WO2024075180A1 - Propagation environment reproduction device, propagation environment reproduction method, and propagation environment reproduction system - Google Patents

Propagation environment reproduction device, propagation environment reproduction method, and propagation environment reproduction system Download PDF

Info

Publication number
WO2024075180A1
WO2024075180A1 PCT/JP2022/037145 JP2022037145W WO2024075180A1 WO 2024075180 A1 WO2024075180 A1 WO 2024075180A1 JP 2022037145 W JP2022037145 W JP 2022037145W WO 2024075180 A1 WO2024075180 A1 WO 2024075180A1
Authority
WO
WIPO (PCT)
Prior art keywords
propagation environment
ris
propagation
parameters
environment reproduction
Prior art date
Application number
PCT/JP2022/037145
Other languages
French (fr)
Japanese (ja)
Inventor
諒太郎 谷口
友規 村上
智明 小川
泰司 鷹取
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/037145 priority Critical patent/WO2024075180A1/en
Publication of WO2024075180A1 publication Critical patent/WO2024075180A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters

Definitions

  • This disclosure relates to a propagation environment reproducing device, a propagation environment reproducing method, and a propagation environment reproducing system, and in particular to a propagation environment reproducing device, a propagation environment reproducing method, and a propagation environment reproducing system that are suitable for reproducing a propagation environment to verify the communication performance, etc., of an object to be measured.
  • the following non-patent document 1 discloses technology related to OTA (Over The Air) testing, which uses equipment used for wireless communication as the measurement object to verify its performance and quality.
  • OTA testing one or more transmitting antennas are placed in an anechoic chamber or shielded room to recreate an environment within that space that exhibits the same propagation characteristics as the real space.
  • a reflector called a Reconfigurable Intelligent Surface is known as a device that controls the reflection of radio waves.
  • RIS is a tunable reflector that uses metamaterial technology.
  • Metamaterials refers to artificially changing the properties of a material, and with this technology, for example, it is possible to create a phenomenon in which the refractive index of electromagnetic waves becomes negative.
  • This disclosure has been made in consideration of the above problems, and has as its first objective to provide a propagation environment reproducing device that accurately reproduces a desired wireless propagation environment by placing a RIS in a space such as an anechoic chamber and simultaneously controlling the direction and intensity of reflection of electromagnetic waves by the RIS.
  • a second object of the present disclosure is to provide a method for reproducing a propagation environment by placing a RIS in a space such as an anechoic chamber and simultaneously controlling the direction and intensity of reflection of electromagnetic waves by the RIS, thereby accurately reproducing a desired wireless propagation environment.
  • a third object of the present disclosure is to provide a propagation environment reproduction system that accurately reproduces a desired wireless propagation environment by placing a RIS in a space such as an anechoic chamber and simultaneously controlling the direction and intensity of reflection of electromagnetic waves by the RIS.
  • a first aspect is a propagation environment reproducing device, comprising: A Reconfigurable Intelligent Surface (RIS) is installed in a space that reproduces the electromagnetic wave propagation environment. a RIS controller for providing control signals to the RIS; A transmitting antenna installed in the propagation environment reproduction space; a channel emulator for controlling the characteristics of the electromagnetic wave transmitted from the transmitting antenna; a control server for controlling the RIS control device and the channel emulator;
  • the RIS is preferably a reflector having a characteristic of changing its reflection pattern in response to the control signal.
  • a second aspect is a propagation environment reproduction method for reproducing a desired propagation environment using a RIS installed in a propagation environment reproduction space for reproducing an electromagnetic wave propagation environment and a transmission antenna installed in the propagation environment reproduction space, comprising:
  • the RIS is a reflector having a characteristic of changing a reflection pattern in response to a control signal, Calculating, by simulation, propagation characteristics generated in the propagation environment reproduction space under each parameter while changing parameters related to the propagation environment reproduction space, the RIS, and the transmitting antenna; providing a propagation environment model with a combination of actual characteristics, which are propagation characteristics actually measured at a measurement position in a real space, and reproduction parameters, which are parameters calculated to generate propagation characteristics identical to the actual characteristics in the propagation environment reproduction space, as teacher data, to create a learning model that derives parameters to generate the propagation characteristics in the propagation environment reproduction space when a propagation characteristic to be reproduced is given; providing desired propagation characteristics to the learning model to cause the learning model to derive parameters for generating the desired propagation
  • a third aspect is a propagation environment reproduction system, comprising: The RIS was installed in a space that reproduced the electromagnetic wave propagation environment, A transmitting antenna installed in the propagation environment reproduction space,
  • the RIS is a reflector having a characteristic of changing a reflection pattern in response to a control signal
  • the propagation environment reproduction space is configured according to specifications indicated by parameters set to reproduce desired characteristics, which are propagation characteristics occurring at a measurement position in a real space
  • the RIS and the transmitting antenna are arranged according to the specifications indicated by the parameters, a function of controlling the RIS so that the RIS exhibits a reflection pattern indicated by the parameters; a function of controlling a transmission signal from the transmitting antenna so that the transmitting antenna transmits electromagnetic waves with characteristics indicated by the parameters;
  • the optical fiber 100 is configured to have the following characteristics:
  • the desired radio propagation environment can be accurately reproduced by simultaneously controlling the reflection direction and reflection intensity of the electromagnetic waves by the RIS.
  • FIG. 1 is a diagram showing an overall configuration of a propagation environment reproduction device according to a first embodiment of the present disclosure
  • 4 is a flowchart for explaining a procedure for deriving parameters for reproducing a desired propagation environment by the propagation environment reproduction device shown in FIG. 1
  • FIG. 1 is a diagram for explaining one of the typical characteristics that can be imparted to a RIS.
  • FIG. 13 is a diagram for explaining other typical characteristics that can be imparted to the RIS.
  • FIG. 1 is a diagram showing reflections occurring in a normal room.
  • FIG. 13 is a diagram for explaining a limit imposed by a RIS for controlling reflected power.
  • 1A to 1C are diagrams for explaining characteristics of reflection by a RIS that controls the reflection direction.
  • FIG. 1 is a diagram showing how the device according to the first embodiment of the present disclosure uses a RIS that controls the reflection direction to control reflected power at the same time as the reflection direction.
  • 1 is a diagram showing how the device of the first embodiment of the present disclosure absorbs and eliminates unnecessary reflected signals from a RIS using an absorber.
  • FIG. 2 is a diagram for explaining a hardware configuration of a control server provided in an apparatus according to a first embodiment of the present disclosure.
  • FIG. 1 is a flowchart for explaining a flow when evaluating communication performance, etc. of a measuring object using an apparatus according to an embodiment of the present disclosure.
  • Embodiment 1 is a diagram showing an overall configuration of a propagation environment reproducing device according to a first embodiment of the present disclosure.
  • the propagation environment reproducing device according to the present embodiment includes an anechoic chamber 10.
  • the anechoic chamber 10 is a chamber capable of blocking the influence of electromagnetic waves from the outside, and may also be called a shielded room or a reverberation chamber.
  • the anechoic chamber 10 is used for the purpose of reproducing within itself a desired propagation environment for a wireless signal, more specifically, a real propagation environment occurring in a real space such as a city street.
  • the object to be measured 12 is placed in the anechoic chamber 10.
  • the object to be measured 12 is, for example, a mobile terminal equipped with multiple antennas to achieve MIMO functionality.
  • the object to be measured 12 is placed on a stand 14.
  • the stand 14 is used to hold the object to be measured 12 in a desired space within the anechoic chamber 10. In real spaces such as city streets, a situation may arise in which a mobile terminal or the like is mounted on a drone and positioned in the air. By using the stand 14, the object to be measured 12 can be held in a position within the anechoic chamber 10 that corresponds to the air in real space.
  • RISs 16 are placed inside the anechoic chamber 10.
  • the RISs 16 can be installed on the walls, ceiling, or floor of the anechoic chamber 10.
  • the RISs 16 can also be placed in the air inside the anechoic chamber 10 by supporting them with a jig installed on the floor or by hanging them from the ceiling (not shown).
  • a radio wave absorber 18 can be placed anywhere in the anechoic chamber 10.
  • the radio wave absorber 18 has the function of absorbing irradiated electromagnetic waves.
  • the radio wave absorber 18 can eliminate radio waves inside the anechoic chamber 10 that are unnecessary for simulating a propagation environment in a real space.
  • One or more transmitting antennas 20 are arranged in the anechoic chamber 10.
  • the positions of the transmitting antennas 20 can be determined arbitrarily.
  • Figure 1 shows an example in which three transmitting antennas 20 are arranged inside the anechoic chamber 10.
  • a RIS control device 22 is connected to the RIS 16.
  • all RIS 16 are provided with a function for varying the reflection direction of the electromagnetic waves, or more specifically, the reflection pattern of the electromagnetic waves.
  • the RIS control device 22 provides a control signal to each of the RIS 16.
  • Each of the RIS 16 changes its reflection pattern in response to the received control signal. Therefore, in this embodiment, it is possible to cause each of the RIS 16 installed in the anechoic chamber 10 to form a desired reflection pattern.
  • a channel emulator 24 is connected to the transmitting antenna 20.
  • the channel emulator has a function of controlling the characteristics of the electromagnetic waves transmitted from the transmitting antenna 20. Specifically, the channel emulator 24 can control the radiation direction, power, radiation timing, etc. of the electromagnetic waves transmitted from the transmitting antenna 20.
  • a control server 26 is connected to the RIS control device 22 and the channel emulator 24.
  • the control server 26 controls the RIS control device 22 and the channel emulator 24 so that the desired propagation environment is reproduced at the position of the receiving antenna provided on the object to be measured 12.
  • the configuration shown in FIG. 1 is an example of one form of a propagation environment reproduction device.
  • the shape and size of the anechoic chamber 10 can be changed.
  • the shape can be, for example, a sphere, an n-hedron (n is an integer), an n-sided prism, an n-sided pyramid, etc. Any number of RIS 16 and transmitting antennas 20 greater than or equal to one can be placed, and the placement positions can also be arbitrary.
