WO2024074054A1 - 一种充电装置及充电系统 - Google Patents

一种充电装置及充电系统 Download PDF

Info

Publication number
WO2024074054A1
WO2024074054A1 PCT/CN2023/101774 CN2023101774W WO2024074054A1 WO 2024074054 A1 WO2024074054 A1 WO 2024074054A1 CN 2023101774 W CN2023101774 W CN 2023101774W WO 2024074054 A1 WO2024074054 A1 WO 2024074054A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
circuit
voltage
charging
circuits
Prior art date
Application number
PCT/CN2023/101774
Other languages
English (en)
French (fr)
Other versions
WO2024074054A9 (zh
Inventor
王义昌
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Publication of WO2024074054A1 publication Critical patent/WO2024074054A1/zh
Publication of WO2024074054A9 publication Critical patent/WO2024074054A9/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/64Optimising energy costs, e.g. responding to electricity rates
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Definitions

  • the present application relates to the field of electronic technology, and in particular to a charging device and a charging system.
  • the split charging pile includes a split charging pile (also known as a split charging host) and a charging terminal.
  • the split charging pile is used to bring multiple charging modules together, and dynamically allocate the charging modules according to the actual charging power required by the electric vehicle through the power distribution unit.
  • the charging terminal is used for information exchange, energy transmission, metering and billing with electric vehicles, etc. It is mainly composed of a shell, a human-computer interaction interface, a charging control unit, and a metering and billing unit.
  • the multiple AC power supply lines 01 can be from multiple different transformers 02 as shown in Figure 1 ( Figure 1 takes two transformers 02 and two AC power supply lines 01 as an example), or they can be output from different circuit breakers (not shown in Figure 2) of the same transformer 02 as shown in Figure 2 ( Figure 2 takes a single transformer 02 and two AC power supply lines 01 as an example).
  • the present application provides a charging device and a charging system, which can avoid device damage due to wiring errors for a charging device with multiple AC power supply lines.
  • an embodiment of the present application provides a charging device, which includes: multiple first AC power supply lines, multiple first circuit groups, a first DC bus connected to the multiple first circuit groups, a first switch circuit located between the input end and the output end of each first AC power supply line in the multiple first AC power supply lines, and a phase sequence detection circuit connected to each first AC power supply line in the multiple first AC power supply lines.
  • the multiple first AC power supply lines are connected to the multiple first circuit groups in a one-to-one correspondence, that is, each first AC power supply line in the multiple first AC power supply lines is respectively connected to a first circuit group, and each first circuit group in the multiple first circuit groups is respectively connected to a first AC power supply line.
  • Each first circuit group includes multiple rectifier circuits and multiple charging circuits, and the input end of each rectifier circuit in the multiple rectifier circuits is connected to the output end of the corresponding first AC power supply line to receive the three-phase AC voltage provided by the first AC power supply line.
  • the output end of each rectifier circuit in the multiple rectifier circuits is connected to the first DC bus, and the input end of each charging circuit in the multiple charging circuits is connected to the first DC bus. That is, the output ends of the multiple rectifier circuits are all connected in parallel to the first DC bus, and the input ends of the multiple charging circuits are also connected in parallel to the first DC bus.
  • Each first switch circuit is used to connect the first AC power supply line with the power supply path of the corresponding first circuit group when it is turned on, and disconnect the first AC power supply line from the power supply path of the corresponding first circuit group when it is turned off.
  • the phase sequence detection circuit is connected between the input end of each first AC power supply line and the first switch circuit, and the phase sequence detection circuit is used to: check whether the voltage phase sequence on the same phase line in the multiple first AC power supply lines is consistent; if the voltage phase sequence on the same phase line in the multiple first AC power supply lines is consistent, then control all the first switch circuits to be turned on; if the voltage phase sequence on the same phase line in the multiple first AC power supply lines is inconsistent, then control all the first switch circuits to be disconnected.
  • all the rectifier circuits in the first circuit group are connected to the charging circuits in all the first circuit groups through the first DC bus.
  • the first DC bus is designed to be pooled, so that photovoltaic devices and energy storage devices can be superimposed on the first DC bus, and the photovoltaic and energy storage stacking method is simple, low-cost and high-efficiency.
  • a phase sequence detection circuit is used to detect whether the phase sequence of multiple first AC power supply lines is consistent. When the phase sequence is consistent, all the first switch circuits are turned on, and when the phase sequence is inconsistent, all the first switch circuits are disconnected to avoid equipment damage due to wrong wiring.
  • the present application does not limit the number of the first AC power supply lines and the first circuit group, which can be 2 first AC power supply lines.
  • the circuits and two first circuit groups may also be three first AC power supply circuits and three first circuit groups, or more first AC power supply circuits and more first circuit groups.
  • the drawings in the specification are all illustrated by taking two first AC power supply circuits and two first circuit groups as an example.
  • the input end of the first AC power supply circuit is used to connect to the power supply to receive the three-phase AC voltage provided by the power supply, wherein the three-phase AC voltage refers to three voltages with the same frequency, equal potential amplitude, and a phase difference of 120 degrees.
  • the first AC power supply circuit includes at least three phase lines: a first phase line, a second phase line, and a third phase line, and each phase line is used to receive a corresponding single-phase AC voltage.
  • the first AC power supply circuit is generally a three-phase five-wire system, that is, the first AC power supply circuit includes a zero line (also called a neutral line) and a ground line (also called a protective ground line) in addition to the three phase lines.
  • the first switch circuit When the first switch circuit is turned on, the first AC power supply circuit provides the received three-phase AC voltage to the corresponding first circuit group.
  • phase sequence refers to the order of three-phase alternating current, which is determined by the phase difference.
  • A, B, and C represent three-phase alternating current respectively, and phase A leads phase B by 120 degrees, phase B leads phase C by 120 degrees, and phase C leads phase A by 120 degrees.
  • the same phase sequence of multiple first AC power supply lines means that the phase difference between the first phase line and the second phase line in the multiple first AC power supply lines is the same, the phase difference between the second phase line and the third phase line is the same, and the phase difference between the third phase line and the first phase line is the same.
  • the first phase lines of multiple first AC power supply lines are all A-phase AC
  • the second phase lines of multiple first AC power supply lines are all B-phase AC
  • the third phase lines of multiple first AC power supply lines are all C-phase AC.
  • the multiple rectifier circuits and the multiple charging circuits in each first circuit group are separately arranged.
  • the separate arrangement here is relative to the integrated arrangement, which means that the multiple rectifier circuits and the multiple charging circuits are physically independent of each other.
  • the multiple rectifier circuits are also separately arranged, and the multiple charging circuits are also separately arranged.
  • each rectifier circuit in the plurality of rectifier circuits is connected to the output end of the corresponding first AC power supply line to receive the three-phase AC voltage provided by the first AC power supply line.
  • the output end of each rectifier circuit in the plurality of rectifier circuits is connected to the first DC bus, and the input end of each charging circuit in the plurality of charging circuits is connected to the first DC bus. That is, the output ends of the plurality of rectifier circuits are connected in parallel to the first DC bus, and the input ends of the plurality of charging circuits are also connected in parallel to the first DC bus.
  • the first DC bus generally includes a positive bus and a negative bus.
  • Each rectifier circuit is used to convert the three-phase AC voltage provided by the first AC power supply line into a DC voltage matching the first DC bus; for example, if the three-phase AC voltage is 380V and the DC voltage matching the first DC bus is 820V, then the rectifier circuit can convert the three-phase AC voltage of 380V into a DC voltage of 820V.
  • Each charging circuit is used to convert the DC voltage on the first DC bus into a target DC voltage with a set current and a set voltage and output it. For example, the charging circuit converts the 820V DC voltage into the voltage and current required by the electric vehicle, thereby stably charging the electric vehicle. In the present application, the DC voltage output by all rectifier circuits is pooled through the first DC bus and then enters each charging circuit.
  • the number of rectifier circuits can be configured according to the power of the three-phase AC voltage on the first AC power supply line. For example, if the power of the three-phase AC voltage is 720KW and the conversion power of each rectifier circuit is 120KW, then 6 rectifier circuits can be configured.
  • the present application does not limit the number of charging circuits, and the number of charging circuits may be the same as the number of rectifier circuits, or may be different from the number of rectifier circuits. Exemplarily, the number of charging circuits is greater than or equal to the number of rectifier circuits.
  • the rectifier circuit may include an AC-DC conversion circuit, in which no transformer is provided, thereby ensuring high efficiency and low loss of the rectifier circuit.
  • the charging circuit may include a DC-DC conversion circuit, in which a transformer is provided, thereby ensuring charging safety.
  • the first switch circuit may include three switches, one switch being provided on each phase line.
  • the first switch circuit may also include switches provided on the neutral line and/or the ground line, which is not limited here. Generally, switches may not be provided on the neutral line and the ground line.
  • the switch in the first switch circuit may be a common switch in an electric power system, such as a circuit breaker, a relay, a contactor, etc., which is not limited here.
  • the phase sequence detection circuit is also used to: if the voltage phase sequence on the same phase line in multiple first AC power supply lines is inconsistent, then initiate a reminder message that the phase sequence of the three-phase AC voltage on the multiple first AC power supply lines is inconsistent to indicate a wiring error.
  • the phase sequence detection circuit may include: a comparison circuit, a control circuit, and a plurality of voltage acquisition circuits corresponding to the plurality of first AC power supply lines.
  • each first AC power supply line corresponds to a voltage acquisition circuit; each voltage acquisition circuit is connected to two phase lines of the corresponding first AC power supply line, and the two phase lines of the first AC power supply line connected by different voltage acquisition circuits are the same; each voltage acquisition circuit is used to collect the voltage signal between the two phase lines.
  • the two phase lines connected to the voltage acquisition circuit can be any two of the first phase line, the second phase line and the third phase line.
  • the two phase lines connected to the other voltage acquisition circuits must also be the two phase lines with the same phase sequence in the corresponding first AC power supply line.
  • each first AC power supply line corresponds to two voltage acquisition circuits; both voltage acquisition circuits are connected to the neutral line and one of the phase lines in the corresponding first AC power supply line, and each voltage acquisition circuit is used to acquire a voltage signal between the phase line and the neutral line N.
  • the two voltage acquisition circuits connected to the same first AC power supply line are connected to different phase lines in the first AC power supply line, and the two phase lines in the first AC power supply line connected to the two voltage acquisition circuits connected to different first AC power supply lines are the same.
  • the comparison circuit determines whether the waveforms of the voltage signals corresponding to the same phase line in the multiple first AC power supply lines are consistent based on the voltage signals collected by each voltage acquisition circuit; if the waveforms of the voltage signals corresponding to the same phase line in the multiple first AC power supply lines are consistent, first control information is sent to the control circuit; if the waveforms of the voltage signals corresponding to the same phase line in the multiple first AC power supply lines are inconsistent, second control information is sent to the control circuit; the control circuit controls the first switch circuit to turn on after receiving the first control information sent by the comparison circuit, and controls the first switch circuit to turn off after receiving the second control information.
  • the comparison circuit compares the voltage signals acquired by the voltage acquisition circuits connected to different first AC power supply lines and connected to the same phase line. For example, the comparison circuit compares the voltage signals acquired by the voltage acquisition circuits respectively connected to the first phase lines in different first AC power supply lines, and compares the voltage signals acquired by the voltage acquisition circuits respectively connected to the second phase lines in different first AC power supply lines.
  • the two groups of comparison results are both consistent in voltage waveform, it is considered that the waveforms of the voltage signals corresponding to the same phase line in the multiple first AC power supply lines are consistent; if the waveforms of at least one group of comparison results in the two groups are inconsistent, it is considered that the phase sequence of the voltage signals corresponding to the same phase line in the multiple first AC power supply lines is inconsistent.
  • each voltage acquisition circuit can also convert the collected voltage signal into a digital signal and send the digital signal to the comparison circuit; then the comparison circuit can compare whether the digital signals sent by different voltage acquisition circuits connected to the same phase line in the multiple first AC power supply lines are consistent based on the digital signals received from each voltage acquisition circuit; if the digital signals sent by different voltage acquisition circuits connected to the same phase line in the multiple first AC power supply lines are consistent, first control information is sent to the control circuit; if the digital signals sent by different voltage acquisition circuits connected to the same phase line in the multiple first AC power supply lines are inconsistent, second control information is sent to the control circuit.
  • two digital signals being consistent means that the sizes of the two digital signals are the same at any time.
  • the voltage acquisition circuit may include: a first resistor, a second resistor, a third resistor, a fourth resistor, a fifth resistor, a first diode, a first transistor and an optical coupler.
  • the first resistor is connected in series between the first input terminal of the voltage acquisition circuit and the cathode of the first diode; the second resistor is connected in series between the second input terminal of the voltage acquisition circuit and the anode of the first diode; the cathode of the diode is also connected to the anode of the photodiode in the optical coupler, and the anode of the first diode is connected to the cathode input terminal of the photodiode in the optical coupler; the collector of the transistor in the optical coupler is connected to the first reference voltage terminal, and the emitter of the transistor in the optical coupler is connected to the first end of the third resistor; the base of the first transistor is connected to the second end of the third resistor, the collector of the first transistor is connected to the first end of the fourth resistor and the output end of the voltage acquisition circuit, and the emitter of the first transistor is connected to the second reference voltage terminal; the second end of the fourth resistor is connected to the first reference voltage terminal; the first end of the fifth
  • the working principle of the voltage acquisition circuit is: the voltage signal between the first input end and the second input end of the voltage acquisition circuit is a sinusoidal wave signal, and the positive half-cycle signal of the sinusoidal wave signal can drive the photodiode in the optocoupler to emit light, and the transistor in the optocoupler emits an output photocurrent to control the first transistor to output a high-potential voltage; the negative half-cycle signal of the sinusoidal wave signal can only pass through the first diode, driving the photodiode in the optocoupler not to emit light, and the first transistor outputs a low-potential voltage, thereby converting the sinusoidal wave voltage signal into a digital signal.
  • control circuit can be a general-purpose central processing unit (CPU), a general-purpose processor, a digital signal processing (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It can implement or execute various exemplary logic blocks, modules and circuits described in conjunction with the disclosure of the present application.
  • the above-mentioned control circuit can also be a combination that implements a computing function, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and the like.
  • the charging device may further include a first photovoltaic device connected to the first DC bus, which may convert light energy into electrical energy and then provide it to the first DC bus, so that not only the capacity of the charging device can be increased, but also the electrical energy provided by the first photovoltaic device can be used preferentially during the day.
  • the charging device may further include a first energy storage device connected to the first DC bus, which may store electrical energy when the electricity price is low, and then use the electrical energy stored in the first energy storage device preferentially when the electricity price is high.
  • a first photovoltaic device and a first energy storage device are connected to the first DC bus of the charging device.
  • the first energy storage device can store not only the electric energy of the power grid but also the electric energy of the first photovoltaic device.
  • the present application does not limit the specific implementation of the first photovoltaic device, which can be any method that can achieve photovoltaic functions.
  • the present application does not limit the specific implementation of the first energy storage device, which can be any method that can achieve the storage function.
  • the charging device may further include a plurality of charging interfaces and a switching matrix, wherein the switching matrix is connected to each charging circuit and the plurality of charging interfaces; the switching matrix is used to group and schedule the DC voltage output by each charging circuit, and output it to at least two charging interfaces accordingly.
  • the charging device may also include at least one second photovoltaic device and/or at least one second energy storage device, and at least one second DC bus is connected to the second photovoltaic device and/or the second energy storage device.
  • the second photovoltaic device can convert light energy into electrical energy and provide it to the second DC bus, which can not only increase the capacity of the charging device, but also give priority to the use of the electrical energy provided by the first photovoltaic device during the day. Taking into account the different electricity prices in different time periods, for example, the electricity price during the day will be much higher than the electricity price at night.
  • the second energy storage device can store electrical energy when the electricity price is low, and then give priority to the use of the electrical energy stored in the second energy storage device when the electricity price is high.
  • the second energy storage device can not only store the electrical energy of the power grid, but also store the electrical energy of the second photovoltaic device.
  • the present application does not limit the specific implementation of the second photovoltaic device, which can be any method that can achieve the photovoltaic function.
  • the present application does not limit the specific implementation of the second energy storage device, which can be any method that can achieve the storage function.
  • the charging device may further include a second switch circuit located on at least one second AC power supply line; each of the second switch circuits is used to connect the second AC power supply line with the power supply path of the corresponding second circuit group when it is turned on, and disconnect the second AC power supply line from the power supply path of the corresponding first circuit group when it is turned off.
  • the second switch circuit can be used to control the power on and off of the charging energy system.
  • the second switch circuit may include three switches, one switch being provided on each phase line.
  • the second switch circuit may also include switches provided on the neutral line and/or the ground line, which is not limited here. Generally, switches may not be provided on the neutral line and the ground line.
  • the switch in the second switch circuit may be a common switch in an electric power system, such as a circuit breaker, a relay, a contactor, etc., which is not limited here.
  • the embodiment of the present application also provides another charging device, which may include: multiple second AC power supply lines, multiple second circuit groups and multiple second DC busbars.
  • the multiple second AC power supply lines are connected to the multiple second circuit groups in a one-to-one correspondence, that is, each second AC power supply line in the multiple second AC power supply lines is connected to a second circuit group, and each first circuit group in the multiple first circuit groups is connected to a first AC power supply line.
  • the multiple second circuit groups are connected to the multiple second DC busbars in a one-to-one correspondence, that is, each second circuit group in the multiple second circuit groups is connected to a second DC busbar, and each second DC busbar in the multiple second DC busbars is connected to a second circuit group.
  • Each second circuit group includes multiple rectifier circuits and multiple charging circuits.
  • the input end of the second AC power supply line is used to connect to the power supply to receive the three-phase AC voltage provided by the power supply.
  • the input end of each rectifier circuit in the multiple rectifier circuits in the second circuit group is connected to the output end of the corresponding second AC power supply line to receive the three-phase AC voltage provided by the second AC power supply line.
  • the output end of each rectifier circuit in the second circuit group is connected to the corresponding second DC bus, and the input end of each charging circuit in the second circuit group is connected to the corresponding second DC bus.
  • the output ends of multiple rectifier circuits in the same second circuit group are connected in parallel to the corresponding second DC bus, and the input ends of multiple charging circuits in the same second circuit group are also connected in parallel to the corresponding second DC bus.
  • the DC voltage output by all rectifier circuits in the same second circuit group is pooled through the corresponding second DC bus and then enters each charging circuit in the second circuit group.
  • different second AC power supply lines are connected to different second DC buses, so different second AC power supply lines are isolated from each other, and no circulating current will be formed even if the lines are connected incorrectly.
  • second AC power supply lines and second circuit groups which may be 2 second AC power supply lines and 2 second circuit groups, or 3 second AC power supply lines and 3 second circuit groups, or more second AC power supply lines and more second circuit groups.
  • 2 second AC power supply lines and 2 second circuit groups are used as examples for schematic illustration.
