WO2024071377A1 - Information processing device, information processing method, and program - Google Patents

Information processing device, information processing method, and program Download PDF

Info

Publication number
WO2024071377A1
WO2024071377A1 PCT/JP2023/035615 JP2023035615W WO2024071377A1 WO 2024071377 A1 WO2024071377 A1 WO 2024071377A1 JP 2023035615 W JP2023035615 W JP 2023035615W WO 2024071377 A1 WO2024071377 A1 WO 2024071377A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
time
space
resolution
observation
Prior art date
Application number
PCT/JP2023/035615
Other languages
French (fr)
Japanese (ja)
Inventor
領 大西
勇輝 安田
Original Assignee
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学 filed Critical 国立大学法人東京工業大学
Publication of WO2024071377A1 publication Critical patent/WO2024071377A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass

Definitions

  • This disclosure relates to an information processing device, an information processing method, and a program.
  • Non-Patent Document 1 discloses a technology called super-resolution data assimilation (SRDA).
  • Non-Patent Documents 2 to 5 disclose technologies related to the present disclosure.
  • Non-Patent Document 1 simply combines a super-resolution technique with a data assimilation technique. Therefore, in Non-Patent Document 1, data assimilation is performed by ensemble calculation. Here, in ensemble calculation, it is necessary to simulate various similar situations. Therefore, with the technology in Non-Patent Document 1, there is a risk that the calculation costs will increase if an attempt is made to make accurate predictions. Therefore, with the technology in Non-Patent Document 1, there is a risk that it will not be possible to make accurate and efficient predictions.
  • the present disclosure aims to provide an information processing device, information processing method, and program that can accurately and efficiently predict the state of the environment.
  • the information processing device has a structure conversion unit that converts the structure of observation data, which is data obtained by observing a state in space-time, into observation data having a lattice data structure that indicates numerical values defined on lattice points arranged at a predetermined interval in space-time; a latent space-time mapping unit that maps the observation data converted into lattice data and prediction data, which is lattice data in space-time obtained by simulation and includes at least the time of the observation data and a time before the observation data, from a first real time-space to a latent space-time having a smaller number of elements than the first real time-space; a nonlinear transformation unit that performs a nonlinear transformation on the observation data and the prediction data that have been mapped in the latent space-time; and a high-resolution analysis data acquisition unit that acquires high-resolution analysis data that is lattice data in space-time and has a higher resolution in space-time than the prediction data by mapping the observation data and the prediction data
  • the information processing method converts the structure of observation data, which is data obtained by observing a state in space-time, into observation data having a lattice data structure showing numerical values defined on lattice points arranged at a predetermined interval in space-time, maps the observation data converted into lattice data and predicted data, which is lattice data in space-time obtained by simulation and includes at least the time of the observation data and a time before the observation data, from a first real-time space to a latent-time space having fewer elements than the first real-time space, performs a nonlinear transformation on the mapped observation data and the predicted data in the latent-time space, and maps the nonlinearly transformed observation data and the predicted data from the latent-time space to a second real-time space having a larger number of elements than the latent-time space and a higher resolution than the first real-time space, thereby obtaining high-resolution analysis data that is lattice data in space-time and has a higher resolution in space-
  • the program disclosed herein includes a process for converting the structure of observation data, which is data obtained by observing a state in space-time, into observation data having a lattice data structure indicating numerical values defined on lattice points arranged at a predetermined interval in space-time; a process for mapping the observation data converted into lattice data and predicted data, which is lattice data in space-time obtained by simulation and is at least for the time of the observation data and a time including the past of the observation data, from a first real time-space to a latent time-space having a smaller number of elements than the first real time-space; and a process for mapping the mapped observation data and predicted data in the latent time-space.
  • the process of mapping from the first real space-time to the latent space-time and the process of performing a nonlinear transformation on the observation data and the predicted data in the latent space-time perform data assimilation between the observation data and the predicted data.
  • the present disclosure provides an information processing device, information processing method, and program that can accurately and efficiently predict the state of the environment.
  • FIG. 13 is a diagram for explaining calculation resolution and grid data.
  • FIG. 13 is a diagram for explaining calculation resolution and grid data.
  • FIG. 13 is a diagram for explaining a super-resolution simulation method.
  • 1 is a diagram showing a configuration of an information processing device according to an embodiment of the present invention
  • 4 is a flowchart showing an information processing method executed by the information processing device according to the present embodiment.
  • 1 is a diagram illustrating a configuration of an information processing device according to a first embodiment.
  • FIG. 1 is a diagram for explaining a technique according to a comparative example.
  • FIG. 2 is a diagram for explaining super-resolution and data assimilation according to the first embodiment.
  • 11 is a diagram comparing experimental results according to the first embodiment with experimental results according to a comparative example.
  • FIG. 1 is a diagram for explaining a method of learning components according to the first embodiment using a variational Bayes method.
  • FIG. FIG. 1 is a block diagram illustrating an example of the hardware configuration of a calculation processing device capable of realizing an apparatus and a system according to each embodiment.
  • micrometeorological forecasts are sometimes applied.
  • Micrometeorological forecasts refer to the weather near the ground up to an altitude of about 100 m, which is heavily influenced by artificial structures and human activities.
  • Micrometeorological forecasts provide simulation results with a resolution of about 100 to 1000 times higher than that of general weather forecasts.
  • Micrometeorological forecasts are mainly provided for urban areas, but their application is not limited to cities. Because of their ultra-high resolution, micrometeorological forecasts can incorporate flows past buildings and heat exhaust from buildings, which are not considered in normal weather forecasts. In other words, micrometeorological forecasts can simulate atmospheric flows that are closer to reality.
  • micrometeorological forecasts will likely obtain observational data from sensors, cameras, drones, smartphones, etc. placed in urban environments, and use these observational data to make predictions. In order to make such predictions accurately, it is necessary to increase the resolution of the calculations.
  • Figures 1 and 2 are diagrams for explaining calculation resolution and grid data.
  • Figure 1 shows a three-dimensional calculation mesh G1.
  • the three-dimensional calculation mesh G1 is represented by a grid corresponding to a three-dimensional space defined by a three-dimensional coordinate space of the X-axis, Y-axis, and Z-axis.
  • the shorter the grid spacing the higher the resolution of the calculation in the spatial direction.
  • the longer the grid spacing the lower the resolution of the calculation in the spatial direction.
  • FIG. 2 shows a four-dimensional computation mesh G2.
  • the four-dimensional computation mesh G2 is configured such that the three-dimensional computation mesh G1 is arranged in the time direction (shown by the T axis), that is, in a time series.
  • the shorter the time interval (sampling period; the interval between T1 and T2 in FIG. 2) the higher the resolution of the computation in the time direction.
  • the longer the time interval the lower the resolution of the computation in the time direction.
  • the "space-time" is described as a four-dimensional space-time defined by three-dimensional space and one-dimensional time, but the dimension of the space-time is not limited to four dimensions.
  • lattice data indicates the numerical values of physical quantities (velocity, etc.) defined on lattice points arranged at a predetermined interval in space-time. That is, at each point in three-dimensional space (three-dimensional computation mesh G1), there is a numerical value (physical quantity, etc.) indicating the state of that point, and as shown in the four-dimensional computation mesh G2, the numerical value of each point changes in the one-dimensional time direction. The change in the time direction of each point in this three-dimensional space is indicated by lattice data.
  • the lattice data can be expressed as a four-dimensional data array (numerical array) indicating the numerical values of the physical quantities, etc.
  • the number of elements in the data array is called the number of elements.
  • a data array can be provided for each physical quantity.
  • the lattice data can be called structured data.
  • the lattice data may indicate physical quantities that humans can understand, or may indicate numerical values that humans cannot understand.
  • the lattice data has a structure indicating numerical values defined on lattice points arranged at a predetermined interval in space-time.
  • Figure 3 is a diagram for explaining the super-resolution simulation method.
  • the super-resolution simulation system uses a super-resolution device to perform super-resolution on the low-resolution prediction results obtained by performing a low-resolution simulation. This results in a high-resolution prediction result.
  • the super-resolution device learns through deep learning (neural network) using the high-resolution results obtained in advance from a high-resolution simulation. In other words, the super-resolution device learns by performing supervised learning using a large amount of high-resolution results as training data in advance. With this configuration, during operation, high-resolution prediction results can be obtained by performing a low-resolution simulation, thereby reducing calculation costs.
  • Non-Patent Document 1 simply combines the super-resolution method and the data assimilation method. In other words, in Non-Patent Document 1, super-resolution and data assimilation are performed independently. In such a method, it is necessary to perform data assimilation by ensemble calculation. Therefore, the calculation cost increases.
  • FIG. 4 is a diagram showing the configuration of an information processing device 10 according to this embodiment.
  • the information processing device 10 is, for example, a computer.
  • the information processing device 10 has a simulation unit 20, an observation data acquisition unit 22, a prediction data acquisition unit 24, a structural transformation unit 30, a latent space-time mapping unit 40, a nonlinear transformation unit 50, a high-resolution analysis data acquisition unit 60, and a low-resolution analysis data calculation unit 70.
  • These components can be realized by a hardware configuration described later. The functions of these components will be described later.
  • FIG. 5 is a flowchart showing an information processing method executed by the information processing device 10 according to this embodiment.
  • the simulation unit 20 performs a simulation of the state of the environment (step S20). Specifically, the simulation unit 20 performs a low-resolution simulation as described above. More specifically, the simulation unit 20 performs a low-resolution simulation in the time direction and the spatial direction.
  • the observation data acquisition unit 22 acquires one or more types of observation data (step S22).
  • the observation data is data obtained by observing a state in time and space.
  • the observation data can be acquired, for example, from sensors and cameras placed in the environment, drones, smartphones, etc.
  • the structure of the observation data does not need to be a lattice data structure.
  • the resolution is arbitrary and may be low resolution or high resolution. Details of the observation data will be described later.
  • the prediction data acquisition unit 24 acquires the prediction data (step S24). Specifically, the prediction data acquisition unit 24 acquires the prediction data, which is the result of the simulation by the simulation unit 20.
  • the prediction data is time series data indicating the change in state over time.
  • the prediction data is also lattice data in space-time obtained by the simulation.
  • the prediction data is prediction data for a time (time series) that includes at least the time of the observation data and a time prior to that time.
  • the "time of the observation data" includes the latest time (reference time) in all the observation data. Details of the prediction data will be described later.
  • the structure conversion unit 30 converts the structure of the observation data (step S30). Specifically, the structure conversion unit 30 converts the structure of the observation data into observation data with a lattice data structure. More specifically, the structure conversion unit 30 converts the structure of the observation data, which is data obtained by observing a state in space-time, into observation data with a lattice data structure that indicates numerical values defined on lattice points arranged at predetermined intervals in space-time. The function of the structure conversion unit 30 will be described in detail later.
  • the latent space-time mapping unit 40 maps the observation data and prediction data into latent space-time (step S40). Specifically, the latent space-time mapping unit 40 maps the observation data converted into lattice data in the process of S30 and the prediction data obtained in the process of S24 from the first real space-time into latent space-time. As described below, data assimilation between the observation data and the prediction data is performed by the latent space-time mapping unit 40 (processing of S40).
  • the latent space-time is a space-time with fewer elements than the first real space-time.
  • the latent space-time is a space-time with lower resolution than the first real space-time. Therefore, the number of elements of the data array in the latent space-time is fewer than the number of elements of the data array in the first real space-time.
  • the data in the latent space-time can be composed of a numerical array that compresses the time and space information for the observed data and the predicted data.
  • the latent space-time can also be said to be a latent space that includes the concept of time (time series).
  • dimensions are not distinguished in the latent space-time. In other words, the latent space does not distinguish between time and space, nor does it distinguish between the dimensions of three-dimensional space.
  • the first real space-time is a space-time corresponding to the environment in which the predicted data is obtained.
  • the latent space-time mapping unit 40 can also obtain data in which observation data (observation data converted into lattice data) is mapped into latent space-time, and data in which prediction data is mapped (projected) into latent space-time, by mapping to latent space-time as described above.
  • the latent space-time mapping unit 40 may use the observation data converted into lattice data to map prediction data into latent space-time. Therefore, "data in which prediction data is mapped into latent space-time" may also include data obtained by mapping observation data into latent space-time.
  • mapping observation data the latent space-time mapping unit 40 maps the observation data alone into latent space-time.
  • mapping the predicted data using the observation data converted into lattice data By mapping the predicted data using the observation data converted into lattice data, data assimilation between the observation data and the predicted data is performed. In other words, when the observation data converted into lattice data and the predicted data are mapped into the latent space-time, they may be mixed (fused). In other words, in the latent space-time, the observation data converted into lattice data is incorporated into the predicted data.
  • the functions of the latent space-time mapping unit 40 will be described in more detail later.
  • the nonlinear transformation unit 50 performs a nonlinear transformation in the latent space-time (step S50). Specifically, the nonlinear transformation unit 50 performs a nonlinear transformation on the observation data and the predicted data that have been mapped in the latent space-time. More specifically, the nonlinear transformation unit 50 may fuse the observation data and the predicted data that have been mapped to the latent space-time to obtain data in the latent space-time (latent space-time data; fused data). Thus, the nonlinear transformation unit 50 (processing of S50) performs data assimilation between the observation data and the predicted data.
  • the nonlinear transformation unit 50 may also repeat the nonlinear transformation to make the distribution of the values of the latent space-time data mapped to the latent space-time discontinuous.
  • the nonlinear transformation unit 50 may also make the distribution of the values of the latent space-time data mapped to the latent space-time by the nonlinear transformation complex or simple.
  • the nonlinear transformation unit 50 may perform a nonlinear transformation so that super-resolution is appropriately performed. Note that the nonlinear transformation unit 50 may not change the number of elements when changing the distribution of the values. Note that super-resolution can be performed by increasing the number of elements.
  • the functions of the nonlinear conversion unit 50 will be described in more detail later.
  • the high-resolution analysis data acquisition unit 60 acquires high-resolution analysis data (step S60). Specifically, the high-resolution analysis data acquisition unit 60 maps the observation data and prediction data that have been subjected to nonlinear transformation from the latent time space to the second real time space. In this way, the high-resolution analysis data acquisition unit 60 acquires high-resolution analysis data.
  • the high-resolution analysis data is analysis data that has been subjected to super-resolution in the time direction and the space direction.
  • the second real-time space is a real-time space having a larger number of elements than the latent time space and a higher resolution than the first real-time space. Therefore, the second real-time space can be said to be a high-resolution space (HR space).
  • the high-resolution analysis data (HR analysis data) is lattice data in time and space.
  • the high-resolution analysis data is data with a higher resolution in time and space than the prediction data.
  • the high-resolution analysis data may be time series data in a time (time series) including the past and future of the time of the observation data. That is, when the input prediction data exists in the future with respect to the time of the observation data (reference time), the high-resolution analysis data is analysis data including a similar future time.
  • the prediction data may be prediction data in a time including the time of the observation data and the past and future of that time.
  • the high-resolution analysis data acquisition unit 60 may acquire high-resolution analysis data in a time including the past and future of the time of the observation data. A more detailed function of the high-resolution analysis data acquisition unit 60 will be described later.
  • the low-resolution analysis data calculation unit 70 calculates the low-resolution analysis data (step S70). Specifically, the low-resolution analysis data calculation unit 70 calculates the low-resolution analysis data using the high-resolution analysis data.
  • the low-resolution analysis data (LR analysis data) is analysis data with a lower resolution in time and space than the high-resolution analysis data. More specifically, the low-resolution analysis data calculation unit 70 calculates the low-resolution analysis data by performing arithmetic operations (mathematical methods) such as algebraic interpolation on the high-resolution analysis data. A more detailed description of the functions of the low-resolution analysis data calculation unit 70 will be given later.
  • the simulation unit 20 performs a simulation for the next timing using the low-resolution analysis data as input (S20). This causes the processing flow shown in FIG. 5 to be repeated.
  • the information processing device 10 is configured to acquire high-resolution analysis data by performing data assimilation and super-resolution on observation data in time and space and low-resolution prediction data in time and space.
  • the information processing device 10 is also configured to perform processing in latent time and space when acquiring high-resolution analysis data. Therefore, it becomes possible to accurately and efficiently predict the state of the environment.
  • the information processing device 10 is configured to calculate low-resolution analysis data. This makes it possible to continue performing low-resolution simulations. This makes it possible to perform simulations efficiently.
  • the nonlinear transformation unit 50 may also perform super-resolution in the time direction by transforming the data array of the data mapped to the latent time space.
  • the high-resolution analysis data acquisition unit 60 may acquire high-resolution analysis data by performing super-resolution in the spatial direction independently for each time in the time direction on the data that has been super-resolved in the time direction in the latent time space. This allows for even more efficient processing. Details will be described later.
  • the structure transformation unit 30, the latent space-time mapping unit 40, the nonlinear transformation unit 50, and the high-resolution analysis data acquisition unit 60 may be realized by a trained model trained by a machine learning algorithm.
  • the structure transformation unit 30, the latent space-time mapping unit 40, the nonlinear transformation unit 50, and the high-resolution analysis data acquisition unit 60 may be realized by a trained model trained by supervised learning using data with a higher spatiotemporal resolution than the predicted data as teacher data.
  • the structure transformation unit 30, the latent space-time mapping unit 40, the nonlinear transformation unit 50, and the high-resolution analysis data acquisition unit 60 may be realized by a trained model trained by unsupervised learning so as to reduce the loss function. This makes it possible to efficiently acquire high-resolution analysis data using observation data that is not lattice data and low-resolution predicted data. Details will be described later.
  • ⁇ Information processing device> 6 is a diagram showing a configuration of an information processing device 100 according to the first embodiment.
  • the information processing device 100 is, for example, a computer.
  • the information processing device 100 includes a learning processing unit 110, a simulation unit 120, an observation data acquisition unit 122, a prediction data acquisition unit 124, a structure conversion unit 130, a latent space-time mapping unit 140, a nonlinear conversion unit 150, a high-resolution analysis data acquisition unit 160, and a low-resolution analysis data calculation unit 170. These components can be realized by a hardware configuration described later.
  • the learning processing unit 110 performs machine learning such as neural networks on the structural transformation unit 130, the latent space-time mapping unit 140, the nonlinear transformation unit 150, and the high-resolution analysis data acquisition unit 160. This allows the structural transformation unit 130, the latent space-time mapping unit 140, the nonlinear transformation unit 150, and the high-resolution analysis data acquisition unit 160 to realize their respective functions as trained models.
  • the learning processing unit 110 may learn the structure transformation unit 130, the latent space-time mapping unit 140, the nonlinear transformation unit 150, and the high-resolution analysis data acquisition unit 160 together, rather than learning them separately. Specifically, the learning processing unit 110 learns the structure transformation unit 130, the latent space-time mapping unit 140, the nonlinear transformation unit 150, and the high-resolution analysis data acquisition unit 160 in a continuous manner using an end-to-end deep learning method. In other words, the learning processing unit 110 performs machine learning by regarding the functions of the structure transformation unit 130, the latent space-time mapping unit 140, the nonlinear transformation unit 150, and the high-resolution analysis data acquisition unit 160 as layers of a neural network.
  • the learning processing unit 110 performs machine learning by regarding the structure transformation unit 130, the latent space-time mapping unit 140, the nonlinear transformation unit 150, and the high-resolution analysis data acquisition unit 160 as one neural network.
  • pre-learning may be performed separately in each of the structural transformation unit 130, the latent space-time mapping unit 140, the nonlinear transformation unit 150, and the high-resolution analysis data acquisition unit 160.
  • the learning processing unit 110 may perform supervised learning or unsupervised learning. When performing supervised learning, the learning processing unit 110 may perform learning using, for example, highly accurate and high resolution time series weather data as teacher data. Details of the processing of the learning processing unit 110 will be described later. Note that the structural transformation unit 130, the latent space-time mapping unit 140, the nonlinear transformation unit 150, and the high resolution analysis data acquisition unit 160 are not limited to being realized as a trained model trained by machine learning by the learning processing unit 110.
  • the simulation unit 120 corresponds to the simulation unit 20 described above.
  • the simulation unit 120 performs a low-resolution simulation in the time direction and the space direction.
  • the simulation unit 120 generates low-resolution prediction data (simulation data) using the input initial state.
  • Low-resolution prediction data is digital data defined on lattice points in space-time.
  • the prediction data is lattice data defined in space-time.
  • the prediction data has a data array defined by a lattice structure.
  • the prediction data which is lattice data in space-time, has a data array for each lattice point at a predetermined interval in the spatial direction and the time direction.
  • the lattice points are arranged in the time axis direction
  • the lattice points are arranged in the three-dimensional calculation mesh G1 in the four-dimensional calculation mesh G2 in the lattice points are arranged in the three spatial axes directions.
  • the lattice data of the prediction data has a numerical value at each of these lattice points.
  • the intervals between the lattice points may be equal or unequal. Note that since the simulation unit 120 performs a low-resolution simulation, the lattice data of the obtained prediction data has longer intervals in the time direction and the space direction on average compared to the high-resolution lattice data.
  • the prediction data is defined by a data array A hijk in a four-dimensional space-time.
  • the subscript h corresponds to the time direction (t direction)
  • the subscript i corresponds to the X-axis direction in the three-dimensional space
  • the subscript j corresponds to the Y-axis direction in the three-dimensional space
  • the subscript k corresponds to the Z-axis direction in the three-dimensional space.
  • the subscripts h, i, j, and k of the data array A hijk take integer values.
  • One of the sets of integer values (h, i, j, k) corresponds to one of the grid points of the four-dimensional calculation mesh G2. This makes it possible to uniquely specify the numerical value A hijk on the grid point.
  • the prediction data is defined by a data array A hijk having integer subscripts for each dimensional direction in the four-dimensional space.
  • the subscript h takes H values.
  • the subscript i takes I values.
  • the subscript j takes J values.
  • the subscript k takes K values.
  • the predicted data includes data for past times in the time series.
  • the predicted data may also include data for future times in the time series.
  • the predicted data is time data that includes the time of the observed data (reference time) described below.
  • the forecast data includes data indicating physical variables (physical quantities) necessary to predict the state of the atmosphere or other environment based on physical equations.
  • the above-mentioned physical equations are, for example, the Navier-Stokes equations of fluids or thermodynamic equations.
  • the physical quantities are, for example, air speed, pressure, temperature, water vapor mixing ratio, cloud particle number density, etc.
  • the above-mentioned four-dimensional data array can be provided. It can be said that the data array represents the "field" of each physical quantity in physics.
  • the prediction data (LR simulation results) are obtained from a single scenario.
  • the prediction data is a single (single) simulation result obtained when a simulation (physical simulation) is performed from a unique initial state.
  • simulations are performed for a variety of similar situations in order to perform ensemble calculations.
  • a prediction simulation is performed using multiple scenarios.
  • the predicted data acquisition unit 124 corresponds to the above-mentioned predicted data acquisition unit 24.
  • the predicted data acquisition unit 124 acquires the above-mentioned predicted data (prediction result of low-resolution physical simulation) from the simulation unit 120.
  • the predicted data is expressed by the following formula (1). ... (1)
  • x t L is a vector field consisting of all physical quantities of the predicted data. That is, x is a vector field indicating a set of values (vectors) at each lattice point in three-dimensional space at a certain time t.
  • the subscript L indicates low resolution in the spatial direction.
  • t indicates the timestamp of the predicted data. t indicates a timestamp with a long time interval. That is, t indicates low resolution in the time direction (i.e., a long time interval). That is, formula (1) represents data with a small number of lattices (small number of elements; low resolution) in four-dimensional space-time.
  • the observation data acquisition unit 122 corresponds to the above-mentioned observation data acquisition unit 22.
  • the observation data acquisition unit 122 acquires observation data from sensors and cameras, drones, smartphones, etc. arranged in the environment, similar to the observation data acquisition unit 22.
  • the observation data is expressed by the following formula (2). ... (2)
  • Equation (2) represents a set of digital data consisting of a numerical value (observation value) o that indicates a certain state at time ⁇ .
  • represents the timestamp of the observation data.
  • the time interval of ⁇ does not have to be equal.
  • o may or may not represent a physical quantity. In other words, o may represent the numerical value of a non-physical quantity.
  • observation data may be lattice data.
  • the observation data does not have to be lattice data.
  • the observation data may be unstructured data (non-lattice data).
  • unstructured observation data observation values are associated with time information and spatial information, but there is no regularity in the intervals in time and space.
  • unstructured observation data does not have a spatial mesh structure. Therefore, the observation data may indicate observation values in random time and space.
  • the observation data may include various miscellaneous data of different qualities.
  • the observation data may be image data, sound data, point data, or log data.
  • the observation data may be a set of values of physical quantities representing the state of the atmosphere, or digital data from which these physical quantities can be estimated.
  • the observation data may indicate AMeDAS observation values.
  • the observation values may indicate the temperature, humidity, wind speed, etc. of various locations.
  • the observation data may also indicate the radiance of an object (such as a building). This allows the temperature at a position near the object and at the time of observation to be estimated.
  • the observation data may also indicate an acceleration log of an aircraft floating in the air, such as a drone.
  • the observation data may also indicate an image of the sky. This allows the cloud cover or precipitation at the position and time of the image to be estimated.
  • the observation data may also indicate the sales of cold desserts (ice cream, sorbet, popsicle, shaved ice, etc.) at a certain location (such as a convenience store). This allows the local temperature of the area to be estimated. In other words, it can be assumed that the higher the sales of frozen desserts, the higher the temperature in the area.
  • the simulation results can be said to represent the real state well. Therefore, the results of a simulation with sufficient accuracy can be considered as observational results that represent reality well, and can be considered as observational data.
  • observational results can be considered as observational results that represent reality well, and can be considered as observational data.
  • Such simulations have sufficiently small errors that they can be considered as observational results that represent reality well, that is, as observational data.
  • the spatial and temporal resolution at which the observational data is observed may be high resolution or low resolution.
  • the observational data represents satellite data or radar data, it is obtained by line (one-dimensional) observation or surface (two-dimensional) observation.
  • the observational data is data obtained by a Doppler lidar (LiDAR: Light Detection And Ranging), it is obtained by three-dimensional observation.
  • the spatial resolution (and the time interval of the observation) can determine whether the resolution of the observational data is low resolution or high resolution.
  • the observation data corresponds to AMeDAS data
  • it is obtained by point (zero-dimensional) observation.
  • the resolution can be defined as follows. That is, even in the case of point observation, there is a representative scale that indicates the scale of the state that the observation value represents. When the representative scale is large, the observation data can be considered to be low-resolution observation data. When the representative scale is small, the observation data can be considered to be high-resolution observation data. For example, in a normal meteorological model, observation values with a coarse spatial resolution that represents 1 km to 10 km horizontally are observed. Therefore, strict conditions are imposed on the observation, such as being in a place with no obstructions nearby, on grass, not exposed to direct sunlight, and not being affected by artificial exhaust heat.
  • observation data can be considered to be low-resolution observation data.
  • observation values with a fine spatial resolution that represents 1 m to 5 m horizontally, which is affected by artificial exhaust heat can be observed.
  • simulations can be performed taking into account the impact of such observation data on the atmosphere.
  • Such observation data can be considered to be high-resolution observation data.
  • high-resolution observation data and low-resolution prediction data have significantly different spatial and temporal resolutions. Therefore, when performing data assimilation, it is necessary to average the high-resolution observation data in the spatiotemporal direction to match the low-resolution prediction data. Therefore, it should be noted that it is usually difficult to directly perform data assimilation on high-resolution observation data and low-resolution prediction data. In contrast, in this embodiment, data assimilation can be performed on any observation data and low-resolution prediction data.
  • the structure conversion unit 130 corresponds to the structure conversion unit 30 described above.
  • the structure conversion unit 130 has a function as a structurizer.
  • the structure conversion unit 130 may be realized by an existing structurizer.
  • the structure conversion unit 130 converts the observation data, which is unstructured data (non-lattice data), into observation data with a lattice data structure. In other words, the structure conversion unit 130 converts the observation data into grid data.
  • the structure conversion unit 130 converts the observation data into data on each lattice point of the lattice data in high-resolution space-time. In other words, the structure conversion unit 130 converts the observation value into a physical quantity defined on a lattice.
  • the lattice data obtained by converting the observation data may correspond to lattice data having a larger number of elements (i.e., high resolution) than the lattice data of the prediction data.
  • a function representing the structurizer realized by the structure conversion unit 130 is s()
  • the function of the structure conversion unit 130 is expressed by the following formula (3).
  • the left side of formula (3) corresponds to the output data of the structure conversion unit 130.
  • the observation data input to the structure conversion unit 130 may be lattice data.
  • the observation data input to the structure conversion unit 130 may indicate a physical quantity or a numerical value other than a physical quantity. ...(3)
  • o T H is a vector field consisting of all the observation values of the observation data. That is, o is a vector field indicating a set (vector) of values at each lattice point in three-dimensional space at a certain time T.
  • the subscript H indicates high resolution in the spatial direction.
  • T indicates a timestamp of the observation data. T indicates a timestamp with a short time interval.
  • T indicates high resolution in the time direction (i.e., a short time interval).
  • the left side of formula (3) indicates that the data has a large number of lattices (a large number of elements; high resolution) in four-dimensional space-time.
  • the structurizer of the structure conversion unit 130 may be realized by a trained model trained by machine learning, such as a neural network.
  • the structure conversion unit 130 may be realized by a linear projection operator, a fully connected layer, or a graph convolution network (the same applies to the latent space-time mapping unit 140, the nonlinear conversion unit 150, and the high-resolution analysis data acquisition unit 160 described later).
  • the structure conversion unit 130 is trained by the learning processing unit 110.
  • the structurizer may be realized by the technology shown in Non-Patent Document 2.
  • the structure conversion unit 130, the latent space-time mapping unit 140, the nonlinear conversion unit 150, and the high-resolution analysis data acquisition unit 160 are trained in a continuous manner by the end-to-end deep learning method. Then, the structure conversion unit 130 (structurizer) is trained to convert the observation data into appropriate grid data for performing the super-resolution data assimilation according to this embodiment.
  • the structurizer does not have to be realized by a trained model trained by machine learning.
  • the structure conversion unit 130 may read the time and position information of the observation data, and project the observation data onto the lattice point that is closest to the read time and position information among the lattice points arranged at a predetermined interval in space-time.
  • the structure conversion unit 130 may also substitute missing values for the lattice points onto which the observation data is not projected.
  • the structure conversion unit 130 may output lattice data indicating the numerical values of physical quantities, etc. corresponding to the observation data. For example, if the observation data input to the structure conversion unit 130 is data indicating the sales of frozen desserts at each point at each time, the structure conversion unit 130 may output lattice data indicating the temperature at each point at each time. Furthermore, the structure conversion unit 130 may input a variety of multiple observation data. In this case, the structure conversion unit 130 may output lattice data indicating the numerical values of physical quantities, etc. corresponding to the multiple observation data.
  • the structure conversion unit 130 may output lattice data indicating the wind speed and temperature at each point at each time.
  • the structure conversion unit 130 is not limited to outputting lattice data indicating physical quantities that can be understood by humans, corresponding to the input observation data.
  • the structure conversion unit 130 may output lattice data corresponding to a numerical array that cannot be understood by humans (i.e., can only be understood by a neural network). In other words, the structure conversion unit 130 outputs lattice data (numerical array) indicating numerical values defined on lattice points arranged at a predetermined interval in space-time.
  • the structure conversion unit 130 may perform processing using object recognition or pixel segmentation as preprocessing. Furthermore, for this preprocessing, a pre-trained neural network or the like may be used. Furthermore, the structure conversion unit 130 may perform the above-mentioned structural conversion processing on the data that has been subjected to such preprocessing.
  • the structural transformation unit 130 receives as input observation data, which is non-lattice data or lattice data and indicates the observed values of physical or non-physical quantities.
