WO2024073887A1 - Apparatus, method and computer program - Google Patents

Apparatus, method and computer program Download PDF

Info

Publication number
WO2024073887A1
WO2024073887A1 PCT/CN2022/123803 CN2022123803W WO2024073887A1 WO 2024073887 A1 WO2024073887 A1 WO 2024073887A1 CN 2022123803 W CN2022123803 W CN 2022123803W WO 2024073887 A1 WO2024073887 A1 WO 2024073887A1
Authority
WO
WIPO (PCT)
Prior art keywords
interest
discovery
position information
discovery message
determining
Prior art date
Application number
PCT/CN2022/123803
Other languages
French (fr)
Inventor
Da Wei Wu
Jakob Lindbjerg Buthler
Benoist Pierre Sebire
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Nokia Solutions And Networks Oy
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Nokia Solutions And Networks Oy, Nokia Technologies Oy filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to PCT/CN2022/123803 priority Critical patent/WO2024073887A1/en
Priority to PCT/CN2023/105544 priority patent/WO2024074067A1/en
Publication of WO2024073887A1 publication Critical patent/WO2024073887A1/en

Links

Images

Definitions

  • the present application relates to a method, apparatus, system and computer program and in particular but not exclusively to position information in sidelink discovery for AR applications.
  • a communication system can be seen as a facility that enables communication sessions between two or more entities such as user terminals, base stations and/or other nodes by providing carriers between the various entities involved in the communications path.
  • a communication system can be provided for example by means of a communication network and one or more compatible communication devices.
  • the communication sessions may comprise, for example, communication of data for carrying communications such as voice, video, electronic mail (email) , text message, multimedia and/or content data and so on.
  • Non-limiting examples of services provided comprise two-way or multi-way calls, data communication or multimedia services and access to a data network system, such as the Internet.
  • wireless communication system at least a part of a communication session between at least two stations occurs over a wireless link.
  • wireless systems comprise public land mobile networks (PLMN) , satellite based communication systems and different wireless local networks, for example wireless local area networks (WLAN) .
  • PLMN public land mobile networks
  • WLAN wireless local area networks
  • Some wireless systems can be divided into cells, and are therefore often referred to as cellular systems.
  • a user can access the communication system by means of an appropriate communication device or terminal.
  • a communication device of a user may be referred to as user equipment (UE) or user device.
  • UE user equipment
  • a communication device is provided with an appropriate signal receiving and transmitting apparatus for enabling communications, for example enabling access to a communication network or communications directly with other users.
  • the communication device may access a carrier provided by a station, for example a base station of a cell, and transmit and/or receive communications on the carrier.
  • the communication system and associated devices typically operate in accordance with a given standard or specification which sets out what the various entities associated with the system are permitted to do and how that should be achieved. Communication protocols and/or parameters which shall be used for the connection are also typically defined.
  • UTRAN 3G radio
  • Other examples of communication systems are the long-term evolution (LTE) of the Universal Mobile Telecommunications System (UMTS) radio-access technology and so-called 5G or New Radio (NR) networks.
  • LTE long-term evolution
  • UMTS Universal Mobile Telecommunications System
  • NR New Radio
  • NR is being standardized by the 3rd Generation Partnership Project (3GPP) .
  • an apparatus comprising means for determining, at a first device, position information associated with an object of interest and providing, from the first device, a discovery message for device to device communication, wherein the discovery message comprises the position information.
  • the position information may indicate a position of the object of interest, wherein the position of the object of interest is different from a position of the first device.
  • the position information may comprise at least one of the following: an indication of the position of the first device, a distance between the first device and the object or an orientation of the first device.
  • the apparatus may comprise a time of flight sensor and means for determining the distance using the time of flight sensor.
  • the discovery message may comprise an open discovery message.
  • the apparatus may comprise means for determining a transmission power based on the position information and providing the discovery message using the determined transmission power.
  • the first device may be performing a model B discovery procedure.
  • the discovery message may comprise at least one of the following: a discovery request, a sidelink discovery request or a proximity services, ProSe, PC5 discovery request.
  • the apparatus may comprise means for receiving a discovery response message from a second device in response to the discovery message.
  • the apparatus may comprise means for receiving information associated with the object of interest from the second device at the first device.
  • the discovery message may further comprise an indication of the object of interest.
  • the indication of the object of interest may comprise at least one of the following: metadata associated with the object or a classification code associated with the object.
  • an apparatus comprising means for receiving, from a first device at a second device, a discovery message for device to device communication, wherein the discovery message comprises position information associated with an object of interest, determining, based on the position information, that the second device is associated with the object of interest and in response to determining that the second device is associated with the object of interest, providing a discovery response message from the second device to the first device.
  • the position information may indicate a position of the object of interest, wherein the position of the object of interest is different from a position of the first device.
  • Means for determining, based on the position information, that the second device is associated with the object of interest may comprise means for determining that the second device is in an area indicated by the position information.
  • the area may be based on the position information and a distance threshold.
  • the position information may comprise at least one of the following: an indication of the position of the first device, a distance between the first device and the object or an orientation of the first device.
  • the discovery response message may comprise an open discovery message.
  • the first device may be performing a model B discovery procedure.
  • the discovery response message may comprise at least one of the following: a discovery response, a sidelink discovery response or a proximity services, ProSe, PC5 discovery response.
  • the apparatus may comprise means for providing information associated with the object of interest from the second device to the first device.
  • the discovery message may further comprise an indication of the object of interest and comprising means for determining, based on the indication of the object of interest, that the second device is associated with the object of interest.
  • the indication of the object of interest may comprise at least one of the following: metadata associated with the object or a classification code associated with the object.
  • the apparatus may comprise means for receiving information relating to the object of interest from a network and determining that the second device is associated with the object of interest further based on the received information.
  • a method comprising determining, at a first device, position information associated with an object of interest and providing, from the first device, a discovery message for device to device communication, wherein the discovery message comprises the position information.
  • the position information may indicate a position of the object of interest, wherein the position of the object of interest is different from a position of the first device.
  • the position information may comprise at least one of the following: an indication of the position of the first device, a distance between the first device and the object or an orientation of the first device.
  • the method may comprise determining the distance using a time of flight sensor.
  • the discovery message may comprise an open discovery message.
  • the method may comprise determining a transmission power based on the position information and providing the discovery message using the determined transmission power.
  • the first device may be performing a model B discovery procedure.
  • the discovery message may comprise at least one of the following: a discovery request, a sidelink discovery request or a proximity services, ProSe, PC5 discovery request.
  • the method may comprise receiving a discovery response message from a second device in response to the discovery message.
  • the method may comprise receiving information associated with the object of interest from the second device at the first device.
  • the discovery message may further comprise an indication of the object of interest.
  • the indication of the object of interest may comprise at least one of the following: metadata associated with the object or a classification code associated with the object.
  • a method comprising means for receiving, from a first device at a second device, a discovery message for device to device communication, wherein the discovery message comprises position information associated with an object of interest, determining, based on the position information, that the second device is associated with the object of interest and in response to determining that the second device is associated with the object of interest, providing a discovery response message from the second device to the first device.
  • the position information may indicate a position of the object of interest, wherein the position of the object of interest is different from a position of the first device.
  • Determining, based on the position information, that the second device is associated with the object of interest may comprise determining that the second device is in an area indicated by the position information.
  • the area may be based on the position information and a distance threshold.
  • the position information may comprise at least one of the following: an indication of the position of the first device, a distance between the first device and the object or an orientation of the first device.
  • the discovery response message may comprise an open discovery message.
  • the first device may be performing a model B discovery procedure.
  • the discovery response message may comprise at least one of the following: a discovery response, a sidelink discovery response or a proximity services, ProSe, PC5 discovery response.
  • the method may comprise providing information associated with the object of interest from the second device to the first device.
  • the discovery message may further comprise an indication of the object of interest and comprising means for determining, based on the indication of the object of interest, that the second device is associated with the object of interest.
  • the indication of the object of interest may comprise at least one of the following: metadata associated with the object or a classification code associated with the object.
  • the method may comprise receiving information relating to the object of interest from a network and determining that the second device is associated with the object of interest further based on the received information.
  • an apparatus comprising: at least one processor and at least one memory storing instructions that, when executed by the at least one processor, cause the apparatus at least to determine, at a first device, position information associated with an object of interest and provide, from the first device, a discovery message for device to device communication, wherein the discovery message comprises the position information.
  • the position information may indicate a position of the object of interest, wherein the position of the object of interest is different from a position of the first device.
  • the position information may comprise at least one of the following: an indication of the position of the first device, a distance between the first device and the object or an orientation of the first device.
  • the apparatus may comprise a time of flight sensor and be caused to determine the distance using the time of flight sensor.
  • the discovery message may comprise an open discovery message.
  • the apparatus may eb caused to determine a transmission power based on the position information and providing the discovery message using the determined transmission power.
  • the first device may be performing a model B discovery procedure.
  • the discovery message may comprise at least one of the following: a discovery request, a sidelink discovery request or a proximity services, ProSe, PC5 discovery request.
  • the apparatus may be caused to receive a discovery response message from a second device in response to the discovery message.
  • the apparatus may be caused to receive information associated with the object of interest from the second device at the first device.
  • the discovery message may further comprise an indication of the object of interest.
  • the indication of the object of interest may comprise at least one of the following: metadata associated with the object or a classification code associated with the object.
  • an apparatus comprising: at least one processor and at least one memory storing instructions that, when executed by the at least one processor, cause the apparatus at least to receive, from a first device at a second device, a discovery message for device to device communication, wherein the discovery message comprises position information associated with an object of interest, determine, based on the position information, that the second device is associated with the object of interest and in response to determining that the second device is associated with the object of interest, provide a discovery response message from the second device to the first device.
  • the position information may indicate a position of the object of interest, wherein the position of the object of interest is different from a position of the first device.
  • the apparatus may be caused to determine that the second device is in an area indicated by the position information.
  • the area may be based on the position information and a distance threshold.
  • the position information may comprise at least one of the following: an indication of the position of the first device, a distance between the first device and the object or an orientation of the first device.
  • the discovery response message may comprise an open discovery message.
  • the first device may be performing a model B discovery procedure.
  • the discovery response message may comprise at least one of the following: a discovery response, a sidelink discovery response or a proximity services, ProSe, PC5 discovery response.
  • the apparatus may be caused to provide information associated with the object of interest from the second device to the first device.
  • the discovery message may further comprise an indication of the object of interest and comprising means for determining, based on the indication of the object of interest, that the second device is associated with the object of interest.
  • the indication of the object of interest may comprise at least one of the following: metadata associated with the object or a classification code associated with the object.
  • the apparatus may be caused to receive information relating to the object of interest from a network and determining that the second device is associated with the object of interest further based on the received information.
  • a computer readable medium comprising instructions which, when executed by an apparatus, cause the apparatus to perform at least the following: determining, at a first device, position information associated with an object of interest; and providing, from the first device, a discovery message for device to device communication, wherein the discovery message comprises the position information.
  • the position information may indicate a position of the object of interest, wherein the position of the object of interest is different from a position of the first device.
  • the position information may comprise at least one of the following: an indication of the position of the first device, a distance between the first device and the object or an orientation of the first device.
  • the apparatus may comprise a time of flight sensor and be caused to perform determining the distance using the time of flight sensor.
  • the discovery message may comprise an open discovery message.
  • the apparatus may be caused to perform determining a transmission power based on the position information and providing the discovery message using the determined transmission power.
