WO2024071531A1 - Deep cement mixing method including strength monitoring function of structure for reinforcing soft ground - Google Patents

Deep cement mixing method including strength monitoring function of structure for reinforcing soft ground Download PDF

Info

Publication number
WO2024071531A1
WO2024071531A1 PCT/KR2023/000713 KR2023000713W WO2024071531A1 WO 2024071531 A1 WO2024071531 A1 WO 2024071531A1 KR 2023000713 W KR2023000713 W KR 2023000713W WO 2024071531 A1 WO2024071531 A1 WO 2024071531A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground
strength
weight
excavation
sensor
Prior art date
Application number
PCT/KR2023/000713
Other languages
French (fr)
Korean (ko)
Inventor
김준수
Original Assignee
에코엔텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에코엔텍 주식회사 filed Critical 에코엔텍 주식회사
Publication of WO2024071531A1 publication Critical patent/WO2024071531A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/04Carboxylic acids; Salts, anhydrides or esters thereof
    • C04B24/06Carboxylic acids; Salts, anhydrides or esters thereof containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/16Sulfur-containing compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/24Cements from oil shales, residues or waste other than slag
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • C09K17/10Cements, e.g. Portland cement
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/40Soil-conditioning materials or soil-stabilising materials containing mixtures of inorganic and organic compounds
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/12Consolidating by placing solidifying or pore-filling substances in the soil
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices

