WO2024071953A1 - Method and device for transmitting and receiving sps and cg for network energy saving in wireless communication system - Google Patents

Method and device for transmitting and receiving sps and cg for network energy saving in wireless communication system Download PDF

Info

Publication number
WO2024071953A1
WO2024071953A1 PCT/KR2023/014751 KR2023014751W WO2024071953A1 WO 2024071953 A1 WO2024071953 A1 WO 2024071953A1 KR 2023014751 W KR2023014751 W KR 2023014751W WO 2024071953 A1 WO2024071953 A1 WO 2024071953A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
resource
sps
periodic
activated
Prior art date
Application number
PCT/KR2023/014751
Other languages
French (fr)
Korean (ko)
Inventor
백상규
아지왈아닐
정병훈
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Publication of WO2024071953A1 publication Critical patent/WO2024071953A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities

Definitions

  • This disclosure relates to terminal and base station operations in a wireless communication system, and specifically relates to a method and device for transmitting and receiving SPS and CG for network power reduction.
  • 5G mobile communication technology defines a wide frequency band to enable fast transmission speeds and new services, and includes sub-6 GHz ('Sub 6GHz') bands such as 3.5 gigahertz (3.5 GHz) as well as millimeter wave (mm) bands such as 28 GHz and 39 GHz. It is also possible to implement it in the ultra-high frequency band ('Above 6GHz') called Wave.
  • 'Sub 6GHz' sub-6 GHz
  • mm millimeter wave
  • Wave ultra-high frequency band
  • 6G mobile communication technology which is called the system of Beyond 5G
  • Terra is working to achieve a transmission speed that is 50 times faster than 5G mobile communication technology and an ultra-low delay time that is reduced to one-tenth. Implementation in Terahertz bands (e.g., 95 GHz to 3 THz) is being considered.
  • ultra-wideband services enhanced Mobile BroadBand, eMBB
  • ultra-reliable low-latency communications URLLC
  • massive machine-type communications mMTC
  • numerology support multiple subcarrier interval operation, etc.
  • dynamic operation of slot format initial access technology to support multi-beam transmission and broadband
  • definition and operation of BWP Band-Width Part
  • New channel coding methods such as LDPC (Low Density Parity Check) codes for data transmission and Polar Code for highly reliable transmission of control information
  • L2 pre-processing L2 pre-processing
  • dedicated services specialized for specific services. Standardization of network slicing, etc., which provides networks, has been carried out.
  • V2X Vehicle-to-Everything
  • NR-U New Radio Unlicensed
  • UE Power Saving NR terminal low power consumption technology
  • NTN Non-Terrestrial Network
  • IAB provides a node for expanding the network service area by integrating intelligent factories (Industrial Internet of Things, IIoT) to support new services through linkage and convergence with other industries, and wireless backhaul links and access links.
  • Intelligent factories Intelligent Internet of Things, IIoT
  • Mobility Enhancement including Conditional Handover and DAPS (Dual Active Protocol Stack) handover
  • 2-step Random Access (2-step RACH for simplification of random access procedures)
  • Standardization in the field of wireless interface architecture/protocol for technologies such as NR is also in progress
  • 5G baseline for incorporating Network Functions Virtualization (NFV) and Software-Defined Networking (SDN) technology Standardization in the field of system architecture/services for architecture (e.g., Service based Architecture, Service based Interface) and Mobile Edge Computing (MEC), which provides services based on the location of the terminal, is also in progress.
  • NFV Network Functions Virtualization
  • SDN Software-Defined Networking
  • FD-MIMO full dimensional MIMO
  • array antennas to ensure coverage in the terahertz band of 6G mobile communication technology.
  • multi-antenna transmission technology such as Large Scale Antenna, metamaterial-based lens and antenna to improve coverage of terahertz band signals, high-dimensional spatial multiplexing technology using OAM (Orbital Angular Momentum), RIS ( In addition to Reconfigurable Intelligent Surface technology, Full Duplex technology, satellite, and AI (Artificial Intelligence) to improve the frequency efficiency of 6G mobile communication technology and system network are utilized from the design stage and end-to-end.
  • the disclosed embodiment seeks to provide an apparatus and method that can effectively provide services in a wireless communication system.
  • a user equipment in a wireless communication system, from a base station, information about a first bandwidth part (BWP) and a second BWP, and Receiving configuration information about periodic resources configured in each of the first BWP and the second BWP; Receiving downlink control information; performing data transmission and reception based on the activated first periodic resource; Receiving active BWP change information activating a second BWP from the base station; and suspending use of the activated first periodic resource set in the first BWP, wherein the suspended use of the first periodic resource is performed by the first BWP when the first BWP is activated. 1 It may be resumed without receiving downlink control information.
  • BWP bandwidth part
  • the terminal in a method performed by a base station in a wireless communication system, includes information about a first bandwidth part (BWP) and a second BWP, and Transmitting configuration information about periodic resources configured for each of the first BWP and the second BWP; Transmitting, to the terminal, first downlink control information for activating a first periodic resource set in the first BWP, which is an active BWP; performing data transmission and reception based on the activated first periodic resource; Transmitting active BWP change information activating a second BWP to the terminal; and suspending use of the activated first periodic resource set in the first BWP, wherein the suspended use of the first periodic resource is performed by the first BWP when the first BWP is activated. 1 It may be resumed without transmission of downlink control information.
  • BWP bandwidth part
  • the terminal in a terminal (user equipment, UE) in a wireless communication system, includes a transceiver; Includes a controller connected to the transceiver, wherein the controller receives information about the first bandwidth part (BWP) and the second BWP from the base station, and sets each of the first BWP and the second BWP.
  • BWP bandwidth part
  • Receiving configuration information for periodic resources Receiving, from the base station, first downlink control information for activating a first periodic resource set in the first BWP, which is an active BWP; performing data transmission and reception based on the activated first periodic resource; Receiving active BWP change information activating a second BWP from the base station; and suspending use of the activated first periodic resource set in the first BWP, wherein use of the suspended first periodic resource is performed when the first BWP is activated. 1 Can be configured to resume without receiving downlink control information.
  • the base station in a wireless communication system, includes a transceiver; Includes a controller connected to the transceiver, wherein the controller is a terminal, sets information on a first bandwidth part (BWP) and a second BWP, and sets each of the first BWP and the second BWP.
  • BWP bandwidth part
  • Embodiments of the present disclosure provide an apparatus and method that can effectively provide services in a wireless communication system.
  • FIG. 1 is a diagram showing a semi-persistent scheduling (SPS) transmission and reception method according to bandwidth part (BWP) switching according to an embodiment of the present disclosure.
  • SPS semi-persistent scheduling
  • BWP bandwidth part
  • Figure 2 is a diagram showing a CG (Configured Grant) transmission and reception method according to BWP conversion according to an embodiment of the present disclosure.
  • CG Configured Grant
  • Figure 3 is a diagram showing an SPS transmission and reception method according to BWP switching according to an embodiment of the present disclosure.
  • Figure 4 is a diagram showing a CG transmission and reception method according to BWP switching according to an embodiment of the present disclosure.
  • Figure 5 is a diagram showing a message format for setting the format of SPS or CG according to an embodiment of the present disclosure.
  • Figure 6 is a diagram showing a transmission and reception method based on an SPS group according to an embodiment of the present disclosure.
  • Figure 7 is a diagram showing a transmission and reception method based on a CG group according to an embodiment of the present disclosure.
  • Figure 8 is a diagram showing a transmission and reception method based on an SPS group according to an embodiment of the present disclosure.
  • Figure 9 is a diagram showing a transmission and reception method based on a CG group according to an embodiment of the present disclosure.
  • Figure 10 is a diagram showing a CG transmission and reception method according to BWP switching according to an embodiment of the present disclosure.
  • Figure 11 is a diagram showing a UE Capability transmission and RRC setting method according to an embodiment of the present disclosure.
  • Figure 12 is a diagram showing the structure of a base station according to an embodiment of the present disclosure.
  • Figure 13 is a diagram showing the structure of a terminal according to an embodiment of the present disclosure.
  • each block of the processing flow diagrams and combinations of the flow diagram diagrams can be performed by computer program instructions.
  • These computer program instructions can be mounted on a processor of a general-purpose computer, special-purpose computer, or other programmable data processing equipment, so that the instructions performed through the processor of the computer or other programmable data processing equipment are described in the flow chart block(s). It creates the means to perform functions.
  • These computer program instructions may also be stored in computer-usable or computer-readable memory that can be directed to a computer or other programmable data processing equipment to implement a function in a particular manner, so that the computer-usable or computer-readable memory It is also possible to produce manufactured items containing instruction means that perform the functions described in the flowchart block(s).
  • Computer program instructions can also be mounted on a computer or other programmable data processing equipment, so that a series of operational steps are performed on the computer or other programmable data processing equipment to create a process that is executed by the computer, thereby generating a process that is executed by the computer or other programmable data processing equipment. Instructions that perform processing equipment may also provide steps for executing the functions described in the flow diagram block(s).
  • each block may represent a module, segment, or portion of code that includes one or more executable instructions for executing specified logical function(s).
  • each block may represent a module, segment, or portion of code that includes one or more executable instructions for executing specified logical function(s).
  • the term ' ⁇ unit' used in this embodiment refers to software or hardware components such as FPGA (Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit), and ' ⁇ unit' performs certain roles. do.
  • ' ⁇ part' is not limited to software or hardware.
  • the ' ⁇ part' may be configured to reside in an addressable storage medium and may be configured to reproduce on one or more processors. Therefore, as an example, ' ⁇ part' refers to components such as software components, object-oriented software components, class components, and task components, processes, functions, properties, and procedures. , subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables.
  • components and 'parts' may be combined into a smaller number of components and 'parts' or may be further separated into additional components and 'parts'. Additionally, components and 'parts' may be implemented to regenerate one or more CPUs within a device or a secure multimedia card. Additionally, in an embodiment, ' ⁇ part' may include one or more processors.
  • connection node terms referring to network entities, terms referring to messages, terms referring to interfaces between network objects, and various identification information. Referring terms, etc. are exemplified for convenience of explanation. Accordingly, the present disclosure is not limited to the terms described below, and other terms referring to objects having equivalent technical meaning may be used.
  • PDSCH physical downlink shared channel
  • PDSCH physical downlink shared channel
  • PDSCH Physical downlink shared channel
  • PDSCH can also be used to refer to data. That is, in the present disclosure, the expression 'transmit a physical channel' can be interpreted equivalently to the expression 'transmit data or a signal through a physical channel'.
  • upper signaling refers to a signal transmission method in which a signal is transmitted from a base station to a terminal using a downlink data channel of the physical layer, or from the terminal to the base station using an uplink data channel of the physical layer.
  • High-level signaling can be understood as radio resource control (RRC) signaling or media access control (MAC) control element (CE).
  • RRC radio resource control
  • MAC media access control
  • gNB may be used interchangeably with eNB for convenience of explanation. That is, a base station described as an eNB may represent a gNB. Additionally, the term terminal can refer to mobile phones, MTC devices, NB-IoT devices, sensors, as well as other wireless communication devices.
  • the base station is the entity that performs resource allocation for the terminal, and may be at least one of gNodeB (gNB), eNode B (eNB), NodeB, BS (Base Station), wireless access unit, base station controller, or node on the network.
  • gNB gNodeB
  • eNB eNode B
  • NodeB NodeB
  • BS Base Station
  • wireless access unit base station controller
  • a terminal may include a UE (User Equipment), MS (Mobile Station), a cellular phone, a smartphone, a computer, or a multimedia system capable of performing communication functions.
  • UE User Equipment
  • MS Mobile Station
  • a cellular phone a smartphone
  • a computer or a multimedia system capable of performing communication functions.
  • multimedia system capable of performing communication functions.
  • the present disclosure is applicable to 3GPP NR (5th generation mobile communication standard).
  • this disclosure provides intelligent services (e.g., smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail, security and safety-related services) based on 5G communication technology and IoT-related technology. etc.) can be applied.
  • eNB may be used interchangeably with gNB for convenience of explanation. That is, a base station described as an eNB may represent a gNB.
  • the term terminal can refer to mobile phones, NB-IoT devices, sensors, as well as other wireless communication devices.
  • Wireless communication systems have moved away from providing early voice-oriented services to, for example, 3GPP's HSPA (High Speed Packet Access), LTE (Long Term Evolution or E-UTRA (Evolved Universal Terrestrial Radio Access)), and LTE-Advanced.
  • Broadband wireless that provides high-speed, high-quality packet data services such as communication standards such as (LTE-A), LTE-Pro, 3GPP2's High Rate Packet Data (HRPD), UMB (Ultra Mobile Broadband), and IEEE's 802.16e. It is evolving into a communication system.
  • the LTE system uses Orthogonal Frequency Division Multiplexing (OFDM) in the downlink (DL), and Single Carrier Frequency Division Multiple Access (SC-FDMA) in the uplink (UL).
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • Uplink refers to a wireless link in which a terminal (UE; User Equipment or MS; Mobile Station) transmits data or control signals to a base station (eNode B or BS; Base Station), and downlink refers to a wireless link in which the base station transmits data or control signals to the terminal. It refers to a wireless link that transmits signals.
  • the multiple access method described above differentiates each user's data or control information by allocating and operating the time-frequency resources to carry data or control information for each user so that they do not overlap, that is, orthogonality is established. .
  • Enhanced Mobile BroadBand eMBB
  • massive Machine Type Communication mMTC
  • Ultra Reliability Low Latency Communication URLLC
  • eMBB may aim to provide more improved data transmission rates than those supported by existing LTE, LTE-A, or LTE-Pro.
  • eMBB must be able to provide a peak data rate of 20Gbps in the downlink and 10Gbps in the uplink from the perspective of one base station.
  • the 5G communication system may need to provide the maximum transmission rate and at the same time provide an increased user perceived data rate.
  • the 5G communication system may require improvements in various transmission and reception technologies, including more advanced multi-antenna (MIMO; Multi Input Multi Output) transmission technology.
  • MIMO Multi Input Multi Output
  • the 5G communication system uses a frequency bandwidth wider than 20 MHz in the 3 to 6 GHz or above 6 GHz frequency band, meeting the requirements of the 5G communication system. Data transfer speed can be satisfied.
  • mMTC is being considered to support application services such as Internet of Things (IoT) in 5G communication systems.
  • IoT Internet of Things
  • mMTC may require support for access to a large number of terminals within a cell, improved coverage of terminals, improved battery time, and reduced terminal costs.
  • the Internet of Things provides communication functions by attaching various sensors and various devices, it must be able to support a large number of terminals (for example, 1,000,000 terminals/km2) within a cell.
  • terminals supporting mMTC are likely to be located in shadow areas that cannot be covered by cells, such as the basement of a building, so wider coverage may be required compared to other services provided by the 5G communication system.
  • Terminals that support mMTC must be composed of low-cost terminals, and since it is difficult to frequently replace the terminal's battery, a very long battery life time, such as 10 to 15 years, may be required.
  • URLLC Ultra-low latency
  • ultra-reliability very high reliability
  • a service supporting URLLC must satisfy an air interface latency of less than 0.5 milliseconds and may have a packet error rate of less than 10-5.
  • the 5G system must provide a smaller Transmit Time Interval (TTI) than other services, and at the same time, a design that requires allocating wide resources in the frequency band to ensure the reliability of the communication link. Specifications may be required.
  • TTI Transmit Time Interval
  • the three services considered in the above-described 5G communication system namely eMBB, URLLC, and mMTC, can be multiplexed and transmitted in one system.
  • different transmission/reception techniques and transmission/reception parameters can be used between services to satisfy the different requirements of each service.
  • the above-described mMTC, URLLC, and eMBB are only examples of different service types, and the service types to which this disclosure is applied are not limited to the above-described examples.
  • embodiments of the present disclosure will be described using LTE, LTE-A, LTE Pro, or 5G (or NR, next-generation mobile communication) systems as examples, but the present disclosure may also be applied to other communication systems with similar technical background or channel type. Examples of may be applied. Additionally, the embodiments of the present disclosure may be applied to other communication systems through some modifications without significantly departing from the scope of the present disclosure at the discretion of a person with skilled technical knowledge.
  • Figure 1 is a diagram showing an SPS operation method according to BWP conversion according to an embodiment of the present disclosure.
  • a base station In a wireless communication system, a base station periodically sets up a downlink (transmitted by the base station to the terminal) to transmit periodic data such as voice or URLLC (Ultra Reliable and Low Latency Communications) data that requires low latency.
  • periodic data such as voice or URLLC (Ultra Reliable and Low Latency Communications) data that requires low latency.
  • URLLC User Reliable and Low Latency Communications
  • SPS resources may be configured by an RRC (Radio Resource Control) reconfiguration message transmitted from the base station to the terminal.
  • SPS resources can be set to a predetermined BWP (Bandwidth Part).
  • the base station may set at least one BWP, and at least one BWP may be activated or deactivated by the base station.
  • the activated BWP is called Active BWP.
  • BWP A (101) and BWP B (102) are set, and BWP A (101) has periodic SPS transmission resources (111, 112, 113, 114, 115, and 116). It indicates that other periodic SPS transmission resources (121, 122, 123, 124, 125, 126) are set in BWP B (102).
  • the base station sends the UE to the UE in the DCI (Downlink Control Information) message of the PDCCH (Physical Downlink Control Channel) using CS-RNTI (Configured Scheduling - Radio Network Temporary Identity) of the SPS resources.
  • Activation can be instructed.
  • the SPS transmission resource for which activation has been indicated can be used and the terminal can receive data using the SPS resource from the base station.
  • the embodiment of Figure 1 shows that the base station instructs the terminal to activate the SPS transmission resource set in BWP A (101), the currently active BWP, using CS-RNTI (131). Afterwards, the SPS transmission resources 111 and 112 set in BWP A (101) are activated and the terminal can receive data.
  • Transmission of data using SPS resources can only be performed when the BWP with SPS configured is activated.
  • BWP B (102) is not Active BWP, the SPS transmission resources (121, 122, 125, 126) set in BWP B (102) may not be used. In addition, the exact location of the SPS resource may not be set.
  • BWP B the SPS resources set in BWP A (101), the existing Active BWP, are deleted and the SPS resources (113, 114) of BWP A are not used.
  • Active BWP is later changed back to BWP A (101), the SPS resources set in BWP B (102), the existing Active BWP, will be cleared and the SPS resources (125, 126) of BWP B (102) will be used.
  • the SPS set in BWP A (101), which is an active BWP, is not activated immediately, but the SPS resources (115, 116) may be activated when the SPS transmission resource set in BWP B is activated using the CS-RNTI (151).
  • the base station may frequently send messages (e.g., CS-RNTI (131, 141, 151)) instructing the terminal to activate SPS resources.
  • messages e.g., CS-RNTI (131, 141, 151)
  • repeated messages instructing activation of SPS resources may result in waste of PDCCH resources.
  • the operation of changing the Active BWP can be performed frequently for network energy saving (Network Energy Saving, NES).
  • Figure 2 is a diagram showing a CG operation method according to BWP conversion according to an embodiment of the present disclosure.
  • a base station In a wireless communication system, a base station periodically sets up an uplink to the terminal to transmit periodic data such as voice or URLLC (Ultra Reliable and Low Latency Communications) data that requires low latency (the terminal transmits to the base station). ) You can set the CG (Configured Grant) resource, which is a wireless resource.
  • CG Configured Grant
  • CG resources may be configured by an RRC (Radio Resource Control) reconfiguration message transmitted from the base station to the terminal.
  • CG resources can be set on BWP (Bandwidth Part).
  • the base station may set at least one BWP, and at least one BWP may be activated or deactivated by the base station.
  • the activated BWP is called Active BWP.
  • BWP A (201) and BWP B (202) are set, and BWP A (201) has periodic CG transmission resources (211, 212, 213, 214, 215, and 216). It indicates that other periodic CG transmission resources (221, 222, 223, 224, 225, 226) are set in BWP B (202).
  • CG resources may be divided into first type CG and second type CG.
  • the first type CG may refer to a CG resource that is used immediately after being set by an RRC reset message
  • the second type CG may refer to a CG resource that the base station provides to the UE after the CG transmission resource is set by the RRC reset message.
  • Temporary Identity may be used to indicate a CG resource that indicates activation of the CG resource in a DCI (Downlink Control Information) message of PDCCH (Physical Downlink Control Channel).
  • the embodiment of Figure 2 shows the operation of the second type CG resource.
  • the CG transmission resource for which activation has been indicated can actually be used and the terminal can transmit data using the CG resource to the base station.
  • the embodiment of Figure 2 shows that the base station instructs the terminal to activate the CG transmission resource set in BWP A (201), the currently active BWP, using CS-RNTI (231). Afterwards, the CG transmission resources 211 and 212 set in BWP A (201) are activated and the terminal performs data transmission.
  • Transmission of data using CG resources can be performed only when the BWP with CG configured is activated.
  • BWP B (202) is not Active BWP, the CG transmission resources (221, 222, 225, 226) set in BWP B (202) are not actually used. In addition, the exact location of the corresponding CG resource may not be set.
  • BWP B If Active BWP is later changed to BWP B (202), the CG resources set in BWP A (201), which is the Active BWP, are cleared and the CG resources (213, 214) of BWP A (201) are not used. .
  • the CG set in BWP B (202), which is an active BWP, is not activated immediately, and when the CG transmission resource set in BWP B (202) is activated using the CS-RNTI (241), the CG resources (223, 224) are activated. You can.
  • BWP B CG resources set in BWP B (202), the existing Active BWP, will be deleted and the CG resources (225, 226) of BWP B (202) will be used. It doesn't work.
  • the CG set in BWP A (201), which is an active BWP, is not activated immediately, and when the CG transmission resource set in BWP B (202) is activated using the CS-RNTI (251), the CG resources (215, 216) are activated. You can.
  • the base station may frequently need to send messages (e.g., CS-RNTI (231, 241, 251)) instructing the UE to activate CG resources.
  • messages e.g., CS-RNTI (231, 241, 251)
  • repeated messages instructing activation of CG resources may result in waste of PDCCH resources.
  • the operation of changing the Active BWP can be performed frequently for network energy saving (Network Energy Saving, NES).
  • Figure 3 is a diagram showing an SPS operation method according to BWP conversion according to an embodiment of the present disclosure.
  • the SPS resource can be set by an RRC reconfiguration message sent by the base station to the terminal.
  • This SPS resource can be configured on top of BWP.
  • the base station may set at least one BWP, and at least one BWP may be activated or deactivated by the base station.
  • the activated BWP is called Active BWP.
  • BWP A (301) and BWP B (302)
  • BWP A (301) has periodic SPS transmission resources (311, 312, 313, 314, 315, and 316). It indicates that other periodic SPS transmission resources (321, 322, 323, 324, 325, 326) are set in BWP B (302).
  • the base station can instruct the terminal to activate SPS resources in a DCI (Downlink Control Information) message of PDCCH (Physical Downlink Control Channel) using CS-RNTI (Configured Scheduling - Radio Network Temporary Identity).
  • DCI Downlink Control Information
  • PDCCH Physical Downlink Control Channel
  • CS-RNTI Configured Scheduling - Radio Network Temporary Identity
  • the SPS transmission resources for which activation has been indicated can actually be used and the terminal can receive data using the SPS resources from the base station.
  • the embodiment of Figure 3 shows that the base station instructs the terminal to activate the SPS transmission resource set in BWP A (301), the currently active BWP, using CS-RNTI (331). Afterwards, the SPS transmission resources 311 and 312 set in BWP A are activated and the terminal performs data reception.
  • Transmission of data using SPS resources can only be performed when the BWP with SPS configured is activated.
  • BWP B (302) is not Active BWP
  • the SPS transmission resources (321, 322, 325, 326) set in BWP B (302) may not be used.
  • the exact location of the SPS resource may not be set.
  • the SPS resources set in BWP A (301), the existing Active BWP, are suspended (332) and the SPS resources (313, 314) of BWP A (301) are not used.
  • the locations of SPS resources (313, 314, 315, 316) set in BWP A are maintained by the terminal and base station, and can be prepared for use when BWP A (301) becomes Active BWP again.
  • the terminal and the base station can maintain, store, or deactivate the configuration information regarding the SPS resources configured in BWP A (301).
  • SPS set in BWP B (302) which is an active BWP
  • data transmission using SPS resources (323, 324) can be resumed (333) immediately without an activation step using CS-RNTI.
  • Active BWP is later changed back to BWP A (301)
  • the SPS resources set in BWP B (302), the existing Active BWP are suspended (343) and the SPS resources (325, 326) of BWP B (302) ) is not used.
  • the location of the SPS resources (325, 326) set in BWP B are maintained by the terminal and the base station, and can be prepared for use when BWP B (302) becomes Active BWP again.
  • the SPS resources (315, 316) can be resumed (342) immediately without an activation step using CS-RNTI because it has been activated before.
  • the base station sends a message (e.g., CS-RNTI (331)) instructing the terminal to activate SPS resources. There is no need to send frequently.
  • a message instructing repeated activation of SPS resources has the advantage of reducing the problem of waste of PDCCH resources.
  • the BWP to which the SPS resource belongs stops receiving using the SPS resource and later becomes Active BWP without a separate activation process.
  • the type of SPS that performs the operation of resuming SPS resources may be set separately.
  • Figure 4 is a diagram showing a CG operation method according to BWP conversion according to an embodiment of the present disclosure.
  • the CG resource When the base station configures the CG resource, which is an uplink (transmitted from the terminal to the base station) radio resource periodically configured to the terminal, the CG resource may be set by an RRC reconfiguration message transmitted by the base station to the terminal. This CG resource can be set on top of BWP.
  • the base station may set at least one BWP, and at least one BWP may be activated or deactivated by the base station.
  • the activated BWP is called Active BWP.
  • BWP A (401) and BWP B (402)
  • periodic CG transmission resources (411, 412, 413, 414, 415, 416) are provided in BWP A (401). It indicates that other periodic CG transmission resources (421, 422, 423, 424, 425, 426) are set in BWP B (402).
  • CG resources may be divided into first type CG and second type CG.
  • the first format CG refers to a CG resource that is used immediately after being set by an RRC reset message
  • the second format CG refers to a CS-RNTI (Configured Scheduling - Radio Network Temporary Identity) that the base station provides to the UE after the CG transmission resource is set by the RRC reset message.
  • CS-RNTI Configured Scheduling - Radio Network Temporary Identity
  • PDCCH Physical Downlink Control Channel
  • the embodiment of Figure 4 shows the operation of the second type CG resource.
  • the CG transmission resource for which activation has been indicated can actually be used and the terminal can transmit data using the CG resource to the base station.
  • the embodiment of Figure 4 shows that the base station instructs the terminal to activate the CG transmission resource set in BWP A (401), the currently active BWP, using CS-RNTI (431). Afterwards, the CG transmission resources 411 and 412 set in BWP A are activated and the terminal performs data transmission.
  • Transmission of data using CG resources can be performed only when the BWP with CG configured is activated.
  • BWP B (402) is not Active BWP
  • the CG transmission resources (421, 422, 425, 426) set in BWP B (402) are not actually used.
  • the exact location of the corresponding CG resource may not be set.
  • the CG resources set in BWP A (401), the existing Active BWP, are suspended (432) and the CG resources of BWP A are not used. (413, 414)
  • the location of the CG resources (413, 414, 415, 416) set in BWP A are maintained by the terminal and base station, and can be prepared for use when BWP A (401) becomes Active BWP again. .
  • the terminal and the base station can maintain, store, or deactivate the configuration information regarding the SPS resources configured in BWP A (401).
  • the CG resources (415, 416) can be resumed (442) immediately without an activation step using CS-RNTI.
  • the base station sends a message (e.g., CS-RNTI (431)) instructing the terminal to activate CG resources. There is no need to send frequently.
  • a message instructing repeated activation of CG resources has the advantage of reducing the problem of waste of PDCCH resources.
  • the BWP to which the CG resource belongs stops receiving using the CG resource, and if it later becomes Active BWP, it is activated without a separate activation process.
  • the type (Type) of the CG that performs the operation of resuming CG resources may be set separately.
  • Figure 5 is a diagram showing a message format for setting the format of SPS or CG according to an embodiment of the present disclosure.
  • CG resources may be divided into first type CG and second type CG.
  • the first format CG refers to a CG resource that is used immediately after being set by an RRC reset message
  • the second format CG refers to a CS-RNTI (Configured Scheduling - Radio Network Temporary Identity) that the base station provides to the UE after the CG transmission resource is set by the RRC reset message.
  • CS-RNTI Configured Scheduling - Radio Network Temporary Identity
  • PDCCH Physical Downlink Control Channel
  • the second type CG can be cleared when the BWP is deactivated and becomes a BWP rather than an Active BWP.
  • it is a CG resource that uses CS-RNTI to instruct the activation of the CG resource in the DCI message of the PDCCH, but even if the BWP is deactivated, it is not deleted but is suspended and then resumed after becoming Active BWP ( The format of CG that Resume can be newly defined.
  • CG resource that uses CS-RNTI to indicate activation of the CG resource in the DCI message of the PDCCH, but even if the BWP is deactivated, it is not deleted and is suspended and then re-activated after becoming Active BWP.
  • the CG format that resumes can be called the third format.
  • SPS can be cleared when the BWP is deactivated and becomes a BWP rather than an Active BWP.
  • this SPS may be called a first type SPS.
  • it is an SPS resource that uses CS-RNTI to instruct the activation of the SPS resource in the DCI message of the PDCCH, but even if the BWP is deactivated, it is not deleted but is suspended and then resumed after becoming Active BWP (The format of SPS (Resume) can be newly defined.
  • it is an SPS resource that uses CS-RNTI to indicate activation of the SPS resource in the DCI message of the PDCCH, but even if the BWP is deactivated, it is not deleted and is suspended and then restarted after becoming Active BWP.
  • the SPS format that resumes can be called the second type SPS.
  • CG or SPS may be defined and each may have different characteristics, but what they have in common is that resource information such as the period is set as an uplink or downlink resource that is set periodically.
  • resource information such as the period is set as an uplink or downlink resource that is set periodically.
  • an operation to change the format of each CG or SPS resource may be required. Changing the format of CG or SPS can bring about effects such as reducing the number of used wireless resources by reducing the number of message transmissions and enabling low-latency transmission by minimizing inactive wireless resources, depending on the wireless resource operation status of the base station. there is.
  • FIG. 5 shows the format of a message that changes the format of CG or SPS.
  • the embodiment of Figure 5 shows a CG/SPS format change message in MAC CE (Medium Access Control - Control Element) format transmitted from the base station to the terminal.
  • MAC CE Medium Access Control - Control Element
  • change in CG/SPS format may also be possible through messages such as RRC signaling rather than MAC CE.
  • the CG/SPS format change message includes a 1-bit CG/SPS field 510, a 5-bit Index field 520, and a 2-bit Type field 530. You can have all or part of them. Of course, it is not limited to the above example and the number of bits in each field can be changed.
  • the CG/SPS field 510 refers to a field indicating whether the type of resource whose format is to be changed is uplink CG or downlink SPS, and the values of 0 and 1 indicate whether it is CG or SPS, respectively. Or it may be a meaningful value. (Conversely, 0 may mean SPS and 1 may mean CG.)
  • the index field 520 may indicate the index value of CG or SPS whose format is to be changed.
  • the value indicated in the index field 520 may be a unique CG or SPS index value (in another embodiment, it may be Identity) within the MAC device. Additionally, according to an embodiment of the present disclosure, the value indicated in the index field 520 may be the index value of a unique CG or SPS within the BWP through which this MAC CE is transmitted.
  • the format field 530 may be a value that sets what type of CG or SPS the corresponding CG or SPS is.
  • the format field 530 may be set to a value corresponding to one of the first format, second format, and third format described above.
  • CG/SPS format change MAC CE can be transmitted from the base station to the terminal.
  • the configuration information of the CG or SPS may be set in the RRC reset message in advance, and the format of the CG or SPS may be dynamically changed by the MAC CE.
  • the terminal when the terminal receives a CG/SPS format change MAC CE, it can change the format of the corresponding CG or SPS.
  • the CG or SPS format when the base station sets the CG or SPS format to the terminal, the CG or SPS format can be set as the initial value. For example, the base station may set the default CG or SPS format to the terminal. If the format of CG or SPS can be changed by MAC CE, all necessary information can be set in the CG or SPS configuration information regardless of format. However, depending on the format applied, only some of the information can be actually used.
  • the MCS (Modulation and Coding Scheme) value used can be set by an RRC message, but in Type 2 CG, the MCS value is ignored and not used, and the MCS value indicated by DCI is used. It can be applied. However, when the format is changed to Type 1 CG, the MCS value can be used.
  • Figure 6 is a diagram showing the operation method of an SPS group according to an embodiment of the present disclosure.
  • the SPS resource when the base station sets up an SPS resource, which is a downlink radio resource (transmitted from the base station to the terminal) periodically configured to the terminal, the SPS resource is set by an RRC reset message sent by the base station to the terminal. can be set.
  • SPS resources can be configured on top of BWP.
  • the base station may set at least one BWP, and at least one BWP may be activated or deactivated by the base station.
  • the activated BWP is called Active BWP.
  • BWP A 601 and BWP B (602)
  • periodic SPS transmission resources (611, 612, 613, 614) are set in BWP A (601)
  • BWP B 602 indicates that other periodic SPS transmission resources (621, 622, 623, 624) are set.
  • SPS set in BWP A 601) has an SPS index value (603) of 2
  • the SPS set in BWP B 602) has an SPS index value (604) of 3.
  • the SPS of index 2 (603) and the SPS of index 3 (604) are set to the same SPS group and have an SPS group index (605) of 1 indicating which group it is.
  • SPS resources of the same SPS group may be activated or deactivated at the same time. Additionally, according to an embodiment of the present disclosure, the SPS group can be set by an RRC reset message.
  • the base station can instruct the terminal to activate the SPS group in the DCI (Downlink Control Information) message of the PDCCH (Physical Downlink Control Channel) using CS-RNTI (Configured Scheduling - Radio Network Temporary Identity).
  • DCI Downlink Control Information
  • CS-RNTI Configured Scheduling - Radio Network Temporary Identity
  • Activation of an SPS group can be performed by indicating which SPS group's SPS resource is meant to be activated based on the SPS group index included in the DCI. When activation of an SPS group is indicated, all SPS transmission resources within the corresponding SPS group may be activated. And by including the configuration information of each SPS transmission resource in the DCI message, the exact location of the resource and other configuration information can be set.
  • FIG. 6 shows that the base station instructs the terminal to activate the SPS group with an SPS index 605 of 1 using the CS-RNTI 631.
  • the SPS transmission resources 611 and 612 set in BWP A (601) are activated and the terminal performs data reception. Transmission of data using SPS resources can only be performed when the BWP with SPS configured is activated. Since BWP B (602) is not an Active BWP at this point, the SPS resource with an SPS index (604) of 3 set in BWP B (602) is immediately stopped as soon as it is activated by resource initialization ( Suspended (625), making SPS transmission resources (621, 622) unusable.
  • the SPS resources set in BWP (601)A, the existing Active BWP, are suspended (632) and the SPS resources (613, 614) of BWP A (601) are suspended. Not used.
  • the location of the SPS resources (613, 614) set in BWP A are maintained by the terminal and the base station and can be prepared for use when BWP A becomes Active BWP again. In other words, the terminal and the base station can maintain, store, or deactivate the configuration information regarding the SPS resources configured in BWP A (601).
  • the SPS resources (623, 624) can be resumed (633) immediately without an activation step using CS-RNTI because the SPS group was previously activated.
  • the base station may instruct the UE to deactivate the SPS group with an SPS group index 605 of 1 in the DCI message of the PDCCH using the CS-RNTI 641.
  • Deactivation of an SPS group can indicate deactivation of SPS resources of which SPS group by including an SPS group index in the DCI, and when deactivation of an SPS group is indicated, all SPS transmission resources within the group of the corresponding SPS may be deactivated. This operation of activating and deactivating an SPS group by setting it has the advantage of reducing the waste of wireless resources caused by transmitting a separate message to activate SPS transmission resources.
  • Figure 7 is a diagram showing the operation method of a CG group according to an embodiment of the present disclosure.
  • the base station when the base station sets up a CG resource, which is an uplink (transmitted from the terminal to the base station) radio resource periodically configured to the terminal, the CG resource is configured by an RRC reset message transmitted by the base station to the terminal. can be set.
  • This CG resource can be set on top of BWP.
  • the base station may set at least one BWP, and at least one BWP may be activated or deactivated by the base station.
  • the activated BWP is called Active BWP.
  • BWP A (701) and BWP B (702) are set, and periodic CG transmission resources (711, 712, 713, 714) are set in BWP A (701) and BWP B (702) indicates that other periodic CG transmission resources (721, 722, 723, 724) are set.
  • the CG set in BWP A (701) has a CG index value (703) of 2
  • the CG set in BWP B (702) has a CG index value (704) of 3.
  • the CG at index 2 (703) and the CG at index 3 (704) are set to the same CG group and have a CG group index (705) of 1 indicating which group it is.
  • CG resources of the same CG group may be activated or deactivated at the same time. Additionally, according to an embodiment of the present disclosure, the CG group can be set by an RRC reset message.
  • the base station can instruct the terminal to activate the CG group in the DCI (Downlink Control Information) message of the PDCCH (Physical Downlink Control Channel) using CS-RNTI (Configured Scheduling - Radio Network Temporary Identity).
  • Activation of a CG group can be performed by indicating which CG group's CG resource is meant to be activated based on the CG group index included in the DCI, and when activation of the CG group is indicated, all CG transmission resources within the group of the corresponding CG are activated. It can be.
  • the exact location of the resource and other configuration information can be set.
  • FIG. 7 shows that the base station instructs the terminal to activate a CG group with a CG index 705 of 1 using the CS-RNTI 731.
  • the CG transmission resources ((711, 712)) set in BWP A (701) are activated and the terminal performs data transmission. Transmission of data using CG resources can be performed only when the BWP with CG configured is activated. Since BWP B (702) is not an Active BWP at this point, the CG resource with a CG index of 3 set in BWP B (702) is immediately suspended as soon as it is activated by resource initialization. (725) CG transmission resources (721, 722) become unavailable
  • the CG resources set in BWP A (701), the existing Active BWP, are suspended (732) and the CG resources of BWP (702)A are not used. (713, 714)
  • the location of the CG resource (713, 714) set in BWP A is maintained by the terminal and the base station and can be prepared for use when BWP A becomes Active BWP again. In other words, the terminal and the base station can maintain, store, or deactivate the configuration information regarding the SPS resources configured in BWP A (701).
  • CG resources (723, 724) can be resumed (733) immediately without an activation step using CS-RNTI because the CG group was previously activated.
  • the base station may instruct the UE to deactivate the CG group with a CG group index 705 of 1 in the DCI message of the PDCCH using the CS-RNTI 741.
  • Deactivation of a CG group may indicate deactivation of CG resources of which CG group by including a CG group index in the DCI, and when deactivation of a CG group is indicated, all CG transmission resources within the group of the corresponding CG may be deactivated. This operation of activating and deactivating a CG group by setting it has the advantage of reducing the waste of wireless resources caused by transmitting a separate message for activating CG transmission resources.
  • Figure 8 is a diagram showing the operation method of an SPS group according to an embodiment of the present disclosure.
  • the SPS resource when the base station sets up an SPS resource, which is a downlink radio resource (transmitted from the base station to the terminal) periodically configured to the terminal, the SPS resource is set by an RRC reset message sent by the base station to the terminal. can be set.
  • SPS resources can be configured on top of BWP.
  • the base station may set at least one BWP, and at least one BWP may be activated or deactivated by the base station.
  • the activated BWP is called Active BWP.
  • one BWP 801 among the BWPs of cell A and a BWP 802 among the BWPs of cell B are shown, but each cell may be configured with one or more BWPs.
  • Periodic SPS transmission resources (811, 812, 813, 814) are set in Cell A's BWP (801), and other periodic SPS transmission resources (821, 822, 823, 824) are set in Cell B's BWP (802). indicates that It is assumed that the SPS set in the BWP 801 of cell A has an SPS index value 803 of 2, and the SPS set in the BWP 802 of cell B has an SPS index value 804 of 3.
  • the SPS of index 2 (803) and the SPS of index 3 (804) are set to the same SPS group and have an SPS group index (805) of 1 indicating which group it is.
  • FIG. 8 shows a method of using only one SPS at a specific time within a plurality of SPSs set as an SPS group.
  • a wireless communication network there can be one Active BWP per cell at a specific time, and SPS transmission resources set in a BWP other than the Active BWP cannot be used.
  • SPS resources can be used for data transmission that continues to occur periodically, and at this time, the inability to use SPS resources due to BWP being disabled may reduce transmission efficiency.
  • the SPS with an SPS index 803 of 2 set in the BWP 801 of cell A is the Primary SPS
  • the SPS index 804 of 3 set in the BWP 802 of cell B is the Primary SPS. This indicates an operation in which the SPS with an SPS index of 2 has priority by setting the SPS as a secondary SPS.
  • the terminal can receive data using the primary SPS resource. If the primary SPS resource is not a resource currently set in Active BWP (if it is a resource set in a deactivated BWP), data reception can be performed using the secondary SPS resource.
  • Figure 9 is a diagram showing the operation method of a CG group according to an embodiment of the present disclosure.
  • the base station when the base station sets up a CG resource, which is an uplink (transmitted from the terminal to the base station) radio resource periodically configured to the terminal, the CG resource is configured by an RRC reset message transmitted by the base station to the terminal. can be set.
  • CG resources can be set on top of BWP.
  • the base station may set at least one BWP, and at least one BWP may be activated or deactivated by the base station.
  • the activated BWP is called Active BWP.
  • Periodic CG transmission resources (911, 912, 913, 914) are set in Cell A's BWP (901), and other periodic CG transmission resources (921, 922, 923, 924) are set in Cell B's BWP (902).
  • CG index value (903) of 2 indicates that the CG set in the BWP (902) of cell B is assumed to have a CG index value (904) of 3.
  • the CG at index 2 and the CG at index 3 are set to the same CG group and have a CG group index 905 of 1 indicating which group it is.
  • FIG. 9 shows a method of using only one CG at a specific time within a plurality of CGs set as a CG group.
  • CG transmission resources set in a BWP other than the Active BWP cannot be used.
  • CG resources can be used for data transmission that continues to occur periodically, and at this time, the inability to use CG resources due to BWP being deactivated may reduce transmission efficiency.
  • an operation using the CG resource of one of the CGs set within the CG group may be necessary.
  • the priority of CG resources within the CG group can be set.
  • the CG with a CG index 903 of 2 set in the BWP 901 of cell A is the Primary CG
  • the CG index 904 of 3 set in the BWP 902 of cell B is the primary CG.
  • the terminal can transmit data using the primary CG resource. If the primary CG resource is not a resource currently set in Active BWP (if it is a resource set in a deactivated BWP), data transmission can be performed using the secondary CG resource.
  • Figure 10 is a diagram showing a CG operation method according to BWP conversion according to an embodiment of the present disclosure.
  • the base station when the base station sets up a CG resource, which is an uplink (transmitted from the terminal to the base station) radio resource periodically configured to the terminal, the CG resource is configured by an RRC reset message transmitted by the base station to the terminal. can be set.
  • This CG resource can be set on top of the BWP.
  • the base station may set at least one BWP, and at least one BWP may be activated or deactivated by the base station.
  • the activated BWP is called Active BWP.
  • BWP A (1001) and BWP B (1002)
  • BWP A (1001) has periodic CG transmission resources (1011, 1012, 1013, 1014, 1015, 1016). It indicates that other periodic CG transmission resources (1021, 1022, 1023, 1024, 1025, 1026) are set in BWP B (1002).
  • the CG set in BWP A (1001) and the CG set in BWP B (1002) have the same offset (1060) and period (1061), but may have different offsets and periods.
  • CG resources may be divided into first type CG and second type CG.
  • the first format CG refers to a CG resource that is used immediately after being set by an RRC reset message
  • the second format CG refers to a CS-RNTI (Configured Scheduling - Radio Network Temporary Identity) that the base station provides to the UE after the CG transmission resource is set by the RRC reset message.
  • CS-RNTI Configured Scheduling - Radio Network Temporary Identity
  • PDCCH Physical Downlink Control Channel
  • the base station determines the offset (1060) value at which the CG resource starts using the Reference SFN (System Frame Number) value set by the RRC reset message at the time the terminal sets the CG resource, and then at a certain period.
  • Periodic CG resources can be set to repeat every (1061).
  • the terminal since the CG has been set, it indicates that the terminal can use the CG transmission resources set in BWP A (1001), which is the currently active BWP. Afterwards, the CG transmission resources (1011, 1012) set in BWP A (1001) are activated and the terminal can perform data transmission.
  • Transmission of data using CG resources can be performed only when the BWP with CG configured is activated.
  • BWP B (1002) is not Active BWP, the CG transmission resources (1021, 1022, 1025, 1026) set in BWP B (1002) are not actually used. In addition, the exact location of the corresponding CG resource may not be set.
  • the CG resources set in BWP A (1001), the existing Active BWP, are suspended (1032) and the CG resources (1013, 1014) of BWP A are not used.
  • the locations of CG resources (1013, 1014, 1015, 1016) set in BWP A (1001) are maintained by the terminal and base station, and can be prepared for use when BWP A (1001) becomes Active BWP again. This means that the base station sets periodic CG resources using the Reference SFN (System Frame Number) at the time the terminal sets the CG resources, and the CG resources are repeated at regular intervals.
  • Reference SFN System Frame Number
  • the terminal has the location information of the CG resource, and can use the CG resource with the same period (interval) even when the BWP becomes active.
  • the CG resource can be suspended and then when the BWP becomes active, the CG resource can be resumed.
  • the operation of resuming CG resources may serve to cause the transmission points (1011, 1021) of the CG resources starting from the time when the CG is set to repeat at a certain period (1061).
  • CG resources (1023, 1024) can be resumed (1033) immediately without a separate activation step.
  • the Active BWP is later changed back to BWP A (1001)
  • the CG resources set in BWP B, the existing Active BWP are suspended (1043) and the CG resources (1025, 1026) of BWP B are not used.
  • the locations of CG resources (1025, 1026) set in BWP B (1002) are maintained by the terminal and base station and can be prepared for use when BWP B (1002) becomes Active BWP again.
  • CG resources (1015, 1016) can be resumed (1042) immediately without a separate activation step.
  • the period of CG resources can be kept constant even when a BWP switch operation that changes the terminal's Active BWP occurs.
  • Figure 11 is a diagram showing a UE Capability transmission and RRC setting method according to an embodiment of the present disclosure.
  • the terminal 1110 may transmit the terminal capability information for the SPS and CG operations described above to the base station 1120.
  • the SPS or CG resource is stopped without being deleted, and later, when the BWP is activated again as an Active BWP, the terminal resumes the SPS or SPS resource. It can report to the base station whether the terminal supports the operation.
  • the terminal may be reported whether the terminal supports format change of SPS or CG by MAC CE. Additionally, the terminal may report to the base station whether the terminal supports operations according to the SPS group or CG group.
  • the terminal may report to the base station whether the terminal supports the operation of the terminal to save network energy. (1130) Based on this, the base station can set the operation supported by the terminal by RRC message. (1140) The information set here may be at least one of terminal operation for network energy saving, CG settings, and SPS settings.
  • Figure 12 is a diagram showing the structure of a base station according to an embodiment of the present disclosure.
  • the base station may include a transceiver 1210, a control unit 1220, and a storage unit 1230.
  • the transceiver unit 1210, control unit 1220, and storage unit 1230 may operate according to the communication method of the base station described above. Additionally, network devices may also correspond to the structure of the base station.
  • the components of the base station are not limited to the above examples.
  • a base station may include more or fewer components than those described above.
  • the transceiver 1210, control unit 1220, and storage unit 1230 may be implemented in the form of a single chip.
  • the transceiving unit 1210 is a general term for the receiving unit of the base station and the transmitting unit of the base station, and can transmit and receive signals with a terminal, another base station, or other network devices.
  • the transmitted and received signals may include control information and data.
  • the transceiver 1210 may transmit system information to the terminal and may transmit a synchronization signal or a reference signal.
  • the transceiver 1210 may be composed of an RF transmitter that up-converts and amplifies the frequency of the transmitted signal, and an RF receiver that amplifies the received signal with low noise and down-converts the frequency.
  • the transceiver 1210 may include a wired or wireless transceiver and may include various components for transmitting and receiving signals. Additionally, the transceiver 1210 may receive a signal through a communication channel (eg, a wireless channel) and output it to the control unit 1220, and transmit the signal output from the control unit 1220 through the communication channel. Additionally, the transceiver unit 1210 may receive a communication signal, output it to a processor, and transmit the signal output from the processor to a terminal, another base station, or another entity through a wired or wireless network.
  • a communication channel eg, a wireless channel
  • the storage unit 1230 can store programs and data necessary for the operation of the base station. Additionally, the storage unit 1230 may store control information or data included in signals obtained from the base station.
  • the storage unit 1230 may be composed of a storage medium such as ROM, RAM, hard disk, CD-ROM, and DVD, or a combination of storage media. Additionally, the storage unit 1230 may store at least one of information transmitted and received through the transmitting and receiving unit 1210 and information generated through the control unit 1220.
  • control unit 1220 may be defined as a circuit or an application-specific integrated circuit or at least one processor.
  • the processor may include a communication processor (CP) that performs control for communication and an application processor (AP) that controls upper layers such as application programs.
  • the control unit 1220 can control the overall operation of the base station according to the embodiment proposed in this disclosure. For example, the control unit 1220 can control signal flow between each block to perform operations according to the flowchart described above.
  • Figure 13 is a diagram showing the structure of a terminal according to an embodiment of the present disclosure.
  • the terminal may include a transceiver 1310, a control unit 1320, and a storage unit 1330.
  • the transmitting and receiving unit 1310, the control unit 1320, and the storage unit 1330 may operate according to the communication method of the terminal described above.
  • the components of the terminal are not limited to the examples described above.
  • the terminal may include more or fewer components than the aforementioned components.
  • the transmitting and receiving unit 1310, the control unit 1320, and the storage unit 1330 may be implemented in the form of a single chip.
  • the transmitting and receiving unit 1310 is a general term for the terminal's receiving unit and the terminal's transmitting unit, and can transmit and receive signals with a base station, other terminals, or network entities. Signals transmitted and received from the base station may include control information and data.
  • the transceiver 1310 may receive system information from a base station and may receive a synchronization signal or a reference signal. To this end, the transceiver 1310 may be composed of an RF transmitter that up-converts and amplifies the frequency of the transmitted signal, and an RF receiver that amplifies the received signal with low noise and down-converts the frequency.
  • the transceiver 1310 may include a wired or wireless transceiver and may include various components for transmitting and receiving signals. Additionally, the transceiver 1310 may receive a signal through a wireless channel and output it to the control unit 1320, and transmit the signal output from the control unit 1320 through a wireless channel. Additionally, the transceiver unit 1310 may receive a communication signal, output it to a processor, and transmit the signal output from the processor to a network entity through a wired or wireless network.
  • the storage unit 1330 can store programs and data necessary for operation of the terminal. Additionally, the memory 1330 may store control information or data included in signals obtained from the terminal.
  • the storage unit 1330 may be composed of a storage medium such as ROM, RAM, hard disk, CD-ROM, and DVD, or a combination of storage media.
  • control unit 1320 may be defined as a circuit or an application-specific integrated circuit or at least one processor.
  • the processor may include a communication processor (CP) that performs control for communication and an application processor (AP) that controls upper layers such as application programs.
  • the control unit 1320 can control the overall operation of the terminal according to the embodiment proposed in this disclosure. For example, the control unit 1320 can control signal flow between each block to perform operations according to the flowchart described above.
  • a computer-readable storage medium that stores one or more programs (software modules) may be provided.
  • One or more programs stored in a computer-readable storage medium are configured to be executable by one or more processors in an electronic device (configured for execution).
  • One or more programs include instructions that cause the electronic device to execute methods according to embodiments described in the claims or specification of the present disclosure.
  • These programs may include random access memory, non-volatile memory, including flash memory, read only memory (ROM), and electrically erasable programmable ROM. (electrically erasable programmable read only memory, EEPROM), magnetic disc storage device, compact disc-ROM (CD-ROM), digital versatile discs (DVDs), or other types of disk storage. It can be stored in an optical storage device or magnetic cassette. Alternatively, it may be stored in a memory consisting of a combination of some or all of these. Additionally, multiple configuration memories may be included.
  • non-volatile memory including flash memory, read only memory (ROM), and electrically erasable programmable ROM. (electrically erasable programmable read only memory, EEPROM), magnetic disc storage device, compact disc-ROM (CD-ROM), digital versatile discs (DVDs), or other types of disk storage. It can be stored in an optical storage device or magnetic cassette. Alternatively, it may be stored in a memory consisting of a combination of some or all of these. Additionally, multiple configuration memories may
  • the program may be distributed through a communication network such as the Internet, an intranet, a local area network (LAN), a wide area network (WAN), or a storage area network (SAN), or a combination thereof. It may be stored on an attachable storage device that is accessible. This storage device can be connected to a device performing an embodiment of the present disclosure through an external port. Additionally, a separate storage device on a communication network may be connected to the device performing an embodiment of the present disclosure.
  • a communication network such as the Internet, an intranet, a local area network (LAN), a wide area network (WAN), or a storage area network (SAN), or a combination thereof. It may be stored on an attachable storage device that is accessible. This storage device can be connected to a device performing an embodiment of the present disclosure through an external port. Additionally, a separate storage device on a communication network may be connected to the device performing an embodiment of the present disclosure.