  • the structural transformation unit 130 then outputs lattice data of a four-dimensional space-time data array (numerical array) relating to physical quantities (temperature, wind speed, etc.) that indicate the state of the environment (e.g., atmospheric conditions).
  • the structural transformation unit 130 can perform non-linear transformation of observation data of non-physical quantities or non-lattice data that cannot be handled by existing data assimilation methods, and convert it into observation data of a numerical array that can be assimilated.
  • the latent space-time mapping unit 140 corresponds to the latent space-time mapping unit 40 described above.
  • the latent space-time mapping unit 140 has a function as an encoder.
  • the latent space-time mapping unit 140 may be realized by an existing encoder.
  • the latent space-time mapping unit 140 maps the observed data and predicted data in the first real space-time to latent space-time. For each time, the latent space-time mapping unit 140 converts the observed data and predicted data structured in four-dimensional space-time into data in latent space-time. In other words, in the latent space-time mapping unit 140, the output for each time is calculated independently for the input for each time.
  • e x () is a function for mapping predicted data x to latent space-time.
  • e o () is a function for mapping observed data o to latent space-time.
  • the latent space-time mapping unit 140 obtains data of the latent space-time represented by the following formula (6):
  • formula (4) indicates that the predicted data x t L is mapped to the latent space-time using the observation data o t converted to lattice data, thereby obtaining the mapping data p t .
  • the mapping data p t indicates a numerical array in the latent space-time corresponding to the low-resolution predicted data.
  • the latent space-time mapping unit 140 may perform pre-processing and main processing on the observation data. For example, as the pre-processing, the latent space-time mapping unit 140 may convert the input observation data o T H into observation data o t having a structure that matches the lattice structure in the space-time of the predicted data.
  • the latent space-time mapping unit 140 may obtain the mapping data p t corresponding to the predicted data by simultaneous data assimilation that reflects the converted o t in the low-resolution predicted data.
  • mapping data qt can be obtained by mapping the observation data ot converted into lattice data to latent space-time.
  • the mapping data qt indicates a numerical array in latent space-time corresponding to the observation data.
  • the latent space-time mapping unit 40 maps the observation data alone to latent space-time.
  • the latent space-time mapping unit 140 reduces the number of elements in the numerical arrays of the observed data and predicted data (dimensional compression in topological space).
  • equations (4) to (6) show that the observed data and the predicted data are fused in latent space-time.
  • equation (6) shows data (fused data) in which the observed data and the predicted data are fused in latent space-time. Therefore, it can be said that data assimilation is performed on the observed data and the predicted data by the latent space-time mapping unit 140.
  • the latent space-time mapping unit 140 may be realized by a trained model trained by machine learning, such as a neural network.
  • the latent space-time mapping unit 140 may use convolution and pooling to perform nonlinear transformation while reducing the number of elements.
  • the neural network may also be a neural network that reflects physical symmetry.
  • a convolutional neural network may be adopted to reflect spatial translational symmetry.
  • a group convolutional neural network may be adopted to reflect spatial rotational symmetry.
  • a vision transformer or a graph convolutional neural network may be adopted to reflect relabeling symmetry. This makes it possible to perform transformation that takes physical symmetry into account, unlike existing data assimilation methods. The same applies to the decoder of the high-resolution analysis data acquisition unit 160, which will be described later.
  • the latent space-time mapping unit 140 receives as input low-resolution predicted data, which is a set of data arrays in four-dimensional space-time, and observed data converted into lattice data.
  • the latent space-time mapping unit 140 then outputs mapping data in latent space-time with a small number of elements.
  • the latent space-time mapping unit 140 can improve the processing efficiency of the nonlinear transformation unit 150 and the high-resolution analysis data acquisition unit 160. In other words, since the number of elements in the numerical array is reduced, the amount of data to be processed is reduced. This reduces the amount of processing required for computational resources.
  • the nonlinear conversion unit 150 corresponds to the nonlinear conversion unit 50 described above.
  • the nonlinear conversion unit 150 has a function as a time series converter.
  • the nonlinear conversion unit 150 may be realized by an existing time series converter.
  • the nonlinear conversion unit 150 performs nonlinear conversion on the observation data and prediction data that have been mapped in the latent time space. More specifically, the nonlinear conversion unit 150 may perform nonlinear conversion on the time series to generate data in which the observation data and the prediction data mapped to the latent time space are fused. Then, the nonlinear conversion unit 150 according to the first embodiment may perform super-resolution in the time direction on the fused data.
  • the number of elements is reduced in the latent time space compared to the real time space. Therefore, the amount of data to be processed is suppressed, and super-resolution can be efficiently performed in the time direction.
  • the function of the nonlinear conversion unit 150 is expressed by the following formula (7).
  • the left side of formula (7) corresponds to the output data of the nonlinear conversion unit 150.
  • the subscript T indicates high resolution in the time direction.
  • r T indicates data (fusion data) in which the observation data and the prediction data mapped to the latent space-time at time T are fused by data assimilation.
  • equation (7) indicates that the observed data and the predicted data are fused in the latent space-time.
  • the left side of equation (7) indicates data (fused data) in which the observed data and the predicted data are fused in the latent space-time. Therefore, it can be said that data assimilation is performed on the observed data and the predicted data by the nonlinear transformation unit 150.
  • the time series converter of the nonlinear conversion unit 150 may be realized by a trained model trained by machine learning, such as a neural network.
  • the nonlinear conversion unit 150 may be realized by a neural network that uses an attention mechanism.
  • the time series converter of the nonlinear conversion unit 150 may perform nonlinear conversion, for example, using a technology called Transformer described in Non-Patent Document 3.
  • the nonlinear transformation unit 150 may also implicitly calculate the prediction error using information in the time-space direction. That is, the nonlinear transformation unit 150 may calculate the error inside the neural network from the time change of the spatial pattern. In other words, the nonlinear transformation unit 150 may calculate the prediction error by matching the time-space pattern and determining the magnitude of the error relative to the ground truth data.
  • the nonlinear transformation unit 150 may also be realized by a neural network in which data assimilation is performed between the predicted data and the observed data using the prediction error as a weight. In this way, data assimilation can be performed between the predicted data and the observed data through efficient calculations that do not require an ensemble.
  • the time series transformer of the nonlinear transformer 150 may repeatedly execute a linear transform (e.g., an affine transform) and a nonlinear transform using ReLU (Rectified Linear Unit) or the like.
  • a linear transform e.g., an affine transform
  • ReLU Rectified Linear Unit
  • the nonlinear transformer 150 may transform the data array so as to make the time step finer, for example, using the technique of Non-Patent Document 4.
  • the nonlinear transformer 150 may divide a plurality of elements in the latent space-time into two, elements in the time direction and elements in the space direction, and increase the number of elements in the time direction.
  • the nonlinear transformer 150 transforms the four-dimensional array H' ⁇ I' ⁇ J' ⁇ K' into a two-dimensional array H' ⁇ M.
  • the nonlinear transformer 150 may then transform this array into an array of 2H' ⁇ M/2. This doubles the number of elements in the time direction, and halves the time step. Therefore, super-resolution is performed in the time direction on the data mapped to the latent time space. In this way, the nonlinear transformation unit 150 may perform super-resolution in the time direction by transforming the data array on the data mapped to the latent time space.
  • the nonlinear transformation unit 150 receives as input a set of numerical arrays (data arrays) corresponding to observed data and predicted data in latent time space.
  • the nonlinear transformation unit 150 may then output time series data in the latent time space that has been super-resolved in the time direction.
  • the time-direction resolution of this time series data in the latent time space that has been super-resolved in the time direction is higher than the time-direction resolution of the predicted data.
  • the nonlinear transformation unit 150 performs super-resolution in the time direction in a latent time space with a small number of elements (i.e., low-dimensional in topological space), thereby reducing the amount of calculations and therefore the processing costs. This makes it possible to improve computational efficiency.
  • super-resolution in the time direction is performed by the time series transformer of the nonlinear transformation unit 150.
  • the processing of the nonlinear transformation unit 150 makes it possible to perform data assimilation of observed data and predicted data while performing super-resolution in the time direction. Therefore, it becomes possible to efficiently perform data assimilation and super-resolution in the time direction.
  • the high-resolution analysis data acquisition unit 160 corresponds to the high-resolution analysis data acquisition unit 60 described above.
  • the high-resolution analysis data acquisition unit 160 has a function as a decoder.
  • the high-resolution analysis data acquisition unit 160 may be realized by an existing decoder.
  • the high-resolution analysis data acquisition unit 160 maps the observation data and prediction data that have been subjected to nonlinear transformation from the latent time space to the second real time space.
  • the high-resolution analysis data acquisition unit 160 maps the data obtained by the processing of the nonlinear transformation unit 150 for each time from the latent time space to the second time space. As a result, the high-resolution analysis data acquisition unit 160 performs super-resolution in the spatial direction for the data obtained by the processing of the nonlinear transformation unit 150.
  • the high-resolution analysis data acquisition unit 160 converts the data in the latent time space into high-resolution analysis data for each time.
  • the output for each time is calculated independently for the input for each time.
  • the high-resolution analysis data acquisition unit 160 acquires the high-resolution analysis data Da1.
  • the high-resolution analysis data Da1 is data with a higher resolution in time and space than the predicted data.
  • the high-resolution analysis data Da1 may be analysis data in a time (time series) that includes the past and future of the time of the observed data, depending on the time range of the input predicted data. Therefore, the high-resolution analysis data Da1 can be analysis data that has been extrapolated in the time direction (time extrapolation) with respect to the time of the observed data (reference time).
  • d() is a function for mapping fusion data rT relating to time T from latent space-time to the second real space-time.
  • the high-resolution analysis data acquisition unit 160 obtains data of the second real time space represented by the following formula (9).
  • Formula (9) corresponds to high-resolution analysis data Da1, which is output data from the high-resolution analysis data acquisition unit 160.
  • the high-resolution analysis data shown in formula (9) is time-series data on a high-resolution grid.
  • the high-resolution analysis data Da1 may include past, present, and future data. ... (9)
  • y T H is a vector field consisting of all physical quantities of the high-resolution analysis data. That is, y is a vector field indicating a set of values (vectors) at each lattice point in three-dimensional space at a certain time T.
  • formula (9) indicates all data arrays (numerical arrays) in four-dimensional space-time related to the high-resolution analysis data.
  • the subscript H indicates high resolution in the spatial direction.
  • T indicates a timestamp of the high-resolution analysis data. T indicates a timestamp with a short time interval. That is, T indicates high resolution in the time direction (that is, a short time interval). That is, formula (9) indicates that the data has a large number of lattices (a large number of elements; high resolution) in four-dimensional space-time.
  • the decoder of the high-resolution analysis data acquisition unit 160 may be realized by a trained model trained by machine learning, such as a neural network.
  • the neural network related to the high-resolution analysis data acquisition unit 160 may be a neural net that reflects physical symmetry. This makes it possible to perform conversion that takes physical symmetry into account, unlike existing data assimilation methods.
  • the high-resolution analysis data acquisition unit 160 may also generate high-resolution analysis data that has been extrapolated (time extrapolated) in the time direction relative to the time of the observation data (reference time) using a neural network.
  • the neural network of the high-resolution analysis data acquisition unit 160 can be trained to output high-resolution analysis data that has been time extrapolated relative to the reference time, using time series data that has a higher resolution and accuracy in space-time than the predicted data as teacher data.
  • the decoder of the high-resolution analysis data acquisition unit 160 may also repeatedly execute linear transformation and nonlinear transformation (e.g., ReLU) to increase the spatial resolution.
  • the high-resolution analysis data acquisition unit 160 may transform the data array (numerical array) so as to increase the spatial resolution, for example, using a technique called Pixel Shuffle, which is shown in Non-Patent Document 5.
  • the fusion data is a numerical array in which the number of elements in the time direction is n and the number of elements in the spatial direction is m.
  • the high-resolution analysis data acquisition unit 160 may transform the n ⁇ m array into an n/2 ⁇ 2m array. This doubles the number of elements in the spatial direction (m ⁇ 2m), so that the spatial resolution doubles.
  • the high-resolution analysis data acquisition unit 160 receives as input a numerical array (data array) that is time-series data in latent time-space corresponding to the fusion data.
  • the high-resolution analysis data acquisition unit 160 then outputs a four-dimensional numerical array that is time-series data on a high-resolution grid in the second real time-space with a large number of elements.
  • the high-resolution analysis data acquisition unit 160 can efficiently perform super-resolution in the spatial direction in real time-space on the fusion data that has been subjected to data assimilation and super-resolution in the time direction.
  • the high-resolution analysis data acquisition unit 160 processes the numerical array (fusion data) in the latent space-time at each time independently.
  • super-resolution in the spatial direction can be performed without referring to information in the time direction. Therefore, in the processing in the high-resolution analysis data acquisition unit 160, the necessary computational resources (memory amount, etc.) are saved, and it is possible to efficiently perform super-resolution in three-dimensional space. Therefore, it is possible to efficiently obtain high-resolution analysis data that has been super-resolved in the time direction and the spatial direction.
  • the high-resolution analysis data acquisition unit 160 can acquire high-resolution analysis data at a time including the past and future of the time of the observation data. As a result, it is possible to provide high-resolution analysis data and future prediction information in which time extrapolation has been performed at the same time. Therefore, it is possible to provide services with higher added value.
  • this embodiment can obtain high-resolution analysis data with super-resolution in both the time and spatial directions, making it possible to provide accurate information to businesses that want pinpoint weather and ocean condition forecasts.
  • the low-resolution analysis data calculation unit 170 corresponds to the low-resolution analysis data calculation unit 70 described above.
  • the low-resolution analysis data calculation unit 170 calculates low-resolution analysis data Da2 using the high-resolution analysis data Da1.
  • the resolution of the low-resolution analysis data Da2 may correspond to the resolution of the prediction data.
  • the low-resolution analysis data Da2 is lattice data having a data array with a lower resolution than the high-resolution analysis data Da1.
  • the low-resolution analysis data Da2 may also be snapshot data at a certain time.
  • the low-resolution analysis data calculation unit 170 uses a predetermined function f(y) and inputs the above-mentioned high-resolution analysis data y to the function f to calculate the low-resolution analysis data Da2.
  • the function f may be, for example, a function representing algebraic interpolation.
  • the function f may be a function that performs an algebraic interpolation operation such as linear interpolation.
  • the function f may also be a function defined by the linear interpolation method, the bicubic method, or the Lanczos method.
  • the low-resolution analysis data calculation unit 170 can calculate the low-resolution analysis data Da2 from the high-resolution analysis data Da1 by resizing (reducing the resolution) the high-resolution analysis data.
  • the low-resolution analysis data calculation unit 170 locally interpolates values corresponding to each lattice point of the lattice data using a polynomial to enlarge or reduce the lattice data. In this way, the low-resolution analysis data Da2 is calculated.
  • the low-resolution analysis data Da2 is input to the simulation unit 120 and used to perform a predictive simulation of the next timing.
  • the low-resolution analysis data Da2 may also be used to numerically solve physical equations to obtain future predictions. This allows the time evolution of the state of the predictive simulation to be performed.
  • the low-resolution analysis data Da2 may indicate the state at the current time.
  • the information processing device 100 is configured to perform data assimilation and super-resolution in a latent space-time with a reduced number of elements, as described above. This allows the number of elements to be handled in the calculation, i.e., the amount of data, to be reduced, and data assimilation and super-resolution can be performed efficiently. Therefore, it is possible to efficiently assimilate observation data that indicates non-physical quantities and observation data that is irregular in the time and space directions to the prediction data.
  • the learning processing unit 110 learns the structure transformation unit 130, the latent space-time mapping unit 140, the nonlinear transformation unit 150, and the high-resolution analysis data acquisition unit 160 in a continuous manner using an end-to-end learning method, a large amount of computational resources is required. Therefore, by performing processing in the latent space-time as described above, the amount of data to be processed can be reduced, and such learning can be performed efficiently.
  • the information processing device 100 is configured to perform super-resolution in the time direction in the nonlinear conversion unit 150 and super-resolution in the space direction in the high-resolution analysis data acquisition unit 160.
  • This makes it possible to efficiently perform super-resolution in the time direction and the space direction. That is, in order to simultaneously perform super-resolution in both the time direction and the space direction, a large amount of memory and calculation time are required.
  • the learning stage in order to back-propagate the error, it is necessary to store the calculation graph and the gradient value. Therefore, a huge amount of memory and calculation time are required.
  • the nonlinear conversion unit 150 efficiently refers to the dimension in the time direction in order to perform super-resolution in the time direction on a latent time space with a small number of elements.
  • the high-resolution analysis data acquisition unit 160 processes snapshots at each time, so there is no need to consider the dimension in the time direction. Furthermore, since snapshots at each time are processed, these snapshots can be processed simultaneously. Therefore, it is possible to suppress the required calculation resources.
  • Non-Patent Document 1 a comparison example according to Non-Patent Document 1 will be compared with the technique according to the first embodiment.
  • the technique of Non-Patent Document 1 simply combines a super-resolution technique and a data assimilation technique. In other words, in Non-Patent Document 1, super-resolution and data assimilation are performed independently.
  • FIG. 7 is a diagram for explaining a technique according to a comparative example.
  • FIG. 7 explains a technique according to Non-Patent Document 1 as a comparative example.
  • the white circle dots physical simulations are performed for various situations by ensemble calculation. Then, as shown by the black circle dots, it is assumed that there is observation data at time t1.
  • the white triangular dots super-resolution is performed using the physical simulation results at that time t1, and high-resolution prediction is performed. This super-resolution is performed independently at time t1 for the ensemble calculation results, i.e., for each situation.
  • the comparative example uses ensemble calculation. Also, in the comparative example, super-resolution at a certain moment is performed independently of data assimilation at the same moment. Then, data assimilation is performed in a high-resolution space.
  • FIG. 8 is a diagram for explaining super-resolution and data assimilation according to the first embodiment.
  • a single scenario is used. That is, a physical simulation is performed from a unique initial state, and a unique simulation result is obtained in the time series, as shown by the white dots.
  • physical simulation results (predicted data) are obtained, which are time series data, corresponding to times t1, t2, t3, and t4. Then, instead of performing super-resolution at a certain time, observation data shown by black dots and predicted data, which is time series data, are input, and super-resolution and data assimilation are performed simultaneously in a latent time space with a reduced number of elements.
  • high-resolution data which is time series data
  • the high-resolution data has a higher resolution in the time direction than the physical simulation.
  • ensemble calculation is not performed in the simulation.
  • super-resolution and data assimilation are performed simultaneously in the latent time space.
  • super-resolution and data assimilation are performed using time series information.
  • Figure 9 is a diagram comparing the experimental results of the first embodiment with those of the comparative example.
  • Figure 9 is a diagram showing the time series of the mean absolute error (MAE) of the vorticity field ⁇ .
  • MAE mean absolute error
  • Graph A shows the case where neither data assimilation nor super-resolution is performed.
  • Graph B shows the case of the comparative example.
  • Graph C shows the case of the first embodiment.
  • the error is minimized. Therefore, the technology of the first embodiment has made it possible to achieve highly accurate predictions.
  • the calculation time per experiment was 320 seconds.
  • the calculation time per experiment was 61 seconds. In this way, the technology for the first embodiment has achieved a significant reduction in calculation time compared to the comparative example.
  • the learning processing unit 110 learns the structure conversion unit 130, the latent space-time mapping unit 140, the nonlinear conversion unit 150, and the high-resolution analysis data acquisition unit 160 in a continuous manner by the end-to-end learning method.
  • the learning processing unit 110 may learn the structure conversion unit 130, the latent space-time mapping unit 140, the nonlinear conversion unit 150, and the high-resolution analysis data acquisition unit 160 as one neural network having these as layers.
  • the learning processing unit 110 learns the structure conversion unit 130, the latent space-time mapping unit 140, the nonlinear conversion unit 150, and the high-resolution analysis data acquisition unit 160 collectively so that the observation data and the prediction data are input and appropriate high-resolution analysis data is output.
  • the first learning method is supervised learning.
  • the teacher data (correct answer data) is, for example, highly accurate and high-resolution data.
  • the teacher data is, for example, highly accurate and high-resolution meteorological data.
  • the teacher data is highly accurate and high-resolution time series data of physical variables of the atmosphere.
  • the teacher data is, for example, time series data (four-dimensional numerical array) of a velocity field, a temperature field, a density field, etc.
  • the teacher data may be a result of a micrometeorological simulation with ultra-high resolution.
  • the learning processing unit 110 receives the above-mentioned predicted data and observed data as input, and updates the parameters (weights, etc.) of the neural network in the gradient direction of the error between the teacher data and the final output (high-resolution analysis data) by the error backpropagation method using the above-mentioned teacher data.
  • the learning processing unit 110 repeats such processing to learn the neural network that constitutes the structure conversion unit 130, the latent space-time mapping unit 140, the nonlinear conversion unit 150, and the high-resolution analysis data acquisition unit 160.
  • the second learning method is unsupervised learning.
  • supervised learning for example, highly accurate and high-resolution time series data of atmospheric physical variables is required as the supervised data. However, it may be difficult to obtain such data. In contrast, in unsupervised learning, such supervised data is not required. Unsupervised learning may be performed, for example, by the variational Bayes method. Also, unsupervised learning may be performed by adversarial learning. Below, the learning method using the variational Bayes method will be described.
  • the variational Bayes method is a type of approximation method that approximates the true probability distribution p with a simpler probability distribution q. The parameters of q are then estimated by minimizing the KL divergence or similar.
  • the variational Bayes method is a probabilistic model that treats the true physical variables of the state of the environment, such as the atmosphere, as the hidden state, and gives the observed value or low-resolution predicted value of the input based on this hidden state.
  • x)) is introduced and this lower bound is maximized.
  • x)) can be transformed into the following formula (10) using Jensen's inequality.
  • o corresponds to the observed data
  • x corresponds to the low-resolution predicted data.
  • a hidden variable y is introduced. This hidden variable corresponds to the high-resolution analysis data Da1 shown in formula (9).
  • a loss function that enables the hidden variable y to be estimated from the observed data o and the low-resolution prediction x can be derived. ...(10)
  • the observed value o corresponds to low-resolution or high-resolution observed data.
  • o corresponds to the above formula (2) (or the left side of formula (3)).
  • the hidden variable y corresponds to the high-resolution analysis data Da1.
  • the observed value o may be highly accurate predicted data.
  • the variable x corresponds to the input low-resolution predicted data (formula (1)).
  • This probability model is composed of a recognition model and a generation model.
  • the recognition model corresponds to the structural transformation unit 130, the latent space-time mapping unit 140, the nonlinear transformation unit 150, and the high-resolution analysis data acquisition unit 160 (encoder-decoder model) in the information processing device 100.
  • the generation model will be described later.
  • the fourth equation (the rightmost side; the final form of the transformation) in equation (10) corresponds to the variational lower bound (VLB), which is the lower bound of the log-likelihood.
  • VLB variational lower bound
  • x, y)] of the variational lower bound indicates the reconstruction error and corresponds to the log-likelihood of the observed data o.
  • x)) of the variational lower bound indicates the KL divergence.
  • the KL divergence is an index corresponding to the distance between distribution q and distribution p.
  • the learning processing unit 110 performs learning by updating the model parameters (neural network parameters) using the backpropagation method and the gradient descent method so as to maximize (increase) the variational lower bound shown in the fourth equation of equation (10).
  • This variational lower bound corresponds to the training error. Maximizing the variational lower bound corresponds to minimizing the loss function in machine learning. In other words, increasing the variational lower bound corresponds to decreasing the loss function in machine learning.
  • learning progresses so that the reconstruction error and the KL divergence are balanced. This balancing of the reconstruction error and the KL divergence corresponds to the fusion of observed data and predicted data in data assimilation.
  • maximizing the variational lower bound has the aspect of generalizing minimum variance estimation.
  • averaging the observed values o and the predicted data x with their respective errors as weights (performing a weighted average) it is possible to estimate high-resolution analysis data y.
  • the analysis data can be estimated by weighting the observed values greater than the weighting of the predicted data and averaging them.
  • the learning processing unit 110 has a sampler 112 and an observation data generating unit 114.
  • the sampler 112 and the observation data generating unit 114 can be regarded as a generation model that generates an observation value (pseudo observation data Da3).
  • This generation model can calculate the reconstruction error E q [p(o
  • the observation data generating unit 114 calculates p(o
  • x, y) indicates the distribution of the pseudo observation data o when the prediction data x and the high-resolution analysis data y are determined.
  • the structural transformation unit 130, the latent space-time mapping unit 140, the nonlinear transformation unit 150, and the high-resolution analysis data acquisition unit 160 can be regarded as a recognition model.
  • This recognition model can calculate the KL divergence. Specifically, the recognition model calculates q(y
  • the sampler 112 samples the probability distribution corresponding to the high-resolution analysis data generated by learning.
  • the sampler 112 replaces the neural network with a probability distribution (probability model). That is, since a neural network usually outputs deterministically, it is difficult to output a random value such as a probability distribution. Therefore, the sampler 112 combines a random number sampled from a Gaussian distribution with the output from the neural network (high-resolution analysis data) to pseudo-express the probability distribution (re-parametrization trick). This makes it possible to estimate the error of the high-resolution analysis data. Specifically, the probability distribution is pseudo-expressed as shown in the following formula (11). Note that ⁇ and ⁇ are deterministic variables given by the neural network, and ⁇ is a random number sampled from a Gaussian distribution. ...(11)
  • the sampler 112 receives the high-resolution analysis data Da1 (corresponding to y in formula (10)) from the high-resolution analysis data acquisition unit 160.
  • the sampler 112 samples random numbers from a Gaussian distribution and adds noise to the high-resolution analysis data. This adds randomness to the high-resolution analysis data provided by the neural network, making it possible to acquire data that can be considered as values sampled from a probability distribution. This makes it possible to express the high-resolution analysis data as a probability distribution.
  • the sampler 112 acquires sampling data when the high-resolution analysis data is expressed as a probability distribution.
  • the sampler 112 then outputs the sampling data of the high-resolution analysis data to the observation data generation unit 114.
  • a more complex probability distribution that is, when noise is generated from a distribution more complex than a Gaussian distribution
  • a mixture distribution or normalizing flows may be used.
  • a complex distribution can be obtained by overlapping nonlinear transformations on random variables that follow a simple probability distribution such as a Gaussian distribution.
  • the observation data generation unit 114 generates pseudo observation data Da3 using sampling data of the high-resolution analysis data generated by the sampler 112. In other words, the observation data generation unit 114 converts the sampling data of the high-resolution analysis data into pseudo observation data Da3.
  • the observation data generation unit 114 can generate pseudo observation data Da3 that is free of loss in the time-space direction.
  • the observation data generation unit 114 may be realized by a neural network that has been trained in advance by machine learning.
  • the observation data generation unit 114 may be realized by a neural network that reflects physical symmetry. By generating the pseudo observation data Da3, unsupervised learning can be realized.
  • the observation data generating unit 114 may generate the pseudo observation data Da3 by performing the reverse process of the process performed by the above-mentioned structurizer (structure conversion unit 130). In other words, the observation data generating unit 114 may generate the pseudo observation data Da3 by a technique substantially similar to that of the structurizer. More specifically, the observation data generating unit 114 picks up data of a lattice point at an arbitrary time and position from the sampling data of the high-resolution analysis data, which is lattice data, and repeats linear transformation and nonlinear transformation on the data. In this way, the observation data generating unit 114 acquires pseudo observation data Da3 in a format substantially similar to the format of the observation data o acquired by the observation data acquiring unit 122. Therefore, the pseudo observation data Da3 may be non-lattice data. Furthermore, the pseudo observation data Da3 may indicate the numerical value of a non-physical quantity.
  • the learning processing unit 110 to which the variational Bayes method is applied generates pseudo observation data Da3 from the high-resolution analysis data Da1.
  • the inferred high-resolution analysis data y is a hidden state. It should be noted that this hidden state is not the final output within the framework of the variational Bayes method.
  • the pseudo observation data Da3 is the final output in the learning stage.
  • the high-resolution analysis data y is in a hidden state, there is no need to prepare ground truth data corresponding to the high-resolution analysis data y in the learning stage. Therefore, it is no longer necessary to prepare highly accurate and high-resolution weather data, which is necessary for supervised learning.
  • the device (information processing device) according to each embodiment may be realized physically or functionally using at least two calculation processing devices.
  • the device according to each embodiment may be realized as a dedicated device or a general-purpose information processing device.
  • FIG. 11 is a block diagram showing an example of the hardware configuration of a computing device capable of realizing the device and system according to each embodiment.
  • the computing device 1000 has a CPU 1001, a volatile storage device 1002, a disk 1003, a non-volatile recording medium 1004, and a communication IF 1007 (IF: Interface). Therefore, it can be said that the device according to each embodiment has a CPU 1001, a volatile storage device 1002, a disk 1003, a non-volatile recording medium 1004, and a communication IF 1007.
  • the computing device 1000 may be connectable to an input device 1005 and an output device 1006.
  • the computing device 1000 may include an input device 1005 and an output device 1006.
  • the computing device 1000 can also transmit and receive information to and from other computing devices and communication devices via the communication IF 1007.
  • the non-volatile recording medium 1004 is a computer-readable medium, such as a compact disc or a digital versatile disc.
  • the non-volatile recording medium 1004 may also be a universal serial bus (USB) memory, a solid state drive, or the like.
  • USB universal serial bus
  • the non-volatile recording medium 1004 holds the relevant program without the need for a power supply, making it possible to carry it around.
  • the non-volatile recording medium 1004 is not limited to the above-mentioned media.
  • the relevant program may also be supplied via the communication IF 1007 and a communication network, instead of the non-volatile recording medium 1004.
  • the volatile memory device 1002 is computer-readable and can temporarily store data.
  • the volatile memory device 1002 is a memory such as a dynamic random access memory (DRAM) or a static random access memory (SRAM).
  • DRAM dynamic random access memory
  • SRAM static random access memory
  • the CPU 1001 executes a software program (computer program: hereinafter simply referred to as a "program") stored on the disk 1003, it copies the program to the volatile storage device 1002 and executes the arithmetic processing.
  • the CPU 1001 reads data required for executing the program from the volatile storage device 1002. When display is required, the CPU 1001 displays the output result on the output device 1006.
  • the CPU 1001 obtains the program from the input device 1005.
  • the CPU 1001 interprets and executes the program corresponding to the function (processing) of each component shown in the above-mentioned Figures 4, 6, and 10.
  • the CPU 1001 executes the processing described in each of the above-mentioned embodiments. In other words, the functions of each component shown in the above-mentioned Figures 4, 6, and 10 can be realized by the CPU 1001 executing the program stored on the disk 1003 or the volatile storage device 1002.
  • each of the above-mentioned embodiments can be realized by the above-mentioned programs. Furthermore, each of the above-mentioned embodiments can be realized by a computer-readable non-volatile recording medium on which the above-mentioned programs are recorded.
  • the present invention is not limited to the above embodiment, and can be modified as appropriate without departing from the spirit of the present invention.
  • the order of each process (step) can be changed as appropriate.
  • one or more of the multiple processes (steps) may be omitted.
  • the process of S22 may be executed before the process of S20.
  • the process of S24 may be executed before the process of S22.
  • the process of S70 may be omitted.
  • this embodiment is not limited to the case where weather forecasting is performed.
  • This embodiment can be applied to any predictive simulation that uses grid data.
  • this embodiment can also be applied to ocean forecasting.
  • This embodiment can also be applied to space physics simulations.
  • the dimensions of "space-time” are not limited to four dimensions consisting of three-dimensional space and one-dimensional time.
  • the dimensions of "space-time” may be three dimensions consisting of two-dimensional space and one-dimensional time.
  • the dimensions of "space-time” may be a dimension greater than four, such as ten dimensions.
  • the program includes instructions (or software code) that, when loaded into a computer, cause the computer to perform one or more functions described in the embodiments.
  • the program may be stored on a non-transitory computer-readable medium or tangible storage medium.
  • computer-readable medium or tangible storage medium may include random-access memory (RAM), read-only memory (ROM), flash memory, solid-state drive (SSD) or other memory technology, CD-ROM, digital versatile disk (DVD), Blu-ray® disk or other optical disk storage, magnetic cassette, magnetic tape, magnetic disk storage or other magnetic storage device.
  • the program may be transmitted on a transitory computer-readable medium or communication medium.
  • transitory computer-readable medium or communication medium may include electrical, optical, acoustic, or other forms of propagated signals.
  • Information processing device 20 Simulation unit 22 Observation data acquisition unit 24 Prediction data acquisition unit 30 Structure conversion unit 40 Latent space-time mapping unit 50 Nonlinear conversion unit 60 High-resolution analysis data acquisition unit 70 Low-resolution analysis data calculation unit 100 Information processing device 110 Learning processing unit 112 Sampler 114 Observation data generation unit 120 Simulation unit 122 Observation data acquisition unit 124 Prediction data acquisition unit 130 Structure conversion unit 140 Latent space-time mapping unit 150 Nonlinear conversion unit 160 High-resolution analysis data acquisition unit 170 Low-resolution analysis data calculation unit