  • FIG. 2 is a flowchart for explaining a procedure for deriving parameters for reproducing a desired propagation environment by the propagation environment reproducing device shown in FIG.
  • various parameters related to the characteristics of the propagation environment reproduction device are changed in various ways, and the propagation characteristics generated in the anechoic chamber 10 under each combination of parameters are calculated by simulation (step 100).
  • the type of simulation may be, for example, ray tracing (ray launching method), ray tracing (imaging method), electromagnetic field analysis (FDTD method), etc.
  • the parameters to be set include, for example, the following: The shape, size and material of the anechoic chamber 10 The shape, size, number, arrangement, controllable angle and controllable reflectance of the RIS 16 The location, number and characteristics of the transmitted signal of the transmitting antennas 20 The location, number and characteristics of the received signal of the receiving antennas The direction of the transmitted beam The position, size, number and shape of the radio wave absorber
  • the propagation characteristics are the characteristics of the electromagnetic wave at the receiving point, and specifically, the following physical quantities are included: ⁇ Received power ⁇ XPR (Cross Polarization Ratio, vertical-horizontal power ratio) - Delay time - Direction of arrival (horizontal/vertical) - Delay spread - Angular spread - Number of clusters that make up the radio wave mass
  • step 100 the propagation characteristics that are actually generated in the real space (hereinafter referred to as "actual characteristics") are identified.
  • parameters that produce the actual characteristics in the anechoic chamber 10 are identified based on the results of the simulation above.
  • the above “actual characteristics” are the propagation characteristics that are actually measured at the position of the measurement object 12, which is an actual device placed in a real space such as a city center.
  • the “reproduction parameters” are parameters obtained by simulation to generate the “actual characteristics” inside the anechoic chamber 10. Therefore, if a propagation environment reproduction device is prepared according to the reproduction parameters, the same characteristics as the above "actual characteristics” should be generated inside it.
  • the set of "actual characteristics" and "reproduced parameters” is used as training data for machine learning.
  • the multiple data sets prepared in step 102 above are provided to the propagation environment model as training data for machine learning. Then, by repeating learning using a large amount of training data, when an actual characteristic is given, a learning model is created that derives parameters that will generate that characteristic within the anechoic chamber 10 (step 104).
  • the propagation characteristics to be reproduced within the anechoic chamber 10 (hereinafter referred to as the “desired characteristics") are provided to the learning model (step 106).
  • parameters for generating the desired characteristics within the anechoic chamber 10 are derived from the learning model (step 108).
  • a propagation environment reproducing device is prepared according to the parameters derived in step 108 above, and electromagnetic waves are sent into it. This reproduces the desired characteristics in the anechoic chamber 10 at the position of the measurement object 12 (step 110).
  • the communication performance, communication quality, etc. of the measurement object 12 placed in the anechoic chamber 10 are measured, and the results are evaluated (step 112).
  • the propagation environment reproducing device of this embodiment can reproduce the desired characteristics in the anechoic chamber 10 and evaluate the object to be measured 12. Therefore, this device can accurately evaluate the capabilities of the object to be measured 12 in real space without performing measurements in real space.
  • [RIS characteristics] 3A is a diagram for explaining an example of a property that can be imparted to a RIS using metamaterial technology. As shown in FIG. 3A, the RIS can be given a property that changes the direction in which it reflects an incident wave in response to a control signal provided from a controller.
  • Figure 3B shows other typical properties that can be given to a RIS.
  • a RIS can be given the property of transmitting an incident wave, the property of concentrating a reflected wave at a specific location, the property of absorbing part of the incident wave and reflecting it with a reduced intensity, and the property of scattering the incident wave.
  • a RIS can be selectively given the properties shown in Figure 3B in addition to the properties shown in Figure 3A.
  • the RIS 16 used in this embodiment has the characteristic shown in FIG. 3A, that is, the characteristic of varying the direction of the reflected wave. More specifically, the RIS 16 in this embodiment has the characteristic of varying the reflection pattern in response to a control signal.
  • Figure 4A shows how reflections occur in a normal room.
  • the electromagnetic waves emitted from the transmitting antenna 20 are reflected by the wall surface and change direction.
  • the angle of incidence of the electromagnetic waves on the wall surface is the same as the angle of reflection of the electromagnetic waves on the wall surface.
  • power 1 after reflection is maintained approximately equal to transmission power 1.
  • FIG. 4B shows the state of reflection when a RIS with a characteristic of varying the reflected power is placed on the wall of the anechoic chamber 10.
  • Path 28 shown in FIG. 4B shows the desired path for making the electromagnetic wave incident on the receiving point where the object to be measured 12 is placed.
  • path 30 shows the path that actually occurs in this example.
  • the RIS shown in FIG. 4B reflects the electromagnetic wave at the same reflection angle as in the case shown in FIG. 4A. Therefore, if the position of the transmitting antenna 20 and the position of the object to be measured 12 are not symmetrically placed on either side of the RIS, the reflected electromagnetic wave will not reach the object to be measured 12.
  • FIG. 5 is a diagram for explaining in detail the reflection characteristics of the RIS 16 used in this embodiment.
  • the RIS 16 is given the characteristic of varying the reflection direction according to a control signal.
  • FIG. 5 shows an example of a reflection pattern formed by giving a specific control signal to the RIS 16.
  • the largest reflection occurs in the reflection direction of path 32.
  • attenuated reflection occurs in the direction of path 34.
  • the reflection pattern of the RIS 16 changes according to the control signal. Therefore, if a receiving antenna exists in the direction of path 34, and a reflection pattern is created in which the reflection in the direction of path 34 has the desired power, it becomes possible for the RIS 16 to control both the direction and strength of the reflection.
  • FIG. 6A shows an example of the state in which the RIS 16 simultaneously controls the reflection direction and reflected power of the electromagnetic wave transmitted from the transmitting antenna 20.
  • an electromagnetic wave with a power of 1 is transmitted from the transmitting antenna to the RIS 16
  • the RIS 16 reflects an electromagnetic wave with a power of 0.5 in the incident direction toward the object to be measured 12.
  • the reflection pattern shown in Fig. 6A is generated in the RIS 16
  • a reflected wave with half the power can be made to enter the object to be measured 12.
  • the reflected wave traveling in a direction other than the object to be measured 12 is dispersed to an extent that does not affect the propagation environment of the receiving point.
  • FIG. 6B shows an example of using a radio wave absorber 18 to absorb unwanted reflected waves and create a desired propagation environment.
  • the RIS 16 shown in FIG. 6B When generating a reflected wave of desired intensity toward the object to be measured 12, the RIS 16 shown in FIG. 6B generates a high-intensity reflected wave in the direction of path 38.
  • the reflected wave from path 38 is reflected by the RIS 16 and directed toward the radio wave absorber 18.
  • the radio wave absorber 18 has the function of absorbing electromagnetic waves. Therefore, the high-intensity reflected wave heading toward path 38 does not affect the propagation environment at the position where the object to be measured 12 is placed.
  • the desired propagation space is reproduced inside the anechoic chamber 10.
  • the control server 26 is configured as a general computer system, and includes a central processor (CPU) 40.
  • Memories such as a ROM 44, a RAM 46, and a storage 48 are connected to the CPU 40 via a communication bus 42.
  • a communication interface 50, an operation unit 52 and a display unit 54 serving as a user interface are further connected to the communication bus 42.
  • the control server 26 realizes the various functions described above by the CPU 40 executing the programs stored in the ROM 44. Specifically, the control server 26 realizes the simulation in step 100, the learning in step 104, the parameter derivation in step 108, the control of the RIS 16 and the channel emulator 24 in step 110, and the evaluation of the object to be measured 12 in step 112 by the CPU 40 proceeding with processing in accordance with the programs.
  • FIG. 8 is a flow chart for explaining in detail the processing of steps 110 and 112 shown in Fig. 2.
  • the anechoic chamber 10 is set up (step 120). Specifically, the anechoic chamber 10 is set up with the shape, size, and material indicated by the parameters derived in step 108 above.
  • the RIS 16, transmitting antenna 20, and receiving antenna (object of measurement 12) are set up in the anechoic chamber 10 according to the above parameters. If the parameters require the installation of a radio wave absorber 18, this is also installed.
  • control server 26 controls the RIS control device 22 and the channel emulator 24 as indicated by the above parameters (step 122).
  • a desired propagation environment that mimics the characteristics of real space is reproduced inside the anechoic chamber 10, particularly at the position of the measurement object 12 (step 124).
  • it may be verified that the desired propagation environment is reproduced using a receiving antenna with known performance.
  • control server 26 measures the communication quality, etc. of the measurement object 12 (step 126).
  • control server 26 is caused to perform an evaluation of the measured object 12 based on the measurement results (step 128).
  • the simulation in step 100, the learning in step 104, and the parameter derivation in step 108 are performed by the control server 26, but the present disclosure is not limited to this. These processes may be executed by another computer prepared separately from the control server 26.
  • control server 26 is configured to measure the communication quality and the like of the object 12 to be measured and evaluate the object 12 based on the results, but the present disclosure is not limited to this. These processes may be executed by other evaluation devices prepared separately from the control server 26.
  • the propagation environment in real space is reproduced in the anechoic chamber 10.
  • the space in which the propagation environment is reproduced may be an outdoor space, or may be a normal indoor space that does not have a shielding function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

This disclosure relates to a propagation environment reproduction device that reproduces a propagation environment for verifying the communication performance and the like of an object of measurement. The device comprises: an electromagnetic anechoic chamber 10 that blocks electromagnetic waves from the outside; reconfigurable intelligent surfaces (RISs) 16 installed in the electromagnetic anechoic chamber 10; an RIS control device 22 that provides control signals to the RISs 16; transmitting antennas 20 installed in the electromagnetic anechoic chamber 10; a channel emulator 24 that controls the characteristics of electromagnetic waves transmitted from the transmitting antennas 20; and a control server 26 that controls the RIS control device 22 and the channel emulator 24. The RISs 16 are reflective plates having the characteristic of changing the reflection pattern in response to the control signals.