  • the first device may be performing a model B discovery procedure.
  • the discovery message may comprise at least one of the following: a discovery request, a sidelink discovery request or a proximity services, ProSe, PC5 discovery request.
  • the apparatus may be caused to perform receiving a discovery response message from a second device in response to the discovery message.
  • the apparatus may be caused to perform receiving information associated with the object of interest from the second device at the first device.
  • the discovery message may further comprise an indication of the object of interest.
  • the indication of the object of interest may comprise at least one of the following: metadata associated with the object or a classification code associated with the object.
  • a computer readable medium comprising instructions which, when executed by an apparatus, cause the apparatus to perform at least the following: receiving, from a first device at a second device, a discovery message for device to device communication, wherein the discovery message comprises position information associated with an object of interest, determining, based on the position information, that the second device is associated with the object of interest and in response to determining that the second device is associated with the object of interest, providing a discovery response message from the second device to the first device.
  • the position information may indicate a position of the object of interest, wherein the position of the object of interest is different from a position of the first device.
  • the apparatus may be caused to perform determining that the second device is in an area indicated by the position information.
  • the area may be based on the position information and a distance threshold.
  • the position information may comprise at least one of the following: an indication of the position of the first device, a distance between the first device and the object or an orientation of the first device.
  • the discovery response message may comprise an open discovery message.
  • the first device may be performing a model B discovery procedure.
  • the discovery response message may comprise at least one of the following: a discovery response, a sidelink discovery response or a proximity services, ProSe, PC5 discovery response.
  • the apparatus may be caused to perform providing information associated with the object of interest from the second device to the first device.
  • the discovery message may further comprise an indication of the object of interest and comprising means for determining, based on the indication of the object of interest, that the second device is associated with the object of interest.
  • the indication of the object of interest may comprise at least one of the following: metadata associated with the object or a classification code associated with the object.
  • the apparatus may be caused to perform receiving information relating to the object of interest from a network and determining that the second device is associated with the object of interest further based on the received information.
  • a ninth aspect there is provided a non-transitory computer readable medium comprising program instructions for causing an apparatus to perform at least the method according to the third or fourth aspect.
  • Figure 1 shows a schematic diagram of an example 5GS communication system
  • Figure 2 shows a schematic diagram of an example mobile communication device
  • Figure 3 shows a schematic diagram of an example control apparatus
  • Figure 4 shows a schematic diagram for offline sharing in XR
  • Figure 5 shows a flowchart of a method according to an example embodiment
  • Figure 6 shows a flowchart of a method according to an example embodiment
  • Figure 7 shows a schematic diagram of an apparatus comprising time-of-flight sensor
  • Figure 8 shows a schematic diagram of an example use case
  • Figure 9 shows a signalling flow of a use case according to an example embodiment
  • Figure 10 shows a signalling flow according to an example embodiment.
  • Network architecture in NR may be similar to that of LTE-advanced.
  • Base stations of NR systems may be known as next generation Node Bs (gNBs) .
  • Changes to the network architecture may depend on the need to support various radio technologies and finer QoS support, and some on-demand requirements for e.g. Quality of Service (QoS) levels to support Quality of Experience (QoE) for a user.
  • QoS Quality of Service
  • QoE Quality of Experience
  • network aware services and applications, and service and application aware networks may bring changes to the architecture. Those are related to Information Centric Network (ICN) and User-Centric Content Delivery Network (UC-CDN) approaches.
  • ICN Information Centric Network
  • UC-CDN User-Centric Content Delivery Network
  • NR may use multiple input –multiple output (MIMO) antennas, many more base stations or nodes than the LTE (a so-called small cell concept) , including macro sites operating in co-operation with smaller stations and perhaps also employing a variety of radio technologies for better coverage and enhanced data rates.
  • MIMO multiple input –multiple output
  • Future networks may utilise network functions virtualization (NFV) which is a network architecture concept that proposes virtualizing network node functions into “building blocks” or entities that may be operationally connected or linked together to provide services.
  • a virtualized network function (VNF) may comprise one or more virtual machines running computer program codes using standard or general type servers instead of customized hardware. Cloud computing or data storage may also be utilized.
  • radio communications this may mean node operations to be carried out, at least partly, in a server, host or node operationally coupled to a remote radio head. It is also possible that node operations will be distributed among a plurality of servers, nodes or hosts. It should also be understood that the distribution of labour between core network operations and base station operations may differ from that of the LTE or even be non-existent.
  • FIG. 1 shows a schematic representation of a 5G system (5GS) 100.
  • the 5GS may comprise a user equipment (UE) 102 (which may also be referred to as a communication device or a terminal) , a 5G radio access network (5GRAN) 104, a 5G core network (5GCN) 106, one or more application functions (AF) 108 and one or more data networks (DN) 110.
  • UE user equipment
  • 5GRAN 5G radio access network
  • 5GCN 5G core network
  • AF application functions
  • DN data networks
  • the 5GCN 106 comprises functional entities.
  • the 5GCN 106 may comprise one or more access and mobility management functions (AMF) 112, one or more session management functions (SMF) 114, an authentication server function (AUSF) 116, a unified data management (UDM) 118, one or more user plane functions (UPF) 120, a unified data repository (UDR) 122 and/or a network exposure function (NEF) 124.
  • the UPF is controlled by the SMF (Session Management Function) that receives policies from a PCF (Policy Control Function) .
  • SMF Session Management Function
  • PCF Policy Control Function
  • the CN is connected to a UE via the radio access network (RAN) .
  • the 5GRAN may comprise one or more gNodeB (GNB) distributed unit functions connected to one or more gNodeB (GNB) centralized unit functions.
  • the RAN may comprise one or more access nodes.
  • a User Plane Function referred to as PDU Session Anchor (PSA) may be responsible for forwarding frames back and forth between the DN and the tunnels established over the 5G towards the UE (s) exchanging traffic with the DN.
  • PDU Session Anchor PDU Session Anchor
  • a possible mobile communication device will now be described in more detail with reference to Figure 2 showing a schematic, partially sectioned view of a communication device 200.
  • a communication device is often referred to as user equipment (UE) or terminal.
  • UE user equipment
  • An appropriate mobile communication device may be provided by any device capable of sending and receiving radio signals.
  • Non-limiting examples comprise a mobile station (MS) or mobile device such as a mobile phone or what is known as a ’smart phone’ , a computer provided with a wireless interface card or other wireless interface facility (e.g., USB dongle) , personal data assistant (PDA) or a tablet provided with wireless communication capabilities, voice over IP (VoIP) phones, portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , smart devices, wireless customer-premises equipment (CPE) , or any combinations of these or the like.
  • MS mobile station
  • mobile device such as a mobile phone or what is known as a ’smart phone’
  • a computer provided with a wireless interface card or other wireless interface facility (e.g., USB dongle)
  • PDA personal data assistant
  • VoIP voice over IP
  • portable computers desktop computer
  • a mobile communication device may provide, for example, communication of data for carrying communications such as voice, electronic mail (email) , text message, multimedia and so on. Users may thus be offered and provided numerous services via their communication devices. Non-limiting examples of these services comprise two-way or multi-way calls, data communication or multimedia services or simply an access to a data communications network system, such as the Internet. Users may also be provided broadcast or multicast data. Non-limiting examples of the content comprise downloads, television and radio programs, videos, advertisements, various alerts and other information.
  • a mobile device is typically provided with at least one data processing entity 201, at least one memory 202 and other possible components 203 for use in software and hardware aided execution of tasks it is designed to perform, including control of access to and communications with access systems and other communication devices.
  • the data processing, storage and other relevant control apparatus can be provided on an appropriate circuit board and/or in chipsets. This feature is denoted by reference 204.
  • the user may control the operation of the mobile device by means of a suitable user interface such as key pad 205, voice commands, touch sensitive screen or pad, combinations thereof or the like.
  • a display 208, a speaker and a microphone can be also provided.
  • a mobile communication device may comprise appropriate connectors (either wired or wireless) to other devices and/or for connecting external accessories, for example hands-free equipment, thereto.
  • the mobile device 200 may receive signals over an air or radio interface 207 via appropriate apparatus for receiving and may transmit signals via appropriate apparatus for transmitting radio signals.
  • transceiver apparatus is designated schematically by block 206.
  • the transceiver apparatus 206 may be provided for example by means of a radio part and associated antenna arrangement.
  • the antenna arrangement may be arranged internally or externally to the mobile device.
  • Figure 3 shows an example of a control apparatus 300 for a communication system, for example to be coupled to and/or for controlling a station of an access system, such as a RAN node, e.g. a base station, eNB or gNB, a relay node or a core network node such as an MME or S-GW or P-GW, or a core network function such as AMF/SMF, or a server or host.
  • a RAN node e.g. a base station, eNB or gNB
  • a relay node or a core network node such as an MME or S-GW or P-GW
  • a core network function such as AMF/SMF
  • the method may be implemented in a single control apparatus or across more than one control apparatus.
  • the control apparatus may be integrated with or external to a node or module of a core network or RAN.
  • base stations comprise a separate control apparatus unit or module.
  • control apparatus can be another network element such as a radio network controller or a spectrum controller.
  • each base station may have such a control apparatus as well as a control apparatus being provided in a radio network controller.
  • the control apparatus 300 can be arranged to provide control on communications in the service area of the system.
  • the control apparatus 300 comprises at least one memory 301, at least one data processing unit 302, 303 and an input/output interface 304. Via the interface the control apparatus can be coupled to a receiver and a transmitter of the base station.
  • the receiver and/or the transmitter may be implemented as a radio front end or a remote radio head.
  • Augmented reality is an enhanced version of the real physical world that is achieved through the use of digital visual elements, sound, or other sensory stimuli delivered via technology. It is a growing trend among companies involved in mobile computing, gaming and business applications in particular.
  • AR One of AR’s primary goals is to highlight specific features of the physical world, increase understanding of those features, and derive smart and accessible insight that can be applied to real-world applications. Retailers and other companies can use AR to promote products or services, launch marketing campaigns, and collect user data.
  • eXtended Reality (XR) use cases can be roughly divided into: (i) augmented reality (AR) ; (ii) virtual reality (VR) , and (iii) mixed reality (MR) ) which refer to various types of augmented, virtual, and mixed environments, where human-to-machine and human-to-human communications are performed with the assistance of handheld and wearable end user devices (UEs) .
  • AR augmented reality
  • VR virtual reality
  • MR mixed reality
  • Many of the XR use cases are expected to be mobile and of small-scale, thus it’s feasible to use sidelink communication, which is UE to UE direct communication, for the XR services.
  • XR core use cases may use sidelink (SL) for communication between, for example, UEs.
  • SL sidelink
  • offline sharing which is used for sharing 3D models/objects and 3D MR scenes amongst UE A and UE B as shown in figure 4.
  • UE A shares a 3D static/dynamic object with UE B.
  • the 3D object may be a stored object downloaded by UE A from the cloud, or captured by the device.
  • UE A may share additional information of the 3D object with UE B.
  • MMS is used for sharing the 3D object and the captured MR scene between the UEs.
  • An example use case for offline sharing may be when one person (A) purchases goods (for example, a hat) from a merchant/retailer and A agrees with the merchant/retailer to share information (such as AR information) relating to the goods via their UE to interested third parties.
  • the merchant/retailer may pay A per interaction or others, e.g. as a simple advertisement plan.
  • B when another party, B, sees the hat worn by A and B likes it, B may use its mobile to scan the hat and try to connect with A’s mobile to determine whether A could provide more information (such as the brand, material, size, price, merchant, etc. ) of the hat.
  • A’s UE gets a request from B’s UE (UE B) and shares the hat’s AR information to UE B.
  • Such an interaction may be considered as a micro advertisement using AR.
  • XR cases may be UE-to-UE and of small-scale, and a UE only has limited battery power resources, performance may come at the expense of battery lifetime. Therefore, power enhancements may be needed to reduce overall UE power consumption when running XR services to extend the effective UE battery lifetime.
  • One way to reduce UE power consumption could be to utilise network coordination among UEs, for example, by applying a specific DRX mechanism for XR services.
  • UE B connects with UE A to request UE A share the AR information.
  • UE A and UE B can use sidelink communication since UE A and UE B are in proximity to each other (in the example, B is close enough to see A’s hat) .
  • the only information UE B has about UE A is the UE A’s owner is wearing a hat.
  • UE A has no information about UE B. It would be desirable for UE B to connect with UE A in an accurate, quick and power saving way.
  • ProSe Direct Discovery has been defined as a process at a UE for detecting and identifying another UE in proximity.
  • ProSe Direct Discovery There are two types of ProSe Direct Discovery: open and restricted. Open is the case where there is no explicit permission needed from the UE being discovered, whereas restricted discovery only takes place with explicit permission from the UE that is being discovered.
  • Model A also referred to as "I am here”
  • the announcing UE (UE A in the use case above) broadcasts discovery messages at pre-defined discovery intervals and the monitoring UEs (UE B in the use case above) that are interested in these messages read them and process them.
  • Model B also referred to as "who is there? " / "are you there? ”
  • the discoverer UE sends information about other UEs (discoveree UE such as UE A in the use case above) that it would like to receive responses from.
  • model A broadcasts a discovery message periodically which means the broadcast is always there whether or not a monitoring UE is present. This may cause resource wastage, and be power consuming. As a result, model A may be more suitable for a device with a steady power supply which would be inappropriate for the use case discussed above.
  • Model B may be better for the use case described above. Restricted discovery type is supported by model B currently. However, in the use case described above, UE A and UE B don’t have necessarily have any pre knowledge related to each other, such as ProSe Restricted Code.