Abstract

Provided is an information processing device capable of accurately and efficiently predicting the state of an environment. A structure conversion unit (30) converts the structure of observation data, obtained by observing a temporal/spatial state, into observation data of a lattice data structure. A potential time/space mapping unit (40) performs mapping from a first actual time/space to a potential time/space, with respect to prediction data as well as the observation data that has been converted into the lattice data. A non-linear conversion unit (50) performs non-linear conversion on the observation data and the prediction data that have been subjected to the mapping, in the potential time/space. A high-resolution analysis data acquisition unit (60) performs mapping from the potential time/space to a second actual time/space with respect to the observation data and the prediction data that have been subjected to the non-linear conversion, and acquires high-resolution analysis data.

Description

情報処理装置、情報処理方法及びプログラムInformation processing device, information processing method, and program
 本開示は、情報処理装置、情報処理方法及びプログラムに関する。 This disclosure relates to an information processing device, an information processing method, and a program.
 例えば、気象予測又は海象予測等の分野では、シミュレーション等によって、環境の状態を精度よく且つ効率よく予測することが求められる。同様に、装置内の環境の状態を効率よく予測することも求められる。予測の精度を向上させる手法として、解像度の増加(超解像)及びデータ同化がある。この技術に関連し、非特許文献1は、超解像データ同化(Super-resolution data assimilation:SRDA)の技術を開示する。また、非特許文献2~非特許文献5は、本開示に関する技術を開示する。 For example, in the fields of weather forecasting or oceanographic forecasting, there is a demand for accurate and efficient prediction of environmental conditions through simulations, etc. Similarly, there is a demand for efficient prediction of environmental conditions within devices. Methods for improving prediction accuracy include increasing resolution (super-resolution) and data assimilation. Related to this technology, Non-Patent Document 1 discloses a technology called super-resolution data assimilation (SRDA). Furthermore, Non-Patent Documents 2 to 5 disclose technologies related to the present disclosure.
 非特許文献1にかかる技術では、超解像の手法とデータ同化の手法とを単純に組み合わせただけである。そのため、非特許文献1では、アンサンブル計算によりデータ同化を行っている。ここで、アンサンブル計算では、様々な似た状況をシミュレートする必要がある。したがって、非特許文献1にかかる技術では、精度よく予測を行おうとすると、計算コストが増大するおそれがある。よって、非特許文献1にかかる技術では、精度よく効率的に予測を行うことができないおそれがある。 The technology in Non-Patent Document 1 simply combines a super-resolution technique with a data assimilation technique. Therefore, in Non-Patent Document 1, data assimilation is performed by ensemble calculation. Here, in ensemble calculation, it is necessary to simulate various similar situations. Therefore, with the technology in Non-Patent Document 1, there is a risk that the calculation costs will increase if an attempt is made to make accurate predictions. Therefore, with the technology in Non-Patent Document 1, there is a risk that it will not be possible to make accurate and efficient predictions.
 本開示は、環境の状態の予測を精度よく効率的に行うことが可能な情報処理装置、情報処理方法及びプログラムを提供することを目的とする。 The present disclosure aims to provide an information processing device, information processing method, and program that can accurately and efficiently predict the state of the environment.
 本開示にかかる情報処理装置は、時空間上の状態を観測して得られたデータである観測データの構造を、時空間上において所定間隔で配置された格子点上で定義される数値を示す格子データの構造の観測データに変換する構造変換部と、前記格子データに変換された観測データと、シミュレーションによって得られた時空間上の格子データであり少なくとも前記観測データの時刻及び当該時刻よりも過去を含む時間における予測データとについて、第1の実時空間から前記第1の実時空間よりも要素数が少ない潜在時空間に写像を行う潜在時空間写像部と、前記潜在時空間において、写像が行われた前記観測データ及び前記予測データに対して非線形変換を行う非線形変換部と、前記非線形変換が施された前記観測データ及び前記予測データについて、前記潜在時空間から前記潜在時空間よりも要素数が多く第1の実時空間よりも高解像度である第2の実時空間に写像を行うことにより、時空間上の格子データであり前記予測データよりも時空間上で高解像度である高解像度解析データを取得する高解像度解析データ取得部と、を有し、前記潜在時空間写像部及び前記非線形変換部によって、前記観測データと前記予測データとのデータ同化が行われる。 The information processing device according to the present disclosure has a structure conversion unit that converts the structure of observation data, which is data obtained by observing a state in space-time, into observation data having a lattice data structure that indicates numerical values defined on lattice points arranged at a predetermined interval in space-time; a latent space-time mapping unit that maps the observation data converted into lattice data and prediction data, which is lattice data in space-time obtained by simulation and includes at least the time of the observation data and a time before the observation data, from a first real time-space to a latent space-time having a smaller number of elements than the first real time-space; a nonlinear transformation unit that performs a nonlinear transformation on the observation data and the prediction data that have been mapped in the latent space-time; and a high-resolution analysis data acquisition unit that acquires high-resolution analysis data that is lattice data in space-time and has a higher resolution in space-time than the prediction data by mapping the observation data and the prediction data that have been nonlinearly transformed from the latent space to a second real time-space that has a larger number of elements than the latent space-time and has a higher resolution than the first real time-space, and data assimilation of the observation data and the prediction data is performed by the latent space-time mapping unit and the nonlinear transformation unit.
 本開示にかかる情報処理方法は、時空間上の状態を観測して得られたデータである観測データの構造を、時空間上において所定間隔で配置された格子点上で定義される数値を示す格子データの構造の観測データに変換し、前記格子データに変換された観測データと、シミュレーションによって得られた時空間上の格子データであり少なくとも前記観測データの時刻及び当該時刻よりも過去を含む時間における予測データとについて、第1の実時空間から前記第1の実時空間よりも要素数が少ない潜在時空間に写像を行い、前記潜在時空間において、写像が行われた前記観測データ及び前記予測データに対して非線形変換を行い、前記非線形変換が施された前記観測データ及び前記予測データについて、前記潜在時空間から前記潜在時空間よりも要素数が多く第1の実時空間よりも高解像度である第2の実時空間に写像を行うことにより、時空間上の格子データであり前記予測データよりも時空間上で高解像度である高解像度解析データを取得し、前記第1の実時空間から前記潜在時空間に写像を行うこと、及び、前記潜在時空間において前記観測データ及び前記予測データに対して非線形変換を行うことによって、前記観測データと前記予測データとのデータ同化が行われる。  The information processing method according to the present disclosure converts the structure of observation data, which is data obtained by observing a state in space-time, into observation data having a lattice data structure showing numerical values defined on lattice points arranged at a predetermined interval in space-time, maps the observation data converted into lattice data and predicted data, which is lattice data in space-time obtained by simulation and includes at least the time of the observation data and a time before the observation data, from a first real-time space to a latent-time space having fewer elements than the first real-time space, performs a nonlinear transformation on the mapped observation data and the predicted data in the latent-time space, and maps the nonlinearly transformed observation data and the predicted data from the latent-time space to a second real-time space having a larger number of elements than the latent-time space and a higher resolution than the first real-time space, thereby obtaining high-resolution analysis data that is lattice data in space-time and has a higher resolution in space-time than the predicted data, and performs mapping from the first real-time space to the latent-time space, and performs a nonlinear transformation on the observation data and the predicted data in the latent-time space, thereby performing data assimilation between the observation data and the predicted data.
 本開示にかかるプログラムは、時空間上の状態を観測して得られたデータである観測データの構造を、時空間上において所定間隔で配置された格子点上で定義される数値を示す格子データの構造の観測データに変換する処理と、前記格子データに変換された観測データと、シミュレーションによって得られた時空間上の格子データであり少なくとも前記観測データの時刻及び当該時刻よりも過去を含む時間における予測データとについて、第1の実時空間から前記第1の実時空間よりも要素数が少ない潜在時空間に写像を行う処理と、前記潜在時空間において、写像が行われた前記観測データ及び前記予測データに対して非線形変換を行う処理と、前記非線形変換が施された前記観測データ及び前記予測データについて、前記潜在時空間から前記潜在時空間よりも要素数が多く第1の実時空間よりも高解像度である第2の実時空間に写像を行うことにより、時空間上の格子データであり前記予測データよりも時空間上で高解像度である高解像度解析データを取得する処理と、をコンピュータに実行させ、前記第1の実時空間から前記潜在時空間に写像を行う処理、及び、前記潜在時空間において前記観測データ及び前記予測データに対して非線形変換を行う処理によって、前記観測データと前記予測データとのデータ同化が行われる。 The program disclosed herein includes a process for converting the structure of observation data, which is data obtained by observing a state in space-time, into observation data having a lattice data structure indicating numerical values defined on lattice points arranged at a predetermined interval in space-time; a process for mapping the observation data converted into lattice data and predicted data, which is lattice data in space-time obtained by simulation and is at least for the time of the observation data and a time including the past of the observation data, from a first real time-space to a latent time-space having a smaller number of elements than the first real time-space; and a process for mapping the mapped observation data and predicted data in the latent time-space. and a process of mapping the nonlinearly transformed observation data and the predicted data from the latent space-time to a second real space-time that has a greater number of elements than the latent space-time and a higher resolution than the first real space-time, thereby obtaining high-resolution analysis data that is lattice data in space-time and has a higher resolution in space-time than the predicted data. The process of mapping from the first real space-time to the latent space-time and the process of performing a nonlinear transformation on the observation data and the predicted data in the latent space-time perform data assimilation between the observation data and the predicted data.
 本開示によれば、環境の状態の予測を精度よく効率的に行うことが可能な情報処理装置、情報処理方法及びプログラムを提供できる。 The present disclosure provides an information processing device, information processing method, and program that can accurately and efficiently predict the state of the environment.
計算の解像度及び格子データを説明するための図である。FIG. 13 is a diagram for explaining calculation resolution and grid data. 計算の解像度及び格子データを説明するための図である。FIG. 13 is a diagram for explaining calculation resolution and grid data. 超解像シミュレーション方法を説明するための図である。FIG. 13 is a diagram for explaining a super-resolution simulation method. 本実施の形態にかかる情報処理装置の構成を示す図である。1 is a diagram showing a configuration of an information processing device according to an embodiment of the present invention; 本実施の形態にかかる情報処理装置によって実行される情報処理方法を示すフローチャートである。4 is a flowchart showing an information processing method executed by the information processing device according to the present embodiment. 実施の形態1にかかる情報処理装置の構成を示す図である。1 is a diagram illustrating a configuration of an information processing device according to a first embodiment. 比較例にかかる技術を説明するための図である。FIG. 1 is a diagram for explaining a technique according to a comparative example. 実施の形態1にかかる超解像及びデータ同化を説明するための図である。FIG. 2 is a diagram for explaining super-resolution and data assimilation according to the first embodiment. 実施の形態1にかかる実験結果と比較例にかかる実験結果とを比較した図である。11 is a diagram comparing experimental results according to the first embodiment with experimental results according to a comparative example. FIG. 実施の形態1にかかる構成要素を変分ベイズ法により学習する方法を説明するための図である。1 is a diagram for explaining a method of learning components according to the first embodiment using a variational Bayes method. FIG. 各実施形態に係る装置およびシステムを実現可能な計算処理装置のハードウェア構成例を概略的に示すブロック図である。FIG. 1 is a block diagram illustrating an example of the hardware configuration of a calculation processing device capable of realizing an apparatus and a system according to each embodiment.
(実施の形態の概要)
 実施の形態の説明に先立って、本実施の形態の概要について説明する。なお、以下、本実施形態を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。また、以下の説明において、使用されるインデックス(英文字等)は、本明細書全体で共通のものとは限らない。
(Overview of the embodiment)
Prior to describing the embodiment, an outline of the embodiment will be described. Note that, although the embodiment will be described below, the invention according to the claims is not limited to the following embodiment. Also, not all of the combinations of features described in the embodiment are necessarily essential to the solution of the invention. Also, in the following description, indexes (such as English letters) used are not necessarily common throughout this specification.
 例えば、気象予測(気象予測シミュレーション)の分野では、微気象予測が適用されることがある。微気象とは、人工構造物や人間活動の影響を大きく受ける高度100m程度までの地上付近の気象のことである。微気象予測では、一般的な気象予測と比較し、100~1000倍程度の高解像度シミュレーション結果を提供する。微気象予測が提供されるのは主に都市部であるが、適用先を都市に限定するものではない。超高解像度のため、微気象予測には、通常の気象予測では考慮されないようなビルを過ぎる流れやビルからの排熱を組み込むことができる。すなわち、より現実に近い大気の流れを微気象予測はシミュレートできる。近未来の微気象予測では、市街地等の環境に配置されたセンサ及びカメラ、ドローン、スマートフォン等から観測データを取得して、これらの観測データを用いて予測を行うことになると考えられる、このような予測を精度よく行うためには、計算の解像度を高くすることが必要となる。 For example, in the field of weather forecasting (weather forecast simulation), micrometeorological forecasts are sometimes applied. Micrometeorological forecasts refer to the weather near the ground up to an altitude of about 100 m, which is heavily influenced by artificial structures and human activities. Micrometeorological forecasts provide simulation results with a resolution of about 100 to 1000 times higher than that of general weather forecasts. Micrometeorological forecasts are mainly provided for urban areas, but their application is not limited to cities. Because of their ultra-high resolution, micrometeorological forecasts can incorporate flows past buildings and heat exhaust from buildings, which are not considered in normal weather forecasts. In other words, micrometeorological forecasts can simulate atmospheric flows that are closer to reality. In the near future, micrometeorological forecasts will likely obtain observational data from sensors, cameras, drones, smartphones, etc. placed in urban environments, and use these observational data to make predictions. In order to make such predictions accurately, it is necessary to increase the resolution of the calculations.
 図1及び図2は、計算の解像度及び格子データを説明するための図である。図1は、3次元計算メッシュG1を示す。3次元計算メッシュG1は、X軸,Y軸,Z軸の3次元座標空間で定義される3次元空間に対応する格子で表されている。この格子の間隔が短いほど、空間方向の計算の解像度は高解像度となる。逆に、格子の間隔が長いほど、空間方向の計算の解像度が低解像度となる。 Figures 1 and 2 are diagrams for explaining calculation resolution and grid data. Figure 1 shows a three-dimensional calculation mesh G1. The three-dimensional calculation mesh G1 is represented by a grid corresponding to a three-dimensional space defined by a three-dimensional coordinate space of the X-axis, Y-axis, and Z-axis. The shorter the grid spacing, the higher the resolution of the calculation in the spatial direction. Conversely, the longer the grid spacing, the lower the resolution of the calculation in the spatial direction.
 図2は、4次元計算メッシュG2を示す。4次元計算メッシュG2は、3次元計算メッシュG1が時間方向(T軸で示す)、つまり時系列上に配置されるようにして、構成される。ここで、時間間隔(サンプリング周期;図2ではTとTの間の間隔)が短いほど、時間方向の計算の解像度は高解像度となる。逆に、時間間隔が長いほど、時間方向の計算の解像度が低解像度となる。なお、本実施の形態において、「時空間」は、3次元の空間と1次元の時間とで定義される4次元の時空間として説明するが、時空間の次元は、4次元に限定されない。 FIG. 2 shows a four-dimensional computation mesh G2. The four-dimensional computation mesh G2 is configured such that the three-dimensional computation mesh G1 is arranged in the time direction (shown by the T axis), that is, in a time series. Here, the shorter the time interval (sampling period; the interval between T1 and T2 in FIG. 2), the higher the resolution of the computation in the time direction. Conversely, the longer the time interval, the lower the resolution of the computation in the time direction. In this embodiment, the "space-time" is described as a four-dimensional space-time defined by three-dimensional space and one-dimensional time, but the dimension of the space-time is not limited to four dimensions.
 ここで、4次元計算メッシュG2における物理量等の数値を示すデータは、4次元の時空間上の格子データとみなすことができる。格子データは、時空間上において所定間隔で配置された格子点上で定義される物理量(速度等)等の数値を示す。つまり、3次元空間(3次元計算メッシュG1)の各点にその点の状態を示す数値(物理量等)が存在し、4次元計算メッシュG2で示すように、その各点の数値が、1次元の時間方向に変化する。この3次元空間の各点の時間方向の変化が、格子データで示されている。この場合、格子データは、その物理量等の数値を示す4次元のデータ配列(数値配列)で表され得る。データ配列における要素(element)の数を、要素数という。また、データ配列は、物理量ごとに設けられ得る。また、格子データは、構造化された構造化データということもできる。また、後述するニューラルネットワークで格子データを扱う場合、格子データは、人間が理解できる物理量を示してもよいし、人間が理解できない数値を示してもよい。つまり、格子データは、時空間上において所定間隔で配置された格子点上で定義される数値を示す構造を有する。 Here, data indicating the numerical values of physical quantities, etc. in the four-dimensional computation mesh G2 can be regarded as lattice data in four-dimensional space-time. The lattice data indicates the numerical values of physical quantities (velocity, etc.) defined on lattice points arranged at a predetermined interval in space-time. That is, at each point in three-dimensional space (three-dimensional computation mesh G1), there is a numerical value (physical quantity, etc.) indicating the state of that point, and as shown in the four-dimensional computation mesh G2, the numerical value of each point changes in the one-dimensional time direction. The change in the time direction of each point in this three-dimensional space is indicated by lattice data. In this case, the lattice data can be expressed as a four-dimensional data array (numerical array) indicating the numerical values of the physical quantities, etc. The number of elements in the data array is called the number of elements. Also, a data array can be provided for each physical quantity. Also, the lattice data can be called structured data. Also, when lattice data is handled in a neural network described later, the lattice data may indicate physical quantities that humans can understand, or may indicate numerical values that humans cannot understand. In other words, the lattice data has a structure indicating numerical values defined on lattice points arranged at a predetermined interval in space-time.
 一方、計算の解像度を高くして微気象予測シミュレーションを行うと、扱うデータ量が増大するので、計算コストが多大となる。したがって、低解像度(LR:Low Resolution)のシミュレーション結果に対して超解像(SR:Super Resolution)を行うことによって、高解像度(HR:High Resolution)の計算結果を得ることが考えられる。 On the other hand, when micrometeorological forecast simulations are performed with a high calculation resolution, the amount of data to be handled increases, resulting in huge calculation costs. Therefore, it is possible to obtain high-resolution (HR: High Resolution) calculation results by performing super-resolution (SR: Super Resolution) on low-resolution (LR: Low Resolution) simulation results.
 図3は、超解像シミュレーション方法を説明するための図である。超解像シミュレーションシステムは、低解像度シミュレーションを行って得られた低解像度の予測結果に対して、超解像器で超解像を行う。これにより、高解像度の予測結果が得られる。超解像器は、予め、高解像度シミュレーションで得られた高解像度結果を用いて、深層学習(ニューラルネットワーク)により学習する。つまり、超解像器は、予め、大量の高解像度結果を教師データとして、教師あり学習を行うことによって、学習される。このような構成によって、運用時には、低解像度シミュレーションを行うことで高解像度の予測結果を得ることができるので、計算コストを抑制することができる。 Figure 3 is a diagram for explaining the super-resolution simulation method. The super-resolution simulation system uses a super-resolution device to perform super-resolution on the low-resolution prediction results obtained by performing a low-resolution simulation. This results in a high-resolution prediction result. The super-resolution device learns through deep learning (neural network) using the high-resolution results obtained in advance from a high-resolution simulation. In other words, the super-resolution device learns by performing supervised learning using a large amount of high-resolution results as training data in advance. With this configuration, during operation, high-resolution prediction results can be obtained by performing a low-resolution simulation, thereby reducing calculation costs.
 また、予測シミュレーションの精度を向上させるために、観測データと予測結果とについてデータ同化を行うことが考えられる。データ同化手法の1つであるアンサンブル・カルマンフィルタでは、アンサンブル計算によって多数の似た状況をシミュレートし、予測結果のばらつきから、その誤差を見積もる。そして、この誤差の大小に基づき、予測結果を観測データに近づける度合いを決定する。データ同化を行うことにより、予測結果を観測データに近づけることができるので、予測結果の精度を向上させることが可能となる。ここで、上述したように、非特許文献1の技術では、超解像の手法とデータ同化の手法とを単純に組み合わせている。つまり、非特許文献1では、超解像とデータ同化とを独立して行っている。このような手法では、アンサンブル計算によりデータ同化を行う必要がある。したがって、計算コストが増大する。 In addition, in order to improve the accuracy of the prediction simulation, it is possible to perform data assimilation between the observation data and the prediction results. In the ensemble Kalman filter, which is one of the data assimilation methods, a large number of similar situations are simulated by ensemble calculation, and the error is estimated from the variance of the prediction results. Then, based on the magnitude of this error, the degree to which the prediction results should be brought closer to the observation data is determined. By performing data assimilation, the prediction results can be brought closer to the observation data, making it possible to improve the accuracy of the prediction results. Here, as described above, the technology in Non-Patent Document 1 simply combines the super-resolution method and the data assimilation method. In other words, in Non-Patent Document 1, super-resolution and data assimilation are performed independently. In such a method, it is necessary to perform data assimilation by ensemble calculation. Therefore, the calculation cost increases.
 これに対し、本実施の形態では、以下に説明するように、格子データの時系列データを使用して、超解像とデータ同化とが同時に実行される。これにより、アンサンブル計算を行うことが不要となる。したがって、本実施の形態では、精度よく効率的に予測を行うことが可能となる。 In contrast, in this embodiment, as described below, super-resolution and data assimilation are performed simultaneously using time-series data of grid data. This makes it unnecessary to perform ensemble calculations. Therefore, in this embodiment, it becomes possible to perform predictions with high accuracy and efficiency.
 図4は、本実施の形態にかかる情報処理装置10の構成を示す図である。情報処理装置10は、例えばコンピュータである。情報処理装置10は、シミュレーション部20と、観測データ取得部22と、予測データ取得部24と、構造変換部30と、潜在時空間写像部40と、非線形変換部50と、高解像度解析データ取得部60と、低解像度解析データ算出部70とを有する。これらの構成要素は、後述するハードウェア構成によって実現され得る。これらの構成要素の機能については後述する。 FIG. 4 is a diagram showing the configuration of an information processing device 10 according to this embodiment. The information processing device 10 is, for example, a computer. The information processing device 10 has a simulation unit 20, an observation data acquisition unit 22, a prediction data acquisition unit 24, a structural transformation unit 30, a latent space-time mapping unit 40, a nonlinear transformation unit 50, a high-resolution analysis data acquisition unit 60, and a low-resolution analysis data calculation unit 70. These components can be realized by a hardware configuration described later. The functions of these components will be described later.
 図5は、本実施の形態にかかる情報処理装置10によって実行される情報処理方法を示すフローチャートである。シミュレーション部20は、環境の状態のシミュレーションを行う(ステップS20)。具体的には、シミュレーション部20は、上述したような低解像度のシミュレーションを行う。さらに具体的には、シミュレーション部20は、時間方向及び空間方向について低解像度のシミュレーションを行う。 FIG. 5 is a flowchart showing an information processing method executed by the information processing device 10 according to this embodiment. The simulation unit 20 performs a simulation of the state of the environment (step S20). Specifically, the simulation unit 20 performs a low-resolution simulation as described above. More specifically, the simulation unit 20 performs a low-resolution simulation in the time direction and the spatial direction.
 観測データ取得部22は、1種類以上の観測データを取得する(ステップS22)。観測データは、時空間上の状態を観測して得られたデータである。観測データは、例えば、環境に配置されたセンサ及びカメラ、ドローン、スマートフォン等から取得され得る。ここで、観測データの構造は、格子データの構造である必要はない。また、もし観測データの構造が格子データの構造の場合、その解像度は任意であり、低解像度であっても高解像度であってもよい。観測データの詳細については後述する。 The observation data acquisition unit 22 acquires one or more types of observation data (step S22). The observation data is data obtained by observing a state in time and space. The observation data can be acquired, for example, from sensors and cameras placed in the environment, drones, smartphones, etc. Here, the structure of the observation data does not need to be a lattice data structure. Furthermore, if the structure of the observation data is a lattice data structure, the resolution is arbitrary and may be low resolution or high resolution. Details of the observation data will be described later.
 予測データ取得部24は、予測データを取得する(ステップS24)。具体的には、予測データ取得部24は、シミュレーション部20によるシミュレーション結果である予測データを取得する。ここで、予測データは、状態の時間的な変化を示す時系列データである。また、予測データは、シミュレーションによって得られた時空間上の格子データである。予測データは、少なくとも観測データの時刻及び当該時刻よりも過去を含む時間(時系列)における予測データである。ここで、「観測データの時刻」とは、全ての観測データにおける最も後の時刻(基準時刻)を含む。予測データの詳細については後述する。 The prediction data acquisition unit 24 acquires the prediction data (step S24). Specifically, the prediction data acquisition unit 24 acquires the prediction data, which is the result of the simulation by the simulation unit 20. Here, the prediction data is time series data indicating the change in state over time. The prediction data is also lattice data in space-time obtained by the simulation. The prediction data is prediction data for a time (time series) that includes at least the time of the observation data and a time prior to that time. Here, the "time of the observation data" includes the latest time (reference time) in all the observation data. Details of the prediction data will be described later.
 構造変換部30は、観測データの構造を変換する(ステップS30)。具体的には、構造変換部30は、観測データの構造を、格子データの構造の観測データに変換する。さらに具体的には、構造変換部30は、時空間上の状態を観測して得られたデータである観測データの構造を、時空間上において所定間隔で配置された格子点上で定義される数値を示す格子データの構造の観測データに変換する。構造変換部30の機能の詳細については後述する。 The structure conversion unit 30 converts the structure of the observation data (step S30). Specifically, the structure conversion unit 30 converts the structure of the observation data into observation data with a lattice data structure. More specifically, the structure conversion unit 30 converts the structure of the observation data, which is data obtained by observing a state in space-time, into observation data with a lattice data structure that indicates numerical values defined on lattice points arranged at predetermined intervals in space-time. The function of the structure conversion unit 30 will be described in detail later.
 潜在時空間写像部40は、観測データ及び予測データについて、潜在時空間に写像を行う(ステップS40)。具体的には、潜在時空間写像部40は、S30の処理で格子データに変換された観測データ及びS24の処理で得られた予測データについて、第1の実時空間から潜在時空間に写像を行う。後述するように、潜在時空間写像部40(S40の処理)によって、観測データと予測データとのデータ同化が行われる。 The latent space-time mapping unit 40 maps the observation data and prediction data into latent space-time (step S40). Specifically, the latent space-time mapping unit 40 maps the observation data converted into lattice data in the process of S30 and the prediction data obtained in the process of S24 from the first real space-time into latent space-time. As described below, data assimilation between the observation data and the prediction data is performed by the latent space-time mapping unit 40 (processing of S40).
 ここで、潜在時空間は、第1の実時空間よりも要素数が少ない時空間である。言い換えると、潜在時空間は、第1の実時空間よりも低解像度である時空間である。したがって、潜在時空間におけるデータ配列の要素数は、第1の実時空間におけるデータ配列の要素数よりも少ない。そして、潜在時空間上のデータは、観測データ及び予測データについて、時間及び空間の情報を圧縮した数値配列で構成され得る。なお、潜在時空間は、時間(時系列)の概念を含む潜在空間ということもできる。また、潜在時空間では、次元が区別されない。つまり、潜在時空間では、時間と空間とを区別せず、3次元空間の次元も区別しない。また、第1の実時空間は、予測データが得られる環境に対応する時空間である。 Here, the latent space-time is a space-time with fewer elements than the first real space-time. In other words, the latent space-time is a space-time with lower resolution than the first real space-time. Therefore, the number of elements of the data array in the latent space-time is fewer than the number of elements of the data array in the first real space-time. The data in the latent space-time can be composed of a numerical array that compresses the time and space information for the observed data and the predicted data. Note that the latent space-time can also be said to be a latent space that includes the concept of time (time series). Furthermore, dimensions are not distinguished in the latent space-time. In other words, the latent space does not distinguish between time and space, nor does it distinguish between the dimensions of three-dimensional space. Furthermore, the first real space-time is a space-time corresponding to the environment in which the predicted data is obtained.
 また、潜在時空間写像部40は、上述した潜在時空間への写像によって、観測データ(格子データに変換された観測データ)が潜在時空間に写像されたデータ、及び、予測データが潜在時空間に写像された(射影された)データを取得できる。潜在時空間写像部40は、格子データに変換された観測データを使用して、予測データを潜在時空間に写像してもよい。したがって、「予測データが潜在時空間に写像されたデータ」は、観測データを潜在時空間に写像して得られたデータも含み得る。一方、潜在時空間写像部40は、観測データを写像する際には、観測データ単体を潜在時空間に写像する。 The latent space-time mapping unit 40 can also obtain data in which observation data (observation data converted into lattice data) is mapped into latent space-time, and data in which prediction data is mapped (projected) into latent space-time, by mapping to latent space-time as described above. The latent space-time mapping unit 40 may use the observation data converted into lattice data to map prediction data into latent space-time. Therefore, "data in which prediction data is mapped into latent space-time" may also include data obtained by mapping observation data into latent space-time. On the other hand, when mapping observation data, the latent space-time mapping unit 40 maps the observation data alone into latent space-time.
 格子データに変換された観測データを使用して予測データを写像することにより、観測データと予測データとのデータ同化が行われる。つまり、格子データに変換された観測データと予測データとを潜在時空間に写像する際に、これらが混合(融合)され得る。言い換えると、潜在時空間において、格子データに変換された観測データが予測データに取り込まれる。潜在時空間写像部40のより詳細な機能については後述する。 By mapping the predicted data using the observation data converted into lattice data, data assimilation between the observation data and the predicted data is performed. In other words, when the observation data converted into lattice data and the predicted data are mapped into the latent space-time, they may be mixed (fused). In other words, in the latent space-time, the observation data converted into lattice data is incorporated into the predicted data. The functions of the latent space-time mapping unit 40 will be described in more detail later.
 非線形変換部50は、潜在時空間おいて非線形変換を行う(ステップS50)。具体的には、非線形変換部50は、潜在時空間において、写像が行われた観測データ及び予測データに対して非線形変換を行う。さらに具体的には、非線形変換部50は、潜在時空間に写像された観測データと予測データとを融合して、潜在時空間におけるデータ(潜在時空間データ;融合データ)を取得してもよい。したがって、非線形変換部50(S50の処理)によって、観測データと予測データとのデータ同化が行われる。また、非線形変換部50は、非線形変換を繰り返して、潜在時空間に写像された潜在時空間データの数値の分布を不連続にしてもよい。また、非線形変換部50は、非線形変換により、潜在時空間に写像された潜在時空間データの数値の分布を複雑に又は単純にしてもよい。この場合、非線形変換部50は、適切に超解像が行われるように、非線形変換を行ってもよい。なお、非線形変換部50は、数値の分布を変化させる場合に、要素数を変化させなくてもよい。なお、要素数を増加させることにより、超解像が行われ得る。非線形変換部50のより詳細な機能については後述する。 The nonlinear transformation unit 50 performs a nonlinear transformation in the latent space-time (step S50). Specifically, the nonlinear transformation unit 50 performs a nonlinear transformation on the observation data and the predicted data that have been mapped in the latent space-time. More specifically, the nonlinear transformation unit 50 may fuse the observation data and the predicted data that have been mapped to the latent space-time to obtain data in the latent space-time (latent space-time data; fused data). Thus, the nonlinear transformation unit 50 (processing of S50) performs data assimilation between the observation data and the predicted data. The nonlinear transformation unit 50 may also repeat the nonlinear transformation to make the distribution of the values of the latent space-time data mapped to the latent space-time discontinuous. The nonlinear transformation unit 50 may also make the distribution of the values of the latent space-time data mapped to the latent space-time by the nonlinear transformation complex or simple. In this case, the nonlinear transformation unit 50 may perform a nonlinear transformation so that super-resolution is appropriately performed. Note that the nonlinear transformation unit 50 may not change the number of elements when changing the distribution of the values. Note that super-resolution can be performed by increasing the number of elements. The functions of the nonlinear conversion unit 50 will be described in more detail later.
 高解像度解析データ取得部60は、高解像度解析データを取得する(ステップS60)。具体的には、高解像度解析データ取得部60は、非線形変換が施された観測データ及び予測データについて、潜在時空間から第2の実時空間に写像を行う。これにより、高解像度解析データ取得部60は、高解像度解析データを取得する。つまり、高解像度解析データは、時間方向及び空間方向に超解像が施された解析データである。 The high-resolution analysis data acquisition unit 60 acquires high-resolution analysis data (step S60). Specifically, the high-resolution analysis data acquisition unit 60 maps the observation data and prediction data that have been subjected to nonlinear transformation from the latent time space to the second real time space. In this way, the high-resolution analysis data acquisition unit 60 acquires high-resolution analysis data. In other words, the high-resolution analysis data is analysis data that has been subjected to super-resolution in the time direction and the space direction.
 ここで、第2の実時空間は、潜在時空間よりも要素数が多く第1の実時空間よりも高解像度である実時空間である。したがって、第2の実時空間は、高解像度空間(HR空間)であると言える。また、高解像度解析データ(HR解析データ)は、時空間上の格子データである。また、高解像度解析データは、予測データよりも時空間上で高解像度であるデータである。また、高解像度解析データは、観測データの時刻の過去及び未来を含む時間(時系列)における時系列データであってもよい。すなわち、観測データの時刻(基準時刻)に対して、入力された予測データが未来にわたり存在する場合、高解像度解析データは、同様の未来の時刻を含む解析データである。つまり、予測データは、観測データの時刻及び当該時刻よりも過去及び未来を含む時間における予測データであってもよい。この場合、高解像度解析データ取得部60は、観測データの時刻の過去及び未来を含む時間における高解像度解析データを取得してもよい。高解像度解析データ取得部60のより詳細な機能については後述する。 Here, the second real-time space is a real-time space having a larger number of elements than the latent time space and a higher resolution than the first real-time space. Therefore, the second real-time space can be said to be a high-resolution space (HR space). The high-resolution analysis data (HR analysis data) is lattice data in time and space. The high-resolution analysis data is data with a higher resolution in time and space than the prediction data. The high-resolution analysis data may be time series data in a time (time series) including the past and future of the time of the observation data. That is, when the input prediction data exists in the future with respect to the time of the observation data (reference time), the high-resolution analysis data is analysis data including a similar future time. That is, the prediction data may be prediction data in a time including the time of the observation data and the past and future of that time. In this case, the high-resolution analysis data acquisition unit 60 may acquire high-resolution analysis data in a time including the past and future of the time of the observation data. A more detailed function of the high-resolution analysis data acquisition unit 60 will be described later.
 低解像度解析データ算出部70は、低解像度解析データを算出する(ステップS70)。具体的には、低解像度解析データ算出部70は、高解像度解析データを用いて低解像度解析データを算出する。ここで、低解像度解析データ(LR解析データ)は、高解像度解析データよりも時空間上で低解像度の解析データである。さらに具体的には、低解像度解析データ算出部70は、高解像度解析データに対して代数補間等の算術操作(数学的手法)を施すことによって、低解像度解析データを算出する。低解像度解析データ算出部70のより詳細な機能については後述する。 The low-resolution analysis data calculation unit 70 calculates the low-resolution analysis data (step S70). Specifically, the low-resolution analysis data calculation unit 70 calculates the low-resolution analysis data using the high-resolution analysis data. Here, the low-resolution analysis data (LR analysis data) is analysis data with a lower resolution in time and space than the high-resolution analysis data. More specifically, the low-resolution analysis data calculation unit 70 calculates the low-resolution analysis data by performing arithmetic operations (mathematical methods) such as algebraic interpolation on the high-resolution analysis data. A more detailed description of the functions of the low-resolution analysis data calculation unit 70 will be given later.
 シミュレーション部20は、低解像度解析データを入力として、次のタイミングのシミュレーションを行う(S20)。これにより、図5に示した処理フローが繰り返される。 The simulation unit 20 performs a simulation for the next timing using the low-resolution analysis data as input (S20). This causes the processing flow shown in FIG. 5 to be repeated.