  • each second circuit group multiple rectifier circuits and multiple charging circuits are separately arranged.
  • the separate arrangement here is relative to the integrated arrangement, which means that the multiple rectifier circuits and the multiple charging circuits are physically independent of each other.
  • the multiple rectifier circuits are also separately arranged, and the multiple charging circuits are also separately arranged.
  • the second DC bus generally includes a positive bus and a negative bus.
  • Each rectifier circuit is used to convert the three-phase AC voltage provided by the second AC power supply line into a DC voltage that matches the second DC bus; for example, if the three-phase AC voltage is 380V and the DC voltage that matches the second DC bus is 820V, then the rectifier circuit can convert the 380V three-phase AC voltage into a DC voltage of 820V.
  • Each charging circuit is used to convert the DC voltage on the corresponding second DC bus into a target DC voltage with a set current and a set voltage and output it. For example, the charging circuit converts the 820V DC voltage into the voltage and current required by the electric vehicle, thereby stably charging the electric vehicle.
  • the number of rectifier circuits can be set according to the power of the three-phase AC voltage on the second AC power supply line. For example, if the power of the three-phase AC voltage is 720KW and the conversion power of each rectifier circuit is 120KW, then 6 rectifier circuits can be set.
  • the present application does not limit the number of charging circuits, and the number of charging circuits may be the same as the number of rectifier circuits, or may be different from the number of rectifier circuits. Exemplarily, the number of charging circuits is greater than or equal to the number of rectifier circuits.
  • the rectifying circuit may include an AC-DC converting circuit
  • the charging circuit may include a DC-DC converting circuit
  • the charging device may also include at least one second photovoltaic device and/or at least one second energy storage device, and at least one second DC bus is connected to the second photovoltaic device and/or the second energy storage device.
  • the second photovoltaic device can convert light energy into electrical energy and provide it to the second DC bus, which not only increases the capacity of the charging device, but also allows the priority use of the electrical energy provided by the first photovoltaic device during the day. Taking into account that electricity prices are different at different times, for example, the electricity price during the day will be much higher than the electricity price at night.
  • the second energy storage device can store electrical energy when the electricity price is low, and then give priority to the electrical energy stored in the second energy storage device when the electricity price is high.
  • the second energy storage device can not only store the electrical energy of the power grid, but also store the electrical energy of the second photovoltaic device.
  • the present application does not limit the specific implementation of the second photovoltaic device, which can be any method that can achieve the photovoltaic function.
  • the present application does not limit the specific implementation of the second energy storage device, which can be any method that can achieve the storage function.
  • the charging device may further include a plurality of charging interfaces and a switching matrix, wherein the switching matrix is connected to each charging circuit and the plurality of charging interfaces; the switching matrix is used to group and schedule the DC voltage output by each charging circuit, and output it to at least two charging interfaces accordingly.
  • the charging device may further include a second switch circuit located on at least one second AC power supply line; each of the second switch circuits is used to connect the second AC power supply line with the power supply path of the corresponding second circuit group when it is turned on, and disconnect the second AC power supply line from the power supply path of the corresponding first circuit group when it is turned off.
  • the second switch circuit can be used to control the power on and off of the charging energy system.
  • the second switch circuit may include three switches, one switch being provided on each phase line.
  • the second switch circuit may also include switches provided on the neutral line and/or the ground line, which is not limited here. Generally, switches may not be provided on the neutral line and the ground line.
  • the switch in the second switch circuit may be a common switch in an electric power system, such as a circuit breaker, a relay, a contactor, etc., which is not limited here.
  • an embodiment of the present application further provides a charging system, which may include a charging device and at least one charging terminal connected to the charging device.
  • the charging device may be a charging device as described in various embodiments of the first aspect or the second aspect.
  • Each of the at least one charging terminal is used to connect an electric vehicle, and the charging device can charge the electric vehicle connected to the charging terminal through each charging terminal.
  • each charging terminal is connected to at least one charging circuit in the charging device.
  • the charging device also includes a charging interface, and the charging device can be connected to the charging terminal through the charging interface.
  • the multiple second AC power supply lines are isolated, so even if the lines are connected incorrectly, no circulating current will occur.
  • the charging device has a first AC power supply line and a second AC power supply line
  • the first AC power supply line and the second AC power supply line are isolated, so even if the lines are connected incorrectly, no circulating current will occur.
  • the present application does not limit the number of charging terminals, which can be specifically set according to the number of charging interfaces.
  • one charging interface corresponds to one charging terminal, and the charging interface of the charging device is connected to the corresponding charging terminal.
  • the electric vehicle When the electric vehicle needs to be charged, the electric vehicle is connected to the charging terminal.
  • the charging terminal may include a housing, a human-machine interaction interface, a charging control unit, a metering and billing unit, etc.
  • the charging terminal is used for information exchange and energy transmission and metering and billing with the electric vehicle.
  • the charging energy system may further include at least one electric vehicle connected to the at least one charging terminal, so that the charging device charges the electric vehicle through the charging terminal.
  • FIG1 is a schematic diagram of a two-way transformer power supply scenario
  • FIG2 is a schematic diagram of a transformer power supply scenario
  • FIG3 is a schematic diagram of the structure of a split-type charging stack with an integrated module architecture
  • FIG4 is a schematic diagram of the structure of a split-type charging stack having a split module architecture
  • FIG5 is a schematic diagram of the structure of a charging device provided by an embodiment of the present application.
  • FIG6 is a schematic diagram of a flow chart of a phase sequence detection circuit in the present application.
  • FIG7 is a schematic diagram of the structure of a charging device provided in yet another embodiment of the present application.
  • FIG8 is a schematic structural diagram of a charging device provided in yet another embodiment of the present application.
  • FIG9 is a schematic diagram of the structure of a charging device provided in yet another embodiment of the present application.
  • FIG10 is a schematic structural diagram of a charging device provided in yet another embodiment of the present application.
  • FIG11 is a schematic structural diagram of a charging device provided in yet another embodiment of the present application.
  • FIG12 is a schematic diagram of the structure of a charging device provided in yet another embodiment of the present application.
  • FIG13 is a schematic diagram of the structure of a voltage acquisition circuit provided in an embodiment of the present application.
  • FIG14 is a schematic diagram of input waveforms and output waveforms of the voltage acquisition circuit shown in FIG13;
  • FIG15 is a schematic diagram of the structure of a charging device provided in yet another embodiment of the present application.
  • FIG16 is a schematic diagram of the structure of a charging device provided in yet another embodiment of the present application.
  • FIG17 is a schematic diagram of the structure of a charging device provided in yet another embodiment of the present application.
  • FIG18 is a schematic diagram of the structure of a charging device provided in yet another embodiment of the present application.
  • FIG. 19 is a schematic diagram of the structure of a charging system provided in an embodiment of the present application.
  • 10-charging system 20-power supply; 100-charging device; 200-electric vehicle; 300-charging terminal; 110-first AC power supply line, 120-first circuit group; 130-first DC bus; 140-first switch circuit; 150-phase sequence detection circuit; 151-voltage acquisition circuit; 152-comparison circuit; 153-control circuit; 160-first photovoltaic device; 170-first energy storage device; 180-charging interface; 190-switching matrix; 210-second AC power supply line; 220-second circuit group; 230-second DC bus; 240-second switch circuit; 121, 221 -rectifier circuit; 122, 222-charging circuit; 141, 241-switch; 250-second photovoltaic device; 260-second energy storage device; R1-first resistor; R2-second resistor; R3-third resistor; R4-fourth resistor; R5-fifth resistor; D1-first diode; Q1-first transistor; U1-optical coupler;
  • connection refers to electrical connection, and the connection between two electrical components can be a direct or indirect connection between the two electrical components.
  • a and B are connected, which can be either A and B directly connected, or A and B are indirectly connected through one or more other electrical components, for example, A and B are connected, or A and C are directly connected, C and B are directly connected, and A and B are connected through C.
  • the multiple AC power supply lines 01 may be from multiple different transformers 02 as shown in FIG1 (FIG1 takes two transformers 02 and two AC power supply lines 01 as an example), or may be output from different circuit breakers (not shown in FIG2 ) of the same transformer 02 as shown in FIG2 (FIG2 takes a single transformer 02 and two AC power supply lines 01 as an example).
  • the current split-type charging stack is mainly an integrated module architecture.
  • the split-type charging stack 001 includes multiple integrated modules 03, and each integrated module 03 includes an AC-DC conversion circuit 031 and a DC-DC conversion circuit 032.
  • the AC-DC conversion circuit 031 is used to convert the AC power output by the AC power supply line 01 into DC power
  • the DC-DC conversion circuit 032 is used to adjust the DC power converted by the AC-DC conversion circuit 031 to the target charging voltage, and then distribute the target charging voltage to different charging interfaces 05 through the switches in the switching matrix 04 (not shown in the figure).
  • the split charging stack 001 includes a plurality of AC-DC conversion circuits 031 and a plurality of DC-DC conversion circuits 032 that are separately arranged, and the output ends of all AC-DC conversion circuits 031 and the input ends of all DC-DC conversion circuits 032 are interconnected through a DC bus 08.
  • the photovoltaic device 06 and the energy storage device 07 are directly superimposed on the DC bus 08.
  • the photovoltaic and energy storage stacking scheme is simple, efficient, and low-cost, and therefore is increasingly valued by the industry.
  • the DC bus since there is no transformer between the DC bus and the AC power supply line, the DC bus is a non-isolated DC bus, which requires the phase sequence of the three-phase AC voltage in the multiple AC power supply lines to be completely consistent to avoid circulating current.
  • the phase sequence of the multiple AC power supply lines is completely consistent, resulting in accidents such as system burnout.
  • the embodiment of the present application provides a charging device 100, which can avoid device damage due to wrong wiring.
  • a charging device 100 which can avoid device damage due to wrong wiring.
  • Fig. 5 is a schematic diagram of the structure of a charging device 100 provided in an embodiment of the present application.
  • the charging device 100 mainly includes: a plurality of first AC power supply lines 110, a plurality of first circuit groups 120, a first DC bus 130 connected to the plurality of first circuit groups 120, a first switch circuit 140 located between the input end and the output end of each of the plurality of first AC power supply lines 110, and a phase sequence detection circuit 150 connected to each of the plurality of first AC power supply lines 110.
  • the multiple first AC power supply lines 110 are connected to the multiple first circuit groups 120 in a one-to-one correspondence, that is, each of the multiple first AC power supply lines 110 is connected to a first circuit group 120, and each of the multiple first circuit groups 120 is connected to a first AC power supply line 110.
  • the present application does not limit the number of first AC power supply lines 110 and first circuit groups 120, which can be 2 first AC power supply lines 110 and 2 first circuit groups 120, or 3 first AC power supply lines 110 and 3 first circuit groups 120, or more first AC power supply lines 110 and more first circuit groups 120.
  • the drawings in the specification are all illustrated by taking 2 first AC power supply lines 110 and 2 first circuit groups 120 as an example.
  • the input end of the first AC power supply circuit 110 is used to connect to a power supply (not shown in the figure) to receive a three-phase AC voltage provided by the power supply.
  • the power supply is used to provide a three-phase AC voltage to the charging device 100, for example, it can be a power grid.
  • the three-phase AC voltage refers to three voltages with the same frequency, equal potential amplitude, and a phase difference of 120 degrees.
  • the first AC power supply circuit 110 includes at least three phase lines: a first phase line L1, a second phase line L2, and a third phase line L3, each of which is used to receive a corresponding one-phase AC voltage.
  • the first AC power supply circuit 110 is generally a three-phase five-wire system, that is, the first AC power supply circuit 110 includes a zero line (also called a neutral line) and a ground line (also called a protective ground line) in addition to the three phase lines L1 to L3.
  • the first switch circuit 140 When the first switch circuit 140 is turned on, the first AC power supply circuit 110 provides the received three-phase AC voltage to the corresponding first circuit group 120.
  • Each first circuit group 120 includes a plurality of rectifier circuits 121 and a plurality of charging circuits 122, and the plurality of rectifier circuits 121 and the plurality of charging circuits 122 may be separately arranged.
  • the separate arrangement here is relative to the integrated arrangement, which means that the plurality of rectifier circuits 121 and the plurality of charging circuits 122 are physically independent of each other.
  • the plurality of rectifier circuits 121 are also separately arranged, and the plurality of charging circuits 122 are also separately arranged.
  • each rectifier circuit 121 of the plurality of rectifier circuits 121 is connected to the output end of the corresponding first AC power supply line 110.
  • the output end of each rectifier circuit 121 in the plurality of rectifier circuits 121 is connected to the first DC bus 130, and the input end of each charging circuit 122 in the plurality of charging circuits 122 is connected to the first DC bus 130. That is, the output ends of the plurality of rectifier circuits 121 are connected in parallel to the first DC bus 130, and the input ends of the plurality of charging circuits 122 are also connected in parallel to the first DC bus 130.
  • the first DC bus 130 generally includes a positive bus and a negative bus.
  • Each rectifier circuit 121 is used to convert the three-phase AC voltage provided by the first AC power supply line 110 into a DC voltage matching the first DC bus 130; for example, if the three-phase AC voltage is 380V, and the DC voltage matching the first DC bus 130 is 820V, then the rectifier circuit 121 can convert the three-phase AC voltage of 380V into a DC voltage of 820V.
  • Each charging circuit 122 is used to convert the DC voltage on the first DC bus 130 into a target DC voltage with a set current and a set voltage and output it. For example, the charging circuit 122 converts the DC voltage of 820V into the voltage and current required by the electric vehicle, thereby stably charging the electric vehicle. In the present application, the DC voltage output by all rectifier circuits 121 is pooled through the first DC bus 130 and then enters each charging circuit 122.
  • the number of rectifier circuits 121 can be configured according to the power of the three-phase AC voltage on the first AC power supply line 110. For example, if the power of the three-phase AC voltage is 720KW and the conversion power of each rectifier circuit 121 is 120KW, then 6 rectifier circuits 121 can be configured.
  • the present application does not limit the number of charging circuits 122, and the number of charging circuits 122 may be the same as the number of rectifier circuits 121, or may be different from the number of rectifier circuits 121. Exemplarily, the number of charging circuits 122 is greater than or equal to the number of rectifier circuits 121.
  • the rectifier circuit 121 may include an AC-DC conversion circuit, in which no transformer is provided, thereby ensuring high efficiency and low loss of the rectifier circuit 121.
  • the charging circuit 122 may include a DC-DC conversion circuit, in which a transformer is provided, thereby ensuring charging safety.
  • Each first switch circuit 140 is used to connect the first AC power supply line 110 with the power supply path of the corresponding first circuit group 120 when it is turned on, and disconnect the first AC power supply line 110 from the power supply path of the corresponding first circuit group 120 when it is turned off.
  • the first switch circuit 140 may include three switches 141, with one switch 141 being provided on each phase line.
  • the first switch circuit 140 may also include switches provided on the neutral line and/or the ground line, which is not limited here. Generally, switches may not be provided on the neutral line and the ground line.
  • the switch 141 in the first switch circuit 140 may be a common switch in a power system, such as a circuit breaker, a relay, a contactor, etc., which is not limited here.
  • the phase sequence detection circuit 150 is connected between the input end of each first AC power supply line 110 and the first switch circuit 140, as shown in FIG. 6, the phase sequence detection circuit 150 is used to perform the following steps:
  • step S102 is executed; if the voltage phase sequences on the same phase lines in the multiple first AC power supply lines 110 are inconsistent, step S103 is executed.
  • the rectifier circuits 121 in all the first circuit groups 120 are connected to the charging circuits 122 in all the first circuit groups 120 through the first DC bus 130.
  • the first DC bus 130 is designed as a pool, so that photovoltaic devices and energy storage devices can be superimposed on the first DC bus 130, and the photovoltaic and energy storage stacking method is simple, low-cost and high-efficiency.
  • the phase sequence detection circuit 150 is used to detect whether the phase sequence of the multiple first AC power supply lines 110 is consistent. When the phase sequence is consistent, all the first switch circuits 140 are turned on, and when the phase sequence is inconsistent, all the first switch circuits 140 are disconnected to avoid equipment damage due to wrong wiring.
  • phase sequence refers to the order of three-phase alternating current, which is determined by the phase difference.
  • A, B, and C represent three-phase alternating current respectively, and phase A leads phase B by 120 degrees, phase B leads phase C by 120 degrees, and phase C leads phase A by 120 degrees.
  • the same phase sequence of multiple first AC power supply lines 110 means that the phase difference between the first phase line L1 and the second phase line L2 in the multiple first AC power supply lines 110 is the same, the phase difference between the second phase line L1 and the third phase line L2 is the same, and the phase difference between the third phase line L3 and the first phase line L1 is the same.
  • the first phase line L1 of the multiple first AC power supply lines 110 is all A-phase AC
  • the second phase line L2 of the multiple first AC power supply lines 110 is all B-phase AC
  • the third phase line L3 of the multiple first AC power supply lines 110 is all C-phase AC.
  • the phase sequence detection circuit 150 is also used to: if the voltage phase sequence on the same phase line in the multiple first AC power supply lines 110 is different If the phase sequence of the three-phase AC voltage on the multiple first AC power supply lines 110 is inconsistent, a reminder message is sent to indicate that the wiring is wrong.
  • FIGS. 7 to 12 are schematic diagrams of the structures of the charging device 100 provided in different embodiments of the present application.
  • the phase sequence detection circuit 150 includes: a comparison circuit 152, a control circuit 153, and a plurality of voltage acquisition circuits 151 corresponding to the plurality of first AC power supply lines 110.
  • each first AC power supply line 110 corresponds to a voltage acquisition circuit 151; each voltage acquisition circuit 151 is connected to two phase lines of the corresponding first AC power supply line 110, and the two phase lines of the first AC power supply line 110 connected to different voltage acquisition circuits 151 are the same; each voltage acquisition circuit 151 is used to collect the voltage signal between the two phase lines.
  • the two phase lines connected to the voltage acquisition circuit can be any two of the first phase line L1, the second phase line L2 and the third phase line L3.
  • the two phase lines connected to the other voltage acquisition circuits 151 must also be the two phase lines with the same phase sequence in the corresponding first AC power supply line 110.
  • the two voltage acquisition circuits 151 are connected to the first phase line L1 and the second phase line L2 of the two first AC power supply lines 110 respectively.
  • the two voltage acquisition circuits 151 are connected to the first phase line L1 and the third phase line L3 of the two first AC power supply lines 110 respectively.
  • the two voltage acquisition circuits 151 are respectively connected to the second phase line L2 and the third phase line L3 in the two first AC power supply lines 110 .
  • each first AC power supply line 110 corresponds to two voltage acquisition circuits 151; both voltage acquisition circuits 151 are connected to the neutral line N and one of the phase lines in the corresponding first AC power supply line 110, and each voltage acquisition circuit 151 is used to acquire the voltage signal between the phase line and the neutral line NN.
  • the two voltage acquisition circuits 151 connected to the same first AC power supply line 110 are connected to different phase lines in the first AC power supply line 110, and the two phase lines in the first AC power supply line 110 connected to the two voltage acquisition circuits 151 connected to different first AC power supply lines 110 are the same.
  • FIG. 10 to FIG. 12 each first AC power supply line 110 corresponds to two voltage acquisition circuits 151; both voltage acquisition circuits 151 are connected to the neutral line N and one of the phase lines in the corresponding first AC power supply line 110, and each voltage acquisition circuit 151 is used to acquire the voltage signal between the phase line and the neutral line NN.
  • the two voltage acquisition circuits 151 connected to the same first AC power supply line 110 are connected to different phase lines
  • one voltage acquisition circuit 151 is connected to the neutral line N and the first phase line L1, and the other voltage acquisition circuit 151 is connected to the neutral line N and the second phase line L2.
  • one voltage acquisition circuit 151 is connected to the neutral line N and the second phase line L2
  • the other voltage acquisition circuit 151 is connected to the neutral line N and the third phase line L3.
  • one voltage acquisition circuit 151 is connected to the neutral line N and the first phase line L1
  • the other voltage acquisition circuit 151 is connected to the neutral line N and the third phase line L3.