Abstract

The present disclosure relates to a 5G or 6G communication system for supporting higher data transmission rates. The present disclosure provides an operation method of a terminal, comprising the steps of: receiving, from a base station, information about a first bandwidth part (BWP) and a second BWP, and configuration information about periodic resources configured for each of the first BWP and the second BWP; receiving, from the base station, first downlink control information for activating a first periodic resource set in the first BWP, which is an active BWP; performing data transmission and reception on the basis of the activated first periodic resource; receiving, from the base station, active BWP change information activating the second BWP; and suspending use of the activated first periodic resource set in the first BWP, wherein the suspended use of the first periodic resource is resumed without receiving the first downlink control information when the first BWP is activated.

Description

무선 통신 시스템에서 네트워크 에너지 절약을 위한 SPS 및 CG 송수신 방법 및 장치SPS and CG transmission and reception method and device for saving network energy in wireless communication system
본 개시는 무선 통신 시스템에서의 단말 및 기지국 동작에 관한 것으로, 구체적으로 네트워크 전력 감소를 위한 SPS 및 CG를 송수신하는 방법 및 장치에 관한 것이다.This disclosure relates to terminal and base station operations in a wireless communication system, and specifically relates to a method and device for transmitting and receiving SPS and CG for network power reduction.
5G 이동통신 기술은 빠른 전송 속도와 새로운 서비스가 가능하도록 넓은 주파수 대역을 정의하고 있으며, 3.5 기가헤르츠(3.5GHz) 등 6GHz 이하 주파수('Sub 6GHz') 대역은 물론 28GHz와 39GHz 등 밀리미터파(㎜Wave)로 불리는 초고주파 대역('Above 6GHz')에서도 구현이 가능하다. 또한, 5G 통신 이후(Beyond 5G)의 시스템이라 불리어지는 6G 이동통신 기술의 경우, 5G 이동통신 기술 대비 50배 빨라진 전송 속도와 10분의 1로 줄어든 초저(Ultra Low) 지연시간을 달성하기 위해 테라헤르츠(Terahertz) 대역(예를 들어, 95GHz에서 3 테라헤르츠(3THz) 대역과 같은)에서의 구현이 고려되고 있다.5G mobile communication technology defines a wide frequency band to enable fast transmission speeds and new services, and includes sub-6 GHz ('Sub 6GHz') bands such as 3.5 gigahertz (3.5 GHz) as well as millimeter wave (mm) bands such as 28 GHz and 39 GHz. It is also possible to implement it in the ultra-high frequency band ('Above 6GHz') called Wave. In addition, in the case of 6G mobile communication technology, which is called the system of Beyond 5G, Terra is working to achieve a transmission speed that is 50 times faster than 5G mobile communication technology and an ultra-low delay time that is reduced to one-tenth. Implementation in Terahertz bands (e.g., 95 GHz to 3 THz) is being considered.
5G 이동통신 기술의 초기에는, 초광대역 서비스(enhanced Mobile BroadBand, eMBB), 고신뢰/초저지연 통신(Ultra-Reliable Low-Latency Communications, URLLC), 대규모 기계식 통신 (massive Machine-Type Communications, mMTC)에 대한 서비스 지원과 성능 요구사항 만족을 목표로, 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위한 빔포밍(Beamforming) 및 거대 배열 다중 입출력(Massive MIMO), 초고주파수 자원의 효율적 활용을 위한 다양한 뉴머롤로지 지원(복수 개의 서브캐리어 간격 운용 등)와 슬롯 포맷에 대한 동적 운영, 다중 빔 전송 및 광대역을 지원하기 위한 초기 접속 기술, BWP(Band-Width Part)의 정의 및 운영, 대용량 데이터 전송을 위한 LDPC(Low Density Parity Check) 부호와 제어 정보의 신뢰성 높은 전송을 위한 폴라 코드(Polar Code)와 같은 새로운 채널 코딩 방법, L2 선-처리(L2 pre-processing), 특정 서비스에 특화된 전용 네트워크를 제공하는 네트워크 슬라이싱(Network Slicing) 등에 대한 표준화가 진행되었다.In the early days of 5G mobile communication technology, there were concerns about ultra-wideband services (enhanced Mobile BroadBand, eMBB), ultra-reliable low-latency communications (URLLC), and massive machine-type communications (mMTC). With the goal of satisfying service support and performance requirements, efficient use of ultra-high frequency resources, including beamforming and massive array multiple input/output (Massive MIMO) to alleviate radio wave path loss in ultra-high frequency bands and increase radio transmission distance. Various numerology support (multiple subcarrier interval operation, etc.) and dynamic operation of slot format, initial access technology to support multi-beam transmission and broadband, definition and operation of BWP (Band-Width Part), large capacity New channel coding methods such as LDPC (Low Density Parity Check) codes for data transmission and Polar Code for highly reliable transmission of control information, L2 pre-processing, and dedicated services specialized for specific services. Standardization of network slicing, etc., which provides networks, has been carried out.
현재, 5G 이동통신 기술이 지원하고자 했던 서비스들을 고려하여 초기의 5G 이동통신 기술 개선(improvement) 및 성능 향상(enhancement)을 위한 논의가 진행 중에 있으며, 차량이 전송하는 자신의 위치 및 상태 정보에 기반하여 자율주행 차량의 주행 판단을 돕고 사용자의 편의를 증대하기 위한 V2X(Vehicle-to-Everything), 비면허 대역에서 각종 규제 상 요구사항들에 부합하는 시스템 동작을 목적으로 하는 NR-U(New Radio Unlicensed), NR 단말 저전력 소모 기술(UE Power Saving), 지상 망과의 통신이 불가능한 지역에서 커버리지 확보를 위한 단말-위성 직접 통신인 비 지상 네트워크(Non-Terrestrial Network, NTN), 위치 측위(Positioning) 등의 기술에 대한 물리계층 표준화가 진행 중이다. Currently, discussions are underway to improve and enhance the initial 5G mobile communication technology, considering the services that 5G mobile communication technology was intended to support, based on the vehicle's own location and status information. V2X (Vehicle-to-Everything) to help autonomous vehicles make driving decisions and increase user convenience, and NR-U (New Radio Unlicensed), which aims to operate a system that meets various regulatory requirements in unlicensed bands. ), NR terminal low power consumption technology (UE Power Saving), Non-Terrestrial Network (NTN), which is direct terminal-satellite communication to secure coverage in areas where communication with the terrestrial network is impossible, positioning, etc. Physical layer standardization for technology is in progress.
뿐만 아니라, 타 산업과의 연계 및 융합을 통한 새로운 서비스 지원을 위한 지능형 공장 (Industrial Internet of Things, IIoT), 무선 백홀 링크와 액세스 링크를 통합 지원하여 네트워크 서비스 지역 확장을 위한 노드를 제공하는 IAB(Integrated Access and Backhaul), 조건부 핸드오버(Conditional Handover) 및 DAPS(Dual Active Protocol Stack) 핸드오버를 포함하는 이동성 향상 기술(Mobility Enhancement), 랜덤액세스 절차를 간소화하는 2 단계 랜덤액세스(2-step RACH for NR) 등의 기술에 대한 무선 인터페이스 아키텍쳐/프로토콜 분야의 표준화 역시 진행 중에 있으며, 네트워크 기능 가상화(Network Functions Virtualization, NFV) 및 소프트웨어 정의 네트워킹(Software-Defined Networking, SDN) 기술의 접목을 위한 5G 베이스라인 아키텍쳐(예를 들어, Service based Architecture, Service based Interface), 단말의 위치에 기반하여 서비스를 제공받는 모바일 엣지 컴퓨팅(Mobile Edge Computing, MEC) 등에 대한 시스템 아키텍쳐/서비스 분야의 표준화도 진행 중이다.In addition, IAB (IAB) provides a node for expanding the network service area by integrating intelligent factories (Industrial Internet of Things, IIoT) to support new services through linkage and convergence with other industries, and wireless backhaul links and access links. Integrated Access and Backhaul, Mobility Enhancement including Conditional Handover and DAPS (Dual Active Protocol Stack) handover, and 2-step Random Access (2-step RACH for simplification of random access procedures) Standardization in the field of wireless interface architecture/protocol for technologies such as NR) is also in progress, and 5G baseline for incorporating Network Functions Virtualization (NFV) and Software-Defined Networking (SDN) technology Standardization in the field of system architecture/services for architecture (e.g., Service based Architecture, Service based Interface) and Mobile Edge Computing (MEC), which provides services based on the location of the terminal, is also in progress.
이와 같은 5G 이동통신 시스템이 상용화되면, 폭발적인 증가 추세에 있는 커넥티드 기기들이 통신 네트워크에 연결될 것이며, 이에 따라 5G 이동통신 시스템의 기능 및 성능 강화와 커넥티드 기기들의 통합 운용이 필요할 것으로 예상된다. 이를 위해, 증강현실(Augmented Reality, AR), 가상현실(Virtual Reality, VR), 혼합 현실(Mixed Reality, MR) 등을 효율적으로 지원하기 위한 확장 현실(eXtended Reality, XR), 인공지능(Artificial Intelligence, AI) 및 머신러닝(Machine Learning, ML)을 활용한 5G 성능 개선 및 복잡도 감소, AI 서비스 지원, 메타버스 서비스 지원, 드론 통신 등에 대한 새로운 연구가 진행될 예정이다.When this 5G mobile communication system is commercialized, an explosive increase in connected devices will be connected to the communication network. Accordingly, it is expected that strengthening the functions and performance of the 5G mobile communication system and integrated operation of connected devices will be necessary. To this end, eXtended Reality (XR) and Artificial Intelligence are designed to efficiently support Augmented Reality (AR), Virtual Reality (VR), and Mixed Reality (MR). , AI) and machine learning (ML), new research will be conducted on 5G performance improvement and complexity reduction, AI service support, metaverse service support, and drone communication.
또한, 이러한 5G 이동통신 시스템의 발전은 6G 이동통신 기술의 테라헤르츠 대역에서의 커버리지 보장을 위한 신규 파형(Waveform), 전차원 다중입출력(Full Dimensional MIMO, FD-MIMO), 어레이 안테나(Array Antenna), 대규모 안테나(Large Scale Antenna)와 같은 다중 안테나 전송 기술, 테라헤르츠 대역 신호의 커버리지를 개선하기 위해 메타물질(Metamaterial) 기반 렌즈 및 안테나, OAM(Orbital Angular Momentum)을 이용한 고차원 공간 다중화 기술, RIS(Reconfigurable Intelligent Surface) 기술 뿐만 아니라, 6G 이동통신 기술의 주파수 효율 향상 및 시스템 네트워크 개선을 위한 전이중화(Full Duplex) 기술, 위성(Satellite), AI(Artificial Intelligence)를 설계 단계에서부터 활용하고 종단간(End-to-End) AI 지원 기능을 내재화하여 시스템 최적화를 실현하는 AI 기반 통신 기술, 단말 연산 능력의 한계를 넘어서는 복잡도의 서비스를 초고성능 통신과 컴퓨팅 자원을 활용하여 실현하는 차세대 분산 컴퓨팅 기술 등의 개발에 기반이 될 수 있을 것이다.In addition, the development of these 5G mobile communication systems includes new waveforms, full dimensional MIMO (FD-MIMO), and array antennas to ensure coverage in the terahertz band of 6G mobile communication technology. , multi-antenna transmission technology such as Large Scale Antenna, metamaterial-based lens and antenna to improve coverage of terahertz band signals, high-dimensional spatial multiplexing technology using OAM (Orbital Angular Momentum), RIS ( In addition to Reconfigurable Intelligent Surface technology, Full Duplex technology, satellite, and AI (Artificial Intelligence) to improve the frequency efficiency of 6G mobile communication technology and system network are utilized from the design stage and end-to-end. -to-End) Development of AI-based communication technology that realizes system optimization by internalizing AI support functions, and next-generation distributed computing technology that realizes services of complexity beyond the limits of terminal computing capabilities by utilizing ultra-high-performance communication and computing resources. It could be the basis for .
상술한 것과 이동통신 시스템의 발전에 따라 다양한 서비스를 제공할 수 있게 됨으로써, 이러한 서비스들을 효과적으로 제공하기 위한 방안이 요구되고 있으며, 특히 네트워크 전력 감소를 위한 방안이 요구되고 있다.As various services can be provided as described above and with the development of mobile communication systems, methods for effectively providing these services are required, and in particular, methods for reducing network power are required.
개시된 실시예는 무선 통신 시스템에서 서비스를 효과적으로 제공할 수 있는 장치 및 방법을 제공하고자 한다.The disclosed embodiment seeks to provide an apparatus and method that can effectively provide services in a wireless communication system.
본 개시의 일 실시예에 따르면, 무선 통신 시스템에서 단말(user equipment, UE)에 의해 수행되는 방법에 있어서, 기지국으로부터, 제1 대역폭 부분(bandwidth part, BWP) 및 제2 BWP에 대한 정보, 및 상기 제1 BWP 및 상기 제2 BWP 각각에 설정되는 주기적인 자원에 대한 설정 정보를 수신하는 단계;ㅜ상기 기지국으로부터, active BWP인 상기 제1 BWP에 설정된 제1 주기적인 자원을 활성화하기 위한 제1 하향링크 제어 정보를 수신하는 단계; 상기 활성화된 제1 주기적인 자원에 기반하여, 데이터 송수신을 수행하는 단계; 상기 기지국으로부터, 제2 BWP를 활성화하는 active BWP 변경 정보를 수신하는 단계; 및 상기 제1 BWP에 설정된 상기 활성화된 제1 주기적인 자원의 이용을 중지(suspend)하는 단계를 포함하고, 상기 중지된 제1 주기적인 자원의 이용은, 상기 제1 BWP가 활성화될 때 상기 제1 하향링크 제어 정보의 수신 없이 재개(resume)되는 것일 수 있다.According to an embodiment of the present disclosure, in a method performed by a user equipment (UE) in a wireless communication system, from a base station, information about a first bandwidth part (BWP) and a second BWP, and Receiving configuration information about periodic resources configured in each of the first BWP and the second BWP; Receiving downlink control information; performing data transmission and reception based on the activated first periodic resource; Receiving active BWP change information activating a second BWP from the base station; and suspending use of the activated first periodic resource set in the first BWP, wherein the suspended use of the first periodic resource is performed by the first BWP when the first BWP is activated. 1 It may be resumed without receiving downlink control information.
또한, 본 개시의 일 실시예에 따르면, 무선 통신 시스템에서 기지국(base station)에 의해 수행되는 방법에 있어서, 단말로, 제1 대역폭 부분(bandwidth part, BWP) 및 제2 BWP에 대한 정보, 및 상기 제1 BWP 및 상기 제2 BWP 각각에 설정되는 주기적인 자원에 대한 설정 정보를 송신하는 단계; 상기 단말로, active BWP인 상기 제1 BWP에 설정된 제1 주기적인 자원을 활성화하기 위한 제1 하향링크 제어 정보를 송신하는 단계; 상기 활성화된 제1 주기적인 자원에 기반하여, 데이터 송수신을 수행하는 단계; 상기 단말로, 제2 BWP를 활성화하는 active BWP 변경 정보를 송신하는 단계; 및 상기 제1 BWP에 설정된 상기 활성화된 제1 주기적인 자원의 이용을 중지(suspend)하는 단계를 포함하고, 상기 중지된 제1 주기적인 자원의 이용은, 상기 제1 BWP가 활성화될 때 상기 제1 하향링크 제어 정보의 송신 없이 재개(resume)되는 것일 수 있다.In addition, according to an embodiment of the present disclosure, in a method performed by a base station in a wireless communication system, the terminal includes information about a first bandwidth part (BWP) and a second BWP, and Transmitting configuration information about periodic resources configured for each of the first BWP and the second BWP; Transmitting, to the terminal, first downlink control information for activating a first periodic resource set in the first BWP, which is an active BWP; performing data transmission and reception based on the activated first periodic resource; Transmitting active BWP change information activating a second BWP to the terminal; and suspending use of the activated first periodic resource set in the first BWP, wherein the suspended use of the first periodic resource is performed by the first BWP when the first BWP is activated. 1 It may be resumed without transmission of downlink control information.
또한, 본 개시의 일 실시예에 따르면, 무선 통신 시스템에서 단말(user equipment, UE)에 있어서, 상기 단말은, 송수신기; 상기 송수신기와 연결된 컨트롤러(controller)를 포함하되, 상기 컨트롤러는, 기지국으로부터, 제1 대역폭 부분(bandwidth part, BWP) 및 제2 BWP에 대한 정보, 및 상기 제1 BWP 및 상기 제2 BWP 각각에 설정되는 주기적인 자원에 대한 설정 정보를 수신하는 단계; 상기 기지국으로부터, active BWP인 상기 제1 BWP에 설정된 제1 주기적인 자원을 활성화하기 위한 제1 하향링크 제어 정보를 수신하는 단계; 상기 활성화된 제1 주기적인 자원에 기반하여, 데이터 송수신을 수행하는 단계; 상기 기지국으로부터, 제2 BWP를 활성화하는 active BWP 변경 정보를 수신하는 단계; 및 상기 제1 BWP에 설정된 상기 활성화된 제1 주기적인 자원의 이용을 중지(suspend)하는 단계를 수행하되, 상기 중지된 제1 주기적인 자원의 이용은, 상기 제1 BWP가 활성화될 때 상기 제1 하향링크 제어 정보의 수신 없이 재개(resume)되도록 구성될 수 있다.Additionally, according to an embodiment of the present disclosure, in a terminal (user equipment, UE) in a wireless communication system, the terminal includes a transceiver; Includes a controller connected to the transceiver, wherein the controller receives information about the first bandwidth part (BWP) and the second BWP from the base station, and sets each of the first BWP and the second BWP. Receiving configuration information for periodic resources; Receiving, from the base station, first downlink control information for activating a first periodic resource set in the first BWP, which is an active BWP; performing data transmission and reception based on the activated first periodic resource; Receiving active BWP change information activating a second BWP from the base station; and suspending use of the activated first periodic resource set in the first BWP, wherein use of the suspended first periodic resource is performed when the first BWP is activated. 1 Can be configured to resume without receiving downlink control information.
또한, 본 개시의 일 실시예에 따르면, 무선 통신 시스템에서 기지국에 있어서, 상기 기지국은, 송수신기; 상기 송수신기와 연결된 컨트롤러(controller)를 포함하되,상기 컨트롤러는, 단말로, 제1 대역폭 부분(bandwidth part, BWP) 및 제2 BWP에 대한 정보, 및 상기 제1 BWP 및 상기 제2 BWP 각각에 설정되는 주기적인 자원에 대한 설정 정보를 송신하는 단계; 상기 단말로, active BWP인 상기 제1 BWP에 설정된 제1 주기적인 자원을 활성화하기 위한 제1 하향링크 제어 정보를 전송하는 단계; 상기 활성화된 제1 주기적인 자원에 기반하여, 데이터 송수신을 수행하는 단계; 상기 단말로, 제2 BWP를 활성화하는 active BWP 변경 정보를 전송하는 단계; 및 상기 제1 BWP에 설정된 상기 활성화된 제1 주기적인 자원의 이용을 중지(suspend)하는 단계를 수행하되, 상기 중지된 제1 주기적인 자원의 이용은, 상기 제1 BWP가 활성화될 때 상기 제1 하향링크 제어 정보의 전송 없이 재개(resume)되도록 구성될 수 있다.Additionally, according to an embodiment of the present disclosure, in a base station in a wireless communication system, the base station includes a transceiver; Includes a controller connected to the transceiver, wherein the controller is a terminal, sets information on a first bandwidth part (BWP) and a second BWP, and sets each of the first BWP and the second BWP. transmitting configuration information for periodic resources; Transmitting, to the terminal, first downlink control information for activating a first periodic resource set in the first BWP, which is an active BWP; performing data transmission and reception based on the activated first periodic resource; Transmitting active BWP change information activating a second BWP to the terminal; and suspending use of the activated first periodic resource set in the first BWP, wherein use of the suspended first periodic resource is performed when the first BWP is activated. 1 Can be configured to resume without transmitting downlink control information.
본 개시의 실시예는 무선 통신 시스템에서 서비스를 효과적으로 제공할 수 있는 장치 및 방법을 제공한다.Embodiments of the present disclosure provide an apparatus and method that can effectively provide services in a wireless communication system.
도 1은 본 개시의 일 실시예에 따른 BWP(Bandwidth Part) 전환에 따른 SPS(Semi-Persistent Scheduling) 송수신 방식을 나타낸 도면이다.Figure 1 is a diagram showing a semi-persistent scheduling (SPS) transmission and reception method according to bandwidth part (BWP) switching according to an embodiment of the present disclosure.
도 2는 본 개시의 일 실시예에 따른 BWP 전환에 따른 CG(Configured Grant) 송수신 방식을 나타낸 도면이다. Figure 2 is a diagram showing a CG (Configured Grant) transmission and reception method according to BWP conversion according to an embodiment of the present disclosure.
도 3은 본 개시의 일 실시예에 따른 BWP 전환에 따른 SPS 송수신 방식을 나타낸 도면이다. Figure 3 is a diagram showing an SPS transmission and reception method according to BWP switching according to an embodiment of the present disclosure.
도 4는 본 개시의 일 실시예에 따른 BWP 전환에 따른 CG 송수신 방식을 나타낸 도면이다. Figure 4 is a diagram showing a CG transmission and reception method according to BWP switching according to an embodiment of the present disclosure.
도 5는 본 개시의 일 실시예에 따른 SPS 또는 CG의 형식을 설정하는 메시지 형식을 나타낸 도면이다.Figure 5 is a diagram showing a message format for setting the format of SPS or CG according to an embodiment of the present disclosure.
도 6은 본 개시의 일 실시예에 따른 SPS 그룹에 기반한 송수신 방식을 나타낸 도면이다.Figure 6 is a diagram showing a transmission and reception method based on an SPS group according to an embodiment of the present disclosure.
도 7은 본 개시의 일 실시예에 따른 CG 그룹에 기반한 송수신 방식을 나타낸 도면이다.Figure 7 is a diagram showing a transmission and reception method based on a CG group according to an embodiment of the present disclosure.
도 8은 본 개시의 일 실시예에 따른 SPS 그룹에 기반한 송수신방식을 나타낸 도면이다.Figure 8 is a diagram showing a transmission and reception method based on an SPS group according to an embodiment of the present disclosure.
도 9는 본 개시의 일 실시예에 따른 CG 그룹에 기반한 송수신 방식을 나타낸 도면이다.Figure 9 is a diagram showing a transmission and reception method based on a CG group according to an embodiment of the present disclosure.
도 10는 본 개시의 일 실시예에 따른 BWP 전환에 따른 CG 송수신 방식을 나타낸 도면이다. Figure 10 is a diagram showing a CG transmission and reception method according to BWP switching according to an embodiment of the present disclosure.
도 11은 본 개시의 일 실시예에 따른 단말 Capability 전송 및 RRC 설정 방식을 나타낸 도면이다.Figure 11 is a diagram showing a UE Capability transmission and RRC setting method according to an embodiment of the present disclosure.
도 12는 본 개시의 일 실시예에 따른 기지국의 구조를 도시한 도면이다. Figure 12 is a diagram showing the structure of a base station according to an embodiment of the present disclosure.
도 13은 본 개시의 일 실시예에 따른 단말의 구조를 도시한 도면이다. Figure 13 is a diagram showing the structure of a terminal according to an embodiment of the present disclosure.
하기에서 본 개시를 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 개시의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 개시에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 이하 첨부된 도면을 참조하여 본 개시의 실시 예를 설명하기로 한다.In the following description of the present disclosure, if a detailed description of a related known function or configuration is determined to unnecessarily obscure the gist of the present disclosure, the detailed description will be omitted. In addition, the terms described below are terms defined in consideration of the functions in the present disclosure, and may vary depending on the intention or custom of the user or operator. Therefore, the definition should be made based on the contents throughout this specification. Hereinafter, embodiments of the present disclosure will be described with reference to the attached drawings.
본 개시의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 개시는 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 개시의 개시가 완전하도록 하고, 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 개시의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 개시는 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.The advantages and features of the present disclosure and methods for achieving them will become clear by referring to the embodiments described in detail below along with the accompanying drawings. However, the present disclosure is not limited to the embodiments disclosed below and may be implemented in various different forms, and the present embodiments are merely intended to ensure that the disclosure is complete and that common knowledge in the technical field to which the present disclosure pertains is provided. It is provided to fully inform those who have the scope of the disclosure, and the disclosure is only defined by the scope of the claims. Like reference numerals refer to like elements throughout the specification.
이때, 처리 흐름도 도면들의 각 블록과 흐름도 도면들의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수 있음을 이해할 수 있을 것이다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 흐름도 블록(들)에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 흐름도 블록(들)에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능하다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 흐름도 블록(들)에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능하다.At this time, it will be understood that each block of the processing flow diagrams and combinations of the flow diagram diagrams can be performed by computer program instructions. These computer program instructions can be mounted on a processor of a general-purpose computer, special-purpose computer, or other programmable data processing equipment, so that the instructions performed through the processor of the computer or other programmable data processing equipment are described in the flow chart block(s). It creates the means to perform functions. These computer program instructions may also be stored in computer-usable or computer-readable memory that can be directed to a computer or other programmable data processing equipment to implement a function in a particular manner, so that the computer-usable or computer-readable memory It is also possible to produce manufactured items containing instruction means that perform the functions described in the flowchart block(s). Computer program instructions can also be mounted on a computer or other programmable data processing equipment, so that a series of operational steps are performed on the computer or other programmable data processing equipment to create a process that is executed by the computer, thereby generating a process that is executed by the computer or other programmable data processing equipment. Instructions that perform processing equipment may also provide steps for executing the functions described in the flow diagram block(s).
또한, 각 블록은 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실행 예들에서는 블록들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예를 들면, 잇달아 도시되어 있는 두 개의 블록들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.Additionally, each block may represent a module, segment, or portion of code that includes one or more executable instructions for executing specified logical function(s). Additionally, it should be noted that in some alternative execution examples it is possible for the functions mentioned in the blocks to occur out of order. For example, it is possible for two blocks shown in succession to be performed substantially simultaneously, or it is possible for the blocks to be performed in reverse order depending on the corresponding function.