 上述したように、本実施の形態にかかる情報処理装置10は、時空間における観測データ及び時空間における低解像度の予測データに対してデータ同化及び超解像を行うことにより、高解像度解析データを取得するように構成されている。そして、情報処理装置10は、高解像度解析データを取得する際に、潜在時空間において処理を行うように構成されている。したがって、環境の状態の予測を精度よく効率的に行うことが可能となる。 As described above, the information processing device 10 according to this embodiment is configured to acquire high-resolution analysis data by performing data assimilation and super-resolution on observation data in time and space and low-resolution prediction data in time and space. The information processing device 10 is also configured to perform processing in latent time and space when acquiring high-resolution analysis data. Therefore, it becomes possible to accurately and efficiently predict the state of the environment.
 また、本実施の形態にかかる情報処理装置10は、低解像度解析データを算出するように構成されている。これにより、低解像度のシミュレーションを継続して行うことが可能となる。したがって、効率的にシミュレーションを行うことが可能となる。 In addition, the information processing device 10 according to this embodiment is configured to calculate low-resolution analysis data. This makes it possible to continue performing low-resolution simulations. This makes it possible to perform simulations efficiently.
 また、非線形変換部50は、潜在時空間に写像されたデータに対してデータ配列の変形を行うことにより時間方向に超解像を行ってもよい。この場合、高解像度解析データ取得部60は、潜在時空間において時間方向に超解像が行なわれたデータに対して、時間方向の各時刻について独立して、空間方向に超解像を行うことによって、高解像度解析データを取得してもよい。これにより、さらに効率的に処理を行うことが可能となる。詳しくは後述する。 The nonlinear transformation unit 50 may also perform super-resolution in the time direction by transforming the data array of the data mapped to the latent time space. In this case, the high-resolution analysis data acquisition unit 60 may acquire high-resolution analysis data by performing super-resolution in the spatial direction independently for each time in the time direction on the data that has been super-resolved in the time direction in the latent time space. This allows for even more efficient processing. Details will be described later.
 また、構造変換部30、潜在時空間写像部40、非線形変換部50及び高解像度解析データ取得部60は、機械学習のアルゴリズムによって学習された学習済みモデルによって、実現されてもよい。この場合、構造変換部30、潜在時空間写像部40、非線形変換部50及び高解像度解析データ取得部60は、予測データよりも時空間上で高解像度のデータを教師データとする教師あり学習によって学習された学習済みモデルによって、実現されてもよい。あるいは、構造変換部30、潜在時空間写像部40、非線形変換部50及び高解像度解析データ取得部60は、損失関数を減少させるようにして教師なし学習によって学習された学習済みモデルによって、実現されてもよい。これにより、格子データでない観測データと低解像度の予測データとを用いて、効率的に、高解像度解析データを取得することが可能となる。詳しくは後述する。 Furthermore, the structure transformation unit 30, the latent space-time mapping unit 40, the nonlinear transformation unit 50, and the high-resolution analysis data acquisition unit 60 may be realized by a trained model trained by a machine learning algorithm. In this case, the structure transformation unit 30, the latent space-time mapping unit 40, the nonlinear transformation unit 50, and the high-resolution analysis data acquisition unit 60 may be realized by a trained model trained by supervised learning using data with a higher spatiotemporal resolution than the predicted data as teacher data. Alternatively, the structure transformation unit 30, the latent space-time mapping unit 40, the nonlinear transformation unit 50, and the high-resolution analysis data acquisition unit 60 may be realized by a trained model trained by unsupervised learning so as to reduce the loss function. This makes it possible to efficiently acquire high-resolution analysis data using observation data that is not lattice data and low-resolution predicted data. Details will be described later.
(実施の形態1)
 以下、実施形態について、図面を参照しながら説明する。説明の明確化のため、以下の記載及び図面は、適宜、省略、及び簡略化がなされている。また、各図面において、同一の要素には同一の符号が付されており、必要に応じて重複説明は省略されている。
(Embodiment 1)
Hereinafter, the embodiments will be described with reference to the drawings. For clarity of explanation, the following description and drawings are omitted and simplified as appropriate. In addition, in each drawing, the same elements are given the same reference numerals, and duplicate explanations are omitted as necessary.
<情報処理装置>
 図6は、実施の形態1にかかる情報処理装置100の構成を示す図である。情報処理装置100は、例えばコンピュータである。情報処理装置100は、学習処理部110と、シミュレーション部120と、観測データ取得部122と、予測データ取得部124と、構造変換部130と、潜在時空間写像部140と、非線形変換部150と、高解像度解析データ取得部160と、低解像度解析データ算出部170とを有する。これらの構成要素は、後述するハードウェア構成によって実現され得る。
<Information processing device>
6 is a diagram showing a configuration of an information processing device 100 according to the first embodiment. The information processing device 100 is, for example, a computer. The information processing device 100 includes a learning processing unit 110, a simulation unit 120, an observation data acquisition unit 122, a prediction data acquisition unit 124, a structure conversion unit 130, a latent space-time mapping unit 140, a nonlinear conversion unit 150, a high-resolution analysis data acquisition unit 160, and a low-resolution analysis data calculation unit 170. These components can be realized by a hardware configuration described later.
 学習処理部110は、構造変換部130、潜在時空間写像部140、非線形変換部150及び高解像度解析データ取得部160についてニューラルネットワーク等の機械学習を行う。これにより、構造変換部130、潜在時空間写像部140、非線形変換部150及び高解像度解析データ取得部160は、学習済みモデルとして、それぞれの機能を実現できるようになる。 The learning processing unit 110 performs machine learning such as neural networks on the structural transformation unit 130, the latent space-time mapping unit 140, the nonlinear transformation unit 150, and the high-resolution analysis data acquisition unit 160. This allows the structural transformation unit 130, the latent space-time mapping unit 140, the nonlinear transformation unit 150, and the high-resolution analysis data acquisition unit 160 to realize their respective functions as trained models.
 ここで、学習処理部110は、機械学習を行う際に、構造変換部130、潜在時空間写像部140、非線形変換部150及び高解像度解析データ取得部160を別個に学習しないで、これらを纏めて学習してもよい。具体的には、学習処理部110は、エンドツーエンド(end-to-end)深層学習の手法によって、構造変換部130、潜在時空間写像部140、非線形変換部150及び高解像度解析データ取得部160を一気通貫に学習する。つまり、学習処理部110は、構造変換部130、潜在時空間写像部140、非線形変換部150及び高解像度解析データ取得部160のそれぞれの機能をニューラルネットワークの層とみなして機械学習を行う。言い換えると、学習処理部110は、構造変換部130、潜在時空間写像部140、非線形変換部150及び高解像度解析データ取得部160を1つのニューラルネットワークとして、機械学習を行う。なお、事前学習については、構造変換部130、潜在時空間写像部140、非線形変換部150及び高解像度解析データ取得部160のそれぞれで別個に行われてもよい。 Here, when performing machine learning, the learning processing unit 110 may learn the structure transformation unit 130, the latent space-time mapping unit 140, the nonlinear transformation unit 150, and the high-resolution analysis data acquisition unit 160 together, rather than learning them separately. Specifically, the learning processing unit 110 learns the structure transformation unit 130, the latent space-time mapping unit 140, the nonlinear transformation unit 150, and the high-resolution analysis data acquisition unit 160 in a continuous manner using an end-to-end deep learning method. In other words, the learning processing unit 110 performs machine learning by regarding the functions of the structure transformation unit 130, the latent space-time mapping unit 140, the nonlinear transformation unit 150, and the high-resolution analysis data acquisition unit 160 as layers of a neural network. In other words, the learning processing unit 110 performs machine learning by regarding the structure transformation unit 130, the latent space-time mapping unit 140, the nonlinear transformation unit 150, and the high-resolution analysis data acquisition unit 160 as one neural network. Note that pre-learning may be performed separately in each of the structural transformation unit 130, the latent space-time mapping unit 140, the nonlinear transformation unit 150, and the high-resolution analysis data acquisition unit 160.
 学習処理部110は、教師あり学習を行ってもよいし、教師なし学習を行ってもよい。教師あり学習を行う場合、学習処理部110は、例えば、高精度且つ高解像度の時系列気象データを教師データとして、学習を行ってもよい。学習処理部110の処理の詳細については後述する。なお、構造変換部130、潜在時空間写像部140、非線形変換部150及び高解像度解析データ取得部160は、学習処理部110による機械学習によって学習された学習済みモデルとして実現されることに限定されない。 The learning processing unit 110 may perform supervised learning or unsupervised learning. When performing supervised learning, the learning processing unit 110 may perform learning using, for example, highly accurate and high resolution time series weather data as teacher data. Details of the processing of the learning processing unit 110 will be described later. Note that the structural transformation unit 130, the latent space-time mapping unit 140, the nonlinear transformation unit 150, and the high resolution analysis data acquisition unit 160 are not limited to being realized as a trained model trained by machine learning by the learning processing unit 110.
 シミュレーション部120は、上述したシミュレーション部20に対応する。シミュレーション部120は、時間方向及び空間方向について低解像度のシミュレーションを行う。シミュレーション部120は、入力された初期状態を用いて、低解像度の予測データ(シミュレーションデータ)を生成する。 The simulation unit 120 corresponds to the simulation unit 20 described above. The simulation unit 120 performs a low-resolution simulation in the time direction and the space direction. The simulation unit 120 generates low-resolution prediction data (simulation data) using the input initial state.
 低解像度の予測データ(LR予測シミュレーションデータ)は、時空間における格子点上で定義されるデジタルデータである。つまり、予測データは、時空間上で定義される格子データである。言い換えると、予測データは、格子構造で定義されるデータ配列を有する。つまり、時空間上の格子データである予測データは、空間方向及び時間方向に所定の間隔の格子点それぞれについて、データ配列を有する。図2に示した4次元計算メッシュG2において、時間軸方向に格子点が並んでおり、4次元計算メッシュG2における3次元計算メッシュG1において、空間3軸方向に格子点が並んでいる。予測データの格子データは、この各格子点上で数値を持つ。格子点の間隔は等間隔でも非等間隔でもよい。なお、シミュレーション部120は低解像度のシミュレーションを行うので、得られる予測データの格子データは、高解像度の格子データと比較して、時間方向の間隔及び空間方向の間隔が平均して長い。 Low-resolution prediction data (LR prediction simulation data) is digital data defined on lattice points in space-time. In other words, the prediction data is lattice data defined in space-time. In other words, the prediction data has a data array defined by a lattice structure. In other words, the prediction data, which is lattice data in space-time, has a data array for each lattice point at a predetermined interval in the spatial direction and the time direction. In the four-dimensional calculation mesh G2 shown in FIG. 2, the lattice points are arranged in the time axis direction, and in the three-dimensional calculation mesh G1 in the four-dimensional calculation mesh G2, the lattice points are arranged in the three spatial axes directions. The lattice data of the prediction data has a numerical value at each of these lattice points. The intervals between the lattice points may be equal or unequal. Note that since the simulation unit 120 performs a low-resolution simulation, the lattice data of the obtained prediction data has longer intervals in the time direction and the space direction on average compared to the high-resolution lattice data.
 例えば、予測データが、4次元の時空間におけるデータ配列Ahijkで定義されるとする。添え字hは時間方向(t方向)に対応し、添え字iは3次元空間のX軸方向に対応し、添え字jは3次元空間のY軸方向に対応し、添え字kは3次元空間のZ軸方向に対応する。このとき、データ配列Ahijkの添え字h,i,j,kは整数値をとる。この整数値の組(h,i,j,k)の1つに対して、4次元計算メッシュG2の格子点の1つが対応する。これにより、格子点上の数値Ahijkを一意に指定することができる。このように、予測データは、4次元空間における各次元の方向について整数の添え字を持つデータ配列Ahijkで定義される。 For example, it is assumed that the prediction data is defined by a data array A hijk in a four-dimensional space-time. The subscript h corresponds to the time direction (t direction), the subscript i corresponds to the X-axis direction in the three-dimensional space, the subscript j corresponds to the Y-axis direction in the three-dimensional space, and the subscript k corresponds to the Z-axis direction in the three-dimensional space. In this case, the subscripts h, i, j, and k of the data array A hijk take integer values. One of the sets of integer values (h, i, j, k) corresponds to one of the grid points of the four-dimensional calculation mesh G2. This makes it possible to uniquely specify the numerical value A hijk on the grid point. In this way, the prediction data is defined by a data array A hijk having integer subscripts for each dimensional direction in the four-dimensional space.
 ここで、データ配列Ahijkにおいて、時間方向の要素がH個であるとする。つまり添え字hがH個の値を取るとする。同様に、X軸方向の要素がI個、つまり添え字iがI個の値を取るとする。また、Y軸方向の要素がJ個、つまり添え字jがJ個の値を取るとする。また、Z軸方向の要素がK個、つまり添え字kがK個の値を取るとする。この場合、データ配列Ahijkの要素数はH*I*J*Kとなる。H=I=J=K=10とすると、データ配列Ahijkの要素数は10となる。 Here, in the data array A hijk , it is assumed that there are H elements in the time direction. In other words, the subscript h takes H values. Similarly, it is assumed that there are I elements in the X-axis direction, that is, the subscript i takes I values. Furthermore, it is assumed that there are J elements in the Y-axis direction, that is, the subscript j takes J values. Furthermore, it is assumed that there are K elements in the Z-axis direction, that is, the subscript k takes K values. In this case, the number of elements in the data array A hijk is H*I*J*K. If H=I=J=K=10, the number of elements in the data array A hijk is 104 .
 予測データは、時系列における過去の時間のデータを含む。また、予測データは、時系列における未来の時間のデータを含んでもよい。また、上述したように、予測データは、後述する観測データの時刻(基準時刻)を含む時間のデータである。 The predicted data includes data for past times in the time series. The predicted data may also include data for future times in the time series. As described above, the predicted data is time data that includes the time of the observed data (reference time) described below.
 予測データは、物理方程式に基づいて大気等の環境の状態を予測するのに必要な物理変数(物理量)を示すデータを含む。気象予測シミュレーションの場合、上記の物理方程式は、例えば、流体のナヴィエ・ストークス方程式又は熱力学方程式等である。また、物理量は、例えば、空気の速度、圧力、温度、水蒸気の混合比、雲粒の粒子数密度などである。これらの物理量ごとに、上述した4次元のデータ配列が設けられ得る。データ配列は、各物理量の、物理学における「場」を表しているともいえる。 The forecast data includes data indicating physical variables (physical quantities) necessary to predict the state of the atmosphere or other environment based on physical equations. In the case of a weather forecast simulation, the above-mentioned physical equations are, for example, the Navier-Stokes equations of fluids or thermodynamic equations. Furthermore, the physical quantities are, for example, air speed, pressure, temperature, water vapor mixing ratio, cloud particle number density, etc. For each of these physical quantities, the above-mentioned four-dimensional data array can be provided. It can be said that the data array represents the "field" of each physical quantity in physics.
 また、本実施の形態において、予測データ(LRシミュレーション結果)は、単一シナリオによって得られることに留意されたい。つまり、予測データは、ある唯一の初期状態からシミュレーション(物理シミュレーション)を行った際に得られる、唯一(単一)のシミュレーション結果である。これに対し、非特許文献1にかかるデータ同化では、アンサンブル計算を行うために、様々な似た状況についてシミュレーションを行う。つまり、非特許文献1においては、複数のシナリオにより予測シミュレーションを行っている。 It should also be noted that in this embodiment, the prediction data (LR simulation results) are obtained from a single scenario. In other words, the prediction data is a single (single) simulation result obtained when a simulation (physical simulation) is performed from a unique initial state. In contrast, in the data assimilation described in Non-Patent Document 1, simulations are performed for a variety of similar situations in order to perform ensemble calculations. In other words, in Non-Patent Document 1, a prediction simulation is performed using multiple scenarios.
 予測データ取得部124は、上述した予測データ取得部24に対応する。予測データ取得部124は、シミュレーション部120から、上述した予測データ(低解像度の物理シミュレーション予測結果)を取得する。予測データは、以下の式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
・・・(1)
The predicted data acquisition unit 124 corresponds to the above-mentioned predicted data acquisition unit 24. The predicted data acquisition unit 124 acquires the above-mentioned predicted data (prediction result of low-resolution physical simulation) from the simulation unit 120. The predicted data is expressed by the following formula (1).
Figure JPOXMLDOC01-appb-M000001
... (1)
 ここで、x は、予測データの全ての物理量からなるベクトル場である。すなわち、xは、ある時刻tにおける3次元空間の各格子点における値の組(ベクトル)を示すベクトル場である。そして、式(1)は、時刻t=0から時刻t=nの全ての物理量のベクトル場の集合を示す。言い換えると、式(1)は、予測データに関する4次元時空間のデータ配列(数値配列)の全てを示す。また、添え字Lは、空間方向に低解像度であることを示す。また、tは、予測データのタイムスタンプを示す。tは、時間間隔が長い間隔のタイムスタンプを示す。つまり、tは、時間方向に低解像度である(つまり時間間隔が長い)ことを示す。つまり、式(1)は、4次元時空間における格子数が少ない(要素数が少ない;低解像度の)データであることを表している。 Here, x t L is a vector field consisting of all physical quantities of the predicted data. That is, x is a vector field indicating a set of values (vectors) at each lattice point in three-dimensional space at a certain time t. And, formula (1) indicates a set of vector fields of all physical quantities from time t = 0 to time t = n. In other words, formula (1) indicates all data arrays (numerical arrays) of four-dimensional space-time related to the predicted data. Also, the subscript L indicates low resolution in the spatial direction. Also, t indicates the timestamp of the predicted data. t indicates a timestamp with a long time interval. That is, t indicates low resolution in the time direction (i.e., a long time interval). That is, formula (1) represents data with a small number of lattices (small number of elements; low resolution) in four-dimensional space-time.
 観測データ取得部122は、上述した観測データ取得部22に対応する。観測データ取得部122は、観測データ取得部22と同様に、環境に配置されたセンサ及びカメラ、ドローン、スマートフォン等から、観測データを取得する。観測データは、以下の式(2)で表される。
Figure JPOXMLDOC01-appb-M000002
・・・(2)
The observation data acquisition unit 122 corresponds to the above-mentioned observation data acquisition unit 22. The observation data acquisition unit 122 acquires observation data from sensors and cameras, drones, smartphones, etc. arranged in the environment, similar to the observation data acquisition unit 22. The observation data is expressed by the following formula (2).
Figure JPOXMLDOC01-appb-M000002
... (2)
 式(2)は、時刻τにおける、ある状態を示す数値(観測値)oからなるデジタルデータの集合を示す。ここで、τは、観測データのタイムスタンプを示す。τの時間間隔は、等間隔でなくてもよい。また、oは、物理量を示してもよいし、物理量を示さなくてもよい。つまり、oは、非物理量の数値を示してもよい。 Equation (2) represents a set of digital data consisting of a numerical value (observation value) o that indicates a certain state at time τ. Here, τ represents the timestamp of the observation data. The time interval of τ does not have to be equal. Furthermore, o may or may not represent a physical quantity. In other words, o may represent the numerical value of a non-physical quantity.
 なお、観測データは、格子データであってもよい。あるいは、観測データは、格子データである必要はない。つまり、観測データは、構造化されていない非構造化データ(非格子データ)であってもよい。非構造化データである観測データでは、時間情報及び空間情報に観測値が対応付けられているが、その時間及び空間それぞれの間隔に規則性がない。つまり、非構造化データである観測データは、空間メッシュ構造を有しない。したがって、観測データは、ランダムな時間及び空間における観測値を示してもよい。 Note that the observation data may be lattice data. Alternatively, the observation data does not have to be lattice data. In other words, the observation data may be unstructured data (non-lattice data). In unstructured observation data, observation values are associated with time information and spatial information, but there is no regularity in the intervals in time and space. In other words, unstructured observation data does not have a spatial mesh structure. Therefore, the observation data may indicate observation values in random time and space.
 また、観測データは、様々な雑多な質の異なるデータを含み得る。観測データは、画像データ、音データ、ポイントデータ、又はログデータであってもよい。また、観測データは、大気の状態を表す物理量の値の集合、又は、それらの物理量を推定可能なデジタルデータであってもよい。例えば、観測データは、アメダスの観測値を示してもよい。この場合、観測値は、様々な場所の温度、湿度又は風速等を示し得る。また、観測データは、物体(建物等)の放射輝度を示してもよい。これにより、その物体の近傍の位置及び観測された時間における温度を推定することができる。また、観測データは、ドローン等の空中を浮遊する飛行体の加速度ログを示してもよい。これにより、その飛行体の位置及び観測された時間における、風速又は乱流散逸率を推定することができる。また、観測データは、空を撮影した画像を示してもよい。これにより、撮影された位置及び時間における雲量又は降水量を推定することができる。また、観測データは、ある地点(コンビニエンスストア等)における冷菓(アイスクリーム、シャーベット、アイスキャンデー、かき氷等)の売り上げを示してもよい。これにより、その地域の局所的な温度を推定することができる。すなわち、冷菓の売り上げが高いほど、その地域の温度が高いと推定され得る。 The observation data may include various miscellaneous data of different qualities. The observation data may be image data, sound data, point data, or log data. The observation data may be a set of values of physical quantities representing the state of the atmosphere, or digital data from which these physical quantities can be estimated. For example, the observation data may indicate AMeDAS observation values. In this case, the observation values may indicate the temperature, humidity, wind speed, etc. of various locations. The observation data may also indicate the radiance of an object (such as a building). This allows the temperature at a position near the object and at the time of observation to be estimated. The observation data may also indicate an acceleration log of an aircraft floating in the air, such as a drone. This allows the wind speed or turbulence dissipation rate at the position of the aircraft and at the time of observation to be estimated. The observation data may also indicate an image of the sky. This allows the cloud cover or precipitation at the position and time of the image to be estimated. The observation data may also indicate the sales of cold desserts (ice cream, sorbet, popsicle, shaved ice, etc.) at a certain location (such as a convenience store). This allows the local temperature of the area to be estimated. In other words, it can be assumed that the higher the sales of frozen desserts, the higher the temperature in the area.
 また、十分精度が高いシミュレーションが実行される場合、そのシミュレーション結果は、現実の状態を良好に表しているといえる。したがって、十分精度が高いシミュレーションの結果を、現実をよく表す観測結果であるとして、観測データとみなしてもよい。なお、設定次第では、例えば、微気象シミュレーションのように、ビルの形状及びビルから出る排熱までも取り込んだ「現実に近い実験」を行うことができる。このようなシミュレーションは、誤差が十分小さいため、現実をよく表す観測結果、つまり観測データとみなし得る。 Furthermore, when a simulation is performed with sufficient accuracy, the simulation results can be said to represent the real state well. Therefore, the results of a simulation with sufficient accuracy can be considered as observational results that represent reality well, and can be considered as observational data. Depending on the settings, it is possible to perform "experiments close to reality" that incorporate the shape of a building and even the exhaust heat emitted by the building, such as a micrometeorological simulation. Such simulations have sufficiently small errors that they can be considered as observational results that represent reality well, that is, as observational data.
 また、観測データが観測される時空間の解像度は、高解像度であってもよいし、低解像度であってもよい。観測データが衛星データ又はレーダーデータを示す場合、これらは線(1次元)観測又は面(2次元)観測によって得られる。また、観測データがドップラーライダ(LiDAR:Light Detection And Ranging)によって得られるデータである場合、これは3次元観測によって得られる。これらの場合、空間解像度(及び観測の時間間隔)によって、観測データの解像度が低解像度であるか高解像度であるかを、決定することができる。 Furthermore, the spatial and temporal resolution at which the observational data is observed may be high resolution or low resolution. When the observational data represents satellite data or radar data, it is obtained by line (one-dimensional) observation or surface (two-dimensional) observation. When the observational data is data obtained by a Doppler lidar (LiDAR: Light Detection And Ranging), it is obtained by three-dimensional observation. In these cases, the spatial resolution (and the time interval of the observation) can determine whether the resolution of the observational data is low resolution or high resolution.
 また、観測データがアメダスデータに対応する場合、これは点(0次元)観測によって得られる。この場合であっても、以下のようにして、解像度を定義することができる。すなわち、点観測であっても、その観測値がどの程度の規模の状態を代表するかを示す代表スケールがある。代表スケールが大きい観測データの場合、低解像度の観測データとみなし得る。代表スケールが小さい観測データの場合、高解像度の観測データとみなし得る。例えば、通常の気象モデルでは、水平1km~10kmを代表するような、空間解像度の粗い観測値を観測している。そのため、観測においては、遮蔽物などが近くにない場所、草地上、直射日光が当たらないなど、人工排熱の影響を受けない、などの厳しい条件が課されている。このような観測データは、低解像度の観測データといえる。一方、微気象モデルでは、人工排熱の影響を受けるような、水平1m~5mを代表するような、空間解像度が細かい観測値を観測できる。微気象モデルでは、このような観測データが大気に与える影響を考慮して、シミュレーションを行うことができる。このような観測データは、高解像度の観測データであるといえる。 Also, when the observation data corresponds to AMeDAS data, it is obtained by point (zero-dimensional) observation. Even in this case, the resolution can be defined as follows. That is, even in the case of point observation, there is a representative scale that indicates the scale of the state that the observation value represents. When the representative scale is large, the observation data can be considered to be low-resolution observation data. When the representative scale is small, the observation data can be considered to be high-resolution observation data. For example, in a normal meteorological model, observation values with a coarse spatial resolution that represents 1 km to 10 km horizontally are observed. Therefore, strict conditions are imposed on the observation, such as being in a place with no obstructions nearby, on grass, not exposed to direct sunlight, and not being affected by artificial exhaust heat. Such observation data can be considered to be low-resolution observation data. On the other hand, in a micrometeorological model, observation values with a fine spatial resolution that represents 1 m to 5 m horizontally, which is affected by artificial exhaust heat, can be observed. In a micrometeorological model, simulations can be performed taking into account the impact of such observation data on the atmosphere. Such observation data can be considered to be high-resolution observation data.
 なお、高解像度の観測データと低解像度の予測データは、空間方向の解像度及び時間方向の解像度が大きく異なる。したがって、データ同化を行う場合、高解像度の観測データを、低解像度の予測データに合わせて時空間方向に平均化する必要がある。したがって、通常は、高解像度の観測データと低解像度の予測データとに対して直接データ同化を行うことは困難であることに、留意されたい。これに対し、本実施の形態では、任意の観測データと低解像度の予測データとに対して、データ同化を行うことができる。 Note that high-resolution observation data and low-resolution prediction data have significantly different spatial and temporal resolutions. Therefore, when performing data assimilation, it is necessary to average the high-resolution observation data in the spatiotemporal direction to match the low-resolution prediction data. Therefore, it should be noted that it is usually difficult to directly perform data assimilation on high-resolution observation data and low-resolution prediction data. In contrast, in this embodiment, data assimilation can be performed on any observation data and low-resolution prediction data.
 構造変換部130は、上述した構造変換部30に対応する。構造変換部130は、構造化器としての機能を有する。構造変換部130は、既存の構造化器によって実現されてもよい。構造変換部130は、非構造化データ(非格子データ)である観測データを、格子データの構造の観測データに変換する。つまり、構造変換部130は、観測データをグリッドデータ化する。構造変換部130は、観測データを、高解像度の時空間における格子データの各格子点上のデータに変換する。言い換えると、構造変換部130は、観測値を、格子上で定義される物理量へ変換する。なお、観測データが変換されて得られる格子データは、予測データの格子データよりも要素数が多い(つまり高解像度の)格子データに対応してもよい。 The structure conversion unit 130 corresponds to the structure conversion unit 30 described above. The structure conversion unit 130 has a function as a structurizer. The structure conversion unit 130 may be realized by an existing structurizer. The structure conversion unit 130 converts the observation data, which is unstructured data (non-lattice data), into observation data with a lattice data structure. In other words, the structure conversion unit 130 converts the observation data into grid data. The structure conversion unit 130 converts the observation data into data on each lattice point of the lattice data in high-resolution space-time. In other words, the structure conversion unit 130 converts the observation value into a physical quantity defined on a lattice. Note that the lattice data obtained by converting the observation data may correspond to lattice data having a larger number of elements (i.e., high resolution) than the lattice data of the prediction data.
 構造変換部130で実現される構造化器を表す関数をs()とすると、構造変換部130の機能は、以下の式(3)で表される。式(3)の左辺が、構造変換部130の出力データに対応する。なお、構造変換部130(構造化器)に入力される観測データは、格子データであってもよい。また、構造化器に入力される観測データは、物理量を示してもよいし物理量以外の数値を示してもよい。
Figure JPOXMLDOC01-appb-M000003
・・・(3)
If a function representing the structurizer realized by the structure conversion unit 130 is s(), the function of the structure conversion unit 130 is expressed by the following formula (3). The left side of formula (3) corresponds to the output data of the structure conversion unit 130. Note that the observation data input to the structure conversion unit 130 (structurizer) may be lattice data. Furthermore, the observation data input to the structure conversion unit 130 may indicate a physical quantity or a numerical value other than a physical quantity.
Figure JPOXMLDOC01-appb-M000003
...(3)
 ここで、o は、観測データの全ての観測値からなるベクトル場である。すなわち、oは、ある時刻Tにおける3次元空間の各格子点における値の組(ベクトル)を示すベクトル場である。そして、式(3)の左辺は、時刻T=0から時刻T=Nの全ての観測値(物理量等)のベクトル場の集合を示す。言い換えると、式(3)の左辺は、観測データ(物理量等)に対応する4次元時空間のデータ配列(数値配列)の全てを示す。また、添え字Hは、空間方向に高解像度であることを示す。また、Tは、観測データのタイムスタンプを示す。Tは、時間間隔が短い間隔のタイムスタンプを示す。つまり、Tは、時間方向に高解像度である(つまり時間間隔が短い)ことを示す。つまり、式(3)の左辺は、4次元時空間における格子数が多い(要素数が多い;高解像度の)データであることを表している。 Here, o T H is a vector field consisting of all the observation values of the observation data. That is, o is a vector field indicating a set (vector) of values at each lattice point in three-dimensional space at a certain time T. The left side of formula (3) indicates a set of vector fields of all the observation values (physical quantities, etc.) from time T = 0 to time T = N. In other words, the left side of formula (3) indicates all the data arrays (numerical arrays) in four-dimensional space-time corresponding to the observation data (physical quantities, etc.). The subscript H indicates high resolution in the spatial direction. Furthermore, T indicates a timestamp of the observation data. T indicates a timestamp with a short time interval. In other words, T indicates high resolution in the time direction (i.e., a short time interval). In other words, the left side of formula (3) indicates that the data has a large number of lattices (a large number of elements; high resolution) in four-dimensional space-time.
 構造変換部130の構造化器は、ニューラルネットワーク等の、機械学習によって学習された学習済みモデルによって実現されてもよい。この場合、構造変換部130は、線形射影演算子、全結合層、又はグラフ畳み込みネットワークで実現されてもよい(後述する潜在時空間写像部140、非線形変換部150、高解像度解析データ取得部160についても同様)。この場合、構造変換部130は、学習処理部110によって学習される。例えば、構造化器は、非特許文献2で示される技術によって、実現されてもよい。上述したように、エンドツーエンド(end-to-end)深層学習の手法によって、構造変換部130、潜在時空間写像部140、非線形変換部150及び高解像度解析データ取得部160が、一気通貫に学習される。そして、構造変換部130(構造化器)は、観測データを、本実施の形態にかかる超解像データ同化を行うために適切なグリッドデータへ変換するように、学習される。 The structurizer of the structure conversion unit 130 may be realized by a trained model trained by machine learning, such as a neural network. In this case, the structure conversion unit 130 may be realized by a linear projection operator, a fully connected layer, or a graph convolution network (the same applies to the latent space-time mapping unit 140, the nonlinear conversion unit 150, and the high-resolution analysis data acquisition unit 160 described later). In this case, the structure conversion unit 130 is trained by the learning processing unit 110. For example, the structurizer may be realized by the technology shown in Non-Patent Document 2. As described above, the structure conversion unit 130, the latent space-time mapping unit 140, the nonlinear conversion unit 150, and the high-resolution analysis data acquisition unit 160 are trained in a continuous manner by the end-to-end deep learning method. Then, the structure conversion unit 130 (structurizer) is trained to convert the observation data into appropriate grid data for performing the super-resolution data assimilation according to this embodiment.
 また、構造化器は、機械学習によって学習された学習済みモデルで実現されなくてもよい。この場合、構造変換部130は、観測データの時刻及び位置情報を読み取り、時空間において所定間隔で配置された格子点のうち、読み取られた時刻及び位置情報に最も近い格子点に、観測データを射影してもよい。また、この場合、構造変換部130は、観測データが射影されない格子点については、欠損値を代入してもよい。 Furthermore, the structurizer does not have to be realized by a trained model trained by machine learning. In this case, the structure conversion unit 130 may read the time and position information of the observation data, and project the observation data onto the lattice point that is closest to the read time and position information among the lattice points arranged at a predetermined interval in space-time. In this case, the structure conversion unit 130 may also substitute missing values for the lattice points onto which the observation data is not projected.
 なお、構造変換部130に入力される観測データが非物理量を示すデータである場合であっても、構造変換部130は、その観測データに対応する物理量等の数値を示す格子データを出力し得る。例えば、構造変換部130に入力される観測データが、各地点の各時刻における冷菓の売り上げを示すデータである場合、構造変換部130は、各地点における各時刻の気温を示す格子データを出力し得る。また、構造変換部130は、様々な複数の観測データを入力としてもよい。この場合、構造変換部130は、複数の観測データに対応する物理量等の数値を示す格子データを出力し得る。例えば、構造変換部130に入力される観測データが、各地点の各時刻におけるドローンの加速度及び冷菓の売り上げである場合、構造変換部130は、各地点の各時刻における風速及び気温を示す格子データを出力し得る。また、構造変換部130は、入力される観測データに対応する、人間が理解可能な物理量を示す格子データを出力することに限られない。構造変換部130は、人間が理解できない(つまりニューラルネットワークのみが理解可能な)数値配列に対応する格子データを出力してもよい。言い換えると、構造変換部130は、時空間上において所定間隔で配置された格子点上で定義される数値を示す格子データ(数値配列)を出力する。また、観測データが画像データ(カメラデータ)である場合、構造変換部130(又は別の構成要素)は、前処理として、物体認識やピクセルセグメンテーションを利用した処理を行ってもよい。そして、この前処理のために、事前学習済みのニューラルネットワーク等を利用してもよい。そして、構造変換部130は、このような前処理が施されたデータに対して、上述した構造の変換処理を行ってもよい。 Note that even if the observation data input to the structure conversion unit 130 is data indicating a non-physical quantity, the structure conversion unit 130 may output lattice data indicating the numerical values of physical quantities, etc. corresponding to the observation data. For example, if the observation data input to the structure conversion unit 130 is data indicating the sales of frozen desserts at each point at each time, the structure conversion unit 130 may output lattice data indicating the temperature at each point at each time. Furthermore, the structure conversion unit 130 may input a variety of multiple observation data. In this case, the structure conversion unit 130 may output lattice data indicating the numerical values of physical quantities, etc. corresponding to the multiple observation data. For example, if the observation data input to the structure conversion unit 130 is the acceleration of a drone and the sales of frozen desserts at each point at each time, the structure conversion unit 130 may output lattice data indicating the wind speed and temperature at each point at each time. Furthermore, the structure conversion unit 130 is not limited to outputting lattice data indicating physical quantities that can be understood by humans, corresponding to the input observation data. The structure conversion unit 130 may output lattice data corresponding to a numerical array that cannot be understood by humans (i.e., can only be understood by a neural network). In other words, the structure conversion unit 130 outputs lattice data (numerical array) indicating numerical values defined on lattice points arranged at a predetermined interval in space-time. Furthermore, when the observation data is image data (camera data), the structure conversion unit 130 (or another component) may perform processing using object recognition or pixel segmentation as preprocessing. Furthermore, for this preprocessing, a pre-trained neural network or the like may be used. Furthermore, the structure conversion unit 130 may perform the above-mentioned structural conversion processing on the data that has been subjected to such preprocessing.
 上述したように、構造変換部130は、非格子データ又は格子データであり、物理量又は非物理量の観測値を示す観測データを入力とする。そして、構造変換部130は、環境の状態(例えば大気状態)を示す物理量(温度又は風速等)に関する4次元時空間のデータ配列(数値配列)の格子データを出力する。構造変換部130は、このような構成により、既存のデータ同化手法では扱えない、非物理量や非格子データの観測データを非線形変換し、データ同化が可能な数値配列の観測データに変換することができる。 As described above, the structural transformation unit 130 receives as input observation data, which is non-lattice data or lattice data and indicates the observed values of physical or non-physical quantities. The structural transformation unit 130 then outputs lattice data of a four-dimensional space-time data array (numerical array) relating to physical quantities (temperature, wind speed, etc.) that indicate the state of the environment (e.g., atmospheric conditions). With this configuration, the structural transformation unit 130 can perform non-linear transformation of observation data of non-physical quantities or non-lattice data that cannot be handled by existing data assimilation methods, and convert it into observation data of a numerical array that can be assimilated.
 潜在時空間写像部140は、上述した潜在時空間写像部40に対応する。潜在時空間写像部140は、エンコーダとしての機能を有する。潜在時空間写像部140は、既存のエンコーダによって実現されてもよい。潜在時空間写像部140は、第1の実時空間における観測データ及び予測データについて、潜在時空間に写像を行う。潜在時空間写像部140は、各時刻について、4次元の時空間上に構造化された観測データと、予測データとを、潜在時空間のデータに変換する。つまり、潜在時空間写像部140では、各時刻の入力に対し、各時刻の出力が独立に計算される。 The latent space-time mapping unit 140 corresponds to the latent space-time mapping unit 40 described above. The latent space-time mapping unit 140 has a function as an encoder. The latent space-time mapping unit 140 may be realized by an existing encoder. The latent space-time mapping unit 140 maps the observed data and predicted data in the first real space-time to latent space-time. For each time, the latent space-time mapping unit 140 converts the observed data and predicted data structured in four-dimensional space-time into data in latent space-time. In other words, in the latent space-time mapping unit 140, the output for each time is calculated independently for the input for each time.
