WO2024071373A1 - 生産物の製造方法 - Google Patents

生産物の製造方法 Download PDF

Info

Publication number
WO2024071373A1
WO2024071373A1 PCT/JP2023/035594 JP2023035594W WO2024071373A1 WO 2024071373 A1 WO2024071373 A1 WO 2024071373A1 JP 2023035594 W JP2023035594 W JP 2023035594W WO 2024071373 A1 WO2024071373 A1 WO 2024071373A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
cells
producing
product according
membrane
Prior art date
Application number
PCT/JP2023/035594
Other languages
English (en)
French (fr)
Inventor
喬 黒澤
真一 中居
淳史 稲田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2024071373A1 publication Critical patent/WO2024071373A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins

Definitions

  • the present invention relates to a method for producing a product, which includes culturing cells, and in which the cumulative number of particles per surface area of the membrane that separates the cells and the product and the aeration rate are controlled.
  • Patent Document 1 describes a method for producing a product, including a step of culturing product-producing cells contained in a cell suspension contained in a culture vessel, a separation process step of extracting the cell suspension from the culture vessel and separating it by tangential filtration using a separation membrane, a step of returning the return liquid to the culture vessel, a step of supplying fresh medium into the culture vessel, and a step of recovering the product.
  • Patent Document 1 describes culturing the cells so that the number density Nd of particles other than live cells with a particle size of 8 Dp to 30 Dp in the cell suspension satisfies Nc ⁇ Nd ⁇ S/(32 ⁇ Vf ⁇ Dp2) for the live cell concentration Nc, separation membrane pore size Dp, separation membrane filtration area S, and separation membrane primary side flow passage volume Vf.
  • the ATF (Alternating Tangential Flow Filtration) method which is commonly used in perfusion culture, is less prone to membrane clogging (clogging of the sides of hollow fibers as evaluated in Patent Document 1) than the TFF (Tangential Flow Filtration) method, due to the backwash effect of liquid flowing back from the secondary side of the membrane to the primary side.
  • TFF Tangential Flow Filtration
  • a common measure to prevent clogging of the sides of hollow fibers is to increase the membrane area, but there are problems with the area of commercially available membranes being small and the equipment becoming larger.
  • the problem to be solved by the present invention is to provide a method that can suppress membrane clogging (primary clogging: clogging of the space inside the hollow fiber) in a method for producing products by cell culture.
  • Primary clogging is not clogging of the holes on the side of the hollow fiber as evaluated by the antibody permeability in Patent Document 1, but clogging of the space inside the hollow fiber, which increases the pressure loss in the longitudinal direction of the hollow fiber membrane.
  • a method for producing a product comprising culturing cells in a culture tank,
  • the cell density during production of the product is 80 ⁇ 10 6 cells/mL or more and 300 ⁇ 10 6 cells/mL or less;
  • the culture is a perfusion culture,
  • the culture scale is 5 L or more and 100,000 L or less, the cumulative number X [pieces/mm 2 ] of particles having a particle diameter of 1.47 to 6.00 ⁇ m per surface area of the membrane separating the cells in the culture solution from the product during the production of the product on Day 10 is 0 ⁇ X ⁇ 1.0 ⁇ 10 8 ;
  • the ventilation rate V [vvm] is 0.09 ⁇ V ⁇ 1.0;
  • the method of producing the product comprising culturing cells in a culture tank,
  • the cell density during production of the product is 80 ⁇ 10 6 cells/mL or more and 300 ⁇ 10 6 cells/mL or less;
  • the culture is a perfusion culture,
  • the culture scale is 5 L or more and 100,000 L or less, the cumulative number X [piece
  • the cumulative number X is the total number of particles detected in the range of 1.47 to 6.00 ⁇ m when the particle size distribution of the culture fluid from 1.46 to 42 ⁇ m is measured.
  • ⁇ 4> The method for producing a product according to any one of ⁇ 1> to ⁇ 3>, wherein the maximum cumulative number X [cells/mm 2 ] during the culture period from Day 10 onwards is 0 ⁇ X ⁇ 1.0 ⁇ 10 8 .
  • ⁇ 5> The method for producing a product according to any one of ⁇ 1> to ⁇ 4>, wherein the maximum cumulative number X [cells/mm 2 ] during the culture period from Day 10 onwards is 0 ⁇ X ⁇ 1.5 ⁇ 10 6 .
  • ⁇ 6> The method for producing a product according to any one of ⁇ 1> to ⁇ 5>, wherein the minimum cumulative number X [cells/mm 2 ] during the culture period on and after Day 10 is 0 ⁇ X ⁇ 1.0 ⁇ 10 8 .
  • ⁇ 7> The method for producing a product according to any one of ⁇ 1> to ⁇ 6>, wherein the minimum cumulative number X [cells/mm 2 ] during the culture period on and after Day 10 is 0 ⁇ X ⁇ 0.9 ⁇ 10 6 .
  • ⁇ 8> The method for producing a product according to any one of ⁇ 1> to ⁇ 7>, wherein the relationship between the cumulative number X [pieces/mm 2 ] and the air permeation velocity V [vvm] satisfies -10 4 ⁇ V-10 5 ⁇ X -0.9 ⁇ 0.1.
  • ⁇ 9> The method for producing a product according to any one of ⁇ 1> to ⁇ 8>, wherein a maximum shear rate D [1/s] applied to the cells in a tube assembly from the culture tank to the membrane and in the membrane is 0 ⁇ D ⁇ 65,000.
  • a maximum shear rate D [1/s] applied to the cells in a tube assembly from the culture tank to the membrane and in the membrane is 0 ⁇ D ⁇ 65,000.
  • ⁇ 11> The method for producing the product according to ⁇ 9>, wherein the maximum shear rate D [1/s] is 0 ⁇ D ⁇ 3000.
  • ⁇ 12> The method for producing a product according to any one of ⁇ 1> to ⁇ 11>, wherein a ratio [m 2 /L] of a membrane area [m 2 ] per a liquid volume [L] of a culture liquid is 0.015 or more and 1.0 or less.
  • ⁇ 13> The method for producing a product according to any one of ⁇ 1> to ⁇ 12>, wherein a time frequency T [s/day] at which a maximum shear rate is applied to the cells in a tube assembly from the culture tank to the membrane and in the membrane is 0 ⁇ T ⁇ 10,000.
  • ⁇ 14> The method for producing a product according to any one of ⁇ 1> to ⁇ 13>, wherein a cumulative time frequency T total [s/day] at which a shear rate of 100 [1/s] or more and 100,000 [1/s] or less is applied to the cells in a tube assembly from the culture tank to the membrane and in the membrane is 0 ⁇ T total ⁇ 100,000.
  • T total [s/day] a cumulative time frequency at which a shear rate of 100 [1/s] or more and 100,000 [1/s] or less is applied to the cells in a tube assembly from the culture tank to the membrane and in the membrane is 0 ⁇ T total ⁇ 100,000.
  • ⁇ 15> The method for producing a product according to any one of ⁇ 1> to ⁇ 14>, wherein a relationship between a minimum inner diameter d [mm] of a tube and a joint of a tube assembly from the culture tank to the membrane and a culture solution volume C [L] is 0.0001 ⁇ d/C ⁇ 100.
  • ⁇ 16> The method for producing a product according to any one of ⁇ 1> to ⁇ 15>, wherein in the tubes and joints of the tube assembly from the culture tank to the membrane, the relationship between the length L [mm] of the flow path having the minimum inner diameter d [mm] and the amount of culture solution C [L] is 0.001 ⁇ L/C ⁇ 1000.
  • ⁇ 17> The method for producing a product according to any one of ⁇ 1> to ⁇ 16>, wherein a concentration [U/L] of lactate dehydrogenase in the culture solution during production of the product is greater than 0 and less than or equal to 100,000.
  • ⁇ 18> The method for producing the product according to any one of ⁇ 1> to ⁇ 17>, wherein the cell is cultured for 10 days or more and 100 days or less.
  • ⁇ 19> The method for producing the product according to any one of ⁇ 1> to ⁇ 18>, wherein the cell is cultured for 15 days or more and 90 days or less.
  • ⁇ 20> The method for producing the product according to any one of ⁇ 1> to ⁇ 19>, wherein the sparger hole diameter for aerating the culture solution is 1 to 100 ⁇ m.
  • ⁇ 21> The method for producing the product according to any one of ⁇ 1> to ⁇ 20>, wherein the filtration flux Y[LMH] is 0 ⁇ Y ⁇ 10.
  • ⁇ 22> The method for producing the product according to any one of ⁇ 1> to ⁇ 21>, wherein the cell is an animal cell.
  • ⁇ 23> The method for producing the product according to any one of ⁇ 1> to ⁇ 22>, wherein the cell is a CHO cell.
