WO2024071513A1 - Bio-implantable piezoelectric composite material and manufacturing method therefor - Google Patents

Bio-implantable piezoelectric composite material and manufacturing method therefor Download PDF

Info

Publication number
WO2024071513A1
WO2024071513A1 PCT/KR2022/017942 KR2022017942W WO2024071513A1 WO 2024071513 A1 WO2024071513 A1 WO 2024071513A1 KR 2022017942 W KR2022017942 W KR 2022017942W WO 2024071513 A1 WO2024071513 A1 WO 2024071513A1
Authority
WO
WIPO (PCT)
Prior art keywords
implantation
piezoelectric composite
piezoelectric
composite material
present
Prior art date
Application number
PCT/KR2022/017942
Other languages
French (fr)
Korean (ko)
Inventor
황인주
신종언
Original Assignee
신라대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신라대학교 산학협력단 filed Critical 신라대학교 산학협력단
Publication of WO2024071513A1 publication Critical patent/WO2024071513A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/42Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having an inorganic matrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials

Definitions

  • the present invention relates to a piezoelectric composite for implantation in the body and a method for manufacturing the same.
  • the present invention relates to a piezoelectric composite for implantation in the body and a method for manufacturing the same, which is characterized by being implanted into the body and biodegraded within the body.
  • biodegradable polymer stents without metal components have been developed.
  • thrombosis occurs due to problems such as stent fracture (scaffold fracture), displacement, and expansion failure.
  • stent fracture sinaffold fracture
  • displacement displacement
  • expansion failure As a result, the mortality rate accompanying acute myocardial infarction was reported to be high.
  • Stents make it easy to select the exact position of the stent upon insertion through radiography, and the stent insertion position and degree of expansion after insertion can be identified.
  • Polymer, stainless steel, cobalt-based alloy, and titanium which are conventionally used as stent materials
  • Systemic alloys are radiolucent materials, making it difficult to determine their location through radiography. Accordingly, by coating both the proximal and distal ends of the stent with a radiopaque material such as gold (Au) or platinum (Pt), the location and degree of expansion of the stent in the body were identified through radiography. However, this was due to the stent production process. There were problems such as increased production and rising unit prices.
  • wires, nails, screws, plates, etc. used for teeth or joints can be manufactured using materials such as metal, ceramic, and polymer.
  • these medical devices for implantation within the body can be replaced or replaced. Additional surgery is required for removal, and repeated surgeries have the problem of causing bleeding, inflammation, and infection in patients.
  • the present invention was developed to solve the above problems, and is intended to provide a piezoelectric composite material that can be used as a medical device for implantation in the body.
  • the present invention is intended to provide a piezoelectric composite material for implantation in the body containing zinc as a radioactive material so that the insertion location can be determined using radiography.
  • the present invention is intended to provide a piezoelectric composite material for implantation in the body that can be biodegraded within the body so that additional procedures for replacement and removal are not required after implantation in the body.
  • the present invention includes a ceramic-based piezoelectric body;
  • a piezoelectric composite material for implantation in the body is disclosed, which includes a metal matrix containing zinc and is biodegradable within the body.
  • the ceramic-based piezoelectric material may be included in an amount of 1 to 20 wt% based on 100 wt% of the metal matrix.
  • the ceramic piezoelectric body is barium titanate (BaTiO3), zinc oxide (ZnO), lithium niobate (LiNbO3), potassium niobate (KNbO3), sodium niobate (NaNbO3), lithium tantalate (LiTaO3), a-SiO2 ( It may be one or more selected from the group consisting of silicon dioxide (Amorphous), zirconium dioxide (ZrO2), and titanium dioxide (TiO2).
  • the metal matrix containing zinc further includes one or more metals selected from the group consisting of magnesium (Mg), gold (Au), molybdenum (Mo), tungsten (W), iron (Fe), and silicon (Si). can do.
  • Mg magnesium
  • Au gold
  • Mo molybdenum
  • Mo molybdenum
  • W tungsten
  • Fe iron
  • Si silicon
  • the metal matrix containing zinc is selected from the group consisting of magnesium (Mg), gold (Au), molybdenum (Mo), tungsten (W), iron (Fe), and silicon (Si), based on 100% by weight of zinc. Any one or more metals may be included in an amount of 1 to 20% by weight.
  • the piezoelectric composite for intracorporeal implantation may be implanted within the body to generate voltage according to the movement of the human body.
  • the movement of the human body may be one or more selected from the group consisting of blood flow, muscle expansion, muscle contraction, and heartbeat.
  • the piezoelectric composite for implantation within the body may be implanted into the body and sense a voltage flowing into the body from the outside to cause movement of the piezoelectric composite for implantation within the body.
  • the movement of the implant may be any one or more selected from the group consisting of extension, contraction, bending, shaking, and rotation.
  • the present invention includes the steps of mixing a metal matrix containing zinc and a ceramic-based piezoelectric body; and heating the mixture to melt the metal matrix, wherein the piezoelectric composite for intracorporeal implantation produced through the above step is biodegraded within the body. Begin.
  • the heating temperature may be 400 to 900 °C.
  • the piezoelectric composite for implantation in the body can be manufactured through a one-pot heating reaction.
  • the piezoelectric composite material for implantation in the body of the present invention can use the piezoelectric effect to sense movements of the human body, such as blood flow, and monitor signals converted to voltage.
  • the piezoelectric composite material for implantation in the body of the present invention can generate movement such as vibration by sending an electric signal to the implant material from outside the body using the reverse piezoelectric effect.
  • the piezoelectric composite material for implantation in the body of the present invention is biodegradable in the body and can be used as a material for medical devices for implantation in the body because it contains materials suitable for the human body.
  • the piezoelectric composite material for implantation in the body of the present invention contains a ceramic material, it can have an effect of improving strength compared to conventional medical devices for implantation in the body.
  • Figure 1 shows the manufacturing process of the piezoelectric composite material for implantation in the body of the present invention.
  • Figure 2 is a graph showing that the weight loss rate over time of a piezoelectric composite for implantation in the body manufactured according to an embodiment of the present invention can be biodegraded in vivo.
  • Figure 3 is a graph testing the tensile strength of a piezoelectric composite for implantation in the body manufactured according to an embodiment of the present invention.
  • Figure 4 is a photograph testing the piezoelectric effect of a piezoelectric composite for implantation in the body manufactured according to an embodiment of the present invention, showing that voltage is generated by an external force (vibration in this embodiment).
  • This specification relates to a ceramic-based piezoelectric body; and a metal matrix containing zinc; a piezoelectric composite material for implantation in the body is disclosed.
  • the purpose of the piezoelectric composite material for implantation in the body of the present invention is to be used as a material for manufacturing medical devices for implantation in the body.
  • the medical device for implantation in the body may be a stent implanted in blood vessels, gastrointestinal tract, biliary tract, etc., or a metal nail, screw, wire, etc. for osteosynthesis procedures, but is not limited thereto. no.
  • the piezoelectric composite material for implantation in the body of the present invention may include a ceramic-based piezoelectric material.
  • the ceramic piezoelectric material refers to a ceramic material that exhibits a piezoelectric effect and an inverse piezoelectric effect.
  • the piezoelectric effect refers to a phenomenon in which dielectric polarization is generated by mechanical force. When vibration, pressure, etc. are applied to a piezoelectric element, an electric signal is generated at the output portion.
  • the reverse piezoelectric effect refers to a phenomenon in which an electric signal is generated at the output portion of a piezoelectric element. This means that transformation occurs.
  • the charge distribution within the piezoelectric material is symmetrical and electrically neutral, but when external stress is applied, the charge distribution becomes asymmetric, and this electrical polarization can be observed as voltage.
  • a potential difference can be created through mechanical energy and changes, and a dipole and compensation charge can be formed to generate a current flow.
  • the ceramic piezoelectric body includes barium titanate (BaTiO3), zinc oxide (ZnO), lithium niobate (LiNbO3), potassium niobate (KNbO3), lithium tantalate (LiTaO3), a-SiO2 (Silicon dioxide, Amorphous), and zirconium dioxide. It may be one or more selected from the group consisting of (ZrO2) and titanium dioxide (TiO2), but is not limited thereto. However, as a material for implantation in the body, it is desirable to select a lead-free material so that it is not harmful to the human body.
  • the piezoelectric composite material for implantation in the body of the present invention may include a metal matrix containing zinc.
  • the metal matrix containing zinc may be a single type of zinc, and may be selected from the group consisting of zinc, magnesium (Mg), gold (Au), molybdenum (Mo), tungsten (W), iron (Fe), and silicon (Si). It may be an alloy of one or more selected metals, but is not limited thereto. Any metal may be used as long as it is harmless to the human body, biodegradable in the body, and does not impede the radioactive non-permeable properties of zinc.
  • the weight percent of one or more metals selected from the group consisting of magnesium (Mg), gold (Au), molybdenum (Mo), tungsten (W), iron (Fe), and silicon (Si) is based on 100 weight percent of the zinc. , is preferably included in 1 to 20% by weight, and is more preferably included in 1 to 10% by weight from the viewpoint of controlling the biodegradation rate in the body of the piezoelectric composite for implantation in the body of the present invention.
  • Mg magnesium
  • Au gold
  • Mo molybdenum
  • W tungsten
  • Fe iron
  • Si silicon
  • the biodegradation rate in the body increases, and a problem may arise where the piezoelectric composite material for implantation in the body of the present invention decomposes in the body before a sufficient therapeutic effect is achieved.