Definitions

  • the present invention includes a penetration step of penetrating the excavation equipment into the ground to the design depth, a drawing step of pulling out the excavation equipment again, and a soft ground excavated by injecting a solidifying agent composition in at least one of the penetration step or the drawing step.
  • the deep mixing method including a mixing step and a curing step in which the solidifying agent composition injected and mixed in the mixing step is hardened to form a structure that reinforces the soft ground, the mixing step is embedded in the structure.
  • a sensor device that transmits an alternating current electrical signal to the structure and receives a resonance frequency and impedance changed by the structure, and a strength measuring device connected to the sensor device to measure the strength of the hydration reaction material structure; the solidifying agent composition and Injected together, the strength of the structure for reinforcing the soft ground can be constantly monitored in real time with high reliability to detect abnormal behavior of the structure, and rapid action can be taken when abnormal behavior is detected.
  • This relates to a deep mixing method that includes a structural strength monitoring function for reinforcing soft ground.
  • soft ground made of soft clay, silt, or intrinsic matrix soil such as reclamation or dredging landfills in coastal wetlands, rivers, lakes, ports, etc.
  • soft ground made of soft clay, silt, or intrinsic matrix soil, such as reclamation or dredging landfills in coastal wetlands, rivers, lakes, ports, etc.
  • has a high water content ratio and low uniaxial compressive strength so it is not stable when constructing a structure on top. Because it causes problems with subsidence, the engineering properties of the ground must be improved through various methods.
  • the sand drain method using vertical drainage material or the paper drain method has been mainly used in large-scale soft ground.
  • these methods require a long construction period, and it is not easy to secure stability after construction, and it is difficult to secure deep soft ground. There is a problem that it is difficult to apply.
  • a deep mixing treatment method has been mainly used to completely improve the soft cohesive soil ground into a columnar or blocky form by injecting and mixing chemical stabilizers in the form of powder or suspension, mainly cement, into the in-situ ground.
  • Deep Cement Mixing is a technology to improve soft ground by chemically solidifying the soft ground in the ground by mixing a solidifying agent mainly made of cement or lime.
  • a solidifying agent mainly made of cement or lime.
  • This is a method of strengthening soft ground by activating the production of ettringite through a hydration reaction or Pozzolan reaction that occurs when chemicals are mixed to form a physically and chemically solidified structure.
  • This deep mixing method can be broadly divided into a penetration injection type and a drawing injection type.
  • the penetration injection type involves penetrating into the ground an auger casing that forms a spray passage so that the solidifying agent can be sprayed in the downward direction, and the auger casing. It consists of a process of injecting the solidifying agent and mixing it with the soft ground at the same time as it penetrates by rotation, and a process of mixing the soft ground and the solidifying agent by rotating the auger casing that has penetrated to the designed depth and pulling it upward.
  • the drawing and jetting method includes a process of penetrating an auger casing with a spray passage so that the solidifying agent can be sprayed downward into the ground, rotating the auger casing penetrated to the designed depth and drawing it upward, and pulling the auger casing upward. It consists of a process of drawing out the casing and simultaneously injecting a solidifying agent and mixing it with the soft ground.
  • the strength of concrete is considered the most important in quality control, but since the quality control of concrete is mainly based on the strength of 28 days after standard curing, there is a time difference between the progress of construction and the time of strength evaluation.
  • the quality test results of already hardened concrete cannot be quickly reflected in construction, and if the required strength is excessive or insufficient, it is difficult to handle when strength problems occur, such as having to bear not only safety issues but also economic and administrative losses. .
  • the concrete curing strength estimation technique uses a method using integrated temperature or a Schmidt hammer, but this method does not directly measure the inside of the concrete structure, so it is difficult to estimate the strength accurately and has the problem of making it difficult to estimate the strength in real time. Another problem is that measurement is difficult when the branch is inaccessible.
  • most studies related to the evaluation of the developed strength of existing cast-in-place concrete target electrochemical acceleration methods and various non-destructive testing methods are also proposed in the form of equations based on actual experiments or experience. However, these evaluation methods require expensive equipment or the proposed equation itself is complicated, so it is widely used in practice. It is currently not being utilized.
  • the strength of a structure formed on soft ground through a method such as DCM gradually develops through the hydration reaction of cement, which is its component.
  • the intensity value changes with time, there is a limit to not being able to accurately know the intensity without taking a sample.
  • the strength of a structure can be estimated indirectly by producing a specimen at the time of construction, such as pouring ready-mixed concrete, and performing a strength test.
  • the direct strength of the structure cannot be known. Accordingly, the strength of the structure is linear from the relationship curve between force and deformation. Since it is measured by determining the limit value of deformation, in the case of actual structures, there is a limitation that it is not easy to determine the strength in a state without deformation. Therefore, it is possible to estimate physical characteristics such as strength and elastic modulus of structures using ultrasound or elastic waves or non-destructive methods such as GPR, but it is difficult to apply these methods in the low-strength state at the beginning of the hydration reaction.
  • the present invention was invented to solve the above problems, and is a deep mixing method that detects abnormal behavior through efficient real-time continuous measurement and monitoring considering the evaluation of the strength development of the cast-in-place solidification agent, and allows prompt action when abnormal behavior is detected.
  • the purpose is to provide public methods.
  • the present invention injects a solidifying agent composition in at least one of the penetration step of penetrating the excavation equipment into the ground to the design depth, the drawing step of pulling out the excavation equipment again, and the penetration step or the drawing step.
  • the mixing step is , a sensor device embedded in the structure to transmit an alternating current electrical signal to the structure and receive a resonant frequency and impedance changed by the structure, and a strength measurement device connected to the sensor device to measure the strength of the hydration reaction material structure; is injected together with the solidifying agent composition, the strength of the structure for reinforcing the soft ground can be constantly monitored in real time with high reliability to detect abnormal behavior of the structure, and prompt action can be taken when abnormal behavior is detected. It is characterized by being able to do so.
  • the sensor device includes a sensor housing that is embedded in the structure so as not to be damaged, and is installed inside the sensor housing to receive an alternating current electrical signal, transmit it to the structure, and detect the resonance frequency and impedance changed by the structure. It includes a piezoelectric sensor that receives the signal, and a transmission member to which the piezoelectric sensor is attached so that the resonance frequency and impedance are transmitted to the structure.
  • An alternating current electrical signal generator that generates an alternating current electrical signal, controls the alternating current electrical signal generator to generate an alternating current electrical signal with a specific waveform having a frequency in a predetermined frequency band, applies the generated alternating current electrical signal to the piezoelectric sensor, and controls the piezoelectric sensor to generate an alternating current electrical signal. It is characterized by comprising a control module unit that calculates intensity data by measuring changes in physical pressure applied to the piezoelectric sensor based on an alternating current electric signal applied to the piezoelectric sensor, and a power supply unit that supplies necessary power to the control module unit.
  • the present invention includes a temperature sensor installed on the outer surface of the sensor device or intensity measuring device to detect the surrounding temperature; a wired/wireless communication module provided in the sensor device or intensity measurement device to transmit the intensity data to an external upper processing device; A display unit that displays the intensity data; and a GPS module unit provided in the sensor device or the intensity measuring device and transmitting the location information of the piezoelectric sensor to an external upper processing device.
  • the sensor housing is characterized in that its outer peripheral surface is coated with an elastic organic material so that it can be stably injected into soft ground and embedded within the structure while preventing damage to the components mounted therein.
  • the elastic organic material is characterized in that it consists of 25 to 80% by weight of polydimethylsiloxane and 20 to 75% by weight of silicone rubber.
  • the excavation equipment penetrated in the penetration step includes an injection pipe of a predetermined length that is rotated by the operation of the driving part and is inserted vertically into the ground, and a plurality of bit members arranged in a direction perpendicular to the injection pipe. It is prepared to excavate the ground, and is arranged in multiple stages up and down along the injection pipe, moving from the bottom to the top to construct relatively large drilling holes in the soft layer centered on the boundary between the soft layer of the ground and the support layer measured before excavation work.
  • a plurality of long excavation parts are arranged in multiple stages up and down the injection pipe, but are disposed on the upper side of the excavation part, and are arranged in a direction perpendicular to the injection pipe, and while agitating the ground pulverized by the excavation part, the reinforcing material and the pulverized
  • the insertion depth is visually confirmed and provided on one upper side of the injection pipe to prevent the relatively long excavation part among the plurality of excavation parts from being inserted into the support layer.
  • a relatively large diameter drilling hole is formed in the soft layer, and a relatively small drilling hole is formed in the support layer, so that the solidifying agent composition flows into the ground along the drilling hole.
  • bulbs with a relatively large diameter can be constructed in the soft layer, and conversely, bulbs with a relatively small diameter can be constructed in the support layer, preventing the solidification composition from being injected into the support layer more than necessary. It is characterized by being able to do so.
  • the depth sensing unit includes a first coupling ring seated in one of a plurality of coupling grooves provided in the injection pipe, and a second coupling ring coupled to the first coupling ring to be fixed to the injection pipe.
  • It includes an indicator bar protruding from the first coupling ring and the second coupling ring, and the position of the indicator bar is determined and installed before excavation work begins, and the position of the indicator bar is formed at the depth of the soft layer and the support layer.
  • the insertion depth is determined by adding the depth of the perforated hole, and the display bar is installed at a position moved upward by the insertion depth from the bottom of the injection pipe, so that the display bar is deformed or damaged when the injection pipe is inserted into the ground or pulled out to the ground. It is characterized by preventing it from happening.
  • the solidifying agent composition contains 55 to 65% by weight of blast furnace slag fine powder generated during pig iron production at a steel mill, silicon dioxide (SiO 2 ) and aluminum oxide (Al) generated during fuel incineration at a combined heat and power plant and thermal power plant.
  • SiO 2 silicon dioxide
  • Al aluminum oxide
  • 2 O 3 ferric oxide
  • Polymer 2 synthesized from 10 to 20% by weight of fly ash with a combined content of 70% or more, 10 to 20% by weight of early steel cement, phenoxyethanol and isopropylamine It is formulated by mixing ⁇ 5% by weight, and is characterized in that the water-cement ratio (W/C) is mixed and injected at a weight ratio of 50-70%.
  • a fluidizing agent is added to 100 parts by weight of the solidifying agent composition, and the fluidizing agent includes 80 to 90% by weight of water and 5 to 20% by weight of polycarboxylate polymer. It is characterized in that it contains 1 to 5% by weight of a gluconic acid-based retardant and 1 to 5% by weight of sodium lauryl ethersulfate.
  • a sensor device and a strength measuring device injected together with the solidifying agent composition in the mixing step are embedded in the structure, and the strength of the structure for reinforcing the soft ground is constantly monitored in real time based on high reliability. There is a remarkable effect of being able to detect abnormal behavior of the structure and allowing appropriate measures to be taken quickly.
  • the sensor device and the intensity measuring device can be manufactured in a small size to ensure portability and mobility, and thus have the effect of easily measuring intensity regardless of location.
  • the present invention can prevent damage to components inside the casing and stably inject it into soft ground by coating the outer peripheral surface of the casing constituting the sensor device with an elastic organic material.
  • the present invention provides a drilling hole with a relatively large diameter in the soft ground when constructing a drilling hole in soft ground through an excavation equipment having a plurality of excavating parts and agitating parts of different sizes, and a relatively small drilling hole in the support layer. A portion can be formed, and through this, it is possible to prevent the solidifying agent composition from being injected into the support layer more than necessary.
  • the present invention allows drilling and injection work to be performed while accurately checking the length of the injection pipe inserted into the ground, so that the shape of the structure formed in the ground can be accurately constructed according to intention.
  • the solidifying agent composition injected in the present invention is made by recycling various industrial by-products, and when compared to existing Portland cement reinforcement materials, it can suppress the occurrence of environmental pollution problems and reduce construction costs by reducing manufacturing costs. It has the effect of reducing
  • the solidifying agent composition injected in the present invention includes a polymer synthesized from phenoxyethanol (PE) and isopropylamine (IPA), and has the effect of improving grinding ability by phenoxyethanol and isopropylamine.
  • PE phenoxyethanol
  • IPA isopropylamine
  • the water cement ratio (W/C) can be maintained at 50 to 70% by weight, so the content of the solidifying agent composition can be increased to ensure the strength of the structure, and additional fluidizing agent is added to increase lubricity to improve flow. By ensuring this is done smoothly, the pressure load on the pumping equipment can be minimized.
  • FIG. 1 is a block diagram of a sensor device and a strength measurement device embedded in a structure according to an embodiment of the present invention.
  • Figure 2 is an exemplary diagram of a sensor device according to an embodiment of the present invention.
  • Figure 3 is an exploded perspective view showing some parts of Figure 2 cut away.
  • Figure 4 is a projection perspective view showing the wires included in Figure 2.
  • FIG. 5 is a block diagram showing the configuration of the control module portion of the intensity measurement device according to an embodiment of the present invention.
  • Figure 6 is a flow chart sequentially showing the process of monitoring the strength of the structure according to an embodiment of the present invention.
  • Figure 7 is a schematic illustration for explaining excavation equipment according to an embodiment of the present invention.
  • Figure 8 is a schematic illustration showing the depth sensing unit of the excavation equipment according to the present invention.
  • Figure 9 is a schematic illustration showing a structure constructed in soft ground by the excavation equipment according to an embodiment of the present invention.
  • Deep Cement Mixing is a method of improving soft ground by chemically solidifying it by mixing soft ground with a solidifying agent mainly made of lime, cement, etc., and designing excavation equipment.
  • a penetration step (S1) of penetrating into the ground to a depth a drawing step (S2) of pulling out the excavation equipment again, and the soil of the ground excavated by injecting a solidifying agent composition in at least one of the penetration step or the drawing step. It includes a mixing step (S3) of mixing and a curing step (S4) in which the solidifying agent composition injected and mixed in the mixing step is cured.
  • the penetration step (S1) is a step in which excavation equipment (for example, an auger screw) penetrates the soft ground to be improved to a depth determined in the design.
  • the excavation equipment rotates and excavates the ground to penetrate to the design depth.
  • a drawing step (S2) of pulling out the excavating equipment is performed, and a mixing step (S3) is also performed along with the drawing step. That is, while pulling out the excavation equipment, the solidifying agent composition is injected at high or low pressure through the inside of the excavation equipment and mixed with the soil excavated from the original ground.
  • the sensor device and the strength measurement device are injected together with the solidifying agent composition to embed the sensor device and the strength measurement device inside the structure, thereby enabling efficient real-time evaluation of the strength expression of the structure.
  • the solidifying agent composition to embed the sensor device and the strength measurement device inside the structure, thereby enabling efficient real-time evaluation of the strength expression of the structure.
  • Figure 1 is a block diagram of a sensor device and a strength measuring device embedded in a structure according to an embodiment of the present invention
  • Figure 2 is an exemplary diagram of a sensor device according to an embodiment of the present invention
  • Figure 3 is some parts of Figure 2
  • Figure 4 is a projected perspective view showing the wire included in Figure 2
  • Figure 5 shows the configuration of the control module portion of the strength measuring device according to an embodiment of the present invention.
  • Figure 6 is a flow chart sequentially showing the process of monitoring the strength of the structure according to an embodiment of the present invention.
  • the sensor device 60 is embedded in the structure 10 and can transmit alternating current electrical signals to the structure 10 and receive the resonant frequency and impedance changed by the structure 10.
  • the sensor device 100 may include a sensor housing 110, a piezoelectric sensor 120, and a transmission member 139.
  • the sensor housing 110 may be configured to allow the sensor device and/or the strength measuring device to be embedded within the structure 10 without damage.
  • the sensor housing 110 should have a certain strength to withstand the impact of pouring along with the solidifying agent composition and the weight of the solidifying agent composition accumulating from the upper side, and should have an appropriate weight so as not to sink to the bottom after burial.
  • the sensor housing 110 may be made of a material that is not deformed by heat generated during curing of the solidifying agent composition and does not react with the solidifying agent composition.
  • the piezoelectric sensor 120 is installed inside the sensor housing 110 to receive alternating current electrical signals and transmit them to the structure 10, and can receive the resonant frequency and impedance changed by the structure 10.
  • a plurality of piezoelectric sensors 120 may be attached to the transmission member 130, and when formed in two pieces, they may be formed at both ends.
  • the piezoelectric sensor 120 may be installed divided into a piezoelectric sensor that receives an alternating current electric signal and a piezoelectric sensor that receives a changed resonance frequency and impedance.
  • an alternating current electrical signal can be applied or a changed resonance frequency and impedance can be transmitted from one piezoelectric sensor 120.
  • the AC electrical signal consists of periodic waves, and the periodic waves may include one or more of a sine wave, a square wave, a triangle wave, and a sawtooth wave.
  • the transmission member 130 may be equipped with a piezoelectric sensor 120 to transmit the resonance frequency and impedance to the structure 10.
  • the transmission member 130 can receive an alternating current electrical signal from the piezoelectric sensor 120, transmit it to the sensor housing 110, and receive the returned changed resonance frequency and impedance from the sensor housing 110 and transmit it to the piezoelectric sensor 120. It is preferable that it is formed of a material that is available.
  • the strength measuring device 200 is a device built into the sensor device 100 or connected wired or wirelessly to measure the strength of the structure 10, and includes an alternating current electrical signal generator 210, a control It may include a module unit 220 and a power supply unit 230.
  • the alternating current electrical signal generator 210 can generate an alternating current electrical signal of a specific waveform with a frequency in a predetermined frequency band.
  • the AC electrical signal generator 210 may generate an AC electrical signal composed of periodic waves including one or more of sine waves, square waves, triangle waves, and sawtooth waves.
  • the control module unit 220 controls the AC electric signal generator 210 to generate an AC electric signal of a specific waveform with a frequency in a predetermined frequency band, and applies the generated AC electric signal to the piezoelectric sensor 120.
  • intensity data can be calculated by measuring the change in physical pressure applied to the piezoelectric sensor 120 based on the alternating current electric signal applied to the piezoelectric sensor 120.
  • the power unit 230 can supply necessary power to the control module unit 220.
  • the power unit 230 may be composed of a replaceable battery or a rechargeable battery. It is desirable that the power supply unit 230 supplies power to the control module unit 220 for a period exceeding 28 days, reflecting the quality control of concrete, which is generally performed based on the strength of 28 days of standard curing. It is not limited.
  • the strength measuring device 200 may be provided with a connection portion consisting of a connection port or connection cable that is electrically connected to the piezoelectric sensor 120 of the sensor device 100.
  • the intensity measuring device 20 is preferably accommodated inside the sensor housing 110 of the sensor device 100 and closely connected to the piezoelectric sensor 120, but is not limited to this.
  • the strength measuring device 200 may be provided with a separate device housing that accommodates the above configuration and protects it.
  • the device housing is configured to have the above-described components installed inside, and can be manufactured in a small size with a handle for mobility and portability, and a portion of the device housing can be opened, closed, or divided for maintenance of the internal components. It can be configured.
  • the sensor housing 110 may include an upper sensor housing 1101 and a lower sensor housing 1102.
  • the upper sensor housing 1101 is composed of a disk-shaped head portion 1101-1 and a column-shaped body portion 1101-2, and the outer surface of the body portion 1101-2
  • the transmission member 130 may be connected to be wrapped in a spiral shape.
  • the lower sensor housing 1102 may be formed in a cylindrical shape with an open top so that the upper sensor housing 1101 can be inserted.
  • the lower sensor housing 1102 may have a coupling groove 1102-1 formed on its inner peripheral surface.
  • the coupling groove 1102-1 may be formed in a spiral shape so that the transmission member 130 is inserted and coupled by rotation of the upper sensor housing 1101.
  • the transmission member 130 is formed in a bar shape, but may be formed in a spiral shape along the outer peripheral surface of the body portion 1101-2 of the upper sensor housing 1101.
  • the transmission member 130 is preferably formed to have an appropriate width so that the piezoelectric sensor 120 can be attached to the upper and lower surfaces. Additionally, the transmission member 130 may be formed with a strength that allows it to be inserted into the coupling groove 1102-1 of the lower sensor housing 1102.
  • the sensor device 100 receives AC electrical signals wirelessly, but as shown in FIG. 4, a wire E is installed to penetrate the upper sensor housing 1101 in the vertical direction to apply AC electrical signals by wire. You can receive it. At this time, the wire E may be accommodated in the body portion 1101-2 of the upper sensor housing 1101 and connected to the piezoelectric sensor 120.
  • the sensor device 120 may be installed in a state completely embedded in the structure 10, or may be installed in the structure 10 with the upper sensor housing 1101 exposed.
  • the upper sensor housing 1101 of the sensor device 100 where the signal is unstable or an abnormality is found is separated from the lower sensor housing 1102 to check the condition. , can be reinstalled after repair.
  • the sensor device 100 may inject a plurality of solidifying agent compositions into the structure.
  • the present invention may further include a temperature sensor, a wired and wireless communication module unit, a display unit, and a GPS module unit.
  • the temperature sensor may be installed on the outer surface of the sensor device 100 or the intensity measurement device 200 to detect the surrounding temperature.
  • the piezoelectric sensor 120 has the property of slightly changing the resonance frequency and impedance depending on the temperature, such as heat generated during the curing process of the solidifying agent composition, or temperature of the structure due to changes in external air temperature after curing is completed. The change in causes the resonance frequency and impedance of the piezoelectric sensor 120 to change regardless of the pressure of the structure. There is a problem that changes in the resonance frequency and impedance of the piezoelectric sensor 120 caused by changes in the temperature of the structure may be incorrectly recognized as changes in the pressure of the structure, or may cause measurement errors in measuring the pressure of the structure. .
  • the temperature sensor be located as close to the piezoelectric sensor 120 as possible so that the temperature around the piezoelectric sensor 120 is measured when measuring the resonance frequency and impedance of the piezoelectric sensor 120, but is limited to this. I don't do it.
  • the wired/wireless communication module may be provided in the sensor device 100 or the intensity measurement device 200 to transmit intensity data to an external upper processing device.
  • the wired and wireless communication module unit can transmit pressure change data measuring the change in physical pressure applied to the piezoelectric sensor based on the digital signal of the resonance frequency and impedance change of the piezoelectric sensor 120 to an external upper processing device. Accordingly, the external upper processing device can derive the intensity based on the transmitted pressure change data.
  • the external upper processing device may be provided in various forms such as a computer, server, or cloud, and any processing device used in the technical field of the present invention can be used.
  • the display unit can display intensity data so that the user can immediately check the intensity with the naked eye.
  • the display unit can use any device that can transmit intensity data with high visibility.
  • the GPS module unit is provided in the sensor device 100 or the intensity measurement device 200, and can transmit the location information of the piezoelectric sensor 120 to an external upper processing device.
  • the control module unit 220 includes an AC electrical signal control unit 221, a frequency-impedance detection unit 222, a pressure change measurement unit 223, and a frequency-impedance correction unit 224. , it may include a signal amplification unit 225, a low-pass filter unit 226, an analog-to-digital converter unit 227, and an intensity calculation unit 228.
  • the alternating current electrical signal control unit 221 can control the alternating current electrical signal generated by the alternating current electrical signal generator 210 so that it is applied to the piezoelectric sensor 120.
  • the AC electrical signal consists of periodic waves, and the periodic waves may include one or more of a sine wave, a square wave, a triangle wave, and a sawtooth wave. Most preferably, it is best to use a sine wave with a frequency range from low to high frequencies.
  • the alternating current electrical signal control unit 221 can control the frequency and generation time of the alternating current electrical signal according to the frequency characteristics of the piezoelectric sensor. For example, the AC electrical signal control unit 221 may control the AC electrical signal generator 210 to generate a sine wave of 5 KHz to 100 KHz for 1 second.
  • the frequency-impedance detection unit 222 can detect changes in the resonance frequency and impedance of the piezoelectric sensor 120 according to the frequency of the alternating current electric signal applied to the piezoelectric sensor 120.
  • the pressure change measurement unit 223 can measure the change in physical pressure applied to the piezoelectric sensor based on the change in the resonance frequency and impedance of the piezoelectric sensor 120 detected by the frequency-impedance detection unit 222.
  • the frequency-impedance correction unit 224 detects the resonance frequency and impedance of the piezoelectric sensor 120 in the frequency-impedance detection unit 222, the resonance frequency and impedance values detected based on the temperature detected by the temperature sensor Measurement error can be minimized by correcting at least one of them.
  • the frequency-impedance correction unit 224 can obtain the corrected resonance frequency and corrected impedance through Equations 1 and 2 below.
  • f corrected resonance frequency
  • z corrected impedance
  • f1 measured resonance frequency
  • z1 measured impedance
  • A temperature characteristic coefficient of piezoelectric sensor 1
  • C temperature characteristic coefficient of piezoelectric sensor 3
  • B Temperature characteristic coefficient of the piezoelectric sensor 2
  • D Temperature characteristic coefficient of the piezoelectric sensor 4
  • Tc Measured current temperature
  • Tref Reference temperature
  • A, B, C, D and Tref are the temperature characteristic test for the piezoelectric sensor. constant value obtained through
  • A, B, C, D, and Tref are different depending on the piezoelectric sensor used, and may be data obtained through a temperature characteristic experiment for the corresponding piezoelectric sensor.
  • This correction of resonance frequency and impedance is based on the fact that changes in the temperature of the structure due to changes in external temperature cause changes in the resonance frequency and impedance of the piezoelectric sensor regardless of the pressure of the structure.
  • the signal amplifier 225 can amplify the size of the electric signal according to changes in the resonance frequency and impedance of the piezoelectric sensor 120.
  • the low-pass filter unit 226 removes the AC electric signal generated from the AC electric signal generator 210 among the electric signals output from the signal amplifier 225 through a low pass filter, and the piezoelectric sensor 120 ) can only pass electrical signals according to the resonance frequency and impedance change.
  • the analog-to-digital converter unit 227 can convert an analog electrical signal according to changes in the resonance frequency and impedance of the piezoelectric sensor 120, which is filtered and output through the low-pass filter unit 226, into a digital signal and output it.
  • the intensity calculation unit 228 measures pressure change data, which is the change in physical pressure applied to the piezoelectric sensor 120, based on the digital signal of the resonance frequency and impedance change of the piezoelectric sensor 120, and calculates pressure change data based on the pressure change data. You can calculate and calculate intensity data.
  • the resonance frequency In a state where there is no change in intensity, the resonance frequency has a constant value.
  • the strength of a material changes, the resonance frequency value changes, and this change value appears differently for each material.
  • the strength test is initially performed using samples extracted from the structure, and the resonance frequency at the same age is matched 1:1 with the corresponding strength value to determine the strength.
  • the intensity according to the change in peak frequency (resonant frequency) that is measured later is calculated.
  • the strength of the same material can be measured based on a reference value.
  • the compressive strength test using a universal testing machine (UTM), the Marshall test method, and a non-destructive testing method using ultrasonic waves can be used as a strength test method for the sample.
  • Monitoring the strength of the structure 10 includes an AC electrical signal generation step (S10), an AC electrical signal application step (S20), a frequency-impedance reception step (S30), a frequency-impedance detection step (S40), and a pressure change measurement step ( This can be done through S50).
  • the step of generating an alternating current electrical signal is a step of generating an alternating current electrical signal of a specific waveform having a frequency in a predetermined frequency band.
  • the AC electrical signal consists of periodic waves, and the periodic waves may include one or more of a sine wave, a square wave, a triangle wave, and a sawtooth wave. Most preferably, it is best to use a sine wave with a frequency range from low to high frequencies.
  • the alternating current electrical signal generation step (S10) consists of sequentially generating alternating current electrical signals within a certain period of time. Specifically, the frequency and generation time of the alternating current electrical signal generated in the alternating current electrical signal generation step (S10) are determined according to the frequency characteristics of the associated piezoelectric sensor 120. For example, the AC electrical signal generation step (S10) consists of generating a sine wave from 5 KHz to 100 KHz for 1 second.
  • the step of generating an alternating current electrical signal is a step of generating an alternating current electrical signal by the alternating current electrical signal generator 210 provided in the intensity measuring device 200.
  • the AC electric signal application step (S20) is a step of controlling the generated AC electric signal and applying it to the piezoelectric sensor 120 for a certain period of time.
  • the AC electric signal is applied to the piezoelectric sensor 120 for a certain period of time.
  • This is a step in which the electrical signal generator 210 generates and applies an alternating current electrical signal set according to the frequency characteristics of the piezoelectric sensor 120.
  • the frequency-impedance receiving step (S30) transmits the alternating current electric signal applied to the piezoelectric sensor 120 to the structure 10 through the transmission member 130 and the sensor housing 110 and transmits the resonance changed by the structure 10. This is the stage where frequency and impedance are transmitted.
  • the frequency-impedance detection step (S40) is a step of detecting an electric signal generated by a change in the resonance frequency and impedance of the piezoelectric sensor 120 according to the frequency of the alternating current electric signal applied to the piezoelectric sensor 120.
  • the frequency-impedance detection step (S40) is a step of detecting the resonance frequency and impedance generated in the piezoelectric sensor by the frequency of the AC electric signal applied in the AC electric signal application step (S20).
  • the resonance frequency is the natural resonance frequency
  • the impedance may be the resonance frequency and the impedance value.
  • the pressure change measurement step (S50) is a step of measuring the intensity electric signal according to the change in the physical pressure applied to the piezoelectric sensor 120 based on the detected change in the resonance frequency and impedance of the piezoelectric sensor 120.
  • the pressure change measurement step (S50) is transmitted to an external upper processing device through the wired or wireless communication module unit so that the upper processing device calculates the intensity data based on the pressure change data, or the intensity data is calculated based on the pressure change data through the intensity calculation unit 228.
  • This may be a step in which intensity data calculated from pressure change data is transmitted to an external upper processing device through a wired or wireless communication module.
  • the external upper processing device may be provided in various forms such as a computer, server, or cloud, and any processing device used in the technical field of the present invention can be used.
  • the outer peripheral surface of the sensor housing 110 according to the present invention may be coated with an elastic organic material so that it can be stably injected into soft ground and embedded within the structure while preventing damage to the components mounted therein. .
  • the elastic organic material consists of 25 to 80% by weight of polydimethylsiloxane and 20 to 75% by weight of silicone rubber, more preferably 75% by weight of polydimethylsiloxane and 25% by weight of silicone rubber. It's good that it happens.
  • the polydimethylsiloxane is a transparent material with a molecular weight of 16238 and a melting and boiling point of -40 to 50°C and 205°C, respectively. It is an elastomer with low surface energy and permeability to various liquids and vapors. )am.
  • the polydimethylsiloxane has excellent step coverage, can stably adhere to the outer peripheral surface of the casing, and has low interfacial free energy.
  • the elastic modulus is very low at about 1 to 10 MPa, which has the advantage of being flexible and adhesive and having a surface energy of only about 25 mN/m, but it is difficult to manufacture high-aspect-ratio structures. Silicone rubber is added to make up for the shortcomings.
  • the silicone rubber is a rubber elastomer that is cross-linked by mixing highly polymerized straight chain diorganopolysiloxane with finely divided silica as a reinforcing agent. It has excellent weather resistance and electrical properties, so it can be used at -50 ⁇ 200°C. Even if left at 250°C for 3 days, the change in strength or elongation can be maintained within 10%, and it does not lose rubber elasticity even at -45°C. Therefore, it is used as a special material for sealing aircraft windows, in places that require water repellency, or in places that generate heat, and is widely used as the inner part of rubber rollers, packing materials, and electrical insulation materials. .
  • the present invention applies and coats the outer peripheral surface of the sensor housing 110 with an elastic organic material made from polydimethylsiloxane and silicone rubber, which has these characteristics, thereby preventing damage to the components inside the sensor housing 110 and making it stable on soft ground. It can be injected as .
  • the deep mixing method according to the present invention can provide the function of preventing the solidifying agent composition from being injected into soft ground more than necessary.
  • the excavation is performed to excavate the ground and penetrate to the design depth.
  • This is a method of injecting a solidifying agent composition through excavation equipment while pulling out the equipment, allowing it to mix with the soil excavated from the original ground.
  • the conventionally disclosed excavating equipment is not equipped with a separate technical configuration for controlling the diameter of the drilling hole when penetrating to the design depth while excavating the ground, and thus is used to reinforce the strength of the bulb, that is, the soft ground, according to various types of soft ground.
  • the soft ground According to various types of soft ground.
  • FIGS 7 and 8 are schematic illustrations showing an excavation equipment 300 according to an embodiment of the present invention to solve the above-described problem, wherein the excavation equipment 300 includes an injection pipe 310 and the injection It may include an excavation part 320 and a stirring part 330 arranged in a direction perpendicular to the pipe, and a depth sensing part 340 provided on one upper side of the injection pipe.
  • the excavation equipment 300 includes an injection pipe 310 and the injection It may include an excavation part 320 and a stirring part 330 arranged in a direction perpendicular to the pipe, and a depth sensing part 340 provided on one upper side of the injection pipe.
  • the injection pipe 310 is a pipe body of a predetermined length that is rotated by the operation of a driving unit (not shown) and is inserted vertically into the ground.
  • the injection pipe 310 of this embodiment is installed to be connected to the driving unit of heavy equipment and is discharged from the ground.
  • a soft ground improvement method is performed in which a perforated hole is formed into the ground and a solidifying agent composition is injected through the injection pipe 310 to form a structure inside the soft ground.
  • the excavation unit 320 is provided with a plurality of bit members 324 to excavate the ground, and is arranged in a plurality of upper and lower stages along the injection pipe 310, and includes a soft layer 21 of the soft ground measured before the excavation operation, and Centered around the boundary between the support layers 20, it is formed to be longer (larger) from the bottom to the top to construct a relatively large drilling hole in the soft layer, and a relatively large excavation part 320 among the excavation parts 320 is a support layer ( The drilling operation is performed by adjusting the depth at which the injection tube 310 is inserted while checking the depth sensing unit 340 to prevent insertion into the hole 20).
  • the excavation unit 320 includes a first excavation stand 321 provided at the lower end of the injection pipe 310 and a bit member 324 installed, and a first excavation stand 321 on the injection pipe.
  • a second excavator 322 is disposed above the first excavator and has a bit member 324 installed thereon, and has a longer length than the first excavator, and is disposed above the second excavator on the injection pipe and has a bit member 324.
  • the stirring unit 330 is arranged in a direction perpendicular to the injection pipe 310, and is arranged in multiple stages up and down the injection pipe 310, but is placed higher than the excavation unit 320 to prevent the ground pulverized by the excavation unit. It provides the function of mixing the solidifying agent composition and the pulverized ground while stirring.
  • the stirring unit 330 is installed between the first excavation platform 321 and the second excavation platform 322 installed in the injection pipe 310, and the first excavation platform 322
  • a third agitation table 333 is installed on the upper side of the third excavation table installed on the injection pipe 310 and mixes the ground pulverized by the third excavation stand 323 and the solidifying agent composition discharged from the injection pipe 310.
  • the structure of the inside of the ground is confirmed by the support layer 20, the soft layer 21, the super soft layer 22, etc. through ground inspection, and the first excavation platform 321 to the third excavation platform ( 323) and the first stirring table 331 to the third stirring table 333 are installed in the injection pipe 310, and drilling is performed to form a support layer 20, a soft layer 21, and a super soft layer as shown in FIG. 9.
  • drilling holes with larger diameters are constructed in stages.
  • installation of the third excavation stand 323 and the third stirring stand 333 may be omitted.
  • the present invention is characterized in that a depth sensing unit 340 is installed on one upper side of the injection tube.
  • the depth detection unit 340 is used to visually check the insertion depth when the injection pipe 310 is inserted into the ground and to prevent a relatively long excavation part among the plurality of excavation parts from being inserted into the support layer.
  • the position of the indicator bar 343 is determined and installed before the start of the excavation work, and the position where the indicator bar is installed is determined by adding the depth of the soft layer and the depth of the drilling hole formed in the support layer to determine the insertion depth. It is preferable that the position is moved upward by the insertion depth from the bottom of the tube.
  • the drilling operation is stopped just before the display bar 343 is lowered to the ground and inserted into the ground, and the injection pipe ( While the solidifying agent composition is injected through 310), the injection pipe 310 is pulled out to the outside of the ground, and the reinforcing material injection operation is performed.
  • the solidifying agent composition discharged from the injection pipe 310 is mixed with the soil pulverized by the stirring unit 330 and hardened to form the structure 10.
  • the depth sensing unit 340 of this embodiment may further include an interference prevention unit 350 that prevents the display bar 343 from interfering with the ground when the display bar 343 is inserted into the ground.
  • the interference prevention unit 350 is installed on a hinge axis 351 installed in the center of the display bar 343, and is installed on the hinge axis 351 and moves the display bar 343 in one direction. It may include an elastic member 352 that provides elastic force to rotate.
  • the display bar 343 is made up of two or more bars rotatably connected, and a hinge axis 351 is installed at a connection portion that rotatably connects the plurality of bars, and each hinge axis (
  • An elastic member 352 made of a torsion spring is installed at 351) to provide an elastic force to rotate the bar installed at the outer end downward, upward, or up and down.
  • extension parts protruding laterally are formed at both ends of the first coupling ring 341 and the second coupling ring 342, and the rotational movement of the display bar 343 is provided at the bottom of the extension parts disposed opposite to each other.
  • a stopper that limits the 343) provides an elastic force to rotate the stopper direction.
  • the display bar 343 can be returned to its original state by the restoring force of the elastic member 352.
  • the stopper may be omitted, and a pair of torsion springs may be installed simultaneously on one hinge axis 351 to provide elastic force to rotate the display bar 343 upward and downward.
  • the pair of torsion springs The display bar 343 can be arranged to extend laterally from the injection pipe 310 due to the two-way elastic force provided by the torsion spring, and when the injection pipe 310 is inserted into the ground, the display bar 343 is positioned at the upper side. When the injection pipe 310 is discharged to the outside of the ground, the display bar 343 rotates downward to prevent interference.
  • the solidifying agent composition injected in the mixing step (S3) is a mixture of blast furnace slag fine powder, fly ash, crude steel cement, and a polymer synthesized from phenoxyethanol and isopropylamine. It can be created.
  • the blast furnace slag fine powder is an industrial by-product generated during the production of pig iron in a steel mill and is a suspended solid melted at high temperature combined with nitrous aluminum oxide (Al 2 O 3 ) mixed with impurities of iron ore.
  • the blast furnace slag fine powder has a fineness distribution of 3,000 to 10,000 cm 2 /g. Generally, it is used by grinding and classifying it into three types: 4,000cm 2 /g, 8,000cm 2 /g, and 10,000cm 2 /g. Powders with high fineness have better reactivity, but the higher the fineness, the more energy consumption increases exponentially. It becomes expensive.
  • the amount of this blast furnace slag fine powder is preferably 55 to 65% by weight based on the total weight of the composition. If the content of the blast furnace slag fine powder is less than 55% by weight, there is a problem that the strength development of the solidifying agent composition is reduced, and if it exceeds 65% by weight, there is difficulty in securing initial strength, such as the initial reaction and setting time are delayed. , it is undesirable because it reduces economic efficiency.
  • the fly ash is a by-product of fuel incineration in combined heat and power plants and thermal power plants, and is composed of silicon dioxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and ferric oxide (Fe 2 O 3 ).
  • the combined content is more than 70%.
  • the amount of the fly ash is preferably 10 to 20% by weight based on the total weight of the composition. However, if the content is less than 10% by weight, there is a problem that the initial hydration reaction cannot be induced with the desulfurization by-product, and the content is 20% by weight. If the weight percent is exceeded, the expansion effect is large and the unit quantity increases.
  • the early steel cement can be processed to an average powder size of 5,000 to 5,500 cm2/g by ball milling and contains 5 to 10 wt% of fine powder with a particle size of 10 ⁇ m or less.
  • the particle shape of the powder In the case of vertical milling, even if the cement particles are ground to an average fineness of 5,000 ⁇ 5,500cm2/g, the particle shape of the powder generally has a high slenderness ratio, and such particle shape has a detrimental effect on hydration reaction and fluidity, so it is used for processing using the ball milling method. It is desirable. In addition, during ball milling, the particle size distribution of the powder appears wider than that of vertical milling, so even if the average powder size is at the same level, the yield of fine powder with a particle size of 10 ⁇ m or less can be increased. Accordingly, in the present invention, the high-fine powder with a particle size of 10 ⁇ m or less is contained in 5 to 10% by weight of the early strength cement, so that the high-fine powder can serve as a seed for developing early strength.
  • phenoxyethanol of the following formula (1) is a colorless viscous liquid and is classified as a monohydric alcohol, and is added to the polymer structure to improve grinding ability.
  • Isopropylamine of the following formula (2) is a transparent, colorless liquid with an ammonia odor, is a weak base, has a density of 722 kg/m3 and a molecular weight of 5911026 g/mol.
  • the isopropylamine inhibits the formation of the blast furnace slag glassy film itself, slows down the reaction rate, improves compressive strength by binding to the formed film to form a water channel, and improves durability by forming a dense structure. It provides the desired effect.
  • the polymer is synthesized through an acid catalyst at 30° C. with the phenoxyethanol and isopropylamine in a molar ratio of 9 to 99:01 to 1.
  • the amount of the above polymer is preferably 2 to 5% by weight based on the total weight of the composition. If the content is less than 2% by weight, the effect of improving grinding ability and compressive strength cannot be expected due to the insufficient content, and problems of deterioration of constructability due to delayed setting may occur. In addition, if it exceeds 5% by weight, it is not desirable because problems such as initial cracks and reduced long-term strength may occur.
  • the water-cement ratio (W/C) of the solidifying agent composition is mixed and injected at a weight ratio of 50 to 70%. It is important to secure early strength of the solidifying agent composition, but rapid hardening during on-site casting may lead to a decrease in workability and damage to pumping equipment due to pressure loading, so the amount of solidifying agent composition must have an appropriate composition relationship. should be considered a priority. If the water/cement ratio is mixed and injected with a weight ratio of less than 50%, there is a disadvantage in that it is difficult to quickly mix the materials. If the water/cement ratio is mixed and injected with a weight ratio of more than 70%, the development of early strength is delayed due to the relatively large amount of water. This occurs.
  • 01 to 8 parts by weight of a fluidizing agent may be added based on 100 parts by weight of the solidifying agent composition.
  • the fluidizing agent is 80 to 90% by weight of water, 5 to 20% by weight of polycarboxylate polymer, 1 to 5% by weight of gluconic acid-based retardant, and 1 to 5% of sodium lauryl ether sulfate. It may include weight percent.
  • Polycarboxylate polymer acts as a dispersing agent, and serves to disperse various fine powder particles when the solidifying agent composition is pumped by pumping equipment to ensure efficient mixing, injection, and pumping.
  • the amount of polycarboxylate is preferably 5 to 20% by weight based on the total weight of the composition. If it is less than 5% by weight, fluidity cannot be secured due to insufficient content and smooth conveyance may not be achieved. If it exceeds 20% by weight, fluidity may be too high and it may be inappropriate for use as a solidifying agent composition.
  • the gluconic acid-based retardant is added to prevent the hardening agent composition according to the present invention from hardening quickly and hardening inside the pipe when pumped or hardening during actual construction work, and ensuring injectability for a certain period of time. This is to delay rapid hardening by plaster.
  • Sodium gluconate can be used as the gluconic acid-based retardant, and is mixed in an amount of 1 to 5% by weight. If it is less than 1% by weight, workability cannot be maintained due to insufficient content, and if it is mixed in excess of 5% by weight, problems such as reduced strength and workability due to slow curing occur.
  • the sodium lauryl ether sulfate (Sodium Lauryl Ethersulfate) is a dispersant that disperses particles so that mixing, injection, and conveyance can be carried out efficiently.
  • the amount of sodium lauryl ether sulfate is included in the range of 1 to 5% by weight based on the total weight of the composition. If it is less than 1% by weight, no effect can be expected due to insufficient content, and if it exceeds 5% by weight, the fluidity becomes too high and It may be unsuitable for use as a topical composition.
  • the amount of solidifying agent composition can be secured by setting the water cement ratio (W/C) to 50 to 70% by weight, so the effect of improving the strength of the structure can be expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

The present invention relates to a deep cement mixing method and provides a deep cement mixing method including a strength monitoring function of a structure for reinforcing soft ground, by which the strength of a structure constructed on soft ground at all times can be real-time monitored on the basis of high reliability, to detect abnormal action of the structure and to enable rapid action when the abnormal action is detected.

