WO2024071668A1 - Polarization-splitting double-scanning holography system for transmission body - Google Patents

Polarization-splitting double-scanning holography system for transmission body Download PDF

Info

Publication number
WO2024071668A1
WO2024071668A1 PCT/KR2023/011950 KR2023011950W WO2024071668A1 WO 2024071668 A1 WO2024071668 A1 WO 2024071668A1 KR 2023011950 W KR2023011950 W KR 2023011950W WO 2024071668 A1 WO2024071668 A1 WO 2024071668A1
Authority
WO
WIPO (PCT)
Prior art keywords
scan
polarized
polarized beam
splitter
transmitting body
Prior art date
Application number
PCT/KR2023/011950
Other languages
French (fr)
Korean (ko)
Inventor
김태근
김봉연
이선필
Original Assignee
주식회사 큐빅셀
세종대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 큐빅셀, 세종대학교 산학협력단 filed Critical 주식회사 큐빅셀
Publication of WO2024071668A1 publication Critical patent/WO2024071668A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms

Definitions

  • the present invention relates to a polarization-splitting double scanning holography system for a transmissive object, and more specifically, to a polarization-splitting double scanning holography system for a transmissive object that can implement a scanning hologram for a transmissive object, which is a transmissive object, at ultra-high speed.
  • a conventional optical scanning hologram system uses an interferometer to form a beam pattern with a spatial distribution of a Fresnel zone plate, projects the formed beam pattern onto an object, and condenses the light reflected or transmitted from the object.
  • a hologram of an object is obtained through detection.
  • the purpose of the present invention is to provide a polarization splitting double scanning holography system for a transmissive object that can implement a scanning hologram for a transmissive object at ultra-high speed.
  • the present invention modulates the phase of the first beam split from the light source, converts it into a first curvature beam through the first beam curvature generator, and converts the second beam into a second curvature beam through the second beam curvature generator,
  • a scan beam generator that forms a scan beam by interfering with the first and second curvature beams, and splits the scan beam into an s-polarized beam and a p-polarized beam to emit the two divided polarized beams side by side.
  • a scan beam consisting of a beam splitter and two polarized beams emitted side by side is received from the scan beam splitter and projected onto a transmitting body, and the scanning position of the scan beam with respect to the transmitting body is controlled in the horizontal and vertical directions.
  • a scanning unit that transmits the signal to a transmitting body, a light detecting unit that separates and detects the s-polarized beam and the p-polarized beam from the beam that has transmitted through the transmitting body, and a signal of the separately detected s-polarized beam and the p-polarized beam. It provides a polarization splitting double scanning holography system for a transmitting object, including a signal processing unit that processes the transmitting object to generate a hologram for the transmitting object.
  • the light detection unit is disposed in a direction biased to the optical axis of the beam projected to the transmitting body, and includes a first concentrator that condenses the beam that has transmitted through the transmitting body, and a beam spatially integrated through the first concentrator.
  • a first polarizer that passes only the s-polarized beam component, a first photodetector that detects the s-polarized beam that has passed through the first polarizer, and a first polarizer disposed in a direction biased to the optical axis of the beam projected to the transmitting body; 1 a second concentrator disposed in a position different from the concentrator and concentrating the beam that has passed through the transmitting body, a second polarizer that passes only the p-polarized beam component in the spatially integrated beam through the second concentrator, and It may include a second photodetector that detects the p-polarized beam that has passed through the second polarizer.
  • the light detection unit includes a first light splitter disposed on the optical axis of the light projected to the transmitting body and receiving the beam passing through the transmitting body and reflecting it to the outside, and receiving the light reflected from the first light splitter and receiving the light reflected from the first light splitter.
  • a second light splitter that transmits the p-polarized beam component of the incident beam and reflects the s-polarized beam component
  • a first concentrator that condenses the s-polarized beam component reflected by the second light splitter
  • the second light splitter A second concentrator for concentrating the p-polarized beam component transmitted from the light splitter, a first photodetector for detecting the spatially integrated beam through the first concentrator, and a spatially integrated beam through the second concentrator. It may include a second photodetector that detects.
  • the light detection unit includes a first light splitter disposed on the optical axis of the light projected to the transmitting body and receiving the beam passing through the transmitting body and reflecting it to the outside, and receiving the light reflected from the first light splitter and receiving the light reflected from the first light splitter.
  • a second light splitter that transmits part of the incident beam and reflects part of it, a first polarizer that receives the beam reflected from the second light splitter and allows only the s-polarized beam component to pass through, and is transmitted by the second light splitter.
  • a second polarizer that receives the incident beam and allows only the p-polarized beam component to pass through, a first concentrator that condenses the s-polarized beam component that has passed through the first polarizer, and a p-polarized beam that has passed through the second polarizer. It may include a second concentrator for concentrating a component, a first photodetector for detecting a spatially integrated beam through the first concentrator, and a second photodetector for detecting a spatially integrated beam through the second concentrator. You can.
  • the signal processor includes a first signal processor that processes the signal of the s-polarized beam detected by the first photodetector, and a second signal processor that processes the signal of the p-polarized beam detected by the second photodetector. It may include a processing unit, and a cross-array signal processing unit that generates a hologram for the transmitting body by synthesizing the hologram signal processed in the first signal processing unit and the hologram signal processed in the second signal processing unit in a manner that cross-arranges them line by line. You can.
  • the scan beam splitter is made of an anisotropic optical material, and separates the scan beam incident through the first side into an s-polarized beam and a p-polarized beam with polarizations orthogonal to each other and emits them in parallel through the second side. It may include a beam displacer.
  • the scan beam splitter is installed on the path of the shorter p-polarized beam among the paths of the s-polarized beam and the p-polarized beam emitted through the second surface, and is made of the same material as the beam displacer. It may further include an optical path difference correction unit that compensates for the difference in optical path length between the emitted s-polarized beam and the p-polarized beam.
  • the scan beam splitter is composed of a combination of two triangular prisms whose crystal axes are perpendicular to each other and made of different materials, and the scan beam incident through the first surface is transmitted parallel to the scan beam at the boundary surface of the two triangular prisms.
  • It includes a polarizing prism that separates a first polarized beam and a second polarized beam that travels at a set angle from the scan beam and emits them through a second surface, and if the first polarized beam is an s-polarized beam, the second polarized beam
  • the polarized beam may be a p-polarized beam, and if the first polarized beam is a p-polarized beam, the second polarized beam may be an s-polarized beam.
  • the scan beam splitter is sequentially installed on the path of the second polarized beam emitted through the second surface to change the beam path to determine the direction of travel of the second polarized beam.
  • a displacement control unit that adjusts the scan beam in parallel, and a first polarized beam that is installed on the path of the shorter s-polarized beam among the paths of the first and second polarized beams that are emitted through the second surface, and is emitted; It may further include an optical path difference correction unit that compensates for a difference in optical path length between the second polarized beams.
  • the optical path difference correction unit includes third to sixth mirrors that are sequentially installed on the path of the first polarized beam emitted through the second surface to change the beam path, and the third and sixth mirrors It may include a mirror moving unit that compensates for the difference in optical path length while moving the fourth and fifth mirrors arranged in parallel and spaced apart from the mirror as a group.
  • the polarizing prism may have a Rochon prism or Senarmont prism structure.
  • the polarizing prism is installed in a state rotated by a set angle based on the center of the boundary surface, and the set angle is the angle between the travel directions of the first polarization beam and the second polarization beam separately emitted from the center of the boundary surface. It may be ⁇ /2, which is half of the difference ( ⁇ ).
  • the scan beam splitter includes first and second mirrors that are sequentially installed on the path of the second polarized beam emitted through the second surface to change the beam path, and a first and second mirrors that are sequentially installed on the path of the second polarized beam emitted through the second surface.
  • It further includes a displacement control unit including third and fourth mirrors that are sequentially installed on the path of the polarized beam to change the beam path and are installed symmetrically with the first and second mirrors, and wherein the displacement control unit
  • the travel directions of the second polarized beam that has passed through the second mirror and the first polarized beam that has passed through the fourth mirror may be adjusted to be parallel.
  • the scan beam splitter is composed of a combination of two triangular prisms whose crystal axes are perpendicular to each other and made of different materials, and the scan beam incident through the first surface is divided into two triangular prisms at the boundary surface of the two triangular prisms in the direction of the scan beam. It may include a polarizing prism of a Wollaston prism structure that separates the s-polarized beam and the p-polarized beam, which proceed symmetrically to each other at a set angle, and emits them through the second surface.
  • the scan beam splitter includes first and second mirrors that are sequentially installed on the path of the p-polarized beam emitted through the second surface to change the beam path, and s emitted through the second surface.
  • -It further includes a displacement control unit including third and fourth mirrors that are sequentially installed on the path of the polarizing beam to change the beam path and are installed symmetrically with the first and second mirrors, and are operated by the displacement control unit.
  • the travel directions of the p-polarized beam that passed through the second mirror and the s-polarized beam that passed through the fourth mirror may be adjusted to be parallel.
  • the scan beam splitter includes a first polarizing beam splitter that reflects the s-polarized beam component from the incident scan beam and transmits the p-polarized beam component, and a first polarizing beam splitter that reflects the s-polarized beam component from the first polarizing beam splitter.
  • First and second mirrors are sequentially installed on the path to change the beam path by 90 degrees, and are sequentially installed on the path of the p-polarized beam transmitted from the first polarizing beam splitter to change the beam path by 90 degrees.
  • the third to sixth mirrors, and an s-polarized beam that has passed through the second mirror and a p-polarized beam that has passed through the sixth mirror, are incident on each of the first and second surfaces, and after incident on the first face, It may include a second polarizing beam splitter that outputs the reflected s-polarized beam and the p-polarized beam transmitted after incident on the second surface in a parallel direction through the third surface.
  • the scan unit includes a horizontal scan mirror and a vertical scan mirror to control the scanning position of the scan beam with respect to the transmitting object, and can control the incident scan beam in horizontal and vertical directions and transmit it to the transmitting object.
  • the scan unit includes a scan mirror that controls the scan beam incident from the scan beam splitter in the horizontal direction and transmits it to the transmissive body so as to control the scanning position of the scan beam with respect to the transmissive body in the horizontal and vertical directions;
  • a translation stage may be included at the rear end of the transparent body to move the transparent material in the vertical direction.
  • the scan unit controls the scan beam incident from the scan beam splitter in the horizontal direction to control the scanning position of the scan beam with respect to the transmissive body in the horizontal and vertical directions and transmits it to the transmissive body through spatial modulation (spatial modulation).
  • spatial modulation may include a scanner and a translation stage that moves the transparent material in the vertical direction at the rear end of the transparent material.
  • the scan unit includes a vertical scanner and a horizontal scanner for controlling the scanning position of the scan beam with respect to the object in horizontal and vertical directions, and controls the scan beam incident from the scan beam splitter in the horizontal direction. It may include a horizontal spatial modulation scanner that transmits the scan beam to an object, and a vertical spatial modulation scanner that controls the scan beam in the vertical direction and transmits it to the object.
  • Figure 1 is a diagram showing the configuration of a polarization-splitting double scanning holography system for a transmissive material according to a first embodiment of the present invention.
  • Figure 2a is a diagram showing the configuration of a polarization-splitting double scanning holography system for a transmissive material according to a second embodiment of the present invention.
  • FIG. 2B is a diagram showing a modified example of FIG. 2A.
  • Figure 3 is a diagram showing the configuration of a polarization-splitting double scanning holography system for a transmissive material according to a third embodiment of the present invention.
  • Figure 4a is a diagram showing the configuration of a polarization-splitting double scanning holography system for a transmissive material according to a fourth embodiment of the present invention.
  • FIG. 4B is a diagram showing a modified example of FIG. 4A.
  • FIGS. 5A to 5H are diagrams illustrating various embodiments of the scan beam splitter shown in FIG. 1.
  • Figure 6 is a diagram explaining the operation of a signal processing unit according to an embodiment of the present invention.
  • Figure 7 is a diagram explaining the operating principle of a spatial modulation scanner.
  • Figure 8 is a diagram explaining the operating principle of the horizontal and vertical spatial modulation scanner.
  • the present invention relates to a polarization-splitting double scanning holography system for a transmissive object, and proposes a polarization-splitting double scanning holography system for acquiring a hologram for a transmissive object (hereinafter referred to as a transmissive object) at high speed.
  • the beam generated by the scan beam generator is divided into an s-polarized beam and a p-polarized beam, and the beam is emitted side by side and projected onto a transmitting object, which is the object to be scanned, and the beam transmitted through the transmitting object is condensed and sent to the light detection unit.
  • a transmitting object which is the object to be scanned
  • FIGS. 1 to 4 are diagrams showing the configuration of a polarization-splitting double scanning holography system for a transmissive material according to the first to fourth embodiments of the present invention.
  • the polarization splitting double scanning holography system 100 for a transmitting body largely includes a scan beam generator 110, a scan beam splitter 120, and a scan unit ( 130), a light detection unit 140, and a signal processing unit 150.
  • This basic structure also applies to the remaining second to fourth embodiments.
  • the scan beam generator 110 converts the first beam of the first and second beams split from the light source into a first curvature beam through the first lens 115 by frequency shifting, and converts the second beam into a second beam. After being converted into a second curvature beam through the lens 116, the first and second curvature beams are interfered to form a scan beam.
  • the scan beam generator 110 uses a mark-gender interferometer structure that splits a light source into first and second beams to generate first and second curved beams, and then combines the two generated beams again.
  • the scan beam generator 110 includes a first mirror (M1), a light splitter 111, a frequency shift means 112, second and third mirrors (M2, M3), and first and second beam curvature generators ( N1, N2), and an interference means 117, and may further include a light source.
  • the light source is the part that generates electromagnetic waves.
  • the light source may include various means such as a laser generator capable of generating electromagnetic waves, a light emitting diode (LED), and a beam with low coherence such as helogen light with a short coherence length.
  • a laser generator capable of generating electromagnetic waves
  • LED light emitting diode
  • a beam with low coherence such as helogen light with a short coherence length.
  • the light source implemented as a laser generator is taken as a representative example.
  • the beam output from the light source is transmitted to the first mirror (M1) and then reflected and input to the light splitter 111.
  • the light splitter 111 separates the incident beam into a first beam and a second beam, transmits the first beam to the phase modulation means 112 (acoustic-optical modulator), and transfers the second beam to the third mirror M3. Pass it to That is, the beam following the path of the first beam from the optical splitter 111 is transmitted to the phase modulation means 112, and the beam following the path of the second beam is transmitted to the third mirror M3.
  • the phase modulation means 112 acoustic-optical modulator
  • the optical splitter 111 may be composed of an optical fiber coupler, a beam splitter, a geometric phase lens, etc., and transmits the beam to the outside by guiding the free space. It can be implemented in this way.
  • a means that can split the beam on the co-axis in-line
  • a geometric phase lens it can be split into a first beam and a second beam on the co-axis.
  • each optical splitter is implemented as a beam splitter.
  • the phase modulation means 112 shifts the frequency of the first beam and then transmits it to the second mirror (M2).
  • the frequency shifting means that is, the phase modulating means, can shift the frequency of the first beam by ⁇ using a frequency generated by a function generator (not shown) and transmit it to the second mirror (M2).
  • the phase modulator may be implemented with various types of modulators that modulate the phase of light according to an electric signal, including an acousto-optic modulator and an electro-optic modulator.
  • the first beam reflected from the second mirror (M2) is transmitted to the first beam curvature generator (N1).
  • the second beam reflected from the third mirror (M3) is transmitted to the second beam curvature generator (N2).
  • the beam expander can be implemented as a collimator.
  • the first and second beam curvature generators N1 and N2 receive each beam and generate an enlarged beam having a curvature between negative and positive curvatures, including a collimated beam.
  • a specific example of implementation of the first beam curvature generator (N1) includes a first lens 113 that converts the first beam reflected from the second mirror (M2) into a spherical wave, and a beam that receives the spherical wave and has a curvature (first curvature As a beam expander having a second lens 115 that generates a beam, the curvature of the beam can be adjusted by adjusting the distance between the first lens 113 and the second lens 115.
  • a specific example of the second beam curvature generator (N2) includes a third lens 114 that converts the second beam reflected from the third mirror (M3) into a spherical wave, and a beam with a curvature (second curvature) that receives the spherical wave.
  • the curvature of the beam can be adjusted by adjusting the distance between the third lens 114 and the fourth lens 116.
  • the first beam curvature generator (N1) converts the first beam into a first curvature beam and transmits it to the interference means (117). That is, the first beam curvature generator N1 generates a second curvature beam by modulating the spatial distribution of the first beam.
  • the second beam curvature generator (N2) converts the second beam into a first curvature beam and transmits it to the interference means (117). That is, the second beam curvature generator N2 generates the second curvature beam by modulating the spatial distribution of the second beam.
  • the generated first and second curvature beams interfere with each other while passing through the interference means 117 and are transmitted to the scanning unit 130.
  • the interference means 117 may be implemented as a beam splitter.
  • the interference means 117 generates a first beam (first curved beam) that has passed through the first beam curvature generator (N1) and a second beam (second curved beam) that has passed through the second beam curvature generator (N2). They overlap and interfere with each other to form scan beams with an interference pattern of a Fresnel zone pattern.
  • the Fresnel annular pattern may represent a beam pattern generated by interference between a first and second curved beam whose curvatures are not completely the same.
  • the scan beam generator 110 converts the first beam and the second beam separated from the light source into the first and second curved beams and overlaps them through the interference means 117 to form a scan beam.
  • the scan beam is transmitted to the scan beam splitter 120.
  • the scan beam generated by the scan beam generator 110 is either linearly polarized at 45 degrees with respect to the horizontal direction of the scan beam splitter 120 (the direction in which the beam is incident on the scan beam splitter in FIG. 1) or is not linearly polarized. Preferably it is a beam.
  • the laser generates a beam linearly polarized at 45 degrees with respect to the horizontal direction of the scan beam splitter 120, or the laser outputs a linearly polarized beam in a random direction and the linearly polarized direction of the output laser beam is changed using a wave plate. ), a beam polarized at 45 degrees with respect to the horizontal direction of the scan beam splitter 120 can be generated.
  • a circularly polarized beam is generated from a laser beam, it can be changed to a linearly polarized beam using a wave plate.
  • the scan beam splitter 120 splits the incident scan beam into an s-polarized beam and a p-polarized beam and emits the two split polarized beams side by side toward the scan unit 130. That is, the scan beam splitter 120 divides the scan beam received from the scan beam generator 110 into two scan beams (first scan beam: s-polarized beam, second scan beam: p-polarized beam) according to polarization. ) and then output in parallel parallel to each other to deliver it to the scanning unit 130.
  • This scan beam splitter 120 has the function of splitting the scan beam into an s-polarized beam and a p-polarized beam, the function of adjusting the optical path length between the two split beams to be the same, and the traveling direction of the two split beams. It can be implemented including a function that makes it parallel.
  • the first function it can be implemented through a beam displacer, polarizing prism, or polarized beam splitter (PBS), and for the second and third functions, a combination of multiple mirrors or multiple mirrors can be used. It can be implemented using a combination of mirrors and a polarizing beam splitter (PBS). This will be explained in detail through FIGS. 5A to 5B below.
  • PBS polarized beam splitter
  • the scan beam splitter 120 may be implemented in various structures as follows.
  • FIGS. 5A to 5H are diagrams illustrating various embodiments of the scan beam splitter shown in FIG. 1.
  • Figure 5a shows the first embodiment of the scan beam splitter.
  • the scan beam splitter 120-1 includes a beam displacer 121a corresponding to a polarization splitter, as shown in the right figure of Figure 5a. It may further include an optical path difference correction unit 122 for correcting the optical path difference between the two divided polarization beams.
  • the beam displacer 121a separates the scan beam incident through the first side into an s-polarized beam and a p-polarized beam with polarizations orthogonal to each other, and emits them in parallel through the second side.
  • the beam displacer 121a is made of an anisotropic optical material. Calcite, YVO4, ⁇ -BBO, TeO 2 , etc. may be used as the anisotropic optical material.
  • a ray whose polarization oscillates in the same direction as the optical axis of the beam displacer 121a is called an ordinary ray, and is perpendicular to the optical axis.
  • a ray whose polarization oscillates in the same direction is called an extra-ordinary ray.
  • the p-polarized beam emitted from the beam displacer 121a corresponds to a normal ray parallel to the optical axis of the beam displacer 121a, and the s-polarized beam corresponds to an abnormal ray perpendicular to the optical axis.
  • the beam displacer 121a when the beam displacer 121a is implemented using an optical material with an anisotropic material crystal structure, it has a birefringent characteristic in which the refractive index changes depending on polarization, so that a beam polarized at 45 degrees or unpolarized is incident and has a phase of 90 degrees. It can be split into two linearly polarized beams (s-polarized beam, p-polarized beam) with a difference.
  • an optical path difference occurs between the two polarized beams separately emitted from the beam displacer 121a, and the optical path difference correction unit 122 may be used to correct this.
  • an optical material under the same conditions as the beam displacer 121a can be installed at the position where the normal ray is emitted, and the optical path difference between the two beams can be corrected using this.
  • the optical path difference correction unit 122 is installed on the shorter path of the p-polarized beam among the paths of the s-polarized beam and the p-polarized beam emitted through the second surface of the beam displacer 121a. , It is implemented with the same optical material as the beam displacer 121a, and can compensate for the difference in optical path length between the emitted s-polarized beam and the p-polarized beam.
  • the thickness of the optical material (optical material) constituting the beam displacer 121a by adjusting the thickness of the optical material (optical material) constituting the beam displacer 121a, the emission position (inter-beam spacing) of the s-polarized beam and the p-polarized beam can be adjusted, and through this, the beam displacer 121a It is possible to control the displacement value of the emitted beam through .
  • FIG. 5B is a second embodiment of the scan beam splitter.
  • the scan beam splitter 120-2 shown in FIG. 5B is implemented including a polarizing prism 121b of a Rochon prism structure, and includes a plurality of polarizing prisms 121b. It may further include a displacement control unit and an optical path difference correction unit using a mirror.
  • the polarizing prism 121b shown in FIG. 5B is implemented as a Rochon prism and is composed of a combination of two triangular prisms whose crystal axes are perpendicular to each other and made of different materials.
  • the polarizing prism 121b divides the scan beam incident through the first surface into an s-polarized beam that travels parallel to the scan beam (incident ray) at the boundary of the two triangular prisms, and the scan beam (incident ray) at a set angle. It is separated into a p-polarized beam that travels with and is emitted through the second side.
  • the crystal axis of the first triangular prism that meets the incident ray is a uniaxial crystal and travels in the same direction as the incident ray
  • the crystal axis of the second triangular prism is perpendicular to the crystal axis plane of the first prism.
  • the incident ray is divided into an extra-ordinary ray that is emitted at an angle and an ordinary ray that is emitted parallel to the incident ray, depending on the wavelength of light and the refraction of the material at the boundary between the two triangular prism materials. is separated into
  • the s-polarized beam emitted parallel to the incident beam corresponds to normal ray
  • the p-polarized beam traveling at an angle with the incident beam corresponds to abnormal ray
  • the displacement control unit is implemented by including a plurality of mirrors, and may specifically include first and second mirrors M1 and M2.
  • the displacement control unit may further include a position control unit (L2) that adjusts the position of the second mirror (M2) at the rear end of the two mirrors.
  • the first and second mirrors M1 and M2 are sequentially installed on the path of the p-polarized beam emitted through the second surface of the polarizing prism 121b and change the beam path to change the direction of the p-polarized beam. It serves to adjust the beam to be parallel to the scan beam. That is, the p-polarized beam that has passed through the last second mirror (M2) becomes parallel to the scan beam. In addition, when adjusting the position of the second mirror (M2) through the position adjusting unit (L), the position of the p-polarized beam with respect to the s-polarized beam can be adjusted.
  • the displacement control unit plays the role of making the abnormal ray parallel to the normal ray through two mirrors (M1, M2) and adjusts the second mirror (M2) through the position control unit (L2) to adjust the displacement of the beam. It can play a regulating role.
  • the present invention is not necessarily limited to the above, and the positions or displacement values of the two beams emitted from the polarizing prism 121b may vary depending on the arrangement and angle of each of the plurality of mirrors M1 to M6 included in FIG. 5b. It can be adjusted.
  • the optical path length is equalized through the optical path difference correction unit. Please correct it properly.
  • the optical path difference correction unit is installed on the path of the s-polarized beam and the p-polarized beam emitted through the second surface of the polarizing prism 121b, and adjusts the emitted s-polarized beam and the p-polarized beam. It serves to compensate for the difference in optical path length between polarized beams, and for this purpose, it may include third to sixth mirrors (M3 to M6) and a mirror moving unit (L1).
  • the third to sixth mirrors are sequentially installed on the path of the s-polarized beam emitted through the second surface of the polarizing prism 121b to change the beam path, specifically, the s-polarized beam. They are sequentially installed in a ' ⁇ ' shape along the beam path, allowing the beam progression path of the s-polarized beam to be changed by 90 degrees.
  • the s-polarized beam that has passed through the last sixth mirror (M6) becomes parallel to the incident beam.
  • the p-polarized beam separated by the polarizing prism 121b it becomes parallel to the incident beam through the operation of the displacement control unit including the first and second mirrors M1 and M2 described above, and thus p- The polarized beam and the s-polarized beam ultimately become parallel to each other.
  • the mirror moving unit (L1) moves the fourth mirror (M4) and the fifth mirror (M5), which are spaced apart in parallel with the third mirror (M3) and the sixth mirror (M6), as a group, thereby s-
  • the optical path length of the polarized beam can be set to be the same as the optical path length of the p-polarized beam.
  • the optical path length of the s-polarized beam can be increased or decreased by adjusting the mirror moving part L1 up and down.
  • FIG. 5C shows a third embodiment of the scan beam splitter.
  • the scan beam splitter 120-3 shown in FIG. 5C includes a polarizing prism 121c of a Rochon prism structure and further includes a displacement adjustment unit. It can be included.
  • the polarizing prism 121c shown in FIG. 5C is implemented as a Rochon prism and is composed of a combination of two triangular prisms whose crystal axes are perpendicular to each other and made of different materials.
  • the scan beam incident through the first surface of the polarizing prism 121c has an s-polarized beam traveling parallel to the scan beam at the boundary of the two triangular prisms, and a set angle with the scan beam. are separated into p-polarized beams, each exiting through the second side.
  • the difference from FIG. 5B is that, as shown in the lower part of FIG. 5C, the polarizing prism 121c is installed (placed) rotated by a set angle ( ⁇ /2) based on the center of the boundary surface of the two triangular prisms. .
  • corresponds to the angle difference between the travel directions of the s-polarized beam and the p-polarized beam separately emitted from the center of the boundary surface, as shown in the upper figure.
  • the polarizing prism 121c is arranged in a state rotated by ⁇ /2, which is half of the angle difference ⁇ of the polarized beam.
  • ⁇ /2 which is half of the angle difference ⁇ of the polarized beam.
  • the displacement control unit is sequentially installed on the path of the p-polarized beam emitted through the second surface of the polarizing prism 121c, and first and second mirrors M1 and M2 change the beam path. ), and third and fourth mirrors ( M3,M4). In this way, the travel direction of the p-polarized beam passing through the second mirror M2 and the s-polarized beam passing through the fourth mirror M4 are adjusted to be parallel by the displacement control unit.
  • the displacement control unit may further include a position control unit (L) that adjusts the positions of the second mirror (M2) and the fourth mirror (M4) by moving them as a group.
  • a position control unit (L) that adjusts the positions of the second mirror (M2) and the fourth mirror (M4) by moving them as a group.
  • the displacement control unit makes the abnormal ray (p-polarized beam) parallel to the incident ray through the first and second mirrors (M1, M2) and normalizes the incident ray through the third and fourth mirrors (M3, M4). It serves to make the light beam (s-polarized beam) parallel to the incident light, and also moves the positions of the second mirror (M2) and the fourth mirror (M4) as a group through the position control unit (L). It can additionally play a role in controlling the displacement value of the beam.
  • FIG. 5D shows a fourth embodiment of the scan beam splitter.
  • the scan beam splitter 120-4 shown in FIG. 5D includes a polarizing prism 121d of a Senarmont prism structure and adjusts displacement. It may further include a unit and an optical path difference correction unit.
  • the polarizing prism 121d shown in FIG. 5D is implemented as a Senardmont prism and is composed of a combination of two triangular prisms whose crystal axes are perpendicular to each other and made of different materials.
  • the polarizing prism 121d is a p-polarized beam that travels parallel to the scan beam at the boundary of the two triangular prisms for the scan beam incident through the first surface, and an s-polarized beam that travels at a set angle with the scan beam. It is separated and emitted through the second side.