  • one or more metals selected from the group consisting of magnesium (Mg), gold (Au), molybdenum (Mo), tungsten (W), iron (Fe), and silicon (Si) are added to the zinc-containing metal matrix.
  • biodegradation rate in the body varies depending on the condition, an additional accurate pre-biodegradation test may be required. Specific details related to the biodegradation rate of the piezoelectric composite for implantation in the body of the present invention will be described in detail in ⁇ Examples and Evaluation ⁇ below.
  • the piezoelectric composite material for implantation in the body of the present invention may include 1 to 20% by weight of the ceramic-based piezoelectric body based on 100% by weight of the metal matrix, and more preferably 1 to 5% by weight.
  • the piezoelectric composite material for implantation in the body of the present invention includes the ceramic piezoelectric material and can generate voltage through the piezoelectric effect according to the movement of the human body.
  • specific examples of the movements of the human body include blood flow, muscle lengthening, muscle contraction, and heartbeat.
  • the piezoelectric composite material for implantation in the body of the present invention includes the ceramic piezoelectric material
  • movement of the implant material may occur due to a reverse piezoelectric effect when voltage is applied from the outside.
  • specific examples of the movement of the implant include extension, contraction, bending, tremor, rotation, etc.
  • the piezoelectric composite material for implantation in the body of the present invention can have improved mechanical strength by including a ceramic-based piezoelectric material.
  • the yield strength and tensile strength of the piezoelectric composite for implantation in the body of the present invention depending on whether or not the ceramic piezoelectric material is included, the yield of the piezoelectric composite including the ceramic piezoelectric material is compared to the piezoelectric composite material that does not contain the ceramic piezoelectric material.
  • Strength and tensile strength can be improved. Specific details regarding the mechanical strength of the piezoelectric composite for implantation in the body will be explained in detail with reference to the drawings in ⁇ Examples and Evaluation ⁇ below.
  • the inventors of the present invention provide a method for manufacturing a piezoelectric composite material for implantation in the body.
  • Figure 1 shows the manufacturing process of the piezoelectric composite material for implantation in the body of the present invention.
  • the method of manufacturing a piezoelectric composite material for implantation in the body of the present invention includes mixing a metal matrix containing zinc and a ceramic-based piezoelectric body; and heating the mixture.
  • the method of manufacturing a piezoelectric composite material for implantation in the body of the present invention is an example, in which at least one metal selected from the group consisting of Mg, Au, Mo, W, Fe, and Si is added to zinc to form an alloy (hereinafter referred to as zinc alloy). ), then heating and melting the zinc alloy, then adding a ceramic-based piezoelectric material to uniformly disperse it through stirring, and then injecting it into a mold to solidify it.
  • the stirring may be performed using a stirrer or an ultrasonic liquid processor, but is not limited thereto, and any method may be used as long as the ceramic piezoelectric material can be uniformly dispersed in the molten zinc alloy.
  • the method of manufacturing a piezoelectric composite material for implantation in the body of the present invention is another embodiment, in which zinc (or zinc alloy) and a ceramic-based piezoelectric body are first mixed in a solid state, injected into a mold, and then compressed through a high-pressure compressor. Next, it may include a process of solidification after heating.
  • the piezoelectric composite material for implantation in the body of the present invention can be manufactured through a one-pot heating reaction.
  • the zinc may be in one or more forms selected from the group consisting of pellets, ingots, and powders, but is not limited thereto.
  • the ceramic-based piezoelectric material may be in powder form.
  • the heating temperature can be appropriately set within a temperature at which the metal matrix can be easily melted, and is preferably 400 to 900°C. When the heating temperature is lower than 400° C., the melting point of the metal matrix is lowered, and the metal matrix does not melt, making it difficult to mix the materials.
  • the heating may be performed in an electric furnace, high-frequency furnace, arc melting furnace, high-pressure melting furnace, etc., but is not limited thereto, and any furnace may be used as long as it is easy to raise the temperature to the above-mentioned heating temperature.
  • Example 1 5 g of zinc in pellet form as a metal matrix and 250 mg of barium titanate (BaTiO3) in powder form as a ceramic piezoelectric body were homogeneously mixed. Afterwards, it was injected into the mold as a solid, compressed with a high-pressure compressor, and then heated to 500°C in an electric furnace. Afterwards, it was cooled to room temperature to prepare a piezoelectric composite for implantation in the body (hereinafter referred to as “Example 1”).
  • Example 2 A piezoelectric composite material for implantation in the body was manufactured in the same manner as Example 1, except that 4.5 g of zinc powder and 0.5 g of magnesium powder were added as a metal matrix (hereinafter referred to as “Example 2”).
  • Example 1 A piezoelectric composite for implantation in the body was manufactured in the same manner as in Example 1, except that the ceramic-based piezoelectric body was not added (hereinafter referred to as “Comparative Example 1”).
  • Figure 2 is a graph showing the weight reduction rate over time of the piezoelectric composite for implantation in the body manufactured according to an embodiment of the present invention. Referring to Figure 2, it can be seen that there is no significant difference in biodegradation rate between Example 1 and Comparative Example 1. On the other hand, as Example 2 contains an alloy of zinc and magnesium, the biodegradation rate is controlled, and it can be confirmed that the weight loss rate increases over time compared to Example 1 and Comparative Example 1. That is, the piezoelectric composite material for implantation in the body of the present invention can have the effect of controlling the decomposition rate in the body by selecting the type of metal matrix.
  • Figure 3 is a graph testing the tensile strength of a piezoelectric composite for implantation in the body manufactured according to an embodiment of the present invention.
  • the tensile strength test was performed twice for each specimen.
  • the results of the tensile strength test are expressed as a stress-strain diagram. Referring to Figure 3, when Example 1 is compared with Comparative Example 1, it can be seen that the strain of the specimen is higher than in Example 1 due to the absence of a ceramic piezoelectric material in Comparative Example 1. It can be seen that fracture occurred at a higher stress in Example 1 than in Example 1. In other words, it can be seen that Example 1 exhibits higher tensile strength compared to Comparative Example 1.
  • the yield strength refers to the limiting stress at which elastic deformation occurs.
  • the elastic deformation refers to deformation that returns to its original state when the load disappears.
  • plastic deformation deformation in which deformation remains permanently due to slip
  • the tensile strength refers to the maximum stress that the specimen can withstand. That is, it has the same meaning as the maximum stress in the stress-strain diagram.
  • the strain rate means the length by which the specimen is stretched divided by the initial length.
  • Example 1 Comparative Example 1 Yield strength (MPa) 175.1 ⁇ 8 107.3 ⁇ 0.1 Tensile strength (MPa) 193.9 ⁇ 0.6 124.8 ⁇ 0 Strain rate (%) 6.5 ⁇ 0.3 10.7 ⁇ 0
  • Example 1 of the present invention has an increase in yield strength of about 63% and tensile strength of about 54% compared to Comparative Example 1. However, it can be seen that the strain rate of Example 1 was about 6.5%, a slight decrease compared to 10.7% of Comparative Example 1. This is because the piezoelectric composite material for intracorporeal implantation of the present invention includes a ceramic-based piezoelectric body and a metal matrix, so that the mechanical strength, such as tensile strength and yield strength, of the piezoelectric composite material for intracorporeal implantation increases, and the strain rate showing elongation characteristics decreases. suggests that it has happened.
  • Figure 4 is a photograph testing the piezoelectric effect of a piezoelectric composite for implantation in the body manufactured according to an embodiment of the present invention. More specifically, (a) is the appearance when an external force (vibration in this example) is applied to Comparative Example 1, and (b) is the appearance when an external force is applied to Example 1. Referring to FIG. 4, it can be seen that in the case of Comparative Example 1 using pure zinc, voltage due to the piezoelectric effect is not generated even when an external force is applied. On the other hand, in Example 1, it can be confirmed that voltage is generated by external force.
  • the piezoelectric composite material for implantation in the body of the present invention includes a ceramic piezoelectric material, so that voltage is generated by external force due to the piezoelectric effect. it means.
  • the movement of the human body such as blood flow
  • the piezoelectric effect can be used to send an electric signal to the implant from outside the body to cause movement such as vibration. It is possible to provide a piezoelectric composite material that can be generated and implanted in the body.
  • the piezoelectric composite material for intracorporeal implantation of the present invention is biodegradable within the body, and contains materials suitable for the human body, so it can be used as a material for medical devices for intracorporeal implantation, and because it contains a ceramic material, it can be used as a material for medical devices for intracorporeal implantation. It may have improved strength compared to implantable medical devices.

Abstract

The present invention relates to a bio-implantable piezoelectric composite material and a manufacturing method therefor, wherein the bio-implantable piezoelectric composite material comprises: a ceramic-based piezoelectric body; and a metal matrix containing zinc and is biodegradable in vivo. The bio-implantable piezoelectric composite material of the present invention can utilize the piezoelectric effect to sense movements in the human body, such as blood flow and convert them into electric signals and can utilize the reverse piezoelectric effect to send electric signals to the implant from the outside of the body to induce movements such as vibrations and the like.

