WO2024071422A1 - Steel plate - Google Patents

Steel plate Download PDF

Info

Publication number
WO2024071422A1
WO2024071422A1 PCT/JP2023/035791 JP2023035791W WO2024071422A1 WO 2024071422 A1 WO2024071422 A1 WO 2024071422A1 JP 2023035791 W JP2023035791 W JP 2023035791W WO 2024071422 A1 WO2024071422 A1 WO 2024071422A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
mass
steel plate
value
steel
Prior art date
Application number
PCT/JP2023/035791
Other languages
French (fr)
Japanese (ja)
Inventor
信幸 吉村
遼太郎 白石
竜一 本間
史寿 高峰
弘宜 若松
武史 大久保
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2024501495A priority Critical patent/JP7469734B1/en
Publication of WO2024071422A1 publication Critical patent/WO2024071422A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Definitions

  • the present invention relates to a steel sheet.
  • This application claims priority based on Japanese Patent Application No. 2022-157410, filed on September 30, 2022, the contents of which are incorporated herein by reference.
  • CCS Carbon Dioxide Capture and Storage
  • the steel plate used as the material for the transport tank is required to have high strength and excellent low-temperature toughness.
  • the strength is required to have a tensile strength of 780 N/ mm2 or more.
  • the low-temperature toughness is required to be excellent in the most severe condition, evaluated by a Charpy test at minus 65°C (-65°C), for a plate thickness of 20 to 60 mm used as a transport tank, although this depends on the plate thickness.
  • the test temperature of the Charpy test is minus 65°C because the Charpy test is a small-scale test and is generally evaluated at a certain temperature lower than the usage temperature depending on the plate thickness.
  • stress relief annealing may be performed on the welds to reduce the possibility of fracture.
  • Stress relief annealing is a heat treatment method in which the welds of a welded structure are heated to a temperature below the Ac1 transformation point and then slowly cooled in order to reduce the residual stress caused by welding.
  • stress relief annealing is applied to high-tensile steel with a tensile strength of 780 N/mm2 or more , alloy carbides are selectively precipitated at the grain boundaries, and these alloy carbides cause grain boundary embrittlement, which significantly reduces the toughness of the area where stress relief annealing is performed. This phenomenon is generally called SR (Stress Relieving) embrittlement.
  • SR embrittlement is highly likely to occur in high-tensile steel that contains B and is manufactured by quenching and tempering.
  • high-tensile steel not only the embrittlement of the base material but also the embrittlement of the weld heat-affected zone obtained when a welded joint is created using this high-tensile steel is significant.
  • the base material and welds (especially the weld heat-affected zones) have excellent low-temperature toughness even after stress relief annealing is performed.
  • Patent Document 1 shows a high-strength steel plate characterized by adjusting the chemical composition and setting the average crystal grain size to 15 ⁇ m or less.
  • the low-temperature toughness at -65°C of the steel plate described in Patent Document 1 has not been evaluated, and there is room for further improvement in low-temperature toughness.
  • the present invention has been made in consideration of the above circumstances, and an object of the present invention is to provide a steel plate suitable for a liquefied CO2 transport tank, which is excellent in the strength of the base material and the low-temperature toughness of the base material and the welded heat-affected zone, and further excellent in the strength of the base material after stress relief annealing and the low-temperature toughness of the base material and the welded heat-affected zone.
  • a steel sheet according to one embodiment of the present invention is The chemical composition, in mass%, is C: 0.07 to 0.11%, Si: 0.10 to 0.15%, Mn: 0.70 to 1.20%, Ni: 1.00 to 2.50%, Cr: 0.20 to 0.80%, Mo: 0.20 to 0.80%, V: 0.005 to 0.070%, Al: 0.010 to 0.100%, B: 0.0005 to 0.0030%, N: 0.0015 to 0.0050%, P: 0.006% or less, S: 0.0030% or less, Cu: 0 to 1.00%, Nb: 0 to 0.030%, Ti: 0 to 0.010%, Ca: 0 to 0.0030%, Mg: 0 to 0.0030%, REM: 0 to 0.0030%, O: 0.0040% or less, The balance is Fe and impurities.
  • an ⁇ value defined by the following formula (1) of 1.00 to 1.50 mass% A ⁇ value defined by the following formula (2) is 10.0 to 15.0
  • a ⁇ value defined by the following formula (3) is 0.70 to 1.50 mass%
  • the Ceq value defined by the following formula (4) is 0.550 to 0.620 mass%
  • Yield strength is 670 to 870 N/mm 2
  • Tensile strength of 780 to 940 N/mm 2 Charpy absorbed energy at -65°C is 100 J or more
  • the average hardness at 121 measurement points is 265 Hv to 290 Hv, with a standard deviation of 20 or less.
  • the plate thickness is 10 to 60 mm.
  • [C], [Si], [P], [Mn], [Cu], [Ni], [Cr], [Mo], [Nb], [Ti], and [V] represent the contents (mass %) of C, Si, P, Mn, Cu, Ni, Cr, Mo, Nb, Ti, and V, respectively, and elements that are not contained, including the amount of elements mixed in as impurities, are substituted with 0.
  • [fB] calculated by the following formulas (A) to (E) may be 0.0003 mass% or more.
  • [fB] [B] - 0.77 x [fN] ...
  • [fN] [N] - 0.29 x [fTi] - 0.52 x [fAl] ...
  • [fTi] [Ti] - 2 ⁇ [fO] ...
  • [fAl] [Al] - 1.125 ⁇ [fO] ...
  • [fO] [O] - 0.4 x [Ca] - 0.66 x [Mg] - 0.11 x [REM] ...
  • [B], [N], [Ti], [Al], [O], [Ca], [Mg], and [REM] represent the contents (mass%) of B, N, Ti, Al, O, Ca, Mg, and REM, respectively. Elements that are not contained, including the amount of elements mixed in as impurities, are substituted with 0, and when the calculated values of [fN], [fTi], [fAl], and [fO] are less than 0%, 0 is substituted.
  • the steel sheet when the steel sheet is subjected to stress relief annealing at a holding temperature of 600°C for 2 hours and a heating rate and a heating rate of 55°C/hr or less in a temperature range of 425°C or more, the steel sheet may have a yield strength of 670 to 870 N/ mm2 , a tensile strength of 780 to 940 N/ mm2 , and a Charpy absorbed energy at -40°C of 27 J or more at a location where the stress relief annealing has been performed.
  • a steel plate having excellent strength of the base material and low-temperature toughness of the base material and the welded heat affected zone, and further having excellent strength of the base material and low-temperature toughness of the base material and the welded heat affected zone after stress relief annealing.
  • This steel plate is suitable for use in liquefied CO2 transport tanks.
  • stress relief annealing means stress relief annealing conforming to the contents specified in JIS Z 3700:2022 "Post-weld heat treatment method” unless otherwise specified.
  • welding means welding with a welding heat input of 1.1 to 4.5 kJ/mm unless otherwise specified.
  • C is an element that improves the strength of the base material.
  • the C content is set to 0.07% or more.
  • the C content is preferably 0.08% or more.
  • the C content is set to 0.11% or less, preferably 0.10% or less, and more preferably less than 0.10%.
  • Silicon is an element that is generally contained in steel in many cases as a deoxidizing element. In order to contain silicon for the purpose of deoxidization, the silicon content is set to 0.10% or more. On the other hand, Si is an element that reduces the toughness of steel after stress relief annealing. In addition, in order to suppress the decrease in the toughness of the welded heat affected zone after stress relief annealing (SR), it is preferable that the Si content is low. Therefore, in the steel plate according to this embodiment, the Si content is set to 0.15% or less. The Si content is preferably set to 0.14% or less, more preferably 0.13% or less, and even more preferably 0.12% or less.
  • Mn 0.70 to 1.20%
  • Mn is an element effective for deoxidization and also improves the strength of steel, therefore the Mn content is set to 0.70% or more, preferably 0.90% or more.
  • the Mn content is set to 1.20% or less, and preferably 1.10% or less.
  • Ni is an element effective for improving the hardenability and toughness of steel, and therefore the Ni content is set to 1.00% or more, and preferably 1.20% or more.
  • the Ni content is set to 2.50% or less.
  • the Ni content is preferably set to 2.00% or less.
  • Cr 0.20 to 0.80%
  • Cr is an element effective for improving the hardenability of steel and improving the strength of steel by precipitation strengthening during tempering. Therefore, the Cr content is set to 0.20% or more, and preferably 0.40% or more. On the other hand, if Cr is excessively contained, there is a risk that the toughness of the base metal and the welded heat affected zone after stress relief annealing may decrease. Therefore, the Cr content is set to 0.80% or less, and preferably 0.70% or less.
  • Mo is an element effective for improving hardenability and strength of steel by precipitation strengthening during tempering. Therefore, the Mo content is set to 0.20% or more.
  • the Mo content is preferably set to 0.30% or more, more preferably 0.35% or more, and further preferably 0.40% or more.
  • Mo carbides may precipitate at grain boundaries after stress relief annealing, reducing the toughness of the base material and the welded heat affected zone, and the impact on the welded heat affected zone is particularly large. Therefore, the Mo content is set to 0.80% or less, and preferably 0.60% or less.
  • V 0.005 to 0.070%
  • Cr and Mo is an element effective for improving hardenability and improving the strength of steel by precipitation strengthening during tempering. Therefore, the V content is set to 0.005% or more, and preferably 0.010% or more.
  • the V content is set to 0.070% or less, and preferably 0.050% or less.
  • Al 0.010 to 0.100%
  • Al is an element useful for deoxidization, and also an element that refines the grain size during quenching by forming nitrides. In addition, it is an essential element for ensuring [fB] by forming nitrides. Therefore, in the steel sheet according to the present embodiment, the Al content is set to 0.010% or more. When the N content is high, the Al content is preferably 0.030% or more, more preferably 0.040% or more, in order to fix N and ensure fB. On the other hand, if Al is contained in excess, Al may form coarse nitrides, which may reduce the toughness of the base material and the welded heat affected zone. Therefore, the Al content is set to 0.100% or less, and preferably 0.080% or less.
  • B is an element that improves the hardenability of the steel by being contained in a small amount. Therefore, the B content is set to 0.0005% or more.
  • the B content may be set to 0.0006% or more, 0.0008% or more, or 0.0010% or more.
  • B may form coarse nitrides and/or carbides, which may reduce the toughness of the base metal. Therefore, the B content is set to 0.0030% or less.
  • the B content may also be set to 0.0020% or less or 0.0010% or less.
  • N is an element that forms nitrides to refine the crystal grain size of the base material and improve toughness. Therefore, the N content is set to 0.0015% or more. The N content may be set to 0.0030% or more or 0.0035% or more. On the other hand, if N is contained excessively, the nitrides become coarse and the toughness of the weld heat affected zone in the as-welded state decreases. Therefore, the N content is set to 0.0050% or less.
  • P and S are impurity elements contained in steel, and the lower the content, the better. Therefore, the lower limit of the P content and the S content is 0%.
  • the P content is set to 0.006% or less
  • the S content is set to 0.0030% or less.
  • the P content is preferably set to 0.005% or less.
  • the S content may be set to 0.0020% or less.
  • Cu (Cu: 0 to 1.00%) Cu is not an essential element in the steel plate according to this embodiment, so the lower limit of the Cu content is 0%. However, since Cu has an effect of improving the strength of steel, it can be contained as necessary. When Cu is contained, in order to utilize the effect, the Cu content is preferably 0.10% or more, and more preferably 0.20% or more. If necessary, the Cu content may be 0.25% or more or 0.30% or more. On the other hand, if Cu is contained excessively, there is a risk that the toughness of the base material will decrease due to the occurrence of cracks on the steel sheet surface and the precipitation of Cu. Therefore, the Cu content is set to 1.00% or less. The Cu content is preferably set to 0.80% or less. If necessary, the Cu content may be set to 0.70% or less, 0.60% or less, 0.50% or less, or 0.40% or less.
  • Nb 0 to 0.030% Since Nb is not an essential element in the steel sheet according to this embodiment, the lower limit of the Nb content is 0%. However, since Nb is an element that refines crystal grains during quenching, it can be contained as necessary. When Nb is contained, in order to utilize its effect, the Nb content is preferably 0.001% or more. On the other hand, if Nb is contained in excess, Nb may form coarse carbonitrides and reduce the toughness of the base material. Therefore, the Nb content is set to 0.030% or less. Since the toughness of the welded heat affected zone is improved with a smaller Nb content, the Nb content may be set to 0.020% or less, 0.010% or less, or 0.005% or less.
  • Ti is not an essential element in the steel plate according to the present embodiment, so the lower limit of the Ti content is 0%. However, Ti may refine the crystal grains when the steel is heated to a high temperature by slab heating, etc., so it may be contained as necessary. When Ti is contained, in order to utilize its effect, it is preferable that the Ti content is 0.001% or more. On the other hand, if Ti is contained excessively, Ti may form coarse carbonitrides, as with Nb, and may reduce the toughness of the base material. Therefore, the Ti content is set to 0.010% or less. If necessary, the Ti content may be set to 0.005% or less or 0.002% or less.
  • the steel sheet according to the present embodiment may contain one or more of Ca, Mg, and REM. Since Ca, Mg, and REM are not essential elements, the lower limit of the content of Ca, Mg, and REM is 0%.
  • Ca has the effect of spheroidizing sulfides in the steel sheet, thereby reducing the influence of MnS that reduces the toughness of the steel sheet.
  • the Ca content may be set to 0.0001% or more.
  • the Ca content is set to 0.0030% or less. If necessary, the Ca content may be set to 0.0015% or less, 0.0010% or less, 0.0005% or less, or 0.0002% or less.
  • Mg and REM form oxides to improve the toughness of the weld heat affected zone.
  • the Mg and REM contents may each be 0.0001% or more.
  • the Mg content and the REM content are each set to 0.0030% or less. If necessary, the Mg content and the REM content may be set to 0.015% or less, 0.010% or less, 0.005% or less, or 0.002% or less, or less than 0.0015%.
  • REM is a general term for rare earth metals including Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Compared to other additive elements, REM is characterized by its strong deoxidizing effect and forms stable oxides in steel.
  • Oxygen (O) is an impurity element contained in steel, and in many cases, it forms oxides of several ⁇ m to several tens of ⁇ m in size together with Ca, Mg, REM, Al, Ti, etc., which have strong deoxidizing power. When coarse oxides are contained or when the number density of oxides is high, they may become the starting point of brittle fracture, so the lower the O content, the more preferable it is. For this reason, the lower limit of the O content is 0%. In the steel plate according to this embodiment, the O content is set to 0.0040% or less, preferably 0.0030% or less, in order to improve the toughness of the welded portion.
  • the steel sheet according to the present embodiment is composed of the above-mentioned components, with the balance being Fe and impurities.
  • the impurities refer to components that are mixed in due to various factors in raw materials such as ores or scraps, or in the manufacturing process, during industrial production of steel material, and are permissible within a range that does not adversely affect the present invention.
  • [fB] calculated by the following formulas (A) to (E) is 0.0003 mass% or more.
  • [fB] represents the amount of B dissolved in the steel.
  • [fB] By setting [fB] to 0.0003 mass% or more, the hardenability of the steel can be improved in high-tensile steel having a yield strength of 670 to 870 N/mm 2 and a tensile strength of 780 to 940 N/mm 2.
  • B easily forms nitrides in the steel.
  • Ti and Al easily form nitrides and oxides. Therefore, the amount of B dissolved in the steel [fB] is calculated by the following formulas (A) to (E).
  • [fB] may be 0.0005 mass% or more, or may be 0.0015 mass% or more.
  • [fB] may be 0.0025 mass% or less, or may be 0.0018 mass% or less.
  • [fB] [B] - 0.77 x [fN] ...
  • [fN] [N] - 0.29 x [fTi] - 0.52 x [fAl] ...
  • [fTi] [Ti] - 2 ⁇ [fO] ...
  • [fAl] [Al] - 1.125 ⁇ [fO] ...
  • [fO] [O] - 0.4 x [Ca] - 0.66 x [Mg] - 0.11 x [REM] ... (E)
  • [B], [N], [Ti], [Al], [O], [Ca], [Mg], and [REM] respectively represent the content (mass%) of B, N, Ti, Al, O, Ca, Mg, and REM in the steel plate. Elements that are not contained, including the amount of elements mixed in as impurities, are substituted with 0, and when the calculated values of [fN], [fTi], [fAl], and [fO] are less than 0%, 0 is substituted.
  • the ranges of the ⁇ , ⁇ , and ⁇ values calculated from the content of each element are also limited as follows for the steel plate according to this embodiment.
  • ⁇ value ( ⁇ value: 1.00 to 1.50% by mass)
  • the ⁇ value is expressed by the following formula (1).
  • [C] + 6 ⁇ [Si] + 100 ⁇ [P] ...
  • [C], [Si] and [P] are the contents (mass%) of C, Si and P in the steel plate, respectively.
  • the ⁇ value is set to 1.50 mass% or less. This is a necessary condition for improving the toughness of the coarse-grained portion of the base material or the welded heat-affected zone after stress relief annealing, and it is necessary to adjust C, Si, and P within a range that satisfies this condition.
  • the grain boundary segregation concentration of P increases, making brittle fracture at the grain boundaries more likely to occur, but brittle fracture can be controlled by P, C, and Si.
  • P is inevitably contained in steel, and since it significantly reduces grain boundary strength due to grain boundary segregation, it is a representative element that causes SR embrittlement and has the highest coefficient.
  • C and Si are also elements that are inevitably contained in steel, and if these elements increase, they will cause embrittlement due to cementite formed at the grain boundaries. It is desirable to reduce both elements, but there are cases where a certain amount is contained due to characteristics or specifications.
  • the ⁇ value is 1.00 mass% or more.
  • This lower limit is a range determined by the component constraints in the specifications of the field of application and the limits of element control in manufacturing, and is calculated by substituting the above-mentioned lower limits of the C, Si, and P contents and the realistic minimum values in manufacturing into formula (1).
  • the preferred lower limit of the ⁇ value can be calculated from the preferred lower limits of the C, Si, and P contents.
  • the ⁇ value may be more than 1.10 mass%, or may be 1.30 mass% or more.
  • ⁇ value ( ⁇ value: 10.0 to 15.0)
  • the ⁇ value is calculated by the following formula (2).
  • 0.65 ⁇ [C] 1/2 ⁇ (1 + 0.64 ⁇ [Si]) ⁇ (1 + 4.10 ⁇ [Mn]) ⁇ (1 + 0.27 ⁇ [Cu]) ⁇ (1 + 0.52 ⁇ [Ni]) ⁇ (1 + 2.33 ⁇ [Cr]) ⁇ (1 + 3.14 ⁇ [Mo]) ...
  • [C], [Si], [Mn], [Cu], [Ni], [Cr] and [Mo] are the contents (mass%) of C, Si, Mn, Cu, Ni, Cr and Mo in the steel.
  • the ⁇ value is in the range of 10.0 to 15.0.
  • the ⁇ value is an index showing the hardenability of the steel material, and the higher the ⁇ value, the more reliably the formation of upper bainite structure, which has a poor balance of strength and toughness, can be avoided, but if the ⁇ value is too high, the strength of the steel material increases and the toughness deteriorates. In other words, it also serves as an index showing the target range of the content of alloy elements required to improve the toughness of the welded heat-affected zone as it is. If necessary, the ⁇ value may be 11.0 or more. At the same time, the ⁇ value may be 14.0 or less.
  • the ⁇ value is calculated by the following formula (3).
  • [Mn] + 20 ⁇ [Nb] + 36 ⁇ [Ti] ...
  • [Mn], [Nb], and [Ti] are the contents (mass%) of Mn, Nb, and Ti in the steel plate.
  • the ⁇ value is in the range of 0.70 to 1.50 mass%.
  • Mn, Nb, and Ti are all elements that promote grain boundary embrittlement after stress relief annealing, and by setting the ⁇ value to 1.50 mass% or less, it is possible to suppress the decrease in the toughness of the base material and the welded heat affected zone after stress relief annealing.
  • the ⁇ value may be 1.40 mass% or less.
  • Mn, Nb and Ti in order to ensure a certain degree of hardenability and obtain a microstructure having an advantageous balance of strength and toughness, it is preferable to add certain amounts of Mn, Nb and Ti, and the ⁇ value is set to 0.70 mass% or more.
  • the ⁇ value may be 0.75 mass% or more.
  • the steel plate according to the present embodiment it is possible to widen the allowable range of the ⁇ value by newly setting a ⁇ value, so that it is possible to provide a steel with excellent low-temperature toughness of the welded portion both as-welded and after stress relief annealing, even in fields where the chemical composition regulations of the applicable standards are strict as described above.
  • the carbon equivalent Ceq which is an index showing the hardenability of steel and is calculated by the following formula (4), is set to 0.550 to 0.620 mass%.
  • Ceq is less than 0.550 mass%, the strength of the steel plate may be insufficient. If necessary, Ceq may be set to 0.570 mass% or more, or 0.600 mass% or more. If Ceq exceeds 0.620 mass%, the toughness of the steel plate may decrease. If necessary, Ceq may be set to 0.600 mass% or less.
  • yield strength 670 to 870 N/ mm2
  • tensile strength 780 to 940 N/ mm2
  • the yield strength is set to 670 to 870 N/mm 2
  • the tensile strength of the steel plate is set to 780 to 940 N/mm 2.
  • the steel plate selected for such applications is a steel plate having the above-mentioned yield strength and tensile strength, so the yield strength and tensile strength of the steel plate according to this embodiment are also set to the above ranges.
  • the yield strength may be set to 690 N/mm 2 to 830 N/mm 2.
  • the tensile strength may be set to 800 N/mm 2 to 900 N/mm 2 .
  • the Charpy absorbed energy at -65°C is a value measured at a position that is 1/4 of the plate thickness from the surface in the plate thickness direction (sometimes referred to as the t/4 position or 1/4 thickness position).
  • ⁇ c crack opening displacement
  • the Charpy impact test has been used as a method for evaluating the brittle fracture resistance of a material.
  • the value obtained from the Charpy impact test represents the average toughness of the evaluation target area.
  • the CTOD test even if the average toughness of the evaluation target area is good, if there is even a slightly brittle part in the evaluation target area, the existence of the part is reflected in ⁇ c.
  • the steel plate according to this embodiment preferably has a ⁇ value of 0.10 mm or more in a CTOD test at ⁇ 35° C. In this case, the safety of a transportation tank made of the steel plate according to this embodiment is further improved.
  • the average value of the hardness at 121 measurement positions must be 265Hv to 290Hv and the standard deviation must be 20 or less in the hardness distribution measurement at 0.05mm pitch in the range of 0.5mm x 0.5mm at the 1/4 thickness position.
  • the structure of the steel plate according to the present embodiment is preferably a mixed structure of martensite structure and lower bainite structure, which is superior in strength-toughness balance, but due to localized ⁇ grain size and microsegregation variations, the hardenability may be partially reduced, and an upper martensite structure with inferior strength-toughness balance may be formed.
  • the distribution of hardness may become nonuniform, and the toughness of the base material may deteriorate. If the average value of the hardness is less than 265Hv or the standard deviation exceeds 20, the upper bainite structure may be included, and the toughness of the base material cannot be ensured. On the other hand, if the average value exceeds 290Hv, the strength may become too high, and the toughness may decrease.
  • the above-mentioned hardness distribution measurement is performed by taking a micro sample with a surface (L-section) parallel to the rolling direction and thickness direction of the steel plate as the observation surface, and using a micro Vickers hardness tester.
  • the measurement area is a 0.5 mm x 0.5 mm range centered on any t/4 position within the micro observation surface, with a measurement pitch of 0.05 mm and a measurement load of 25 gf, and measurements are taken at 11 vertical points x 11 horizontal points, for a total of 121 points.
  • the average and standard deviation are calculated from the obtained measurement values.
  • the steel plate according to the present embodiment is intended for steel plates that require SR, and therefore the thickness is set to 10 mm or more.
  • the thickness is preferably 25 mm or more.
  • a steel plate with a thickness of more than 60 mm is not preferred because it makes little contribution to reducing the weight of the transport tank to which it is applied. Therefore, the thickness of the steel plate according to the present embodiment is set to 60 mm or less.
  • steel plate according to this embodiment may have the configuration described below.
  • the steel plate according to this embodiment preferably has a structure at a 1/4 thickness position of the cross section in the plate thickness direction that is a mixed structure of martensite and lower bainite.
  • the martensite and lower bainite structures may occupy 85 area % or more in total.
  • the average grain size at the 1/4 thickness position may be 15.0 ⁇ m or less.
  • the average grain size may be 14.5 ⁇ m or less, or 14.0 ⁇ m or less, as necessary. Since it is preferable that the average grain size at the 1/4 thickness position of the steel plate is small, there is no need to specify a lower limit. Usually, the average grain size is about 10.0 ⁇ m at the smallest.
  • the average crystal grain size is defined as follows. A sample in which the L-section of the steel sheet can be observed is prepared, and the 1/4 thickness position of the L-section is used as the observation area. A crystal orientation analysis using an electron beam backscatter diffraction pattern analysis method (EBSD method) using a scanning electron microscope is performed in a range of 200 ⁇ m in the sheet thickness direction and 250 ⁇ m in the rolling direction at a pitch of 0.5 ⁇ m.
  • EBSD method electron beam backscatter diffraction pattern analysis method
  • the region surrounded by grain boundaries with a crystal orientation difference of 15° or more is defined as a crystal grain
  • the circle-equivalent grain size of the crystal grain is defined as the crystal grain size
  • the value calculated by the area-weighted average weighted by the area of each crystal grain is defined as the average crystal grain size.
  • the steel plate according to this embodiment is subjected to stress relief annealing of the welded portion after assembly into a transport tank, during which not only the welded portion but also the base material is heated.
  • the toughness of the base material tends to decrease.
  • the steel plate according to this embodiment preferably has a Charpy absorbed energy of 27 J or more at -40°C after stress relief annealing. In this case, safety can be further improved.
  • the Charpy absorbed energy at -40°C after stress relief annealing is measured at the location where stress relief annealing was performed when the steel plate is subjected to stress relief annealing at a holding temperature of 600°C, a holding time of 2 hours, and a heating rate and cooling rate of 55°C/hr or less in a temperature range of 425°C or higher.
  • the steel plate according to this embodiment preferably has a yield strength of 670 to 870 N/mm 2 and a tensile strength of 780 to 940 N/mm 2 after stress relief annealing. This ensures sufficient strength in a transport tank for liquefied CO 2 that has been subjected to stress relief annealing.
  • the steel sheet according to this embodiment has a ⁇ value of 0.10 mm or more in a CTOD test at -35°C, even after stress relief annealing. In this case, safety is further improved.
  • the steel plate according to this embodiment has the above-mentioned configuration, and therefore has excellent toughness in the weld heat affected zone (as welded and after stress relief annealing).
  • the toughness of the weld heat affected zone is not limited, but as a target value, in the as-welded case, the Charpy absorbed energy at -65°C is preferably 70 J or more, and in the case after stress relief annealing, the Charpy absorbed energy at -65°C is preferably 70 J or more.
  • the weld heat affected zone has a ⁇ value of 0.10 mm or more in a CTOD test at ⁇ 35° C., whether as welded or after stress relief annealing.
  • a commonly used method for producing steel products may be used. That is, for example, steel produced by a converter process or an electric furnace process and refined in a secondary refining facility is made into a slab by continuous casting or ingot casting.
  • the slab thickness is sufficient as long as it can reduce segregation and improve the material properties by reducing porosity, and for this purpose, the slab thickness is preferably 150 mm or more. There is no particular upper limit for the slab thickness, but the slab thickness may be, for example, 600 mm or less or 400 mm or less.
  • the slab is then heated to about 950 to 1250°C in a slab heating furnace, and is then rolled to a predetermined thickness by hot rolling under the conditions described below to obtain a steel sheet.
  • This steel sheet is then quenched and tempered to obtain a steel sheet (final steel sheet) having the desired properties.
  • the steel plate according to this embodiment needs to have its P content reduced to 0.006% or less. There are cases where it is not possible to reduce the P content to 0.006% or less using normal dephosphorization methods, but in such cases measures can be taken such as extending the dephosphorization treatment time.
  • the cumulative reduction ratio When hot rolling, it is desirable to set the cumulative reduction ratio at 50% or more when the rolling temperature is in the range of 1150 to 900°C. There is no particular need to specify an upper limit for the cumulative reduction ratio in the above temperature range, but the cumulative reduction ratio may be 80% or less, or 70% or less.
  • the reheating and quenching process described below may be omitted by performing a direct quenching process in which the plate is immediately water-cooled after hot rolling.
  • the cooling start temperature is set to Ar3 point or more, and water cooling is performed to 300 ° C or less.
  • the average cooling rate during water cooling is preferably 5 ° C / sec or more in the range of 700 ° C to 300 ° C in the cooling temperature history of the front and back surfaces of the steel plate.
  • the average cooling rate may be, for example, 100 ° C / sec or less, 50 ° C / sec or less, or 20 ° C / sec or less.
  • reheating may be performed after direct quenching, and further quenching may be performed.
  • the Ar3 point is calculated using the following formula.
  • Ar3 910 - 310 x [C] - 8 x [Mn] - 20 x [Cu] - 15 x [Cr] - 55 x [Ni] - 80 x [Mo] + 0.35 x (t-8)
  • [C], [Mn], [Cu], [Cr], [Ni], and [Mo] are the contents of C, Mn, Cu, Cr, Ni, and Mo in the steel plate, respectively, in mass%
  • t is the thickness of the steel plate in mm.
  • quenching For plate thicknesses of 50 mm or more, it is preferable to perform quenching by cooling the steel plate once after rolling and then reheating it. For plate thicknesses of 50 mm or more, if reheating and quenching is performed, direct quenching after hot rolling may be omitted, or quenching may be performed directly.
  • the heating temperature during quenching is desirably 925°C or less, and may be 920°C or less, 915°C or less, or 910°C or less. This is because the metal structure of a thick steel plate may not be sufficiently refined after rolling. If the quenching temperature for a steel plate in which the metal structure is not sufficiently refined exceeds 925°C, the reverse transformation ⁇ structure formed by heating becomes coarse, and the average crystal grain size of the final structure after ⁇ / ⁇ transformation by subsequent cooling also becomes coarse.
  • the lower limit of the quenching temperature is not preferable if it is slightly above the Ac3 point (for example, within a temperature range of not less than the Ac3 point and not more than the Ac3 point + 20°C), because this may cause variations in reverse transformation ⁇ grain size and insufficient solid solution of carbides containing B, resulting in insufficient hardenability. Therefore, the quenching temperature is preferably 880°C or higher, and more preferably 890°C or higher. In the above description of the quenching treatment conditions, it is assumed that the steel plate has a thickness of 50 mm or more, but these quenching treatment conditions are also applied when reheating and quenching are performed on a steel plate having a thickness of less than 50 mm.
  • tempering is performed after quenching (after direct quenching or reheating quenching, or after reheating quenching if both are performed).
  • the heating temperature during tempering i.e., the tempering temperature
  • the tempering temperature is desirably 660°C or lower. If the tempering temperature exceeds 660°C, the tempering effect becomes excessive, making it difficult to ensure the yield stress and tensile strength, and toughness may decrease.
  • the tempering temperature is 500°C or higher, preferably 600°C or higher. If the tempering temperature is too low, tempering becomes insufficient, making it difficult to ensure the specified yield stress and tensile strength.
  • the steel plate When cooling is performed after reheating and quenching or tempering, it is preferable to cool the steel plate by water cooling (accelerated cooling) rather than air cooling in order to prevent a decrease in the toughness of the base material due to temper embrittlement. In this case, it is preferable to set the average cooling rate to 300°C to 0.1°C/sec or more or 0.5°C/sec or more.
  • the steel plate according to the present embodiment is suitable as a steel plate for a liquefied CO2 transport tank.
  • it can be used as a transport tank mounted on a ship.
  • liquefied CO2 is filled into a transport tank installed on the ship and transported, but in order to prevent CO2 from solidifying (becoming dry ice) in the transport tank, it is preferable to transport it while maintaining a pressure of about 2 MPa.
  • CO2 in order to maintain CO2 in a liquid state at a pressure of about 2 MPa, it is preferable to keep CO2 at about minus 35°C.
  • the steel plate according to the present embodiment can be suitably used for such applications.
  • the conditions in the embodiment are merely an example of conditions adopted to confirm the feasibility and effects of the present invention, and the present invention is not limited to this example of conditions.
  • Various conditions may be adopted in the present invention as long as they do not deviate from the gist of the present invention and achieve the object of the present invention.
  • the molten iron that had completed the blast furnace treatment was tapped into a molten iron ladle, and after preliminary treatment such as desulfurization was carried out, the molten iron was then inserted into a converter. Next, dephosphorization was carried out in the converter, and the P content was adjusted to 0.006% or less.
  • the dephosphorized molten steel was further subjected to composition adjustment, and then slabs having the chemical compositions shown in Tables 1A and 1B were cast. Thereafter, the slab was heated in a heating furnace to the heating temperature shown in the table, and then hot-rolled to a predetermined plate thickness to obtain a steel plate. Furthermore, the steel plate was quenched and tempered to obtain a steel plate (final steel plate) having the specified properties.
  • Table 2 shows the heating temperature before rolling, the cumulative reduction ratio of hot rolling at 1150 to 900°C, the plate thickness after rolling, the quenching temperature, and the tempering temperature. Cooling after reheating and quenching or after tempering was performed by water cooling, and the average cooling rate to 300°C was set to 0.1°C/sec or more. In addition, for some steel plates, direct quenching treatment was performed in which the steel plate was immediately water-cooled after hot rolling. The cooling start temperature, cooling end temperature, and average cooling rate in this case are shown in the table.
  • Tables 1A and 1B show the chemical composition, ⁇ value, ⁇ value, ⁇ value, fB value, and carbon equivalent Ceq of the steel plate.
  • the column before SR of the base material properties in Table 3A shows the average hardness (average Hv) of the base material at 121 measurement positions, the average grain size (EBSD grain size), the yield strength (MPa), the tensile strength (MPa), the yield ratio, the Charpy absorbed energy (J) at -65°C, and the ⁇ value (mm) of the CTOD test at -35°C.
  • the EBSD grain size was measured by preparing a sample in which the L-section of the steel sheet could be observed, observing the 1/4 thickness position of the L-section, and performing crystal orientation analysis using an electron beam backscatter diffraction pattern analysis method (EBSD method) using a scanning electron microscope in a range of 200 ⁇ m in the sheet thickness direction and 250 ⁇ m in the rolling direction at a pitch of 0.5 ⁇ m. From the results of the crystal orientation analysis, the region surrounded by grain boundaries with a crystal orientation difference of 15° or more was defined as a crystal grain, the circle-equivalent grain size of the crystal grain was defined as the crystal grain size, and the value calculated by the area-weighted average weighted by the area of each crystal grain was defined as the average crystal grain size.
  • EBSD method electron beam backscatter diffraction pattern analysis method
  • the tensile test was conducted in accordance with JIS Z 2241:2011, using JIS No. 4 round bar test pieces with a parallel section of ⁇ 14 mm taken from the 1/4 thickness position in the C direction.
  • the yield strength and tensile strength are each the average of two test pieces.
  • the yield strength was taken as 0.2% proof stress.
  • the yield ratio is the ratio of the yield strength YS to the tensile strength TS, and is expressed as a percentage, i.e., 100 x (YS/TS). The yield ratio is expressed in %.
  • a micro sample was taken with the L-section parallel to the rolling direction and thickness direction of the steel plate as the observation surface, the observation surface was wet polished, and then the mirror surface was buffed using 1.0 ⁇ m diamond particles, and measurements were taken using a micro Vickers hardness tester.
  • the measurement area was randomly selected within a 0.5 mm x 0.5 mm range centered on the 1/4t position within the micro observation surface, and measurements were taken at a total of 121 points (11 vertical x 11 horizontal) with a measurement pitch of 0.05 mm and a measurement load of 25 gf. The average value and standard deviation were calculated from the obtained measurements.
  • a semi-automatic welded joint with a weld line parallel to the rolling direction was produced and evaluated. Specifically, a K groove was produced, argon gas containing 20% CO2 was used as the shielding gas, the welding wire was YM-69F manufactured by Nippon Steel Welding Industry Co., Ltd., the heat input was set to 2.0 kJ/mm, and the preheating was set to 100°C, and multi-layer gas shielded arc welding (GMAW) was performed to produce a welded joint.
  • GMAW multi-layer gas shielded arc welding
  • stress relief annealing was performed on the base material and welded parts. Stress relief annealing was performed at a holding temperature of 600°C for 2 hours, with heating and cooling rates of 55°C/hr or less in the temperature range of 425°C or higher.
  • the yield strength and tensile strength of the base material after SR were determined in the same manner as before SR.
  • a Charpy test was performed at -40°C on a test piece taken in the C direction at the t/4 position of the base material after SR to determine the Charpy absorbed energy.
  • a CTOD test was also performed at -35°C to determine the ⁇ value.
  • the Charpy absorbed energy of the base material and welded joints was measured by taking three V-notch test pieces from each of the base material and welded joints and conducting a Charpy impact test at a specified temperature.
  • the V-notch test pieces were full-size test pieces as specified in JIS Z 2242:2005 taken in the C direction from each plate thickness position.
  • the Charpy impact test was also conducted in accordance with JIS Z 2242:2005.
  • the ⁇ value ( ⁇ c) in the CTOD test was measured in accordance with BS7448 (British Standard) Part 1 (1991) and BS7448 (British Standard) Part 2 (1997).
  • evaluation was performed in the C direction (sheet width direction) in which the longitudinal direction of the test piece was perpendicular to the rolling direction.
  • gas shielded arc welding was performed at a heat input of 35 kJ/mm on the butted steel plate of the K-groove, and the tip of the fatigue notch of the CTOD test piece of the weld was processed to be the center of the plate thickness of the I-side fusion line (FL) of the weld, and the CTOD test was performed at a specified temperature.
  • the welded joint was evaluated only in the L direction (rolling direction).
  • the test piece was taken so that the tip of the fatigue crack corresponds to the weld bond.
  • Three tests were performed at each test temperature, and the minimum value of the measured data obtained was taken as the ⁇ value of the CTOD test.
  • the unit of CDOD shown in Tables 3A and 3B is mm.
  • a steel plate having excellent strength and low-temperature toughness, and further having excellent strength and low-temperature toughness after stress relief annealing can be provided.
  • This steel plate is suitable for use in liquefied CO2 transport tanks and has high industrial applicability.