  • the comparison circuit 152 determines whether the waveforms of the voltage signals corresponding to the same phase line in the multiple first AC power supply lines 110 are consistent based on the voltage signals collected by each voltage acquisition circuit 151; if the waveforms of the voltage signals corresponding to the same phase line in the multiple first AC power supply lines 110 are consistent, first control information is sent to the control circuit 153; if the waveforms of the voltage signals corresponding to the same phase line in the multiple first AC power supply lines 110 are inconsistent, second control information is sent to the control circuit 153; the control circuit 153 controls the first switch circuit 140 to be turned on after receiving the first control information sent by the comparison circuit 152, and controls the first switch circuit 140 to be turned off after receiving the second control information.
  • the comparison circuit 152 compares the voltage signals acquired by the voltage acquisition circuits 151 connected to different first AC power supply lines 110 and connected to the same phase line. For example, in FIG10, the comparison circuit 152 compares the voltage signals acquired by the voltage acquisition circuits 151 connected to the first phase lines L1 in different first AC power supply lines 110, and compares the voltage signals acquired by the voltage acquisition circuits 151 connected to the second phase lines L2 in different first AC power supply lines 110.
  • the two groups of comparison results are both consistent in voltage waveform, it is considered that the waveforms of the voltage signals corresponding to the same phase line in the multiple first AC power supply lines 110 are consistent; if the waveforms of at least one of the two groups of comparison results are inconsistent, it is considered that the phase sequence of the voltage signals corresponding to the same phase line in the multiple first AC power supply lines 110 is inconsistent.
  • each voltage acquisition circuit 151 can also convert the collected voltage signal into a digital signal and send the digital signal to the comparison circuit 152; then the comparison circuit 152 can compare whether the digital signals sent by different voltage acquisition circuits 151 connected to the same phase line in the multiple first AC power supply lines 110 are consistent based on the digital signals received from each voltage acquisition circuit 151; if the digital signals sent by different voltage acquisition circuits 151 connected to the same phase line in the multiple first AC power supply lines 110 are consistent, first control information is sent to the control circuit 153; if the digital signals sent by different voltage acquisition circuits 151 connected to the same phase line in the multiple first AC power supply lines 110 are inconsistent, second control information is sent to the control circuit 153.
  • two digital signals being consistent means that the sizes of the two digital signals are the same at any time.
  • the present application does not limit the specific structure of the voltage acquisition circuit 151.
  • a zero-crossing sampling circuit as shown in FIG13 may be used.
  • the voltage acquisition circuit 151 may include: a first resistor R1, a second resistor R2, a third resistor R3, a fourth resistor R4, a Five resistors R5, a first diode D1, a first transistor Q1 and an optical coupler U1.
  • the first resistor R1 is connected in series between the first input terminal Sin1 of the voltage acquisition circuit 151 and the cathode of the first diode D1;
  • the second resistor R2 is connected in series between the second input terminal Sin2 of the voltage acquisition circuit 151 and the anode of the first diode D1;
  • the cathode of the diode is also connected to the anode of the photodiode in the optocoupler U1, and the anode of the first diode D1 is connected to the negative input terminal of the photodiode in the optocoupler U1;
  • the collector of the transistor in the optocoupler U1 is connected to the first reference voltage terminal V1, and the emitter of the transistor in the optocoupler U1 is connected to the first end of the third resistor R3;
  • the base of the first transistor Q1 is connected to the second end of the third resistor R3, the collector of the first transistor Q1 is connected to the first end of the fourth resistor R4 and the output terminal Sout
  • the voltage of the second reference voltage terminal V2 may be greater than the voltage of the first reference voltage terminal V1.
  • the voltage of the second reference voltage terminal V2 may also be less than the voltage of the first reference voltage terminal V1, which is not limited here.
  • the output end of the voltage acquisition circuit 151 is connected to the comparison circuit 152.
  • the first input end Sin1 and the second input end Sin2 of the voltage acquisition circuit 151 are respectively connected to two phase lines, and the first input ends Sin1 of different voltage acquisition circuits 151 are connected to the same phase line, and the second input ends Sin2 of different voltage acquisition circuits 151 are connected to the same phase line.
  • the voltage acquisition circuit 151 shown in FIG. 13 is applied to the charging device 100 shown in FIG. 10 to FIG.
  • the first input end Sin1 and the second input end Sin2 of the voltage acquisition circuit 151 are respectively connected to a phase line and a neutral line N, and the first input ends Sin1 of different voltage acquisition circuits 151 are all connected to the neutral line N, and the second input ends Sin2 of different voltage acquisition circuits 151 are connected to the same phase line, or the second input ends Sin2 of different voltage acquisition circuits 151 are all connected to the neutral line N, and the first input ends Sin1 of different voltage acquisition circuits 151 are connected to the same phase line.
  • the working principle of the voltage acquisition circuit 151 shown in Figure 13 is: the voltage signal between the first input terminal Sin1 and the second input terminal Sin2 of the voltage acquisition circuit 151 is a sinusoidal wave signal as shown in Figure 14, and the positive half-cycle signal of the sinusoidal wave signal can drive the photodiode in the optocoupler U1 to emit light, and the transistor in the optocoupler U1 emits an output photocurrent to control the first transistor Q1 to output a high-potential voltage; the negative half-cycle signal of the sinusoidal wave signal can only pass through the first diode D1, driving the photodiode in the optocoupler U1 not to emit light, and the first transistor Q1 outputs a low-potential voltage, thereby converting the sinusoidal wave voltage signal into a digital signal as shown in Figure 14.
  • control circuit 153 can be a general-purpose central processing unit (CPU), a general-purpose processor, a digital signal processing (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It can implement or execute various exemplary logic blocks, modules and circuits described in conjunction with the disclosure of the present application.
  • the above-mentioned control circuit 153 can also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and the like.
  • FIG. 15 is a schematic diagram of the structure of a charging device 100 provided by another embodiment of the present application.
  • the charging device 100 may also include a first photovoltaic device 160 connected to the first DC bus 130.
  • the first photovoltaic device 160 may convert light energy into electrical energy and provide it to the first DC bus 130. This not only increases the capacity of the charging device 100, but also allows the first photovoltaic device 160 to be used preferentially during the day.
  • the charging device 100 may also include a first energy storage device 170 connected to the first DC bus 130.
  • the first energy storage device 170 may store electrical energy when the price of electricity is low, and then use the electrical energy stored in the first energy storage device 170 preferentially when the price of electricity is high.
  • the first DC bus 130 of the charging device 100 is connected to a first photovoltaic device 160 and a first energy storage device 170 .
  • the first energy storage device 170 can store not only the power of the grid but also the power of the first photovoltaic device 160 .
  • the present application does not limit the specific implementation of the first photovoltaic device 160 , which may be any method that can achieve a photovoltaic function.
  • the present application does not limit the specific implementation of the first energy storage device 170, which can be any method that can achieve the storage function.
  • the charging device 100 may further include a plurality of charging interfaces 180 and a switching matrix 190 connected between each of the charging circuits 122 and the plurality of charging interfaces 180 ; the switching matrix 190 is used to group and schedule the DC voltage output by each of the charging circuits 122 , and output it to at least two of the charging interfaces 180 accordingly.
  • the embodiment of the present application further provides a charging device 100.
  • the charging device 100 includes: a plurality of second AC power supply lines 210, a plurality of second circuit groups 220, and a plurality of second DC busbars 230.
  • the plurality of second AC power supply lines 210 are connected to the plurality of second circuit groups 220 in a one-to-one correspondence, that is, each of the plurality of second AC power supply lines 210 is respectively
  • a second circuit group 220 is connected to each of the plurality of first circuit groups 120, and each of the plurality of first circuit groups 120 is connected to a first AC power supply line 110.
  • the plurality of second circuit groups 220 are connected to the plurality of second DC bus bars 230 in a one-to-one correspondence, that is, each of the plurality of second circuit groups 220 is connected to a second DC bus bar 230, and each of the plurality of second DC bus bars 230 is connected to a second circuit group 220.
  • the present application does not limit the number of the second AC power supply lines 210 and the second circuit groups 220, which may be 2 second AC power supply lines 210 and 2 second circuit groups 220, or 3 second AC power supply lines 210 and 3 second circuit groups 220, or more second AC power supply lines 210 and more second circuit groups 220.
  • 2 second AC power supply lines 210 and 2 second circuit groups 220 are used as examples for schematic illustration.
  • Each second circuit group 220 includes a plurality of rectifier circuits 221 and a plurality of charging circuits 222, and the plurality of rectifier circuits 221 and the plurality of charging circuits 222 can be separately arranged.
  • the separate arrangement here is relative to the integrated arrangement, which means that the plurality of rectifier circuits 221 and the plurality of charging circuits 222 are physically independent of each other.
  • the plurality of rectifier circuits 221 are also separately arranged, and the plurality of charging circuits 222 are also separately arranged.
  • the input end of the second AC power supply circuit 210 is used to connect to a power supply (not shown in the figure) to receive a three-phase AC voltage provided by the power supply.
  • the input end of each of the multiple rectifier circuits 221 in the second circuit group 220 is connected to the output end of the corresponding second AC power supply circuit 210 to receive the three-phase AC voltage provided by the second AC power supply circuit 210.
  • the output end of each rectifier circuit 221 in the second circuit group 220 is connected to the corresponding second DC bus 230, and the input end of each charging circuit 222 in the second circuit group 220 is connected to the corresponding second DC bus 230.
  • the output ends of the multiple rectifier circuits 221 in the same second circuit group 220 are connected in parallel to the corresponding second DC bus 230, and the input ends of the multiple charging circuits 222 in the same second circuit group 220 are also connected in parallel to the corresponding second DC bus 230.
  • the second DC bus 230 generally includes a positive bus and a negative bus.
  • Each rectifier circuit 221 is used to convert the three-phase AC voltage provided by the second AC power supply line 210 into a DC voltage that matches the second DC bus 230; for example, if the three-phase AC voltage is 380V and the DC voltage that matches the second DC bus 230 is 820V, then the rectifier circuit 221 can convert the three-phase AC voltage of 380V into a DC voltage of 820V.
  • Each charging circuit 222 is used to convert the DC voltage on the corresponding second DC bus 230 into a target DC voltage with a set current and a set voltage and output it. For example, the charging circuit 222 converts the DC voltage of 820V into the voltage and current required by the electric vehicle, thereby stably charging the electric vehicle.
  • the DC voltage output by all rectifier circuits 221 in the same second circuit group 220 is pooled through the corresponding second DC bus 230 and enters each charging circuit 222 in the second circuit group 220.
  • different second AC power supply lines 210 are connected to different second DC busbars 230 , so different second AC power supply lines 210 are isolated from each other, and no loop current will be formed even if the lines are connected incorrectly.
  • the number of rectifier circuits 221 can be set according to the power of the three-phase AC voltage on the second AC power supply line 210. For example, if the power of the three-phase AC voltage is 720KW and the conversion power of each rectifier circuit 221 is 120KW, then 6 rectifier circuits 221 can be set.
  • the present application does not limit the number of charging circuits 222, and the number of charging circuits 222 may be the same as the number of rectifier circuits 221, or may be different from the number of rectifier circuits 221. Exemplarily, the number of charging circuits 222 is greater than or equal to the number of rectifier circuits 221.
  • the rectifying circuit 221 may include an AC-DC conversion circuit
  • the charging circuit 222 may include a DC-DC conversion circuit.
  • FIG. 17 is a schematic diagram of the structure of a charging device 100 provided in another embodiment of the present application.
  • the charging device 100 may also include at least one second photovoltaic device 250 and/or at least one second energy storage device 260, and at least one second DC bus 230 is connected with the second photovoltaic device 250 and/or the second energy storage device 260.
  • the second photovoltaic device 250 can convert light energy into electrical energy and provide it to the second DC bus 230, which can not only increase the capacity of the charging device 100, but also give priority to the use of the electrical energy provided by the first photovoltaic device 160 during the day.
  • the second energy storage device 260 can store electrical energy when the electricity price is low, and then give priority to the use of the electrical energy stored in the second energy storage device 260 when the electricity price is high.
  • the second energy storage device 260 can not only store the electrical energy of the power grid, but also store the electrical energy of the second photovoltaic device 250.
  • the present application does not limit the specific implementation of the second photovoltaic device 250, which can be any method that can achieve the photovoltaic function.
  • the present application does not limit the specific implementation of the second energy storage device 260, which can be any method that can achieve the storage function.
  • the charging device 100 may further include a plurality of charging interfaces 180 and a switching matrix 190 connected between the output end of each charging circuit 122 and the plurality of charging interfaces 180 ; the switching matrix 190 is used to group and schedule the DC voltage output by each charging circuit 122 , and output it to at least two charging interfaces 180 accordingly.
  • the charging device 100 may further include a second switch circuit 240 located on at least one second AC power supply line 210; each second switch circuit 240 is used to connect the second AC power supply line 210 with the corresponding power supply path of the second circuit group 220 when it is turned on, and disconnect the second AC power supply line 210 from the corresponding power supply path of the first circuit group 120 when it is turned off.
  • the second switch circuit 240 can be used to control the power on and off of the charging energy system.
  • the second switch circuit 240 may include three switches 241, one switch 241 being provided on each phase line.
  • the second switch circuit 240 may also include switches provided on the neutral line N and/or the ground line, which is not limited here. Generally, the neutral line N and the ground line may not be provided with switches.
  • the switch 241 in the second switch circuit 240 may be a common switch in a power system, such as a circuit breaker, a relay, a contactor, etc., which is not limited here.
  • the embodiment of the present application also provides a charging device 100, see Figure 18, the charging device 100 includes: multiple first AC power supply lines 110, multiple first circuit groups 120, a first DC bus 130 connected to the multiple first circuit groups 120, a first switching circuit 140 located between the input end and the output end of each first AC power supply line 110 in the multiple first AC power supply lines 110, a phase sequence detection circuit 150 connected to each first AC power supply line 110 in the multiple first AC power supply lines 110, at least one second AC power supply line 210, at least one second circuit group 220 and at least one second DC bus 230.
  • a plurality of first AC power supply lines 110 are connected to a plurality of first circuit groups 120 in a one-to-one correspondence; each first circuit group 120 includes a plurality of rectifier circuits 121 and a plurality of charging circuits 122; the input end of each rectifier circuit 121 in the plurality of rectifier circuits 121 is connected to the output end of the corresponding first AC power supply line 110, and the output end of each rectifier circuit 121 in the plurality of rectifier circuits 121 is connected to the first DC bus 130; the input end of each charging circuit 122 in the plurality of charging circuits 122 is connected to the first DC bus 130; each first AC power supply line 110 is used to receive a three-phase AC voltage, and provide the received three-phase AC voltage to the corresponding first circuit group 120 when the first switch circuit 140 is turned on; each first switch circuit 140 is used to connect the first AC power supply line 110 with the power supply path of the corresponding first circuit group 120 when it is turned on, and disconnect the first AC power supply line 110 from the power supply path of
  • the phase sequence detection circuit 150 is connected between the input end of each first AC power supply line 110 and the first switch circuit 140.
  • the phase sequence detection circuit 150 is used to check whether the voltage phase sequence on the same phase line in different first AC power supply lines 110 is consistent; if the voltage phase sequence on the same phase line in different first AC power supply lines 110 is consistent, all the first switch circuits 140 are controlled to be turned on; if the voltage phase sequence on the same phase line in different first AC power supply lines 110 is inconsistent, all the first switch circuits 140 are controlled to be turned off.
  • At least one second AC power supply line 210 is connected to at least one second circuit group 220 in a one-to-one correspondence, and at least one second circuit group 220 is connected to at least one second DC bus 230 in a one-to-one correspondence.
  • Each of the at least one second circuit group 220 includes a plurality of rectifier circuits 221 and a plurality of charging circuits 222. The input end of each of the plurality of rectifier circuits 221 is connected to the corresponding second AC power supply line 210, and the output end of each of the plurality of rectifier circuits 221 is connected to the corresponding second DC bus 230; the input end of each of the plurality of charging circuits 222 is connected to the corresponding second DC bus 230.
  • first AC power supply line 110 for different first AC power supply lines 110, circulating current can be avoided by the phase sequence detection circuit 150.
  • the first AC power supply line 110 is isolated from the second AC power supply line 210, and different second AC power supply lines 210 are also isolated from each other, so even if the lines are connected incorrectly, circulating current will not occur.
  • the charging device 100 may further include a first photovoltaic device 160 and/or a first energy storage device 170 connected to the first DC bus 130 .
  • the charging device 100 may further include at least one second photovoltaic device 250 and/or at least one second energy storage device 260 ; and at least one second DC bus 230 is connected to a second photovoltaic device 250 and/or a second energy storage device 260 .
  • the charging device 100 may further include a second switch circuit 240 located on at least one second AC power supply line 210; each second switch circuit 240 is used to connect the second AC power supply line 210 with the power supply path of the corresponding second circuit group 220 when turned on, and to disconnect the second AC power supply line 210 from the power supply path of the corresponding first circuit group 120 when turned off.
  • a second switch circuit 240 located on at least one second AC power supply line 210; each second switch circuit 240 is used to connect the second AC power supply line 210 with the power supply path of the corresponding second circuit group 220 when turned on, and to disconnect the second AC power supply line 210 from the power supply path of the corresponding first circuit group 120 when turned off.
  • the charging device 100 may further include: a plurality of charging interfaces 180 and a switching matrix 190 connected between the output end of each charging circuit 122 and the plurality of charging interfaces 180 ; the switching matrix 190 is used to group and schedule the DC voltage output by each charging circuit 122 , and output it to at least two charging interfaces 180 accordingly.
  • the configuration of each circuit in this embodiment may refer to the configuration of each circuit in the embodiments of FIG. 5 to FIG. 17 above, and will not be described in detail here.
  • first and second are only used to distinguish different circuits, and are not used to limit the circuits themselves.
  • the first AC power supply circuit and the second AC power supply circuit are used to indicate that the first AC power supply circuit is different from the second AC power supply circuit.
  • AC power supply line AC power supply line.
  • FIG. 19 is a schematic diagram of the structure of a charging system 10 provided in an embodiment of the present application.
  • the charging system 10 provided in an embodiment of the present application may include any of the above-mentioned charging devices 100 provided in an embodiment of the present application and at least one charging terminal 300 connected to the charging device 100.
  • Each charging terminal 300 in the at least one charging terminal 300 is used to connect an electric vehicle 200, and the charging device 100 can charge the electric vehicle 200 connected to the charging terminal 300 through each charging terminal 300.
  • each charging terminal 300 can be connected to at least one charging circuit in the charging device.
  • the charging device 100 also includes a charging interface 180, and the charging device 100 can be connected to the charging terminal through the charging interface 180.
  • the charging device 100 in the charging energy system 10 When the charging device 100 in the charging energy system 10 is connected to the power supply 20, if a wiring error occurs, the situation where there are multiple first AC power supply lines 110 in the charging device 100 can be detected and found by the phase sequence detection circuit 150.
  • the multiple second AC power supply lines 210 are isolated from each other, so that even if the lines are connected incorrectly, no circulating current will occur.
  • the charging device 100 has a first AC power supply line 110 and a second AC power supply line 210
  • the first AC power supply line 110 and the second AC power supply line 210 are isolated from each other, so that even if the lines are connected incorrectly, no circulating current will occur.
  • the present application does not limit the number of charging terminals 300, which can be specifically set according to the number of charging interfaces.
  • one charging interface corresponds to one charging terminal 300, and the charging interface of the charging device 100 is connected to the corresponding charging terminal 300.
  • the electric vehicle 200 is connected to the charging terminal 300.
  • the charging terminal 300 mainly includes a housing, a human-machine interaction interface, a charging control unit, and a metering and billing unit, etc.
  • the charging terminal 300 is used for information exchange and energy transmission and metering and billing with the electric vehicle 200.
  • the charging energy system 10 may further include at least one electric vehicle 200 connected to the at least one charging terminal 300 , so that the charging device 100 charges the electric vehicle 200 through the charging terminal 300 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请公开了一种充电装置及充电系统。该充电装置包括:多路第一交流供电线路,多个第一电路组,第一直流母线,位于各第一交流供电线路上的第一开关电路,与各第一交流供电线路均连接的相序检测电路;所有第一电路组中的整流电路均通过第一直流母线与所有第一电路组中的各充电电路连接。第一直流母线池化设计,从而可以在第一直流母线上叠加光伏器件和储能器件。并且,利用相序检测电路检测多路第一交流供电线路的相序是否一致,在相序一致时导通所有第一开关电路,在相序不一致时断开所有第一开关电路,可以避免由于接错线而导致设备损坏。