Description

체 내 이식용 압전 복합재 및 이의 제조 방법Piezoelectric composite material for implantation in the body and method for manufacturing the same
본 발명은 체 내 이식용 압전 복합재 및 이의 제조 방법에 관한 것으로서, 체 내 이식되어 체 내에서 생분해되는 것을 특징으로 하는 체 내 이식용 압전 복합재 및 이의 제조 방법에 관한 것이다.The present invention relates to a piezoelectric composite for implantation in the body and a method for manufacturing the same. The present invention relates to a piezoelectric composite for implantation in the body and a method for manufacturing the same, which is characterized by being implanted into the body and biodegraded within the body.
인구의 고령화, 식습관 및 생활환경의 변화에 의한 심혈관계 질병이 증대됨에 따라 관상동맥 및 말초동맥용 혈관 스텐트(stent) 등의 삽입형 치료재의 수요가 증가하는 추세에 있다. 현재 카테터를 이용한 혈관 스텐트 중재시술과 관련한 시장이 빠르게 성장하고 있으며, 스텐트를 이용한 중재시술이 관상동맥 치료의 표준 치료로서 인정받고 있다.As cardiovascular diseases increase due to the aging of the population and changes in eating habits and living environments, the demand for implantable treatment materials such as vascular stents for coronary and peripheral arteries is increasing. Currently, the market related to vascular stent intervention using catheters is growing rapidly, and intervention using stents is recognized as the standard treatment for coronary artery treatment.
종래의 스텐트 소재로 사용되었던 금속소재의 경우, 체 내에서 장기간 존재함에 따라 염증성 반응이나 스텐트 내 재협착(in-stent restenosis), 스텐트 혈전증을 발생시키는 등 지속형 스텐트의 단점에 대한 문제가 계속해서 제기되고 있다.In the case of metal materials used as conventional stent materials, problems with long-acting stents continue to arise, such as causing inflammatory reactions, in-stent restenosis, and stent thrombosis as they remain in the body for a long period of time. It is being raised.
상기와 같은 문제점을 해결하기 위한 방안으로서, 금속 성분을 없앤 생분해성 폴리머 스텐트가 개발되었으나, 이러한 생분해성 폴리머 스텐트의 경우 스텐트 파열(scaffold fracture), 위치 이탈, 팽창 실패 등의 문제로 혈전증이 발생하고, 이로 인해 급성 심근경색증을 동반한 사망률이 높게 보고 되었다.As a solution to the above problems, biodegradable polymer stents without metal components have been developed. However, in the case of these biodegradable polymer stents, thrombosis occurs due to problems such as stent fracture (scaffold fracture), displacement, and expansion failure. , As a result, the mortality rate accompanying acute myocardial infarction was reported to be high.
스텐트는 방사선 촬영검사를 통하여, 삽입 시 스텐트의 정확한 위치 선정을 용이하게 하고, 삽입 이후의 스텐트 삽입 위치 및 팽창 정도를 파악할 수 있는데, 종래 스텐트 소재로서 사용되는 폴리머나 스테인레스 강, 코발트계 합금, 타이타늄계 합금 등은 방사선 투과 물질로서 방사선 촬영 검사를 통한 위치 파악이 어렵다. 이에 금(Au)이나 백금(Pt)과 같은 방사성 비투과성 물질을 스텐트 근위부와 원위부 양 끝에 코팅함으로써, 방사선 촬영 검사를 통한 체 내 스텐트의 위치 파악 및 팽창 정도를 파악하였으나, 이는 스텐트의 생산 공정이 증가하고 단가가 상승하는 등의 문제가 있었다.Stents make it easy to select the exact position of the stent upon insertion through radiography, and the stent insertion position and degree of expansion after insertion can be identified. Polymer, stainless steel, cobalt-based alloy, and titanium, which are conventionally used as stent materials, Systemic alloys are radiolucent materials, making it difficult to determine their location through radiography. Accordingly, by coating both the proximal and distal ends of the stent with a radiopaque material such as gold (Au) or platinum (Pt), the location and degree of expansion of the stent in the body were identified through radiography. However, this was due to the stent production process. There were problems such as increased production and rising unit prices.
또한, 체 내 이식용 의료기기로서 치아나 관절에 사용되는 wire, nail, screw, plate 등은 금속, 세라믹, 폴리머 등의 재료를 이용하여 제조될 수 있으나, 이러한 체 내 이식용 의료기기는 교체 또는 제거를 위한 추가 수술을 필요로 하게 되고, 반복되는 수술은 환자에게 출혈이나 염증, 감염 등을 야기하는 문제점이 있다. 이의 해결을 위해, 교체 또는 제거를 위한 추가 수술이 필요하지 않는 체 내에서 생분해가 가능한 새로운 소재로 제조된 체 내 의식용 의료기기가 요구되고 있는 실정이다.In addition, as medical devices for implantation within the body, wires, nails, screws, plates, etc. used for teeth or joints can be manufactured using materials such as metal, ceramic, and polymer. However, these medical devices for implantation within the body can be replaced or replaced. Additional surgery is required for removal, and repeated surgeries have the problem of causing bleeding, inflammation, and infection in patients. To solve this problem, there is a need for medical devices for use in the body made of new materials that are biodegradable in the body and do not require additional surgery for replacement or removal.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로, 체 내 이식용 의료기기로서 활용 가능한, 압전 복합재를 제공하기 위한 것이다.The present invention was developed to solve the above problems, and is intended to provide a piezoelectric composite material that can be used as a medical device for implantation in the body.
또한, 본 발명은 방사선 촬영검사를 활용하여 삽입 위치를 파악할 수 있도록 방사성 비투과성 물질로서 아연을 포함하는 체 내 이식용 압전 복합재를 제공하기 위한 것이다.In addition, the present invention is intended to provide a piezoelectric composite material for implantation in the body containing zinc as a radioactive material so that the insertion location can be determined using radiography.
또한 본 발명은 체 내 이식 후 교체 및 제거를 위한 추가적인 시술이 필요하지 않도록 체 내에서 생분해될 수 있는 체 내 이식용 압전 복합재를 제공하기 위한 것이다.In addition, the present invention is intended to provide a piezoelectric composite material for implantation in the body that can be biodegraded within the body so that additional procedures for replacement and removal are not required after implantation in the body.
다만, 본원의 실시예가 이루고자 하는 기술적 과제는 상기된 바와 같은 기술적 과제에 한정되지 않으며, 또 다른 기술적 과제들이 존재할 수 있다.However, the technical challenges sought to be achieved by the embodiments of the present application are not limited to the technical challenges described above, and other technical challenges may exist.
상기와 같은 목적을 달성하기 위하여, 본 발명은 세라믹계 압전체; 및 아연이 함유된 금속 매트릭스;를 포함하고, 체 내에서 생분해되는 것을 특징으로 하는, 체 내 이식용 압전 복합재에 대하여 개시한다.In order to achieve the above object, the present invention includes a ceramic-based piezoelectric body; A piezoelectric composite material for implantation in the body is disclosed, which includes a metal matrix containing zinc and is biodegradable within the body.
여기서 상기 금속 매트릭스 100 중량%에 대하여 상기 세라믹계 압전체는 1 내지 20 중량%로 포함될 수 있다.Here, the ceramic-based piezoelectric material may be included in an amount of 1 to 20 wt% based on 100 wt% of the metal matrix.
여기서 상기 세라믹계 압전체는 티탄산바륨(BaTiO3), 산화아연(ZnO), 니오브산리튬(LiNbO3), 니오브산포타슘(KNbO3), 니오브산소듐(NaNbO3), 탄탈산리튬(LiTaO3), a-SiO2(Silicon dioxide, Amorphous), 이산화지르코늄(ZrO2) 및 이산화티탄(TiO2)로 이루어진 군으로부터 선택된 어느 하나 이상일 수 있다.Here, the ceramic piezoelectric body is barium titanate (BaTiO3), zinc oxide (ZnO), lithium niobate (LiNbO3), potassium niobate (KNbO3), sodium niobate (NaNbO3), lithium tantalate (LiTaO3), a-SiO2 ( It may be one or more selected from the group consisting of silicon dioxide (Amorphous), zirconium dioxide (ZrO2), and titanium dioxide (TiO2).
여기서 아연이 함유된 상기 금속 매트릭스는 마그네슘(Mg), 금(Au), 몰리브덴(Mo), 텅스텐(W), 철(Fe) 및 규소(Si)로 이루어진 군으로부터 선택된 어느 하나 이상의 금속을 더 포함할 수 있다.Here, the metal matrix containing zinc further includes one or more metals selected from the group consisting of magnesium (Mg), gold (Au), molybdenum (Mo), tungsten (W), iron (Fe), and silicon (Si). can do.
여기서 아연이 함유된 상기 금속 매트릭스는 아연 100 중량%에 대하여, 마그네슘(Mg), 금(Au), 몰리브덴(Mo), 텅스텐(W), 철(Fe) 및 규소(Si)로 이루어진 군으로부터 선택된 어느 하나 이상의 금속이 1 내지 20 중량%로 포함될 수 있다.Here, the metal matrix containing zinc is selected from the group consisting of magnesium (Mg), gold (Au), molybdenum (Mo), tungsten (W), iron (Fe), and silicon (Si), based on 100% by weight of zinc. Any one or more metals may be included in an amount of 1 to 20% by weight.
여기서 상기 체 내 이식용 압전 복합재는 체 내에 이식되어 인체의 움직임에 따라 전압을 발생시키는 것 일 수 있다.Here, the piezoelectric composite for intracorporeal implantation may be implanted within the body to generate voltage according to the movement of the human body.
여기서 상기 인체의 움직임은 혈류, 근육의 신장, 근육의 수축 및 심장박동으로 이루어진 군으로부터 선택된 어느 하나 이상일 수 있다.Here, the movement of the human body may be one or more selected from the group consisting of blood flow, muscle expansion, muscle contraction, and heartbeat.
여기서 상기 체 내 이식용 압전 복합재는 체 내에 이식되어 외부에서 체 내로 흘린 전압을 감지하여 상기 체 내 이식용 압전 복합재의 움직임이 발생되는 것일 수 있다.Here, the piezoelectric composite for implantation within the body may be implanted into the body and sense a voltage flowing into the body from the outside to cause movement of the piezoelectric composite for implantation within the body.
여기서 상기 이식재의 움직임은 신장, 수축, 굽힘, 떨림 및 회전으로 이루어진 군으로부터 선택된 어느 하나 이상일 수 있다.Here, the movement of the implant may be any one or more selected from the group consisting of extension, contraction, bending, shaking, and rotation.
또한, 상기와 같은 목적을 달성하기 위하여, 본 발명은 아연이 함유된 금속 매트릭스 및 세라믹계 압전체를 혼합하는 단계; 및 상기 혼합물을 가열하여 금속 매트릭스를 용융시키는 단계;를 포함하고, 상기 단계로 제조된 체 내 이식용 압전 복합재는 체 내에서 생분해되는 것을 특징으로 하는, 체 내 이식용 압전 복합재의 제조 방법에 대하여 개시한다.In addition, in order to achieve the above object, the present invention includes the steps of mixing a metal matrix containing zinc and a ceramic-based piezoelectric body; and heating the mixture to melt the metal matrix, wherein the piezoelectric composite for intracorporeal implantation produced through the above step is biodegraded within the body. Begin.
여기서 상기 가열온도는 400 내지 900 ℃일 수 있다.Here, the heating temperature may be 400 to 900 °C.
여기서 상기 체 내 이식용 압전 복합재는 원 팟(one-pot) 가열 반응으로 제조될 수 있다.Here, the piezoelectric composite for implantation in the body can be manufactured through a one-pot heating reaction.
본 발명의 체 내 이식용 압전 복합재는 압전효과를 이용하여 혈류 등의 인체의 움직임을 센싱하여 전압으로 변환된 신호를 모니터링 할 수 있다.The piezoelectric composite material for implantation in the body of the present invention can use the piezoelectric effect to sense movements of the human body, such as blood flow, and monitor signals converted to voltage.
