtained by an accelerator pedal sensor 2029, a brake pedal depression amount signal obtained by a brake pedal sensor 2026, a shift lever operation signal obtained by a shift lever sensor 2027, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. obtained by an object detection sensor 2028.
 情報サービス部2012は、カーナビゲーションシステム、オーディオシステム、スピーカー、テレビ、ラジオといった、運転情報、交通情報、エンターテイメント情報等の各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部2012は、外部装置から通信モジュール2013等を介して取得した情報を利用して、車両2001の乗員に各種マルチメディア情報及びマルチメディアサービスを提供する。情報サービス部2012は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。 The information service unit 2012 is composed of various devices, such as a car navigation system, an audio system, speakers, a television, and a radio, for providing (outputting) various information such as driving information, traffic information, and entertainment information, and one or more ECUs for controlling these devices. The information service unit 2012 uses information acquired from an external device via the communication module 2013 or the like to provide various multimedia information and multimedia services to the occupants of the vehicle 2001. The information service unit 2012 may include input devices (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accept input from the outside, and may also include output devices (e.g., a display, a speaker, an LED lamp, a touch panel, etc.) that perform output to the outside.
 運転支援システム部2030は、ミリ波レーダ、LiDAR(Light Detection and Ranging)、カメラ、測位ロケータ(例えば、GNSS等)、地図情報(例えば、高精細(HD)マップ、自動運転車(AV)マップ等)、ジャイロシステム(例えば、IMU(Inertial Measurement Unit)、INS(Inertial Navigation System)等)、AI(Artificial Intelligence)チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部2030は、通信モジュール2013を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。 The driving assistance system unit 2030 is composed of various devices that provide functions for preventing accidents and reducing the driving burden on the driver, such as a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (e.g., GNSS, etc.), map information (e.g., high definition (HD) maps, autonomous vehicle (AV) maps, etc.), a gyro system (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chip, and AI processor, as well as one or more ECUs that control these devices. In addition, the driving assistance system unit 2030 transmits and receives various information via the communication module 2013 to realize driving assistance functions or autonomous driving functions.
 通信モジュール2013は通信ポートを介して、マイクロプロセッサ2031および車両2001の構成要素と通信することができる。例えば、通信モジュール2013は通信ポート2033を介して、車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010内のマイクロプロセッサ2031及びメモリ(ROM、RAM)2032、センサ2021~29との間でデータを送受信する。 The communication module 2013 can communicate with the microprocessor 2031 and components of the vehicle 2001 via the communication port. For example, the communication module 2013 transmits and receives data via the communication port 2033 between the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheels 2007, rear wheels 2008, axle 2009, microprocessor 2031 and memory (ROM, RAM) 2032 in the electronic control unit 2010, and sensors 2021 to 29, which are provided on the vehicle 2001.
 通信モジュール2013は、電子制御部2010のマイクロプロセッサ2031によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール2013は、電子制御部2010の内部と外部のどちらにあってもよい。外部装置は、例えば、基地局、移動局等であってもよい。 The communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with an external device. For example, it transmits and receives various information to and from the external device via wireless communication. The communication module 2013 may be located either inside or outside the electronic control unit 2010. The external device may be, for example, a base station, a mobile station, etc.
 通信モジュール2013は、電子制御部2010に入力された上述の各種センサ2021-2028からの信号、当該信号に基づいて得られる情報、及び情報サービス部2012を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部2010、各種センサ2021-2028、情報サービス部2012などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール2013によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。 The communication module 2013 may transmit at least one of the signals from the various sensors 2021-2028 described above input to the electronic control unit 2010, information obtained based on the signals, and information based on input from the outside (user) obtained via the information service unit 2012 to an external device via wireless communication. The electronic control unit 2010, the various sensors 2021-2028, the information service unit 2012, etc. may be referred to as input units that accept input. For example, the PUSCH transmitted by the communication module 2013 may include information based on the above input.
 通信モジュール2013は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報等)を受信し、車両2001に備えられた情報サービス部2012へ表示する。情報サービス部2012は、情報を出力する(例えば、通信モジュール2013によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。また、通信モジュール2013は、外部装置から受信した種々の情報をマイクロプロセッサ2031によって利用可能なメモリ2032へ記憶する。メモリ2032に記憶された情報に基づいて、マイクロプロセッサ2031が車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、センサ2021~2029等の制御を行ってもよい。 The communication module 2013 receives various information (traffic information, signal information, vehicle distance information, etc.) transmitted from an external device and displays it on the information service unit 2012 provided in the vehicle 2001. The information service unit 2012 may be called an output unit that outputs information (for example, outputs information to a device such as a display or speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 2013). The communication module 2013 also stores various information received from an external device in a memory 2032 that can be used by the microprocessor 2031. Based on the information stored in the memory 2032, the microprocessor 2031 may control the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheels 2007, rear wheels 2008, axles 2009, sensors 2021 to 2029, etc. provided in the vehicle 2001.
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局10及び端末20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って端末20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
(Supplementary description of the embodiment)
Although the embodiment of the present invention has been described above, the disclosed invention is not limited to such an embodiment, and those skilled in the art will understand various modifications, modifications, alternatives, replacements, and the like. Although the description has been given using specific numerical examples to facilitate understanding of the invention, unless otherwise specified, those numerical values are merely examples and any appropriate value may be used. The division of items in the above description is not essential to the present invention, and items described in two or more items may be used in combination as necessary, and items described in one item may be applied to items described in another item (as long as there is no contradiction). The boundaries of functional units or processing units in the functional block diagram do not necessarily correspond to the boundaries of physical parts. The operations of multiple functional units may be physically performed by one part, or the operations of one functional unit may be physically performed by multiple parts. The order of processing procedures described in the embodiment may be changed as long as there is no contradiction. For convenience of processing description, the base station 10 and the terminal 20 have been described using functional block diagrams, but such devices may be realized by hardware, software, or a combination thereof. The software operated by the processor possessed by the base station 10 in accordance with an embodiment of the present invention and the software operated by the processor possessed by the terminal 20 in accordance with an embodiment of the present invention may each be stored in random access memory (RAM), flash memory, read only memory (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server or any other suitable storage medium.