Description

一种充电装置及充电系统
相关申请的交叉引用
本申请要求在2022年10月08日提交中国专利局、申请号为202211222187.0、申请名称为“一种充电装置及充电系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子技术领域,尤其涉及一种充电装置及充电系统。
背景技术
随着新能源车的快速普及,作为配套设施的电动汽车充电设备也快速增长。充电设备形态当前主要有一体式充电桩和分体式充电桩两种。其中,分体式充电桩包括分体式充电堆(又名分体式充电主机)和充电终端。其中,分体式充电堆用于将多个充电模块集中在一起,通过功率分配单元按电动汽车实际所需充电功率对充电模块进行动态分配。充电终端用于与电动汽车进行信息交互和能量传输及计量计费等,主要由外壳、人机交互界面、充电控制单元和计量计费单元等组成。
随着电动汽车充电功率需求的快速增长,当前市场上的分体式充电堆功率越来越大,从早期的240KW主机功率发展到当前最大1MW的主机功率,更大的充电功率为新能源车的快速充电提供了可能性。然而,交流输入供电在充电设备总功率变得越来越大后,一路交流供电线路往往因为通流能力限制无法满足整堆供电,通常需要多路交流供电电路进行供电。而多路交流供电线路01可以是如图1所示分别来自多个不同的变压器02(图1以2个变压器02及2路交流供电线路01为例进行示意),也可以是如图2所示来自同一变压器02的不同断路器(图2中未示出)输出(图2以单一变压器02及2路交流供电线路01为例进行示意)。
发明内容
本申请提供一种充电装置及充电系统,对于具有多路交流供电线路的充电装置,可以避免由于接线错误而导致设备损坏。
第一方面,本申请实施例提供一种充电装置,该充电装置包括:多路第一交流供电线路,多个第一电路组,与该多个第一电路组均连接的第一直流母线,位于该多路第一交流供电线路中每一路第一交流供电线路的输入端和输出端之间的第一开关电路,与多路第一交流供电线路中每一路第一交流供电线路均连接的相序检测电路。其中,多路第一交流供电线路与多个第一电路组一一对应连接,也即多路第一交流供电线路中每一路第一交流供电线路分别对应连接一个第一电路组,多个第一电路组中每一个第一电路组分别对应连接一个第一交流供电线路。每一个第一电路组中均包括多个整流电路和多个充电电路,多个整流电路中的每一整流电路的输入端均与对应的第一交流供电线路的输出端连接,以接收第一交流供电线路提供的三相交流电压。多个整流电路中的每一整流电路的输出端均与第一直流母线连接,且多个充电电路中每一充电电路的输入端均与第一直流母线连接。即多个整流电路的输出端均并联在第一直流母线上,多个充电电路的输入端也均并联在第一直流母线上。每一第一开关电路用于在导通时使第一交流供电线路与对应的第一电路组的供电通路导通,在断开时使第一交流供电线路与对应的第一电路组的供电通路断开。相序检测电路连接于每一路第一交流供电线路的输入端与第一开关电路之间,相序检测电路用于:检查多路第一交流供电线路中相同相线上的电压相序是否均一致;若多路第一交流供电线路中相同相线上的电压相序均一致,则控制所有第一开关电路导通;若多路第一交流供电线路中相同相线上的电压相序不一致,则控制所有第一开关电路断开。
本申请实施例提供的充电装置,所有第一电路组中的整流电路均通过第一直流母线与所有第一电路组中的各充电电路连接。第一直流母线池化设计,从而可以在第一直流母线上叠加光伏器件和储能器件,且叠光叠储方法简单,成本低,效率高。并且,利用相序检测电路检测多路第一交流供电线路的相序是否一致,在相序一致时导通所有第一开关电路,在相序不一致时断开所有第一开关电路,以避免由于接错线而导致设备损坏。
具体实施时,本申请对第一交流供电线路和第一电路组的数量不作限定,可以是2路第一交流供电 线路和2个第一电路组,也可以是3路第一交流供电线路和3个第一电路组,或者更多路第一交流供电线路和更多个第一电路组。其中,说明书附图中均是以2路第一交流供电线路和2个第一电路组为例进行示意说明的。
在具体实施时,第一交流供电线路的输入端用于与供电源连接,以接收供电源提供的三相交流电压,其中,三相交流电压是指三个频率相同、电势振幅相等、相位互差120度的电压。在本申请中,第一交流供电线路中至少包括三条相线:第一相线、第二相线和第三相线,每一条相线用于接收对应的一相交流电压。在具体实施时,第一交流供电线路一般为三相五线制,即第一交流供电线路中除了包括三条相线还包括一条零线(也称中性线)和一条地线(也称保护地线)。当第一开关电路导通时,第一交流供电线路将接收的三相交流电压提供给对应的第一电路组。
本申请中相序是指三相交流电的顺序,以相位差来确定。例如以A、B、C分别表示三相交流电,A相交流电比B相交流电超前120度,B相交流电比C相交流电超前120度,C相交流电比A相交流电超前120度。多路第一交流供电线路的相序相同是指多路第一交流供电线路中第一相线与第二相线的相位差相同,第二相线与第三相线的相位差相同,第三相线与第一相线的相位差相同,例如多路第一交流供电线路的第一相线上均为A相交流电,多路第一交流供电线路的第二相线上均为B相交流电,多路第一交流供电线路的第三相线上均为C相交流电。
在具体实施时,每一个第一电路组中的多个整流电路和多个充电电路分体设置。这里的分体设置是相对一体设置而言的,是指多个整流电路与多个充电电路彼此在物理上是彼此独立的。示例性的,多个整流电路之间也是分体设置的,多个充电电路之间也是分体设置的。
多个整流电路中的每一整流电路的输入端均与对应的第一交流供电线路的输出端连接,以接收第一交流供电线路提供的三相交流电压。多个整流电路中的每一整流电路的输出端均与第一直流母线连接,且多个充电电路中每一充电电路的输入端均与第一直流母线连接。即多个整流电路的输出端均并联在第一直流母线上,多个充电电路的输入端也均并联在第一直流母线上。第一直流母线一般包括正极母线和负极母线。每一整流电路用于将第一交流供电线路提供的三相交流电压转换为与第一直流母线匹配的直流电压;例如三相交流电压为380的三相交流电压,与第一直流母线匹配的直流电压为820V的直流电压,那么整流电路就可以将380的三相交流电压转换为820V的直流电压。每一充电电路用于将第一直流母线上的直流电压转换成具有设定电流以及设定电压的目标直流电压并输出。例如充电电路将820V的直流电压转换为电动汽车需要的电压及电流,从而为电动汽车稳定充电。本申请中,所有整流电路输出的直流电压均通过第一直流母线进行池化后进入每一个充电电路中。
本申请中整流电路的数量可以根据第一交流供电线路上三相交流电压的功率进行配置,例如三相交流电压的功率是720KW,每个整流电路的转换功率是120KW,那么可以就可以配置6个整流电路。
本申请对充电电路的数量不作限定,充电电路的数量可以与整流电路的数量相同,当然也可以与整流电路的数量不相同。示例性的,充电电路的数量大于或等于整流电路的数量。
在一些实示例中,整流电路可以包括AC-DC转换电路,AC-DC转换电路中不设置变压器,从而可以保证整流电路的高效率、低损耗。充电电路可以包括DC-DC转换电路,DC-DC转换电路中设置有变压器,可以确保充电安全。
示例性的,第一开关电路可以包括3个开关,每一相线上设置一个开关。当然,在具体实施时,第一开关电路中还可以包括设置在零线和/或地线上的开关,在此不作限定。一般情况下,零线和地线可以不设置开关。
在一些示例中,第一开关电路中的开关可以是例如断路器、继电器、接触器等电力系统中的常见开关,在此不作限定。
示例性的,相序检测电路还用于:若多路第一交流供电线路中相同相线上的电压相序不一致,则发起所述多路第一交流供电线路上三相交流电压的相序不一致的提醒消息,以提示接线错误。
在一种可能的设计中,相序检测电路可以包括:比较电路、控制电路以及与多路第一交流供电线路对应的多个电压采集电路。
在一种可行实现方式中,每一第一交流供电线路对应的一个电压采集电路;每一电压采集电路与对应的一路第一交流供电线路中的其中两条相线连接,且不同电压采集电路连接的第一交流供电线路中的两条相线相同;每一电压采集电路用于采集两条相线之间的电压信号。在具体实施时,电压采集电路所连接的两条相线可以是第一相线、第二相线和第三相线中的任意两条。但是一旦一个电压采集电路确定 了所连接的两条相线,例如那么其它电压采集电路所连接的两条相线必然也是对应的第一交流供电线路中的相序相同的两条相线。
在另一种可行的实现方式中,每一第一交流供电线路对应的两个电压采集电路;两个电压采集电路均与对应的一路第一交流供电线路中的零线和其中一条相线连接,每一电压采集电路用于采集相线和零线N之间的电压信号。其中,与同一第一交流供电线路连接的两个电压采集电路连接第一交流供电线路中的不同相线,与不同的第一交流供电线路连接的两个电压采集电路所连接的第一交流供电线路中的两条相线相同。
在本申请的实施例中,当电压采集电路将采集的电压信号发送给比较电路后,比较电路根据每一电压采集电路采集的电压信号,确定该多路第一交流供电线路中相同相线对应的电压信号的波形是否一致;如果多路第一交流供电线路中相同相线对应的电压信号的波形一致,则向控制电路发送第一控制信息;如果多路第一交流供电线路中相同相线对应的电压信号的波形不一致,则向控制电路发送第二控制信息;控制电路则在接收到比较电路发送的第一控制信息后控制第一开关电路导通,在接收到第二控制信息后控制第一开关电路断开。
在具体实施时,当每一第一交流供电线路对应两个电压采集电路时,针对与不同第一交流供电线路的两个电压采集电路,比较电路将与不同第一交流供电线路连接的且连接相同相线的电压采集电路采集的电压信号进行比较。例如比较电路比较分别与不同第一交流供电线路中的第一相线连接的电压采集电路采集的电压信号,以及比较分别与不同第一交流供电线路中的第二相线连接的电压采集电路采集的电压信号。如果两组比较结果均是电压波形一致,则认为多路第一交流供电线路中相同相线对应的电压信号的波形均一致;如果两组比较结果中至少有一组比较结果的波形不一致,则认为多路第一交流供电线路中相同相线对应的电压信号的相序不一致。
进一步地,为了便于比较,每一电压采集电路还可以将采集的电压信号转换成数字信号,并将数字信号发送给比较电路;然后比较电路可以根据接收的每一电压采集电路发送的数字信号,比较与所述多路第一交流供电线路中相同相线连接的不同电压采集电路发送的数字信号是否一致;如果与所述多路第一交流供电线路中相同相线连接的不同电压采集电路发送的数字信号一致则向控制电路发送第一控制信息;如果与多路第一交流供电线路中相同相线连接的不同电压采集电路发送的数字信号不一致则向控制电路发送第二控制信息。
本申请中两个数字信号一致是指在任意时刻该两个数字信号的大小均是相同的。
本申请对电压采集电路的具体结构不作限定,示例性的,该电压采集电路可以包括:第一电阻、第二电阻、第三电阻、第四电阻、第五电阻、第一二极管、第一晶体管和光耦合器。其中,第一电阻串联在电压采集电路的第一输入端和第一二极管的负极之间;第二电阻串联在电压采集电路的第二输入端和第一二极管的正极之间;二极管的负极还与光耦合器中的光电二极管的正极连接,第一二极管的正极与光耦合器中的光电二极管的负极输入端连接;光耦合器中的晶体管的集电极连接第一参考电压端,光耦合器中的晶体管的发射极与第三电阻的第一端连接;第一晶体管的基极与第三电阻的第二端连接,第一晶体管的集电极与第四电阻的第一端以及电压采集电路的输出端连接,第一晶体管的发射极连接第二参考电压端;第四电阻的第二端连接第一参考电压端;第五电阻的第一端与第一晶体管的基极连接,第五电阻的第二端与第一晶体管的发射极连接。其中,第二参考电压端的电压大于第一参考电压端的电压。当然,在具体实施,第二参考电压端的电压也可以小于第一参考电压端的电压,在此不作限定。
以第二参考电压端的电压大于第一参考电压端的电压为例,电压采集电路的工作原理:电压采集电路的第一输入端和第二输入端之间的电压信号为正弦波信号,正弦波信号的正半周信号可以驱动光耦合器中的光电二极管发光,光耦合器中的晶体管发输出光电流从而控制第一晶体管输出高电位电压;正弦波信号的负半周信号只能通过第一二极管,驱动光耦合器中的光电二极管不发光,第一晶体管输出低电位电压,从而将正弦波的电压信号转换为数字信号。
本申请中,控制电路可以是通用中央处理器(central processing unit,CPU),通用处理器,数字信号处理(digital signal processing,DSP),专用集成电路(application specific integrated circuits,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。上述控制电路也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,DSP和微处理器的组合等等。
在一些示例中,该充电装置还可以包括与第一直流母线连接的第一光伏器件,第一光伏器件可以将光能转换为电能后提供给第一直流母线,这样不仅可以增大充电装置的电容量,而且可以在白天时优先使用第一光伏器件提供的电能。或者,考虑到在不同时段用电价格不同,例如,在白天的用电价格会远高于用夜间的用电价格,该充电装置还可以包括与第一直流母线连接的第一储能器件,第一储能器件可以在用电价格低的时候存储电能,然后在用电价格高的时候优先使用第一储能器件存储的电能。
示例性的,该充电装置的第一直流母线上连接有第一光伏器件和第一储能器件。第一储能器件不仅可以存储电网的电能,还可以存储第一光伏器件的电能。
本申请对第一光伏器件的具体实施方式不作限定,可以是能够实现光伏功能的任意方式。
本申请对第一储能器件的具体实施方式不作限定,可以是能够实现存储功能的任意方式。
示例性的,该充电装置还可以包括多个充电接口和投切矩阵,该投切矩阵与每一充电电路以及该多个充电接口均连接;投切矩阵用于对每一充电电路输出的直流电压进行分组调度,并对应输出至至少两个充电接口。
在一些示例中,该充电装置还可以包括至少一个第二光伏器件和/或至少一个第二储能器件,至少有一条第二直流母线上连接有该第二光伏器件和/或该第二储能器件。其中,第二光伏器件可以将光能转换为电能后提供给第二直流母线,这样不仅可以增大充电装置的电容量,而且可以在白天时优先使用第一光伏器件提供的电能。考虑到在不同时段用电价格不同,例如,在白天的用电价格会远高于用夜间的用电价格,第二储能器件可以在用电价格低的时候存储电能,然后在用电价格高的时候优先使用第二储能器件存储的电能。其中,第二储能器件不仅可以存储电网的电能,还可以存储第二光伏器件的电能。
本申请对第二光伏器件的具体实施方式不作限定,可以是能够实现光伏功能的任意方式。
本申请对第二储能器件的具体实施方式不作限定,可以是能够实现存储功能的任意方式。
示例性的,该充电装置还可以包括位于至少一个第二交流供电线路上的第二开关电路;每一所述第二开关电路用于在导通时使所述第二交流供电线路与对应的所述第二电路组的供电通路导通,在断开时使所述第二交流供电线路与对应的所述第一电路组的供电通路断开。这样当第二交流供电线路的输入端接供电电源后,可以通过第二开关电路控制充电能系统的通、断电。
示例性的,第二开关电路可以包括3个开关,每一相线上设置一个开关。当然,在具体实施时,第二开关电路中还可以包括设置在零线和/或地线上的开关,在此不作限定。一般情况下,零线和地线可以不设置开关。
示例性的,第二开关电路中的开关可以是例如断路器、继电器、接触器等电力系统中的常见开关,在此不作限定。
第二方面,本申请实施例还提供了另一种充电装置,该充电装置可以包括:多路第二交流供电线路,多个第二电路组和多条第二直流母线。多路第二交流供电线路与多个第二电路组一一对应连接,即多路第二交流供电线路中每一路第二交流供电线路分别对应连接一个第二电路组,多个第一电路组中每一个第一电路组分别对应连接一个第一交流供电线路。多个第二电路组与多条第二直流母线一一对应连接,即多个第二电路组中每一第二电路组分别对应连接一条第二直流母线,多条第二直流母线中每一条第二直流母线分别对应连接一个第二电路组。每一个第二电路组中均包括多个整流电路和多个充电电路。在具体实施时,第二交流供电线路的输入端用于与供电源连接,以接收供电源提供的三相交流电压。第二电路组中的多个整流电路中的每一整流电路的输入端均与对应的第二交流供电线路的输出端连接,以接收第二交流供电线路提供的三相交流电压。第二电路组中的每一整流电路的输出端均与对应的第二直流母线连接,且第二电路组中每一充电电路的输入端均与对应的第二直流母线连接。即同一第二电路组中的多个整流电路的输出端均并联在对应的第二直流母线上,同一第二电路组中的多个充电电路的输入端也均并联在对应的第二直流母线上。本申请中,同一第二电路组中所有整流电路输出的直流电压均通过对应的第二直流母线进行池化后进入该第二电路组中的每一个充电电路中。本申请中,不同第二交流供电线路连接不同的第二直流母线,因此不同第二交流供电线路之间是相互隔离的,即使接错线也不会形成环流。
在具体实施时,本申请对第二交流供电线路和第二电路组的数量不作限定,可以是2路第二交流供电线路和2个第二电路组,也可以是3路第二交流供电线路和3个第二电路组,或者更多路第二交流供电线路和更多个第二电路组。其中,说明书附图中均是以2路第二交流供电线路和2个第二电路组为例进行示意说明的。
每一个第二电路组中多个整流电路和多个充电电路分体设置。这里的分体设置是相对一体设置而言的,是指多个整流电路与多个充电电路彼此在物理上是彼此独立的。示例性的,多个整流电路之间也是分体设置的,多个充电电路之间也是分体设置的。
第二直流母线一般包括正极母线和负极母线。每一整流电路用于将第二交流供电线路提供的三相交流电压转换为与第二直流母线匹配的直流电压;例如三相交流电压为380的三相交流电压,与第二直流母线匹配的直流电压为820V的直流电压,那么整流电路就可以将380的三相交流电压转换为820V的直流电压。每一充电电路用于将对应的第二直流母线上的直流电压转换成具有设定电流以及设定电压的目标直流电压并输出。例如充电电路将820V的直流电压转换为电动汽车需要的电压及电流,从而为电动汽车稳定充电。
本申请中整流电路的数量可以根据第二交流供电线路上三相交流电压的功率进行设置,例如三相交流电压的功率是720KW,每个整流电路的转换功率是120KW,那么可以就可以设置6个整流电路。
本申请对充电电路的数量不作限定,充电电路的数量可以与整流电路的数量相同,当然也可以与整流电路的数量不相同。示例性的,充电电路的数量大于或等于整流电路的数量。
示例性的,整流电路可以包括AC-DC转换电路,充电电路可以包括DC-DC转换电路。