이때, 본 실시예에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA(Field Programmable Gate Array) 또는 ASIC(Application Specific Integrated Circuit)과 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다. 또한 실시예에서 '~부'는 하나 이상의 프로세서를 포함할 수 있다.At this time, the term '~unit' used in this embodiment refers to software or hardware components such as FPGA (Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit), and '~unit' performs certain roles. do. However, '~part' is not limited to software or hardware. The '~ part' may be configured to reside in an addressable storage medium and may be configured to reproduce on one or more processors. Therefore, as an example, '~ part' refers to components such as software components, object-oriented software components, class components, and task components, processes, functions, properties, and procedures. , subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables. The functions provided within the components and 'parts' may be combined into a smaller number of components and 'parts' or may be further separated into additional components and 'parts'. Additionally, components and 'parts' may be implemented to regenerate one or more CPUs within a device or a secure multimedia card. Additionally, in an embodiment, '~ part' may include one or more processors.
하기에서 본 개시를 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 개시의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 이하 첨부된 도면을 참조하여 본 개시의 실시 예를 설명하기로 한다.In the following description of the present disclosure, if a detailed description of a related known function or configuration is determined to unnecessarily obscure the gist of the present disclosure, the detailed description will be omitted. Hereinafter, embodiments of the present disclosure will be described with reference to the attached drawings.
이하 설명에서 사용되는 접속 노드(node)를 식별하기 위한 용어, 망 객체(network entity, 네트워크 엔티티)들을 지칭하는 용어, 메시지들을 지칭하는 용어, 망 객체들 간 인터페이스를 지칭하는 용어, 다양한 식별 정보들을 지칭하는 용어 등은 설명의 편의를 위해 예시된 것이다. 따라서, 본 개시가 후술되는 용어들에 한정되는 것은 아니며, 동등한 기술적 의미를 가지는 대상을 지칭하는 다른 용어가 사용될 수 있다.Terms used in the following description to identify a connection node, terms referring to network entities, terms referring to messages, terms referring to interfaces between network objects, and various identification information. Referring terms, etc. are exemplified for convenience of explanation. Accordingly, the present disclosure is not limited to the terms described below, and other terms referring to objects having equivalent technical meaning may be used.
이하 설명에서, 물리 채널(physical channel)과 신호(signal)는 데이터 혹은 제어 신호와 혼용하여 사용될 수 있다. 예를 들어, PDSCH(physical downlink shared channel)는 데이터가 전송되는 물리 채널을 지칭하는 용어이지만, PDSCH는 데이터를 지칭하기 위해서도 사용될 수 있다. 즉, 본 개시에서, '물리 채널을 송신한다'는 표현은 '물리 채널을 통해 데이터 또는 신호를 송신한다'는 표현과 동등하게 해석될 수 있다.In the following description, physical channel and signal may be used interchangeably with data or control signals. For example, PDSCH (physical downlink shared channel) is a term that refers to a physical channel through which data is transmitted, but PDSCH can also be used to refer to data. That is, in the present disclosure, the expression 'transmit a physical channel' can be interpreted equivalently to the expression 'transmit data or a signal through a physical channel'.
이하 본 개시에서, 상위 시그널링은 기지국에서 물리 계층의 하향링크 데이터 채널을 이용하여 단말로, 또는 단말에서 물리 계층의 상향링크 데이터 채널을 이용하여 기지국으로 전달되는 신호 전달 방법을 뜻한다. 상위 시그널링은 RRC(radio resource control) 시그널링 또는 MAC(media access control) 제어 요소(control element, CE)로 이해될 수 있다.Hereinafter, in this disclosure, upper signaling refers to a signal transmission method in which a signal is transmitted from a base station to a terminal using a downlink data channel of the physical layer, or from the terminal to the base station using an uplink data channel of the physical layer. High-level signaling can be understood as radio resource control (RRC) signaling or media access control (MAC) control element (CE).
이하 설명의 편의를 위하여, 본 개시는 3GPP NR(3rd Generation Partnership Project NR (New Radio)) 또는 3GPP LTE(3rd Generation Partnership Project Long Term Evolution) 규격에서 정의하고 있는 용어 및 명칭들을 사용한다. 하지만, 본 개시가 상기 용어 및 명칭들에 의해 한정되는 것은 아니며, 다른 규격에 따르는 시스템에도 동일하게 적용될 수 있다. 본 개시에서 gNB는 설명의 편의를 위하여 eNB와 혼용되어 사용될 수 있다. 즉 eNB로 설명한 기지국은 gNB를 나타낼 수 있다. 또한 단말이라는 용어는 핸드폰, MTC 기기, NB-IoT 기기, 센서뿐만 아니라 또 다른 무선 통신 기기들을 나타낼 수 있다. For convenience of description below, the present disclosure uses terms and names defined in the 3rd Generation Partnership Project NR (New Radio) (3GPP NR) or 3rd Generation Partnership Project Long Term Evolution (3GPP LTE) specifications. However, the present disclosure is not limited by the above terms and names, and can be equally applied to systems complying with other standards. In this disclosure, gNB may be used interchangeably with eNB for convenience of explanation. That is, a base station described as an eNB may represent a gNB. Additionally, the term terminal can refer to mobile phones, MTC devices, NB-IoT devices, sensors, as well as other wireless communication devices.
이하, 기지국은 단말의 자원할당을 수행하는 주체로서, gNodeB (gNB), eNode B (eNB), NodeB, BS (Base Station), 무선 접속 유닛, 기지국 제어기, 또는 네트워크 상의 노드 중 적어도 하나일 수 있다. 단말은 UE (User Equipment), MS (Mobile Station), 셀룰러폰, 스마트폰, 컴퓨터, 또는 통신기능을 수행할 수 있는 멀티미디어시스템을 포함할 수 있다. 물론 상기 예시에 제한되는 것은 아니다.Hereinafter, the base station is the entity that performs resource allocation for the terminal, and may be at least one of gNodeB (gNB), eNode B (eNB), NodeB, BS (Base Station), wireless access unit, base station controller, or node on the network. . A terminal may include a UE (User Equipment), MS (Mobile Station), a cellular phone, a smartphone, a computer, or a multimedia system capable of performing communication functions. Of course, it is not limited to the above example.
특히 본 개시는 3GPP NR (5세대 이동통신 표준)에 적용할 수 있다. 또한 본 개시는 5G 통신 기술 및 IoT 관련 기술을 기반으로 지능형 서비스(예를 들어, 스마트 홈, 스마트 빌딩, 스마트 시티, 스마트 카 또는 커넥티드 카, 헬스 케어, 디지털 교육, 소매업, 보안 및 안전 관련 서비스 등)에 적용될 수 있다. 본 개시에서 eNB는 설명의 편의를 위하여 gNB와 혼용되어 사용될 수 있다. 즉 eNB로 설명한 기지국은 gNB를 나타낼 수 있다. 또한 단말이라는 용어는 핸드폰, NB-IoT 기기들, 센서들 뿐만 아니라 또 다른 무선 통신 기기들을 나타낼 수 있다.In particular, the present disclosure is applicable to 3GPP NR (5th generation mobile communication standard). In addition, this disclosure provides intelligent services (e.g., smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail, security and safety-related services) based on 5G communication technology and IoT-related technology. etc.) can be applied. In this disclosure, eNB may be used interchangeably with gNB for convenience of explanation. That is, a base station described as an eNB may represent a gNB. Additionally, the term terminal can refer to mobile phones, NB-IoT devices, sensors, as well as other wireless communication devices.
무선 통신 시스템은 초기의 음성 위주의 서비스를 제공하던 것에서 벗어나 예를 들어, 3GPP의 HSPA(High Speed Packet Access), LTE(Long Term Evolution 또는 E-UTRA (Evolved Universal Terrestrial Radio Access)), LTE-Advanced(LTE-A), LTE-Pro, 3GPP2의 HRPD(High Rate Packet Data), UMB(Ultra Mobile Broadband), 및 IEEE의 802.16e 등의 통신 표준과 같이 고속, 고품질의 패킷 데이터 서비스를 제공하는 광대역 무선 통신 시스템으로 발전하고 있다. Wireless communication systems have moved away from providing early voice-oriented services to, for example, 3GPP's HSPA (High Speed Packet Access), LTE (Long Term Evolution or E-UTRA (Evolved Universal Terrestrial Radio Access)), and LTE-Advanced. Broadband wireless that provides high-speed, high-quality packet data services such as communication standards such as (LTE-A), LTE-Pro, 3GPP2's High Rate Packet Data (HRPD), UMB (Ultra Mobile Broadband), and IEEE's 802.16e. It is evolving into a communication system.
광대역 무선 통신 시스템의 대표적인 예로, LTE 시스템에서는 하향링크(DL; DownLink)에서는 OFDM(Orthogonal Frequency Division Multiplexing) 방식을 채용하고 있고, 상향링크(UL; UpLink)에서는 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식을 채용하고 있다. 상향링크는 단말(UE; User Equipment 또는 MS; Mobile Station)이 기지국(eNode B 또는 BS; Base Station)으로 데이터 또는 제어신호를 전송하는 무선링크를 뜻하고, 하향링크는 기지국이 단말로 데이터 또는 제어신호를 전송하는 무선링크를 뜻한다. 상기와 같은 다중 접속 방식은, 각 사용자 별로 데이터 또는 제어정보를 실어 보낼 시간-주파수 자원을 서로 겹치지 않도록, 즉 직교성(Orthogonality)이 성립하도록, 할당 및 운용함으로써 각 사용자의 데이터 또는 제어정보를 구분한다.As a representative example of a broadband wireless communication system, the LTE system uses Orthogonal Frequency Division Multiplexing (OFDM) in the downlink (DL), and Single Carrier Frequency Division Multiple Access (SC-FDMA) in the uplink (UL). ) method is adopted. Uplink refers to a wireless link in which a terminal (UE; User Equipment or MS; Mobile Station) transmits data or control signals to a base station (eNode B or BS; Base Station), and downlink refers to a wireless link in which the base station transmits data or control signals to the terminal. It refers to a wireless link that transmits signals. The multiple access method described above differentiates each user's data or control information by allocating and operating the time-frequency resources to carry data or control information for each user so that they do not overlap, that is, orthogonality is established. .
LTE 이후의 향후 통신 시스템으로서, 즉, 5G 통신시스템은 사용자 및 서비스 제공자 등의 다양한 요구 사항을 자유롭게 반영할 수 있어야 하기 때문에 다양한 요구사항을 동시에 만족하는 서비스가 지원되어야 한다. 5G 통신시스템을 위해 고려되는 서비스로는 향상된 모바일 광대역 통신(eMBB; Enhanced Mobile BroadBand), 대규모 기계형 통신(mMTC; massive Machine Type Communication), 초신뢰 저지연 통신(URLLC; Ultra Reliability Low Latency Communication) 등이 있다. As a future communication system after LTE, that is, the 5G communication system must be able to freely reflect the various requirements of users and service providers, so services that simultaneously satisfy various requirements must be supported. Services considered for the 5G communication system include Enhanced Mobile BroadBand (eMBB), massive Machine Type Communication (mMTC), and Ultra Reliability Low Latency Communication (URLLC). There is.
일부 실시예에 따르면, eMBB는 기존의 LTE, LTE-A 또는 LTE-Pro가 지원하는 데이터 전송 속도보다 더욱 향상된 데이터 전송 속도를 제공하는 것을 목표로 할 수 있다. 예를 들어, 5G 통신시스템에서 eMBB는 하나의 기지국 관점에서 하향링크에서는 20Gbps의 최대 전송 속도(peak data rate), 상향링크에서는 10Gbps의 최대 전송 속도를 제공할 수 있어야 한다. 또한 5G 통신시스템은 최대 전송 속도를 제공하는 동시에, 증가된 단말의 실제 체감 전송 속도(User perceived data rate)를 제공해야 할 수 있다. 이와 같은 요구 사항을 만족시키기 위해, 5G 통신 시스템에서는 더욱 향상된 다중 안테나 (MIMO; Multi Input Multi Output) 전송 기술을 포함하여 다양한 송수신 기술의 향상을 요구될 수 있다. 또한 현재의 LTE가 사용하는 2GHz 대역에서 최대 20MHz 전송대역폭을 사용하여 신호를 전송하는 반면에 5G 통신시스템은 3~6GHz 또는 6GHz 이상의 주파수 대역에서 20MHz 보다 넓은 주파수 대역폭을 사용함으로써 5G 통신시스템에서 요구하는 데이터 전송 속도를 만족시킬 수 있다. According to some embodiments, eMBB may aim to provide more improved data transmission rates than those supported by existing LTE, LTE-A, or LTE-Pro. For example, in a 5G communication system, eMBB must be able to provide a peak data rate of 20Gbps in the downlink and 10Gbps in the uplink from the perspective of one base station. In addition, the 5G communication system may need to provide the maximum transmission rate and at the same time provide an increased user perceived data rate. In order to meet these requirements, the 5G communication system may require improvements in various transmission and reception technologies, including more advanced multi-antenna (MIMO; Multi Input Multi Output) transmission technology. In addition, while the current LTE transmits signals using a maximum of 20 MHz transmission bandwidth in the 2 GHz band, the 5G communication system uses a frequency bandwidth wider than 20 MHz in the 3 to 6 GHz or above 6 GHz frequency band, meeting the requirements of the 5G communication system. Data transfer speed can be satisfied.
동시에, 5G 통신시스템에서 사물 인터넷(IoT; Internet of Thing)와 같은 응용 서비스를 지원하기 위해 mMTC가 고려되고 있다. mMTC는 효율적으로 사물 인터넷을 제공하기 위해 셀 내에서 대규모 단말의 접속 지원, 단말의 커버리지 향상, 향상된 배터리 시간, 단말의 비용 감소 등이 요구될 수 있다. 사물 인터넷은 여러 가지 센서 및 다양한 기기에 부착되어 통신 기능을 제공하므로 셀 내에서 많은 수의 단말(예를 들어, 1,000,000 단말/km2)을 지원할 수 있어야 한다. 또한 mMTC를 지원하는 단말은 서비스의 특성상 건물의 지하와 같이 셀이 커버하지 못하는 음영지역에 위치할 가능성이 높으므로 5G 통신시스템에서 제공하는 다른 서비스 대비 더욱 넓은 커버리지가 요구될 수 있다. mMTC를 지원하는 단말은 저가의 단말로 구성되어야 하며, 단말의 배터리를 자주 교환하기 힘들기 때문에 10~15년과 같이 매우 긴 배터리 생명시간(battery life time)이 요구될 수 있다. At the same time, mMTC is being considered to support application services such as Internet of Things (IoT) in 5G communication systems. In order to efficiently provide the Internet of Things, mMTC may require support for access to a large number of terminals within a cell, improved coverage of terminals, improved battery time, and reduced terminal costs. Since the Internet of Things provides communication functions by attaching various sensors and various devices, it must be able to support a large number of terminals (for example, 1,000,000 terminals/km2) within a cell. Additionally, due to the nature of the service, terminals supporting mMTC are likely to be located in shadow areas that cannot be covered by cells, such as the basement of a building, so wider coverage may be required compared to other services provided by the 5G communication system. Terminals that support mMTC must be composed of low-cost terminals, and since it is difficult to frequently replace the terminal's battery, a very long battery life time, such as 10 to 15 years, may be required.
마지막으로, URLLC의 경우, 특정한 목적(mission-critical)으로 사용되는 셀룰러 기반 무선 통신 서비스로서, 로봇(Robot) 또는 기계 장치(Machinery)에 대한 원격 제어(remote control), 산업 자동화(industrial automation), 무인 비행장치(Unmanned Aerial Vehicle), 원격 건강 제어(Remote health care), 비상 상황 알림(emergency alert) 등에 사용되는 서비스 등에 사용될 수 있다. 따라서 URLLC가 제공하는 통신은 매우 낮은 저지연(초저지연) 및 매우 높은 신뢰도(초신뢰도)를 제공해야 할 수 있다. 예를 들어, URLLC을 지원하는 서비스는 0.5 밀리초보다 작은 무선 접속 지연시간(Air interface latency)를 만족해야 하며, 동시에 10-5 이하의 패킷 오류율(Packet Error Rate)의 요구사항을 가질 수 있다. 따라서, URLLC을 지원하는 서비스를 위해 5G 시스템은 다른 서비스보다 작은 전송 시간 구간(TTI; Transmit Time Interval)를 제공해야 하며, 동시에 통신 링크의 신뢰성을 확보하기 위해 주파수 대역에서 넓은 리소스를 할당해야 하는 설계사항이 요구될 수 있다.Lastly, in the case of URLLC, it is a cellular-based wireless communication service used for specific purposes (mission-critical), such as remote control of robots or machinery, industrial automation, It can be used for services such as unmanned aerial vehicles, remote health care, and emergency alerts. Therefore, the communication provided by URLLC may need to provide very low latency (ultra-low latency) and very high reliability (ultra-reliability). For example, a service supporting URLLC must satisfy an air interface latency of less than 0.5 milliseconds and may have a packet error rate of less than 10-5. Therefore, for services supporting URLLC, the 5G system must provide a smaller Transmit Time Interval (TTI) than other services, and at the same time, a design that requires allocating wide resources in the frequency band to ensure the reliability of the communication link. Specifications may be required.
전술한 5G 통신 시스템에서 고려되는 세가지 서비스들, 즉 eMBB, URLLC, mMTC는 하나의 시스템에서 다중화되어 전송될 수 있다. 이 때, 각각의 서비스들이 갖는 상이한 요구사항을 만족시키기 위해 서비스 간에 서로 다른 송수신 기법 및 송수신 파라미터를 사용할 수 있다. 다만, 전술한 mMTC, URLLC, eMBB는 서로 다른 서비스 유형의 일 예일 뿐, 본 개시의 적용 대상이 되는 서비스 유형이 전술한 예에 한정되는 것은 아니다.The three services considered in the above-described 5G communication system, namely eMBB, URLLC, and mMTC, can be multiplexed and transmitted in one system. At this time, different transmission/reception techniques and transmission/reception parameters can be used between services to satisfy the different requirements of each service. However, the above-described mMTC, URLLC, and eMBB are only examples of different service types, and the service types to which this disclosure is applied are not limited to the above-described examples.
또한, 이하에서 LTE, LTE-A, LTE Pro 또는 5G(또는 NR, 차세대 이동 통신) 시스템을 일례로서 본 개시의 실시예를 설명하지만, 유사한 기술적 배경 또는 채널형태를 갖는 여타의 통신시스템에도 본 개시의 실시예가 적용될 수 있다. 또한, 본 개시의 실시 예는 숙련된 기술적 지식을 가진 자의 판단으로써 본 개시의 범위를 크게 벗어나지 아니하는 범위에서 일부 변형을 통해 다른 통신시스템에도 적용될 수 있다.In addition, hereinafter, embodiments of the present disclosure will be described using LTE, LTE-A, LTE Pro, or 5G (or NR, next-generation mobile communication) systems as examples, but the present disclosure may also be applied to other communication systems with similar technical background or channel type. Examples of may be applied. Additionally, the embodiments of the present disclosure may be applied to other communication systems through some modifications without significantly departing from the scope of the present disclosure at the discretion of a person with skilled technical knowledge.
도 1은 본 개시의 일 실시예에 따른 BWP 전환에 따른 SPS 동작방식을 나타낸 도면이다. Figure 1 is a diagram showing an SPS operation method according to BWP conversion according to an embodiment of the present disclosure.
음성(Voice)같은 주기적인 데이터 또는 저지연을 요구하는 URLLC (Ultra Reliable and Low Latency Communications) 데이터를 전송하기 위하여 무선 통신 시스템에서 기지국은 단말에게 주기적으로 설정하는 하향링크 (기지국이 단말에게 전송함) 무선 자원인 SPS (Semi-Persistent Scheduling) 자원을 설정할 수 있다. In a wireless communication system, a base station periodically sets up a downlink (transmitted by the base station to the terminal) to transmit periodic data such as voice or URLLC (Ultra Reliable and Low Latency Communications) data that requires low latency. You can set up SPS (Semi-Persistent Scheduling) resources, which are wireless resources.
본 개시의 일 실시예에 따르면, SPS 자원의 경우 기지국이 단말에게 전송하는 RRC (Radio Resource Control) 재설정(Reconfiguration) 메시지에 의해 설정될 수 있다. SPS 자원은 소정의 BWP (Bandwidth Part)에 설정될 수 있다. 기지국은 적어도 하나의 BWP를 설정할 수 있으며, 적어도 하나의 BWP는 기지국에 의해 활성화되거나 비활성화될 수 있다. 활성화된 BWP를 Active BWP라 한다. According to an embodiment of the present disclosure, SPS resources may be configured by an RRC (Radio Resource Control) reconfiguration message transmitted from the base station to the terminal. SPS resources can be set to a predetermined BWP (Bandwidth Part). The base station may set at least one BWP, and at least one BWP may be activated or deactivated by the base station. The activated BWP is called Active BWP.
도 1의 실시예에서는 BWP A (101)와 BWP B (102)의 두 개의 BWP가 설정되고, BWP A(101)에 주기적인 SPS 전송 자원(111, 112, 113, 114, 115, 116)이 설정되고 BWP B(102)에 다른 주기적인 SPS 전송 자원 (121, 122, 123, 124, 125, 126)이 설정된 것을 나타낸다. In the embodiment of Figure 1, two BWPs, BWP A (101) and BWP B (102), are set, and BWP A (101) has periodic SPS transmission resources (111, 112, 113, 114, 115, and 116). It indicates that other periodic SPS transmission resources (121, 122, 123, 124, 125, 126) are set in BWP B (102).
도 1을 참조하면, SPS 전송 자원이 설정된 이후 기지국이 단말에게 CS-RNTI (Configured Scheduling - Radio Network Temporary Identity)를 사용하여 PDCCH (Physical Downlink Control Channel)의 DCI (Downlink Control Information) 메시지에 SPS 자원의 활성화를 지시할 수 있다. SPS 자원의 활성화가 지시되면 활성화가 지시된 SPS 전송자원이 사용될 수 있고 단말은 기지국으로부터 SPS 자원을 사용한 데이터의 수신을 수행할 수 있다. 도 1의 실시예에서는 기지국이 단말에게 CS-RNTI(131)를 사용하여 현재 Active BWP인 BWP A (101)에 설정된 SPS 전송 자원의 활성화를 지시한 것을 나타낸다. 이후 BWP A (101)에 설정된 SPS 전송 자원(111, 112)은 활성화되어 단말은 데이터 수신을 수행할 수 있다.Referring to FIG. 1, after the SPS transmission resources are set, the base station sends the UE to the UE in the DCI (Downlink Control Information) message of the PDCCH (Physical Downlink Control Channel) using CS-RNTI (Configured Scheduling - Radio Network Temporary Identity) of the SPS resources. Activation can be instructed. When activation of the SPS resource is indicated, the SPS transmission resource for which activation has been indicated can be used and the terminal can receive data using the SPS resource from the base station. The embodiment of Figure 1 shows that the base station instructs the terminal to activate the SPS transmission resource set in BWP A (101), the currently active BWP, using CS-RNTI (131). Afterwards, the SPS transmission resources 111 and 112 set in BWP A (101) are activated and the terminal can receive data.
SPS 자원을 사용한 데이터의 전송은 SPS가 설정된 BWP가 활성화 된 경우에만 수행될 수 있다. BWP B(102)가 Active BWP가 아닌 시점에는 BWP B (102)에 설정된 SPS 전송 자원(121, 122, 125, 126)은 사용되지 않을 수 있다. 뿐만 아니라 해당 SPS 자원의 정확한 위치가 설정되지 않을 수도 있다. Transmission of data using SPS resources can only be performed when the BWP with SPS configured is activated. When BWP B (102) is not Active BWP, the SPS transmission resources (121, 122, 125, 126) set in BWP B (102) may not be used. In addition, the exact location of the SPS resource may not be set.
이후에 Active BWP가 BWP B (102)로 변경되는 경우 기존 Active BWP인 BWP A(101)에 설정된 SPS 자원은 삭제(Clear)되고 BWP A의 SPS 자원(113, 114) 은 사용되지는 않는다. Active BWP인 BWP B(102)에 설정된 SPS도 즉시 활성화되지 않고 CS-RNTI(141)를 사용하여 BWP B에 설정된 SPS 전송자원을 활성화하는 경우에 SPS 자원(123, 124)이 활성화될 수 있다. 마찬가지로 이후에 Active BWP가 BWP A(101)로 다시 변경되는 경우 기존 Active BWP인 BWP B(102)에 설정된 SPS 자원은 삭제(Clear)되고 BWP B(102)의 SPS 자원(125, 126) 은 사용되지 않는다. Active BWP인 BWP A(101)에 설정된 SPS도 즉시 활성화되지 않고 CS-RNTI(151)를 사용하여 BWP B에 설정된 SPS 전송자원을 활성화하는 경우에 SPS 자원(115, 116)이 활성화될 수 있다. If Active BWP is later changed to BWP B (102), the SPS resources set in BWP A (101), the existing Active BWP, are deleted and the SPS resources (113, 114) of BWP A are not used. The SPS set in BWP B (102), which is an active BWP, is not activated immediately, but the SPS resources (123, 124) may be activated when the SPS transmission resource set in BWP B is activated using the CS-RNTI (141). Likewise, if Active BWP is later changed back to BWP A (101), the SPS resources set in BWP B (102), the existing Active BWP, will be cleared and the SPS resources (125, 126) of BWP B (102) will be used. It doesn't work. The SPS set in BWP A (101), which is an active BWP, is not activated immediately, but the SPS resources (115, 116) may be activated when the SPS transmission resource set in BWP B is activated using the CS-RNTI (151).
만약 단말의 Active BWP가 변경되는 BWP 스위치 동작이 자주 발생하는 경우 기지국은 단말에게 SPS 자원의 활성화를 지시하는 메시지(예를 들면, CS-RNTI(131, 141, 151))를 자주 보내야할 수 있다. 특히 정해진 시간에 주기적으로 Active BWP가 변경되는 동작이 수행되는 경우 반복되는 SPS 자원의 활성화를 지시하는 메시지는 PDCCH 자원의 낭비를 가져올 수 있다. Active BWP가 변경되는 동작은 네트워크 에너지 절감(Network Energy Saving, NES)을 위한 동작을 위해 자주 수행될 수 있다.If BWP switch operations that change the Active BWP of the terminal occur frequently, the base station may frequently send messages (e.g., CS-RNTI (131, 141, 151)) instructing the terminal to activate SPS resources. . In particular, when an operation in which the Active BWP is changed periodically at a set time is performed, repeated messages instructing activation of SPS resources may result in waste of PDCCH resources. The operation of changing the Active BWP can be performed frequently for network energy saving (Network Energy Saving, NES).
도 2는 본 개시의 일 실시예에 따른 BWP 전환에 따른 CG 동작방식을 나타낸 도면이다. Figure 2 is a diagram showing a CG operation method according to BWP conversion according to an embodiment of the present disclosure.
음성(Voice)같은 주기적인 데이터 또는 저지연을 요구하는 URLLC (Ultra Reliable and Low Latency Communications) 데이터를 전송하기 위하여 무선 통신시 스템에서 기지국은 단말에게 주기적으로 설정하는 상향링크 (단말이 기지국에게 전송함) 무선 자원인 CG (Configured Grant) 자원을 설정할 수 있다. In a wireless communication system, a base station periodically sets up an uplink to the terminal to transmit periodic data such as voice or URLLC (Ultra Reliable and Low Latency Communications) data that requires low latency (the terminal transmits to the base station). ) You can set the CG (Configured Grant) resource, which is a wireless resource.
본 개시의 일 실시예에 따르면, CG 자원의 경우 기지국이 단말에게 전송하는 RRC (Radio Resource Control) 재설정(Reconfiguration) 메시지에 의해 설정될 수 있다. CG 자원은 BWP (Bandwidth Part) 위에 설정될 수 있다. 기지국은 적어도 하나의 BWP를 설정할 수 있으며, 적어도 하나의 BWP는 기지국에 의해 활성화되거나 비활성화될 수 있다. 활성화된 BWP를 Active BWP라 한다. According to an embodiment of the present disclosure, CG resources may be configured by an RRC (Radio Resource Control) reconfiguration message transmitted from the base station to the terminal. CG resources can be set on BWP (Bandwidth Part). The base station may set at least one BWP, and at least one BWP may be activated or deactivated by the base station. The activated BWP is called Active BWP.
도 2의 실시예에서는 BWP A (201)와 BWP B (202)의 두 개의 BWP가 설정되고, BWP A(201)에 주기적인 CG 전송 자원(211, 212, 213, 214, 215, 216)이 설정되고 BWP B(202)에 다른 주기적인 CG 전송 자원 (221, 222, 223, 224, 225, 226)이 설정된 것을 나타낸다. In the embodiment of FIG. 2, two BWPs, BWP A (201) and BWP B (202), are set, and BWP A (201) has periodic CG transmission resources (211, 212, 213, 214, 215, and 216). It indicates that other periodic CG transmission resources (221, 222, 223, 224, 225, 226) are set in BWP B (202).
본 개시의 일 실시예에 따르면, CG 자원은 제 1 형식 CG와 제 2 형식 CG로 나뉠 수 있다. 제 1 형식 CG는 RRC 재설정 메시지에 의해 설정된 즉시 사용되는 CG 자원을 의미할 수 있으며 제 2 형식 CG는 RRC 재설정 메시지에 의해 CG 전송 자원이 설정된 이후 기지국이 단말에게 CS-RNTI (Configured Scheduling - Radio Network Temporary Identity)를 사용하여 PDCCH (Physical Downlink Control Channel)의 DCI (Downlink Control Information) 메시지에 CG 자원의 활성화를 지시하는 CG 자원을 의미할 수 있다. According to an embodiment of the present disclosure, CG resources may be divided into first type CG and second type CG. The first type CG may refer to a CG resource that is used immediately after being set by an RRC reset message, and the second type CG may refer to a CG resource that the base station provides to the UE after the CG transmission resource is set by the RRC reset message. Temporary Identity) may be used to indicate a CG resource that indicates activation of the CG resource in a DCI (Downlink Control Information) message of PDCCH (Physical Downlink Control Channel).
