WO2024073890A1 - 电池析锂窗口的获取方法、装置、设备、介质和程序产品 - Google Patents
电池析锂窗口的获取方法、装置、设备、介质和程序产品 Download PDFInfo
- Publication number
- WO2024073890A1 WO2024073890A1 PCT/CN2022/123839 CN2022123839W WO2024073890A1 WO 2024073890 A1 WO2024073890 A1 WO 2024073890A1 CN 2022123839 W CN2022123839 W CN 2022123839W WO 2024073890 A1 WO2024073890 A1 WO 2024073890A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- target
- information
- model
- soc
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 140
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 134
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 134
- 238000013507 mapping Methods 0.000 title claims abstract description 54
- 238000007747 plating Methods 0.000 title claims abstract description 18
- 230000008569 process Effects 0.000 claims abstract description 68
- 238000004088 simulation Methods 0.000 claims abstract description 32
- 239000000463 material Substances 0.000 claims description 95
- 238000013461 design Methods 0.000 claims description 63
- 230000008021 deposition Effects 0.000 claims description 56
- 238000001556 precipitation Methods 0.000 claims description 54
- 238000004590 computer program Methods 0.000 claims description 25
- 239000007773 negative electrode material Substances 0.000 claims description 6
- 239000007774 positive electrode material Substances 0.000 claims description 6
- 239000002001 electrolyte material Substances 0.000 claims description 5
- 238000005056 compaction Methods 0.000 claims description 4
- 238000002955 isolation Methods 0.000 claims 1
- 239000012528 membrane Substances 0.000 claims 1
- 238000012360 testing method Methods 0.000 abstract description 56
- 238000012827 research and development Methods 0.000 abstract description 18
- 238000012545 processing Methods 0.000 abstract description 6
- 230000000704 physical effect Effects 0.000 description 25
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 10
- 229910001416 lithium ion Inorganic materials 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 5
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 4
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 4
- 238000010998 test method Methods 0.000 description 4
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 3
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 3
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 3
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 238000012938 design process Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000004154 testing of material Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/367—Software therefor, e.g. for battery testing using modelling or look-up tables
Definitions
- the present application relates to the field of batteries, and in particular to a method, device, equipment, medium and program product for obtaining a battery lithium deposition window.
- lithium-ion batteries When charging lithium-ion batteries at different temperatures, the charging strategy needs to be considered. If the charging strategy is unreasonable (for example, the rate is too large, etc.), metallic lithium may be precipitated on the anode surface of the lithium-ion battery (or called lithium plating). Lithium plating will greatly affect the life and safety of lithium-ion batteries. Therefore, in the design process of lithium-ion batteries, it is necessary to fully consider the lithium plating window of the designed lithium-ion battery under actual charging conditions.
- Anode Lithium Plating Mapping is the maximum charging current that does not deposit lithium when continuously charging to a specified SOC at different temperatures and different states of charge (SOC).
- Traditional technology usually uses a three-electrode stacking experimental test method. This test method requires separate production of corresponding test batteries for different test temperatures and/or different test conditions.
- the present application provides a method, device, equipment, medium and program product for obtaining a battery lithium deposition window, which can solve the problem that the traditional technology has a long test cycle and requires a large amount of test resources.
- the present application provides a method for obtaining a battery lithium deposition window, the method comprising:
- the battery charging process corresponding to the battery operating condition information is simulated using the electrochemical model of the target battery to obtain the lithium plating window corresponding to the battery operating condition information.
- obtaining an electrochemical model of a target battery includes:
- An electrochemical model of a target battery is established according to the target battery model information.
- obtaining target battery model information corresponding to the target battery includes:
- Target battery model information matching the battery parameter information is determined from a battery model library according to the battery parameter information.
- the battery charging process corresponding to the battery operating condition information is simulated, and there is no need to make a test battery.
- the battery lithium precipitation window corresponding to different battery operating conditions and/or different battery parameters can be calculated, which can not only save the test cycle, but also save a lot of test resources, thereby helping to improve the research and development speed and save research and development costs.
- the automatic matching method can quickly obtain a test result with high accuracy without the user having professional simulation knowledge, and its scope of application is wide.
- the battery parameter information includes: battery material information, and determining target battery model information matching the battery parameter information from a battery model library according to the battery parameter information includes:
- target battery model information matching the battery material information is determined from a battery model library.
- the battery parameter information includes: battery design information, and determining target battery model information matching the battery parameter information from a battery model library according to the battery parameter information includes:
- target battery model information matching the battery design information is determined from a battery model library.
- the battery parameter information includes: battery material information and battery design information, and determining target battery model information matching the battery parameter information from a battery model library according to the battery parameter information includes:
- the battery material information determining candidate battery model information matching the battery material information from a battery model library
- target battery model information matching the battery design information is determined from the candidate battery model information.
- the battery material information includes at least one of positive and negative electrode material information, separator material information, electrolyte material and current collector material information.
- the battery design information includes at least one of battery capacity, compaction density, gram capacity, and pole piece size.
- the battery operating condition information includes: a target temperature and a target state of charge SOC, and the battery charging process corresponding to the battery operating condition information is simulated using an electrochemical model of the target battery to obtain a lithium precipitation window corresponding to the battery operating condition information, including:
- the battery charging process at the target temperature is simulated using the electrochemical model of the target battery to obtain the mapping relationship between the SOC corresponding to the target temperature and the maximum charging rate;
- the lithium precipitation window corresponding to the target SOC is determined.
- the battery charging process at the target temperature is simulated by using the electrochemical model of the target battery to obtain the mapping relationship between the SOC corresponding to the target temperature and the maximum charging rate, and the lithium precipitation window corresponding to the target SOC is determined according to the target SOC and the mapping relationship.
- the battery charging process includes a process of charging the battery from the initial SOC using different maximum charging rates, and simulating the battery charging process at a target temperature using an electrochemical model of a target battery to obtain a mapping relationship between the SOC corresponding to the target temperature and the maximum charging rate, including:
- the battery charging process at the target temperature is simulated using the electrochemical model of the target battery to obtain multiple groups of simulation results, each group of simulation results including the maximum charging rate and the corresponding SOC;
- a mapping relationship is obtained according to multiple groups of simulation results.
- determining a lithium precipitation window corresponding to the target SOC according to the target SOC and the mapping relationship includes:
- the target maximum charging rate corresponding to the target SOC is obtained
- the lithium plating window is determined based on the target maximum charge rate and the battery capacity of the target battery.
- the present application provides a device for obtaining a battery lithium deposition window, the device comprising:
- An acquisition module used to obtain battery operating condition information and an electrochemical model of a target battery
- the simulation module is used to simulate the battery charging process corresponding to the battery operating condition information using the electrochemical model of the target battery, and obtain the lithium precipitation window corresponding to the battery operating condition information.
- the present application provides an electronic device including a memory and a processor, wherein the memory stores a computer program, and when the processor executes the computer program, the steps of the method for obtaining a battery lithium deposition window of any embodiment in the first aspect are implemented.
- the present application provides a computer-readable storage medium having a computer program stored thereon, which, when executed by a processor, implements the steps of a method for obtaining a battery lithium deposition window in any embodiment of the first aspect described above.
- the present application provides a computer program product, which includes a computer program, and when the computer program is executed by a processor, the steps of the method for obtaining a battery lithium deposition window in any embodiment of the first aspect are implemented.
- FIG1 is a schematic diagram of an application environment provided by an embodiment of the present application.
- FIG2 is a schematic flow chart of a method for obtaining a battery lithium deposition window provided in some embodiments of the present application
- FIG3 is a schematic flow chart of a method for obtaining a battery lithium deposition window provided in some other embodiments of the present application.
- FIG4 is a schematic flow chart of a method for obtaining a battery lithium deposition window provided in some other embodiments of the present application.
- FIG5 is a schematic flow chart of a method for obtaining a battery lithium deposition window provided in some other embodiments of the present application.
- FIG6 is a schematic flow chart of a method for obtaining a battery lithium deposition window provided in some other embodiments of the present application.
- FIG7 is a schematic flow chart of a method for obtaining a battery lithium deposition window provided in some other embodiments of the present application.
- FIG8 is a schematic diagram of the structure of a device for obtaining a battery lithium deposition window provided in some embodiments of the present application.
- FIG. 9 is a schematic diagram of the structure of an electronic device in one embodiment of the present application.
- lithium-ion batteries When charging lithium-ion batteries at different temperatures, the charging strategy needs to be considered. If the charging strategy is unreasonable (for example, the rate is too large, etc.), metallic lithium will be deposited on the anode surface of the lithium-ion battery (or called lithium plating). Lithium plating will greatly affect the life and safety of lithium-ion batteries. Therefore, in the design process of lithium-ion batteries, it is necessary to fully consider the lithium plating window of the designed lithium-ion battery under actual charging conditions.
- ALP Mapping is the maximum charging current at different temperatures and different SOCs that can continuously charge to a specified SOC without lithium deposition.
- Traditional technology usually uses a three-electrode stacking experimental test method. This test method requires separate production of corresponding test batteries for different test temperatures and/or different test conditions. The test battery usually takes a relatively long time to produce. It can be seen that the overall test cycle of traditional technology is long and requires a lot of test resources (for example, material testing resources, etc.).
- the battery lithium deposition window can be obtained by using a battery electrochemical model to simulate the battery charging process, without the need to make a test battery, thereby saving a lot of testing resources.
- the applicant has proposed a method for obtaining a battery lithium precipitation window after research, by obtaining battery operating condition information and the electrochemical model of the target battery, and then using the electrochemical model of the target battery to simulate the battery charging process corresponding to the obtained battery operating condition information, and obtain the lithium precipitation window corresponding to the battery operating condition information. It can be seen that compared with the traditional technology, in the embodiment of the present application, by simulating the battery charging process corresponding to the battery operating condition information according to the electrochemical model of the obtained target battery, there is no need to make a test battery, thereby not only saving the test cycle, but also saving a lot of test resources.
- FIG1 is a schematic diagram of an application environment provided by an embodiment of the present application.
- a terminal 101 can communicate with a server 102 through a network.
- the database can store the battery model library involved in the embodiment of the present application; of course, other data that the server 102 needs to process can also be stored, which is not limited in the embodiment of the present application.
- the terminal 101 may adopt the method for obtaining the battery lithium deposition window provided in the embodiment of the present application to determine the lithium deposition window corresponding to the battery operating condition information.
- the terminal 101 sends the battery operating condition information to the server 102, so that the server 102 uses the battery lithium precipitation window acquisition method provided in the embodiment of the present application to determine the lithium precipitation window corresponding to the battery operating condition information. It should be understood that in this implementation, the server 102 can also send the lithium precipitation window corresponding to the determined battery operating condition information to the terminal 101, so that the terminal 101 can display it.
- the database in the embodiment of the present application can be integrated on the server 102, or it can be placed on the cloud or other network servers.
- the terminal 101 in the embodiment of the present application may be, but is not limited to, various personal computers, laptops, smart phones, and tablet computers.
- the server 102 in the embodiment of the present application can be implemented as an independent server or a server cluster composed of multiple servers.
- FIG2 is a flow chart of a method for obtaining a battery lithium deposition window provided in some embodiments of the present application.
- the method is applied to an electronic device as an example for explanation, wherein the electronic device may be the terminal 101 or the server 102 in FIG1 .
- the method of the embodiment of the present application may include the following steps:
- Step S201 Obtain battery operating condition information and an electrochemical model of a target battery.
- the battery operating condition information in the embodiment of the present application is used to indicate the battery charging condition corresponding to the battery lithium precipitation window to be obtained.
- the battery operating condition information may include: a target temperature to be detected and a target state of charge SOC to be detected; of course, the battery operating condition information may also include other information (for example, lithium precipitation conditions, etc.), which is not limited in the embodiment of the present application.
- the battery operating condition information in this step can be a general term, which may include one battery operating condition information, or may include multiple battery operating condition information.
- the lithium deposition conditions in the embodiments of the present application may include: the anode potential of the battery is a preset voltage (eg, 0 V); of course, the lithium deposition conditions may also include other conditions, which are not limited in the embodiments of the present application.