Abstract

This steel plate has a given chemical composition and has an α value of 1.00-1.50 mass%, a β value of 10.0-15.0, a γ value of 0.70-1.50 mass%, a Ceq value of 0.550-0.620 mass%, a yield strength of 670-870 N/mm2, a tensile strength of 780-940 N/mm2, and a Charpy absorption energy at -65°C of 100 J or greater. When the steel plate is examined for hardness distribution at a pitch of 0.05 mm with respect to 121 portions of 1 mm × 1 mm located at 1/4 the plate thickness, the average hardness is 265-290 Hv and the standard deviation is 20 or less. The steel plate has a thickness of 10-60 mm.

Description

鋼板Steel Plate
 本発明は、鋼板に関する。
 本願は、2022年09月30日に、日本に出願された特願2022-157410号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a steel sheet.
This application claims priority based on Japanese Patent Application No. 2022-157410, filed on September 30, 2022, the contents of which are incorporated herein by reference.
 近年、気候変動問題の対策として、温室効果ガスの削減が強く求められている中で、カーボンニュートラルを実現する技術として、二酸化炭素(以下、COという)を回収・貯留する技術であるCCSが注目されている(CCS:Carbon dioxide Capture and Storage)。CCSでは、製油所、発電所、化学プラント等のCO排出源から排出されたCOを分離・回収し、地下深くの貯留層に圧入・貯留する。COを分離・回収するための回収施設と、COを地下の貯留層に圧入・貯留するための貯留施設が距離的に離れている場合、分離・回収したCOをパイプラインや船舶等によって、これらの施設の間を輸送する必要がある。 In recent years, as a measure against the climate change problem, there is a strong demand for reducing greenhouse gases, and CCS (Carbon Dioxide Capture and Storage), a technology for capturing and storing carbon dioxide (hereinafter referred to as CO2 ), has been attracting attention as a technology for achieving carbon neutrality (CCS: Carbon Dioxide Capture and Storage). In CCS, CO2 emitted from CO2 emission sources such as refineries, power plants, and chemical plants is separated and captured, and injected and stored in a deep underground reservoir. When a capture facility for separating and capturing CO2 and a storage facility for injecting and storing CO2 in an underground reservoir are distant from each other, it is necessary to transport the separated and captured CO2 between these facilities by pipelines, ships, etc.
 船舶によってCOを輸送する際は、船舶に備え付けられた輸送タンクに、液化されたCOを充填して輸送する。これにより、COの輸送効率の向上が図られる。ただし、輸送タンク内でのCOの固体化(ドライアイス化)を防止するために、2MPa程度の圧力に保持した状態で輸送する必要がある。また、2MPa程度の圧力においてCOを液体の状態を維持するには、COをマイナス35℃程度に保つ必要がある。更には、船舶の軽量化を図るために、使用される鋼板の強度を高くすることで、輸送タンクの肉厚を、できるだけ薄くしたいという要望もある。 When transporting CO2 by ship, liquefied CO2 is filled in a transport tank installed on the ship and transported. This improves the efficiency of transporting CO2 . However, in order to prevent CO2 from solidifying (becoming dry ice) in the transport tank, it is necessary to transport it while maintaining a pressure of about 2 MPa. In addition, in order to maintain CO2 in a liquid state at a pressure of about 2 MPa, it is necessary to keep CO2 at about -35°C. Furthermore, in order to reduce the weight of the ship, there is a demand to make the thickness of the transport tank as thin as possible by increasing the strength of the steel plates used.
 従って、輸送タンクの素材となる鋼板には、高強度かつ低温靱性に優れることが求められる。例えば、強度として、780N/mm以上の引張強さが求められる。また、低温靱性として、板厚にもよるが、輸送タンクとして用いられる20~60mmの板厚の場合、最も厳しい条件として、マイナス65℃(-65℃)でのシャルピー試験で評価される低温靭性に優れることが求められる。ここでシャルピー試験の試験温度がマイナス65℃であるのは、シャルピー試験が小型試験であり、一般に使用温度に対して板厚に応じた一定程度低い温度で評価されるのが通常であるからである。 Therefore, the steel plate used as the material for the transport tank is required to have high strength and excellent low-temperature toughness. For example, the strength is required to have a tensile strength of 780 N/ mm2 or more. In addition, the low-temperature toughness is required to be excellent in the most severe condition, evaluated by a Charpy test at minus 65°C (-65°C), for a plate thickness of 20 to 60 mm used as a transport tank, although this depends on the plate thickness. The test temperature of the Charpy test is minus 65°C because the Charpy test is a small-scale test and is generally evaluated at a certain temperature lower than the usage temperature depending on the plate thickness.
 更に、輸送タンクのような大型の溶接構造物では、破壊の発生の可能性をより少なくするために、応力除去焼鈍を溶接部に実施する場合がある。応力除去焼鈍とは、溶接により生じた残留応力を軽減することを目的として、溶接後の構造物の溶接部をAc1変態点以下の温度に加熱し、次いで徐冷する熱処理法である。しかしながら、引張強さが780N/mm以上の高張力鋼に応力除去焼鈍を適用すると、合金炭化物が結晶粒界に選択的に析出し、この合金炭化物が粒界脆化を引き起こすことにより、応力除去焼鈍の実施箇所の靱性が極めて低下する。この現象は、一般にはSR(Stress Relieving)脆化と呼ばれている。特に、Bを含有し、且つ焼入れ焼戻しにより製造される高張力鋼においては、SR脆化が生じる傾向が強い。このような高張力鋼では、母材の脆化のみならず、この高張力鋼を用いて溶接継手を作成した場合に得られる溶接熱影響部の脆化も著しい。 Furthermore, in large welded structures such as transportation tanks, stress relief annealing may be performed on the welds to reduce the possibility of fracture. Stress relief annealing is a heat treatment method in which the welds of a welded structure are heated to a temperature below the Ac1 transformation point and then slowly cooled in order to reduce the residual stress caused by welding. However, when stress relief annealing is applied to high-tensile steel with a tensile strength of 780 N/mm2 or more , alloy carbides are selectively precipitated at the grain boundaries, and these alloy carbides cause grain boundary embrittlement, which significantly reduces the toughness of the area where stress relief annealing is performed. This phenomenon is generally called SR (Stress Relieving) embrittlement. In particular, SR embrittlement is highly likely to occur in high-tensile steel that contains B and is manufactured by quenching and tempering. In such high-tensile steel, not only the embrittlement of the base material but also the embrittlement of the weld heat-affected zone obtained when a welded joint is created using this high-tensile steel is significant.
 従って、このような高張力鋼を用いて製造された輸送タンクにおいて、高い安全性を確保するためには、応力除去焼鈍が実施されても母材及び溶接部(特に溶接熱影響部)の低温靭性に優れることが好ましい。 Therefore, in order to ensure high safety in transport tanks manufactured using such high-tensile steel, it is preferable that the base material and welds (especially the weld heat-affected zones) have excellent low-temperature toughness even after stress relief annealing is performed.
 上記のような観点から、従来、いくつかの技術提案がなされてきた。例えば、特許文献1では、化学成分を調整し、かつ、平均結晶粒径を15μm以下にすることを特徴とする、高強度鋼板が示されている。しかし、特許文献1に記載された鋼板は、マイナス65℃での低温靭性は評価されておらず、低温靭性について更なる向上の余地がある。 Several technical proposals have been made from the above perspective. For example, Patent Document 1 shows a high-strength steel plate characterized by adjusting the chemical composition and setting the average crystal grain size to 15 μm or less. However, the low-temperature toughness at -65°C of the steel plate described in Patent Document 1 has not been evaluated, and there is room for further improvement in low-temperature toughness.
日本国特許第5590271号公報Japanese Patent No. 5590271
 本発明は上記事情に鑑みてなされたものであり、母材の強度、及び、母材及び溶接熱影響部の低温靭性に優れ、更には応力除去焼鈍後の母材の強度、及び、母材及び溶接熱影響部の低温靭性にも優れた、液化CO輸送タンク用に好適な鋼板を提供することを課題とする。 The present invention has been made in consideration of the above circumstances, and an object of the present invention is to provide a steel plate suitable for a liquefied CO2 transport tank, which is excellent in the strength of the base material and the low-temperature toughness of the base material and the welded heat-affected zone, and further excellent in the strength of the base material after stress relief annealing and the low-temperature toughness of the base material and the welded heat-affected zone.
 上記課題を解決するため、本発明は以下の構成を採用する。
[1]本発明の一態様に係る鋼板は、
 化学組成が、質量%で、
C :0.07~0.11%、
Si:0.10~0.15%、
Mn:0.70~1.20%、
Ni:1.00~2.50%、
Cr:0.20~0.80%、
Mo:0.20~0.80%、
V :0.005~0.070%、
Al:0.010~0.100%、
B :0.0005~0.0030%、
N :0.0015~0.0050%、
P :0.006%以下、
S :0.0030%以下、
Cu:0~1.00%、
Nb:0~0.030%、
Ti:0~0.010%、
Ca:0~0.0030%、
Mg:0~0.0030%、
REM:0~0.0030%、
O :0.0040%以下、
残部:Feおよび不純物であり、
 下記(1)式によって定義されるα値が1.00~1.50質量%、
 下記(2)式によって定義されるβ値が10.0~15.0、
 下記(3)式によって定義されるγ値が0.70~1.50質量%、
 下記(4)式によって定義されるCeq値が0.550~0.620質量%、
 降伏強度が670~870N/mm
 引張強さが780~940N/mm
 -65℃におけるシャルピー吸収エネルギーが100J以上、
 1/4厚位置での1mm×1mm、0.05mmピッチの硬度分布測定において、121点の測定位置における硬度の平均値が265Hv~290Hv、標準偏差が20以下、
 板厚が10~60mmである。
 α=[C]+6×[Si]+100×[P] …(1)
 β=0.65×[C]1/2×(1+0.64×[Si])×(1+4.10×[Mn])×(1+0.27×[Cu])×(1+0.52×[Ni])×(1+2.33×[Cr])×(1+3.14×[Mo]) …(2)
 γ=[Mn]+20×[Nb]+36×[Ti] …(3)
 Ceq=[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/5 …(4)
 ただし、(1)式~(4)式における[C]、[Si]、[P]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[Nb]、[Ti]および[V]、は、それぞれC、Si、P、Mn、Cu、Ni、Cr、Mo、Nb、TiおよびVの含有量(質量%)であって、不純物として混入する元素量も含め、含有しない元素は0を代入する。
[2][1]に記載の鋼板では、下記(A)式~(E)式によって求められる[fB]が0.0003質量%以上であってもよい。
[fB]=[B]-0.77×[fN] …(A)
[fN]=[N]-0.29×[fTi]-0.52×[fAl] …(B)
[fTi]=[Ti]-2×[fO] …(C)
[fAl]=[Al]-1.125×[fO] …(D)
[fO]=[O]-0.4×[Ca]-0.66×[Mg]-0.11×[REM] …(E)
 ただし、(A)式~(E)式における[B]、[N]、[Ti]、[Al]、[O]、[Ca]、[Mg]、[REM]はそれぞれ、B、N、Ti、Al、O、Ca、Mg、REMの含有量(質量%)であって、不純物として混入する元素量も含め、含有しない元素は0を代入し、また、[fN]、[fTi]、[fAl]、[fO]の計算値が0%未満の場合は0を代入する。
[3][1]または[2]に記載の鋼板では、電子ビーム後方散乱回析パターン解析法を用いた結晶方位解析を行うことにより判別される、結晶方位差が15°以上の粒界で囲まれる領域を結晶粒と定義し、前記結晶粒の円相当粒径を結晶粒径と定義し、前記結晶粒の円相当粒径を結晶粒径と定義し、結晶粒毎の面積で重みづけをした面積加重平均で算出した値を、平均結晶粒径と定義したとき、1/4厚位置における前記平均結晶粒径が15.0μm以下であってもよい。
[4][1]~[3]のいずれか一項に記載の鋼板では、保持温度が600℃であり、保持時間が2時間であり、且つ、昇温速度および降温速度が、425℃以上の温度域において55℃/hr以下である応力除去焼鈍を前記鋼板に対し行った場合、前記応力除去焼鈍が行われた箇所の、降伏強度が670~870N/mm、および引張強さが780~940N/mmであり、-40℃におけるシャルピー吸収エネルギーが27J以上であってもよい。
In order to solve the above problems, the present invention employs the following configuration.
[1] A steel sheet according to one embodiment of the present invention is
The chemical composition, in mass%, is
C: 0.07 to 0.11%,
Si: 0.10 to 0.15%,
Mn: 0.70 to 1.20%,
Ni: 1.00 to 2.50%,
Cr: 0.20 to 0.80%,
Mo: 0.20 to 0.80%,
V: 0.005 to 0.070%,
Al: 0.010 to 0.100%,
B: 0.0005 to 0.0030%,
N: 0.0015 to 0.0050%,
P: 0.006% or less,
S: 0.0030% or less,
Cu: 0 to 1.00%,
Nb: 0 to 0.030%,
Ti: 0 to 0.010%,
Ca: 0 to 0.0030%,
Mg: 0 to 0.0030%,
REM: 0 to 0.0030%,
O: 0.0040% or less,
The balance is Fe and impurities.
an α value defined by the following formula (1) of 1.00 to 1.50 mass%,
A β value defined by the following formula (2) is 10.0 to 15.0,
A γ value defined by the following formula (3) is 0.70 to 1.50 mass%,
The Ceq value defined by the following formula (4) is 0.550 to 0.620 mass%,
Yield strength is 670 to 870 N/mm 2 ,
Tensile strength of 780 to 940 N/mm 2 ,
Charpy absorbed energy at -65°C is 100 J or more,
In a hardness distribution measurement at 1/4 thickness position, 1 mm x 1 mm, 0.05 mm pitch, the average hardness at 121 measurement points is 265 Hv to 290 Hv, with a standard deviation of 20 or less.
The plate thickness is 10 to 60 mm.
α = [C] + 6 × [Si] + 100 × [P] ... (1)
β = 0.65 × [C] 1/2 × (1 + 0.64 × [Si]) × (1 + 4.10 × [Mn]) × (1 + 0.27 × [Cu]) × (1 + 0.52 × [Ni]) × (1 + 2.33 × [Cr]) × (1 + 3.14 × [Mo]) ... (2)
γ = [Mn] + 20 × [Nb] + 36 × [Ti] ... (3)
Ceq = [C] + [Mn] / 6 + ([Cu] + [Ni]) / 15 + ([Cr] + [Mo] + [V]) / 5 ... (4)
In the formulas (1) to (4), [C], [Si], [P], [Mn], [Cu], [Ni], [Cr], [Mo], [Nb], [Ti], and [V] represent the contents (mass %) of C, Si, P, Mn, Cu, Ni, Cr, Mo, Nb, Ti, and V, respectively, and elements that are not contained, including the amount of elements mixed in as impurities, are substituted with 0.
[2] In the steel sheet according to [1], [fB] calculated by the following formulas (A) to (E) may be 0.0003 mass% or more.
[fB] = [B] - 0.77 x [fN] ... (A)
[fN] = [N] - 0.29 x [fTi] - 0.52 x [fAl] ... (B)
[fTi] = [Ti] - 2 × [fO] ... (C)
[fAl] = [Al] - 1.125 × [fO] ... (D)
[fO] = [O] - 0.4 x [Ca] - 0.66 x [Mg] - 0.11 x [REM] ... (E)
In the formulas (A) to (E), [B], [N], [Ti], [Al], [O], [Ca], [Mg], and [REM] represent the contents (mass%) of B, N, Ti, Al, O, Ca, Mg, and REM, respectively. Elements that are not contained, including the amount of elements mixed in as impurities, are substituted with 0, and when the calculated values of [fN], [fTi], [fAl], and [fO] are less than 0%, 0 is substituted.
[3] In the steel sheet according to [1] or [2], when a region surrounded by a grain boundary having a crystal orientation difference of 15° or more determined by performing a crystal orientation analysis using an electron beam backscatter diffraction pattern analysis is defined as a crystal grain, the circle equivalent grain size of the crystal grain is defined as the crystal grain size, and a value calculated as an area-weighted average weighted by the area of each crystal grain is defined as an average crystal grain size, the average crystal grain size at a 1/4 thickness position may be 15.0 μm or less.
[4] In the steel sheet according to any one of [1] to [3], when the steel sheet is subjected to stress relief annealing at a holding temperature of 600°C for 2 hours and a heating rate and a heating rate of 55°C/hr or less in a temperature range of 425°C or more, the steel sheet may have a yield strength of 670 to 870 N/ mm2 , a tensile strength of 780 to 940 N/ mm2 , and a Charpy absorbed energy at -40°C of 27 J or more at a location where the stress relief annealing has been performed.
 本発明の上記態様によれば、母材の強度、及び、母材及び溶接熱影響部の低温靭性に優れ、更には応力除去焼鈍後の、母材の強度、及び、母材及び溶接熱影響部の低温靭性にも優れた鋼板を提供できる。この鋼板は、液化CO輸送タンク用に好適である。 According to the above-mentioned aspect of the present invention, it is possible to provide a steel plate having excellent strength of the base material and low-temperature toughness of the base material and the welded heat affected zone, and further having excellent strength of the base material and low-temperature toughness of the base material and the welded heat affected zone after stress relief annealing. This steel plate is suitable for use in liquefied CO2 transport tanks.
 以下、本発明の一実施形態に係る鋼板(本実施形態に係る鋼板)ついて詳細に説明する。
 本実施形態における「応力除去焼鈍」とは、特に断りが無い限り、JIS Z 3700:2022「溶接後熱処理方法」に規定された内容に準拠する応力除去焼鈍を意味する。本実施形態における「溶接」とは、特に断りが無い限り、溶接入熱が1.1~4.5kJ/mmである溶接を意味する。これら条件は、本発明が属する技術分野における一般的な条件である。しかし、上述の条件とは異なる条件下で応力除去焼鈍または溶接を行ったとしても、上述の条件下で行われた応力除去焼鈍または溶接と同等の効果が得られる。従って、本実施形態に係る鋼板に、上述の条件とは異なる条件下で応力除去焼鈍または溶接を行ってもよい。
Hereinafter, a steel sheet according to one embodiment of the present invention (steel sheet according to this embodiment) will be described in detail.
In this embodiment, "stress relief annealing" means stress relief annealing conforming to the contents specified in JIS Z 3700:2022 "Post-weld heat treatment method" unless otherwise specified. In this embodiment, "welding" means welding with a welding heat input of 1.1 to 4.5 kJ/mm unless otherwise specified. These conditions are general conditions in the technical field to which the present invention belongs. However, even if stress relief annealing or welding is performed under conditions different from the above conditions, the same effect as stress relief annealing or welding performed under the above conditions can be obtained. Therefore, the steel plate according to this embodiment may be subjected to stress relief annealing or welding under conditions different from the above conditions.
 まず、本実施形態に係る鋼板の化学組成を構成する各元素の含有量とその限定理由を述べる。以下、特に断りが無い限り、元素の含有量に関する「%」は質量%を意味する。 First, the content of each element constituting the chemical composition of the steel plate according to this embodiment and the reasons for limiting it will be described. In the following, unless otherwise specified, "%" regarding the content of an element means mass %.
(C:0.07~0.11%)
 Cは、母材の強度を向上させる元素である。本実施形態に係る鋼板が目的とする強度を達成するためには、C含有量を0.07%以上とする。C含有量は、好ましくは0.08%以上である。
 一方、Cを多量に含有させた場合、溶接熱影響部の硬さが上昇すると同時にその靭性が低下するので、C含有量を0.11%以下とする。C含有量は、好ましくは0.10%以下、より好ましくは0.10%未満とする。
(C: 0.07 to 0.11%)
C is an element that improves the strength of the base material. In order for the steel plate according to this embodiment to achieve the desired strength, the C content is set to 0.07% or more. The C content is preferably 0.08% or more.
On the other hand, when a large amount of C is contained, the hardness of the welded heat affected zone increases and at the same time its toughness decreases, so the C content is set to 0.11% or less, preferably 0.10% or less, and more preferably less than 0.10%.
(Si:0.10~0.15%)