도 2의 실시예에서는 제 2 형식 CG 자원의 동작을 나타낸다. CG 자원의 활성화가 지시되면 활성화가 지시된 CG 전송자원은 실제로 사용될 수 있고 단말은 기지국에게 CG 자원을 사용한 데이터의 송신을 수행할 수 있다. 도 2의 실시예에서는 기지국이 단말에게 CS-RNTI(231)를 사용하여 현재 Active BWP인 BWP A(201)에 설정된 CG 전송 자원의 활성화를 지시한 것을 나타낸다. 이후 BWP A(201)에 설정된 CG 전송 자원(211, 212)은 활성화 되어 단말은 데이터 송신을 수행한다. The embodiment of Figure 2 shows the operation of the second type CG resource. When activation of a CG resource is indicated, the CG transmission resource for which activation has been indicated can actually be used and the terminal can transmit data using the CG resource to the base station. The embodiment of Figure 2 shows that the base station instructs the terminal to activate the CG transmission resource set in BWP A (201), the currently active BWP, using CS-RNTI (231). Afterwards, the CG transmission resources 211 and 212 set in BWP A (201) are activated and the terminal performs data transmission.
CG 자원을 사용한 데이터의 전송은 CG가 설정된 BWP가 활성화 된 경우에만 수행될 수 있다. BWP B(202)가 Active BWP가 아닌 시점에는 BWP B(202)에 설정된 CG 전송 자원(221, 222, 225, 226) 은 실제 사용되지 않는다. 뿐만 아니라 해당 CG 자원의 정확한 위치가 설정되지 않을 수도 있다. Transmission of data using CG resources can be performed only when the BWP with CG configured is activated. When BWP B (202) is not Active BWP, the CG transmission resources (221, 222, 225, 226) set in BWP B (202) are not actually used. In addition, the exact location of the corresponding CG resource may not be set.
이후에 Active BWP가 BWP B(202)로 변경되는 경우 Active BWP인 BWP A(201)에 설정된 CG 자원은 삭제(Clear)되고 BWP A(201)의 CG 자원(213, 214)은 사용되지는 않는다. Active BWP인 BWP B(202)에 설정된 CG도 즉시 활성화되지 않고 CS-RNTI(241)를 사용하여 BWP B(202)에 설정된 CG 전송자원을 활성화하는 경우에 CG 자원(223, 224)이 활성화될 수 있다. 마찬가지로 이후에 Active BWP가 BWP A(201)로 다시 변경되는 경우 기존 Active BWP인 BWP B(202)에 설정된 CG 자원은 삭제(Clear)되고 BWP B(202)의 CG 자원(225, 226)은 사용되지 않는다. Active BWP인 BWP A(201)에 설정된 CG도 즉시 활성화되지 않고 CS-RNTI(251)를 사용하여 BWP B(202)에 설정된 CG 전송자원을 활성화하는 경우에 CG 자원(215, 216) 이 활성화될 수 있다. If Active BWP is later changed to BWP B (202), the CG resources set in BWP A (201), which is the Active BWP, are cleared and the CG resources (213, 214) of BWP A (201) are not used. . The CG set in BWP B (202), which is an active BWP, is not activated immediately, and when the CG transmission resource set in BWP B (202) is activated using the CS-RNTI (241), the CG resources (223, 224) are activated. You can. Likewise, if Active BWP is later changed back to BWP A (201), the CG resources set in BWP B (202), the existing Active BWP, will be deleted and the CG resources (225, 226) of BWP B (202) will be used. It doesn't work. The CG set in BWP A (201), which is an active BWP, is not activated immediately, and when the CG transmission resource set in BWP B (202) is activated using the CS-RNTI (251), the CG resources (215, 216) are activated. You can.
만약 단말의 Active BWP가 변경되는 BWP 스위치 동작이 자주 발생하는 경우 기지국은 단말에게 CG 자원의 활성화를 지시하는 메시지(예를 들면, CS-RNTI(231, 241, 251))를 자주 보내야할 수 있다. 특히 정해진 시간에 주기적으로 Active BWP가 변경되는 동작이 수행되는 경우 반복되는 CG 자원의 활성화를 지시하는 메시지는 PDCCH 자원의 낭비를 가져올 수 있다. Active BWP가 변경되는 동작은 네트워크 에너지 절감(Network Energy Saving, NES)을 위한 동작을 위해 자주 수행될 수 있다.If BWP switch operations that change the UE's Active BWP occur frequently, the base station may frequently need to send messages (e.g., CS-RNTI (231, 241, 251)) instructing the UE to activate CG resources. . In particular, when an operation in which the Active BWP is changed periodically at a set time is performed, repeated messages instructing activation of CG resources may result in waste of PDCCH resources. The operation of changing the Active BWP can be performed frequently for network energy saving (Network Energy Saving, NES).
도 3은 본 개시의 일 실시예에 따른 BWP 전환에 따른 SPS 동작방식을 나타낸 도면이다. Figure 3 is a diagram showing an SPS operation method according to BWP conversion according to an embodiment of the present disclosure.
기지국은 단말에게 주기적으로 설정하는 하향링크 (기지국이 단말에게 전송함) 무선 자원인 SPS 자원을 설정하는 경우 SPS 자원은 기지국이 단말에게 전송하는 RRC 재설정 메시지에 의해 설정될 수 있다. 이 SPS 자원은 BWP 위에 설정될 수 있다. 기지국은 적어도 하나의 BWP를 설정할 수 있으며, 적어도 하나의 BWP는 기지국에 의해 활성화되거나 비활성화될 수 있다. 활성화된 BWP를 Active BWP라 한다. When the base station configures SPS resources, which are downlink (transmitted from the base station to the terminal) radio resources periodically configured to the terminal, the SPS resource can be set by an RRC reconfiguration message sent by the base station to the terminal. This SPS resource can be configured on top of BWP. The base station may set at least one BWP, and at least one BWP may be activated or deactivated by the base station. The activated BWP is called Active BWP.
도 3의 실시예에서는 BWP A (301)와 BWP B (302)의 두 개의 BWP가 설정되고, BWP A(301)에 주기적인 SPS 전송 자원(311, 312, 313, 314, 315, 316)이 설정되고 BWP B(302)에 다른 주기적인 SPS 전송 자원 (321, 322, 323, 324, 325, 326)이 설정된 것을 나타낸다. SPS 전송 자원이 설정된 이후 기지국이 단말에게 CS-RNTI (Configured Scheduling - Radio Network Temporary Identity)를 사용하여 PDCCH (Physical Downlink Control Channel)의 DCI (Downlink Control Information) 메시지에 SPS 자원의 활성화를 지시할 수 있다. SPS 자원의 활성화가 지시되면 활성화가 지시된 SPS 전송자원은 실제로 사용될 수 있고 단말은 기지국으로부터 SPS 자원을 사용한 데이터의 수신을 수행할 수 있다. 도 3의 실시예에서는 기지국이 단말에게 CS-RNTI(331)를 사용하여 현재 Active BWP인 BWP A(301)에 설정된 SPS 전송 자원의 활성화를 지시한 것을 나타낸다. 이후 BWP A에 설정된 SPS 전송 자원(311, 312)은 활성화 되어 단말은 데이터 수신을 수행한다. In the embodiment of FIG. 3, two BWPs, BWP A (301) and BWP B (302), are set, and BWP A (301) has periodic SPS transmission resources (311, 312, 313, 314, 315, and 316). It indicates that other periodic SPS transmission resources (321, 322, 323, 324, 325, 326) are set in BWP B (302). After SPS transmission resources are set, the base station can instruct the terminal to activate SPS resources in a DCI (Downlink Control Information) message of PDCCH (Physical Downlink Control Channel) using CS-RNTI (Configured Scheduling - Radio Network Temporary Identity). . When activation of SPS resources is indicated, the SPS transmission resources for which activation has been indicated can actually be used and the terminal can receive data using the SPS resources from the base station. The embodiment of Figure 3 shows that the base station instructs the terminal to activate the SPS transmission resource set in BWP A (301), the currently active BWP, using CS-RNTI (331). Afterwards, the SPS transmission resources 311 and 312 set in BWP A are activated and the terminal performs data reception.
SPS 자원을 사용한 데이터의 전송은 SPS가 설정된 BWP가 활성화 된 경우에만 수행될 수 있다. BWP B(302)가 Active BWP가 아닌 시점에는 BWP B(302)에 설정된 SPS 전송 자원(321, 322, 325, 326) 은 사용되지 않을 수 있다. 뿐만 아니라 해당 SPS 자원의 정확한 위치가 설정되지 않을 수도 있다. Transmission of data using SPS resources can only be performed when the BWP with SPS configured is activated. When BWP B (302) is not Active BWP, the SPS transmission resources (321, 322, 325, 326) set in BWP B (302) may not be used. In addition, the exact location of the SPS resource may not be set.
이후에 Active BWP가 BWP B로 변경되는 경우 기존 Active BWP인 BWP A(301)에 설정된 SPS 자원은 중지(Suspend)되고 (332) BWP A(301)의 SPS 자원(313, 314)은 사용되지 않는다. 하지만 BWP A에 설정된 SPS 자원의 위치(313, 314, 315, 316)는 단말과 기지국이 유지하며 이후 BWP A(301)가 다시 Active BWP가 되었을 때 사용할 수 있도록 준비할 수 있다. 다시 말해, 단말과 기지국은 BWP A(301)에 설정된 SPS 자원에 관한 설정 정보를 그대로 유지, 저장, 또는 비활성화할 수 있다. If Active BWP is later changed to BWP B, the SPS resources set in BWP A (301), the existing Active BWP, are suspended (332) and the SPS resources (313, 314) of BWP A (301) are not used. . However, the locations of SPS resources (313, 314, 315, 316) set in BWP A are maintained by the terminal and base station, and can be prepared for use when BWP A (301) becomes Active BWP again. In other words, the terminal and the base station can maintain, store, or deactivate the configuration information regarding the SPS resources configured in BWP A (301).
Active BWP인 BWP B(302)에 설정된 SPS의 경우 이전에 활성화 되었던 적이 있었다면 CS-RNTI를 사용한 활성화 단계 없이 즉시 SPS 자원 (323, 324)을 이용한 데이터 전송이 재개(333)될 수 있다. 마찬가지로 이후에 Active BWP가 BWP A(301)로 다시 변경되는 경우 기존 Active BWP인 BWP B(302)에 설정된 SPS 자원은 중지(Suspend)되고 (343) BWP B(302)의 SPS 자원(325, 326)은 사용되지 않는다. 하지만 BWP B에 설정된 SPS 자원(325, 326)의 위치는 단말과 기지국이 유지하며 이후 BWP B(302)가 다시 Active BWP가 되었을 때 사용할 수 있도록 준비할 수 있다. In the case of SPS set in BWP B (302), which is an active BWP, if it has been previously activated, data transmission using SPS resources (323, 324) can be resumed (333) immediately without an activation step using CS-RNTI. Likewise, if Active BWP is later changed back to BWP A (301), the SPS resources set in BWP B (302), the existing Active BWP, are suspended (343) and the SPS resources (325, 326) of BWP B (302) ) is not used. However, the location of the SPS resources (325, 326) set in BWP B are maintained by the terminal and the base station, and can be prepared for use when BWP B (302) becomes Active BWP again.
Active BWP인 BWP A(301)에 설정된 SPS의 경우 이전에 활성화 되었던 적이 있었기 때문에 CS-RNTI를 사용한 활성화 단계 없이 즉시 SPS 자원 (315, 316)이 재개(342)될 수 있다. In the case of the SPS set in BWP A (301), which is an active BWP, the SPS resources (315, 316) can be resumed (342) immediately without an activation step using CS-RNTI because it has been activated before.
도 3의 실시예에서 제안한 방식을 따르면 단말의 Active BWP가 변경되는 BWP 스위치 동작이 자주 발생하는 경우에도 기지국은 단말에게 SPS 자원의 활성화를 지시하는 메시지(예를 들면, CS-RNTI (331))을 자주 보낼 필요는 없다. 특히 정해진 시간에 주기적으로 Active BWP가 변경되는 동작이 수행되는 경우 반복되는 SPS 자원의 활성화를 지시하는 메시지는 PDCCH 자원의 낭비의 문제를 줄일 수 있는 장점이 있다. According to the method proposed in the embodiment of FIG. 3, even when BWP switch operations that change the Active BWP of the terminal occur frequently, the base station sends a message (e.g., CS-RNTI (331)) instructing the terminal to activate SPS resources. There is no need to send frequently. In particular, when an operation in which the Active BWP is changed periodically at a set time is performed, a message instructing repeated activation of SPS resources has the advantage of reducing the problem of waste of PDCCH resources.
본 개시의 일 실시예에 따르면, 이전에 활성화 된 SPS 자원이 그 SPS 자원이 속한 BWP가 Active BWP가 되지 않는 경우 해당 SPS 자원을 사용한 수신을 중지하고 이후 Active BWP가 되는 경우에 별도의 활성화 과정 없이 SPS 자원을 재개하는 동작을 수행하는 SPS의 형식(Type)이 별도로 설정될 수 있다. According to an embodiment of the present disclosure, if the previously activated SPS resource does not become Active BWP, the BWP to which the SPS resource belongs stops receiving using the SPS resource and later becomes Active BWP without a separate activation process. The type of SPS that performs the operation of resuming SPS resources may be set separately.
도 4는 본 개시의 일 실시예에 따른 BWP 전환에 따른 CG 동작방식을 나타낸 도면이다. Figure 4 is a diagram showing a CG operation method according to BWP conversion according to an embodiment of the present disclosure.
기지국은 단말에게 주기적으로 설정하는 상향링크 (단말이 기지국에게 전송함) 무선 자원인 CG 자원을 설정하는 경우 CG 자원은 기지국이 단말에게 전송하는 RRC 재설정 메시지에 의해 설정될 수 있다. 이 CG 자원은 BWP 위에 설정될 수 있다. 기지국은 적어도 하나의 BWP를 설정할 수 있으며, 적어도 하나의 BWP는 기지국에 의해 활성화되거나 비활성화될 수 있다. 활성화된 BWP를 Active BWP라 한다. When the base station configures the CG resource, which is an uplink (transmitted from the terminal to the base station) radio resource periodically configured to the terminal, the CG resource may be set by an RRC reconfiguration message transmitted by the base station to the terminal. This CG resource can be set on top of BWP. The base station may set at least one BWP, and at least one BWP may be activated or deactivated by the base station. The activated BWP is called Active BWP.
도 4의 실시예에서는 BWP A (401)와 BWP B (402)의 두 개의 BWP가 설정되고, BWP A(401)에 주기적인 CG 전송 자원(411, 412, 413, 414, 415, 416)이 설정되고 BWP B(402)에 다른 주기적인 CG 전송 자원 (421, 422, 423, 424, 425, 426)이 설정된 것을 나타낸다.In the embodiment of FIG. 4, two BWPs, BWP A (401) and BWP B (402), are set, and periodic CG transmission resources (411, 412, 413, 414, 415, 416) are provided in BWP A (401). It indicates that other periodic CG transmission resources (421, 422, 423, 424, 425, 426) are set in BWP B (402).
본 개시의 일 실시예에 따르면, CG 자원은 제 1 형식 CG와 제 2 형식 CG로 나뉠 수 있다. 제 1 형식 CG는 RRC 재설정 메시지에 의해 설정된 즉시 사용되는 CG 자원을 의미하며 제 2 형식 CG는 RRC 재설정 메시지에 의해 CG 전송 자원이 설정된 이후 기지국이 단말에게 CS-RNTI (Configured Scheduling - Radio Network Temporary Identity)를 사용하여 PDCCH (Physical Downlink Control Channel)의 DCI (Downlink Control Information) 메시지에 CG 자원의 활성화를 지시하는 CG 자원을 의미할 수 있다. According to an embodiment of the present disclosure, CG resources may be divided into first type CG and second type CG. The first format CG refers to a CG resource that is used immediately after being set by an RRC reset message, and the second format CG refers to a CS-RNTI (Configured Scheduling - Radio Network Temporary Identity) that the base station provides to the UE after the CG transmission resource is set by the RRC reset message. ) can be used to indicate a CG resource that indicates activation of the CG resource in a DCI (Downlink Control Information) message of PDCCH (Physical Downlink Control Channel).
도 4의 실시예에서는 제 2 형식 CG 자원의 동작을 나타낸다. CG 자원의 활성화가 지시되면 활성화가 지시된 CG 전송자원은 실제로 사용될 수 있고 단말은 기지국에게 CG 자원을 사용한 데이터의 송신을 수행할 수 있다. 도 4의 실시예에서는 기지국이 단말에게 CS-RNTI(431)를 사용하여 현재 Active BWP인 BWP A(401)에 설정된 CG 전송 자원의 활성화를 지시한 것을 나타낸다. 이후 BWP A에 설정된 CG 전송 자원(411, 412)는 활성화 되어 단말은 데이터 송신을 수행한다. The embodiment of Figure 4 shows the operation of the second type CG resource. When activation of a CG resource is indicated, the CG transmission resource for which activation has been indicated can actually be used and the terminal can transmit data using the CG resource to the base station. The embodiment of Figure 4 shows that the base station instructs the terminal to activate the CG transmission resource set in BWP A (401), the currently active BWP, using CS-RNTI (431). Afterwards, the CG transmission resources 411 and 412 set in BWP A are activated and the terminal performs data transmission.
CG 자원을 사용한 데이터의 전송은 CG가 설정된 BWP가 활성화 된 경우에만 수행될 수 있다. BWP B(402)가 Active BWP가 아닌 시점에는 BWP B(402)에 설정된 CG 전송 자원(421, 422, 425, 426) 은 실제 사용되지 않는다. 뿐만 아니라 해당 CG 자원의 정확한 위치가 설정되지 않을 수도 있다. Transmission of data using CG resources can be performed only when the BWP with CG configured is activated. When BWP B (402) is not Active BWP, the CG transmission resources (421, 422, 425, 426) set in BWP B (402) are not actually used. In addition, the exact location of the corresponding CG resource may not be set.
이후에 Active BWP가 BWP B로 변경되는 경우 기존 Active BWP인 BWP A(401)에 설정된 CG 자원은 중지(Suspend)되고 (432) BWP A의 CG 자원은 사용되지 않는다. (413, 414) 하지만 BWP A에 설정된 CG 자원의 위치(413, 414, 415, 416)는 단말과 기지국이 유지하며 이후 BWP A(401)가 다시 Active BWP가 되었을 때 사용할 수 있도록 준비할 수 있다. 다시 말해, 단말과 기지국은 BWP A(401)에 설정된 SPS 자원에 관한 설정 정보를 그대로 유지, 저장, 또는 비활성화할 수 있다.If Active BWP is later changed to BWP B, the CG resources set in BWP A (401), the existing Active BWP, are suspended (432) and the CG resources of BWP A are not used. (413, 414) However, the location of the CG resources (413, 414, 415, 416) set in BWP A are maintained by the terminal and base station, and can be prepared for use when BWP A (401) becomes Active BWP again. . In other words, the terminal and the base station can maintain, store, or deactivate the configuration information regarding the SPS resources configured in BWP A (401).
Active BWP인 BWP B(402)에 설정된 CG의 경우 이전에 활성화 되었던 적이 있었다면 CS-RNTI를 사용한 활성화 단계 없이 즉시 CG 자원 (423, 424)을 이용한 데이터 전송이 재개(433)될 수 있다. 마찬가지로 이후에 Active BWP가 BWP A(401)로 다시 변경되는 경우 기존 Active BWP인 BWP B(402)에 설정된 CG 자원은 중지(Suspend)되고 (443) BWP B(402)의 CG 자원(425, 426)은 사용되지 않는다. 하지만 BWP B(402)에 설정된 CG 자원의 위치(425, 426)는 단말과 기지국이 유지하며 이후 BWP B(402)가 다시 Active BWP가 되었을 때 사용할 수 있도록 준비할 수 있다. In the case of a CG set in BWP B (402), which is an active BWP, if it has been previously activated, data transmission using CG resources (423, 424) can be resumed (433) immediately without an activation step using CS-RNTI. Likewise, if Active BWP is later changed back to BWP A (401), the CG resources set in BWP B (402), which is the existing Active BWP, are suspended (443) and the CG resources (425, 426) of BWP B (402) ) is not used. However, the locations of CG resources (425, 426) set in BWP B (402) are maintained by the terminal and base station, and can be prepared for use when BWP B (402) becomes Active BWP again.
Active BWP인 BWP A(401)에 설정된 CG의 경우 이전에 활성화 되었던 적이 있었기 때문에 CS-RNTI를 사용한 활성화 단계 없이 즉시 CG 자원 (415, 416)이 재개(442)될 수 있다. 도 4의 실시예에서 제안한 방식을 따르면 단말의 Active BWP가 변경되는 BWP 스위치 동작이 자주 발생하는 경우에도 기지국은 단말에게 CG 자원의 활성화를 지시하는 메시지(예를 들면, CS-RNTI(431))을 자주 보낼 필요는 없다. 특히 정해진 시간에 주기적으로 Active BWP가 변경되는 동작이 수행되는 경우 반복되는 CG 자원의 활성화를 지시하는 메시지는 PDCCH 자원의 낭비의 문제를 줄일 수 있는 장점이 있다.In the case of the CG set in BWP A (401), which is an active BWP, since it has previously been activated, the CG resources (415, 416) can be resumed (442) immediately without an activation step using CS-RNTI. According to the method proposed in the embodiment of FIG. 4, even when BWP switch operations that change the Active BWP of the terminal occur frequently, the base station sends a message (e.g., CS-RNTI (431)) instructing the terminal to activate CG resources. There is no need to send frequently. In particular, when an operation in which the Active BWP is changed periodically at a set time is performed, a message instructing repeated activation of CG resources has the advantage of reducing the problem of waste of PDCCH resources.
본 개시의 일 실시예에 따르면, 이전에 활성화 된 CG 자원이 그 CG 자원이 속한 BWP가 Active BWP가 되지 않는 경우 해당 CG 자원을 사용한 수신을 중지하고 이후 Active BWP가 되는 경우에 별도의 활성화 과정 없이 CG 자원을 재개하는 동작을 수행하는 CG의 형식(Type)이 별도로 설정될 수 있다. According to an embodiment of the present disclosure, if the previously activated CG resource does not become Active BWP, the BWP to which the CG resource belongs stops receiving using the CG resource, and if it later becomes Active BWP, it is activated without a separate activation process. The type (Type) of the CG that performs the operation of resuming CG resources may be set separately.
도 5는 본 개시의 일 실시예에 따른 SPS 또는 CG의 형식을 설정하는 메시지 형식을 나타낸 도면이다.Figure 5 is a diagram showing a message format for setting the format of SPS or CG according to an embodiment of the present disclosure.
본 개시의 일 실시예에 따르면, CG 자원은 제 1 형식 CG와 제 2 형식 CG로 나뉠 수 있다. 제 1 형식 CG는 RRC 재설정 메시지에 의해 설정된 즉시 사용되는 CG 자원을 의미하며 제 2 형식 CG는 RRC 재설정 메시지에 의해 CG 전송 자원이 설정된 이후 기지국이 단말에게 CS-RNTI (Configured Scheduling - Radio Network Temporary Identity)를 사용하여 PDCCH (Physical Downlink Control Channel)의 DCI (Downlink Control Information) 메시지에 CG 자원의 활성화를 지시하는 CG 자원을 의미할 수 있다. According to an embodiment of the present disclosure, CG resources may be divided into first type CG and second type CG. The first format CG refers to a CG resource that is used immediately after being set by an RRC reset message, and the second format CG refers to a CS-RNTI (Configured Scheduling - Radio Network Temporary Identity) that the base station provides to the UE after the CG transmission resource is set by the RRC reset message. ) can be used to indicate a CG resource that indicates activation of the CG resource in a DCI (Downlink Control Information) message of PDCCH (Physical Downlink Control Channel).
제 2 형식 CG는 BWP가 비활성화되어 Active BWP가 아닌 BWP가 되는 경우에 삭제(clear)될 수 있다. 그 외에 도 4에서 제안한 것처럼 CS-RNTI를 사용하여 PDCCH의 DCI 메시지에 CG 자원의 활성화를 지시하는 CG 자원이지만 BWP가 비활성화 되더라도 삭제되지 않고 중지(Suspend)된 후 이후 Active BWP가 된 후에 다시 재개(Resume)하는 CG의 형식이 새롭게 정의될 수 있다.The second type CG can be cleared when the BWP is deactivated and becomes a BWP rather than an Active BWP. In addition, as suggested in Figure 4, it is a CG resource that uses CS-RNTI to instruct the activation of the CG resource in the DCI message of the PDCCH, but even if the BWP is deactivated, it is not deleted but is suspended and then resumed after becoming Active BWP ( The format of CG that Resume can be newly defined.
본 개시의 일 실시예에 따르면, CS-RNTI를 사용하여 PDCCH의 DCI 메시지에 CG 자원의 활성화를 지시하는 CG 자원이지만 BWP가 비활성화 되더라도 삭제되지 않고 중지(Suspend)된 후 이후 Active BWP가 된 후에 다시 재개(Resume)하는 CG 형식을 제 3 형식이라 할 수 있다. According to an embodiment of the present disclosure, it is a CG resource that uses CS-RNTI to indicate activation of the CG resource in the DCI message of the PDCCH, but even if the BWP is deactivated, it is not deleted and is suspended and then re-activated after becoming Active BWP. The CG format that resumes can be called the third format.
SPS는 BWP가 비활성화되어 Active BWP가 아닌 BWP가 되는 경우에 삭제(clear)될 수 있다. 실시예에 따라 이 SPS를 제 1형식 SPS라 불릴 수 있다. 그 외에 도 3에서 제안한 것처럼 CS-RNTI를 사용하여 PDCCH의 DCI 메시지에 SPS 자원의 활성화를 지시하는 SPS 자원이지만 BWP가 비활성화 되더라도 삭제되지 않고 중지(Suspend)된 후 이후 Active BWP가 된 후에 다시 재개(Resume)하는 SPS의 형식이 새롭게 정의될 수 있다. SPS can be cleared when the BWP is deactivated and becomes a BWP rather than an Active BWP. Depending on the embodiment, this SPS may be called a first type SPS. In addition, as suggested in Figure 3, it is an SPS resource that uses CS-RNTI to instruct the activation of the SPS resource in the DCI message of the PDCCH, but even if the BWP is deactivated, it is not deleted but is suspended and then resumed after becoming Active BWP ( The format of SPS (Resume) can be newly defined.
본 개시의 일 실시예에 따르면, CS-RNTI를 사용하여 PDCCH의 DCI 메시지에 SPS 자원의 활성화를 지시하는 SPS 자원이지만 BWP가 비활성화 되더라도 삭제되지 않고 중지(Suspend)된 후 이후 Active BWP가 된 후에 다시 재개(Resume)하는 SPS 형식을 제 2형식 SPS라 할 수 있다.According to an embodiment of the present disclosure, it is an SPS resource that uses CS-RNTI to indicate activation of the SPS resource in the DCI message of the PDCCH, but even if the BWP is deactivated, it is not deleted and is suspended and then restarted after becoming Active BWP. The SPS format that resumes can be called the second type SPS.
여러가지 형식의 CG나 SPS가 정의될 수 있고 각각 다른 특징을 가질 수 있지만, 주기적으로 설정되는 상향링크 또는 하향링크 자원으로써 주기 등의 자원 정보가 설정된다는 것은 공통점일 수 있다. 본 개시의 일 실시예에 따르면, 각각의 CG 또는 SPS 자원의 형식을 변경하는 동작이 필요할 수 있다. CG 또는 SPS의 형식을 변경하는 것은 기지국의 무선 자원 운용상황에 따라 메시지 전송 수의 감소에 의한 사용되는 무선 자원 절감, 비활성되는 무선 자원을 최소화함으로써 저지연 전송을 가능하게 하는 등의 효과를 가져올 수 있다. Various types of CG or SPS may be defined and each may have different characteristics, but what they have in common is that resource information such as the period is set as an uplink or downlink resource that is set periodically. According to an embodiment of the present disclosure, an operation to change the format of each CG or SPS resource may be required. Changing the format of CG or SPS can bring about effects such as reducing the number of used wireless resources by reducing the number of message transmissions and enabling low-latency transmission by minimizing inactive wireless resources, depending on the wireless resource operation status of the base station. there is.
이를 위해 도 5의 실시예에서는 CG 또는 SPS의 형식을 변경하는 메시지의 형식을 나타낸다. 도 5의 실시예에서는 기지국이 단말에게 전송하는 MAC CE (Medium Access Control - Control Element) 형식의 CG/SPS 형식 변경 메시지를 나타낸다. 물론 MAC CE 형식이 아닌 다른 메시지 형식을 통해 CG/SPS 형식의 변경 또한 가능하다. 예를 들면 MAC CE가 아닌 RRC 시그널링과 같은 메시지를 통해 CG/SPS 형식의 변경 또한 가능할 수 있다.To this end, the embodiment of FIG. 5 shows the format of a message that changes the format of CG or SPS. The embodiment of Figure 5 shows a CG/SPS format change message in MAC CE (Medium Access Control - Control Element) format transmitted from the base station to the terminal. Of course, it is also possible to change the CG/SPS format through a message format other than the MAC CE format. For example, change in CG/SPS format may also be possible through messages such as RRC signaling rather than MAC CE.
본 개시의 일 실시예에 따르면, CG/SPS 형식 변경 메시지는 1비트의 CG/SPS 필드 (510), 5비트의 인덱스 (Index) 필드 (520), 2비트의 형식(Type) 필드 (530) 중 전부 또는 일부를 가질 수 있다. 물론 상기 예시에 제한되지 않으며 각 필드의 비트수는 변경될 수 있다. According to an embodiment of the present disclosure, the CG/SPS format change message includes a 1-bit CG/SPS field 510, a 5-bit Index field 520, and a 2-bit Type field 530. You can have all or part of them. Of course, it is not limited to the above example and the number of bits in each field can be changed.
본 개시의 일 실시예에 따르면, CG/SPS 필드(510)는 형식을 변경할 자원의 종류가 상향링크 CG인지 하향링크 SPS인지를 나타내는 필드를 의미하며 0과 1의 값은 각각 CG인지 SPS인지를 또는 의미하는 값일 수 있다. (반대로 0이 SPS, 1이 CG를 의미할 수도 있음) 인덱스 필드(520)는 형식을 변경할 CG 또는 SPS의 인덱스 값을 나타낼 수 있다.According to an embodiment of the present disclosure, the CG/SPS field 510 refers to a field indicating whether the type of resource whose format is to be changed is uplink CG or downlink SPS, and the values of 0 and 1 indicate whether it is CG or SPS, respectively. Or it may be a meaningful value. (Conversely, 0 may mean SPS and 1 may mean CG.) The index field 520 may indicate the index value of CG or SPS whose format is to be changed.
본 개시의 일 실시예에 따르면, 인덱스 필드(520)에 지시되는 값은 MAC 장치 내에서 유일한(unique)한 CG 또는 SPS의 인덱스 (다른 실시예에서는 Identity일 수도 있음) 값일 수 있다. 또한 본 개시의 일 실시예에 따르면, 인덱스 필드(520)에 지시되는 값은 이 MAC CE가 전송되는 BWP 내에서 유일한 CG 또는 SPS의 인덱스 값일 수 있다. According to an embodiment of the present disclosure, the value indicated in the index field 520 may be a unique CG or SPS index value (in another embodiment, it may be Identity) within the MAC device. Additionally, according to an embodiment of the present disclosure, the value indicated in the index field 520 may be the index value of a unique CG or SPS within the BWP through which this MAC CE is transmitted.