 潜在時空間写像部140で実現されるエンコーダを表す関数をe(),e()とすると、潜在時空間写像部140の機能は、以下の式(4)及び式(5)で表される。ここで、e()は、予測データxを潜在時空間に写像するための関数である。e()は、観測データoを潜在時空間に写像するための関数である。これにより、各時刻tにおいて、観測データo及び予測データxが、それぞれ潜在時空間に写像される。
Figure JPOXMLDOC01-appb-M000004
・・・(4)
Figure JPOXMLDOC01-appb-M000005
・・・(5)
If the functions representing the encoder realized by the latent space-time mapping unit 140 are e x () and e o (), the function of the latent space-time mapping unit 140 is expressed by the following formulas (4) and (5). Here, e x () is a function for mapping predicted data x to latent space-time. e o () is a function for mapping observed data o to latent space-time. As a result, at each time t, observed data o and predicted data x are each mapped to latent space-time.
Figure JPOXMLDOC01-appb-M000004
...(4)
Figure JPOXMLDOC01-appb-M000005
...(5)
 これにより、潜在時空間写像部140は、以下の式(6)で表される、潜在時空間のデータを得る。式(6)は、時刻t=0からt=nまでの各時刻における潜在時空間のデータの集合を示す。
Figure JPOXMLDOC01-appb-M000006
・・・(6)
As a result, the latent space-time mapping unit 140 obtains data of the latent space-time represented by the following formula (6): Formula (6) represents a set of data of the latent space-time at each time from time t=0 to t=n.
Figure JPOXMLDOC01-appb-M000006
...(6)
 ここで、式(4)は、格子データに変換された観測データoを使用して、予測データx を潜在時空間に写像することによって、写像データpが得られることを示している。写像データpは、低解像度予測データに対応する、潜在時空間における数値配列を示す。ここで、潜在時空間写像部140は、観測データに対して前処理と本処理とを行うようにしてもよい。例えば、前処理として、潜在時空間写像部140は、入力された観測データo を、予測データの時空間における格子構造に合わせた構造の観測データoに変換してもよい。oは、格子データに変換された観測データoの時間または空間ステップを粗くして、低解像度の予測データの時空間上の格子構造に合わせることによって得られる。そして、例えば本処理として、潜在時空間写像部140は、変換されたoを低解像度の予測データに反映させる同時刻データ同化により、予測データに対応する写像データpを取得してもよい。 Here, formula (4) indicates that the predicted data x t L is mapped to the latent space-time using the observation data o t converted to lattice data, thereby obtaining the mapping data p t . The mapping data p t indicates a numerical array in the latent space-time corresponding to the low-resolution predicted data. Here, the latent space-time mapping unit 140 may perform pre-processing and main processing on the observation data. For example, as the pre-processing, the latent space-time mapping unit 140 may convert the input observation data o T H into observation data o t having a structure that matches the lattice structure in the space-time of the predicted data. o t is obtained by coarsening the time or space step of the observation data o T converted to lattice data to match the lattice structure in the space-time of the low-resolution predicted data. Then, for example, as the main processing, the latent space-time mapping unit 140 may obtain the mapping data p t corresponding to the predicted data by simultaneous data assimilation that reflects the converted o t in the low-resolution predicted data.
 また、式(5)は、格子データに変換された観測データoを潜在時空間に写像することによって、写像データqが得られることを示している。写像データqは、観測データに対応する、潜在時空間における数値配列を示す。潜在時空間写像部40は、観測データを写像する際には、観測データ単体を潜在時空間に写像する。 Furthermore, equation (5) indicates that mapping data qt can be obtained by mapping the observation data ot converted into lattice data to latent space-time. The mapping data qt indicates a numerical array in latent space-time corresponding to the observation data. When mapping the observation data, the latent space-time mapping unit 40 maps the observation data alone to latent space-time.
 ここで、式(4)~式(6)において添え字がtであることからも分かるように、潜在時空間写像部140の処理においては、潜在時空間写像部140の内部において、時間方向の解像度(時間ステップt)は、予測データの解像度に合わせている。一方、空間方向の解像度は、予測データの解像度よりも小さい。つまり、上述したように、潜在時空間における写像データの数値配列の要素数は、予測データの数値配列の要素数よりも少ない。したがって、潜在時空間写像部140は、観測データ及び予測データの数値配列の要素数の削減(位相空間での次元圧縮)を行う。 As can be seen from the subscript t in equations (4) to (6), in the processing of the latent space-time mapping unit 140, the resolution in the time direction (time step t) inside the latent space-time mapping unit 140 is matched to the resolution of the predicted data. On the other hand, the resolution in the space direction is smaller than the resolution of the predicted data. In other words, as described above, the number of elements in the numerical array of the mapping data in latent space-time is smaller than the number of elements in the numerical array of the predicted data. Therefore, the latent space-time mapping unit 140 reduces the number of elements in the numerical arrays of the observed data and predicted data (dimensional compression in topological space).
 また、式(4)~式(6)は、観測データと予測データとが潜在時空間において融合されていることを示している。つまり、式(6)は、観測データと予測データとが潜在時空間において融合されたデータ(融合データ)を示している。したがって、潜在時空間写像部140によって、観測データと予測データとに対してデータ同化が行われるといえる。 Furthermore, equations (4) to (6) show that the observed data and the predicted data are fused in latent space-time. In other words, equation (6) shows data (fused data) in which the observed data and the predicted data are fused in latent space-time. Therefore, it can be said that data assimilation is performed on the observed data and the predicted data by the latent space-time mapping unit 140.
 潜在時空間写像部140(エンコーダ)は、ニューラルネットワーク等の、機械学習によって学習された学習済みモデルによって実現されてもよい。例えば、潜在時空間写像部140は、畳み込みとプーリングとを使用して、非線形変換を行いつつ、要素数の削減を行ってもよい。また、ニューラルネットワークは、物理的な対称性を反映したニューラルネットワークであってもよい。空間並進対称性を反映するために、畳み込みニューラルネットワークを採用してもよい。また、空間回転対称性を反映するために、群・畳み込みニューラルネットワークを採用してもよい。また、リラベリング対称性を反映するために、ヴィジョン・トランスフォーマー又はグラフ畳み込みニューラルネットワークを採用してもよい。これにより、既存のデータ同化手法とは異なり、物理的な対称性を考慮した変換が可能となる。このことは、後述する高解像度解析データ取得部160のデコータにおいても同様である。 The latent space-time mapping unit 140 (encoder) may be realized by a trained model trained by machine learning, such as a neural network. For example, the latent space-time mapping unit 140 may use convolution and pooling to perform nonlinear transformation while reducing the number of elements. The neural network may also be a neural network that reflects physical symmetry. A convolutional neural network may be adopted to reflect spatial translational symmetry. A group convolutional neural network may be adopted to reflect spatial rotational symmetry. A vision transformer or a graph convolutional neural network may be adopted to reflect relabeling symmetry. This makes it possible to perform transformation that takes physical symmetry into account, unlike existing data assimilation methods. The same applies to the decoder of the high-resolution analysis data acquisition unit 160, which will be described later.
 上述したように、潜在時空間写像部140は、4次元時空間におけるデータ配列の組である、低解像度の予測データと、格子データに変換された観測データとを入力とする。そして、潜在時空間写像部140は、要素数が少ない潜在時空間上の写像データを出力する。潜在時空間写像部140は、このような構成により、非線形変換部150及び高解像度解析データ取得部160における処理効率を向上させることができる。すなわち、数値配列における要素数が削減されるので、処理対象のデータ量が低減される。したがって、計算資源の処理量が抑制される。 As described above, the latent space-time mapping unit 140 receives as input low-resolution predicted data, which is a set of data arrays in four-dimensional space-time, and observed data converted into lattice data. The latent space-time mapping unit 140 then outputs mapping data in latent space-time with a small number of elements. With this configuration, the latent space-time mapping unit 140 can improve the processing efficiency of the nonlinear transformation unit 150 and the high-resolution analysis data acquisition unit 160. In other words, since the number of elements in the numerical array is reduced, the amount of data to be processed is reduced. This reduces the amount of processing required for computational resources.
 非線形変換部150は、上述した非線形変換部50に対応する。非線形変換部150は、時系列変換器としての機能を有する。非線形変換部150は、既存の時系列変換器によって実現されてもよい。非線形変換部150は、潜在時空間において、写像が行われた観測データ及び予測データに対して非線形変換を行う。さらに具体的には、非線形変換部150は、時系列について非線形変換を行って、潜在時空間に写像された観測データと予測データが融合されたデータを生成してもよい。そして、実施の形態1にかかる非線形変換部150は、融合されたデータについて、時間方向に超解像を行ってもよい。ここで、上述したように、潜在時空間では、実時空間よりも要素数が削減されている。したがって、処理対象のデータ量が抑制されるので、効率的に、時間方向に超解像を行うことができる。 The nonlinear conversion unit 150 corresponds to the nonlinear conversion unit 50 described above. The nonlinear conversion unit 150 has a function as a time series converter. The nonlinear conversion unit 150 may be realized by an existing time series converter. The nonlinear conversion unit 150 performs nonlinear conversion on the observation data and prediction data that have been mapped in the latent time space. More specifically, the nonlinear conversion unit 150 may perform nonlinear conversion on the time series to generate data in which the observation data and the prediction data mapped to the latent time space are fused. Then, the nonlinear conversion unit 150 according to the first embodiment may perform super-resolution in the time direction on the fused data. Here, as described above, the number of elements is reduced in the latent time space compared to the real time space. Therefore, the amount of data to be processed is suppressed, and super-resolution can be efficiently performed in the time direction.
 非線形変換部150で実現される時系列変換器を表す関数をF()とすると、非線形変換部150の機能は、以下の式(7)で表される。式(7)の左辺が、非線形変換部150の出力データに対応する。上述したように、添え字Tは時間方向に高解像度であることを示している。また、rは、時刻Tにおける、潜在時空間に写像された観測データと予測データとがデータ同化によって融合されたデータ(融合データ)を示す。そして、式(7)の左辺は、時刻T=0から時刻T=Nの融合データの集合を示す。言い換えると、式(7)の左辺は、融合データに対応する4次元時空間のデータ配列(数値配列)を示す。
Figure JPOXMLDOC01-appb-M000007
・・・(7)
If the function representing the time series converter realized by the nonlinear conversion unit 150 is F(), the function of the nonlinear conversion unit 150 is expressed by the following formula (7). The left side of formula (7) corresponds to the output data of the nonlinear conversion unit 150. As described above, the subscript T indicates high resolution in the time direction. In addition, r T indicates data (fusion data) in which the observation data and the prediction data mapped to the latent space-time at time T are fused by data assimilation. The left side of formula (7) indicates a set of fusion data from time T = 0 to time T = N. In other words, the left side of formula (7) indicates a data array (numerical array) in a four-dimensional space-time corresponding to the fusion data.
Figure JPOXMLDOC01-appb-M000007
...(7)
 上述したように、式(7)は、観測データと予測データとが潜在時空間において融合されていることを示している。つまり、式(7)の左辺は、観測データと予測データとが潜在時空間において融合されたデータ(融合データ)を示している。したがって、非線形変換部150によって、観測データと予測データとに対してデータ同化が行われるといえる。 As described above, equation (7) indicates that the observed data and the predicted data are fused in the latent space-time. In other words, the left side of equation (7) indicates data (fused data) in which the observed data and the predicted data are fused in the latent space-time. Therefore, it can be said that data assimilation is performed on the observed data and the predicted data by the nonlinear transformation unit 150.
 非線形変換部150の時系列変換器は、ニューラルネットワーク等の、機械学習によって学習された学習済みモデルによって実現されてもよい。この場合、非線形変換部150は、アテンション機構を利用したニューラルネットワークによって実現されてもよい。また、非線形変換部150の時系列変換器は、例えば、非特許文献3に記載されたトランスフォーマ(Transformer)という技術を用いて、非線形変換を行ってもよい。 The time series converter of the nonlinear conversion unit 150 may be realized by a trained model trained by machine learning, such as a neural network. In this case, the nonlinear conversion unit 150 may be realized by a neural network that uses an attention mechanism. In addition, the time series converter of the nonlinear conversion unit 150 may perform nonlinear conversion, for example, using a technology called Transformer described in Non-Patent Document 3.
 また、非線形変換部150は、時空間方向の情報を利用して、予測誤差を陰に計算してもよい。つまり、非線形変換部150は、空間パターンの時間変化から、誤差をニューラルネットワークの内部で計算してもよい。言い換えると、非線形変換部150は、時空間パターンのマッチングを行い、正解データに対する誤差の大小を判別することによって、予測誤差を算出してもよい。そして、非線形変換部150は、予測誤差を重みとして予測データと観測データとについてデータ同化が行われるようなニューラルネットワークによって、実現されてもよい。これにより、アンサンブルを必要としない効率的な計算により、予測データと観測データとについてデータ同化が行われ得る。 The nonlinear transformation unit 150 may also implicitly calculate the prediction error using information in the time-space direction. That is, the nonlinear transformation unit 150 may calculate the error inside the neural network from the time change of the spatial pattern. In other words, the nonlinear transformation unit 150 may calculate the prediction error by matching the time-space pattern and determining the magnitude of the error relative to the ground truth data. The nonlinear transformation unit 150 may also be realized by a neural network in which data assimilation is performed between the predicted data and the observed data using the prediction error as a weight. In this way, data assimilation can be performed between the predicted data and the observed data through efficient calculations that do not require an ensemble.
 また、非線形変換部150の時系列変換器は、線形変換(例えばアファイン変換)とReLU(Rectified Linear Unit)等による非線形変換とを繰り返し実行してもよい。この処理を実行する過程において、非線形変換部150は、例えば非特許文献4の技術を用いて、時間ステップを細かくするように、データ配列を変形してもよい。非線形変換部150は、潜在時空間における複数の要素を時間方向の要素と空間方向の要素との2つに分割し、時間方向の要素数を増加させてもよい。例えば、時間方向の要素がH’個、X軸方向の要素がI’個、Y軸方向の要素がJ’個、Z軸方向の要素がK’個であるとする。この場合、非線形変換部150は、4次元配列H’×I’×J’×K’を、2次元配列H’×Mに変形する。なお、Mは空間方向の要素数であり、M=I’×J’×K’である。そして、非線形変換部150は、この配列を、2H’×M/2の配列に変形してもよい。これにより、時間方向の要素数が2倍に増加し、時間ステップが1/2となる。したがって、潜在時空間に写像されたデータに対して、時間方向に超解像が行われることとなる。このようにして、非線形変換部150は、潜在時空間に写像されたデータに対してデータ配列の変形を行うことにより時間方向に超解像を行ってもよい。 Furthermore, the time series transformer of the nonlinear transformer 150 may repeatedly execute a linear transform (e.g., an affine transform) and a nonlinear transform using ReLU (Rectified Linear Unit) or the like. In the process of executing this process, the nonlinear transformer 150 may transform the data array so as to make the time step finer, for example, using the technique of Non-Patent Document 4. The nonlinear transformer 150 may divide a plurality of elements in the latent space-time into two, elements in the time direction and elements in the space direction, and increase the number of elements in the time direction. For example, assume that there are H' elements in the time direction, I' elements in the X-axis direction, J' elements in the Y-axis direction, and K' elements in the Z-axis direction. In this case, the nonlinear transformer 150 transforms the four-dimensional array H'×I'×J'×K' into a two-dimensional array H'×M. Note that M is the number of elements in the space direction, and M=I'×J'×K'. The nonlinear transformer 150 may then transform this array into an array of 2H'×M/2. This doubles the number of elements in the time direction, and halves the time step. Therefore, super-resolution is performed in the time direction on the data mapped to the latent time space. In this way, the nonlinear transformation unit 150 may perform super-resolution in the time direction by transforming the data array on the data mapped to the latent time space.
 上述したように、非線形変換部150は、潜在時空間における観測データ及び予測データに対応する数値配列(データ配列)の組を入力とする。そして、非線形変換部150は、時間方向に超解像が行われた、潜在時空間上の時系列データを出力してもよい。この、時間方向に超解像が行われた潜在時空間上の時系列データの時間方向の解像度は、予測データの時間方向の解像度よりも高い。これにより、非線形変換部150は、要素数が小さい(つまり位相空間において低次元の)潜在時空間において時間方向に超解像を行うので、計算量を削減でき、したがって、処理コストを低減できる。したがって、計算効率を高くすることができる。 As described above, the nonlinear transformation unit 150 receives as input a set of numerical arrays (data arrays) corresponding to observed data and predicted data in latent time space. The nonlinear transformation unit 150 may then output time series data in the latent time space that has been super-resolved in the time direction. The time-direction resolution of this time series data in the latent time space that has been super-resolved in the time direction is higher than the time-direction resolution of the predicted data. As a result, the nonlinear transformation unit 150 performs super-resolution in the time direction in a latent time space with a small number of elements (i.e., low-dimensional in topological space), thereby reducing the amount of calculations and therefore the processing costs. This makes it possible to improve computational efficiency.
 また、非線形変換部150の時系列変換器によって、時間方向の超解像が行われる。上述したように、潜在時空間では数値配列の要素数が少ないため、必要なメモリ量が節約されるので、長い時系列を扱うことができる。これにより、時間方向の超解像を効率よく行うことが可能となる。そして、非線形変換部150の処理によって、時間方向の超解像を行いつつ、観測データと予測データとのデータ同化を行うことができる。したがって、効率的に、データ同化と時間方向の超解像とを行うことが可能となる。 Furthermore, super-resolution in the time direction is performed by the time series transformer of the nonlinear transformation unit 150. As described above, since the number of elements in the numerical array is small in the latent time space, the amount of memory required is reduced, and long time series can be handled. This makes it possible to efficiently perform super-resolution in the time direction. Furthermore, the processing of the nonlinear transformation unit 150 makes it possible to perform data assimilation of observed data and predicted data while performing super-resolution in the time direction. Therefore, it becomes possible to efficiently perform data assimilation and super-resolution in the time direction.
 高解像度解析データ取得部160は、上述した高解像度解析データ取得部60に対応する。高解像度解析データ取得部160は、デコーダとしての機能を有する。高解像度解析データ取得部160は、既存のデコータによって実現されてもよい。高解像度解析データ取得部160は、非線形変換が施された観測データ及び予測データについて、潜在時空間から第2の実時空間に写像を行う。高解像度解析データ取得部160は、各時刻について、非線形変換部150の処理によって得られたデータについて、潜在時空間から第2の時空間に写像を行う。これにより、高解像度解析データ取得部160は、非線形変換部150の処理によって得られたデータについて、空間方向に超解像を行う。これにより、高解像度解析データ取得部160は、各時刻について、潜在時空間におけるデータを、高解像度解析データに変換する。つまり、高解像度解析データ取得部160では、各時刻の入力に対し、各時刻の出力が独立に計算される。 The high-resolution analysis data acquisition unit 160 corresponds to the high-resolution analysis data acquisition unit 60 described above. The high-resolution analysis data acquisition unit 160 has a function as a decoder. The high-resolution analysis data acquisition unit 160 may be realized by an existing decoder. The high-resolution analysis data acquisition unit 160 maps the observation data and prediction data that have been subjected to nonlinear transformation from the latent time space to the second real time space. The high-resolution analysis data acquisition unit 160 maps the data obtained by the processing of the nonlinear transformation unit 150 for each time from the latent time space to the second time space. As a result, the high-resolution analysis data acquisition unit 160 performs super-resolution in the spatial direction for the data obtained by the processing of the nonlinear transformation unit 150. As a result, the high-resolution analysis data acquisition unit 160 converts the data in the latent time space into high-resolution analysis data for each time. In other words, in the high-resolution analysis data acquisition unit 160, the output for each time is calculated independently for the input for each time.
 このようにして、高解像度解析データ取得部160は、高解像度解析データDa1を取得する。上述したように、高解像度解析データDa1は、予測データよりも時空間上で高解像度であるデータである。また、高解像度解析データDa1は、入力された予測データの時刻範囲に応じ、観測データの時刻の過去及び未来を含む時間(時系列)における解析データであってもよい。したがって、高解像度解析データDa1は、観測データの時刻(基準時刻)に対して時間方向に外挿(時間外挿)がなされた解析データとなり得る。 In this way, the high-resolution analysis data acquisition unit 160 acquires the high-resolution analysis data Da1. As described above, the high-resolution analysis data Da1 is data with a higher resolution in time and space than the predicted data. Furthermore, the high-resolution analysis data Da1 may be analysis data in a time (time series) that includes the past and future of the time of the observed data, depending on the time range of the input predicted data. Therefore, the high-resolution analysis data Da1 can be analysis data that has been extrapolated in the time direction (time extrapolation) with respect to the time of the observed data (reference time).
 高解像度解析データ取得部160で実現されるデコータを表す関数をd()とすると、高解像度解析データ取得部160の機能は、以下の式(8)で表される。d()は、時刻Tに関する融合データrを潜在時空間から第2の実時空間に写像するための関数である。これにより、各時刻Tにおいて、観測データと予測データとがデータ同化によって融合された融合データが、高解像度の第2の実時空間に写像される。これにより、非線形変換部150によって時間方向に超解像がなされた融合データについて、空間方向の超解像が行われる。
Figure JPOXMLDOC01-appb-M000008
・・・(8)
If a function representing the decoder realized by the high-resolution analysis data acquisition unit 160 is d(), the function of the high-resolution analysis data acquisition unit 160 is expressed by the following formula (8). d() is a function for mapping fusion data rT relating to time T from latent space-time to the second real space-time. As a result, at each time T, fusion data in which observation data and predicted data are fused by data assimilation is mapped to the second real space-time with high resolution. As a result, super-resolution in the spatial direction is performed on the fusion data that has been super-resolved in the time direction by the nonlinear transformation unit 150.
Figure JPOXMLDOC01-appb-M000008
...(8)
 これにより、高解像度解析データ取得部160は、以下の式(9)で表される、第2の実時空間のデータを得る。式(9)は、時刻T=0からT=Nまでの各時刻における高解像度解析データyの集合を示す。式(9)が、高解像度解析データ取得部160の出力データである高解像度解析データDa1に対応する。式(9)で示される高解像度解析データは、高解像度の格子上の時系列データである。高解像度解析データDa1は、過去、現在、及び未来のデータを含み得る。
Figure JPOXMLDOC01-appb-M000009
・・・(9)
As a result, the high-resolution analysis data acquisition unit 160 obtains data of the second real time space represented by the following formula (9). Formula (9) shows a set of high-resolution analysis data y at each time from time T=0 to T=N. Formula (9) corresponds to high-resolution analysis data Da1, which is output data from the high-resolution analysis data acquisition unit 160. The high-resolution analysis data shown in formula (9) is time-series data on a high-resolution grid. The high-resolution analysis data Da1 may include past, present, and future data.
Figure JPOXMLDOC01-appb-M000009
... (9)
 ここで、y は、高解像度解析データの全ての物理量からなるベクトル場である。すなわち、yは、ある時刻Tにおける3次元空間の各格子点における値の組(ベクトル)を示すベクトル場である。そして、式(9)は、時刻T=0から時刻T=Nの全ての物理量のベクトル場の集合を示す。言い換えると、式(9)は、高解像度解析データに関する4次元時空間のデータ配列(数値配列)の全てを示す。また、添え字Hは、空間方向に高解像度であることを示す。また、Tは、高解像度解析データのタイムスタンプを示す。Tは、時間間隔が短い間隔のタイムスタンプを示す。つまり、Tは、時間方向に高解像度である(つまり時間間隔が短い)ことを示す。つまり、式(9)は、4次元時空間における格子数が多い(要素数が多い;高解像度の)データであることを表している。 Here, y T H is a vector field consisting of all physical quantities of the high-resolution analysis data. That is, y is a vector field indicating a set of values (vectors) at each lattice point in three-dimensional space at a certain time T. And, formula (9) indicates a set of vector fields of all physical quantities from time T=0 to time T=N. In other words, formula (9) indicates all data arrays (numerical arrays) in four-dimensional space-time related to the high-resolution analysis data. Also, the subscript H indicates high resolution in the spatial direction. Also, T indicates a timestamp of the high-resolution analysis data. T indicates a timestamp with a short time interval. That is, T indicates high resolution in the time direction (that is, a short time interval). That is, formula (9) indicates that the data has a large number of lattices (a large number of elements; high resolution) in four-dimensional space-time.
 高解像度解析データ取得部160のデコータは、ニューラルネットワーク等の、機械学習によって学習された学習済みモデルによって実現されてもよい。例えば、高解像度解析データ取得部160に関するニューラルネットワークは、物理的な対称性を反映したニューラルネットであってもよい。これにより、既存のデータ同化手法とは異なり、物理的な対称性を考慮した変換が可能となる。また、高解像度解析データ取得部160は、ニューラルネットワークにより、観測データの時刻(基準時刻)に対して時間方向に外挿(時間外挿)がなされた、高解像度解析データを生成してもよい。すなわち、高解像度解析データ取得部160のニューラルネットワークは、予測データよりも時空間上で高解像度かつ高精度の時系列データを教師データとして、基準時刻に対して時間外挿がなされた高解像度解析データを出力するように、学習され得る。 The decoder of the high-resolution analysis data acquisition unit 160 may be realized by a trained model trained by machine learning, such as a neural network. For example, the neural network related to the high-resolution analysis data acquisition unit 160 may be a neural net that reflects physical symmetry. This makes it possible to perform conversion that takes physical symmetry into account, unlike existing data assimilation methods. The high-resolution analysis data acquisition unit 160 may also generate high-resolution analysis data that has been extrapolated (time extrapolated) in the time direction relative to the time of the observation data (reference time) using a neural network. In other words, the neural network of the high-resolution analysis data acquisition unit 160 can be trained to output high-resolution analysis data that has been time extrapolated relative to the reference time, using time series data that has a higher resolution and accuracy in space-time than the predicted data as teacher data.
 また、高解像度解析データ取得部160のデコータは、線形変換と非線形変換(例えばReLU)とを繰り返し実行して、空間方向の解像度を増加させてもよい。この処理を実行する過程において、高解像度解析データ取得部160は、例えば非特許文献5に示されたPixel Shuffleという技術を用いて、空間方向の解像度を増加させるように、データ配列(数値配列)を変形してもよい。このとき、例えば、融合データが、時間方向の要素数をnとし、空間方向の要素数をmとする数値配列であるとする。この場合、高解像度解析データ取得部160は、n×mの配列を、n/2×2mの配列に変形してもよい。これにより、空間方向の要素数が2倍に増加する(m→2m)ので、空間方向の解像度が2倍になる。 The decoder of the high-resolution analysis data acquisition unit 160 may also repeatedly execute linear transformation and nonlinear transformation (e.g., ReLU) to increase the spatial resolution. In the process of executing this process, the high-resolution analysis data acquisition unit 160 may transform the data array (numerical array) so as to increase the spatial resolution, for example, using a technique called Pixel Shuffle, which is shown in Non-Patent Document 5. In this case, for example, the fusion data is a numerical array in which the number of elements in the time direction is n and the number of elements in the spatial direction is m. In this case, the high-resolution analysis data acquisition unit 160 may transform the n×m array into an n/2×2m array. This doubles the number of elements in the spatial direction (m→2m), so that the spatial resolution doubles.
 上述したように、高解像度解析データ取得部160は、融合データに対応する、潜在時空間上の時系列データである数値配列(データ配列)を入力とする。そして、高解像度解析データ取得部160は、要素数が多い第2の実時空間における高解像度の格子上の時系列データである、4次元数値配列を出力する。高解像度解析データ取得部160は、このような構成により、データ同化及び時間方向に超解像が行われた融合データについて、効率的に、実時空間における空間方向の超解像を行うことができる。 As described above, the high-resolution analysis data acquisition unit 160 receives as input a numerical array (data array) that is time-series data in latent time-space corresponding to the fusion data. The high-resolution analysis data acquisition unit 160 then outputs a four-dimensional numerical array that is time-series data on a high-resolution grid in the second real time-space with a large number of elements. With this configuration, the high-resolution analysis data acquisition unit 160 can efficiently perform super-resolution in the spatial direction in real time-space on the fusion data that has been subjected to data assimilation and super-resolution in the time direction.
 すなわち、高解像度解析データ取得部160は、各時刻の潜在時空間における数値配列(融合データ)を、独立に処理する。これにより、高解像度解析データ取得部160における処理では、時間方向の情報を参照することなく、空間方向の超解像を行うことができる。したがって、高解像度解析データ取得部160における処理では、必要な計算資源(メモリ量等)が節約されるので、効率的に、3次元空間の超解像を行うことが可能となる。したがって、効率的に、時間方向及び空間方向に超解像がなされた高解像度解析データを得ることが可能となる。また、予測データが、観測データの時刻及び当該時刻よりも過去及び未来を含む時間における予測データである場合、高解像度解析データ取得部160は、観測データの時刻の過去及び未来を含む時間における高解像度解析データを取得し得る。これにより、高解像度の解析データを提供すると同時に、時間外挿が実施された未来予測情報も提供することができる。したがって、より付加価値の高いサービスを提供することが可能となる。 In other words, the high-resolution analysis data acquisition unit 160 processes the numerical array (fusion data) in the latent space-time at each time independently. As a result, in the processing in the high-resolution analysis data acquisition unit 160, super-resolution in the spatial direction can be performed without referring to information in the time direction. Therefore, in the processing in the high-resolution analysis data acquisition unit 160, the necessary computational resources (memory amount, etc.) are saved, and it is possible to efficiently perform super-resolution in three-dimensional space. Therefore, it is possible to efficiently obtain high-resolution analysis data that has been super-resolved in the time direction and the spatial direction. In addition, when the prediction data is prediction data at the time of the observation data and a time including the past and future of the said time, the high-resolution analysis data acquisition unit 160 can acquire high-resolution analysis data at a time including the past and future of the time of the observation data. As a result, it is possible to provide high-resolution analysis data and future prediction information in which time extrapolation has been performed at the same time. Therefore, it is possible to provide services with higher added value.
 また、時間方向及び空間方向に超解像がなされた高解像度解析データが得られることによって、以下のように、低解像度の予測シミュレーションを補うことができる。すなわち、実用上、気象・海象予測等の予測シミュレーションの解像度は、時間方向及び空間方向に不足することが多い。例えば、水産養殖業において、水温が上昇すると魚の活性度が上がるため、魚に餌を与えすぎると、酸素不足で魚が斃死するおそれがある。したがって、水産養殖業者は、給餌量の調整のために、水温上昇のタイミングを知りたいことがある。しかしながら、現在の海洋予報の場合、平面方向の解像度は、10km程度と、比較的低解像である。この程度の解像度の予測シミュレーションでは、その水産養殖業者の生け簀付近の水温を精度よく予測できないおそれがある。各水産養殖業者の生け簀の水温を精度よく予測するためには、少なくとも1km、可能なら100m程度の、細かい解像度(高解像度)が必要である。これに対し、本実施の形態では、時間方向及び空間方向に超解像がなされた高解像度解析データを取得できるので、ピンポイントでの気象・海象予測が知りたい業者に、精度よく、情報を提供することができる。 Furthermore, by obtaining high-resolution analysis data with super-resolution in the time and space directions, it is possible to supplement low-resolution prediction simulations as follows. In other words, in practice, the resolution of prediction simulations such as weather and oceanographic predictions is often insufficient in the time and space directions. For example, in aquaculture, when the water temperature rises, fish become more active, so if the fish are fed too much, they may die due to lack of oxygen. Therefore, aquaculture farmers may want to know the timing of water temperature rise in order to adjust the amount of feed. However, in the case of current ocean forecasts, the resolution in the plane direction is relatively low, about 10 km. A prediction simulation with this level of resolution may not be able to accurately predict the water temperature near the fish farmer's fish farm. In order to accurately predict the water temperature in each fish farmer's fish farm, a fine resolution (high resolution) of at least 1 km, and preferably about 100 m, is required. In contrast, this embodiment can obtain high-resolution analysis data with super-resolution in both the time and spatial directions, making it possible to provide accurate information to businesses that want pinpoint weather and ocean condition forecasts.
 低解像度解析データ算出部170は、上述した低解像度解析データ算出部70に対応する。低解像度解析データ算出部170は、高解像度解析データDa1を用いて、低解像度解析データDa2を算出する。なお、低解像度解析データDa2の解像度は、予測データの解像度と対応していてもよい。低解像度解析データDa2は、高解像度解析データDa1よりも低解像度のデータ配列を有する格子データである。また、低解像度解析データDa2は、ある時刻におけるスナップショットデータであってもよい。 The low-resolution analysis data calculation unit 170 corresponds to the low-resolution analysis data calculation unit 70 described above. The low-resolution analysis data calculation unit 170 calculates low-resolution analysis data Da2 using the high-resolution analysis data Da1. The resolution of the low-resolution analysis data Da2 may correspond to the resolution of the prediction data. The low-resolution analysis data Da2 is lattice data having a data array with a lower resolution than the high-resolution analysis data Da1. The low-resolution analysis data Da2 may also be snapshot data at a certain time.
 具体的には、低解像度解析データ算出部170は、予め定められた関数f(y)を用いて、その関数fに、上述した高解像度解析データyを入力することによって、低解像度解析データDa2を算出する。関数fは、例えば、代数補間を表す関数であってもよい。関数fは、線形補間等の代数的な補間操作を行う関数であってもよい。また、関数fは、線形補間法、バイキュービック法又はランチョス法で定義される関数であってもよい。例えば、低解像度解析データ算出部170は、高解像度解析データをリサイズ(低解像度化)することによって、高解像度解析データDa1から、低解像度解析データDa2を算出することができる。具体的には、低解像度解析データ算出部170は、格子データの各格子点に対応する値を局所的に多項式で補間して、格子データを拡大又は縮小する。これにより、低解像度解析データDa2が算出される。 Specifically, the low-resolution analysis data calculation unit 170 uses a predetermined function f(y) and inputs the above-mentioned high-resolution analysis data y to the function f to calculate the low-resolution analysis data Da2. The function f may be, for example, a function representing algebraic interpolation. The function f may be a function that performs an algebraic interpolation operation such as linear interpolation. The function f may also be a function defined by the linear interpolation method, the bicubic method, or the Lanczos method. For example, the low-resolution analysis data calculation unit 170 can calculate the low-resolution analysis data Da2 from the high-resolution analysis data Da1 by resizing (reducing the resolution) the high-resolution analysis data. Specifically, the low-resolution analysis data calculation unit 170 locally interpolates values corresponding to each lattice point of the lattice data using a polynomial to enlarge or reduce the lattice data. In this way, the low-resolution analysis data Da2 is calculated.
 上述したように、低解像度解析データDa2は、シミュレーション部120に入力されることによって、次のタイミングの予測シミュレーションを行うために利用される。また、低解像度解析データDa2は、物理方程式を数値的に解いて未来の予測を得ることに利用されてもよい。これにより、予測シミュレーションの状態の時間発展を行うことができる。この場合、低解像度解析データDa2は、現在の時刻の状態を示してもよい。 As described above, the low-resolution analysis data Da2 is input to the simulation unit 120 and used to perform a predictive simulation of the next timing. The low-resolution analysis data Da2 may also be used to numerically solve physical equations to obtain future predictions. This allows the time evolution of the state of the predictive simulation to be performed. In this case, the low-resolution analysis data Da2 may indicate the state at the current time.
 実施の形態1にかかる情報処理装置100は、上述したように、要素数が削減された潜在時空間においてデータ同化及び超解像を行うように構成されている。これにより、計算で扱う要素数つまりデータ量を削減して処理を行うことができるので、データ同化及び超解像を効率よく行うことが可能となる。したがって、効率的に、非物理量を示す観測データ、及び、時間・空間方向に不規則な観測データを、予測データに対して同化することが可能となる。また、上述したように、学習処理部110において、エンドツーエンド学習の手法によって、構造変換部130、潜在時空間写像部140、非線形変換部150及び高解像度解析データ取得部160を一気通貫に学習する場合、多くの計算資源が必要となる。したがって、上述したように潜在時空間で処理を行うことにより処理対象のデータ量を削減することによって、このような学習を効率的に行うことが可能となる。 The information processing device 100 according to the first embodiment is configured to perform data assimilation and super-resolution in a latent space-time with a reduced number of elements, as described above. This allows the number of elements to be handled in the calculation, i.e., the amount of data, to be reduced, and data assimilation and super-resolution can be performed efficiently. Therefore, it is possible to efficiently assimilate observation data that indicates non-physical quantities and observation data that is irregular in the time and space directions to the prediction data. Also, as described above, when the learning processing unit 110 learns the structure transformation unit 130, the latent space-time mapping unit 140, the nonlinear transformation unit 150, and the high-resolution analysis data acquisition unit 160 in a continuous manner using an end-to-end learning method, a large amount of computational resources is required. Therefore, by performing processing in the latent space-time as described above, the amount of data to be processed can be reduced, and such learning can be performed efficiently.