 Siは、一般的に脱酸元素として鋼に含有される場合が多い元素である。脱酸を目的としてSiを含有させるために、Si含有量を0.10%以上とする。
 一方でSiは応力除去焼鈍後の鋼の靭性を低下させる元素である。また、応力除去焼鈍(SR)後の溶接熱影響部の靭性の低下を抑制するためにも、Siの含有量は低い方が好ましい。そのため、本実施形態に係る鋼板においては、Si含有量を0.15%以下とする。Si含有量は、好ましくは0.14%以下、より好ましくは0.13%以下、さらに好ましくは0.12%以下とする。
(Si: 0.10 to 0.15%)
Silicon is an element that is generally contained in steel in many cases as a deoxidizing element. In order to contain silicon for the purpose of deoxidization, the silicon content is set to 0.10% or more.
On the other hand, Si is an element that reduces the toughness of steel after stress relief annealing. In addition, in order to suppress the decrease in the toughness of the welded heat affected zone after stress relief annealing (SR), it is preferable that the Si content is low. Therefore, in the steel plate according to this embodiment, the Si content is set to 0.15% or less. The Si content is preferably set to 0.14% or less, more preferably 0.13% or less, and even more preferably 0.12% or less.
(Mn:0.70~1.20%)
 Mnは、脱酸のために有効な元素であるとともに、鋼の強度を改善する元素である。従って、Mn含有量を0.70%以上とする。Mn含有量は、好ましくは0.90%以上とする。
 一方で、Mnを過剰に含有させると、焼戻し脆化によって、応力除去焼鈍後の鋼の靭性が損なわれる虞がある。従って、Mn含有量を1.20%以下とする。Mn含有量は、好ましくは1.10%以下とする。
(Mn: 0.70 to 1.20%)
Mn is an element effective for deoxidization and also improves the strength of steel, therefore the Mn content is set to 0.70% or more, preferably 0.90% or more.
On the other hand, if Mn is contained in excess, there is a risk that the toughness of the steel after stress relief annealing may be impaired due to temper embrittlement. Therefore, the Mn content is set to 1.20% or less, and preferably 1.10% or less.
(Ni:1.00~2.50%)
 Niは、鋼の焼入れ性および靭性の改善のために有効な元素である。そのため、Ni含有量を1.00%以上とする。Ni含有量は、好ましくは1.20%以上とする。
 一方、Niを過剰に含有させると、応力除去焼鈍後の鋼の靭性が低下する虞がある。また、応力除去焼鈍後の溶接熱影響部の靭性が悪化する虞がある。従って、Ni含有量を2.50%以下とする。Ni含有量は、好ましくは2.00%以下とする。
(Ni: 1.00 to 2.50%)
Ni is an element effective for improving the hardenability and toughness of steel, and therefore the Ni content is set to 1.00% or more, and preferably 1.20% or more.
On the other hand, if Ni is contained excessively, the toughness of the steel after stress relief annealing may decrease. Also, the toughness of the welded heat affected zone after stress relief annealing may deteriorate. Therefore, the Ni content is set to 2.50% or less. The Ni content is preferably set to 2.00% or less.
(Cr:0.20~0.80%)
 Crは、鋼の焼入れ性の改善、および、焼戻し時の析出強化による鋼の強度の改善のために有効な元素である。従って、Cr含有量を0.20%以上とする。Cr含有量は、好ましくは0.40%以上とする。
 一方、Crを過剰に含有させると、応力除去焼鈍後における母材および溶接熱影響部の靭性が低下する虞がある。従って、Cr含有量を0.80%以下とする。Cr含有量は、好ましくは0.70%以下とする。
(Cr: 0.20 to 0.80%)
Cr is an element effective for improving the hardenability of steel and improving the strength of steel by precipitation strengthening during tempering. Therefore, the Cr content is set to 0.20% or more, and preferably 0.40% or more.
On the other hand, if Cr is excessively contained, there is a risk that the toughness of the base metal and the welded heat affected zone after stress relief annealing may decrease. Therefore, the Cr content is set to 0.80% or less, and preferably 0.70% or less.
(Mo:0.20~0.80%)
 Moは、Crと同様に、焼入れ性の改善、および焼戻し時の析出強化による鋼の強度の改善のために有効な元素である。従って、Mo含有量を0.20%以上とする。Mo含有量は、好ましくは0.30%以上、より好ましくは0.35%以上、更に好ましくは0.40%以上とする。
 一方、Moを過剰に含有させると、応力除去焼鈍後において、Mo炭化物が粒界に析出して母材および溶接熱影響部の靭性が低下する虞があり、特に溶接熱影響部に与える影響が大きい。従って、Mo含有量を0.80%以下とする。Mo含有量は、好ましくは0.60%以下とする。
(Mo: 0.20 to 0.80%)
Like Cr, Mo is an element effective for improving hardenability and strength of steel by precipitation strengthening during tempering. Therefore, the Mo content is set to 0.20% or more. The Mo content is preferably set to 0.30% or more, more preferably 0.35% or more, and further preferably 0.40% or more.
On the other hand, if Mo is contained in excess, Mo carbides may precipitate at grain boundaries after stress relief annealing, reducing the toughness of the base material and the welded heat affected zone, and the impact on the welded heat affected zone is particularly large. Therefore, the Mo content is set to 0.80% or less, and preferably 0.60% or less.
(V:0.005~0.070%)
 Vは、CrおよびMoと同様に、焼入れ性の改善、および焼戻し時の析出強化による鋼の強度の改善のために有効な元素である。従って、V含有量を0.005%以上とする。V含有量は、好ましくは0.010%以上とする。
 一方、Vを過剰に含有させると、応力除去焼鈍後において、母材靭性および溶接熱影響部の靭性が低下する虞がある。従って、V含有量を0.070%以下とする。V含有量は、好ましくは0.050%以下とする。
(V: 0.005 to 0.070%)
V, like Cr and Mo, is an element effective for improving hardenability and improving the strength of steel by precipitation strengthening during tempering. Therefore, the V content is set to 0.005% or more, and preferably 0.010% or more.
On the other hand, if an excessive amount of V is contained, there is a risk that the toughness of the base material and the toughness of the welded heat affected zone may decrease after stress relief annealing. Therefore, the V content is set to 0.070% or less, and preferably 0.050% or less.
(Al:0.010~0.100%)
 Alは、脱酸に有用な元素であり、且つ、窒化物を形成することにより焼入れの際に結晶粒径を細粒化させる元素である。また、窒化物を生成することで、[fB]の確保にも不可欠な元素である。したがって、本実施形態に係る鋼板においては、Al含有量を0.010%以上とする。N含有量が多いときなどは、Nを固定してfBを確保するため、Al含有量は、好ましくは0.030%以上、より好ましくは0.040%以上である。
 一方、Alを過剰に含有させると、Alが粗大な窒化物を形成し、母材および溶接熱影響部の靭性を低下させる虞がある。従って、Al含有量を0.100%以下とする。Al含有量は、好ましくは0.080%以下とする。
(Al: 0.010 to 0.100%)
Al is an element useful for deoxidization, and also an element that refines the grain size during quenching by forming nitrides. In addition, it is an essential element for ensuring [fB] by forming nitrides. Therefore, in the steel sheet according to the present embodiment, the Al content is set to 0.010% or more. When the N content is high, the Al content is preferably 0.030% or more, more preferably 0.040% or more, in order to fix N and ensure fB.
On the other hand, if Al is contained in excess, Al may form coarse nitrides, which may reduce the toughness of the base material and the welded heat affected zone. Therefore, the Al content is set to 0.100% or less, and preferably 0.080% or less.
(B:0.0005~0.0030%)
 Bは、本実施形態に係る鋼板においては、微量に含有させることにより、鋼の焼入れ性を改善する元素である。従って、B含有量を0.0005%以上とする。B含有量は0.0006%以上、0.0008%以上又は0.0010%以上としてもよい。
 一方、Bを過剰に含有させると、Bが粗大な窒化物及び/又は炭化物を形成して母材の靭性を低下させる場合がある。従って、B含有量を0.0030%以下とする。B含有量は0.0020%以下又は0.0010%以下としてもよい。
(B: 0.0005 to 0.0030%)
In the steel sheet according to the present embodiment, B is an element that improves the hardenability of the steel by being contained in a small amount. Therefore, the B content is set to 0.0005% or more. The B content may be set to 0.0006% or more, 0.0008% or more, or 0.0010% or more.
On the other hand, if B is contained in excess, B may form coarse nitrides and/or carbides, which may reduce the toughness of the base metal. Therefore, the B content is set to 0.0030% or less. The B content may also be set to 0.0020% or less or 0.0010% or less.
(N:0.0015~0.0050%)
 Nは、窒化物を形成して母材の結晶粒径を細粒化させ、靱性を向上させる元素である。従って、N含有量を0.0015%以上とする。N含有量は0.0030%以上又は0.0035%以上としてもよい。
 一方、Nを過剰に含有させると、窒化物が粗大化し、溶接まま(As weld)での溶接熱影響部の靭性が低下する。従って、N含有量を0.0050%以下とする。
(N: 0.0015 to 0.0050%)
N is an element that forms nitrides to refine the crystal grain size of the base material and improve toughness. Therefore, the N content is set to 0.0015% or more. The N content may be set to 0.0030% or more or 0.0035% or more.
On the other hand, if N is contained excessively, the nitrides become coarse and the toughness of the weld heat affected zone in the as-welded state decreases. Therefore, the N content is set to 0.0050% or less.
(P:0.006%以下)
(S:0.0030%以下)
 PおよびSは、鋼中に含まれる不純物元素であり、その含有量は少ないほど好ましい。このため、P含有量及びS含有量の下限は0%である。本実施形態に係る鋼板においては、母材靱性、応力除去焼鈍後における母材や溶接部の靭性の向上のために、P含有量を、0.006%以下とし、S含有量を0.0030%以下とする。P含有量は、好ましくは0.005%以下とする。S含有量を0.0020%以下としてもよい。
(P: 0.006% or less)
(S: 0.0030% or less)
P and S are impurity elements contained in steel, and the lower the content, the better. Therefore, the lower limit of the P content and the S content is 0%. In the steel plate according to the present embodiment, in order to improve the base material toughness and the toughness of the base material and the welded part after stress relief annealing, the P content is set to 0.006% or less, and the S content is set to 0.0030% or less. The P content is preferably set to 0.005% or less. The S content may be set to 0.0020% or less.
(Cu:0~1.00%)
 Cuは、本実施形態に係る鋼板においては必須元素ではないので、Cu含有量の下限は0%である。しかしながら、Cuは鋼の強度を改善する効果を有するので、必要に応じて含有させることができる。含有させる場合、その効果を利用するためには、Cu含有量を0.10%以上であることが好ましく、0.20%以上であることがより好ましい。必要に応じて、Cu含有量を0.25%以上又は0.30%以上としてもよい。
 一方、Cuを過剰に含有させると、鋼板表面での割れ発生、及びCuの析出によって、母材の靭性が低下する虞がある。従って、Cu含有量を1.00%以下とする。Cu含有量は、好ましくは0.80%以下とする。必要に応じて、Cu含有量を0.70%以下、0.60%以下、0.50%以下又は0.40%以下としてもよい。
(Cu: 0 to 1.00%)
Cu is not an essential element in the steel plate according to this embodiment, so the lower limit of the Cu content is 0%. However, since Cu has an effect of improving the strength of steel, it can be contained as necessary. When Cu is contained, in order to utilize the effect, the Cu content is preferably 0.10% or more, and more preferably 0.20% or more. If necessary, the Cu content may be 0.25% or more or 0.30% or more.
On the other hand, if Cu is contained excessively, there is a risk that the toughness of the base material will decrease due to the occurrence of cracks on the steel sheet surface and the precipitation of Cu. Therefore, the Cu content is set to 1.00% or less. The Cu content is preferably set to 0.80% or less. If necessary, the Cu content may be set to 0.70% or less, 0.60% or less, 0.50% or less, or 0.40% or less.
(Nb:0~0.030%)
 Nbは、本実施形態に係る鋼板においては必須元素ではないので、Nb含有量の下限は0%である。しかしながら、Nbは焼入れの際に結晶粒を微細化させる元素であるので、必要に応じて含有させることができる。Nbを含有させる場合、その効果を利用するためには、Nb含有量は0.001%以上であることが好ましい。
 一方、Nbを過剰に含有させると、Nbが粗大な炭窒化物を形成して母材靭性を低下させる虞がある。従って、Nb含有量を0.030%以下とする。Nbが少ない方が溶接熱影響部の靭性が向上するので、Nb含有量を、0.020%以下、0.010%以下、0.005%以下としてもよい。
(Nb: 0 to 0.030%)
Since Nb is not an essential element in the steel sheet according to this embodiment, the lower limit of the Nb content is 0%. However, since Nb is an element that refines crystal grains during quenching, it can be contained as necessary. When Nb is contained, in order to utilize its effect, the Nb content is preferably 0.001% or more.
On the other hand, if Nb is contained in excess, Nb may form coarse carbonitrides and reduce the toughness of the base material. Therefore, the Nb content is set to 0.030% or less. Since the toughness of the welded heat affected zone is improved with a smaller Nb content, the Nb content may be set to 0.020% or less, 0.010% or less, or 0.005% or less.
(Ti:0~0.010%)
 Tiは、本実施形態に係る鋼板においては必須元素ではないので、Ti含有量の下限は0%である。しかしながら、Tiは、スラブ加熱などによって鋼が高温になった際に、結晶粒を細粒化させる場合があるので、必要に応じて含有させることができる。Tiを含有させる場合、その効果を利用するためには、Ti含有量を0.001%以上とすることが好ましい。
 一方、Tiを過剰に含有させると、Nbと同様に、Tiが粗大な炭窒化物を形成して母材靭性を低下させる虞がある。従って、Ti含有量を0.010%以下とする。必要に応じて、Ti含有量を、0.005%以下又は0.002%以下としてもよい。
(Ti: 0 to 0.010%)
Ti is not an essential element in the steel plate according to the present embodiment, so the lower limit of the Ti content is 0%. However, Ti may refine the crystal grains when the steel is heated to a high temperature by slab heating, etc., so it may be contained as necessary. When Ti is contained, in order to utilize its effect, it is preferable that the Ti content is 0.001% or more.
On the other hand, if Ti is contained excessively, Ti may form coarse carbonitrides, as with Nb, and may reduce the toughness of the base material. Therefore, the Ti content is set to 0.010% or less. If necessary, the Ti content may be set to 0.005% or less or 0.002% or less.
(Ca:0~0.0030%)
(Mg:0~0.0030%)
(REM:0~0.0030%)
 本実施形態に係る鋼板では、Ca、Mg、及びREMのうち1種以上を含有してもよい。Ca、Mg、及びREMは必須元素ではないので、Ca、Mg、及びREMの含有量の下限はいずれも0%である。
(Ca: 0 to 0.0030%)
(Mg: 0 to 0.0030%)
(REM: 0 to 0.0030%)
The steel sheet according to the present embodiment may contain one or more of Ca, Mg, and REM. Since Ca, Mg, and REM are not essential elements, the lower limit of the content of Ca, Mg, and REM is 0%.
 Caは、鋼板中の硫化物を球状化することにより、鋼板の靱性を低下させるMnSの影響を軽減する効果がある。この効果を得るために、Ca含有量を0.0001%以上としても良い。
 一方、Caを多量に含有させた場合、鋼の溶接性が損なわれる虞があるので、Ca含有量を0.0030%以下とする。必要に応じて、Ca含有量を、0.0015%以下、0.0010%以下、0.0005%以下又は0.0002%以下としてもよい。
Ca has the effect of spheroidizing sulfides in the steel sheet, thereby reducing the influence of MnS that reduces the toughness of the steel sheet. In order to obtain this effect, the Ca content may be set to 0.0001% or more.
On the other hand, if a large amount of Ca is contained, there is a risk that the weldability of the steel may be impaired, so the Ca content is set to 0.0030% or less. If necessary, the Ca content may be set to 0.0015% or less, 0.0010% or less, 0.0005% or less, or 0.0002% or less.
 MgおよびREMは、酸化物を形成して、溶接熱影響部の靭性を向上させる。この効果を得るために、MgおよびREMの含有量をそれぞれ0.0001%以上としてもよい。
 一方、MgおよびREMを多量に含有させると、粗大な酸化物が形成され、鋼の靭性が低下する虞がある。従って、Mg含有量およびREM含有量をそれぞれ0.0030%以下とする。必要に応じて、Mg含有量及びREM含有量を、それぞれ、0.015%以下、0.010%以下、0.005%以下又は0.002%以下、0.0015%未満としてもよい。REMとはScやY、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luを含むレアアースメタルの総称である。他の添加元素に比べて、脱酸性が強いことが特徴であり、鋼中で安定な酸化物を形成する。
Mg and REM form oxides to improve the toughness of the weld heat affected zone. To obtain this effect, the Mg and REM contents may each be 0.0001% or more.
On the other hand, if Mg and REM are contained in large amounts, coarse oxides are formed, which may reduce the toughness of the steel. Therefore, the Mg content and the REM content are each set to 0.0030% or less. If necessary, the Mg content and the REM content may be set to 0.015% or less, 0.010% or less, 0.005% or less, or 0.002% or less, or less than 0.0015%. REM is a general term for rare earth metals including Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Compared to other additive elements, REM is characterized by its strong deoxidizing effect and forms stable oxides in steel.
(O:0.0040%以下)
 酸素(O)は、鋼中に含まれる不純物元素であり、鋼中では多くの場合、脱酸力の強いCa、Mg、REM、Al、Tiなどとともに数μm~数十μmサイズの酸化物を形成する。粗大な酸化物が含まれる場合や、酸化物の個数密度が高い場合には、脆性破壊の発生起点となりうるため、Oの含有量は少ないほど好ましい。このため、O含有量の下限は0%である。本実施形態に係る鋼板においては、溶接部の靭性の向上のために、O含有量を、0.0040%以下、好ましくは0.0030%以下とする。
(O: 0.0040% or less)
Oxygen (O) is an impurity element contained in steel, and in many cases, it forms oxides of several μm to several tens of μm in size together with Ca, Mg, REM, Al, Ti, etc., which have strong deoxidizing power. When coarse oxides are contained or when the number density of oxides is high, they may become the starting point of brittle fracture, so the lower the O content, the more preferable it is. For this reason, the lower limit of the O content is 0%. In the steel plate according to this embodiment, the O content is set to 0.0040% or less, preferably 0.0030% or less, in order to improve the toughness of the welded portion.
(残部:Feおよび不純物)
 本実施形態に係る鋼板は、上記の成分のほか、残部がFeと不純物とからなる。ここで、不純物とは、鋼材を工業的に製造する際に、鉱石若しくはスクラップ等のような原料、又は製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。
(balance: Fe and impurities)
The steel sheet according to the present embodiment is composed of the above-mentioned components, with the balance being Fe and impurities. Here, the impurities refer to components that are mixed in due to various factors in raw materials such as ores or scraps, or in the manufacturing process, during industrial production of steel material, and are permissible within a range that does not adversely affect the present invention.
 更に、本実施形態に係る鋼板では、下記(A)式~(E)式によって求められる[fB]が0.0003質量%以上であることが好ましい。[fB]は、鋼に固溶するB量を表す。[fB]を0.0003質量%以上とすることで、降伏強度670~870N/mm、引張強さ780~940N/mmの高張力鋼において、鋼の焼入れ性を高めることができる。Bは鋼中において窒化物を形成しやすい。また、Ti及びAlは窒化物及び酸化物を形成しやすい。そこで、下記(A)式~(E)式によって鋼に固溶するB量[fB]を求める。[fB]は、0.0005質量%以上でもよく、0.0015質量%以上でもよい。また、[fB]は、0.0025質量%以下でもよく、0.0018質量%以下でもよい。 Furthermore, in the steel plate according to the present embodiment, it is preferable that [fB] calculated by the following formulas (A) to (E) is 0.0003 mass% or more. [fB] represents the amount of B dissolved in the steel. By setting [fB] to 0.0003 mass% or more, the hardenability of the steel can be improved in high-tensile steel having a yield strength of 670 to 870 N/mm 2 and a tensile strength of 780 to 940 N/mm 2. B easily forms nitrides in the steel. In addition, Ti and Al easily form nitrides and oxides. Therefore, the amount of B dissolved in the steel [fB] is calculated by the following formulas (A) to (E). [fB] may be 0.0005 mass% or more, or may be 0.0015 mass% or more. In addition, [fB] may be 0.0025 mass% or less, or may be 0.0018 mass% or less.