또한, 본 발명의 체 내 이식용 압전 복합재는 역압전효과를 이용하여 체외에서 상기 이식재로 전기신호를 보내어 진동 등의 움직임을 발생시킬 수 있다. In addition, the piezoelectric composite material for implantation in the body of the present invention can generate movement such as vibration by sending an electric signal to the implant material from outside the body using the reverse piezoelectric effect.
또한, 본 발명의 체 내 이식용 압전 복합재는 체 내에서 생분해가 가능하고, 인체에 적합한 물질을 포함함에 따라 체 내 이식용 의료기기의 재료로 활용될 수 있다.In addition, the piezoelectric composite material for implantation in the body of the present invention is biodegradable in the body and can be used as a material for medical devices for implantation in the body because it contains materials suitable for the human body.
또한 본 발명의 체 내 이식용 압전 복합재는 세라믹 소재를 포함함에 따라, 종래 체 내 이식용 의료기기 대비 강도가 향상된 효과를 가질 수 있다.In addition, since the piezoelectric composite material for implantation in the body of the present invention contains a ceramic material, it can have an effect of improving strength compared to conventional medical devices for implantation in the body.
도 1은 본 발명의 체 내 이식용 압전 복합재의 제조 과정을 도시한 것이다.Figure 1 shows the manufacturing process of the piezoelectric composite material for implantation in the body of the present invention.
도 2는 본 발명의 일 실시예에 따라 제조된 체 내 이식용 압전 복합재의 시간 경과에 따른 중량 감소율로 생체 내 생분해 될 수 있음을 나타내는 그래프이다.Figure 2 is a graph showing that the weight loss rate over time of a piezoelectric composite for implantation in the body manufactured according to an embodiment of the present invention can be biodegraded in vivo.
도 3은 본 발명의 일 실시예에 따라 제조된 체 내 이식용 압전 복합재의 인강 강도를 테스트한 그래프이다.Figure 3 is a graph testing the tensile strength of a piezoelectric composite for implantation in the body manufactured according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따라 제조된 체 내 이식용 압전 복합재의 압전효과를 테스트한 사진으로 외력(본 실시예에서 진동)에 의해 전압이 발생하는 것을 나타낸다.Figure 4 is a photograph testing the piezoelectric effect of a piezoelectric composite for implantation in the body manufactured according to an embodiment of the present invention, showing that voltage is generated by an external force (vibration in this embodiment).
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 구체적으로 설명하고자 한다. 그러나 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Since the present invention can make various changes and have various embodiments, specific embodiments will be illustrated in the drawings and described in detail in the detailed description. However, this is not intended to limit the present invention to specific embodiments, and should be understood to include all changes, equivalents, and substitutes included in the spirit and technical scope of the present invention.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification of the present application, when a part "includes" a certain element, this means that it may further include other elements rather than excluding other elements, unless specifically stated to the contrary.
본 명세서에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 또한, 본원 명세서 전체에서, "~하는 단계" 또는 "~의 단계"는 "~를 위한 단계"를 의미하지 않는다.As used herein, the terms “about,” “substantially,” and the like are used to mean at or close to a numerical value when manufacturing and material tolerances inherent in the stated meaning are presented, and to aid understanding of the present application. It is used to prevent unscrupulous infringers from unfairly exploiting disclosures in which precise or absolute figures are mentioned. Additionally, throughout the specification herein, “step of” or “step of” does not mean “step for.”
본 발명의 기술분야에 속하는 통상의 지식을 가진 자는 본 발명의 요지를 통하여 다양한 응용을 할 수 있으므로, 본 발명의 권리범위는 이하의 실시예로 한정되지 않는다. 본 발 명의 권리범위는 특허청구범위에 기재된 사항을 기초로 하여 본 발명의 기술분야에 속하는 통상의 지식을 가진 자가 종래 기술을 이용하여 용이하게 치환 또는 변경하는 것이 자명한 부분에까지 미친다.Since those skilled in the art of the present invention can make various applications through the gist of the present invention, the scope of the present invention is not limited to the following examples. The scope of rights of the present invention extends to parts for which it is obvious that a person skilled in the art of the present invention can easily substitute or change the contents using prior art based on the matters stated in the patent claims.
이하, 필요한 경우에 첨부하는 도면을 참조하면서 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings where necessary.
<체 내 이식용 압전 복합재><Piezoelectric composite material for implantation in the body>
본 발명자들은 상술한 과제를 해결하기 위하여 연구한 결과, 하기와 같은 발명을 안출하기에 이르렀다. 본 명세서는 세라믹계 압전체; 및 아연이 함유된 금속 매트릭스;를 포함하는, 체 내 이식용 압전 복합재에 대하여 개시한다. As a result of research to solve the above-mentioned problems, the present inventors came up with the following invention. This specification relates to a ceramic-based piezoelectric body; and a metal matrix containing zinc; a piezoelectric composite material for implantation in the body is disclosed.
본 발명의 체 내 이식용 압전 복합재는 체 내 이식용 의료기기의 제조를 위한 재료로서 활용되는 것을 목적으로 한다. 상기 체 내 이식용 의료기기는 혈관, 위장관, 담도 등에 이식되는 스텐트(stent) 또는, 골접합 시술을 위한 금속정(nail), 나사(screw), 와이어(wire) 등일 수 있으나, 이에 한정되는 것은 아니다.The purpose of the piezoelectric composite material for implantation in the body of the present invention is to be used as a material for manufacturing medical devices for implantation in the body. The medical device for implantation in the body may be a stent implanted in blood vessels, gastrointestinal tract, biliary tract, etc., or a metal nail, screw, wire, etc. for osteosynthesis procedures, but is not limited thereto. no.
본 발명의 체 내 이식용 압전 복합재는 세라믹계 압전체를 포함할 수 있다. 상기 세라믹계 압전체는 압전 효과 및 역압전 효과를 나타내는 세라믹 물질을 말한다. 상기 압전 효과란 기계적인 힘에 의해 유전분극을 발생시키는 것으로, 압전 소자에 진동, 압력 등을 주면 그 출력 부분에서 전기 신호가 발생하는 현상을 말하며, 이와 반대로 상기 역압전 효과란 유전 분극으로 인해 기계적 변형이 일어나는 것을 말한다. 외부 응력(stress)이 가해지지 않은 상태에서는 압전체 내의 전하 분포가 대칭적이고 전기적으로 중성이지만, 외부 응력이 가해지면 전하의 분포가 비대칭적이 되고, 이러한 전기적인 극화가 전압으로 관찰될 수 있다. 이러한 압전 효과을 일으키는 소자를 이용하여 기계적 에너지 및 변화를 통해 전위차를 만들 수 있고, 쌍극자와 보상 전하가 형성되어 전류의 흐름을 발생시킬 수 있다.The piezoelectric composite material for implantation in the body of the present invention may include a ceramic-based piezoelectric material. The ceramic piezoelectric material refers to a ceramic material that exhibits a piezoelectric effect and an inverse piezoelectric effect. The piezoelectric effect refers to a phenomenon in which dielectric polarization is generated by mechanical force. When vibration, pressure, etc. are applied to a piezoelectric element, an electric signal is generated at the output portion. Conversely, the reverse piezoelectric effect refers to a phenomenon in which an electric signal is generated at the output portion of a piezoelectric element. This means that transformation occurs. When no external stress is applied, the charge distribution within the piezoelectric material is symmetrical and electrically neutral, but when external stress is applied, the charge distribution becomes asymmetric, and this electrical polarization can be observed as voltage. Using devices that produce this piezoelectric effect, a potential difference can be created through mechanical energy and changes, and a dipole and compensation charge can be formed to generate a current flow.
상기 세라믹계 압전체는 티탄산바륨(BaTiO3), 산화아연(ZnO), 니오브산리튬(LiNbO3), 니오브산포타슘(KNbO3), 탄탈산리튬(LiTaO3), a-SiO2(Silicon dioxide, Amorphous), 이산화지르코늄(ZrO2) 및 이산화티탄(TiO2)로 이루어진 군으로부터 선택된 어느 하나 이상일 수 있으며, 이에 한정되는 것은 아니다. 다만, 체 내 이식을 위한 소재로서 인체에 해가 없도록 무연(無鉛) 소재를 선택함이 바람직하다.The ceramic piezoelectric body includes barium titanate (BaTiO3), zinc oxide (ZnO), lithium niobate (LiNbO3), potassium niobate (KNbO3), lithium tantalate (LiTaO3), a-SiO2 (Silicon dioxide, Amorphous), and zirconium dioxide. It may be one or more selected from the group consisting of (ZrO2) and titanium dioxide (TiO2), but is not limited thereto. However, as a material for implantation in the body, it is desirable to select a lead-free material so that it is not harmful to the human body.
본 발명의 체 내 이식용 압전 복합재는 아연이 함유된 금속 매트릭스를 포함할 수 있다. 상기 아연이 함유된 금속 매트릭스는 아연 단일종일 수도 있고, 상기 아연과 마그네슘(Mg), 금(Au), 몰리브덴(Mo), 텅스텐(W), 철(Fe) 및 규소(Si)로 이루어진 군으로부터 선택된 어느 하나 이상의 금속의 합금일 수 있으나, 이에 한정되는 것은 아니다. 인체에 무해하고, 체 내에서 생분해되며, 상기 아연의 방사성 비투과성 특성을 저해하지 않는 금속이면 그 어떠한 것이어도 무방하다. The piezoelectric composite material for implantation in the body of the present invention may include a metal matrix containing zinc. The metal matrix containing zinc may be a single type of zinc, and may be selected from the group consisting of zinc, magnesium (Mg), gold (Au), molybdenum (Mo), tungsten (W), iron (Fe), and silicon (Si). It may be an alloy of one or more selected metals, but is not limited thereto. Any metal may be used as long as it is harmless to the human body, biodegradable in the body, and does not impede the radioactive non-permeable properties of zinc.