 また、実施の形態1にかかる情報処理装置100は、非線形変換部150で時間方向の超解像を行い、高解像度解析データ取得部160で空間方向の超解像を行うように構成されている。これにより、効率的に、時間方向及び空間方向の超解像を行うことが可能となる。すなわち、時間方向及び空間方向の両者について同時に超解像を行うためには、多くのメモリ量及び計算時間が必要となる。特に、学習段階では、誤差を逆伝播させるため、計算グラフ及び勾配値の記憶が必要である。したがって、膨大なメモリ量及び計算時間が必要となる。これに対し、実施の形態1にかかる情報処理装置100においては、非線形変換部150では、要素数の少ない潜在時空間上で、時間方向に超解像を行うため時間方向の次元を、効率的に参照する。一方、高解像度解析データ取得部160では、各時刻のスナップショットを処理するため、時間方向の次元を考慮する必要がない。さらに、各時刻のスナップショットを処理するため、これらのスナップショットを同時に処理することができる。したがって、必要な計算資源を抑制することが可能となる。 In addition, the information processing device 100 according to the first embodiment is configured to perform super-resolution in the time direction in the nonlinear conversion unit 150 and super-resolution in the space direction in the high-resolution analysis data acquisition unit 160. This makes it possible to efficiently perform super-resolution in the time direction and the space direction. That is, in order to simultaneously perform super-resolution in both the time direction and the space direction, a large amount of memory and calculation time are required. In particular, in the learning stage, in order to back-propagate the error, it is necessary to store the calculation graph and the gradient value. Therefore, a huge amount of memory and calculation time are required. In contrast, in the information processing device 100 according to the first embodiment, the nonlinear conversion unit 150 efficiently refers to the dimension in the time direction in order to perform super-resolution in the time direction on a latent time space with a small number of elements. On the other hand, the high-resolution analysis data acquisition unit 160 processes snapshots at each time, so there is no need to consider the dimension in the time direction. Furthermore, since snapshots at each time are processed, these snapshots can be processed simultaneously. Therefore, it is possible to suppress the required calculation resources.
<比較例との比較>
 次に、非特許文献1にかかる比較例と、実施の形態1にかかる技術とを比較する。
 上述したように、非特許文献1の技術では、超解像の手法とデータ同化の手法とを単純に組み合わせている。つまり、非特許文献1では、超解像とデータ同化とを独立して行っている。
<Comparison with Comparative Examples>
Next, a comparison example according to Non-Patent Document 1 will be compared with the technique according to the first embodiment.
As described above, the technique of Non-Patent Document 1 simply combines a super-resolution technique and a data assimilation technique. In other words, in Non-Patent Document 1, super-resolution and data assimilation are performed independently.
 図7は、比較例にかかる技術を説明するための図である。図7は、比較例として、非特許文献1にかかる技術を説明している。比較例では、白丸のドットで示すように、アンサンブル計算により、様々な状況について、物理シミュレーションが実行される。そして、黒丸のドットで示すように、時刻t1における観測データがあるとする。この場合、白色の三角のドットで示すように、その時刻t1における物理シミュレーション結果を使用して超解像が行われ、高解像度予測が行われる。この超解像は、アンサンブル計算結果、すなわち各状況のそれぞれに対し、その時刻t1において独立に行われる。そして、その時刻t1において、高解像度アンサンブル予測結果と観測データとについてデータ同化が行われ、黒色の三角のドットで示すように、最終出力として、観測データが同化された高解像度の予測データが得られる。このように、比較例では、アンサンブル計算を利用している。また、比較例では、ある瞬間での超解像が、同じ瞬間でのデータ同化と独立して行われる。そして、データ同化は、高解像度の空間で行われる。 FIG. 7 is a diagram for explaining a technique according to a comparative example. FIG. 7 explains a technique according to Non-Patent Document 1 as a comparative example. In the comparative example, as shown by the white circle dots, physical simulations are performed for various situations by ensemble calculation. Then, as shown by the black circle dots, it is assumed that there is observation data at time t1. In this case, as shown by the white triangular dots, super-resolution is performed using the physical simulation results at that time t1, and high-resolution prediction is performed. This super-resolution is performed independently at time t1 for the ensemble calculation results, i.e., for each situation. Then, at that time t1, data assimilation is performed on the high-resolution ensemble prediction results and the observation data, and high-resolution prediction data in which the observation data has been assimilated is obtained as the final output, as shown by the black triangular dots. In this way, the comparative example uses ensemble calculation. Also, in the comparative example, super-resolution at a certain moment is performed independently of data assimilation at the same moment. Then, data assimilation is performed in a high-resolution space.
 図8は、実施の形態1にかかる超解像及びデータ同化を説明するための図である。実施の形態1では、単一シナリオを利用する。つまり、唯一の初期状態から物理シミュレーションを行って、白丸のドットで示すように、時系列上において唯一のシミュレーション結果を得る。図8では、時刻t1,t2,t3,t4に対応する、時系列データである物理シミュレーション結果(予測データ)を得る。そして、ある時刻で超解像を行うのではなく、黒丸のドットで示す観測データと時系列データである予測データとを入力として、要素数が削減された潜在時空間において、超解像とデータ同化とを同時に行う。これにより、黒色の三角のドットで示すように、時系列データである高解像度データが得られる。また、図8に示すように、高解像度データでは、物理シミュレーションと比較して、時間方向に高解像度となっている。このように、実施の形態1では、比較例と異なり、シミュレーションにおいてアンサンブル計算を行っていない。また、実施の形態1では、比較例と異なり、潜在時空間において、超解像とデータ同化とを同時に行う。また、実施の形態1では、比較例と異なり、時系列情報を利用し、超解像及びデータ同化を行う。 FIG. 8 is a diagram for explaining super-resolution and data assimilation according to the first embodiment. In the first embodiment, a single scenario is used. That is, a physical simulation is performed from a unique initial state, and a unique simulation result is obtained in the time series, as shown by the white dots. In FIG. 8, physical simulation results (predicted data) are obtained, which are time series data, corresponding to times t1, t2, t3, and t4. Then, instead of performing super-resolution at a certain time, observation data shown by black dots and predicted data, which is time series data, are input, and super-resolution and data assimilation are performed simultaneously in a latent time space with a reduced number of elements. As a result, high-resolution data, which is time series data, is obtained, as shown by black triangular dots. Also, as shown in FIG. 8, the high-resolution data has a higher resolution in the time direction than the physical simulation. Thus, in the first embodiment, unlike the comparative example, ensemble calculation is not performed in the simulation. Also, in the first embodiment, unlike the comparative example, super-resolution and data assimilation are performed simultaneously in the latent time space. Also, in the first embodiment, unlike the comparative example, super-resolution and data assimilation are performed using time series information.
 図9は、実施の形態1にかかる実験結果と比較例にかかる実験結果とを比較した図である。図9は、渦度場ωの平均絶対誤差MAE(Mean Absolute Error)の時系列を示す図である。グラフAは、データ同化及び超解像を両方とも行わない場合を示す。グラフBは、比較例の場合を示す。グラフCは、実施の形態1の場合を示す。図9に示すように、実施の形態1の場合では、誤差が最小となっている。したがって、実施の形態1にかかる技術により、高精度の予測が実現できている。 Figure 9 is a diagram comparing the experimental results of the first embodiment with those of the comparative example. Figure 9 is a diagram showing the time series of the mean absolute error (MAE) of the vorticity field ω. Graph A shows the case where neither data assimilation nor super-resolution is performed. Graph B shows the case of the comparative example. Graph C shows the case of the first embodiment. As shown in Figure 9, in the case of the first embodiment, the error is minimized. Therefore, the technology of the first embodiment has made it possible to achieve highly accurate predictions.
 また、比較例にかかる実験結果では、1つの実験あたりの計算時間は、320秒であった。これに対し、実施の形態1にかかる実験結果では、1つの実験あたりの計算時間は、61秒である。このように、実施の形態1にかかる技術により、比較例と比較して、大幅に計算時間の短縮を実現できている。 Furthermore, in the experimental results for the comparative example, the calculation time per experiment was 320 seconds. In contrast, in the experimental results for the first embodiment, the calculation time per experiment was 61 seconds. In this way, the technology for the first embodiment has achieved a significant reduction in calculation time compared to the comparative example.
<学習方法>
 次に、実施の形態1にかかる情報処理装置100の学習処理部110による学習方法について説明する。上述したように、学習処理部110は、エンドツーエンド学習の手法によって、構造変換部130、潜在時空間写像部140、非線形変換部150及び高解像度解析データ取得部160を一気通貫に学習する。つまり、学習処理部110は、構造変換部130、潜在時空間写像部140、非線形変換部150及び高解像度解析データ取得部160を、これらを各層とする1つのニューラルネットワークとして学習してもよい。言い換えると、学習処理部110は、観測データ及び予測データを入力として、適切な高解像度解析データが出力されるように、構造変換部130、潜在時空間写像部140、非線形変換部150及び高解像度解析データ取得部160を、纏めて学習する。
<Learning Method>
Next, a learning method by the learning processing unit 110 of the information processing device 100 according to the first embodiment will be described. As described above, the learning processing unit 110 learns the structure conversion unit 130, the latent space-time mapping unit 140, the nonlinear conversion unit 150, and the high-resolution analysis data acquisition unit 160 in a continuous manner by the end-to-end learning method. In other words, the learning processing unit 110 may learn the structure conversion unit 130, the latent space-time mapping unit 140, the nonlinear conversion unit 150, and the high-resolution analysis data acquisition unit 160 as one neural network having these as layers. In other words, the learning processing unit 110 learns the structure conversion unit 130, the latent space-time mapping unit 140, the nonlinear conversion unit 150, and the high-resolution analysis data acquisition unit 160 collectively so that the observation data and the prediction data are input and appropriate high-resolution analysis data is output.
 まず、第1の学習方法について説明する。第1の学習方法は、教師あり学習である。教師データ(正解データ)は、例えば、高精度かつ高解像度のデータである。気象予測を行うシステムの場合、教師データは、例えば、高精度かつ高解像度の気象データである。つまり、教師データは、高精度かつ高解像度の大気の物理変数の時系列データである。教師データは、例えば、速度場、温度場、密度場等の時系列データ(4次元の数値配列)である。また、超高解像度の微気象シミュレーション結果を教師データとしてもよい。学習処理部110は、上述した予測データと観測データとを入力とし、上述した教師データを用いて、誤差逆伝播法により、教師データと最終出力(高解像度解析データ)との間の誤差の勾配方向にニューラルネットワークのパラメータ(重み等)を更新する。学習処理部110は、このような処理を繰り返すことによって、構造変換部130、潜在時空間写像部140、非線形変換部150及び高解像度解析データ取得部160を構成するニューラルネットワークを学習する。 First, the first learning method will be described. The first learning method is supervised learning. The teacher data (correct answer data) is, for example, highly accurate and high-resolution data. In the case of a system that performs weather forecasting, the teacher data is, for example, highly accurate and high-resolution meteorological data. In other words, the teacher data is highly accurate and high-resolution time series data of physical variables of the atmosphere. The teacher data is, for example, time series data (four-dimensional numerical array) of a velocity field, a temperature field, a density field, etc. Also, the teacher data may be a result of a micrometeorological simulation with ultra-high resolution. The learning processing unit 110 receives the above-mentioned predicted data and observed data as input, and updates the parameters (weights, etc.) of the neural network in the gradient direction of the error between the teacher data and the final output (high-resolution analysis data) by the error backpropagation method using the above-mentioned teacher data. The learning processing unit 110 repeats such processing to learn the neural network that constitutes the structure conversion unit 130, the latent space-time mapping unit 140, the nonlinear conversion unit 150, and the high-resolution analysis data acquisition unit 160.
 次に、第2の学習方法について説明する。第2の学習方法は、教師なし学習である。上述した教師あり学習では、教師データとして、例えば、高精度かつ高解像度な大気の物理変数の時系列データが必要である。しかしながら、このようなデータを入手することは困難である可能性がある。これに対し、教師なし学習では、このような教師データが不要である。教師なし学習は、例えば変分ベイズ法によって行われてもよい。また、教師なし学習は、敵対的学習によって行われてもよい。以下、変分ベイズ法による学習方法について説明する。 Next, the second learning method will be described. The second learning method is unsupervised learning. In the above-mentioned supervised learning, for example, highly accurate and high-resolution time series data of atmospheric physical variables is required as the supervised data. However, it may be difficult to obtain such data. In contrast, in unsupervised learning, such supervised data is not required. Unsupervised learning may be performed, for example, by the variational Bayes method. Also, unsupervised learning may be performed by adversarial learning. Below, the learning method using the variational Bayes method will be described.
 変分ベイズ法は、近似法の一種であり、真の確率分布pを簡単な確率分布qで近似する。そして、qのパラメータをKLダイバージェンスの最小化などで推定する。変分ベイズ法は、大気等の環境の状態の真の物理変数を隠れ状態とし、この隠れ状態に基づいて、インプットの観測値または低解像度予測値を与える確率モデルである。 The variational Bayes method is a type of approximation method that approximates the true probability distribution p with a simpler probability distribution q. The parameters of q are then estimated by minimizing the KL divergence or similar. The variational Bayes method is a probabilistic model that treats the true physical variables of the state of the environment, such as the atmosphere, as the hidden state, and gives the observed value or low-resolution predicted value of the input based on this hidden state.
 変分ベイズ法の実現例の1つとして、対数尤度ln(p(o|x))の下界を導入し、この下界を最大化する。対数尤度ln(p(o|x))は、イェンセンの不等式を利用して、以下の式(10)のように変形できる。ここで、oは観測データ、xは低解像度予測データに対応する。式(10)の変形の途中で、隠れ変数yが導入される。この隠れ変数が、式(9)で示される高解像度解析データDa1に対応する。結果として、隠れ変数yを観測データoと低解像度予測xとから推定することを可能にする損失関数を導出できる。
Figure JPOXMLDOC01-appb-M000010
・・・(10)
As one example of the implementation of the variational Bayes method, a lower bound of the log likelihood ln(p(o|x)) is introduced and this lower bound is maximized. The log likelihood ln(p(o|x)) can be transformed into the following formula (10) using Jensen's inequality. Here, o corresponds to the observed data and x corresponds to the low-resolution predicted data. In the middle of transforming formula (10), a hidden variable y is introduced. This hidden variable corresponds to the high-resolution analysis data Da1 shown in formula (9). As a result, a loss function that enables the hidden variable y to be estimated from the observed data o and the low-resolution prediction x can be derived.
Figure JPOXMLDOC01-appb-M000010
...(10)
 式(10)において、観測値oは、低解像度又は高解像度の観測データに対応する。oは、上述した式(2)(又は式(3)の左辺)に対応する。また、隠れ変数yは、高解像度解析データDa1に対応する。なお、観測値oは、高い精度の予測データであってもよい。変数xは入力された低解像度の予測データ(式(1))に対応する。また、この確率モデルは、認識モデルと生成モデルとで構成される。そして、認識モデル(隠れ変数を算出する部分)が、情報処理装置100における、構造変換部130、潜在時空間写像部140、非線形変換部150及び高解像度解析データ取得部160(エンコーダ・デコータモデル)に対応する。生成モデルについては後述する。 In formula (10), the observed value o corresponds to low-resolution or high-resolution observed data. o corresponds to the above formula (2) (or the left side of formula (3)). The hidden variable y corresponds to the high-resolution analysis data Da1. The observed value o may be highly accurate predicted data. The variable x corresponds to the input low-resolution predicted data (formula (1)). This probability model is composed of a recognition model and a generation model. The recognition model (the part that calculates the hidden variables) corresponds to the structural transformation unit 130, the latent space-time mapping unit 140, the nonlinear transformation unit 150, and the high-resolution analysis data acquisition unit 160 (encoder-decoder model) in the information processing device 100. The generation model will be described later.
 式(10)における第4式(最右辺;変形の最終形)は、対数尤度の下界である変分下界(VLB:Variational Lower Bound)に対応する。変分下界の第1項E[p(o│x,y)]は、再構成誤差を示し、観測データoの対数尤度に対応する。変分下界の第2項KL(q(y|x,o)|p(y|x))は、KLダイバージェンスを示す。KLダイバージェンスは、分布qと分布pとの間の距離に対応する指標である。 The fourth equation (the rightmost side; the final form of the transformation) in equation (10) corresponds to the variational lower bound (VLB), which is the lower bound of the log-likelihood. The first term E q [p(o|x, y)] of the variational lower bound indicates the reconstruction error and corresponds to the log-likelihood of the observed data o. The second term KL(q(y|x, o)|p(y|x)) of the variational lower bound indicates the KL divergence. The KL divergence is an index corresponding to the distance between distribution q and distribution p.
 学習処理部110は、式(10)の第4式で示される変分下界を最大化する(大きくする)ように、誤差逆伝播法及び勾配降下法によりモデルパラメータ(ニューラルネットワークのパラメータ)を更新して、学習を行う。この変分下界は、訓練誤差に対応する。変分下界を最大化することは、機械学習における損失関数を最小化することに対応する。言い換えると、変分下界を大きくすることは、機械学習における損失関数を減少させることに対応する。このとき、再構成誤差とKLダイバージェンスとがバランスを取るように、学習が進む。この、再構成誤差とKLダイバージェンスとがバランスを取ることは、データ同化における、観測データと予測データとを融合することに対応する。 The learning processing unit 110 performs learning by updating the model parameters (neural network parameters) using the backpropagation method and the gradient descent method so as to maximize (increase) the variational lower bound shown in the fourth equation of equation (10). This variational lower bound corresponds to the training error. Maximizing the variational lower bound corresponds to minimizing the loss function in machine learning. In other words, increasing the variational lower bound corresponds to decreasing the loss function in machine learning. At this time, learning progresses so that the reconstruction error and the KL divergence are balanced. This balancing of the reconstruction error and the KL divergence corresponds to the fusion of observed data and predicted data in data assimilation.
 なお、変分下界の最大化には、最小分散推定の一般化という側面があることが新たに分かった。すなわち、観測値o及び予測データxをそれぞれの誤差を重みとして平均する(重み付き平均を行う)ことで、高解像度解析データyを推定することができる。言い換えると、一般的に観測値の方が予測データよりも正確なので、観測値の重みを予測データの重みよりも大きくして平均化することで、解析データを推定することができる。 In addition, it has been newly discovered that maximizing the variational lower bound has the aspect of generalizing minimum variance estimation. In other words, by averaging the observed values o and the predicted data x with their respective errors as weights (performing a weighted average), it is possible to estimate high-resolution analysis data y. In other words, since observed values are generally more accurate than predicted data, the analysis data can be estimated by weighting the observed values greater than the weighting of the predicted data and averaging them.
 図10は、実施の形態1にかかる構成要素を変分ベイズ法により学習する方法を説明するための図である。変分ベイズ法による学習を行う場合、学習処理部110は、サンプラー112と、観測データ生成部114とを有する。サンプラー112及び観測データ生成部114は、観測値(疑似観測データDa3)を生成する生成モデルとみなされ得る。この生成モデルにより、再構成誤差E[p(o│x,y)]が算出され得る。具体的には、観測データ生成部114により、p(o|x,y)が算出される。p(o|x,y)は、予測データx及び高解像度解析データyが定まっている状態での疑似観測データoの分布を示す。 10 is a diagram for explaining a method of learning the components according to the first embodiment using the variational Bayes method. When learning using the variational Bayes method, the learning processing unit 110 has a sampler 112 and an observation data generating unit 114. The sampler 112 and the observation data generating unit 114 can be regarded as a generation model that generates an observation value (pseudo observation data Da3). This generation model can calculate the reconstruction error E q [p(o|x, y)]. Specifically, the observation data generating unit 114 calculates p(o|x, y). p(o|x, y) indicates the distribution of the pseudo observation data o when the prediction data x and the high-resolution analysis data y are determined.
 一方、上述したように、構造変換部130、潜在時空間写像部140、非線形変換部150及び高解像度解析データ取得部160は、認識モデルとみなされ得る。この認識モデルによって、KLダイバージェンスが算出され得る。具体的には、認識モデルにより、KLダイバージェンスにおけるq(y|x,o)が算出される。q(y|x,o)は、予測データx及び観測データoを入力としたときの高解像度解析データyの分布を示す。なお、p(y|x)は、事前分布であり、適当に仮定することによって、あるいは、事前学習によって、得られる。 On the other hand, as described above, the structural transformation unit 130, the latent space-time mapping unit 140, the nonlinear transformation unit 150, and the high-resolution analysis data acquisition unit 160 can be regarded as a recognition model. This recognition model can calculate the KL divergence. Specifically, the recognition model calculates q(y|x, o) in the KL divergence. q(y|x, o) indicates the distribution of the high-resolution analysis data y when the predicted data x and the observed data o are input. Note that p(y|x) is a prior distribution, and can be obtained by appropriate assumptions or by prior learning.
 サンプラー112は、学習により生成された高解像度解析データに対応する確率分布のサンプリングを行う。これにより、サンプラー112は、ニューラルネットワークから確率分布(確率モデル)への置き換えを行うこととなる。すなわち、ニューラルネットワークは、通常、決定論的な出力を行うので、確率分布などのランダムな出力を行うことは困難である。そこで、サンプラー112は、ガウス分布からサンプルされる乱数と、ニューラルネットワークからの出力(高解像度解析データ)とを組み合わせて、擬似的に確率分布を表現することを行う(re-parametrization trick)。これにより、高解像度解析データの誤差推定が可能となる。具体的には、以下の式(11)のようにして、疑似的に確率分布が表現される。なお、μ及びσは、ニューラルネットワークによって与えられる決定的な変数であり、εは、ガウス分布からサンプルされる乱数である。
Figure JPOXMLDOC01-appb-M000011
・・・(11)
The sampler 112 samples the probability distribution corresponding to the high-resolution analysis data generated by learning. As a result, the sampler 112 replaces the neural network with a probability distribution (probability model). That is, since a neural network usually outputs deterministically, it is difficult to output a random value such as a probability distribution. Therefore, the sampler 112 combines a random number sampled from a Gaussian distribution with the output from the neural network (high-resolution analysis data) to pseudo-express the probability distribution (re-parametrization trick). This makes it possible to estimate the error of the high-resolution analysis data. Specifically, the probability distribution is pseudo-expressed as shown in the following formula (11). Note that μ and σ are deterministic variables given by the neural network, and ε is a random number sampled from a Gaussian distribution.
Figure JPOXMLDOC01-appb-M000011
...(11)
 具体的には、サンプラー112は、高解像度解析データ取得部160から高解像度解析データDa1(式(10)のyに対応)を受け入れる。サンプラー112は、ガウス分布から乱数をサンプリングし、高解像度解析データにノイズを付加する。これにより、ニューラルネットワークから与えられる高解像度解析データにランダム性が加わるため、確率分布からサンプルした値と見なせるデータを取得できる。したがって、高解像度解析データを確率分布として表現できるようになる。つまり、サンプラー112は、高解像度解析データを確率分布で表現した場合のサンプリングデータを取得する。そして、サンプラー112は、高解像度解析データのサンプリングデータを、観測データ生成部114に出力する。なお、より複雑な確率分布を表現する場合、つまり、ノイズがガウス分布よりも複雑な分布から発生するようにする場合、混合分布又は正規化流(normalizing flows)などを利用してもよい。この場合、ガウス分布等の単純な確率分布に従う確率変数に対して非線形変換を重ねることで、複雑な分布を得ることができる。 Specifically, the sampler 112 receives the high-resolution analysis data Da1 (corresponding to y in formula (10)) from the high-resolution analysis data acquisition unit 160. The sampler 112 samples random numbers from a Gaussian distribution and adds noise to the high-resolution analysis data. This adds randomness to the high-resolution analysis data provided by the neural network, making it possible to acquire data that can be considered as values sampled from a probability distribution. This makes it possible to express the high-resolution analysis data as a probability distribution. In other words, the sampler 112 acquires sampling data when the high-resolution analysis data is expressed as a probability distribution. The sampler 112 then outputs the sampling data of the high-resolution analysis data to the observation data generation unit 114. Note that when expressing a more complex probability distribution, that is, when noise is generated from a distribution more complex than a Gaussian distribution, a mixture distribution or normalizing flows may be used. In this case, a complex distribution can be obtained by overlapping nonlinear transformations on random variables that follow a simple probability distribution such as a Gaussian distribution.
 観測データ生成部114は、サンプラー112で生成された高解像度解析データのサンプリングデータを用いて、疑似観測データDa3を生成する。つまり、観測データ生成部114は、高解像度解析データのサンプリングデータを、疑似観測データDa3に変換する。観測データ生成部114は、時空間方向に欠損のない疑似観測データDa3を生成し得る。観測データ生成部114は、予め機械学習によって学習されたニューラルネットワークによって実現されてもよい。観測データ生成部114は、物理的な対称性を反映したニューラルネットワークによって実現されてもよい。疑似観測データDa3が生成されることによって、教師なし学習を実現することができる。 The observation data generation unit 114 generates pseudo observation data Da3 using sampling data of the high-resolution analysis data generated by the sampler 112. In other words, the observation data generation unit 114 converts the sampling data of the high-resolution analysis data into pseudo observation data Da3. The observation data generation unit 114 can generate pseudo observation data Da3 that is free of loss in the time-space direction. The observation data generation unit 114 may be realized by a neural network that has been trained in advance by machine learning. The observation data generation unit 114 may be realized by a neural network that reflects physical symmetry. By generating the pseudo observation data Da3, unsupervised learning can be realized.
 具体的には、観測データ生成部114は、上述した構造化器(構造変換部130)で行われる処理の逆の処理を行うようにして、疑似観測データDa3を生成してもよい。つまり、観測データ生成部114は、構造化器と実質的に同様の技術によって、疑似観測データDa3を生成してもよい。さらに具体的には、観測データ生成部114は、格子データである高解像度解析データのサンプリングデータから、任意の時間及び位置にある格子点のデータをピックアップして、そのデータに対して線形変換及び非線形変換を繰り返す。これにより、観測データ生成部114は、観測データ取得部122で取得されるような観測データoの形式と実質的に同様の形式の疑似観測データDa3を取得する。したがって、疑似観測データDa3は、非格子データであってもよい。また、疑似観測データDa3は、非物理量の数値を示してもよい。 Specifically, the observation data generating unit 114 may generate the pseudo observation data Da3 by performing the reverse process of the process performed by the above-mentioned structurizer (structure conversion unit 130). In other words, the observation data generating unit 114 may generate the pseudo observation data Da3 by a technique substantially similar to that of the structurizer. More specifically, the observation data generating unit 114 picks up data of a lattice point at an arbitrary time and position from the sampling data of the high-resolution analysis data, which is lattice data, and repeats linear transformation and nonlinear transformation on the data. In this way, the observation data generating unit 114 acquires pseudo observation data Da3 in a format substantially similar to the format of the observation data o acquired by the observation data acquiring unit 122. Therefore, the pseudo observation data Da3 may be non-lattice data. Furthermore, the pseudo observation data Da3 may indicate the numerical value of a non-physical quantity.
 上述したように、変分ベイズ法を適用した学習処理部110は、高解像度解析データDa1から、疑似観測データDa3を生成する。ここで、式(10)の第4式で表される変分下界では、推論される高解像度解析データyは、隠れ状態である。この隠れ状態は、変分ベイズ法の枠組みでは、最終出力ではないことに留意されたい。変分ベイズ法では、学習段階では、擬似観測データDa3が最終出力である。そして、高解像度解析データyは隠れ状態であるので、学習段階で、高解像度解析データyに対応する正解データを準備する必要がない。したがって、教師あり学習で必要である高精度かつ高解像度の気象データを準備することが、不要となる。 As described above, the learning processing unit 110 to which the variational Bayes method is applied generates pseudo observation data Da3 from the high-resolution analysis data Da1. Here, in the variational lower bound expressed by the fourth equation of equation (10), the inferred high-resolution analysis data y is a hidden state. It should be noted that this hidden state is not the final output within the framework of the variational Bayes method. In the variational Bayes method, the pseudo observation data Da3 is the final output in the learning stage. And since the high-resolution analysis data y is in a hidden state, there is no need to prepare ground truth data corresponding to the high-resolution analysis data y in the learning stage. Therefore, it is no longer necessary to prepare highly accurate and high-resolution weather data, which is necessary for supervised learning.
(ハードウェア構成例)
 上述した各実施形態に係る装置およびシステムを、1つの計算処理装置(情報処理装置、コンピュータ)を用いて実現するハードウェア資源の構成例について説明する。但し、各実施形態に係る装置(情報処理装置)は、物理的または機能的に少なくとも2つの計算処理装置を用いて実現されてもよい。また、各実施形態に係る装置は、専用の装置として実現されてもよいし、汎用の情報処理装置で実現されてもよい。
(Hardware configuration example)
An example of the configuration of hardware resources for implementing the devices and systems according to the above-mentioned embodiments using one calculation processing device (information processing device, computer) will be described. However, the device (information processing device) according to each embodiment may be realized physically or functionally using at least two calculation processing devices. Furthermore, the device according to each embodiment may be realized as a dedicated device or a general-purpose information processing device.
 図11は、各実施形態に係る装置およびシステムを実現可能な計算処理装置のハードウェア構成例を概略的に示すブロック図である。計算処理装置1000は、CPU1001、揮発性記憶装置1002、ディスク1003、不揮発性記録媒体1004、及び、通信IF1007(IF:Interface)を有する。したがって、各実施形態に係る装置は、CPU1001、揮発性記憶装置1002、ディスク1003、不揮発性記録媒体1004、及び、通信IF1007を有しているといえる。計算処理装置1000は、入力装置1005及び出力装置1006に接続可能であってもよい。計算処理装置1000は、入力装置1005及び出力装置1006を備えていてもよい。また、計算処理装置1000は、通信IF1007を介して、他の計算処理装置、及び、通信装置と情報を送受信することができる。 FIG. 11 is a block diagram showing an example of the hardware configuration of a computing device capable of realizing the device and system according to each embodiment. The computing device 1000 has a CPU 1001, a volatile storage device 1002, a disk 1003, a non-volatile recording medium 1004, and a communication IF 1007 (IF: Interface). Therefore, it can be said that the device according to each embodiment has a CPU 1001, a volatile storage device 1002, a disk 1003, a non-volatile recording medium 1004, and a communication IF 1007. The computing device 1000 may be connectable to an input device 1005 and an output device 1006. The computing device 1000 may include an input device 1005 and an output device 1006. The computing device 1000 can also transmit and receive information to and from other computing devices and communication devices via the communication IF 1007.
 不揮発性記録媒体1004は、コンピュータが読み取り可能な、たとえば、コンパクトディスク(Compact Disc)、デジタルバーサタイルディスク(Digital Versatile Disc)である。また、不揮発性記録媒体1004は、USB(Universal Serial Bus)メモリ、ソリッドステートドライブ(Solid State Drive)等であってもよい。不揮発性記録媒体1004は、電源を供給しなくても係るプログラムを保持し、持ち運びを可能にする。なお、不揮発性記録媒体1004は、上述した媒体に限定されない。また、不揮発性記録媒体1004の代わりに、通信IF1007及び通信ネットワークを介して、係るプログラムが供給されてもよい。 The non-volatile recording medium 1004 is a computer-readable medium, such as a compact disc or a digital versatile disc. The non-volatile recording medium 1004 may also be a universal serial bus (USB) memory, a solid state drive, or the like. The non-volatile recording medium 1004 holds the relevant program without the need for a power supply, making it possible to carry it around. The non-volatile recording medium 1004 is not limited to the above-mentioned media. The relevant program may also be supplied via the communication IF 1007 and a communication network, instead of the non-volatile recording medium 1004.
 揮発性記憶装置1002は、コンピュータが読み取り可能であって、一時的にデータを記憶することができる。揮発性記憶装置1002は、DRAM(dynamic random Access memory)、SRAM(static random Access memory)等のメモリ等である。 The volatile memory device 1002 is computer-readable and can temporarily store data. The volatile memory device 1002 is a memory such as a dynamic random access memory (DRAM) or a static random access memory (SRAM).
 すなわち、CPU1001は、ディスク1003に格納されているソフトウェアプログラム(コンピュータ・プログラム:以下、単に「プログラム」と称する)を、実行する際に揮発性記憶装置1002にコピーし、演算処理を実行する。CPU1001は、プログラムの実行に必要なデータを揮発性記憶装置1002から読み取る。表示が必要な場合、CPU1001は、出力装置1006に出力結果を表示する。外部からプログラムを入力する場合、CPU1001は、入力装置1005からプログラムを取得する。CPU1001は、上述した図4,図6,図10に示される各構成要素の機能(処理)に対応するプログラムを解釈し実行する。CPU1001は、上述した各実施形態において説明した処理を実行する。言い換えると、上述した図4,図6,図10に示される各構成要素の機能は、ディスク1003又は揮発性記憶装置1002に格納されたプログラムを、CPU1001が実行することによって実現され得る。 In other words, when the CPU 1001 executes a software program (computer program: hereinafter simply referred to as a "program") stored on the disk 1003, it copies the program to the volatile storage device 1002 and executes the arithmetic processing. The CPU 1001 reads data required for executing the program from the volatile storage device 1002. When display is required, the CPU 1001 displays the output result on the output device 1006. When a program is input from the outside, the CPU 1001 obtains the program from the input device 1005. The CPU 1001 interprets and executes the program corresponding to the function (processing) of each component shown in the above-mentioned Figures 4, 6, and 10. The CPU 1001 executes the processing described in each of the above-mentioned embodiments. In other words, the functions of each component shown in the above-mentioned Figures 4, 6, and 10 can be realized by the CPU 1001 executing the program stored on the disk 1003 or the volatile storage device 1002.
 すなわち、各実施形態は、上述したプログラムによっても成し得ると捉えることができる。さらに、上述したプログラムが記録されたコンピュータが読み取り可能な不揮発性の記録媒体によっても、上述した各実施形態は成し得ると捉えることができる。 In other words, each of the above-mentioned embodiments can be realized by the above-mentioned programs. Furthermore, each of the above-mentioned embodiments can be realized by a computer-readable non-volatile recording medium on which the above-mentioned programs are recorded.
(変形例)
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、上述したフローチャートにおいて、各処理(ステップ)の順序は、適宜、変更可能である。また、複数ある処理(ステップ)のうちの1つ以上は、省略されてもよい。例えば、図5のフローチャートにおいて、S22の処理は、S20の処理の前で実行されてもよい。また、S24の処理は、S22の処理の前で実行されてもよい。また、S70の処理は省略されてもよい。
(Modification)
The present invention is not limited to the above embodiment, and can be modified as appropriate without departing from the spirit of the present invention. For example, in the above-mentioned flowchart, the order of each process (step) can be changed as appropriate. Also, one or more of the multiple processes (steps) may be omitted. For example, in the flowchart of FIG. 5, the process of S22 may be executed before the process of S20. Also, the process of S24 may be executed before the process of S22. Also, the process of S70 may be omitted.
 また、上述した実施の形態では、気象予測を行う場合について説明したが、本実施の形態は、気象予測を行う場合に限られない。本実施の形態は、格子データを利用する任意の予測シミュレーションに適用可能である。例えば、本実施の形態は、海洋予測にも適用可能である。また、本実施の形態は、宇宙物理シミュレーションにも適用可能である。 In the above embodiment, a case where weather forecasting is performed has been described, but this embodiment is not limited to the case where weather forecasting is performed. This embodiment can be applied to any predictive simulation that uses grid data. For example, this embodiment can also be applied to ocean forecasting. This embodiment can also be applied to space physics simulations.
 また、本実施の形態において、「時空間」の次元は、3次元空間と1次元の時間とで構成される4次元に限定されない。「時空間」の次元は、2次元空間と1次元の時間とで構成される3次元であってもよい。あるいは、「時空間」の次元は、10次元等の、4次元よりも大きな次元であってもよい。 Furthermore, in this embodiment, the dimensions of "space-time" are not limited to four dimensions consisting of three-dimensional space and one-dimensional time. The dimensions of "space-time" may be three dimensions consisting of two-dimensional space and one-dimensional time. Alternatively, the dimensions of "space-time" may be a dimension greater than four, such as ten dimensions.
 上述の例において、プログラムは、コンピュータに読み込まれた場合に、実施形態で説明された1又はそれ以上の機能をコンピュータに行わせるための命令群(又はソフトウェアコード)を含む。プログラムは、非一時的なコンピュータ可読媒体又は実体のある記憶媒体に格納されてもよい。限定ではなく例として、コンピュータ可読媒体又は実体のある記憶媒体は、random-access memory(RAM)、read-only memory(ROM)、フラッシュメモリ、solid-state drive(SSD)又はその他のメモリ技術、CD-ROM、digital versatile disk(DVD)、Blu-ray(登録商標)ディスク又はその他の光ディスクストレージ、磁気カセット、磁気テープ、磁気ディスクストレージ又はその他の磁気ストレージデバイスを含む。プログラムは、一時的なコンピュータ可読媒体又は通信媒体上で送信されてもよい。限定ではなく例として、一時的なコンピュータ可読媒体又は通信媒体は、電気的、光学的、音響的、またはその他の形式の伝搬信号を含む。 In the above examples, the program includes instructions (or software code) that, when loaded into a computer, cause the computer to perform one or more functions described in the embodiments. The program may be stored on a non-transitory computer-readable medium or tangible storage medium. By way of example and not limitation, computer-readable medium or tangible storage medium may include random-access memory (RAM), read-only memory (ROM), flash memory, solid-state drive (SSD) or other memory technology, CD-ROM, digital versatile disk (DVD), Blu-ray® disk or other optical disk storage, magnetic cassette, magnetic tape, magnetic disk storage or other magnetic storage device. The program may be transmitted on a transitory computer-readable medium or communication medium. By way of example and not limitation, transitory computer-readable medium or communication medium may include electrical, optical, acoustic, or other forms of propagated signals.
 この出願は、2022年9月29日に出願された日本出願特願2022-155991を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2022-155991, filed on September 29, 2022, the entire disclosure of which is incorporated herein by reference.
10 情報処理装置
20 シミュレーション部
22 観測データ取得部
24 予測データ取得部
30 構造変換部
40 潜在時空間写像部
50 非線形変換部
60 高解像度解析データ取得部
70 低解像度解析データ算出部
100 情報処理装置
110 学習処理部
112 サンプラー
114 観測データ生成部
120 シミュレーション部
122 観測データ取得部
124 予測データ取得部
130 構造変換部
140 潜在時空間写像部
150 非線形変換部
160 高解像度解析データ取得部
170 低解像度解析データ算出部
10 Information processing device 20 Simulation unit 22 Observation data acquisition unit 24 Prediction data acquisition unit 30 Structure conversion unit 40 Latent space-time mapping unit 50 Nonlinear conversion unit 60 High-resolution analysis data acquisition unit 70 Low-resolution analysis data calculation unit 100 Information processing device 110 Learning processing unit 112 Sampler 114 Observation data generation unit 120 Simulation unit 122 Observation data acquisition unit 124 Prediction data acquisition unit 130 Structure conversion unit 140 Latent space-time mapping unit 150 Nonlinear conversion unit 160 High-resolution analysis data acquisition unit 170 Low-resolution analysis data calculation unit