  • UE B Even if model B can be used, UE B still must find UE A accurately and quickly. UE B knows that UE A’s owner has a hat. Sending ‘hat’ information in the discovery message may not be sufficient since it may not be accurate adequately distinguish UE A (e.g., there may be many people have a hat in the surrounding area) . From UE A’s perspective, an inaccurate discovery message (for example, from a UE who is interested in another hat but does not provide sufficiently detailed or clear information to distinguish the hat) may cause UE A to provide a response unnecessarily which may waste UE A’s power. The unnecessary response will waste the requester’s power in consequence.
  • Figure 5 shows a flow chart of a method according to an example embodiment. The method may be performed a first device, e.g., a UE.
  • a first device e.g., a UE.
  • the method comprises determining, at a first device, position information associated with an object of interest.
  • the method comprises providing, from the first device, a discovery message for device to device communication, wherein the discovery message comprises the position.
  • the method may comprise receiving a discovery response message from a second device in response to the discovery request.
  • Figure 6 shows a flowchart of a method according to an example embodiment. The method may be performed at a second device, e.g., a UE.
  • a second device e.g., a UE.
  • the method comprises receiving, from a first device at a second device, a discovery message for device to device communication, wherein the discovery message comprises position information associated with an object of interest.
  • the method comprises determining, based on the position information, that the second device is associated with the object of interest.
  • the method comprises, in response to determining that the second device is associated with the object of interest, transmitting a discovery response message from the second device to the first device.
  • the position information may be a position information IE.
  • the position information may comprise at least one of the following: an indication of the position of the first device, a distance between the first device and the object or an orientation of the first device.
  • the method may comprise determining the position information at the first device based on the position of the first device.
  • the position information may indicate a position of the object of interest, wherein the position of the object of interest is different from a position of the first device.
  • Determining, based on the position information, that the second device is associated with the object of interest may comprise means for determining that the second device is in an area indicated by the position information.
  • the area may be based on the position information and a distance (or radius) threshold.
  • the position information may include two parts: reference system and coordination in the system.
  • the reference system may be World Geodetic System 1984, (WGS 84) or local system, for example, if both A and B are in a train or subway, they can use local system in the train or subway which means the local reference system moves together with the train or subway. Then the movement of the train or subway won’t impact UE A’s or UE B’s position. Since A and B are in visual distance, they may use the same reference system.
  • the method may comprise determining a distance between the first device and the second device using a time-of-flight sensor. For example, since UE A is in UE B’s close sight, UE B may perform the distance measurement by, for example, time of flight (ToF) which is based on measuring the time it takes for a wave to travel from a source (a time-of-flight sensor) to an object and back to calculate the distance of that object from the source currently.
  • TOF time of flight
  • Figure 7 illustrates a UE 700 which includes a time-of-flight sensor 704 as part of its camera 702.
  • the first device may be performing a model B discovery procedure.
  • the discovery procedure may be an open discovery procedure. That is, the discovery message may comprise an open discovery message and the discovery response message may comprise an open discovery response message.
  • the device to device communication may be sidelink communication.
  • the discovery procedure may be a ProSe PC5 discovery procedure.
  • the discovery message may comprise at least one of the following: a discovery request, a sidelink discovery request or a proximity services, ProSe, PC5 discovery request for restricted 5G ProSe direct discovery solicitation.
  • the discovery message may further comprise an indication of the object of interest.
  • the method may comprise, at the second device, determining, based on the indication of the object of interest as well as the position information, that the second device is associated with the object of interest.
  • the indication of the object of interest may comprise metadata relating to, for example, the object’s appearance such as color, outline, size, etc.
  • the indication may include a classification code associated with the objection, also referred to as an application ID, e.g., a ProSe application code.
  • the application code may be based on the object’s classification.
  • the method may comprise receiving information relating to the objection of interest at the second device from a network (e.g., the application ID and/or metadata) and determining that the second device is associated with the object of interest further based on the received information.
  • a network e.g., the application ID and/or metadata
  • Position information may be the main factor used to indicate the UE associated with the object.
  • An indication of the object such as application ID and metadata may be auxiliary. In other embodiments, both the position information and the indication of the object are used.
  • a connection can be established between a first device and a second device following the discovery procedure. Further communication (including an indication of an object of interest or a request for information) may follow.
  • the second device can determine whether the direct discovery request from the first device is intended for it or not based on the position information and, optionally, further based on the indication of the object. In an example embodiment, if the position information and indication of the object matches the second device’s own information, the second device can establish a direct communication link with the first device (e.g. by providing at least one of the following to the first device from the second device: a discovery response, sidelink discovery response or a proximity services, ProSe, PC5 discovery response) . Otherwise, the request can be ignored.
  • the method may comprise providing further information associated with the object of interest from the second device to the first device.
  • the further information may be provided following the provision of the discovery response message, i.e. after a communication link between the first device and the second device has been established, or if the discovery request includes an indication of the object of interest, may be included in the discovery response message.
  • the further information may be referred to as AR information.
  • AR information may comprise at least one of the following: information associated with the object of interest, information associated with the merchant X or information on where to find further information.
  • the device is a discoverer UE (UE B in the use case described above) .
  • UE B adds a position information IE into a ProSe direct discovery message and supports open discovery type in model B discovery procedure, for example, modify ProSe direct discovery solicitation message as in Table 1 below.
  • the modification includes changing the Presence of ProSe query code from mandatory to optional which means it doesn’t exist when ProSe direct discovery PC5 message type is set to “Open discovery” ; , adding ProSe application code for the goods classification, adding position information about the discoveree UE and add Metadata into the message.
  • the method may define a new direct discovery message instead of modifying the existing one, or using another name instead of ProSe application ID for the goods classification.
  • the method may reduce power consumption at both the first device and the second device by reducing unnecessary message exchange and saving resource usage and reduce interference accordingly.
  • the method may comprise determining a transmission power based on the position information and providing the discovery message using the determined transmission power.
  • the method may comprise determining a beam direction based on the position information.
  • UE B may tailor the transmission power of the discoverer to reach UE A.
  • UE B measure the object of interest’s distance and/or its orientation relative to UE B. This position information can be used to control the power as well as possible beamforming to reduce the chances of non-discoveree UEs receiving undesired requests. Even if only UE A and UE B are present, UE B’s power consumption may still be reduced since it only performs transmission and receiving in the measured direction and distance.
  • Figure 8 shows a schematic diagram of a scenario in which the method may be applied.
  • the first device is UE B
  • the second device is UE A
  • the object of interest is a hat belonging to the owner of UE A.
  • UE B is able scan the hat of the owner of UE A and determine the distance to it.
  • the owner of UE B uses UE B to scan the hat (since there is distance between UE B and the hat, UE B may not be able to scan the hat clearly which means the auxiliary information such as color, size may not be very accurate) and to measure the hat’s distance from UE B.
  • UE B may know its orientation when performing the scanning (e.g., using accelerometers, gyroscopes and G sensors located in UE B) .
  • Figure 9 shows a procedure of the example use case shown in Figure 8.
  • UE A’s owner buys the hat from merchant X and makes a deal with the merchant to share information relating to the hat (AR information) to interested parties at 902.
  • the merchant X registers UE A in its database and asks the network to give authorization to UE A for sharing the specific object (hat) information.
  • the network configures the specific application ID, based on the hat’s classification code, to authorize UE A to share the information about this kind of goods.
  • the classification code may be a commodity classification code normally used in a country or region.
  • UE A receives a discovery request including position information and an indication of the hat (e.g., goods classification in application ID and metatdata) from UE B and may make a sidelink connection with UE B according to the method described with reference to Figures 5 to 7 and described in more detail on Figure 10.
  • UE A shares AR information with UE B and increments the sharing count.
  • the merchant X pays UE A according to its sharing number.
  • Figure 10 illustrates a signalling flow between UEA, UE B and UE C according to an example embodiment.
  • UE B scans UE A’s owner’s object and measures UE A’s position (e.g. the distance between UE A and UE B and UE B’s orientation) .
  • UE B can determine UE A position relative to it. Combined with UE B’s own position (most of UE’s location service is turning on currently) , UE B may determine UE A’s real position. UE B includes position information of UE A, the hat’s classification code in application ID and ‘hat’ information in metadata in a direct discovery request and sends the direct discovery request out.
  • UE A receives the request and checks the position with its own position and ‘hat’ information, and at 1004 UE A sends a discovery response back if both matches.
  • UE C also receives the request but, since the position information does not match with UE C’s position, UE C does not provide a discovery response. Since UE B won’t receive a response from UE C, both UE C and UE B’s power consumption is saved.
  • UE A and UE B After UE A and UE B discover each other, the sidelink connection can be established.
  • UE A shares the AR information of the hat to UE B as in Figure 9.
  • UE A counts the number of shares and notify the merchant X.
  • the merchant X will pay UE A’s owner based on the number of shares.
  • the ‘position’ element may be included into model A discovery procedure.
  • the position information may be about the position of the announcing UE (the UE who sends ‘I am here’ ) to tell the monitoring UE where it is.
  • a ride-hailing car may use the position information to tell the passenger its accurate position.
  • the method may be used in cases other than a micro advertisement case, it can be used in any sidelink case which needs to link with a specific device. For example, on the road, you find some other car near you has some problem, such as trunk lid open, you can direct link to this car but not others by using this invention to tell it the problem.
  • An apparatus may comprise means for determining, at a first device, position information associated with an object of interest and providing, from the first device, a discovery message for device to device communication, wherein the discovery message comprises the position information.
  • an apparatus may comprise means for receiving, from a first device at a second device, a discovery message for device to device communication, wherein the discovery message comprises position information associated with an object of interest, determining, based on the position information, that the second device is associated with the object of interest and in response to determining that the second device is associated with the object of interest, providing a discovery response message from the second device to the first device.
  • the apparatus may comprise a user equipment, such as a mobile phone, or a chipset for performing at least some actions of/for the user equipment.
  • a user equipment such as a mobile phone
  • a chipset for performing at least some actions of/for the user equipment.
  • apparatuses may comprise or be coupled to other units or modules etc., such as radio parts or radio heads, used in or for transmission and/or reception.
  • apparatuses have been described as one entity, different modules and memory may be implemented in one or more physical or logical entities.
  • the various embodiments may be implemented in hardware or special purpose circuitry, software, logic or any combination thereof. Some aspects of the disclosure may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device, although the disclosure is not limited thereto. While various aspects of the disclosure may be illustrated and described as block diagrams, flow charts, or using some other pictorial representation, it is well understood that these blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • circuitry may refer to one or more or all of the following:
  • circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware.
  • circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
  • the embodiments of this disclosure may be implemented by computer software executable by a data processor of the mobile device, such as in the processor entity, or by hardware, or by a combination of software and hardware.
  • Computer software or program also called program product, including software routines, applets and/or macros, may be stored in any apparatus-readable data storage medium and they comprise program instructions to perform particular tasks.
  • a computer program product may comprise one or more computer-executable components which, when the program is run, are configured to carry out embodiments.
  • the one or more computer-executable components may be at least one software code or portions of it.
  • any blocks of the logic flow as in the Figures may represent program steps, or interconnected logic circuits, blocks and functions, or a combination of program steps and logic circuits, blocks and functions.
  • the software may be stored on such physical media as memory chips, or memory blocks implemented within the processor, magnetic media such as hard disk or floppy disks, and optical media such as for example DVD and the data variants thereof, CD.
  • the physical media is a non-transitory media.
  • non-transitory, is a limitation of the medium itself (i.e., tangible, not a signal) as opposed to a limitation on data storage persistency (e.g., RAM vs. ROM) .
  • the memory may be of any type suitable to the local technical environment and may be implemented using any suitable data storage technology, such as semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory.
  • the data processors may be of any type suitable to the local technical environment, and may comprise one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) , application specific integrated circuits (ASIC) , FPGA, gate level circuits and processors based on multi core processor architecture, as non-limiting examples.
  • Embodiments of the disclosure may be practiced in various components such as integrated circuit modules.
  • the design of integrated circuits is by and large a highly automated process.
  • Complex and powerful software tools are available for converting a logic level design into a semiconductor circuit design ready to be etched and formed on a semiconductor substrate.