상기 마그네슘(Mg), 금(Au), 몰리브덴(Mo), 텅스텐(W), 철(Fe) 및 규소(Si)로 이루어진 군으로부터 선택된 어느 하나 이상의 금속의 중량%는 상기 아연 100 중량%에 대하여, 1 내지 20 중량%로 포함되는 것이 바람직하며, 본 발명의 체 내 이식용 압전 복합재의 체 내 생분해 속도를 제어하는 관점에서 1 내지 10 중량%로 포함되는 것이 더욱 바람직하다. 상기 마그네슘(Mg), 금(Au), 몰리브덴(Mo), 텅스텐(W), 철(Fe) 및 규소(Si)로 이루어진 군으로부터 선택된 어느 하나 이상의 금속의 중량%가 20 중량%를 초과하여 포함되는 경우, 체 내 생분해 속도가 빨라져, 본 발명의 체 내 이식용 압전 복합재로 인한 충분한 치료의 효과가 나타나기 이전에 체 내에서 분해되는 문제가 발생할 수 있다. 아울러, 상기 아연이 함유된 금속 매트릭스에 마그네슘(Mg), 금(Au), 몰리브덴(Mo), 텅스텐(W), 철(Fe) 및 규소(Si)로 이루어진 군으로부터 선택된 어느 하나 이상의 금속이 추가됨에 따라 체 내 생분해 속도가 달라지기 때문에 정확한 사전 생분해 테스트가 추가적으로 필요할 수 있다. 본 발명의 체 내 이식용 압전 복합재의 생분해 속도와 관련된 구체적인 내용은 이하의 {실시예 및 평가}에서 상세히 설명하도록 한다.The weight percent of one or more metals selected from the group consisting of magnesium (Mg), gold (Au), molybdenum (Mo), tungsten (W), iron (Fe), and silicon (Si) is based on 100 weight percent of the zinc. , is preferably included in 1 to 20% by weight, and is more preferably included in 1 to 10% by weight from the viewpoint of controlling the biodegradation rate in the body of the piezoelectric composite for implantation in the body of the present invention. Contains more than 20% by weight of one or more metals selected from the group consisting of magnesium (Mg), gold (Au), molybdenum (Mo), tungsten (W), iron (Fe), and silicon (Si) In this case, the biodegradation rate in the body increases, and a problem may arise where the piezoelectric composite material for implantation in the body of the present invention decomposes in the body before a sufficient therapeutic effect is achieved. In addition, one or more metals selected from the group consisting of magnesium (Mg), gold (Au), molybdenum (Mo), tungsten (W), iron (Fe), and silicon (Si) are added to the zinc-containing metal matrix. Since the biodegradation rate in the body varies depending on the condition, an additional accurate pre-biodegradation test may be required. Specific details related to the biodegradation rate of the piezoelectric composite for implantation in the body of the present invention will be described in detail in {Examples and Evaluation} below.
본 발명의 체 내 이식용 압전 복합재는 상기 금속 매트릭스 100 중량%에 대하여 상기 세라믹계 압전체를 1 내지 20 중량%로 포함할 수 있으며, 1 내지 5 중량%로 포함되는 것이 보다 바람직하다. The piezoelectric composite material for implantation in the body of the present invention may include 1 to 20% by weight of the ceramic-based piezoelectric body based on 100% by weight of the metal matrix, and more preferably 1 to 5% by weight.
본 발명의 체 내 이식용 압전 복합재는 상기 세라믹계 압전체를 포함함에 따라 인체의 움직임에 따라 압전 효과에 의해 전압을 발생시킬 수 있다. 여기서 상기 인체의 움직임의 구체적인 예로 혈류, 근육의 신장(lengthening), 근육의 수축(contraction), 심장박동 등을 들 수 있다. The piezoelectric composite material for implantation in the body of the present invention includes the ceramic piezoelectric material and can generate voltage through the piezoelectric effect according to the movement of the human body. Here, specific examples of the movements of the human body include blood flow, muscle lengthening, muscle contraction, and heartbeat.
또한 본 발명의 체 내 이식용 압전 복합재는 상기 세라믹계 압전체를 포함함에 따라 외부에서 전압을 흘려줌에 따라 역압전 효과에 의해 이식재의 움직임이 발생될 수 있다. 여기서 상기 이식재의 움직임의 구체적인 예로, 신장, 수축, 굽힘, 떨림, 회전 등을 들 수 있다.In addition, since the piezoelectric composite material for implantation in the body of the present invention includes the ceramic piezoelectric material, movement of the implant material may occur due to a reverse piezoelectric effect when voltage is applied from the outside. Here, specific examples of the movement of the implant include extension, contraction, bending, tremor, rotation, etc.
본 발명의 체 내 이식용 압전 복합재는 세라믹계 압전체를 포함함에 따라 기계적 강도가 향상될 수 있다. 상기 세라믹계 압전체의 포함 유무에 따라 본 발명의 체 내 이식용 압전 복합재의 항복강도와 인장강도를 비교했을 때, 세라믹계 압전체를 포함하지 않는 압전 복합재에 비해 세라믹계 압전체를 포함하는 압전 복합재의 항복강도 및 인장강도가 향상될 수 있다. 상기 체 내 이식용 압전 복합재의 기계적 강도에 관한 구체적인 내용은 이하의 {실시예 및 평가}에서 도면을 예시로 상세히 설명하도록 한다. The piezoelectric composite material for implantation in the body of the present invention can have improved mechanical strength by including a ceramic-based piezoelectric material. When comparing the yield strength and tensile strength of the piezoelectric composite for implantation in the body of the present invention depending on whether or not the ceramic piezoelectric material is included, the yield of the piezoelectric composite including the ceramic piezoelectric material is compared to the piezoelectric composite material that does not contain the ceramic piezoelectric material. Strength and tensile strength can be improved. Specific details regarding the mechanical strength of the piezoelectric composite for implantation in the body will be explained in detail with reference to the drawings in {Examples and Evaluation} below.
<체 내 이식용 압전 복합재의 제조 방법><Method for manufacturing piezoelectric composite material for implantation in the body>
본 발명의 발명자들은 상술한 과제를 해결하기 위하여, 체 내 이식용 압전 복합재의 제조 방법을 제공한다.In order to solve the above-mentioned problems, the inventors of the present invention provide a method for manufacturing a piezoelectric composite material for implantation in the body.
도 1은 본 발명의 체 내 이식용 압전 복합재의 제조 과정을 도시한 것이다. 도 1을 참조하면, 본 발명의 체 내 이식용 압전 복합재의 제조 방법은, 아연이 함유된 금속 매트릭스 및 세라믹계 압전체를 혼합하는 단계; 및 상기 혼합물을 가열하는 단계;를 포함하는 것을 확인할 수 있다.Figure 1 shows the manufacturing process of the piezoelectric composite material for implantation in the body of the present invention. Referring to Figure 1, the method of manufacturing a piezoelectric composite material for implantation in the body of the present invention includes mixing a metal matrix containing zinc and a ceramic-based piezoelectric body; and heating the mixture.
본 발명의 체 내 이식용 압전 복합재의 제조 방법은 일 실시예로서, 아연에 Mg, Au, Mo, W, Fe 및 Si으로 이루어진 군으로부터 선택된 어느 하나 이상의 금속을 첨가하여 합금(이하 아연 합금이라 함)을 만든 후, 상기 아연 합금을 가열하여 용융시키고, 이후 세라믹계 압전체를 투입하여 교반을 통해 균일하게 분산시킨 다음, 몰드(mold)에 주입하여 응고시키는 과정을 포함할 수 있다.The method of manufacturing a piezoelectric composite material for implantation in the body of the present invention is an example, in which at least one metal selected from the group consisting of Mg, Au, Mo, W, Fe, and Si is added to zinc to form an alloy (hereinafter referred to as zinc alloy). ), then heating and melting the zinc alloy, then adding a ceramic-based piezoelectric material to uniformly disperse it through stirring, and then injecting it into a mold to solidify it.
상기 교반은 교반기(stirrer) 또는 ultrasonic liquid processor를 통해 수행될 수 있으나, 이에 한정되는 것은 아니며, 상기 용융된 아연 합금에 상기 세라믹계 압전체가 균일하게 분산 가능한 것이면 그 어떠한 것이어도 무방하다.The stirring may be performed using a stirrer or an ultrasonic liquid processor, but is not limited thereto, and any method may be used as long as the ceramic piezoelectric material can be uniformly dispersed in the molten zinc alloy.
본 발명의 체 내 이식용 압전 복합재의 제조 방법은 또 다른 일 실시예로서, 아연(또는 아연 합금)과 세라믹계 압전체를 고체 상태로 우선적으로 혼합하고 몰드에 주입한 후, 고압 압축기를 통하여 압축한 다음, 이후 가열 후 응고시키는 과정을 포함할 수 있다. 즉 다시 말해, 본 발명의 체 내 이식용 압전 복합재는 원 팟(one-pot) 가열 반응으로 제조될 수 있다. The method of manufacturing a piezoelectric composite material for implantation in the body of the present invention is another embodiment, in which zinc (or zinc alloy) and a ceramic-based piezoelectric body are first mixed in a solid state, injected into a mold, and then compressed through a high-pressure compressor. Next, it may include a process of solidification after heating. In other words, the piezoelectric composite material for implantation in the body of the present invention can be manufactured through a one-pot heating reaction.
상기 아연이 함유된 금속 매트릭스에 있어서, 상기 아연은 펠릿(pellet)상, 잉곳(ingot)상 및 분말상으로 이루어진 군으로부터 선택된 어느 하나 이상의 형태일 수 있으나, 이에 한정되는 것은 아니다.In the metal matrix containing zinc, the zinc may be in one or more forms selected from the group consisting of pellets, ingots, and powders, but is not limited thereto.
상기 세라믹계 압전체는 분말상일 수 있다.The ceramic-based piezoelectric material may be in powder form.
상기 가열온도는 상기 금속 매트릭스의 용융이 용이한 온도 내에서 적절히 설정할 수 있으며, 바람직하게는 400 내지 900 ℃일 수 있다. 상기 가열온도가 400 ℃미만인 경우, 상기 금속 매트릭스의 용융점 보다 낮아져, 금속 매트릭스가 용융되지 않아 재료의 혼합이 어려워지는 문제가 발생한다. The heating temperature can be appropriately set within a temperature at which the metal matrix can be easily melted, and is preferably 400 to 900°C. When the heating temperature is lower than 400° C., the melting point of the metal matrix is lowered, and the metal matrix does not melt, making it difficult to mix the materials.
상기 가열은 전기로, 고주파로, 아크용해로, 고압용융로 등에서 수행될 수 있으나, 이에 한정되는 것은 아니며, 상술한 가열온도까지 승온이 용이한 것이면, 그 어떠한 것이어도 무방하다.The heating may be performed in an electric furnace, high-frequency furnace, arc melting furnace, high-pressure melting furnace, etc., but is not limited thereto, and any furnace may be used as long as it is easy to raise the temperature to the above-mentioned heating temperature.
이하, 첨부한 도면 및 실시예들을 참조하여 본 명세서가 청구하는 바에 대하여 더욱 자세히 설명한다. 다만, 본 명세서에서 제시하고 있는 도면 내지 실시예 등은 통상의 기술자에 의하여 다양한 방식으로 변형되어 여러 가지 형태를 가질 수 있는 바, 본 발명에서의 기재사항은 본 발명을 특정 개시 형태에 한정되는 것이 아니고, 본 발명의 사상 및 기술 범위에 포함되는 모든 균등물 내지 대체물을 포함하고 있는 것으로 보아야 한다. 또한, 첨부된 도면은 본 발명을 통상의 기술자로 하여금 더욱 정확하게 이해할 수 있도록 돕기 위하여 제시되는 것으로서 실제보다 과장되거나 축소되어 도시될 수 있다. Hereinafter, what the present specification claims will be described in more detail with reference to the accompanying drawings and examples. However, the drawings, examples, etc. presented in this specification can be modified in various ways by those skilled in the art to have various forms, and the description in the present invention does not limit the present invention to the specific disclosed form. Rather, it should be viewed as including all equivalents or substitutes included in the spirit and technical scope of the present invention. In addition, the attached drawings are presented to help those skilled in the art understand the present invention more accurately, and may be shown exaggerated or reduced compared to reality.
{실시예 및 평가}{Examples and Evaluation}
<실시예><Example>
실시예 1Example 1