Description

伝搬環境再現装置、伝搬環境再現方法および伝搬環境再現システムPropagation environment reproducing device, propagation environment reproducing method, and propagation environment reproducing system
 この開示は、伝搬環境再現装置、伝搬環境再現方法および伝搬環境再現システムに係り、特に、測定物の通信性能等を検証するための伝搬環境を再現する場合に好適な伝搬環境再現装置、伝搬環境再現方法および伝搬環境再現システムに関する。 This disclosure relates to a propagation environment reproducing device, a propagation environment reproducing method, and a propagation environment reproducing system, and in particular to a propagation environment reproducing device, a propagation environment reproducing method, and a propagation environment reproducing system that are suitable for reproducing a propagation environment to verify the communication performance, etc., of an object to be measured.
 下記の非特許文献1には、無線通信に用いる機器を測定物として、その性能や品質を検証するOTA(Over The Air)試験に関する技術が開示されている。OTA試験では、電波暗室やシールドルーム内に単数もしくは複数の送信アンテナを配置して、その空間内に、現実の空間と同じ伝搬特性を示す環境を再現する。 The following non-patent document 1 discloses technology related to OTA (Over The Air) testing, which uses equipment used for wireless communication as the measurement object to verify its performance and quality. In OTA testing, one or more transmitting antennas are placed in an anechoic chamber or shielded room to recreate an environment within that space that exhibits the same propagation characteristics as the real space.
 現実の空間で生ずる伝搬特性を再現した伝搬環境の中で測定物の通信品質等を測定すれば、現実空間で発揮される通信品質等を測定することができる。このため、OTAの手法を用いると、無線通信に用いる機器の性能等を、簡易に、かつ正確に評価することができる。 If you measure the communication quality of the object in a propagation environment that reproduces the propagation characteristics that occur in real space, you can measure the communication quality that is demonstrated in real space. Therefore, by using OTA techniques, you can easily and accurately evaluate the performance of devices used for wireless communication.
 ところで、OTA試験の実施に伴う最大の課題は、現実の空間で生ずる所望の無線伝搬環境を如何に正確に再現するかという点にある。一方で、電波の反射を制御する機器としては、RIS(Reconfigurable Intelligent Surface)と呼ばれる反射板が知られている。 The biggest challenge in carrying out OTA testing is how to accurately reproduce the desired radio propagation environment that occurs in real space. On the other hand, a reflector called a Reconfigurable Intelligent Surface (RIS) is known as a device that controls the reflection of radio waves.
 RISは、メタマテリアル技術を用いた特性可能な反射板である。メタマテリアルとは、物質の特性を人工的に変化させることを意味しており、この技術によれば、例えば、電磁波の屈折率が負の値となるような現象も生じさせることができる。 RIS is a tunable reflector that uses metamaterial technology. Metamaterials refers to artificially changing the properties of a material, and with this technology, for example, it is possible to create a phenomenon in which the refractive index of electromagnetic waves becomes negative.
 本開示は、上記の課題に鑑みてなされたものであり、電波暗室等の空間内にRISを配置し、RISによる電磁波の反射方向と反射強度とを同時に制御することで、所望の無線伝搬環境を正確に再現する伝搬環境再現装置を提供することを第1の目的とする。 This disclosure has been made in consideration of the above problems, and has as its first objective to provide a propagation environment reproducing device that accurately reproduces a desired wireless propagation environment by placing a RIS in a space such as an anechoic chamber and simultaneously controlling the direction and intensity of reflection of electromagnetic waves by the RIS.
 また、本開示は、電波暗室等の空間内にRISを配置し、RISによる電磁波の反射方向と反射強度とを同時に制御することで、所望の無線伝搬環境を正確に再現するための伝搬環境再現方法を提供することを第2の目的とする。 A second object of the present disclosure is to provide a method for reproducing a propagation environment by placing a RIS in a space such as an anechoic chamber and simultaneously controlling the direction and intensity of reflection of electromagnetic waves by the RIS, thereby accurately reproducing a desired wireless propagation environment.
 また、本開示は、電波暗室等の空間内にRISを配置し、RISによる電磁波の反射方向と反射強度とを同時に制御することで、所望の無線伝搬環境を正確に再現する伝搬環境再現システムを提供することを第3の目的とする。 A third object of the present disclosure is to provide a propagation environment reproduction system that accurately reproduces a desired wireless propagation environment by placing a RIS in a space such as an anechoic chamber and simultaneously controlling the direction and intensity of reflection of electromagnetic waves by the RIS.
 第1の態様は、上記の目的を達成するため、伝搬環境再現装置であって、
 電磁波の伝搬環境を再現するための伝搬環境再現空間に設置されたRIS(Reconfigurable Intelligent Surface)と、
 前記RISに制御信号を与えるRIS制御装置と、
 前記伝搬環境再現空間に設置された送信アンテナと、
 前記送信アンテナから送信される電磁波の特性を制御するチャネルエミュレータと、
 前記RIS制御装置および前記チャネルエミュレータを制御する制御サーバと、を備え、
 前記RISは、前記制御信号に応じて反射パターンを変化させる特性を有する反射板であることが望ましい。
In order to achieve the above object, a first aspect is a propagation environment reproducing device, comprising:
A Reconfigurable Intelligent Surface (RIS) is installed in a space that reproduces the electromagnetic wave propagation environment.
a RIS controller for providing control signals to the RIS;
A transmitting antenna installed in the propagation environment reproduction space;
a channel emulator for controlling the characteristics of the electromagnetic wave transmitted from the transmitting antenna;
a control server for controlling the RIS control device and the channel emulator;
The RIS is preferably a reflector having a characteristic of changing its reflection pattern in response to the control signal.
 また、第2の態様は、電磁波の伝搬環境を再現するための伝搬環境再現空間に設置されたRISと、前記伝搬環境再現空間に設置された送信アンテナと、を用いて所望の伝搬環境を再現するための伝搬環境再現方法であって、
 前記RISは、制御信号に応じて反射パターンを変化させる特性を有する反射板であり、
 前記伝搬環境再現空間、前記RISおよび前記送信アンテナに関わるパラメータを変化させながら、それぞれのパラメータの下で前記伝搬環境再現空間内に生成される伝搬特性をシミュレーションにより計算することと、
 現実空間の測定位置で実測された伝搬特性である実特性と、当該実特性と同じ伝搬特性を前記伝搬環境再現空間内に発生させるものとして計算されたパラメータである再現パラメータとの組み合わせを教師データとして伝搬環境モデルに提供することで、再現したい伝搬特性が与えられると、その伝搬特性を前記伝搬環境再現空間内に発生させるパラメータを導出する学習モデルを作成することと、
 所望の伝搬特性を前記学習モデルに提供して、当該所望の伝搬特性を発生させるためのパラメータを前記学習モデルに導出させることと、
 前記学習モデルが導出したパラメータが示す諸元に従って前記伝搬環境再現空間を構成することと、
 前記学習モデルが導出したパラメータが示す諸元に従って前記RISおよび前記送信アンテナを前記伝搬環境再現空間の中に配置することと、
 前記学習モデルが導出したパラメータが示す反射パターンを前記RISが示すように、当該RISを制御することと、
 前記学習モデルが導出したパラメータが示す特性で前記送信アンテナが電磁波を送信するように、当該送信アンテナからの送信信号を制御することと、
 を含むことが望ましい。
A second aspect is a propagation environment reproduction method for reproducing a desired propagation environment using a RIS installed in a propagation environment reproduction space for reproducing an electromagnetic wave propagation environment and a transmission antenna installed in the propagation environment reproduction space, comprising:
The RIS is a reflector having a characteristic of changing a reflection pattern in response to a control signal,
Calculating, by simulation, propagation characteristics generated in the propagation environment reproduction space under each parameter while changing parameters related to the propagation environment reproduction space, the RIS, and the transmitting antenna;
providing a propagation environment model with a combination of actual characteristics, which are propagation characteristics actually measured at a measurement position in a real space, and reproduction parameters, which are parameters calculated to generate propagation characteristics identical to the actual characteristics in the propagation environment reproduction space, as teacher data, to create a learning model that derives parameters to generate the propagation characteristics in the propagation environment reproduction space when a propagation characteristic to be reproduced is given;
providing desired propagation characteristics to the learning model to cause the learning model to derive parameters for generating the desired propagation characteristics;
constructing the propagation environment reproduction space according to the parameters derived by the learning model;
Arranging the RIS and the transmitting antenna in the propagation environment reproduction space according to the parameters derived by the learning model;
Controlling the RIS so that the RIS exhibits a reflex pattern represented by the parameters derived by the learning model;
Controlling a transmission signal from the transmitting antenna so that the transmitting antenna transmits electromagnetic waves with characteristics indicated by parameters derived by the learning model;
It is preferable that the present invention includes the following:
 また、第3の態様は、伝搬環境再現システムであって、
 電磁波の伝搬環境を再現するための伝搬環境再現空間に設置されたRISと、
 前記伝搬環境再現空間に設置された送信アンテナと、を備え、
 前記RISは、制御信号に応じて反射パターンを変化させる特性を有する反射板であり、
 前記伝搬環境再現空間は、現実空間の測定位置に生ずる伝搬特性である所望特性を再現するものとして設定されたパラメータが示す諸元に従って構成され、
 前記RISおよび前記送信アンテナは、前記パラメータが示す諸元に従って配置され、
 前記パラメータが示す反射パターンを前記RISが示すように当該RISを制御する機能と、
 前記パラメータが示す特性で前記送信アンテナが電磁波を送信するように、当該送信アンテナからの送信信号を制御する機能と、
 を有するように構成されることが望ましい。
A third aspect is a propagation environment reproduction system, comprising:
The RIS was installed in a space that reproduced the electromagnetic wave propagation environment,
A transmitting antenna installed in the propagation environment reproduction space,
The RIS is a reflector having a characteristic of changing a reflection pattern in response to a control signal,
the propagation environment reproduction space is configured according to specifications indicated by parameters set to reproduce desired characteristics, which are propagation characteristics occurring at a measurement position in a real space;