  • ⁇ 24> The method for producing the product according to any one of ⁇ 1> to ⁇ 23>, wherein the product is an antibody.
  • ⁇ 25> The method for producing a product according to any one of ⁇ 1> to ⁇ 24>, wherein the viscosity ⁇ [mPa ⁇ s] of the culture solution at 37° C. during the production of the product is 0.5 ⁇ 10.
  • ⁇ 26> The method for producing a product according to any one of ⁇ 1> to ⁇ 25>, wherein, in the perfusion culture, after the cell density reaches a target cell density of 80 x 10 6 cells/mL or more, the culture medium containing the cells is removed to maintain the cell density within ⁇ 40% of the target cell density, and the product is recovered during the period during which the cell density is maintained within ⁇ 40% of the target cell density.
  • ⁇ 27> The method for producing the product according to any one of ⁇ 1> to ⁇ 26>, further comprising: adjusting the cell density within ⁇ 10% of the target cell density by removing the cell-containing culture medium at least once a day after the cell density reaches a target cell density of 80 x 10 6 cells/mL or more in the perfusion culture.
  • ⁇ 28> The method for producing a product according to any one of ⁇ 1> to ⁇ 27>, wherein the daily alkali addition rate A [mol/L/day] is controlled in the range of 0 ⁇ A ⁇ 0.008 during a period of at least 13 days or more from the time when the target cell density is reached during production of the product by the perfusion culture.
  • ⁇ 29> The method for producing the product according to any one of ⁇ 1> to ⁇ 28>, wherein no alkali is added during the entire period of the perfusion culture.
  • ⁇ 30> The method for producing the product according to any one of ⁇ 1> to ⁇ 29>, wherein the amount of the antifoaming component added per unit culture volume and unit time when the antifoaming component is added to the culture tank is 0.70 mg/hour/L or less.
  • the antifoaming component is a silicone-based component.
  • ⁇ 32> The method for producing the product according to ⁇ 30> or ⁇ 31>, wherein the antifoaming ingredient is dimethicone.
  • ⁇ 33> The method for producing a product according to any one of ⁇ 1> to ⁇ 32>, wherein the membrane separating the cells in the culture solution from the product is an alternating tangential flow (ATF) type.
  • ATF alternating tangential flow
  • the present invention makes it possible to prevent membrane clogging during perfusion culture.
  • Fig. 1 shows a cell culture device.
  • the whole device shown in Fig. 1 is a cell culture device.
  • a numerical range indicated using “ ⁇ ” means a range that includes the numerical values before and after " ⁇ " as the minimum and maximum values, respectively.
  • the present invention relates to a method for producing a product, comprising culturing cells in a culture tank,
  • the cell density during production of the product is 80 ⁇ 10 6 cells/mL or more and 300 ⁇ 10 6 cells/mL or less;
  • the culture is a perfusion culture,
  • the culture scale is 5 L or more and 100,000 L or less, the cumulative number X [pieces/mm 2 ] of particles having a particle diameter of 1.47 to 6.00 ⁇ m per surface area of the membrane separating the cells in the culture solution from the product during the production of the product on Day 10 is 0 ⁇ X ⁇ 1.0 ⁇ 10 8 ;
  • the ventilation rate V [vvm] is 0.09 ⁇ V ⁇ 1.0; According to the present invention, productivity can be improved, particularly in perfusion culture using a membrane such as ATF/TFF.
  • the cumulative number X is the total number of particles detected in the range of 1.47 to 6.00 ⁇ m when the particle size distribution of the culture solution is measured from 1.46 to 42 ⁇ m.
  • the particle size distribution from 1.46 to 42 ⁇ m can be measured using a precision particle size distribution measuring device, Multisizer 4e, manufactured by Beckman Coulter.
  • the cumulative number X [cells/mm 2 ] on Day 10 is preferably 0 ⁇ X ⁇ 9.7 ⁇ 10 6 , and more preferably 0 ⁇ X ⁇ 1.3 ⁇ 10 6 , from the viewpoint of suppressing membrane clogging and extending the number of days of continuous culture.
  • the cumulative number X on Day 10 means the cumulative number X on Day 10, which is the 10th day from the start of culture, with the start date of culture being Day 0.
  • the maximum cumulative number X [cells/mm 2 ] during the culture period from Day 10 onwards is preferably 0 ⁇ X ⁇ 1.0 ⁇ 10 8 , and more preferably 0 ⁇ X ⁇ 1.5 ⁇ 10 6 , from the viewpoint of suppressing membrane clogging and extending the number of days of continued culture.
  • the maximum cumulative number X during the culture period from Day 10 onwards is the maximum value of the cumulative number X from Day 10 onwards, which is the 10th day from the start of culture, with the start date of culture being Day 0.
  • the minimum cumulative number X [cells/ mm2 ] during the culture period from Day 10 onwards is preferably 0 ⁇ X ⁇ 1.0 ⁇ 108 , more preferably 0 ⁇ X ⁇ 1.0 ⁇ 107 , even more preferably 0 ⁇ X ⁇ 6.0 ⁇ 106, and particularly preferably 0 ⁇ X ⁇ 0.9 ⁇ 106 , from the viewpoint of suppressing membrane clogging and extending the number of days the culture can be continued.
  • the minimum cumulative number X during the culture period from Day 10 onwards is the minimum value of the cumulative number X from Day 10 onwards, which is the 10th day from the start of culture, with the culture start date being Day 0.
  • the aeration rate V [vvm] is 0.09 ⁇ V ⁇ 1.0, and from the viewpoint of suppressing damage to cells due to bubble breakage and reducing the number of fine particles, it is preferably 0.09 ⁇ V ⁇ 0.5, and more preferably 0.09 ⁇ V ⁇ 0.2.
  • the maximum air permeability velocity V [vvm] is 0.09 ⁇ V ⁇ 1.0, preferably 0.09 ⁇ V ⁇ 0.5, and more preferably 0.09 ⁇ V ⁇ 0.2.
  • the ventilation rate can be measured using an oxygen mass flow meter (model number: 8500MC-S1-1-2, gas type: O 2 ) and an air mass flow meter (model number: 8500MC-S1-1-2, gas type: Air) manufactured by KOFLOC.
  • the relationship between the cumulative number X [pieces/mm 2 ] and the air permeability rate V [vvm] is preferably -10 4 ⁇ V-10 5 ⁇ X -0.9 ⁇ 0.1, more preferably -10 2 ⁇ V-10 5 ⁇ X -0.9 ⁇ 0.1, even more preferably -10 ⁇ V-10 5 ⁇ X -0.9 ⁇ 0.1, and particularly preferably -4 ⁇ V-10 5 ⁇ X -0.9 ⁇ -0.01.
  • the methods for measuring the cumulative number X and the air permeation rate V are as described above.
  • the maximum shear rate D [1/s] applied to the cells is preferably 0 ⁇ D ⁇ 65000, more preferably 0 ⁇ D ⁇ 39000, and even more preferably 0 ⁇ D ⁇ 3000, from the viewpoint of suppressing shear damage to the cells and reducing the number of fine particles.
  • the above maximum shear rate D [1/s] may be 2000 ⁇ D ⁇ 65000 or 2000 ⁇ D ⁇ 39000.
  • the shear rate D can be calculated according to the formula described in "(4) Shear rate (D) in the tube assembly from the culture tank to the membrane and in the membrane" in the ⁇ Evaluation method> of the Examples described later.
  • the ratio [m 2 /L] of the membrane area [m 2 ] per volume [L] of the culture medium is preferably 0.015 or more and 1.0 or less, more preferably 0.033 or more and 1.0 or less.
  • the liquid volume [L] of the culture medium can be measured or specified by a conventional method.
  • the membrane area [m 2 ] can be measured by a conventional method, or a membrane with a predetermined, specified membrane area can be used.
  • the time frequency T [s/day] at which the maximum shear rate is applied to the cells in the tube assembly from the culture tank to the membrane and within the membrane is preferably 0 ⁇ T ⁇ 10,000, more preferably 0 ⁇ T ⁇ 3,500, even more preferably 0.1 ⁇ T ⁇ 3,500, and particularly preferably 0.1 ⁇ T ⁇ 1,000.
  • the time frequency T can be calculated according to the formula described in “(5) Time frequency (T) in the tube assembly from the culture tank to the membrane and in the membrane” in the “Evaluation method” of the Examples described later.
  • the cumulative time frequency T total [s/day] at which the cells are subjected to a shear rate of 100 [1/s] or more and 100,000 [1/s] or less is preferably 0 ⁇ T total ⁇ 100,000, more preferably 0 ⁇ T total ⁇ 10,000, even more preferably 10 ⁇ T total ⁇ 10,000, and particularly preferably 100 ⁇ T total ⁇ 10,000.