  • the crystal axis of the second triangular prism is perpendicular to the crystal axis of the first triangular prism.
  • the crystal axis of the second triangular prism has a vertical direction different from the crystal axis of the second triangular prism in FIG. 5B.
  • the incident ray is divided into an ordinary ray, which is emitted at an angle depending on the wavelength of light and the refraction of the material at the boundary between the two triangular prism materials, and an extra-ordinary ray, which is emitted parallel to the incident ray. separated.
  • the p-polarized beam that is emitted parallel to the incident beam corresponds to an abnormal ray
  • the s-polarized beam that travels at an angle to the incident beam corresponds to a normal ray
  • the configuration of the displacement control unit including M1, M2, and L2 and the optical path difference correction unit including M3 to M6 and L1 have the same structure and operating principle as those previously shown in FIG. 5B, and thus are related to this. Repeated explanations should be omitted.
  • Figure 5e shows a fifth embodiment of the scan beam splitter.
  • the scan beam splitter 120-5 shown in Figure 5e includes a polarizing prism 121e of a Senarmont prism structure, and Figure 5c As shown, it may further include a displacement control unit including M1 to M4 and L.
  • FIG. 5E the overall structure of the scan beam splitter is simplified as in FIG. 5C by rotating the polarizing prism shown in FIG. 5D by ⁇ /2.
  • the basic structure and operating principle are the same as those of FIG. 5C except that it is implemented with a Senardmont prism, so repeated description thereof will be omitted.
  • Figure 5f shows a sixth embodiment of the scan beam splitter.
  • the scan beam splitter 120-6 shown in Figure 5f includes a polarizing prism 121f of a Wollaston prism structure, and in Figure 5c. As shown, it may further include a displacement control unit including M1 to M4 and L.
  • the polarizing prism 121f is composed of a combination of two triangular prisms whose crystal axes are perpendicular to each other and made of different materials.
  • the scan beam incident through the first surface is adjusted at a set angle with respect to the direction of the scan beam at the boundary surface of the two triangular prisms. It is separated into an s-polarized beam and a p-polarized beam, which proceed symmetrically to each other, and are emitted through the second surface.
  • the incident ray is transmitted at the interface between the two materials.
  • the incident ray is transmitted at the interface between the two materials.
  • it is divided into normal rays and abnormal rays that emit at an angle.
  • the structure of Figure 5f has the advantage that, unlike Figures 5c or 5e, there is no need to separately rotate the polarizing prism.
  • the basic structure and operating principle of the displacement control unit implemented including M1 to M4 and L are the same as those of FIG. 5C described above, so detailed description will be omitted.
  • the displacement values of the two beams can be adjusted by moving M2 and M4 simultaneously as a group.
  • Figure 5g shows the seventh embodiment of the scan beam splitter
  • the scan beam splitter 120-7 shown in Figure 5g includes the first and second polarizing beam splitters (PBS1 and PBS2), and the first to second polarizing beam splitters (PBS1, PBS2). It is implemented including 6 mirrors (M1 to M6).
  • the scan beam splitter 120g may further include a mirror moving unit L1 and a position adjusting unit L2.
  • the first polarizing beam splitter (PBS1) reflects the s-polarized beam component from the incident scan beam and transmits the p-polarized beam component.
  • the first and second mirrors M1 and M2 are sequentially installed on the path of the s-polarized beam reflected from the first polarizing beam splitter PBS1 to change the beam path by 90 degrees.
  • the third to sixth mirrors (M3 to M6) are sequentially installed in a ' ⁇ ' shape on the path of the p-polarized beam transmitted from the first polarizing beam splitter (PBS1) and change the beam path by 90 degrees.
  • the second polarizing beam splitter uses the s-polarized beam reflected using the first mirror (M1) and the second mirror (M2) and the p-polarized beam reflected using the third to sixth mirrors (M3 to M6).
  • a polarized beam is incident on each of the first and second surfaces.
  • the second polarizing beam splitter (PBS2) reflects the s-polarized beam incident on the first side and transmits the p-polarized beam incident on the second side, thereby dividing the reflected s-polarized beam and the transmitted p-polarized beam. Make sure to emit light in a parallel direction through the third side.
  • the s-polarized beam and p-polarized beam emitted in this way have a direction parallel to the incident ray.
  • the mirror moving unit (L1) groups the fourth mirror (M4) and the fifth mirror (M5), which are spaced apart in parallel with the third mirror (M3) and the sixth mirror (M6), and moves them up and down
  • the optical path length of the p-polarized beam can be set to be the same as the optical path length of the s-polarized beam.
  • the position adjuster (L2) can adjust the position of the second mirror (M2) left and right to adjust the displacement of the s-polarized beam emitted through the second polarizing beam splitter (PB2).
  • FIGS. 5A to 5G The various structures of the scan beam splitter 120 (120-1, 120-2, 120-3, 120-4, 120-5, 120-6, 120-7) shown in FIGS. 5A to 5G according to the present invention. It is applicable to all of the first to fourth embodiments (FIGS. 1, 2, 3, and 4).
  • two polarized beams (s-polarized beam and p-polarized beam) emitted side by side by the scan beam splitter 120 are transmitted to the scan unit 130.
  • the beam incident on the scan unit 130 passes through the horizontal scan mirror 131 (hereinafter referred to as x-scan mirror) and the vertical scan mirror 132 (hereinafter referred to as y-scan mirror) to a transmissive object, which is a transmissive object.
  • the penetrating body may correspond to various objects having permeability, such as cells, microorganisms, films, transparent objects, or sculptures.
  • the scan unit 130 includes an x-scan mirror 131 and a y-scan mirror 132 to control the scanning position of the scan beam with respect to the transmitting object.
  • the scan unit 130 uses the scan mirror to control the incident scan beam in the horizontal direction (x direction) and vertical direction (y direction) and transmits it to the transmitting body.
  • the scan unit 130 receives a scan beam consisting of two polarized beams emitted side by side from the scan beam splitter 120 and projects it onto the transmitting body, and the scanning position of the scan beam with respect to the transmitting body is adjusted in the horizontal and vertical directions. It is controlled and transmitted to the transmitting medium.
  • the scanning unit 130 uses a mirror scanner.
  • the mirror scanner has an x-scan mirror 131 that scans the object (transmissive body) in the -consists of an x-y scanner with a scanning mirror (132).
  • the scanning unit is not limited to a mirror scanner, and similar means or other known scanning means may be used.
  • an x-scan mirror and a y-scan mirror instead of an x-space modulation scanner and a y-space modulation scanner can be replaced.
  • the scan unit 130 may be operated by receiving a scanning control signal from a scan control unit (not shown) within the signal processing unit 150.
  • the scan control unit (not shown) may generate a scanning control signal to control the scanning position of the scan unit 130.
  • the scanning control signal may include a horizontal scan signal and a vertical scan signal for controlling the x-scan mirror and the y-scan mirror in the horizontal and vertical directions, respectively.
  • the horizontal scan signal is a signal for sequentially moving the scan position in the horizontal direction (x-axis direction) by preset distance units, and has a period T for scan movement in arbitrary distance units.
  • the vertical scan signal is a control signal that enables a horizontal scan operation for the next y position when the horizontal scan operation in the x-axis direction for an arbitrary y position is completed, and its period is larger than the horizontal scan signal.
  • the optical axes of the first and second curved beams are rotated as the scan mirror rotates, and the scan beam pattern with the rotated optical axes is projected onto the object (transmitting body).
  • the scan unit 130 can project an interference beam (scan beam by the scan unit) between the first and second curvature beams onto an object using a scan mirror.
  • the s-wave component and the p-wave component for each curvature beam have a structure in which they are separated vertically by the previous scan beam splitter 120, and the interference beam may also have a structure in which the two polarized waves are separated vertically.
  • the scan unit 130 has a structure using a horizontal scan mirror 131 and a vertical scan mirror 132 as shown in FIG. 1, as well as a horizontal scan mirror 331 and a translation stage 332 as shown in FIG. 3, which will be described later. It is also possible to change the scan unit structure using .
  • the scan unit structure when replacing the horizontal scan mirror 331 with a spatial modulation scanner, can also be changed using a spatial modulation scanner and a translation stage 332. do.
  • the horizontal scan mirror 131 and the vertical scan mirror 132 can be replaced with a horizontal spatial modulation scanner and a vertical spatial modulation scanner, respectively.
  • the scan unit 130 can be implemented by a combination of a horizontal scan mirror and a vertical scan mirror, a combination of a horizontal scan mirror and a translation stage, and a combination of a spatial light modulator and a translation stage.
  • Other embodiments of the scan unit will be described in detail later with reference to FIG. 3.
  • the table portion on which the object of the translation stage is placed may be made of a transparent material that allows the wavelength of the laser light source to pass through, or may be made of empty space.
  • the scan beam irradiated by the scan unit 130 to the transparent body passes through the transparent body and is incident on the light detection unit 140.
  • the scan beam consists of two polarized beams (s-polarized beam and p-polarized beam) split by the scan beam splitter 120.
  • the light detection unit 140 separates and detects the s-polarized beam and the p-polarized beam from the beam that is projected by the scan unit 130 and then passes through the transmitting body.
  • the light detection unit 140 transmits the separately detected s-polarized beam and the p-polarized beam to the signal processing unit 150.
  • the light detection unit 140 includes a first concentrator 141a, a first polarizer 142a, a first photodetector 143a, a second concentrator 141b, a second polarizer 142b, and a first concentrator 141b. Includes 2 photodetectors 143b.
  • the first concentrator 141a is disposed in a direction offset from the optical axis of the beam projected to the transmitting material, and condenses the beam that has transmitted through the transmitting material.
  • This first concentrator 141a may be implemented as a condenser lens.
  • the first polarizer 142a passes only the s-polarized beam component in the spatially integrated beam through the first concentrator 141a. That is, the first polarizer 142a is disposed behind the first concentrator 141a and transmits only the s-polarized beam component of the beam collected by the first concentrator 141a.
  • the first photodetector 143a detects the s-polarized beam that has passed through the first polarizer 142a and transmits it to the first signal processing unit 151.
  • the second concentrator 141b is disposed in a direction that is offset from the optical axis of the beam projected to the transmitting body, but is disposed in a different position from the first concentrator 141a, and condenses the beam that has transmitted through the transmitting body.
  • This second concentrator 141b may be implemented as a condenser lens.
  • the second concentrator 141b may be arranged symmetrically or asymmetrically with the first concentrator 141a.
  • the second polarizer 142b passes only the p-polarized beam component in the spatially integrated beam through the second concentrator 141b. That is, the second polarizer 142b is disposed at the rear of the second concentrator 141b and transmits only the p-polarized beam component of the beam collected by the second concentrator 141b.
  • the second photodetector 143b detects the p-polarized beam that has passed through the second polarizer 142b and transmits it to the second signal processing unit 152.
  • the structure of the light detection unit 140 in the present invention is not necessarily limited to FIG. 1, and can also be changed to the structure of FIG. 2, which will be described later. This will be explained in detail later.
  • the signal processing unit 150 processes signals of the s-polarized beam and the p-polarized beam separately detected by the light detection unit 150 to generate a hologram for the transmitting object.
  • the scan beam generated by the scan beam generator 110 is split into two polarized beams according to polarization, and then the divided two polarized beams are used as scan beams to scan the object, so the scan beam Compared to the case of scanning the object as is without dividing it, twice the sampling is possible compared to the same time, and a hologram of the object can be created at twice the speed.
  • Figure 6 is a diagram explaining the operation of a signal processing unit according to an embodiment of the present invention.
  • the signal processing unit 151 includes a first signal processing unit 151, a second signal processing unit 152, and a cross-array signal processing unit 153.
  • the structure and operating principle of the signal processing unit 150 can be equally applied to the systems (FIGS. 2, 3, and 4) according to the second to fourth embodiments of the present invention.
  • the first signal processor 151 processes the signal of the s-polarized beam detected by the first photodetector 143a and sends it to the cross-array processor 153
  • the second signal processor 142 processes the signal of the s-polarized beam detected by the first photodetector 143a.
  • the signal of the p-polarized beam detected is processed and sent to the cross-array processing unit 153. These operations may occur simultaneously.
  • the cross-array signal processing unit 150 synthesizes the hologram signal processed in the first signal processing unit 151 and the hologram signal processed in the second signal processing unit 152 by alternating them line by line. Creates a hologram for a transparent object.
  • the scan beam generated by the scan beam generator 110 is divided into two beams (s-polarized beam, p-polarized beam) according to polarization, and the two divided polarized beams are simultaneously transmitted to the object (transmitter).
  • two lines of signals can be sampled (scanned) at once (unit time), so the number of samples in the y direction is doubled compared to the case of scanning without splitting the scan beam, and the hologram of the object can be produced at twice the speed. Can be produced at high speed.
  • the first photodetector 143a generates a current signal proportional to the intensity of the concentrated light and transmits it to a two-channel lock-in amplifier, and the two-channel lock-in amplifier demodulates the current signal.
  • In-phase and quadrature-phase hologram information of an object (transmitting body) is extracted as an electrical signal.
  • a two-channel lock-in amplifier can be implemented by converting it into a digital signal through an analog to digital converter (ADC) and processing it on a computer.
  • ADC analog to digital converter
  • the extracted electrical signal is converted into a digital signal and transmitted to a digital computer.
  • the digital signals of the real and imaginary parts are synthesized using complex number synthesis and stored according to each scanning position, thereby transmitting the object (transmission).
  • complex holographic information of the body) is recorded.
  • the recorded hologram is called the first hologram.
  • the second photodetector 143b generates a current signal proportional to the intensity of the focused light and transmits it to a two-channel lock-in amplifier, and the two-channel lock-in amplifier demodulates the current signal.
  • In-phase and quadrature-phase hologram information of an object (transmitting body) is extracted as an electrical signal.
  • a two-channel lock-in amplifier can be implemented by converting it into a digital signal through an analog to digital converter (ADC) and processing it on a computer.
  • ADC analog to digital converter
  • the extracted electrical signal is converted into a digital signal and transmitted to a digital computer.
  • the digital signals of the real and imaginary parts are synthesized using complex number synthesis and stored according to each scanning position, thereby transmitting the object (transmission).
  • complex holographic information of the body) is recorded.
  • the recorded hologram is called the second hologram.
  • the signal processing unit 150 can synthesize the first hologram and the second hologram by alternating them to implement a scan that is twice as long as the scan by the horizontal scan mirror.
  • the polarization splitting double scanning holography system 200 for a transmitting body largely includes a scan beam generator 110, a scan beam splitter 120, and a scan unit 130. , includes a light detection unit 240 and a signal processing unit 150. Redundant descriptions of components having the same symbols as those in FIG. 1 will be omitted.
  • the basic structure of the device is the same as that of the first embodiment, but the configuration of the light detection unit 240 is different, and the operating principle is as follows.
  • the light detection unit 240 includes a first light splitter 241, a second light splitter 242, a first concentrator 243a, a second concentrator 243b, a first light detector 244a, and a second light detector 243b. Includes 2 photodetectors 244b.
  • the first light splitter 241 is disposed on the optical axis of the light projected to the transmitting material and receives the beam that has passed through the transmitting material and reflects it to the outside. This first light splitter 241 can reflect a part of the beam that has passed through the transmitting material and transmit it to the second light splitter 242.
  • the first optical splitter 241 can be implemented as a general beam splitter.
  • the second light splitter 242 receives the light reflected from the first light splitter 241, transmits the p-polarized beam component of the incident beam, and reflects the s-polarized beam component.
  • This second light splitter 242 may be implemented as a polarization beam splitter (PBS).
  • PBS polarization beam splitter
  • the s-polarized beam is reflected from the second light splitter 242 and transmitted to the first concentrator 243a, and p- The polarized beam passes through and is delivered to the second concentrator 243b.
  • the first concentrator 243a condenses the s-polarized beam component reflected by the second light splitter 242, and the second concentrator 243b condenses the p-polarized beam component transmitted by the second light splitter 242. do.
  • These first and second concentrators 243a and 243b may be implemented as condensing lenses.
  • the first photodetector 244a detects a spatially integrated beam (s-polarized beam) through the first concentrator 243a and transmits it to the first signal processor 151 in the signal processor 150. Additionally, the second photodetector 244b detects a spatially integrated beam (p-polarized beam) through the second concentrator 243b and transmits it to the second signal processor 152 in the signal processor 150.
  • first and second photodetectors 244a and 244b generate first and second electrical signals, respectively, in proportion to the intensity of transmitted light.
  • the first photodetector 244a transmits the first electrical signal to the first signal processor 151
  • the second photodetector 244b transmits the second electrical signal to the second signal processor 152.
  • the second beam splitter 242 can be replaced with a beam splitter (BS) instead of the polarization beam splitter (PBS), and in this case, the role of the polarization beam splitter (PBS) is through the combination of the beam splitter (BS) and the two polarizers. can be performed. This is explained through Figure 2b.
  • BS beam splitter
  • PBS polarization beam splitter
  • the light detection unit 240 includes a first light splitter 241, a second light splitter 242, a first polarizer 245a, a second polarizer 245b, a first concentrator 243a, and a second concentrator ( 243b), a first photodetector 244a, and a second photodetector 244b.
  • reference numerals 241, 244a, and 244b perform the same functions as those in FIG. 2A, so duplicate description thereof will be omitted.
  • the second light splitter 242 is a BS (Beam Splitter), which receives the light reflected from the first light splitter 241 and splits it by transmitting part of the incident beam and reflecting part of it.
  • BS Beam Splitter
  • the first polarizer 245a receives the beam reflected from the second light splitter 242 and passes only the s-polarized beam component
  • the second polarizer 245b receives the beam transmitted from the second light splitter 242 and passes only the s-polarized beam component. Only the polarized beam component passes through.
  • the first concentrator 243a condenses the s-polarized beam component that has passed through the first polarizer 245a
  • the second concentrator 243b condenses the p-polarized beam component that has passed through the second polarizer 245b.
  • the subsequent operations of the first and second photo detectors 244a and 244b are the same as those described above.
  • the polarization splitting double scanning holography system 300 for a transmitting body largely includes a scan beam generator 110, a scan beam splitter 120, and a scan unit 330. , includes a light detection unit 140 and a signal processing unit 150. Redundant descriptions of components having the same symbols as those in FIG. 1 will be omitted.
  • the basic structure of the device is the same as the first embodiment, but the configuration of the scan unit 330 is different, and the operating principle is as follows.
  • the scan unit 330 is installed at the rear end of the scan beam splitter 120 to control the scanning position of the scan beam with respect to the transmitting object in the horizontal and vertical directions and detects the scan incident from the scan beam splitter 120.
  • a scanning mirror 331 that controls the beam in the horizontal direction (x direction) and transmits it to the transmitting body, and a translation stage 332 that moves the transmitting body in the vertical direction (y direction) at the rear end of the transmitting body. Includes.
  • a scan beam including two polarized beams emitted from the scan beam splitter 330 is incident on the scan unit 330.
  • the beam incident on the scanning unit 330 is transmitted to the transmitting body through the scanning mirror 331.
  • the scan mirror 331 scans the transparent body in the x-direction
  • the translation stage 332 located at the rear of the transparent body scans the transparent body in the y-direction.
  • the scan mirror 331 controls the scan beam incident from the scan beam splitter 120 in the horizontal direction and transmits it to the transmitting body.
  • the translation stage 332 is installed at the rear of the transmissive body and moves the transmissive body receiving the scan beam directly in the vertical direction, enabling y-direction scanning of the transmissive body through the scan beam.
  • This translation stage 332 corresponds to a moving objective plate in which the objective plate on which the transmitting material is placed is movable in the y-axis direction. Although this translation stage 332 is physically separated from the scan mirror 331, it is a means of controlling the scanning position of the beam with respect to the transmitting object, so it is a component of the scan unit 330 together with the scan mirror 331. It is included as
  • the scan unit 330 uses the scan mirror 331 and the translation stage 332 to control the scan beam in the horizontal direction (x direction) and the vertical direction (y direction) based on the transmitting object.
  • the scanning unit 330 uses a mirror scanner.
  • the mirror scanner has an x-scan mirror 321 that scans the transmitting object in the x direction (left and right directions) around the y axis.
  • the scanning unit is not limited to a mirror scanner, and similar means or other known scanning means may be used.
  • the scan unit 330 may be operated by receiving a scanning control signal from a scan control unit (not shown) within the signal processing unit 150.
  • the scan control unit (not shown) generates a scanning control signal to control the scanning position of the scan unit 330.
  • the scanning control signal may include a horizontal scan signal and a vertical scan signal for controlling the scan mirror 331 and the translation stage 332 in the horizontal and vertical directions, respectively.
  • the horizontal scan signal is a signal for sequentially moving the scan position in the horizontal direction (x-axis direction) by preset distance units, and has a period T for scan movement in arbitrary distance units.
  • the vertical scan signal which is a signal that moves the translation stage 332 in the vertical direction, is a translation that enables a horizontal scan operation for the next y position when the horizontal scan operation in the x-axis direction for an arbitrary y position is completed.
  • a stage control signal its period is larger than that of the horizontal scan signal.
  • the scan mirror 331 can be replaced with a spatial modulation scanner.
  • the scanning unit 330 may be implemented including a spatial modulation scanner 331 and a translation stage 332.
  • the spatial modulation scanner will be described by assigning code 331.
  • the beam incident on the scanning unit 330 is transmitted to the transmitting body through the spatial modulation scanner 331.
  • the spatial modulation scanner 331 scans the transparent body in the x-direction
  • the translation stage 332 located at the rear of the transparent body scans the transparent body in the y-direction.
  • the spatial modulation scanner 331 controls the scan beam incident from the scan beam splitter 120 in the horizontal direction and transmits it to the transmitting body, and the translation stage 132 receives the scan beam incident at the rear end of the transmitting body.
  • the spatial modulation scanner 331 controls the scan beam incident from the scan beam splitter 120 in the horizontal direction and transmits it to the transmitting body, and the translation stage 132 receives the scan beam incident at the rear end of the transmitting body.
  • the scan unit 330 uses the spatial modulation scanner 331 and the translation stage 332 to control the scan beam in the horizontal direction (x direction) and vertical direction (y direction) based on the transmitting object. It may be possible.
  • the spatial modulation scanner modulates the spatial distribution of the incident beam and operates to scan the beam in a specific direction.
  • a spatial modulation scanner can be implemented with a spatial light modulator (SLM), a digital micromirror device (DMD), an acoustic-optic deflector, etc. Accordingly, the spatial modulation scanner is configured to include one type of spatial modulation scanner selected from SLM, DMD, and acoustic-optical deflector.
  • SLM spatial light modulator
  • DMD digital micromirror device
  • acoustic-optic deflector etc. Accordingly, the spatial modulation scanner is configured to include one type of spatial modulation scanner selected from SLM, DMD, and acoustic-optical deflector.
  • FIG. 7 is a diagram explaining the operating principle of a spatial modulation scanner.
  • the spatial modulation scanner is an element that can replace the scan mirror 131 in the scan unit 330 of FIG. 3 and corresponds to a horizontal spatial modulation scanner that scans an object in the x direction.
  • Figure 7 explains the principle of this horizontal spatial modulation scanner.
  • the spacing of the grating pattern (P) changes sequentially over time according to the input of a scanning control signal by a scan control unit (not shown), thereby controlling the scan beam in the horizontal direction. can do.
  • the spacing of the grating pattern formed in the horizontal spatial modulation scanner by the electrical signal is adjusted over time, allowing the incident beam to move in the x-direction.
  • the spacing between patterns becomes narrower, the light is bent at a greater angle.
  • the scan beam can move in the horizontal direction by adjusting the size of the gap between the grating patterns (P) formed along the horizontal direction according to the scanning control signal.
  • the direction of the incident beam is electrically controlled.
  • the scan unit 330 operates by receiving a scanning control signal from the scan control unit (not shown) in the signal processing unit 150.
  • the scanning control signal for the spatial modulation scanner 331 may include a signal that sequentially changes the spacing size of the grating pattern over time.
  • the scanning control signal for the translation stage 332 may include a signal that moves the translation stage 332 in the vertical direction over time.
  • the scanning control signal may include a horizontal scan signal and a vertical scan signal for controlling the scan beam in the horizontal and vertical directions, respectively.
  • the horizontal scan signal for controlling the scan beam incident on the spatial modulation scanner 331 in the horizontal direction is a signal for sequentially moving the scan position in the horizontal direction (x-axis direction) by preset distance units, and is a random distance unit. It has a period T for scan movement.
  • the vertical scan signal which is a signal that moves the translation stage 332 in the vertical direction, is a translation that enables a horizontal scan operation for the next y position when the horizontal scan operation in the x-axis direction for an arbitrary y position is completed. As a stage control signal, its period is larger than that of the horizontal scan signal.
  • both the horizontal scan mirror 131 and the vertical scan mirror 132 of FIG. 1 can be replaced with a spatial modulation scanner.
  • the scanning unit 120 is a horizontal spatial modulation scanner (x-space) that scans the object in the x direction. It can be implemented as an x-y scanner with a modulation scanner) and a vertical spatial modulation scanner (y-space modulation scanner) scanning in the y direction.
  • Figure 8 is a diagram explaining the operating principle of the horizontal and vertical spatial modulation scanner. As shown in FIG. 8, in a vertical or horizontal spatial modulation scanner, the spacing of the grating pattern (P) changes sequentially over time according to the input of a scanning control signal by a scan control unit (not shown), thereby directing the scan beam vertically. Or control in the horizontal direction.
  • a scan control unit not shown
  • the spacing of the grating pattern formed in the spatial modulation scanner by the electrical signal is adjusted over time, allowing the incident beam to move in the x-direction.
  • the spacing between patterns becomes narrower, the light is bent at a greater angle.
  • the scan beam can move in the horizontal direction by adjusting the size of the gap between the grating patterns (P) formed along the horizontal direction according to the scanning control signal.
  • the scan beam can move in the vertical direction by adjusting the size of the gap between the grating patterns (P) formed along the vertical direction according to the scanning control signal.
  • the direction of the incident beam is electrically controlled.
  • the polarization splitting double scanning holography system 400 for a transmitting body largely includes a scan beam generator 110, a scan beam splitter 120, and a scan unit 330. , includes a light detection unit 240 and a signal processing unit 150. Redundant descriptions of components having the same symbols as those in FIG. 1 will be omitted.
  • the basic structure of the device is the same as that of the first embodiment, but the configurations of the scanning unit 330 and the light detection unit 240 are different.
  • the operation of the scanning unit 330 has been described in detail with reference to FIG. 3, and the operation of the light detection unit 240 has been described in detail with reference to FIG. 2A, so duplicate descriptions will be omitted.
  • the first to fourth embodiments of the present invention may additionally include a circular polarization conversion unit.
  • the role of this circular polarization converter can be implemented through the configuration of ⁇ /4 wave plates (WP; WP1, WP2) inserted with dotted lines in FIGS. 1 and 2A, respectively.
  • WP ⁇ /4 wave plates
  • FIGS. 3 and 4A a circular polarization conversion unit like that of FIGS. 1 and 2A may also be applied.
  • FIG. 1 as a representative example, the case of FIG. 1 includes a first ⁇ /4 wave plate (WP1) and a second ⁇ /4 wave plate (WP2).
  • WP1 first ⁇ /4 wave plate
  • WP2 second ⁇ /4 wave plate
  • the first ⁇ /4 wave plate WP1 is installed between the scan unit 130 and the transmitting material to convert the scan beam into circularly polarized light and project it to the transmitting material.
  • the second ⁇ /4 wave plate WP2 is installed between the transmitter and the light detection unit 140 to convert the circularly polarized beam back into linearly polarized light and provide it to the light detection unit 140.
  • the second ⁇ /4 wave plate WP2 is separately installed between the transmitting body and the first light collecting part 141a, and between the transmitting body and the second light collecting part 141b.
  • a method of splitting a scan beam into two according to polarization and individually detecting beams corresponding to the polarization is to separate a first hologram and a second hologram in the case of an object whose reflection or transmittance depends on polarization. There may be differences depending on polarization.
  • a wave plate is placed between the scan unit 130 and the object (transmitter) to convert the polarization of the scan beam into circular polarization and project it onto the object, and the object (transmitter) and the concentrator 141
  • the first and second holograms can be recorded regardless of the polarization dependence of the object.
  • the first ⁇ /4 wave plate WP1 is installed in the path between the scan unit 130 and the transmitting body, more specifically, between the scan unit 130 and the first optical splitter 241.
  • the second ⁇ /4 wave plate WP2 can be installed between the transmitter and the light detection unit 240, and more specifically, between the first and second light splitters 241 and 242 on the corresponding path. there is.
  • various modifications may exist in the installation location of the wave plate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

The present invention relates to a polarization-splitting double-scanning holography system for a transmission body. The polarization-splitting double-scanning holography system according to the present invention comprises: a scan beam generation unit which modulates the phase of a first beam split from a light source to transform the first beam into a first curvature beam and transform a second beam into a second curvature beam, and then makes the first and second curvature beams interfere with each other to form a scan beam; a scan beam splitting unit which splits the scan beam into an s-polarized beam and a p-polarized beam and projects the beams side by side; a scanning unit which receives a scan beam comprising two polarized beams emitted side by side, projects the scan beam onto a transmission body, and controls the scanning position of the scan beam with respect to the object in the horizontal and vertical directions to transmit the scan beam to the transmission body; a photodetection unit which separates and detects the s-polarized beam and the p-polarized beam from the beam that has passed through the transmission body; and a signal processing unit which processes signals of the detected s-polarized and p-polarized beams to generate a hologram of the transmission body. According to the present invention, the hologram of the transmission body can be acquired at ultra-high speed, faster than the scanning speed of a scanning mirror.