본 개시의 일 실시예에 따르면, 형식 필드(530)는 해당 CG 또는 SPS가 어떤 형식의 CG 또는 SPS인지를 설정해주는 값일 수 있다. 예를 들어, 형식 필드(530)는 CG의 경우 앞서 기술한 제 1 형식, 제 2 형식, 제 3 형식 중 하나의 형식에 대응하는 값이 설정될 수 있다. CG/SPS 형식 변경 MAC CE는 기지국이 단말에게 전송할 수 있다. 이를 위해 사전에 RRC 재설정 메시지에 CG 또는 SPS의 설정정보가 설정될 수 있고 MAC CE에 의해 동적으로(dynamic) CG 또는 SPS의 형식이 변경될 수도 있다. According to an embodiment of the present disclosure, the format field 530 may be a value that sets what type of CG or SPS the corresponding CG or SPS is. For example, in the case of CG, the format field 530 may be set to a value corresponding to one of the first format, second format, and third format described above. CG/SPS format change MAC CE can be transmitted from the base station to the terminal. For this purpose, the configuration information of the CG or SPS may be set in the RRC reset message in advance, and the format of the CG or SPS may be dynamically changed by the MAC CE.
본 개시의 일 실시예에 따르면, 단말이 CG/SPS 형식 변경 MAC CE를 수신하면 해당되는 CG 또는 SPS의 형식을 변경할 수 있다. 뿐만 아니라 기지국이 단말에게 CG 또는 SPS의 형식을 설정할 때 초기값으로 CG 또는 SPS의 형식을 설정할 수 있다. 예를 들면, 기지국이 단말에게 디폴트 CG 또는 SPS 형식을 설정할 수도 있다 CG 또는 SPS의 형식이 MAC CE에 의해 변경될 수 있는 경우, CG 또는 SPS 설정 정보는 형식에 관계없이 필요한 모든 정보가 설정될 수 있으나, 적용되는 형식에 따라 그 중 일부의 정보만 실제 사용될 수 있다. 예를 들어 제 2 형식 CG의 경우 사용되는 MCS (Modulation and Coding Scheme) 값이 RRC 메시지에 의해서 설정될 수 있으나 제 2형식 CG일 때는 MCS 값을 무시하고 사용하지 않고 DCI에 의해 지시되는 MCS 값을 적용할 수 있다. 하지만 제 1형식 CG로 형식이 변경되었을 대에는 MCS 값을 사용할 수 있다.According to an embodiment of the present disclosure, when the terminal receives a CG/SPS format change MAC CE, it can change the format of the corresponding CG or SPS. In addition, when the base station sets the CG or SPS format to the terminal, the CG or SPS format can be set as the initial value. For example, the base station may set the default CG or SPS format to the terminal. If the format of CG or SPS can be changed by MAC CE, all necessary information can be set in the CG or SPS configuration information regardless of format. However, depending on the format applied, only some of the information can be actually used. For example, in the case of Type 2 CG, the MCS (Modulation and Coding Scheme) value used can be set by an RRC message, but in Type 2 CG, the MCS value is ignored and not used, and the MCS value indicated by DCI is used. It can be applied. However, when the format is changed to Type 1 CG, the MCS value can be used.
도 6은 본 개시의 일 실시예에 따른 SPS 그룹의 동작방식을 나타낸 도면이다.Figure 6 is a diagram showing the operation method of an SPS group according to an embodiment of the present disclosure.
본 개시의 일 실시예에 따르면, 기지국은 단말에게 주기적으로 설정하는 하향링크 (기지국이 단말에게 전송함) 무선 자원인 SPS 자원을 설정하는 경우 SPS 자원은 기지국이 단말에게 전송하는 RRC 재설정 메시지에 의해 설정될 수 있다. SPS 자원은 BWP 위에 설정될 수 있다. 기지국은 적어도 하나의 BWP를 설정할 수 있으며, 적어도 하나의 BWP는 기지국에 의해 활성화되거나 비활성화될 수 있다. 활성화된 BWP를 Active BWP라 한다. According to an embodiment of the present disclosure, when the base station sets up an SPS resource, which is a downlink radio resource (transmitted from the base station to the terminal) periodically configured to the terminal, the SPS resource is set by an RRC reset message sent by the base station to the terminal. can be set. SPS resources can be configured on top of BWP. The base station may set at least one BWP, and at least one BWP may be activated or deactivated by the base station. The activated BWP is called Active BWP.
도 6의 실시예에서는 BWP A (601)와 BWP B (602)의 두 개의 BWP가 설정되고, BWP A(601)에 주기적인 SPS 전송 자원(611, 612, 613, 614)이 설정되고 BWP B(602)에 다른 주기적인 SPS 전송 자원 (621, 622, 623, 624)이 설정된 것을 나타낸다. BWP A(601)에 설정된 SPS는 2의 SPS 인덱스 값(603) 을 가지고 BWP B(602)에 설정된 SPS는 3의 SPS 인덱스값(604)을 가지는 것으로 가정한다. 인덱스 2(603)의 SPS와 인덱스 3(604)의 SPS는 동일 SPS 그룹으로 설정되고 어떤 그룹인지를 나타내는 1의 SPS 그룹 인덱스(605)를 가지는 것을 나타낸다. In the embodiment of Figure 6, two BWPs, BWP A (601) and BWP B (602), are set, periodic SPS transmission resources (611, 612, 613, 614) are set in BWP A (601), and BWP B (602) indicates that other periodic SPS transmission resources (621, 622, 623, 624) are set. It is assumed that the SPS set in BWP A (601) has an SPS index value (603) of 2, and the SPS set in BWP B (602) has an SPS index value (604) of 3. The SPS of index 2 (603) and the SPS of index 3 (604) are set to the same SPS group and have an SPS group index (605) of 1 indicating which group it is.
본 개시의 일 실시예에 따르면, 동일 SPS 그룹의 SPS 자원은 동시에 활성화(Active)되거나 비활성화(Deactivation)될 수 있다. 또한 본 개시의 일 실시예에 따르면, SPS 그룹의 설정은 RRC 재설정 메시지에 의해서 설정될 수 있다. According to an embodiment of the present disclosure, SPS resources of the same SPS group may be activated or deactivated at the same time. Additionally, according to an embodiment of the present disclosure, the SPS group can be set by an RRC reset message.
SPS 전송 자원이 설정된 이후 기지국이 단말에게 CS-RNTI (Configured Scheduling - Radio Network Temporary Identity)를 사용하여 PDCCH (Physical Downlink Control Channel)의 DCI (Downlink Control Information) 메시지에 SPS 그룹의 활성화를 지시할 수 있다. SPS 그룹의 활성화는 DCI 내에 포함된 SPS 그룹 인덱스에 기초하여 어떤 SPS 그룹의 SPS 자원이 활성화를 의미하는지를 표시함으로써 수행될 수 있다. SPS 그룹의 활성화가 지시되면 해당 SPS의 그룹 내의 모든 SPS 전송자원이 활성화될 수 있다. 그리고 DCI 메시지에 각각의 SPS 전송자원의 설정 정보를 포함하여 정확한 자원의 위치 및 기타 설정정보를 설정할 수 있다. After the SPS transmission resources are set, the base station can instruct the terminal to activate the SPS group in the DCI (Downlink Control Information) message of the PDCCH (Physical Downlink Control Channel) using CS-RNTI (Configured Scheduling - Radio Network Temporary Identity). . Activation of an SPS group can be performed by indicating which SPS group's SPS resource is meant to be activated based on the SPS group index included in the DCI. When activation of an SPS group is indicated, all SPS transmission resources within the corresponding SPS group may be activated. And by including the configuration information of each SPS transmission resource in the DCI message, the exact location of the resource and other configuration information can be set.
도 6의 실시예에서는 기지국이 단말에게 CS-RNTI(631)를 사용하여 1의 SPS 인덱스(605)인 SPS 그룹의 활성화를 지시한 것을 나타낸다. 이후 BWP A(601)에 설정된 SPS 전송 자원(611, 612)는 활성화 되어 단말은 데이터 수신을 수행한다. SPS 자원을 사용한 데이터의 전송은 SPS가 설정된 BWP가 활성화 된 경우에만 수행될 수 있다. BWP B(602)는 이 시점에 Active BWP가 아니기 때문에 BWP B(602)에 설정된 3의 SPS 인덱스(604)를 가지는 SPS 자원은 자원 초기화 (Initialization)에 의한 활성화(Activation)가 되자마자 즉시 중지(Suspend)되어 (625) SPS 전송 자원(621, 622)을 사용할 수 없게 된다. The embodiment of FIG. 6 shows that the base station instructs the terminal to activate the SPS group with an SPS index 605 of 1 using the CS-RNTI 631. Afterwards, the SPS transmission resources 611 and 612 set in BWP A (601) are activated and the terminal performs data reception. Transmission of data using SPS resources can only be performed when the BWP with SPS configured is activated. Since BWP B (602) is not an Active BWP at this point, the SPS resource with an SPS index (604) of 3 set in BWP B (602) is immediately stopped as soon as it is activated by resource initialization ( Suspended (625), making SPS transmission resources (621, 622) unusable.
이후에 Active BWP가 BWP B(602)로 변경되는 경우 기존 Active BWP인 BWP (601)A에 설정된 SPS 자원은 중지(Suspend)되고 (632) BWP A(601)의 SPS 자원(613, 614) 은 사용되지 않는다. 하지만 BWP A에 설정된 SPS 자원의 위치(613, 614)는 단말과 기지국이 유지하며 이후 BWP A가 다시 Active BWP가 되었을 때 사용할 수 있도록 준비할 수 있다. 다시 말해, 단말과 기지국은 BWP A(601)에 설정된 SPS 자원에 관한 설정 정보를 그대로 유지, 저장, 또는 비활성화할 수 있다.If Active BWP is later changed to BWP B (602), the SPS resources set in BWP (601)A, the existing Active BWP, are suspended (632) and the SPS resources (613, 614) of BWP A (601) are suspended. Not used. However, the location of the SPS resources (613, 614) set in BWP A are maintained by the terminal and the base station and can be prepared for use when BWP A becomes Active BWP again. In other words, the terminal and the base station can maintain, store, or deactivate the configuration information regarding the SPS resources configured in BWP A (601).
Active BWP인 BWP B(602)에 설정된 SPS의 경우 이전에 SPS 그룹이 활성화 되었기 때문에 CS-RNTI를 사용한 활성화 단계 없이 즉시 SPS 자원 (623, 624)이 재개(633)될 수 있다. 이후에 기지국이 단말에게 CS-RNTI(641)를 사용하여 PDCCH의 DCI 메시지에 1의 SPS 그룹 인덱스(605)를 갖는 SPS 그룹의 비활성화를 지시할 수 있다. SPS 그룹의 비활성화는 DCI 내에 SPS 그룹 인덱스를 포함하여 어떤 SPS 그룹의 SPS 자원의 비활성화를 의미하는지를 나타낼 수 있고 SPS 그룹의 비활성화가 지시되면 해당 SPS의 그룹 내의 모든 SPS 전송자원이 비활성화될 수 있다. 이렇게 SPS 그룹이 설정되어 활성화 및 비활성화가 되는 동작은 SPS 전송자원의 활성화를 위한 별도의 메시지 전송에 의한 무선 자원 낭비를 줄일 수 있는 장점이 있다.In the case of the SPS set in BWP B (602), which is an active BWP, the SPS resources (623, 624) can be resumed (633) immediately without an activation step using CS-RNTI because the SPS group was previously activated. Afterwards, the base station may instruct the UE to deactivate the SPS group with an SPS group index 605 of 1 in the DCI message of the PDCCH using the CS-RNTI 641. Deactivation of an SPS group can indicate deactivation of SPS resources of which SPS group by including an SPS group index in the DCI, and when deactivation of an SPS group is indicated, all SPS transmission resources within the group of the corresponding SPS may be deactivated. This operation of activating and deactivating an SPS group by setting it has the advantage of reducing the waste of wireless resources caused by transmitting a separate message to activate SPS transmission resources.
도 7은 본 개시의 일 실시예에 따른 CG 그룹의 동작방식을 나타낸 도면이다.Figure 7 is a diagram showing the operation method of a CG group according to an embodiment of the present disclosure.
본 개시의 일 실시예에 따르면, 기지국은 단말에게 주기적으로 설정하는 상향링크 (단말이 기지국에게 전송함) 무선 자원인 CG 자원을 설정하는 경우 CG 자원은 기지국이 단말에게 전송하는 RRC 재설정 메시지에 의해 설정될 수 있다. 이 CG 자원은 BWP 위에 설정될 수 있다. 기지국은 적어도 하나의 BWP를 설정할 수 있으며, 적어도 하나의 BWP는 기지국에 의해 활성화되거나 비활성화될 수 있다. 활성화된 BWP를 Active BWP라 한다. According to an embodiment of the present disclosure, when the base station sets up a CG resource, which is an uplink (transmitted from the terminal to the base station) radio resource periodically configured to the terminal, the CG resource is configured by an RRC reset message transmitted by the base station to the terminal. can be set. This CG resource can be set on top of BWP. The base station may set at least one BWP, and at least one BWP may be activated or deactivated by the base station. The activated BWP is called Active BWP.
도 7의 실시예에서는 BWP A (701)와 BWP B (702)의 두 개의 BWP가 설정되고, BWP A(701)에 주기적인 CG 전송 자원(711, 712, 713, 714)이 설정되고 BWP B(702)에 다른 주기적인 CG 전송 자원 (721, 722, 723, 724)이 설정된 것을 나타낸다. BWP A(701)에 설정된 CG는 2의 CG 인덱스 값(703) 을 가지고 BWP B(702)에 설정된 CG는 3의 CG 인덱스값(704)을 가지는 것으로 가정한다. 인덱스 2(703)의 CG와 인덱스 3(704)의 CG는 동일 CG 그룹으로 설정되고 어떤 그룹인지를 나타내는 1의 CG 그룹 인덱스(705)를 가지는 것을 나타낸다. In the embodiment of Figure 7, two BWPs, BWP A (701) and BWP B (702), are set, and periodic CG transmission resources (711, 712, 713, 714) are set in BWP A (701) and BWP B (702) indicates that other periodic CG transmission resources (721, 722, 723, 724) are set. It is assumed that the CG set in BWP A (701) has a CG index value (703) of 2, and the CG set in BWP B (702) has a CG index value (704) of 3. The CG at index 2 (703) and the CG at index 3 (704) are set to the same CG group and have a CG group index (705) of 1 indicating which group it is.
본 개시의 일 실시예에 따르면, 동일 CG 그룹의 CG 자원은 동시에 활성화(Active)되거나 비활성화(Deactivation)될 수 있다. 또한 본 개시의 일 실시예에 따르면, CG 그룹의 설정은 RRC 재설정 메시지에 의해서 설정될 수 있다. According to an embodiment of the present disclosure, CG resources of the same CG group may be activated or deactivated at the same time. Additionally, according to an embodiment of the present disclosure, the CG group can be set by an RRC reset message.
CG 전송 자원이 설정된 이후 기지국이 단말에게 CS-RNTI (Configured Scheduling - Radio Network Temporary Identity)를 사용하여 PDCCH (Physical Downlink Control Channel)의 DCI (Downlink Control Information) 메시지에 CG 그룹의 활성화를 지시할 수 있다. CG 그룹의 활성화는 DCI 내에 포함된 CG 그룹 인덱스에 기초하여 어떤 CG 그룹의 CG 자원이 활성화를 의미하는지를 표시함으로써 수행될 수 있고 CG 그룹의 활성화가 지시되면 해당 CG의 그룹 내의 모든 CG 전송자원이 활성화될 수 있다. 그리고 DCI 메시지에 각각의 CG 전송자원의 설정 정보를 포함하여 정확한 자원의 위치 및 기타 설정정보를 설정할 수 있다. After the CG transmission resources are set, the base station can instruct the terminal to activate the CG group in the DCI (Downlink Control Information) message of the PDCCH (Physical Downlink Control Channel) using CS-RNTI (Configured Scheduling - Radio Network Temporary Identity). . Activation of a CG group can be performed by indicating which CG group's CG resource is meant to be activated based on the CG group index included in the DCI, and when activation of the CG group is indicated, all CG transmission resources within the group of the corresponding CG are activated. It can be. In addition, by including the configuration information of each CG transmission resource in the DCI message, the exact location of the resource and other configuration information can be set.
도 7의 실시예에서는 기지국이 단말에게 CS-RNTI(731)를 사용하여 1의 CG 인덱스(705)인 CG 그룹의 활성화를 지시한 것을 나타낸다. 이후 BWP A(701)에 설정된 CG 전송 자원((711, 712) )는 활성화 되어 단말은 데이터 송신을 수행한다. CG 자원을 사용한 데이터의 전송은 CG가 설정된 BWP가 활성화 된 경우에만 수행될 수 있다. BWP B(702)는 이 시점에 Active BWP가 아니기 때문에 BWP B(702)에 설정된 3의 CG 인덱스를 가지는 CG 자원은 자원 초기화 (Initialization)에 의한 활성화(Activation)가 되자마자 즉시 중지(Suspend)되어 (725) CG 전송 자원(721, 722(을 사용할 수 없게 된다The embodiment of FIG. 7 shows that the base station instructs the terminal to activate a CG group with a CG index 705 of 1 using the CS-RNTI 731. Afterwards, the CG transmission resources ((711, 712)) set in BWP A (701) are activated and the terminal performs data transmission. Transmission of data using CG resources can be performed only when the BWP with CG configured is activated. Since BWP B (702) is not an Active BWP at this point, the CG resource with a CG index of 3 set in BWP B (702) is immediately suspended as soon as it is activated by resource initialization. (725) CG transmission resources (721, 722) become unavailable
이후에 Active BWP가 BWP B(702)로 변경되는 경우 기존 Active BWP인 BWP A(701)에 설정된 CG 자원은 중지(Suspend)되고 (732) BWP (702)A의 CG 자원은 사용되지 않는다. (713, 714) 하지만 BWP A에 설정된 CG 자원의 위치(713, 714)는 단말과 기지국이 유지하며 이후 BWP A가 다시 Active BWP가 되었을 때 사용할 수 있도록 준비할 수 있다. 다시 말해, 단말과 기지국은 BWP A(701)에 설정된 SPS 자원에 관한 설정 정보를 그대로 유지, 저장, 또는 비활성화할 수 있다.If the Active BWP is later changed to BWP B (702), the CG resources set in BWP A (701), the existing Active BWP, are suspended (732) and the CG resources of BWP (702)A are not used. (713, 714) However, the location of the CG resource (713, 714) set in BWP A is maintained by the terminal and the base station and can be prepared for use when BWP A becomes Active BWP again. In other words, the terminal and the base station can maintain, store, or deactivate the configuration information regarding the SPS resources configured in BWP A (701).
Active BWP인 BWP B(702)에 설정된 CG의 경우 이전에 CG 그룹이 활성화 되었기 때문에 CS-RNTI를 사용한 활성화 단계 없이 즉시 CG 자원 (723, 724)이 재개(733)될 수 있다. 이후에 기지국이 단말에게 CS-RNTI(741)를 사용하여 PDCCH의 DCI 메시지에 1의 CG 그룹 인덱스(705)를 갖는 CG 그룹의 비활성화를 지시할 수 있다. CG 그룹의 비활성화는 DCI 내에 CG 그룹 인덱스를 포함하여 어떤 CG 그룹의 CG 자원의 비활성화를 의미하는지를 나타낼 수 있고 CG 그룹의 비활성화가 지시되면 해당 CG의 그룹 내의 모든 CG 전송자원이 비활성화될 수 있다. 이렇게 CG 그룹이 설정되어 활성화 및 비활성화가 되는 동작은 CG 전송자원의 활성화를 위한 별도의 메시지 전송에 의한 무선 자원 낭비를 줄일 수 있는 장점이 있다.In the case of CG set in BWP B (702), which is an active BWP, CG resources (723, 724) can be resumed (733) immediately without an activation step using CS-RNTI because the CG group was previously activated. Afterwards, the base station may instruct the UE to deactivate the CG group with a CG group index 705 of 1 in the DCI message of the PDCCH using the CS-RNTI 741. Deactivation of a CG group may indicate deactivation of CG resources of which CG group by including a CG group index in the DCI, and when deactivation of a CG group is indicated, all CG transmission resources within the group of the corresponding CG may be deactivated. This operation of activating and deactivating a CG group by setting it has the advantage of reducing the waste of wireless resources caused by transmitting a separate message for activating CG transmission resources.
도 8은 본 개시의 일 실시예에 따른 SPS 그룹의 동작방식을 나타낸 도면이다.Figure 8 is a diagram showing the operation method of an SPS group according to an embodiment of the present disclosure.
본 개시의 일 실시예에 따르면, 기지국은 단말에게 주기적으로 설정하는 하향링크 (기지국이 단말에게 전송함) 무선 자원인 SPS 자원을 설정하는 경우 SPS 자원은 기지국이 단말에게 전송하는 RRC 재설정 메시지에 의해 설정될 수 있다. SPS 자원은 BWP 위에 설정될 수 있다. 기지국은 적어도 하나의 BWP를 설정할 수 있으며, 적어도 하나의 BWP는 기지국에 의해 활성화되거나 비활성화될 수 있다. 활성화된 BWP를 Active BWP라 한다.According to an embodiment of the present disclosure, when the base station sets up an SPS resource, which is a downlink radio resource (transmitted from the base station to the terminal) periodically configured to the terminal, the SPS resource is set by an RRC reset message sent by the base station to the terminal. can be set. SPS resources can be configured on top of BWP. The base station may set at least one BWP, and at least one BWP may be activated or deactivated by the base station. The activated BWP is called Active BWP.
도 8의 실시예에서는 셀 A의 BWP 중 하나의 BWP(801) 와 셀 B의 BWP 중 하나의 BWP (802)를 나타내었으나 각각의 셀은 하나 이상의 BWP가 설정될 수 있다. 셀 A의 BWP (801) 에 주기적인 SPS 전송 자원(811, 812, 813, 814)이 설정되고 셀 B의 BWP(802)에 다른 주기적인 SPS 전송 자원 (821, 822, 823, 824)이 설정된 것을 나타낸다. 셀 A의 BWP(801)에 설정된 SPS는 2의 SPS 인덱스 값(803)을 가지고 셀 B의 BWP(802)에 설정된 SPS는 3의 SPS 인덱스값(804)을 가지는 것으로 가정한다. 인덱스 2(803)의 SPS와 인덱스 3(804)의 SPS는 동일 SPS 그룹으로 설정되고 어떤 그룹인지를 나타내는 1의 SPS 그룹 인덱스(805)를 가지는 것을 나타낸다.In the embodiment of FIG. 8, one BWP 801 among the BWPs of cell A and a BWP 802 among the BWPs of cell B are shown, but each cell may be configured with one or more BWPs. Periodic SPS transmission resources (811, 812, 813, 814) are set in Cell A's BWP (801), and other periodic SPS transmission resources (821, 822, 823, 824) are set in Cell B's BWP (802). indicates that It is assumed that the SPS set in the BWP 801 of cell A has an SPS index value 803 of 2, and the SPS set in the BWP 802 of cell B has an SPS index value 804 of 3. The SPS of index 2 (803) and the SPS of index 3 (804) are set to the same SPS group and have an SPS group index (805) of 1 indicating which group it is.
도 8의 실시예에서는 SPS 그룹으로 설정된 복수의 SPS 내에서 특정 시점에 하나의 SPS만 사용하는 방법을 나타낸다. 무선 통신 네트워크에서는 특정 시점에 셀 당 하나의 Active BWP를 가질 수 있으며 Active BWP가 아닌 BWP에 설정된 SPS 전송자원은 사용되지 못한다. SPS 자원은 주기적으로 계속 발생하는 데이터 전송에 사용될 수 있으며 이 때 BWP가 비활성화되어 SPS 자원을 사용하지 못하는 것은 전송효율을 떨어뜨릴 수 있다. 반대로 SPS 그룹 내에서 두 개 이상의 SPS 자원을 사용할 필요가 없을 수도 있다. 따라서 SPS 그룹 내에 설정된 SPS 중 하나의 SPS 자원을 사용하는 동작이 필요할 수 있다. 이를 위해 SPS 그룹 내 SPS 자원의 우선순위가 설정될 수 있다. The embodiment of FIG. 8 shows a method of using only one SPS at a specific time within a plurality of SPSs set as an SPS group. In a wireless communication network, there can be one Active BWP per cell at a specific time, and SPS transmission resources set in a BWP other than the Active BWP cannot be used. SPS resources can be used for data transmission that continues to occur periodically, and at this time, the inability to use SPS resources due to BWP being disabled may reduce transmission efficiency. Conversely, there may be no need to use more than one SPS resource within an SPS group. Therefore, an operation using the SPS resources of one of the SPSs set within the SPS group may be necessary. For this purpose, the priority of SPS resources within the SPS group can be set.
도 8의 실시예에서는 셀 A의 BWP(801)에 설정된 2의 SPS 인덱스(803)를 가지는 SPS를 프라이머리(Primary) SPS, 셀 B의 BWP(802)에 설정된 3의 SPS 인덱스(804)를 가지는 SPS를 세컨더리 (Secondary) SPS로 설정하여 2의 SPS 인덱스를 가지는 SPS가 우선순위를 가지는 동작을 나타낸다. In the embodiment of FIG. 8, the SPS with an SPS index 803 of 2 set in the BWP 801 of cell A is the Primary SPS, and the SPS index 804 of 3 set in the BWP 802 of cell B is the Primary SPS. This indicates an operation in which the SPS with an SPS index of 2 has priority by setting the SPS as a secondary SPS.
구체적으로 프라이머리 SPS 자원이 현재 Active BWP에 설정된 경우 프라이머리 SPS 자원을 사용하여 단말은 데이터의 수신을 수행할 수 있다. 만약 프라이머리 SPS 자원이 현재 Active BWP에 설정된 자원이 아닌 경우 (비활성화 된 BWP에 설정된 자원인 경우), 세컨더리 SPS 자원을 사용하여 데이터의 수신을 수행할 수 있다. Specifically, if the primary SPS resource is currently set to Active BWP, the terminal can receive data using the primary SPS resource. If the primary SPS resource is not a resource currently set in Active BWP (if it is a resource set in a deactivated BWP), data reception can be performed using the secondary SPS resource.
도 8의 실시예에서 프라이머리 SPS 이 설정된 셀 A의 BWP(801)가 Active BWP 상태인 시점에서는 프라이머리 SPS의 자원(811, 812)을 사용한 데이터 수신이 이루어지고, 셀 A의 BWP(801)가 비활성화되면 프라이머리 SPS의 자원 (813, 814)이 사용될 수 없기 때문에 셀 B의 BWP(802)에 설정된 세컨더리 SPS 자원(823, 824)을 사용한 데이터 수신이 이루어질 수 있다. 어떠한 SPS가 프라이머리 SPS가 될 것인지의 정보는 RRC 재설정 메시지에서 SPS가 설정될 때 함께 설정될 수 있다.In the embodiment of FIG. 8, when the BWP (801) of Cell A where the primary SPS is set is in the Active BWP state, data is received using the resources (811, 812) of the primary SPS, and the BWP (801) of Cell A When is deactivated, the resources (813, 814) of the primary SPS cannot be used, so data can be received using the secondary SPS resources (823, 824) set in the BWP (802) of Cell B. Information about which SPS will be the primary SPS can be set together when the SPS is set in the RRC reset message.
도 9는 본 개시의 일 실시예에 따른 CG 그룹의 동작방식을 나타낸 도면이다.Figure 9 is a diagram showing the operation method of a CG group according to an embodiment of the present disclosure.
본 개시의 일 실시예에 따르면, 기지국은 단말에게 주기적으로 설정하는 상향링크 (단말이 기지국에게 전송함) 무선 자원인 CG 자원을 설정하는 경우 CG 자원은 기지국이 단말에게 전송하는 RRC 재설정 메시지에 의해 설정될 수 있다. CG 자원은 BWP 위에 설정될 수 있다. 기지국은 적어도 하나의 BWP를 설정할 수 있으며, 적어도 하나의 BWP는 기지국에 의해 활성화되거나 비활성화될 수 있다. 활성화된 BWP를 Active BWP라 한다.According to an embodiment of the present disclosure, when the base station sets up a CG resource, which is an uplink (transmitted from the terminal to the base station) radio resource periodically configured to the terminal, the CG resource is configured by an RRC reset message transmitted by the base station to the terminal. can be set. CG resources can be set on top of BWP. The base station may set at least one BWP, and at least one BWP may be activated or deactivated by the base station. The activated BWP is called Active BWP.
도 9의 실시예에서는 셀 A의 BWP 중 하나의 BWP(901) 와 셀 B의 BWP 중 하나의 BWP (902)를 나타내었으나 각각의 셀은 하나 이상의 BWP가 설정될 수 있다. 셀 A의 BWP (901) 에 주기적인 CG 전송 자원(911, 912, 913, 914)이 설정되고 셀 B의 BWP(902)에 다른 주기적인 CG 전송 자원 (921, 922, 923, 924)이 설정된 것을 나타낸다. 셀 A의 BWP(901)에 설정된 CG는 2의 CG 인덱스 값(903) 을 가지고 셀 B의 BWP(902)에 설정된 CG는 3의 CG 인덱스값(904)을 가지는 것으로 가정한다. 인덱스 2의 CG와 인덱스 3의 CG는 동일 CG 그룹으로 설정되고 어떤 그룹인지를 나타내는 1의 CG 그룹 인덱스(905)를 가지는 것을 나타낸다. In the embodiment of FIG. 9, one BWP 901 among the BWPs of cell A and a BWP 902 among the BWPs of cell B are shown, but each cell may be configured with one or more BWPs. Periodic CG transmission resources (911, 912, 913, 914) are set in Cell A's BWP (901), and other periodic CG transmission resources (921, 922, 923, 924) are set in Cell B's BWP (902). indicates that It is assumed that the CG set in the BWP (901) of cell A has a CG index value (903) of 2, and the CG set in the BWP (902) of cell B is assumed to have a CG index value (904) of 3. The CG at index 2 and the CG at index 3 are set to the same CG group and have a CG group index 905 of 1 indicating which group it is.
도 9의 실시예에서는 CG 그룹으로 설정된 복수의 CG 내에서 특정 시점에 하나의 CG만 사용하는 방법을 나타낸다. 무선 통신 네트워크에서는 특정 시점에 셀 당 하나의 Active BWP를 가질 수 있으며 Active BWP가 아닌 BWP에 설정된 CG 전송자원은 사용되지 못한다. CG 자원은 주기적으로 계속 발생하는 데이터 전송에 사용될 수 있으며 이 때 BWP가 비활성화되어 CG 자원을 사용하지 못하는 것은 전송효율을 떨어뜨릴 수 있다. 반대로 CG 그룹 내에서 두 개 이상의 CG 자원을 사용할 필요가 없을 수도 있다. 따라서 CG 그룹 내에 설정된 CG 중 하나의 CG 자원을 사용하는 동작이 필요할 수 있다. 이를 위해 CG 그룹 내 CG 자원의 우선순위가 설정될 수 있다. The embodiment of FIG. 9 shows a method of using only one CG at a specific time within a plurality of CGs set as a CG group. In a wireless communication network, there can be one Active BWP per cell at a specific time, and CG transmission resources set in a BWP other than the Active BWP cannot be used. CG resources can be used for data transmission that continues to occur periodically, and at this time, the inability to use CG resources due to BWP being deactivated may reduce transmission efficiency. Conversely, there may be no need to use more than one CG resource within a CG group. Therefore, an operation using the CG resource of one of the CGs set within the CG group may be necessary. For this purpose, the priority of CG resources within the CG group can be set.
도 9의 실시예에서는 셀 A의 BWP(901)에 설정된 2의 CG 인덱스(903)를 가지는 CG를 프라이머리(Primary) CG, 셀 B의 BWP(902)에 설정된 3의 CG 인덱스(904)를 가지는 CG를 세컨더리 (Secondary) CG로 설정하여 2의 CG 인덱스를 가지는 CG가 우선순위를 가지는 동작을 나타내었다. In the embodiment of FIG. 9, the CG with a CG index 903 of 2 set in the BWP 901 of cell A is the Primary CG, and the CG index 904 of 3 set in the BWP 902 of cell B is the primary CG. By setting the branch CG to Secondary CG, it indicates that the CG with a CG index of 2 has priority.
구체적으로 프라이머리 CG 자원이 현재 Active BWP에 설정된 경우 프라이머리 CG 자원을 사용하여 단말은 데이터의 송신을 수행할 수 있다. 만약 프라이머리 CG 자원이 현재 Active BWP에 설정된 자원이 아닌 경우 (비활성화 된 BWP에 설정된 자원인 경우), 세컨더리 CG 자원을 사용하여 데이터의 송신을 수행할 수 있다. Specifically, if the primary CG resource is currently set in Active BWP, the terminal can transmit data using the primary CG resource. If the primary CG resource is not a resource currently set in Active BWP (if it is a resource set in a deactivated BWP), data transmission can be performed using the secondary CG resource.