  • the cumulative time frequency Ttota is the sum of the time frequencies T at each shear rate, and the time frequency T can be calculated by the formula described in “(5) Time frequency (T) in the tube assembly from the culture tank to the membrane and in the membrane” in the “Evaluation method” of the Examples described later.
  • the relationship between the minimum inner diameter d [mm] of the tubes and joints of the tube assembly from the culture tank to the membrane and the culture solution volume C [L] is preferably 0.0001 ⁇ d/C ⁇ 100, more preferably 0.001 ⁇ d/C ⁇ 100, and even more preferably 0.001 ⁇ d/C ⁇ 10.
  • the minimum inner diameter d and the culture solution volume C can be measured or determined by a conventional method.
  • the relationship between the length L [mm] of the flow path that results in the minimum inner diameter d [mm] and the culture solution volume C [L] is preferably 0.001 ⁇ L/C ⁇ 1000, more preferably 0.005 ⁇ L/C ⁇ 500, even more preferably 0.01 ⁇ L/C ⁇ 100, and particularly preferably 0.05 ⁇ L/C ⁇ 10.
  • the minimum inner diameter d and the length L of the flow path can be measured or specified by conventional methods.
  • the cell density during production of the product is 80 ⁇ 10 to 300 ⁇ 10 cells/mL, preferably 90 ⁇ 10 to 250 ⁇ 10 cells/mL, and more preferably 100 ⁇ 10 to 150 ⁇ 10 cells/mL. Sometimes expressed as M instead of 10 .
  • the cell density can be measured by extracting the culture medium from the culture tank and using a Cell Viability Analyzer Vi-cell XR manufactured by Beckman Coulter.
  • the culture medium containing the cells is removed, thereby maintaining the cell density within ⁇ 40% of the target cell density, and the product can be recovered during the period during which the cell density is maintained within ⁇ 40% of the target cell density.
  • the cell density can be adjusted to within ⁇ 10% of the target cell density by removing the culture medium containing the cells at least once a day.
  • the method for culturing cells is perfusion culture.
  • Perfusion culture is a culture method in which fresh medium is supplied into a cell culture solution and part of the medium in which the cells are cultured is removed. By performing this perfusion culture, waste products discharged from the cells can be removed from the culture tank. In perfusion culture, the cells in the culture solution can be continuously separated and the liquid can be collected while the culture tank is continuously supplied with medium.
  • Perfusion culture generally allows high viable cell densities to be achieved.
  • a typical perfusion culture begins with a batch culture lasting one or two days, after which fresh feed medium is added to the culture continuously, stepwise, and/or intermittently, with simultaneous removal of spent medium.
  • cells can also be separated using methods such as sedimentation, centrifugation, or filtration, and spent medium can be removed while maintaining viable cell density.
  • the advantage of perfusion culture is that the culture in which the target protein is produced can be maintained for a longer period of time than batch or fed-batch culture methods.
  • Perfusion may be continuous, stepwise, intermittent or a combination thereof, preferably continuous.
  • the animal cells are retained in the culture and the removed spent medium may be substantially free of cells or have much fewer cells than the culture.
  • the product expressed by the cell culture may be retained in the culture or recovered by selection of the membrane pore size.
  • the method for continuous separation of cell culture fluid in perfusion culture is preferably carried out using a membrane, and more preferably membrane filtration.
  • the membrane that separates the cells in the culture fluid from the product is more preferably alternating tangential flow filtration (ATF method).
  • the flux during filtration, Y [L/m 2 /hour], is preferably 0 ⁇ Y ⁇ 10, more preferably 0 ⁇ Y ⁇ 5, and further preferably 0 ⁇ Y ⁇ 2.
  • the filtration flux is the amount of culture fluid that passes through the membrane per unit time and per unit filtration area, and is defined by the following formula:
  • the flow rate through the membrane can be measured by recording the weight of the liquid that passes through in a certain period of time. If a gravimeter is not available, it can also be measured by a flow meter.
  • the area of the filtration membrane can be measured by a conventional method, or a filtration membrane with a predetermined area can be used.
  • the perfusion ratio is not particularly limited, but is generally 0.3 vvd to 5.0 vvd, preferably 0.5 vvd to 2.0 vvd, and more preferably 0.5 vvd to 1.4 vvd.
  • vvd means the amount of cell culture medium exchanged with fresh medium per volume of cell culture medium per day, i.e., volume of supply medium/volume of culture medium/Day.
  • the product can be extracted from the culture medium by pumping it from the secondary side of the filtration membrane, but other available liquid delivery means may also be used.
  • the extracted culture medium is then processed, for example, to recover the product and remove dead cells.
  • the cell density can be adjusted to within ⁇ 10% of the target cell density by removing the culture medium containing the cells at least once a day.
  • a part of the culture medium is removed together with the cells to reduce the viable cell density. This is called cell bleeding, and the amount of the culture medium can be maintained by adding the same amount of fresh medium as the removed culture medium. "More than once a day” includes the case of continuous automatic cell bleeding.
  • the period for culturing the cells is not particularly limited, but is generally from 1 day to 1000 days, preferably from 7 days to 1000 days, more preferably from 10 days to 500 days, even more preferably from 10 days to 100 days, even more preferably from 15 days to 90 days, and particularly preferably from 20 days to 60 days.
  • the culture period for producing a product having a cell density of 80 x 106 cells/mL or more is preferably 5 days or more and 990 days or less, or may be 5 days or more and 450 days or less, more preferably 10 days or more and 450 days or less, even more preferably 15 days or more and 190 days or less, and even more preferably 20 days or more and 90 days or less.
  • alkali may be added during perfusion culture. However, it is also possible to culture without adding alkali throughout the entire perfusion culture period.
  • the daily alkali addition rate A may be controlled within the range of 0 ⁇ A ⁇ 0.008 for at least 13 days or more from the time when the target cell density is reached during production of the product by perfusion culture.
  • the alkali is not particularly limited, but is preferably Na 2 CO 3 , NaOH or NaHCO 3 , more preferably NaHCO 3 and/or Na 2 CO 3 , and particularly preferably NaHCO 3.
  • the alkali can be added as an aqueous solution (e.g., an aqueous Na 2 CO 3 solution, an aqueous NaOH solution, or an aqueous NaHCO 3 solution).
  • the pH of the alkaline aqueous solution to be added is 7 ⁇ pH ⁇ 13, preferably 7.5 ⁇ pH ⁇ 12, more preferably 7.5 ⁇ pH ⁇ 10, and even more preferably 8 ⁇ pH ⁇ 10.
  • the pH of an alkaline aqueous solution is measured when the alkali dissolves in the water.
  • the pH can be measured using a commercially available pH sensor. For example, there are pH meters from Mettler TOLEDO (Seven Excellence, Seven Direct, Five Easy).
  • the pH of the medium added in the perfusion culture is preferably 7.0 to 8.0, more preferably 7.0 to 7.8, and even more preferably 7.0 to 7.6.
  • the pH of the medium can be measured after incubation at 37° C. under 5% CO 2 for one day using a commercially available pH sensor, such as a pH meter (Seven Excellence, Seven Direct, Five Easy) from Mettler TOLEDO.
  • the average pH of the culture medium during cultivation is preferably 6.7 to 7.2, and more preferably 6.8 to 7.0.
  • the minimum pH of the culture medium during culture is preferably 6.6 or higher, more preferably 6.7 or higher, and even more preferably 6.8 or higher.
  • the pH of the culture medium during cultivation can be controlled by automatically adding an alkaline aqueous solution while measuring the pH of the culture medium in-line.
  • an antifoaming agent in perfusion culture, can be added.
  • the antifoaming component of the antifoaming agent is preferably a silicone-based agent, and dimethicone is particularly preferred.
  • the antifoaming component of the antifoaming agent is preferably one that contains polydimethylsiloxane, and more preferably one that contains finely powdered silica in polydimethylsiloxane.
  • an antifoaming agent for example, HyClone ADCF Antifoam Agent manufactured by Cytiva can be used.
  • the antifoaming agent may be added from the start of culture, or may be added at a predetermined time after the start of culture (for example, 1 to 10 days after the start of culture, preferably 2 to 9 days, more preferably 3 to 8 days, and particularly preferably 5 to 7 days).
  • the addition rate of the antifoaming agent is not particularly limited, but the amount of the antifoaming agent added per unit culture volume and unit time when the antifoaming component is added to the culture tank is preferably 0.70 mg/hour/L or less, more preferably 0.07 mg/hour/L or more and 0.70 mg/hour/L or less, and even more preferably 0.2 mg/hour/L or more and 0.7 mg/hour/L or less.