Abstract

There is provided an apparatus comprising means for determining, at a first device, position information associated with an object of interest and providing, from the first device, a discovery message for device to device communication, wherein the discovery message comprises the position information.

Description

Apparatus, method and computer program Field
The present application relates to a method, apparatus, system and computer program and in particular but not exclusively to position information in sidelink discovery for AR applications.
Background
A communication system can be seen as a facility that enables communication sessions between two or more entities such as user terminals, base stations and/or other nodes by providing carriers between the various entities involved in the communications path. A communication system can be provided for example by means of a communication network and one or more compatible communication devices. The communication sessions may comprise, for example, communication of data for carrying communications such as voice, video, electronic mail (email) , text message, multimedia and/or content data and so on. Non-limiting examples of services provided comprise two-way or multi-way calls, data communication or multimedia services and access to a data network system, such as the Internet.
In a wireless communication system at least a part of a communication session between at least two stations occurs over a wireless link. Examples of wireless systems comprise public land mobile networks (PLMN) , satellite based communication systems and different wireless local networks, for example wireless local area networks (WLAN) . Some wireless systems can be divided into cells, and are therefore often referred to as cellular systems.
A user can access the communication system by means of an appropriate communication device or terminal. A communication device of a user may be referred to as user equipment (UE) or user device. A communication device is provided with an appropriate signal receiving and transmitting apparatus for enabling communications, for example enabling access to a communication network or communications directly with other users. The communication device may access a carrier provided by a station, for example a base station of a cell, and transmit and/or receive communications on the carrier.
The communication system and associated devices typically operate in accordance with a given standard or specification which sets out what the various entities associated with the system are permitted to do and how that should be achieved. Communication protocols and/or parameters which shall be used for the connection are also typically defined. One example of a communications system is UTRAN (3G radio) . Other examples of communication systems are the long-term evolution (LTE) of the Universal Mobile Telecommunications System (UMTS) radio-access technology and so-called 5G or New Radio (NR) networks. NR is being standardized by the 3rd Generation Partnership Project (3GPP) .
Summary
In a first aspect there is provided an apparatus comprising means for determining, at a first device, position information associated with an object of interest and providing, from the first device, a discovery message for device to device communication, wherein the discovery message comprises the position information.
The position information may indicate a position of the object of interest, wherein the position of the object of interest is different from a position of the first device.
The position information may comprise at least one of the following: an indication of the position of the first device, a distance between the first device and the object or an orientation of the first device.
The apparatus may comprise a time of flight sensor and means for determining the distance using the time of flight sensor.
The discovery message may comprise an open discovery message.
The apparatus may comprise means for determining a transmission power based on the position information and providing the discovery message using the determined transmission power.
The first device may be performing a model B discovery procedure.
The discovery message may comprise at least one of the following: a discovery request, a sidelink discovery request or a proximity services, ProSe, PC5 discovery request.
The apparatus may comprise means for receiving a discovery response message from a second device in response to the discovery message.
The apparatus may comprise means for receiving information associated with the object of interest from the second device at the first device.
The discovery message may further comprise an indication of the object of interest.
The indication of the object of interest may comprise at least one of the following: metadata associated with the object or a classification code associated with the object.
In a second aspect there is provided an apparatus comprising means for receiving, from a first device at a second device, a discovery message for device to device communication, wherein the discovery message comprises position information associated with an object of interest, determining, based on the position information, that the second device is associated with the object of interest and in response to determining that the second device is associated with the object of interest, providing a discovery response message from the second device to the first device.
The position information may indicate a position of the object of interest, wherein the position of the object of interest is different from a position of the first device.
Means for determining, based on the position information, that the second device is associated with the object of interest may comprise means for determining that the second device is in an area indicated by the position information.
The area may be based on the position information and a distance threshold.
The position information may comprise at least one of the following: an indication of the position of the first device, a distance between the first device and the object or an orientation of the first device.
The discovery response message may comprise an open discovery message.
The first device may be performing a model B discovery procedure.
The discovery response message may comprise at least one of the following: a discovery response, a sidelink discovery response or a proximity services, ProSe, PC5 discovery response.
The apparatus may comprise means for providing information associated with the object of interest from the second device to the first device.
The discovery message may further comprise an indication of the object of interest and comprising means for determining, based on the indication of the object of interest, that the second device is associated with the object of interest.
The indication of the object of interest may comprise at least one of the following: metadata associated with the object or a classification code associated with the object.
The apparatus may comprise means for receiving information relating to the object of interest from a network and determining that the second device is associated with the object of interest further based on the received information.
In a third aspect there is provided a method comprising determining, at a first device, position information associated with an object of interest and providing, from the first device, a discovery message for device to device communication, wherein the discovery message comprises the position information.
The position information may indicate a position of the object of interest, wherein the position of the object of interest is different from a position of the first device.
The position information may comprise at least one of the following: an indication of the position of the first device, a distance between the first device and the object or an orientation of the first device.
The method may comprise determining the distance using a time of flight sensor.
The discovery message may comprise an open discovery message.
The method may comprise determining a transmission power based on the position information and providing the discovery message using the determined transmission power.
The first device may be performing a model B discovery procedure.
The discovery message may comprise at least one of the following: a discovery request, a sidelink discovery request or a proximity services, ProSe, PC5 discovery request.
The method may comprise receiving a discovery response message from a second device in response to the discovery message.
The method may comprise receiving information associated with the object of interest from the second device at the first device.
The discovery message may further comprise an indication of the object of interest.
The indication of the object of interest may comprise at least one of the following: metadata associated with the object or a classification code associated with the object.
In a fourth aspect there is provided a method comprising means for receiving, from a first device at a second device, a discovery message for device to device communication, wherein the discovery message comprises position information associated with an object of interest, determining, based on the position information, that the second device is associated with the object of interest and in response to determining that the second device is associated with the object of interest, providing a discovery response message from the second device to the first device.
The position information may indicate a position of the object of interest, wherein the position of the object of interest is different from a position of the first device.
Determining, based on the position information, that the second device is associated with the object of interest may comprise determining that the second device is in an area indicated by the position information.
The area may be based on the position information and a distance threshold.
The position information may comprise at least one of the following: an indication of the position of the first device, a distance between the first device and the object or an orientation of the first device.
The discovery response message may comprise an open discovery message.
The first device may be performing a model B discovery procedure.
The discovery response message may comprise at least one of the following: a discovery response, a sidelink discovery response or a proximity services, ProSe, PC5 discovery response.
The method may comprise providing information associated with the object of interest from the second device to the first device.
The discovery message may further comprise an indication of the object of interest and comprising means for determining, based on the indication of the object of interest, that the second device is associated with the object of interest.
The indication of the object of interest may comprise at least one of the following: metadata associated with the object or a classification code associated with the object.
The method may comprise receiving information relating to the object of interest from a network and determining that the second device is associated with the object of interest further based on the received information.
In a fifth aspect there is provided an apparatus comprising: at least one processor and at least one memory storing instructions that, when executed by the at least one processor, cause the apparatus at least to determine, at a first device, position information associated with an object of interest and provide, from the first device, a discovery message for device to device communication, wherein the discovery message comprises the position information.
The position information may indicate a position of the object of interest, wherein the position of the object of interest is different from a position of the first device.
The position information may comprise at least one of the following: an indication of the position of the first device, a distance between the first device and the object or an orientation of the first device.
The apparatus may comprise a time of flight sensor and be caused to determine the distance using the time of flight sensor.
The discovery message may comprise an open discovery message.
The apparatus may eb caused to determine a transmission power based on the position information and providing the discovery message using the determined transmission power.
The first device may be performing a model B discovery procedure.
The discovery message may comprise at least one of the following: a discovery request, a sidelink discovery request or a proximity services, ProSe, PC5 discovery request.
The apparatus may be caused to receive a discovery response message from a second device in response to the discovery message.
The apparatus may be caused to receive information associated with the object of interest from the second device at the first device.
The discovery message may further comprise an indication of the object of interest.
The indication of the object of interest may comprise at least one of the following: metadata associated with the object or a classification code associated with the object.
In a sixth aspect there is provided an apparatus comprising: at least one processor and at least one memory storing instructions that, when executed by the at least one processor, cause the apparatus at least to receive, from a first device at a second device, a discovery message for device to device communication, wherein the discovery message comprises position information associated with an object of interest, determine, based on the position information, that the second device is associated with the object of interest and in response to determining that the second device is associated with the object of interest, provide a discovery response message from the second device to the first device.