Description

연약지반 보강을 위한 구조체의 강도 모니터링 기능을 포함하는 심층혼합공법Deep mixing method including structural strength monitoring function for reinforcing soft ground
본 발명은 굴착장비를 설계심도까지 지중에 관입하는 관입단계와, 상기 굴착장비를 다시 인발하는 인발단계와, 상기 관입단계 또는 인발단계 중 적어도 하나의 단계에서 고화제 조성물를 주입하여 굴착된 연약지반과 혼합하는 믹싱단계와, 상기 믹싱단계에서 주입 및 혼합된 고화제 조성물이 경화되면서 연약지반을 보강하는 구조체가 형성되는 양생단계를 포함하는 심층혼합공법에 있어서, 상기 믹싱단계는, 상기 구조체에 매립되어 상기 구조체에 교류전기신호를 전달하고 상기 구조체에 의해 변화된 공진주파수 및 임피던스를 전달받는 센서장치 및 상기 센서장치와 연결되어 상기 수화반응물질 구조체의 강도를 측정하는 강도측정장치;가 상기 고화제 조성물과 함께 주입되어, 상기 연약지반의 보강을 위한 구조체의 강도를 높은 신뢰성을 바탕으로 실시간 상시 모니터링하여 상기 구조체의 이상 거동을 감지할 수 있고, 이상 거동 감지시 신속한조치가 이루어질 수 있도록 한 것을 특징으로 하는 연약지반 보강을 위한 구조체의 강도 모니터링 기능을 포함하는 심층혼합공법에 관한 것이다. The present invention includes a penetration step of penetrating the excavation equipment into the ground to the design depth, a drawing step of pulling out the excavation equipment again, and a soft ground excavated by injecting a solidifying agent composition in at least one of the penetration step or the drawing step. In the deep mixing method including a mixing step and a curing step in which the solidifying agent composition injected and mixed in the mixing step is hardened to form a structure that reinforces the soft ground, the mixing step is embedded in the structure. A sensor device that transmits an alternating current electrical signal to the structure and receives a resonance frequency and impedance changed by the structure, and a strength measuring device connected to the sensor device to measure the strength of the hydration reaction material structure; the solidifying agent composition and Injected together, the strength of the structure for reinforcing the soft ground can be constantly monitored in real time with high reliability to detect abnormal behavior of the structure, and rapid action can be taken when abnormal behavior is detected. This relates to a deep mixing method that includes a structural strength monitoring function for reinforcing soft ground.
일반적으로 해안습지나 하천, 호수, 항만 등의 간척 또는 준설매립지와 같은 연약한 점토나 실트질 또는 고유기질토로 이루어져 있는 연약지반은 고함수비이고, 일축압축강도가 작아서 상부에 구조물을 시공할 경우 안정과 침하에 문제를 일으키기 때문에 다양한 방법으로 지반의 공학적인 성질을 개선시켜야만 한다.In general, soft ground made of soft clay, silt, or intrinsic matrix soil, such as reclamation or dredging landfills in coastal wetlands, rivers, lakes, ports, etc., has a high water content ratio and low uniaxial compressive strength, so it is not stable when constructing a structure on top. Because it causes problems with subsidence, the engineering properties of the ground must be improved through various methods.
연약지반 개량시 대규모 연약지반에서는 연직 배수재를 이용한 샌드 드레인 공법, 또는 페이퍼 드레인 공법 등이 주로 이용되어 왔는데, 이러한 공법은 시공기간이 장시간 소요되며, 시공후 안정성 확보가 용이하지 못하고 깊은 심도의 연약지반에는 적용하기 곤란하다는 문제점이 있다.When improving soft ground, the sand drain method using vertical drainage material or the paper drain method has been mainly used in large-scale soft ground. However, these methods require a long construction period, and it is not easy to secure stability after construction, and it is difficult to secure deep soft ground. There is a problem that it is difficult to apply.
이러한 문제점을 개선하기 위해 1990년대부터 시멘트를 주로한 분말상태 또는 현탁액상태의 화학적 안정재를 원위치 지반에 투입 혼합하여 연약점성토 지반을 주상 또는 괴상으로 전면적으로 개량하는 심층혼합처리공법이 주로 이용되고 있다.In order to improve these problems, since the 1990s, a deep mixing treatment method has been mainly used to completely improve the soft cohesive soil ground into a columnar or blocky form by injecting and mixing chemical stabilizers in the form of powder or suspension, mainly cement, into the in-situ ground.
심층혼합공법(Deep Cement Mixing, DCM)이라 함은 시멘트 또는 석회를 주원료 하는 고화제를 지중의 연약지반을 혼합하여 화학적으로 고체화시켜 연약지반을 개량하기 위한 기술로서, 특히, 연약지반의 토양과 고화제가 혼합되면서 발생하는 수화반응 또는 포졸란(Pozzolan) 반응을 통해서 에트린자이트의 생성을 활성화하여 물리적, 화학적으로 고형화된 구조체를 형성함으로써 연약지반을 강화시키는 공법이다. Deep Cement Mixing (DCM) is a technology to improve soft ground by chemically solidifying the soft ground in the ground by mixing a solidifying agent mainly made of cement or lime. In particular, it is a technology to improve soft ground. This is a method of strengthening soft ground by activating the production of ettringite through a hydration reaction or Pozzolan reaction that occurs when chemicals are mixed to form a physically and chemically solidified structure.
이러한, 심층혼합공법은 크게 관입 분출식과 인발 분출식으로 구분될 수 있으며, 관입분출식은 하부방향으로 고화제가 분사될 수 있도록 분사통로를 형성한 오거 케이싱을 지중에 관입하는 공정과, 상기 오거 케이싱의 회전으로 관입과 동시에 고화제를 주입하면서 연약지반과 혼합하는 공정과, 설계 심도까지 관입한 오거 케이싱을 회전시켜 상부방향으로 인발하면서 동시에 연약지반과 고화제를 혼합하는 공정으로 이루어진다. 반면에 인발 분출식은 하부방향으로 고화제가 분사될 수 있도록 분사통로를 형성한 오거 케이싱을 지중에 관입하는 공정과, 설계 심도까지 관입한 오거 케이싱을 회전시켜 상부방향으로 인발하는 공정과, 상기 오거 케이싱의 인발과 동시에 고화제를 주입하면서 연약지반과 혼합하는 공정으로 이루어진다.This deep mixing method can be broadly divided into a penetration injection type and a drawing injection type. The penetration injection type involves penetrating into the ground an auger casing that forms a spray passage so that the solidifying agent can be sprayed in the downward direction, and the auger casing. It consists of a process of injecting the solidifying agent and mixing it with the soft ground at the same time as it penetrates by rotation, and a process of mixing the soft ground and the solidifying agent by rotating the auger casing that has penetrated to the designed depth and pulling it upward. On the other hand, the drawing and jetting method includes a process of penetrating an auger casing with a spray passage so that the solidifying agent can be sprayed downward into the ground, rotating the auger casing penetrated to the designed depth and drawing it upward, and pulling the auger casing upward. It consists of a process of drawing out the casing and simultaneously injecting a solidifying agent and mixing it with the soft ground.
한편, 상기 연약지반에 보강된 구조체에 있어서 강도는 안정성을 평가하는 기본적인 요소로서 소요의 강도를 확보하고 균질성을 유지하는 것이 매우 중요하다. Meanwhile, in the structure reinforced on soft ground, strength is a basic factor in evaluating stability, and it is very important to secure the required strength and maintain homogeneity.
일반적으로 콘크리트의 강도는 품질관리상 가장 중요하게 다루어지고 있으나, 콘크리트의 품질관리는 주로 표준양생한 재령 28일 강도를 기준으로 하고 있기 때문에 공사의 진행속도와 강도평가시기 사이에는 시간적 차이가 생기므로 이미 경화한 콘크리트의 품질시험 결과는 공사에 신속하게 반영할 수 없으며, 소요의 강도가 과부족일 경우 안전의 문제뿐만이 아니라 경제적·행정적 손실을 부담해야 하는 등 강도상의 문제가 발생할 때에는 처리가 곤란하게 된다.In general, the strength of concrete is considered the most important in quality control, but since the quality control of concrete is mainly based on the strength of 28 days after standard curing, there is a time difference between the progress of construction and the time of strength evaluation. The quality test results of already hardened concrete cannot be quickly reflected in construction, and if the required strength is excessive or insufficient, it is difficult to handle when strength problems occur, such as having to bear not only safety issues but also economic and administrative losses. .
콘크리트 양생 강도 추정 기법은 적산온도를 이용한 방법이나 슈미트 해머를 이용한 방법을 사용하고 있는데, 이는 콘크리트 구조물 내부를 직접적으로 측정하는 것이 아니라 정확한 강도 추정이 어렵고 실시간으로 강도 추정을 하기 어려운 문제점이 있으며, 계측 지점의 접근성이 어려운 경우 측정에 어려움이 있는 다른 문제점이 있다. 또한, 적산온도를 이용하는 방법 이외에도, 기존 현장 타설 콘크리트의 발현 강도 평가와 관련한 대부분의 연구는 전기 화학적 촉진법, 그리고 각종 비파괴 시험법 등을 대상으로 하고 있다. 또한, 수학적인 모델링에 의해 제안된 이론식 뿐만 아니라, 실제 실험을 수행하거나 경험에 근거한 식의 형태로도 제안되고 있는데, 이러한 평가방법은 고가의 장비가 필요하거나 제안된 식 자체가 복잡하여 실무에서 크게 활용되지 못하는 실정이다.The concrete curing strength estimation technique uses a method using integrated temperature or a Schmidt hammer, but this method does not directly measure the inside of the concrete structure, so it is difficult to estimate the strength accurately and has the problem of making it difficult to estimate the strength in real time. Another problem is that measurement is difficult when the branch is inaccessible. In addition, in addition to methods using integrated temperature, most studies related to the evaluation of the developed strength of existing cast-in-place concrete target electrochemical acceleration methods and various non-destructive testing methods. In addition, in addition to theoretical equations proposed through mathematical modeling, they are also proposed in the form of equations based on actual experiments or experience. However, these evaluation methods require expensive equipment or the proposed equation itself is complicated, so it is widely used in practice. It is currently not being utilized.
다시 말해서, DCM 등의 공법에 의해 연약지반에 형성되는 구조체는 그 구성물인 시멘트의 수화반응에 의해 강도가 서서히 발현된다. 즉, 시간에 따라 강도값이 변하므로 샘플을 취하지 않고서는 정확히 그 강도를 알 수 없는 한계가 있다.In other words, the strength of a structure formed on soft ground through a method such as DCM gradually develops through the hydration reaction of cement, which is its component. In other words, since the intensity value changes with time, there is a limit to not being able to accurately know the intensity without taking a sample.
레미콘 타설 등 시공 당시 공시체를 제작하고, 강도시험을 함으로써 간접적으로 구조물의 강도를 추정할 수 있으나, 해당 구조물의 직접적인 강도를 알 수는 없고, 이에 따라 구조물의 강도는 힘과 변형의 관계곡선으로부터 선형변형의 한계치를 구함으로써 측정하게 되므로, 실제 구조물의 경우, 변형을 주지 않은 상태에서 강도를 알아낸다는 것이 쉽지 않은 한계가 있다. 따라서, 초음파 또는 탄성파를 이용하거나, GPR 등 비파괴 방법에 의해 구조물 등의 강도, 탄성계수 등의 물리적 특징을 추정할 수 있으나, 수화반응 초기의 저강도 상태에서는 이들 방법을 적용하기 어려운 실정이다.The strength of a structure can be estimated indirectly by producing a specimen at the time of construction, such as pouring ready-mixed concrete, and performing a strength test. However, the direct strength of the structure cannot be known. Accordingly, the strength of the structure is linear from the relationship curve between force and deformation. Since it is measured by determining the limit value of deformation, in the case of actual structures, there is a limitation that it is not easy to determine the strength in a state without deformation. Therefore, it is possible to estimate physical characteristics such as strength and elastic modulus of structures using ultrasound or elastic waves or non-destructive methods such as GPR, but it is difficult to apply these methods in the low-strength state at the beginning of the hydration reaction.
본 발명은 상기와 같은 문제점을 해결하기 위하여 발명된 것으로, 현장 타설 고화제의 강도발현 평가를 고려한 효율적인 실시간 상시 계측 모니터링을 통하여 이상 거동을 감지하고, 이상 거동 감지시 신속한 조치를 할 수 있는 심층혼합공법을 제공하는데 그 목적이 있다.The present invention was invented to solve the above problems, and is a deep mixing method that detects abnormal behavior through efficient real-time continuous measurement and monitoring considering the evaluation of the strength development of the cast-in-place solidification agent, and allows prompt action when abnormal behavior is detected. The purpose is to provide public methods.
상기와 같은 목적을 위하여 본 발명은 굴착장비를 설계심도까지 지중에 관입하는 관입단계와, 상기 굴착장비를 다시 인발하는 인발단계와, 상기 관입단계 또는 인발단계 중 적어도 하나의 단계에서 고화제 조성물를 주입하여 굴착된 연약지반과 혼합하는 믹싱단계와, 상기 믹싱단계에서 주입 및 혼합된 고화제 조성물이 경화되면서 연약지반을 보강하는 구조체가 형성되는 양생단계를 포함하는 심층혼합공법에 있어서, 상기 믹싱단계는, 상기 구조체에 매립되어 상기 구조체에 교류전기신호를 전달하고 상기 구조체에 의해 변화된 공진주파수 및 임피던스를 전달받는 센서장치 및 상기 센서장치와 연결되어 상기 수화반응물질 구조체의 강도를 측정하는 강도측정장치;가 상기 고화제 조성물과 함께 주입되어, 상기 연약지반의 보강을 위한 구조체의 강도를 높은 신뢰성을 바탕으로 실시간 상시 모니터링하여 상기 구조체의 이상 거동을 감지할 수 있고, 이상 거동 감지시 신속한조치가 이루어질 수 있도록 한 것을 특징으로 한다. For the above purpose, the present invention injects a solidifying agent composition in at least one of the penetration step of penetrating the excavation equipment into the ground to the design depth, the drawing step of pulling out the excavation equipment again, and the penetration step or the drawing step. In the deep mixing method including a mixing step of mixing with the excavated soft ground, and a curing step in which the solidifying agent composition injected and mixed in the mixing step hardens to form a structure that reinforces the soft ground, the mixing step is , a sensor device embedded in the structure to transmit an alternating current electrical signal to the structure and receive a resonant frequency and impedance changed by the structure, and a strength measurement device connected to the sensor device to measure the strength of the hydration reaction material structure; is injected together with the solidifying agent composition, the strength of the structure for reinforcing the soft ground can be constantly monitored in real time with high reliability to detect abnormal behavior of the structure, and prompt action can be taken when abnormal behavior is detected. It is characterized by being able to do so.
또한, 본 발명에서 상기 센서장치는, 상기 구조체에 파손되지 않게 매립되는 센서 하우징과, 상기 센서 하우징 내부에 설치되어 교류전기신호를 전달받아 상기 구조체에 전달하고 상기 구조체에 의해 변화된 공진주파수 및 임피던스를 전달받는 압전센서와, 상기 압전센서가 부착되어 상기 공진주파수 및 임피던스가 상기 구조체에 전달되도록 하는 전달부재를 포함하며, 상기 강도측정장치는, 소정 주파수 대역의 주파수를 갖는 특정 파형의 교류전기신호를 발생시키는 교류전기신호 발생부와, 상기 교류전기신호 발생부에서 소정 주파수 대역의 주파수를 갖는 특정 파형의 교류전기신호가 발생되도록 제어하고, 발생된 교류전기신호를 상기 압전센서에 인가하며 상기 압전센서로 인가된 교류전기신호에 기반하여 상기 압전센서에 가해진 물리적인 압력의 변화를 측정하여 강도데이터를 산출하는 제어모듈부 및 상기 제어모듈부에 필요 전력을 공급하는 전원부를 포함하는 것을 특징으로 한다. In addition, in the present invention, the sensor device includes a sensor housing that is embedded in the structure so as not to be damaged, and is installed inside the sensor housing to receive an alternating current electrical signal, transmit it to the structure, and detect the resonance frequency and impedance changed by the structure. It includes a piezoelectric sensor that receives the signal, and a transmission member to which the piezoelectric sensor is attached so that the resonance frequency and impedance are transmitted to the structure. An alternating current electrical signal generator that generates an alternating current electrical signal, controls the alternating current electrical signal generator to generate an alternating current electrical signal with a specific waveform having a frequency in a predetermined frequency band, applies the generated alternating current electrical signal to the piezoelectric sensor, and controls the piezoelectric sensor to generate an alternating current electrical signal. It is characterized by comprising a control module unit that calculates intensity data by measuring changes in physical pressure applied to the piezoelectric sensor based on an alternating current electric signal applied to the piezoelectric sensor, and a power supply unit that supplies necessary power to the control module unit.
또한, 본 발명은 상기 센서장치 또는 강도측정장치의 외면에 설치되어 주변 온도를 검출하는 온도센서와; 상기 강도데이터를 외부의 상위 처리장치로 전송하도록 상기 센서장치 또는 강도측정장치에 구비되는 유무선 통신 모듈부와; 상기 강도데이터를 표시하는 디스플레이부; 및 상기 센서장치 또는 강도측정장치에 구비되며, 상기 압전센서의 위치 정보를 외부의 상위 처리장치로 전송하는 GPS 모듈부;를 더 포함하는 것을 특징으로 한다. In addition, the present invention includes a temperature sensor installed on the outer surface of the sensor device or intensity measuring device to detect the surrounding temperature; a wired/wireless communication module provided in the sensor device or intensity measurement device to transmit the intensity data to an external upper processing device; A display unit that displays the intensity data; and a GPS module unit provided in the sensor device or the intensity measuring device and transmitting the location information of the piezoelectric sensor to an external upper processing device.
또한, 본 발명에서 상기 센서 하우징은 내부에 장착된 구성부들의 파손을 방지하면서 연약지반에 안정적으로 주입되어 구조체 내부에 매립될 수 있도록 탄성유기재료에 의해 외주면이 코팅처리되는 것을 특징으로 한다.In addition, in the present invention, the sensor housing is characterized in that its outer peripheral surface is coated with an elastic organic material so that it can be stably injected into soft ground and embedded within the structure while preventing damage to the components mounted therein.
또한, 본 발명에서 상기 탄성유기재료는 폴리디메틸실록세인(Polydimethylsiloxane) 25~80중량% 및 실리콘고무 20~75중량%로 이루어지는 것을 특징으로 한다. In addition, in the present invention, the elastic organic material is characterized in that it consists of 25 to 80% by weight of polydimethylsiloxane and 20 to 75% by weight of silicone rubber.
또한, 본 발명에서 상기 관입단계에서 관입되는 굴착장비는, 구동부의 작동에 의해 회전되며, 지중에 수직으로 삽입되는 소정 길이의 주입관과, 상기 주입관과 직교 방향으로 배치되며 복수개의 비트부재가 마련되어 지면을 굴착하는 것으로, 상기 주입관을 따라 상하 다단으로 복수개로 배치되되 굴착작업 전에 측정되는 지반의 연약층과 지지층 사이의 경계를 중심으로 연약층에 상대적으로 큰 천공홀부를 시공하도록 하부로부터 상부로 갈수록 길게 형성되는 복수개의 굴착부와, 상기 주입관에 상하 다단으로 배치되되 상기 굴착부의 상측에 배치되는 것으로, 주입관과 직교 방향으로 배치되며 상기 굴착부에 의해 분쇄되는 지반을 교반시키면서 보강재와 분쇄된 지반을 혼합시키는 복수개의 교반부 및 상기 주입관이 지중으로 삽입될 때 삽입되는 깊이를 육안으로 확인하여 상기 복수개의 굴착부 중에서 상대적으로 긴 굴착부가 지지층으로 삽입되지 않도록 상기 주입관의 상부 일측에 구비되는 깊이감지부를 포함하여, 상기 연약지반에 천공홀부를 시공할 때에 연약층에는 상대적으로 지름이 큰 천공홀부가 형성되고, 지지층에는 상대적으로 작은 천공홀부가 형성되도록 하여 천공홀부를 따라 지중으로 고화제 조성물이 주입되면서 구근을 형성할 때에 연약층에 상대적으로 지름이 큰 구근을 시공할 수있고, 반대로 지지층에는 상대적으로 지름이 작은 구근을 시공할 수 있어 고화재 조성물이 필요 이상으로 지지층에 주입되는 것을 방지할 수 있도록 한 것을 특징으로 한다. In addition, in the present invention, the excavation equipment penetrated in the penetration step includes an injection pipe of a predetermined length that is rotated by the operation of the driving part and is inserted vertically into the ground, and a plurality of bit members arranged in a direction perpendicular to the injection pipe. It is prepared to excavate the ground, and is arranged in multiple stages up and down along the injection pipe, moving from the bottom to the top to construct relatively large drilling holes in the soft layer centered on the boundary between the soft layer of the ground and the support layer measured before excavation work. A plurality of long excavation parts are arranged in multiple stages up and down the injection pipe, but are disposed on the upper side of the excavation part, and are arranged in a direction perpendicular to the injection pipe, and while agitating the ground pulverized by the excavation part, the reinforcing material and the pulverized When the plurality of stirring parts for mixing the ground and the injection pipe are inserted into the ground, the insertion depth is visually confirmed and provided on one upper side of the injection pipe to prevent the relatively long excavation part among the plurality of excavation parts from being inserted into the support layer. When constructing a drilling hole in the soft ground, a relatively large diameter drilling hole is formed in the soft layer, and a relatively small drilling hole is formed in the support layer, so that the solidifying agent composition flows into the ground along the drilling hole. When forming bulbs by injection, bulbs with a relatively large diameter can be constructed in the soft layer, and conversely, bulbs with a relatively small diameter can be constructed in the support layer, preventing the solidification composition from being injected into the support layer more than necessary. It is characterized by being able to do so.
또한, 본 발명에서 상기 깊이감지부는 상기 주입관에 구비되는 복수 개의 결합홈부 중 어느 하나에 안착되는 제1결합링과, 상기 주입관에 고정되도록 상기 제1결합링과 결합되는 제2결합링과, 상기 제1결합링 및 상기 제2결합링으로부터 돌출되는 표시바를 포함하며, 굴착작업이 시작되기 전에 상기 표시바의 위치를 결정하여 설치하되, 상기 표시바의 위치는 연약층의 깊이와 지지층에 형성되는 천공홀의 깊이를 합하여 삽입 깊이를 결정하여 상기 주입관의 하단으로부터 삽입 깊이만큼 상측으로 이동한 위치에 상기 표시바를 설치함으로써 상기 주입관이 지중으로 삽입되거나 지면으로 인출될 때에 상기 표시바가 변형되거나 파손되는 것을 방지할 수 있도록 한 것을 특징으로 한다. In addition, in the present invention, the depth sensing unit includes a first coupling ring seated in one of a plurality of coupling grooves provided in the injection pipe, and a second coupling ring coupled to the first coupling ring to be fixed to the injection pipe. , It includes an indicator bar protruding from the first coupling ring and the second coupling ring, and the position of the indicator bar is determined and installed before excavation work begins, and the position of the indicator bar is formed at the depth of the soft layer and the support layer. The insertion depth is determined by adding the depth of the perforated hole, and the display bar is installed at a position moved upward by the insertion depth from the bottom of the injection pipe, so that the display bar is deformed or damaged when the injection pipe is inserted into the ground or pulled out to the ground. It is characterized by preventing it from happening.
또한, 본 발명에서 상기 고화제 조성물은, 제철소의 선철 제조시 발생되는 고로슬래그 미분말 55~65 중량%와, 열병합발전소 및 화력발전소의 연료소각시 발생되고 이산화규소(SiO2)와 산화알루미늄(Al2O3) 및 산화제이철(Fe2O3)을 합한 함량이 70% 이상인 플라이애쉬 10~20 중량%와, 조강시멘트 10~20중량%와, 페녹시에탄올과 이소프로필아민이 합성된 중합체 2~5중량%를 혼합하여 조성되되, 물시멘트비(W/C)가 중량비로 50~70%로 배합되어 주입되는 것을 특징으로 한다. In addition, in the present invention, the solidifying agent composition contains 55 to 65% by weight of blast furnace slag fine powder generated during pig iron production at a steel mill, silicon dioxide (SiO 2 ) and aluminum oxide (Al) generated during fuel incineration at a combined heat and power plant and thermal power plant. 2 O 3 ) and ferric oxide (Fe 2 O 3 ) Polymer 2 synthesized from 10 to 20% by weight of fly ash with a combined content of 70% or more, 10 to 20% by weight of early steel cement, phenoxyethanol and isopropylamine It is formulated by mixing ~5% by weight, and is characterized in that the water-cement ratio (W/C) is mixed and injected at a weight ratio of 50-70%.
또한, 본 발명은 상기 고화제 조성물 100중량부에 대하여 유동화제 0.1~8중량부가 첨가되되, 상기 유동화제는 물 80~90중량%와, 폴리카르복실레이트 폴리머(polycarboxylate polymer) 5~20중량%와, 글루콘산계 지연제 1~5중량%와, 로릴 에테르 황산 나트륨(Sodium Lauryl Ethersulfate) 1~5중량%를 포함하는 것을 특징으로 한다.In addition, in the present invention, 0.1 to 8 parts by weight of a fluidizing agent is added to 100 parts by weight of the solidifying agent composition, and the fluidizing agent includes 80 to 90% by weight of water and 5 to 20% by weight of polycarboxylate polymer. It is characterized in that it contains 1 to 5% by weight of a gluconic acid-based retardant and 1 to 5% by weight of sodium lauryl ethersulfate.
상기와 같은 본 발명은 상기 믹싱단계에서 상기 고화제 조성물과 함께 주입되는 센서장치 및 강도측정장치가 구조체에 매립되어, 상기 연약지반의 보강을 위한 구조체의 강도를 높은 신뢰성을 바탕으로 실시간 상시 모니터링하여 상기 구조체의 이상 거동을 감지할 수 있고, 적절한 조치가 신속히 이루어질 수 있도록 할 수 있는 현저한 효과가 있다. In the present invention as described above, a sensor device and a strength measuring device injected together with the solidifying agent composition in the mixing step are embedded in the structure, and the strength of the structure for reinforcing the soft ground is constantly monitored in real time based on high reliability. There is a remarkable effect of being able to detect abnormal behavior of the structure and allowing appropriate measures to be taken quickly.
또한, 본 발명에서 상기 센서장치 및 강도측정장치는 소형으로 제작 가능하여 휴대성과 이동성을 확보할 수 있고, 이에 따라 장소에 구애받지 않고 용이하게 강도를 측정할 수 있는 효과가 있다.In addition, in the present invention, the sensor device and the intensity measuring device can be manufactured in a small size to ensure portability and mobility, and thus have the effect of easily measuring intensity regardless of location.
또한, 본 발명은 탄성유기재료를 상기 센서장치를 구성하는 케이싱의 외주면에 도포하여 코팅처리함으로써 케이싱 내부의 구성품들의 파손을 방지하면서 연약지반에 안정적으로 주입되도록 할 수 있다.In addition, the present invention can prevent damage to components inside the casing and stably inject it into soft ground by coating the outer peripheral surface of the casing constituting the sensor device with an elastic organic material.
또한, 본 발명은 서로 크기가 다른 복수 개의 굴착부 및 교반부를 구비하는 굴착장비를 통해 연약지반에 천공홀부를 시공할 때에 연약층에는 상대적으로 지름이 큰 천공홀부가, 그리고 지지층에는 상대적으로 작은 천공홀부가 형성되도록 할 수 있으며, 이를 통해 고화제 조성물이 필요 이상으로 지지층에 주입되는 것을 방지할 수 있다. In addition, the present invention provides a drilling hole with a relatively large diameter in the soft ground when constructing a drilling hole in soft ground through an excavation equipment having a plurality of excavating parts and agitating parts of different sizes, and a relatively small drilling hole in the support layer. A portion can be formed, and through this, it is possible to prevent the solidifying agent composition from being injected into the support layer more than necessary.