The RIS and the transmitting antenna are arranged according to the specifications indicated by the parameters,
a function of controlling the RIS so that the RIS exhibits a reflection pattern indicated by the parameters;
a function of controlling a transmission signal from the transmitting antenna so that the transmitting antenna transmits electromagnetic waves with characteristics indicated by the parameters;
It is preferable that the optical fiber 100 is configured to have the following characteristics:
 第1乃至第3の態様によれば、RISによる電磁波の反射方向と反射強度を同時に制御することで、所望の無線伝搬環境を正確に再現することができる。 According to the first to third aspects, the desired radio propagation environment can be accurately reproduced by simultaneously controlling the reflection direction and reflection intensity of the electromagnetic waves by the RIS.
本開示の実施の形態1の伝搬環境再現装置の全体構成を示す図である。1 is a diagram showing an overall configuration of a propagation environment reproduction device according to a first embodiment of the present disclosure; 図1に示す伝搬環境再現装置で所望の伝搬環境を再現するためのパラメータを導出する手順を説明するためのフローチャートである。4 is a flowchart for explaining a procedure for deriving parameters for reproducing a desired propagation environment by the propagation environment reproduction device shown in FIG. 1 . RISに与え得る典型的な特性の一つを説明するための図である。FIG. 1 is a diagram for explaining one of the typical characteristics that can be imparted to a RIS. RISに与え得る他の典型的な特性を説明するための図である。FIG. 13 is a diagram for explaining other typical characteristics that can be imparted to the RIS. 通常の室内で生ずる反射の様子を示す図である。FIG. 1 is a diagram showing reflections occurring in a normal room. 反射電力を制御するRISによる限界を説明するための図である。FIG. 13 is a diagram for explaining a limit imposed by a RIS for controlling reflected power. 反射方向を制御するRISによる反射の特性を説明するための図である。1A to 1C are diagrams for explaining characteristics of reflection by a RIS that controls the reflection direction. 本開示の実施の形態1の装置が、反射方向を制御するRISを用いて、反射方向と同時に反射電力を制御する様子を示す図である。1 is a diagram showing how the device according to the first embodiment of the present disclosure uses a RIS that controls the reflection direction to control reflected power at the same time as the reflection direction. 本開示の実施の形態1の装置が、RISからの不要な反射信号を吸収体に吸収させて消滅させる様子を示す図である。1 is a diagram showing how the device of the first embodiment of the present disclosure absorbs and eliminates unnecessary reflected signals from a RIS using an absorber. FIG. 本開示の実施の形態1の装置が備える制御サーバのハードウェア構成を説明するための図である。2 is a diagram for explaining a hardware configuration of a control server provided in an apparatus according to a first embodiment of the present disclosure. FIG. 本開示の実施の形態の装置を用いて測定物の通信性能等を評価する際の流れを説明するためのフローチャートである。1 is a flowchart for explaining a flow when evaluating communication performance, etc. of a measuring object using an apparatus according to an embodiment of the present disclosure.
実施の形態1.
[実施の形態1の構成]
 図1は、本開示の実施の形態1の伝搬環境再現装置の全体構成を示す図である。本実施形態の伝搬環境再現装置は、電波暗室10を備えている。電波暗室10は、外部からの電磁波の影響を遮断することのできるチャンバーであり、シールドルーム或いは反響室と称されることもある。本実施形態において、電波暗室10は、無線信号についての所望の伝搬環境、より具体的には、街中などの現実空間において生ずる現実の伝搬環境をその内部に再現する目的で用いられる。
Embodiment 1.
[Configuration of First Embodiment]
1 is a diagram showing an overall configuration of a propagation environment reproducing device according to a first embodiment of the present disclosure. The propagation environment reproducing device according to the present embodiment includes an anechoic chamber 10. The anechoic chamber 10 is a chamber capable of blocking the influence of electromagnetic waves from the outside, and may also be called a shielded room or a reverberation chamber. In the present embodiment, the anechoic chamber 10 is used for the purpose of reproducing within itself a desired propagation environment for a wireless signal, more specifically, a real propagation environment occurring in a real space such as a city street.
 電波暗室10の中には、測定物12が配置される。測定物12は、例えば、MIMO機能を実現するための複数のアンテナを備える移動端末等により構成される。図1に示す例において、測定物12は、スタンド14の上に置かれている。スタンド14は、測定物12を、電波暗室10内の所望の空間に保持するために用いられる。街中等の現実空間では、移動端末等がドローンに搭載されて空中に位置するような状況が生じ得る。スタンド14を用いると、現実空間における空中に相当する電波暗室10内の位置に、測定物12を保持することができる。 The object to be measured 12 is placed in the anechoic chamber 10. The object to be measured 12 is, for example, a mobile terminal equipped with multiple antennas to achieve MIMO functionality. In the example shown in FIG. 1, the object to be measured 12 is placed on a stand 14. The stand 14 is used to hold the object to be measured 12 in a desired space within the anechoic chamber 10. In real spaces such as city streets, a situation may arise in which a mobile terminal or the like is mounted on a drone and positioned in the air. By using the stand 14, the object to be measured 12 can be held in a position within the anechoic chamber 10 that corresponds to the air in real space.
 電波暗室10の内部には、複数のRIS16が配置される。RIS16は、電波暗室10の壁面、天井、床面に設置することができる。また、RIS16は、床面に設置した治具で支えることにより、或いは天井から吊り下げることにより(こちらは図示略)、電波暗室10の空中に配置することもできる。 Multiple RISs 16 are placed inside the anechoic chamber 10. The RISs 16 can be installed on the walls, ceiling, or floor of the anechoic chamber 10. The RISs 16 can also be placed in the air inside the anechoic chamber 10 by supporting them with a jig installed on the floor or by hanging them from the ceiling (not shown).
 電波暗室10の中には、任意の場所に電波吸収体18を配置することができる。電波吸収体18は、照射された電磁波を吸収する機能を有している。電波吸収体18によれば、現実の空間における伝搬環境を模擬するにあたって不要である電波を、電波暗室10の内部において消滅させることができる。 A radio wave absorber 18 can be placed anywhere in the anechoic chamber 10. The radio wave absorber 18 has the function of absorbing irradiated electromagnetic waves. The radio wave absorber 18 can eliminate radio waves inside the anechoic chamber 10 that are unnecessary for simulating a propagation environment in a real space.
 電波暗室10には、一つ以上の送信アンテナ20が配置されている。送信アンテナ20の位置は、任意に決定することができる。図1には、電波暗室10の内部に三つの送信アンテナ20を配置した例を示している。 One or more transmitting antennas 20 are arranged in the anechoic chamber 10. The positions of the transmitting antennas 20 can be determined arbitrarily. Figure 1 shows an example in which three transmitting antennas 20 are arranged inside the anechoic chamber 10.
 RIS16には、RIS制御装置22が接続されている。本実施形態において、全てのRIS16には、電磁波の反射方向、より具体的には、電磁波の反射パターンを可変とする機能が与えられている。RIS制御装置22は、RIS16のそれぞれに制御信号を提供する。RIS16のそれぞれは、受信した制御信号に応じて、反射パターンを変化させる。このため、本実施形態では、電波暗室10に設置されたRIS16のそれぞれに、所望の反射パターンを形成させることができる。 A RIS control device 22 is connected to the RIS 16. In this embodiment, all RIS 16 are provided with a function for varying the reflection direction of the electromagnetic waves, or more specifically, the reflection pattern of the electromagnetic waves. The RIS control device 22 provides a control signal to each of the RIS 16. Each of the RIS 16 changes its reflection pattern in response to the received control signal. Therefore, in this embodiment, it is possible to cause each of the RIS 16 installed in the anechoic chamber 10 to form a desired reflection pattern.
 送信アンテナ20には、チャネルエミュレータ24が接続されている。チャネルエミュレータは、送信アンテナ20から送信される電磁波の特性を制御する機能を有している。チャネルエミュレータ24によれば、具体的には、送信アンテナ20から送信される電磁波の放射方向、電力、放射タイミングなどを制御することができる。 A channel emulator 24 is connected to the transmitting antenna 20. The channel emulator has a function of controlling the characteristics of the electromagnetic waves transmitted from the transmitting antenna 20. Specifically, the channel emulator 24 can control the radiation direction, power, radiation timing, etc. of the electromagnetic waves transmitted from the transmitting antenna 20.
 RIS制御装置22およびチャネルエミュレータ24には、制御サーバ26が接続されている。制御サーバ26は、測定物12が備える受信アンテナの位置に所望の伝搬環境が再現されるように、RIS制御装置22およびチャネルエミュレータ24を制御する。伝搬環境再現装置の諸元を適切に設定したうえで、RIS制御装置22およびチャネルエミュレータ24をそれぞれ適切に制御すれば、電波暗室10の内部、特に、測定物12の位置に、所望の伝搬環境を再現することができる。 A control server 26 is connected to the RIS control device 22 and the channel emulator 24. The control server 26 controls the RIS control device 22 and the channel emulator 24 so that the desired propagation environment is reproduced at the position of the receiving antenna provided on the object to be measured 12. By appropriately setting the specifications of the propagation environment reproduction device and appropriately controlling the RIS control device 22 and the channel emulator 24, respectively, it is possible to reproduce the desired propagation environment inside the anechoic chamber 10, particularly at the position of the object to be measured 12.
 尚、図1に示す構成は、伝搬環境再現装置の一形態を例示したものである。電波暗室10の形状やサイズは変更可能である。その形状は、例えば、球体、n面体(nは整数)、n角柱、n角錐等とすることができる。RIS16および送信アンテナ20は、それぞれ1以上の任意の数を配置することができ、配置の位置も任意である。 The configuration shown in FIG. 1 is an example of one form of a propagation environment reproduction device. The shape and size of the anechoic chamber 10 can be changed. The shape can be, for example, a sphere, an n-hedron (n is an integer), an n-sided prism, an n-sided pyramid, etc. Any number of RIS 16 and transmitting antennas 20 greater than or equal to one can be placed, and the placement positions can also be arbitrary.
[再現パラメータの導出手法]
 図2は、図1に示す伝搬環境再現装置で所望の伝搬環境を再現するためのパラメータを導出する手順を説明するためのフローチャートである。
[Method of deriving reproduction parameters]