 また、情報の通知は、本開示で説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング)、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。 Furthermore, the notification of information is not limited to the aspects/embodiments described in the present disclosure and may be performed using other methods. For example, the notification of information may be performed by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), higher layer signaling (e.g., Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling), broadcast information (Master Information Block (MIB), System Information Block (SIB)), other signals, or a combination of these. Furthermore, RRC signaling may be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, etc.
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、FRA(Future Radio Access)、NR(new Radio)、New radio access(NX)、Future generation radio access(FX)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張、修正、作成、規定された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。 Each aspect/embodiment described in this disclosure may be a mobile communication system (mobile communications system) for mobile communications over a wide range of networks, including LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system), 6th generation mobile communication system (6G), xth generation mobile communication system (xG) (xG (x is, for example, an integer or a decimal number)), FRA (Future Ra The present invention may be applied to at least one of systems using IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other appropriate systems, and next-generation systems that are expanded, modified, created, or defined based on these. It may also be applied to a combination of multiple systems (for example, a combination of at least one of LTE and LTE-A with 5G, etc.).
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The processing steps, sequences, flow charts, etc. of each aspect/embodiment described herein may be reordered unless inconsistent. For example, the methods described in this disclosure present elements of various steps using an exemplary order and are not limited to the particular order presented.
 本明細書において基地局10によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局10を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末20との通信のために行われる様々な動作は、基地局10及び基地局10以外の他のネットワークノード(例えば、MME又はS-GW等が考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局10以外の他のネットワークノードが1つである場合を例示したが、他のネットワークノードは、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In this specification, certain operations that are described as being performed by the base station 10 may in some cases be performed by its upper node. In a network consisting of one or more network nodes having a base station 10, it is clear that various operations performed for communication with a terminal 20 may be performed by at least one of the base station 10 and other network nodes other than the base station 10 (such as, but not limited to, an MME or S-GW). Although the above example shows a case where there is one other network node other than the base station 10, the other network node may be a combination of multiple other network nodes (such as an MME and an S-GW).
 本開示において説明した情報又は信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 The information or signals described in this disclosure may be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). They may be input and output via multiple network nodes.
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。 The input and output information may be stored in a specific location (e.g., memory) or may be managed using a management table. The input and output information may be overwritten, updated, or added to. The output information may be deleted. The input information may be sent to another device.
 本開示における判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination in this disclosure may be based on a value represented by one bit (0 or 1), a Boolean (true or false) value, or a comparison of numerical values (e.g., a comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Software, instructions, information, etc. may also be transmitted and received via a transmission medium. For example, if the software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 Note that the terms explained in this disclosure and the terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, at least one of the channel and the symbol may be a signal (signaling). Also, the signal may be a message. Also, the component carrier (CC) may be called a carrier frequency, a cell, a frequency carrier, etc.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 As used in this disclosure, the terms "system" and "network" are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in this disclosure may be represented using absolute values, may be represented using relative values from a predetermined value, or may be represented using other corresponding information. For example, a radio resource may be indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the above-mentioned parameters are not limiting in any respect. Furthermore, the formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure. The various channels (e.g., PUCCH, PDCCH, etc.) and information elements may be identified by any suitable names, and therefore the various names assigned to these various channels and information elements are not limiting in any respect.
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)」、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, terms such as "base station (BS)", "radio base station", "base station", "fixed station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", "access point", "transmission point", "reception point", "transmission/reception point", "cell", "sector", "cell group", "carrier", and "component carrier" may be used interchangeably. A base station may also be referred to by terms such as macrocell, small cell, femtocell, and picocell.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (e.g., three) cells. When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also provide communication services by a base station subsystem (e.g., a small indoor base station (RRH: Remote Radio Head)). The term "cell" or "sector" refers to a part or the entire coverage area of at least one of the base station and base station subsystems that provide communication services in this coverage.