[fB]=[B]-0.77×[fN] …(A)
[fN]=[N]-0.29×[fTi]-0.52×[fAl] …(B)
[fTi]=[Ti]-2×[fO] …(C)
[fAl]=[Al]-1.125×[fO] …(D)
[fO]=[O]-0.4×[Ca]-0.66×[Mg]-0.11×[REM] …(E)
[fB] = [B] - 0.77 x [fN] ... (A)
[fN] = [N] - 0.29 x [fTi] - 0.52 x [fAl] ... (B)
[fTi] = [Ti] - 2 × [fO] ... (C)
[fAl] = [Al] - 1.125 × [fO] ... (D)
[fO] = [O] - 0.4 x [Ca] - 0.66 x [Mg] - 0.11 x [REM] ... (E)
 ただし、(A)式~(E)式における[B]、[N]、[Ti]、[Al]、[O]、[Ca]、[Mg]、[REM]はそれぞれ、鋼板におけるB、N、Ti、Al、O、Ca、Mg、REMの含有量(質量%)であって、不純物として混入する元素量も含め、含有しない元素は0を代入し、また、[fN]、[fTi]、[fAl]、[fO]の計算値が0%未満の場合は0を代入する。 In formulas (A) to (E), [B], [N], [Ti], [Al], [O], [Ca], [Mg], and [REM] respectively represent the content (mass%) of B, N, Ti, Al, O, Ca, Mg, and REM in the steel plate. Elements that are not contained, including the amount of elements mixed in as impurities, are substituted with 0, and when the calculated values of [fN], [fTi], [fAl], and [fO] are less than 0%, 0 is substituted.
 また、本実施形態に係る鋼板では、個々の元素の含有量の限定に加えて、各元素の含有量から算出される、α値、β値およびγ値の範囲を次のように限定する。 In addition to limiting the content of each element, the ranges of the α, β, and γ values calculated from the content of each element are also limited as follows for the steel plate according to this embodiment.
(α値:1.00~1.50質量%)
 α値は、以下の(1)式によって示される。
α=[C]+6×[Si]+100×[P]……(1)
 ただし、[C]、[Si]および[P]は、それぞれ、鋼板のC、SiおよびPの含有量(質量%)である。
(α value: 1.00 to 1.50% by mass)
The α value is expressed by the following formula (1).
α = [C] + 6 × [Si] + 100 × [P] ... (1)
Here, [C], [Si] and [P] are the contents (mass%) of C, Si and P in the steel plate, respectively.
 本実施形態では、α値を1.50質量%以下とする。これは、母材や溶接熱影響部の粗粒化した部分の、応力除去焼鈍後の靭性を改善するために必要な条件であり、これを満たす範囲でC、Si、Pが調整される必要がある。SR処理後は、Pの粒界偏析濃度が増加するため、粒界での脆性破壊が生じ易くなるが、P、C、Siにより脆性破壊を制御することができる。Pは製造過程を考慮すると鋼中に必然的に含まれ、粒界偏析により粒界強度を著しく低下させることから、SR脆化を招く代表的な元素であり、係数が最も高い。C、Siも鋼中に必然的に含まれる元素であり、これらの元素が多くなると粒界に生成するセメンタイトによる脆化を招く。いずれの元素も低減させることが望ましいが、特性上あるいは規格上一定量含有させる場合がある。SR後の靭性を向上させるために、α値を1.40質量%以下とすることが好ましい。α値は、1.00質量%以上である。この下限値は、適用分野の規格上の成分制約や製造上の元素制御の限界などによって定められる範囲であり、上述したC、Si、及びPの含有量の下限値および製造上の現実的な最小値を式(1)に代入することにより、算出される。α値の好ましい下限値は、C、Si、及びPの含有量の好ましい下限値から算出することができる。α値は、1.10質量%超でもよく、1.30質量%以上でもよい。 In this embodiment, the α value is set to 1.50 mass% or less. This is a necessary condition for improving the toughness of the coarse-grained portion of the base material or the welded heat-affected zone after stress relief annealing, and it is necessary to adjust C, Si, and P within a range that satisfies this condition. After SR treatment, the grain boundary segregation concentration of P increases, making brittle fracture at the grain boundaries more likely to occur, but brittle fracture can be controlled by P, C, and Si. Considering the manufacturing process, P is inevitably contained in steel, and since it significantly reduces grain boundary strength due to grain boundary segregation, it is a representative element that causes SR embrittlement and has the highest coefficient. C and Si are also elements that are inevitably contained in steel, and if these elements increase, they will cause embrittlement due to cementite formed at the grain boundaries. It is desirable to reduce both elements, but there are cases where a certain amount is contained due to characteristics or specifications. In order to improve the toughness after SR, it is preferable to set the α value to 1.40 mass% or less. The α value is 1.00 mass% or more. This lower limit is a range determined by the component constraints in the specifications of the field of application and the limits of element control in manufacturing, and is calculated by substituting the above-mentioned lower limits of the C, Si, and P contents and the realistic minimum values in manufacturing into formula (1). The preferred lower limit of the α value can be calculated from the preferred lower limits of the C, Si, and P contents. The α value may be more than 1.10 mass%, or may be 1.30 mass% or more.
(β値:10.0~15.0)
 β値は、以下の(2)式によって算出される。
β=0.65×[C]1/2×(1+0.64×[Si])×(1+4.10×[Mn])×(1+0.27×[Cu])×(1+0.52×[Ni])×(1+2.33×[Cr])×(1+3.14×[Mo])……(2)
 ただし、[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]および[Mo]は、鋼中のC、Si、Mn、Cu、Ni、CrおよびMoの含有量(質量%)である。
(β value: 10.0 to 15.0)
The β value is calculated by the following formula (2).
β = 0.65 × [C] 1/2 × (1 + 0.64 × [Si]) × (1 + 4.10 × [Mn]) × (1 + 0.27 × [Cu]) × (1 + 0.52 × [Ni]) × (1 + 2.33 × [Cr]) × (1 + 3.14 × [Mo]) ... (2)
Here, [C], [Si], [Mn], [Cu], [Ni], [Cr] and [Mo] are the contents (mass%) of C, Si, Mn, Cu, Ni, Cr and Mo in the steel.
 本実施形態に係る鋼板では、β値の範囲を10.0~15.0とする。β値は、鋼材の焼入れ性を示す指標であり、β値が高くなるほど強度靭性バランスが劣位な上部ベイナイト組織の形成を安定して回避できるが、β値が高すぎると鋼材強度が上がることで靭性が劣化する。すなわち、溶接熱影響部の溶接ままの靭性を向上するために必要な合金元素の含有量の狙い範囲を示す指標にもなる。必要に応じて、β値を11.0以上としてもよい。同時に、β値を14.0以下としてもよい。 In the steel plate according to this embodiment, the β value is in the range of 10.0 to 15.0. The β value is an index showing the hardenability of the steel material, and the higher the β value, the more reliably the formation of upper bainite structure, which has a poor balance of strength and toughness, can be avoided, but if the β value is too high, the strength of the steel material increases and the toughness deteriorates. In other words, it also serves as an index showing the target range of the content of alloy elements required to improve the toughness of the welded heat-affected zone as it is. If necessary, the β value may be 11.0 or more. At the same time, the β value may be 14.0 or less.
(γ値:0.70~1.50質量%)
 γ値は、以下の(3)式によって算出される。
γ=[Mn]+20×[Nb]+36×[Ti] …(3)
 [Mn]、[Nb]、[Ti]は、鋼板のMn、Nb、Tiの含有量(質量%)である。
 本実施形態に係る鋼板では、γ値の範囲を0.70~1.50質量%とする。Mn、NbおよびTiはいずれも応力除去焼鈍後の粒界脆化を助長する元素であり、γ値を1.50質量%以下にすることで、応力除去焼鈍後の母材や溶接熱影響部の靭性の低下を抑制できる。これらの元素が粒界脆化を助長するメカニズムはいくつか考えられるが、粒界偏析による粒界強度の低下や、粒界に生成する炭窒化物による脆化が考えられる。γ値は、1.40質量%以下でもよい。
 一方で、一定の焼入れ性を確保し、強度靭性バランスに優位なミクロ組織を得るためにはMn、NbおよびTiは一定量添加することが好ましく、γ値を0.70質量%以上とする。γ値は、0.75質量%以上でもよい。
(γ value: 0.70 to 1.50% by mass)
The γ value is calculated by the following formula (3).
γ = [Mn] + 20 × [Nb] + 36 × [Ti] ... (3)
[Mn], [Nb], and [Ti] are the contents (mass%) of Mn, Nb, and Ti in the steel plate.
In the steel plate according to the present embodiment, the γ value is in the range of 0.70 to 1.50 mass%. Mn, Nb, and Ti are all elements that promote grain boundary embrittlement after stress relief annealing, and by setting the γ value to 1.50 mass% or less, it is possible to suppress the decrease in the toughness of the base material and the welded heat affected zone after stress relief annealing. There are several possible mechanisms by which these elements promote grain boundary embrittlement, including a decrease in grain boundary strength due to grain boundary segregation and embrittlement due to carbonitrides formed at the grain boundaries. The γ value may be 1.40 mass% or less.
On the other hand, in order to ensure a certain degree of hardenability and obtain a microstructure having an advantageous balance of strength and toughness, it is preferable to add certain amounts of Mn, Nb and Ti, and the γ value is set to 0.70 mass% or more. The γ value may be 0.75 mass% or more.
 α値、β値およびγ値に関する数値範囲を満足することで、溶接ままおよびその応力除去焼鈍後でも溶接部(溶接熱影響部)の低温靭性に優れた鋼を提供できる分野が広がる。
 本来α値およびβ値を一定の範囲に制御することでも溶接ままおよびその応力除去焼鈍後でも溶接部の低温靭性に優れた鋼を製造することは可能であるが、用途によっては適用規格の化学組成規定によりα値を自由に設定できず、α値を高めざるを得ない場合があった。それに対し、本実施形態に係る鋼板においては、新たにγ値を設定することで、α値の許容範囲を広げることが可能となったため、上記のような適用規格の化学組成規定が厳格な分野においても、溶接ままおよびその応力除去焼鈍後でも溶接部の低温靭性に優れた鋼を提供できる。
By satisfying the numerical ranges for the α, β and γ values, it is possible to provide a wider range of fields in which steel having excellent low-temperature toughness in the welded zone (weld heat-affected zone) can be provided, both as-welded and after stress relief annealing.
Although it is possible to manufacture steel with excellent low-temperature toughness of the welded portion both as-welded and after stress relief annealing by controlling the α value and β value within a certain range, depending on the application, the α value cannot be freely set due to the chemical composition regulations of the applicable standards, and there are cases where the α value has to be increased. In contrast, in the steel plate according to the present embodiment, it is possible to widen the allowable range of the α value by newly setting a γ value, so that it is possible to provide a steel with excellent low-temperature toughness of the welded portion both as-welded and after stress relief annealing, even in fields where the chemical composition regulations of the applicable standards are strict as described above.
 また、本実施形態に係る鋼板においては、以下の(4)式によって算出される、鋼の硬化性を示す指標である炭素当量Ceqを0.550~0.620質量%とする。 In addition, in the steel plate according to this embodiment, the carbon equivalent Ceq, which is an index showing the hardenability of steel and is calculated by the following formula (4), is set to 0.550 to 0.620 mass%.
Ceq=[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/5 …(4)
 (4)式中の[C]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[V]は、それぞれ、鋼板の、C、Mn、Cu、Ni、Cr、Mo、Vの含有量(質量%)である。
Ceq = [C] + [Mn] / 6 + ([Cu] + [Ni]) / 15 + ([Cr] + [Mo] + [V]) / 5 ... (4)
In formula (4), [C], [Mn], [Cu], [Ni], [Cr], [Mo], and [V] are the contents (mass%) of C, Mn, Cu, Ni, Cr, Mo, and V in the steel plate, respectively.
 Ceqが0.550質量%未満である場合、鋼板の強度が不足する場合がある。必要に応じて、Ceqを0.570質量%以上、0.600質量%以上としてもよい。また、Ceqが0.620質量%超である場合、鋼板の靭性が低下する場合がある。必要に応じて、Ceqを0.600質量%以下としてもよい。 If Ceq is less than 0.550 mass%, the strength of the steel plate may be insufficient. If necessary, Ceq may be set to 0.570 mass% or more, or 0.600 mass% or more. If Ceq exceeds 0.620 mass%, the toughness of the steel plate may decrease. If necessary, Ceq may be set to 0.600 mass% or less.
(降伏強度:670~870N/mm
(引張強さ:780~940N/mm
 本実施形態に係る鋼板では、降伏強度を670~870N/mmとし、鋼板の引張強さを780~940N/mmとする。液化CO用の輸送タンクのような大型溶接構造物の重量を軽減するためには、板厚が薄くても構造物の強度が確保できる鋼板が必要とされる。通常、このような用途で用いられる鋼板として選択されるものは、上述した降伏強度及び引張強さを有する鋼板であるので、本実施形態に係る鋼板においても降伏強度及び引張強さを上記の範囲とする。必要に応じて、降伏強度を690N/mm~830N/mmとしてもよい。また、引張強さを800N/mm~900N/mmとしてもよい。
(Yield strength: 670 to 870 N/ mm2 )
(Tensile strength: 780 to 940 N/ mm2 )
In the steel plate according to this embodiment, the yield strength is set to 670 to 870 N/mm 2 , and the tensile strength of the steel plate is set to 780 to 940 N/mm 2. In order to reduce the weight of a large welded structure such as a transport tank for liquefied CO 2 , a steel plate that can ensure the strength of the structure even if the plate thickness is thin is required. Usually, the steel plate selected for such applications is a steel plate having the above-mentioned yield strength and tensile strength, so the yield strength and tensile strength of the steel plate according to this embodiment are also set to the above ranges. If necessary, the yield strength may be set to 690 N/mm 2 to 830 N/mm 2. The tensile strength may be set to 800 N/mm 2 to 900 N/mm 2 .
(-65℃におけるシャルピー吸収エネルギーが100J以上)
 また、本実施形態に係る鋼板は、高い靭性を確保するために、-65℃におけるシャルピー吸収エネルギーが100J以上である必要がある。これにより、本実施形態に係る鋼板よりなる輸送用タンクの安全性の確保が可能なる。-65℃におけるシャルピー吸収エネルギーは、表面から板厚方向に板厚の1/4の位置(t/4位置または1/4厚位置という場合がある)で測定した数値とする。
(Charpy absorbed energy of 100 J or more at -65°C)
Furthermore, in order to ensure high toughness, the steel plate according to this embodiment needs to have a Charpy absorbed energy of 100 J or more at -65°C. This makes it possible to ensure the safety of a transportation tank made of the steel plate according to this embodiment. The Charpy absorbed energy at -65°C is a value measured at a position that is 1/4 of the plate thickness from the surface in the plate thickness direction (sometimes referred to as the t/4 position or 1/4 thickness position).
(-35℃におけるCTOD試験のδ値が0.10mm以上)
 また、輸送用タンクのような溶接構造物の安全性を確保するために、最近では、破壊力学的な評価法を用いて、溶接構造物の耐破壊特性を評価し、設計に取り入れることが行われている。具体的に言えば、脆性破壊の発生特性として、日本溶接協会規格WES1108などによって規定されたCTOD試験(Crack Tip Opening Displacement test:き裂先端開口変位試験)により、CTOD値と呼ばれるき裂開口変位量(以下、δcと略す)を破壊力学的なパラメータとして求め、δcが設計基準を満足できるかどうかが評価される場合が多くなっている。
(δ value of 0.10 mm or more in CTOD test at -35°C)
In addition, in order to ensure the safety of welded structures such as transportation tanks, fracture resistance characteristics of welded structures are evaluated and incorporated into designs using fracture mechanics evaluation methods. Specifically, as the initiation characteristics of brittle fracture, a crack opening displacement (hereinafter abbreviated as δc) called a CTOD value is obtained as a fracture mechanics parameter by a CTOD test (Crack Tip Opening Displacement test) specified by the Japan Welding Engineering Society standard WES1108, and it is often evaluated whether δc satisfies the design criteria.
 材料のδcを向上させるためには、従来とは異なる観点で材料の特性改善を行う必要がある。従来、材料の耐脆性破壊性の評価方法としては、シャルピー衝撃試験が用いられてきた。シャルピー衝撃試験から求められる値は、評価対象領域の平均的な靭性を表している。しかしながら、CTOD試験においては、評価対象領域の平均的な靱性が良好であったとしても、評価対象領域の中に少しでも脆弱な部位が存在すれば、その存在がδcに反映される。δcはこのような性質を有するので、特に溶接熱影響部のような、鋼材のミクロ組織が不均一かつ複雑に変化した領域において、高いδc値を得るためには、局所的な脆化領域をできる限り少なくすることが必要となる。
 本実施形態に係る鋼板は、高い靭性を確保するために、-35℃におけるCTOD試験のδ値が0.10mm以上であることが好ましい。この場合、本実施形態に係る鋼板よりなる輸送用タンクの安全性がより向上する。
In order to improve the δc of a material, it is necessary to improve the characteristics of the material from a different perspective than before. Conventionally, the Charpy impact test has been used as a method for evaluating the brittle fracture resistance of a material. The value obtained from the Charpy impact test represents the average toughness of the evaluation target area. However, in the CTOD test, even if the average toughness of the evaluation target area is good, if there is even a slightly brittle part in the evaluation target area, the existence of the part is reflected in δc. Since δc has such properties, in order to obtain a high δc value, it is necessary to reduce the localized brittle area as much as possible, especially in areas where the microstructure of the steel material has changed in a non-uniform and complex manner, such as the weld heat affected zone.
In order to ensure high toughness, the steel plate according to this embodiment preferably has a δ value of 0.10 mm or more in a CTOD test at −35° C. In this case, the safety of a transportation tank made of the steel plate according to this embodiment is further improved.
(硬度の平均値、標準偏差)
 本実施形態に係る鋼板は、1/4厚位置での0.5mm×0.5mmの範囲における、0.05mmピッチでの硬度分布測定において、121点の測定位置における硬度の平均値が265Hv~290Hv、標準偏差が20以下である必要がある。本実施形態に係る鋼板の組織は、強度靭性バランスに優位なマルテンサイト組織及び下部ベイナイト組織の混合組織が好ましいが、局所的なγ粒径やミクロ偏析のバラツキにより、部分的に焼入れ性が低下することで強度靭性バランスが劣位な上部マルテンサイト組織が形成する場合がある。上部ベイナイト組織が存在すると、硬さの分布が不均一となり、母材の靭性が劣化するおそれがある。硬度の平均値が265Hv未満であるか、または標準偏差が20を超えると、上部ベイナイト組織が含まれる可能性があり、母材靭性が確保できない。一方で、平均値が290Hvを超えると、強度が高くなりすぎることで、靭性が低下するおそれがある。
(Average hardness, standard deviation)
In the steel plate according to the present embodiment, the average value of the hardness at 121 measurement positions must be 265Hv to 290Hv and the standard deviation must be 20 or less in the hardness distribution measurement at 0.05mm pitch in the range of 0.5mm x 0.5mm at the 1/4 thickness position. The structure of the steel plate according to the present embodiment is preferably a mixed structure of martensite structure and lower bainite structure, which is superior in strength-toughness balance, but due to localized γ grain size and microsegregation variations, the hardenability may be partially reduced, and an upper martensite structure with inferior strength-toughness balance may be formed. If an upper bainite structure is present, the distribution of hardness may become nonuniform, and the toughness of the base material may deteriorate. If the average value of the hardness is less than 265Hv or the standard deviation exceeds 20, the upper bainite structure may be included, and the toughness of the base material cannot be ensured. On the other hand, if the average value exceeds 290Hv, the strength may become too high, and the toughness may decrease.