  • the addition rate is preferably 2 mg/day/L to 30 mg/day/L, more preferably 5 mg/day/L to 20 mg/day/L, and even more preferably 8 mg/day/L to 15 mg/day/L.
  • a culture vessel 14 is a vessel that contains a culture medium containing cells. Cells are cultured in the culture medium inside the culture vessel 14.
  • a culture medium is supplied to the culture vessel through a culture medium supply pipe 1 .
  • An antifoaming agent for suppressing foaming is supplied to the culture vessel from an antifoaming agent supply pipe 2 .
  • Alkali is supplied to the culture vessel through the alkali supply pipe 3. When no alkali is added, the alkali supply pipe 3 may be omitted.
  • Carbon dioxide (CO 2 ) and air are introduced from the air supply pipe 4 into the upper part of the culture solution inside the culture vessel.
  • Oxygen (O 2 ) and/or air is sent from the sparger air supply pipe 5, and the oxygen and/or air is introduced into the culture solution through a sparger 15 having a hole diameter of 20 ⁇ m. The sparger 15 can adjust the dissolved oxygen concentration in the culture solution.
  • the sparger hole diameter (hole diameter of the gas release part) is preferably 1 to 300 ⁇ m, more preferably 1 to 100 ⁇ m, even more preferably 5 to 50 ⁇ m, particularly preferably 10 to 30 ⁇ m, and one example is 20 ⁇ m.
  • a sparger that releases a gas containing 30 volume % or more of oxygen can be preferably used.
  • the exhaust pipe 6 is a pipe for exhausting air, and an exhaust filter (not shown) may be connected to one end of the pipe.
  • the sampling pipe 7 is a pipe for collecting (sampling) the culture solution or for extracting (cell bleeding) the culture solution. In the case of automatic and continuous cell bleeding, a separate pipe may be installed (not shown).
  • a pH sensor 8 is mounted so as to be in contact with the culture medium.
  • a dissolved oxygen sensor 9 is mounted so as to be in contact with the culture medium.
  • the cell culture device may be provided with pressure sensors 10, 11 and 13.
  • the cell culture device is provided with a hollow fiber membrane 12 . The area enclosed by the dotted line indicates the tubing assembly from the culture vessel (culture tank) to the membrane.
  • a stirring member having stirring blades 16 may be provided inside the culture vessel 14. By rotating the stirring blades 16, the culture solution inside the culture vessel 14 is stirred, and the homogeneity of the culture solution is maintained. By stirring the culture solution with the stirring blades 16, the bubbles released by the sparger are also stirred.
  • the position of the stirring member having the stirring blades, the size of the stirring blades, etc. are not particularly limited, and may be designed according to the cell type used, the amount of culture solution, the amount of oxygen supplied, the position, number, size, etc. of the sparger. In addition, in order to quickly stir the bubbles coming out of the sparger and prevent the bubbles from coalescing, it is preferable to place the stirring blades 16 in a position close to the sparger.
  • the cell suspension extracted from the culture vessel may be passed through a separation membrane to separate it into a cell-containing liquid and a permeate.
  • This operation can be performed using a cell culture device.
  • the cell suspension extracted from the culture vessel is separated into a cell-containing liquid having a higher cell concentration than the cell suspension and a permeate having a lower cell concentration than the cell suspension.
  • the cell concentration can be measured using a Vi-CELL XR viable cell analyzer manufactured by Beckman Coulter.
  • the membrane separation process described above is preferably tangential filtration, more preferably alternating tangential flow filtration or tangential flow filtration, and most preferably alternating tangential flow filtration.
  • Filters capable of alternating tangential flow filtration include SuATF10-S02PES and F2 RF02PES manufactured by Repligen.
  • the medium used for cell culture can be any medium used for culturing conventional animal cells.
  • CD OptiCHO ThermoFisher
  • Dulbecco's Modified Eagle's Medium DMEM
  • Eagle's Minimum Essential Medium MEM
  • RPMI-1640 medium RPMI-1641 medium
  • F-12K medium Ham's F12 medium
  • Iscove's Modified Dulbecco's Medium IMDM
  • McCoy's 5A medium fetalovitz's L-15 medium
  • EX-CELL (trademark) 300 series (JRH Biosciences)
  • CHO-S-SFMII Invitrogen
  • CHO-SF Sigma-Aldrich
  • CD-CHO Invitrogen
  • IS CHO-V Irvine Scientific
  • PF-ACF-CHO Sigma-Aldrich
  • the medium may be supplemented with serum, such as fetal calf serum (FCS), or without serum.
  • FCS fetal calf serum
  • the medium may be supplemented with additional components, such as amino acids, salts, sugars, vitamins, hormones, growth factors, buffers, antibiotics, lipids, trace elements, plant protein hydrolysates, etc. Protein-free media may also be used.
  • the culture temperature is generally 30° C. to 40° C., preferably 32° C. to 39° C., and more preferably 36° C. to 38° C., and the culture temperature may be changed during culture.
  • the culture can be carried out in an atmosphere with a CO2 concentration of 0 to 40% by volume, preferably 2 to 25% by volume, and more preferably 3 to 20% by volume.
  • the culture scale is preferably 5 L or more and 100,000 L or less, more preferably 50 L or more and 100,000 L or less, even more preferably 500 L or more and 100,000 L or less, and even more preferably 1,000 L or more and 100,000 L or less.
  • the upper limit of the culture scale is preferably 10,000 L, and more preferably 5,000 L.
  • the medium may be replaced, aerated, or stirred as necessary.
  • the stirring rotation speed is not particularly limited, but the stirring power per unit volume is generally 10 to 300 kW/ m3 , preferably 20 to 200 kW/ m3 , and more preferably 30 to 100 kW/ m3 .
  • the dissolved oxygen concentration in the culture medium can be appropriately set and is not particularly limited, but is generally 10 to 100%, preferably 30 to 90%.
  • the dissolved CO 2 concentration during the period in which the cell density is maintained at 80 ⁇ 10 6 cells/mL or more is preferably 60 to 180 mmHg, more preferably 80 to 160 mmHg, and even more preferably 100 to 140 mmHg.
  • the cell culture can be carried out using a cell culture device having the configuration described above in this specification.
  • the cell culture device may be any of a fermenter-type tank culture device, an airlift-type culture device, a culture flask-type culture device, a spinner flask-type culture device, a microcarrier-type culture device, a fluidized bed-type culture device, a hollow fiber-type culture device, a roller bottle-type culture device, and a packed tank-type culture device. From the viewpoint of homogenizing the culture environment, it is preferable that the culture vessel is a single-use culture tank.
  • the concentration of lactate dehydrogenase (LDH) in the culture medium during production of the product is preferably greater than 0 and less than 100,000, more preferably greater than 10 and less than 30,000, and even more preferably greater than 100 and less than 5,000.
  • the concentration of lactate dehydrogenase (LDH) in the culture medium can be measured by withdrawing the culture medium, separating the cells and the supernatant at 300 G/5 minutes, and measuring the concentration of the supernatant using Roche's Cedex Bio.
  • the viscosity ⁇ [mPa ⁇ s] of the culture medium at 37° C. during production of the product is preferably 0.5 ⁇ 10, more preferably 1.0 ⁇ 5, and more preferably 1.3 ⁇ 3.
  • the viscosity of the culture medium can be measured by maintaining the culture medium extracted from the culture tank at 37° C. and using a vibration viscometer (model number: VM-10A) manufactured by Sekonic.
  • the type of cells in the present invention is not particularly limited, but examples include animal cells, plant cells, eukaryotic cells such as yeast, prokaryotic cells such as Bacillus subtilis, and Escherichia coli.
  • the cells are preferably animal cells (more preferably mammalian cells) or insect cells, and most preferably mammalian cells.
  • the cells may be primary cells or established cell lines.
  • Examples of the cells include Chinese hamster ovary (CHO) cells, HEK cells (cells derived from human embryonic kidney), BHK cells, 293 cells, C127 cells, myeloma cells (such as NS0 cells), PerC6 cells, SP2/0 cells, hybridoma cells, COS cells (cells derived from African green monkey kidney), 3T3 cells, HeLa cells, Vero cells (African green monkey kidney epithelial cells), MDCK cells (cells derived from dog kidney tubular epithelial cells), PC12 cells, and WI38 cells.
  • the cells may be stem cells such as embryonic stem cells (ES cells) or induced pluripotent stem cells (iPS cells).
  • ES cells embryonic stem cells
  • iPS cells induced pluripotent stem cells
  • CHO cells HEK cells, BHK cells, and hybridomas are preferred, CHO cells and HEK cells are more preferred, and CHO cells are most preferred.
  • CHO cells are widely used for the production of recombinant proteins, such as cytokines, clotting factors, and antibodies. It is preferable to use CHO cells deficient in dihydrofolate reductase (DHFR), and an example of a DHFR-deficient CHO cell that can be used is CHO-DG44.