Description

투과체에 대한 편광분할 더블 스캐닝 홀로그래피 시스템Polarization splitting double scanning holography system for transmitting materials
본 발명은 투과체에 대한 편광분할 더블 스캐닝 홀로그래피 시스템에 관한 것으로서, 보다 상세하게는 투과형 대상물인 투과체에 대한 스캐닝 홀로그램을 초고속으로 구현할 수 있는 투과체에 대한 편광분할 더블 스캐닝 홀로그래피 시스템에 관한 것이다.The present invention relates to a polarization-splitting double scanning holography system for a transmissive object, and more specifically, to a polarization-splitting double scanning holography system for a transmissive object that can implement a scanning hologram for a transmissive object, which is a transmissive object, at ultra-high speed.
종래에 따른 광 스캐닝 홀로그램 시스템은 간섭계를 이용하여 프레넬 윤대판(Fresnel zone plate)의 공간 분포를 갖는 빔 패턴을 형성하며, 형성한 빔 패턴을 대상체에 투사하고 대상체로부터 반사 또는 투과된 빛을 집광하여 검출하는 방식으로 물체의 홀로그램을 획득한다. A conventional optical scanning hologram system uses an interferometer to form a beam pattern with a spatial distribution of a Fresnel zone plate, projects the formed beam pattern onto an object, and condenses the light reflected or transmitted from the object. A hologram of an object is obtained through detection.
하지만, 이와 같은 종래의 방식에서는 스캔 거울의 스캐닝 속도에 따라 홀로그램을 획득하는 속도가 종속되는 문제점이 있다. However, in this conventional method, there is a problem that the speed of acquiring a hologram is dependent on the scanning speed of the scanning mirror.
따라서 스캔 거울의 스캐닝 속도보다 빠르게 대상체의 홀로그램을 획득할 수 있는 새로운 기법이 요구된다. Therefore, a new technique that can acquire a hologram of an object faster than the scanning speed of a scanning mirror is required.
본 발명의 배경이 되는 기술은 한국등록특허 제1304695호(2013.09.06 공고)에 개시되어 있다.The technology behind the present invention is disclosed in Korean Patent No. 1304695 (announced on September 6, 2013).
본 발명은 투과형 대상물인 투과체에 대한 스캐닝 홀로그램을 초고속으로 구현할 수 있는 투과체에 대한 편광분할 더블 스캐닝 홀로그래피 시스템을 제공하는데 목적이 있다. The purpose of the present invention is to provide a polarization splitting double scanning holography system for a transmissive object that can implement a scanning hologram for a transmissive object at ultra-high speed.
본 발명은, 광원에서 분할된 제1 빔의 위상을 변조하여 제1 빔 곡률생성부를 통해 제1 곡률빔으로 변환하고 제2 빔을 제2 빔 곡률생성부를 통해 제2 곡률빔으로 변환한 후, 상기 제1 및 제2 곡률빔을 간섭시켜 스캔빔을 형성하는 스캔빔 생성부와, 상기 스캔빔을 s-편광 빔과 p-편광 빔으로 분할하여 분할된 2개의 편광 빔을 서로 나란히 출사시키는 스캔빔 분할부와, 상기 서로 나란히 출사되는 2개의 편광 빔으로 이루어진 스캔빔을 상기 스캔빔 분할부로부터 입사받아 투과체로 투사시키되, 상기 투과체에 대한 스캔빔의 스캐닝 위치를 수평 및 수직 방향으로 제어하여 투과체로 전달하는 스캔부와, 상기 투과체를 투과한 빔에서 상기 s-편광 빔과 p-편광 빔을 분리 검출하는 광 검출부, 및 상기 분리 검출된 s-편광 빔 및 p-편광 빔의 신호를 처리하여 상기 투과체에 대한 홀로그램을 생성하는 신호 처리부를 포함하는 투과체에 대한 편광분할 더블 스캐닝 홀로그래피 시스템을 제공한다.The present invention modulates the phase of the first beam split from the light source, converts it into a first curvature beam through the first beam curvature generator, and converts the second beam into a second curvature beam through the second beam curvature generator, A scan beam generator that forms a scan beam by interfering with the first and second curvature beams, and splits the scan beam into an s-polarized beam and a p-polarized beam to emit the two divided polarized beams side by side. A scan beam consisting of a beam splitter and two polarized beams emitted side by side is received from the scan beam splitter and projected onto a transmitting body, and the scanning position of the scan beam with respect to the transmitting body is controlled in the horizontal and vertical directions. A scanning unit that transmits the signal to a transmitting body, a light detecting unit that separates and detects the s-polarized beam and the p-polarized beam from the beam that has transmitted through the transmitting body, and a signal of the separately detected s-polarized beam and the p-polarized beam. It provides a polarization splitting double scanning holography system for a transmitting object, including a signal processing unit that processes the transmitting object to generate a hologram for the transmitting object.
또한, 상기 광 검출부는, 상기 투과체로 투사되는 빔의 광축에 편축된 방향으로 배치되고, 상기 투과체를 투과한 빔을 집광하는 제1 집광기와, 상기 제1 집광기를 통해 공간적으로 집적된 빔에서 s-편광 빔 성분만을 통과시키는 제1 편광기와, 상기 제1 편광기를 통과한 s-편광 빔을 검출하는 제1 광검출기와, 상기 투과체로 투사되는 빔의 광축에 편축된 방향으로 배치되되 상기 제1 집광기와 다른 위치에 배치되고, 상기 투과체를 투과한 빔을 집광하는 제2 집광기와, 상기 제2 집광기를 통해 공간적으로 집적된 빔에서 p-편광 빔 성분만을 통과시키는 제2 편광기, 및 상기 제2 편광기를 통과한 p-편광 빔을 검출하는 제2 광검출기를 포함할 수 있다.In addition, the light detection unit is disposed in a direction biased to the optical axis of the beam projected to the transmitting body, and includes a first concentrator that condenses the beam that has transmitted through the transmitting body, and a beam spatially integrated through the first concentrator. a first polarizer that passes only the s-polarized beam component, a first photodetector that detects the s-polarized beam that has passed through the first polarizer, and a first polarizer disposed in a direction biased to the optical axis of the beam projected to the transmitting body; 1 a second concentrator disposed in a position different from the concentrator and concentrating the beam that has passed through the transmitting body, a second polarizer that passes only the p-polarized beam component in the spatially integrated beam through the second concentrator, and It may include a second photodetector that detects the p-polarized beam that has passed through the second polarizer.
또한, 상기 광 검출부는, 상기 투과체로 투사되는 광의 광축 상에 배치되고 상기 투과체를 투과한 빔을 입사받아 외부로 반사시키는 제1 광 분할기와, 상기 제1 광 분할기에서 반사된 광을 입사받고 입사된 빔에서 p-편광 빔 성분은 투과시키고 s-편광 빔 성분을 반사시키는 제2 광 분할기와, 상기 제2 광 분할기에서 반사시킨 s-편광 빔 성분을 집광하는 제1 집광기와, 상기 제2 광 분할기에서 투과시킨 p-편광 빔 성분을 집광하는 제2 집광기와, 상기 제1 집광기를 통해 공간적으로 집적된 빔을 검출하는 제1 광검출기와, 상기 제2 집광기를 통해 공간적으로 집적된 빔을 검출하는 제2 광검출기를 포함할 수 있다. In addition, the light detection unit includes a first light splitter disposed on the optical axis of the light projected to the transmitting body and receiving the beam passing through the transmitting body and reflecting it to the outside, and receiving the light reflected from the first light splitter and receiving the light reflected from the first light splitter. a second light splitter that transmits the p-polarized beam component of the incident beam and reflects the s-polarized beam component, a first concentrator that condenses the s-polarized beam component reflected by the second light splitter, and the second light splitter A second concentrator for concentrating the p-polarized beam component transmitted from the light splitter, a first photodetector for detecting the spatially integrated beam through the first concentrator, and a spatially integrated beam through the second concentrator. It may include a second photodetector that detects.
또한, 상기 광 검출부는, 상기 투과체로 투사되는 광의 광축 상에 배치되고 상기 투과체를 투과한 빔을 입사받아 외부로 반사시키는 제1 광 분할기와, 상기 제1 광 분할기에서 반사된 광을 입사받고 입사된 빔의 일부룰 투과시키고 일부를 반사시키는 제2 광 분할기와, 상기 제2 광 분할기에서 반사된 빔을 입사받아 s-편광 빔 성분만을 통과시키는 제1 편광기와, 상기 제2 광 분할기에서 투과된 빔을 입사받아 p-편광된 빔 성분만을 통과시키는 제2 편광기와, 상기 제1 편광기를 통과한 s-편광 빔 성분을 집광하는 제1 집광기와, 상기 제2 편광기를 통과한 p-편광 빔 성분을 집광하는 제2 집광기와, 상기 제1 집광기를 통해 공간적으로 집적된 빔을 검출하는 제1 광검출기, 및 상기 제2 집광기를 통해 공간적으로 집적된 빔을 검출하는 제2 광검출기를 포함할 수 있다.In addition, the light detection unit includes a first light splitter disposed on the optical axis of the light projected to the transmitting body and receiving the beam passing through the transmitting body and reflecting it to the outside, and receiving the light reflected from the first light splitter and receiving the light reflected from the first light splitter. A second light splitter that transmits part of the incident beam and reflects part of it, a first polarizer that receives the beam reflected from the second light splitter and allows only the s-polarized beam component to pass through, and is transmitted by the second light splitter. a second polarizer that receives the incident beam and allows only the p-polarized beam component to pass through, a first concentrator that condenses the s-polarized beam component that has passed through the first polarizer, and a p-polarized beam that has passed through the second polarizer. It may include a second concentrator for concentrating a component, a first photodetector for detecting a spatially integrated beam through the first concentrator, and a second photodetector for detecting a spatially integrated beam through the second concentrator. You can.
또한, 상기 신호 처리부는, 상기 제1 광검출기에서 검출된 s-편광 빔의 신호를 처리하는 제1 신호 처리부와, 상기 제2 광검출기에서 검출된 p-편광 빔의 신호를 처리하는 제2 신호 처리부, 및 상기 제1 신호 처리부에서 처리된 홀로그램 신호와 상기 제2 신호 처리부에서 처리된 홀로그램 신호를 한 줄씩 교차 배열하는 방식으로 합성하여 상기 투과체에 대한 홀로그램을 생성하는 교차배열 신호 처리부를 포함할 수 있다.In addition, the signal processor includes a first signal processor that processes the signal of the s-polarized beam detected by the first photodetector, and a second signal processor that processes the signal of the p-polarized beam detected by the second photodetector. It may include a processing unit, and a cross-array signal processing unit that generates a hologram for the transmitting body by synthesizing the hologram signal processed in the first signal processing unit and the hologram signal processed in the second signal processing unit in a manner that cross-arranges them line by line. You can.
또한, 상기 스캔빔 분할부는, 비등방성 광학재료로 이루어지며, 제1 면을 통해 입사된 스캔빔을 서로 직교하는 편광의 s-편광 빔과 p-편광 빔으로 분리하여 제2 면을 통해 나란히 출사시키는 빔 디스플레이서(Beam displacer)를 포함할 수 있다.In addition, the scan beam splitter is made of an anisotropic optical material, and separates the scan beam incident through the first side into an s-polarized beam and a p-polarized beam with polarizations orthogonal to each other and emits them in parallel through the second side. It may include a beam displacer.
또한, 상기 스캔빔 분할부는, 상기 제2 면을 통해 출사되는 s-편광 빔 및 p-편광 빔의 경로 중 더욱 짧은 p-편광 빔의 경로 상에 설치되고, 상기 빔 디스플레이서와 동일한 소재로 구현되어, 출사되는 s-편광 빔과 p-편광 빔 간의 광 경로 길이의 차를 보상하는 광경로차 보정부를 더 포함할 수 있다.In addition, the scan beam splitter is installed on the path of the shorter p-polarized beam among the paths of the s-polarized beam and the p-polarized beam emitted through the second surface, and is made of the same material as the beam displacer. It may further include an optical path difference correction unit that compensates for the difference in optical path length between the emitted s-polarized beam and the p-polarized beam.
또한, 상기 스캔빔 분할부는, 결정축이 서로 수직이고 서로 상이한 재료로 만들어진 두 삼각프리즘의 조합으로 이루어지며, 제1 면을 통해 입사된 스캔빔을 두 삼각프리즘의 경계면에서 상기 스캔빔과 평행하게 진행하는 제1 편광 빔과 상기 스캔빔과 설정 각도를 가지고 진행하는 제2 편광 빔으로 분리하여 제2 면을 통해 출사시키는 편광 프리즘을 포함하며, 상기 제1 편광 빔이 s-편광 빔이면 상기 제2 편광 빔은 p-편광 빔이고, 상기 제1 편광 빔이 p-편광 빔이면 상기 제2 편광 빔은 s-편광 빔일 수 있다.In addition, the scan beam splitter is composed of a combination of two triangular prisms whose crystal axes are perpendicular to each other and made of different materials, and the scan beam incident through the first surface is transmitted parallel to the scan beam at the boundary surface of the two triangular prisms. It includes a polarizing prism that separates a first polarized beam and a second polarized beam that travels at a set angle from the scan beam and emits them through a second surface, and if the first polarized beam is an s-polarized beam, the second polarized beam The polarized beam may be a p-polarized beam, and if the first polarized beam is a p-polarized beam, the second polarized beam may be an s-polarized beam.
또한, 상기 스캔빔 분할부는, 상기 제2 면을 통해 출사되는 제2 편광 빔의 경로 상에 순차로 설치되어 빔 경로를 변경하는 제1 및 제2 거울을 통해 제2 편광 빔의 진행 방향을 상기 스캔빔과 평행하게 조정하는 변위 조절부, 및 상기 제2 면을 통해 출사되는 제1 및 제2 편광 빔의 경로 중 더욱 짧은 s-편광 빔의 경로 상에 설치되어, 출사되는 제1 편광 빔과 제2 편광 빔 간의 광 경로 길이의 차를 보상하는 광경로차 보정부를 더 포함할 수 있다.In addition, the scan beam splitter is sequentially installed on the path of the second polarized beam emitted through the second surface to change the beam path to determine the direction of travel of the second polarized beam. a displacement control unit that adjusts the scan beam in parallel, and a first polarized beam that is installed on the path of the shorter s-polarized beam among the paths of the first and second polarized beams that are emitted through the second surface, and is emitted; It may further include an optical path difference correction unit that compensates for a difference in optical path length between the second polarized beams.
또한, 상기 광 경로차 보정부는, 상기 제2 면을 통해 출사된 제1 편광 빔의 진행 경로 상에 순차로 설치되어 빔 경로를 변경하는 제3 거울 내지 제6 거울, 그리고 상기 제3 및 제6 거울과 나란히 이격 배치된 제4 및 제5 거울을 그룹으로 이동시키면서 상기 광 경로 길이의 차를 보상해주는 거울 이동부를 포함할 수 있다.In addition, the optical path difference correction unit includes third to sixth mirrors that are sequentially installed on the path of the first polarized beam emitted through the second surface to change the beam path, and the third and sixth mirrors It may include a mirror moving unit that compensates for the difference in optical path length while moving the fourth and fifth mirrors arranged in parallel and spaced apart from the mirror as a group.
또한, 상기 편광 프리즘은, 로촌(Rochon) 프리즘 또는 세나르몽(Senarmont) 프리즘 구조일 수 있다.Additionally, the polarizing prism may have a Rochon prism or Senarmont prism structure.
또한, 상기 편광 프리즘은 상기 경계면의 중심을 기준으로 설정 각도만큼 회전된 상태로 설치되며, 상기 설정 각도는, 상기 경계면의 중심에서 분리 출사된 제1 편광 빔과 제2 편광 빔의 진행 방향 간 각도차(θ)의 절반에 해당한 θ/2일 수 있다.In addition, the polarizing prism is installed in a state rotated by a set angle based on the center of the boundary surface, and the set angle is the angle between the travel directions of the first polarization beam and the second polarization beam separately emitted from the center of the boundary surface. It may be θ/2, which is half of the difference (θ).
또한, 상기 스캔빔 분할부는, 상기 제2 면을 통해 출사되는 제2 편광 빔의 경로 상에 순차로 설치되어 빔 경로를 변경하는 제1 및 제2 거울과, 상기 제2 면을 통해 출사되는 제1 편광 빔의 경로 상에 순차로 설치되어 빔 경로를 변경하며 상기 제1 및 제2 거울과 대칭되게 설치되는 제3 및 제4 거울을 포함하는 변위 조절부를 더 포함하며, 상기 변위 조절부에 의해 상기 제2 거울을 거친 제2 편광 빔과 상기 제4 거울을 거친 제1 편광 빔의 진행 방향이 평행하게 조정될 수 있다.In addition, the scan beam splitter includes first and second mirrors that are sequentially installed on the path of the second polarized beam emitted through the second surface to change the beam path, and a first and second mirrors that are sequentially installed on the path of the second polarized beam emitted through the second surface. 1. It further includes a displacement control unit including third and fourth mirrors that are sequentially installed on the path of the polarized beam to change the beam path and are installed symmetrically with the first and second mirrors, and wherein the displacement control unit The travel directions of the second polarized beam that has passed through the second mirror and the first polarized beam that has passed through the fourth mirror may be adjusted to be parallel.
또한, 상기 스캔빔 분할부는, 결정축이 서로 수직이고 서로 상이한 재료로 만들어진 두 삼각프리즘의 조합으로 이루어지며, 제1 면을 통해 입사된 스캔빔을 두 삼각프리즘의 경계면에서 상기 스캔빔의 방향에 대해 설정 각도를 가지고 서로 대칭되게 진행하는 s-편광 빔과 p-편광 빔으로 분리하여 제2 면을 통해 출사시키는 월라스턴(Wollaston) 프리즘 구조의 편광 프리즘을 포함할 수 있다.In addition, the scan beam splitter is composed of a combination of two triangular prisms whose crystal axes are perpendicular to each other and made of different materials, and the scan beam incident through the first surface is divided into two triangular prisms at the boundary surface of the two triangular prisms in the direction of the scan beam. It may include a polarizing prism of a Wollaston prism structure that separates the s-polarized beam and the p-polarized beam, which proceed symmetrically to each other at a set angle, and emits them through the second surface.
또한, 상기 스캔빔 분할부는, 상기 제2 면을 통해 출사되는 p-편광 빔의 경로 상에 순차로 설치되어 빔 경로를 변경하는 제1 및 제2 거울과, 상기 제2 면을 통해 출사되는 s-편광 빔의 경로 상에 순차로 설치되어 빔 경로를 변경하며 상기 제1 및 제2 거울과 대칭되게 설치되는 제3 및 제4 거울을 포함하는 변위 조절부를 더 포함하며, 상기 변위 조절부에 의해 상기 제2 거울을 거친 p-편광 빔과 상기 제4 거울을 거친 s-편광 빔의 진행 방향이 평행하게 조정될 수 있다.In addition, the scan beam splitter includes first and second mirrors that are sequentially installed on the path of the p-polarized beam emitted through the second surface to change the beam path, and s emitted through the second surface. -It further includes a displacement control unit including third and fourth mirrors that are sequentially installed on the path of the polarizing beam to change the beam path and are installed symmetrically with the first and second mirrors, and are operated by the displacement control unit. The travel directions of the p-polarized beam that passed through the second mirror and the s-polarized beam that passed through the fourth mirror may be adjusted to be parallel.
또한, 상기 스캔빔 분할부는, 입사된 스캔빔에서 s-편광 빔 성분을 반사시키고 p-편광 빔 성분을 투과시키는 제1 편광 빔스플리터와, 상기 제1 편광 빔스플리터에서 반사시킨 s-편광 빔의 경로 상에 순차로 설치되어 빔 경로를 90도씩 변경하는 제1 및 제2 거울과, 상기 제1 편광 빔스플리터에서 투과시킨 p-편광 빔의 경로 상에 순차로 설치되어 빔 경로를 90도씩 변경하는 제3 내지 제6 거울, 및 상기 제2 거울을 거친 s-편광 빔과 상기 제6 거울을 거친 p-편광 빔을 각각 제1 면과 제2 면을 통해 입사받으며, 상기 제1 면에 입사 후 반사된 s-편광 빔과 상기 제2 면에 입사 후 투과된 p-편광 빔을 제3 면을 통해 나란히 평행한 방향으로 출력하는 제2 편광 빔스플리터를 포함할 수 있다.In addition, the scan beam splitter includes a first polarizing beam splitter that reflects the s-polarized beam component from the incident scan beam and transmits the p-polarized beam component, and a first polarizing beam splitter that reflects the s-polarized beam component from the first polarizing beam splitter. First and second mirrors are sequentially installed on the path to change the beam path by 90 degrees, and are sequentially installed on the path of the p-polarized beam transmitted from the first polarizing beam splitter to change the beam path by 90 degrees. The third to sixth mirrors, and an s-polarized beam that has passed through the second mirror and a p-polarized beam that has passed through the sixth mirror, are incident on each of the first and second surfaces, and after incident on the first face, It may include a second polarizing beam splitter that outputs the reflected s-polarized beam and the p-polarized beam transmitted after incident on the second surface in a parallel direction through the third surface.
또한, 상기 스캔부는, 투과체에 대한 상기 스캔빔의 스캐닝 위치를 제어하도록 수평 스캔 거울과 수직 스캔 거울을 포함하며, 입사된 상기 스캔빔을 수평 및 수직 방향으로 제어하여 투과체로 전달할 수 있다.In addition, the scan unit includes a horizontal scan mirror and a vertical scan mirror to control the scanning position of the scan beam with respect to the transmitting object, and can control the incident scan beam in horizontal and vertical directions and transmit it to the transmitting object.
또한, 상기 스캔부는, 투과체에 대한 상기 스캔빔의 스캐닝 위치를 수평 및 수직 방향으로 제어하도록, 상기 스캔빔 분할부로부터 입사된 상기 스캔빔을 수평 방향으로 제어하여 투과체로 전달하는 스캔 거울과, 상기 투과체의 후단에서 상기 투과체를 수직 방향으로 이동시키는 트랜슬레이션 스테이지를 포함할 수 있다.In addition, the scan unit includes a scan mirror that controls the scan beam incident from the scan beam splitter in the horizontal direction and transmits it to the transmissive body so as to control the scanning position of the scan beam with respect to the transmissive body in the horizontal and vertical directions; A translation stage may be included at the rear end of the transparent body to move the transparent material in the vertical direction.
또한, 상기 스캔부는, 투과체에 대한 상기 스캔빔의 스캐닝 위치를 수평 및 수직 방향으로 제어하도록, 상기 스캔빔 분할부로부터 입사된 상기 스캔빔을 수평 방향으로 제어하여 투과체로 전달하는 공간 변조(spatial modulation) 스캐너와, 상기 투과체의 후단에서 상기 투과체를 수직 방향으로 이동시키는 트랜슬레이션 스테이지를 포함할 수 있다. In addition, the scan unit controls the scan beam incident from the scan beam splitter in the horizontal direction to control the scanning position of the scan beam with respect to the transmissive body in the horizontal and vertical directions and transmits it to the transmissive body through spatial modulation (spatial modulation). modulation) may include a scanner and a translation stage that moves the transparent material in the vertical direction at the rear end of the transparent material.
또한, 상기 스캔부는, 물체에 대한 상기 스캔빔의 스캐닝 위치를 수평 및 수직 방향으로 제어하기 위한 수직 스캐너와 수평 스캐너를 포함하되, 상기 스캔빔 분할부로부터 입사된 상기 스캔빔을 수평 방향으로 제어하여 물체로 전달하는 수평 공간 변조(spatial modulation) 스캐너와, 상기 스캔빔을 수직 방향으로 제어하여 물체로 전달하는 수직 공간 변조 스캐너를 포함할 수 있다.In addition, the scan unit includes a vertical scanner and a horizontal scanner for controlling the scanning position of the scan beam with respect to the object in horizontal and vertical directions, and controls the scan beam incident from the scan beam splitter in the horizontal direction. It may include a horizontal spatial modulation scanner that transmits the scan beam to an object, and a vertical spatial modulation scanner that controls the scan beam in the vertical direction and transmits it to the object.
본 발명에 따르면, 스캔 거울의 스캐닝 속도보다 빠르게 투과형 대상물인 투과체에 대한 홀로그램을 초고속으로 획득할 수 있다. According to the present invention, it is possible to obtain a hologram for a transparent object at ultra-high speed, faster than the scanning speed of a scan mirror.
도 1은 본 발명의 제1 실시예에 따른 투과체에 대한 편광분할 더블 스캐닝 홀로그래피 시스템의 구성을 나타낸 도면이다.Figure 1 is a diagram showing the configuration of a polarization-splitting double scanning holography system for a transmissive material according to a first embodiment of the present invention.
도 2a는 본 발명의 제2 실시예에 따른 투과체에 대한 편광분할 더블 스캐닝 홀로그래피 시스템의 구성을 나타낸 도면이다.Figure 2a is a diagram showing the configuration of a polarization-splitting double scanning holography system for a transmissive material according to a second embodiment of the present invention.
도 2b는 도 2a의 변형 예를 나타낸 도면이다.FIG. 2B is a diagram showing a modified example of FIG. 2A.
도 3은 본 발명의 제3 실시예에 따른 투과체에 대한 편광분할 더블 스캐닝 홀로그래피 시스템의 구성을 나타낸 도면이다.Figure 3 is a diagram showing the configuration of a polarization-splitting double scanning holography system for a transmissive material according to a third embodiment of the present invention.
도 4a는 본 발명의 제4 실시예에 따른 투과체에 대한 편광분할 더블 스캐닝 홀로그래피 시스템의 구성을 나타낸 도면이다.Figure 4a is a diagram showing the configuration of a polarization-splitting double scanning holography system for a transmissive material according to a fourth embodiment of the present invention.
도 4b는 도 4a의 변형 예를 나타낸 도면이다.FIG. 4B is a diagram showing a modified example of FIG. 4A.
도 5a 내지 도 5h는 도 1에 도시된 스캔빔 분할부의 다양한 실시예를 설명하는 도면이다.FIGS. 5A to 5H are diagrams illustrating various embodiments of the scan beam splitter shown in FIG. 1.
도 6은 본 발명의 실시예에 따른 신호 처리부의 동작을 설명하는 도면이다.Figure 6 is a diagram explaining the operation of a signal processing unit according to an embodiment of the present invention.
도 7은 공간 변조 스캐너의 동작 원리를 설명한 도면이다.Figure 7 is a diagram explaining the operating principle of a spatial modulation scanner.
도 8은 수평 및 수직 공간 변조 스캐너의 동작 원리를 설명한 도면이다.Figure 8 is a diagram explaining the operating principle of the horizontal and vertical spatial modulation scanner.
그러면 첨부한 도면을 참고로 하여 본 발명의 실시 예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다. Then, with reference to the attached drawings, embodiments of the present invention will be described in detail so that those skilled in the art can easily implement the present invention. However, the present invention may be implemented in many different forms and is not limited to the embodiments described herein. In order to clearly explain the present invention in the drawings, parts that are not related to the description are omitted, and similar parts are given similar reference numerals throughout the specification.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. Throughout the specification, when a part is said to be "connected" to another part, this includes not only the case where it is "directly connected," but also the case where it is "electrically connected" with another element in between. . Additionally, when a part "includes" a certain component, this means that it may further include other components rather than excluding other components, unless specifically stated to the contrary.
본 발명은 투과체에 대한 편광분할 더블 스캐닝 홀로그래피 시스템에 관한 것으로, 투과형 대상물(transmissive object)(이하, 투과체)에 대한 홀로그램을 고속으로 획득하기 위한 편광분할 더블 스캐닝 홀로그래피 시스템을 제안한다.The present invention relates to a polarization-splitting double scanning holography system for a transmissive object, and proposes a polarization-splitting double scanning holography system for acquiring a hologram for a transmissive object (hereinafter referred to as a transmissive object) at high speed.
본 발명에서는 스캔빔 생성부에서 생성된 빔을 s-편광 빔과 p-편광 빔으로 분할 후 나란히 출사시켜 스캔 대상이 되는 대상물인 투과체에 투사하고 투과체를 투과한 빔을 집광하여 광 검출부로 전달한 후에 광 검출부에서 분리 검출한 s-편광 빔과 p-편광 빔을 처리하는 것을 통해 투과체에 대한 홀로그램을 고속으로 구현하는 광학계 구조를 제안한다.In the present invention, the beam generated by the scan beam generator is divided into an s-polarized beam and a p-polarized beam, and the beam is emitted side by side and projected onto a transmitting object, which is the object to be scanned, and the beam transmitted through the transmitting object is condensed and sent to the light detection unit. We propose an optical system structure that implements a hologram for a transmitting object at high speed by processing the s-polarized beam and p-polarized beam that are separately detected by the light detection unit after transmission.
이하에서는 본 발명의 실시예에 따른 투과체에 대한 편광분할 더블 스캐닝 홀로그래피 시스템을 도면을 통하여 더욱 구체적으로 설명한다.Hereinafter, the polarization splitting double scanning holography system for a transmissive material according to an embodiment of the present invention will be described in more detail with reference to the drawings.
도 1 내지 도 4는 본 발명의 제1 내지 제4 실시예에 따른 투과체에 대한 편광분할 더블 스캐닝 홀로그래피 시스템의 구성을 나타낸 도면이다. 1 to 4 are diagrams showing the configuration of a polarization-splitting double scanning holography system for a transmissive material according to the first to fourth embodiments of the present invention.
먼저, 도 1과 같이, 본 발명의 제1 실시예에 따른 투과체에 대한 편광분할 더블 스캐닝 홀로그래피 시스템(100)은 크게 스캔빔 생성부(110), 스캔빔 분할부(120), 스캔부(130), 광 검출부(140) 및 신호 처리부(150)를 포함한다. 이러한 기본 구조는 나머지 제2 내지 제4 실시예에서도 적용된다.First, as shown in FIG. 1, the polarization splitting double scanning holography system 100 for a transmitting body according to the first embodiment of the present invention largely includes a scan beam generator 110, a scan beam splitter 120, and a scan unit ( 130), a light detection unit 140, and a signal processing unit 150. This basic structure also applies to the remaining second to fourth embodiments.
먼저, 스캔빔 생성부(110)는 광원에서 분할된 제1 및 제2 빔 중 제1 빔을 주파수 천이시켜 제1 렌즈(115)를 통해 제1 곡률빔으로 변환하고, 제2 빔을 제2 렌즈(116)를 통해 제2 곡률빔으로 변환한 후, 제1 및 제2 곡률빔을 간섭시켜 스캔빔을 형성한다. First, the scan beam generator 110 converts the first beam of the first and second beams split from the light source into a first curvature beam through the first lens 115 by frequency shifting, and converts the second beam into a second beam. After being converted into a second curvature beam through the lens 116, the first and second curvature beams are interfered to form a scan beam.
스캔빔 생성부(110)는 광원을 제1 및 제2 빔으로 분할하여 제1 및 제2 곡률빔을 생성 후 생성된 두 빔을 다시 결합하는 마크젠더 간섭계 구조를 사용한다.The scan beam generator 110 uses a mark-gender interferometer structure that splits a light source into first and second beams to generate first and second curved beams, and then combines the two generated beams again.
스캔빔 생성부(110)는 제1 거울(M1), 광분할기(111), 주파수 천이수단(112), 제2 및 제3 거울(M2,M3), 제1 및 제2 빔 곡률생성부(N1,N2), 그리고 간섭수단(117)을 포함하며, 광원을 더 포함할 수 있다.The scan beam generator 110 includes a first mirror (M1), a light splitter 111, a frequency shift means 112, second and third mirrors (M2, M3), and first and second beam curvature generators ( N1, N2), and an interference means 117, and may further include a light source.
광원은 전자기파를 발생시키는 부분이다. 광원은 전자기파의 발생이 가능한 레이저 발생기, LED(light emitting diode), 결맞음 길이(coherence length)가 짧은 헬로겐 광처럼 가간섭성(Coherence)이 낮은 빔 등의 다양한 수단을 포함할 수 있다. 이하에서는 광원을 레이저 발생기로 구현한 것을 대표 예시로 한다.The light source is the part that generates electromagnetic waves. The light source may include various means such as a laser generator capable of generating electromagnetic waves, a light emitting diode (LED), and a beam with low coherence such as helogen light with a short coherence length. Below, the light source implemented as a laser generator is taken as a representative example.
광원으로부터 출력된 빔은 제1 거울(M1)에 전달된 후 반사되어 광분할기(111)로 입력된다.The beam output from the light source is transmitted to the first mirror (M1) and then reflected and input to the light splitter 111.