示例性的,该充电装置还可以包括至少一个第二光伏器件和/或至少一个第二储能器件,至少有一条第二直流母线上连接有该第二光伏器件和/或该第二储能器件。其中,第二光伏器件可以将光能转换为电能后提供给第二直流母线,这样不仅可以增大充电装置的电容量,而且可以在白天时优先使用第一光伏器件提供的电能。考虑到在不同时段用电价格不同,例如,在白天的用电价格会远高于用夜间的用电价格,第二储能器件可以在用电价格低的时候存储电能,然后在用电价格高的时候优先使用第二储能器件存储的电能。其中,第二储能器件不仅可以存储电网的电能,还可以存储第二光伏器件的电能。
本申请对第二光伏器件的具体实施方式不作限定,可以是能够实现光伏功能的任意方式。
本申请对第二储能器件的具体实施方式不作限定,可以是能够实现存储功能的任意方式。
示例性的,该充电装置还可以包括多个充电接口和投切矩阵,该投切矩阵与每一充电电路以及该多个充电接口均连接;投切矩阵用于对每一充电电路输出的直流电压进行分组调度,并对应输出至至少两个充电接口。
示例性的,该充电装置还可以包括位于至少一个第二交流供电线路上的第二开关电路;每一所述第二开关电路用于在导通时使所述第二交流供电线路与对应的所述第二电路组的供电通路导通,在断开时使所述第二交流供电线路与对应的所述第一电路组的供电通路断开。这样当第二交流供电线路的输入端接供电电源后,可以通过第二开关电路控制充电能系统的通、断电。
示例性的,第二开关电路可以包括3个开关,每一相线上设置一个开关。当然,在具体实施时,第二开关电路中还可以包括设置在零线和/或地线上的开关,在此不作限定。一般情况下,零线和地线可以不设置开关。
示例性的,第二开关电路中的开关可以是例如断路器、继电器、接触器等电力系统中的常见开关,在此不作限定。
第三方面,本申请实施例还提供了一种充电系统,该充电系统可以包括充电装置和与该充电装置连接的至少一个充电终端。该充电装置可以是如第一方面或第二方面的各种实施方式所述的充电装置。该至少一个充电终端中每一充电终端分别用于连接电动汽车,该充电装置可以通过每一充电终端向与该充电终端连接的电动汽车充电。其中,每一充电终端连接充电装置中的至少一个充电电路。在一种实施例中,充电装置中还包括充电接口,充电装置可以通过充电接口与充电终端连接。当该充电装置与供电源连接时,如果发生接线错误,对于充电装置存在多路第一交流供电线路的情况,可以通过相序检测电路检测发现。对于充电装置存在多路第二交流供电线路的情况,多路第二交流供电线路之间是隔离的,因此即使接错线也不会发生环流。对于充电装置存在第一交流供电线路和第二交流供电线路的情况,第一交流供电线路与第二交流供电线路之间是隔离的,因此即使接错线也不会发生环流。
本申请对充电终端的数量不作限定,具体可以根据充电接口的数量进行设置,一般一个充电接口对应一个充电终端,充电装置的充电接口与对应的充电终端连接,当电动汽车需要充电时,电动汽车与该充电终端连接。
示例性的,充电终端可以包括外壳、人机交互界面、充电控制单元和计量计费单元等,充电终端用于与电动汽车进行信息交互和能量传输及计量计费等。
示例性的,该充电能系统中还可以包括与该至少一个充电终端连接的至少一辆电动汽车,从而该充电装置通过该充电终端向电动汽车充电。
上述第三方面可以达到的技术效果可以参照上述第一方面和第二方面中任一可能设计可以达到的技术效果说明,这里不再重复赘述。
附图说明
图1为两路变压器供电场景的示意图;
图2为一路变压器供电场景的示意图;
图3为分体式充电堆为一体化模块架构的结构示意图;
图4为分体式充电堆为分体化模块架构的结构示意图;
图5为本申请一种实施例提供的充电装置的结构示意图;
图6为本申请中相序检测电路进行相序检测的流程示意图;
图7为本申请又一种实施例提供的充电装置的结构示意图;
图8为本申请又一种实施例提供的充电装置的结构示意图;
图9为本申请又一种实施例提供的充电装置的结构示意图;
图10为本申请又一种实施例提供的充电装置的结构示意图;
图11为本申请又一种实施例提供的充电装置的结构示意图;
图12为本申请又一种实施例提供的充电装置的结构示意图;
图13为本申请实施例提供的一种电压采集电路的结构示意图;
图14为图13所示的电压采集电路的输入波形和输出波形的示意图;
图15为本申请又一种实施例提供的充电装置的结构示意图;
图16为本申请又一种实施例提供的充电装置的结构示意图;
图17为本申请又一种实施例提供的充电装置的结构示意图;
图18为本申请又一种实施例提供的充电装置的结构示意图;
图19为本申请一种实施例提供的充电系统的结构示意图。
附图标记说明:
10-充电系统;20-供电源;100-充电装置;200-电动汽车;300-充电终端;110-第一交流供电线
路,120-第一电路组;130-第一直流母线;140-第一开关电路;150-相序检测电路;151-电压采集电路;152-比较电路;153-控制电路;160-第一光伏器件;170-第一储能器件;180-充电接口;190-投切矩阵;210-第二交流供电线路;220-第二电路组;230-第二直流母线;240-第二开关电路;121、221-整流电路;122、222-充电电路;141、241-开关;250-第二光伏器;260-第二储能器件;R1-第一电阻;R2-第二电阻;R3-第三电阻;R4-第四电阻;R5-第五电阻;D1-第一二极管;Q1-第一晶体管;U1-光耦合器;Sin1-电压采集电路的第一输入端;Sin2-电压采集电路的第二输入端;Sout-电压采集电路的输出端;V1-第一参考电压端;V2-第二参考电压端;L1-第一相线;L2-第二相线;L3-第三相线;N-零线。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。需要说明的是,在本申请的描述中“至少一个”是指一个或多个,其中,多个是指两个或两个以上。有鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
需要指出的是,本申请实施例中“连接”指的是电连接,两个电学元件连接可以是两个电学元件之间的直接或间接连接。例如,A与B连接,既可以是A与B直接连接,也可以是A与B之间通过一个或多个其它电学元件间接连接,例如A与B连接,也可以是A与C直接连接,C与B直接连接,A与B之间通过C实现了连接。
随着电动汽车充电功率需求的快速增长,当前市场上的分体式充电堆的功率越来越大,从早期的240KW主机功率发展到当前最大1MW的主机功率。然而,交流输入供电在充电设备总功率变得越来越大后,一路交流供电线路往往因为通流能力限制无法满足整堆供电,通常需要多路交流供电线路进行 供电。而多路交流供电线路01可以是如图1所示分别来自多个不同的变压器02(图1以2个变压器02及2路交流供电线路01为例进行示意),也可以是如图2所示来自同一变压器02的不同断路器(图2中未示出)输出(图2以单一变压器02及2路交流供电线路01为例进行示意)。
当前的分体式充电堆主要为一体化模块架构。如图3所示,分体式充电堆001中包括多个一体化模块03,每个一体化模块03包括AC-DC转换电路031和DC-DC转换电路032。其中,AC-DC转换电路031用于将交流供电线路01输出的交流电转换为直流电;DC-DC转换电路032用于将AC-DC转换电路031转换得到的直流电调整为目标充电电压,然后通过投切矩阵04中的开关(图中未示出)将目标充电电压分配给不同的充电接口05。随着充电功率的逐渐增加,在充电设备中叠加光伏器件和储能器件已成为未来发展趋势。目前叠加光伏器件和储能器件的方案主要有两种,第一种如图3所示,在投切矩阵04与每一个充电接口05的线缆上叠加光伏器件06和储能器件07;第二种是在投切矩阵04的输入端之前设置光伏器件06和储能器件07,并且光伏器件06和储能器件07输出的电压需要额外增加一个投切矩阵投切至原有的投切矩阵04上。因此,采用一体化模块架构的充电设备,叠光叠储方案复杂,成本高,效率低。
相关技术提出了分体化模块架构的分体式充电堆,其中分体化模块架构又称直流母线架构。如图4所示,分体式充电堆001中包括分体设置的多个AC-DC转换电路031和多个DC-DC转换电路032,所有AC-DC转换电路031的输出端和所有DC-DC转换电路032的输入端均通过直流母线08相互连接。光伏器件06和储能器件07直接叠加在直流母线08上,叠光叠储方案简单高效,成本低,因此越来越受到业界重视。
但是,在直流母线架构中,由于直流母线与交流供电线路之间没有变压器,因此直流母线为非隔离直流母线,这就需要多路交流供电线路中三相交流电压的相序完全一致以避免环流。然而在设备安装调试施工过程中,由于操作不规范等原因,无法完全保证多路交流供电线路接线相序的完全一致,从而导致系统烧毁等事故。
鉴于此,本申请实施例提供了一种的充电装置100,该充电装置100可以避免由于接错线而导致设备损坏。为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
参见图5,图5为本申请一种实施例提供的充电装置100的结构示意图。该充电装置100主要包括:多路第一交流供电线路110,多个第一电路组120,与该多个第一电路组120均连接的第一直流母线130,位于该多路第一交流供电线路110中每一路第一交流供电线路110的输入端和输出端之间的第一开关电路140,与多路第一交流供电线路110中每一路第一交流供电线路110均连接的相序检测电路150。
其中,多路第一交流供电线路110与多个第一电路组120一一对应连接,也即多路第一交流供电线路110中每一路第一交流供电线路110分别对应连接一个第一电路组120,多个第一电路组120中每一个第一电路组120分别对应连接一个第一交流供电线路110。在具体实施时,本申请对第一交流供电线路110和第一电路组120的数量不作限定,可以是2路第一交流供电线路110和2个第一电路组120,也可以是3路第一交流供电线路110和3个第一电路组120,或者更多路第一交流供电线路110和更多个第一电路组120。其中,说明书附图中均是以2路第一交流供电线路110和2个第一电路组120为例进行示意说明的。
在具体实施时,第一交流供电线路110的输入端用于与供电源(图中未示出)连接,以接收供电源提供的三相交流电压。供电源用于向充电装置100提供三相交流电压,例如可以为电网。其中,三相交流电压是指三个频率相同、电势振幅相等、相位差互差120度的电压。在本申请中,第一交流供电线路110中至少包括三条相线:第一相线L1、第二相线L2和第三相线L3,每一条相线用于接收对应的一相交流电压。在具体实施时,第一交流供电线路110一般为三相五线制,即第一交流供电线路110中除了包括三条相线L1~L3还包括一条零线(也称中性线)和一条地线(也称保护地线)。当第一开关电路140导通时,第一交流供电线路110将接收的三相交流电压提供给对应的第一电路组120。
每一个第一电路组120中均包括多个整流电路121和多个充电电路122,该多个整流电路121和该多个充电电路122可以分体设置。这里的分体设置是相对一体设置而言的,是指多个整流电路121与多个充电电路122彼此在物理上是彼此独立的。示例性的,多个整流电路121之间也是分体设置的,多个充电电路122之间也是分体设置的。
多个整流电路121中的每一整流电路121的输入端均与对应的第一交流供电线路110的输出端连接, 以接收第一交流供电线路110提供的三相交流电压。多个整流电路121中的每一整流电路121的输出端均与第一直流母线130连接,且多个充电电路122中每一充电电路122的输入端均与第一直流母线130连接。即多个整流电路121的输出端均并联在第一直流母线130上,多个充电电路122的输入端也均并联在第一直流母线130上。参见图5,第一直流母线130一般包括正极母线和负极母线。每一整流电路121用于将第一交流供电线路110提供的三相交流电压转换为与第一直流母线130匹配的直流电压;例如三相交流电压为380的三相交流电压,与第一直流母线130匹配的直流电压为820V的直流电压,那么整流电路121就可以将380的三相交流电压转换为820V的直流电压。每一充电电路122用于将第一直流母线130上的直流电压转换成具有设定电流以及设定电压的目标直流电压并输出。例如充电电路122将820V的直流电压转换为电动汽车需要的电压及电流,从而为电动汽车稳定充电。本申请中,所有整流电路121输出的直流电压均通过第一直流母线130进行池化后进入每一个充电电路122中。
本申请中整流电路121的数量可以根据第一交流供电线路110上三相交流电压的功率进行配置,例如三相交流电压的功率是720KW,每个整流电路121的转换功率是120KW,那么可以就可以配置6个整流电路121。
本申请对充电电路122的数量不作限定,充电电路122的数量可以与整流电路121的数量相同,当然也可以与整流电路121的数量不相同。示例性的,充电电路122的数量大于或等于整流电路121的数量。
示例性的,整流电路121可以包括交流-直流AC-DC转换电路,AC-DC转换电路中不设置变压器,从而可以保证整流电路121的高效率、低损耗。充电电路122可以包括直流-直流DC-DC转换电路,DC-DC转换电路中设置有变压器,可以确保充电安全。
每一第一开关电路140用于在导通时使第一交流供电线路110与对应的第一电路组120的供电通路导通,在断开时使第一交流供电线路110与对应的第一电路组120的供电通路断开。示例性的,第一开关电路140可以包括3个开关141,每一相线上设置一个开关141。当然,在具体实施时,第一开关电路140中还可以包括设置在零线和/或地线上的开关,在此不作限定。一般情况下,零线和地线可以不设置开关。
示例性的,第一开关电路140中的开关141可以是例如断路器、继电器、接触器等电力系统中的常见开关,在此不作限定。
在具体实施时,整流电路121中一般没有变压器,因此第一直流母线与各路第一交流供电线路110的输入端之间没有变压器,因此第一直流母线为非隔离直流母线。为了避免多路交流供电线路接线相序不一致导致设备损坏。继续参见图5,相序检测电路150连接于每一路第一交流供电线路110的输入端与第一开关电路140之间,如图6所示,相序检测电路150用于执行以下步骤:
S101、检查多路第一交流供电线路110中相同相线上的电压相序是否均一致。
若多路第一交流供电线路110中相同相线上的电压相序均一致,则执行步骤S102;若多路第一交流供电线路110中相同相线上的电压相序不一致,则执行步骤S103。
S102、控制所有第一开关电路140导通。
S103、控制所有第一开关电路140断开。
本申请实施例提供的充电装置100,所有第一电路组120中的整流电路121均通过第一直流母线130与所有第一电路组120中的各充电电路122连接。第一直流母线130池化设计,从而可以在第一直流母线130上叠加光伏器件和储能器件,且叠光叠储方法简单,成本低,效率高。并且利用相序检测电路150检测多路第一交流供电线路110的相序是否一致,在相序一致时导通所有第一开关电路140,在相序不一致时断开所有第一开关电路140,以避免由于接错线而导致设备损坏。
本申请中相序是指三相交流电的顺序,以相位差来确定。例如以A、B、C分别表示三相交流电,A相交流电比B相交流电超前120度,B相交流电比C相交流电超前120度,C相交流电比A相交流电超前120度。多路第一交流供电线路110的相序相同是指多路第一交流供电线路110中第一相线L1与第二相线L2的相位差相同,第二相线L1与第三相线L2的相位差相同,第三相线L3与第一相线L1的相位差相同,例如多路第一交流供电线路110的第一相线L1上均为A相交流电,多路第一交流供电线路110的第二相线L2上均为B相交流电,多路第一交流供电线路110的第三相线L3上均为C相交流电。
示例性的,相序检测电路150还用于:若多路第一交流供电线路110中相同相线上的电压相序不一 致,则发起所述多路第一交流供电线路110上三相交流电压的相序不一致的提醒消息,以提示接线错误。
示例性的,参见图7至图12,图7至图12分别为本申请不同实施例提供的充电装置100的结构示意图。该相序检测电路150包括:比较电路152、控制电路153以及与多路第一交流供电线路110对应的多个电压采集电路151。
在一种可行实现方式中,参见图7至图9,每一第一交流供电线路110对应的一个电压采集电路151;每一电压采集电路151与对应的一路第一交流供电线路110中的其中两条相线连接,且不同电压采集电路151连接的第一交流供电线路110中的两条相线相同;每一电压采集电路151用于采集两条相线之间的电压信号。在具体实施时,电压采集电路所连接的两条相线可以是第一相线L1、第二相线L2和第三相线L3中的任意两条。但是一旦一个电压采集电路151确定了所连接的两条相线,例如那么其它电压采集电路151所连接的两条相线必然也是对应的第一交流供电线路110中的相序相同的两条相线。例如图7所示,两个电压采集电路151连接的分别是两路第一交流供电线路110中的第一相线L1和第二相线L2。例如图8所示,两个电压采集电路151连接的分别是两路第一交流供电线路110中的第一相线L1和第三相线L3。例如图9所示,两个电压采集电路151连接的分别是两路第一交流供电线路110中的第二相线L2和第三相线L3。
在另一种可行的实现方式中,参见图10至图12,每一第一交流供电线路110对应的两个电压采集电路151;两个电压采集电路151均与对应的一路第一交流供电线路110中的零线N和其中一条相线连接,每一电压采集电路151用于采集相线和零线NN之间的电压信号。其中,与同一第一交流供电线路110连接的两个电压采集电路151连接第一交流供电线路110中的不同相线,与不同的第一交流供电线路110连接的两个电压采集电路151所连接的第一交流供电线路110中的两条相线相同。例如图10中,与每一第一交流供电线路110对应的两个电压采集电路151中,一个电压采集电路151连接零线N和第一相线L1,另一个电压采集电路151连接零线N和第二相线L2。例如图11中,与每一第一交流供电线路110对应的两个电压采集电路151中,一个电压采集电路151连接零线N和第二相线L2,另一个电压采集电路151连接零线N和第三相线L3。例如图12中,与每一第一交流供电线路110对应的两个电压采集电路151中,一个电压采集电路151连接零线N和第一相线L1,另一个电压采集电路151连接零线N和第三相线L3。