금속 매트릭스로서 펠릿(pellet)상의 아연 5 g과 세라믹계 압전체로서 분말상의 티탄산바륨(BaTiO3) 250 mg을 균질하게 혼합하였다. 이후 고체 상태 그대로 몰드에 주입한 후 고압 압축기로 압축한 다음, 전기로에서 500 ℃로 가열하였다. 이후 실온으로 식혀 체 내 이식용 압전 복합재를 제조하였다(이하 "실시예 1" 이라 함). 5 g of zinc in pellet form as a metal matrix and 250 mg of barium titanate (BaTiO3) in powder form as a ceramic piezoelectric body were homogeneously mixed. Afterwards, it was injected into the mold as a solid, compressed with a high-pressure compressor, and then heated to 500°C in an electric furnace. Afterwards, it was cooled to room temperature to prepare a piezoelectric composite for implantation in the body (hereinafter referred to as “Example 1”).
실시예 2Example 2
금속 매트릭스로서 아연 분말 4.5 g 및 마그네슘 분말 0.5 g을 넣은 것을 제외하고, 실시예 1과 동일하게 하여, 체 내 이식용 압전 복합재를 제조하였다(이하 "실시예 2"라 함).A piezoelectric composite material for implantation in the body was manufactured in the same manner as Example 1, except that 4.5 g of zinc powder and 0.5 g of magnesium powder were added as a metal matrix (hereinafter referred to as “Example 2”).
비교예 1Comparative Example 1
세라믹계 압전체를 넣지 않는 것을 제외하고, 실시예 1과 동일하게 하여, 체 내 이식용 압전 복합제를 제조하였다(이하 "비교예 1"이라 함).A piezoelectric composite for implantation in the body was manufactured in the same manner as in Example 1, except that the ceramic-based piezoelectric body was not added (hereinafter referred to as “Comparative Example 1”).
<평가><Evaluation>
생분해 평가Biodegradation evaluation
도 2는 본 발명의 일 실시예에 따라 제조된 체 내 이식용 압전 복합재의 시간 경과에 따른 중량 감소율을 나타내는 그래프이다. 도 2를 참조하면, 실시예 1과 비교예 1은 생분해율에 있어서 유의미한 차이가 없음을 확인할 수 있다. 반면에 실시예 2는 아연과 마그네슘의 합금을 포함함에 따라, 생분해 속도가 제어되어 실시예 1 및 비교예 1 대비 시간 경과에 따라 중량 감소율이 빨라지는 것을 확인할 있다. 즉, 본 발명의 체 내 이식용 압전 복합재는 금속 매트릭스의 종류를 선택함으로써, 체 내 분해 속도를 제어할 수 있는 효과를 가질 수 있다.Figure 2 is a graph showing the weight reduction rate over time of the piezoelectric composite for implantation in the body manufactured according to an embodiment of the present invention. Referring to Figure 2, it can be seen that there is no significant difference in biodegradation rate between Example 1 and Comparative Example 1. On the other hand, as Example 2 contains an alloy of zinc and magnesium, the biodegradation rate is controlled, and it can be confirmed that the weight loss rate increases over time compared to Example 1 and Comparative Example 1. That is, the piezoelectric composite material for implantation in the body of the present invention can have the effect of controlling the decomposition rate in the body by selecting the type of metal matrix.
기계적 강도 평가Mechanical strength evaluation
도 3은 본 발명의 일 실시예에 따라 제조된 체 내 이식용 압전 복합재의 인장 강도를 테스트한 그래프이다. 상기 인장 강도 테스트는 각 시편 당 2번의 시험을 수행하였다. 상기 인장강도 테스트의 결과를 응력-변형률 선도(Stress-strain diagram)로 나타낸 것이다. 도 3을 참조하면, 실시예 1은 비교예 1과 비교했을 때, 시편의 변형률(strain)은 실시예 1 보다 비교예 1에서 세라믹계 압전체를 포함하지 않음에 따라 더 높은 것을 확인할 수 있으나, 비교예 1 보다 실시예 1에서 더 높은 응력(stress)에서 파단이 발생한 것을 확인할 수 있다. 다시 말해, 실시예 1에서 비교예 1 대비 더 높은 인장강도가 나타나는 것을 확인할 수 있다.Figure 3 is a graph testing the tensile strength of a piezoelectric composite for implantation in the body manufactured according to an embodiment of the present invention. The tensile strength test was performed twice for each specimen. The results of the tensile strength test are expressed as a stress-strain diagram. Referring to Figure 3, when Example 1 is compared with Comparative Example 1, it can be seen that the strain of the specimen is higher than in Example 1 due to the absence of a ceramic piezoelectric material in Comparative Example 1. It can be seen that fracture occurred at a higher stress in Example 1 than in Example 1. In other words, it can be seen that Example 1 exhibits higher tensile strength compared to Comparative Example 1.
상기 인장강도 테스트의 구체적인 결과(항복강도, 인장강도 및 변형률)를 하기 표 1에 나타내었다. The specific results (yield strength, tensile strength, and strain) of the tensile strength test are shown in Table 1 below.
상기 항복강도란 탄성변형이 일어나는 한계응력을 말한다. 상기 탄성변형이란 하중이 사라지면 원래 상태로 돌아오는 변형을 말한다. 이와 대조적으로 슬립에 의해 변형이 영구적으로 남게 되는 변형을 소성변형이라고 하는데, 항복이 일어난다는 의미는 소성변형이 시작된다는 것과 동일한 의미를 가진다.The yield strength refers to the limiting stress at which elastic deformation occurs. The elastic deformation refers to deformation that returns to its original state when the load disappears. In contrast, deformation in which deformation remains permanently due to slip is called plastic deformation, and the occurrence of yielding has the same meaning as the beginning of plastic deformation.
상기 인장강도란 시편이 견딜 수 있는 최대 응력을 말한다. 즉, 상기 응력-변형률 선도에서 최대 응력과 동일한 의미를 가진다.The tensile strength refers to the maximum stress that the specimen can withstand. That is, it has the same meaning as the maximum stress in the stress-strain diagram.
상기 변형률이란 시편이 늘어난 길이를 초기 길이로 나눈 값을 의미한다.The strain rate means the length by which the specimen is stretched divided by the initial length.
실시예 1Example 1 비교예 1Comparative Example 1
항복강도(MPa)Yield strength (MPa) 175.1 ± 8175.1 ± 8 107.3 ± 0.1107.3 ± 0.1
인장강도(MPa)Tensile strength (MPa) 193.9 ± 0.6193.9 ± 0.6 124.8 ± 0124.8 ± 0
변형률(%)Strain rate (%) 6.5 ± 0.36.5 ± 0.3 10.7 ± 010.7 ± 0
표 1을 참조하면, 본 발명의 실시예 1이 비교예 1 대비, 항복강도가 약 63%, 인장강도가 약 54% 증가된 것을 확인할 수 있다. 다만, 실시예 1의 변형률은 약 6.5%로 비교예 1의 10.7% 대비 소폭 감소한 것을 확인할 수 있다. 이는 본 발명의 체 내 이식용 압전 복합재는 세라믹계 압전체 및 금속 매트릭스를 포함함에 따라, 상기 체 내 이식용 압전 복합재의 인장강도, 항복강도 등의 기계적 강도는 증가되고, 연신 특성을 나타내는 변형률은 감소된 것을 시사한다. Referring to Table 1, it can be seen that Example 1 of the present invention has an increase in yield strength of about 63% and tensile strength of about 54% compared to Comparative Example 1. However, it can be seen that the strain rate of Example 1 was about 6.5%, a slight decrease compared to 10.7% of Comparative Example 1. This is because the piezoelectric composite material for intracorporeal implantation of the present invention includes a ceramic-based piezoelectric body and a metal matrix, so that the mechanical strength, such as tensile strength and yield strength, of the piezoelectric composite material for intracorporeal implantation increases, and the strain rate showing elongation characteristics decreases. suggests that it has happened.
압전 평가Piezoelectric evaluation
도 4는 본 발명의 일 실시예에 따라 제조된 체 내 이식용 압전 복합재의 압전효과를 테스트한 사진이다. 보다 구체적으로 (a)는 비교예 1에 외력(본 실시예에서 진동)을 가했을 때의 모습이고, (b)는 실시예 1에 외력을 가했을 때의 모습이다. 도 4를 참조하면, 순수 아연을 사용한 비교예 1의 경우, 외력을 가해도 압전 효과에 따른 전압이 발생하지 않는 것을 확인할 수 있다. 반면에 실시예 1은 외력에 의해 전압이 발생하는 것을 확인할 수 있으므로, 이는 즉 본 발명의 체 내 이식용 압전 복합재는 세라믹계 압전체를 포함함에 따라, 압전 효과로 인해 외력에 의한 전압이 발생하는 것을 의미한다. Figure 4 is a photograph testing the piezoelectric effect of a piezoelectric composite for implantation in the body manufactured according to an embodiment of the present invention. More specifically, (a) is the appearance when an external force (vibration in this example) is applied to Comparative Example 1, and (b) is the appearance when an external force is applied to Example 1. Referring to FIG. 4, it can be seen that in the case of Comparative Example 1 using pure zinc, voltage due to the piezoelectric effect is not generated even when an external force is applied. On the other hand, in Example 1, it can be confirmed that voltage is generated by external force. This means that the piezoelectric composite material for implantation in the body of the present invention includes a ceramic piezoelectric material, so that voltage is generated by external force due to the piezoelectric effect. it means.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다.The above description is merely an illustrative explanation of the technical idea of the present invention, and various modifications and variations will be possible to those skilled in the art without departing from the essential characteristics of the present invention.
따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.Accordingly, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention, but are for illustrative purposes, and the scope of the technical idea of the present invention is not limited by these embodiments. The scope of protection of the present invention should be interpreted in accordance with the claims below, and all technical ideas within the equivalent scope should be construed as being included in the scope of rights of the present invention.
본 발명에 의하면, 압전효과를 이용하여 혈류 등의 인체의 움직임을 센싱하여 전압으로 변환된 신호를 모니터링 할 수 있고, 역압전효과를 이용하여 체외에서 상기 이식재로 전기신호를 보내어 진동 등의 움직임을 발생시킬 수 있는, 체 내 이식용 압전 복합재를 제공할 수 있다. According to the present invention, the movement of the human body, such as blood flow, can be sensed using the piezoelectric effect and the signal converted into voltage can be monitored, and the reverse piezoelectric effect can be used to send an electric signal to the implant from outside the body to cause movement such as vibration. It is possible to provide a piezoelectric composite material that can be generated and implanted in the body.
또한, 본 발명의 체 내 이식용 압전 복합재는 체 내에서 생분해가 가능하고, 인체에 적합한 물질을 포함함에 따라 체 내 이식용 의료기기의 재료로 활용될 수 있고, 세라믹 소재를 포함함에 따라 종래 체 내 이식용 의료기기 대비 강도가 향상된 효과를 가질 수 있다.In addition, the piezoelectric composite material for intracorporeal implantation of the present invention is biodegradable within the body, and contains materials suitable for the human body, so it can be used as a material for medical devices for intracorporeal implantation, and because it contains a ceramic material, it can be used as a material for medical devices for intracorporeal implantation. It may have improved strength compared to implantable medical devices.