 上述の硬度分布測定は、鋼板の圧延方向に平行かつ板厚方向に平行な面(L断面)を観察面としてミクロ試料を採取し、マイクロビッカース硬さ試験機を用いて、測定を行う。測定領域はミクロ観察面内の任意のt/4位置を中心とする0.5mm×0.5mmの範囲とし、測定ピッチは0.05mm、測定荷重は25gfで、縦11点×横11点の計121点測定を行う。得られた測定値から、平均値と標準偏差を算出する。 The above-mentioned hardness distribution measurement is performed by taking a micro sample with a surface (L-section) parallel to the rolling direction and thickness direction of the steel plate as the observation surface, and using a micro Vickers hardness tester. The measurement area is a 0.5 mm x 0.5 mm range centered on any t/4 position within the micro observation surface, with a measurement pitch of 0.05 mm and a measurement load of 25 gf, and measurements are taken at 11 vertical points x 11 horizontal points, for a total of 121 points. The average and standard deviation are calculated from the obtained measurement values.
(板厚:10~60mm)
 板厚10mm未満の鋼板を溶接する場合では、一般的に応力除去焼鈍(SR)が不要である。しかしながら、本実施形態に係る鋼板は、SRが必要な鋼板を対象とするので、板厚は10mm以上とする。板厚は、好ましくは、25mm以上である。一方、板厚が60mmを超える鋼板は、適用される輸送用タンクの重量の軽量化への寄与が小さく好ましくない。したがって、本実施形態に係る鋼板の板厚は60mm以下とする。
(Thickness: 10-60mm)
In the case of welding steel plates with a thickness of less than 10 mm, stress relief annealing (SR) is generally not required. However, the steel plate according to the present embodiment is intended for steel plates that require SR, and therefore the thickness is set to 10 mm or more. The thickness is preferably 25 mm or more. On the other hand, a steel plate with a thickness of more than 60 mm is not preferred because it makes little contribution to reducing the weight of the transport tank to which it is applied. Therefore, the thickness of the steel plate according to the present embodiment is set to 60 mm or less.
 更に、本実施形態に係る鋼板は、以下の説明する構成を有していてもよい。 Furthermore, the steel plate according to this embodiment may have the configuration described below.
(組織)
 本実施形態に係る鋼板は、上述した121点の硬度の平均値及び標準偏差を満足させるため、板厚方向の断面の1/4厚位置における組織が、マルテンサイト組織及び下部ベイナイト組織の混合組織であることが好ましい。マルテンサイト組織及び下部ベイナイト組織は合計で85面積%以上であるとよい。
(Organization)
In order to satisfy the above-mentioned average value and standard deviation of the hardness at 121 points, the steel plate according to this embodiment preferably has a structure at a 1/4 thickness position of the cross section in the plate thickness direction that is a mixed structure of martensite and lower bainite. The martensite and lower bainite structures may occupy 85 area % or more in total.
(鋼板の1/4厚位置における平均結晶粒径:15.0μm以下)
 本実施形態に係る鋼板では、1/4厚位置における平均結晶粒径を15.0μm以下としてもよい。母材靭性およびSR後の母材靭性を向上させるために、必要に応じて、平均結晶粒径を14.5μm以下、14.0μm以下としてもよい。鋼板の1/4厚位置における平均結晶粒径は小さい方が好ましいので、その下限値を規定する必要はない。通常、平均結晶粒径は、最も小さい場合約10.0μm程度となる。
(Average grain size at 1/4 thickness position of steel plate: 15.0 μm or less)
In the steel plate according to the present embodiment, the average grain size at the 1/4 thickness position may be 15.0 μm or less. In order to improve the base material toughness and the base material toughness after SR, the average grain size may be 14.5 μm or less, or 14.0 μm or less, as necessary. Since it is preferable that the average grain size at the 1/4 thickness position of the steel plate is small, there is no need to specify a lower limit. Usually, the average grain size is about 10.0 μm at the smallest.
 平均結晶粒径は、以下のように定義される。
 鋼板のL断面が観察できるサンプルを作成し、L断面の1/4厚位置を観察部とし、走査電子顕微鏡を用いた電子ビーム後方散乱回析パターン解析法(Electron Backscatter Diffraction method:EBSD法)を用いた結晶方位解析を、板厚方向に200μmかつ圧延方向に250μmの範囲にいて、0.5μmピッチで行う。結晶方位解析の結果から、結晶方位差が15°以上の粒界で囲まれる領域を結晶粒と定義し、結晶粒の円相当粒径を結晶粒径と定義し、結晶粒毎の面積で重みづけをした面積加重平均で算出した値を、平均結晶粒径とする。
The average crystal grain size is defined as follows.
A sample in which the L-section of the steel sheet can be observed is prepared, and the 1/4 thickness position of the L-section is used as the observation area. A crystal orientation analysis using an electron beam backscatter diffraction pattern analysis method (EBSD method) using a scanning electron microscope is performed in a range of 200 μm in the sheet thickness direction and 250 μm in the rolling direction at a pitch of 0.5 μm. From the results of the crystal orientation analysis, the region surrounded by grain boundaries with a crystal orientation difference of 15° or more is defined as a crystal grain, the circle-equivalent grain size of the crystal grain is defined as the crystal grain size, and the value calculated by the area-weighted average weighted by the area of each crystal grain is defined as the average crystal grain size.
(応力除去焼鈍後の-40℃におけるシャルピー吸収エネルギーが27J以上)
 本実施形態に係る鋼板は、破壊を未然に防止することを目的として、輸送用タンクに組み立てられた後に溶接部に対して応力除去焼鈍を行うが、この際に、溶接部のみならず母材も加熱される。母材が加熱されると、母材の靭性が低下する傾向になる。原因は明確ではないが、P(リン)が粒界に拡散し、また、組織中に介在物の成長または凝集が起きることによって、脆性が低下して靭性が低下するものと推測される。よって、本実施形態に係る鋼板は、応力除去焼鈍後の-40℃におけるシャルピー吸収エネルギーが27J以上であることが好ましい。この場合、安全性をより高めることができる。
(Charpy absorbed energy of 27 J or more at -40°C after stress relief annealing)
In order to prevent breakage, the steel plate according to this embodiment is subjected to stress relief annealing of the welded portion after assembly into a transport tank, during which not only the welded portion but also the base material is heated. When the base material is heated, the toughness of the base material tends to decrease. Although the cause is not clear, it is presumed that the diffusion of P (phosphorus) to grain boundaries and the growth or aggregation of inclusions in the structure cause a decrease in brittleness and a decrease in toughness. Therefore, the steel plate according to this embodiment preferably has a Charpy absorbed energy of 27 J or more at -40°C after stress relief annealing. In this case, safety can be further improved.
 応力除去焼鈍後の-40℃におけるシャルピー吸収エネルギーは、保持温度600℃、保持時間2時間、昇温速度および降温速度が425℃以上の温度域において55℃/hr以下である応力除去焼鈍を、鋼板に対し行った場合に、応力除去焼鈍が行われた箇所において測定する。 The Charpy absorbed energy at -40°C after stress relief annealing is measured at the location where stress relief annealing was performed when the steel plate is subjected to stress relief annealing at a holding temperature of 600°C, a holding time of 2 hours, and a heating rate and cooling rate of 55°C/hr or less in a temperature range of 425°C or higher.
(応力除去焼鈍後の降伏強度が670~870N/mm、引張強さが780~940N/mm
 本実施形態に係る鋼板は、応力除去焼鈍後の降伏強度が670~870N/mm、引張強さが780~940N/mmであることが好ましい。これにより、応力除去焼鈍がなされた液化CO用の輸送用タンクにおいて、十分な強度を確保できる。
(Yield strength after stress relief annealing is 670-870N/ mm2 , tensile strength is 780-940N/ mm2 )
The steel plate according to this embodiment preferably has a yield strength of 670 to 870 N/mm 2 and a tensile strength of 780 to 940 N/mm 2 after stress relief annealing. This ensures sufficient strength in a transport tank for liquefied CO 2 that has been subjected to stress relief annealing.
 また、本実施形態に係る鋼板は、応力除去焼鈍後であっても、-35℃におけるCTOD試験のδ値が0.10mm以上であることが好ましい。この場合、さらに安全性が向上する。 Furthermore, it is preferable that the steel sheet according to this embodiment has a δ value of 0.10 mm or more in a CTOD test at -35°C, even after stress relief annealing. In this case, safety is further improved.
 本実施形態に係る鋼板は、上記の構成を有していることで、溶接熱影響部の靱性(溶接まま、応力除去焼鈍後)にも優れる。
 溶接熱影響部の靱性は、限定されないが、その目標値として、溶接ままの場合であれば、-65℃のシャルピー吸収エネルギーが70J以上であることが好ましく、応力除去焼鈍後であれば、-65℃のシャルピー吸収エネルギーが70J以上であることが好ましい。
 また、溶接熱影響部は、溶接まま、応力除去焼鈍後のいずれであっても、-35℃におけるCTOD試験のδ値が0.10mm以上であることがより好ましい。
The steel plate according to this embodiment has the above-mentioned configuration, and therefore has excellent toughness in the weld heat affected zone (as welded and after stress relief annealing).
The toughness of the weld heat affected zone is not limited, but as a target value, in the as-welded case, the Charpy absorbed energy at -65°C is preferably 70 J or more, and in the case after stress relief annealing, the Charpy absorbed energy at -65°C is preferably 70 J or more.
Moreover, it is more preferable that the weld heat affected zone has a δ value of 0.10 mm or more in a CTOD test at −35° C., whether as welded or after stress relief annealing.
 次に、本実施形態に係る鋼板の製造方法について、以下に説明する。
 本実施形態に係る鋼板は、上記の特徴を有していれば、製造方法に関わらずその効果を得ることができるが、以下に説明する方法を用いれば、安定して製造できるので好ましい。
Next, a method for manufacturing a steel sheet according to this embodiment will be described below.
As long as the steel sheet according to this embodiment has the above-mentioned characteristics, the effects can be obtained regardless of the manufacturing method. However, it is preferable to use the method described below, since it can be manufactured stably.
 上述の化学組成を有する鋼を鋼板として製造するためには、通常用いられる鉄鋼製品の製造方法を用いればよい。すなわち、例えば、転炉法又は電炉法によって製造され、二次精錬設備で精錬された鋼を、連続鋳造あるいは造塊分塊によりスラブとする。スラブ厚は偏析低減およびポロシティ圧下による材質改善を図れれば良く、そのためのスラブ厚は150mm以上が好ましい。スラブ厚の上限は特に制限はないが、例えば、スラブ厚は、600mm以下でもよく、400mm以下でもよい。
 その後、スラブを、スラブ加熱炉により950~1250℃程度に加熱した後、後述する条件の熱間圧延により所定の板厚まで圧延して、鋼板とすることが好ましい。さらに、この鋼板に焼入れ焼戻しを行って、所定の特性を有する鋼板(最終鋼板)を得る。
In order to produce steel having the above-mentioned chemical composition as a steel plate, a commonly used method for producing steel products may be used. That is, for example, steel produced by a converter process or an electric furnace process and refined in a secondary refining facility is made into a slab by continuous casting or ingot casting. The slab thickness is sufficient as long as it can reduce segregation and improve the material properties by reducing porosity, and for this purpose, the slab thickness is preferably 150 mm or more. There is no particular upper limit for the slab thickness, but the slab thickness may be, for example, 600 mm or less or 400 mm or less.
The slab is then heated to about 950 to 1250°C in a slab heating furnace, and is then rolled to a predetermined thickness by hot rolling under the conditions described below to obtain a steel sheet. This steel sheet is then quenched and tempered to obtain a steel sheet (final steel sheet) having the desired properties.
 本実施形態に係る鋼板は、P含有量を0.006%以下に低減する必要がある。通常の脱リン方法ではP含有量を0.006%以下まで低減させられない場合があるが、その場合、脱リン処理の時間を長くするなどの対応を行えばよい。 The steel plate according to this embodiment needs to have its P content reduced to 0.006% or less. There are cases where it is not possible to reduce the P content to 0.006% or less using normal dephosphorization methods, but in such cases measures can be taken such as extending the dephosphorization treatment time.
 熱間圧延に際しては、圧延温度が1150~900℃の範囲内における累積圧下率を50%以上とすることが望ましい。上記温度域での累積圧下率の上限は特に規定する必要はないが、累積圧下率は、80%以下でもよく、70%以下でもよい。 When hot rolling, it is desirable to set the cumulative reduction ratio at 50% or more when the rolling temperature is in the range of 1150 to 900°C. There is no particular need to specify an upper limit for the cumulative reduction ratio in the above temperature range, but the cumulative reduction ratio may be 80% or less, or 70% or less.
 焼入れ焼戻しについて、板厚50mm以下または50mm未満の場合、熱間圧延後、直ちに水冷される直接焼入れ処理を実施することで後述の再加熱焼入れ処理を省略しても良い。直接焼入れ処理を行う場合、冷却開始温度をAr3点以上とし、且つ300℃以下まで水冷を行う。水冷時の平均冷却速度は、鋼板表面および裏面の冷却時温度履歴において700℃~300℃までの範囲で5℃/秒以上とすることが好ましい。平均冷却速度の上限は特に制限はないが、平均冷却速度は、例えば、100℃/秒以下でもよく、50℃/秒以下でもよく、20℃/秒以下でもよい。また、直接焼入れ後に再加熱し、さらに焼入れを行ってもよい。
 Ar3点は以下の式を用いて求める。
 Ar3=910-310×[C]-8×[Mn]-20×[Cu]-15×[Cr]-55×[Ni]-80×[Mo]+0.35×(t-8)
 ここで式中の[C]、[Mn]、[Cu]、[Cr]、[Ni]、[Mo]はそれぞれ、鋼板の、質量%でのC、Mn、Cu、Cr、Ni、Moの含有量であり、tは、mmでの鋼板の板厚である。
Regarding quenching and tempering, when the plate thickness is 50 mm or less or less than 50 mm, the reheating and quenching process described below may be omitted by performing a direct quenching process in which the plate is immediately water-cooled after hot rolling. When performing a direct quenching process, the cooling start temperature is set to Ar3 point or more, and water cooling is performed to 300 ° C or less. The average cooling rate during water cooling is preferably 5 ° C / sec or more in the range of 700 ° C to 300 ° C in the cooling temperature history of the front and back surfaces of the steel plate. There is no particular limit to the upper limit of the average cooling rate, but the average cooling rate may be, for example, 100 ° C / sec or less, 50 ° C / sec or less, or 20 ° C / sec or less. In addition, reheating may be performed after direct quenching, and further quenching may be performed.
The Ar3 point is calculated using the following formula.
Ar3 = 910 - 310 x [C] - 8 x [Mn] - 20 x [Cu] - 15 x [Cr] - 55 x [Ni] - 80 x [Mo] + 0.35 x (t-8)
In the formula, [C], [Mn], [Cu], [Cr], [Ni], and [Mo] are the contents of C, Mn, Cu, Cr, Ni, and Mo in the steel plate, respectively, in mass%, and t is the thickness of the steel plate in mm.
 板厚50mm以上の場合、圧延後に鋼板を一旦冷却した後に再加熱することにより、焼入れ処理を行うことが好ましい。板厚50mm以上の場合、再加熱焼入れ処理を行えば、熱間圧延後の直接焼入れを省略しても良く、直接焼入れを行ってもよい。 For plate thicknesses of 50 mm or more, it is preferable to perform quenching by cooling the steel plate once after rolling and then reheating it. For plate thicknesses of 50 mm or more, if reheating and quenching is performed, direct quenching after hot rolling may be omitted, or quenching may be performed directly.
 再加熱を行う場合の、焼入れ処理時の加熱温度(つまり焼入れ温度)は、925℃以下とすることが望ましく、920℃以下でもよく、915℃以下でもよく、910℃以下でもよい。何故なら、厚手の鋼板は、圧延後に金属組織が十分に微細化されない場合があるからである。十分に金属組織が微細化されていない鋼板に対する焼入れ温度が925℃超であると、加熱に伴い形成する逆変態γ組織が粗大となり、その後の冷却によってγ/α変態した後の最終組織の平均結晶粒径も粗大となるためである。
 一方で、焼入れ温度の下限は、Ac3点をわずかに上回る温度(例えば、Ac3点以上且つAc3点+20℃以下の温度範囲内)では、逆変態γ粒径のばらつきやBを含む炭化物の固溶が十分でなく、焼入れ性が不足する場合があるので好ましくない。したがって、焼入れ温度は880℃以上が好ましく、より好ましくは890℃以上である。上述の焼入れ処理条件の説明においては、鋼板の板厚が50mm以上であることが想定されているが、この焼入れ処理条件は、板厚50mm未満の鋼板に再加熱および焼入れを行う場合にも適用される。
When reheating is performed, the heating temperature during quenching (i.e., quenching temperature) is desirably 925°C or less, and may be 920°C or less, 915°C or less, or 910°C or less. This is because the metal structure of a thick steel plate may not be sufficiently refined after rolling. If the quenching temperature for a steel plate in which the metal structure is not sufficiently refined exceeds 925°C, the reverse transformation γ structure formed by heating becomes coarse, and the average crystal grain size of the final structure after γ/α transformation by subsequent cooling also becomes coarse.
On the other hand, the lower limit of the quenching temperature is not preferable if it is slightly above the Ac3 point (for example, within a temperature range of not less than the Ac3 point and not more than the Ac3 point + 20°C), because this may cause variations in reverse transformation γ grain size and insufficient solid solution of carbides containing B, resulting in insufficient hardenability. Therefore, the quenching temperature is preferably 880°C or higher, and more preferably 890°C or higher. In the above description of the quenching treatment conditions, it is assumed that the steel plate has a thickness of 50 mm or more, but these quenching treatment conditions are also applied when reheating and quenching are performed on a steel plate having a thickness of less than 50 mm.
 本実施形態では、焼入れ後(直接焼入れまたは再加熱焼入れ後、両方を行った場合には、再加熱焼入れ後)、焼戻しを行う。焼戻し時の加熱温度(つまり焼戻し温度)は、660℃以下とすることが望ましい。焼戻し温度が660℃超であると、焼戻し効果が過剰となり、降伏応力および引張強さを確保することが困難となったり、靱性が低下したりする場合がある。焼戻し温度は、500℃以上、好ましくは600℃以上とする。焼戻し温度が低過ぎると、焼戻しが不十分になり、所定の降伏応力および引張強さを確保することが困難となる。 In this embodiment, tempering is performed after quenching (after direct quenching or reheating quenching, or after reheating quenching if both are performed). The heating temperature during tempering (i.e., the tempering temperature) is desirably 660°C or lower. If the tempering temperature exceeds 660°C, the tempering effect becomes excessive, making it difficult to ensure the yield stress and tensile strength, and toughness may decrease. The tempering temperature is 500°C or higher, preferably 600°C or higher. If the tempering temperature is too low, tempering becomes insufficient, making it difficult to ensure the specified yield stress and tensile strength.