도 8의 실시예에서 프라이머리 CG 이 설정된 셀 A의 BWP(901)가 Active BWP 상태인 시점에서는 프라이머리 CG의 자원(911, 912)을 사용한 데이터 송신이 이루어지고, BWP가 비활성화되면 프라이머리 CG의 자원 (913, 914)이 사용될 수 없기 때문에 셀 B의 BWP(902)에 설정된 세컨더리 CG 자원(923, 924)을 사용한 데이터 송신이 이루어질 수 있다. 어떠한 CG가 프라이머리 CG가 될 것인지의 정보는 RRC 재설정 메시지에서 CG가 설정될 때 함께 설정될 수 있다. In the embodiment of FIG. 8, when the BWP 901 of Cell A in which the primary CG is set is in the Active BWP state, data is transmitted using the resources 911 and 912 of the primary CG, and when the BWP is deactivated, the primary CG Since the resources (913, 914) cannot be used, data transmission can be performed using the secondary CG resources (923, 924) set in the BWP (902) of Cell B. Information on which CG will be the primary CG can be set together when the CG is set in the RRC reset message.
도 10는 본 개시의 일 실시예에 따른 BWP 전환에 따른 CG 동작방식을 나타낸 도면이다. Figure 10 is a diagram showing a CG operation method according to BWP conversion according to an embodiment of the present disclosure.
본 개시의 일 실시예에 따르면, 기지국은 단말에게 주기적으로 설정하는 상향링크 (단말이 기지국에게 전송함) 무선 자원인 CG 자원을 설정하는 경우 CG 자원은 기지국이 단말에게 전송하는 RRC 재설정 메시지에 의해 설정될 수 있다. (1031) 이 CG 자원은 BWP 위에 설정될 수 있다. 기지국은 적어도 하나의 BWP를 설정할 수 있으며, 적어도 하나의 BWP는 기지국에 의해 활성화되거나 비활성화될 수 있다. 활성화된 BWP를 Active BWP라 한다.According to an embodiment of the present disclosure, when the base station sets up a CG resource, which is an uplink (transmitted from the terminal to the base station) radio resource periodically configured to the terminal, the CG resource is configured by an RRC reset message transmitted by the base station to the terminal. can be set. (1031) This CG resource can be set on top of the BWP. The base station may set at least one BWP, and at least one BWP may be activated or deactivated by the base station. The activated BWP is called Active BWP.
도 10의 실시예에서는 BWP A (1001)와 BWP B (1002)의 두 개의 BWP가 설정되고, BWP A(1001)에 주기적인 CG 전송 자원(1011, 1012, 1013, 1014, 1015, 1016)이 설정되고 BWP B(1002)에 다른 주기적인 CG 전송 자원 (1021, 1022, 1023, 1024, 1025, 1026)이 설정된 것을 나타낸다. 도 10 실시예에서는 BWP A(1001)에 설정된 CG와 BWP B(1002)에 설정된 CG가 같은 오프셋 (1060)과 주기(1061)를 가지는 것으로 가정하였으나 각각 다른 오프셋과 주기를 가져도 무방하다.In the embodiment of Figure 10, two BWPs, BWP A (1001) and BWP B (1002), are set, and BWP A (1001) has periodic CG transmission resources (1011, 1012, 1013, 1014, 1015, 1016). It indicates that other periodic CG transmission resources (1021, 1022, 1023, 1024, 1025, 1026) are set in BWP B (1002). 10, it is assumed that the CG set in BWP A (1001) and the CG set in BWP B (1002) have the same offset (1060) and period (1061), but may have different offsets and periods.
본 개시의 일 실시예에 따르면, CG 자원은 제 1 형식 CG와 제 2 형식 CG로 나뉠 수 있다. 제 1 형식 CG는 RRC 재설정 메시지에 의해 설정된 즉시 사용되는 CG 자원을 의미하며 제 2 형식 CG는 RRC 재설정 메시지에 의해 CG 전송 자원이 설정된 이후 기지국이 단말에게 CS-RNTI (Configured Scheduling - Radio Network Temporary Identity)를 사용하여 PDCCH (Physical Downlink Control Channel)의 DCI (Downlink Control Information) 메시지에 CG 자원의 활성화를 지시하는 CG 자원을 의미할 수 있다. According to an embodiment of the present disclosure, CG resources may be divided into first type CG and second type CG. The first format CG refers to a CG resource that is used immediately after being set by an RRC reset message, and the second format CG refers to a CS-RNTI (Configured Scheduling - Radio Network Temporary Identity) that the base station provides to the UE after the CG transmission resource is set by the RRC reset message. ) can be used to indicate a CG resource that indicates activation of the CG resource in a DCI (Downlink Control Information) message of PDCCH (Physical Downlink Control Channel).
도 10 실시예에서는 제 1 형식 CG 자원의 동작을 나타낸다. 따라서 CG 자원이 설정되는 즉시 별도의 활성화 동작 없이 해당 CG 전송자원은 실제로 사용될 수 있고 단말은 기지국에게 CG 자원을 사용한 데이터의 송신을 수행할 수 있다. 제 1 형식 CG 자원은 기지국이 단말이 CG 자원을 설정하는 시점에 RRC 재설정 메시지에 의해 설정된 Reference SFN (System Frame Number) 값을 사용하여 CG 자원이 시작하는 오프셋 (1060) 값을 결정하고 이후 일정 주기(1061)마다 주기적인 CG 자원이 반복되게 설정될 수 있다. 도 10의 실시예에서는 CG가 설정되었기 때문에 현재 Active BWP인 BWP A (1001)에 설정된 CG 전송 자원을 단말이 사용할 수 있는 것을 나타낸다. 이후 BWP A(1001)에 설정된 CG 전송 자원(1011, 1012)는 활성화 되어 단말은 데이터 송신을 수행할 수 있다.10 shows the operation of the first type CG resource in the embodiment. Therefore, as soon as the CG resource is set, the corresponding CG transmission resource can be actually used without a separate activation operation, and the terminal can transmit data using the CG resource to the base station. For the first type CG resource, the base station determines the offset (1060) value at which the CG resource starts using the Reference SFN (System Frame Number) value set by the RRC reset message at the time the terminal sets the CG resource, and then at a certain period. Periodic CG resources can be set to repeat every (1061). In the embodiment of FIG. 10, since the CG has been set, it indicates that the terminal can use the CG transmission resources set in BWP A (1001), which is the currently active BWP. Afterwards, the CG transmission resources (1011, 1012) set in BWP A (1001) are activated and the terminal can perform data transmission.
CG 자원을 사용한 데이터의 전송은 CG가 설정된 BWP가 활성화 된 경우에만 수행될 수 있다. BWP B(1002)가 Active BWP가 아닌 시점에는 BWP B(1002)에 설정된 CG 전송 자원(1021, 1022, 1025, 1026)은 실제 사용되지 않는다. 뿐만 아니라 해당 CG 자원의 정확한 위치가 설정되지 않을 수도 있다. Transmission of data using CG resources can be performed only when the BWP with CG configured is activated. When BWP B (1002) is not Active BWP, the CG transmission resources (1021, 1022, 1025, 1026) set in BWP B (1002) are not actually used. In addition, the exact location of the corresponding CG resource may not be set.
이후에 Active BWP가 BWP B(1002)로 변경되는 경우 기존 Active BWP인 BWP A(1001)에 설정된 CG 자원은 중지(Suspend)되고 (1032) BWP A의 CG 자원(1013, 1014)은 사용되지 않는다. 하지만 BWP A(1001)에 설정된 CG 자원의 위치(1013, 1014, 1015, 1016)는 단말과 기지국이 유지하며 이후 BWP A(1001)가 다시 Active BWP가 되었을 때 사용할 수 있도록 준비할 수 있다. 이것은 기지국이 단말이 CG 자원을 설정하는 시점의 Reference SFN (System Frame Number)을 사용하여 주기적인 CG 자원을 설정하여 일정 주기마다 CG 자원이 반복되는 것을 의미한다. 즉, BWP가 비활성화되었다고 해도 CG 자원의 위치정보를 단말이 가지고 있고, 이후 Active BWP가 되었을 때에도 동일한 주기(간격)를 가지는 CG 자원을 사용할 수 있게 할 수 있다. 이를 위해 BWP가 비활성화되는 경우 CG 자원을 중지(Suspend)하고 이후 Active BWP가 되었을 때 CG 자원을 재개(Resume)하는 동작을 수행할 수 있다. If Active BWP is later changed to BWP B (1002), the CG resources set in BWP A (1001), the existing Active BWP, are suspended (1032) and the CG resources (1013, 1014) of BWP A are not used. . However, the locations of CG resources (1013, 1014, 1015, 1016) set in BWP A (1001) are maintained by the terminal and base station, and can be prepared for use when BWP A (1001) becomes Active BWP again. This means that the base station sets periodic CG resources using the Reference SFN (System Frame Number) at the time the terminal sets the CG resources, and the CG resources are repeated at regular intervals. In other words, even if the BWP is deactivated, the terminal has the location information of the CG resource, and can use the CG resource with the same period (interval) even when the BWP becomes active. To this end, when the BWP is deactivated, the CG resource can be suspended and then when the BWP becomes active, the CG resource can be resumed.
본 개시의 일 실시예에 따르면, CG 자원을 재개하는 동작은 CG가 설정된 시점부터 시작된 CG 자원의 전송시점(1011, 1021)이 일정 주기(1061)대로 반복하게 하게 하는 역할을 할 수 있다. Active BWP인 BWP B(1002)에 설정된 제 1 형식 CG의 경우 별도의 활성화 단계 없이 즉시 CG 자원 (1023, 1024)이 재개(1033)될 수 있다. 마찬가지로 이후에 Active BWP가 BWP A(1001)로 다시 변경되는 경우 기존 Active BWP인 BWP B에 설정된 CG 자원은 중지(Suspend)되고 (1043) BWP B의 CG 자원(1025, 1026)은 사용되지 않는다. 하지만 BWP B(1002)에 설정된 CG 자원의 위치(1025, 1026)는 단말과 기지국이 유지하며 이후 BWP B(1002)가 다시 Active BWP가 되었을 때 사용할 수 있도록 준비할 수 있다. Active BWP인 BWP A(1001)에 설정된 제 1 형식 CG의 경우 별도의 활성화 단계 없이 즉시 CG 자원 (1015, 1016)이 재개(1042)될 수 있다. 도 10의 실시예에서 제안한 방식을 따르면 단말의 Active BWP가 변경되는 BWP 스위치 동작이 발생하는 경우에도 CG 자원의 주기를 일정하게 유지할 수 있다. According to an embodiment of the present disclosure, the operation of resuming CG resources may serve to cause the transmission points (1011, 1021) of the CG resources starting from the time when the CG is set to repeat at a certain period (1061). In the case of the first type CG set in BWP B (1002), which is an active BWP, CG resources (1023, 1024) can be resumed (1033) immediately without a separate activation step. Likewise, if the Active BWP is later changed back to BWP A (1001), the CG resources set in BWP B, the existing Active BWP, are suspended (1043) and the CG resources (1025, 1026) of BWP B are not used. However, the locations of CG resources (1025, 1026) set in BWP B (1002) are maintained by the terminal and base station and can be prepared for use when BWP B (1002) becomes Active BWP again. In the case of the first type CG set in BWP A (1001), which is an active BWP, CG resources (1015, 1016) can be resumed (1042) immediately without a separate activation step. By following the method proposed in the embodiment of FIG. 10, the period of CG resources can be kept constant even when a BWP switch operation that changes the terminal's Active BWP occurs.
도 11은 본 개시의 일 실시예에 따른 단말 Capability 전송 및 RRC 설정 방식을 나타낸 도면이다.Figure 11 is a diagram showing a UE Capability transmission and RRC setting method according to an embodiment of the present disclosure.
본 개시의 일 실시예에 따르면, 단말(1110)은 앞서 기술한 SPS 및 CG 동작을 위한 단말의 Capability 정보를 기지국(1120)에게 전송할 수 있다. 일 실시예로, SPS 또는 CG 전송 자원이 설정된 BWP가 비활성화되는 경우에 SPS 또는 CG 자원이 삭제되지 않고 중지된 후 이후 해당 BWP가 다시 Active BWP로 활성화되는 경우에 단말은 SPS 또는 SPS 자원을 재개하는 동작을 지원하는 단말인지 여부를 기지국에게 보고할 수 있다. According to an embodiment of the present disclosure, the terminal 1110 may transmit the terminal capability information for the SPS and CG operations described above to the base station 1120. In one embodiment, when a BWP for which an SPS or CG transmission resource is set is deactivated, the SPS or CG resource is stopped without being deleted, and later, when the BWP is activated again as an Active BWP, the terminal resumes the SPS or SPS resource. It can report to the base station whether the terminal supports the operation.
또한 본 개시의 일 실시예에 따르면, MAC CE에 의한 SPS 또는 CG의 형식 변경을 지원하는 단말인지 여부가 보고될 수도 있다. 또한 단말은 SPS 그룹 또는 CG 그룹에 따른 동작을 지원하는 단말인지 여부를 기지국에게 보고할 수도 있다. Additionally, according to an embodiment of the present disclosure, it may be reported whether the terminal supports format change of SPS or CG by MAC CE. Additionally, the terminal may report to the base station whether the terminal supports operations according to the SPS group or CG group.
뿐만 아니라 본 개시의 일 실시예에 따르면, 단말은 네트워크 에너지 절감을 위한 단말의 동작을 지원하는 단말인지 여부를 기지국에게 보고할 수도 있다. (1130) 이를 기반으로 기지국은 단말이 지원하는 동작을 RRC 메시지에 의해 설정될 수 있다. (1140) 여기에 설정되는 정보는 네트워크 에너지 절감을 위한 단말의 동작, CG 설정, SPS 설정 중 적어도 하나가 될 수 있다.In addition, according to an embodiment of the present disclosure, the terminal may report to the base station whether the terminal supports the operation of the terminal to save network energy. (1130) Based on this, the base station can set the operation supported by the terminal by RRC message. (1140) The information set here may be at least one of terminal operation for network energy saving, CG settings, and SPS settings.
도 12는 본 개시의 일 실시예에 따른 기지국의 구조를 도시한 도면이다.Figure 12 is a diagram showing the structure of a base station according to an embodiment of the present disclosure.
도 12를 참고하면, 기지국은 송수신부 (1210), 제어부 (1220), 저장부 (1230)를 포함할 수 있다. 전술한 기지국의 통신 방법에 따라 송수신부(1210), 제어부(1220), 저장부(1230)가 동작할 수 있다. 또한 네트워크 장치 또한 기지국의 구조와 대응될 수 있다. 다만, 기지국의 구성 요소가 전술한 예에 한정되는 것은 아니다. 예를 들어, 기지국은 전술한 구성 요소들 보다 더 많은 구성 요소를 포함하거나 더 적은 구성 요소를 포함할 수도 있다. 뿐만 아니라 송수신부(1210), 제어부(1220), 저장부(1230)가 하나의 칩(chip) 형태로 구현될 수도 있다.Referring to FIG. 12, the base station may include a transceiver 1210, a control unit 1220, and a storage unit 1230. The transceiver unit 1210, control unit 1220, and storage unit 1230 may operate according to the communication method of the base station described above. Additionally, network devices may also correspond to the structure of the base station. However, the components of the base station are not limited to the above examples. For example, a base station may include more or fewer components than those described above. In addition, the transceiver 1210, control unit 1220, and storage unit 1230 may be implemented in the form of a single chip.
송수신부(1210)는 기지국의 수신부와 기지국의 송신부를 통칭한 것으로 단말, 다른 기지국 또는 다른 네트워크 장치들과 신호를 송수신할 수 있다. 이때, 송수신하는 신호는 제어 정보와 데이터를 포함할 수 있다. 송수신부(1210)는 예를 들어, 단말에 시스템 정보를 전송할 수 있으며, 동기 신호 또는 기준 신호를 전송할 수 있다. 이를 위해, 송수신부(1210)는 송신되는 신호의 주파수를 상승 변환 및 증폭하는 RF 송신기와, 수신되는 신호를 저 잡음 증폭하고 주파수를 하강 변환하는 RF 수신기 등으로 구성될 수 있다. 다만, 이는 송수신부(1210)의 일 실시예일 뿐이며, 송수신부(1210)의 구성요소가 RF 송신기 및 RF 수신기에 한정되는 것은 아니다. 송수신부(1210)는 유무선 송수신부를 포함할 수 있으며, 신호를 송수신하기 위한 다양한 구성을 포함할 수 있다. 또한, 송수신부(1210)는 통신 채널(예를 들어, 무선 채널)을 통해 신호를 수신하여 제어부(1220)로 출력하고, 제어부(1220)로부터 출력된 신호를 통신 채널을 통해 전송할 수 있다. 또한, 송수신부(1210)는 통신 신호를 수신하여 프로세서로 출력하고, 프로세서로부터 출력된 신호를 유무선망을 통해 단말, 다른 기지국 또는 다른 엔티티로 전송할 수 있다.The transceiving unit 1210 is a general term for the receiving unit of the base station and the transmitting unit of the base station, and can transmit and receive signals with a terminal, another base station, or other network devices. At this time, the transmitted and received signals may include control information and data. For example, the transceiver 1210 may transmit system information to the terminal and may transmit a synchronization signal or a reference signal. To this end, the transceiver 1210 may be composed of an RF transmitter that up-converts and amplifies the frequency of the transmitted signal, and an RF receiver that amplifies the received signal with low noise and down-converts the frequency. However, this is only an example of the transceiver 1210, and the components of the transceiver 1210 are not limited to the RF transmitter and RF receiver. The transceiver 1210 may include a wired or wireless transceiver and may include various components for transmitting and receiving signals. Additionally, the transceiver 1210 may receive a signal through a communication channel (eg, a wireless channel) and output it to the control unit 1220, and transmit the signal output from the control unit 1220 through the communication channel. Additionally, the transceiver unit 1210 may receive a communication signal, output it to a processor, and transmit the signal output from the processor to a terminal, another base station, or another entity through a wired or wireless network.
저장부(1230)는 기지국의 동작에 필요한 프로그램 및 데이터를 저장할 수 있다. 또한, 저장부(1230)는 기지국에서 획득되는 신호에 포함된 제어 정보 또는 데이터를 저장할 수 있다. 저장부(1230)는 롬(ROM), 램(RAM), 하드디스크, CD-ROM 및 DVD 등과 같은 저장 매체 또는 저장 매체들의 조합으로 구성될 수 있다. 또한 저장부(1230)는 송수신부(1210)를 통해 송수신되는 정보 및 제어부(1220)을 통해 생성되는 정보 중 적어도 하나를 저장할 수 있다.The storage unit 1230 can store programs and data necessary for the operation of the base station. Additionally, the storage unit 1230 may store control information or data included in signals obtained from the base station. The storage unit 1230 may be composed of a storage medium such as ROM, RAM, hard disk, CD-ROM, and DVD, or a combination of storage media. Additionally, the storage unit 1230 may store at least one of information transmitted and received through the transmitting and receiving unit 1210 and information generated through the control unit 1220.
본 개시에서 제어부(1220)는, 회로 또는 어플리케이션 특정 통합 회로 또는 적어도 하나의 프로세서라고 정의될 수 있다. 프로세서는 통신을 위한 제어를 수행하는 CP(communication processor) 및 응용 프로그램 등 상위 계층을 제어하는 AP(application processor)를 포함할 수 있다. 제어부 (1220)는 본 개시에서 제안하는 실시예에 따른 기지국의 전반적인 동작을 제어할 수 있다. 예를 들어, 제어부 (1220)는 상기에서 기술한 순서도에 따른 동작을 수행하도록 각 블록 간 신호 흐름을 제어할 수 있다. In the present disclosure, the control unit 1220 may be defined as a circuit or an application-specific integrated circuit or at least one processor. The processor may include a communication processor (CP) that performs control for communication and an application processor (AP) that controls upper layers such as application programs. The control unit 1220 can control the overall operation of the base station according to the embodiment proposed in this disclosure. For example, the control unit 1220 can control signal flow between each block to perform operations according to the flowchart described above.
도 13은 본 개시의 일 실시예에 따른 단말의 구조를 도시한 도면이다. Figure 13 is a diagram showing the structure of a terminal according to an embodiment of the present disclosure.
도 13을 참고하면, 단말은 송수신부 (1310), 제어부 (1320), 저장부 (1330)를 포함할 수 있다. 전술한 단말의 통신 방법에 따라 송수신부(1310), 제어부(1320), 저장부(1330)가 동작할 수 있다. 다만, 단말의 구성 요소가 전술한 예에 한정되는 것은 아니다. 예를 들어, 단말은 전술한 구성 요소들 보다 더 많은 구성 요소를 포함하거나 더 적은 구성 요소를 포함할 수도 있다. 뿐만 아니라 송수신부(1310), 제어부(1320), 저장부(1330)가 하나의 칩(chip) 형태로 구현될 수도 있다.Referring to FIG. 13, the terminal may include a transceiver 1310, a control unit 1320, and a storage unit 1330. The transmitting and receiving unit 1310, the control unit 1320, and the storage unit 1330 may operate according to the communication method of the terminal described above. However, the components of the terminal are not limited to the examples described above. For example, the terminal may include more or fewer components than the aforementioned components. In addition, the transmitting and receiving unit 1310, the control unit 1320, and the storage unit 1330 may be implemented in the form of a single chip.
송수신부(1310)는 단말의 수신부와 단말의 송신부를 통칭한 것으로 기지국, 다른 단말 또는 네트워크 엔티티와 신호를 송수신할 수 있다. 기지국과 송수신하는 신호는 제어 정보와 데이터를 포함할 수 있다. 송수신부(1310)는 예를 들어, 기지국으로부터 시스템 정보를 수신할 수 있으며, 동기 신호 또는 기준 신호를 수신할 수 있다. 이를 위해, 송수신부(1310)는 송신되는 신호의 주파수를 상승 변환 및 증폭하는 RF 송신기와, 수신되는 신호를 저 잡음 증폭하고 주파수를 하강 변환하는 RF 수신기 등으로 구성될 수 있다. 다만, 이는 송수신부(1310)의 일 실시예일 뿐이며, 송수신부(1310)의 구성요소가 RF 송신기 및 RF 수신기에 한정되는 것은 아니다. 또한, 송수신부(1310)는 유무선 송수신부를 포함할 수 있으며, 신호를 송수신하기 위한 다양한 구성을 포함할 수 있다. 또한, 송수신부(1310)는 무선 채널을 통해 신호를 수신하여 제어부(1320)로 출력하고, 제어부(1320)로부터 출력된 신호를 무선 채널을 통해 전송할 수 있다. 또한, 송수신부(1310)는 통신 신호를 수신하여 프로세서로 출력하고, 프로세서로부터 출력된 신호를 유무선망을 통해 네트워크 엔티티로 전송할 수 있다.The transmitting and receiving unit 1310 is a general term for the terminal's receiving unit and the terminal's transmitting unit, and can transmit and receive signals with a base station, other terminals, or network entities. Signals transmitted and received from the base station may include control information and data. For example, the transceiver 1310 may receive system information from a base station and may receive a synchronization signal or a reference signal. To this end, the transceiver 1310 may be composed of an RF transmitter that up-converts and amplifies the frequency of the transmitted signal, and an RF receiver that amplifies the received signal with low noise and down-converts the frequency. However, this is only an example of the transceiver 1310, and the components of the transceiver 1310 are not limited to the RF transmitter and RF receiver. Additionally, the transceiver 1310 may include a wired or wireless transceiver and may include various components for transmitting and receiving signals. Additionally, the transceiver 1310 may receive a signal through a wireless channel and output it to the control unit 1320, and transmit the signal output from the control unit 1320 through a wireless channel. Additionally, the transceiver unit 1310 may receive a communication signal, output it to a processor, and transmit the signal output from the processor to a network entity through a wired or wireless network.
저장부(1330)는 단말의 동작에 필요한 프로그램 및 데이터를 저장할 수 있다. 또한, 메모리(1330)는 단말에서 획득되는 신호에 포함된 제어 정보 또는 데이터를 저장할 수 있다. 저장부(1330)는 롬(ROM), 램(RAM), 하드디스크, CD-ROM 및 DVD 등과 같은 저장 매체 또는 저장 매체들의 조합으로 구성될 수 있다.The storage unit 1330 can store programs and data necessary for operation of the terminal. Additionally, the memory 1330 may store control information or data included in signals obtained from the terminal. The storage unit 1330 may be composed of a storage medium such as ROM, RAM, hard disk, CD-ROM, and DVD, or a combination of storage media.
본 개시에서 제어부(1320)는, 회로 또는 어플리케이션 특정 통합 회로 또는 적어도 하나의 프로세서라고 정의될 수 있다. 프로세서는 통신을 위한 제어를 수행하는 CP(communication processor) 및 응용 프로그램 등 상위 계층을 제어하는 AP(application processor)를 포함할 수 있다. 제어부 (1320)는 본 개시에서 제안하는 실시예에 따른 단말의 전반적인 동작을 제어할 수 있다. 예를 들어, 제어부 (1320)는 상기에서 기술한 순서도에 따른 동작을 수행하도록 각 블록 간 신호 흐름을 제어할 수 있다. In the present disclosure, the control unit 1320 may be defined as a circuit or an application-specific integrated circuit or at least one processor. The processor may include a communication processor (CP) that performs control for communication and an application processor (AP) that controls upper layers such as application programs. The control unit 1320 can control the overall operation of the terminal according to the embodiment proposed in this disclosure. For example, the control unit 1320 can control signal flow between each block to perform operations according to the flowchart described above.
소프트웨어로 구현하는 경우, 하나 이상의 프로그램(소프트웨어 모듈)을 저장하는 컴퓨터 판독 가능 저장 매체가 제공될 수 있다. 컴퓨터 판독 가능 저장 매체에 저장되는 하나 이상의 프로그램은, 전자 장치(device) 내의 하나 이상의 프로세서에 의해 실행 가능하도록 구성된다(configured for execution). 하나 이상의 프로그램은, 전자 장치로 하여금 본 개시의 청구항 또는 명세서에 기재된 실시 예들에 따른 방법들을 실행하게 하는 명령어(instructions)를 포함한다. When implemented as software, a computer-readable storage medium that stores one or more programs (software modules) may be provided. One or more programs stored in a computer-readable storage medium are configured to be executable by one or more processors in an electronic device (configured for execution). One or more programs include instructions that cause the electronic device to execute methods according to embodiments described in the claims or specification of the present disclosure.
이러한 프로그램(소프트웨어 모듈, 소프트웨어)은 랜덤 액세스 메모리(random access memory), 플래시(flash) 메모리를 포함하는 불휘발성(non-volatile) 메모리, 롬(read only memory, ROM), 전기적 삭제가능 프로그램가능 롬(electrically erasable programmable read only memory, EEPROM), 자기 디스크 저장 장치(magnetic disc storage device), 컴팩트 디스크 롬(compact disc-ROM, CD-ROM), 디지털 다목적 디스크(digital versatile discs, DVDs) 또는 다른 형태의 광학 저장 장치, 마그네틱 카세트(magnetic cassette)에 저장될 수 있다. 또는, 이들의 일부 또는 전부의 조합으로 구성된 메모리에 저장될 수 있다. 또한, 각각의 구성 메모리는 다수 개 포함될 수도 있다. These programs (software modules, software) may include random access memory, non-volatile memory, including flash memory, read only memory (ROM), and electrically erasable programmable ROM. (electrically erasable programmable read only memory, EEPROM), magnetic disc storage device, compact disc-ROM (CD-ROM), digital versatile discs (DVDs), or other types of disk storage. It can be stored in an optical storage device or magnetic cassette. Alternatively, it may be stored in a memory consisting of a combination of some or all of these. Additionally, multiple configuration memories may be included.
또한, 프로그램은 인터넷(Internet), 인트라넷(Intranet), LAN(local area network), WAN(wide area network), 또는 SAN(storage area network)과 같은 통신 네트워크, 또는 이들의 조합으로 구성된 통신 네트워크를 통하여 접근(access)할 수 있는 부착 가능한(attachable) 저장 장치(storage device)에 저장될 수 있다. 이러한 저장 장치는 외부 포트를 통하여 본 개시의 실시 예를 수행하는 장치에 접속할 수 있다. 또한, 통신 네트워크상의 별도의 저장장치가 본 개시의 실시 예를 수행하는 장치에 접속할 수도 있다.In addition, the program may be distributed through a communication network such as the Internet, an intranet, a local area network (LAN), a wide area network (WAN), or a storage area network (SAN), or a combination thereof. It may be stored on an attachable storage device that is accessible. This storage device can be connected to a device performing an embodiment of the present disclosure through an external port. Additionally, a separate storage device on a communication network may be connected to the device performing an embodiment of the present disclosure.
상술한 본 개시의 구체적인 실시 예들에서, 개시에 포함되는 구성 요소는 제시된 구체적인 실시 예에 따라 단수 또는 복수로 표현되었다. 그러나, 단수 또는 복수의 표현은 설명의 편의를 위해 제시한 상황에 적합하게 선택된 것으로서, 본 개시가 단수 또는 복수의 구성 요소에 제한되는 것은 아니며, 복수로 표현된 구성 요소라 하더라도 단수로 구성되거나, 단수로 표현된 구성 요소라 하더라도 복수로 구성될 수 있다.In the specific embodiments of the present disclosure described above, elements included in the disclosure are expressed in singular or plural numbers depending on the specific embodiment presented. However, singular or plural expressions are selected to suit the presented situation for convenience of explanation, and the present disclosure is not limited to singular or plural components, and even components expressed in plural may be composed of singular or singular. Even expressed components may be composed of plural elements.
한편 본 개시의 상세한 설명에서는 구체적인 실시 예에 관해 설명하였으나, 본 개시의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 그러므로 본 개시의 범위는 설명된 실시 예에 국한되어 정해져서는 아니 되며 후술하는 특허청구의 범위뿐만 아니라 이 특허청구의 범위와 균등한 것들에 의해 정해져야 한다.Meanwhile, in the detailed description of the present disclosure, specific embodiments have been described, but of course, various modifications are possible without departing from the scope of the present disclosure. Therefore, the scope of the present disclosure should not be limited to the described embodiments, but should be determined not only by the scope of the patent claims described later, but also by the scope of this patent claim and equivalents.