- the anode potential of the battery is a preset voltage (eg, 0 V); of course, the lithium deposition conditions may also include other conditions, which are not limited in the embodiments of the present application.
- the electronic device may receive the battery operating condition information input by the user.
- the electronic device may receive the battery operating condition information input by the user through the parameter input interface.
- the electronic device may receive the battery operating condition information sent by the terminal 101 .
- the electronic device may also obtain the battery operating condition information in other ways, which is not limited in the embodiments of the present application.
- the electronic device may obtain target battery model information corresponding to the target battery, and establish an electrochemical model of the target battery according to the target battery model information.
- the target battery model information in the embodiment of the present application may include but is not limited to target battery reference design information and physical property parameters of corresponding target battery materials.
- the electronic device can receive target battery model information input by the user, target battery model information sent by other devices, or can determine the target battery model information from the battery model library; of course, the electronic device can also obtain the target battery model information in other ways, which is not limited to this in the embodiments of the present application.
- the electronic device can establish an electrochemical model of the target battery according to the target battery model information. It should be understood that the electronic device can establish an electrochemical model of the target battery according to the target battery model information after obtaining the target battery model information.
- the electronic device may receive the electrochemical model of the target battery input by a user, or the electronic device may receive the electrochemical model of the target battery sent by other devices.
- the electronic device may also obtain the electrochemical model of the target battery in other ways, which is not limited in the embodiments of the present application.
- Step S202 simulating the battery charging process corresponding to the battery operating condition information using the electrochemical model of the target battery to obtain a lithium precipitation window corresponding to the battery operating condition information.
- the electronic device uses the electrochemical model of the target battery obtained in the above step S201 to simulate the battery charging process corresponding to the battery operating condition information obtained in the above step S201 to obtain the lithium precipitation window corresponding to the battery operating condition information.
- the battery operating condition information acquired by the electronic device includes: battery operating condition information 1 and battery operating condition information 2, wherein the battery operating condition information 1 includes the target temperature 1 target state of charge SOC1, and the battery operating condition information 2 includes the target temperature 2 target state of charge SOC2.
- the electronic device can use the electrochemical model of the target battery to simulate the battery charging process corresponding to the battery operating condition information 1 to obtain the lithium precipitation window 1 corresponding to the battery operating condition information 1, and use the electrochemical model of the target battery to simulate the battery charging process corresponding to the battery operating condition information 2 to obtain the lithium precipitation window 2 corresponding to the battery operating condition information 2, wherein the lithium precipitation window 1 corresponding to the battery operating condition information 1 represents the maximum charging current for continuously charging the target battery to the target SOC1 at the target temperature 1 without lithium precipitation, and the lithium precipitation window 2 corresponding to the battery operating condition information 2 represents the maximum charging current for continuously charging the target battery to the target SOC2 at the target temperature 2 without lithium precipitation.
- the above-mentioned method for obtaining the battery lithium precipitation window obtains the battery operating condition information and the electrochemical model of the target battery, and then uses the electrochemical model of the target battery to simulate the battery charging process corresponding to the battery operating condition information to obtain the lithium precipitation window corresponding to the battery operating condition information.
- a battery model library containing various types of battery model information can be established, so that the corresponding battery model information can be automatically matched from the battery model library according to the battery parameter information input by the user and a battery electrochemical model can be established. Then, the battery charging process is simulated according to the battery electrochemical model to obtain the battery lithium deposition window, without the need to make a test battery. This can not only save testing cycles, but also save a lot of testing resources.
- FIG3 is a flow chart of a method for obtaining a battery lithium deposition window provided in some other embodiments of the present application. Based on the above embodiments, the present application introduces and explains the relevant contents of the above-mentioned acquisition of the target battery model information corresponding to the target battery. As shown in FIG3, the method of the embodiment of the present application may include:
- Step S301 Obtain battery parameter information of a target battery.
- the battery parameter information of the target battery in the embodiment of the present application is used to indicate the key battery parameters of the target battery to be designed.
- the battery parameter information of the target battery may include, but is not limited to: battery material information and/or battery design information of the target battery, wherein the battery material information of the target battery is used to indicate the identification information of the battery material of the target battery, and the battery design information of the target battery is used to indicate the battery design parameters of the target battery.
- the battery material information in the embodiment of the present application may include: at least one of the positive and negative electrode material information, the separator material information, the electrolyte material and the current collector material information; of course, other material information may also be included, which is not limited in the embodiment of the present application.
- the battery material information may include: the name of the positive and negative electrode material, the name of the separator material and the name of the electrolyte.
- the battery design information in the embodiments of the present application may include: at least one of battery capacity, compaction density, gram capacity and pole piece size; of course, other design information may also be included, which is not limited in the embodiments of the present application.
- the electronic device may receive the battery parameter information of the target battery input by the user.
- the electronic device may receive the battery parameter information of the target battery input by the user through the parameter input interface.
- the electronic device may receive the battery parameter information of the target battery sent by the terminal 101 .
- the electronic device may also obtain the battery parameter information of the target battery in other ways, which is not limited in the embodiments of the present application.
- Step S302 Determine target battery model information matching the battery parameter information from a battery model library according to the battery parameter information.
- the battery model library involved in the embodiment of the present application can be divided into: material library and battery library according to different storage contents; wherein, the material library is used to store the physical properties of main materials such as positive electrode materials, negative electrode materials, separator materials, electrolyte materials, and current collector materials, and each main material can contain multiple material types.
- the battery library is used to store multiple sets of complete battery reference design information and the corresponding physical properties of battery materials.
- the battery model library involved in the embodiments of the present application can be divided into: various types of calibrated battery model information according to different models, wherein any battery model information may include: battery reference design information and corresponding physical properties of battery materials.
- the electronic device determines target battery model information matching the battery parameter information from the battery model library according to the battery parameter information obtained in the above step S301, wherein the target battery model information may include target battery reference design information and physical property parameters of corresponding target battery materials.
- the following embodiments of the present application introduce an achievable method for an electronic device to determine target battery model information that matches the battery parameter information from a battery model library based on the battery parameter information.
- the electronic device can determine the target battery model information matching the battery material information from the battery model library according to the battery material information.
- the electronic device can match the battery material information of the target battery with the physical property parameters of the battery materials of each battery model information in the battery model library, and determine the battery model information to which the physical property parameters of the battery material with the highest matching degree belongs as the target battery model information.
- the electronic device matches the battery material information with the physical property parameter 1 of the battery material of battery model information 1, the physical property parameter 2 of the battery material of battery model information 2, and the physical property parameter 3 of the battery material of battery model information 3, respectively, wherein the matching degree 1 between the battery material information and the physical property parameter 1 of the battery material of battery model information 1 is greater than the matching degree 2 between the battery material information and the physical property parameter 2 of the battery material of battery model information 2, and the matching degree 2 between the battery material information and the physical property parameter 2 of the battery material of battery model information 2 is greater than the matching degree 3 between the battery material information and the physical property parameter 3 of the battery material of battery model information 3, then the electronic device can determine the battery model information 1 as the target battery model information.
- the electronic device can also determine the target battery model information that matches the battery material information from the battery model library in other ways based on the battery material information (for example, the electronic device can determine any one of the battery model information belonging to the physical property parameters of each battery material with a matching degree exceeding the first matching degree as the target battery model information), which is not limited in the embodiments of the present application.
- the electronic device can determine the target battery model information matching the battery design information from the battery model library according to the battery design information.
- the electronic device can match the battery design information of the target battery with the battery reference design information of each battery model information in the battery model library, and determine the battery model information to which the battery reference design information with the highest matching degree belongs as the target battery model information.
- the electronic device can also determine the target battery model information that matches the battery design information from the battery model library in other ways based on the battery design information (for example, the electronic device can determine any one of the battery model information belonging to each battery reference design information with a matching degree exceeding a third matching degree as the target battery model information), which is not limited in the embodiments of the present application.
- the electronic device can determine the first candidate battery model information that matches the battery material information from the battery model library based on the battery material information, and determine the target battery model information that matches the battery design information from the first candidate battery model information based on the battery design information.
- the electronic device can match the battery material information with the physical property parameters of the battery materials of each battery model information in the battery model library, and determine the battery model information to which the physical property parameters of each battery material with a matching degree exceeding the first matching degree belongs as the first candidate battery model information.
- the electronic device matches the battery material information with the physical property parameter 1 of the battery material of battery model information 1, the physical property parameter 2 of the battery material of battery model information 2, and the physical property parameter 3 of the battery material of battery model information 3, respectively, wherein the matching degree 1 between the battery material information and the physical property parameter 1 of the battery material of the battery model information 1 is greater than the first matching degree, the matching degree 2 between the battery material information and the physical property parameter 2 of the battery material of the battery model information 2 is not greater than the first matching degree, and the matching degree 3 between the battery material information and the physical property parameter 3 of the battery material of the battery model information 3 is greater than the first matching degree, then the electronic device can determine the battery model information 1 and the battery model information 3 as the first candidate battery model information.
- the electronic device may match the battery design information with the battery reference design information of each battery model information in the first candidate battery model information, and determine the battery model information to which each battery reference design information with a matching degree exceeding the second matching degree belongs as the target battery model information.
- the first candidate battery model information includes battery model information 1 and battery model information 3
- the electronic device matches the battery design information with the battery reference design information 1 of battery model information 1 and the battery reference design information 3 of battery model information 3, respectively, wherein the matching degree between the battery design information and the battery reference design information 1 of the battery model information 1 is greater than the second matching degree, and the matching degree between the battery design information and the battery reference design information 3 of the battery model information 3 is not greater than the second matching degree, then the electronic device may determine the battery model information 1 as the target battery model information.
- the electronic device can determine, based on the battery design information, second candidate battery model information that matches the battery design information from a battery model library, and determine, based on the battery material information, target battery model information that matches the battery material information from the second candidate battery model information.
- the electronic device can match the battery design information with the battery reference design information of each battery model information in the battery model library, and determine the battery model information to which each battery reference design information with a matching degree exceeding the third matching degree belongs as the second candidate battery model information. Further, the electronic device can match the battery material information with the physical property parameters of the battery material of each battery model information in the second candidate battery model information, and determine the battery model information to which the physical property parameters of each battery material with a matching degree exceeding the fourth matching degree belongs as the target battery model information.
- the electronic device can determine the first candidate battery model information that matches the battery material information from the battery model library based on the battery material information. Further, the electronic device can determine the second candidate battery model information that matches the battery design information from the battery model library based on the battery design information. Further, the electronic device can determine the intersection battery model information of the first candidate battery model information and the second candidate battery model information as the target battery model information, wherein the intersection battery model information refers to both the first candidate battery model information and the second candidate battery model information.
- the multiple battery model information can be displayed through the terminal to facilitate the user to select the final target battery model information from the multiple battery model information, so as to establish the electrochemical model of the target battery based on the final target battery model information.
- the matching degree of the target battery model information determined by the electronic device from the battery model library based on the battery parameter information is greater than the first matching threshold but less than the second matching threshold (that is, the matching degree is not particularly high)
- the electronic device can also combine the battery parameter information obtained in the above step S301.
- the electronic device may replace the content in the target battery model information that is inconsistent with the battery parameter information with the content in the battery parameter information, and then establish an electrochemical model of the target battery according to the replaced target battery model information.
- the electronic device may replace the content in the target battery model information that is inconsistent with the battery material information in the battery parameter information with the content in the battery material information, and then establish an electrochemical model of the target battery according to the replaced target battery model information.
- the electronic device may replace the content in the target battery model information that is inconsistent with the battery design information in the battery parameter information with the content in the battery design information, and then establish an electrochemical model of the target battery according to the replaced target battery model information.
- the present application by obtaining the battery parameter information of the target battery, and determining the target battery model information matching the battery parameter information from the battery model library according to the battery parameter information, so as to establish the electrochemical model of the target battery according to the target battery model information, and use the electrochemical model of the target battery to simulate the battery charging process corresponding to the battery operating condition information, and obtain the lithium precipitation window corresponding to the battery operating condition information.
- the automatic matching method does not require the user to have professional simulation knowledge and can quickly obtain test results with high accuracy, and its scope of application is wide.