The position information may indicate a position of the object of interest, wherein the position of the object of interest is different from a position of the first device.
The apparatus may be caused to determine that the second device is in an area indicated by the position information.
The area may be based on the position information and a distance threshold.
The position information may comprise at least one of the following: an indication of the position of the first device, a distance between the first device and the object or an orientation of the first device.
The discovery response message may comprise an open discovery message.
The first device may be performing a model B discovery procedure.
The discovery response message may comprise at least one of the following: a discovery response, a sidelink discovery response or a proximity services, ProSe, PC5 discovery response.
The apparatus may be caused to provide information associated with the object of interest from the second device to the first device.
The discovery message may further comprise an indication of the object of interest and comprising means for determining, based on the indication of the object of interest, that the second device is associated with the object of interest.
The indication of the object of interest may comprise at least one of the following: metadata associated with the object or a classification code associated with the object.
The apparatus may be caused to receive information relating to the object of interest from a network and determining that the second device is associated with the object of interest further based on the received information.
In a seventh aspect there is provided a computer readable medium comprising instructions which, when executed by an apparatus, cause the apparatus to perform at least the following: determining, at a first device, position information associated with an object of interest; and providing, from the first device, a discovery message for device to device communication, wherein the discovery message comprises the position information.
The position information may indicate a position of the object of interest, wherein the position of the object of interest is different from a position of the first device.
The position information may comprise at least one of the following: an indication of the position of the first device, a distance between the first device and the object or an orientation of the first device.
The apparatus may comprise a time of flight sensor and be caused to perform determining the distance using the time of flight sensor.
The discovery message may comprise an open discovery message.
The apparatus may be caused to perform determining a transmission power based on the position information and providing the discovery message using the determined transmission power.
The first device may be performing a model B discovery procedure.
The discovery message may comprise at least one of the following: a discovery request, a sidelink discovery request or a proximity services, ProSe, PC5 discovery request.
The apparatus may be caused to perform receiving a discovery response message from a second device in response to the discovery message.
The apparatus may be caused to perform receiving information associated with the object of interest from the second device at the first device.
The discovery message may further comprise an indication of the object of interest.
The indication of the object of interest may comprise at least one of the following: metadata associated with the object or a classification code associated with the object.
In an eighth aspect there is provided a computer readable medium comprising instructions which, when executed by an apparatus, cause the apparatus to perform at least the following: receiving, from a first device at a second device, a discovery message for device to device communication, wherein the discovery message comprises position information associated with an object of interest, determining, based on the position information, that the second device is associated with the object of interest and in response to determining that the second device is associated with the object of interest, providing a discovery response message from the second device to the first device.
The position information may indicate a position of the object of interest, wherein the position of the object of interest is different from a position of the first device.
The apparatus may be caused to perform determining that the second device is in an area indicated by the position information.
The area may be based on the position information and a distance threshold.
The position information may comprise at least one of the following: an indication of the position of the first device, a distance between the first device and the object or an orientation of the first device.
The discovery response message may comprise an open discovery message.
The first device may be performing a model B discovery procedure.
The discovery response message may comprise at least one of the following: a discovery response, a sidelink discovery response or a proximity services, ProSe, PC5 discovery response.
The apparatus may be caused to perform providing information associated with the object of interest from the second device to the first device.
The discovery message may further comprise an indication of the object of interest and comprising means for determining, based on the indication of the object of interest, that the second device is associated with the object of interest.
The indication of the object of interest may comprise at least one of the following: metadata associated with the object or a classification code associated with the object.
The apparatus may be caused to perform receiving information relating to the object of interest from a network and determining that the second device is associated with the object of interest further based on the received information.
In a ninth aspect there is provided a non-transitory computer readable medium comprising program instructions for causing an apparatus to perform at least the method according to the third or fourth aspect.
In the above, many different embodiments have been described. It should be appreciated that further embodiments may be provided by the combination of any two or more of the embodiments described above.
Description of Figures
Embodiments will now be described, by way of example only, with reference to the accompanying Figures in which:
Figure 1 shows a schematic diagram of an example 5GS communication system;
Figure 2 shows a schematic diagram of an example mobile communication device;
Figure 3 shows a schematic diagram of an example control apparatus;
Figure 4 shows a schematic diagram for offline sharing in XR;
Figure 5 shows a flowchart of a method according to an example embodiment;
Figure 6 shows a flowchart of a method according to an example embodiment;
Figure 7 shows a schematic diagram of an apparatus comprising time-of-flight sensor;
Figure 8 shows a schematic diagram of an example use case;
Figure 9 shows a signalling flow of a use case according to an example embodiment;
Figure 10 shows a signalling flow according to an example embodiment.
Detailed description
Before explaining in detail the examples, certain general principles of a wireless communication system and mobile communication devices are briefly explained with  reference to Figures 1 to 3 to assist in understanding the technology underlying the described examples.
An example of a suitable communications system is the 5G or NR concept. Network architecture in NR may be similar to that of LTE-advanced. Base stations of NR systems may be known as next generation Node Bs (gNBs) . Changes to the network architecture may depend on the need to support various radio technologies and finer QoS support, and some on-demand requirements for e.g. Quality of Service (QoS) levels to support Quality of Experience (QoE) for a user. Also network aware services and applications, and service and application aware networks may bring changes to the architecture. Those are related to Information Centric Network (ICN) and User-Centric Content Delivery Network (UC-CDN) approaches. NR may use multiple input –multiple output (MIMO) antennas, many more base stations or nodes than the LTE (a so-called small cell concept) , including macro sites operating in co-operation with smaller stations and perhaps also employing a variety of radio technologies for better coverage and enhanced data rates.
Future networks may utilise network functions virtualization (NFV) which is a network architecture concept that proposes virtualizing network node functions into “building blocks” or entities that may be operationally connected or linked together to provide services. A virtualized network function (VNF) may comprise one or more virtual machines running computer program codes using standard or general type servers instead of customized hardware. Cloud computing or data storage may also be utilized. In radio communications this may mean node operations to be carried out, at least partly, in a server, host or node operationally coupled to a remote radio head. It is also possible that node operations will be distributed among a plurality of servers, nodes or hosts. It should also be understood that the distribution of labour between core network operations and base station operations may differ from that of the LTE or even be non-existent.
Figure 1 shows a schematic representation of a 5G system (5GS) 100. The 5GS may comprise a user equipment (UE) 102 (which may also be referred to as a communication device or a terminal) , a 5G radio access network (5GRAN) 104, a 5G core network (5GCN) 106, one or more application functions (AF) 108 and one or more data networks (DN) 110.
An example 5G core network (CN) comprises functional entities. The 5GCN 106 may comprise one or more access and mobility management functions (AMF) 112, one or more session management functions (SMF) 114, an authentication server function (AUSF) 116, a unified data management (UDM) 118, one or more user plane functions (UPF) 120, a unified data  repository (UDR) 122 and/or a network exposure function (NEF) 124. The UPF is controlled by the SMF (Session Management Function) that receives policies from a PCF (Policy Control Function) .
The CN is connected to a UE via the radio access network (RAN) . The 5GRAN may comprise one or more gNodeB (GNB) distributed unit functions connected to one or more gNodeB (GNB) centralized unit functions. The RAN may comprise one or more access nodes.
A User Plane Function (UPF) referred to as PDU Session Anchor (PSA) may be responsible for forwarding frames back and forth between the DN and the tunnels established over the 5G towards the UE (s) exchanging traffic with the DN.
A possible mobile communication device will now be described in more detail with reference to Figure 2 showing a schematic, partially sectioned view of a communication device 200. Such a communication device is often referred to as user equipment (UE) or terminal. An appropriate mobile communication device may be provided by any device capable of sending and receiving radio signals. Non-limiting examples comprise a mobile station (MS) or mobile device such as a mobile phone or what is known as a ’smart phone’ , a computer provided with a wireless interface card or other wireless interface facility (e.g., USB dongle) , personal data assistant (PDA) or a tablet provided with wireless communication capabilities, voice over IP (VoIP) phones, portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , smart devices, wireless customer-premises equipment (CPE) , or any combinations of these or the like. A mobile communication device may provide, for example, communication of data for carrying communications such as voice, electronic mail (email) , text message, multimedia and so on. Users may thus be offered and provided numerous services via their communication devices. Non-limiting examples of these services comprise two-way or multi-way calls, data communication or multimedia services or simply an access to a data communications network system, such as the Internet. Users may also be provided broadcast or multicast data. Non-limiting examples of the content comprise downloads, television and radio programs, videos, advertisements, various alerts and other information.
A mobile device is typically provided with at least one data processing entity 201, at least one memory 202 and other possible components 203 for use in software and hardware aided execution of tasks it is designed to perform, including control of access to and communications  with access systems and other communication devices. The data processing, storage and other relevant control apparatus can be provided on an appropriate circuit board and/or in chipsets. This feature is denoted by reference 204. The user may control the operation of the mobile device by means of a suitable user interface such as key pad 205, voice commands, touch sensitive screen or pad, combinations thereof or the like. A display 208, a speaker and a microphone can be also provided. Furthermore, a mobile communication device may comprise appropriate connectors (either wired or wireless) to other devices and/or for connecting external accessories, for example hands-free equipment, thereto.
The mobile device 200 may receive signals over an air or radio interface 207 via appropriate apparatus for receiving and may transmit signals via appropriate apparatus for transmitting radio signals. In Figure 2 transceiver apparatus is designated schematically by block 206. The transceiver apparatus 206 may be provided for example by means of a radio part and associated antenna arrangement. The antenna arrangement may be arranged internally or externally to the mobile device.