또한, 본 발명은 지중으로 삽입되는 주입관의 길이를 정확히 확인하면서 천공작업 및 주입작업을 진행할 수 있으므로 지중에 형성되는 구조체의 형상을 의도에 따라 정확히 시공할 수 있다. In addition, the present invention allows drilling and injection work to be performed while accurately checking the length of the injection pipe inserted into the ground, so that the shape of the structure formed in the ground can be accurately constructed according to intention.
또한, 본 발명에서 주입되는 고화제 조성물은 각종 산업 부산물을 재활용하여 조성되는 것으로, 기존 포틀랜드 시멘트에 의한 보강재와 비교하였을 때 환경오염의 문제 발생을 억제할 수 있으며, 제조단가 절감을 통해 공사비용을 줄일 수 있는 효과가 있다. In addition, the solidifying agent composition injected in the present invention is made by recycling various industrial by-products, and when compared to existing Portland cement reinforcement materials, it can suppress the occurrence of environmental pollution problems and reduce construction costs by reducing manufacturing costs. It has the effect of reducing
또한, 본 발명에서 주입되는 고화제 조성물은 페녹시에탄올(phenoxyethanol,PE)과 이소프로필아민(isopropylamine, IPA)이 합성된 중합체를 포함하여, 페녹시에탄올에 의한 분쇄능의 향상효과와, 이소프로필아민에 의한 고로슬래그 유리질 피막의 형성 자체를 억제하며, 반응속도를 늦추고, 기형성된 피막에 결합하여 워터채널을 형성하는 작용에 의해 분쇄효율, 압축강도, 특히 초기 압축강도가 높게 증가되는 효과를 얻을 수 있다.In addition, the solidifying agent composition injected in the present invention includes a polymer synthesized from phenoxyethanol (PE) and isopropylamine (IPA), and has the effect of improving grinding ability by phenoxyethanol and isopropylamine. By suppressing the formation of the glassy film of blast furnace slag by amines, slowing down the reaction rate, and forming water channels by binding to the preformed film, the grinding efficiency and compressive strength, especially the initial compressive strength, are greatly increased. You can.
또한, 본 발명은 물시멘트비(W/C)가 중량비로 50~70%로 유지할 수 있으므로 고화제 조성물의 함량을 높일 수 있어 구조체의 강도를 확보할 수 있으며, 유동화제가 더 첨가되어 윤활성을 높여 유동이 원활하게 이루어지도록 함으로써 펌핑 장비의 압송부하를 최소화할 수 있다.In addition, in the present invention, the water cement ratio (W/C) can be maintained at 50 to 70% by weight, so the content of the solidifying agent composition can be increased to ensure the strength of the structure, and additional fluidizing agent is added to increase lubricity to improve flow. By ensuring this is done smoothly, the pressure load on the pumping equipment can be minimized.
도 1은 본 발명의 실시예에 따라 구조체에 매립되는 센서장치 및 강도측정장치의 블록도.1 is a block diagram of a sensor device and a strength measurement device embedded in a structure according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 센서장치의 예시도.Figure 2 is an exemplary diagram of a sensor device according to an embodiment of the present invention.
도 3은 도 2의 일부 부품을 절개한 모습을 도시한 분리사시도.Figure 3 is an exploded perspective view showing some parts of Figure 2 cut away.
도 4는 도 2에서 전선이 포함된 모습을 도시한 투영사시도.Figure 4 is a projection perspective view showing the wires included in Figure 2.
도 5는 본 발명의 실시예에 따른 강도측정장치의 제어모듈부의 구성을 도시한 블럭도.Figure 5 is a block diagram showing the configuration of the control module portion of the intensity measurement device according to an embodiment of the present invention.
도 6은 본 발명의 실시예에 따라 구조체의 강도를 모니터링하는 과정을 순차적으로 나타낸 흐름도.Figure 6 is a flow chart sequentially showing the process of monitoring the strength of the structure according to an embodiment of the present invention.
도 7은 본 발명의 실시예에 따른 굴착장비를 설명하기 위한 개략적인 예시도.Figure 7 is a schematic illustration for explaining excavation equipment according to an embodiment of the present invention.
도 8은 본 발명에 따른 굴착장비의 깊이감지부를 도시한 개략적인 예시도.Figure 8 is a schematic illustration showing the depth sensing unit of the excavation equipment according to the present invention.
도 9는 본 발명의 실시예에 따라 상기 굴착장비에 의해 연약지반에 시공되는 구조체를 도시한 개략적인 예시도.Figure 9 is a schematic illustration showing a structure constructed in soft ground by the excavation equipment according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 연약지반 보강을 위한 구조체의 강도 모니터링 기능을 포함하는 심층혼합공법 대하여 더욱 상세하게 설명하도록 한다. Hereinafter, with reference to the attached drawings, the deep mixing method including the strength monitoring function of the structure for reinforcing soft ground according to a preferred embodiment of the present invention will be described in more detail.
본 발명에서 심층혼합공법(Deep Cement Mixing, DCM)이라 함은 석회, 시멘트 등을 주원료로 하는 고화제와 지중의 연약지반을 혼합하여 화학적으로 고체화시켜 연약지반을 개량하는 공법으로서, 굴착장비를 설계심도까지 지중에 관입하는 관입단계(S1)와, 상기 굴착장비를 다시 인발하는 인발단계(S2)와, 상기 관입단계 또는 인발단계 중 적어도 하나의 단계에서 고화제 조성물을 주입하여 굴착된 지반의 토양과 혼합하는 믹싱단계(S3)와, 상기 믹싱단계에서 주입 및 혼합된 상기 고화제 조성물이 경화되는 양생단계(S4)를 포함한다. In the present invention, Deep Cement Mixing (DCM) is a method of improving soft ground by chemically solidifying it by mixing soft ground with a solidifying agent mainly made of lime, cement, etc., and designing excavation equipment. A penetration step (S1) of penetrating into the ground to a depth, a drawing step (S2) of pulling out the excavation equipment again, and the soil of the ground excavated by injecting a solidifying agent composition in at least one of the penetration step or the drawing step. It includes a mixing step (S3) of mixing and a curing step (S4) in which the solidifying agent composition injected and mixed in the mixing step is cured.
상기 관입단계(S1)는 개량대상이 되는 연약지반에 설계에서 정해진 심도까지 굴착장비(예를 들어 오거 스크류)를 관입하는 단계로서, 굴착장비는 회전하면서 지반을 굴착하여 설계심도까지 관입된다.The penetration step (S1) is a step in which excavation equipment (for example, an auger screw) penetrates the soft ground to be improved to a depth determined in the design. The excavation equipment rotates and excavates the ground to penetrate to the design depth.
상기 굴착장비가 설계심도까지 관입되면 굴착장비를 인발하는 인발단계(S2)를 수행하는데, 인발단계와 함께 믹싱단계(S3)도 수행된다. 즉, 굴착장비를 인발하면서, 굴착장비 내측을 통해 고화제 조성물을 고압 또는 저압으로 주입하고 원 지반에서 굴착된 흙과 상호 혼합시킨다.When the excavation equipment penetrates to the design depth, a drawing step (S2) of pulling out the excavating equipment is performed, and a mixing step (S3) is also performed along with the drawing step. That is, while pulling out the excavation equipment, the solidifying agent composition is injected at high or low pressure through the inside of the excavation equipment and mixed with the soil excavated from the original ground.
굴착장비의 인발이 완료되면 고화제 조성물과 흙이 혼합된 슬라임 상태로 되며, 이러한 상태에서 일정 시간이 경과하면(양생단계, S4) 슬라임이 양생되어 연약지반을 보강하는 구조체가 형성된다.When the extraction of the excavation equipment is completed, it becomes a slime state in which the solidifying agent composition and soil are mixed, and in this state, after a certain period of time (curing step, S4), the slime is cured to form a structure that reinforces the soft ground.
본 발명은 상기 믹싱단계(S3)에서 상기 고화제 조성물과 함께 센서장치 및 강도측정장치가 주입되어 구조체 내부에 상기 센서장치 및 강도측정장치가 매립되도록 하여, 상기 구조체의 강도발현 평가를 고려한 효율적인 실시간 상시 계측 모니터링을 통하여 이상 거동을 감지할 수 있고, 이상 거동 감지시 신속한 조치를 할 수 있도록 한 것을 기술적 특징으로 한다. In the present invention, in the mixing step (S3), the sensor device and the strength measurement device are injected together with the solidifying agent composition to embed the sensor device and the strength measurement device inside the structure, thereby enabling efficient real-time evaluation of the strength expression of the structure. Its technical feature is that abnormal behavior can be detected through continuous measurement and monitoring, and quick action can be taken when abnormal behavior is detected.
도 1은 본 발명의 실시예에 따라 구조체에 매립되는 센서장치 및 강도측정장치의 블록도이고, 도 2는 본 발명의 실시예에 따른 센서장치의 예시도이며, 도 3은 도 2의 일부 부품을 절개한 모습을 도시한 분리사시도이고, 도 4는 도 2에서 전선이 포함된 모습을 도시한 투영사시도이며, 도 5는 본 발명의 실시예에 따른 강도측정장치의 제어모듈부의 구성을 도시한 블럭도이고, 도 6은 본 발명의 실시예에 따라 구조체의 강도를 모니터링하는 과정을 순차적으로 나타낸 흐름도이다. Figure 1 is a block diagram of a sensor device and a strength measuring device embedded in a structure according to an embodiment of the present invention, Figure 2 is an exemplary diagram of a sensor device according to an embodiment of the present invention, and Figure 3 is some parts of Figure 2 It is an separated perspective view showing the cut, Figure 4 is a projected perspective view showing the wire included in Figure 2, and Figure 5 shows the configuration of the control module portion of the strength measuring device according to an embodiment of the present invention. It is a block diagram, and Figure 6 is a flow chart sequentially showing the process of monitoring the strength of the structure according to an embodiment of the present invention.
먼저, 상기 센서장치(60)는 상기 구조체(10)에 매립되어 상기 구조체(10)에 교류전기신호를 전달하고 구조체(10)에 의해 변화된 공진주파수 및 임피던스를 전달받을 수 있다. First, the sensor device 60 is embedded in the structure 10 and can transmit alternating current electrical signals to the structure 10 and receive the resonant frequency and impedance changed by the structure 10.
이를 위해, 상기 센서장치(100)는 센서 하우징(110), 압전센서(120) 및 전달부재(139)를 포함할 수 있다. To this end, the sensor device 100 may include a sensor housing 110, a piezoelectric sensor 120, and a transmission member 139.
상기 센서 하우징(110)은 센서장치 및/또는 강도측정장치가 구조체(10) 내부에 파손되지 않게 매립되도록 하는 구성일 수 있다. 이를 위해, 상기 센서 하우징(110)은 고화제 조성물과 함께 타설시 충격과 상측에서 쌓이는 고화제 조성물의 무게를 견딜수 있도록 소정의 강도를 가지며, 매립 후에는 하측으로 가라앉지 않도록 적절한 무게를 갖는 것이 좋다. 또한, 상기 센서 하우징(110)은 고화제 조성물이 양생하는 동안 발생하는 열에 변형되지 않고 고화제 조성물과 반응하지 않는 재질로 구성될 수 있다.The sensor housing 110 may be configured to allow the sensor device and/or the strength measuring device to be embedded within the structure 10 without damage. For this purpose, the sensor housing 110 should have a certain strength to withstand the impact of pouring along with the solidifying agent composition and the weight of the solidifying agent composition accumulating from the upper side, and should have an appropriate weight so as not to sink to the bottom after burial. . Additionally, the sensor housing 110 may be made of a material that is not deformed by heat generated during curing of the solidifying agent composition and does not react with the solidifying agent composition.
상기 압전센서(120)는 센서 하우징(110) 내부에 설치되어 교류전기신호를 전달받아 구조체(10)에 전달하고, 구조체(10)에 의해 변화된 공진주파수 및 임피던스를 전달받을 수 있다. 압전센서(120)는 전달부재(130)에 다수개로 부착될 수 있으며, 2개로 형성될 경우 양 끝단에 형성될 수 있다. 또한, 상기 압전센서(120)는 교류전기신호을 인가받는 압전센서와 변화된 공진주파수 및 임피던스를 전달받는 압전센서로 나뉘어 설치될 수 있다. 그러나 이에 한정하지 않고 한 압전센서(120)에서 교류전기신호를 인가받거나 변화된 공진주파수 및 임피던스를 전달받을 수 있다. 한편, 상기 교류전기신호는 주기파로 구성되며, 주기파는 사인파(Sine wave), 사각파(Square wave), 삼각파(Triangle wave) 및 톱니파(Sawtooh wave) 중 하나이상을 포함할 수 있다.The piezoelectric sensor 120 is installed inside the sensor housing 110 to receive alternating current electrical signals and transmit them to the structure 10, and can receive the resonant frequency and impedance changed by the structure 10. A plurality of piezoelectric sensors 120 may be attached to the transmission member 130, and when formed in two pieces, they may be formed at both ends. In addition, the piezoelectric sensor 120 may be installed divided into a piezoelectric sensor that receives an alternating current electric signal and a piezoelectric sensor that receives a changed resonance frequency and impedance. However, it is not limited to this, and an alternating current electrical signal can be applied or a changed resonance frequency and impedance can be transmitted from one piezoelectric sensor 120. Meanwhile, the AC electrical signal consists of periodic waves, and the periodic waves may include one or more of a sine wave, a square wave, a triangle wave, and a sawtooth wave.
상기 전달부재(130)는 압전센서(120)가 부착되어 공진주파수 및 임피던스가 상기 구조체(10)에 전달되도록 할 수 있다. 상기 전달부재(130)는 압전센서(120)로부터 교류전기신호를 전달받아 센서 하우징(110)에 전달하고 되돌아온 변화된 공진주파수 및 임피던스를 센서 하우징(110)으로부터 전달받아 압전센서(120)에 전달할 수 있는 재질로 형성되는 것이 바람직하다.The transmission member 130 may be equipped with a piezoelectric sensor 120 to transmit the resonance frequency and impedance to the structure 10. The transmission member 130 can receive an alternating current electrical signal from the piezoelectric sensor 120, transmit it to the sensor housing 110, and receive the returned changed resonance frequency and impedance from the sensor housing 110 and transmit it to the piezoelectric sensor 120. It is preferable that it is formed of a material that is available.
다음으로, 상기 강도측정장치(200)는 상기 센서장치(100)에 내장되거나 또는 유,무선으로 연결되어 구조체(10)의 강도를 측정하기 위한 장치로서, 교류전기신호 발생부(210), 제어모듈부(220) 및 전원부(230)를 포함할 수 있다. Next, the strength measuring device 200 is a device built into the sensor device 100 or connected wired or wirelessly to measure the strength of the structure 10, and includes an alternating current electrical signal generator 210, a control It may include a module unit 220 and a power supply unit 230.
먼저, 상기 교류전기신호 발생부(210)는 소정 주파수 대역의 주파수를 갖는 특정 파형의 교류전기신호를 발생시킬 수 있다. 구체적으로, 교류전기신호 발생부(210)는 사인파, 사각파, 삼각파 및 톱니파 중 하나이상을 포함하는 주기파로 구성된 교류전기신호를 발생시킬 수 있다.First, the alternating current electrical signal generator 210 can generate an alternating current electrical signal of a specific waveform with a frequency in a predetermined frequency band. Specifically, the AC electrical signal generator 210 may generate an AC electrical signal composed of periodic waves including one or more of sine waves, square waves, triangle waves, and sawtooth waves.
상기 제어모듈부(220)는 상기 교류전기신호 발생부(210)에서 소정 주파수 대역의 주파수를 갖는 특정 파형의 교류전기신호가 발생되도록 제어하고, 발생된 교류전기신호를 압전센서(120)에 인가하며, 압전센서(120)로 인가된 교류전기신호에 기반하여 압전센서(120)에 가해진 물리적인 압력의 변화를 측정하여 강도데이터를 산출할 수 있다.The control module unit 220 controls the AC electric signal generator 210 to generate an AC electric signal of a specific waveform with a frequency in a predetermined frequency band, and applies the generated AC electric signal to the piezoelectric sensor 120. In addition, intensity data can be calculated by measuring the change in physical pressure applied to the piezoelectric sensor 120 based on the alternating current electric signal applied to the piezoelectric sensor 120.
상기 전원부(230)는 제어모듈부(220)에 필요 전력을 공급할 수 있다. 상기 전원부(230)는 교체형 배터리 또는 충전형 배터리로 구성될 수 있다. 상기 전원부(230)는 일반적으로 표준양생한 재령 28일 강도를 기준으로 수행되는 콘크리트의 품질관리를 반영하여 28일을 상회하는 기간 동안 제어모듈부(220)에 전력을 공급하는 것이 바람직하나, 이에 한정하지는 않는다.The power unit 230 can supply necessary power to the control module unit 220. The power unit 230 may be composed of a replaceable battery or a rechargeable battery. It is desirable that the power supply unit 230 supplies power to the control module unit 220 for a period exceeding 28 days, reflecting the quality control of concrete, which is generally performed based on the strength of 28 days of standard curing. It is not limited.
또한, 상기 강도측정장치(200)는 상기 센서장치(100)의 압전센서(120)에 전기적으로 접속되는 접속 포트 또는 접속 케이블로 구성되는 접속부를 구비할 수 있다.In addition, the strength measuring device 200 may be provided with a connection portion consisting of a connection port or connection cable that is electrically connected to the piezoelectric sensor 120 of the sensor device 100.
상기 강도측정장치(20)는 센서장치(100)의 센서 하우징(110)의 내부에 수용되어 압전센서(120)와 근접하게 연결되는 것이 바람직하나, 이에 한정하지는 않는다. 구체적으로 강도측정장치(200)는 상기와 같은 구성을 수용하여 이들을 보호하는 별도의 장치 하우징이 구비될 수 있다. 여기에서, 상기 장치 하우징은 내부에 상기한 구성부들이 장착되도록 이루어지고, 이동성과 휴대성을 위하여 손잡이부를 갖고 소형으로 제작될 수 있으며, 내부의 구성부들의 유지보수를 위하여 일부가 개폐되거나, 분할되어 구성될 수 있다.The intensity measuring device 20 is preferably accommodated inside the sensor housing 110 of the sensor device 100 and closely connected to the piezoelectric sensor 120, but is not limited to this. Specifically, the strength measuring device 200 may be provided with a separate device housing that accommodates the above configuration and protects it. Here, the device housing is configured to have the above-described components installed inside, and can be manufactured in a small size with a handle for mobility and portability, and a portion of the device housing can be opened, closed, or divided for maintenance of the internal components. It can be configured.
다음으로, 본 발명에서 상기 센서 하우징(110)은 상부 센서 하우징(1101) 및 하부 센서 하우징(1102)을 포함할 수 있다.Next, in the present invention, the sensor housing 110 may include an upper sensor housing 1101 and a lower sensor housing 1102.
도 2 및 3을 참조하면, 상기 상부 센서 하우징(1101)은 원판 형태의 머리부(1101-1) 및 기둥 형태의 몸통부(1101-2)로 구성되되, 몸통부(1101-2)의 외면에 상기 전달부재(130)가 나선형으로 감싸도록 연결될 수 있다. 상기 하부 센서 하우징(1102)은 상부 센서 하우징(1101)이 삽입되도록 상측이 개방된 원통 형태로 형성될 수 있다. 상기 하부 센서 하우징(1102)은 내주면에 결합홈(1102-1)이 형성될 수 있다. 상기 결합홈(1102-1)은 상부 센서 하우징(1101)의 회전에 의해 전달부재(130)가 삽입되어 결합되도록 하는 나선형으로 형성될 수 있다. 여기서, 상기 전달부재(130)는 바형태로 형성되되, 상기 상부 센서 하우징(1101)의 몸통부(1101-2)의 외주면을 따라 나선형으로 형성될 수 있다. 상기 전달부재(130)는 상하면에 압전센서(120)가 부착될 수 있는 적절한 너비로 형성되는 것이 바람직하다. 또한, 상기 전달부재(130)는 하부 센서 하우징(1102)의 결합홈(1102-1)에 끼워질 수 있는 강도로 형성될 수 있다.Referring to Figures 2 and 3, the upper sensor housing 1101 is composed of a disk-shaped head portion 1101-1 and a column-shaped body portion 1101-2, and the outer surface of the body portion 1101-2 The transmission member 130 may be connected to be wrapped in a spiral shape. The lower sensor housing 1102 may be formed in a cylindrical shape with an open top so that the upper sensor housing 1101 can be inserted. The lower sensor housing 1102 may have a coupling groove 1102-1 formed on its inner peripheral surface. The coupling groove 1102-1 may be formed in a spiral shape so that the transmission member 130 is inserted and coupled by rotation of the upper sensor housing 1101. Here, the transmission member 130 is formed in a bar shape, but may be formed in a spiral shape along the outer peripheral surface of the body portion 1101-2 of the upper sensor housing 1101. The transmission member 130 is preferably formed to have an appropriate width so that the piezoelectric sensor 120 can be attached to the upper and lower surfaces. Additionally, the transmission member 130 may be formed with a strength that allows it to be inserted into the coupling groove 1102-1 of the lower sensor housing 1102.
또한, 상기 센서장치(100)는 교류전기신호를 무선으로 받는 것이 바람직하나, 도 4와 같이 전선(E)이 상부 센서 하우징(1101)을 상하방향으로 관통하여 설치되어 유선으로 교류전기신호를 인가 받을 수 있다. 이때, 전선(E)은 상부 센서 하우징(1101)의 몸통부(1101-2)에 수용되어 압전센서(120)로 연결될 수 있다.In addition, it is preferable that the sensor device 100 receives AC electrical signals wirelessly, but as shown in FIG. 4, a wire E is installed to penetrate the upper sensor housing 1101 in the vertical direction to apply AC electrical signals by wire. You can receive it. At this time, the wire E may be accommodated in the body portion 1101-2 of the upper sensor housing 1101 and connected to the piezoelectric sensor 120.
또한, 상기 센서장치(120)는 상기 구조체(10)에 완전히 매립된 상태로 설치될 수 있고, 또는 상부 센서 하우징(1101)이 노출된 상태로 구조체(10)에 설치될 수도 있다. 여기에서, 상기 센서장치(100)의 상부가 노출되어 설치되면 신호가 불안정하거나 이상이 발견된 센서장치(100)의 상부 센서 하우징(1101)을 하부 센서 하우징(1102)으로부터 분리하여 상태를 확인하거나, 수리 후 재설치될 수 있다. 또한, 상기 센서장치(100)는 상기 구조체에 고화제 조성물을 복수개로 투입될 수 있다. Additionally, the sensor device 120 may be installed in a state completely embedded in the structure 10, or may be installed in the structure 10 with the upper sensor housing 1101 exposed. Here, when the upper part of the sensor device 100 is installed exposed, the upper sensor housing 1101 of the sensor device 100 where the signal is unstable or an abnormality is found is separated from the lower sensor housing 1102 to check the condition. , can be reinstalled after repair. Additionally, the sensor device 100 may inject a plurality of solidifying agent compositions into the structure.
또한, 도면에는 도시하지 않았으나 본 발명은 온도센서, 유무선 통신 모듈부, 디스플레이부 및 GPS 모듈부를 더 포함할 수 있다.In addition, although not shown in the drawing, the present invention may further include a temperature sensor, a wired and wireless communication module unit, a display unit, and a GPS module unit.
온도센서는 상기 센서장치(100) 또는 강도측정장치(200)의 외면에 설치되어 주변 온도를 검출할 수 있다. 일반적으로, 압전센서(120)는 온도에 따라 공진주파수와 임피던스가 미세하게 변화는 성질이 있는데, 고화제 조성물의 양생과정에서 발생하는 열이나, 양생이 완료된 이후에 외부기온 변화에 따른 구조체의 온도의 변화는 구조체의 압력과 무관하게 압전센서(120)의 공진주파수와 임피던스가 변화를 발생시키게 된다. 이와 같은 구조체의 온도의 변화에 의해 발생되는 압전센서(120)의 공진주파수와 임피던스의 변화는 구조체의 압력의 변화로 잘못 인식되거나, 구조체의 압력측정에 있어서 측정 오차를 발생시킬 수 있는 문제가 있다.The temperature sensor may be installed on the outer surface of the sensor device 100 or the intensity measurement device 200 to detect the surrounding temperature. In general, the piezoelectric sensor 120 has the property of slightly changing the resonance frequency and impedance depending on the temperature, such as heat generated during the curing process of the solidifying agent composition, or temperature of the structure due to changes in external air temperature after curing is completed. The change in causes the resonance frequency and impedance of the piezoelectric sensor 120 to change regardless of the pressure of the structure. There is a problem that changes in the resonance frequency and impedance of the piezoelectric sensor 120 caused by changes in the temperature of the structure may be incorrectly recognized as changes in the pressure of the structure, or may cause measurement errors in measuring the pressure of the structure. .
이에, 온도센서는 압전센서(120)가 최대한 근접한 거리에 위치하여, 압전센서(120)의 공진주파수와 임피던스를 측정할 때 압전센서(120) 주변의 온도를 측정하도록 하는 것이 바람직하나, 이에 한정하지는 않는다.Accordingly, it is preferable that the temperature sensor be located as close to the piezoelectric sensor 120 as possible so that the temperature around the piezoelectric sensor 120 is measured when measuring the resonance frequency and impedance of the piezoelectric sensor 120, but is limited to this. I don't do it.
유무선 통신 모듈부는 강도데이터를 외부의 상위 처리장치로 전송하도록 센서장치(100) 또는 강도측정장치(200)에 구비될 수 있다. 유무선 통신 모듈부는 압전센서(120)의 공진주파수와 임피던스 변화의 디지털 신호에 기반하여 압전센서에 가해진 물리적인 압력의 변화를 측정한 압력변화 데이터를 외부의 상위 처리장치로 전송할 수 있다. 이에, 외부의 상위 처리장치는 전송받은 압력변화 데이터를 기초로 강도를 도출할 수 있다.The wired/wireless communication module may be provided in the sensor device 100 or the intensity measurement device 200 to transmit intensity data to an external upper processing device. The wired and wireless communication module unit can transmit pressure change data measuring the change in physical pressure applied to the piezoelectric sensor based on the digital signal of the resonance frequency and impedance change of the piezoelectric sensor 120 to an external upper processing device. Accordingly, the external upper processing device can derive the intensity based on the transmitted pressure change data.
여기서, 외부의 상위 처리장치는 컴퓨터, 서버, 클라우드 등 다양한 형태로 구비될 수 있으며, 본 발명의 기술분야에서 사용하는 처리장치는 모두 사용 가능하다.Here, the external upper processing device may be provided in various forms such as a computer, server, or cloud, and any processing device used in the technical field of the present invention can be used.
상기 디스플레이부는 강도데이터를 표시하여 사용자가 강도를 육안으로 바로 확인할 수 있도록 할 수 있다. 디스플레이부는 시인성 높은 강도데이터를 전달할 수 있는 장치는 모두 사용 가능하다.The display unit can display intensity data so that the user can immediately check the intensity with the naked eye. The display unit can use any device that can transmit intensity data with high visibility.
상기 GPS 모듈부는 센서장치(100) 또는 강도측정장치(200)에 구비되며, 압전센서(120)의 위치 정보를 외부의 상위 처리장치로 전송할 수 있다.The GPS module unit is provided in the sensor device 100 or the intensity measurement device 200, and can transmit the location information of the piezoelectric sensor 120 to an external upper processing device.