- FIG4 is a flow chart of a method for obtaining a battery lithium deposition window provided in other embodiments of the present application. Based on the above embodiments, the present application describes the relevant contents of the simulation process using the electrochemical model of the target battery in the above step S202. As shown in FIG4, the method of the embodiment of the present application may include:
- Step S401 simulating the battery charging process at a target temperature using an electrochemical model of a target battery to obtain a mapping relationship between the SOC corresponding to the target temperature and the maximum charging rate.
- the electronic device uses the electrochemical model of the target battery to simulate the battery charging process at the target temperature in the battery operating condition information according to the preset charging process, and obtains the mapping relationship between the SOC corresponding to the target temperature and the maximum charging rate.
- the mapping relationship between the SOC corresponding to the target temperature and the maximum charging rate in the embodiment of the present application is used to indicate the relationship between different SOCs at the target temperature and the corresponding maximum charging rate.
- the battery operating condition information acquired by the electronic device includes: battery operating condition information 1 and battery operating condition information 2, wherein the battery operating condition information 1 includes a target temperature 1 target state of charge SOC1, and the battery operating condition information 2 includes a target temperature 2 target state of charge SOC2.
- the electronic device uses the electrochemical model of the target battery to simulate the battery charging process at the target temperature 1 in the battery operating condition information 1 according to a preset charging process, and obtains a mapping relationship 1 between the SOC corresponding to the target temperature 1 and the maximum charging rate, and uses the electrochemical model of the target battery to simulate the battery charging process at the target temperature 2 in the battery operating condition information 2 according to a preset charging process, and obtains a mapping relationship 2 between the SOC corresponding to the target temperature 2 and the maximum charging rate.
- the following embodiments of the present application further introduce the above-mentioned "using the electrochemical model of the target battery to simulate the battery charging process at the target temperature to obtain a mapping relationship corresponding to the target temperature" related content.
- the electronic device can use the electrochemical model of the target battery to simulate the battery charging process at the target temperature, obtain multiple groups of simulation results, and obtain a mapping relationship based on the multiple groups of simulation results, wherein the battery charging process may include the process of charging the battery from the remaining power of the battery to the initial SOC using different maximum charging rates, and each group of simulation results includes the maximum charging rate and the corresponding SOC.
- the electronic device can use the electrochemical model of the target battery to simulate the battery charging process starting from an initial SOC (for example, 0% or 2%, etc.) at different maximum charging rates at a target temperature until a preset lithium deposition condition is met, thereby obtaining SOCs corresponding to different maximum charging rates, wherein each maximum charging rate and the corresponding SOC belong to a group of simulation results.
- an initial SOC for example, 0% or 2%, etc.
- the preset lithium precipitation conditions in the embodiments of the present application may include: the anode potential of the battery is a preset voltage (eg, 0 V); of course, the preset lithium precipitation conditions may also include other conditions, which are not limited in the embodiments of the present application.
- the preset lithium plating conditions in the embodiments of the present application may be preset in the electronic device, or may be carried in the acquired battery operating condition information; of course, they may also be obtained by the electronic device in other ways, which is not limited in the embodiments of the present application.
- the electronic device can use the electrochemical model of the target battery to simulate the battery charging process starting from the initial SOC at the target temperature according to the maximum charging rates Rate0, Rate1, Rate2, ..., RateN, until the preset lithium precipitation condition is met, and obtain SOC0, SOC1, SOC2, ..., SOCN corresponding to different maximum charging rates, wherein N is an integer greater than or equal to 6, Rate0 and SOC0 belong to a group of simulation results, Rate1 and SOC1 belong to a group of simulation results, Rate2 and SOC2 belong to a group of simulation results, ..., RateN and SOCN belong to a group of simulation results.
- the electronic device can obtain a mapping relationship between the SOC corresponding to the target temperature and the maximum charge rate according to multiple sets of simulation results, wherein each set of simulation results includes a maximum charge rate and a corresponding SOC.
- the electronic device can perform fitting processing according to multiple sets of simulation results to obtain a mapping relationship between the SOC and the maximum charge rate, wherein the horizontal coordinate of the mapping relationship can be the SOC and the vertical coordinate can be the maximum charge rate.
- mapping relationship between the SOC corresponding to the target temperature and the maximum charging rate can be stored in the electronic device in the form of discrete data, or can be stored in the electronic device in the form of a function; of course, the mapping relationship can also be stored in the electronic device in other forms, which is not limited to this in the embodiments of the present application.
- Step S402 Determine the lithium deposition window corresponding to the target SOC according to the target SOC and the mapping relationship.
- the electronic device can determine the lithium deposition window corresponding to the target SOC based on the target SOC in the acquired battery operating condition information and the mapping relationship between the SOC corresponding to the target temperature obtained in the above step S401 and the maximum charging rate, that is, the maximum charging current for continuously charging the target battery to the target SOC at the target temperature without lithium deposition.
- the electronic device can obtain the target maximum charging rate corresponding to the target SOC according to the target SOC and the mapping relationship, and determine the lithium plating window according to the target maximum charging rate and the battery capacity of the target battery.
- the electronic device can obtain the target maximum charging rate corresponding to the target SOC based on the target SOC and the mapping relationship between the SOC and the maximum charging rate. It should be understood that if the mapping relationship between the SOC corresponding to the target temperature and the maximum charging rate is stored in the electronic device in the form of discrete data, and the multiple SOCs in the mapping relationship include the target SOC, the electronic device can determine the maximum charging rate corresponding to the target SOC in the mapping relationship as the target maximum charging rate.
- the electronic device can substitute the target SOC into the mapping relationship between the SOC and the maximum charging rate to obtain the target maximum charging rate corresponding to the target SOC.
- the electronic device can determine the lithium precipitation window corresponding to the target SOC according to the product of the target maximum charging rate and the battery capacity of the target battery, that is, the maximum charging current at which the target battery is continuously charged to the target SOC without lithium precipitation at the target temperature.
- the battery parameter information of the target battery obtained in the above step S301 includes the battery capacity of the target battery; of course, the battery capacity of the target battery can also be obtained by the electronic device in other ways, which is not limited in the embodiments of the present application.
- the electron can obtain the mapping relationship between SOC and maximum charging current based on the battery capacity of the target battery and the mapping relationship between SOC and the maximum charging rate, and obtain the lithium plating window corresponding to the target SOC based on the target SOC and the mapping relationship between SOC and the maximum charging current.
- the electronic device can convert the mapping relationship between SOC and the maximum charging rate according to the battery capacity of the target battery to obtain the mapping relationship between SOC and the maximum charging current, so that the lithium deposition window corresponding to the target SOC can be obtained according to the target SOC and the mapping relationship between SOC and the maximum charging current, that is, the maximum charging current for continuously charging the target battery to the target SOC at the target temperature without lithium deposition.
- the battery charging process at the target temperature is simulated by using the electrochemical model of the target battery to obtain the mapping relationship between the SOC corresponding to the target temperature and the maximum charging rate, and the lithium precipitation window corresponding to the target SOC is determined according to the target SOC and the mapping relationship.
- FIG5 is a flow chart of a method for obtaining a battery lithium deposition window provided in other embodiments of the present application. Based on the above embodiments, the present application embodiment takes the method for obtaining a battery lithium deposition window applied to a terminal as an example for description. As shown in FIG5, the method of the present application embodiment may include:
- Step S501 The terminal obtains battery operating condition information and battery parameter information of a target battery.
- Step S502 The terminal determines target battery model information matching the battery parameter information from a battery model library by automatically searching a database according to the battery parameter information.
- Step S503 The terminal establishes an electrochemical model of the target battery according to the target battery model information, and uses the electrochemical model of the target battery to simulate the battery charging process corresponding to the battery operating condition information to obtain a lithium precipitation window corresponding to the battery operating condition information.
- the terminal simulates the battery charging process corresponding to the battery operating condition information by using the electrochemical model of the target battery established according to the automatically matched target battery model information.
- the battery lithium analysis window corresponding to different battery operating conditions and/or different battery parameters can be calculated, which can not only save the test cycle, but also save a lot of test resources, thereby helping to improve the research and development speed and save research and development costs.
- the terminal can independently complete the acquisition process of the battery lithium analysis window without interacting with the server, thereby saving the interaction process, which is conducive to improving the acquisition efficiency of the battery lithium analysis window.
- FIG6 is a flow chart of a method for obtaining a battery lithium deposition window provided in other embodiments of the present application. Based on the above embodiments, the method for obtaining a battery lithium deposition window is described in combination with a terminal and a server in an embodiment of the present application. As shown in FIG6, the method of the embodiment of the present application may include:
- Step S601 The terminal obtains battery operating condition information and battery parameter information of a target battery.
- Step S602 The terminal sends the battery operating condition information and the battery parameter information of the target battery to the server.
- Step S603 The server determines target battery model information matching the battery parameter information from the battery model library by automatically searching the database according to the battery parameter information.
- the server can also send the target battery model information to the terminal so that the user can confirm the target battery model information, and execute step S604 after the user confirms, which is conducive to improving the efficiency of obtaining the battery lithium deposition window.
- Step S604 The server establishes an electrochemical model of the target battery according to the target battery model information, and uses the electrochemical model of the target battery to simulate the battery charging process corresponding to the battery operating condition information to obtain a lithium precipitation window corresponding to the battery operating condition information.
- Step S605 The server sends the lithium precipitation window corresponding to the battery operating condition information to the terminal.
- the server simulates the battery charging process corresponding to the battery operating condition information by using the electrochemical model of the target battery established according to the automatically matched target battery model information.
- the battery lithium precipitation window corresponding to different battery operating conditions and/or different battery parameters can be calculated, which can not only save the test cycle, but also save a lot of test resources, thereby helping to improve the research and development speed and save research and development costs.
- the terminal obtains the lithium precipitation window corresponding to the battery operating condition information by simulating the battery charging process with the help of the server, which has low requirements on the processing power of the terminal, thereby facilitating the application of the method for obtaining the battery lithium precipitation window of the embodiment of the present application to different terminals.
- FIG7 is a schematic diagram of a process of obtaining a battery lithium deposition window provided in other embodiments of the present application. Based on the above embodiments, the present application embodiment introduces and explains the method for obtaining a battery lithium deposition window in combination with a terminal and a server. As shown in FIG7, the method of the embodiment of the present application may include:
- Step S701 The terminal obtains battery parameter information of a target battery.
- Step S702 The terminal determines target battery model information matching the battery parameter information from a battery model library by automatically searching a database according to the battery parameter information.
- the terminal determines the target battery model information matching the battery parameter information from the battery model library so that the user can confirm the target battery model information, and executes step S703 after the user confirms, which is beneficial to improving the efficiency of obtaining the battery lithium deposition window.
- the terminal may re-execute step S702 until the user confirms.
- the terminal may modify the target battery model information determined in the above step S702 according to the user's instructions, and then send the modified target battery model information to the server.
- Step S703 The terminal obtains battery operating condition information, and sends the battery operating condition information and target battery model information to the server.
- Step S704 The server establishes an electrochemical model of the target battery according to the target battery model information, and uses the electrochemical model of the target battery to simulate the battery charging process corresponding to the battery operating condition information to obtain a lithium precipitation window corresponding to the battery operating condition information.
- Step S705 The server sends the lithium precipitation window corresponding to the battery operating condition information to the terminal.
- the terminal determines the target battery model information that matches the battery parameter information from the battery model library. Furthermore, the server simulates the battery charging process corresponding to the battery operating condition information by using the electrochemical model of the target battery established according to the target battery model information sent by the terminal. This not only saves test cycles and a large number of test resources, but also helps to improve the efficiency of obtaining the battery lithium precipitation window. In addition, in the embodiment of the present application, the terminal obtains the lithium precipitation window corresponding to the battery operating condition information by simulating the battery charging process with the help of the server, which has low processing power requirements for the terminal, thereby facilitating the acquisition method of the battery lithium precipitation window of the embodiment of the present application to be applied to different terminals.
- the embodiment of the present application also provides an acquisition device for implementing the battery lithium deposition window acquisition method involved above.