FIG. 2 is a flowchart for explaining a procedure for deriving parameters for reproducing a desired propagation environment by the propagation environment reproducing device shown in FIG.
 ここでは、先ず、伝搬環境再現装置の特性に関わる各種のパラメータを様々に変化させて、それぞれのパラメータの組み合わせの下で電波暗室10に生成される伝搬特性を、シミュレーションにより計算する(ステップ100)。シミュレーションの種類は、例えば、レイトレーシング(レイラウンチング法)、レイトレーシング(イメージング法)、電磁界解析(FDTD法)などであればよい。 First, various parameters related to the characteristics of the propagation environment reproduction device are changed in various ways, and the propagation characteristics generated in the anechoic chamber 10 under each combination of parameters are calculated by simulation (step 100). The type of simulation may be, for example, ray tracing (ray launching method), ray tracing (imaging method), electromagnetic field analysis (FDTD method), etc.
 設定するパラメータとしては、例えば、下記のようなものが用いられる。
・電波暗室10の形状、大きさ、材質
・RIS16の形状、大きさ、数、配置、制御できる角度、制御できる反射率
・送信アンテナ20の場所、数、送信信号の特性
・受信アンテナの場所、数、受信信号の特性
・送信ビームの向き
・電波吸収体の位置、大きさ、数、形状
The parameters to be set include, for example, the following:
The shape, size and material of the anechoic chamber 10 The shape, size, number, arrangement, controllable angle and controllable reflectance of the RIS 16 The location, number and characteristics of the transmitted signal of the transmitting antennas 20 The location, number and characteristics of the received signal of the receiving antennas The direction of the transmitted beam The position, size, number and shape of the radio wave absorber
 伝搬特性は、受信点における電磁波の特性であり、具体的には、以下のような物理量が該当する。
・受信電力
・XPR(Cross Polarization Ratio、垂直水平電力比)
・遅延時間
・到来方向(水平/垂直)
・遅延広がり
・角度広がり
・電波の塊を構成するクラスタの数
The propagation characteristics are the characteristics of the electromagnetic wave at the receiving point, and specifically, the following physical quantities are included:
・Received power ・XPR (Cross Polarization Ratio, vertical-horizontal power ratio)
- Delay time - Direction of arrival (horizontal/vertical)
- Delay spread - Angular spread - Number of clusters that make up the radio wave mass
 上記ステップ100の処理が終わると、次に、現実の空間で実際に生成される伝搬特性(以下、「実特性」とする)が特定される。また、その実特性を電波暗室10内に生じさせるパラメータ(以下、「再現パラメータ」とする)が、上記のシミュレーションの結果に基づいて特定される。この処理を繰り返すことにより、実特性とパラメータのセットが複数準備される(ステップ102)。 Once the processing of step 100 above is completed, the propagation characteristics that are actually generated in the real space (hereinafter referred to as "actual characteristics") are identified. In addition, parameters that produce the actual characteristics in the anechoic chamber 10 (hereinafter referred to as "reproduced parameters") are identified based on the results of the simulation above. By repeating this processing, multiple sets of actual characteristics and parameters are prepared (step 102).
 上記の「実特性」は、街中等の現実空間に測定物12たる機器を実際に配置して、その測定物12の位置で実測された伝搬特性である。「再現パラメータ」は、その「実特性」を電波暗室10内に生成させるものとしてシミュレーションにより得られたパラメータである。このため、再現パラメータの通りに伝搬環境再現装置を準備すれば、その内部には上記の「実特性」と同じ特性が生成されるはずである。 The above "actual characteristics" are the propagation characteristics that are actually measured at the position of the measurement object 12, which is an actual device placed in a real space such as a city center. The "reproduction parameters" are parameters obtained by simulation to generate the "actual characteristics" inside the anechoic chamber 10. Therefore, if a propagation environment reproduction device is prepared according to the reproduction parameters, the same characteristics as the above "actual characteristics" should be generated inside it.
 「実特性」と「再現パラメータ」のセットは、機械学習のための教師データとして用いられる。つまり、本実施形態では、上記ステップ102で準備した複数のデータセットが、機械学習の教師データとして伝搬環境モデルに提供される。そして、多数の教師データによる学習が繰り返されることにより、実特性が与えられると、電波暗室10内にその特性を発生させるパラメータを導出する学習モデルが作成される(ステップ104)。 The set of "actual characteristics" and "reproduced parameters" is used as training data for machine learning. In other words, in this embodiment, the multiple data sets prepared in step 102 above are provided to the propagation environment model as training data for machine learning. Then, by repeating learning using a large amount of training data, when an actual characteristic is given, a learning model is created that derives parameters that will generate that characteristic within the anechoic chamber 10 (step 104).
 学習モデルが作成された段階で、電波暗室10内で再現したい伝搬特性(以下、「所望特性」とする)が学習モデルに提供される(ステップ106)。 Once the learning model has been created, the propagation characteristics to be reproduced within the anechoic chamber 10 (hereinafter referred to as the "desired characteristics") are provided to the learning model (step 106).
 これにより、学習モデルから、電波暗室10内に所望特性を発生させるためのパラメータが導出される(ステップ108)。 As a result, parameters for generating the desired characteristics within the anechoic chamber 10 are derived from the learning model (step 108).
 以後、上記ステップ108で導出されたパラメータに従って伝搬環境再現装置が準備され、その内部に電磁波が送出される。これにより、電波暗室10内、測定物12の位置に、所望特性が再現される(ステップ110)。 After that, a propagation environment reproducing device is prepared according to the parameters derived in step 108 above, and electromagnetic waves are sent into it. This reproduces the desired characteristics in the anechoic chamber 10 at the position of the measurement object 12 (step 110).
 所望特性が再現できたら、電波暗室10に配置した測定物12の通信性能、通信品質等を測定し、その結果を評価する(ステップ112)。 Once the desired characteristics have been reproduced, the communication performance, communication quality, etc. of the measurement object 12 placed in the anechoic chamber 10 are measured, and the results are evaluated (step 112).
 以上の通り、本実施形態の伝搬環境再現装置によれば、電波暗室10内に所望特性を再現して測定物12を評価することができる。このため、この装置によれば、現実空間における測定を行わずに、現実空間において測定物12が示す能力を正確に評価することができる。 As described above, the propagation environment reproducing device of this embodiment can reproduce the desired characteristics in the anechoic chamber 10 and evaluate the object to be measured 12. Therefore, this device can accurately evaluate the capabilities of the object to be measured 12 in real space without performing measurements in real space.
[RISの特性]
 図3Aは、メタマテリアル技術を用いたRISに与え得る特性の一例を説明するための図である。図3Aに示すように、RISには、コントローラから提供される制御信号に応じて、入射波を反射する方向を可変とする特性を付与することができる。
[RIS characteristics]
3A is a diagram for explaining an example of a property that can be imparted to a RIS using metamaterial technology. As shown in FIG. 3A, the RIS can be given a property that changes the direction in which it reflects an incident wave in response to a control signal provided from a controller.
 図3Bは、RISに与え得る他の典型的な特性を示す。図3Bに示すように、RISには、入射波を透過させる特性、反射波を特定の箇所に集中させる特性、入射波の一部を吸収して強度を下げて反射する特性、および入射波を散乱させる特性等を与えることができる。RISには、どのような構造を採用するかにより、図3Aに示す特性の他に、図3Bに示すような特性を選択的に与えることも可能である。 Figure 3B shows other typical properties that can be given to a RIS. As shown in Figure 3B, a RIS can be given the property of transmitting an incident wave, the property of concentrating a reflected wave at a specific location, the property of absorbing part of the incident wave and reflecting it with a reduced intensity, and the property of scattering the incident wave. Depending on the type of structure adopted, a RIS can be selectively given the properties shown in Figure 3B in addition to the properties shown in Figure 3A.
本実施形態で用いるRIS16は、図3Aに示す特性、つまり、反射波の方向を可変とする特性が与えられている。より具体的には、本実施形態のRIS16には、制御信号に応じて反射パターンを可変とする特性が与えられている。 The RIS 16 used in this embodiment has the characteristic shown in FIG. 3A, that is, the characteristic of varying the direction of the reflected wave. More specifically, the RIS 16 in this embodiment has the characteristic of varying the reflection pattern in response to a control signal.
 図4Aは、通常の室内で生ずる反射の様子を示す。この場合、送信アンテナ20から発せられた電磁波は壁面で反射して進行方向を変化させる。壁面に対する電磁波の入射角と、壁面における電磁波の反射角は同一となる。また反射後の電力1は、送信電力1とほぼ同等に維持される。 Figure 4A shows how reflections occur in a normal room. In this case, the electromagnetic waves emitted from the transmitting antenna 20 are reflected by the wall surface and change direction. The angle of incidence of the electromagnetic waves on the wall surface is the same as the angle of reflection of the electromagnetic waves on the wall surface. Furthermore, power 1 after reflection is maintained approximately equal to transmission power 1.
 図4Bは、電波暗室10の壁面に、反射電力を可変とする特性を持つRISを配置した場合の反射の様子を示す。図4Bに示すパス28は、測定物12の置かれた受信点に電磁波を入射させるための所望のパスを示す。一方、パス30は、この例において実際に生ずるパスを示している。図4Bに示すRISは、図4Aに示す場合と同様の反射角で電磁波を反射する。このため、送信アンテナ20の位置と測定物12の位置とがRISを挟んで対象に配置されていなければ、反射後の電磁波は測定物12に到達しない。このように、反射電力を可変とするRISでは、反射後の電力を制御することはできても、その結果生成される反射波を測定物12に到達させ得ない事態が生じ得る。つまり、このような特性を持つRISでは、所望の電力を持つ反射波を所望の方向に進行させることが不可能である。 FIG. 4B shows the state of reflection when a RIS with a characteristic of varying the reflected power is placed on the wall of the anechoic chamber 10. Path 28 shown in FIG. 4B shows the desired path for making the electromagnetic wave incident on the receiving point where the object to be measured 12 is placed. Meanwhile, path 30 shows the path that actually occurs in this example. The RIS shown in FIG. 4B reflects the electromagnetic wave at the same reflection angle as in the case shown in FIG. 4A. Therefore, if the position of the transmitting antenna 20 and the position of the object to be measured 12 are not symmetrically placed on either side of the RIS, the reflected electromagnetic wave will not reach the object to be measured 12. In this way, with a RIS with a variable reflected power, although it is possible to control the power after reflection, a situation may occur in which the reflected wave generated as a result cannot reach the object to be measured 12. In other words, with a RIS with such characteristics, it is impossible to make the reflected wave with the desired power travel in the desired direction.