  • DHFR dihydrofolate reductase
  • These cells may be cells into which a foreign gene encoding a protein to be expressed (e.g., an antibody) has been introduced.
  • the cells are preferably cells that produce antibodies.
  • an expression vector can be used.
  • an expression regulatory sequence e.g., an enhancer, a promoter, a terminator, etc.
  • a selection marker gene e.g., an enhancer, a promoter, a terminator, etc.
  • Any promoter can be used as long as it is functional in mammalian cells.
  • Examples include the promoter of the cytomegalovirus (CMV) IE (immediate early) gene, the SV40 early promoter, retrovirus promoters, metallothionein promoters, heat shock promoters, SR ⁇ promoters, and the promoter and enhancer of Moloney murine leukemia virus.
  • CMV cytomegalovirus
  • An enhancer of the IE gene of human CMV may also be used together with the promoter.
  • a selection marker gene for example, a drug resistance gene (neomycin resistance gene, dihydrofolate reductor (DHFR) gene, puromycin resistance gene, blasticidin resistance gene, hygromycin resistance gene, cycloheximide resistance gene, etc.) or a fluorescent gene (a gene encoding green fluorescent protein (GFP) etc.) can be used.
  • a drug resistance gene neomycin resistance gene, dihydrofolate reductor (DHFR) gene, puromycin resistance gene, blasticidin resistance gene, hygromycin resistance gene, cycloheximide resistance gene, etc.
  • a fluorescent gene a gene encoding green fluorescent protein (GFP) etc.
  • the method for introducing an expression vector into cells is not particularly limited, and for example, the calcium phosphate method, electroporation, liposome method, gene gun method, and lipofection method can be used.
  • a method for producing a product according to the present invention comprises culturing cells using a cell culture device and producing a product from the cells. According to the present invention, there is provided a product produced by the method for producing a product according to the present invention.
  • the type of product is not particularly limited, but is preferably a protein, and more preferably a recombinant protein.
  • the product include recombinant polypeptide chains, recombinant secreted polypeptide chains, antigen-binding proteins, antibodies (e.g., human antibodies, humanized antibodies, chimeric antibodies, mouse antibodies, bispecific antibodies, etc.), Fc fusion proteins, fragmented immune immunoglobulins, single-chain antibodies (scFv), etc.
  • the product may be an adenovirus, an adeno-associated virus, a lentivirus, etc.
  • the product is preferably an antibody, more preferably a human antibody, a humanized antibody, a chimeric antibody, or a mouse antibody.
  • fragmented immune immunoglobulins include Fab, F(ab')2, and Fv.
  • the class of the antibody is not particularly limited, and may be any class such as IgG, such as IgG1, IgG2, IgG3, and IgG4, IgA, IgD, IgE, and IgM, but IgG and IgM are preferred when used as a medicine.
  • Human antibodies include all antibodies that have one or more variable and constant regions derived from human immunoglobulin sequences. In one embodiment, all of the variable and constant domains are derived from human immunoglobulin sequences (fully human antibodies).
  • a humanized antibody has a sequence that differs from that of an antibody derived from a non-human species by one or more amino acid substitutions, deletions, and/or additions such that the humanized antibody is less likely to provoke an immune response and/or is less likely to provoke a severe immune response when administered to a human subject, as compared to the non-human species antibody.
  • certain amino acids within the framework and constant domains of the heavy and/or light chains of the non-human species antibody are mutated to produce a humanized antibody.
  • constant domains from a human antibody are fused to variable domains of the non-human species.
  • a chimeric antibody is an antibody in which variable and constant regions of different origins are linked.
  • an antibody consisting of the heavy and light chain variable regions of a mouse antibody and the heavy and light chain constant regions of a human antibody is a mouse-human heterochimeric antibody.
  • a recombinant vector that expresses a chimeric antibody can be produced by linking DNA encoding the variable region of a mouse antibody to DNA encoding the constant region of a human antibody and incorporating this into an expression vector. Recombinant cells transformed with the above vector are cultured and the incorporated DNA is expressed, allowing the chimeric antibody to be obtained during the culture.
  • a bispecific antibody is an antibody that recognizes two different antigen specificities.
  • Reported methods for producing bispecific antibodies include linking two immunoglobulin molecules with a crosslinker such as N-succinimidyl 3-(2-pyridyldithiol) propionate or S-acetylmercaptosuccinic acid anhydride, and linking Fab fragments of immunoglobulin molecules together.
  • Bispecific antibodies can also be expressed by introducing a gene encoding them into cells.
  • An Fc fusion protein refers to a protein having an Fc region, and includes antibodies.
  • Fab is a monovalent fragment containing the VL, VH, CL, and CH1 domains.
  • F(ab')2 is a bivalent fragment having two Fab fragments linked by a disulfide bridge at the hinge region.
  • An Fv fragment comprises the VL and VH domains of a single arm of an antibody.
  • a single-chain antibody (scFv) is an antibody in which the VL and VH domains are joined via a linker (e.g., a synthetic sequence of amino acid residues) to form a continuous protein chain, where the linker is long enough to allow the protein chain to fold back on itself and form a monovalent antigen-binding site.
  • the antibodies include, but are not limited to, anti-IL-6 receptor antibodies, anti-IL-6 antibodies, anti-glypican-3 antibodies, anti-CD3 antibodies, anti-CD20 antibodies, anti-GPIIb/IIIa antibodies, anti-TNF antibodies, anti-CD25 antibodies, anti-EGFR antibodies, anti-Her2/neu antibodies, anti-RSV antibodies, anti-CD33 antibodies, anti-CD52 antibodies, anti-IgE antibodies, anti-CD11a antibodies, anti-VEGF antibodies, and anti-VLA4 antibodies.
  • the product may be recovered by simply recovering the culture medium, or by using, for example, a filter or a centrifuge to recover the liquid from which at least a portion of the cells have been removed, and any known method may be used without particular limitation. If it is desired to improve the purity of the product, change the solvent, or change the form, for example, to make it into a powder, the culture medium or the liquid may be subjected to further processing.
  • the product can be purified by a purification process.
  • the product obtained can be purified to a high degree of purity.
  • the separation and purification of the product can be performed using a method for separation and purification that is commonly used for proteins.
  • the product can be separated and purified by appropriately selecting and combining a chromatography column such as affinity chromatography, a filter, ultrafiltration, salting out, dialysis, sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis, isoelectric focusing, etc., but is not limited to these.
  • the concentration of the product obtained above can be measured by absorbance measurement or enzyme-linked immunosorbent assay (ELISA), etc.
  • the antibody titer can be measured using a commercially available analytical device such as Roche's Cedex Bio.
  • Chromatography other than affinity chromatography includes, for example, ion exchange chromatography, hydrophobic chromatography, gel filtration, reverse phase chromatography, and adsorption chromatography. These chromatographies can be performed using liquid phase chromatography such as HPLC (high performance liquid chromatography) or FPLC (fast protein liquid chromatography).
  • the product can be modified or partially peptide-removed by treating it with an appropriate polypeptide-modifying enzyme before or after purification.
  • polypeptide-modifying enzymes include trypsin, chymotrypsin, lysyl endopeptidase, protein kinase, and glucosidase.
  • the products produced by the present invention can be used, for example, in biopharmaceuticals and regenerative medicine.
  • a vector containing a nucleic acid sequence encoding IgG1 and IgG4 was constructed, and the constructed vector was introduced into CHO-DG44 cells to prepare CHO-DG44 cells expressing IgG1 (IgG1 cells) and CHO-DG44 cells expressing IgG4 (IgG4 cells).
  • the construction of the vector and its introduction into the cells were performed in accordance with Example 2 of JP-A-2016-517691. As described above, CHO cells producing monoclonal antibodies were prepared and used in the following experiments.
  • Example 5 Culture vessel: A glass culture vessel with a diameter of 225 mm and a tank height of 400 mm, and the stirring blade is a paddle blade with a diameter of 150 mm.
  • ⁇ Cell culture> CHO cells were seeded at 0.5 ⁇ 10 6 cells/ml in CD OptiCHO (Thermo Fisher Scientific) medium. O2 was automatically controlled and supplied from a sparger installed in the culture tank so that the oxygen concentration in the culture solution from the bottom was 90%. No alkaline aqueous solution was added during the culture period. After culturing on the second day after seeding, the medium was continuously supplied at a perfusion ratio of 0.8 vvd while operating an ATF manufactured by Repligen, and the cell culture medium was continuously filtered to recover the recovery liquid. Furthermore, on the fifth day, the perfusion ratio was changed to 1.2 vvd.
  • the addition rate of simethicone in the antifoaming agent was changed to 12.0 mg/day/L.