 再加熱焼入れ後または焼戻し後に冷却を行う場合、焼戻し脆化による母材の靭性低下を防止するために、空冷ではなく、水冷により鋼板の冷却を行う(加速冷却を実施する)ことが望ましい。この場合、300℃までの平均冷却速度を0.1℃/秒以上又は0.5℃/秒以上とすることが好ましい。 When cooling is performed after reheating and quenching or tempering, it is preferable to cool the steel plate by water cooling (accelerated cooling) rather than air cooling in order to prevent a decrease in the toughness of the base material due to temper embrittlement. In this case, it is preferable to set the average cooling rate to 300°C to 0.1°C/sec or more or 0.5°C/sec or more.
 本実施形態に係る鋼板は、液化CO輸送タンク用の鋼板として好適である。例えば、船舶に搭載する輸送用タンクとして用いることができる。船舶によってCOを輸送する際は、船舶に備え付けられた輸送タンクに、液化されたCOを充填して輸送するが、輸送タンク内でのCOの固体化(ドライアイス化)を防止するために、2MPa程度の圧力に保持した状態で輸送することが好ましい。また、2MPa程度の圧力においてCOを液体の状態を維持するには、COをマイナス35℃程度に保つことが好ましい。本実施形態に係る鋼板は、このような用途に好適に用いることができる。 The steel plate according to the present embodiment is suitable as a steel plate for a liquefied CO2 transport tank. For example, it can be used as a transport tank mounted on a ship. When transporting CO2 by ship, liquefied CO2 is filled into a transport tank installed on the ship and transported, but in order to prevent CO2 from solidifying (becoming dry ice) in the transport tank, it is preferable to transport it while maintaining a pressure of about 2 MPa. In addition, in order to maintain CO2 in a liquid state at a pressure of about 2 MPa, it is preferable to keep CO2 at about minus 35°C. The steel plate according to the present embodiment can be suitably used for such applications.
 次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得る。 Next, an embodiment of the present invention will be described. However, the conditions in the embodiment are merely an example of conditions adopted to confirm the feasibility and effects of the present invention, and the present invention is not limited to this example of conditions. Various conditions may be adopted in the present invention as long as they do not deviate from the gist of the present invention and achieve the object of the present invention.
 高炉処理を終えた溶銑を溶銑鍋に出銑し、脱硫等の溶銑予備処理を行った後に、溶銑を転炉に挿入した。次いで、転炉にて脱リン処理を行い、P含有量を0.006%以下に調整した。 The molten iron that had completed the blast furnace treatment was tapped into a molten iron ladle, and after preliminary treatment such as desulfurization was carried out, the molten iron was then inserted into a converter. Next, dephosphorization was carried out in the converter, and the P content was adjusted to 0.006% or less.
 脱リン処理した溶鋼に対して更に成分調整を行った後、表1A及び表1Bに示す化学組成を有するスラブを鋳造した。
 その後、スラブを、加熱炉により表に示す加熱温度に加熱した後、熱間圧延により所定の板厚まで圧延して、鋼板とした。
 さらに、この鋼板に焼入れ焼戻しを行って、所定の特性を有する鋼板(最終鋼板)を得た。表2に、圧延前の加熱温度、熱間圧延の1150~900℃での累積圧下率、圧延後の板厚、焼入れ温度および焼戻し温度を示す。再加熱焼入れ後または焼戻し後の冷却は水冷により行い、300℃までの平均冷却速度を0.1℃/秒以上とした。また、一部の鋼板については、熱間圧延後に、直ちに水冷される直接焼入れ処理を実施した。この場合の冷却開始温度、冷却終了温度、平均冷却速度を表に示す。
The dephosphorized molten steel was further subjected to composition adjustment, and then slabs having the chemical compositions shown in Tables 1A and 1B were cast.
Thereafter, the slab was heated in a heating furnace to the heating temperature shown in the table, and then hot-rolled to a predetermined plate thickness to obtain a steel plate.
Furthermore, the steel plate was quenched and tempered to obtain a steel plate (final steel plate) having the specified properties. Table 2 shows the heating temperature before rolling, the cumulative reduction ratio of hot rolling at 1150 to 900°C, the plate thickness after rolling, the quenching temperature, and the tempering temperature. Cooling after reheating and quenching or after tempering was performed by water cooling, and the average cooling rate to 300°C was set to 0.1°C/sec or more. In addition, for some steel plates, direct quenching treatment was performed in which the steel plate was immediately water-cooled after hot rolling. The cooling start temperature, cooling end temperature, and average cooling rate in this case are shown in the table.
 表1A及び表1Bに鋼板の化学成分、α値、β値、γ値、fB値及び炭素当量Ceqを示す。また、表3Aの母材特性のSR前の欄に、121点の測定位置における母材硬度の平均値(平均Hv)、平均結晶粒径(EBSD粒径)、降伏強さ(MPa)、引張強さ(MPa)、降伏比、-65℃におけるシャルピー吸収エネルギー(J)、-35℃におけるCTOD試験のδ値(mm)を示す。
 EBSD粒径の測定は、鋼板のL断面が観察できるサンプルを作成し、L断面の1/4厚位置を観察部とし、走査電子顕微鏡を用いた電子ビーム後方散乱回析パターン解析法(Electron Backscatter Diffraction method:EBSD法)を用いた結晶方位解析を、板厚方向に200μm、圧延方向に250μmの範囲にて、0.5μmピッチで行った。結晶方位解析の結果から、結晶方位差が15°以上の粒界で囲まれる領域を結晶粒と定義し、結晶粒の円相当粒径を結晶粒径と定義し、結晶粒毎の面積で重みづけをした面積加重平均で算出した値を、平均結晶粒径とした。
Tables 1A and 1B show the chemical composition, α value, β value, γ value, fB value, and carbon equivalent Ceq of the steel plate. In addition, the column before SR of the base material properties in Table 3A shows the average hardness (average Hv) of the base material at 121 measurement positions, the average grain size (EBSD grain size), the yield strength (MPa), the tensile strength (MPa), the yield ratio, the Charpy absorbed energy (J) at -65°C, and the δ value (mm) of the CTOD test at -35°C.
The EBSD grain size was measured by preparing a sample in which the L-section of the steel sheet could be observed, observing the 1/4 thickness position of the L-section, and performing crystal orientation analysis using an electron beam backscatter diffraction pattern analysis method (EBSD method) using a scanning electron microscope in a range of 200 μm in the sheet thickness direction and 250 μm in the rolling direction at a pitch of 0.5 μm. From the results of the crystal orientation analysis, the region surrounded by grain boundaries with a crystal orientation difference of 15° or more was defined as a crystal grain, the circle-equivalent grain size of the crystal grain was defined as the crystal grain size, and the value calculated by the area-weighted average weighted by the area of each crystal grain was defined as the average crystal grain size.
 引張試験は、JIS Z 2241:2011に準拠し、1/4厚位置からC方向に、平行部がφ14mmのJIS4号丸棒試験片を採取して行った。降伏強さ及び引張強さは、それぞれ、2本の試験片の平均値である。降伏強さは、0.2%耐力とした。降伏比は、引張強さTSに対する降伏強さYSの割合であり、百分率、すなわち、100×(YS/TS)で表される。降伏比の単位は%である。 The tensile test was conducted in accordance with JIS Z 2241:2011, using JIS No. 4 round bar test pieces with a parallel section of φ14 mm taken from the 1/4 thickness position in the C direction. The yield strength and tensile strength are each the average of two test pieces. The yield strength was taken as 0.2% proof stress. The yield ratio is the ratio of the yield strength YS to the tensile strength TS, and is expressed as a percentage, i.e., 100 x (YS/TS). The yield ratio is expressed in %.
 硬度分布測定は、鋼板の圧延方向及び板厚方向に平行なL断面を観察面としてミクロ試料を採取し、観察面を湿式研磨した後、1.0μmのダイヤモンド粒子を使用してバフ研磨で仕上げた鏡面を、マイクロビッカース硬さ試験機を用いて、測定を行った。測定領域はミクロ観察面内の1/4t位置を中心とする0.5mm×0.5mmの範囲を無作為に選定し、測定ピッチ0.05mm、測定荷重は25gfで縦11点×横11点の計121点測定を行った。得られた測定値から、平均値と標準偏差を算出した。 For hardness distribution measurements, a micro sample was taken with the L-section parallel to the rolling direction and thickness direction of the steel plate as the observation surface, the observation surface was wet polished, and then the mirror surface was buffed using 1.0 μm diamond particles, and measurements were taken using a micro Vickers hardness tester. The measurement area was randomly selected within a 0.5 mm x 0.5 mm range centered on the 1/4t position within the micro observation surface, and measurements were taken at a total of 121 points (11 vertical x 11 horizontal) with a measurement pitch of 0.05 mm and a measurement load of 25 gf. The average value and standard deviation were calculated from the obtained measurements.
 また、圧延方向と平行な溶接線の半自動溶接継手を作成し、評価した。具体的には、K開先を作成し、20%COを含有するアルゴンガスをシールドガスとし、溶接ワイヤを日鉄溶接工業(株)製の溶接ワイヤYM-69Fとし、入熱量を2.0kJ/mmとし、予熱を100℃として、多層盛りのガスシールドアーク溶接(GMAW)を行い、溶接継手を製造した。 In addition, a semi-automatic welded joint with a weld line parallel to the rolling direction was produced and evaluated. Specifically, a K groove was produced, argon gas containing 20% CO2 was used as the shielding gas, the welding wire was YM-69F manufactured by Nippon Steel Welding Industry Co., Ltd., the heat input was set to 2.0 kJ/mm, and the preheating was set to 100°C, and multi-layer gas shielded arc welding (GMAW) was performed to produce a welded joint.
 溶接継手の、溶接部(As weld)からC断面でミクロ組織を現出させた後、表側I側溶融線(FL)をそれぞれのノッチ中央の位置として、表面下6.5mm位置を中心とする位置(表中表面採取と記載)および板厚中心部(表中t/2採取と記載)を中心とする位置からシャルピー試験片を採取した。
 この試験片に対し、-65℃のシャルピー試験を行い、吸収エネルギーを求めた。結果を表3Bの継手特性のAsweldの欄に示す。
 また、溶接部のミクロ組織を現出させた後、表側I側溶融線をそれぞれのノッチ中央の位置として全厚のCTOD試験片を採取し、-35℃でCTOD試験を行って、δ値を求めた。結果を表3Bの継手特性のAsweldの欄に示す。
After the microstructure of the welded joint was revealed at the C-section from the welded part (As weld), Charpy test pieces were taken from a position centered at 6.5 mm below the surface (referred to as surface sampling in the table) and a position centered at the plate thickness center (referred to as t/2 sampling in the table) with the front I-side fusion line (FL) as the center of each notch.
The test pieces were subjected to a Charpy test at −65° C. to determine the absorbed energy. The results are shown in the Asweld column of the joint properties in Table 3B.
After the microstructure of the weld was revealed, a full-thickness CTOD test piece was taken with the front I-side fusion line positioned at the center of each notch, and a CTOD test was performed at -35°C to determine the δ value. The results are shown in the Asweld column of the joint properties in Table 3B.
 その後、母材及び溶接部に対して応力除去焼鈍(SR)を行った。応力除去焼鈍は、保持温度を600℃とし、保持時間を2時間とし、昇温速度および降温速度が、425℃以上の温度域において55℃/hr以下の条件とした。 Then, stress relief annealing (SR) was performed on the base material and welded parts. Stress relief annealing was performed at a holding temperature of 600°C for 2 hours, with heating and cooling rates of 55°C/hr or less in the temperature range of 425°C or higher.
 SR後の母材の降伏強さ及び引張強さを、SR前と同様の要領で求めた。
 また、SR後の母材のt/4位置でC方向に採取した試験片に対し、-40℃でシャルピー試験を行い、シャルピー吸収エネルギーを求めた。また-35℃でCTOD試験を行い、δ値を求めた。
 これらの結果を、表3Aの母材特性のSR後の欄に示す。
The yield strength and tensile strength of the base material after SR were determined in the same manner as before SR.
In addition, a Charpy test was performed at -40°C on a test piece taken in the C direction at the t/4 position of the base material after SR to determine the Charpy absorbed energy. A CTOD test was also performed at -35°C to determine the δ value.
These results are shown in the column after SR of the base material properties in Table 3A.
 更に、SR後の溶接部からC断面でミクロ組織を現出させた後、表側I側溶融線をそれぞれのノッチ中央の位置として、表面下6.5mm位置およびt/2位置を中心とするシャルピー試験片を採取し、試験で得られた-40℃のシャルピー吸収エネルギーを示す。また、SR後の溶接部のミクロ組織を現出させた後、表側I側溶融線をそれぞれのノッチ中央の位置として全厚のCTOD試験片を採取し、試験で得られた-35℃におけるCTOD試験のδ値を示す。
 これらの結果を、表3Bの継手特性のSR後の欄に示す。
Furthermore, after the microstructure was revealed from the welded portion after SR at the C-section, Charpy test pieces were taken with the I-side fusion line on the front side as the center of each notch, and the center positions were 6.5 mm below the surface and t/2, and the Charpy absorbed energy at -40°C obtained in the test is shown. In addition, after the microstructure of the welded portion after SR was revealed, full-thickness CTOD test pieces were taken with the I-side fusion line on the front side as the center of each notch, and the δ value of the CTOD test at -35°C obtained in the test is shown.
These results are shown in the column after SR of the joint properties in Table 3B.
 母材及び溶接部のシャルピー吸収エネルギーは、母材及び溶接部から三個ずつVノッチ試験片を採取し、所定の温度でシャルピー衝撃試験を行い、吸収エネルギーを測定した。Vノッチ試験片は、JIS Z 2242:2005に記載されたフルサイズ試験片を各板厚位置からC方向に採取した。また、シャルピー衝撃試験は、JIS Z 2242:2005に準拠して行った。 The Charpy absorbed energy of the base material and welded joints was measured by taking three V-notch test pieces from each of the base material and welded joints and conducting a Charpy impact test at a specified temperature. The V-notch test pieces were full-size test pieces as specified in JIS Z 2242:2005 taken in the C direction from each plate thickness position. The Charpy impact test was also conducted in accordance with JIS Z 2242:2005.
 CTOD試験のδ値(δc)は、BS7448規格(British Standard)Part1(1991)、及びBS7448規格(British Standard)Part2(1997)に準拠して測定を行った。
 母材については、試験片の長手方向が圧延方向と垂直になるC方向(板幅方向)について評価を行った。
 溶接継手部においては、K形開先の加工した鋼板突き合わせ部に、入熱量35kJ/mmでガスシールドアーク溶接を実施し、溶接部のCTOD試験片の疲労ノッチの先端が、溶接部のI側フュージョンライン(FL)の板厚中央部となるよう加工し、CTOD試験を所定の温度で実施した。溶接継手については、L方向(圧延方向)についてのみ評価を行った。溶接継手のCTODの評価においては、疲労き裂の先端が溶接ボンドに相当するように試験片を採取した。各試験温度で、3本の試験を行い、得られた測定データの最低値をCTOD試験のδ値とした。表3A及び表3Bに示すCDODの単位はmmである。
The δ value (δc) in the CTOD test was measured in accordance with BS7448 (British Standard) Part 1 (1991) and BS7448 (British Standard) Part 2 (1997).
For the base material, evaluation was performed in the C direction (sheet width direction) in which the longitudinal direction of the test piece was perpendicular to the rolling direction.
In the welded joint, gas shielded arc welding was performed at a heat input of 35 kJ/mm on the butted steel plate of the K-groove, and the tip of the fatigue notch of the CTOD test piece of the weld was processed to be the center of the plate thickness of the I-side fusion line (FL) of the weld, and the CTOD test was performed at a specified temperature. The welded joint was evaluated only in the L direction (rolling direction). In the evaluation of the CTOD of the welded joint, the test piece was taken so that the tip of the fatigue crack corresponds to the weld bond. Three tests were performed at each test temperature, and the minimum value of the measured data obtained was taken as the δ value of the CTOD test. The unit of CDOD shown in Tables 3A and 3B is mm.
 表1A~表3Bに示すように、本発明例であるNo.1~14は、いずれも、優れた強度及び靱性を有していた。特に、SR処理後であっても、優れた低温靭性を示した。また、SR処理後の降伏強度が670~870N/mmおよび引張強さが780~940N/mmとなり良好な値を示した。
 また、No.1~14は、溶接継手の溶接熱影響部におけるシャルピー吸収エネルギーが、SR処理前(-65℃)およびSR処理後(-40℃)の両方において70Jを超えており、低温靭性が良好だった。
As shown in Tables 1A to 3B, all of the inventive examples Nos. 1 to 14 had excellent strength and toughness. In particular, they showed excellent low-temperature toughness even after the SR treatment. In addition, the yield strength after the SR treatment was 670 to 870 N/ mm2 and the tensile strength was 780 to 940 N/ mm2 , which were good values.
In addition, in Nos. 1 to 14, the Charpy absorbed energy in the weld heat affected zone of the welded joint exceeded 70 J both before the SR treatment (−65° C.) and after the SR treatment (−40° C.), and the low temperature toughness was good.
 一方、表1A~表3Bに示すように、比較例であるNo.15~45及び55は、鋼板の化学組成(元素の含有量またはα値、β値、γ値、Ceq.)が本発明で規定される範囲を外れたので、少なくとも母材または溶接熱影響部のいずれかの靱性が劣化した。 On the other hand, as shown in Tables 1A to 3B, in the comparative examples Nos. 15 to 45 and 55, the chemical composition of the steel plate (element content or α value, β value, γ value, Ceq.) was outside the range specified in the present invention, and therefore the toughness of at least the base material or the welded heat-affected zone was deteriorated.
 また、No.46~54は、化学組成が本発明の成分範囲を満たしていたが、製造条件が好ましい製造条件を満足しなかった。そのため、靭性が劣化した。すなわち、少なくともt/4位置での-65℃でのシャルピー吸収エネルギーが100J未満であり、一部の例についてはその他の靱性も劣位であった。 In addition, although the chemical composition of Nos. 46 to 54 met the range of ingredients of the present invention, the manufacturing conditions did not meet the preferred manufacturing conditions. As a result, the toughness was deteriorated. In other words, the Charpy absorbed energy at -65°C at least at the t/4 position was less than 100 J, and in some examples, other toughness was also inferior.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本発明によれば、強度及び低温靭性に優れ、更には応力除去焼鈍後の強度及び低温靭性にも優れた鋼板を提供できる。この鋼板は、液化CO輸送タンク用に好適であり、産業上の利用可能性が高い。 According to the present invention, a steel plate having excellent strength and low-temperature toughness, and further having excellent strength and low-temperature toughness after stress relief annealing, can be provided. This steel plate is suitable for use in liquefied CO2 transport tanks and has high industrial applicability.