 図5は、本実施形態で用いるRIS16の反射特性を詳細に説明するための図である。上記の通り、RIS16には、制御信号に応じて反射方向を可変とする特性が与えられている。図5は、特定の制御信号をRIS16に与えることで形成される反射パターンの一例を示す。ここでは、パス32の反射方向に最も大きな反射が生じている。また、パス34の方向に減衰した反射が生じている。RIS16の反射パターンは、制御信号に応じて変化する。このため、パス34の方向に受信アンテナが存在する場合に、そのパス34の方向の反射が所望の電力を持つような反射パターンを生じさせれば、RIS16により、反射の方向と強度の双方を制御することが可能となる。 FIG. 5 is a diagram for explaining in detail the reflection characteristics of the RIS 16 used in this embodiment. As described above, the RIS 16 is given the characteristic of varying the reflection direction according to a control signal. FIG. 5 shows an example of a reflection pattern formed by giving a specific control signal to the RIS 16. Here, the largest reflection occurs in the reflection direction of path 32. Also, attenuated reflection occurs in the direction of path 34. The reflection pattern of the RIS 16 changes according to the control signal. Therefore, if a receiving antenna exists in the direction of path 34, and a reflection pattern is created in which the reflection in the direction of path 34 has the desired power, it becomes possible for the RIS 16 to control both the direction and strength of the reflection.
[反射方向と反射強度の制御例]
 図6Aは、RIS16が、送信アンテナ20から送信された電磁波の反射方向と反射電力を同時に制御している様子の一例を示す。ここでは、送信アンテナからRIS16に向けて電力1の電磁波が送信され、RIS16が、測定物12に向かう入射方向に電力0.5の電磁波を反射している。このように、RIS16に、図6Aに示す反射パターンを発生させれば、電力を半減させた反射波を測定物12に向けて入射させることができる。尚、この場合、測定物12に向かう方向以外に向かう反射波は、受信点の伝搬環境に影響を及ぼさない程度に分散しているものとする。
[Example of control of reflection direction and reflection intensity]
Fig. 6A shows an example of the state in which the RIS 16 simultaneously controls the reflection direction and reflected power of the electromagnetic wave transmitted from the transmitting antenna 20. Here, an electromagnetic wave with a power of 1 is transmitted from the transmitting antenna to the RIS 16, and the RIS 16 reflects an electromagnetic wave with a power of 0.5 in the incident direction toward the object to be measured 12. In this way, if the reflection pattern shown in Fig. 6A is generated in the RIS 16, a reflected wave with half the power can be made to enter the object to be measured 12. In this case, it is assumed that the reflected wave traveling in a direction other than the object to be measured 12 is dispersed to an extent that does not affect the propagation environment of the receiving point.
 図6Bは、電波吸収体18を用いて不要な反射波を吸収して所望の伝搬環境を作り出している例を示す。図6Bに示すRIS16は、測定物12に向かう所望強度の反射波を生成する際に、パス38の方向に高強度の反射波を生成している。ここでは、パス38の反射波をRIS16で反射して電波吸収体18に向かわせている。電波吸収体18は、電磁波を吸収する機能を有している。このため、パス38の方向に向かう高強度の反射波は、測定物12の置かれた位置の伝搬環境に影響を与えない。その結果、パス38方向の反射波の発生に関わらず、電波暗室10内部には所望の伝搬空間が再現される。 FIG. 6B shows an example of using a radio wave absorber 18 to absorb unwanted reflected waves and create a desired propagation environment. When generating a reflected wave of desired intensity toward the object to be measured 12, the RIS 16 shown in FIG. 6B generates a high-intensity reflected wave in the direction of path 38. Here, the reflected wave from path 38 is reflected by the RIS 16 and directed toward the radio wave absorber 18. The radio wave absorber 18 has the function of absorbing electromagnetic waves. Therefore, the high-intensity reflected wave heading toward path 38 does not affect the propagation environment at the position where the object to be measured 12 is placed. As a result, regardless of the generation of a reflected wave in the direction of path 38, the desired propagation space is reproduced inside the anechoic chamber 10.
[制御サーバのハードウェア構成]
 図7は、制御サーバ26のハードウェア構成を示す。制御サーバ26は、一般的なコンピュータシステムで構成されており、中央プロセッサ(CPU)40を備えている。CPU40には、通信バス42を介してROM44、RAM46、ストレージ48等のメモリが接続されている。通信バス42には、更に、通信インターフェース50、並びに、ユーザインターフェースとなる操作部52及び表示部54が接続されている。
[Hardware configuration of control server]
7 shows the hardware configuration of the control server 26. The control server 26 is configured as a general computer system, and includes a central processor (CPU) 40. Memories such as a ROM 44, a RAM 46, and a storage 48 are connected to the CPU 40 via a communication bus 42. A communication interface 50, an operation unit 52 and a display unit 54 serving as a user interface are further connected to the communication bus 42.
 制御サーバ26は、ROM44に格納されているプログラムをCPU40が実行することにより、上述した各種の機能を実現する。具体的には、制御サーバ26は、CPU40が上記のプログラムに沿って処理を進めることにより、上記ステップ100のシミュレーション、上記ステップ104の学習、上記ステップ108のパラメータ導出、上記ステップ110におけるRIS16およびチャネルエミュレータ24の制御、および上記ステップ112における測定物12の評価を実現する。 The control server 26 realizes the various functions described above by the CPU 40 executing the programs stored in the ROM 44. Specifically, the control server 26 realizes the simulation in step 100, the learning in step 104, the parameter derivation in step 108, the control of the RIS 16 and the channel emulator 24 in step 110, and the evaluation of the object to be measured 12 in step 112 by the CPU 40 proceeding with processing in accordance with the programs.
[測定物の評価]
 図8は、図2に示すステップ110および112の処理を詳細に説明するためのフローチャートである。ここでは、先ず、電波暗室10の設営が行われる(ステップ120)。具体的には、上記ステップ108で導出されたパラメータが示す形状、大きさ、材質で電波暗室10を設置する。また、電波暗室10内に、上記のパラメータに従ってRIS16、送信アンテナ20、受信アンテナ(測定物12)を設置する。パラメータが電波吸収体18の設置を要求している場合には、その設置も行う。
[Evaluation of the measured object]
Fig. 8 is a flow chart for explaining in detail the processing of steps 110 and 112 shown in Fig. 2. Here, first, the anechoic chamber 10 is set up (step 120). Specifically, the anechoic chamber 10 is set up with the shape, size, and material indicated by the parameters derived in step 108 above. In addition, the RIS 16, transmitting antenna 20, and receiving antenna (object of measurement 12) are set up in the anechoic chamber 10 according to the above parameters. If the parameters require the installation of a radio wave absorber 18, this is also installed.
 次に、制御サーバ26により、上記のパラメータが示す通りにRIS制御装置22およびチャネルエミュレータ24を制御させる(ステップ122)。 Then, the control server 26 controls the RIS control device 22 and the channel emulator 24 as indicated by the above parameters (step 122).
 これにより、電波暗室10の内部、特に、測定物12の位置に、現実空間の特性を模擬した所望の伝搬環境が再現される(ステップ124)。本ステップでは、性能が既知である受信アンテナを用いて所望の伝搬環境が再現されていることを検証してもよい。 As a result, a desired propagation environment that mimics the characteristics of real space is reproduced inside the anechoic chamber 10, particularly at the position of the measurement object 12 (step 124). In this step, it may be verified that the desired propagation environment is reproduced using a receiving antenna with known performance.
 電波暗室10内に所望の伝搬空間が再現されたら、測定物12の通信品質等を制御サーバ26により測定させる(ステップ126)。 Once the desired propagation space has been recreated within the anechoic chamber 10, the control server 26 measures the communication quality, etc. of the measurement object 12 (step 126).
 次いで、制御サーバ26に、測定結果に基づいて測定物12の評価を実行させる(ステップ128)。 Then, the control server 26 is caused to perform an evaluation of the measured object 12 based on the measurement results (step 128).
[実施の形態1の変形例]
 尚、上記の例では、上記ステップ100のシミュレーション、上記ステップ104の学習、上記ステップ108のパラメータ導出を制御サーバ26に行わせることとしているが、本開示はこれに限定されるものではない。それらの処理は、制御サーバ26とは別に用意した他のコンピュータに実行させてもよい。
[Modification of the first embodiment]
In the above example, the simulation in step 100, the learning in step 104, and the parameter derivation in step 108 are performed by the control server 26, but the present disclosure is not limited to this. These processes may be executed by another computer prepared separately from the control server 26.
 また、上記の例では、測定物12の通信品質等の測定と、その結果に基づく測定物12の評価とを制御サーバ26に行わせることとしているが、本開示はこれに限定されるものではない。それらの処理は、制御サーバ26とは別に用意した他の評価機器に実行させてもよい。 In addition, in the above example, the control server 26 is configured to measure the communication quality and the like of the object 12 to be measured and evaluate the object 12 based on the results, but the present disclosure is not limited to this. These processes may be executed by other evaluation devices prepared separately from the control server 26.
 また、上述した実施の形態1では、現実空間の伝搬環境を電波暗室10の中で再現することとしている。しかしながら、本開示はこれに限定されるものではない。伝搬環境を再現する空間は、屋外空間であってもよく、或いはシールド機能を持たない通常の室内空間であってもよい。 Furthermore, in the above-mentioned embodiment 1, the propagation environment in real space is reproduced in the anechoic chamber 10. However, the present disclosure is not limited to this. The space in which the propagation environment is reproduced may be an outdoor space, or may be a normal indoor space that does not have a shielding function.
10 電波暗室
12 測定物
16 RIS
18 電波吸収体
20 送信アンテナ
22 RIS制御装置
24 チャネルエミュレータ
26 制御サーバ
40 CPU
44 ROM
10 anechoic chamber 12 measurement object 16 RIS
18 Radio wave absorber 20 Transmitting antenna 22 RIS control device 24 Channel emulator 26 Control server 40 CPU
44 ROM