광분할기(111)는 입사되는 빔을 제1 빔과 제2 빔으로 분리하여, 제1 빔을 위상 변조수단(112)(음향-광 변조기)으로 전달하고 제2 빔을 제3 거울(M3)로 전달한다. 즉, 광분할기(111)에서 제1 빔의 경로를 따르는 빔은 위상 변조수단(112)에 전달되고, 제2 빔의 경로를 따르는 빔은 제3 거울(M3)로 전달된다. The light splitter 111 separates the incident beam into a first beam and a second beam, transmits the first beam to the phase modulation means 112 (acoustic-optical modulator), and transfers the second beam to the third mirror M3. Pass it to That is, the beam following the path of the first beam from the optical splitter 111 is transmitted to the phase modulation means 112, and the beam following the path of the second beam is transmitted to the third mirror M3.
여기서, 광분할기(111)는 광 섬유 커플러(optical fiber coupler), 빔 스플리터(beam splitter), 기하위상렌즈(geometric phase lens) 등으로 구성될 수 있고, 자유 공간을 도파하여 빔을 외부로 전달하는 방식으로 구현될 수 있다. 여기서 기하위상렌즈 등 공축상(in-line)에서 빔을 분할할 수 있는 수단을 이용하는 경우 공축상에서 제1 빔과 제2 빔으로 분할할 수 있다. 이하에서는 각각의 광분할기를 빔 스플리터로 구현한 것을 가정한다. Here, the optical splitter 111 may be composed of an optical fiber coupler, a beam splitter, a geometric phase lens, etc., and transmits the beam to the outside by guiding the free space. It can be implemented in this way. Here, when using a means that can split the beam on the co-axis (in-line), such as a geometric phase lens, it can be split into a first beam and a second beam on the co-axis. Hereinafter, it is assumed that each optical splitter is implemented as a beam splitter.
위상 변조수단(112)은 제1 빔을 주파수 천이시킨 후 제2 거울(M2)로 전달한다. 주파수 천위 수단 즉, 위상 변조수단은 함수 발생기(미도시)에서 발생된 주파수를 이용하여, 제1 빔의 주파수를 Ω 만큼 천이시켜 제2 거울(M2)로 전달할 수 있다. 여기서, 위상 변조수단은 음향 광 변조기(acousto-optic modulator), 전자 광 변조기(electro-optic modulator)을 포함한 전기 신호에 따라 빛의 위상을 변조하는 다양한 종류의 변조기로 구현될 수 있다.The phase modulation means 112 shifts the frequency of the first beam and then transmits it to the second mirror (M2). The frequency shifting means, that is, the phase modulating means, can shift the frequency of the first beam by Ω using a frequency generated by a function generator (not shown) and transmit it to the second mirror (M2). Here, the phase modulator may be implemented with various types of modulators that modulate the phase of light according to an electric signal, including an acousto-optic modulator and an electro-optic modulator.
제2 거울(M2)에서 반사된 제1 빔은 제1 빔 곡률생성부(N1)로 전달된다. 제3 거울(M3)에서 반사된 제2 빔은 제2 빔 곡률생성부(N2)로 전달된다. 빔확대기는 콜리메이터로 구현될 수 있다.The first beam reflected from the second mirror (M2) is transmitted to the first beam curvature generator (N1). The second beam reflected from the third mirror (M3) is transmitted to the second beam curvature generator (N2). The beam expander can be implemented as a collimator.
제1,2 빔 곡률 생성부(N1,N2)는 각각의 빔을 입사받아 콜리메이트된 빔을 포함하여 음의 곡률에서 양의 곡률 사이의 곡률을 갖는 확대된 빔을 생성한다.The first and second beam curvature generators N1 and N2 receive each beam and generate an enlarged beam having a curvature between negative and positive curvatures, including a collimated beam.
제1 빔 곡률 생성부(N1)의 구체적인 구현 예로는 제2 거울(M2)에서 반사된 제1 빔을 구면파로 변환하는 제1 렌즈(113)와 구면파를 입사받아 곡률이 있는 빔(제1 곡률빔)을 생성하는 제2 렌즈(115)를 갖는 빔 확대기로, 제1 렌즈(113)와 제2 렌즈(115)의 거리를 조정함으로써 빔의 곡률을 조정할 수 있다. 제2 빔 곡률 생성부(N2)의 구체적인 구현 예로는 제3 거울(M3)에서 반사된 제2 빔을 구면파로 변환하는 제3 렌즈(114)와 구면파를 입사받아 곡률이 있는 빔(제2 곡률빔)을 생성하는 제4 렌즈(116)를 갖는 빔 확대기로, 제3 렌즈(114)와 제4 렌즈(116)의 거리를 조정함으로써 빔의 곡률을 조정할 수 있다. A specific example of implementation of the first beam curvature generator (N1) includes a first lens 113 that converts the first beam reflected from the second mirror (M2) into a spherical wave, and a beam that receives the spherical wave and has a curvature (first curvature As a beam expander having a second lens 115 that generates a beam, the curvature of the beam can be adjusted by adjusting the distance between the first lens 113 and the second lens 115. A specific example of the second beam curvature generator (N2) includes a third lens 114 that converts the second beam reflected from the third mirror (M3) into a spherical wave, and a beam with a curvature (second curvature) that receives the spherical wave. As a beam expander having a fourth lens 116 that generates a beam, the curvature of the beam can be adjusted by adjusting the distance between the third lens 114 and the fourth lens 116.
제1 빔 곡률 생성부(N1)는 제1 빔을 제1 곡률 빔으로 변환하여 간섭수단(117)로 전달한다. 즉, 제1 빔 곡률 생성부(N1)는 제1 빔의 공간분포를 변조하여 제2 곡률 빔을 생성한다.The first beam curvature generator (N1) converts the first beam into a first curvature beam and transmits it to the interference means (117). That is, the first beam curvature generator N1 generates a second curvature beam by modulating the spatial distribution of the first beam.
제2 빔 곡률 생성부(N2)는 제2 빔을 제1 곡률 빔으로 변환하여 간섭수단(117)로 전달한다. 즉, 제2 빔 곡률 생성부(N2)는 제2 빔의 공간분포를 변조하여 제2 곡률 빔을 생성한다. The second beam curvature generator (N2) converts the second beam into a first curvature beam and transmits it to the interference means (117). That is, the second beam curvature generator N2 generates the second curvature beam by modulating the spatial distribution of the second beam.
생성된 제1 및 제2 곡률빔은 간섭수단(117)을 통과하면서 서로 간섭되어 스캔부(130)로 전달된다. 간섭수단(117)은 빔스플리터로 구현될 수 있다. The generated first and second curvature beams interfere with each other while passing through the interference means 117 and are transmitted to the scanning unit 130. The interference means 117 may be implemented as a beam splitter.
간섭수단(117)은 제1 빔 곡률생성부(N1)를 통과한 제1 빔(제1 곡률 빔) 및 제2 빔 곡률생성부(N2)를 통과한 제2 빔(제2 곡률 빔)을 서로 중첩하고 간섭시켜서 프레넬 윤대 패턴(Fresnel zone pattern)의 간섭 패턴을 갖는 스캔빔을 형성한다. 프레넬 윤대 패턴은 곡률이 완전히 같지 않은 제1 곡률빔과 제2 곡률빔의 간섭에 의해서 생성됨 빔 패턴을 나타낼 수 있다.The interference means 117 generates a first beam (first curved beam) that has passed through the first beam curvature generator (N1) and a second beam (second curved beam) that has passed through the second beam curvature generator (N2). They overlap and interfere with each other to form scan beams with an interference pattern of a Fresnel zone pattern. The Fresnel annular pattern may represent a beam pattern generated by interference between a first and second curved beam whose curvatures are not completely the same.
이와 같이, 스캔빔 생성부(110)는 광원으로부터 분리된 제1 빔과 제2 빔을 제1 및 제2 곡률빔으로 변환 후 간섭수단(117)을 통해 서로 중첩시켜서 스캔빔을 형성하고 형성한 스캔 빔을 스캔빔 분할부(120)로 전달한다.In this way, the scan beam generator 110 converts the first beam and the second beam separated from the light source into the first and second curved beams and overlaps them through the interference means 117 to form a scan beam. The scan beam is transmitted to the scan beam splitter 120.
여기서 스캔빔 생성부(110)에서 생성된 스캔빔은 스캔빔 분할부(120)의 수평 방향(도 1에서 스캔빔 분할부에 빔이 입사되는 방향)에 대해 45도로 선편광된 빔이거나 선편광되지 않은 빔인 것이 바람직하다.Here, the scan beam generated by the scan beam generator 110 is either linearly polarized at 45 degrees with respect to the horizontal direction of the scan beam splitter 120 (the direction in which the beam is incident on the scan beam splitter in FIG. 1) or is not linearly polarized. Preferably it is a beam.
이를 위해, 레이저에서 스캔빔 분할부(120)의 수평방향에 대해 45도로 선편광된 빔을 생성하거나, 레이저에서 임의의 방향으로 선편광 빔을 출력하고 출력된 레이저 빔의 선편광 방향을 파장판(wave plate)을 이용하여 회전시켜서, 스캔빔 분할부(120)의 수평 방향에 대해 45도로 편광된 빔을 생성할 수 있다. 레이저 빔에서 원편광 빔을 생성하는 경우 파장판을 이용해 선편광 빔으로 변경할 수 있음은 물론이다. For this purpose, the laser generates a beam linearly polarized at 45 degrees with respect to the horizontal direction of the scan beam splitter 120, or the laser outputs a linearly polarized beam in a random direction and the linearly polarized direction of the output laser beam is changed using a wave plate. ), a beam polarized at 45 degrees with respect to the horizontal direction of the scan beam splitter 120 can be generated. Of course, when a circularly polarized beam is generated from a laser beam, it can be changed to a linearly polarized beam using a wave plate.
스캔빔 분할부(120)는 입사되는 스캔빔을 s-편광 빔과 p-편광 빔으로 분할하여 분할된 2개의 편광 빔을 서로 나란히 스캔부(130)를 향해 출사시킨다. 즉, 스캔빔 분할부(120)는 스캔빔 생성부(110)로부터 전달받은 스캔빔을 편광에 따라 2개의 스캔빔(제1 스캔빔; s-편광 빔, 제2 스캔빔: p-편광 빔)으로 분할한 후에 나란히 평행하게 출사시켜 스캔부(130)로 전달하는 역할을 한다. The scan beam splitter 120 splits the incident scan beam into an s-polarized beam and a p-polarized beam and emits the two split polarized beams side by side toward the scan unit 130. That is, the scan beam splitter 120 divides the scan beam received from the scan beam generator 110 into two scan beams (first scan beam: s-polarized beam, second scan beam: p-polarized beam) according to polarization. ) and then output in parallel parallel to each other to deliver it to the scanning unit 130.
이러한 스캔빔 분할부(120)는 스캔빔을 s-편광 빔과 p-편광 빔으로 분할하는 기능, 분할된 두 빔 간의 광 경로 길이를 동일하게 조절하는 기능, 그리고 분할된 두 빔의 진행 방향을 평행하게 만들어 주는 기능을 포함하여 구현될 수 있다. This scan beam splitter 120 has the function of splitting the scan beam into an s-polarized beam and a p-polarized beam, the function of adjusting the optical path length between the two split beams to be the same, and the traveling direction of the two split beams. It can be implemented including a function that makes it parallel.
첫 번째 기능의 경우 빔 디스플레이서(Beam displacer), 편광 프리즘 혹은 편광빔분할기(Polarized Beam Splitter, PBS)를 통하여 구현 가능하고, 두 번째와 세 번째 기능의 경우 복수의 거울들의 조합을 이용하거나, 복수의 거울들과 편광빔분할기(PBS)의 조합을 이용하여 구현 가능하다. 이에 대해서는 아래의 도 5a 내지 도 5b를 통하여 상세히 설명할 것이다.For the first function, it can be implemented through a beam displacer, polarizing prism, or polarized beam splitter (PBS), and for the second and third functions, a combination of multiple mirrors or multiple mirrors can be used. It can be implemented using a combination of mirrors and a polarizing beam splitter (PBS). This will be explained in detail through FIGS. 5A to 5B below.
다음은 도 1에 도시된 스캔빔 분할부의 구성을 더욱 상세히 설명한다. 스캔빔 분할부(120)는 이하와 같은 다양한 구조로 구현될 수 있다. Next, the configuration of the scan beam splitter shown in FIG. 1 will be described in more detail. The scan beam splitter 120 may be implemented in various structures as follows.
도 5a 내지 도 5h는 도 1에 도시된 스캔빔 분할부의 다양한 실시예를 설명하는 도면이다.FIGS. 5A to 5H are diagrams illustrating various embodiments of the scan beam splitter shown in FIG. 1.
먼저, 도 5a는 스캔빔 분할부의 제1 실시예로서, 스캔빔 분할부(120-1)는 편광분할기에 해당하는 빔 디스플레이서(Beam displacer)(121a)를 포함하며, 도 5a의 오른쪽 그림과 같이 분할된 두 편광빔의 광 경로차를 보정하기 위한 광경로차 보정부(122)를 더 포함할 수 있다. First, Figure 5a shows the first embodiment of the scan beam splitter. The scan beam splitter 120-1 includes a beam displacer 121a corresponding to a polarization splitter, as shown in the right figure of Figure 5a. It may further include an optical path difference correction unit 122 for correcting the optical path difference between the two divided polarization beams.
빔 디스플레이서(121a)는 제1 면을 통해 입사된 스캔빔을 서로 직교하는 편광의 s-편광 빔과 p-편광 빔으로 분리하여 제2 면을 통해 나란히 출사시킨다. 이때, 빔 디스플레이서(121a)는 비등방성 광학재료로 이루어지며, 비등방성 광학재료로는 Calcite(방해석), YVO4, α-BBO, TeO2 등이 사용될 수 있다. The beam displacer 121a separates the scan beam incident through the first side into an s-polarized beam and a p-polarized beam with polarizations orthogonal to each other, and emits them in parallel through the second side. At this time, the beam displacer 121a is made of an anisotropic optical material. Calcite, YVO4, α-BBO, TeO 2 , etc. may be used as the anisotropic optical material.
이러한 도 5a에서, 출사되는 두 개의 편광빔 중에서 빔 디스플레이서(121a)의 광축(상면의 광축 표시 참조)과 동일한 방향으로 편광이 진동하는 광선은 정상광선(ordinary ray)이라 부르며, 광축과 수직을 이루는 방향으로 편광이 진동하는 광선은 이상광선(extra-ordinary ray)이라 부른다. In FIG. 5A, among the two polarized beams emitted, a ray whose polarization oscillates in the same direction as the optical axis of the beam displacer 121a (see optical axis indication on the upper surface) is called an ordinary ray, and is perpendicular to the optical axis. A ray whose polarization oscillates in the same direction is called an extra-ordinary ray.
도 5a의 경우 빔 디스플레이서(121a)에서 출사되는 p-편광빔은 빔 디스플레이서(121a)의 광축과 평행한 정상광선에 해당하고, s-편광빔은 광축과 수직인 이상광선에 해당한다. In the case of FIG. 5A, the p-polarized beam emitted from the beam displacer 121a corresponds to a normal ray parallel to the optical axis of the beam displacer 121a, and the s-polarized beam corresponds to an abnormal ray perpendicular to the optical axis.
이와 같이, 물질결정 구조가 비등방성인 광학재료를 사용하여 빔 디스플레이서(121a)를 구현하면 편광에 따라 굴절율이 달라지는 복굴절 특징을 가짐에 따라, 45도로 편광되거나 편광되지 않은 빔을 입사받아 90도 위상 차이를 가지는 두 개의 선형편광된 빔(s-편광빔, p-편광빔)으로 분할할 수 있다. In this way, when the beam displacer 121a is implemented using an optical material with an anisotropic material crystal structure, it has a birefringent characteristic in which the refractive index changes depending on polarization, so that a beam polarized at 45 degrees or unpolarized is incident and has a phase of 90 degrees. It can be split into two linearly polarized beams (s-polarized beam, p-polarized beam) with a difference.
따라서, 도 5a에서는 비등방성 광학재료로만 이루어진 편광분할기를 이용하여, 광축을 포함하는 평면에 대해 서로 수직한 편광 상태의 두 개의 빔인 s-편광빔과 p-편광빔을 입사빔과 평행한 방향으로 출사시킬 수 있다. Therefore, in Figure 5a, using a polarization splitter made only of an anisotropic optical material, two beams, an s-polarized beam and a p-polarized beam, in polarization states perpendicular to the plane including the optical axis, are split in a direction parallel to the incident beam. It can be released.
여기서, 빔 디스플레이서(121a)에서 분리 출사되는 두 편광빔 간에는 광경로 차이가 발생하는데, 이를 보정하기 위해 광경로차 보정부(122)가 사용될 수 있다. 이때, 정상광선의 출사된 위치에 빔 디스플레이서(121a)와 동일한 조건의 광학재료를 설치하고 이를 이용하여 두 빔 간 광경로 차이를 보정할 수 있다.Here, an optical path difference occurs between the two polarized beams separately emitted from the beam displacer 121a, and the optical path difference correction unit 122 may be used to correct this. At this time, an optical material under the same conditions as the beam displacer 121a can be installed at the position where the normal ray is emitted, and the optical path difference between the two beams can be corrected using this.
구체적으로, 광경로차 보정부(122)는 빔 디스플레이서(121a)의 제2 면을 통해 출사되는 s-편광 빔 및 p-편광 빔의 경로 중 더욱 짧은 p-편광 빔의 경로 상에 설치되고, 빔 디스플레이서(121a)와 동일한 광학 재료로 구현되어, 출사되는 s-편광 빔과 p-편광 빔 간의 광 경로 길이의 차를 보상할 수 있다.Specifically, the optical path difference correction unit 122 is installed on the shorter path of the p-polarized beam among the paths of the s-polarized beam and the p-polarized beam emitted through the second surface of the beam displacer 121a. , It is implemented with the same optical material as the beam displacer 121a, and can compensate for the difference in optical path length between the emitted s-polarized beam and the p-polarized beam.
여기서, 빔 디스플레이서(121a)를 구성하는 광학 소재(광재료)의 두께를 조정하면 s-편광 빔과 p-편광 빔의 출사 위치(빔간 간격)가 조정될 수 있으며 이를 통해 빔 디스플레이서(121a)를 통한 출사 빔의 변위값 조절이 가능해진다. Here, by adjusting the thickness of the optical material (optical material) constituting the beam displacer 121a, the emission position (inter-beam spacing) of the s-polarized beam and the p-polarized beam can be adjusted, and through this, the beam displacer 121a It is possible to control the displacement value of the emitted beam through .
다음, 도 5b는 스캔빔 분할부의 제2 실시예로서, 도 5b에 나타낸 스캔빔 분할부(120-2)는 로촌(Rochon) 프리즘 구조의 편광 프리즘(121b)을 포함하여 구현되며, 복수의 거울을 이용한 변위 조절부 및 광경로차 보정부를 더 포함할 수 있다.Next, FIG. 5B is a second embodiment of the scan beam splitter. The scan beam splitter 120-2 shown in FIG. 5B is implemented including a polarizing prism 121b of a Rochon prism structure, and includes a plurality of polarizing prisms 121b. It may further include a displacement control unit and an optical path difference correction unit using a mirror.
도 5b에 도시된 편광 프리즘(121b)은 로촌 프리즘으로 구현되며, 결정축이 서로 수직이고 서로 상이한 재료로 만들어진 두 삼각프리즘의 조합으로 이루어진다. 여기서, 편광 프리즘(121b)은 제1 면을 통해 입사된 스캔빔을 두 삼각프리즘의 경계면에서 스캔빔(입사광선)과 평행하게 진행하는 s-편광 빔과, 스캔빔(입사광선)과 설정 각도를 가지고 진행하는 p-편광 빔으로 분리하여 제2 면을 통해 출사시킨다.The polarizing prism 121b shown in FIG. 5B is implemented as a Rochon prism and is composed of a combination of two triangular prisms whose crystal axes are perpendicular to each other and made of different materials. Here, the polarizing prism 121b divides the scan beam incident through the first surface into an s-polarized beam that travels parallel to the scan beam (incident ray) at the boundary of the two triangular prisms, and the scan beam (incident ray) at a set angle. It is separated into a p-polarized beam that travels with and is emitted through the second side.
도 5b에서는 입사광선과 만나는 첫번째 삼각프리즘에서의 결정축은 단축 결정으로 입사광선과 동일 진행방향으로 되어 있으며, 두번째 삼각프리즘에서의 결정축은 첫번째의 프리즘의 결정축 평면 내에서 수직을 이룬다. 여기서, 입사광선은 두 삼각프리즘 재료의 경계면에서 빛의 파장과 재료의 굴절귤에 따라, 각도를 가지고 출사하는 이상광선(extra-ordinary ray)과 입사광선과 평행하게 출사하는 정상광선(ordinary ray)으로 분리된다.In Figure 5b, the crystal axis of the first triangular prism that meets the incident ray is a uniaxial crystal and travels in the same direction as the incident ray, and the crystal axis of the second triangular prism is perpendicular to the crystal axis plane of the first prism. Here, the incident ray is divided into an extra-ordinary ray that is emitted at an angle and an ordinary ray that is emitted parallel to the incident ray, depending on the wavelength of light and the refraction of the material at the boundary between the two triangular prism materials. is separated into
이러한 도 5b의 경우 입사빔과 평행하게 출사되는 s-편광빔은 정상광선, 입사빔과 각도를 가지고 진행하는 p-편광빔은 이상광선에 해당한다.In the case of FIG. 5B, the s-polarized beam emitted parallel to the incident beam corresponds to normal ray, and the p-polarized beam traveling at an angle with the incident beam corresponds to abnormal ray.
도 5b를 참조하면, 변위 조절부는 복수의 거울을 포함하여 구현되는데, 구체적으로 제1 및 제2 거울(M1,M2)을 포함할 수 있다. 여기서, 변위 조절부는 두 거울 중 후단의 제2 거울(M2)의 위치를 조절하는 위치 조절부(L2)를 더 포함할 수 있다.Referring to FIG. 5B, the displacement control unit is implemented by including a plurality of mirrors, and may specifically include first and second mirrors M1 and M2. Here, the displacement control unit may further include a position control unit (L2) that adjusts the position of the second mirror (M2) at the rear end of the two mirrors.
제1 및 제2 거울(M1,M2)은 편광 프리즘(121b)의 제2 면을 통해 출사되는 p-편광 빔의 경로 상에 순차로 설치되어 빔 경로를 변경함에 따라 p-편광 빔의 진행 방향을 스캔빔과 평행하게 조정하는 역할을 한다. 즉, 마지막의 제2 거울(M2)을 거친 p-편광 빔은 스캔빔과 평행하게 된다. 여기에 더해서, 위치 조절부(L)를 통하여 제2 거울(M2)의 위치를 조정하는 경우, s-편광 빔에 대한 p-편광 빔의 위치가 조절될 수 있다. The first and second mirrors M1 and M2 are sequentially installed on the path of the p-polarized beam emitted through the second surface of the polarizing prism 121b and change the beam path to change the direction of the p-polarized beam. It serves to adjust the beam to be parallel to the scan beam. That is, the p-polarized beam that has passed through the last second mirror (M2) becomes parallel to the scan beam. In addition, when adjusting the position of the second mirror (M2) through the position adjusting unit (L), the position of the p-polarized beam with respect to the s-polarized beam can be adjusted.
이와 같이, 변위 조절부는, 두 개의 거울(M1,M2)을 통해 이상광선을 정상광선과 평행하게 만들어주는 역할과 위치 조절부(L2)를 통해 제2 거울(M2)을 조절하여 빔의 변위를 조절하는 역할을 수행할 수 있다. In this way, the displacement control unit plays the role of making the abnormal ray parallel to the normal ray through two mirrors (M1, M2) and adjusts the second mirror (M2) through the position control unit (L2) to adjust the displacement of the beam. It can play a regulating role.
물론, 본 발명이 반드시 상술한 바에 의해 한정되지 않으며, 도 5b에 포함된 복수의 각 거울(M1~M6)의 배치 및 각도 등에 따라 편광프리즘(121b)에서 출사되는 두 빔의 위치나 변위값이 조절될 수 있다.Of course, the present invention is not necessarily limited to the above, and the positions or displacement values of the two beams emitted from the polarizing prism 121b may vary depending on the arrangement and angle of each of the plurality of mirrors M1 to M6 included in FIG. 5b. It can be adjusted.
여기서, 입사광선과 평행하게 진행하는 정상광선(도 5b에서 s-편광빔)은 이상광선(도 5b의 p-편광빔)보다 광 경로가 짧기 때문에, 광경로차 보정부를 통해 광경로 길이를 동일하게 보정해주도록 한다.Here, since the normal ray (s-polarized beam in Fig. 5b) traveling parallel to the incident ray has a shorter optical path than the abnormal ray (p-polarized beam in Fig. 5b), the optical path length is equalized through the optical path difference correction unit. Please correct it properly.
광경로차 보정부는 편광프리즘(121b)의 제2 면을 통해 출사되는 s-편광 빔 및 p-편광 빔의 경로 중 s-편광 빔의 경로 상에 설치되어, 출사되는 s-편광 빔과 p-편광 빔 간의 광 경로 길이의 차를 보상해주는 역할을 하며, 이를 위해 제3 내지 제6 거울(M3~M6)과, 거울 이동부(L1)를 포함할 수 있다. The optical path difference correction unit is installed on the path of the s-polarized beam and the p-polarized beam emitted through the second surface of the polarizing prism 121b, and adjusts the emitted s-polarized beam and the p-polarized beam. It serves to compensate for the difference in optical path length between polarized beams, and for this purpose, it may include third to sixth mirrors (M3 to M6) and a mirror moving unit (L1).
제3 내지 제6 거울(M3~M6)은 편광프리즘(121b)의 제2 면을 통해 출사된 s-편광 빔의 진행 경로 상에 순차로 설치되어 빔 경로를 변경하는데, 구체적으로는 s-편광 빔의 경로 상에 순차로 'ㄷ'자 형태로 설치되어 s-편광 빔의 빔 진행 경로를 90도씩 변경할 수 있다. The third to sixth mirrors (M3 to M6) are sequentially installed on the path of the s-polarized beam emitted through the second surface of the polarizing prism 121b to change the beam path, specifically, the s-polarized beam. They are sequentially installed in a 'ㄷ' shape along the beam path, allowing the beam progression path of the s-polarized beam to be changed by 90 degrees.
이를 통해, 마지막의 제6 거울(M6)을 거친 s-편광 빔은 입사빔과 평행을 이루게 된다. 아울러, 편광프리즘(121b)에 의해 분리된 p-편광 빔의 경우 앞서 설명한 제1 및 제2 거울(M1,M2)을 포함한 변위 조절부의 동작을 통해서 입사빔과 평행을 이루게 되고, 이에 따라 p-편광 빔과 s-편광 빔이 최종적으로 서로 평행을 이루게 된다.Through this, the s-polarized beam that has passed through the last sixth mirror (M6) becomes parallel to the incident beam. In addition, in the case of the p-polarized beam separated by the polarizing prism 121b, it becomes parallel to the incident beam through the operation of the displacement control unit including the first and second mirrors M1 and M2 described above, and thus p- The polarized beam and the s-polarized beam ultimately become parallel to each other.
또한, 거울 이동부(L1)는 제3 거울(M3) 및 제6 거울(M6)과 나란히 이격 배치된 제4 거울(M4) 및 제5 거울(M5)을 한 그룹으로 묶어 이동시킴으로써, s-편광 빔의 광 경로 길이를 p-편광 빔의 광 경로 길이와 동일하게 맞춰줄 수 있다. 도 5b의 경우 거울 이동부(L1)를 상하로 조정하는 것을 통해서 s-편광 빔의 광 경로 길이를 늘리거나 줄일 수 있다.In addition, the mirror moving unit (L1) moves the fourth mirror (M4) and the fifth mirror (M5), which are spaced apart in parallel with the third mirror (M3) and the sixth mirror (M6), as a group, thereby s- The optical path length of the polarized beam can be set to be the same as the optical path length of the p-polarized beam. In the case of Figure 5b, the optical path length of the s-polarized beam can be increased or decreased by adjusting the mirror moving part L1 up and down.
다음, 도 5c는 스캔빔 분할부의 제3 실시예로서, 도 5c에 나타낸 스캔빔 분할부(120-3)는 로촌(Rochon) 프리즘 구조의 편광 프리즘(121c)을 포함하며, 변위 조절부를 더 포함할 수 있다. Next, FIG. 5C shows a third embodiment of the scan beam splitter. The scan beam splitter 120-3 shown in FIG. 5C includes a polarizing prism 121c of a Rochon prism structure and further includes a displacement adjustment unit. It can be included.
도 5c에 도시된 편광 프리즘(121c)은 로촌 프리즘으로 구현되며, 결정축이 서로 수직이고 서로 상이한 재료로 만들어진 두 삼각프리즘의 조합으로 이루어진다.The polarizing prism 121c shown in FIG. 5C is implemented as a Rochon prism and is composed of a combination of two triangular prisms whose crystal axes are perpendicular to each other and made of different materials.
앞서 도 5b에서와 마찬가지로, 편광 프리즘(121c)의 제1 면을 통해 입사된 스캔빔은 두 삼각프리즘의 경계면에서 스캔빔과 평행하게 진행하는 s-편광 빔과, 스캔빔과 설정 각도를 가지고 진행하는 p-편광 빔으로 분리되어, 각각 제2 면을 통해 출사된다.As in FIG. 5B, the scan beam incident through the first surface of the polarizing prism 121c has an s-polarized beam traveling parallel to the scan beam at the boundary of the two triangular prisms, and a set angle with the scan beam. are separated into p-polarized beams, each exiting through the second side.
이때, 도 5b와 다른 점은, 도 5c의 하측 그림과 같이, 편광프리즘(121c)은 두 삼각프리즘의 경계면의 중심을 기준으로 설정 각도(θ/2)만큼 회전된 상태로 설치(배치)된다. 이때, θ는 상측 그림과 같이 경계면의 중심에서 분리 출사된 s-편광 빔과 p-편광 빔의 진행 방향 간 각도차에 해당한다. At this time, the difference from FIG. 5B is that, as shown in the lower part of FIG. 5C, the polarizing prism 121c is installed (placed) rotated by a set angle (θ/2) based on the center of the boundary surface of the two triangular prisms. . At this time, θ corresponds to the angle difference between the travel directions of the s-polarized beam and the p-polarized beam separately emitted from the center of the boundary surface, as shown in the upper figure.
즉, 도 5c의 하측 그림과 같이, 편광프리즘(121c)은 편광빔의 각도차(θ)의 절반에 해당한 θ/2만큼 회전된 상태로 배치된다. 이 경우, 도 5b와는 다르게, 변위 조절부만 필요로 하고, 광경로차 보정부를 불필요로 하므로, 보다 간단한 구조로 스캔빔 분할부(120-3)의 구현이 가능하다. That is, as shown in the lower part of FIG. 5C, the polarizing prism 121c is arranged in a state rotated by θ/2, which is half of the angle difference θ of the polarized beam. In this case, unlike FIG. 5B, only the displacement adjustment unit is required and the optical path difference correction unit is not required, so it is possible to implement the scan beam splitter 120-3 with a simpler structure.
이러한 제3 실시예에서, 변위 조절부는 편광프리즘(121c)의 제2 면을 통해 출사되는 p-편광 빔의 경로 상에 순차로 설치되어 빔 경로를 변경하는 제1 및 제2 거울(M1,M2)과, 제2 면을 통해 출사되는 s-편광 빔의 경로 상에 순차로 설치되어 빔 경로를 변경하며 제1 및 제2 거울(M1,M2)과 대칭되게 설치되는 제3 및 제4 거울(M3,M4)을 포함한다. 이와 같이, 변위 조절부에 의해, 제2 거울(M2)을 거친 p-편광 빔과 제4 거울(M4)을 거친 s-편광 빔의 진행 방향이 평행하게 조정된다.In this third embodiment, the displacement control unit is sequentially installed on the path of the p-polarized beam emitted through the second surface of the polarizing prism 121c, and first and second mirrors M1 and M2 change the beam path. ), and third and fourth mirrors ( M3,M4). In this way, the travel direction of the p-polarized beam passing through the second mirror M2 and the s-polarized beam passing through the fourth mirror M4 are adjusted to be parallel by the displacement control unit.
아울러, 변위 조절부는 제2 거울(M2)과 제4 거울(M4)의 위치를 한 그룹으로 이동시켜 조절하는 위치 조절부(L)를 더 포함할 수 있다. In addition, the displacement control unit may further include a position control unit (L) that adjusts the positions of the second mirror (M2) and the fourth mirror (M4) by moving them as a group.
이와 같이, 변위 조절부는, 제1 및 제2 거울(M1,M2)을 통해 이상광선(p-편광빔)을 입사광선과 평행하게 만들어주고 제3 및 제4 거울(M3,M4)를 통해 정상광선(s-편광빔)을 입사광선과 평행하게 만들어주는 역할을 하며, 아울러 위치 조절부(L)를 통해 제2 거울(M2)과 제4 거울(M4)의 위치를 한 그룹으로 묶어 이동시켜 빔의 변위 값을 조절하는 역할을 추가로 수행할 수 있다. In this way, the displacement control unit makes the abnormal ray (p-polarized beam) parallel to the incident ray through the first and second mirrors (M1, M2) and normalizes the incident ray through the third and fourth mirrors (M3, M4). It serves to make the light beam (s-polarized beam) parallel to the incident light, and also moves the positions of the second mirror (M2) and the fourth mirror (M4) as a group through the position control unit (L). It can additionally play a role in controlling the displacement value of the beam.
결과적으로, 도 5b의 경우 편광프리즘에서 각도를 가지고 출사되는 이상광선을 입사광선과 평행하기 만들기 위해 6개의 거울을 사용하고 있지만, 도 5c의 경우 편광프리즘의 회전 구조를 바탕으로 단순히 4개의 거울을 사용하는 것만으로 동일한 효과를 낼 수 있다.As a result, in the case of Figure 5b, six mirrors are used to make the unusual light emitted from the polarizing prism at an angle parallel to the incident light, but in the case of Figure 5c, four mirrors are simply used based on the rotation structure of the polarizing prism. You can achieve the same effect just by using it.
다음, 도 5d는 스캔빔 분할부의 제4 실시예로서, 도 5d에 나타낸 스캔빔 분할부(120-4)는 세나르몽(Senarmont) 프리즘 구조의 편광 프리즘(121d)을 포함하며, 변위 조절부 및 광경로차 보정부를 더 포함할 수 있다.Next, FIG. 5D shows a fourth embodiment of the scan beam splitter. The scan beam splitter 120-4 shown in FIG. 5D includes a polarizing prism 121d of a Senarmont prism structure and adjusts displacement. It may further include a unit and an optical path difference correction unit.
도 5d에 도시된 편광 프리즘(121d)은 세나르몽 프리즘으로 구현되며, 결정축이 서로 수직이고 서로 상이한 재료로 만들어진 두 삼각프리즘의 조합으로 이루어진다.The polarizing prism 121d shown in FIG. 5D is implemented as a Senardmont prism and is composed of a combination of two triangular prisms whose crystal axes are perpendicular to each other and made of different materials.