Claims (12)

  1. 세라믹계 압전체; 및Ceramic piezoelectric material; and
    아연이 함유된 금속 매트릭스;를 포함하고, A metal matrix containing zinc;
    체 내에서 생분해되는 것을 특징으로 하는, 체 내 이식용 압전 복합재.A piezoelectric composite material for implantation in the body, characterized in that it is biodegradable in the body.
  2. 제 1 항에 있어서,According to claim 1,
    상기 금속 매트릭스 100 중량%에 대하여 상기 세라믹계 압전체는 1 내지 20 중량%로 포함되는 것인, 체 내 이식용 압전 복합재.A piezoelectric composite material for implantation in the body, wherein the ceramic-based piezoelectric material is included in an amount of 1 to 20% by weight based on 100% by weight of the metal matrix.
  3. 제 1 항에 있어서,According to claim 1,
    상기 세라믹계 압전체는 티탄산바륨(BaTiO3), 산화아연(ZnO), 니오브산리튬(LiNbO3), 니오브산포타슘(KNbO3), 탄탈산리튬(LiTaO3), a-SiO2(Silicon dioxide, Amorphous), 이산화지르코늄(ZrO2) 및 이산화티탄(TiO2)로 이루어진 군으로부터 선택된 어느 하나 이상인, 체 내 이식용 압전 복합재.The ceramic piezoelectric body includes barium titanate (BaTiO3), zinc oxide (ZnO), lithium niobate (LiNbO3), potassium niobate (KNbO3), lithium tantalate (LiTaO3), a-SiO2 (Silicon dioxide, Amorphous), and zirconium dioxide. A piezoelectric composite material for implantation in the body, which is at least one selected from the group consisting of (ZrO2) and titanium dioxide (TiO2).
  4. 제 1 항에 있어서,According to claim 1,
    아연이 함유된 상기 금속 매트릭스는 마그네슘(Mg), 금(Au), 몰리브덴(Mo), 텅스텐(W), 철(Fe) 및 규소(Si)로 이루어진 군으로부터 선택된 어느 하나 이상의 금속을 더 포함하는 것인, 체 내 이식용 압전 복합재.The metal matrix containing zinc further contains one or more metals selected from the group consisting of magnesium (Mg), gold (Au), molybdenum (Mo), tungsten (W), iron (Fe), and silicon (Si). A piezoelectric composite material for implantation in the body.
  5. 제 1 항에 있어서,According to claim 1,
    아연이 함유된 상기 금속 매트릭스는 아연 100 중량%에 대하여, 마그네슘(Mg), 금(Au), 몰리브덴(Mo), 텅스텐(W), 철(Fe) 및 규소(Si)로 이루어진 군으로부터 선택된 어느 하나 이상의 금속이 1 내지 20 중량%로 포함되는 것인, 체 내 이식용 압전 복합재.The metal matrix containing zinc is any selected from the group consisting of magnesium (Mg), gold (Au), molybdenum (Mo), tungsten (W), iron (Fe), and silicon (Si), based on 100% by weight of zinc. A piezoelectric composite for implantation in the body, comprising 1 to 20% by weight of one or more metals.
  6. 제 1 항에 있어서,According to claim 1,
    상기 체 내 이식용 압전 복합재는 체 내에 이식되어 인체의 움직임에 따라 전압을 발생시키는 것인, 체 내 이식용 압전 복합재.The piezoelectric composite for intracorporeal implantation is implanted within the body and generates voltage according to the movement of the human body.
  7. 제 6 항에 있어서,According to claim 6,
    상기 인체의 움직임은 혈류, 근육의 신장, 근육의 수축 및 심장박동으로 이루어진 군으로부터 선택된 어느 하나 이상인, 체 내 이식용 압전 복합재.A piezoelectric composite material for implantation in the body, wherein the movement of the human body is at least one selected from the group consisting of blood flow, muscle elongation, muscle contraction, and heartbeat.
  8. 제 1 항에 있어서,According to claim 1,
    상기 체 내 이식용 압전 복합재는 체 내에 이식되어 외부에서 체 내로 흘린 전압을 감지하여 상기 체 내 이식용 압전 복합재의 움직임이 발생되는 것인, 체 내 이식용 압전 복합재.The piezoelectric composite for intracorporeal implantation is implanted into the body and detects voltage flowing into the body from the outside to generate movement of the piezoelectric composite for intracorporeal implantation.
  9. 제 8 항에 있어서, According to claim 8,
    상기 압전 복합재의 움직임은 신장, 수축, 굽힘, 떨림 및 회전으로 이루어진 군으로부터 선택된 어느 하나 이상인, 체 내 이식용 압전 복합재.A piezoelectric composite for implantation in the body, wherein the movement of the piezoelectric composite is one or more selected from the group consisting of stretching, contraction, bending, shaking, and rotation.
  10. 아연이 함유된 금속 매트릭스 및 세라믹계 압전체를 혼합하는 단계; 및Mixing a zinc-containing metal matrix and a ceramic-based piezoelectric body; and
    상기 혼합물을 가열하여 용융시키는 단계;를 포함하고, It includes heating and melting the mixture,
    상기 단계로 제조된 체 내 이식용 압전 복합재는 체 내에서 생분해되는 것을 특징으로 하는, 체 내 이식용 압전 복합재의 제조 방법.A method of producing a piezoelectric composite for intracorporeal implantation, characterized in that the piezoelectric composite for intracorporeal implantation produced in the above step is biodegraded within the body.
  11. 제 10 항에 있어서,According to claim 10,
    상기 가열온도는 400 내지 900 ℃인, 체 내 이식용 압전 복합재의 제조 방법.A method of manufacturing a piezoelectric composite material for implantation in the body, wherein the heating temperature is 400 to 900 °C.
  12. 제 10 항에 있어서,According to claim 10,
    상기 체 내 이식용 압전 복합재는 원 팟(one-pot) 가열 반응으로 제조되는 것인, 체 내 이식용 압전 복합재의 제조 방법.A method of manufacturing a piezoelectric composite for intracorporeal implantation, wherein the piezoelectric composite for intracorporeal implantation is manufactured through a one-pot heating reaction.
PCT/KR2022/017942 2022-09-26 2022-11-15 Bio-implantable piezoelectric composite material and manufacturing method therefor WO2024071513A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0121950 2022-09-26
KR1020220121950A KR20240043222A (en) 2022-09-26 2022-09-26 Implantable piezoelectric composite and menufaturing method for thereof