Claims (5)

  1.  化学組成が、質量%で、
    C :0.07~0.11%、
    Si:0.10~0.15%、
    Mn:0.70~1.20%、
    Ni:1.00~2.50%、
    Cr:0.20~0.80%、
    Mo:0.20~0.80%、
    V :0.005~0.070%、
    Al:0.010~0.100%、
    B :0.0005~0.0030%、
    N :0.0015~0.0050%、
    P :0.006%以下、
    S :0.0030%以下、
    Cu:0~1.00%、
    Nb:0~0.030%、
    Ti:0~0.010%、
    Ca:0~0.0030%、
    Mg:0~0.0030%、
    REM:0~0.0030%、
    O :0.0040%以下、
    残部:Feおよび不純物であり、
     下記(1)式によって定義されるα値が1.00~1.50質量%、
     下記(2)式によって定義されるβ値が10.0~15.0、
     下記(3)式によって定義されるγ値が0.70~1.50質量%、
     下記(4)式によって定義されるCeq値が0.550~0.620質量%、
     降伏強度が670~870N/mm
     引張強さが780~940N/mm
     -65℃におけるシャルピー吸収エネルギーが100J以上、
     1/4厚位置での1mm×1mm、0.05mmピッチの硬度分布測定において、121点の測定位置における硬度の平均値が265Hv~290Hv、標準偏差が20以下、
     板厚が10~60mmである、
    鋼板。
     α=[C]+6×[Si]+100×[P] …(1)
     β=0.65×[C]1/2×(1+0.64×[Si])×(1+4.10×[Mn])×(1+0.27×[Cu])×(1+0.52×[Ni])×(1+2.33×[Cr])×(1+3.14×[Mo]) …(2)
     γ=[Mn]+20×[Nb]+36×[Ti] …(3)
     Ceq=[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/5 …(4)
     ただし、(1)式~(4)式における[C]、[Si]、[P]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[Nb]、[Ti]および[V]、は、それぞれC、Si、P、Mn、Cu、Ni、Cr、Mo、Nb、TiおよびVの含有量(質量%)であって、不純物として混入する元素量も含め、含有しない元素は0を代入する。
    The chemical composition, in mass%, is
    C: 0.07 to 0.11%,
    Si: 0.10 to 0.15%,
    Mn: 0.70 to 1.20%,
    Ni: 1.00 to 2.50%,
    Cr: 0.20 to 0.80%,
    Mo: 0.20 to 0.80%,
    V: 0.005 to 0.070%,
    Al: 0.010 to 0.100%,
    B: 0.0005 to 0.0030%,
    N: 0.0015 to 0.0050%,
    P: 0.006% or less,
    S: 0.0030% or less,
    Cu: 0 to 1.00%,
    Nb: 0 to 0.030%,
    Ti: 0 to 0.010%,
    Ca: 0 to 0.0030%,
    Mg: 0 to 0.0030%,
    REM: 0 to 0.0030%,
    O: 0.0040% or less,
    The balance is Fe and impurities.
    an α value defined by the following formula (1) of 1.00 to 1.50 mass%,
    A β value defined by the following formula (2) is 10.0 to 15.0,
    A γ value defined by the following formula (3) is 0.70 to 1.50 mass%,
    The Ceq value defined by the following formula (4) is 0.550 to 0.620 mass%,
    Yield strength is 670 to 870 N/mm 2 ,
    Tensile strength of 780 to 940 N/mm 2 ,
    Charpy absorbed energy at -65°C is 100 J or more,
    In a hardness distribution measurement at 1/4 thickness position, 1 mm x 1 mm, 0.05 mm pitch, the average hardness at 121 measurement points is 265 Hv to 290 Hv, with a standard deviation of 20 or less.
    The plate thickness is 10 to 60 mm.
    Steel plate.
    α = [C] + 6 × [Si] + 100 × [P] ... (1)
    β = 0.65 × [C] 1/2 × (1 + 0.64 × [Si]) × (1 + 4.10 × [Mn]) × (1 + 0.27 × [Cu]) × (1 + 0.52 × [Ni]) × (1 + 2.33 × [Cr]) × (1 + 3.14 × [Mo]) ... (2)
    γ = [Mn] + 20 × [Nb] + 36 × [Ti] ... (3)
    Ceq = [C] + [Mn] / 6 + ([Cu] + [Ni]) / 15 + ([Cr] + [Mo] + [V]) / 5 ... (4)
    In the formulas (1) to (4), [C], [Si], [P], [Mn], [Cu], [Ni], [Cr], [Mo], [Nb], [Ti], and [V] represent the contents (mass %) of C, Si, P, Mn, Cu, Ni, Cr, Mo, Nb, Ti, and V, respectively, and elements that are not contained, including the amount of elements mixed in as impurities, are substituted with 0.
  2.  下記(A)式~(E)式によって求められる[fB]が0.0003質量%以上である、
    請求項1に記載の鋼板。
    [fB]=[B]-0.77×[fN] …(A)
    [fN]=[N]-0.29×[fTi]-0.52×[fAl] …(B)
    [fTi]=[Ti]-2×[fO] …(C)
    [fAl]=[Al]-1.125×[fO] …(D)
    [fO]=[O]-0.4×[Ca]-0.66×[Mg]-0.11×[REM] …(E)
     ただし、(A)式~(E)式における[B]、[N]、[Ti]、[Al]、[O]、[Ca]、[Mg]、[REM]はそれぞれ、B、N、Ti、Al、O、Ca、Mg、REMの含有量(質量%)であって、不純物として混入する元素量も含め、含有しない元素は0を代入し、また、[fN]、[fTi]、[fAl]、[fO]の計算値が0%未満の場合は0を代入する。
    [fB] calculated by the following formulas (A) to (E) is 0.0003 mass% or more,
    The steel sheet according to claim 1.
    [fB] = [B] - 0.77 x [fN] ... (A)
    [fN] = [N] - 0.29 x [fTi] - 0.52 x [fAl] ... (B)
    [fTi] = [Ti] - 2 × [fO] ... (C)
    [fAl] = [Al] - 1.125 × [fO] ... (D)
    [fO] = [O] - 0.4 x [Ca] - 0.66 x [Mg] - 0.11 x [REM] ... (E)
    In the formulas (A) to (E), [B], [N], [Ti], [Al], [O], [Ca], [Mg], and [REM] represent the contents (mass%) of B, N, Ti, Al, O, Ca, Mg, and REM, respectively. Elements that are not contained, including the amount of elements mixed in as impurities, are substituted with 0, and when the calculated values of [fN], [fTi], [fAl], and [fO] are less than 0%, 0 is substituted.
  3.  電子ビーム後方散乱回析パターン解析法を用いた結晶方位解析を行うことにより判別される、結晶方位差が15°以上の粒界で囲まれる領域を結晶粒と定義し、前記結晶粒の円相当粒径を結晶粒径と定義し、前記結晶粒の円相当粒径を結晶粒径と定義し、結晶粒毎の面積で重みづけをした面積加重平均で算出した値を、平均結晶粒径と定義したとき、1/4厚位置における前記平均結晶粒径が15.0μm以下である、
    請求項1または請求項2に記載の鋼板。
    When a region surrounded by a grain boundary having a crystal orientation difference of 15° or more, as determined by performing a crystal orientation analysis using an electron beam backscatter diffraction pattern analysis method, is defined as a crystal grain, the circle equivalent diameter of the crystal grain is defined as the crystal grain size, and a value calculated by an area weighted average weighted by the area of each crystal grain is defined as an average crystal grain size, the average crystal grain size at the 1/4 thickness position is 15.0 μm or less,
    The steel sheet according to claim 1 or 2.
  4.  保持温度が600℃であり、保持時間が2時間であり、且つ、昇温速度および降温速度が、425℃以上の温度域において55℃/hr以下である応力除去焼鈍を前記鋼板に対し行った場合、前記応力除去焼鈍が行われた箇所の、降伏強度が670~870N/mm、および引張強さが780~940N/mmであり、-40℃におけるシャルピー吸収エネルギーが27J以上である、
    請求項1または請求項2に記載の鋼板。
    When the steel sheet is subjected to stress relief annealing at a holding temperature of 600°C, a holding time of 2 hours, and a heating rate and a cooling rate of 55°C/hr or less in a temperature range of 425°C or more, the yield strength of the part subjected to the stress relief annealing is 670 to 870 N/ mm2 , the tensile strength is 780 to 940 N/ mm2 , and the Charpy absorbed energy at -40°C is 27 J or more.
    The steel sheet according to claim 1 or 2.
  5.  保持温度が600℃であり、保持時間が2時間であり、且つ、昇温速度および降温速度が、425℃以上の温度域において55℃/hr以下である応力除去焼鈍を前記鋼板に対し行った場合、前記応力除去焼鈍が行われた箇所の、降伏強度が670~870N/mm、および引張強さが780~940N/mmであり、-40℃におけるシャルピー吸収エネルギーが27J以上である、
    請求項3に記載の鋼板。
    When the steel sheet is subjected to stress relief annealing at a holding temperature of 600°C, a holding time of 2 hours, and a heating rate and a cooling rate of 55°C/hr or less in a temperature range of 425°C or more, the yield strength of the part subjected to the stress relief annealing is 670 to 870 N/ mm2 , the tensile strength is 780 to 940 N/ mm2 , and the Charpy absorbed energy at -40°C is 27 J or more.
    The steel sheet according to claim 3.
PCT/JP2023/035791 2022-09-30 2023-09-29 Steel plate WO2024071422A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024501495A JP7469734B1 (en) 2022-09-30 2023-09-29 Steel Plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-157410 2022-09-30
JP2022157410 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024071422A1 true WO2024071422A1 (en) 2024-04-04