Figure 3 shows an example of a control apparatus 300 for a communication system, for example to be coupled to and/or for controlling a station of an access system, such as a RAN node, e.g. a base station, eNB or gNB, a relay node or a core network node such as an MME or S-GW or P-GW, or a core network function such as AMF/SMF, or a server or host. The method may be implemented in a single control apparatus or across more than one control apparatus. The control apparatus may be integrated with or external to a node or module of a core network or RAN. In some embodiments, base stations comprise a separate control apparatus unit or module. In other embodiments, the control apparatus can be another network element such as a radio network controller or a spectrum controller. In some embodiments, each base station may have such a control apparatus as well as a control apparatus being provided in a radio network controller. The control apparatus 300 can be arranged to provide control on communications in the service area of the system. The control apparatus 300 comprises at least one memory 301, at least one  data processing unit  302, 303 and an input/output interface 304. Via the interface the control apparatus can be coupled to a receiver and a transmitter of the base station. The receiver and/or the transmitter may be implemented as a radio front end or a remote radio head.
Augmented reality (AR) is an enhanced version of the real physical world that is achieved through the use of digital visual elements, sound, or other sensory stimuli delivered via technology. It is a growing trend among companies involved in mobile computing, gaming and business applications in particular.
One of AR’s primary goals is to highlight specific features of the physical world, increase understanding of those features, and derive smart and accessible insight that can be applied to real-world applications. Retailers and other companies can use AR to promote products or services, launch marketing campaigns, and collect user data.
eXtended Reality (XR) use cases can be roughly divided into: (i) augmented reality (AR) ; (ii) virtual reality (VR) , and (iii) mixed reality (MR) ) which refer to various types of augmented, virtual, and mixed environments, where human-to-machine and human-to-human communications are performed with the assistance of handheld and wearable end user devices (UEs) . Many of the XR use cases are expected to be mobile and of small-scale, thus it’s feasible to use sidelink communication, which is UE to UE direct communication, for the XR services.
XR core use cases may use sidelink (SL) for communication between, for example, UEs. For example, offline sharing, which is used for sharing 3D models/objects and 3D MR scenes amongst UE A and UE B as shown in figure 4. In figure 4, UE A shares a 3D static/dynamic object with UE B. The 3D object may be a stored object downloaded by UE A from the cloud, or captured by the device. UE A may share additional information of the 3D object with UE B. In the example shown in Figure 4, MMS is used for sharing the 3D object and the captured MR scene between the UEs.
An example use case for offline sharing may be when one person (A) purchases goods (for example, a hat) from a merchant/retailer and A agrees with the merchant/retailer to share information (such as AR information) relating to the goods via their UE to interested third parties. The merchant/retailer may pay A per interaction or others, e.g. as a simple advertisement plan. In this example use case, when another party, B, sees the hat worn by A and B likes it, B may use its mobile to scan the hat and try to connect with A’s mobile to determine whether A could provide more information (such as the brand, material, size, price, merchant, etc. ) of the hat. A’s UE (UE A) gets a request from B’s UE (UE B) and shares the hat’s AR information to UE B. As a result, A gets a payment; B receives the requested information and the merchant/detailer increases its goods’ popularity and/or awareness. Such an interaction may be considered as a micro advertisement using AR.
Since XR cases may be UE-to-UE and of small-scale, and a UE only has limited battery power resources, performance may come at the expense of battery lifetime. Therefore, power  enhancements may be needed to reduce overall UE power consumption when running XR services to extend the effective UE battery lifetime.
One way to reduce UE power consumption could be to utilise network coordination among UEs, for example, by applying a specific DRX mechanism for XR services. However, it will be more beneficial if the UEs can use sidelink to communicate directly. In the offline sharing example described above, UE B connects with UE A to request UE A share the AR information. UE A and UE B can use sidelink communication since UE A and UE B are in proximity to each other (in the example, B is close enough to see A’s hat) . The only information UE B has about UE A is the UE A’s owner is wearing a hat. UE A has no information about UE B. It would be desirable for UE B to connect with UE A in an accurate, quick and power saving way.
ProSe Direct Discovery has been defined as a process at a UE for detecting and identifying another UE in proximity.
There are two types of ProSe Direct Discovery: open and restricted. Open is the case where there is no explicit permission needed from the UE being discovered, whereas restricted discovery only takes place with explicit permission from the UE that is being discovered.
There are two models for ProSe Direct Discovery.
In Model A (also referred to as "I am here" ) , the announcing UE (UE A in the use case above) broadcasts discovery messages at pre-defined discovery intervals and the monitoring UEs (UE B in the use case above) that are interested in these messages read them and process them.
In Model B (also referred to as "who is there? " / "are you there? ") , the discoverer UE (UE B in the use case above) sends information about other UEs (discoveree UE such as UE A in the use case above) that it would like to receive responses from.
The announcing UE in model A broadcasts a discovery message periodically which means the broadcast is always there whether or not a monitoring UE is present. This may cause resource wastage, and be power consuming. As a result, model A may be more suitable for a device with a steady power supply which would be inappropriate for the use case discussed above.
Model B may be better for the use case described above. Restricted discovery type is supported by model B currently. However, in the use case described above, UE A and UE B don’t have necessarily have any pre knowledge related to each other, such as ProSe Restricted Code.
Even if model B can be used, UE B still must find UE A accurately and quickly. UE B knows that UE A’s owner has a hat. Sending ‘hat’ information in the discovery message may not be sufficient since it may not be accurate adequately distinguish UE A (e.g., there may be many people have a hat in the surrounding area) . From UE A’s perspective, an inaccurate discovery message (for example, from a UE who is interested in another hat but does not provide sufficiently detailed or clear information to distinguish the hat) may cause UE A to provide a response unnecessarily which may waste UE A’s power. The unnecessary response will waste the requester’s power in consequence.
Figure 5 shows a flow chart of a method according to an example embodiment. The method may be performed a first device, e.g., a UE.
In S1, the method comprises determining, at a first device, position information associated with an object of interest.
In S2, the method comprises providing, from the first device, a discovery message for device to device communication, wherein the discovery message comprises the position.
The method may comprise receiving a discovery response message from a second device in response to the discovery request.
Figure 6 shows a flowchart of a method according to an example embodiment. The method may be performed at a second device, e.g., a UE.
In T1, the method comprises receiving, from a first device at a second device, a discovery message for device to device communication, wherein the discovery message comprises position information associated with an object of interest.
In T2, the method comprises determining, based on the position information, that the second device is associated with the object of interest.
In T3, the method comprises, in response to determining that the second device is associated with the object of interest, transmitting a discovery response message from the second device to the first device.
The position information may be a position information IE. The position information may comprise at least one of the following: an indication of the position of the first device, a distance between the first device and the object or an orientation of the first device. The method may comprise determining the position information at the first device based on the position of the first device. The position information may indicate a position of the object of interest, wherein the position of the object of interest is different from a position of the first device.
Determining, based on the position information, that the second device is associated with the object of interest may comprise means for determining that the second device is in an area indicated by the position information. The area may be based on the position information and a distance (or radius) threshold.
For the position information, it may include two parts: reference system and coordination in the system. The reference system may be World Geodetic System 1984, (WGS 84) or local system, for example, if both A and B are in a train or subway, they can use local system in the train or subway which means the local reference system moves together with the train or subway. Then the movement of the train or subway won’t impact UE A’s or UE B’s position. Since A and B are in visual distance, they may use the same reference system.
The method may comprise determining a distance between the first device and the second device using a time-of-flight sensor. For example, since UE A is in UE B’s close sight, UE B may perform the distance measurement by, for example, time of flight (ToF) which is based on measuring the time it takes for a wave to travel from a source (a time-of-flight sensor) to an object and back to calculate the distance of that object from the source currently.
Figure 7 illustrates a UE 700 which includes a time-of-flight sensor 704 as part of its camera 702.
The first device may be performing a model B discovery procedure. The discovery procedure may be an open discovery procedure. That is, the discovery message may comprise an open discovery message and the discovery response message may comprise an open discovery response message.
The device to device communication may be sidelink communication. The discovery procedure may be a ProSe PC5 discovery procedure. The discovery message may comprise at least one of the following: a discovery request, a sidelink discovery request or a proximity services, ProSe, PC5 discovery request for restricted 5G ProSe direct discovery solicitation.
The discovery message may further comprise an indication of the object of interest. The method may comprise, at the second device, determining, based on the indication of the object of interest as well as the position information, that the second device is associated with the object of interest.
The indication of the object of interest may comprise metadata relating to, for example, the object’s appearance such as color, outline, size, etc. The indication may include a classification code associated with the objection, also referred to as an application ID, e.g., a ProSe application code. The application code may be based on the object’s classification.
The method may comprise receiving information relating to the objection of interest at the second device from a network (e.g., the application ID and/or metadata) and determining that the second device is associated with the object of interest further based on the received information.
Position information may be the main factor used to indicate the UE associated with the object. An indication of the object, such as application ID and metadata may be auxiliary. In other embodiments, both the position information and the indication of the object are used.
In an example embodiment where the discovery message includes position information but not an indication of the object of interest, a connection can be established between a first device and a second device following the discovery procedure. Further communication (including an indication of an object of interest or a request for information) may follow.
The second device can determine whether the direct discovery request from the first device is intended for it or not based on the position information and, optionally, further based on the indication of the object. In an example embodiment, if the position information and indication of the object matches the second device’s own information, the second device can  establish a direct communication link with the first device (e.g. by providing at least one of the following to the first device from the second device: a discovery response, sidelink discovery response or a proximity services, ProSe, PC5 discovery response) . Otherwise, the request can be ignored.