 本開示において、基地局が端末に情報を送信することは、基地局が端末に対して、情報に基づく制御・動作を指示することと読み替えられてもよい。 In this disclosure, a base station transmitting information to a terminal may be interpreted as the base station instructing the terminal to control or operate based on the information.
 本開示においては、「移動局(MS:Mobile Station)」、「端末(user terminal)」、「端末(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)," "user terminal," "User Equipment (UE)," and "terminal" may be used interchangeably.
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station may also be referred to by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、移動可能な物体をいい、移動速度は任意である。また移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン(登録商標)、マルチコプター、クアッドコプター、気球、およびこれらに搭載される物を含み、またこれらに限らない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet  of  Things)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, etc. At least one of the base station and the mobile station may be a device mounted on a moving object, the moving object itself, etc. The moving object is a movable object, and the moving speed is arbitrary. It also includes the case where the moving object is stopped. The moving object includes, but is not limited to, for example, a vehicle, a transport vehicle, an automobile, a motorcycle, a bicycle, a connected car, an excavator, a bulldozer, a wheel loader, a dump truck, a forklift, a train, a bus, a handcar, a rickshaw, a ship and other watercraft, an airplane, a rocket, an artificial satellite, a drone (registered trademark), a multicopter, a quadcopter, a balloon, and objects mounted thereon. The moving object may also be a moving object that travels autonomously based on an operation command. It may be a vehicle (e.g., a car, an airplane, etc.), an unmanned moving object (e.g., a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned). In addition, at least one of the base station and the mobile station may be a device that does not necessarily move during communication operations. For example, at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
 また、本開示における基地局は、端末で読み替えてもよい。例えば、基地局及び端末間の通信を、複数の端末20間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能を端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Furthermore, the base station in the present disclosure may be read as a terminal. For example, each aspect/embodiment of the present disclosure may be applied to a configuration in which communication between a base station and a terminal is replaced with communication between multiple terminals 20 (which may be called, for example, D2D (Device-to-Device) or V2X (Vehicle-to-Everything)). In this case, the terminal 20 may be configured to have the functions of the base station 10 described above. Furthermore, terms such as "uplink" and "downlink" may be read as terms corresponding to communication between terminals (for example, "side"). For example, the uplink channel, downlink channel, etc. may be read as a side channel.
 同様に、本開示における端末は、基地局で読み替えてもよい。この場合、上述の端末が有する機能を基地局が有する構成としてもよい。 Similarly, the terminal in this disclosure may be interpreted as a base station. In this case, the base station may be configured to have the functions of the terminal described above.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 As used in this disclosure, the terms "determining" and "determining" may encompass a wide variety of actions. "Determining" and "determining" may include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry (e.g., searching in a table, database, or other data structure), and considering ascertaining as "judging" or "determining." Also, "determining" and "determining" may include receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, accessing (e.g., accessing data in memory), and considering ascertaining as "judging" or "determining." Additionally, "judgment" and "decision" can include considering resolving, selecting, choosing, establishing, comparing, etc., to have been "judged" or "decided." In other words, "judgment" and "decision" can include considering some action to have been "judged" or "decided." Additionally, "judgment (decision)" can be interpreted as "assuming," "expecting," "considering," etc.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 The terms "connected," "coupled," or any variation thereof, refer to any direct or indirect connection or coupling between two or more elements, and may include the presence of one or more intermediate elements between two elements that are "connected" or "coupled" to each other. The coupling or connection between elements may be physical, logical, or a combination thereof. For example, "connected" may be read as "access." As used in this disclosure, two elements may be considered to be "connected" or "coupled" to each other using at least one of one or more wires, cables, and printed electrical connections, as well as electromagnetic energy having wavelengths in the radio frequency range, microwave range, and optical (both visible and invisible) range, as some non-limiting and non-exhaustive examples.
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal may also be abbreviated as RS (Reference Signal) or may be called a pilot depending on the applicable standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used in this disclosure, the phrase "based on" does not mean "based only on," unless expressly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to an element using a designation such as "first," "second," etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and a second element does not imply that only two elements may be employed or that the first element must precede the second element in some way.
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 The "means" in the configuration of each of the above devices may be replaced with "part," "circuit," "device," etc.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 When the terms "include," "including," and variations thereof are used in this disclosure, these terms are intended to be inclusive, similar to the term "comprising." Additionally, the term "or," as used in this disclosure, is not intended to be an exclusive or.
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジ(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A radio frame may be composed of one or more frames in the time domain. Each of the one or more frames in the time domain may be called a subframe. A subframe may further be composed of one or more slots in the time domain. A subframe may have a fixed time length (e.g., 1 ms) that is independent of numerology.
 ニューメロロジは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel. Numerology may indicate, for example, at least one of the following: subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame structure, a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジに基づく時間単位であってもよい。 A slot may consist of one or more symbols in the time domain (such as OFDM (Orthogonal Frequency Division Multiplexing) symbols, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols, etc.). A slot may be a time unit based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。 A slot may include multiple minislots. Each minislot may consist of one or multiple symbols in the time domain. A minislot may also be called a subslot. A minislot may consist of fewer symbols than a slot. A PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be called PDSCH (or PUSCH) mapping type A. A PDSCH (or PUSCH) transmitted using a minislot may be called PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 Radio frame, subframe, slot, minislot, and symbol all represent time units for transmitting signals. Radio frame, subframe, slot, minislot, and symbol may each be referred to by a different name that corresponds to the radio frame, subframe, slot, minislot, and symbol.