Claims (10)

  1.  時空間上の状態を観測して得られたデータである観測データの構造を、時空間上において所定間隔で配置された格子点上で定義される数値を示す格子データの構造の観測データに変換する構造変換部と、
     前記格子データに変換された観測データと、シミュレーションによって得られた時空間上の格子データであり少なくとも前記観測データの時刻及び当該時刻よりも過去を含む時間における予測データとについて、第1の実時空間から前記第1の実時空間よりも要素数が少ない潜在時空間に写像を行う潜在時空間写像部と、
     前記潜在時空間において、写像が行われた前記観測データ及び前記予測データに対して非線形変換を行う非線形変換部と、
     前記非線形変換が施された前記観測データ及び前記予測データについて、前記潜在時空間から前記潜在時空間よりも要素数が多く第1の実時空間よりも高解像度である第2の実時空間に写像を行うことにより、時空間上の格子データであり前記予測データよりも時空間上で高解像度である高解像度解析データを取得する高解像度解析データ取得部と、
     を有し、
     前記潜在時空間写像部及び前記非線形変換部によって、前記観測データと前記予測データとのデータ同化が行われる、
     情報処理装置。
    a structure conversion unit that converts a structure of observation data, which is data obtained by observing a state in space-time, into observation data having a lattice data structure indicating numerical values defined on lattice points arranged at predetermined intervals in space-time;
    a latent space-time mapping unit that maps the observation data converted into the lattice data and prediction data, which is lattice data in a space-time obtained by a simulation and includes at least a time of the observation data and a time before the time, from a first real space-time to a latent space-time having a smaller number of elements than the first real space-time;
    a nonlinear transformation unit that performs a nonlinear transformation on the mapped observation data and the predicted data in the latent space-time;
    a high-resolution analysis data acquisition unit that acquires high-resolution analysis data, which is lattice data in space-time and has a higher resolution in space-time than the prediction data, by mapping the observation data and the prediction data that have been subjected to the nonlinear transformation from the latent space-time to a second real space-time that has a larger number of elements than the latent space-time and has a higher resolution than the first real space-time;
    having
    The latent space-time mapping unit and the nonlinear transformation unit perform data assimilation between the observation data and the prediction data.
    Information processing device.
  2.  前記高解像度解析データを用いて前記高解像度解析データよりも時空間上で低解像度の低解像度解析データを算出する低解像度解析データ算出部、
     をさらに有する請求項1に記載の情報処理装置。
    a low-resolution analysis data calculation unit that calculates low-resolution analysis data having a lower resolution in time and space than the high-resolution analysis data using the high-resolution analysis data;
    The information processing apparatus according to claim 1 , further comprising:
  3.  前記非線形変換部は、前記潜在時空間に写像されたデータに対してデータ配列の変形を行うことにより時間方向に超解像を行う、
     請求項1に記載の情報処理装置。
    The nonlinear transformation unit performs super-resolution in the time direction by transforming a data array on the data mapped to the latent space-time.
    The information processing device according to claim 1 .
  4.  前記高解像度解析データ取得部は、前記潜在時空間において時間方向に超解像が行なわれたデータに対して、時間方向の各時刻について独立して、空間方向に超解像を行うことによって、前記高解像度解析データを取得する、
     請求項3に記載の情報処理装置。
    The high-resolution analysis data acquisition unit acquires the high-resolution analysis data by performing super-resolution in a spatial direction independently for each time in the time direction on the data that has been super-resolved in the time direction in the latent space-time.
    The information processing device according to claim 3 .
  5.  前記予測データは、前記観測データの時刻及び当該時刻よりも過去及び未来を含む時間における予測データであり、
     前記高解像度解析データ取得部は、前記観測データの時刻の過去及び未来を含む時間における高解像度解析データを取得する、
     請求項1に記載の情報処理装置。
    the predicted data is predicted data for a time of the observed data and a time including a time in the past and a time in the future relative to the observed data,
    The high-resolution analysis data acquisition unit acquires high-resolution analysis data at a time including the past and future of the observation data.
    The information processing device according to claim 1 .
  6.  前記構造変換部、前記潜在時空間写像部、前記非線形変換部及び前記高解像度解析データ取得部は、機械学習のアルゴリズムによって学習された学習済みモデルによって、実現される、
     請求項1に記載の情報処理装置。
    The structural transformation unit, the latent space-time mapping unit, the nonlinear transformation unit, and the high-resolution analysis data acquisition unit are realized by a trained model trained by a machine learning algorithm.
    The information processing device according to claim 1 .
  7.  前記構造変換部、前記潜在時空間写像部、前記非線形変換部及び前記高解像度解析データ取得部は、前記予測データよりも時空間上で高解像度のデータを教師データとする教師あり学習によって学習された学習済みモデルによって、実現される、
     請求項6に記載の情報処理装置。
    The structure transformation unit, the latent space-time mapping unit, the nonlinear transformation unit, and the high-resolution analysis data acquisition unit are realized by a trained model trained by supervised learning using data having a higher spatiotemporal resolution than the prediction data as training data.
    The information processing device according to claim 6.
  8.  前記構造変換部、前記潜在時空間写像部、前記非線形変換部及び前記高解像度解析データ取得部は、損失関数を減少させるようにして教師なし学習によって学習された学習済みモデルによって、実現される、
     請求項6に記載の情報処理装置。
    The structural transformation unit, the latent space-time mapping unit, the nonlinear transformation unit, and the high-resolution analysis data acquisition unit are realized by a trained model trained by unsupervised learning so as to reduce a loss function.
    The information processing device according to claim 6.
  9.  時空間上の状態を観測して得られたデータである観測データの構造を、時空間上において所定間隔で配置された格子点上で定義される数値を示す格子データの構造の観測データに変換し、
     前記格子データに変換された観測データと、シミュレーションによって得られた時空間上の格子データであり少なくとも前記観測データの時刻及び当該時刻よりも過去を含む時間における予測データとについて、第1の実時空間から前記第1の実時空間よりも要素数が少ない潜在時空間に写像を行い、
     前記潜在時空間において、写像が行われた前記観測データ及び前記予測データに対して非線形変換を行い、
     前記非線形変換が施された前記観測データ及び前記予測データについて、前記潜在時空間から前記潜在時空間よりも要素数が多く第1の実時空間よりも高解像度である第2の実時空間に写像を行うことにより、時空間上の格子データであり前記予測データよりも時空間上で高解像度である高解像度解析データを取得し、
     前記第1の実時空間から前記潜在時空間に写像を行うこと、及び、前記潜在時空間において前記観測データ及び前記予測データに対して非線形変換を行うことによって、前記観測データと前記予測データとのデータ同化が行われる、
     情報処理方法。
    Converting a structure of observation data, which is data obtained by observing a state in space-time, into observation data having a lattice data structure indicating numerical values defined on lattice points arranged at predetermined intervals in space-time;
    mapping the observation data converted into the lattice data and prediction data obtained by simulation, the prediction data being lattice data in a space-time and including at least a time of the observation data and a time before the time of the observation data, from a first real time-space to a latent time-space having a smaller number of elements than the first real time-space;
    In the latent space-time, a nonlinear transformation is performed on the mapped observation data and the predicted data;
    The observation data and the prediction data that have been subjected to the nonlinear transformation are mapped from the latent space-time to a second real space-time that has a larger number of elements than the latent space-time and a higher resolution than the first real space-time, thereby obtaining high-resolution analysis data that is lattice data in space-time and has a higher resolution in space-time than the prediction data;
    performing data assimilation between the observation data and the prediction data by performing a mapping from the first real time space to the latent time space and performing a nonlinear transformation on the observation data and the prediction data in the latent time space;
    Information processing methods.
  10.  時空間上の状態を観測して得られたデータである観測データの構造を、時空間上において所定間隔で配置された格子点上で定義される数値を示す格子データの構造の観測データに変換する処理と、
     前記格子データに変換された観測データと、シミュレーションによって得られた時空間上の格子データであり少なくとも前記観測データの時刻及び当該時刻よりも過去を含む時間における予測データとについて、第1の実時空間から前記第1の実時空間よりも要素数が少ない潜在時空間に写像を行う処理と、
     前記潜在時空間において、写像が行われた前記観測データ及び前記予測データに対して非線形変換を行う処理と、
     前記非線形変換が施された前記観測データ及び前記予測データについて、前記潜在時空間から前記潜在時空間よりも要素数が多く第1の実時空間よりも高解像度である第2の実時空間に写像を行うことにより、時空間上の格子データであり前記予測データよりも時空間上で高解像度である高解像度解析データを取得する処理と、
     をコンピュータに実行させ、
     前記第1の実時空間から前記潜在時空間に写像を行う処理、及び、前記潜在時空間において前記観測データ及び前記予測データに対して非線形変換を行う処理によって、前記観測データと前記予測データとのデータ同化が行われる、
     プログラム。
    A process of converting a structure of observation data, which is data obtained by observing a state in space-time, into observation data having a lattice data structure indicating numerical values defined on lattice points arranged at predetermined intervals in space-time;
    a process of mapping, from a first real time-space to a latent time-space having a smaller number of elements than the first real time-space, the observation data converted into the lattice data and prediction data, which is lattice data in a space-time obtained by a simulation and includes at least a time of the observation data and a time before the time of the observation data;
    A process of performing a nonlinear transformation on the mapped observation data and the predicted data in the latent space-time;
    a process of mapping the observation data and the prediction data that have been subjected to the nonlinear transformation from the latent space-time to a second real space-time that has a larger number of elements than the latent space-time and a higher resolution than the first real space-time, thereby acquiring high-resolution analysis data that is lattice data in space-time and has a higher resolution in space-time than the prediction data;
    Run the following on your computer:
    A process of mapping from the first real time space to the latent time space and a process of performing a nonlinear transformation on the observation data and the prediction data in the latent time space, thereby performing data assimilation between the observation data and the prediction data.
    program.
PCT/JP2023/035615 2022-09-29 2023-09-29 Information processing device, information processing method, and program WO2024071377A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022155991A JP2024049645A (en) 2022-09-29 2022-09-29 Information processing device, information processing method, and program
JP2022-155991 2022-09-29