Family

ID=90478210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035791 WO2024071422A1 (en) 2022-09-30 2023-09-29 Steel plate

Country Status (2)

Country Link
JP (1) JP7469734B1 (en)
WO (1) WO2024071422A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015127444A (en) * 2013-12-27 2015-07-09 Jfeスチール株式会社 Steel material excellent in fatigue crack propagation property, manufacturing method therefor, and determination method of steel material excellent in fatigue crack propagation property
JP2015196891A (en) * 2014-04-02 2015-11-09 新日鐵住金株式会社 HIGH STRENGTH HOT ROLLED STEEL SHEET EXCELLENT IN STRETCH FLANGE-ABILITY AND LOW TEMPERATURE TOUGHNESS AND HAVING MAXIMUM TENSILE STRENGTH OF 980 MPa OR MORE AND PRODUCTION METHOD THEREFOR
WO2018020972A1 (en) * 2016-07-28 2018-02-01 新日鐵住金株式会社 High strength seamless steel pipe and riser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015127444A (en) * 2013-12-27 2015-07-09 Jfeスチール株式会社 Steel material excellent in fatigue crack propagation property, manufacturing method therefor, and determination method of steel material excellent in fatigue crack propagation property
JP2015196891A (en) * 2014-04-02 2015-11-09 新日鐵住金株式会社 HIGH STRENGTH HOT ROLLED STEEL SHEET EXCELLENT IN STRETCH FLANGE-ABILITY AND LOW TEMPERATURE TOUGHNESS AND HAVING MAXIMUM TENSILE STRENGTH OF 980 MPa OR MORE AND PRODUCTION METHOD THEREFOR
WO2018020972A1 (en) * 2016-07-28 2018-02-01 新日鐵住金株式会社 High strength seamless steel pipe and riser

Also Published As

Publication number Publication date
JP7469734B1 (en) 2024-04-17

Similar Documents

Publication Publication Date Title
JP5773098B1 (en) Ferritic-martensitic duplex stainless steel and method for producing the same
KR101846759B1 (en) Steel plate and method for manufacturing same
JP5846311B2 (en) Thick high-strength steel excellent in welding heat affected zone CTOD characteristics and method for producing the same
KR100967498B1 (en) Thick plate for high heat-input welding excellent in brittle crack arrestibility
EP2272994A1 (en) High-tensile strength steel and manufacturing method thereof
JP6193206B2 (en) Steel plate and line pipe steel pipe with excellent sour resistance, HAZ toughness and HAZ hardness
JP6834550B2 (en) Steel materials for tanks and their manufacturing methods
JP6245352B2 (en) High-tensile steel plate and manufacturing method thereof
KR20170118899A (en) Steel plate for high-strength line pipe with excellent low temperature toughness and steel pipe for high strength line pipe
JP2016183387A (en) Thick steel plate for low temperature and production method therefor
JP4547944B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP6036645B2 (en) Ferritic-martensitic duplex stainless steel with excellent low-temperature toughness and method for producing the same
JP2022510933A (en) Steel materials with excellent hydrogen-induced crack resistance and their manufacturing methods
CN115210400B (en) Steel material, method for producing same, and tank
KR20210027412A (en) High Mn steel and its manufacturing method
WO2015064077A1 (en) Ferrite-martensite two-phase stainless steel, and method for producing same
KR101937005B1 (en) Weld joint
JP7104370B2 (en) Thick steel plate and its manufacturing method
JP2017110249A (en) Sour resistant steel plate
JP7469734B1 (en) Steel Plate
EP3378962B1 (en) High heat input welded steel material
JP2020111771A (en) Steel sheet for line pipe
JP7323090B1 (en) Steel plate and steel plate manufacturing method
TWI719857B (en) Steel and its manufacturing method and trough
KR102508128B1 (en) Steel plate having excellent low temperature impact toughness of heat affeected zone and manufacturing mehtod for the same