다음으로, 도 5와 같이 본 발명에서 상기 제어모듈부(220)는 교류전기신호 제어부(221), 주파수-임피던스 검출부(222), 압력변화 측정부(223), 주파수-임피던스 보정부(224), 신호 증폭부(225), 저역 필터부(226), 아날로그-디지털 컨버터부(227) 및 강도 산출부(228)를 포함할 수 있다.Next, as shown in FIG. 5, in the present invention, the control module unit 220 includes an AC electrical signal control unit 221, a frequency-impedance detection unit 222, a pressure change measurement unit 223, and a frequency-impedance correction unit 224. , it may include a signal amplification unit 225, a low-pass filter unit 226, an analog-to-digital converter unit 227, and an intensity calculation unit 228.
상기 교류전기신호 제어부(221)는 교류전기신호 발생부(210)에서 발생되는 교류전기신호를 제어하여 압전센서(120)로 인가되도록 할 수 있다. 여기서, 교류전기신호는 주기파로 구성되며, 주기파는 사인파(Sine wave), 사각파(Square wave), 삼각파(Triangle wave) 및 톱니파(Sawtooh wave) 중 하나이상을 포함할 수 있다. 가장 바람직하게는 낮은 주파수에서 높은 주파수의 주파수 대역을 갖는 사인파를 사용하는 것이 좋다. 또한, 상기 교류전기신호 제어부(221)는 압전센서의 주파수 특성에 따라 교류전기신호의 주파수와 발생시간을 제어할 수 있다. 예를 들면, 교류전기신호 제어부(221)는 교류전기신호 발생부(210)에서 5KHz에서 100KHz의 사인파가 1초 동안 발생되도록 제어할 수 있다.The alternating current electrical signal control unit 221 can control the alternating current electrical signal generated by the alternating current electrical signal generator 210 so that it is applied to the piezoelectric sensor 120. Here, the AC electrical signal consists of periodic waves, and the periodic waves may include one or more of a sine wave, a square wave, a triangle wave, and a sawtooth wave. Most preferably, it is best to use a sine wave with a frequency range from low to high frequencies. Additionally, the alternating current electrical signal control unit 221 can control the frequency and generation time of the alternating current electrical signal according to the frequency characteristics of the piezoelectric sensor. For example, the AC electrical signal control unit 221 may control the AC electrical signal generator 210 to generate a sine wave of 5 KHz to 100 KHz for 1 second.
상기 주파수-임피던스 검출부(222)는 압전센서(120)로 가해지는 교류전기신호의 주파수에 따른 압전센서(120)의 공진주파수와 임피던스의 변화를 검출할 수 있다.The frequency-impedance detection unit 222 can detect changes in the resonance frequency and impedance of the piezoelectric sensor 120 according to the frequency of the alternating current electric signal applied to the piezoelectric sensor 120.
상기 압력변화 측정부(223)는 주파수-임피던스 검출부(222)에서 검출된 압전센서(120)의 공진주파수와 임피던스의 변화에 기반하여 압전센서에 가해진 물리적인 압력의 변화를 측정할 수 있다.The pressure change measurement unit 223 can measure the change in physical pressure applied to the piezoelectric sensor based on the change in the resonance frequency and impedance of the piezoelectric sensor 120 detected by the frequency-impedance detection unit 222.
상기 주파수-임피던스 보정부(224)는 주파수-임피던스 검출부(222)에서 압전센서(120)의 공진주파수와 임피던스를 검출할 때, 온도센서에 의해 검출된 온도에 기반하여 검출된 공진주파수 및 임피던스 값 중에서 적어도 하나를 보정하여 측정 오차를 최소화할 수 있다.When the frequency-impedance correction unit 224 detects the resonance frequency and impedance of the piezoelectric sensor 120 in the frequency-impedance detection unit 222, the resonance frequency and impedance values detected based on the temperature detected by the temperature sensor Measurement error can be minimized by correcting at least one of them.
일반적으로 온도에 따른 저항은 증가하는 것으로써, 이것은 일반적인 사항이기에 온도와 저항간의 관계식과 그 설명은 생략하며, 본 발명에 의한 관계식은 다음과 같다. In general, resistance increases with temperature, and since this is a general matter, the relationship between temperature and resistance and its explanation are omitted, and the relationship according to the present invention is as follows.
상기 주파수-임피던스 보정부(224)는 하기의 식 1 및 식 2를 통해 보정된 공진주파수와 보정된 임피던스를 얻을 수 있다.The frequency-impedance correction unit 224 can obtain the corrected resonance frequency and corrected impedance through Equations 1 and 2 below.
f = f1 + A * (Tc-Tref) + B (식 1)f = f1 + A * (Tc-Tref) + B (Equation 1)
z = z1 + C * (Tc-Tref) + D (식 2)z = z1 + C * (Tc-Tref) + D (Equation 2)
(여기에서, f : 보정된 공진주파수, z : 보정된 임피던스, f1 : 측정된 공진주파수, z1: 측정된 임피던스, A : 압전센서의 온도특성계수 1, C : 압전센서의 온도특성계수 3, B : 압전센서의 온도특성계수 2, D : 압전센서의 온도특성계수 4, Tc: 측정된 현재 온도, Tref: 기준온도, A, B, C, D 및 Tref는 압전센서에 대한 온도특성실험을 통해 얻은 상수값)(Here, f: corrected resonance frequency, z: corrected impedance, f1: measured resonance frequency, z1: measured impedance, A: temperature characteristic coefficient of piezoelectric sensor 1, C: temperature characteristic coefficient of piezoelectric sensor 3, B: Temperature characteristic coefficient of the piezoelectric sensor 2, D: Temperature characteristic coefficient of the piezoelectric sensor 4, Tc: Measured current temperature, Tref: Reference temperature, A, B, C, D and Tref are the temperature characteristic test for the piezoelectric sensor. constant value obtained through
여기서, A, B, C, D 및 Tref는 사용하는 압전센서에 따라 상이하며, 해당 압전센서에 대한 온도특성실험을 통해 얻어지는 데이터일 수 있다. 이러한 공진주파수와 임피던스의 보정은 외부기온 변화에 따른 구조체의 온도의 변화가 구조체의 압력과 무관하게 압전센서의 공진주파수와 임피던스의 변화를 발생시키는 것에 기반하는 것이다.Here, A, B, C, D, and Tref are different depending on the piezoelectric sensor used, and may be data obtained through a temperature characteristic experiment for the corresponding piezoelectric sensor. This correction of resonance frequency and impedance is based on the fact that changes in the temperature of the structure due to changes in external temperature cause changes in the resonance frequency and impedance of the piezoelectric sensor regardless of the pressure of the structure.
상기 신호 증폭부(225)는 압전센서(120)의 공진주파수와 임피던스의 변화에 따른 전기신호의 크기를 증폭시킬 수 있다.The signal amplifier 225 can amplify the size of the electric signal according to changes in the resonance frequency and impedance of the piezoelectric sensor 120.
상기 저역 필터부(226)는 저역 필터(Low pass filter)를 통해 신호 증폭부(225)로부터 출력되는 전기신호 중 교류전기신호 발생부(210)에서 발생한 교류전기신호는 제거하고, 압전센서(120)의 공진주파수와 임피던스 변화에 따른 전기신호만을 통과시킬 수 있다.The low-pass filter unit 226 removes the AC electric signal generated from the AC electric signal generator 210 among the electric signals output from the signal amplifier 225 through a low pass filter, and the piezoelectric sensor 120 ) can only pass electrical signals according to the resonance frequency and impedance change.
상기 아날로그-디지털 컨버터부(227)는 저역 필터부(226)를 통해 필터링되어 출력되는 압전센서(120)의 공진주파수와 임피던스 변화에 따른 아날로그 전기신호를 디지털 신호로 변환시켜 출력할 수 있다.The analog-to-digital converter unit 227 can convert an analog electrical signal according to changes in the resonance frequency and impedance of the piezoelectric sensor 120, which is filtered and output through the low-pass filter unit 226, into a digital signal and output it.
상기 강도 산출부(228)는 압전센서(120)의 공진주파수와 임피던스 변화의 디지털 신호에 기반하여 압전센서(120)에 가해진 물리적인 압력의 변화인 압력변화 데이터를 측정하고, 압력변화 데이터를 기초로 강도데이터를 계산하고 산출할 수 있다.The intensity calculation unit 228 measures pressure change data, which is the change in physical pressure applied to the piezoelectric sensor 120, based on the digital signal of the resonance frequency and impedance change of the piezoelectric sensor 120, and calculates pressure change data based on the pressure change data. You can calculate and calculate intensity data.
여기서, 강도 산출은 하기와 같이 설명할 수 있다.Here, the strength calculation can be explained as follows.
강도 변화가 없는 상태에서 공진 주파수는 일정한 값을 갖는다. 물질의 강도가 변하게 되면 공진 주파수값의 이동이 생기는데, 이 변동값은 재료(물질)마다 다르게 나타난다. 즉, 절대값을 이용하여 강도를 추출할 수는 없고, 초기에 구조물에서 추출한 샘플을 이용하여 강도시험을 수행하고, 같은 재령(age)에서의 공진 주파수를 해당 강도값과 1:1 대응하여 강도값과 주파수값의 관계식을 근거로, 추후 측정되는 피크 주파수(공진 주파수)의 변화에 따른 강도를 산출하게 된다. 다시 말해서, 기준(reference) 값을 근거로 같은 재료에 대한 강도를 측정할 수 있다. 여기에서, 샘플에 대한 강도시험 방법으로는 만능재료시험기(UTM: Universal Testing Machine)를 이용한 압축강도시험, 마샬시험법, 초음파에 의한 비파괴시험법 등을 활용할 수 있다.In a state where there is no change in intensity, the resonance frequency has a constant value. When the strength of a material changes, the resonance frequency value changes, and this change value appears differently for each material. In other words, the strength cannot be extracted using absolute values, but the strength test is initially performed using samples extracted from the structure, and the resonance frequency at the same age is matched 1:1 with the corresponding strength value to determine the strength. Based on the relationship between the value and the frequency value, the intensity according to the change in peak frequency (resonant frequency) that is measured later is calculated. In other words, the strength of the same material can be measured based on a reference value. Here, the compressive strength test using a universal testing machine (UTM), the Marshall test method, and a non-destructive testing method using ultrasonic waves can be used as a strength test method for the sample.
상기와 같은 센서장치(100)와 강도측정장치(200)를 통한 구조체(10)의 강도 모니터링 방법을 도 6을 참조하여 설명하면 다음과 같다. A method for monitoring the strength of the structure 10 using the sensor device 100 and the strength measuring device 200 as described above will be described with reference to FIG. 6 as follows.
상기 구조체(10)의 강도 모니터링은 교류전기신호 발생 단계(S10), 교류전기신호 인가 단계(S20), 주파수-임피던스 수신 단계(S30), 주파수-임피던스 검출 단계(S40) 및 압력변화 측정 단계(S50)를 통해 이루어질 수 있다. Monitoring the strength of the structure 10 includes an AC electrical signal generation step (S10), an AC electrical signal application step (S20), a frequency-impedance reception step (S30), a frequency-impedance detection step (S40), and a pressure change measurement step ( This can be done through S50).
상기 교류전기신호 발생 단계(S10)는 소정 주파수 대역의 주파수를 갖는 특정 파형의 교류전기신호를 발생시키는 단계이다. 여기서, 교류전기신호는 주기파로 구성되며, 주기파는 사인파(Sine wave), 사각파(Square wave), 삼각파(Triangle wave) 및 톱니파(Sawtooh wave) 중 하나이상을 포함할 수 있다. 가장 바람직하게는 낮은 주파수에서 높은 주파수의 주파수 대역을 갖는 사인파를 사용하는 것이 좋다.The step of generating an alternating current electrical signal (S10) is a step of generating an alternating current electrical signal of a specific waveform having a frequency in a predetermined frequency band. Here, the AC electrical signal consists of periodic waves, and the periodic waves may include one or more of a sine wave, a square wave, a triangle wave, and a sawtooth wave. Most preferably, it is best to use a sine wave with a frequency range from low to high frequencies.
상기 교류전기신호 발생 단계(S10)는 교류전기신호를 일정시간 이내에 순차적으로 발생시키는 것으로 이루어진다. 구체적으로, 교류전기신호 발생 단계(S10)에서 발생되는 교류전기신호의 주파수와 발생 시간은 연계되는 압전센서(120)의 주파수 특성에 따라 결정되게 된다. 예를 들면, 교류전기신호 발생 단계(S10)는 5KHz에서 100KHz의 사인파를 1초 동안 발생시키는 것으로 이루어진다.The alternating current electrical signal generation step (S10) consists of sequentially generating alternating current electrical signals within a certain period of time. Specifically, the frequency and generation time of the alternating current electrical signal generated in the alternating current electrical signal generation step (S10) are determined according to the frequency characteristics of the associated piezoelectric sensor 120. For example, the AC electrical signal generation step (S10) consists of generating a sine wave from 5 KHz to 100 KHz for 1 second.
또한, 상기 교류전기신호 발생 단계(S10)는 강도측정장치(200)에 구비되는 교류전기신호 발생부(210)에 의해 교류전기신호를 발생하는 단계이다.In addition, the step of generating an alternating current electrical signal (S10) is a step of generating an alternating current electrical signal by the alternating current electrical signal generator 210 provided in the intensity measuring device 200.
상기 교류전기신호 인가 단계(S20)는 발생된 교류전기신호를 제어하여 일정 시간 동안 압전센서(120)로 인가하는 단계로서, 강도측정장치(200)에 구비되는 제어모듈부(220)를 통해 교류전기신호 발생부(210)에서 압전센서(120)의 주파수 특성에 따라 설정된 교류전기신호를 발생시키고 인가하는 단계이다.The AC electric signal application step (S20) is a step of controlling the generated AC electric signal and applying it to the piezoelectric sensor 120 for a certain period of time. The AC electric signal is applied to the piezoelectric sensor 120 for a certain period of time. This is a step in which the electrical signal generator 210 generates and applies an alternating current electrical signal set according to the frequency characteristics of the piezoelectric sensor 120.
상기 주파수-임피던스 수신 단계(S30)는 압전센서(120)에 인가된 교류전기신호를 전달부재(130) 및 센서 하우징(110)을 통해 구조체(10)에 전달하고 구조체(10)에 의해 변화된 공진주파수 및 임피던스를 전달받는 단계이다.The frequency-impedance receiving step (S30) transmits the alternating current electric signal applied to the piezoelectric sensor 120 to the structure 10 through the transmission member 130 and the sensor housing 110 and transmits the resonance changed by the structure 10. This is the stage where frequency and impedance are transmitted.
상기 주파수-임피던스 검출 단계(S40)는 압전센서(120)로 가해지는 교류전기신호의 주파수에 따른 압전센서(120)의 공진주파수와 임피던스의 변화로 발생하는 전기신호를 검출하는 단계이다. 상기 주파수-임피던스 검출 단계(S40)는 교류전기신호 인가 단계(S20)에서 가해지는 교류전기신호의 주파수에 의해 압전센서에서 발생하는 공진주파수와 임피던스를 검출하는 단계이다. 여기서, 공진주파수는 고유 공진주파수이고, 임피던스는 공진주파수와 임피던스 값일 수 있다.The frequency-impedance detection step (S40) is a step of detecting an electric signal generated by a change in the resonance frequency and impedance of the piezoelectric sensor 120 according to the frequency of the alternating current electric signal applied to the piezoelectric sensor 120. The frequency-impedance detection step (S40) is a step of detecting the resonance frequency and impedance generated in the piezoelectric sensor by the frequency of the AC electric signal applied in the AC electric signal application step (S20). Here, the resonance frequency is the natural resonance frequency, and the impedance may be the resonance frequency and the impedance value.
상기 압력변화 측정 단계(S50)는 검출된 압전센서(120)의 공진주파수와 임피던스의 변화에 기반하여 압전센서(120)에 가해진 물리적인 압력의 변화에 따른 강도전기신호로 측정하는 단계이다.The pressure change measurement step (S50) is a step of measuring the intensity electric signal according to the change in the physical pressure applied to the piezoelectric sensor 120 based on the detected change in the resonance frequency and impedance of the piezoelectric sensor 120.
또한, 상기 압력변화 측정 단계(S50)은 상기 유무선 통신 모듈부를 통해 외부의 상위 처리장치로 전송하여 상위 처리장치에서 압력변화 데이터에 기초하여 강도데이터를 계산하도록 하거나, 강도 산출부(228)를 통해 압력변화 데이터를 계산한 강도데이터를 유무선 통신 모듈부를 통해 외부의 상위 처리장치로 전송하는 단계일 수 있다. 여기서, 외부의 상위 처리장치는 컴퓨터, 서버, 클라우드 등 다양한 형태로 구비될 수 있으며, 본 발명의 기술분야에서 사용하는 처리장치는 모두 사용 가능하다.In addition, the pressure change measurement step (S50) is transmitted to an external upper processing device through the wired or wireless communication module unit so that the upper processing device calculates the intensity data based on the pressure change data, or the intensity data is calculated based on the pressure change data through the intensity calculation unit 228. This may be a step in which intensity data calculated from pressure change data is transmitted to an external upper processing device through a wired or wireless communication module. Here, the external upper processing device may be provided in various forms such as a computer, server, or cloud, and any processing device used in the technical field of the present invention can be used.
다음으로, 본 발명에 따른 상기 센서 하우징(110)은 내부에 장착된 구성품들의 파손을 방지하면서 연약지반에 안정적으로 주입되어 구조체 내부에 매립될 수 있도록 탄성유기재료에 의해 외주면이 코팅처리될 수 있다. Next, the outer peripheral surface of the sensor housing 110 according to the present invention may be coated with an elastic organic material so that it can be stably injected into soft ground and embedded within the structure while preventing damage to the components mounted therein. .
여기에서, 상기 탄성유기재료는 폴리디메틸실록세인(Polydimethylsiloxane) 25~80중량% 및 실리콘고무 20~75중량%로 이루어지며, 더욱 바람직하게는 폴리디메틸실록세인 75중량% 및 실리콘고무 25중량%로 이루어지는 것이 좋다.Here, the elastic organic material consists of 25 to 80% by weight of polydimethylsiloxane and 20 to 75% by weight of silicone rubber, more preferably 75% by weight of polydimethylsiloxane and 25% by weight of silicone rubber. It's good that it happens.
상기 폴리디메틸실록세인(Polydimethylsiloxane)은 분자량이 16238이며, 녹는점 및 끓는점이 각각 -40~50℃ 및 205℃인 투명한 물질로서, 표면에너지가 낮고 다양한 액체와 증기에 대한 침투성이 있는 탄성 중합체(elastomer)이다.The polydimethylsiloxane is a transparent material with a molecular weight of 16238 and a melting and boiling point of -40 to 50°C and 205°C, respectively. It is an elastomer with low surface energy and permeability to various liquids and vapors. )am.
또한, 상기 폴리디메틸실록세인은 단차피복성(step coverage)이 우수하여 케이싱의 외주면에 안정적으로 점착할 수 있으며, 표면 자유 에너지(interfacial free energy)가 낮은 특징이 있다. 또한, 탄성계수가 약 1~10MPa 수준으로 매우 낮아 유연하고 접착성이 있으며 표면에너지가 약 25mN/m에 불과하다는 장점이 있으나, 종횡비(high-aspect-ratio) 구조물을 제작하는데 어려움이 있으며, 이러한 단점을 보완하기 위해 실리콘고무를 첨가한다.In addition, the polydimethylsiloxane has excellent step coverage, can stably adhere to the outer peripheral surface of the casing, and has low interfacial free energy. In addition, the elastic modulus is very low at about 1 to 10 MPa, which has the advantage of being flexible and adhesive and having a surface energy of only about 25 mN/m, but it is difficult to manufacture high-aspect-ratio structures. Silicone rubber is added to make up for the shortcomings.
상기 실리콘고무는 고중합도 곧은사슬 모양의 디올가노폴리실록산에 미분 실리카 등을 보강제로 혼화하여 가교시킨 고무 탄성체. 내후성, 전기적 특성이 우수하여 -50~200℃에서 사용할 수 있으며, 250℃에서 3일간 방치하여도 강도나 신장률의 변화를 10% 이내로 유지할 수 있고, -45℃에서도 고무탄성을 잃지 않는다. 따라서 항공기의 창문을 봉하는 데나 발수성(撥水性:물을 튀기는 성질)을 필요로 하는 곳, 또는 발열하는 곳에 특수재료로 사용되며, 고무롤러의 속 부분, 패킹 재료, 전기 절연재료 등으로 널리 쓰인다.The silicone rubber is a rubber elastomer that is cross-linked by mixing highly polymerized straight chain diorganopolysiloxane with finely divided silica as a reinforcing agent. It has excellent weather resistance and electrical properties, so it can be used at -50~200℃. Even if left at 250℃ for 3 days, the change in strength or elongation can be maintained within 10%, and it does not lose rubber elasticity even at -45℃. Therefore, it is used as a special material for sealing aircraft windows, in places that require water repellency, or in places that generate heat, and is widely used as the inner part of rubber rollers, packing materials, and electrical insulation materials. .
본 발명은 이러한 특징을 갖는 폴리디메틸실록세인와 실리콘고무로부터 조성되는 탄성유기재료를 센서 하우징(110)의 외주면에 도포하여 코팅처리함으로써 센서 하우징(110) 내부의 구성품들의 파손을 방지하면서 연약지반에 안정적으로 주입되도록 할 수 있다.The present invention applies and coats the outer peripheral surface of the sensor housing 110 with an elastic organic material made from polydimethylsiloxane and silicone rubber, which has these characteristics, thereby preventing damage to the components inside the sensor housing 110 and making it stable on soft ground. It can be injected as .
다음으로, 본 발명에 따른 심층혼합공법은 고화제 조성물이 필요 이상으로 연약지반에 주입되는 것을 방지하는 기능을 제공할 수 있다. Next, the deep mixing method according to the present invention can provide the function of preventing the solidifying agent composition from being injected into soft ground more than necessary.
전술한 바와 같이, 심층혼합공법은 개량대상이 되는 연약지반에 설계에서 정해진 심도까지 오거 스크류와 같은 굴착장비가 관입되어 지반을 굴착하여 설계심도까지 관입하도록 하는 관입단계(S1) 이후에, 상기 굴착장비를 인발하는 동시에 굴착장비를 통해 고화제 조성물을 주입하여 원 지반에서 굴착된 흙과 상호 혼합되도록 하는 공법이다. As mentioned above, in the deep mixing method, after the penetration stage (S1) in which excavating equipment such as an auger screw penetrates the soft ground to be improved to a depth determined in the design, the excavation is performed to excavate the ground and penetrate to the design depth. This is a method of injecting a solidifying agent composition through excavation equipment while pulling out the equipment, allowing it to mix with the soil excavated from the original ground.
그런데, 종래에 개시된 굴착장비는 지반을 굴착하면서 설계심도까지 관입될 때 천공홀의 지름을 조절하기 위한 별도의 기술구성이 구비되지 않아 다양한 연약지반의 종류에 따라 구근, 즉 연약지반의 강도 보강을 위한 구조체의 형상을 변경하여 시공하기 어려운 문제점이 있었다. However, the conventionally disclosed excavating equipment is not equipped with a separate technical configuration for controlling the diameter of the drilling hole when penetrating to the design depth while excavating the ground, and thus is used to reinforce the strength of the bulb, that is, the soft ground, according to various types of soft ground. There was a problem that it was difficult to construct by changing the shape of the structure.
도 7 및 8은 전술한 문제점을 해결하기 위한 본 발명의 실시예에 따른 굴착장비(300)를 도시한 개략적인 예시도로서, 상기 굴착장비는(300)는 주입관(310)과, 상기 주입관과 직교 방향으로 배치되는 굴착부(320) 및 교반부(330)와, 상기 주입관의 상부 일측에 구비되는 깊이감지부(340)를 포함할 수 있다. Figures 7 and 8 are schematic illustrations showing an excavation equipment 300 according to an embodiment of the present invention to solve the above-described problem, wherein the excavation equipment 300 includes an injection pipe 310 and the injection It may include an excavation part 320 and a stirring part 330 arranged in a direction perpendicular to the pipe, and a depth sensing part 340 provided on one upper side of the injection pipe.
상기 주입관(310)은 구동부(미도시)의 작동에 의해 회전되며, 지중에 수직으로 삽입되는 소정 길이의 관체로서, 본 실시예의 주입관(310)를 중장비의 구동부에 연결되도록 설치하여 지면으로부터 지중으로 천공홀부를 성형하고, 주입관(310)를 통해 고화제 조성물을 주입하여 연약지반 내부에 구조체를 형성하는 연약지반 개량공법을 진행하게 된다. The injection pipe 310 is a pipe body of a predetermined length that is rotated by the operation of a driving unit (not shown) and is inserted vertically into the ground. The injection pipe 310 of this embodiment is installed to be connected to the driving unit of heavy equipment and is discharged from the ground. A soft ground improvement method is performed in which a perforated hole is formed into the ground and a solidifying agent composition is injected through the injection pipe 310 to form a structure inside the soft ground.
상기 굴착부(320)는 복수개의 비트부재(324)가 마련되어 지면을 굴착하는 것으로, 상기 주입관(310)을 따라 상하 다단으로 복수개로 배치되되 굴착작업 전에 측정되는 연약지반의 연약층(21)과 지지층(20) 사이의 경계를 중심으로 연약층에 상대적으로 큰 천공홀부를 시공하도록 하부로부터 상부로 갈수록 길게(크게) 형성되며, 상기 굴착부(320) 중에 상대적으로 큰 굴착부(320)가 지지층(20)으로 삽입되지 않도록 깊이감지부(340)를 확인하면서 주입관(310)이 삽입되는 깊이를 조절하여 천공작업을 진행하게 된다. The excavation unit 320 is provided with a plurality of bit members 324 to excavate the ground, and is arranged in a plurality of upper and lower stages along the injection pipe 310, and includes a soft layer 21 of the soft ground measured before the excavation operation, and Centered around the boundary between the support layers 20, it is formed to be longer (larger) from the bottom to the top to construct a relatively large drilling hole in the soft layer, and a relatively large excavation part 320 among the excavation parts 320 is a support layer ( The drilling operation is performed by adjusting the depth at which the injection tube 310 is inserted while checking the depth sensing unit 340 to prevent insertion into the hole 20).
예를 들어, 본 발명의 실시예에 따른 상기 굴착부(320)는 주입관(310)의 하단부에 구비되고 비트부재(324)가 설치되는 제1굴착대(321)와, 상기 주입관 상에 제1굴착대의 상측으로 배치되고 비트부재(324)가 설치되며 제1굴착대보다 긴 길이를 갖는 제2굴착대(322)와, 상기 주입관 상에 제2굴착대의 상측으로 배치되고 비트부재(324)가 설치되며 제2굴착대보다 긴 길이를 갖는 제3굴착대(323)를 포함할 수 있다. For example, the excavation unit 320 according to an embodiment of the present invention includes a first excavation stand 321 provided at the lower end of the injection pipe 310 and a bit member 324 installed, and a first excavation stand 321 on the injection pipe. A second excavator 322 is disposed above the first excavator and has a bit member 324 installed thereon, and has a longer length than the first excavator, and is disposed above the second excavator on the injection pipe and has a bit member 324. ) is installed and may include a third excavation stand 323 having a longer length than the second excavation stand.