Claims (8)

  1.  電磁波の伝搬環境を再現するための伝搬環境再現空間に設置されたRIS(Reconfigurable Intelligent Surface)と、
     前記RISに制御信号を与えるRIS制御装置と、
     前記伝搬環境再現空間に設置された送信アンテナと、
     前記送信アンテナから送信される電磁波の特性を制御するチャネルエミュレータと、
     前記RIS制御装置および前記チャネルエミュレータを制御する制御サーバと、を備え、
     前記RISは、前記制御信号に応じて反射パターンを変化させる特性を有する反射板である伝搬環境再現装置。
    A Reconfigurable Intelligent Surface (RIS) is installed in a space that reproduces the electromagnetic wave propagation environment.
    a RIS controller for providing control signals to the RIS;
    A transmitting antenna installed in the propagation environment reproduction space;
    a channel emulator for controlling the characteristics of the electromagnetic wave transmitted from the transmitting antenna;
    a control server for controlling the RIS control device and the channel emulator;
    The RIS is a propagation environment reproducing device that is a reflector having a characteristic of changing a reflection pattern in response to the control signal.
  2.  前記伝搬環境再現空間は、現実空間の測定位置に生ずる伝搬特性である所望特性を再現するものとして設定されたパラメータが示す諸元に従って構成され、
     前記RISおよび前記送信アンテナは、前記パラメータが示す諸元に従って配置され、
     前記制御サーバは、
     前記パラメータが示す反射パターンを前記RISが示すように、前記RIS制御装置を制御する処理と、
     前記パラメータが示す特性で前記送信アンテナが電磁波を送信するように、前記チャネルエミュレータを制御する処理と、を実行するように構成された請求項1に記載の伝搬環境再現装置。
    the propagation environment reproduction space is configured according to specifications indicated by parameters set to reproduce desired characteristics, which are propagation characteristics occurring at a measurement position in a real space;
    The RIS and the transmitting antenna are arranged according to the specifications indicated by the parameters,
    The control server includes:
    controlling the RIS control device so that the RIS exhibits a reflection pattern indicated by the parameters;
    2. The propagation environment reproducing device according to claim 1, further comprising: a process for controlling the channel emulator so that the transmitting antenna transmits electromagnetic waves with characteristics indicated by the parameters.
  3.  前記反射パターンは、前記伝搬環境再現空間内の測定位置に向かう方向に、所望の強度の反射を発生させるパターンである請求項2に記載の伝搬環境再現装置。 The propagation environment reproduction device according to claim 2, wherein the reflection pattern is a pattern that generates a reflection of a desired intensity in a direction toward a measurement position within the propagation environment reproduction space.
  4.  前記反射パターンの下で前記測定位置に向かう方向とは異なる方向に向かって前記RISが反射する電磁波を吸収するように前記伝搬環境再現空間に設置された電波吸収体を更に備える請求項2に記載の伝搬環境再現装置。 The propagation environment reproduction device according to claim 2, further comprising a radio wave absorber installed in the propagation environment reproduction space so as to absorb electromagnetic waves reflected by the RIS under the reflection pattern in a direction different from the direction toward the measurement position.
  5.  電磁波の伝搬環境を再現するための伝搬環境再現空間に設置されたRISと、前記伝搬環境再現空間に設置された送信アンテナと、を用いて所望の伝搬環境を再現するための伝搬環境再現方法であって、
     前記RISは、制御信号に応じて反射パターンを変化させる特性を有する反射板であり、
     前記伝搬環境再現空間、前記RISおよび前記送信アンテナに関わるパラメータを変化させながら、それぞれのパラメータの下で前記伝搬環境再現空間内に生成される伝搬特性をシミュレーションにより計算することと、
     現実空間の測定位置で実測された伝搬特性である実特性と、当該実特性と同じ伝搬特性を前記伝搬環境再現空間内に発生させるものとして計算されたパラメータである再現パラメータとの組み合わせを教師データとして伝搬環境モデルに提供することで、再現したい伝搬特性が与えられると、その伝搬特性を前記伝搬環境再現空間内に発生させるパラメータを導出する学習モデルを作成することと、
     所望の伝搬特性を前記学習モデルに提供して、当該所望の伝搬特性を発生させるためのパラメータを前記学習モデルに導出させることと、
     前記学習モデルが導出したパラメータが示す諸元に従って前記伝搬環境再現空間を構成することと、
     前記学習モデルが導出したパラメータが示す諸元に従って前記RISおよび前記送信アンテナを前記伝搬環境再現空間の中に配置することと、
     前記学習モデルが導出したパラメータが示す反射パターンを前記RISが示すように、当該RISを制御することと、
     前記学習モデルが導出したパラメータが示す特性で前記送信アンテナが電磁波を送信するように、当該送信アンテナからの送信信号を制御することと、
     を含む伝搬環境再現方法。
    A propagation environment reproduction method for reproducing a desired propagation environment using a RIS installed in a propagation environment reproduction space for reproducing an electromagnetic wave propagation environment and a transmission antenna installed in the propagation environment reproduction space, comprising:
    The RIS is a reflector having a characteristic of changing a reflection pattern in response to a control signal,
    Calculating, by simulation, propagation characteristics generated in the propagation environment reproduction space under each parameter while changing parameters related to the propagation environment reproduction space, the RIS, and the transmitting antenna;
    providing a propagation environment model with a combination of actual characteristics, which are propagation characteristics actually measured at a measurement position in a real space, and reproduction parameters, which are parameters calculated to generate propagation characteristics identical to the actual characteristics in the propagation environment reproduction space, as teacher data, to create a learning model that derives parameters to generate the propagation characteristics in the propagation environment reproduction space when a propagation characteristic to be reproduced is given;
    providing desired propagation characteristics to the learning model to cause the learning model to derive parameters for generating the desired propagation characteristics;
    constructing the propagation environment reproduction space according to the parameters derived by the learning model;
    Arranging the RIS and the transmitting antenna in the propagation environment reproduction space according to the parameters derived by the learning model;
    Controlling the RIS so that the RIS exhibits a reflex pattern represented by the parameters derived by the learning model;
    Controlling a transmission signal from the transmitting antenna so that the transmitting antenna transmits electromagnetic waves with characteristics indicated by parameters derived by the learning model;
    A method for reproducing a propagation environment including:
  6.  前記反射パターンは、前記伝搬環境再現空間内の測定位置に向かう方向に、所望の強度の反射を発生させるパターンである請求項5に記載の伝搬環境再現方法。 The propagation environment reproduction method according to claim 5, wherein the reflection pattern is a pattern that generates a reflection of a desired intensity in a direction toward a measurement position in the propagation environment reproduction space.
  7.  前記反射パターンの下で前記測定位置に向かう方向とは異なる方向に向かって前記RISが反射する電磁波を吸収する電波吸収体を前記伝搬環境再現空間に設置することを更に含む請求項6に記載の伝搬環境再現方法。 The method for reproducing a propagation environment according to claim 6, further comprising installing a radio wave absorber in the propagation environment reproduction space that absorbs electromagnetic waves reflected by the RIS in a direction different from the direction toward the measurement position under the reflection pattern.
  8.  電磁波の伝搬環境を再現するための伝搬環境再現空間に設置されたRISと、
     前記伝搬環境再現空間に設置された送信アンテナと、を備え、
     前記RISは、制御信号に応じて反射パターンを変化させる特性を有する反射板であり、
     前記伝搬環境再現空間は、現実空間の測定位置に生ずる伝搬特性である所望特性を再現するものとして設定されたパラメータが示す諸元に従って構成され、
     前記RISおよび前記送信アンテナは、前記パラメータが示す諸元に従って配置され、
     前記パラメータが示す反射パターンを前記RISが示すように当該RISを制御する機能と、
     前記パラメータが示す特性で前記送信アンテナが電磁波を送信するように、当該送信アンテナからの送信信号を制御する機能と、
     を有するように構成された伝搬環境再現システム。
     