여기서, 편광 프리즘(121d)은 제1 면을 통해 입사된 스캔빔을 두 삼각프리즘의 경계면에서 스캔빔과 평행하게 진행하는 p-편광 빔과, 스캔빔과 설정 각도를 가지고 진행하는 s-편광 빔으로 분리하여 제2 면을 통해 출사시킨다. Here, the polarizing prism 121d is a p-polarized beam that travels parallel to the scan beam at the boundary of the two triangular prisms for the scan beam incident through the first surface, and an s-polarized beam that travels at a set angle with the scan beam. It is separated and emitted through the second side.
이러한 도 5d에서 두 번째 삼각프리즘에서의 결정 축은 첫 번째 삼각프리즘에서의 결정 축과는 수직을 이룬다. 이때, 두 번째 삼각프리즘의 결정 축은 도 5b의 두 번째 삼각프리즘의 결정 축과는 다른 수직 방향을 가짐을 알 수 있다. 여기서, 입사광선은 두 삼각프리즘 재료의 경계면에서 빛의 파장과 재료의 굴절귤에 따라 각도를 가지고 출사하는 정상광선(ordinary ray)과 입사광선과 평행하게 출사하는 이상광선(extra-ordinary ray)으로 분리된다.In FIG. 5D, the crystal axis of the second triangular prism is perpendicular to the crystal axis of the first triangular prism. At this time, it can be seen that the crystal axis of the second triangular prism has a vertical direction different from the crystal axis of the second triangular prism in FIG. 5B. Here, the incident ray is divided into an ordinary ray, which is emitted at an angle depending on the wavelength of light and the refraction of the material at the boundary between the two triangular prism materials, and an extra-ordinary ray, which is emitted parallel to the incident ray. separated.
이러한 도 5d에서는 입사빔과 평행하게 출사되는 p-편광빔은 이상광선, 입사빔과 각도를 가지고 진행하는 s-편광빔은 정상광선에 해당한다.In FIG. 5D, the p-polarized beam that is emitted parallel to the incident beam corresponds to an abnormal ray, and the s-polarized beam that travels at an angle to the incident beam corresponds to a normal ray.
이러한 도 5d에서, M1, M2, L2를 포함한 변위 조절부와, M3~M6, L1을 포함한 광경로차 보정부의 구성은, 앞서 도 5b에 나타낸 것과 동일한 구조 및 동작 원리를 가지므로, 이와 관련한 반복된 설명은 생략하도록 한다.In FIG. 5D, the configuration of the displacement control unit including M1, M2, and L2 and the optical path difference correction unit including M3 to M6 and L1 have the same structure and operating principle as those previously shown in FIG. 5B, and thus are related to this. Repeated explanations should be omitted.
다음, 도 5e는 스캔빔 분할부의 제5 실시예로서, 도 5e에 나타낸 스캔빔 분할부(120-5)는 세나르몽(Senarmont) 프리즘 구조의 편광 프리즘(121e)을 포함하며, 도 5c에서와 같이 M1~M4와 L을 포함한 변위 조절부의 구성을 더 포함할 수 있다. Next, Figure 5e shows a fifth embodiment of the scan beam splitter. The scan beam splitter 120-5 shown in Figure 5e includes a polarizing prism 121e of a Senarmont prism structure, and Figure 5c As shown, it may further include a displacement control unit including M1 to M4 and L.
이러한 도 5e는 도 5d에 나타낸 편광 프리즘을 θ/2 만큼 회전 배치하여 앞서 도 5c에서와 같이 스캔빔 분할부의 전체 구조를 간소화한 것이다. 도 5e의 경우 세나르몽 프리즘으로 구현된 것을 제외하고는 도 5c와는 기본 구조 및 동작 원리가 동일하므로, 이에 대한 반복된 설명은 생략한다.In FIG. 5E, the overall structure of the scan beam splitter is simplified as in FIG. 5C by rotating the polarizing prism shown in FIG. 5D by θ/2. In the case of FIG. 5E, the basic structure and operating principle are the same as those of FIG. 5C except that it is implemented with a Senardmont prism, so repeated description thereof will be omitted.
다음, 도 5f는 스캔빔 분할부의 제6 실시예로서, 도 5f에 나타낸 스캔빔 분할부(120-6)는 월라스턴(Wollaston) 프리즘 구조의 편광 프리즘(121f)을 포함하며, 도 5c에서와 같이 M1~M4와 L을 포함한 변위 조절부를 더 포함할 수 있다.Next, Figure 5f shows a sixth embodiment of the scan beam splitter. The scan beam splitter 120-6 shown in Figure 5f includes a polarizing prism 121f of a Wollaston prism structure, and in Figure 5c. As shown, it may further include a displacement control unit including M1 to M4 and L.
편광 프리즘(121f)은 결정축이 서로 수직이고 서로 상이한 재료로 만들어진 두 삼각프리즘의 조합으로 이루어지며, 제1 면을 통해 입사된 스캔빔을 두 삼각프리즘의 경계면에서 스캔빔의 방향에 대해 설정 각도를 가지고 서로 대칭되게 진행하는 s-편광 빔과 p-편광 빔으로 분리하여 제2 면을 통해 출사시킨다. The polarizing prism 121f is composed of a combination of two triangular prisms whose crystal axes are perpendicular to each other and made of different materials. The scan beam incident through the first surface is adjusted at a set angle with respect to the direction of the scan beam at the boundary surface of the two triangular prisms. It is separated into an s-polarized beam and a p-polarized beam, which proceed symmetrically to each other, and are emitted through the second surface.
이러한 월라스턴 프리즘 구조에서, 입사광선과 만나는 첫번째 삼각프리즘의 결정축이 입사광선과의 진행 방향과 수직이며 두번째 삼각프리즘에서의 결정축은 첫번째 삼각프리즘과 수직을 이루면, 입사광선이 두 재료의 경계면에서 빛의 파장과 재료의 굴절율에 따라 각도를 가지고 출사하는 정상광선과 이상광선으로 분리된다. In this Wollaston prism structure, if the crystal axis of the first triangular prism that meets the incident ray is perpendicular to the direction of travel of the incident ray, and the crystal axis of the second triangular prism is perpendicular to the first triangular prism, the incident ray is transmitted at the interface between the two materials. Depending on the wavelength and refractive index of the material, it is divided into normal rays and abnormal rays that emit at an angle.
이러한 도 5f의 구조에서는 도 5c나 도 5e와는 다르게, 편광프리즘을 별도로 회전시킬 필요가 없다는 장점이 있다. 아울러, 이러한 도 5f의 실시예에서, M1~M4 및 L을 포함하여 구현된 변위 조절부는 그 기본 구조와 동작 원리가 앞서 상술한 도 5c와 같으므로 상세한 설명은 생략하도록 한다. 이 역시 마찬가지로 M2와 M4를 한 그룹으로 동시에 이동시켜 두 빔의 변위값을 조절할 수 있다.The structure of Figure 5f has the advantage that, unlike Figures 5c or 5e, there is no need to separately rotate the polarizing prism. In addition, in this embodiment of FIG. 5F, the basic structure and operating principle of the displacement control unit implemented including M1 to M4 and L are the same as those of FIG. 5C described above, so detailed description will be omitted. Likewise, the displacement values of the two beams can be adjusted by moving M2 and M4 simultaneously as a group.
마지막으로, 도 5g는 스캔빔 분할부의 제7 실시예로서, 도 5g에 나타낸 스캔빔 분할부(120-7)는 제1 및 제2 편광 빔스플리터(PBS1, PBS2)와, 제1 내지 제6 거울(M1~M6)을 포함하여 구현된다. 여기서 스캔빔 분할부(120g)는 거울 이동부(L1) 및 위치 조정부(L2)를 더 포함할 수 있다.Lastly, Figure 5g shows the seventh embodiment of the scan beam splitter, and the scan beam splitter 120-7 shown in Figure 5g includes the first and second polarizing beam splitters (PBS1 and PBS2), and the first to second polarizing beam splitters (PBS1, PBS2). It is implemented including 6 mirrors (M1 to M6). Here, the scan beam splitter 120g may further include a mirror moving unit L1 and a position adjusting unit L2.
제1 편광 빔스플리터(PBS1)는 입사된 스캔빔에서 s-편광 빔 성분을 반사시키고 p-편광 빔 성분을 투과시킨다. 제1 및 제2 거울(M1,M2)은 제1 편광 빔스플리터(PBS1)에서 반사시킨 s-편광 빔의 경로 상에 순차로 설치되어 빔 경로를 90도씩 변경한다. The first polarizing beam splitter (PBS1) reflects the s-polarized beam component from the incident scan beam and transmits the p-polarized beam component. The first and second mirrors M1 and M2 are sequentially installed on the path of the s-polarized beam reflected from the first polarizing beam splitter PBS1 to change the beam path by 90 degrees.
제3 내지 제6 거울(M3~M6)은 제1 편광 빔스플리터(PBS1)에서 투과시킨 p-편광 빔의 경로 상에 'ㄷ'자 형태로 순차로 설치되어 빔 경로를 90도씩 변경한다.The third to sixth mirrors (M3 to M6) are sequentially installed in a 'ㄷ' shape on the path of the p-polarized beam transmitted from the first polarizing beam splitter (PBS1) and change the beam path by 90 degrees.
제2 편광 빔스플리터(PBS2)는 제1 거울(M1)과 제2 거울(M2)을 이용하여 반사된 s-편광 빔과 제3 내지 제6 거울(M3~M6)을 이용하여 반사된 p-편광 빔을 각각 제1 면과 제2 면을 통해 입사받는다. The second polarizing beam splitter (PBS2) uses the s-polarized beam reflected using the first mirror (M1) and the second mirror (M2) and the p-polarized beam reflected using the third to sixth mirrors (M3 to M6). A polarized beam is incident on each of the first and second surfaces.
제2편광 빔스플리터(PBS2)는 제1 면에 입사된 s-편광 빔을 반사시키고 제2 면에 입사된 p-편광빔을 투과시켜서, 반사된 s-편광 빔과 투과된 p-편광 빔을 제3 면을 통해 나란히 평행한 방향으로 출사하도록 한다. 물론 이렇게 출사되는 s-편광 빔과 p-편광 빔은 입사광선과 평행한 방향을 갖는다. The second polarizing beam splitter (PBS2) reflects the s-polarized beam incident on the first side and transmits the p-polarized beam incident on the second side, thereby dividing the reflected s-polarized beam and the transmitted p-polarized beam. Make sure to emit light in a parallel direction through the third side. Of course, the s-polarized beam and p-polarized beam emitted in this way have a direction parallel to the incident ray.
이때, 거울 이동부(L1)는 제3 거울(M3) 및 제6 거울(M6)과 나란히 이격 배치된 제4 거울(M4) 및 제5 거울(M5)을 한 그룹으로 묶어 상하로 이동시킴으로써, p-편광 빔의 광 경로 길이를 s-편광 빔의 광 경로 길이와 동일하게 맞추어 줄 수 있다. At this time, the mirror moving unit (L1) groups the fourth mirror (M4) and the fifth mirror (M5), which are spaced apart in parallel with the third mirror (M3) and the sixth mirror (M6), and moves them up and down, The optical path length of the p-polarized beam can be set to be the same as the optical path length of the s-polarized beam.
아울러, 위치 조절부(L2)는 제2 거울(M2)의 위치를 좌우로 조절하여, 제2 편광 빔스플리터(PB2)를 통하여 출사되는 s-편광빔의 변위를 조절할 수 있다.In addition, the position adjuster (L2) can adjust the position of the second mirror (M2) left and right to adjust the displacement of the s-polarized beam emitted through the second polarizing beam splitter (PB2).
이러한 도 5a 내지 도 5g에 나타낸 스캔빔 분할부(120; 120-1, 120-2, 120-3, 120-4, 120-5, 120-6, 120-7)의 다양한 구조는 본 발명의 제1 내지 제4 실시예(도 1, 도 2, 도 3, 도 4)에 모두 적용 가능하다.The various structures of the scan beam splitter 120 (120-1, 120-2, 120-3, 120-4, 120-5, 120-6, 120-7) shown in FIGS. 5A to 5G according to the present invention. It is applicable to all of the first to fourth embodiments (FIGS. 1, 2, 3, and 4).
다시 도 1을 참조하면, 스캔빔 분할부(120)에 의해 나란히 출사되는 2개의 편광 빔(s-편광 빔, p-편광 빔)은 스캔부(130)로 전달된다. Referring again to FIG. 1, two polarized beams (s-polarized beam and p-polarized beam) emitted side by side by the scan beam splitter 120 are transmitted to the scan unit 130.
스캔부(130)에 입사된 빔은 수평 스캔 거울(131)(이하, x-스캔 거울)과 수직 스캔 거울(132)(이하, y-스캔 거울)을 거쳐 투과형 대상물인 투과체로 전달된다. The beam incident on the scan unit 130 passes through the horizontal scan mirror 131 (hereinafter referred to as x-scan mirror) and the vertical scan mirror 132 (hereinafter referred to as y-scan mirror) to a transmissive object, which is a transmissive object.
이때, 투과체는 세포, 미생물, 피막, 투명성 물체나 조형물 등 투과성을 가지는 다양한 물체에 해당할 수 있다.At this time, the penetrating body may correspond to various objects having permeability, such as cells, microorganisms, films, transparent objects, or sculptures.
여기서, 스캔부(130)는 투과체에 대한 스캔빔의 스캐닝 위치를 제어하도록, x-스캔 거울(131)과 y-스캔 거울(132)을 포함한다. 스캔부(130)는 이러한 스캔 거울을 이용하여 입사된 스캔빔을 수평 방향(x 방향)과 수직 방향(y 방향)으로 제어하여 투과체로 전달한다.Here, the scan unit 130 includes an x-scan mirror 131 and a y-scan mirror 132 to control the scanning position of the scan beam with respect to the transmitting object. The scan unit 130 uses the scan mirror to control the incident scan beam in the horizontal direction (x direction) and vertical direction (y direction) and transmits it to the transmitting body.
즉, 스캔부(130)는 스캔빔 분할부(120)에서 서로 나란히 출사되는 2개의 편광 빔으로 이루어진 스캔빔을 입사받아 투과체로 투사시키되, 투과체에 대한 스캔빔의 스캐닝 위치를 수평 및 수직 방향으로 제어하여 투과체로 전달한다. That is, the scan unit 130 receives a scan beam consisting of two polarized beams emitted side by side from the scan beam splitter 120 and projects it onto the transmitting body, and the scanning position of the scan beam with respect to the transmitting body is adjusted in the horizontal and vertical directions. It is controlled and transmitted to the transmitting medium.
도 1의 제1 실시예에서 스캔부(130)는 거울 스캐너를 사용한다. 거울 스캐너는 물체(투과체)를 y축을 중심으로 x 방향(좌우 방향)으로 스캔하는 x-스캔 거울(131)과 물체(투과체)를 x축을 중심으로 y 방향(상하 방향)으로 스캔하는 y-스캔 거울(132)을 갖는 x-y 스캐너로 구성된다. 물론, 본 발명의 경우 스캔부가 거울 스캐너로 한정되는 것은 아니며 이와 유사한 수단 또는 공지된 다른 스캔수단이 사용될 수 있다. 예를 들어, x-스캔 거울 및 y-스캔 거울 대신, x-공간 변조 스캐너 및 y-공간 변조 스캐너로 대체될 수 있다. In the first embodiment of FIG. 1, the scanning unit 130 uses a mirror scanner. The mirror scanner has an x-scan mirror 131 that scans the object (transmissive body) in the -consists of an x-y scanner with a scanning mirror (132). Of course, in the case of the present invention, the scanning unit is not limited to a mirror scanner, and similar means or other known scanning means may be used. For example, instead of an x-scan mirror and a y-scan mirror, an x-space modulation scanner and a y-space modulation scanner can be replaced.
스캔부(130)는 신호 처리부(150) 내의 스캔 제어부(미도시)로부터 스캐닝 제어신호를 받아 동작될 수 있다. 스캔 제어부(미도시)는 스캔부(130)의 스캐닝 위치를 제어하기 위한 스캐닝 제어신호를 발생시킬 수 있다. 여기서, 스캐닝 제어신호는 x-스캔 거울 및 y-스캔 거울을 수평 방향 및 수직 방향으로 각각 제어하기 위한 수평 스캔 신호 및 수직 스캔 신호를 포함할 수 있다. The scan unit 130 may be operated by receiving a scanning control signal from a scan control unit (not shown) within the signal processing unit 150. The scan control unit (not shown) may generate a scanning control signal to control the scanning position of the scan unit 130. Here, the scanning control signal may include a horizontal scan signal and a vertical scan signal for controlling the x-scan mirror and the y-scan mirror in the horizontal and vertical directions, respectively.
이때, 수평 스캔 신호는 수평 방향(x축 방향)에 대하여 스캔 위치를 기 설정된 거리 단위씩 순차로 이동시키기 위한 신호로서, 임의 거리 단위의 스캔 이동을 위한 주기 T를 가지고 있다. 수직 스캔 신호는 임의의 y 위치에 대한 x축 방향의 수평 스캔 동작이 완료되면 다음의 y 위치에 대한 수평 스캔 동작이 가능하게 하는 제어 신호로서, 그 주기는 수평 스캔 신호보다 크다.At this time, the horizontal scan signal is a signal for sequentially moving the scan position in the horizontal direction (x-axis direction) by preset distance units, and has a period T for scan movement in arbitrary distance units. The vertical scan signal is a control signal that enables a horizontal scan operation for the next y position when the horizontal scan operation in the x-axis direction for an arbitrary y position is completed, and its period is larger than the horizontal scan signal.
이러한 제어 신호에 대응하여, 스캔 거울의 회전에 따라 제1 곡률빔과 제2 곡률빔의 광축이 회전되고, 광축이 회전된 스캔빔 패턴은 물체(투과체)로 투사된다. 이와 같이, 스캔부(130)는 스캔 거울을 이용하여 제1 및 제2 곡률빔 간의 간섭 빔(스캔부에 의한 스캔 빔)을 물체로 투사시킬 수 있다. 여기서 물론, 각 곡률빔에 대한 s파 성분과 p파 성분은 이전의 스캔빔 분할부(120)에 의해 상하로 분리된 구조를 가지며 그 간섭빔 또한 두 편파 간 상하 분리된 구조를 가질 수 있다. In response to this control signal, the optical axes of the first and second curved beams are rotated as the scan mirror rotates, and the scan beam pattern with the rotated optical axes is projected onto the object (transmitting body). In this way, the scan unit 130 can project an interference beam (scan beam by the scan unit) between the first and second curvature beams onto an object using a scan mirror. Here, of course, the s-wave component and the p-wave component for each curvature beam have a structure in which they are separated vertically by the previous scan beam splitter 120, and the interference beam may also have a structure in which the two polarized waves are separated vertically.
물론, 스캔부(130)는 도 1과 같이 수평 스캔 거울(131)과 수직 스캔 거울(132)을 이용한 구조 이외에도, 후술하는 도 3과 같이 수평 스캔 거울(331)과 트랜슬레이션 스테이지(332)를 활용한 스캔부 구조로도 변경 가능하다. 그밖에도, 도 3의 구조에서, 수평 스캔 거울(331) 대신에 공간 변조(spatial modulation) 스캐너로 대체할 경우에는 공간 변조 스캐너와 트랜슬레이션 스테이지(332)를 활용한 스캔부 구조로도 변경 가능하다. 그밖에도, 도 1의 구조에서 수평 스캔 거울(131)과 수직 스캔 거울(132) 대신에 수평 공간 변조 스캐너와 수직 공간 변조 스캐너로 각각 대체 가능하다. Of course, the scan unit 130 has a structure using a horizontal scan mirror 131 and a vertical scan mirror 132 as shown in FIG. 1, as well as a horizontal scan mirror 331 and a translation stage 332 as shown in FIG. 3, which will be described later. It is also possible to change the scan unit structure using . In addition, in the structure of FIG. 3, when replacing the horizontal scan mirror 331 with a spatial modulation scanner, the scan unit structure can also be changed using a spatial modulation scanner and a translation stage 332. do. Additionally, in the structure of FIG. 1, the horizontal scan mirror 131 and the vertical scan mirror 132 can be replaced with a horizontal spatial modulation scanner and a vertical spatial modulation scanner, respectively.
이와 같이 스캔부(130)는 수평 스캔 거울과 수직 스캔 거울의 조합, 수평 스캔 거울과 트랜슬레이션 스테이지의 조합, 공간 광 변조기와 트랜슬레이션 스테이지의 조합으로 구현 가능하다. 스캔부의 다른 실시예는 추후 도 3을 통해 상세히 설명할 것이다. 여기서, 트랜슬레이션 스테이지의 대상체(물체)가 놓여져 있는 테이블 부분은 레이저 광원의 파장이 투과할 수 있는 투명체 재료로 되어 있거나 빈 공간으로 제작될 수 있다. In this way, the scan unit 130 can be implemented by a combination of a horizontal scan mirror and a vertical scan mirror, a combination of a horizontal scan mirror and a translation stage, and a combination of a spatial light modulator and a translation stage. Other embodiments of the scan unit will be described in detail later with reference to FIG. 3. Here, the table portion on which the object of the translation stage is placed may be made of a transparent material that allows the wavelength of the laser light source to pass through, or may be made of empty space.
스캔부(130)에 의해 투과체로 조사된 스캔빔은 투과체를 투과하여 광 검출부(140)로 입사된다. 앞서 설명한 바와 같이 스캔빔은 스캔빔 분할부(120)에 의해 분할된 2개의 편광 빔(s-편광 빔과 p-편광 빔)으로 이루어져 있다. The scan beam irradiated by the scan unit 130 to the transparent body passes through the transparent body and is incident on the light detection unit 140. As described above, the scan beam consists of two polarized beams (s-polarized beam and p-polarized beam) split by the scan beam splitter 120.
광 검출부(140)는 스캔부(130)에 의해 투사된 후 투과체를 투과한 빔으로부터 s-편광 빔과 p-편광 빔을 분리 검출한다.The light detection unit 140 separates and detects the s-polarized beam and the p-polarized beam from the beam that is projected by the scan unit 130 and then passes through the transmitting body.
그리고, 광 검출부(140)는 분리 검출한 s-편광 빔과 p-편광 빔을 신호 처리부(150)로 전달한다. Then, the light detection unit 140 transmits the separately detected s-polarized beam and the p-polarized beam to the signal processing unit 150.
여기서, 광 검출부(140)는 도 1과 같이, 제1 집광기(141a), 제1 편광기(142a), 제1 광검출기(143a), 제2 집광기(141b), 제2 편광기(142b), 제2 광검출기(143b)를 포함한다.Here, as shown in FIG. 1, the light detection unit 140 includes a first concentrator 141a, a first polarizer 142a, a first photodetector 143a, a second concentrator 141b, a second polarizer 142b, and a first concentrator 141b. Includes 2 photodetectors 143b.
제1 집광기(141a)는 투과체로 투사되는 빔의 광축에 편축된 방향으로 배치되고, 투과체를 투과한 빔을 집광한다. 이러한 제1 집광기(141a)는 집광렌즈로 구현될 수 있다.The first concentrator 141a is disposed in a direction offset from the optical axis of the beam projected to the transmitting material, and condenses the beam that has transmitted through the transmitting material. This first concentrator 141a may be implemented as a condenser lens.
제1 편광기(142a)는 제1 집광기(141a)를 통해 공간적으로 집적된 빔에서 s-편광 빔 성분만을 통과시킨다. 즉, 제1 편광기(142a)는 제1 집광기(141a)의 후단에 배치되어 제1 집광기(141a)에 의해 집광된 빔에서 s-편광된 빔 성분만을 투과시킨다. The first polarizer 142a passes only the s-polarized beam component in the spatially integrated beam through the first concentrator 141a. That is, the first polarizer 142a is disposed behind the first concentrator 141a and transmits only the s-polarized beam component of the beam collected by the first concentrator 141a.
제1 광검출기(143a)는 제1 편광기(142a)를 통과한 s-편광 빔을 검출하고, 이를 제1 신호처리부(151)로 전달한다.The first photodetector 143a detects the s-polarized beam that has passed through the first polarizer 142a and transmits it to the first signal processing unit 151.
제2 집광기(141b)는 투과체로 투사되는 빔의 광축에 편축된 방향으로 배치되되 제1 집광기(141a)와 다른 위치에 배치되고, 투과체를 투과한 빔을 집광한다. 이러한 제2 집광기(141b)는 집광 렌즈로 구현될 수 있다.The second concentrator 141b is disposed in a direction that is offset from the optical axis of the beam projected to the transmitting body, but is disposed in a different position from the first concentrator 141a, and condenses the beam that has transmitted through the transmitting body. This second concentrator 141b may be implemented as a condenser lens.
여기서, 제2 집광기(141b)는 제1 집광기(141a)와 대칭되게 배치될 수도 있지만 비대칭으로 배치될 수도 있다.Here, the second concentrator 141b may be arranged symmetrically or asymmetrically with the first concentrator 141a.
제2 편광기(142b)는 제2 집광기(141b)를 통해 공간적으로 집적된 빔에서 p-편광 빔 성분만을 통과시킨다. 즉, 제2 편광기(142b)는 제2 집광기(141b)의 후단에 배치되어 제2 집광기(141b)에 의해 집광된 빔에서 p-편광된 빔 성분만을 투과시킨다. The second polarizer 142b passes only the p-polarized beam component in the spatially integrated beam through the second concentrator 141b. That is, the second polarizer 142b is disposed at the rear of the second concentrator 141b and transmits only the p-polarized beam component of the beam collected by the second concentrator 141b.
제2 광검출기(143b)는 제2 편광기(142b)를 통과한 p-편광 빔을 검출하고, 이를 제2 신호처리부(152)로 전달한다. The second photodetector 143b detects the p-polarized beam that has passed through the second polarizer 142b and transmits it to the second signal processing unit 152.
물론, 본 발명에서 광 검출부(140)의 구조는 반드시 도 1에 의해 한정되지 않으며, 후술하는 도 2의 구조로도 변경 가능하다. 이에 대해서는 추후 상세히 설명할 것이다. Of course, the structure of the light detection unit 140 in the present invention is not necessarily limited to FIG. 1, and can also be changed to the structure of FIG. 2, which will be described later. This will be explained in detail later.
신호 처리부(150)는 광 검출부(150)에서 분리 검출된 s-편광 빔 및 p-편광 빔의 신호를 처리하여 투과체에 대한 홀로그램을 생성한다.The signal processing unit 150 processes signals of the s-polarized beam and the p-polarized beam separately detected by the light detection unit 150 to generate a hologram for the transmitting object.
본 발명의 실시예의 경우, 스캔빔 생성부(110)에서 생성한 스캔빔을 편광에 따라 다시 2개의 편광 빔으로 분할 후 분할된 2개의 편광 빔을 스캔빔으로 활용하여 물체를 스캔하므로, 스캔빔을 분할하지 않고 그대로 물체를 스캔하는 경우와 비교하여 볼 때 동일 시간 대비 2배의 샘플링이 가능하여 2배로 빠른 속도로 물체에 대한 홀로그램을 생성할 수 있다. In the case of an embodiment of the present invention, the scan beam generated by the scan beam generator 110 is split into two polarized beams according to polarization, and then the divided two polarized beams are used as scan beams to scan the object, so the scan beam Compared to the case of scanning the object as is without dividing it, twice the sampling is possible compared to the same time, and a hologram of the object can be created at twice the speed.
도 6은 본 발명의 실시예에 따른 신호 처리부의 동작을 설명하는 도면이다.Figure 6 is a diagram explaining the operation of a signal processing unit according to an embodiment of the present invention.
도 1 및 도 6을 참조하면, 신호 처리부(151)는 제1 신호 처리부(151), 제2 신호 처리부(152), 그리고 교차배열 신호 처리부(153)를 포함한다. 이와 같은 신호 처리부(150)의 구조 및 동작 원리는 본 발명의 제2 내지 제4 실시예에 따른 시스템(도 2, 도 3, 도 4)에서도 동일하게 적용될 수 있다.Referring to FIGS. 1 and 6 , the signal processing unit 151 includes a first signal processing unit 151, a second signal processing unit 152, and a cross-array signal processing unit 153. The structure and operating principle of the signal processing unit 150 can be equally applied to the systems (FIGS. 2, 3, and 4) according to the second to fourth embodiments of the present invention.
제1 신호 처리부(151)는 제1 광검출기(143a)에서 검출된 s-편광 빔의 신호를 처리하여 교차배열 처리부(153)로 보내고, 제2 신호 처리부(142)는 제2 광검출기(143b)에서 검출된 p-편광 빔의 신호를 처리하여 교차배열 처리부(153)로 보낸다. 이러한 동작은 동시에 이루어질 수 있다.The first signal processor 151 processes the signal of the s-polarized beam detected by the first photodetector 143a and sends it to the cross-array processor 153, and the second signal processor 142 processes the signal of the s-polarized beam detected by the first photodetector 143a. ) The signal of the p-polarized beam detected is processed and sent to the cross-array processing unit 153. These operations may occur simultaneously.
그러면, 교차배열 신호 처리부(150)는 도 6과 같이, 제1 신호 처리부(151)에서 처리된 홀로그램 신호와 제2 신호 처리부(152)에서 처리된 홀로그램 신호를 한 줄씩 교차 배열하는 방식으로 합성하여 투과체에 대한 홀로그램을 생성한다. Then, as shown in FIG. 6, the cross-array signal processing unit 150 synthesizes the hologram signal processed in the first signal processing unit 151 and the hologram signal processed in the second signal processing unit 152 by alternating them line by line. Creates a hologram for a transparent object.
이에 따르면, 스캔빔 생성부(110)에서 생성한 스캔빔을 편광에 따라 2개의 빔(s-편광 빔, p-편광 빔)으로 분할하고 분할된 2개의 편광빔을 물체(투과체)에 동시에 투사하여 한 번(단위시간)에 2줄의 신호를 샘플링(스캐닝)할 수 있어, 스캔빔을 분할하지 않고 스캐닝하는 경우보다 y 방향의 샘플 수가 2배가 되어, 2배 빠른 속도로 물체의 홀로그램을 고속 생성할 수 있다.According to this, the scan beam generated by the scan beam generator 110 is divided into two beams (s-polarized beam, p-polarized beam) according to polarization, and the two divided polarized beams are simultaneously transmitted to the object (transmitter). By projecting, two lines of signals can be sampled (scanned) at once (unit time), so the number of samples in the y direction is doubled compared to the case of scanning without splitting the scan beam, and the hologram of the object can be produced at twice the speed. Can be produced at high speed.
이와 같은 신호처리부(150)의 동작을 보다 구체적으로 설명하면 다음과 같다.The operation of the signal processing unit 150 will be described in more detail as follows.
도 1에서 제1 광검출기(143a)는 집광된 빛의 세기에 비례한 전류신호를 생성하여 이를 두 채널 락인(lock-in) 앰프로 전달하고, 두 채널 락인 앰프는 전류신호를 복조하는 방식으로 물체(투과체)의 동위상(in-phase) 및 사분위상(quadrature-phase) 홀로그램 정보를 전기 신호로 추출한다. 두 채널 락인 앰프는 ADC(analog to digital converter)릍 통해 디지털 신호로 전환되어 컴퓨터에서 연산처리하는 방식으로 구현될 수 있음은 물론이다.In Figure 1, the first photodetector 143a generates a current signal proportional to the intensity of the concentrated light and transmits it to a two-channel lock-in amplifier, and the two-channel lock-in amplifier demodulates the current signal. In-phase and quadrature-phase hologram information of an object (transmitting body) is extracted as an electrical signal. Of course, a two-channel lock-in amplifier can be implemented by converting it into a digital signal through an analog to digital converter (ADC) and processing it on a computer.
그리고, 추출된 전기신호를 디지털 신호로 변환하여 디지털 컴퓨터로 전달하고, 디지털 컴퓨터에서는 실수부와 허수부의 디지털 신호를 복소수 합성 방식으로 상호 합성하여 각각의 스캐닝 위치에 따라 저장하는 방법을 통해 물체(투과체)의 복소수 홀로그램 정보를 레코딩하게 된다. 이때, 레코딩된 홀로그램을 제1 홀로그램이라 한다. Then, the extracted electrical signal is converted into a digital signal and transmitted to a digital computer. In the digital computer, the digital signals of the real and imaginary parts are synthesized using complex number synthesis and stored according to each scanning position, thereby transmitting the object (transmission). complex holographic information of the body) is recorded. At this time, the recorded hologram is called the first hologram.
도 1에서 제2 광검출기(143b)는 집광된 빛의 세기에 비례한 전류신호를 생성하여 이를 두 채널 락인(lock-in) 앰프로 전달하고, 두 채널 락인 앰프는 전류신호를 복조하는 방식으로 물체(투과체)의 동위상(in-phase) 및 사분위상(quadrature-phase) 홀로그램 정보를 전기 신호로 추출한다. 두 채널 락인 앰프는 ADC(analog to digital converter)릍 통해 디지털 신호로 전환되어 컴퓨터에서 연산처리하는 방식으로 구현될 수 있음은 물론이다.In Figure 1, the second photodetector 143b generates a current signal proportional to the intensity of the focused light and transmits it to a two-channel lock-in amplifier, and the two-channel lock-in amplifier demodulates the current signal. In-phase and quadrature-phase hologram information of an object (transmitting body) is extracted as an electrical signal. Of course, a two-channel lock-in amplifier can be implemented by converting it into a digital signal through an analog to digital converter (ADC) and processing it on a computer.
그리고, 추출된 전기신호를 디지털 신호로 변환하여 디지털 컴퓨터로 전달하고, 디지털 컴퓨터에서는 실수부와 허수부의 디지털 신호를 복소수 합성 방식으로 상호 합성하여 각각의 스캐닝 위치에 따라 저장하는 방법을 통해 물체(투과체)의 복소수 홀로그램 정보를 레코딩하게 된다. 이때 레코딩된 홀로그램을 제2 홀로그램이라 한다. Then, the extracted electrical signal is converted into a digital signal and transmitted to a digital computer. In the digital computer, the digital signals of the real and imaginary parts are synthesized using complex number synthesis and stored according to each scanning position, thereby transmitting the object (transmission). complex holographic information of the body) is recorded. At this time, the recorded hologram is called the second hologram.
신호처리부(150)에서는 제1 홀로그램과 제2 홀로그램을 교차배열하는 방식으로 합성하여 수평 스캔 거울에 의한 스캔의 2배에 해당하는 스캔을 구현할 수 있다. The signal processing unit 150 can synthesize the first hologram and the second hologram by alternating them to implement a scan that is twice as long as the scan by the horizontal scan mirror.
다음은 본 발명의 제2 실시예에 따른 투과체에 대한 편광분할 더블 스캐닝 홀로그래피 시스템을 도 2a를 통해 설명한다.Next, a polarization-splitting double scanning holography system for a transmissive material according to a second embodiment of the present invention will be described with reference to FIG. 2A.
도 2a와 같이, 본 발명의 제2 실시예에 따른 투과체에 대한 편광분할 더블 스캐닝 홀로그래피 시스템(200)은 크게 스캔빔 생성부(110), 스캔빔 분할부(120), 스캔부(130), 광 검출부(240) 및 신호 처리부(150)를 포함한다. 도 1과 동일한 부호를 가지는 구성 요소에 대한 중복된 설명은 생략한다.As shown in FIG. 2A, the polarization splitting double scanning holography system 200 for a transmitting body according to the second embodiment of the present invention largely includes a scan beam generator 110, a scan beam splitter 120, and a scan unit 130. , includes a light detection unit 240 and a signal processing unit 150. Redundant descriptions of components having the same symbols as those in FIG. 1 will be omitted.