  • cell bleeding was performed while withdrawing a portion of the culture medium so as to maintain the cell density at 120 ⁇ 10 6 cells/ml.
  • the culture was continued until the membrane became clogged and the ATF could no longer function.
  • the culture conditions are shown in the table below.
  • ⁇ Evaluation method> Measurement of cell density and viability The culture medium was removed from the culture tank and measured using a Cell Viability Analyzer Vi-cell XR from Beckman Coulter, Inc. The Vi-cell software used was Vi-cell XR2.04, and the parameters during measurement were set as follows:
  • Min diameter 6 ⁇ m
  • Max diameter 50 ⁇ m
  • Dilution When the cell concentration was 10 ⁇ 10 6 cells/mL or less, the sample was not diluted and the dilution was set to 1. When the cell concentration was more than 10 ⁇ 10 6 cells/mL, the sample was diluted 10-fold and the dilution was set to 10.
  • Cell sharpness 100
  • Minimum circularity 0 Decluster degree: Medium
  • the cumulative time frequency Ttota was calculated by summing the time frequencies T at each shear rate.
  • the cumulative time frequency T total represents the total time during which one cell is subjected to shear stress of 100 to 100,000 [1/s] per day.
  • the culture solution in the culture tank was removed and diluted 10,000 times with ISOTON manufactured by Beckman Coulter.
  • the particle size distribution of the diluted culture solution was measured from 1.46 to 42 ⁇ m using a precision particle size distribution measuring device, Multisizer 4e manufactured by Beckman Coulter.
  • the data was output in increments of approximately 0.0124 ⁇ m.
  • the cumulative number of particles from 1.47 to 6.00 ⁇ m is the total number of particles detected in the range of 1.47 to 6.00 ⁇ m.
  • LDH lactate dehydrogenase
  • Air Flow Rate This was measured using an oxygen mass flow meter (model number: 8500MC-S1-1-2, gas type: O 2 ) and an air mass flow meter (model number: 8500MC-S1-1-2, gas type: Air) manufactured by KOFLOC.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本発明の課題は、細胞培養による生産物の製造方法において、膜詰まり(一次詰まり)を抑制することができる方法を提供することである。本発明によれば、培養槽において細胞を培養することを含む、生産物の製造方法であって、生産物の製造時における細胞密度が80×10cells/mL以上300×10cells/mL以下であり、培養が灌流培養であり、培養スケールが5L以上100000L以下であり、培養液中の細胞と生産物とを分離する膜の表面積あたりの、生産物の製造時における粒径1.47~6.00μmの粒子のDay10における累積個数X[個/mm]が、0<X≦1.0×10であり、通気速度V[vvm]が、0.09≦V≦1.0である、生産物の製造方法が提供される。

Description

生産物の製造方法
 本発明は、細胞を培養することを含む、生産物の製造方法であって、細胞と生産物とを分離する膜の表面積あたりの粒子の累積個数と、通気速度とを制御した方法に関する。
 細胞の培養は、有用な性質を有する細胞を増加させるため、細胞に生産物を生産させるため等の目的で行われている。例えば、特許文献1には、培養容器中に収容された細胞懸濁液中に含まれる、生産物を生産する細胞を培養する工程と、培養容器から細胞懸濁液を抜き出して、分離膜を用いて、タンジェンシャルフィルトレーション方式で分離する分離処理工程と、戻り液を培養容器に戻す工程と、培養容器内に新鮮培地を供給する工程と、生産物を回収する工程と、を含む生産物の製造方法が記載されている。特許文献1においては、生細胞濃度Nc、分離膜孔径Dp、分離膜濾過面積S、及び分離膜1次側流路体積Vfに対して、細胞懸濁液中における粒子サイズが8Dp以上30Dp以下である生細胞以外の微粒子の個数密度NdがNc≦Nd≦S/(32×π×Vf×Dp2)を満たすように培養することが記載されている。
国際公開WO2019/181234号公報
 灌流培養で一般的に用いられるATF(Alternating tangential flow filtration)方式は、膜の2次側から1次側に液が逆流する逆洗効果により、TFF(Tangential flow filtration)方式と比べて膜詰まり(特許文献1で評価されているような中空糸側面の詰まり:中空糸側面詰まり)が起きにくい。しかし、生産性向上を目的とした開発が進むにつれて細胞密度の高密度化が進み、ATF方式においても中空糸側面詰まりが課題となっている。中空糸側面詰まりを抑制するための一般的な対策は、膜面積を増大することであるが、市販されている膜の面積は小さいこと、および装置が大型化するという問題がある。
 特許文献1の実施例においては、0.8Lという少量の培養スケールにおいて18日間という短期間において抗体透過率が評価されている。しかし、本発明者らの検討により、培養スケールを大きくすると細胞の生存率が低下するという課題があることが分かった。この細胞の生存率の低下は通気速度を大きくすることにより解決することができるが、通気速度を大きくすると、膜詰まり(一次詰まり)が起きることが分かってきた。本発明は、細胞培養による生産物の製造方法において、膜詰まり(一次詰まり:中空糸内部の空間詰まり)を抑制することができる方法を提供することを解決すべき課題とする。一次詰まりとは、特許文献1の抗体透過率で評価されている中空糸側面の孔の詰まりではなく、中空糸内部の空間の詰まりであり、中空糸膜の長軸方向の圧力損失を高くする。
 本発明者らは、上記課題を解決するために鋭意検討した結果、培養槽内の粒子の累積個数と、通気速度とを適切な領域に制御することにより、灌流培養中の膜詰まりを抑制できることを見出し、本発明を完成するに至った。
 即ち、本発明によれば、以下の発明が提供される。
<1> 培養槽において細胞を培養することを含む、生産物の製造方法であって、
生産物の製造時における細胞密度が80×10cells/mL以上300×10cells/mL以下であり、
培養が灌流培養であり、
培養スケールが5L以上100000L以下であり、
培養液中の細胞と生産物とを分離する膜の表面積あたりの、生産物の製造時における粒径1.47~6.00μmの粒子のDay10における累積個数X[個/mm]が、0<X≦1.0×10であり、
通気速度V[vvm]が、0.09≦V≦1.0である、
生産物の製造方法。
ここで、累積個数Xとは、培養液について1.46~42μmの粒度分布を測定した時に、1.47~6.00μmの範囲で検出された粒子数を合計したものである。
<2> 上記のDay10における累積個数X[個/mm]が、0<X≦9.7×10である、<1>に記載の生産物の製造方法。
<3> 上記のDay10における累積個数X[個/mm]が、0<X≦1.3×10である、<1>に記載の生産物の製造方法。
<4> Day10以降の培養期間における最大の累積個数X[個/mm]が、0<X≦1.0×10である、<1>から<3>の何れか一に記載の生産物の製造方法。
<5> Day10以降の培養期間における最大の累積個数X[個/mm]が、0<X≦1.5×10である、<1>から<4>の何れか一に記載の生産物の製造方法。
<6> Day10以降の培養期間における最小の累積個数X[個/mm]が、0<X≦1.0×10である、<1>から<5>の何れか一に記載の生産物の製造方法。