    The RIS was installed in a space that reproduced the electromagnetic wave propagation environment,
    A transmitting antenna installed in the propagation environment reproduction space,
    The RIS is a reflector having a characteristic of changing a reflection pattern in response to a control signal,
    the propagation environment reproduction space is configured according to specifications indicated by parameters set to reproduce desired characteristics, which are propagation characteristics occurring at a measurement position in a real space;
    The RIS and the transmitting antenna are arranged according to the specifications indicated by the parameters,
    a function of controlling the RIS so that the RIS exhibits a reflection pattern indicated by the parameters;
    a function of controlling a transmission signal from the transmitting antenna so that the transmitting antenna transmits electromagnetic waves with characteristics indicated by the parameters;
    A propagation environment reproduction system configured to have the following.
PCT/JP2022/037145 2022-10-04 2022-10-04 Propagation environment reproduction device, propagation environment reproduction method, and propagation environment reproduction system WO2024075180A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/037145 WO2024075180A1 (en) 2022-10-04 2022-10-04 Propagation environment reproduction device, propagation environment reproduction method, and propagation environment reproduction system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/037145 WO2024075180A1 (en) 2022-10-04 2022-10-04 Propagation environment reproduction device, propagation environment reproduction method, and propagation environment reproduction system

Publications (1)

Publication Number Publication Date
WO2024075180A1 true WO2024075180A1 (en) 2024-04-11

Family

ID=90607735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037145 WO2024075180A1 (en) 2022-10-04 2022-10-04 Propagation environment reproduction device, propagation environment reproduction method, and propagation environment reproduction system

Country Status (1)

Country Link
WO (1) WO2024075180A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080305754A1 (en) * 2006-06-07 2008-12-11 Michael Foegelle Systems and methods for over-the-air testing of wireless systems
US20100233969A1 (en) * 2007-09-20 2010-09-16 University Of South Florida Reconfigurable chamber for emulating multipath fading
JP2012504887A (en) * 2008-10-06 2012-02-23 エレクトロビット・システム・テスト・オサケユキテュア Wireless test
JP2013143562A (en) * 2012-01-11 2013-07-22 Yoji Kozuka Structure configuration method for controlling radio wave propagation environment
JP2014504724A (en) * 2011-01-18 2014-02-24 ザ ユニバーシティ オブ ホンコン Small electronic reverberation room
JP2014522497A (en) * 2011-06-15 2014-09-04 ブリュテスト アクチエボラグ Improved method and apparatus for measuring the performance of antennas, cell phones and other wireless terminals
JP2019122008A (en) * 2018-01-11 2019-07-22 株式会社Nttドコモ Device, method and program for estimating radio wave propagation
JP2021536002A (en) * 2018-08-14 2021-12-23 ブルーテスト、アクチボラグBluetest Ab Improved measuring device for antenna systems

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080305754A1 (en) * 2006-06-07 2008-12-11 Michael Foegelle Systems and methods for over-the-air testing of wireless systems
US20100233969A1 (en) * 2007-09-20 2010-09-16 University Of South Florida Reconfigurable chamber for emulating multipath fading
JP2012504887A (en) * 2008-10-06 2012-02-23 エレクトロビット・システム・テスト・オサケユキテュア Wireless test
JP2014504724A (en) * 2011-01-18 2014-02-24 ザ ユニバーシティ オブ ホンコン Small electronic reverberation room
JP2014522497A (en) * 2011-06-15 2014-09-04 ブリュテスト アクチエボラグ Improved method and apparatus for measuring the performance of antennas, cell phones and other wireless terminals
JP2013143562A (en) * 2012-01-11 2013-07-22 Yoji Kozuka Structure configuration method for controlling radio wave propagation environment
JP2019122008A (en) * 2018-01-11 2019-07-22 株式会社Nttドコモ Device, method and program for estimating radio wave propagation
JP2021536002A (en) * 2018-08-14 2021-12-23 ブルーテスト、アクチボラグBluetest Ab Improved measuring device for antenna systems

Similar Documents

Publication Publication Date Title
US8718122B2 (en) Testing performance of a wireless device
US9660739B2 (en) System and methods of testing adaptive antennas
TWI434527B (en) Over-the-air test
US20050059355A1 (en) System and method for multi-path simulation
US8412112B2 (en) Systems and methods for simulating a multipath radio frequency environment
US8995511B2 (en) Emulation and controlled testing of MIMO OTA channels
US10969427B2 (en) Measurement system and method for multiple antenna measurements with different angles of arrival
US10725081B2 (en) Methods and apparatus for evaluating radiated performance of MIMO wireless devices in three dimensions
EP2533572A1 (en) Method and system for testing over the air performances in multi-antenna system
US20120282863A1 (en) Antenna testing system and antenna testing method
US11611404B2 (en) Four-dimensional over the air performance test method for dynamic scene channel
US11689300B2 (en) Multi-panel base station test system
JP4080596B2 (en) Wireless terminal test equipment
WO2024075180A1 (en) Propagation environment reproduction device, propagation environment reproduction method, and propagation environment reproduction system
WO2024075184A1 (en) Propagation environment reproduction device, propagation environment reproduction method, and propagation environment reproduction system
Reyes et al. Novel over-the-air test method for 5g millimetre wave devices, based on elliptical cylinder reflectors
JP5607491B2 (en) Multiwave environment regeneration monitoring system and multiwave environment regeneration monitoring method
Staniec et al. On simulating the radio signal propagation in the reverberation chamber with the ray launching method
WO2023012876A1 (en) Transmission space reproduction method and transmission space reproduction device
Fedorov et al. Geometry-based modeling and simulation of 3d multipath propagation channel with realistic spatial characteristics
Chung et al. Modeling of anechoic chamber using a beam-tracing technique
KR20170128888A (en) Apparatus and method of testing communication performance
CN112114293A (en) Device and method for testing performance of millimeter wave radar under multipath condition
Delabie et al. An acoustic simulation framework to support indoor positioning and data driven signal processing assessments
Staniec et al. Review of applications of the Laboratory for Electromagnetic Compatibility infrastructure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22961370

Country of ref document: EP

Kind code of ref document: A1