- the implementation scheme for solving the problem provided by the device is similar to the implementation scheme recorded in the above method, so the specific limitations in the embodiments of the acquisition device for one or more battery lithium deposition windows provided below can refer to the limitations of the battery lithium deposition window acquisition method above, and will not be repeated here.
- FIG8 is a schematic diagram of the structure of a device for obtaining a battery lithium deposition window provided in some embodiments of the present application.
- the device for obtaining a battery lithium deposition window provided in the embodiments of the present application can be applied to electronic devices.
- the device for obtaining a battery lithium deposition window in the embodiments of the present application may include: an acquisition module 801 and a simulation module 802.
- the acquisition module 801 is used to obtain battery operating condition information and an electrochemical model of a target battery
- the simulation module 802 is used to simulate the battery charging process corresponding to the battery operating condition information using the electrochemical model of the target battery to obtain the lithium precipitation window corresponding to the battery operating condition information.
- the acquisition module 801 includes:
- An acquisition unit used to acquire target battery model information corresponding to the target battery
- the establishing unit is used to establish an electrochemical model of a target battery according to the target battery model information.
- the acquisition unit is specifically used to:
- Target battery model information matching the battery parameter information is determined from a battery model library according to the battery parameter information.
- the battery parameter information includes: battery material information, and the acquisition unit is specifically used to:
- target battery model information matching the battery material information is determined from a battery model library.
- the battery parameter information includes: battery design information, and the acquisition unit is specifically used to:
- target battery model information matching the battery design information is determined from a battery model library.
- the battery parameter information includes: battery material information and battery design information
- the acquisition unit is specifically used to:
- the battery material information determining candidate battery model information matching the battery material information from a battery model library
- target battery model information matching the battery design information is determined from the candidate battery model information.
- the battery material information includes at least one of positive and negative electrode material information, separator material information, electrolyte material and current collector material information.
- the battery design information includes at least one of battery capacity, compaction density, gram capacity, and pole piece size.
- the battery operating condition information includes: a target temperature and a target state of charge SOC.
- the simulation module 802 includes:
- a simulation unit used to simulate the battery charging process at a target temperature using an electrochemical model of the target battery, and obtain a mapping relationship between the SOC corresponding to the target temperature and the maximum charging rate;
- the determination unit is used to determine the lithium precipitation window corresponding to the target SOC according to the target SOC and the mapping relationship.
- the battery charging process includes a process of charging the battery using different maximum charging rates starting from the remaining power of the battery being an initial SOC, and the simulation unit is specifically used for:
- the battery charging process at the target temperature is simulated using the electrochemical model of the target battery to obtain multiple groups of simulation results, each group of simulation results including the maximum charging rate and the corresponding SOC;
- a mapping relationship is obtained according to multiple groups of simulation results.
- the determining unit is specifically configured to:
- the target maximum charging rate corresponding to the target SOC is obtained
- the lithium plating window is determined based on the target maximum charge rate and the battery capacity of the target battery.
- the device for obtaining a battery lithium deposition window provided in the embodiment of the present application can be used to execute the technical solution in the above-mentioned method for obtaining a battery lithium deposition window in the present application.
- the implementation principle and technical effect are similar and will not be repeated here.
- Each module in the above-mentioned battery lithium precipitation window acquisition device can be implemented in whole or in part by software, hardware and a combination thereof.
- the above-mentioned modules can be embedded in or independent of the processor in the electronic device in the form of hardware, or can be stored in the memory of the electronic device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
- FIG9 is a schematic diagram of the structure of an electronic device in an embodiment of the present application.
- the electronic device in the embodiment of the present application may include but is not limited to a terminal or a server.
- the electronic device includes a processor, a memory, and a communication interface connected via a system bus.
- the processor of the electronic device is used to provide computing and control capabilities.
- the memory of the electronic device includes a non-volatile storage medium and an internal memory.
- the non-volatile storage medium stores an operating system and a computer program.
- the internal memory provides an environment for the operation of the operating system and the computer program in the non-volatile storage medium.
- the communication interface of the electronic device is used to communicate with external devices in a wired or wireless manner.
- FIG. 9 is merely a block diagram of a partial structure related to the scheme of the present application, and does not constitute a limitation on the electronic device to which the scheme of the present application is applied.
- the specific electronic device may include more or fewer components than shown in the figure, or combine certain components, or have a different arrangement of components.