제2 실시예의 경우 역시, 장치의 기본 구조는 제1 실시예와 동일하지만, 광 검출부(240)의 구성이 상이하며, 그 동작 원리는 다음과 같다.In the case of the second embodiment, the basic structure of the device is the same as that of the first embodiment, but the configuration of the light detection unit 240 is different, and the operating principle is as follows.
제2 실시예에서 광 검출부(240)는 제1 광분할기(241), 제2 광분할기(242), 제1 집광기(243a), 제2 집광기(243b), 제1 광검출기(244a), 제2 광검출기(244b)를 포함한다.In the second embodiment, the light detection unit 240 includes a first light splitter 241, a second light splitter 242, a first concentrator 243a, a second concentrator 243b, a first light detector 244a, and a second light detector 243b. Includes 2 photodetectors 244b.
제1 광분할기(241)는 투과체로 투사되는 광의 광축 상에 배치되고 투과체를 투과한 빔을 입사받아 외부로 반사시킨다. 이러한 제1 광분할기(241)는 투과체를 투과한 빔 중 일부를 반사시켜 제2 광분할기(242)로 전달할 수 있다. 제1 광분할기(241)는 일반적인 빔스플리터로 구현 가능하다. The first light splitter 241 is disposed on the optical axis of the light projected to the transmitting material and receives the beam that has passed through the transmitting material and reflects it to the outside. This first light splitter 241 can reflect a part of the beam that has passed through the transmitting material and transmit it to the second light splitter 242. The first optical splitter 241 can be implemented as a general beam splitter.
제2 광분할기(242)는 제1 광분할기(241)에서 반사된 광을 입사받고 입사된 빔에서 p-편광 빔 성분을 투과시키고 s-편광 빔 성분을 반사시킨다.The second light splitter 242 receives the light reflected from the first light splitter 241, transmits the p-polarized beam component of the incident beam, and reflects the s-polarized beam component.
이러한 제2 광분할기(242)는 편광 광분할기(PBS)로 구현될 수 있으며, 이 경우 s-편광 빔은 제2 광분할기(242)에서 반사되어 제1 집광기(243a)로 전달되고, p-편광 빔은 통과되어 제2 집광기(243b)로 전달된다. This second light splitter 242 may be implemented as a polarization beam splitter (PBS). In this case, the s-polarized beam is reflected from the second light splitter 242 and transmitted to the first concentrator 243a, and p- The polarized beam passes through and is delivered to the second concentrator 243b.
제1 집광기(243a)는 제2 광 분할기(242)에서 반사시킨 s-편광 빔 성분을 집광하고, 제2 집광기(243b)는 제2 광 분할기(242)에서 투과시킨 p-편광 빔 성분을 집광한다. 이러한 제1 및 제2 집광기(243a,243b)는 집광 렌즈로 구현될 수 있다.The first concentrator 243a condenses the s-polarized beam component reflected by the second light splitter 242, and the second concentrator 243b condenses the p-polarized beam component transmitted by the second light splitter 242. do. These first and second concentrators 243a and 243b may be implemented as condensing lenses.
제1 광검출기(244a)는 제1 집광기(243a)를 통해 공간적으로 집적된 빔(s-편광 빔)을 검출하여 이를 신호 처리부(150) 내의 제1 신호 처리부(151)로 전달한다. 또한, 제2 광검출기(244b)는 제2 집광기(243b)를 통해 공간적으로 집적된 빔(p-편광 빔)을 검출하여 이를 신호 처리부(150) 내의 제2 신호 처리부(152)로 전달한다.The first photodetector 244a detects a spatially integrated beam (s-polarized beam) through the first concentrator 243a and transmits it to the first signal processor 151 in the signal processor 150. Additionally, the second photodetector 244b detects a spatially integrated beam (p-polarized beam) through the second concentrator 243b and transmits it to the second signal processor 152 in the signal processor 150.
이러한 제1 및 제2 광검출기(244a,244b)는 전달된 빛의 세기에 비례하여 제1 및 제2 전기신호를 각각 생성한다. 제1 광검출기(244a)는 제1 전기신호를 제1 신호처리부(151)로 전달하고, 제2 광검출기(244b)는 제2 전기신호를 제2 신호처리부(152)로 전달한다.These first and second photodetectors 244a and 244b generate first and second electrical signals, respectively, in proportion to the intensity of transmitted light. The first photodetector 244a transmits the first electrical signal to the first signal processor 151, and the second photodetector 244b transmits the second electrical signal to the second signal processor 152.
여기서, 물론 제2 광분할기(242)는 편광 광분할기(PBS) 대신 광분할기(BS)로 대체 가능하며, 이 경우 광분할기(BS)와 두 편광기의 조합을 통해서 편광 광분할기(PBS)의 역할을 수행할 수 있다. 이에 대해서는 도 2b를 통해서 설명한다. Here, of course, the second beam splitter 242 can be replaced with a beam splitter (BS) instead of the polarization beam splitter (PBS), and in this case, the role of the polarization beam splitter (PBS) is through the combination of the beam splitter (BS) and the two polarizers. can be performed. This is explained through Figure 2b.
도 2b에서 광 검출부(240)는 제1 광분할기(241), 제2 광분할기(242), 제1 편광기(245a), 제2 편광기(245b), 제1 집광기(243a), 제2 집광기(243b), 제1 광검출기(244a), 제2 광검출기(244b)를 포함한다.In Figure 2b, the light detection unit 240 includes a first light splitter 241, a second light splitter 242, a first polarizer 245a, a second polarizer 245b, a first concentrator 243a, and a second concentrator ( 243b), a first photodetector 244a, and a second photodetector 244b.
도 2b에서 도면 부호 241, 244a, 244b는 도 2a와 동일한 기능을 수행하므로, 이에 대한 중복된 설명은 생략한다. In FIG. 2B, reference numerals 241, 244a, and 244b perform the same functions as those in FIG. 2A, so duplicate description thereof will be omitted.
도 2b에서 제2 광분할기(242)는 BS(Beam Splitter)로, 제1 광 분할기(241)에서 반사된 광을 입사받아 입사된 빔의 일부를 투과시키고 일부를 반사시켜 분할한다.In Figure 2b, the second light splitter 242 is a BS (Beam Splitter), which receives the light reflected from the first light splitter 241 and splits it by transmitting part of the incident beam and reflecting part of it.
제1 편광기(245a)는 제2 광 분할기(242)에서 반사된 빔을 입사받아 s-편광 빔 성분만을 통과시키고, 제2 편광기(245b)는 제2 광분할기에서 투과된 빔을 입사받아 p-편광된 빔 성분만을 통과시킨다. The first polarizer 245a receives the beam reflected from the second light splitter 242 and passes only the s-polarized beam component, and the second polarizer 245b receives the beam transmitted from the second light splitter 242 and passes only the s-polarized beam component. Only the polarized beam component passes through.
제1 집광기(243a)는 제1 편광기(245a)를 통과한 s-편광 빔 성분을 집광하고, 제2 집광기(243b)는 제2 편광기(245b)를 통과한 p-편광 빔 성분을 집광한다. 이후의 제1 및 제2 광 검출기(244a,244b)의 동작은 앞서 상술한 것과 동일하다.The first concentrator 243a condenses the s-polarized beam component that has passed through the first polarizer 245a, and the second concentrator 243b condenses the p-polarized beam component that has passed through the second polarizer 245b. The subsequent operations of the first and second photo detectors 244a and 244b are the same as those described above.
다음은 본 발명의 제3 실시예에 따른 투과체에 대한 편광분할 더블 스캐닝 홀로그래피 시스템을 도 3을 통해 설명한다.Next, a polarization-splitting double scanning holography system for a transmissive material according to a third embodiment of the present invention will be described with reference to FIG. 3.
도 3과 같이, 본 발명의 제3 실시예에 따른 투과체에 대한 편광분할 더블 스캐닝 홀로그래피 시스템(300)은 크게 스캔빔 생성부(110), 스캔빔 분할부(120), 스캔부(330), 광 검출부(140) 및 신호 처리부(150)를 포함한다. 도 1과 동일한 부호를 가지는 구성 요소에 대한 중복된 설명은 생략한다.As shown in FIG. 3, the polarization splitting double scanning holography system 300 for a transmitting body according to the third embodiment of the present invention largely includes a scan beam generator 110, a scan beam splitter 120, and a scan unit 330. , includes a light detection unit 140 and a signal processing unit 150. Redundant descriptions of components having the same symbols as those in FIG. 1 will be omitted.
이러한 제3 실시예의 경우, 장치의 기본 구조는 제1 실시예와 동일하지만, 스캔부(330)의 구성이 상이하며, 그 동작 원리는 다음과 같다.In this third embodiment, the basic structure of the device is the same as the first embodiment, but the configuration of the scan unit 330 is different, and the operating principle is as follows.
도 3에서 스캔부(330)는 투과체에 대한 스캔빔의 스캐닝 위치를 수평 및 수직 방향으로 제어하도록, 스캔빔 분할부(120)의 후단에 설치되어 스캔빔 분할부(120)로부터 입사되는 스캔빔을 수평 방향(x 방향)으로 제어하여 투과체로 전달하는 스캔 거울(331)과, 투과체의 후단에서 투과체를 수직 방향(y 방향)으로 이동시키는 트랜슬레이션 스테이지(translation stage)(332)를 포함한다. In FIG. 3, the scan unit 330 is installed at the rear end of the scan beam splitter 120 to control the scanning position of the scan beam with respect to the transmitting object in the horizontal and vertical directions and detects the scan incident from the scan beam splitter 120. A scanning mirror 331 that controls the beam in the horizontal direction (x direction) and transmits it to the transmitting body, and a translation stage 332 that moves the transmitting body in the vertical direction (y direction) at the rear end of the transmitting body. Includes.
즉, 도 3의 경우, 스캔빔 분할부(330)에서 출사되는 2개의 편광 빔을 포함한 스캔빔은 스캔부(330)에 입사된다. 스캔부(330)에 입사된 빔은 스캔 거울(331)을 통해 투과체로 전달된다. 여기서, 스캔 거울(331)은 투과체를 x 방향으로 스캔하고, 투과체의 후단에 위치한 트랜슬레이션 스테이지(332)는 투과체를 y 방향으로 스캔한다. That is, in the case of FIG. 3, a scan beam including two polarized beams emitted from the scan beam splitter 330 is incident on the scan unit 330. The beam incident on the scanning unit 330 is transmitted to the transmitting body through the scanning mirror 331. Here, the scan mirror 331 scans the transparent body in the x-direction, and the translation stage 332 located at the rear of the transparent body scans the transparent body in the y-direction.
스캔 거울(331)은 스캔빔 분할부(120)로부터 입사되는 스캔빔을 수평 방향으로 제어하여 투과체로 전달한다. 트랜슬레이션 스테이지(332)는 투과체의 후단에 설치되어, 스캔 빔을 입사받는 투과체를 직접 수직 방향으로 이동시켜, 스캔 빔을 통한 투과체의 y 방향 스캔도 가능하게 한다. The scan mirror 331 controls the scan beam incident from the scan beam splitter 120 in the horizontal direction and transmits it to the transmitting body. The translation stage 332 is installed at the rear of the transmissive body and moves the transmissive body receiving the scan beam directly in the vertical direction, enabling y-direction scanning of the transmissive body through the scan beam.
이러한 트랜슬레이션 스테이지(332)는 투과체가 놓여지는 대물판을 y축 방향으로 이동 가능하게 구현한 것으로 이동하는 대물판에 해당한다. 이와 같은 트랜슬레이션 스테이지(332)는 스캔 거울(331)과 물리적으로 떨어져 있지만 투과체에 대한 빔의 스캐닝 위치를 제어하는 수단에 해당하므로 스캔 거울(331)과 함께 스캔부(330)의 구성요소로 포함된다.This translation stage 332 corresponds to a moving objective plate in which the objective plate on which the transmitting material is placed is movable in the y-axis direction. Although this translation stage 332 is physically separated from the scan mirror 331, it is a means of controlling the scanning position of the beam with respect to the transmitting object, so it is a component of the scan unit 330 together with the scan mirror 331. It is included as
이와 같이, 스캔부(330)는 스캔 거울(331)과 트랜슬레이션 스테이지(332)를 이용하여 투과체를 기준으로 스캔빔을 수평 방향(x 방향)과 수직 방향(y 방향)으로 제어한다.In this way, the scan unit 330 uses the scan mirror 331 and the translation stage 332 to control the scan beam in the horizontal direction (x direction) and the vertical direction (y direction) based on the transmitting object.
이러한 제3 실시예에서 스캔부(330)는 거울 스캐너를 사용한다. 거울 스캐너는 투과체를 y축을 중심으로 x 방향(좌우 방향)으로 스캔하는 x-스캔 거울(321)을 갖는다. 본 발명의 경우 스캔부가 거울 스캐너로 한정되는 것은 아니며 이와 유사한 수단 또는 공지된 다른 스캔수단이 사용될 수도 있다. In this third embodiment, the scanning unit 330 uses a mirror scanner. The mirror scanner has an x-scan mirror 321 that scans the transmitting object in the x direction (left and right directions) around the y axis. In the case of the present invention, the scanning unit is not limited to a mirror scanner, and similar means or other known scanning means may be used.
스캔부(330)는 앞서 제1 실시예와 마찬가지로, 신호 처리부(150) 내의 스캔 제어부(미도시)로부터 스캐닝 제어신호를 받아 동작될 수 있다. 스캔 제어부(미도시)는 스캔부(330)의 스캐닝 위치를 제어하기 위한 스캐닝 제어신호를 발생시킨다. 여기서, 스캐닝 제어신호는 스캔 거울(331) 및 트랜슬레이션 스테이지(332)를 수평 방향 및 수직 방향으로 각각 제어하기 위한 수평 스캔 신호 및 수직 스캔 신호를 포함할 수 있다. Like the first embodiment, the scan unit 330 may be operated by receiving a scanning control signal from a scan control unit (not shown) within the signal processing unit 150. The scan control unit (not shown) generates a scanning control signal to control the scanning position of the scan unit 330. Here, the scanning control signal may include a horizontal scan signal and a vertical scan signal for controlling the scan mirror 331 and the translation stage 332 in the horizontal and vertical directions, respectively.
이때, 수평 스캔 신호는 수평 방향(x축 방향)에 대하여 스캔 위치를 기 설정된 거리 단위씩 순차로 이동시키기 위한 신호로서, 임의 거리 단위의 스캔 이동을 위한 주기 T를 가지고 있다. 트랜슬레이션 스테이지(332)를 수직 방향으로 움직이는 신호인 수직 스캔 신호는 임의의 y 위치에 대한 x축 방향의 수평 스캔 동작이 완료되면 다음의 y 위치에 대한 수평 스캔 동작이 가능하게 하는 트랜슬레이션 스테이지 제어 신호로서, 그 주기는 수평 스캔 신호보다 크다.At this time, the horizontal scan signal is a signal for sequentially moving the scan position in the horizontal direction (x-axis direction) by preset distance units, and has a period T for scan movement in arbitrary distance units. The vertical scan signal, which is a signal that moves the translation stage 332 in the vertical direction, is a translation that enables a horizontal scan operation for the next y position when the horizontal scan operation in the x-axis direction for an arbitrary y position is completed. As a stage control signal, its period is larger than that of the horizontal scan signal.
물론, 이러한 도 3의 구조에서, 스캔 거울(331)은 공간 변조(spatial modulation) 스캐너로 대체될 수 있다. 이 경우, 스캔부(330)는 공간 변조 스캐너(331)와 트랜슬레이션 스테이지(332)를 포함하여 구현될 수 있다. 이하에서는 설명의 편의를 위하여, 공간 변조 스캐너에 부호 331를 부여하여 설명한다. Of course, in this structure of FIG. 3, the scan mirror 331 can be replaced with a spatial modulation scanner. In this case, the scanning unit 330 may be implemented including a spatial modulation scanner 331 and a translation stage 332. Hereinafter, for convenience of explanation, the spatial modulation scanner will be described by assigning code 331.
이러한 경우에 스캔부(330)에 입사된 빔은 공간 변조 스캐너(331)를 거쳐 투과체로 전달된다. 여기서, 공간 변조 스캐너(331)는 투과체를 x 방향으로 스캔하게 되고, 투과체의 후단에 위치한 트랜슬레이션 스테이지(332)는 투과체를 y 방향으로 스캔한다. In this case, the beam incident on the scanning unit 330 is transmitted to the transmitting body through the spatial modulation scanner 331. Here, the spatial modulation scanner 331 scans the transparent body in the x-direction, and the translation stage 332 located at the rear of the transparent body scans the transparent body in the y-direction.
즉, 공간 변조 스캐너(331)는 스캔빔 분할부(120)로부터 입사되는 스캔빔을 수평 방향으로 제어하여 투과체로 전달하고, 트랜슬레이션 스테이지(132)는 투과체의 후단에서 스캔 빔을 입사받는 해당 투과체를 수직 방향으로 직접 이동시켜, 스캔 빔을 통한 투과체의 y 방향 스캔도 가능하게 한다. That is, the spatial modulation scanner 331 controls the scan beam incident from the scan beam splitter 120 in the horizontal direction and transmits it to the transmitting body, and the translation stage 132 receives the scan beam incident at the rear end of the transmitting body. By directly moving the transmitting object in the vertical direction, y-direction scanning of the transmitting object through a scan beam is also possible.
이와 같이, 스캔부(330)는 공간 변조 스캐너(331)와 트랜슬레이션 스테이지(332)를 이용하여 투과체를 기준으로 스캔빔을 수평 방향(x 방향)과 수직 방향(y 방향)으로 제어할 수도 있다.In this way, the scan unit 330 uses the spatial modulation scanner 331 and the translation stage 332 to control the scan beam in the horizontal direction (x direction) and vertical direction (y direction) based on the transmitting object. It may be possible.
이때, 공간 변조 스캐너는 입사되는 빔에 대한 공간 분포(spatial distribution)를 변조하여 빔을 특정 방향으로 스캔하도록 동작한다. At this time, the spatial modulation scanner modulates the spatial distribution of the incident beam and operates to scan the beam in a specific direction.
공간 변조 스캐너는 SLM(spatial light modulator), DMD(Digital Micromirror Device), 음향-광 편향기(Acousto-optic deflector) 등으로 구현될 수 있다. 이에 따라, 공간 변조 스캐너는 SLM, DMD 및 음향-광 편향기 중에서 선택된 어느 한 종류의 공간 변조 스캐너를 포함하여 구성된다.A spatial modulation scanner can be implemented with a spatial light modulator (SLM), a digital micromirror device (DMD), an acoustic-optic deflector, etc. Accordingly, the spatial modulation scanner is configured to include one type of spatial modulation scanner selected from SLM, DMD, and acoustic-optical deflector.
도 7은 공간 변조 스캐너의 동작 원리를 설명한 도면이다. 공간 변조 스캐너는 도 3의 스캔부(330)에서 스캔 거울(131)을 대체 가능한 요소로, 물체를 x 방향으로 스캔하는 수평 공간 변조 스캐너에 해당한다. 도 7은 이러한 수평 공간 변조 스캐너의 원리를 설명한 것이다.Figure 7 is a diagram explaining the operating principle of a spatial modulation scanner. The spatial modulation scanner is an element that can replace the scan mirror 131 in the scan unit 330 of FIG. 3 and corresponds to a horizontal spatial modulation scanner that scans an object in the x direction. Figure 7 explains the principle of this horizontal spatial modulation scanner.
도 7과 같이, 공간 변조 스캐너에서는 스캔 제어부(미도시)에 의한 스캐닝 제어 신호의 입력에 따라 그레이팅(grating) 패턴(P)의 간격이 시간에 따라 순차로 변경되면서, 스캔빔을 수평 방향으로 제어할 수 있다. As shown in FIG. 7, in a spatial modulation scanner, the spacing of the grating pattern (P) changes sequentially over time according to the input of a scanning control signal by a scan control unit (not shown), thereby controlling the scan beam in the horizontal direction. can do.
즉, 전기적 신호에 의해 수평 공간 변조 스캐너에 형성되는 그레이팅 패턴의 간격이 시간에 따라 조정되면서 입사된 빔이 x 방향으로 움직일 수 있게 된다. 일반적으로 패턴 간 간격이 좁아질수록 빛이 더 큰 각도로 꺾이게 된다. In other words, the spacing of the grating pattern formed in the horizontal spatial modulation scanner by the electrical signal is adjusted over time, allowing the incident beam to move in the x-direction. In general, as the spacing between patterns becomes narrower, the light is bent at a greater angle.
따라서, 수평 공간 변조 스캐너의 경우, 수평 방향을 따라 형성되는 그레이팅 패턴(P) 간 간격 크기가 스캐닝 제어 신호에 따라 조절되는 것을 통해 스캔빔이 수평 방향으로 움직일 수 있다. 이와 같이, 공간 변조 스캐너의 경우 입사된 빔의 방향이 전기적으로 제어된다. Therefore, in the case of a horizontal spatial modulation scanner, the scan beam can move in the horizontal direction by adjusting the size of the gap between the grating patterns (P) formed along the horizontal direction according to the scanning control signal. In this way, in the case of a spatial modulation scanner, the direction of the incident beam is electrically controlled.
이 경우 역시 스캔부(330)는 신호 처리부(150) 내의 스캔 제어부(미도시)로부터 스캐닝 제어신호를 받아 동작된다. 여기서, 공간 변조 스캐너(331)에 대한 스캐닝 제어 신호는 그레이팅 패턴의 간격 크기를 시간에 따라 순차로 변경되도록 하는 신호를 포함할 수 있다. 또한, 트랜슬레이션 스테이지(332)에 대한 스캐닝 제어 신호는 트랜슬레이션 스테이지(332)를 시간에 따라 수직 방향으로 이동시키는 신호를 포함할 수 있다.In this case as well, the scan unit 330 operates by receiving a scanning control signal from the scan control unit (not shown) in the signal processing unit 150. Here, the scanning control signal for the spatial modulation scanner 331 may include a signal that sequentially changes the spacing size of the grating pattern over time. Additionally, the scanning control signal for the translation stage 332 may include a signal that moves the translation stage 332 in the vertical direction over time.
또한, 스캐닝 제어신호는 스캔빔을 수평 방향과 수직 방향으로 각각 제어하기 위한 수평 스캔 신호 및 수직 스캔 신호를 포함할 수 있다.Additionally, the scanning control signal may include a horizontal scan signal and a vertical scan signal for controlling the scan beam in the horizontal and vertical directions, respectively.
공간 변조 스캐너(331)로 입사된 스캔빔을 수평 방향으로 제어하기 위한 수평 스캔 신호는 수평 방향(x축 방향)에 대하여 스캔 위치를 기 설정된 거리 단위씩 순차로 이동시키기 위한 신호로서, 임의 거리 단위의 스캔 이동을 위한 주기 T를 가지고 있다. 트랜슬레이션 스테이지(332)를 수직 방향으로 움직이는 신호인 수직 스캔 신호는 임의의 y 위치에 대한 x축 방향의 수평 스캔 동작이 완료되면 다음의 y 위치에 대한 수평 스캔 동작이 가능하게 하는 트랜슬레이션 스테이지 제어 신호로서, 그 주기는 수평 스캔 신호보다 크다.The horizontal scan signal for controlling the scan beam incident on the spatial modulation scanner 331 in the horizontal direction is a signal for sequentially moving the scan position in the horizontal direction (x-axis direction) by preset distance units, and is a random distance unit. It has a period T for scan movement. The vertical scan signal, which is a signal that moves the translation stage 332 in the vertical direction, is a translation that enables a horizontal scan operation for the next y position when the horizontal scan operation in the x-axis direction for an arbitrary y position is completed. As a stage control signal, its period is larger than that of the horizontal scan signal.
여기서, 도 1의 수평 스캔 거울(131)과 수직 스캔 거울(132)은 모두 공간 변조 스캐너로 대체 가능한데, 이때, 스캔부(120)는 대상물을 x 방향으로 스캔하는 수평 공간 변조 스캐너(x-공간 변조 스캐너)와 y 방향으로 스캔하는 수직 공간 변조 스캐너(y-공간 변조 스캐너)를 갖는 x-y 스캐너로 구현 가능하다.Here, both the horizontal scan mirror 131 and the vertical scan mirror 132 of FIG. 1 can be replaced with a spatial modulation scanner. In this case, the scanning unit 120 is a horizontal spatial modulation scanner (x-space) that scans the object in the x direction. It can be implemented as an x-y scanner with a modulation scanner) and a vertical spatial modulation scanner (y-space modulation scanner) scanning in the y direction.
도 8은 수평 및 수직 공간 변조 스캐너의 동작 원리를 설명한 도면이다. 도 8과 같이, 수직 또는 수평 공간 변조 스캐너에서는 스캔 제어부(미도시)에 의한 스캐닝 제어 신호의 입력에 따라 그레이팅(grating) 패턴(P)의 간격이 시간에 따라 순차로 변경되면서, 스캔빔을 수직 또는 수평 방향으로 제어한다.Figure 8 is a diagram explaining the operating principle of the horizontal and vertical spatial modulation scanner. As shown in FIG. 8, in a vertical or horizontal spatial modulation scanner, the spacing of the grating pattern (P) changes sequentially over time according to the input of a scanning control signal by a scan control unit (not shown), thereby directing the scan beam vertically. Or control in the horizontal direction.
즉, 전기적 신호에 의해 공간 변조 스캐너에 형성되는 그레이팅 패턴의 간격이 시간에 따라 조정되면서 입사된 빔이 x 방향으로 움직일 수 있게 된다. 일반적으로 패턴 간 간격이 좁아질수록 빛이 더 큰 각도로 꺾이게 된다. In other words, the spacing of the grating pattern formed in the spatial modulation scanner by the electrical signal is adjusted over time, allowing the incident beam to move in the x-direction. In general, as the spacing between patterns becomes narrower, the light is bent at a greater angle.
예를 들어, 수평 공간 변조 스캐너의 경우, 수평 방향을 따라 형성되는 그레이팅 패턴(P) 간 간격 크기가 스캐닝 제어 신호에 따라 조절되는 것을 통하여 스캔빔이 수평 방향으로 움직일 수 있다. 수직 공간 변조 스캐너의 경우, 수직 방향을 따라 형성되는 그레이팅 패턴(P) 간 간격 크기가 스캐닝 제어 신호에 따라 조절되는 것을 통하여 스캔빔이 수직 방향으로 움직일 수 있다.For example, in the case of a horizontal spatial modulation scanner, the scan beam can move in the horizontal direction by adjusting the size of the gap between the grating patterns (P) formed along the horizontal direction according to the scanning control signal. In the case of a vertical spatial modulation scanner, the scan beam can move in the vertical direction by adjusting the size of the gap between the grating patterns (P) formed along the vertical direction according to the scanning control signal.
이와 같이, 공간 변조 스캐너의 경우 입사된 빔의 방향이 전기적으로 제어된다.In this way, in the case of a spatial modulation scanner, the direction of the incident beam is electrically controlled.
다음은 본 발명의 제4 실시예에 따른 투과체에 대한 편광분할 더블 스캐닝 홀로그래피 시스템을 도 4a를 통해 설명한다.Next, a polarization-splitting double scanning holography system for a transmissive material according to a fourth embodiment of the present invention will be described with reference to FIG. 4A.
도 4a와 같이, 본 발명의 제4 실시예에 따른 투과체에 대한 편광분할 더블 스캐닝 홀로그래피 시스템(400)은 크게 스캔빔 생성부(110), 스캔빔 분할부(120), 스캔부(330), 광 검출부(240) 및 신호 처리부(150)를 포함한다. 도 1과 동일한 부호를 가지는 구성 요소에 대한 중복된 설명은 생략한다.As shown in FIG. 4A, the polarization splitting double scanning holography system 400 for a transmitting body according to the fourth embodiment of the present invention largely includes a scan beam generator 110, a scan beam splitter 120, and a scan unit 330. , includes a light detection unit 240 and a signal processing unit 150. Redundant descriptions of components having the same symbols as those in FIG. 1 will be omitted.
제4 실시예의 경우 역시, 장치의 기본 구조는 제1 실시예와 동일하지만, 스캔부(330) 및 광 검출부(240)의 구성이 상이하다. 여기서 스캔부(330)의 동작은 도 3을 통해 상세히 설명한 바 있으며, 광 검출부(240)의 동작은 도 2a를 통하여 상세히 설명한 바 있으므로, 중복된 설명은 생략한다.In the case of the fourth embodiment, the basic structure of the device is the same as that of the first embodiment, but the configurations of the scanning unit 330 and the light detection unit 240 are different. Here, the operation of the scanning unit 330 has been described in detail with reference to FIG. 3, and the operation of the light detection unit 240 has been described in detail with reference to FIG. 2A, so duplicate descriptions will be omitted.
한편 본 발명의 제1 내지 제4 실시예는 원편광 변환부를 추가적으로 포함할 수 있다. 이러한 원편광 변환부의 역할은 도 1 및 도 2a에서 각각 점선으로 삽입한 λ/4 파장판(WP; WP1,WP2)의 구성을 통해서 구현 가능하다. 도 3 및 도 4a의 경우 역시 도 1 및 도 2a와 같은 원편광 변환부가 적용될 수 있다.Meanwhile, the first to fourth embodiments of the present invention may additionally include a circular polarization conversion unit. The role of this circular polarization converter can be implemented through the configuration of λ/4 wave plates (WP; WP1, WP2) inserted with dotted lines in FIGS. 1 and 2A, respectively. In the case of FIGS. 3 and 4A, a circular polarization conversion unit like that of FIGS. 1 and 2A may also be applied.
도 1을 대표 예시로 하여 설명하면, 도 1의 경우, 제1 λ/4 파장판(WP1)과 제2 λ/4 파장판(WP2)을 포함한다.1 as a representative example, the case of FIG. 1 includes a first λ/4 wave plate (WP1) and a second λ/4 wave plate (WP2).
이때, 제1 λ/4 파장판(WP1)은 스캔부(130)와 투과체 사이에 설치되어 스캔빔을 원편광으로 변환하여 투과체로 투사한다. 제2 λ/4 파장판(WP2)은 투과체와 광 검출부(140) 사이에 설치되어 원편광의 빔을 다시 선편광으로 변환시켜 광 검출부(140)로 제공한다. 여기서 구체적으로 제2 λ/4 파장판(WP2)은 투과체와 제1 집광부(141a) 사이, 그리고 투과체와 제2 집광부(141b) 사이에 개별 설치된다. At this time, the first λ/4 wave plate WP1 is installed between the scan unit 130 and the transmitting material to convert the scan beam into circularly polarized light and project it to the transmitting material. The second λ/4 wave plate WP2 is installed between the transmitter and the light detection unit 140 to convert the circularly polarized beam back into linearly polarized light and provide it to the light detection unit 140. Here, specifically, the second λ/4 wave plate WP2 is separately installed between the transmitting body and the first light collecting part 141a, and between the transmitting body and the second light collecting part 141b.
본 발명의 실시예와 같이, 스캔빔을 편광에 따라 두 개로 분리하여 해당 편광에 대응하는 빔을 개별 검출하는 방식은, 반사 또는 투과율이 편광에 의존하는 대상체인 경우에 제1 홀로그램과 제2 홀로그램에 편광에 따른 차이가 생길 수 있다. 이러한 편광 차이를 제거하기 위해 스캔부(130)와 대상체(투과체) 사이에 파장판을 위치시켜 스캔빔의 편광을 원편광으로 변환하여 대상체에 투사하고, 대상체(투과체)와 집광기(141) 사이에 파장판을 위치시켜 다시 선편광으로 변환하는 방식을 사용함으로써, 대상체의 편광 의존성에 무관하게 제1 및 제2 홀로그램을 레코딩 할 수 있다. As in the embodiment of the present invention, a method of splitting a scan beam into two according to polarization and individually detecting beams corresponding to the polarization is to separate a first hologram and a second hologram in the case of an object whose reflection or transmittance depends on polarization. There may be differences depending on polarization. In order to eliminate this polarization difference, a wave plate is placed between the scan unit 130 and the object (transmitter) to convert the polarization of the scan beam into circular polarization and project it onto the object, and the object (transmitter) and the concentrator 141 By using a method of converting back to linearly polarized light by placing a wave plate between them, the first and second holograms can be recorded regardless of the polarization dependence of the object.
또한, 도 2a의 경우에서 제1 λ/4 파장판(WP1)은 스캔부(130)와 투과체 사이의 경로, 보다 구체적으로는 스캔부(130)와 제1 광분할기(241) 사이에 설치되고, 제2 λ/4 파장판(WP2)은 투과체와 광 검출부(240) 사이, 보다 구체적으로는 해당 경로 상의 제1 광분할기(241)와 제2 광분할기(242) 사이에 설치될 수 있다. 물론, 이러한 파장판의 설치 위치는 다양한 변형예가 존재할 수 있다. In addition, in the case of FIG. 2A, the first λ/4 wave plate WP1 is installed in the path between the scan unit 130 and the transmitting body, more specifically, between the scan unit 130 and the first optical splitter 241. In addition, the second λ/4 wave plate WP2 can be installed between the transmitter and the light detection unit 240, and more specifically, between the first and second light splitters 241 and 242 on the corresponding path. there is. Of course, various modifications may exist in the installation location of the wave plate.
본 발명에 따르면, 스캔 거울의 스캐닝 속도보다 빠르게 투과형 대상물인 투과체에 대한 홀로그램을 초고속으로 획득할 수 있다. According to the present invention, it is possible to obtain a hologram for a transparent object at ultra-high speed, faster than the scanning speed of a scan mirror.
본 발명은 도면에 도시된 실시 예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시 예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.The present invention has been described with reference to the embodiments shown in the drawings, but these are merely illustrative, and those skilled in the art will understand that various modifications and equivalent other embodiments are possible therefrom. Therefore, the true scope of technical protection of the present invention should be determined by the technical spirit of the attached patent claims.