Claims (15)

  1. 무선 통신 시스템에서 단말(user equipment, UE)에 의해 수행되는 방법에 있어서,In a method performed by a user equipment (UE) in a wireless communication system,
    기지국으로부터, 제1 대역폭 부분(bandwidth part, BWP) 및 제2 BWP에 대한 정보, 및 상기 제1 BWP 및 상기 제2 BWP 각각에 설정되는 주기적인 자원에 대한 설정 정보를 수신하는 단계;Receiving, from a base station, information about a first bandwidth part (BWP) and a second BWP, and configuration information about periodic resources configured for each of the first BWP and the second BWP;
    상기 기지국으로부터, active BWP인 상기 제1 BWP에 설정된 제1 주기적인 자원을 활성화하기 위한 제1 하향링크 제어 정보를 수신하는 단계; Receiving, from the base station, first downlink control information for activating a first periodic resource set in the first BWP, which is an active BWP;
    상기 활성화된 제1 주기적인 자원에 기반하여, 데이터 송수신을 수행하는 단계;performing data transmission and reception based on the activated first periodic resource;
    상기 기지국으로부터, 제2 BWP를 활성화하는 active BWP 변경 정보를 수신하는 단계; 및Receiving active BWP change information activating a second BWP from the base station; and
    상기 제1 BWP에 설정된 상기 활성화된 제1 주기적인 자원의 이용을 중지(suspend)하는 단계를 포함하고, Suspending use of the activated first periodic resource set in the first BWP,
    상기 중지된 제1 주기적인 자원의 이용은, 상기 제1 BWP가 활성화될 때 상기 제1 하향링크 제어 정보의 수신 없이 재개(resume)되는 것인, 방법.The method wherein the stopped use of the first periodic resource is resumed without receiving the first downlink control information when the first BWP is activated.
  2. 제1 항에 있어서,According to claim 1,
    상기 주기적인 자원은 하향링크와 관련된 SPS(semi-persistent scheduling) 자원 또는 상향링크와 관련된 CG(configured grant) 자원 중 적어도 하나인, 방법.The periodic resource is at least one of a semi-persistent scheduling (SPS) resource related to downlink or a configured grant (CG) resource related to uplink.
  3. 제1 항에 있어서,According to claim 1,
    상기 방법은,The above method is,
    상기 기지국으로, 주기적인 자원 기반 동작과 관련된 능력 정보(capability information)를 송신하는 단계를 더 포함하되,Further comprising transmitting, to the base station, capability information related to periodic resource-based operations,
    상기 능력 정보는 상기 제2 BWP가 활성화될 때 중지된 상기 제1 BWP의 제1 주기적인 자원의 이용이, 상기 제1 BWP가 활성화될 때 상기 제1 하향링크 제어 정보의 수신 없이 재개되는 동작의 지원 여부를 나타내는 정보를 포함하는, 방법.The capability information is an operation in which the use of the first periodic resource of the first BWP, which is stopped when the second BWP is activated, is resumed without receiving the first downlink control information when the first BWP is activated. A method, including information indicating availability.
  4. 제2 항에 있어서,According to clause 2,
    상기 주기적인 자원이 상기 SPS 자원인 경우, 상기 주기적인 자원의 타입은 제1 타입 SPS 및 제2 타입 SPS를 포함하고, When the periodic resource is the SPS resource, the type of the periodic resource includes a first type SPS and a second type SPS,
    상기 제1 타입 SPS에 기반하는 상기 SPS 자원은 BWP 비활성화에 따라 비활성화된 BWP에 설정된 상기 SPS 자원의 이용이 중지되고, 상기 비활성화된 BWP의 활성화에 따라 상기 중지된 SPS 자원의 이용이 재개되는 자원이고,The SPS resource based on the first type SPS is a resource in which the use of the SPS resource set in the deactivated BWP is stopped according to BWP deactivation, and the use of the stopped SPS resource is resumed according to activation of the deactivated BWP. ,
    상기 제2 타입 SPS에 기반하는 상기 SPS 자원은 BWP 비활성화에 따라 비활성화된 BWP에 설정된 상기 SPS 자원에 관한 설정이 삭제되는 자원이고,The SPS resource based on the second type SPS is a resource in which the settings for the SPS resource set in the deactivated BWP are deleted as the BWP is deactivated,
    상기 방법은, The above method is,
    상기 기지국으로부터, 상기 주기적인 자원의 타입의 변경을 지시하는 정보를 수신하는 단계를 더 포함하는, 방법. The method further comprising receiving, from the base station, information indicating a change in the type of the periodic resource.
  5. 제4 항에 있어서,According to clause 4,
    상기 주기적인 자원이 상기 CG 자원인 경우, 상기 주기적인 자원의 타입은 제1 타입 CG, 제2 타입 CG, 및 제3 타입 CG를 포함하고, When the periodic resource is the CG resource, the type of the periodic resource includes a first type CG, a second type CG, and a third type CG,
    상기 제1 타입 CG에 기반하는 상기 CG 자원은 BWP 비활성화에 따라 비활성화된 BWP에 설정된 상기 CG 자원의 이용이 중지되고, 상기 비활성화된 BWP의 활성화에 따라 상기 중지된 CG 자원의 이용이 재개되는 자원이고,The CG resource based on the first type CG is a resource in which use of the CG resource set in the deactivated BWP is stopped upon deactivation of the BWP, and use of the suspended CG resource is resumed upon activation of the deactivated BWP. ,
    상기 제2 타입 CG에 기반하는 상기 CG 자원은 BWP에 활성화에 따라 상기 제1 제어 정보의 수신 없이 즉시 활성화되는 자원이고,The CG resource based on the second type CG is a resource that is activated immediately without receiving the first control information upon activation of the BWP,
    상기 제3 타입 CG에 기반하는 상기 CG 자원은 BWP 비활성화에 따라 비활성화된 BWP에 설정된 상기 CG 자원에 관한 설정이 삭제되는 자원인, 방법. The CG resource based on the third type CG is a resource in which settings related to the CG resource set in the deactivated BWP are deleted as the BWP is deactivated.
  6. 제1 항에 있어서,According to claim 1,
    상기 제1 주기적인 자원 및 상기 제2 BWP에 설정된 제2 주기적인 자원은 동일한 그룹 인덱스를 가지며,The first periodic resource and the second periodic resource set in the second BWP have the same group index,
    상기 제1 하향링크 제어 정보가 상기 동일한 그룹 인덱스를 포함하는 경우, 상기 동일한 그룹 인덱스에 기초하여 상기 제2 주기적인 자원이 상기 제1 주기적인 자원과 함께 활성화되고,When the first downlink control information includes the same group index, the second periodic resource is activated together with the first periodic resource based on the same group index,
    상기 제2 주기적인 자원은 활성화 즉시 중지(suspend)되고, 상기 중지된 제2 주기적인 자원은 제2 BWP가 활성화될 때 상기 제1 하향링크 제어 정보의 수신 없이 재개되는, 방법.The second periodic resource is suspended immediately upon activation, and the suspended second periodic resource is resumed without receiving the first downlink control information when the second BWP is activated.
  7. 제1 항에 있어서,According to claim 1,
    상기 제1 BWP는 제1 셀(cell)에 포함되고, 제3 주기적인 자원이 설정된 제3 BWP는 상기 제1 셀과 다른 제2 셀에 포함되어 활성화되고,The first BWP is included in a first cell, and the third BWP for which a third periodic resource is set is included in a second cell different from the first cell and is activated,
    상기 제1 주기적인 자원 및 상기 제3 주기적인 자원은 동일한 그룹 인덱스를 가지며, 상기 제1 주기적인 자원 및 상기 제3 주기적인 자원 간의 우선 순위가 설정되고,The first periodic resource and the third periodic resource have the same group index, and a priority is set between the first periodic resource and the third periodic resource,
    상기 제1 하향링크 제어 정보가 상기 동일한 그룹 인덱스를 포함하는 경우, 상기 동일한 그룹 인덱스에 기초하여 상기 제3 주기적인 자원이 상기 제1 주기적인 자원과 함께 활성화되고,When the first downlink control information includes the same group index, the third periodic resource is activated together with the first periodic resource based on the same group index,
    상기 데이터 송수신을 수행하는 단계는,The step of performing the data transmission and reception is,
    상기 제1 주기적인 자원의 우선 순위가 상기 제2 주기적인 자원의 우선 순위보다 높은 경우, 상기 제1 셀의 상기 제1 BWP가 비활성화 될 때, 상기 제2 셀의 상기 제3 주기적인 자원에 기반하여 수행되는, 방법.When the priority of the first periodic resource is higher than the priority of the second periodic resource, when the first BWP of the first cell is deactivated, based on the third periodic resource of the second cell A method that is performed by:
  8. 무선 통신 시스템에서 기지국(base station)에 의해 수행되는 방법에 있어서,In a method performed by a base station in a wireless communication system,
    단말로, 제1 대역폭 부분(bandwidth part, BWP) 및 제2 BWP에 대한 정보, 및 상기 제1 BWP 및 상기 제2 BWP 각각에 설정되는 주기적인 자원에 대한 설정 정보를 송신하는 단계;Transmitting, to the terminal, information about a first bandwidth part (BWP) and a second BWP, and configuration information about periodic resources configured for each of the first BWP and the second BWP;
    상기 단말로, active BWP인 상기 제1 BWP에 설정된 제1 주기적인 자원을 활성화하기 위한 제1 하향링크 제어 정보를 송신하는 단계;Transmitting, to the terminal, first downlink control information for activating a first periodic resource set in the first BWP, which is an active BWP;
    상기 활성화된 제1 주기적인 자원에 기반하여, 데이터 송수신을 수행하는 단계;performing data transmission and reception based on the activated first periodic resource;
    상기 단말로, 제2 BWP를 활성화하는 active BWP 변경 정보를 송신하는 단계; 및Transmitting active BWP change information activating a second BWP to the terminal; and
    상기 제1 BWP에 설정된 상기 활성화된 제1 주기적인 자원의 이용을 중지(suspend)하는 단계를 포함하고,Suspending use of the activated first periodic resource set in the first BWP,
    상기 중지된 제1 주기적인 자원의 이용은, 상기 제1 BWP가 활성화될 때 상기 제1 하향링크 제어 정보의 송신 없이 재개(resume)되는 것인, 방법.The method wherein the stopped use of the first periodic resource is resumed without transmission of the first downlink control information when the first BWP is activated.
  9. 제8 항에 있어서,According to clause 8,
    상기 주기적인 자원은 하향링크와 관련된 SPS(semi-persistent scheduling) 자원 또는 상향링크와 관련된 CG(configured grant) 자원 중 적어도 하나인, 방법.The periodic resource is at least one of a semi-persistent scheduling (SPS) resource related to downlink or a configured grant (CG) resource related to uplink.
  10. 제8 항에 있어서,According to clause 8,
    상기 방법은,The above method is,
    상기 기지국으로, 주기적인 자원 기반 동작과 관련된 능력 정보(capability information)를 송신하는 단계를 더 포함하되,Further comprising transmitting, to the base station, capability information related to periodic resource-based operations,
    상기 능력 정보는 상기 제2 BWP가 활성화될 때 중지된 상기 제1 BWP의 제1 주기적인 자원의 이용이, 상기 제1 BWP가 활성화될 때 상기 제1 하향링크 제어 정보의 수신 없이 재개되는 동작의 지원 여부를 나타내는 정보를 포함하는, 방법.The capability information is an operation in which the use of the first periodic resource of the first BWP, which is stopped when the second BWP is activated, is resumed without receiving the first downlink control information when the first BWP is activated. A method, including information indicating availability.
  11. 제9 항에 있어서,According to clause 9,
    상기 주기적인 자원이 상기 SPS 자원인 경우, 상기 주기적인 자원의 타입은 제1 타입 SPS 및 제2 타입 SPS를 포함하고, When the periodic resource is the SPS resource, the type of the periodic resource includes a first type SPS and a second type SPS,
    상기 제1 타입 SPS에 기반하는 상기 SPS 자원은 BWP 비활성화에 따라 비활성화된 BWP에 설정된 상기 SPS 자원의 이용이 중지되고, 상기 비활성화된 BWP의 활성화에 따라 상기 중지된 SPS 자원의 이용이 재개되는 자원이고,The SPS resource based on the first type SPS is a resource in which the use of the SPS resource set in the deactivated BWP is stopped according to BWP deactivation, and the use of the stopped SPS resource is resumed according to activation of the deactivated BWP. ,
    상기 제2 타입 SPS에 기반하는 상기 SPS 자원은 BWP 비활성화에 따라 비활성화된 BWP에 설정된 상기 SPS 자원에 관한 설정이 삭제되는 자원이고,The SPS resource based on the second type SPS is a resource in which the settings for the SPS resource set in the deactivated BWP are deleted as the BWP is deactivated,
    상기 방법은, The above method is,
    상기 단말로, 상기 주기적인 자원의 타입의 변경을 지시하는 정보를 송신하는 단계를 더 포함하는, 방법. The method further comprising transmitting, to the terminal, information indicating a change in the type of the periodic resource.
  12. 제11 항에 있어서,According to claim 11,
    상기 주기적인 자원이 상기 CG 자원인 경우, 상기 주기적인 자원의 타입은 제1 타입 CG, 제2 타입 CG, 및 제3 타입 CG를 포함하고, When the periodic resource is the CG resource, the type of the periodic resource includes a first type CG, a second type CG, and a third type CG,
    상기 제1 타입 CG에 기반하는 상기 CG 자원은 BWP 비활성화에 따라 비활성화된 BWP에 설정된 상기 CG 자원의 이용이 중지되고, 상기 비활성화된 BWP의 활성화에 따라 상기 중지된 CG 자원의 이용이 재개되는 자원이고,The CG resource based on the first type CG is a resource in which use of the CG resource set in the deactivated BWP is stopped upon deactivation of the BWP, and use of the suspended CG resource is resumed upon activation of the deactivated BWP. ,
    상기 제2 타입 CG에 기반하는 상기 CG 자원은 BWP에 활성화에 따라 상기 제1 제어 정보의 수신 없이 즉시 활성화되는 자원이고,The CG resource based on the second type CG is a resource that is activated immediately without receiving the first control information upon activation of the BWP,
    상기 제3 타입 CG에 기반하는 상기 CG 자원은 BWP 비활성화에 따라 비활성화된 BWP에 설정된 상기 CG 자원에 관한 설정이 삭제되는 자원인, 방법. The CG resource based on the third type CG is a resource in which settings related to the CG resource set in the deactivated BWP are deleted as the BWP is deactivated.
  13. 제8 항에 있어서,According to clause 8,
    상기 제1 주기적인 자원 및 상기 제2 BWP에 설정된 제2 주기적인 자원은 동일한 그룹 인덱스를 가지며,The first periodic resource and the second periodic resource set in the second BWP have the same group index,
    상기 제1 하향링크 제어 정보가 상기 동일한 그룹 인덱스를 포함하는 경우, 상기 동일한 그룹 인덱스에 기초하여 상기 제2 주기적인 자원이 상기 제1 주기적인 자원과 함께 활성화되고,When the first downlink control information includes the same group index, the second periodic resource is activated together with the first periodic resource based on the same group index,
    상기 제2 주기적인 자원은 활성화 즉시 중지(suspend)되고, 상기 중지된 제2 주기적인 자원은 제2 BWP가 활성화될 때 상기 제1 하향링크 제어 정보의 수신 없이 재개되는, 방법.The second periodic resource is suspended immediately upon activation, and the suspended second periodic resource is resumed without receiving the first downlink control information when the second BWP is activated.
  14. 무선 통신 시스템에서 단말(user equipment, UE)에 있어서, 상기 단말은,In a terminal (user equipment, UE) in a wireless communication system, the terminal:
    송수신기;transceiver;
    상기 송수신기와 연결된 컨트롤러(controller)를 포함하되,Including a controller connected to the transceiver,
    상기 컨트롤러는,The controller is,
    기지국으로부터, 제1 대역폭 부분(bandwidth part, BWP) 및 제2 BWP에 대한 정보, 및 상기 제1 BWP 및 상기 제2 BWP 각각에 설정되는 주기적인 자원에 대한 설정 정보를 수신하는 단계;Receiving, from a base station, information about a first bandwidth part (BWP) and a second BWP, and configuration information about periodic resources configured for each of the first BWP and the second BWP;
    상기 기지국으로부터, active BWP인 상기 제1 BWP에 설정된 제1 주기적인 자원을 활성화하기 위한 제1 하향링크 제어 정보를 수신하는 단계;Receiving, from the base station, first downlink control information for activating a first periodic resource set in the first BWP, which is an active BWP;
    상기 활성화된 제1 주기적인 자원에 기반하여, 데이터 송수신을 수행하는 단계;performing data transmission and reception based on the activated first periodic resource;
    상기 기지국으로부터, 제2 BWP를 활성화하는 active BWP 변경 정보를 수신하는 단계; 및Receiving active BWP change information activating a second BWP from the base station; and
    상기 제1 BWP에 설정된 상기 활성화된 제1 주기적인 자원의 이용을 중지(suspend)하는 단계를 수행하되, Performing a step of suspending the use of the activated first periodic resource set in the first BWP,
    상기 중지된 제1 주기적인 자원의 이용은, 상기 제1 BWP가 활성화될 때 상기 제1 하향링크 제어 정보의 수신 없이 재개(resume)되도록 구성되는, 단말.The terminal is configured to resume the stopped use of the first periodic resource without receiving the first downlink control information when the first BWP is activated.
  15. 무선 통신 시스템에서 기지국에 있어서, 상기 기지국은,In a base station in a wireless communication system, the base station:
    송수신기;transceiver;
    상기 송수신기와 연결된 컨트롤러(controller)를 포함하되,Including a controller connected to the transceiver,
    상기 컨트롤러는,The controller is,
    단말로, 제1 대역폭 부분(bandwidth part, BWP) 및 제2 BWP에 대한 정보, 및 상기 제1 BWP 및 상기 제2 BWP 각각에 설정되는 주기적인 자원에 대한 설정 정보를 송신하는 단계;Transmitting, to the terminal, information about a first bandwidth part (BWP) and a second BWP, and configuration information about periodic resources configured for each of the first BWP and the second BWP;
    상기 단말로, active BWP인 상기 제1 BWP에 설정된 제1 주기적인 자원을 활성화하기 위한 제1 하향링크 제어 정보를 전송하는 단계;Transmitting, to the terminal, first downlink control information for activating a first periodic resource set in the first BWP, which is an active BWP;
    상기 활성화된 제1 주기적인 자원에 기반하여, 데이터 송수신을 수행하는 단계;performing data transmission and reception based on the activated first periodic resource;
    상기 단말로, 제2 BWP를 활성화하는 active BWP 변경 정보를 전송하는 단계; 및Transmitting active BWP change information activating a second BWP to the terminal; and
    상기 제1 BWP에 설정된 상기 활성화된 제1 주기적인 자원의 이용을 중지(suspend)하는 단계를 수행하되, Performing a step of suspending the use of the activated first periodic resource set in the first BWP,
    상기 중지된 제1 주기적인 자원의 이용은, 상기 제1 BWP가 활성화될 때 상기 제1 하향링크 제어 정보의 전송 없이 재개(resume)되도록 구성되는, 기지국.The base station is configured to resume the stopped use of the first periodic resource without transmitting the first downlink control information when the first BWP is activated.
PCT/KR2023/014751 2022-09-27 2023-09-26 Method and device for transmitting and receiving sps and cg for network energy saving in wireless communication system WO2024071953A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220122550A KR20240043445A (en) 2022-09-27 2022-09-27 Method and Apparatus for transmission and reception of SPS and CG for Network energy saving
KR10-2022-0122550 2022-09-27