- an electronic device including a memory and a processor, the memory storing a computer program, and when the processor executes the computer program, the technical solution in the above-mentioned method for obtaining the battery lithium deposition window of the present application is implemented.
- the implementation principle and technical effect are similar and will not be repeated here.
- a computer-readable storage medium is also provided, on which a computer program is stored.
- the computer program is executed by a processor, the technical solution in the above-mentioned method for obtaining the battery lithium deposition window of the present application is implemented. The implementation principle and technical effect are similar and will not be repeated here.
- a computer program product including a computer program, which, when executed by a processor, implements the technical solution in the above-mentioned method for obtaining the battery lithium deposition window of the present application.
- the implementation principle and technical effect are similar and will not be repeated here.
- any reference to the memory, database or other medium used in the embodiments provided in this application can include at least one of non-volatile and volatile memory.
- Non-volatile memory can include read-only memory (ROM), magnetic tape, floppy disk, flash memory, optical memory, high-density embedded non-volatile memory, resistive random access memory (ReRAM), magnetoresistive random access memory (MRAM), ferroelectric random access memory (FRAM), phase change memory (PCM), graphene memory, etc.
- Volatile memory can include random access memory (RAM) or external cache memory, etc.
- RAM can be in various forms, such as static random access memory (SRAM) or dynamic random access memory (DRAM).
- SRAM static random access memory
- DRAM dynamic random access memory
- the database involved in the embodiments provided in this application may include at least one of a relational database and a non-relational database.
- Non-relational databases may include distributed databases based on blockchains, etc., but are not limited to this.
- the processors involved in the embodiments provided in this application may be general-purpose processors, central processing units, graphics processors, digital signal processors, programmable logic devices, data processing logic devices based on quantum computing, etc., but are not limited to this.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Secondary Cells (AREA)
Abstract
本申请涉及一种电池析锂窗口的获取方法、装置、设备、介质和程序产品,该方法包括:通过获取电池工况信息和目标电池的电化学模型,然后利用目标电池的电化学模型对获取的电池工况信息对应的电池充电过程进行仿真处理,得到电池工况信息对应的析锂窗口。可见,本申请实施例中,无需制作测试电池,可以计算不同电池工况和/或不同电池参数对应的电池析锂窗口,不仅可以节省测试周期,而且还可以节省大量测试资源,从而有助于提高研发速度和节省研发成本。
Description
本申请涉及电池领域,特别是涉及一种电池析锂窗口的获取方法、装置、设备、介质和程序产品。
锂离子电池在不同温度进行充电时,需要考虑充电策略。若充电策略不合理(例如,倍率过大等),则锂离子电池的阳极表面可能会有金属锂析出(或者称之为析锂)。析锂会极大地影响锂离子电池的寿命和安全性,因此,在锂离子电池的设计过程中,需要充分考虑所设计的锂离子电池在实际充电工况中的析锂窗口。
所谓的持续析锂窗口(Anode Lithium Plating Mapping,ALP Mapping)即为不同温度、不同荷电状态(state of charge,SOC)持续充电到指定SOC不析锂的最大充电电流。传统技术中通常采用三电极叠片实验测试方式,这种测试方式对于不同测试温度和/或不同测试工况的情况,均需要单独制作相应的测试电池进行测试。
可见,传统技术的整体测试周期较长,并且需要耗费大量测试资源。
发明内容
鉴于上述问题,本申请提供一种电池析锂窗口的获取方法、装置、设备、介质和程序产品,能够解决传统技术中测试周期较长并且需要耗费大量测试资源的问题。
第一方面,本申请提供了一种电池析锂窗口的获取方法,方法包括:
获取电池工况信息和目标电池的电化学模型;
利用目标电池的电化学模型对电池工况信息对应的电池充电过程进行仿真处理,得到电池工况信息对应的析锂窗口。
本申请实施例的技术方案中,通过根据获取的目标电池的电化学模型,对电池工况信息对应的电池充电过程进行仿真处理的方式,无需制作测试电池,可以计算不同电池工况 和/或不同电池参数对应的电池析锂窗口,不仅可以节省测试周期,而且还可以节省大量测试资源,从而有助于提高研发速度和节省研发成本。
在一些实施例中,获取目标电池的电化学模型,包括:
获取目标电池对应的目标电池模型信息;
根据目标电池模型信息建立目标电池的电化学模型。
在一些实施例中,获取目标电池对应的目标电池模型信息,包括:
获取目标电池的电池参数信息;
根据电池参数信息从电池模型库中确定与电池参数信息匹配的目标电池模型信息。
本申请实施例的技术方案中,通过根据电池参数信息自动匹配目标电池模型信息,以便于根据目标电池模型信息建立的目标电池的电化学模型,对电池工况信息对应的电池充电过程进行仿真处理的方式,无需制作测试电池,可以计算不同电池工况和/或不同电池参数对应的电池析锂窗口,不仅可以节省测试周期,而且还可以节省大量测试资源,从而有助于提高研发速度和节省研发成本。另外,本申请实施例中通过自动匹配的方式无需用户具有专业的仿真知识也可以快速地得到准确度较高的测试结果,其适用范围较广。
在一些实施例中,电池参数信息包括:电池材料信息,根据电池参数信息从电池模型库中确定与电池参数信息匹配的目标电池模型信息,包括:
根据电池材料信息,从电池模型库中确定与电池材料信息匹配的目标电池模型信息。
在一些实施例中,电池参数信息包括:电池设计信息,根据电池参数信息从电池模型库中确定与电池参数信息匹配的目标电池模型信息,包括:
根据电池设计信息,从电池模型库中确定与电池设计信息匹配的目标电池模型信息。
在一些实施例中,电池参数信息包括:电池材料信息和电池设计信息,根据电池参数信息从电池模型库中确定与电池参数信息匹配的目标电池模型信息,包括:
根据电池材料信息,从电池模型库中确定与电池材料信息匹配的候选电池模型信息;
根据电池设计信息,从候选电池模型信息中确定与电池设计信息匹配的目标电池模型信息。
在一些实施例中,电池材料信息包括:正负极材料信息、隔离膜材料信息、电解液材料和集流体材料信息中的至少一种。
在一些实施例中,电池设计信息包括:电池容量、压实密度、克容量和极片尺寸中的至少一种。
在一些实施例中,电池工况信息包括:目标温度和目标荷电状态SOC,利用目标电池的电化学模型对电池工况信息对应的电池充电过程进行仿真处理,得到电池工况信息对应的析锂窗口,包括:
利用目标电池的电化学模型对目标温度下的电池充电过程进行仿真处理,得到目标温度对应的SOC与最大充电倍率之间的映射关系;
根据目标SOC和映射关系,确定目标SOC对应的析锂窗口。
本申请实施例的技术方案中,通过利用目标电池的电化学模型对目标温度下的电池充电过程进行仿真处理,得到目标温度对应的SOC与最大充电倍率之间的映射关系,并根据目标SOC和映射关系,确定目标SOC对应的析锂窗口。可见,本申请实施例中,通过利用目标电池的电化学模型对目标温度下的电池充电过程进行仿真处理的方式,无需制作测试电池,可以计算不同电池工况和/或不同电池参数对应的电池析锂窗口,不仅可以节省测试周期,而且还可以节省大量测试资源,从而有助于提高研发速度和节省研发成本。
在一些实施例中,电池充电过程包括利用不同的最大充电倍率从电池的剩余电量为初始SOC起为电池充电的过程,利用目标电池的电化学模型对目标温度下的电池充电过程进行仿真处理,得到目标温度对应的SOC与最大充电倍率之间的映射关系,包括:
利用目标电池的电化学模型对目标温度下的电池充电过程进行仿真处理,得到多组仿真结果,各组仿真结果包括最大充电倍率以及对应的SOC;
根据多组仿真结果得到映射关系。
在一些实施例中,根据目标SOC和映射关系,确定目标SOC对应的析锂窗口,包括:
根据目标SOC和映射关系,得到目标SOC对应的目标最大充电倍率;
根据目标最大充电倍率和目标电池的电池容量,确定析锂窗口。
第二方面,本申请提供了一种电池析锂窗口的获取装置,装置包括:
获取模块,用于获取电池工况信息和目标电池的电化学模型;
仿真模块,用于利用目标电池的电化学模型对电池工况信息对应的电池充电过程进行仿真处理,得到电池工况信息对应的析锂窗口。
第三方面,本申请提供了一种电子设备,包括存储器和处理器,存储器存储有计算机程序,处理器执行计算机程序时实现上述第一方面中任意实施例的电池析锂窗口的获取方法的步骤。
第四方面,本申请提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现上述第一方面中任意实施例的电池析锂窗口的获取方法的步骤。
第五方面,本申请提供了一种计算机程序产品,计算机程序产品包括计算机程序,该计算机程序被处理器执行时实现上述第一方面中任意实施例的电池析锂窗口的获取方法的步骤。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
通过阅读对下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1为本申请实施例提供的应用环境的示意图;
图2为本申请一些实施例提供的电池析锂窗口的获取方法的流程示意图;
图3为本申请另一些实施例提供的电池析锂窗口的获取方法的流程示意图;
图4为本申请另一些实施例提供的电池析锂窗口的获取方法的流程示意图;
图5为本申请另一些实施例提供的电池析锂窗口的获取方法的流程示意图;
图6为本申请另一些实施例提供的电池析锂窗口的获取方法的流程示意图;
图7为本申请另一些实施例提供的电池析锂窗口的获取方法的流程示意图;
图8为本申请一些实施例提供的电池析锂窗口的获取装置的结构示意图;
图9为本申请一个实施例中电子设备的结构示意图。
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”以及它的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上(包括两个),除非另有明确具体的限定。
锂离子电池在不同温度进行充电时,需要考虑充电策略。若充电策略不合理(例如,倍率过大等),则锂离子电池的阳极表面会有金属锂析出(或者称之为析锂)。析锂会极大地影响锂离子电池的寿命和安全性,因此,在锂离子电池的设计过程中,需要充分考虑所设计的锂离子电池在实际充电工况中的析锂窗口。
所谓的持续析锂窗口(ALP Mapping)即为不同温度、不同SOC持续充电到指定SOC不析锂的最大充电电流。传统技术中通常采用三电极叠片实验测试方式,这种测试方式对于不同测试温度和/或不同测试工况的情况,均需要单独制作相应的测试电池进行测试,其中,测试电池通常需要比较长的制作时间。可见,传统技术的整体测试周期较长,并且需要耗费大量测试资源(例如,材料测试资源等)。
为了可以节省测试资源,申请人研究发现可以通过利用电池电化学模型对电池充电过程进行充电仿真的方式来获取电池析锂窗口,无需制作测试电池,从而可以节省大量测试资源。
基于以上考虑,为了解决传统技术中测试周期较长,并且需要耗费大量测试资源的问题,申请人经过研究提出了一种电池析锂窗口的获取方法,通过获取电池工况信息和目标电池的电化学模型,然后利用目标电池的电化学模型对获取的电池工况信息对应的电池充电过程进行仿真处理,得到电池工况信息对应的析锂窗口。可见,相对于传统技术,本申 请实施例中,通过根据获取的目标电池的电化学模型,对电池工况信息对应的电池充电过程进行仿真处理的方式,无需制作测试电池,从而不仅可以节省测试周期,而且还可以节省大量测试资源。
图1为本申请实施例提供的应用环境的示意图,如图1所示,本申请实施例的应用环境中,终端101可以通过网络与服务器102进行通信。其中,数据库可以存储本申请实施例涉及的电池模型库;当然,还可以存储服务器102需要处理的其它数据,本申请实施例中对此并不作限定。
一种可能的实现方式中,终端101可以采用本申请实施例提供的电池析锂窗口的获取方法,来确定电池工况信息对应的析锂窗口。