상기 교반부(330)는 상기 주입관(310)과 직교 방향으로 배치되며, 상기 주입관(310)에 상하 다단으로 배치되되 굴착부(320)보다 높게 배치되어 상기 굴착부에 의해 분쇄되는 지반을 교반시키면서 고화제 조성물과 분쇄된 지반을 혼합시키는 기능을 제공한다. The stirring unit 330 is arranged in a direction perpendicular to the injection pipe 310, and is arranged in multiple stages up and down the injection pipe 310, but is placed higher than the excavation unit 320 to prevent the ground pulverized by the excavation unit. It provides the function of mixing the solidifying agent composition and the pulverized ground while stirring.
예를 들어, 본 발명의 실시예에 따른 상기 교반부(330)는 상기 주입관(310)에 설치된 제1굴착대(321)와 제2굴착대(322)의 사이에 설치되며 상기 제1굴착대(321)에 의해 분쇄되는 지반 및 상기 주입관(310)에서 토출되는 고화제 조성물을 혼합시키는 제1교반대(331)와, 상기 주입관(310)에 설치된 제2굴착대(322)와 제3굴착대(323) 사이에 설치되며 상기 제2굴착대(322)에 의해 분쇄되는 지반 및 상기 주입관(310)에서 토출되는 고화제 조성물을 혼합시키는 제2교반대(332)와, 상기 주입관(310)에 설치된 제3굴착대의 상측에 설치되며 상기 제3굴착대(323)에 의해 분쇄되는 지반 및 상기 주입관(310)에서 토출되는 고화제 조성물을 혼합시키는 제3교반대(333)를 포함할 수 있다. For example, the stirring unit 330 according to an embodiment of the present invention is installed between the first excavation platform 321 and the second excavation platform 322 installed in the injection pipe 310, and the first excavation platform 322 A first stirring table 331 for mixing the ground pulverized by the table 321 and the solidifying agent composition discharged from the injection pipe 310, a second excavation table 322 installed on the injection pipe 310, and A second agitation table 332 installed between the third excavation tables 323 and mixing the ground pulverized by the second excavation table 322 and the solidifying agent composition discharged from the injection pipe 310, and A third agitation table 333 is installed on the upper side of the third excavation table installed on the injection pipe 310 and mixes the ground pulverized by the third excavation stand 323 and the solidifying agent composition discharged from the injection pipe 310. ) may include.
본 발명의 일실시예에 따라, 지반검사를 통해 지지층(20), 연약층(21), 초연약층(22) 등으로 지반 내부의 구조를 확인하여 제1굴착대(321) 내지 제3굴착대(323)와, 제1교반대(331) 내지 제3교반대(333)를 주입관(310)에 설치하고, 천공작업을 진행하여 도 9와 같이 지지층(20), 연약층(21) 및 초연약층(22)에 단계적으로 지름이 큰 천공홀부를 시공하게 된다. 물론, 지반 내부의 구조가 연약층과 지지층으로만 구성되는 경우에는 제3굴착대(323) 및 제3교반대(333)의 설치를 생략할 수도 있다.According to an embodiment of the present invention, the structure of the inside of the ground is confirmed by the support layer 20, the soft layer 21, the super soft layer 22, etc. through ground inspection, and the first excavation platform 321 to the third excavation platform ( 323) and the first stirring table 331 to the third stirring table 333 are installed in the injection pipe 310, and drilling is performed to form a support layer 20, a soft layer 21, and a super soft layer as shown in FIG. 9. At (22), drilling holes with larger diameters are constructed in stages. Of course, if the structure inside the ground consists only of a soft layer and a support layer, installation of the third excavation stand 323 and the third stirring stand 333 may be omitted.
한편, 상기 굴착부(320) 및 교반부(330)를 설치할 때에는 지지층(20), 연약층(21) 및 초연약층(22)이 각각 시작되는 깊이를 측정하여 주입관(310)에 제1굴착대(321) 내지 제3굴착대(323)의 위치와, 제1교반대(331) 내지 제3교반대(333)의 위치를 결정하여 설치하게 되는데, 이때, 작업자가 주입관(310)를 필요 이상으로 삽입시키는 오작업을 방지할 수 있도록 본 발명은 상기 주입관의 상부 일측에 깊이감지부(340)가 설치되는 것을 특징으로 한다. Meanwhile, when installing the excavation part 320 and the stirring part 330, the depth at which the support layer 20, the soft layer 21, and the super soft layer 22 each start is measured and the injection pipe 310 is installed in the first excavation zone. The positions of the third excavation table 321 to 323 and the positions of the first stirring table 331 to 333 are determined and installed. At this time, the operator needs the injection pipe 310. In order to prevent erroneous insertion, the present invention is characterized in that a depth sensing unit 340 is installed on one upper side of the injection tube.
상기 깊이감지부(340)는 상기 주입관(310)이 지중으로 삽입될 때 삽입되는 깊이를 육안으로 확인하여 상기 복수개의 굴착부 중에서 상대적으로 긴 굴착부가 지지층으로 삽입되는 것을 방지하기 위한 것으로, 상기 주입관에 구비되는 복수 개의 결합홈부(312) 중 어느 하나에 안착되는 제1결합링(341)과, 상기 주입관에 고정되도록 상기 제1결합링과 결합되는 제2결합링(342)과, 상기 제1결합링 및 상기 제2결합링으로부터 돌출되는 표시바(343)를 포함할 수 있다.The depth detection unit 340 is used to visually check the insertion depth when the injection pipe 310 is inserted into the ground and to prevent a relatively long excavation part among the plurality of excavation parts from being inserted into the support layer. A first coupling ring 341 seated in one of a plurality of coupling grooves 312 provided in the injection tube, a second coupling ring 342 coupled to the first coupling ring to be fixed to the injection tube, It may include a display bar 343 protruding from the first coupling ring and the second coupling ring.
여기에서, 상기 표시바(343)는 굴착작업이 시작되기 전에 위치를 결정하여 설치하되, 상기 표시바가 설치되는 위치는 연약층의 깊이와 지지층에 형성되는 천공홀의 깊이를 합하여 삽입 깊이를 결정하여 상기 주입관의 하단으로부터 삽입 깊이만큼 상측으로 이동한 위치인 것이 바람직하다. Here, the position of the indicator bar 343 is determined and installed before the start of the excavation work, and the position where the indicator bar is installed is determined by adding the depth of the soft layer and the depth of the drilling hole formed in the support layer to determine the insertion depth. It is preferable that the position is moved upward by the insertion depth from the bottom of the tube.
이에 따라, 작업자가 상기 주입관(310)를 지면으로부터 지중으로 삽입시키는 천공작업이 개시된 후에 상기 표시바(343)가 지면까지 하강하여 지중으로 삽입되기 직전에 천공작업을 중단하고, 상기 주입관(310)를 통해 고화제 조성물을 주입하면서 상기 주입관(310)를 지면 외측으로 인출하면서 보강재 주입작업을 진행하게 된다. 이때, 상기 주입관(310)로부터 토출되는 고화제 조성물은 상기 교반부(330)에 의해 분쇄된 토양과 혼합되면서 경화되어 구조체(10)로 형성된다. Accordingly, after the worker starts the drilling operation to insert the injection pipe 310 from the ground into the ground, the drilling operation is stopped just before the display bar 343 is lowered to the ground and inserted into the ground, and the injection pipe ( While the solidifying agent composition is injected through 310), the injection pipe 310 is pulled out to the outside of the ground, and the reinforcing material injection operation is performed. At this time, the solidifying agent composition discharged from the injection pipe 310 is mixed with the soil pulverized by the stirring unit 330 and hardened to form the structure 10.
또한, 본 실시예의 깊이감지부(340)는 표시바(343)가 지중으로 삽입될 때에 표시바(343)와 지면이 간섭되는 것을 방지하는 간섭방지부(350)를 더 포함할 수 있다. Additionally, the depth sensing unit 340 of this embodiment may further include an interference prevention unit 350 that prevents the display bar 343 from interfering with the ground when the display bar 343 is inserted into the ground.
도 8을 참조하면, 상기 간섭방지부(350)는 상기 표시바(343)의 중앙부에 설치되는 힌지축(351)과, 상기 힌지축(351)에 설치되고 표시바(343)를 일측 방향으로 회전시키도록 탄성력을 제공하는 탄성부재(352)를 포함할 수 있다. Referring to FIG. 8, the interference prevention unit 350 is installed on a hinge axis 351 installed in the center of the display bar 343, and is installed on the hinge axis 351 and moves the display bar 343 in one direction. It may include an elastic member 352 that provides elastic force to rotate.
여기에서, 상기 표시바(343)는, 2개 이상 복수 개의 바가 회전 가능하게 연결되어 이루어지고, 복수 개의 바를 회전가능하게 연결하는 연결부위에 힌지축(351)이 설치되며, 각각의 힌지축(351)에 토션스프링으로 이루어지는 탄성부재(352)가 설치되어 외측 단부에 설치되는 바를 하측, 상측 또는 상하측으로 회전시키는 탄성력을 제공하게 된다.Here, the display bar 343 is made up of two or more bars rotatably connected, and a hinge axis 351 is installed at a connection portion that rotatably connects the plurality of bars, and each hinge axis ( An elastic member 352 made of a torsion spring is installed at 351) to provide an elastic force to rotate the bar installed at the outer end downward, upward, or up and down.
또한, 상기 제1결합링(341)과 제2결합링(342)의 양단부에는 측 방향으로 돌출되는 연장부위가 형성되고, 서로 대향되게 배치되는 연장부위의 하단에는 표시바(343)의 회전운동을 제한하는 스토퍼가 형성되고, 표시바(343)의 외벽에는 토션스프링의 단부가 지지되는 걸림돌기(343a)가 형성되므로 토션스프링의 양단부는 걸림돌기(343a)와 스토퍼에 의해 지지되면서 표시바(343)를 스토퍼 방향으로 회전시키는 탄성력을 제공하게 된다.In addition, extension parts protruding laterally are formed at both ends of the first coupling ring 341 and the second coupling ring 342, and the rotational movement of the display bar 343 is provided at the bottom of the extension parts disposed opposite to each other. A stopper that limits the 343) provides an elastic force to rotate the stopper direction.
따라서 주입관(310)가 지중으로 삽입될 때에 천공홀의 입구와 표시바(343)가 간섭될 때에 토션스프링이 압축되면서 표시바(343)가 역방향으로 회전되므로 표시바(343)가 상측으로 회전되면서 천공홀부와 간섭되는 것을 방지할수 있게 된다.Therefore, when the injection pipe 310 is inserted into the ground and the entrance of the drilling hole interferes with the display bar 343, the torsion spring is compressed and the display bar 343 rotates in the reverse direction, so that the display bar 343 rotates upward. Interference with the perforated hole can be prevented.
이후에, 천공작업이 완료되어 주입관(310)를 지면 외측으로 배출시키면 탄성부재(352)의 복원력에 의해 표시바(343)가 원상태로 복귀될 수 있게 된다.Afterwards, when the drilling operation is completed and the injection pipe 310 is discharged to the outside of the ground, the display bar 343 can be returned to its original state by the restoring force of the elastic member 352.
물론, 스토퍼가 생략될 수 있으며, 한 쌍의 토션스프링이 하나의 힌지축(351)에 동시에 설치되어 표시바(343)를 상측 및 하측으로 회전시키는 탄성력을 제공할 수 있으며, 이때, 한 쌍의 토션스프링에 의해 제공되는 양방향 탄성력에 의해 표시바(343)는 주입관(310)로부터 측 방향으로 연장되게 배치될 수 있고, 주입관(310)를 지중으로 삽입할 때는 표시바(343)가 상측으로 회전되고, 주입관(310)를 지면 외측으로 배출시킬 때에는 표시바(343)가 하측으로 회전되면서 간섭을 방지할 수 있게 된다.Of course, the stopper may be omitted, and a pair of torsion springs may be installed simultaneously on one hinge axis 351 to provide elastic force to rotate the display bar 343 upward and downward. In this case, the pair of torsion springs The display bar 343 can be arranged to extend laterally from the injection pipe 310 due to the two-way elastic force provided by the torsion spring, and when the injection pipe 310 is inserted into the ground, the display bar 343 is positioned at the upper side. When the injection pipe 310 is discharged to the outside of the ground, the display bar 343 rotates downward to prevent interference.
다음으로, 본 발명의 실시예에 따라 상기 믹싱단계(S3)에서 주입되는 고화제 조성물은 고로슬래그 미분말과, 플라이애쉬와, 조강시멘트와, 페녹시에탄올과 이소프로필아민이 합성된 중합체를 혼합하여 조성될 수 있다. Next, according to an embodiment of the present invention, the solidifying agent composition injected in the mixing step (S3) is a mixture of blast furnace slag fine powder, fly ash, crude steel cement, and a polymer synthesized from phenoxyethanol and isopropylamine. It can be created.
상기 고로슬래그 미분말은 제철공장 선철 제조 시 발생되는 산업부산물로 철광석의 불순물이 섞인 암질산화알미늄(Al2O3)과 화합된 고온에서 용융된 부유물질이다.The blast furnace slag fine powder is an industrial by-product generated during the production of pig iron in a steel mill and is a suspended solid melted at high temperature combined with nitrous aluminum oxide (Al 2 O 3 ) mixed with impurities of iron ore.
상기 고로슬래그 미분말은 분말도 3,000~10,000cm2/g의 분포를 나타낸다. 통상적으로 4,000cm2/g, 8,000cm2/g,10,000cm2/g의 3종류로 분쇄 분급하여 사용하는데, 고분말도의 분말이 반응성이 더 좋으나, 분말도가 클수록 에너지 소비가 기하급수적으로 많아져 고가로 된다.The blast furnace slag fine powder has a fineness distribution of 3,000 to 10,000 cm 2 /g. Generally, it is used by grinding and classifying it into three types: 4,000cm 2 /g, 8,000cm 2 /g, and 10,000cm 2 /g. Powders with high fineness have better reactivity, but the higher the fineness, the more energy consumption increases exponentially. It becomes expensive.
이러한 고로슬래그 미분말의 양은 전체 조성물 중량에 대하여 55~65중량%인 것이 바람직하다. 만약, 상기 고로슬래그 미분말의 함량이 55중량% 미만인 경우에는 고화제 조성물의 강도 발현이 저하되는 문제가 있고, 65중량%를 초과하면 초기 반응 및 응결 시간이 지연되는 등 초기 강도 확보에 어려움이 있으며, 경제성이 떨어지게 되므로 바람직하지 않다.The amount of this blast furnace slag fine powder is preferably 55 to 65% by weight based on the total weight of the composition. If the content of the blast furnace slag fine powder is less than 55% by weight, there is a problem that the strength development of the solidifying agent composition is reduced, and if it exceeds 65% by weight, there is difficulty in securing initial strength, such as the initial reaction and setting time are delayed. , it is undesirable because it reduces economic efficiency.
다음으로, 상기 플라이애쉬는 열병합 발전소 및 화력 발전소에서 연료소각시 발생되는 부산물인 플라이애쉬로서, 이산화규소(SiO2)와 산화알루미늄(Al2O3)과, 산화제이철(Fe2O3)을 합한 함량이 70% 이상이다.Next, the fly ash is a by-product of fuel incineration in combined heat and power plants and thermal power plants, and is composed of silicon dioxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and ferric oxide (Fe 2 O 3 ). The combined content is more than 70%.
상기 플라이애쉬의 양은 전체 조성물 중량에 대하여 10~20 중량%인 것이 바람직한데, 이는 상기 함량이 10 중량% 미만인 경우에는 탈황부산물과 함께 초기 수화반응을 유도할 수 없다는 문제가 있고, 상기 함량이 20 중량%를 초과하면 팽창효과가 크고 단위수량이 증대된다는 문제가 발생한다.The amount of the fly ash is preferably 10 to 20% by weight based on the total weight of the composition. However, if the content is less than 10% by weight, there is a problem that the initial hydration reaction cannot be induced with the desulfurization by-product, and the content is 20% by weight. If the weight percent is exceeded, the expansion effect is large and the unit quantity increases.
다음으로, 상기 조강시멘트는 볼밀링에 의해 평균 분말도 5,000~5,500 ㎠/g으로 가공되고, 입경 10㎛ 이하의 고미분말이 5~10wt% 함유된 것을 적용할 수 있다.Next, the early steel cement can be processed to an average powder size of 5,000 to 5,500 cm2/g by ball milling and contains 5 to 10 wt% of fine powder with a particle size of 10 μm or less.
버티컬 밀링의 경우 시멘트 입자를 평균 분말도 5,000~5,500㎠/g이 되도록 분쇄하더라도 분말의 입형은 세장비가 대체적으로 높게 나타나며, 그러한 입형은 수화반응 및 유동성에 불리하게 작용하므로, 볼밀링 방식으로 가공하는 것이 바람직하다. 또한, 볼밀링 시 버티컬 밀링에 비해 분말의 입도 분포가 넓게 나타나 평균 분말도가 동일한 수준이더라도 입경 10㎛ 이하의 고미분말 수득율을 높일 수 있다. 이에 따라 본 발명에서는 상기 입경 10㎛ 이하의 고미분말이 상기 조강시멘트의 5~10중량% 함유되도록 하여, 상기 고미분말이 조강성 발현을 위한 씨드(seed) 역할을 수행토록 할 수 있다.In the case of vertical milling, even if the cement particles are ground to an average fineness of 5,000~5,500㎠/g, the particle shape of the powder generally has a high slenderness ratio, and such particle shape has a detrimental effect on hydration reaction and fluidity, so it is used for processing using the ball milling method. It is desirable. In addition, during ball milling, the particle size distribution of the powder appears wider than that of vertical milling, so even if the average powder size is at the same level, the yield of fine powder with a particle size of 10㎛ or less can be increased. Accordingly, in the present invention, the high-fine powder with a particle size of 10 μm or less is contained in 5 to 10% by weight of the early strength cement, so that the high-fine powder can serve as a seed for developing early strength.
다음으로, 하기의 화학식 1의 페녹시에탄올(phenoxyethanol)은 무색의 점성 액체로서, 1가 알코올로 분류되며, 고분자 구조 내에 분쇄능의 향상효과를 위해 첨가된다.Next, phenoxyethanol of the following formula (1) is a colorless viscous liquid and is classified as a monohydric alcohol, and is added to the polymer structure to improve grinding ability.
화학식 1Formula 1
Figure PCTKR2023000713-appb-img-000001
Figure PCTKR2023000713-appb-img-000001
하기의 화학식 2의 이소프로필아민은 암모니아 냄새가 나는 투명한 무색 액체로서, 약염기이며 밀도는 722kg/㎥이고 분자량은 5911026g/㏖이다.Isopropylamine of the following formula (2) is a transparent, colorless liquid with an ammonia odor, is a weak base, has a density of 722 kg/㎥ and a molecular weight of 5911026 g/mol.
상기 이소프로필아민은 고로슬래그 유리질 피막의 형성 자체를 억제하며, 반응속도를 늦추고, 기형성된 피막에 결합하여 워터채널을 형성하는 작용을 통해 압축강도를 향상시키며, 치밀화된 조직을 형성하여 내구성을 향상시키는 효과를 제공한다.The isopropylamine inhibits the formation of the blast furnace slag glassy film itself, slows down the reaction rate, improves compressive strength by binding to the formed film to form a water channel, and improves durability by forming a dense structure. It provides the desired effect.
화학식 2Formula 2
Figure PCTKR2023000713-appb-img-000002
Figure PCTKR2023000713-appb-img-000002
상기 이소프로필아민은 공기 중에 폭발 위험이 있으므로, 상기 중합체는 상기 페녹시에탄올과 이소프로필아민이 9~99:01~1의 몰비로 30℃에서 산촉매를 통해 합성되는 것이 바람직하다.Since the isopropylamine has a risk of explosion in the air, it is preferable that the polymer is synthesized through an acid catalyst at 30° C. with the phenoxyethanol and isopropylamine in a molar ratio of 9 to 99:01 to 1.
또한, 상기의 중합체의 양은 전체 조성물 중량에 대하여 2~5중량%인 것이 바람직하다. 만약, 상기 함량이 2중량% 미만인 경우 함량 미달로 인해 분쇄능 향상효과, 압축강도 향상효과를 기대할 수 없으며, 응결지연에 따른 시공성 저하의 문제점이 발생될 수 있다. 또한, 5중량%를 초과하게 되면 초기균열 발생, 장기강도 저하 등의 문제점이 발생될 수 있으므로 바람직하지 않다.In addition, the amount of the above polymer is preferably 2 to 5% by weight based on the total weight of the composition. If the content is less than 2% by weight, the effect of improving grinding ability and compressive strength cannot be expected due to the insufficient content, and problems of deterioration of constructability due to delayed setting may occur. In addition, if it exceeds 5% by weight, it is not desirable because problems such as initial cracks and reduced long-term strength may occur.
한편, 본 발명에서 상기 고화제 조성물의 물시멘트비(W/C)가 중량비로 50~70%로 배합되어 주입되는 것이 바람직하다. 상기 고화제 조성물은 조기강도를 확보하는 것도 중요하지만, 현장 타설에 있어서 급결은 작업성의 저하로 이어질 수 있고, 압송부하로 인한 펌핑 장비의 파손을 초래할 수 있으므로 고화제 조성물의 양은 적절한 조성관계를 갖도록 하는 것이 우선적으로 고려되어야 한다. 만약, 물/시멘트비가 중량비로 50% 미만으로 배합되어 주입되면 급결과 재료의 혼합이 어려운 단점이 있고, 70% 이상으로 배합되어 주입되면 상대적으로 물의 양이 많아지면서 조기강도의 발현이 지체되는 문제점이 발생된다.Meanwhile, in the present invention, it is preferable that the water-cement ratio (W/C) of the solidifying agent composition is mixed and injected at a weight ratio of 50 to 70%. It is important to secure early strength of the solidifying agent composition, but rapid hardening during on-site casting may lead to a decrease in workability and damage to pumping equipment due to pressure loading, so the amount of solidifying agent composition must have an appropriate composition relationship. should be considered a priority. If the water/cement ratio is mixed and injected with a weight ratio of less than 50%, there is a disadvantage in that it is difficult to quickly mix the materials. If the water/cement ratio is mixed and injected with a weight ratio of more than 70%, the development of early strength is delayed due to the relatively large amount of water. This occurs.
또한, 본 발명은 상기 고화제 조성물 100중량부에 대하여 유동화제 01~8중량부가 첨가될 수 있다.Additionally, in the present invention, 01 to 8 parts by weight of a fluidizing agent may be added based on 100 parts by weight of the solidifying agent composition.
여기에서, 상기 유동화제는 물 80~90중량%와, 폴리카르복실레이트 폴리머(polycarboxylate polymer)5~20중량%와, 글루콘산계 지연제 1~5중량%와, 로릴 에테르 황산 나트륨 1~5중량%를 포함할 수 있다. Here, the fluidizing agent is 80 to 90% by weight of water, 5 to 20% by weight of polycarboxylate polymer, 1 to 5% by weight of gluconic acid-based retardant, and 1 to 5% of sodium lauryl ether sulfate. It may include weight percent.
폴리카르복실레이트 폴리머(polycarboxylate polymer)는 분산제 역할을 하는 것으로, 펌핑 장비에 의해 고화제 조성물이 압송될 때 각종 미분말 입자들을 분산시켜 혼합, 투입, 및 압송이 효율적으로 행해지도록 하는 역할을 한다.Polycarboxylate polymer acts as a dispersing agent, and serves to disperse various fine powder particles when the solidifying agent composition is pumped by pumping equipment to ensure efficient mixing, injection, and pumping.
이러한 폴리카르복실레이트의 양은 전체 조성물 중량에 대하여 5~20중량%로 포함되는 것이 바람직하다. 만약, 5중량% 미만인 경우 함량 미달로 인해 유동성을 확보할 수 없어 원활한 압송이 이루어지지 못할 수 있으며, 20중량%를 초과하는 경우 유동성이 너무 높아져 고화제 조성물로 사용하기에 부적절할 수 있다.The amount of polycarboxylate is preferably 5 to 20% by weight based on the total weight of the composition. If it is less than 5% by weight, fluidity cannot be secured due to insufficient content and smooth conveyance may not be achieved. If it exceeds 20% by weight, fluidity may be too high and it may be inappropriate for use as a solidifying agent composition.
상기 글루콘산계 지연제는 본 발명에 따른 고화제 조성물의 경화가 신속하여 펌프 압송시 배관 내부에서 경화되거나 실제 시공시에 작업중에 경화되는 것을 방지하기 위하여 첨가되는 것으로, 일정 시간 동안 주입성을 확보하기 위해 석고에 의해 급격하게 경화되는 것을 지연하기 위한 것이다.The gluconic acid-based retardant is added to prevent the hardening agent composition according to the present invention from hardening quickly and hardening inside the pipe when pumped or hardening during actual construction work, and ensuring injectability for a certain period of time. This is to delay rapid hardening by plaster.
상기 글루콘산계 지연제로는 글루콘산 나트륨을 사용할 수 있으며, 1~5중량%가 혼합된다. 만약, 1중량% 미만인 경우 함량 미달로 인하여 작업성을 유지할 수 없고, 5중량%를 초과하여 혼합되는 경우 강도 저하 및 늦은 경화에 따른 작업성이 저하되는 문제점이 발생하게 된다.Sodium gluconate can be used as the gluconic acid-based retardant, and is mixed in an amount of 1 to 5% by weight. If it is less than 1% by weight, workability cannot be maintained due to insufficient content, and if it is mixed in excess of 5% by weight, problems such as reduced strength and workability due to slow curing occur.
상기 로릴 에테르 황산 나트륨(Sodium Lauryl Ethersulfate)은 입자를 분산시켜 혼합, 투입 및 압송이 효율적으로 행해지도록 하는 분산제이다. 상기 로릴 에테르 황산 나트륨의 양은 전체 조성물 중량에 대하여 1~5중량%로 포함되는데, 만약 1중량% 미만인 경우 함량 미달로 인해 작용효과를 기대할 수 없으며, 5중량%를 초과하는 경우 유동성이 너무 높아져 고화제 조성물로 사용하기에 부적절할 수 있다.The sodium lauryl ether sulfate (Sodium Lauryl Ethersulfate) is a dispersant that disperses particles so that mixing, injection, and conveyance can be carried out efficiently. The amount of sodium lauryl ether sulfate is included in the range of 1 to 5% by weight based on the total weight of the composition. If it is less than 1% by weight, no effect can be expected due to insufficient content, and if it exceeds 5% by weight, the fluidity becomes too high and It may be unsuitable for use as a topical composition.
상기와 같은 유동화제가 첨가되면 윤활성이 향상되므로 주입시 유동이 원활하게 이루어져 펌프 등의 장비의 압송부하를 최소화할 수 있다. 더욱이, 유동화제의 첨가로 인해 유동성이 확보되므로 물시멘트비(W/C)를 중량비로 50~70%로 하여 고화제 조성물의 양을 확보할 수 있으므로 구조체의 강도가 향상되는 효과를 기대할 수 있다.When the above fluidizing agent is added, lubricity is improved, allowing smooth flow during injection, thereby minimizing the pressure load on equipment such as pumps. Moreover, since fluidity is secured due to the addition of the fluidizing agent, the amount of solidifying agent composition can be secured by setting the water cement ratio (W/C) to 50 to 70% by weight, so the effect of improving the strength of the structure can be expected.
이상에서 설명된 본 발명은 예시적인 것에 불과하며, 본 발명이 속한 기술분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 잘 알 수 있을 것이다. 그러므로 본 발명은 상기의 상세한 설명에서 언급되는 형태로만 한정되는 것은 아님을 잘 이해할 수 있을 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다. 또한, 본 발명은 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 그 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되어야 한다.The present invention described above is merely illustrative, and those skilled in the art will appreciate that various modifications and other equivalent embodiments are possible therefrom. Therefore, it will be understood that the present invention is not limited to the forms mentioned in the detailed description above. Therefore, the true scope of technical protection of the present invention should be determined by the technical spirit of the attached patent claims. In addition, the present invention should be understood to include all modifications, equivalents and substitutes within the spirit and scope of the present invention as defined by the appended claims.
부호의설명Description of the sign
10 : 구조체10: structure
100 : 센서장치100: sensor device
110 : 센서 하우징110: sensor housing
120 : 압전센서120: Piezoelectric sensor
130 : 전달부재130: transmission member
200 : 강도측정장치200: Strength measuring device
210 : 교류전기신호 발생부210: AC electrical signal generator
220 : 제어모듈부220: Control module part
230 : 전원부230: power unit
300 : 굴착장비300: Excavation equipment
310 : 주입관310: injection pipe
320 : 굴착부320: Excavation part
330 : 교반부330: stirring unit
340 : 깊이감지부340: Depth sensing unit
350 : 간섭방지부350: Interference prevention unit