<7> Day10以降の培養期間における最小の累積個数X[個/mm]が、0<X≦0.9×10である、<1>から<6>の何れか一に記載の生産物の製造方法。
<8> 上記累積個数X[個/mm]と上記通気速度V[vvm]との関係が-10≦V-10×X-0.9≦0.1である、<1>から<7>の何れか一に記載の生産物の製造方法。
<9> 上記培養槽から上記膜までのチューブアセンブリ、および上記膜内において、細胞にかかる最大せん断速度D[1/s]が、0<D≦65000である、<1>から<8>の何れか一に記載の生産物の製造方法。
<10> 上記最大せん断速度D[1/s]が、0<D≦39000である、<9>に記載の生産物の製造方法。
<11> 上記最大せん断速度D[1/s]が、0<D≦3000である、<9>に記載の生産物の製造方法。
<12> 培養液の液量[L]あたりの膜面積[m]の比率[m/L]が、0.015以上1.0以下である、<1>から<11>の何れか一に記載の生産物の製造方法。
<13> 上記培養槽から上記膜までのチューブアセンブリ、および上記膜内において、最大せん断速度が細胞にかかる時間頻度T[s/day]が、0<T≦10000である、<1>から<12>の何れか一に記載の生産物の製造方法。
<14> 上記培養槽から上記膜までのチューブアセンブリ、および上記膜内において、100[1/s]以上100000[1/s]以下のせん断速度が細胞にかかる累積時間頻度Ttotal[s/day]が、0<Ttotal≦100000である、<1>から<13>の何れか一に記載の生産物の製造方法。
<15> 上記培養槽から上記膜までのチューブアセンブリのチューブおよび継手の最小内径d[mm]と培養液量C[L]との関係が、0.0001≦d/C≦100である、<1>から<14>の何れか一に記載の生産物の製造方法。
<16> 上記培養槽から上記膜までのチューブアセンブリのチューブおよび継手において、最小内径d[mm]となる流路の長さL[mm]と培養液量C[L]との関係が、0.001≦L/C≦1000である、<1>から<15>の何れか一に記載の生産物の製造方法。
<17> 生産物の製造時における培養液中の乳酸デヒドロゲナーゼの濃度[U/L]が0より大きく100000以下である、<1>から<16>の何れか一に記載の生産物の製造方法。
<18> 細胞を培養する期間が10日以上100日以下である、<1>から<17>の何れか一に記載の生産物の製造方法。
<19> 細胞を培養する期間が15日以上90日以下である、<1>から<18>の何れか一に記載の生産物の製造方法。
<20> 培養液中に通気されるスパージャー孔径が1~100μmである、<1>から<19>の何れか一に記載の生産物の製造方法。
<21> 濾過時の流束Y[LMH]が、0<Y≦10である、<1>から<20>の何れか一に記載の生産物の製造方法。
<22> 上記細胞が動物細胞である、<1>から<21>の何れか一に記載の生産物の製造方法。
<23> 上記細胞がCHO細胞である、<1>から<22>の何れか一に記載の生産物の製造方法。
<24> 上記生産物が抗体である、<1>から<23>の何れか一に記載の生産物の製造方法。
<25> 生産物の製造時における37℃下での培養液の粘度μ[mPa・s]が、0.5≦μ≦10である、<1>から<24>の何れか一に記載の生産物の製造方法。
<26> 上記灌流培養において、細胞密度が80×10cells/mL以上である目標細胞密度に到達した後に、細胞を含む培養液を取り出すことにより、細胞密度を、上記目標細胞密度±40%以内に維持し、細胞密度が上記目標細胞密度±40%以内に維持された期間において、生産物を回収する、<1>から<25>の何れか一に記載の生産物の製造方法。
<27> 上記灌流培養において、細胞密度が80×10cells/mL以上である目標細胞密度に到達した後に、1日につき少なくとも1度以上細胞を含む培養液を取り出すことにより、細胞密度を、上記目標細胞密度±10%以内に調整することを含む、<1>から<26>の何れか一に記載の生産物の製造方法。
<28> 上記灌流培養による生産物の製造時における目標細胞密度に到達してからの期間のうち、少なくとも13日以上の期間において、1日あたりのアルカリ添加速度であるA[mol/L/day]が、0≦A<0.008の範囲で制御される、<1>から<27>の何れか一に記載の生産物の製造方法。
<29> 上記灌流培養の全期間において、アルカリ添加を行わない、<1>から<28>の何れか一に記載の生産物の製造方法。
<30> 消泡成分が培養槽に添加されるときの、単位培養液量及び単位時間あたりの上記消泡成分の添加量が0.70mg/時間/L以下である、<1>から<29>の何れか一に記載の生産物の製造方法。
<31> 消泡成分がシリコーン系である、<30>に記載の生産物の製造方法。
<32> 消泡成分がジメチコンである、<30>又は<31>に記載の生産物の製造方法。
<33> 培養液中の細胞と生産物とを分離する上記膜が、交互接線流:ATF方式である、<1>から<32>の何れか一項に記載の生産物の製造方法。
<34> <1>から<33>の何れか一に記載の生産物の製造方法により製造される、生産物。
 本発明によれば、灌流培養における膜詰まりを抑制することができる。
図1は、細胞培養装置を示す。図1に示す装置全体が、細胞培養装置である。
 以下において、本発明の内容について詳細に説明する。本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を意味する。
 本発明は、培養槽において細胞を培養することを含む、生産物の製造方法であって、
生産物の製造時における細胞密度が80×10cells/mL以上300×10cells/mL以下であり、
培養が灌流培養であり、
培養スケールが5L以上100000L以下であり、
培養液中の細胞と生産物とを分離する膜の表面積あたりの、生産物の製造時における粒径1.47~6.00μmの粒子のDay10における累積個数X[個/mm]が、0<X≦1.0×10であり、
通気速度V[vvm]が、0.09≦V≦1.0である、
生産物の製造方法に関するものである。本発明によれば、特にATF/TFF等の膜を用いた灌流培養において生産性を向上させることができる。
 本発明において累積個数Xとは、培養液について1.46~42μmの粒度分布を測定した時に、1.47~6.00μmの範囲で検出された粒子数を合計したものである。
1.46~42μmの粒度分布は、Beckman Coulter社の精密粒度分布測定装置Multisizer 4eを用いて測定することができる。
 Day10における累積個数X[個/mm]は、膜詰まりを抑制し培養継続日数を長くする観点で、好ましくは0<X≦9.7×10であり、より好ましくは0<X≦1.3×10である。
 Day10における累積個数Xとは、培養開始日をDay0として培養開始から10日目であるDay10における累積個数Xを意味する。
 Day10以降の培養期間における最大の累積個数X[個/mm]は、膜詰まりを抑制し培養継続日数を長くする観点で、好ましくは0<X≦1.0×10であり、より好ましくは0<X≦1.5×10である。
 Day10以降の培養期間における最大の累積個数Xとは、培養開始日をDay0として培養開始から10日目であるDay10以降における累積個数Xの最大値である。
 Day10以降の培養期間における最小の累積個数X[個/mm]は、膜詰まりを抑制し培養継続日数を長くする観点で、好ましくは0<X≦1.0×10であり、より好ましくは0<X≦1.0×10であり、さらに好ましくは0<X≦6.0×10であり、特に好ましくは0<X≦0.9×10である。
 Day10以降の培養期間における最小の累積個数Xとは、培養開始日をDay0として培養開始から10日目であるDay10以降における累積個数Xの最小値である。
 本発明において、通気速度V[vvm]は0.09≦V≦1.0であり、細胞への破泡ダメージを抑制し、微粒子数を減らす観点で、好ましくは0.09≦V≦0.5であり、より好ましくは0.09≦V≦0.2である。
 本発明において、最大通気速度V[vvm]は、0.09≦V≦1.0であり、好ましくは0.09≦V≦0.5であり、より好ましくは0.09≦V≦0.2である。
 通気速度は、KOFLOC社製の酸素用マスフローメーター(型番:8500MC-S1-1-2、ガス種:O)および空気用マスフローメーター(型番8500MC-S1-1-2、ガス種:Air))を用いて測定することができる。
 累積個数X[個/mm]と通気速度V[vvm]との関係は、好ましくは-10≦V-10×X-0.9≦0.1であり、より好ましくは-10≦V-10×X-0.9≦0.1であり、さらに好ましくは-10≦V-10×X-0.9≦0.1であり、特に好ましくは-4≦V-10×X-0.9≦-0.01である。
 累積個数Xと通気速度Vの測定方法は上記した通りである。
 培養槽から膜までのチューブアセンブリ、および膜内において、細胞にかかる最大せん断速度D[1/s]は、細胞へのせん断ダメージを抑制し、微粒子数を減らす観点で、好ましくは0<D≦65000であり、より好ましくは0<D≦39000であり、さらに好ましくは0<D≦3000である。上記の最大せん断速度D[1/s]は、2000<D≦65000でもよく、2000<D≦39000でもよい。
 せん断速度Dは、後記する実施例の<評価方法>における「(4)培養槽から膜までのチューブアセンブリおよび膜内におけるせん断速度(D)」に記載した式に従って算出することができる。
 培養液の液量[L]あたりの膜面積[m]の比率[m/L]は、好ましくは0.015以上1.0以下であり、より好ましくは0.033以上1.0以下である。
 培養液の液量[L]は、常法により測定または規定することができる。膜面積[m]は、常法により測定することができ、または所定の規定された膜面積の膜を使用することができる。