另一种可能的实现方式中,终端101通过将电池工况信息等发送给服务器102,以使服务器102采用本申请实施例提供的电池析锂窗口的获取方法,来确定电池工况信息对应的析锂窗口。应理解,本实现方式中,服务器102还可以将确定的电池工况信息对应的析锂窗口发送给终端101,以便于终端101进行显示。
本申请实施例中的数据库可以集成在服务器102上,也可以放在云上或其它网络服务器上。
本申请实施例中的终端101可以但不限于是各种个人计算机、笔记本电脑、智能手机和平板电脑。
本申请实施例中的服务器102可以用独立的服务器或者是多个服务器组成的服务器集群来实现。
在一些实施例中,图2为本申请一些实施例提供的电池析锂窗口的获取方法的流程示意图,本申请实施例中以该方法应用于电子设备为例进行说明,其中,电子设备可以为图1中的终端101或者服务器102。如图2所示,本申请实施例的方法可以包括以下步骤:
步骤S201、获取电池工况信息和目标电池的电化学模型。
本申请实施例中的电池工况信息用于指示所需获取的电池析锂窗口对应的电池充电工况。示例性地,电池工况信息可以包括:待检测的目标温度和待检测的目标荷电状态SOC;当然,电池工况信息还可以包括其它信息(例如,析锂条件等),本申请实施例中对此并不作限定。应理解,本步骤中的电池工况信息可以为统称,其可以包括一个电池工况 信息,或者可以包括多个电池工况信息。
示例性地,本申请实施例中的析锂条件可以包括:电池的阳极电位为预设电压(例如,0V);当然,析锂条件还可以包括其它条件,本申请实施例中对此并不作限定。
本申请下述实施例中对“获取电池工况信息”的可实现方式进行介绍。
一种可能的实现方式中,若电子设备为图1中的终端101,则电子设备可以接收用户输入的电池工况信息。示例性地,电子设备可以接收用户通过向参数输入界面所输入的电池工况信息。
另一种可能的实现方式中,若电子设备为图1中的服务器102,则电子设备可以接收终端101发送的电池工况信息。
当然,电子设备还可以通过其它方式获取电池工况信息,本申请实施例中对此并不作限定。
本申请下述实施例中对“获取目标电池的电化学模型”的可实现方式进行介绍。
一种可能的实现方式中,电子设备可以获取目标电池对应的目标电池模型信息,并根据目标电池模型信息,建立目标电池的电化学模型。
本申请实施例中的目标电池模型信息可以包括但不限于目标电池参考设计信息以及对应的目标电池材料的物性参数。
本实现方式中,电子设备可以接收用户输入的目标电池模型信息、其它设备发送的目标电池模型信息,或者可以从电池模型库中确定目标电池模型信息;当然,电子设备还可以通过其它方式获取目标电池模型信息,本申请实施例中对此并不作限定。
进一步地,电子设备可以根据目标电池模型信息建立目标电池的电化学模型。应理解,电子设备在获知了目标电池模型信息便可以根据目标电池模型信息建立出目标电池的电化学模型。
另一种可能的实现方式中,电子设备可以接收用户输入的目标电池的电化学模型,或者,电子设备可以接收其它设备发送的目标电池的电化学模型。
当然,电子设备还可以通过其它方式获取目标电池的电化学模型,本申请实施例中对此并不作限定。
步骤S202、利用目标电池的电化学模型对电池工况信息对应的电池充电过程进行仿真 处理,得到电池工况信息对应的析锂窗口。
本步骤中,电子设备利用上述步骤S201中获取的目标电池的电化学模型,对上述步骤S201中获取的电池工况信息对应的电池充电过程进行仿真处理,得到电池工况信息对应的析锂窗口。
例如,电子设备获取的电池工况信息包括:电池工况信息1和电池工况信息2,其中,电池工况信息1包括目标温度1目标荷电状态SOC1,电池工况信息2包括目标温度2目标荷电状态SOC2,则电子设备可以利用目标电池的电化学模型对电池工况信息1对应的电池充电过程进行仿真处理,得到电池工况信息1对应的析锂窗口1,以及利用目标电池的电化学模型对电池工况信息2对应的电池充电过程进行仿真处理,得到电池工况信息2对应的析锂窗口2,其中,电池工况信息1对应的析锂窗口1代表在目标温度1下对目标电池持续充电到目标SOC1不析锂的最大充电电流,电池工况信息2对应的析锂窗口2代表在目标温度2下对目标电池持续充电到目标SOC2不析锂的最大充电电流。
上述电池析锂窗口的获取方法,通过获取电池工况信息和目标电池的电化学模型,然后利用目标电池的电化学模型对电池工况信息对应的电池充电过程进行仿真处理,得到电池工况信息对应的析锂窗口。可见,相对于传统技术,本申请实施例中,通过根据获取的目标电池的电化学模型,对获取的电池工况信息对应的电池充电过程进行仿真处理的方式,无需制作测试电池,可以计算不同电池工况和/或不同电池参数对应的电池析锂窗口,不仅可以节省测试周期,而且还可以节省大量测试资源,从而有助于提高研发速度和节省研发成本。
为了可以节省测试资源,申请人研究发现可以通过建立包含各种类型的电池模型信息的电池模型库,以便于可以根据用户输入的电池参数信息从电池模型库中自动地匹配到对应的电池模型信息并建立电池电化学模型,然后根据电池电化学模型对电池充电过程进行充电仿真的方式来获取电池析锂窗口,无需制作测试电池,从而不仅可以节省测试周期,而且还可以节省大量测试资源。
在一些实施例中,图3为本申请另一些实施例提供的电池析锂窗口的获取方法的流程示意图,在上述实施例的基础上,本申请实施例中对上述获取目标电池对应的目标电池模型信息的相关内容进行介绍说明。如图3所示,本申请实施例的方法可以包括:
步骤S301、获取目标电池的电池参数信息。
本申请实施例中的目标电池的电池参数信息用于指示所需设计的目标电池的关键电池参数。示例性地,目标电池的电池参数信息可以包括但不限于:目标电池的电池材料信息和/或电池设计信息,其中,目标电池的电池材料信息用于指示目标电池的电池材料的标识信息,目标电池的电池设计信息用于指示目标电池的电池设计参数。
示例性地,本申请实施例中的电池材料信息可以包括:正负极材料信息、隔离膜材料信息、电解液材料和集流体材料信息中的至少一种;当然,还可以包括其它材料信息,本申请实施例中对此并不作限定。例如,电池材料信息可以包括:正负极材料的名称、隔离膜材料的名称和电解液的名称。
示例性地,本申请实施例中的电池设计信息可以包括:电池容量、压实密度、克容量和极片尺寸中的至少一种;当然,还可以包括其它设计信息,本申请实施例中对此并不作限定。
本申请下述实施例中对“获取目标电池的电池参数信息”的可实现方式进行介绍。
一种可能的实现方式中,若电子设备为图1中的终端101,则电子设备可以接收用户输入目标电池的电池参数信息。示例性地,电子设备可以接收用户通过向参数输入界面所输入的目标电池的电池参数信息。
另一种可能的实现方式中,若电子设备为图1中的服务器102,则电子设备可以接收终端101发送的目标电池的电池参数信息。
当然,电子设备还可以通过其它方式获取目标电池的电池参数信息,本申请实施例中对此并不作限定。
步骤S302、根据电池参数信息从电池模型库中确定与电池参数信息匹配的目标电池模型信息。
本申请实施例中涉及的电池模型库按照存储内容不同可以划分为:材料库和电池库;其中,材料库用于存储正极材料、负极材料、隔离膜材料、电解液材料、集流体材料等主要材料的物性参数,每种主要材料可以包含多种材料类型。电池库用于存储多套完整的电池参考设计信息以及对应的电池材料的物性参数。
本申请实施例中涉及的电池模型库按照模型不同可以划分为:各种类型的已校准的电 池模型信息,其中,任意电池模型信息可以包括:电池参考设计信息以及对应的电池材料的物性参数。
本步骤中,电子设备根据上述步骤S301中获取的电池参数信息从电池模型库中确定与电池参数信息匹配的目标电池模型信息,其中,目标电池模型信息可以包括目标电池参考设计信息以及对应的目标电池材料的物性参数。
本申请下述实施例中对电子设备根据电池参数信息从电池模型库中确定与电池参数信息匹配的目标电池模型信息的可实现方式进行介绍。
一种可能的实现方式中,若目标电池的电池参数信息包括:目标电池的电池材料信息,则电子设备可以根据电池材料信息,从电池模型库中确定与电池材料信息匹配的目标电池模型信息。
本实现方式中,电子设备可以将目标电池的电池材料信息分别与电池模型库中的各电池模型信息的电池材料的物性参数进行匹配,并将匹配度最高的电池材料的物性参数所属的电池模型信息确定为目标电池模型信息。例如,假设电池模型库中包括电池模型信息1、电池模型信息2和电池模型信息3,电子设备将电池材料信息分别与电池模型信息1的电池材料的物性参数1、电池模型信息2的电池材料的物性参数2和电池模型信息3的电池材料的物性参数3进行匹配,其中,电池材料信息与电池模型信息1的电池材料的物性参数1之间的匹配度1大于电池材料信息与电池模型信息2的电池材料的物性参数2之间的匹配度2,电池材料信息与电池模型信息2的电池材料的物性参数2之间的匹配度2大于电池材料信息与电池模型信息3的电池材料的物性参数3之间的匹配度3,则电子设备可以将电池模型信息1确定为目标电池模型信息。
当然,电子设备根据电池材料信息还可以通过其它方式,从电池模型库中确定与电池材料信息匹配的目标电池模型信息(例如,电子设备可以将匹配度超过第一匹配度的各电池材料的物性参数所属的电池模型信息中的任意一个电池模型信息确定为目标电池模型信息),本申请实施例中对此并不作限定。
另一种可能的实现方式中,若目标电池的电池参数信息包括:目标电池的电池设计信息,则电子设备可以根据电池设计信息,从电池模型库中确定与电池设计信息匹配的目标电池模型信息。
本实现方式中,电子设备可以将目标电池的电池设计信息分别与电池模型库中的各电池模型信息的电池参考设计信息进行匹配,并将匹配度最高的电池参考设计信息所属的电池模型信息确定为目标电池模型信息。
当然,电子设备根据电池设计信息还可以通过其它方式,从电池模型库中确定与电池设计信息匹配的目标电池模型信息(例如,电子设备可以将匹配度超过第三匹配度的各电池参考设计信息所属的电池模型信息中的任意一个电池模型信息确定为目标电池模型信息),本申请实施例中对此并不作限定。
另一种可能的实现方式中,若目标电池的电池参数信息包括:目标电池的电池材料信息和电池设计信息,则电子设备可以根据电池材料信息,从电池模型库中确定与电池材料信息匹配的第一候选电池模型信息,并根据电池设计信息,从第一候选电池模型信息中确定与电池设计信息匹配的目标电池模型信息。
本实现方式中,电子设备可以将电池材料信息分别与电池模型库中的各电池模型信息的电池材料的物性参数进行匹配,并将匹配度超过第一匹配度的各电池材料的物性参数所属的电池模型信息确定为第一候选电池模型信息。例如,假设电池模型库中包括电池模型信息1、电池模型信息2和电池模型信息3,电子设备将电池材料信息分别与电池模型信息1的电池材料的物性参数1、电池模型信息2的电池材料的物性参数2和电池模型信息3的电池材料的物性参数3进行匹配,其中,电池材料信息与电池模型信息1的电池材料的物性参数1之间的匹配度1大于第一匹配度,电池材料信息与电池模型信息2的电池材料的物性参数2之间的匹配度2不大于第一匹配度,电池材料信息与电池模型信息3的电池材料的物性参数3之间的匹配度3大于第一匹配度,则电子设备可以将电池模型信息1和电池模型信息3确定为第一候选电池模型信息。
进一步地,电子设备可以将电池设计信息分别与第一候选电池模型信息中的各电池模型信息的电池参考设计信息进行匹配,并将匹配度超过第二匹配度的各电池参考设计信息所属的电池模型信息确定为目标电池模型信息。例如,假设第一候选电池模型信息包括电池模型信息1和电池模型信息3,电子设备将电池设计信息分别与电池模型信息1的电池参考设计信息1和电池模型信息3的电池参考设计信息3进行匹配,其中,电池设计信息与电池模型信息1的电池参考设计信息1之间的匹配度大于第二匹配度,电池设计信息与 电池模型信息3的电池参考设计信息3之间的匹配度不大于第二匹配度,则电子设备可以将电池模型信息1确定为目标电池模型信息。
另一种可能的实现方式中,若目标电池的电池参数信息包括:目标电池的电池材料信息和电池设计信息,则电子设备可以根据电池设计信息,从电池模型库中确定与电池设计信息匹配的第二候选电池模型信息,并根据电池材料信息,从第二候选电池模型信息中确定与电池材料信息匹配的目标电池模型信息。
本实现方式中,电子设备可以将电池设计信息分别与电池模型库中的各电池模型信息的电池参考设计信息进行匹配,并将匹配度超过第三匹配度的各电池参考设计信息所属的电池模型信息确定为第二候选电池模型信息。进一步地,电子设备可以将电池材料信息分别与第二候选电池模型信息中的各电池模型信息的电池材料的物性参数进行匹配,并将匹配度超过第四匹配度的各电池材料的物性参数所属的电池模型信息确定为目标电池模型信息。
另一种可能的实现方式中,若目标电池的电池参数信息包括:目标电池的电池材料信息和电池设计信息,则电子设备可以根据电池材料信息,从电池模型库中确定与电池材料信息匹配的第一候选电池模型信息。进一步地,电子设备可以根据电池设计信息,从电池模型库中确定与电池设计信息匹配的第二候选电池模型信息。进一步地,电子设备可以将第一候选电池模型信息与第二候选电池模型信息的交集电池模型信息确定为目标电池模型信息,其中,交集电池模型信息是指既属于第一候选电池模型信息,也属于第二候选电池模型信息。
应理解,电子设备通过上述方式确定的目标电池模型信息包括多个电池模型信息时,可以将多个电池模型信息通过终端进行显示,以便于用户从多个电池模型信息中选择出最终的目标电池模型信息,以便于根据最终的目标电池模型信息建立目标电池的电化学模型。
需要说明的是,若电子设备根据电池参数信息从电池模型库中确定的目标电池模型信息的匹配度大于第一匹配度阈值,但小于第二匹配阈值(即匹配度不是特别高),则电子设备在根据目标电池模型信息建立目标电池的电化学模型时,还可以结合上述步骤S301中获取的电池参数信息。
例如,电子设备可以将目标电池模型信息中与电池参数信息不一致的内容替换为电池参数信息中的内容,然后按照替换后的目标电池模型信息建立目标电池的电化学模型。
又例如,电子设备可以将目标电池模型信息中与电池参数信息中的电池材料信息不一致的内容替换为该电池材料信息中的内容,然后按照替换后的目标电池模型信息建立目标电池的电化学模型。
又例如,电子设备可以将目标电池模型信息中与电池参数信息中的电池设计信息不一致的内容替换为该电池设计信息中的内容,然后按照替换后的目标电池模型信息建立目标电池的电化学模型。
本申请实施例中,通过获取目标电池的电池参数信息,并根据电池参数信息从电池模型库中确定与电池参数信息匹配的目标电池模型信息,以便于根据目标电池模型信息建立目标电池的电化学模型,并利用目标电池的电化学模型对电池工况信息对应的电池充电过程进行仿真处理,得到电池工况信息对应的析锂窗口。可见,本申请实施例中,通过根据自动匹配的目标电池模型信息建立的目标电池的电化学模型,对电池工况信息对应的电池充电过程进行仿真处理的方式,无需制作测试电池,可以计算不同电池工况和/或不同电池参数对应的电池析锂窗口,不仅可以节省测试周期,而且还可以节省大量测试资源,从而有助于提高研发速度和节省研发成本。另外,本申请实施例中通过自动匹配的方式无需用户具有专业的仿真知识也可以快速地得到准确度较高的测试结果,其适用范围较广。
在一些实施例中,图4为本申请另一些实施例提供的电池析锂窗口的获取方法的流程示意图,在上述实施例的基础上,本申请实施例中对上述步骤S202中利用目标电池的电化学模型进行仿真处理的相关内容进行介绍说明。如图4所示,本申请实施例的方法可以包括:
步骤S401、利用目标电池的电化学模型对目标温度下的电池充电过程进行仿真处理,得到目标温度对应的SOC与最大充电倍率之间的映射关系。
本步骤中,电子设备利用目标电池的电化学模型按照预设充电流程对电池工况信息中的目标温度下的电池充电过程进行仿真处理,得到目标温度对应的SOC与最大充电倍率之间的映射关系。示例性地,本申请实施例中的目标温度对应的SOC与最大充电倍率之间的映射关系用于指示在目标温度下的不同SOC与对应的最大充电倍率之间的关系。