The method may comprise providing further information associated with the object of interest from the second device to the first device. The further information may be provided following the provision of the discovery response message, i.e. after a communication link between the first device and the second device has been established, or if the discovery request includes an indication of the object of interest, may be included in the discovery response message. The further information may be referred to as AR information. AR information may comprise at least one of the following: information associated with the object of interest, information associated with the merchant X or information on where to find further information.
In an example embodiment, the device is a discoverer UE (UE B in the use case described above) . In this example embodiment UE B adds a position information IE into a ProSe direct discovery message and supports open discovery type in model B discovery procedure, for example, modify ProSe direct discovery solicitation message as in Table 1 below.
Figure PCTCN2022123803-appb-000001
Table 1
In the example shown in Table 1, the modification includes changing the Presence of ProSe query code from mandatory to optional which means it doesn’t exist when ProSe direct discovery PC5 message type is set to “Open discovery” ; , adding ProSe application code for  the goods classification, adding position information about the discoveree UE and add Metadata into the message.
The method may define a new direct discovery message instead of modifying the existing one, or using another name instead of ProSe application ID for the goods classification.
The method may reduce power consumption at both the first device and the second device by reducing unnecessary message exchange and saving resource usage and reduce interference accordingly.
The method may comprise determining a transmission power based on the position information and providing the discovery message using the determined transmission power. The method may comprise determining a beam direction based on the position information.
In the example use case, UE B may tailor the transmission power of the discoverer to reach UE A. UE B measure the object of interest’s distance and/or its orientation relative to UE B. This position information can be used to control the power as well as possible beamforming to reduce the chances of non-discoveree UEs receiving undesired requests. Even if only UE A and UE B are present, UE B’s power consumption may still be reduced since it only performs transmission and receiving in the measured direction and distance.
Figure 8 shows a schematic diagram of a scenario in which the method may be applied. In this scenario, the first device is UE B, the second device is UE A and the object of interest is a hat belonging to the owner of UE A. There are hats in the vicinity of UE B other than those of the owner of UE A. UE B is able scan the hat of the owner of UE A and determine the distance to it.
When the owner of UE B sees the owner of UE A’s hat among a group of people such as that illustrated in Figure 8 and likes it, the owner of UE B uses UE B to scan the hat (since there is distance between UE B and the hat, UE B may not be able to scan the hat clearly which means the auxiliary information such as color, size may not be very accurate) and to measure the hat’s distance from UE B. UE B may know its orientation when performing the scanning (e.g., using accelerometers, gyroscopes and G sensors located in UE B) .
Figure 9 shows a procedure of the example use case shown in Figure 8. At 901, UE A’s owner buys the hat from merchant X and makes a deal with the merchant to share  information relating to the hat (AR information) to interested parties at 902. At 903, the merchant X registers UE A in its database and asks the network to give authorization to UE A for sharing the specific object (hat) information. At 904, the network configures the specific application ID, based on the hat’s classification code, to authorize UE A to share the information about this kind of goods. The classification code may be a commodity classification code normally used in a country or region. At 905, UE A receives a discovery request including position information and an indication of the hat (e.g., goods classification in application ID and metatdata) from UE B and may make a sidelink connection with UE B according to the method described with reference to Figures 5 to 7 and described in more detail on Figure 10. At 906 UE A shares AR information with UE B and increments the sharing count. At 907, the merchant X pays UE A according to its sharing number.
Figure 10 illustrates a signalling flow between UEA, UE B and UE C according to an example embodiment.
As described with reference to Figure 8, at 1001, UE B scans UE A’s owner’s object and measures UE A’s position (e.g. the distance between UE A and UE B and UE B’s orientation) .
At 1002, with this distance and UE B’s orientation, UE B can determine UE A position relative to it. Combined with UE B’s own position (most of UE’s location service is turning on currently) , UE B may determine UE A’s real position. UE B includes position information of UE A, the hat’s classification code in application ID and ‘hat’ information in metadata in a direct discovery request and sends the direct discovery request out.
At 1003, UE A receives the request and checks the position with its own position and ‘hat’ information, and at 1004 UE A sends a discovery response back if both matches. UE C also receives the request but, since the position information does not match with UE C’s position, UE C does not provide a discovery response. Since UE B won’t receive a response from UE C, both UE C and UE B’s power consumption is saved.
After UE A and UE B discover each other, the sidelink connection can be established. UE A shares the AR information of the hat to UE B as in Figure 9. UE A counts the number of shares and notify the merchant X. The merchant X will pay UE A’s owner based on the number of shares.
In an alternative embodiment, the ‘position’ element may be included into model A discovery procedure. In this alternative embodiment, where the position information is associated with the first device, the position information may be about the position of the announcing UE (the UE who sends ‘I am here’ ) to tell the monitoring UE where it is. For example, a ride-hailing car may use the position information to tell the passenger its accurate position.
The method may be used in cases other than a micro advertisement case, it can be used in any sidelink case which needs to link with a specific device. For example, on the road, you find some other car near you has some problem, such as trunk lid open, you can direct link to this car but not others by using this invention to tell it the problem.
An apparatus may comprise means for determining, at a first device, position information associated with an object of interest and providing, from the first device, a discovery message for device to device communication, wherein the discovery message comprises the position information.
Alternatively, an apparatus may comprise means for receiving, from a first device at a second device, a discovery message for device to device communication, wherein the discovery message comprises position information associated with an object of interest, determining, based on the position information, that the second device is associated with the object of interest and in response to determining that the second device is associated with the object of interest, providing a discovery response message from the second device to the first device.
The apparatus may comprise a user equipment, such as a mobile phone, or a chipset for performing at least some actions of/for the user equipment.
It should be understood that the apparatuses may comprise or be coupled to other units or modules etc., such as radio parts or radio heads, used in or for transmission and/or reception. Although the apparatuses have been described as one entity, different modules and memory may be implemented in one or more physical or logical entities.
It is noted that whilst some embodiments have been described in relation to 5G networks, similar principles can be applied in relation to other networks and communication systems. Therefore, although certain embodiments were described above by way of example with reference to certain example architectures for wireless networks, technologies and standards, embodiments may be applied to any other suitable forms of communication systems than those illustrated and described herein.
It is also noted herein that while the above describes example embodiments, there are several variations and modifications which may be made to the disclosed solution without departing from the scope of the present invention.
As used herein, “at least one of the following: <a list of two or more elements>” and “at least one of <a list of two or more elements>” and similar wording, where the list of two or more elements are joined by “and” or “or” , mean at least any one of the elements, or at least any two or more of the elements, or at least all the elements.
In general, the various embodiments may be implemented in hardware or special purpose circuitry, software, logic or any combination thereof. Some aspects of the disclosure may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device, although the disclosure is not limited thereto. While various aspects of the disclosure may be illustrated and described as block diagrams, flow charts, or using some other pictorial representation, it is well understood that these blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
As used in this application, the term “circuitry” may refer to one or more or all of the following:
(a) hardware-only circuit implementations (such as implementations in only analog and/or digital circuitry) and
(b) combinations of hardware circuits and software, such as (as applicable) :
(i) a combination of analog and/or digital hardware circuit (s) with software/firmware and
(ii) any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions) and
(c) hardware circuit (s) and or processor (s) , such as a microprocessor (s) or a portion of a microprocessor (s) , that requires software (e.g., firmware) for operation, but the software may not be present when it is not needed for operation. ”
This definition of circuitry applies to all uses of this term in this application, including in any claims. As a further example, as used in this application, the term circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware.
The term circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
The embodiments of this disclosure may be implemented by computer software executable by a data processor of the mobile device, such as in the processor entity, or by hardware, or by a combination of software and hardware. Computer software or program, also called program product, including software routines, applets and/or macros, may be stored in any apparatus-readable data storage medium and they comprise program instructions to perform particular tasks. A computer program product may comprise one or more computer-executable components which, when the program is run, are configured to carry out embodiments. The one or more computer-executable components may be at least one software code or portions of it.
Further in this regard it should be noted that any blocks of the logic flow as in the Figures may represent program steps, or interconnected logic circuits, blocks and functions, or a combination of program steps and logic circuits, blocks and functions. The software may be stored on such physical media as memory chips, or memory blocks implemented within the processor, magnetic media such as hard disk or floppy disks, and optical media such as for example DVD and the data variants thereof, CD. The physical media is a non-transitory media. The term “non-transitory, ” as used herein, is a limitation of the medium itself (i.e., tangible, not a signal) as opposed to a limitation on data storage persistency (e.g., RAM vs. ROM) .
The memory may be of any type suitable to the local technical environment and may be implemented using any suitable data storage technology, such as semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory. The data processors may be of any type suitable to the local technical environment, and may comprise one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) , application specific integrated circuits (ASIC) , FPGA, gate level circuits and processors based on multi core processor architecture, as non-limiting examples.
Embodiments of the disclosure may be practiced in various components such as integrated circuit modules. The design of integrated circuits is by and large a highly automated process. Complex and powerful software tools are available for converting a logic level design into a semiconductor circuit design ready to be etched and formed on a semiconductor substrate.
The scope of protection sought for various embodiments of the disclosure is set out by the independent claims. The embodiments and features, if any, described in this specification that do not fall under the scope of the independent claims are to be interpreted as examples useful for understanding various embodiments of the disclosure.
The foregoing description has provided by way of non-limiting examples a full and informative description of the exemplary embodiment of this disclosure. However, various modifications and adaptations may become apparent to those skilled in the relevant arts in view of the foregoing description, when read in conjunction with the accompanying drawings and the appended claims. However, all such and similar modifications of the teachings of this disclosure will still fall within the scope of this invention as defined in the appended claims. Indeed, there is a further embodiment comprising a combination of one or more embodiments with any of the other embodiments previously discussed.