在本申请的实施例中,当电压采集电路151将采集的电压信号发送给比较电路152后,比较电路152根据每一电压采集电路151采集的电压信号,确定该多路第一交流供电线路110中相同相线对应的电压信号的波形是否一致;如果多路第一交流供电线路110中相同相线对应的电压信号的波形一致,则向控制电路153发送第一控制信息;如果多路第一交流供电线路110中相同相线对应的电压信号的波形不一致,则向控制电路153发送第二控制信息;控制电路153则在接收到比较电路152发送的第一控制信息后控制第一开关电路140导通,在接收到第二控制信息后控制第一开关电路140断开。
在具体实施时,当每一第一交流供电线路110对应两个电压采集电路151时,针对与不同第一交流供电线路110的两个电压采集电路151,比较电路152将与不同第一交流供电线路110连接的且连接相同相线的电压采集电路151采集的电压信号进行比较。例如图10中,比较电路152比较分别与不同第一交流供电线路110中的第一相线L1连接的电压采集电路151采集的电压信号,以及比较分别与不同第一交流供电线路110中的第二相线L2连接的电压采集电路151采集的电压信号。如果两组比较结果均是电压波形一致,则认为多路第一交流供电线路110中相同相线对应的电压信号的波形均一致;如果两组比较结果中至少有一组比较结果的波形不一致,则认为多路第一交流供电线路110中相同相线对应的电压信号的相序不一致。
进一步地,为了便于比较,每一电压采集电路151还可以将采集的电压信号转换成数字信号,并将数字信号发送给比较电路152;然后比较电路152可以根据接收的每一电压采集电路151发送的数字信号,比较与多路第一交流供电线路110中相同相线连接的不同电压采集电路151发送的数字信号是否一致;如果与多路第一交流供电线路110中相同相线连接的不同电压采集电路151发送的数字信号一致则向控制电路153发送第一控制信息;如果与多路第一交流供电线路110中相同相线连接的不同电压采集电路151发送的数字信号不一致则向控制电路153发送第二控制信息。
本申请中两个数字信号一致是指在任意时刻该两个数字信号的大小均是相同的。
本申请对电压采集电路151的具体结构不作限定,例如可以采用如图13所示过零采样电路。如图13所示,该电压采集电路151可以包括:第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4、第 五电阻R5、第一二极管D1、第一晶体管Q1和光耦合器U1。其中,第一电阻R1串联在电压采集电路151的第一输入端Sin1和第一二极管D1的负极之间;第二电阻R2串联在电压采集电路151的第二输入端Sin2和第一二极管D1的正极之间;二极管的负极还与光耦合器U1中的光电二极管的正极连接,第一二极管D1的正极与光耦合器U1中的光电二极管的负极输入端连接;光耦合器U1中的晶体管的集电极连接第一参考电压端V1,光耦合器U1中的晶体管的发射极与第三电阻R3的第一端连接;第一晶体管Q1的基极与第三电阻R3的第二端连接,第一晶体管Q1的集电极与第四电阻R4的第一端以及电压采集电路151的输出端Sout连接,第一晶体管Q1的发射极连接第二参考电压端V2;第四电阻R4的第二端连接第一参考电压端V1;第五电阻R5的第一端与第一晶体管Q1的基极连接,第五电阻R5的第二端与第一晶体管Q1的发射极连接。其中,第二参考电压端V2的电压可以大于第一参考电压端V1的电压。当然,在具体实施,第二参考电压端V2的电压也可以小于第一参考电压端V1的电压,在此不作限定。
在具体实施时,电压采集电路151的输出端与比较电路152连接,当图13所示的电压采集电路151应用于图7至图9所示的充电装置100时,电压采集电路151的第一输入端Sin1和第二输入端Sin2分别连接两条相线,且不同电压采集电路151的第一输入端Sin1连接的相线相同,且不同电压采集电路151的第二输入端Sin2连接的相线相同。当图13所示的电压采集电路151应用于图10至图12所示的充电装置100时,电压采集电路151的第一输入端Sin1和第二输入端Sin2分别连接一条相线和一条零线N,且不同电压采集电路151的第一输入端Sin1均连接零线N,不同电压采集电路151的第二输入端Sin2连接的相线相同,或者,不同电压采集电路151的第二输入端Sin2均连接零线N,不同电压采集电路151的第一输入端Sin1连接的相线相同。
以第二参考电压端V2的电压大于第一参考电压端V1的电压为例,图13所示的电压采集电路151的工作原理:电压采集电路151的第一输入端Sin1和第二输入端Sin2之间的电压信号为如图14所示的正弦波信号,正弦波信号的正半周信号可以驱动光耦合器U1中的光电二极管发光,光耦合器U1中的晶体管发输出光电流从而控制第一晶体管Q1输出高电位电压;正弦波信号的负半周信号只能通过第一二极管D1,驱动光耦合器U1中的光电二极管不发光,第一晶体管Q1输出低电位电压,从而将正弦波的电压信号转换为如图14所示的数字信号。
本申请中,控制电路153可以是通用中央处理器(central processing unit,CPU),通用处理器,数字信号处理(digital signal processing,DSP),专用集成电路(application specific integrated circuits,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。上述控制电路153也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,DSP和微处理器的组合等等。
参见图15,图15为本申请又一种实施例提供的充电装置100的结构示意图。该充电装置100还可以包括与第一直流母线130连接的第一光伏器件160,第一光伏器件160可以将光能转换为电能后提供给第一直流母线130,这样不仅可以增大充电装置100的电容量,而且可以在白天时优先使用第一光伏器件160提供的电能。或者,考虑到在不同时段用电价格不同,例如,在白天的用电价格会远高于用夜间的用电价格,该充电装置100还可以包括与第一直流母线130连接的第一储能器件170,第一储能器件170可以在用电价格低的时候存储电能,然后在用电价格高的时候优先使用第一储能器件170存储的电能。
示例性的,如图15所示,该充电装置100的第一直流母线130上连接有第一光伏器件160和第一储能器件170。第一储能器件170不仅可以存储电网的电能,还可以存储第一光伏器件160的电能。
本申请对第一光伏器件160的具体实施方式不作限定,可以是能够实现光伏功能的任意方式。
本申请对第一储能器件170的具体实施方式不作限定,可以是能够实现存储功能的任意方式。
继续参见图15,该充电装置100还可以包括多个充电接口180以及连接在每一所述充电电路122与所述多个充电接口180之间的投切矩阵190;所述投切矩阵190用于对每一所述充电电路122输出的直流电压进行分组调度,并对应输出至至少两个所述充电接口180。
为了避免环流,本申请实施例还提供了一种充电装置100。参见图16,该充电装置100包括:多路第二交流供电线路210,多个第二电路组220和多条第二直流母线230。多路第二交流供电线路210与多个第二电路组220一一对应连接,即多路第二交流供电线路210中每一路第二交流供电线路210分别 对应连接一个第二电路组220,多个第一电路组120中每一个第一电路组120分别对应连接一个第一交流供电线路110。多个第二电路组220与多条第二直流母线230一一对应连接,即多个第二电路组220中每一第二电路组220分别对应连接一条第二直流母线230,多条第二直流母线230中每一条第二直流母线230分别对应连接一个第二电路组220。
在具体实施时,本申请对第二交流供电线路210和第二电路组220的数量不作限定,可以是2路第二交流供电线路210和2个第二电路组220,也可以是3路第二交流供电线路210和3个第二电路组220,或者更多路第二交流供电线路210和更多个第二电路组220。其中,说明书附图中均是以2路第二交流供电线路210和2个第二电路组220为例进行示意说明的。
每一个第二电路组220中均包括多个整流电路221和多个充电电路222,该多个整流电路221和该多个充电电路222可以分体设置。这里的分体设置是相对一体设置而言的,是指多个整流电路221与多个充电电路222彼此在物理上是彼此独立的。示例性的,多个整流电路221之间也是分体设置的,多个充电电路222之间也是分体设置的。
在具体实施时,第二交流供电线路210的输入端用于与供电源(图中未示出)连接,以接收供电源提供的三相交流电压。第二电路组220中的多个整流电路221中的每一整流电路221的输入端均与对应的第二交流供电线路210的输出端连接,以接收第二交流供电线路210提供的三相交流电压。第二电路组220中的每一整流电路221的输出端均与对应的第二直流母线230连接,且第二电路组220中每一充电电路222的输入端均与对应的第二直流母线230连接。即同一第二电路组220中的多个整流电路221的输出端均并联在对应的第二直流母线230上,同一第二电路组220中的多个充电电路222的输入端也均并联在对应的第二直流母线230上。参见图16,第二直流母线230一般包括正极母线和负极母线。每一整流电路221用于将第二交流供电线路210提供的三相交流电压转换为与第二直流母线230匹配的直流电压;例如三相交流电压为380的三相交流电压,与第二直流母线230匹配的直流电压为820V的直流电压,那么整流电路221就可以将380的三相交流电压转换为820V的直流电压。每一充电电路222用于将对应的第二直流母线230上的直流电压转换成具有设定电流以及设定电压的目标直流电压并输出。例如充电电路222将820V的直流电压转换为电动汽车需要的电压及电流,从而为电动汽车稳定充电。本申请中,同一第二电路组220中所有整流电路221输出的直流电压均通过对应的第二直流母线230进行池化后进入该第二电路组220中的每一个充电电路222中。本申请中,不同第二交流供电线路210连接不同的第二直流母线230,因此不同第二交流供电线路210之间是相互隔离的,即使接错线也不会形成环流。
本申请中整流电路221的数量可以根据第二交流供电线路210上三相交流电压的功率进行设置,例如三相交流电压的功率是720KW,每个整流电路221的转换功率是120KW,那么可以就可以设置6个整流电路221。
本申请对充电电路222的数量不作限定,充电电路222的数量可以与整流电路221的数量相同,当然也可以与整流电路221的数量不相同。示例性的,充电电路222的数量大于或等于整流电路221的数量。
示例性的,整流电路221可以包括AC-DC转换电路,充电电路222可以包括DC-DC转换电路。
参见图17,图17为本申请又一种实施例提供的充电装置100的结构示意图。该充电装置100还可以包括至少一个第二光伏器件250和/或至少一个第二储能器件260,至少有一条第二直流母线230上连接有该第二光伏器件250和/或该第二储能器件260。其中,第二光伏器件250可以将光能转换为电能后提供给第二直流母线230,这样不仅可以增大充电装置100的电容量,而且可以在白天时优先使用第一光伏器件160提供的电能。考虑到在不同时段用电价格不同,例如,在白天的用电价格会远高于用夜间的用电价格,第二储能器件260可以在用电价格低的时候存储电能,然后在用电价格高的时候优先使用第二储能器件260存储的电能。其中,第二储能器件260不仅可以存储电网的电能,还可以存储第二光伏器件250的电能。
本申请对第二光伏器件250的具体实施方式不作限定,可以是能够实现光伏功能的任意方式。
本申请对第二储能器件260的具体实施方式不作限定,可以是能够实现存储功能的任意方式。
继续参见图16和图17,该充电装置100还可以包括多个充电接口180以及连接在每一充电电路122的输出端与多个充电接口180之间的投切矩阵190;投切矩阵190用于对每一充电电路122输出的直流电压进行分组调度,并对应输出至至少两个充电接口180。
继续参见图17,该充电装置100还可以包括位于至少一个第二交流供电线路210上的第二开关电路240;每一第二开关电路240用于在导通时使第二交流供电线路210与对应的所述第二电路组220的供电通路导通,在断开时使所述第二交流供电线路210与对应的所述第一电路组120的供电通路断开。这样当第二交流供电线路210的输入端接供电电源后,可以通过第二开关电路240控制充电能系统的通、断电。
示例性的,第二开关电路240可以包括3个开关241,每一相线上设置一个开关241。当然,在具体实施时,第二开关电路240中还可以包括设置在零线N和/或地线上的开关,在此不作限定。一般情况下,零线N和地线可以不设置开关。
示例性的,第二开关电路240中的开关241可以是例如断路器、继电器、接触器等电力系统中的常见开关,在此不作限定。
对应的,本申请实施例还提供了一种充电装置100,参见图18,该充电装置100包括:多路第一交流供电线路110,多个第一电路组120,与多个第一电路组120均连接的第一直流母线130,位于多路第一交流供电线路110中每一路第一交流供电线路110的输入端和输出端之间的第一开关电路140,与多路第一交流供电线路110中每一路第一交流供电线路110均连接的相序检测电路150,至少一路第二交流供电线路210,至少一个第二电路组220和至少一条第二直流母线230。
多路第一交流供电线路110与多个第一电路组120一一对应连接;每一第一电路组120中包括多个整流电路121和多个充电电路122;多个整流电路121中的每一整流电路121的输入端均与对应的第一交流供电线路110的输出端连接,多个整流电路121中的每一整流电路121的输出端均与第一直流母线130连接;多个充电电路122中每一充电电路122的输入端均与第一直流母线130连接;每一第一交流供电线路110用于接收三相交流电压,并在第一开关电路140导通时将接收的三相交流电压提供给对应的第一电路组120;每一第一开关电路140用于在导通时使第一交流供电线路110与对应的第一电路组120的供电通路导通,在断开时使第一交流供电线路110与对应的第一电路组120的供电通路断开。
相序检测电路150连接于每一路第一交流供电线路110的输入端与第一开关电路140之间,相序检测电路150用于检查不同第一交流供电线路110中相同相线上电压相序是否均一致;若不同第一交流供电线路110中相同相线上的电压相序均一致,则控制所有第一开关电路140导通;若不同第一交流供电线路110中相同相线上的电压相序不一致,则控制所有第一开关电路140断开。
至少一路第二交流供电线路210与至少一个第二电路组220一一对应连接,至少一个第二电路组220与至少一条第二直流母线230一一对应连接。该至少一个第二电路组220中每一第二电路组220中均包括多个整流电路221和多个充电电路222,多个整流电路221中的每一整流电路221的输入端与对应的第二交流供电线路210连接,多个整流电路221中的每一整流电路221的输出端均与对应的第二直流母线230连接;多个充电电路222中每一充电电路222的输入端均与对应的第二直流母线230连接。
在该实施例中,针对不同的第一交流供电线路110,可以通过相序检测电路150避免环流。而第一交流供电线路110与第二交流供电线路210之间是隔离的,不同第二交流供电线路210之间也是隔离的,因此即使接错线也不会发生环流。
在一些示例中,继续参见图18,充电装置100还可以包括与第一直流母线130连接的第一光伏器件160和/或第一储能器件170。
在一些示例中,继续参见图18,充电装置100还可以包括至少一个第二光伏器件250和/或至少一个第二储能器件260;至少有一条第二直流母线230上连接有第二光伏器件250和/或第二储能器件260。
继续参见图18,该充电装置100还可以包括位于至少一个第二交流供电线路210上的第二开关电路240;每一第二开关电路240用于在导通时使第二交流供电线路210与对应的第二电路组220的供电通路导通,在断开时使第二交流供电线路210与对应的第一电路组120的供电通路断开。
示例性的,继续参见图18,充电装置100还可以包括:多个充电接口180以及连接在每一充电电路122的输出端与多个充电接口180之间的投切矩阵190;投切矩阵190用于对每一充电电路122输出的直流电压进行分组调度,并对应输出至至少两个充电接口180。
在具体实施时,该实施例中各电路的设置可以参考上述图5至图17实施例中各电路的设置,在此不再赘述。
值得注意的是,本申请中“第一”和“第二”仅用于区分不同的电路,不作为对该电路本身的限定。例如,第一交流供电线路和第二交流供电线路,用于表示第一交流供电线路是区别与第二交流供电线路的 交流供电线路。
参见图19,图19为本申请一种实施例提供的充电系统10的结构示意图。本申请实施例提供的充电系统10可以包括本申请实施例提供的上述任一种充电装置100和与该充电装置100连接的至少一个充电终端300。该至少一个充电终端300中每一充电终端300分别用于连接电动汽车200,该充电装置100可以通过每一充电终端300向与该充电终端300连接的电动汽车200充电。在具体实施时,每一充电终端300可以连接充电装置中的至少一个充电电路。在一种实施例中,充电装置100中还包括充电接口180,充电装置100可以通过充电接口180与充电终端连接。当该充电能系统10中的充电装置100与供电源20连接时,如果发生接线错误,对于充电装置100存在多路第一交流供电线路110的情况,可以通过相序检测电路150检测发现。对于充电装置100存在多路第二交流供电线路210的情况,多路第二交流供电线路210之间是隔离的,因此即使接错线也不会发生环流。对于充电装置100存在第一交流供电线路110和第二交流供电线路210的情况,第一交流供电线路110与第二交流供电线路210之间是隔离的,因此即使接错线也不会发生环流。
本申请对充电终端300的数量不作限定,具体可以根据充电接口的数量进行设置,一般一个充电接口对应一个充电终端300,充电装置100的充电接口与对应的充电终端300连接,当电动汽车200需要充电时,电动汽车200与该充电终端300连接。
示例性的,充电终端300主要包括外壳、人机交互界面、充电控制单元和计量计费单元等,充电终端300用于与电动汽车200进行信息交互和能量传输及计量计费等。
示例性的,继续参见图19,该充电能系统10中还可以包括与该至少一个充电终端300连接的至少一辆电动汽车200,从而该充电装置100通过该充电终端300向电动汽车200充电。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (20)