Publications (1)

Publication Number Publication Date
WO2024071377A1 true WO2024071377A1 (en) 2024-04-04

Family

ID=90478101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035615 WO2024071377A1 (en) 2022-09-29 2023-09-29 Information processing device, information processing method, and program

Country Status (2)

Country Link
JP (1) JP2024049645A (en)
WO (1) WO2024071377A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112819698A (en) * 2021-03-05 2021-05-18 上海眼控科技股份有限公司 Data assimilation method, device, equipment and storage medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112819698A (en) * 2021-03-05 2021-05-18 上海眼控科技股份有限公司 Data assimilation method, device, equipment and storage medium

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RYO ONISHI: "Real-time prediction of urban microclimate by super-resolution simulation using deep learning", JOURNAL OF THE JAPANESE SOCIETY OF FLUID DYNAMICS, NAGARE, vol. 38, no. 6, 25 December 2019 (2019-12-25), pages 431 - 434, XP093155342 *
SÉBASTIEN BARTHÉLÉMY: "Super-resolution data assimilation", OCEAN DYNAMICS, SPRINGER BERLIN HEIDELBERG, BERLIN/HEIDELBERG, vol. 72, no. 8, 11 August 2022 (2022-08-11), Berlin/Heidelberg , pages 661 - 678, XP093155338, ISSN: 1616-7341, DOI: 10.1007/s10236-022-01523-x *

Also Published As

Publication number Publication date
JP2024049645A (en) 2024-04-10

Similar Documents

Publication Publication Date Title
CN109410307B (en) Scene point cloud semantic segmentation method
KR101880907B1 (en) Method for detecting abnormal session
CN111507521A (en) Method and device for predicting power load of transformer area
US11720727B2 (en) Method and system for increasing the resolution of physical gridded data
CN114724012B (en) Tropical unstable wave early warning method and device based on space-time cross-scale attention fusion
CN113449612B (en) Three-dimensional target point cloud identification method based on sub-flow sparse convolution
Shi et al. Gnn-surrogate: A hierarchical and adaptive graph neural network for parameter space exploration of unstructured-mesh ocean simulations
CN115660041A (en) Sea wave height prediction and model training method, electronic device and storage medium
Grönquist et al. Predicting weather uncertainty with deep convnets
CN114373104A (en) Three-dimensional point cloud semantic segmentation method and system based on dynamic aggregation
Seo et al. Graph neural networks and implicit neural representation for near-optimal topology prediction over irregular design domains
CN117454495A (en) CAD vector model generation method and device based on building sketch outline sequence
CN113792753A (en) Dynamic hypergraph neural network classification method and system
Saha et al. Downscaling extreme rainfall using physical-statistical generative adversarial learning
CN113989612A (en) Remote sensing image target detection method based on attention and generation countermeasure network
JP2021108120A (en) Apparatus for, method of, and program for machine learning combining dot data with raster data
WO2024071377A1 (en) Information processing device, information processing method, and program
CN117197632A (en) Transformer-based electron microscope pollen image target detection method
CN117315169A (en) Live-action three-dimensional model reconstruction method and system based on deep learning multi-view dense matching
CN116758219A (en) Region-aware multi-view stereo matching three-dimensional reconstruction method based on neural network
CN116720156A (en) Weather element forecasting method based on graph neural network multi-mode weather data fusion
CN110648030A (en) Method and device for predicting seawater temperature
CN115205530A (en) Low-altitude unmanned-machine-oriented real-time image semantic segmentation method
Bosma et al. Estimating solar and wind power production using computer vision deep learning techniques on weather maps
US20220327335A1 (en) Controlling asynchronous fusion of spatio-temporal multimodal data