例如,电子设备获取的电池工况信息包括:电池工况信息1和电池工况信息2,其中,电池工况信息1包括目标温度1目标荷电状态SOC1,电池工况信息2包括目标温度2目标荷电状态SOC2,则电子设备利用目标电池的电化学模型按照预设充电流程对电池工况信息1中的目标温度1下的电池充电过程进行仿真处理,得到目标温度1对应的SOC与最大充电倍率之间的映射关系1,以及利用目标电池的电化学模型按照预设充电流程对电池工况信息2中的目标温度2下的电池充电过程进行仿真处理,得到目标温度2对应的SOC与最大充电倍率之间的映射关系2。
为了便于理解,本申请下述实施例中对上述“利用目标电池的电化学模型对目标温度下的电池充电过程进行仿真处理,得到目标温度对应的映射关系”的相关内容作进一步地介绍。
示例性地,电子设备可以利用目标电池的电化学模型对目标温度下的电池充电过程进行仿真处理,得到多组仿真结果,并根据多组仿真结果得到映射关系,其中,电池充电过程可以包括利用不同的最大充电倍率从电池的剩余电量为初始SOC起为电池充电的过程,各组仿真结果包括最大充电倍率以及对应的SOC。
本申请实施例中,电子设备可以利用目标电池的电化学模型仿真在目标温度下分别按照不同的最大充电倍率从初始SOC(例如,0%或者2%等)开始的电池充电过程,直至满足预设析锂条件时,得到不同的最大充电倍率分别对应的SOC,其中,每个最大充电倍率与对应的SOC属于一组仿真结果。
示例性地,本申请实施例中的预设析锂条件可以包括:电池的阳极电位为预设电压(例如,0V);当然,预设析锂条件还可以包括其它条件,本申请实施例中对此并不作限定。
需要说明的是,本申请实施例中的预设析锂条件可以为电子设备中预设的,或者可以为获取的电池工况信息中所携带的;当然,还可以为电子设备通过其它方式得到的,本申请实施例中对此并不作限定。
例如,电子设备可以利用目标电池的电化学模型仿真在目标温度下分别按照最大充电倍率Rate0、Rate1、Rate2、……、RateN从初始SOC开始的电池充电过程,直至满足预设析锂条件时,得到不同的最大充电倍率分别对应的SOC0、SOC1、SOC2、……、SOCN,其中,N为大于或等于6的整数,Rate0与SOC0属于一组仿真结果,Rate1与SOC1属于 一组仿真结果,Rate2与SOC2属于一组仿真结果,……,RateN与SOCN属于一组仿真结果。
进一步地,电子设备可以根据多组仿真结果得到目标温度对应的SOC与最大充电倍率之间的映射关系,其中,每组仿真结果中包括一个最大充电倍率与对应的SOC。示例性地,电子设备可以根据多组仿真结果进行拟合处理,便可得到SOC与最大充电倍率之间的映射关系,其中,映射关系的横坐标可以为SOC以及纵坐标可以为最大充电倍率。
示例性地,目标温度对应的SOC与最大充电倍率之间的映射关系可以以离散数据形式存储于电子设备,或者可以以函数形式存储于电子设备;当然,映射关系还可以以其它形式存储于电子设备中,本申请实施例中对此并不作限定。
步骤S402、根据目标SOC和映射关系,确定目标SOC对应的析锂窗口。
本步骤中,电子设备可以根据获取的电池工况信息中的目标SOC,以及上述步骤S401中获取的目标温度对应的SOC与最大充电倍率之间的映射关系,便可以确定目标SOC对应的析锂窗口,即在目标温度下对目标电池持续充电到目标SOC不析锂的最大充电电流。
一种可能的实现方式中,电子设备可以根据目标SOC和映射关系,得到目标SOC对应的目标最大充电倍率,并根据目标最大充电倍率和目标电池的电池容量,确定析锂窗口。
本实现方式中,电子设备可以根据目标SOC,以及SOC与最大充电倍率之间的映射关系,得到目标SOC对应的目标最大充电倍率。应理解,若目标温度对应的SOC与最大充电倍率之间的映射关系以离散数据形式存储于电子设备,且映射关系中的多个SOC包括目标SOC,则电子设备可以将映射关系中与目标SOC对应的最大充电倍率确定为目标最大充电倍率。或者,若目标温度对应的SOC与最大充电倍率之间的映射关系以函数形式存储于电子设备,则电子设备可以将目标SOC代入SOC与最大充电倍率之间的映射关系,便可得到目标SOC对应的目标最大充电倍率。
进一步地,电子设备可以根据目标最大充电倍率与目标电池的电池容量的乘积,确定目标SOC对应的析锂窗口,即在目标温度下对目标电池持续充电到目标SOC不析锂的最大充电电流。应理解,上述步骤S301中获取的目标电池的电池参数信息中包含有目标电池的电池容量;当然,目标电池的电池容量还可以为电子设备通过其它方式获取的,本申请实施例中对此并不作限定。
另一种可能的实现方式中,电子可以根据目标电池的电池容量,以及SOC与最大充电倍率之间的映射关系,得到SOC与最大充电电流之间的映射关系,并根据目标SOC,以及SOC与最大充电电流之间的映射关系得到目标SOC对应的析锂窗口。
本实现方式中,电子设备可以根据目标电池的电池容量将SOC与最大充电倍率之间的映射关系进行转换,得到SOC与最大充电电流之间的映射关系,从而可以根据目标SOC,以及SOC与最大充电电流之间的映射关系便可得到目标SOC对应的析锂窗口,即在目标温度下对目标电池持续充电到目标SOC不析锂的最大充电电流。
本申请实施例中,通过利用目标电池的电化学模型对目标温度下的电池充电过程进行仿真处理,得到目标温度对应的SOC与最大充电倍率之间的映射关系,并根据目标SOC和映射关系,确定目标SOC对应的析锂窗口。可见,本申请实施例中,通过利用目标电池的电化学模型对目标温度下的电池充电过程进行仿真处理的方式,无需制作测试电池,可以计算不同电池工况和/或不同电池参数对应的电池析锂窗口,不仅可以节省测试周期,而且还可以节省大量测试资源,从而有助于提高研发速度和节省研发成本。
在一些实施例中,图5为本申请另一些实施例提供的电池析锂窗口的获取方法的流程示意图,在上述实施例的基础上,本申请实施例中以电池析锂窗口的获取方法应用于终端为例进行介绍说明。如图5所示,本申请实施例的方法可以包括:
步骤S501、终端获取电池工况信息和目标电池的电池参数信息。
步骤S502、终端根据电池参数信息通过自动检索数据库的方式,从电池模型库中确定与电池参数信息匹配的目标电池模型信息。
步骤S503、终端根据目标电池模型信息建立目标电池的电化学模型,并利用目标电池的电化学模型对电池工况信息对应的电池充电过程进行仿真处理,得到电池工况信息对应的析锂窗口。
本申请实施例中的各步骤的实现方式,可以参考本申请上述实施例中的相关内容,此处不再赘述。
本申请实施例中,终端通过根据自动匹配的目标电池模型信息建立的目标电池的电化学模型,对电池工况信息对应的电池充电过程进行仿真处理的方式,无需制作测试电池,可以计算不同电池工况和/或不同电池参数对应的电池析锂窗口,不仅可以节省测试周期, 而且还可以节省大量测试资源,从而有助于提高研发速度和节省研发成本。另外,本申请实施例中,终端可以独立地完成电池析锂窗口的获取过程,无需与服务器进行交互,从而可以节省交互过程,有利于提高电池析锂窗口的获取效率。
在一些实施例中,图6为本申请另一些实施例提供的电池析锂窗口的获取方法的流程示意图,在上述实施例的基础上,本申请实施例中结合终端和服务器对电池析锂窗口的获取方法进行介绍说明。如图6所示,本申请实施例的方法可以包括:
步骤S601、终端获取电池工况信息和目标电池的电池参数信息。
步骤S602、终端将电池工况信息和目标电池的电池参数信息发送给服务器。
步骤S603、服务器根据电池参数信息通过自动检索数据库的方式,从电池模型库中确定与电池参数信息匹配的目标电池模型信息。
需要说明的是,服务器在匹配到目标电池模型信息后,还可以将目标电池模型信息发送给终端,以便于用户对目标电池模型信息进行确认,并在用户确认后执行步骤S604,有利于提高电池析锂窗口的获取效率。
步骤S604、服务器根据目标电池模型信息建立目标电池的电化学模型,并利用目标电池的电化学模型对电池工况信息对应的电池充电过程进行仿真处理,得到电池工况信息对应的析锂窗口。
步骤S605、服务器将电池工况信息对应的析锂窗口发送给终端。
本申请实施例中的各步骤的实现方式,可以参考本申请上述实施例中的相关内容,此处不再赘述。
本申请实施例中,服务器通过根据自动匹配的目标电池模型信息建立的目标电池的电化学模型,对电池工况信息对应的电池充电过程进行仿真处理的方式,无需制作测试电池,可以计算不同电池工况和/或不同电池参数对应的电池析锂窗口,不仅可以节省测试周期,而且还可以节省大量测试资源,从而有助于提高研发速度和节省研发成本。另外,本申请实施例中,终端通过借助服务器对电池充电过程进行仿真处理得到电池工况信息对应的析锂窗口的方式,对于终端的处理能力要求较低,从而有利于将本申请实施例的电池析锂窗口的获取方法适用于不同终端。
在一些实施例中,图7为本申请另一些实施例提供的电池析锂窗口的获取方法的流程 示意图,在上述实施例的基础上,本申请实施例中结合终端和服务器对电池析锂窗口的获取方法进行介绍说明。如图7所示,本申请实施例的方法可以包括:
步骤S701、终端获取目标电池的电池参数信息。
步骤S702、终端根据电池参数信息通过自动检索数据库的方式,从电池模型库中确定与电池参数信息匹配的目标电池模型信息。
本步骤中,通过终端从电池模型库中确定与电池参数信息匹配的目标电池模型信息的方式,以便于用户可以对目标电池模型信息进行确认,并在用户确认后执行步骤S703,有利于提高电池析锂窗口的获取效率。
一种可能的实现方式中,若超过预设时长阈值一直未收到用户对上述步骤S702中确定的目标电池模型信息的确认信号,终端可以重新执行上述步骤S702,直至用户确认为止。
另一种可能的实现方式中,若超过预设时长阈值一直未收到用户对上述步骤S702中确定的目标电池模型信息校验的确认信号,终端可以根据用户指示对上述步骤S702中确定的目标电池模型信息进行修改,然后将修改后的目标电池模型信息发送给服务器。
步骤S703、终端获取电池工况信息,并将电池工况信息和目标电池模型信息发送给服务器。
步骤S704、服务器根据目标电池模型信息建立目标电池的电化学模型,并利用目标电池的电化学模型对电池工况信息对应的电池充电过程进行仿真处理,得到电池工况信息对应的析锂窗口。
步骤S705、服务器将电池工况信息对应的析锂窗口发送给终端。
本申请实施例中的各步骤的实现方式,可以参考本申请上述实施例中的相关内容,此处不再赘述。
本申请实施例中,通过终端从电池模型库中确定与电池参数信息匹配的目标电池模型信息,进一步地,服务器通过根据终端发送的目标电池模型信息建立的目标电池的电化学模型,对电池工况信息对应的电池充电过程进行仿真处理的方式,不仅可以节省测试周期和大量测试资源,而且还有利于提高电池析锂窗口的获取效率。另外,本申请实施例中,终端通过借助服务器对电池充电过程进行仿真处理得到电池工况信息对应的析锂窗口的方式,对于终端的处理能力要求较低,从而有利于将本申请实施例的电池析锂窗口的获取 方法适用于不同终端。
应该理解的是,虽然如上的各实施例所涉及的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,如上的各实施例所涉及的流程图中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。
基于同样的发明构思,本申请实施例还提供了一种用于实现上述所涉及的电池析锂窗口的获取方法的获取装置。该装置所提供的解决问题的实现方案与上述方法中所记载的实现方案相似,故下面所提供的一个或多个电池析锂窗口的获取装置实施例中的具体限定可以参见上文中对于电池析锂窗口的获取方法的限定,在此不再赘述。
在一些实施例中,图8为本申请一些实施例提供的电池析锂窗口的获取装置的结构示意图,本申请实施例提供的电池析锂窗口的获取装置可以应用于电子设备中。如图8所示,本申请实施例的电池析锂窗口的获取装置可以包括:获取模块801和仿真模块802。
其中,获取模块801,用于获取电池工况信息和目标电池的电化学模型;
仿真模块802,用于利用目标电池的电化学模型对电池工况信息对应的电池充电过程进行仿真处理,得到电池工况信息对应的析锂窗口。
在一些实施例中,获取模块801,包括:
获取单元,用于获取目标电池对应的目标电池模型信息;
建立单元,用于根据目标电池模型信息建立目标电池的电化学模型。
在一些实施例中,获取单元具体用于:
获取目标电池的电池参数信息;
根据电池参数信息从电池模型库中确定与电池参数信息匹配的目标电池模型信息。
在一些实施例中,电池参数信息包括:电池材料信息,获取单元具体用于:
根据电池材料信息,从电池模型库中确定与电池材料信息匹配的目标电池模型信息。
在一些实施例中,电池参数信息包括:电池设计信息,获取单元具体用于:
根据电池设计信息,从电池模型库中确定与电池设计信息匹配的目标电池模型信息。
在一些实施例中,电池参数信息包括:电池材料信息和电池设计信息,获取单元具体用于:
根据电池材料信息,从电池模型库中确定与电池材料信息匹配的候选电池模型信息;
根据电池设计信息,从候选电池模型信息中确定与电池设计信息匹配的目标电池模型信息。
在一些实施例中,电池材料信息包括:正负极材料信息、隔离膜材料信息、电解液材料和集流体材料信息中的至少一种。
在一些实施例中,电池设计信息包括:电池容量、压实密度、克容量和极片尺寸中的至少一种。
在一些实施例中,电池工况信息包括:目标温度和目标荷电状态SOC,仿真模块802,包括:
仿真单元,用于利用目标电池的电化学模型对目标温度下的电池充电过程进行仿真处理,得到目标温度对应的SOC与最大充电倍率之间的映射关系;
确定单元,用于根据目标SOC和映射关系,确定目标SOC对应的析锂窗口。
在一些实施例中,电池充电过程包括利用不同的最大充电倍率从电池的剩余电量为初始SOC起为电池充电的过程,仿真单元具体用于:
利用目标电池的电化学模型对目标温度下的电池充电过程进行仿真处理,得到多组仿真结果,各组仿真结果包括最大充电倍率以及对应的SOC;
根据多组仿真结果得到映射关系。
在一些实施例中,确定单元具体用于:
根据目标SOC和映射关系,得到目标SOC对应的目标最大充电倍率;
根据目标最大充电倍率和目标电池的电池容量,确定析锂窗口。
本申请实施例提供的电池析锂窗口的获取装置可以用于执行本申请上述电池析锂窗口的获取方法实施例中的技术方案,其实现原理和技术效果类似,此处不再赘述。
上述电池析锂窗口的获取装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于电子设备中的处理器中,也可以以软件形 式存储于电子设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,图9为本申请一个实施例中电子设备的结构示意图,本申请实施例中的电子设备可以包括但不限于终端或者服务器。如图9所示,该电子设备包括通过系统总线连接的处理器、存储器和通信接口。其中,该电子设备的处理器用于提供计算和控制能力。该电子设备的存储器包括非易失性存储介质和内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该电子设备的通信接口用于与外部的设备进行有线或无线方式的通信。该计算机程序被处理器执行时以实现本申请上述电池析锂窗口的获取方法实施例中的技术方案,其实现原理和技术效果类似,此处不再赘述。
本领域技术人员可以理解,图9中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的电子设备的限定,具体的电子设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一些实施例中,还提供了一种电子设备,包括存储器和处理器,存储器存储有计算机程序,处理器执行计算机程序时实现本申请上述电池析锂窗口的获取方法实施例中的技术方案,其实现原理和技术效果类似,此处不再赘述。