  1. 一种充电装置,其特征在于,包括:多路第一交流供电线路,多个第一电路组,与所述多个第一电路组均连接的第一直流母线,位于所述多路第一交流供电线路中每一路所述第一交流供电线路的输入端和输出端之间的第一开关电路,与所述多路第一交流供电线路中每一路所述第一交流供电线路均连接的相序检测电路;
    所述多路第一交流供电线路与所述多个第一电路组一一对应连接;
    每一所述第一电路组中包括多个整流电路和多个充电电路;所述多个整流电路中的每一所述整流电路的输入端均与对应的所述第一交流供电线路的输出端连接,所述多个整流电路中的每一所述整流电路的输出端均与所述第一直流母线连接;所述多个充电电路中每一所述充电电路的输入端均与所述第一直流母线连接;
    每一所述第一交流供电线路用于接收三相交流电压;
    所述相序检测电路连接于每一路所述第一交流供电线路的输入端与所述第一开关电路之间,所述相序检测电路用于检查所述多路第一交流供电线路中相同相线上电压相序是否均一致;
    若所述多路第一交流供电线路中相同相线上的电压相序均一致,则控制所有所述第一开关电路导通;
    若所述多路第一交流供电线路中相同相线上的电压相序不一致,则控制所有所述第一开关电路断开。
  2. 如权利要求1所述的充电装置,其特征在于,所述相序检测电路还用于:
    若所述多路第一交流供电线路中相同相线上的电压相序不一致,则发起所述多路第一交流供电线路上三相交流电压的相序不一致的提醒消息。
  3. 如权利要求1或2所述的充电装置,其特征在于,所述相序检测电路包括:比较电路、控制电路以及与所述多路第一交流供电线路对应的多个电压采集电路;
    每一第一交流供电线路对应的一个所述电压采集电路,每一所述电压采集电路与对应的一路所述第一交流供电线路中的其中两条相线连接,且所述多个电压采集电路连接的所述第一交流供电线路中的所述两条相线相同;每一所述电压采集电路用于采集所述两条相线之间的电压信号;或者,每一第一交流供电线路对应两个所述电压采集电路,两个所述电压采集电路均与对应的一路所述第一交流供电线路中的零线和其中一条相线连接,且两个所述电压采集电路连接所述第一交流供电线路中的不同相线,与不同的所述第一交流供电线路连接的两个所述电压采集电路所连接的所述第一交流供电线路中的两条所述相线相同;每一所述电压采集电路用于采集所述相线和所述零线之间的电压信号;
    所述比较电路用于根据每一所述电压采集电路所采集的电压信号,确定所述多路第一交流供电线路中相同相线对应的所述电压信号的波形是否一致;如果所述多路第一交流供电线路中相同相线对应的所述电压信号的波形一致则向所述控制电路发送第一控制信息,如果所述多路第一交流供电线路中相同相线对应的所述电压信号的波形不一致则向所述控制电路发送第二控制信息;
    所述控制电路用于在接收到所述比较电路发送的所述第一控制信息后控制所述第一开关电路导通,在接收到所述第二控制信息后控制所述第一开关电路断开。
  4. 如权利要求3所述的充电装置,其特征在于,每一所述电压采集电路还用于将采集的所述电压信号转换成数字信号,并将所述数字信号发送给所述比较电路;所述比较电路具体用于:
    接收每一所述电压采集电路发送的所述数字信号,并比较与所述多路第一交流供电线路中相同相线连接的不同所述电压采集电路发送的所述数字信号是否一致;
    如果与所述多路第一交流供电线路中相同相线连接的不同所述电压采集电路发送的所述数字信号一致则向所述控制电路发送第一控制信息;
    如果与所述多路第一交流供电线路中相同相线连接的不同所述电压采集电路发送的所述数字信号不一致则向所述控制电路发送第二控制信息。
  5. 如权利要求4所述的充电装置,其特征在于,所述电压采集电路包括:第一电阻、第二电阻、第三电阻、第四电阻、第五电阻、第一二极管、第一晶体管和光耦合器;
    所述第一电阻串联在所述电压采集电路的第一输入端和所述第一二极管的负极之间;所述第二电阻串联在所述电压采集电路的第二输入端和所述第一二极管的正极之间;所述二极管的负极还与所述光耦合器中的光电二极管的正极连接,所述第一二极管的正极与所述光耦合器中的光电二极管的负极输入端连接;所述光耦合器中的晶体管的集电极与第一参考电压端连接,所述光耦合器中的晶体管的发射极与所述第三电阻的第一端连接;所述第一晶体管的基极与所述第三电阻的第二端连接,所述第一晶体管的集电极与所述第四电阻的第一端以及所述电压采集电路的输出端连接,所述第一晶体管的发射极与第二参考电压端连接;所述第四电阻的第二端连接所述第一参考电压端;所述第五电阻的第一端与所述第一晶体管的基极连接,所述第五电阻的第二端与所述第一晶体管的发射极连接。
  6. 如权利要求1-5任一项所述的充电装置,其特征在于,所述充电装置还包括与所述第一直流母线连接的第一光伏器件和/或第一储能器件。
  7. 如权利要求1-6任一项所述的充电装置,其特征在于,每一所述第一开关电路用于在导通时使所述第一交流供电线路与对应的所述第一电路组的供电通路导通,在断开时使所述第一交流供电线路与对应的所述第一电路组的供电通路断开;
    所述第一电路组中每一所述整流电路用于将所述第一交流供电线路提供的三相交流电压转换为与所述第一直流母线匹配的直流电压;
    所述多个第一电路组中每一所述充电电路用于将所述第一直流母线上的直流电压转换成具有设定电流以及设定电压的目标直流电压并输出。
  8. 如权利要求7所述的充电装置,其特征在于,所述整流电路包括AC-DC转换电路;所述充电电路包括DC-DC转换电路。
  9. 如权利要求1-8任一项所述的充电装置,其特征在于,所述充电装置还包括:至少一路第二交流供电线路,与所述至少一路第二交流供电线路一一对应连接的至少一个第二电路组,与所述至少一个第二电路组一一对应连接的至少一条第二直流母线;
    所述至少一个第二电路组中每一所述第二电路组中均包括多个整流电路和多个充电电路;
    每一所述第二电路组中每一所述整流电路的输入端与对应的所述第二交流供电线路连接,每一所述整流电路的输出端均与对应的所述第二直流母线连接;
    每一所述第二电路组中每一所述充电电路的输入端均与对应的所述第二直流母线连接。
  10. 如权利要求9所述的充电装置,其特征在于,所述充电装置还包括至少一个第二光伏器件和/或至少一个第二储能器件;
    至少有一条所述第二直流母线上连接有所述第二光伏器件和/或所述第二储能器件。
  11. 如权利要求9或10所述的充电装置,其特征在于,每一所述第二交流供电线路用于接收三相交流电压,并将接收的所述三相交流电压提供给对应的所述第二电路组中的每一所述整流电路;
    所述第二电路组中每一所述整流电路用于将所述第二交流供电线路提供的三相交流电压转换为与所述第二直流母线匹配的直流电压;
    所述第二电路组中每一所述充电电路用于将所述第二直流母线上的直流电压转换成具有设定电流以及设定电压的目标直流电压并输出。
  12. 如权利要求9-11任一项所述的充电装置,其特征在于,所述充电装置还包括位于至少一个所述第二交流供电线路上的第二开关电路;
    每一所述第二开关电路用于在导通时使所述第二交流供电线路与对应的所述第二电路组的供电通路导通,在断开时使所述第二交流供电线路与对应的所述第一电路组的供电通路断开。
  13. 如权利要求1-12任一项所述的充电装置,其特征在于,所述充电装置还包括:多个充电接口以 及连接在每一所述充电电路与所述多个充电接口之间的投切矩阵;
    所述投切矩阵用于对每一所述充电电路输出的直流电压进行分组调度,并对应输出至至少两个所述充电接口。
  14. 一种充电装置,其特征在于,包括:多路交流供电线路,与所述多路交流供电线路一一对应连接的多个电路组,与所述多个电路组一一对应连接的多条直流母线;
    所述多个电路组中每一所述电路组中均包括多个整流电路和多个充电电路;
    所述多个整流电路中的每一所述整流电路的输入端与对应的所述交流供电线路连接,所述多个整流电路中的每一所述整流电路的输出端均与对应的所述直流母线连接;
    所述多个充电电路中每一所述充电电路的输入端均与对应的所述直流母线连接。
  15. 如权利要求14所述的充电装置,其特征在于,所述充电装置还包括至少一个光伏器件和/或至少一个储能器件;
    至少有一条所述直流母线上连接有所述光伏器件和/或所述储能器件。
  16. 如权利要求14或15所述的充电装置,其特征在于,所述充电装置还包括:多个充电接口以及连接在每一所述充电电路与所述多个充电接口之间的投切矩阵;
    所述投切矩阵用于使每一所述充电接口对应至少两个所述充电电路的输出端。
  17. 如权利要求14-16任一项所述的充电装置,其特征在于,每一所述交流供电线路用于接收三相交流电压,并将接收的所述三相交流电压提供给对应的所述电路组中的每一所述整流电路;
    所述电路组中每一所述整流电路用于将所述交流供电线路提供的三相交流电压转换为与所述直流母线匹配的直流电压;
    所述电路组中每一所述充电电路用于将所述直流母线上的直流电压转换成具有设定电流以及设定电压的目标直流电压并输出。
  18. 如权利要求14-17任一项所述的充电装置,其特征在于,所述充电装置还包括位于至少一个所述交流供电线路上的开关电路;
    每一所述开关电路用于在导通时使所述交流供电线路与对应的所述电路组的供电通路导通,在断开时使所述交流供电线路与对应的所述第一电路组的供电通路断开。
  19. 一种充电系统,其特征在于,包括充电装置和与所述充电装置连接的至少一个充电终端;
    所述至少一个充电终端中每一所述充电终端分别用于连接电动汽车,所述充电装置用于通过每一所述充电终端向与所述充电终端连接的所述电动汽车充电;
    所述充电装置包括:多路第一交流供电线路,多个第一电路组,与所述多个第一电路组均连接的第一直流母线,位于所述多路第一交流供电线路中每一路所述第一交流供电线路的输入端和输出端之间的第一开关电路,与所述多路第一交流供电线路中每一路所述第一交流供电线路均连接的相序检测电路;所述多路第一交流供电线路与所述多个第一电路组一一对应连接;每一所述第一电路组中包括多个整流电路和多个充电电路;所述多个整流电路中的每一所述整流电路的输入端均与对应的所述第一交流供电线路的输出端连接,所述多个整流电路中的每一所述整流电路的输出端均与所述第一直流母线连接;所述多个充电电路中每一所述充电电路的输入端均与所述第一直流母线连接;每一所述第一交流供电线路用于接收三相交流电压;所述相序检测电路连接于每一路所述第一交流供电线路的输入端与所述第一开关电路之间,所述相序检测电路用于检查所述多路第一交流供电线路中相同相线上电压相序是否均一致;若所述多路第一交流供电线路中相同相线上的电压相序均一致,则控制所有所述第一开关电路导通;若所述多路第一交流供电线路中相同相线上的电压相序不一致,则控制所有所述第一开关电路断开;每一所述充电终端与至少一个所述充电电路连接;
    或者,所述充电装置包括:多路交流供电线路,与所述多路交流供电线路一一对应连接的多个电路组,与所述多个电路组一一对应连接的多条直流母线;所述多个电路组中每一所述电路组中均包括多个 整流电路和多个充电电路;所述多个整流电路中的每一所述整流电路的输入端与对应的所述交流供电线路连接,所述多个整流电路中的每一所述整流电路的输出端均与对应的所述直流母线连接;所述多个充电电路中每一所述充电电路的输入端均与对应的所述直流母线连接;每一所述充电终端与至少一个所述充电电路连接。
  20. 如权利要求19所述的充电系统,其特征在于,所述充电系统还包括与所述至少一个充电终端连接的至少一辆电动汽车。
PCT/CN2023/101774 2022-10-08 2023-06-21 一种充电装置及充电系统 WO2024074054A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211222187.0A CN115635868A (zh) 2022-10-08 2022-10-08 一种充电装置及充电系统
CN202211222187.0 2022-10-08