Claims (9)

  1. 굴착장비를 설계심도까지 지중에 관입하는 관입단계(S1)와, 상기 굴착장비를 다시 인발하는 인발단계(S2)와, 상기 관입단계 또는 인발단계 중 적어도 하나의 단계에서 고화제 조성물를 주입하여 굴착된 연약지반과 혼합하는 믹싱단계(S3)와, 상기 믹싱단계에서 주입 및 혼합된 고화제 조성물이 경화되면서 연약지반을 보강하는 구조체가 형성되는 양생단계(S4)를 포함하는 심층혼합공법에 있어서,A penetration step (S1) in which the excavation equipment penetrates the ground to the design depth, a drawing step (S2) in which the excavation equipment is pulled out again, and the excavation is performed by injecting a solidifying agent composition in at least one of the penetration step or the drawing step. In the deep mixing method comprising a mixing step (S3) of mixing with soft ground, and a curing step (S4) in which a structure that reinforces the soft ground is formed as the solidifying agent composition injected and mixed in the mixing step hardens,
    상기 믹싱단계는, The mixing step is,
    상기 구조체에 매립되어 상기 구조체에 교류전기신호를 전달하고 상기 구조체에 의해 변화된 공진주파수 및 임피던스를 전달받는 센서장치(100); 및 상기 센서장치와 연결되어 상기 수화반응물질 구조체의 강도를 측정하는 강도측정장치(200);가 상기 고화제 조성물과 함께 주입되어, A sensor device (100) embedded in the structure and transmitting an alternating current electrical signal to the structure and receiving a resonant frequency and impedance changed by the structure; And a strength measuring device 200 connected to the sensor device to measure the strength of the hydration reaction material structure; is injected together with the solidifying agent composition,
    상기 연약지반의 보강을 위한 구조체의 강도를 높은 신뢰성을 바탕으로 실시간 상시 모니터링하여 상기 구조체의 이상 거동을 감지할 수 있고, 이상 거동 감지시 신속한조치가 이루어질 수 있도록 한 것을 특징으로 하는 연약지반 보강을 위한 구조체의 강도 모니터링 기능을 포함하는 심층혼합공법.Soft ground reinforcement is characterized in that abnormal behavior of the structure can be detected by constantly monitoring the strength of the structure for reinforcing the soft ground in real time based on high reliability, and rapid action can be taken when abnormal behavior is detected. A deep mixing method that includes a function to monitor the strength of the structure.
  2. 제1항에 있어서, According to paragraph 1,
    상기 센서장치는,The sensor device is,
    상기 구조체에 파손되지 않게 매립되는 센서 하우징과, 상기 센서 하우징 내부에 설치되어 교류전기신호를 전달받아 상기 구조체에 전달하고 상기 구조체에 의해 변화된 공진주파수 및 임피던스를 전달받는 압전센서와, 상기 압전센서가 부착되어 상기 공진주파수 및 임피던스가 상기 구조체에 전달되도록 하는 전달부재를 포함하며, A sensor housing that is embedded in the structure so as not to be damaged, a piezoelectric sensor installed inside the sensor housing to receive an alternating current electrical signal, transmit it to the structure, and receive a resonance frequency and impedance changed by the structure, and the piezoelectric sensor. It includes a transmission member attached to transmit the resonant frequency and impedance to the structure,
    상기 강도측정장치는,The strength measuring device is,
    소정 주파수 대역의 주파수를 갖는 특정 파형의 교류전기신호를 발생시키는 교류전기신호 발생부와, 상기 교류전기신호 발생부에서 소정 주파수 대역의 주파수를 갖는 특정 파형의 교류전기신호가 발생되도록 제어하고, 발생된 교류전기신호를 상기 압전센서에 인가하며 상기 압전센서로 인가된 교류전기신호에 기반하여 상기 압전센서에 가해진 물리적인 압력의 변화를 측정하여 강도데이터를 산출하는 제어모듈부 및 상기 제어모듈부에 필요 전력을 공급하는 전원부를 포함하는 것을 특징으로 하는 연약지반 보강을 위한 구조체의 강도 모니터링 기능을 포함하는 심층혼합공법.An alternating current electrical signal generator for generating an alternating current electrical signal of a specific waveform having a frequency in a predetermined frequency band, and controlling the alternating current electrical signal generating unit to generate an alternating current electrical signal of a specific waveform having a frequency in a predetermined frequency band. A control module unit that applies an alternating current electrical signal to the piezoelectric sensor and calculates strength data by measuring a change in physical pressure applied to the piezoelectric sensor based on the alternating current electrical signal applied to the piezoelectric sensor, and a control module unit that calculates strength data. A deep mixing method including a strength monitoring function of a structure for reinforcing soft ground, characterized by including a power source that supplies the necessary power.
  3. 제2항에 있어서,According to paragraph 2,
    상기 센서장치 또는 강도측정장치의 외면에 설치되어 주변 온도를 검출하는 온도센서와;a temperature sensor installed on the outer surface of the sensor device or intensity measuring device to detect ambient temperature;
    상기 강도데이터를 외부의 상위 처리장치로 전송하도록 상기 센서장치 또는 강도측정장치에 구비되는 유무선 통신 모듈부와;a wired/wireless communication module provided in the sensor device or intensity measurement device to transmit the intensity data to an external upper processing device;
    상기 강도데이터를 표시하는 디스플레이부; 및A display unit that displays the intensity data; and
    상기 센서장치 또는 강도측정장치에 구비되며, 상기 압전센서의 위치 정보를 외부의 상위 처리장치로 전송하는 GPS 모듈부;A GPS module unit provided in the sensor device or intensity measurement device and transmits the location information of the piezoelectric sensor to an external upper processing device;
    를 더 포함하는 것을 특징으로 하는 연약지반 보강을 위한 구조체의 강도 모니터링 기능을 포함하는 심층혼합공법.A deep mixing method including a strength monitoring function of the structure for reinforcing soft ground, further comprising:
  4. 제2항에 있어서, 상기 센서 하우징은 내부에 장착된 구성부들의 파손을 방지하면서 연약지반에 안정적으로 주입되어 구조체 내부에 매립될 수 있도록 탄성유기재료에 의해 외주면이 코팅처리되는 것을 특징으로 하는 연약지반 보강을 위한 구조체의 강도 모니터링 기능을 포함하는 심층혼합공법.According to claim 2, wherein the sensor housing is soft, characterized in that the outer peripheral surface is coated with an elastic organic material so that it can be stably injected into soft ground and embedded inside the structure while preventing damage to the components mounted therein. Deep mixing method including structural strength monitoring function for ground reinforcement.
  5. 제4항에 있어서, According to paragraph 4,
    상기 탄성유기재료는 폴리디메틸실록세인(Polydimethylsiloxane) 25~80중량% 및 실리콘고무 20~75중량%로 이루어지는 것을 특징으로 하는 연약지반 보강을 위한 구조체의 강도 모니터링 기능을 포함하는 심층혼합공법.The elastic organic material is a deep mixing method including a strength monitoring function of the structure for reinforcing soft ground, characterized in that it consists of 25 to 80% by weight of polydimethylsiloxane and 20 to 75% by weight of silicone rubber.
  6. 제1항에 있어서, According to paragraph 1,
    상기 관입단계에서 관입되는 굴착장비는, The excavation equipment that penetrates in the penetration stage is,
    구동부의 작동에 의해 회전되며, 지중에 수직으로 삽입되는 소정 길이의 주입관과, An injection pipe of a predetermined length that is rotated by the operation of the driving unit and is inserted vertically into the ground;
    상기 주입관과 직교 방향으로 배치되며 복수개의 비트부재가 마련되어 지면을 굴착하는 것으로, 상기 주입관을 따라 상하 다단으로 복수개로 배치되되 굴착작업 전에 측정되는 지반의 연약층과 지지층 사이의 경계를 중심으로 연약층에 상대적으로 큰 천공홀부를 시공하도록 하부로부터 상부로 갈수록 길게 형성되는 복수개의 굴착부와, It is arranged in a direction perpendicular to the injection pipe and a plurality of bit members are provided to excavate the ground. A plurality of bit members are arranged in multiple stages up and down along the injection pipe, and the soft layer is centered around the boundary between the soft layer of the ground and the support layer measured before the excavation work. A plurality of excavation parts extending from the bottom to the top to construct a relatively large drilling hole,
    상기 주입관에 상하 다단으로 배치되되 상기 굴착부의 상측에 배치되는 것으로, 주입관과 직교 방향으로 배치되며 상기 굴착부에 의해 분쇄되는 지반을 교반시키면서 보강재와 분쇄된 지반을 혼합시키는 복수개의 교반부 및 A plurality of stirring units arranged in upper and lower stages in the injection pipe and on the upper side of the excavation section, arranged in a direction perpendicular to the injection pipe and mixing the reinforcing material and the pulverized ground while agitating the ground pulverized by the excavation section;
    상기 주입관이 지중으로 삽입될 때 삽입되는 깊이를 육안으로 확인하여 상기 복수개의 굴착부 중에서 상대적으로 긴 굴착부가 지지층으로 삽입되지 않도록 상기 주입관의 상부 일측에 구비되는 깊이감지부를 포함하여, A depth sensor provided on one upper side of the injection pipe to visually check the insertion depth when the injection pipe is inserted into the ground and to prevent a relatively long excavation portion among the plurality of excavation portions from being inserted into the support layer,
    상기 연약지반에 천공홀부를 시공할 때에 연약층에는 상대적으로 지름이 큰 천공홀부가 형성되고, 지지층에는 상대적으로 작은 천공홀부가 형성되도록 하여 천공홀부를 따라 지중으로 고화제 조성물이 주입되면서 구근을 형성할 때에 연약층에 상대적으로 지름이 큰 구근을 시공할 수있고, 반대로 지지층에는 상대적으로 지름이 작은 구근을 시공할 수 있어 고화재 조성물이 필요 이상으로 지지층에 주입되는 것을 방지할 수 있도록 한 것을 특징으로 하는 연약지반 보강을 위한 구조체의 강도 모니터링 기능을 포함하는 심층혼합공법.When constructing a drilling hole in the soft ground, a relatively large diameter drilling hole is formed in the soft layer, and a relatively small drilling hole is formed in the support layer, so that the solidifying agent composition is injected into the ground along the drilling hole to form a bulb. At this time, bulbs with a relatively large diameter can be constructed in the soft layer, and on the contrary, bulbs with a relatively small diameter can be constructed in the support layer, so that the solidifying composition can be prevented from being injected into the support layer more than necessary. Deep mixing method including structural strength monitoring function for reinforcing soft ground.
  7. 제6항에 있어서, According to clause 6,
    상기 깊이감지부는 상기 주입관에 구비되는 복수 개의 결합홈부 중 어느 하나에 안착되는 제1결합링과, 상기 주입관에 고정되도록 상기 제1결합링과 결합되는 제2결합링과, 상기 제1결합링 및 상기 제2결합링으로부터 돌출되는 표시바를 포함하며, The depth sensing unit includes a first coupling ring seated in one of a plurality of coupling grooves provided in the injection tube, a second coupling ring coupled to the first coupling ring to be fixed to the injection tube, and the first coupling ring. It includes a ring and an indicator bar protruding from the second coupling ring,
    굴착작업이 시작되기 전에 상기 표시바의 위치를 결정하여 설치하되, 상기 표시바의 위치는 연약층의 깊이와 지지층에 형성되는 천공홀의 깊이를 합하여 삽입 깊이를 결정하여 상기 주입관의 하단으로부터 삽입 깊이만큼 상측으로 이동한 위치에 상기 표시바를 설치함으로써 상기 주입관이 지중으로 삽입되거나 지면으로 인출될 때에 상기 표시바가 변형되거나 파손되는 것을 방지할 수 있도록 한 것을 특징으로 하는 연약지반 보강을 위한 구조체의 강도 모니터링 기능을 포함하는 심층혼합공법.Before excavation work begins, the position of the indicator bar is determined and installed. The position of the indicator bar is determined by adding the depth of the soft layer and the depth of the drill hole formed in the support layer to determine the insertion depth, so that the insertion depth is as much as the insertion depth from the bottom of the injection pipe. Strength monitoring of the structure for reinforcing soft ground, characterized in that the indicator bar is installed at a position moved upward to prevent the indicator bar from being deformed or damaged when the injection pipe is inserted into the ground or pulled out to the ground. Deep mixing method including functions.
  8. 제1항에 있어서, According to paragraph 1,
    상기 고화제 조성물은, The solidifying agent composition is,
    제철소의 선철 제조시 발생되는 고로슬래그 미분말 55~65 중량%와, 열병합발전소 및 화력발전소의 연료소각시 발생되고 이산화규소(SiO2)와 산화알루미늄(Al2O3) 및 산화제이철(Fe2O3)을 합한 함량이 70% 이상인 플라이애쉬 10~20 중량%와, 조강시멘트 10~20중량%와, 페녹시에탄올과 이소프로필아민이 합성된 중합체 2~5중량%를 혼합하여 조성되되, 55-65% by weight of blast furnace slag fine powder generated during pig iron production at steel mills, and 55 to 65% by weight of fine powder of blast furnace slag generated during fuel incineration in combined heat and power plants and thermal power plants, and contain silicon dioxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and ferric oxide (Fe 2 O). 3 ) It is composed by mixing 10 to 20% by weight of fly ash with a combined content of 70% or more, 10 to 20% by weight of early steel cement, and 2 to 5% by weight of a polymer synthesized from phenoxyethanol and isopropylamine,
    물시멘트비(W/C)가 중량비로 50~70%로 배합되어 주입되는 것을 특징으로 하는 연약지반 보강을 위한 구조체의 강도 모니터링 기능을 포함하는 심층혼합공법.A deep mixing method that includes a structure strength monitoring function for reinforcing soft ground, characterized in that the water cement ratio (W/C) is mixed and injected at a weight ratio of 50 to 70%.
  9. 제8항에 있어서, According to clause 8,
    상기 고화제 조성물 100중량부에 대하여 유동화제 0.1~8중량부가 첨가되되, 0.1 to 8 parts by weight of a fluidizing agent is added to 100 parts by weight of the solidifying agent composition,
    상기 유동화제는 물 80~90중량%와, 폴리카르복실레이트 폴리머(polycarboxylate polymer) 5~20중량%와, 글루콘산계 지연제 1~5중량%와, 로릴 에테르 황산 나트륨(Sodium Lauryl Ethersulfate) 1~5중량%를 포함하는 것을 특징으로 하는 연약지반 보강을 위한 구조체의 강도 모니터링 기능을 포함하는 심층혼합공법.The fluidizing agent is 80 to 90% by weight of water, 5 to 20% by weight of polycarboxylate polymer, 1 to 5% by weight of gluconic acid-based retardant, and Sodium Lauryl Ethersulfate 1. A deep mixing method including a strength monitoring function of the structure for reinforcing soft ground, characterized by containing ~5% by weight.
PCT/KR2023/000713 2022-09-28 2023-01-16 Deep cement mixing method including strength monitoring function of structure for reinforcing soft ground WO2024071531A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0123303 2022-09-28
KR1020220123303A KR102504628B1 (en) 2022-09-28 2022-09-28 Deep mixing method including strength monitoring function of structure for reinforcing soft ground