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。また、1スロットが単位時間と呼ばれてもよい。単位時間は、ニューメロロジに応じてセル毎に異なっていてもよい。 For example, one subframe may be called a transmission time interval (TTI), multiple consecutive subframes may be called a TTI, or one slot or one minislot may be called a TTI. In other words, at least one of the subframe and the TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (e.g., 1-13 symbols), or a period longer than 1 ms. Note that the unit representing the TTI may be called a slot, minislot, etc., instead of a subframe. Also, one slot may be called a unit time. The unit time may differ for each cell depending on the numerology.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各端末20に対して、無線リソース(各端末20において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the smallest time unit for scheduling in wireless communication. For example, in an LTE system, a base station performs scheduling to allocate wireless resources (such as frequency bandwidth and transmission power that can be used by each terminal 20) to each terminal 20 in TTI units. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit for a channel-coded data packet (transport block), a code block, a code word, etc., or may be a processing unit for scheduling, link adaptation, etc. When a TTI is given, the time interval (e.g., the number of symbols) in which a transport block, a code block, a code word, etc. is actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 Note that when one slot or one minislot is called a TTI, one or more TTIs (i.e., one or more slots or one or more minislots) may be the minimum time unit of scheduling. In addition, the number of slots (minislots) that constitute the minimum time unit of scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI shorter than a normal TTI may be called a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that a long TTI (e.g., a normal TTI, a subframe, etc.) may be interpreted as a TTI having a time length of more than 1 ms, and a short TTI (e.g., a shortened TTI, etc.) may be interpreted as a TTI having a TTI length shorter than the TTI length of a long TTI and equal to or greater than 1 ms.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain. The number of subcarriers included in an RB may be the same regardless of the numerology, and may be, for example, 12. The number of subcarriers included in an RB may be determined based on the numerology.
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。 Furthermore, the time domain of an RB may include one or more symbols and may be one slot, one minislot, one subframe, or one TTI in length. One TTI, one subframe, etc. may each be composed of one or more resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。 In addition, one or more RBs may be referred to as a physical resource block (PRB), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, an RB pair, etc.
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Furthermore, a resource block may be composed of one or more resource elements (REs). For example, one RE may be a radio resource area of one subcarrier and one symbol.
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジ用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A Bandwidth Part (BWP), which may also be referred to as a partial bandwidth, may represent a subset of contiguous common resource blocks (RBs) for a given numerology on a given carrier, where the common RBs may be identified by an index of the RB relative to a common reference point of the carrier. PRBs may be defined in a BWP and numbered within the BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP). One or more BWPs may be configured for a UE within one carrier.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP. Note that "cell," "carrier," etc. in this disclosure may be read as "BWP."
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。 The above-mentioned structures of radio frames, subframes, slots, minislots, and symbols are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of subcarriers included in an RB, as well as the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, where articles have been added through translation, such as a, an, and the in English, this disclosure may include that the nouns following these articles are plural.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In this disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may also mean "A and B are each different from C." Terms such as "separate" and "combined" may also be interpreted in the same way as "different."
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect/embodiment described in this disclosure may be used alone, in combination, or switched depending on the execution. In addition, notification of specific information (e.g., notification that "X is the case") is not limited to being done explicitly, but may be done implicitly (e.g., not notifying the specific information).
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。  Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described herein. The present disclosure can be implemented in modified and altered forms without departing from the spirit and scope of the present disclosure as defined by the claims. Therefore, the description of the present disclosure is intended as an illustrative example and does not have any limiting meaning with respect to the present disclosure.
10    基地局
110   送信部
120   受信部
130   設定部
140   制御部
20    端末
210   送信部
220   受信部
230   設定部
240   制御部
1001  プロセッサ
1002  記憶装置
1003  補助記憶装置
1004  通信装置
1005  入力装置
1006  出力装置
2001  車両
2002  駆動部
2003  操舵部
2004  アクセルペダル
2005  ブレーキペダル
2006  シフトレバー
2007  前輪
2008  後輪
2009  車軸
2010  電子制御部
2012  情報サービス部
2013  通信モジュール
2021  電流センサ
2022  回転数センサ
2023  空気圧センサ
2024  車速センサ
2025  加速度センサ
2026  ブレーキペダルセンサ
2027  シフトレバーセンサ
2028  物体検出センサ
2029  アクセルペダルセンサ
2030  運転支援システム部
2031  マイクロプロセッサ
2032  メモリ(ROM,RAM)
2033  通信ポート(IOポート)
10 Base station 110 Transmitter 120 Receiver 130 Setting unit 140 Control unit 20 Terminal 210 Transmitter 220 Receiver 230 Setting unit 240 Control unit 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device 2001 Vehicle 2002 Drive unit 2003 Steering unit 2004 Accelerator pedal 2005 Brake pedal 2006 Shift lever 2007 Front wheel 2008 Rear wheel 2009 Axle 2010 Electronic control unit 2012 Information service unit 2013 Communication module 2021 Current sensor 2022 Rotational speed sensor 2023 Air pressure sensor 2024 Vehicle speed sensor 2025 Acceleration sensor 2026 Brake pedal sensor 2027 Shift lever sensor 2028 Object detection sensor 2029 Accelerator pedal sensor 2030 Driving assistance system unit 2031 Microprocessor 2032 Memory (ROM, RAM)
2033 Communication port (IO port)