Publications (2)

Publication Number Publication Date
WO2024074054A1 true WO2024074054A1 (zh) 2024-04-11
WO2024074054A9 WO2024074054A9 (zh) 2024-05-10

Family

ID=84941725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101774 WO2024074054A1 (zh) 2022-10-08 2023-06-21 一种充电装置及充电系统

Country Status (2)

Country Link
CN (1) CN115635868A (zh)
WO (1) WO2024074054A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115635868A (zh) * 2022-10-08 2023-01-24 华为数字能源技术有限公司 一种充电装置及充电系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103618368A (zh) * 2013-12-10 2014-03-05 山东圣阳电源股份有限公司 一种高压直流供电系统
CN108233499A (zh) * 2016-12-09 2018-06-29 保时捷股份公司 用于对电力运行的车辆进行充电的模块化电力电子系统
CN108312856A (zh) * 2017-01-16 2018-07-24 华为技术有限公司 一种充电桩并机的充电桩系统及方法
CN113428028A (zh) * 2021-07-20 2021-09-24 上海电力大学 多交流电源端口多直流母线的电动汽车充电站
US20220200303A1 (en) * 2020-12-18 2022-06-23 Milwaukee Electric Tool Corporation Portable power supply
CN115635868A (zh) * 2022-10-08 2023-01-24 华为数字能源技术有限公司 一种充电装置及充电系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103618368A (zh) * 2013-12-10 2014-03-05 山东圣阳电源股份有限公司 一种高压直流供电系统
CN108233499A (zh) * 2016-12-09 2018-06-29 保时捷股份公司 用于对电力运行的车辆进行充电的模块化电力电子系统
CN108312856A (zh) * 2017-01-16 2018-07-24 华为技术有限公司 一种充电桩并机的充电桩系统及方法
US20220200303A1 (en) * 2020-12-18 2022-06-23 Milwaukee Electric Tool Corporation Portable power supply
CN113428028A (zh) * 2021-07-20 2021-09-24 上海电力大学 多交流电源端口多直流母线的电动汽车充电站
CN115635868A (zh) * 2022-10-08 2023-01-24 华为数字能源技术有限公司 一种充电装置及充电系统

Also Published As

Publication number Publication date
CN115635868A (zh) 2023-01-24
WO2024074054A9 (zh) 2024-05-10

Similar Documents

Publication Publication Date Title
CN109167390B (zh) 一种光伏发电逆变系统
TWI624147B (zh) ㄧ種轉換複數直流電壓訊號以產生ㄧ交流功率訊號的方法
CN108092601B (zh) 光伏储能逆变一体化系统
US20220166072A1 (en) Battery cluster management device and battery energy storage system
CN104040666B (zh) 直流断路器和包括这样的直流断路器的电力系统
EP3920361A1 (en) Energy storage system and photovoltaic energy storage system
WO2024074054A1 (zh) 一种充电装置及充电系统
CN105576814A (zh) 直流电源备援系统
EP4366106A1 (en) Charging apparatus, charging pile, and charging system
CN112003252B (zh) 线路故障切除装置及直流系统
CN211905521U (zh) 绝缘阻抗检测电路及其应用装置
US20230068564A1 (en) Conversion system and conversion device
US20220200290A1 (en) Power System
CN113890103B (zh) 一种光伏系统及控制方法
CN102222887B (zh) 一种欠压监视电路
CN102420456A (zh) 一种光伏并网逆变器的供电系统
CN202363869U (zh) 户外高压交流真空断路器的控制装置
KR20200113870A (ko) Lvdc 저압배전 시스템에 적용되는 dc/dc 컨버터
CN217935067U (zh) 过欠压保护电路及三相自复式过欠压保护器
CN102412547B (zh) 户外高压交流真空断路器的控制装置
CN111262336A (zh) 一种柔性不间断电源装置及其控制方法和系统
CN217183035U (zh) 一种级联式储能系统
CN219918724U (zh) 一种用于储能变流器控制系统的供电装置
CN117175596B (zh) 基于开关耦合的潮流转供装置
CN215042206U (zh) 一种储能包、车辆充电设备及充电场站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23874248

Country of ref document: EP

Kind code of ref document: A1