Publications (1)

Publication Number Publication Date
WO2024071513A1 true WO2024071513A1 (en) 2024-04-04

Family

ID=90478318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017942 WO2024071513A1 (en) 2022-09-26 2022-11-15 Bio-implantable piezoelectric composite material and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR20240043222A (en)
WO (1) WO2024071513A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140099934A (en) * 2011-12-01 2014-08-13 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 Transient devices designed to undergo programmable transformations
US20160050750A1 (en) * 2013-04-12 2016-02-18 The Board Of Trustees Of The University Of Illinois Biodegradable materials for multilayer transient printed circuit boards
US20180296343A1 (en) * 2017-04-18 2018-10-18 Warsaw Orthopedic, Inc. 3-d printing of porous implants
CN110882420A (en) * 2019-08-23 2020-03-17 上海交通大学 Piezoelectric stent composition capable of spontaneous electrical stimulation and preparation method and application thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140099934A (en) * 2011-12-01 2014-08-13 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 Transient devices designed to undergo programmable transformations
US20160050750A1 (en) * 2013-04-12 2016-02-18 The Board Of Trustees Of The University Of Illinois Biodegradable materials for multilayer transient printed circuit boards
US20180296343A1 (en) * 2017-04-18 2018-10-18 Warsaw Orthopedic, Inc. 3-d printing of porous implants
CN110882420A (en) * 2019-08-23 2020-03-17 上海交通大学 Piezoelectric stent composition capable of spontaneous electrical stimulation and preparation method and application thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANGELIKA ZASZCZYNSKA: "Piezoelectric Scaffolds as Smart Materials for Neural Tissue Engineering", POLYMERS, MOLECULAR DIVERSITY PRESERVATION INTERNATIONAL (M DP I) AG., CH, vol. 12, no. 1, 1 January 2020 (2020-01-01), CH , pages 161, XP093153467, ISSN: 2073-4360, DOI: 10.3390/polym12010161 *

Also Published As

Publication number Publication date
KR20240043222A (en) 2024-04-03

Similar Documents

Publication Publication Date Title
JP3330380B2 (en) Hot implant, method of manufacturing the same, and alloy useful for hot implant
CN105154735B (en) Degradable biomedical Mg-Nd-Sr magnesium alloy as well as preparation method and application thereof
EP1395296A1 (en) Method for producing a bioactive bone cement and bone cement kit
CN101003873A (en) Beta type Ti Nb Zr alloy with low modulus of elasticity, preparation method and application
CN105274393B (en) A kind of β types Zr Ti Nb Sn systems alloy and preparation method thereof
Tanaka et al. Bone bonding ability of a chemically and thermally treated low elastic modulus Ti alloy: gum metal
CN109055814A (en) A kind of preparation method of medical antibacterial titanium alloy
WO2024071513A1 (en) Bio-implantable piezoelectric composite material and manufacturing method therefor
CN102258806B (en) Degradable magnesium-base biomedical material for implantation in orthopaedics, and preparation method thereof
CN102021362A (en) Multipurpose Ti-Ge series alloy with adjustable property for oral cavity and preparation method thereof
CN108950336B (en) High-plasticity degradable biomedical Mg-Zn-Zr-Ca-Fe alloy material and preparation method thereof
WO2016052941A1 (en) Titanium alloy having high strength and super-low elastic modulus
CN107198796B (en) Biomedical Zn-Mn-Cu zinc alloy and preparation method thereof
WO2014073754A1 (en) Ultrahigh strength and ultralow elastic modulus titanium alloy showing linear elastic deformation behavior
Ho et al. Evaluation of low-fusing porcelain bonded to dental cast Ti–Zr alloys
CN105624495A (en) Medical suture material and preparation method
CN103509959A (en) Preparation method of biomedical low elastic modulus titanium tantalum niobium zirconium silicon alloy
CN109022853A (en) A kind of preparation method of antibacterial Ti-Nb-Zr-Ag alloy pig
KR102292582B1 (en) Cobalt/chromium based dental alloy for porcelain having excellent bond strength between the ceramic and the dental alloy, and dental restoration manufactured using the same
CN107090554A (en) It is a kind of to have low elastic modulus and the β type Zr Ti Nb Ta Sn systems alloy of high intensity and preparation method thereof concurrently
WO2013166926A1 (en) Duodenal internal covering membrane made of degradable biocompatible material and application thereof
JP4547797B2 (en) Biomedical Ti alloy and method for producing the same
WO2013100562A1 (en) Corrosion resistant titanium-based alloy having high strength and low elastic modulus
Dauda et al. Biosmart materials and its innovative characteristics in protective composite coating application
CN1080627A (en) Biological active incline ceramic material