Claims (30)

  1. An apparatus comprising means for:
    determining, at a first device, position information associated with an object of interest; and
    providing, from the first device, a discovery message for device to device communication, wherein the discovery message comprises the position information.
  2. An apparatus according to claim 1, wherein the position information indicates a position of the object of interest, wherein the position of the object of interest is different from a position of the first device.
  3. An apparatus according to claim 1 or claim 2, wherein the position information comprises at least one of the following: an indication of the position of the first device, a distance between the first device and the object or an orientation of the first device.
  4. An apparatus according to claim 3, comprising a time of flight sensor and means for determining the distance using the time of flight sensor.
  5. An apparatus according to any of claims 1 to 4, wherein the discovery message comprises an open discovery message.
  6. An apparatus according to any of claims 1 to 5, comprising means for determining a transmission power based on the position information and providing the discovery message using the determined transmission power.
  7. An apparatus according to any of claims 1 to 6, wherein the first device is performing a model B discovery procedure.
  8. An apparatus according to any of claims 1 to 7, wherein the discovery message comprises at least one of the following: a discovery request, a sidelink discovery request or a proximity services, ProSe, PC5 discovery request.
  9. An apparatus according to any of claims 1 to 8 comprising means for receiving a discovery response message from a second device in response to the discovery message.
  10. An apparatus according to claim 9, comprising means for receiving information associated with the object of interest from the second device at the first device.
  11. An apparatus according to any of claims 1 to 10, wherein the discovery message further comprises an indication of the object of interest.
  12. An apparatus according to claim 11, wherein the indication of the object of interest comprises at least one of the following: metadata associated with the object or a classification code associated with the object.
  13. An apparatus comprising means for:
    receiving, from a first device at a second device, a discovery message for device to device communication, wherein the discovery message comprises position information associated with an object of interest;
    determining, based on the position information, that the second device is associated with the object of interest; and
    in response to determining that the second device is associated with the object of interest, providing a discovery response message from the second device to the first device.
  14. An apparatus according to claim 13, wherein the position information indicates a position of the object of interest, wherein the position of the object of interest is different from a position of the first device.
  15. An apparatus according to claim 13 or claim 14, wherein means for determining, based on the position information, that the second device is associated with the object of interest comprises means for determining that the second device is in an area indicated by the position information.
  16. An apparatus according to claim 15, wherein the area is based on the position information and a distance threshold.
  17. An apparatus according to any of claims 13 to 16, wherein the position information comprises at least one of the following: an indication of the position of the first device, a distance between the first device and the object or an orientation of the first device.
  18. An apparatus according to any of claims 13 to 17, wherein the discovery response message comprises an open discovery message.
  19. An apparatus according to any of claims 13 to 18, wherein the first device is performing a model B discovery procedure.
  20. An apparatus according to any of claims 13 to 19, wherein the discovery response message comprises at least one of the following: a discovery response, a sidelink discovery response or a proximity services, ProSe, PC5 discovery response.
  21. An apparatus according to any of claims 13 to 20, comprising means for providing information associated with the object of interest from the second device to the first device.
  22. An apparatus according to any of claims 13 to 21, wherein the discovery message further comprises an indication of the object of interest and comprising means for determining, based on the indication of the object of interest, that the second device is associated with the object of interest.
  23. An apparatus according to claim 22, wherein the indication of the object of interest comprises at least one of the following: metadata associated with the object or a classification code associated with the object.
  24. An apparatus according to any of claims 22 to 23, comprising means for receiving information relating to the object of interest from a network and determining that the second device is associated with the object of interest further based on the received information.
  25. A method comprising:
    determining, at a first device, position information associated with an object of interest; and
    providing, from the first device, a discovery message for device to device communication, wherein the discovery message comprises the position information.
  26. A method comprising:
    receiving, from a first device at a second device, a discovery message for device to device communication, wherein the discovery message comprises position information associated with an object of interest;
    determining, based on the position information, that the second device is associated with the object of interest; and
    in response to determining that the second device is associated with the object of interest, providing a discovery response message from the second device to the first device.
  27. An apparatus comprising: at least one processor and at least one memory storing instructions that, when executed by the at least one processor, cause the apparatus at least to:
    determine, at a first device, position information associated with an object of interest; and
    provide, from the first device, a discovery message for device to device communication, wherein the discovery message comprises the position information.
  28. An apparatus comprising: at least one processor and at least one memory storing instructions that, when executed by the at least one processor, cause the apparatus at least to:
    receive, from a first device at a second device, a discovery message for device to device communication, wherein the discovery message comprises position information associated with an object of interest;
    determine, based on the position information, that the second device is associated with the object of interest; and
    in response to determining that the second device is associated with the object of interest, provide a discovery response message from the second device to the first device.
  29. A computer readable medium comprising instructions which, when executed by an apparatus, cause the apparatus to perform at least the following:
    determining, at a first device, position information associated with an object of interest; and
    providing, from the first device, a discovery message for device to device communication, wherein the discovery message comprises the position information.
  30. A computer readable medium comprising instructions which, when executed by an apparatus, cause the apparatus to perform at least the following:
    receiving, from a first device at a second device, a discovery message for device to device communication, wherein the discovery message comprises position information associated with an object of interest;
    determining, based on the position information, that the second device is associated with the object of interest; and
    in response to determining that the second device is associated with the object of interest, providing a discovery response message from the second device to the first device.
PCT/CN2022/123803 2022-10-08 2022-10-08 Apparatus, method and computer program WO2024073887A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/123803 WO2024073887A1 (en) 2022-10-08 2022-10-08 Apparatus, method and computer program
PCT/CN2023/105544 WO2024074067A1 (en) 2022-10-08 2023-07-03 Apparatus, method and computer program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/123803 WO2024073887A1 (en) 2022-10-08 2022-10-08 Apparatus, method and computer program

Publications (1)

Publication Number Publication Date
WO2024073887A1 true WO2024073887A1 (en) 2024-04-11

Family

ID=90607493

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/123803 WO2024073887A1 (en) 2022-10-08 2022-10-08 Apparatus, method and computer program
PCT/CN2023/105544 WO2024074067A1 (en) 2022-10-08 2023-07-03 Apparatus, method and computer program

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105544 WO2024074067A1 (en) 2022-10-08 2023-07-03 Apparatus, method and computer program

Country Status (1)

Country Link
WO (2) WO2024073887A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8494544B2 (en) * 2009-12-03 2013-07-23 Osocad Remote Limited Liability Company Method, apparatus and computer program to perform location specific information retrieval using a gesture-controlled handheld mobile device
CN103500217A (en) * 2013-10-09 2014-01-08 北京火信网络科技有限公司 Method and system for providing service of identification of region of interest
CN110019599A (en) * 2017-10-13 2019-07-16 阿里巴巴集团控股有限公司 Obtain method, system, device and the electronic equipment of point of interest POI information
US11068556B2 (en) * 2018-03-01 2021-07-20 Cuseum Delivering information about an image corresponding to an object at a particular location
CN114821410A (en) * 2022-04-15 2022-07-29 上海掌门科技有限公司 Method and equipment for determining object association information of target object

Also Published As

Publication number Publication date
WO2024074067A1 (en) 2024-04-11

Similar Documents

Publication Publication Date Title
US11191042B2 (en) Exchanging ranging and location information among peer-to-peer devices
US11129092B2 (en) Application specific location discovery
CN113132908A (en) Service management method and device
CN114116648A (en) Method, apparatus and computer program product for enhanced data analysis in multiple NWDAF deployments
US20170325092A1 (en) Discovery mechanism for service server connection
WO2020260750A1 (en) Apparatus, method and computer program
CN107533720B (en) System and method for measuring mobile advertising effectiveness
WO2021038277A1 (en) Broadcast service
WO2023169523A1 (en) Data acquisition method and apparatus, terminal and network side devices
WO2024073887A1 (en) Apparatus, method and computer program
WO2023093609A1 (en) Session establishment method and apparatus for internet of things device
EP3720190B1 (en) Method and apparatus for controlling terminal access
CN107113550A (en) Methods, devices and systems
CN113810857B (en) Beacon message processing method and system
EP4208965A1 (en) Method, apparatus and computer program
WO2024051630A1 (en) Positioning method and apparatus, terminal, and network side device
WO2023045974A1 (en) Sensing device registration method and apparatus, and device
WO2023109686A1 (en) Parameter configuration method and apparatus, and communication device, storage medium and system
WO2024031669A1 (en) Wireless communication method, and terminal device and network device
WO2024022398A1 (en) Method for acquiring network selection information of hosted network, terminal, and network side device
WO2023179617A1 (en) Locating method and apparatus, terminal and network side device
WO2024083045A1 (en) Authentication determination method and apparatus, authentication method and apparatus, and node
WO2023179560A1 (en) Ranging and localization method and terminal
US11831731B2 (en) Proving possession of a communications device via a directed connection
WO2023217030A1 (en) Processing method for sensing measurement, and device