在一些实施例中,还提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现本申请上述电池析锂窗口的获取方法实施例中的技术方案,其实现原理和技术效果类似,此处不再赘述。
在一些实施例中,还提供了一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现本申请上述电池析锂窗口的获取方法实施例中的技术方案,其实现原理和技术效果类似,此处不再赘述。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存、光存储器、高密度嵌入式非易失性存储器、阻变存储器(ReRAM)、 磁变存储器(Magnetoresistive Random Access Memory,MRAM)、铁电存储器(Ferroelectric Random Access Memory,FRAM)、相变存储器(Phase Change Memory,PCM)、石墨烯存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器等。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。本申请所提供的实施例中所涉及的数据库可包括关系型数据库和非关系型数据库中至少一种。非关系型数据库可包括基于区块链的分布式数据库等,不限于此。本申请所提供的各实施例中所涉及的处理器可为通用处理器、中央处理器、图形处理器、数字信号处理器、可编程逻辑器、基于量子计算的数据处理逻辑器等,不限于此。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。
Claims (15)
- 一种电池析锂窗口的获取方法,其特征在于,所述方法包括:获取电池工况信息和目标电池的电化学模型;利用所述目标电池的电化学模型对所述电池工况信息对应的电池充电过程进行仿真处理,得到所述电池工况信息对应的析锂窗口。
- 根据权利要求1所述的方法,其特征在于,获取所述目标电池的电化学模型,包括:获取所述目标电池对应的目标电池模型信息;根据所述目标电池模型信息建立所述目标电池的电化学模型。
- 根据权利要求2所述的方法,其特征在于,所述获取所述目标电池对应的目标电池模型信息,包括:获取所述目标电池的电池参数信息;根据所述电池参数信息从电池模型库中确定与所述电池参数信息匹配的目标电池模型信息。
- 根据权利要求3所述的方法,其特征在于,所述电池参数信息包括:电池材料信息,所述根据所述电池参数信息从电池模型库中确定与所述电池参数信息匹配的目标电池模型信息,包括:根据所述电池材料信息,从所述电池模型库中确定与所述电池材料信息匹配的所述目标电池模型信息。
- 根据权利要求3所述的方法,其特征在于,所述电池参数信息包括:电池设计信息,所述根据所述电池参数信息从电池模型库中确定与所述电池参数信息匹配的目标电池模型信息,包括:根据所述电池设计信息,从所述电池模型库中确定与所述电池设计信息匹配的所述目标电池模型信息。
- 根据权利要求3所述的方法,其特征在于,所述电池参数信息包括:电池材料信息和电池设计信息,所述根据所述电池参数信息从电池模型库中确定与所述电池参数信息匹配的目标电池模型信息,包括:根据所述电池材料信息,从所述电池模型库中确定与所述电池材料信息匹配的候选电池模型信息;根据所述电池设计信息,从所述候选电池模型信息中确定与所述电池设计信息匹配的所述目标电池模型信息。
- 根据权利要求4或6所述的方法,其特征在于,所述电池材料信息包括:正负极材料信息、隔离膜材料信息、电解液材料和集流体材料信息中的至少一种。
- 根据权利要求5或6所述的方法,其特征在于,所述电池设计信息包括:电池容量、压实密度、克容量和极片尺寸中的至少一种。
- 根据权利要求1-6中任一项所述的方法,其特征在于,所述电池工况信息包括:目标温度和目标荷电状态SOC,所述利用所述目标电池的电化学模型对所述电池工况信息对应的电池充电过程进行仿真处理,得到所述电池工况信息对应的析锂窗口,包括:利用所述目标电池的电化学模型对所述目标温度下的电池充电过程进行仿真处理,得到所述目标温度对应的SOC与最大充电倍率之间的映射关系;根据所述目标SOC和所述映射关系,确定所述目标SOC对应的析锂窗口。
- 根据权利要求9所述的方法,其特征在于,所述电池充电过程包括利用不同的最大充电倍率从电池的剩余电量为初始SOC起为电池充电的过程,所述利用所述目标电池的电化学模型对所述目标温度下的电池充电过程进行仿真处理,得到所述目标温度对应的SOC与最大充电倍率之间的映射关系,包括:利用所述目标电池的电化学模型对所述目标温度下的电池充电过程进行仿真处理,得到多组仿真结果,各组所述仿真结果包括最大充电倍率以及对应的SOC;根据所述多组仿真结果得到所述映射关系。
- 根据权利要求9所述的方法,其特征在于,所述根据所述目标SOC和所述映射关系,确定所述目标SOC对应的析锂窗口,包括:根据所述目标SOC和所述映射关系,得到所述目标SOC对应的目标最大充电倍率;根据所述目标最大充电倍率和所述目标电池的电池容量,确定所述析锂窗口。
- 一种电池析锂窗口的获取装置,其特征在于,所述装置包括:获取模块,用于获取电池工况信息和目标电池的电化学模型;仿真模块,用于利用所述目标电池的电化学模型对所述电池工况信息对应的电池充电过程进行仿真处理,得到所述电池工况信息对应的析锂窗口。
- 一种电子设备,包括存储器和处理器,所述存储器存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1-11中任一项所述的电池析锂窗口的获取方法的步骤。
- 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1-11中任一项所述的电池析锂窗口的获取方法的步骤。
- 一种计算机程序产品,包括计算机程序,其特征在于,该计算机程序被处理器执行时实现权利要求1-11中任一项所述的电池析锂窗口的获取方法的步骤。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/123839 WO2024073890A1 (zh) | 2022-10-08 | 2022-10-08 | 电池析锂窗口的获取方法、装置、设备、介质和程序产品 |
CN202280089207.3A CN118541613A (zh) | 2022-10-08 | 2022-10-08 | 电池析锂窗口的获取方法、装置、设备、介质和程序产品 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/123839 WO2024073890A1 (zh) | 2022-10-08 | 2022-10-08 | 电池析锂窗口的获取方法、装置、设备、介质和程序产品 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024073890A1 true WO2024073890A1 (zh) | 2024-04-11 |
Family
ID=90607460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/123839 WO2024073890A1 (zh) | 2022-10-08 | 2022-10-08 | 电池析锂窗口的获取方法、装置、设备、介质和程序产品 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN118541613A (zh) |
WO (1) | WO2024073890A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118707360A (zh) * | 2024-08-28 | 2024-09-27 | 清华四川能源互联网研究院 | 一种锂离子电池极限充电电流边界估计方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110888057A (zh) * | 2019-11-27 | 2020-03-17 | 上海交通大学 | 一种动力锂离子电池电化学参数辨识方法及系统 |
CN112149345A (zh) * | 2020-08-26 | 2020-12-29 | 清华大学 | 电池管理方法、装置、计算机设备和存储介质 |
CN112180260A (zh) * | 2020-09-24 | 2021-01-05 | 欣旺达电动汽车电池有限公司 | 电池析锂窗口分析方法、析锂检测方法、设备及存储介质 |
CN113378403A (zh) * | 2021-06-28 | 2021-09-10 | 中国第一汽车股份有限公司 | 仿真测试建模方法、系统、测试方法、设备及存储介质 |
WO2021246788A1 (ko) * | 2020-06-02 | 2021-12-09 | 주식회사 엘지에너지솔루션 | 배터리 서비스 제공 시스템 및 방법 |
CN113849985A (zh) * | 2021-09-30 | 2021-12-28 | 蜂巢能源科技有限公司 | 电流密度仿真方法、装置、设备及存储介质 |
-
2022
- 2022-10-08 WO PCT/CN2022/123839 patent/WO2024073890A1/zh unknown
- 2022-10-08 CN CN202280089207.3A patent/CN118541613A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110888057A (zh) * | 2019-11-27 | 2020-03-17 | 上海交通大学 | 一种动力锂离子电池电化学参数辨识方法及系统 |
WO2021246788A1 (ko) * | 2020-06-02 | 2021-12-09 | 주식회사 엘지에너지솔루션 | 배터리 서비스 제공 시스템 및 방법 |
CN112149345A (zh) * | 2020-08-26 | 2020-12-29 | 清华大学 | 电池管理方法、装置、计算机设备和存储介质 |
CN112180260A (zh) * | 2020-09-24 | 2021-01-05 | 欣旺达电动汽车电池有限公司 | 电池析锂窗口分析方法、析锂检测方法、设备及存储介质 |
CN113378403A (zh) * | 2021-06-28 | 2021-09-10 | 中国第一汽车股份有限公司 | 仿真测试建模方法、系统、测试方法、设备及存储介质 |
CN113849985A (zh) * | 2021-09-30 | 2021-12-28 | 蜂巢能源科技有限公司 | 电流密度仿真方法、装置、设备及存储介质 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118707360A (zh) * | 2024-08-28 | 2024-09-27 | 清华四川能源互联网研究院 | 一种锂离子电池极限充电电流边界估计方法 |
Also Published As
Publication number | Publication date |
---|---|
CN118541613A (zh) | 2024-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | A novel method for identification of lithium-ion battery equivalent circuit model parameters considering electrochemical properties | |
Moura et al. | PDE estimation techniques for advanced battery management systems—Part I: SOC estimation | |
CN105550452B (zh) | 基于启发式算法的锂离子电池p2d模型参数的辨识方法 | |
WO2024067388A1 (zh) | 一种电池健康状态估算方法、系统、设备和介质 | |
CN109991554A (zh) | 一种电池电量检测方法、装置及终端设备 | |
CN110045292A (zh) | 基于大数据和bp神经网络的锂离子电池SOC预测方法 | |
WO2024073890A1 (zh) | 电池析锂窗口的获取方法、装置、设备、介质和程序产品 | |
CN109946622B (zh) | 一种锂离子电池的锂沉积预测方法和装置 | |
CN109904542A (zh) | 锂离子电池包的容量更新方法、装置及终端设备 | |
CN103412264A (zh) | 蓄电池组内单体电池一致性的评价方法 | |
CN105807231A (zh) | 一种用于蓄电池剩余容量检测的方法及系统 | |
WO2024000756A1 (zh) | 基于深度学习和启发式算法的电化学模型参数辨识方法 | |
CN114624604A (zh) | 一种电池寿命预测模型生成、预测方法、装置和电子设备 | |
Rieger et al. | Uncertainty-aware and explainable machine learning for early prediction of battery degradation trajectory | |
CN108594117A (zh) | 确定电池容量的方法、装置、终端设备及计算机存储介质 | |
Pang et al. | A Review on the Prediction of Health State and Serving Life of Lithium‐Ion Batteries | |
CN114048525A (zh) | 一种储能电池系统的设计系统、关于制备储能 | |
Zhang et al. | Parallelized genetic identification of the thermal-electrochemical model for lithium-ion battery | |
CN116705210B (zh) | 电芯老化模型构建方法和电芯全生命周期性能预测方法 | |
CN110232432A (zh) | 一种基于人工生命模型的锂电池组soc预测方法 | |
WO2023169134A1 (zh) | 电池soh值计算模型生成方法、计算方法、装置和系统 | |
Yao et al. | Open-Circuit Voltage Models Should Be Thermodynamically Consistent | |
CN116299006A (zh) | 电池包的健康状况预测方法、装置、设备和存储介质 | |
CN116487737A (zh) | 一种基于多次聚类的锂电池配组方法及装置 | |
CN114398826A (zh) | 一种电池剩余容量实时预测方法、终端设备及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22961247 Country of ref document: EP Kind code of ref document: A1 |