Claims (20)

  1. 광원에서 분할된 제1 빔의 위상을 변조하여 제1 빔 곡률생성부를 통해 제1 곡률빔으로 변환하고 제2 빔을 제2 빔 곡률생성부를 통해 제2 곡률빔으로 변환한 후, 상기 제1 및 제2 곡률빔을 간섭시켜 스캔빔을 형성하는 스캔빔 생성부;After modulating the phase of the first beam divided from the light source and converting it into a first curvature beam through the first beam curvature generator and converting the second beam into a second curvature beam through the second beam curvature generator, the first and a scan beam generator that forms a scan beam by interfering with the second curvature beam;
    상기 스캔빔을 s-편광 빔과 p-편광 빔으로 분할하여 분할된 2개의 편광 빔을 서로 나란히 출사시키는 스캔빔 분할부;a scan beam splitter that splits the scan beam into an s-polarized beam and a p-polarized beam and emits the two split polarized beams side by side;
    상기 서로 나란히 출사되는 2개의 편광 빔으로 이루어진 스캔빔을 상기 스캔빔 분할부로부터 입사받아 투과체로 투사시키되, 상기 투과체에 대한 스캔빔의 스캐닝 위치를 수평 및 수직 방향으로 제어하여 투과체로 전달하는 스캔부; A scan in which a scan beam consisting of two polarized beams emitted side by side is incident from the scan beam splitter and projected onto a transmitting body, and the scanning position of the scan beam with respect to the transmitting body is controlled in the horizontal and vertical directions and transmitted to the transmitting body. wealth;
    상기 투과체를 투과한 빔에서 상기 s-편광 빔과 p-편광 빔을 분리 검출하는 광 검출부; 및a light detection unit that separates and detects the s-polarized beam and the p-polarized beam from the beam that has transmitted through the transmitting body; and
    상기 분리 검출된 s-편광 빔 및 p-편광 빔의 신호를 처리하여 상기 투과체에 대한 홀로그램을 생성하는 신호 처리부를 포함하는 투과체에 대한 편광분할 더블 스캐닝 홀로그래피 시스템.A polarization-splitting double scanning holography system for a transmitting object, comprising a signal processing unit that processes signals of the separately detected s-polarized beam and the p-polarized beam to generate a hologram for the transmitting object.
  2. 청구항 1에 있어서, In claim 1,
    상기 광 검출부는,The light detection unit,
    상기 투과체로 투사되는 빔의 광축에 편축된 방향으로 배치되고, 상기 투과체를 투과한 빔을 집광하는 제1 집광기;a first concentrator disposed in a direction biased to the optical axis of the beam projected to the transmitting body and concentrating the beam that has passed through the transmitting body;
    상기 제1 집광기를 통해 공간적으로 집적된 빔에서 s-편광 빔 성분만을 통과시키는 제1 편광기;a first polarizer that passes only the s-polarized beam component in the spatially integrated beam through the first concentrator;
    상기 제1 편광기를 통과한 s-편광 빔을 검출하는 제1 광검출기; a first photodetector that detects the s-polarized beam that has passed through the first polarizer;
    상기 투과체로 투사되는 빔의 광축에 편축된 방향으로 배치되되 상기 제1 집광기와 다른 위치에 배치되고, 상기 투과체를 투과한 빔을 집광하는 제2 집광기;a second concentrator disposed in a direction biased to the optical axis of the beam projected to the transmitting body and at a different position from the first concentrator, and concentrating the beam that has transmitted through the transmitting body;
    상기 제2 집광기를 통해 공간적으로 집적된 빔에서 p-편광 빔 성분만을 통과시키는 제2 편광기; 및a second polarizer that passes only the p-polarized beam component of the spatially integrated beam through the second concentrator; and
    상기 제2 편광기를 통과한 p-편광 빔을 검출하는 제2 광검출기를 포함하는 투과체에 대한 편광분할 더블 스캐닝 홀로그래피 시스템.A polarization-splitting double scanning holography system for a transmitting body including a second photodetector for detecting a p-polarized beam that has passed through the second polarizer.
  3. 청구항 1에 있어서, In claim 1,
    상기 광 검출부는,The light detection unit,
    상기 투과체로 투사되는 광의 광축 상에 배치되고 상기 투과체를 투과한 빔을 입사받아 외부로 반사시키는 제1 광 분할기;a first light splitter disposed on the optical axis of the light projected to the transmitting body and receiving the beam passing through the transmitting body and reflecting it to the outside;
    상기 제1 광 분할기에서 반사된 광을 입사받고 입사된 빔에서 p-편광 빔 성분은 투과시키고 s-편광 빔 성분을 반사시키는 제2 광 분할기;a second light splitter that receives the light reflected from the first light splitter and transmits the p-polarized beam component and reflects the s-polarized beam component of the incident beam;
    상기 제2 광 분할기에서 반사시킨 s-편광 빔 성분을 집광하는 제1 집광기; a first concentrator that focuses the s-polarized beam component reflected by the second light splitter;
    상기 제2 광 분할기에서 투과시킨 p-편광 빔 성분을 집광하는 제2 집광기;a second concentrator for concentrating the p-polarized beam component transmitted from the second light splitter;
    상기 제1 집광기를 통해 공간적으로 집적된 빔을 검출하는 제1 광검출기; 및a first photodetector that detects a spatially integrated beam through the first concentrator; and
    상기 제2 집광기를 통해 공간적으로 집적된 빔을 검출하는 제2 광검출기를 포함하는 투과체에 대한 편광분할 더블 스캐닝 홀로그래피 시스템.A polarization-splitting double scanning holography system for a transmitting body including a second photodetector that detects a spatially integrated beam through the second concentrator.
  4. 청구항 1에 있어서, In claim 1,
    상기 광 검출부는,The light detection unit,
    상기 투과체로 투사되는 광의 광축 상에 배치되고 상기 투과체를 투과한 빔을 입사받아 외부로 반사시키는 제1 광 분할기;a first light splitter disposed on the optical axis of the light projected to the transmitting body and receiving the beam passing through the transmitting body and reflecting it to the outside;
    상기 제1 광 분할기에서 반사된 광을 입사받고 입사된 빔의 일부를 투과시키고 일부를 반사시키는 제2 광 분할기;a second light splitter that receives the light reflected from the first light splitter, transmits part of the incident beam, and reflects part of the incident beam;
    상기 제2 광 분할기에서 반사된 빔을 입사받아 s-편광 빔 성분만을 통과시키는 제1 편광기;a first polarizer that receives the beam reflected from the second light splitter and passes only the s-polarized beam component;
    상기 제2 광 분할기에서 투과된 빔을 입사받아 p-편광된 빔 성분만을 통과시키는 제2 편광기;a second polarizer that receives the beam transmitted from the second light splitter and passes only the p-polarized beam component;
    상기 제1 편광기를 통과한 s-편광 빔 성분을 집광하는 제1 집광기; a first concentrator that focuses the s-polarized beam component that has passed through the first polarizer;
    상기 제2 편광기를 통과한 p-편광 빔 성분을 집광하는 제2 집광기;a second concentrator that focuses the p-polarized beam component that has passed through the second polarizer;
    상기 제1 집광기를 통해 공간적으로 집적된 빔을 검출하는 제1 광검출기; 및a first photodetector that detects a spatially integrated beam through the first concentrator; and
    상기 제2 집광기를 통해 공간적으로 집적된 빔을 검출하는 제2 광검출기를 포함하는 편광분할 더블 스캐닝 홀로그래피 시스템.A polarization-splitting double scanning holography system including a second photodetector that detects a spatially integrated beam through the second concentrator.
  5. 청구항 2 내지 청구항 4 중 어느 한 항에 있어서, The method of any one of claims 2 to 4,
    상기 신호 처리부는,The signal processing unit,
    상기 제1 광검출기에서 검출된 s-편광 빔의 신호를 처리하는 제1 신호 처리부;a first signal processor that processes the signal of the s-polarized beam detected by the first photodetector;
    상기 제2 광검출기에서 검출된 p-편광 빔의 신호를 처리하는 제2 신호 처리부; 및a second signal processor that processes the signal of the p-polarized beam detected by the second photodetector; and
    상기 제1 신호 처리부에서 처리된 홀로그램 신호와 상기 제2 신호 처리부에서 처리된 홀로그램 신호를 한 줄씩 교차 배열하는 방식으로 합성하여 상기 투과체에 대한 홀로그램을 생성하는 교차배열 신호 처리부를 포함하는 투과체에 대한 편광분할 더블 스캐닝 홀로그래피 시스템.A transmissive body including a cross-array signal processing unit that generates a hologram for the transmissive body by synthesizing the hologram signal processed in the first signal processing unit and the hologram signal processed in the second signal processing unit by alternating line by line. Polarization splitting double scanning holography system.
  6. 청구항 1에 있어서,In claim 1,
    상기 스캔빔 분할부는,The scan beam splitter,
    비등방성 광학재료로 이루어지며, 제1 면을 통해 입사된 스캔빔을 서로 직교하는 편광의 s-편광 빔과 p-편광 빔으로 분리하여 제2 면을 통해 나란히 출사시키는 빔 디스플레이서(Beam displacer)를 포함하는 투과체에 대한 편광분할 더블 스캐닝 홀로그래피 시스템.A beam displacer is made of an anisotropic optical material and separates the scan beam incident through the first side into an s-polarized beam and a p-polarized beam with polarizations orthogonal to each other and emits them in parallel through the second side. A polarization-splitting double scanning holography system for a transmissive material including.
  7. 청구항 6에 있어서,In claim 6,
    상기 스캔빔 분할부는,The scan beam splitter,
    상기 제2 면을 통해 출사되는 s-편광 빔 및 p-편광 빔의 경로 중 더욱 짧은 p-편광 빔의 경로 상에 설치되고, 상기 빔 디스플레이서와 동일한 소재로 구현되어, 출사되는 s-편광 빔과 p-편광 빔 간의 광 경로 길이의 차를 보상하는 광경로차 보정부를 더 포함하는 투과체에 대한 편광분할 더블 스캐닝 홀로그래피 시스템.It is installed on the path of the shorter p-polarized beam among the paths of the s-polarized beam and the p-polarized beam emitted through the second surface, and is implemented with the same material as the beam displacer, so that the emitted s-polarized beam A polarization-splitting double scanning holography system for a transmitting body, further comprising an optical path difference correction unit that compensates for the difference in optical path length between the and p-polarized beams.
  8. 청구항 1에 있어서, In claim 1,
    상기 스캔빔 분할부는,The scan beam splitter,
    결정축이 서로 수직이고 서로 상이한 재료로 만들어진 두 삼각프리즘의 조합으로 이루어지며, 제1 면을 통해 입사된 스캔빔을 두 삼각프리즘의 경계면에서 상기 스캔빔과 평행하게 진행하는 제1 편광 빔과 상기 스캔빔과 설정 각도를 가지고 진행하는 제2 편광 빔으로 분리하여 제2 면을 통해 출사시키는 편광 프리즘을 포함하며,It consists of a combination of two triangular prisms whose crystal axes are perpendicular to each other and are made of different materials, and a first polarized beam and a scan beam that propagates the scan beam incident through the first surface parallel to the scan beam at the boundary surface of the two triangular prisms. It includes a polarizing prism that separates the beam into a second polarized beam traveling at a set angle and emits it through the second surface,
    상기 제1 편광 빔이 s-편광 빔이면 상기 제2 편광 빔은 p-편광 빔이고, 상기 제1 편광 빔이 p-편광 빔이면 상기 제2 편광 빔은 s-편광 빔인 투과체에 대한 편광분할 더블 스캐닝 홀로그래피 시스템.If the first polarized beam is an s-polarized beam, the second polarized beam is a p-polarized beam, and if the first polarized beam is a p-polarized beam, the second polarized beam is an s-polarized beam. Polarization splitting for a transmitter Double scanning holography system.
  9. 청구항 8에 있어서, In claim 8,
    상기 스캔빔 분할부는,The scan beam splitter,
    상기 제2 면을 통해 출사되는 제2 편광 빔의 경로 상에 순차로 설치되어 빔 경로를 변경하는 제1 및 제2 거울을 통해 제2 편광 빔의 진행 방향을 상기 스캔빔과 평행하게 조정하는 변위 조절부; 및 Displacement that adjusts the direction of travel of the second polarized beam to be parallel to the scan beam through first and second mirrors that are sequentially installed on the path of the second polarized beam emitted through the second surface and change the beam path. control unit; and
    상기 제2 면을 통해 출사되는 제1 및 제2 편광 빔의 경로 중 더욱 짧은 제1 편광 빔의 경로 상에 설치되어, 출사되는 제1 편광 빔과 제2 편광 빔 간의 광 경로 길이의 차를 보상하는 광경로차 보정부를 더 포함하는 투과체에 대한 편광분할 더블 스캐닝 홀로그래피 시스템.It is installed on the path of the shorter first polarized beam among the paths of the first and second polarized beams emitted through the second surface, and compensates for the difference in optical path length between the first and second polarized beams emitted. A polarization splitting double scanning holography system for a transmitting body further comprising an optical path difference correction unit.
  10. 청구항 9에 있어서, In claim 9,
    상기 광 경로차 보정부는,The optical path difference correction unit,
    상기 제2 면을 통해 출사된 제1 편광 빔의 진행 경로 상에 순차로 설치되어 빔 경로를 변경하는 제3 거울 내지 제6 거울, 그리고Third to sixth mirrors that are sequentially installed on the path of the first polarized beam emitted through the second surface to change the beam path, and
    상기 제3 및 제6 거울과 나란히 이격 배치된 제4 및 제5 거울을 그룹으로 이동시키면서 상기 광 경로 길이의 차를 보상해주는 거울 이동부를 포함하는 투과체에 대한 편광분할 더블 스캐닝 홀로그래피 시스템.A polarization splitting double scanning holography system for a transmitting body including a mirror moving unit that compensates for the difference in the optical path length while moving the fourth and fifth mirrors arranged in parallel and spaced apart from the third and sixth mirrors as a group.
  11. 청구항 8에 있어서, In claim 8,
    상기 편광 프리즘은,The polarizing prism is,
    로촌(Rochon) 프리즘 또는 세나르몽(Senarmont) 프리즘 구조인 투과체에 대한 편광분할 더블 스캐닝 홀로그래피 시스템.Polarization-splitting double scanning holography system for transmitters structured as Rochon prisms or Senarmont prisms.
  12. 청구항 8에 있어서,In claim 8,
    상기 편광 프리즘은 상기 경계면의 중심을 기준으로 설정 각도만큼 회전된 상태로 설치되며, The polarizing prism is installed rotated by a set angle based on the center of the boundary surface,
    상기 설정 각도는, The setting angle is,
    상기 경계면의 중심에서 분리 출사된 제1 편광 빔과 제2 편광 빔의 진행 방향 간 각도차(θ)의 절반에 해당한 θ/2인 투과체에 대한 편광분할 더블 스캐닝 홀로그래피 시스템.A polarization-splitting double scanning holography system for a transmitter whose θ/2 is half of the angular difference (θ) between the travel directions of the first and second polarized beams separately emitted from the center of the boundary surface.
  13. 청구항 12에 있어서,In claim 12,
    상기 스캔빔 분할부는,The scan beam splitter,
    상기 제2 면을 통해 출사되는 제2 편광 빔의 경로 상에 순차로 설치되어 빔 경로를 변경하는 제1 및 제2 거울과, 상기 제2 면을 통해 출사되는 제1 편광 빔의 경로 상에 순차로 설치되어 빔 경로를 변경하며 상기 제1 및 제2 거울과 대칭되게 설치되는 제3 및 제4 거울을 포함하는 변위 조절부를 더 포함하며,First and second mirrors are sequentially installed on the path of the second polarized beam emitted through the second surface to change the beam path, and sequentially installed on the path of the first polarized beam emitted through the second surface. It is installed to change the beam path and further includes a displacement control unit including third and fourth mirrors installed symmetrically with the first and second mirrors,
    상기 변위 조절부에 의해 상기 제2 거울을 거친 제2 편광 빔과 상기 제4 거울을 거친 제1 편광 빔의 진행 방향이 평행하게 조정되는 투과체에 대한 편광분할 더블 스캐닝 홀로그래피 시스템.A polarization splitting double scanning holography system for a transmitting body in which the travel directions of the second polarized beam that has passed through the second mirror and the first polarized beam that has passed through the fourth mirror are adjusted to be parallel by the displacement control unit.
  14. 청구항 1에 있어서,In claim 1,
    상기 스캔빔 분할부는,The scan beam splitter,
    결정축이 서로 수직이고 서로 상이한 재료로 만들어진 두 삼각프리즘의 조합으로 이루어지며, 제1 면을 통해 입사된 스캔빔을 두 삼각프리즘의 경계면에서 상기 스캔빔의 방향에 대해 설정 각도를 가지고 서로 대칭되게 진행하는 s-편광 빔과 p-편광 빔으로 분리하여 제2 면을 통해 출사시키는 월라스턴(Wollaston) 프리즘 구조의 편광 프리즘을 포함하는 투과체에 대한 편광분할 더블 스캐닝 홀로그래피 시스템.It is composed of a combination of two triangular prisms whose crystal axes are perpendicular to each other and made of different materials, and the scan beam incident through the first surface is symmetrically directed at the boundary surface of the two triangular prisms at a set angle with respect to the direction of the scan beam. A polarization splitting double scanning holography system for a transmitter including a polarizing prism of a Wollaston prism structure that separates the s-polarized beam and the p-polarized beam and emits them through a second surface.
  15. 청구항 14에 있어서,In claim 14,
    상기 스캔빔 분할부는,The scan beam splitter,
    상기 제2 면을 통해 출사되는 p-편광 빔의 경로 상에 순차로 설치되어 빔 경로를 변경하는 제1 및 제2 거울과, 상기 제2 면을 통해 출사되는 s-편광 빔의 경로 상에 순차로 설치되어 빔 경로를 변경하며 상기 제1 및 제2 거울과 대칭되게 설치되는 제3 및 제4 거울을 포함하는 변위 조절부를 더 포함하며,First and second mirrors sequentially installed on the path of the p-polarized beam emitted through the second surface to change the beam path, and sequentially installed on the path of the s-polarized beam emitted through the second surface. It is installed to change the beam path and further includes a displacement control unit including third and fourth mirrors installed symmetrically with the first and second mirrors,
    상기 변위 조절부에 의해 상기 제2 거울을 거친 p-편광 빔과 상기 제4 거울을 거친 s-편광 빔의 진행 방향이 평행하게 조정되는 투과체에 대한 편광분할 더블 스캐닝 홀로그래피 시스템.A polarization splitting double scanning holography system for a transmitting body in which the travel directions of the p-polarized beam that has passed through the second mirror and the s-polarized beam that has passed through the fourth mirror are adjusted to be parallel by the displacement control unit.
  16. 청구항 1에 있어서,In claim 1,
    상기 스캔빔 분할부는,The scan beam splitter,
    입사된 스캔빔에서 s-편광 빔 성분을 반사시키고 p-편광 빔 성분을 투과시키는 제1 편광 빔스플리터; a first polarizing beam splitter that reflects the s-polarized beam component from the incident scan beam and transmits the p-polarized beam component;
    상기 제1 편광 빔스플리터에서 반사시킨 s-편광 빔의 경로 상에 순차로 설치되어 빔 경로를 90도씩 변경하는 제1 및 제2 거울;first and second mirrors sequentially installed on the path of the s-polarized beam reflected from the first polarizing beam splitter to change the beam path by 90 degrees;
    상기 제1 편광 빔스플리터에서 투과시킨 p-편광 빔의 경로 상에 순차로 설치되어 빔 경로를 90도씩 변경하는 제3 내지 제6 거울; 및 third to sixth mirrors sequentially installed on the path of the p-polarized beam transmitted from the first polarizing beam splitter to change the beam path by 90 degrees; and
    상기 제2 거울을 거친 s-편광 빔과 상기 제6 거울을 거친 p-편광 빔을 각각 제1 면과 제2 면을 통해 입사받으며, 상기 제1 면에 입사 후 반사된 s-편광 빔과 상기 제2 면에 입사 후 투과된 p-편광 빔을 제3 면을 통해 나란히 평행한 방향으로 출력하는 제2 편광 빔스플리터를 포함하는 투과체에 대한 편광분할 더블 스캐닝 홀로그래피 시스템.An s-polarized beam that has passed through the second mirror and a p-polarized beam that has passed through the sixth mirror are incident on the first and second surfaces, respectively, and the s-polarized beam reflected after incident on the first face and the A polarization splitting double scanning holography system for a transmitter including a second polarization beam splitter that outputs the p-polarized beam transmitted after incident on the second side in a parallel direction through the third side.
  17. 청구항 1에 있어서,In claim 1,
    상기 스캔부는,The scanning unit,
    투과체에 대한 상기 스캔빔의 스캐닝 위치를 제어하도록 수평 스캔 거울과 수직 스캔 거울을 포함하며, 입사된 상기 스캔빔을 수평 및 수직 방향으로 제어하여 투과체로 전달하는 투과체에 대한 편광분할 더블 스캐닝 홀로그래피 시스템.Polarization-splitting double scanning holography for a transmitting body that includes a horizontal scanning mirror and a vertical scanning mirror to control the scanning position of the scan beam with respect to the transmitting body, and controls the incident scan beam in the horizontal and vertical directions and transmits it to the transmitting body. system.
  18. 청구항 1에 있어서,In claim 1,
    상기 스캔부는,The scanning unit,
    투과체에 대한 상기 스캔빔의 스캐닝 위치를 수평 및 수직 방향으로 제어하도록, 상기 스캔빔 분할부로부터 입사된 상기 스캔빔을 수평 방향으로 제어하여 투과체로 전달하는 스캔 거울과, 상기 투과체의 후단에서 상기 투과체를 수직 방향으로 이동시키는 트랜슬레이션 스테이지를 포함하는 투과체에 대한 편광분할 더블 스캐닝 홀로그래피 시스템.A scanning mirror that controls the scan beam incident from the scan beam splitter in the horizontal direction and transmits it to the transmitting body so as to control the scanning position of the scan beam with respect to the transmitting body in the horizontal and vertical directions, and at the rear end of the transmitting body A polarization-splitting double scanning holography system for a transmissive body including a translation stage that moves the transmissive body in a vertical direction.
  19. 청구항 1에 있어서,In claim 1,
    상기 스캔부는,The scanning unit,
    투과체에 대한 상기 스캔빔의 스캐닝 위치를 수평 및 수직 방향으로 제어하도록, 상기 스캔빔 분할부로부터 입사된 상기 스캔빔을 수평 방향으로 제어하여 투과체로 전달하는 공간 변조(spatial modulation) 스캐너와, 상기 투과체의 후단에서 상기 투과체를 수직 방향으로 이동시키는 트랜슬레이션 스테이지를 포함하는 투과체에 대한 편광분할 더블 스캐닝 홀로그래피 시스템.a spatial modulation scanner that controls the scan beam incident from the scan beam splitter in the horizontal direction and transmits it to the transmitting body so as to control the scanning position of the scan beam with respect to the transmitting body in the horizontal and vertical directions; A polarization-splitting double scanning holography system for a transmitting body including a translation stage that moves the transmitting body in the vertical direction at the rear end of the transmitting body.
  20. 청구항 1에 있어서,In claim 1,
    상기 스캔부는, The scanning unit,
    물체에 대한 상기 스캔빔의 스캐닝 위치를 수평 및 수직 방향으로 제어하기 위한 수직 스캐너와 수평 스캐너를 포함하되, 상기 스캔빔 분할부로부터 입사된 상기 스캔빔을 수평 방향으로 제어하여 물체로 전달하는 수평 공간 변조(spatial modulation) 스캐너와, 상기 스캔빔을 수직 방향으로 제어하여 물체로 전달하는 수직 공간 변조 스캐너를 포함하는 편광분할 더블 스캐닝 홀로그래피 시스템.A horizontal space including a vertical scanner and a horizontal scanner for controlling the scanning position of the scan beam relative to the object in the horizontal and vertical directions, and controlling the scan beam incident from the scan beam splitter in the horizontal direction to transmit it to the object. A polarization-splitting double scanning holography system including a spatial modulation scanner and a vertical spatial modulation scanner that controls the scan beam in the vertical direction and delivers it to an object.
PCT/KR2023/011950 2022-09-28 2023-08-11 Polarization-splitting double-scanning holography system for transmission body WO2024071668A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220123460A KR102551612B1 (en) 2022-09-28 2022-09-28 Polarization divisional double scanning holography system for transmissive object
KR10-2022-0123460 2022-09-28