Claims (6)

  1.  シングルキャリア波形が適用される下り制御チャネルの周波数リソースのサイズを決定する制御部と、
     前記サイズの周波数リソースを想定して、前記下り制御チャネルにより情報を受信する受信部と
     を備える端末。
    A control unit that determines a size of a frequency resource of a downlink control channel to which a single carrier waveform is applied;
    A terminal comprising: a receiving unit that receives information via the downlink control channel, assuming a frequency resource of the size.
  2.  前記制御部は、システム帯域幅、又は、前記システム帯域幅の一部を前記サイズとして決定する
     請求項1に記載の端末。
    The terminal according to claim 1 , wherein the control unit determines a system bandwidth or a portion of the system bandwidth as the size.
  3.  前記下り制御チャネルのシンボル間に参照信号が配置される、前記下り制御チャネルのシンボルと前記参照信号が交互に配置される、又は、前記下り制御チャネルの最後のシンボルに隣接して前記参照信号が配置される
     請求項1に記載の端末。
    The terminal according to claim 1 , wherein a reference signal is arranged between symbols of the downlink control channel, the symbols of the downlink control channel and the reference signal are arranged alternately, or the reference signal is arranged adjacent to a last symbol of the downlink control channel.
  4.  シングルキャリア波形が適用される下り制御チャネルの周波数リソースの設定情報を生成する制御部と、
     前記設定情報に基づく周波数リソースで前記下り制御チャネルを送信する送信部と
     を備える基地局。
    A control unit that generates configuration information of a frequency resource of a downlink control channel to which a single carrier waveform is applied;
    a transmitter unit that transmits the downlink control channel using frequency resources based on the configuration information.
  5.  前記制御部は、
     前記周波数リソースの長さと、前記周波数リソースの開始位置とを別々のパラメータとして生成する、又は、
     前記周波数リソースの長さと、前記周波数リソースの開始位置とを1つのビットマップパラメータとして生成する
     請求項4に記載の基地局。
    The control unit is
    generating the length of the frequency resource and the start position of the frequency resource as separate parameters; or
    The base station according to claim 4 , wherein the length of the frequency resource and the starting position of the frequency resource are generated as one bitmap parameter.
  6.  シングルキャリア波形が適用される下り制御チャネルの周波数リソースのサイズを決定するステップと、
     前記サイズの周波数リソースを想定して、前記下り制御チャネルにより情報を受信するステップと
     を備える、端末が実行する通信方法。
    determining a size of a frequency resource of a downlink control channel to which a single carrier waveform is applied;
    and receiving information via the downlink control channel, assuming a frequency resource of the size.
PCT/JP2022/037341 2022-10-05 2022-10-05 Terminal, base station, and communication method WO2024075231A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/037341 WO2024075231A1 (en) 2022-10-05 2022-10-05 Terminal, base station, and communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/037341 WO2024075231A1 (en) 2022-10-05 2022-10-05 Terminal, base station, and communication method