Publications (1)

Publication Number Publication Date
WO2024071953A1 true WO2024071953A1 (en) 2024-04-04

Family

ID=90478687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/014751 WO2024071953A1 (en) 2022-09-27 2023-09-26 Method and device for transmitting and receiving sps and cg for network energy saving in wireless communication system

Country Status (2)

Country Link
KR (1) KR20240043445A (en)
WO (1) WO2024071953A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190089062A (en) * 2016-12-27 2019-07-29 에프쥐 이노베이션 컴퍼니 리미티드 Method for signaling a bandwidth part (BWP) indicator and a wireless communication device using the same
KR20200013775A (en) * 2017-06-16 2020-02-07 후아웨이 테크놀러지 컴퍼니 리미티드 Method, apparatus and system for configuring bandwidth resources
KR102110190B1 (en) * 2018-02-19 2020-05-13 한국전자통신연구원 Method for bandwidth management part in communication system and apparatus for the same
KR20210122852A (en) * 2019-02-12 2021-10-12 구글 엘엘씨 Partial Bandwidth Switching in Telecommunication Networks
US20220022232A1 (en) * 2018-12-10 2022-01-20 Nec Corporation Multi-trp transmission

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190089062A (en) * 2016-12-27 2019-07-29 에프쥐 이노베이션 컴퍼니 리미티드 Method for signaling a bandwidth part (BWP) indicator and a wireless communication device using the same
KR20200013775A (en) * 2017-06-16 2020-02-07 후아웨이 테크놀러지 컴퍼니 리미티드 Method, apparatus and system for configuring bandwidth resources
KR102110190B1 (en) * 2018-02-19 2020-05-13 한국전자통신연구원 Method for bandwidth management part in communication system and apparatus for the same
US20220022232A1 (en) * 2018-12-10 2022-01-20 Nec Corporation Multi-trp transmission
KR20210122852A (en) * 2019-02-12 2021-10-12 구글 엘엘씨 Partial Bandwidth Switching in Telecommunication Networks

Also Published As

Publication number Publication date
KR20240043445A (en) 2024-04-03

Similar Documents

Publication Publication Date Title
WO2022158938A1 (en) Method and user equipment for determining resource for sidelink communication
WO2022191644A1 (en) Methods and apparatuses for search space set group switching enhancements
WO2020091270A1 (en) Method and apparatus for supporting multiple partial frequency bands in wireless communication system
WO2023075423A1 (en) Method and apparatus for l1/l2-based inter-cell mobility
WO2020032694A1 (en) Method and device for transmitting/receiving data in wireless communication system
WO2023055058A1 (en) Method and apparatus for switching duplex mode during random access
WO2024071953A1 (en) Method and device for transmitting and receiving sps and cg for network energy saving in wireless communication system
WO2021246774A1 (en) Method and device for transmitting or receiving data by using dual connectivity of iab node in wireless communication system
WO2024019573A1 (en) Method and apparatus for providing network response information in wireless communication system
WO2023243929A1 (en) Method and device for nes mode operation of idle mode and inactive mode terminal in wireless communication system
WO2024071873A1 (en) Method and device for split bearer operation in wireless communication system
WO2024010396A1 (en) Method and device for co-existence of network energy saving (nes) mode and discontinuous reception (drx) in wireless communication system
WO2024014823A1 (en) Method and device for deriving position information about network-based terminal in non-terrestrial network system
WO2023239113A1 (en) Method and apparatus for network power reduction mode operation in wireless communication system
WO2023211054A1 (en) Method and device for reporting idc problem in mobile communication system
WO2023149723A1 (en) Method and apparatus for conditional pscell addition and change
WO2023211091A1 (en) Method and device for managing cooperation information between terminals for sidelink communication in wireless communication system
WO2023048539A1 (en) Method and apparatus for transceiving data by using dual connectivity of integrated access and backhaul node in wireless communication system
WO2024029856A1 (en) Method and apparatus for network parameter adaptation
WO2023003424A1 (en) Communication method and apparatus for xdd user equipment in wireless communication system
WO2024035122A1 (en) Method and device for mbs sps reception in rrc inactive mode
WO2024029871A1 (en) Method and apparatus for reporting a decoding outcome of a dci format
WO2023171990A1 (en) Method and device for beam management in communication system
WO2024029870A1 (en) Method and apparatus for monitoring operation state indication
WO2023080692A1 (en) Device and method for processing hybrid automatic repeat request (harq) round trip time (rtt) timer in sidelink discontinuous reception (drx) operation in wireless communication system