Publications (1)

Publication Number Publication Date
WO2024071668A1 true WO2024071668A1 (en) 2024-04-04

Family

ID=87186067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/011950 WO2024071668A1 (en) 2022-09-28 2023-08-11 Polarization-splitting double-scanning holography system for transmission body

Country Status (2)

Country Link
KR (1) KR102551612B1 (en)
WO (1) WO2024071668A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102551612B1 (en) * 2022-09-28 2023-07-06 세종대학교 산학협력단 Polarization divisional double scanning holography system for transmissive object

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100056000A (en) * 2008-11-19 2010-05-27 한국표준과학연구원 Fringe stabilized inerferometer using coherent fiber optic tapers
KR20130081127A (en) * 2012-01-06 2013-07-16 세종대학교산학협력단 Hologram recording apparatus
JP5626687B2 (en) * 2009-06-11 2014-11-19 国立大学法人 筑波大学 2-beam optical coherence tomography system
KR20210048427A (en) * 2019-10-23 2021-05-03 세종대학교산학협력단 In-line flying-over beam pattern scanning hologram microscopy using scan mirror and translation stage
KR102251143B1 (en) * 2020-02-18 2021-05-11 세종대학교 산학협력단 Geometric phase scanning holography system for transmissive object
KR102551612B1 (en) * 2022-09-28 2023-07-06 세종대학교 산학협력단 Polarization divisional double scanning holography system for transmissive object

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100056000A (en) * 2008-11-19 2010-05-27 한국표준과학연구원 Fringe stabilized inerferometer using coherent fiber optic tapers
JP5626687B2 (en) * 2009-06-11 2014-11-19 国立大学法人 筑波大学 2-beam optical coherence tomography system
KR20130081127A (en) * 2012-01-06 2013-07-16 세종대학교산학협력단 Hologram recording apparatus
KR20210048427A (en) * 2019-10-23 2021-05-03 세종대학교산학협력단 In-line flying-over beam pattern scanning hologram microscopy using scan mirror and translation stage
KR102251143B1 (en) * 2020-02-18 2021-05-11 세종대학교 산학협력단 Geometric phase scanning holography system for transmissive object
KR102551612B1 (en) * 2022-09-28 2023-07-06 세종대학교 산학협력단 Polarization divisional double scanning holography system for transmissive object

Also Published As

Publication number Publication date
KR102551612B1 (en) 2023-07-06

Similar Documents

Publication Publication Date Title
WO2014163322A1 (en) Stereoscopic imaging device
WO2024071668A1 (en) Polarization-splitting double-scanning holography system for transmission body
WO2024071667A1 (en) Polarization-splitting double-scanning holography system for reflector
WO2022055194A1 (en) Flying-over beam pattern scanning hologram microscope device using scan mirror and translation stage
WO2019124769A1 (en) Optical system and wearable display apparatus having the same
WO2018166038A1 (en) Light source device and projection system
WO2020080692A1 (en) Apparatus for optical coherence tomography and image generation method using same
US12050435B2 (en) Optical scanning holography system
WO2018164356A1 (en) Quantum key distribution stabilization device and method
US7502154B2 (en) Spatial light modulator alignment
US5883746A (en) Apparatus for beam splitting
US4642701A (en) Device of switching a scanning beam diameter
WO2009088224A2 (en) Apparatus for recording/reproducing holographic data
WO2018208018A1 (en) Optical interference measuring apparatus
WO2024101604A1 (en) System for acquiring holograms of different colors
US5420714A (en) Device for beam division
KR970048641A (en) High Efficiency Polarization Diversity Receiver System
WO2022035068A1 (en) Geometric phase in-line scanning holography system for transmissive object
WO2017003141A1 (en) Scanning projector
WO2020032689A1 (en) Inspection apparatus and inspection method
WO2022065658A1 (en) Holographic waveguide, method of producing the same, and display device including the holographic waveguide
KR102625392B1 (en) Polarization divisional double scanning holography system with tilt angle for transmissive object
WO2021054680A1 (en) Inline scanning holography system for phosphor and transmitter
KR102625393B1 (en) Polarization divisional double scanning holography system with tilt angle for reflective object
US5850307A (en) Scanner system having a dual trace spinner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872791

Country of ref document: EP

Kind code of ref document: A1