Publications (1)

Publication Number Publication Date
WO2024075231A1 true WO2024075231A1 (en) 2024-04-11

Family

ID=90607869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037341 WO2024075231A1 (en) 2022-10-05 2022-10-05 Terminal, base station, and communication method

Country Status (1)

Country Link
WO (1) WO2024075231A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018083864A1 (en) * 2016-11-02 2018-05-11 株式会社Nttドコモ User device and uplink signal transmission method
US20180302186A1 (en) * 2017-04-14 2018-10-18 Qualcomm Incorporated Sharing a single coreset bandwidth across multiple user equipments
US20200136767A1 (en) * 2017-06-16 2020-04-30 Telefonaktiebolaget Lm Ericsson (Publ) Transmission or Reception of a Reference Signal in a Wireless Communication System
WO2022201398A1 (en) * 2021-03-24 2022-09-29 株式会社Nttドコモ Communication device and transmission method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018083864A1 (en) * 2016-11-02 2018-05-11 株式会社Nttドコモ User device and uplink signal transmission method
US20180302186A1 (en) * 2017-04-14 2018-10-18 Qualcomm Incorporated Sharing a single coreset bandwidth across multiple user equipments
US20200136767A1 (en) * 2017-06-16 2020-04-30 Telefonaktiebolaget Lm Ericsson (Publ) Transmission or Reception of a Reference Signal in a Wireless Communication System
WO2022201398A1 (en) * 2021-03-24 2022-09-29 株式会社Nttドコモ Communication device and transmission method

Similar Documents

Publication Publication Date Title
WO2024075231A1 (en) Terminal, base station, and communication method
WO2024075230A1 (en) Terminal, base station, and communication method
WO2024075289A1 (en) Terminal, base station, and communication method
WO2024100746A1 (en) Terminal, base station, and communication method
WO2024166248A1 (en) Terminal and communication method
WO2024166249A1 (en) Terminal and communication method
WO2024069989A1 (en) Terminal and communication method
WO2024219119A1 (en) Terminal and communication method
WO2024069904A1 (en) Terminal and communication method
WO2024095486A1 (en) Terminal and communication method
WO2024069903A1 (en) Terminal and communication method
WO2024095487A1 (en) Terminal and communication method
WO2024075192A1 (en) Terminal, base station, and communication method
WO2024075191A1 (en) Terminal, base station, and communication method
WO2024157488A1 (en) Terminal and communication method
WO2024181544A1 (en) Terminal and communication method
WO2024084839A1 (en) Terminal and communication method
WO2024100892A1 (en) Terminal, base station and communication method
WO2024084829A1 (en) Terminal and communication method
WO2024069982A1 (en) Terminal, base station, and communication method
WO2024201816A1 (en) Terminal, base station, and communication method
WO2024161657A1 (en) Terminal and positioning method
WO2024080085A1 (en) Terminal, base station, and communication method
WO2024100745A1 (en) Terminal, base station, and communication method
WO2024157486A1 (en) Terminal and positioning method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22961418

Country of ref document: EP

Kind code of ref document: A1