Publications (1)

Publication Number Publication Date
WO2024071531A1 true WO2024071531A1 (en) 2024-04-04

Family

ID=85510125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/000713 WO2024071531A1 (en) 2022-09-28 2023-01-16 Deep cement mixing method including strength monitoring function of structure for reinforcing soft ground

Country Status (2)

Country Link
KR (1) KR102504628B1 (en)
WO (1) WO2024071531A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116623730B (en) * 2023-07-21 2023-10-13 山西工程技术学院 Foundation pit deformation monitoring equipment and application method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101221684B1 (en) * 2010-07-06 2013-01-11 성균관대학교산학협력단 System for measuring of impedance and ultrasonic wave in concrete structure, and the method
KR102184738B1 (en) * 2020-03-12 2020-12-01 에코엔텍 주식회사 soft ground reinforcement system with multiple excavations and soft ground reinforcement method using it
KR102363219B1 (en) * 2021-06-14 2022-02-16 에코엔텍주식회사 Hybrid deep mixing method
KR102363214B1 (en) * 2021-06-14 2022-02-16 에코엔텍주식회사 Eco-pile filling material using blast furnace slag
JP2022041996A (en) * 2020-09-01 2022-03-11 国立大学法人九州大学 Communication device of ground improvement/excavation data using electric field

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101221684B1 (en) * 2010-07-06 2013-01-11 성균관대학교산학협력단 System for measuring of impedance and ultrasonic wave in concrete structure, and the method
KR102184738B1 (en) * 2020-03-12 2020-12-01 에코엔텍 주식회사 soft ground reinforcement system with multiple excavations and soft ground reinforcement method using it
JP2022041996A (en) * 2020-09-01 2022-03-11 国立大学法人九州大学 Communication device of ground improvement/excavation data using electric field
KR102363219B1 (en) * 2021-06-14 2022-02-16 에코엔텍주식회사 Hybrid deep mixing method
KR102363214B1 (en) * 2021-06-14 2022-02-16 에코엔텍주식회사 Eco-pile filling material using blast furnace slag

Also Published As

Publication number Publication date
KR102504628B1 (en) 2023-03-03

Similar Documents

Publication Publication Date Title
Ling et al. Global perspective on application of controlled low-strength material (CLSM) for trench backfilling–An overview
WO2024071531A1 (en) Deep cement mixing method including strength monitoring function of structure for reinforcing soft ground
Sheen et al. Engineering properties of soil-based controlled low-strength materials as slag partially substitutes to Portland cement
WO2013176447A1 (en) Hybrid foundation structure, and method for building same
Beglarigale et al. Electrochemical corrosion monitoring of steel fiber embedded in cement based composites
CN104005539B (en) Larger area ground concrete jointless construction technique
WO2023090543A1 (en) Composite steel pipe pile provided with reinforced tip and construction method therefor
Lee et al. Shear strength and interface friction characteristics of expandable foam grout
Chen et al. An experimental study of the specimen geometry effect on the axial performance of cement-based grouts
Alfayez Eco-efficient preplaced recycled aggregate concrete incorporating recycled tire waste rubber granules and steel wire fibre reinforcement
Austin et al. Con-struction and repair with wet-process sprayed concrete and mortar
KR102579278B1 (en) Shotcrete Strength Measurement System
CN110485413B (en) Combined type protection rapid hole forming method for pile foundation of viaduct adjacent to subway
CN105971028B (en) Exchange pillar bond-slip experimental rig and method
Clear FORMWORK STRIKING TIMES FOR GROUND GRANULATED BLAST FURNACE SLAG CONCRETE: TEST AND SITE RESULTS.
Reinhardt Ultra-fine cements for special applications
Bodén et al. Development of rock bolt grout and shotcrete for rock support and corrosion of steel in low-pH cementitious materials
Liu et al. Early-age Shrinkage-induced Cracking Prevention of Cast-in-place Concrete of Subway Station under Marine Environmental Conditions
Maithili A Study of Different Materials Used, Suggested Properties and Progress in CLSM
Soutsos ICE Handbook of Concrete Durability: A practical guide to the design of resilient concrete structures
Brown et al. High performance concrete and drilled shaft construction
Halmen Physiochemical characteristics of controlled low strength materials influencing the electrochemical performance and service life of metallic materials
Shi et al. Experimental study on compressive mechanical properties of underwater non-dispersible polymer with AE
JPS60140172A (en) Method and apparatus for examining underground buried work
Massoudi Jet grouting for support of excavations near historic structures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872662

Country of ref document: EP

Kind code of ref document: A1