 培養槽から膜までのチューブアセンブリ、および膜内において、最大せん断速度が細胞にかかる時間頻度T[s/day]は、好ましくは0<T≦10000であり、より好ましくは0<T≦3500であり、さらに好ましくは0.1<T≦3500であり、特に好ましくは0.1<T≦1000である。
 上記の時間頻度Tは、後記する実施例の<評価方法>における「(5)培養槽から膜までのチューブアセンブリおよび膜内における時間頻度(T)」に記載した式に従って算出することができる。
 培養槽から膜までのチューブアセンブリ、および上記膜内において、100[1/s]以上100000[1/s]以下のせん断速度が細胞にかかる累積時間頻度Ttotal[s/day]は、好ましくは0<Ttotal≦100000であり、より好ましくは0<Ttotal≦10000であり、さらに好ましくは10≦Ttotal≦10000であり、特に好ましくは100≦Ttotal≦10000である。
 上記の累積時間頻度Ttotaは、各せん断速度における時間頻度Tの和であり、時間頻度Tは、後記する実施例の<評価方法>における「(5)培養槽から膜までのチューブアセンブリおよび膜内における時間頻度(T)」に記載した式により算出することができる。
 培養槽から膜までのチューブアセンブリのチューブおよび継手の最小内径d[mm]と培養液量C[L]との関係は、好ましくは0.0001≦d/C≦100であり、より好ましくは0.001≦d/C≦100であり、さらに好ましくは0.001≦d/C≦10である。
 最小内径dと培養液量Cは、常法により測定又は規定することができる。
 培養槽から膜までのチューブアセンブリのチューブおよび継手において、最小内径d[mm]となる流路の長さL[mm]と培養液量C[L]との関係は、好ましくは0.001≦L/C≦1000であり、より好ましくは0.005≦L/C≦500であり、さらに好ましくは0.01≦L/C≦100であり、特に好ましくは0.05≦L/C≦10である。
 最小内径dと流路の長さLは、常法により測定又は規定することができる。
 本発明においては、生産物の製造時における細胞密度は、80×10以上300×10cells/mL以下であり、90×10以上250×10cells/mL以下であることが好ましく、100×10以上150×10cells/mL以下であることがより好ましい。10の代わりにMと表記することもある。
 細胞密度は、培養槽内の培養液を抜き取り、Beckman Coulter社のCell Viability Analyzer Vi-cell XRを用いて測定することができる。
 好ましくは、本発明においては、後記する灌流培養において、細胞密度が80×10cells/mL以上である目標細胞密度に到達した後に、細胞を含む培養液を取り出すことにより、細胞密度を、上記目標細胞密度±40%以内に維持し、細胞密度が上記目標細胞密度±40%以内に維持された期間において、生産物を回収することができる。
 好ましくは、上記灌流培養において、細胞密度が80×10cells/mL以上である目標細胞密度に到達した後に、1日につき少なくとも1度以上細胞を含む培養液を取り出すことにより、細胞密度を、上記目標細胞密度±10%以内に調整することができる。
 本発明において、細胞を培養する方法の様式は、灌流培養である。灌流培養は、新鮮な培地を細胞培養液中へ供給し、細胞を培養している培地の一部を除去する培養法である。この灌流培養を行うことによって細胞から排出される老廃物を培養槽から取り除くことができる。灌流培養としては、培養槽に培地を連続供給しながら、培養液内の細胞を連続分離した液を回収することができる。
 灌流培養によれば、一般的に、高い生細胞密度を達成することが可能である。典型的な灌流培養は、1日間又は2日間続くバッチ培養で始まり、その後、培養物に新鮮な供給培地を連続的、段階的、及び/又は断続的に添加し、使用済み培地を同時に除去する。灌流培養においては、沈降、遠心分離又はろ過などの方法を用いて細胞を分離し、生細胞密度を維持しながら使用済み培地を除去することもできる。 灌流培養の利点は、目的タンパク質が生産される培養が、バッチ培養法又はフェドバッチ培養よりも長期間維持されることである。
  灌流は、連続的、段階的、断続的又はこれらの組み合わせの何れの形態でもよい。好ましくは、連続的な形態がよい。動物細胞は、培養物中に保持され、除去される使用済みの培地は、細胞を実質的に含まないか、又は培養物よりもはるかに少ない細胞を有していてもよい。細胞培養によって発現される生産物は膜孔径の選択により、培養物中に保持又は回収することができる。
 灌流培養における細胞培養液の連続分離方法は、膜を用いて行う方法が好ましく、好ましくは膜濾過である。培養液中の細胞と生産物とを分離する膜は、より好ましくは交互接線流濾過(Alternating Tangential Flow Filtration:ATF方式)である。
 濾過時の流束であるY[L/m/hour]は、好ましくは0<Y≦10であり、より好ましくは0<Y≦5であり、さらに好ましくは0<Y≦2である。
 濾過時の流束とは、単位時間、単位ろ過面積あたりに膜を透過する培養液量のことであり、以下の式で定義される。
 濾過膜を通過する流量は、一定時間内に通過した液の重量を記録することにより測定することができる。重量計を使わない場合は、流量計により測定することもできる。
 濾過膜の面積は、常法により測定することができ、または予め所定の面積の濾過膜を使用することができる。
 灌流比は特に限定されないが、一般的には0.3vvd~5.0vvdであり、好ましくは0.5vvd~2.0vvdであり、より好ましくは0.5vvd~1.4vvdである。vvdは、1日間の細胞培養液体積あたりの細胞培養液を新鮮培地へ交換する量を意味し、つまり供給培地のvolume/培養液のvolume/Dayである。
 培養液から生産物を取り出すための方法は、ろ過膜の2次側からポンプで引き抜くことができるが、利用可能な他の送液手段を用いてもよい。抜き出された培養液は、例えば、生産物の回収、死細胞の除去等の処理が行われる。また抜き出された培養液は、生産物の回収、死細胞の除去等の処理後に、一部廃却してもよいし、培養容器へ戻してもよい。上記処理により培養液のロスが発生した場合、例えば、培養容器に新鮮培地を供給することにより補うことができる。
 灌流培養において、細胞密度が80×10cells/mL以上である目標細胞密度に到達した後に、1日につき少なくとも1度以上細胞を含む培養液を取り出すことにより、細胞密度を、上記目標細胞密度±10%以内に調整することができる。
 この培養中の生細胞密度が過剰にならないよう、培養液の一部を細胞ごと抜き取ることにより生細胞密度を減らすことをセルブリーディング(セルブリード)といい、抜き出した培養液と同量の新鮮な培地を加えることで培養液の量を維持することができる。1日に1度以上とは、連続的に自動的にセルブリードする場合も含む。
 細胞を培養する期間は、特に限定されないが、一般的には1日以上1000日以下であり、好ましくは7日以上1000日以下であり、より好ましくは10日以上500日以下であり、さらに好ましくは10日以上100日以下であり、さらに好ましくは15日以上90日以下であり、特に好ましくは20日以上60日以下である。
 細胞密度が80×10cells/mL以上である生産物の生産のための培養の期間は、好ましくは5日以上990日以下であり、5日以上450日以下でもよく、より好ましくは10日以上450日以下であり、さらに好ましくは15日以上190日以下であり、さらに好ましくは20日以上90日以下である。
 本発明においては、灌流培養中に、アルカリを添加してもよい。ただし、灌流培養の全期間において、アルカリ添加を行わずに培養することも可能である。
 本発明においては、灌流培養による生産物の製造時における目標細胞密度に到達してからの期間のうち、少なくとも13日以上の期間において、1日あたりのアルカリ添加速度であるA[mol/L/day]を、0≦A<0.008の範囲で制御してもよい。
 アルカリとしては、特に限定されないが、好ましくはNaCO、NaOHまたはNaHCOであり、より好ましくはNaHCOおよび/またはNaCOであり、特に好ましくはNaHCOである。アルカリは、水溶液(例えば、NaCO水溶液、NaOH水溶液またはNaHCO水溶液)として添加することができる。
 添加されるアルカリ水溶液のpHは、7<pH<13であり、好ましくは7.5<pH<12であり、より好ましくは7.5<pH<10であり、さらに好ましくは8<pH<10である。
 アルカリ水溶液のpH測定は、アルカリが水に溶解した時点で測定する。pHの測定は一般的に市販されているpHセンサで測定可能である。例えば、Mettler TOLEDO社のpHメータ(Seven Excellence、Seven Direct、Five Easy)がある。
 灌流培養において添加される培地のpHは、好ましくは7.0~8.0であり、より好ましくは、7.0~7.8であり、さらに好ましくは、7.0~7.6である。 
 培地のpHは5%COかつ37℃インキュベート下で1日保管した後、一般的に市販されているpHセンサで測定可能である。例えば、Mettler TOLEDO社のpHメータ(Seven Excellence、Seven Direct、Five Easy)がある。
 好ましくは、培養中の培養液の平均pHは6.7~7.2であり、より好ましくは6.8~7.0である。
 好ましくは、培養中の培養液の最低pHは6.6以上であり、より好ましくは、6.7以上であり、さらに好ましくは、6.8以上である。
 好ましくは、培養中の培養液のpHは、培養液中のpHをインラインで測定しながら、自動でアルカリ水溶液を添加することにより制御することができる。
 好ましくは、灌流培養においては、消泡剤を添加することができる。消泡剤の消泡成分としては、シリコーン系が好ましく、ジメチコンが特に好ましい。消泡剤の消泡成分としては、ポリジメチルシロキサンを含むものが好ましく、より好ましくはポリジメチルシロキサンに微粉末シリカを含むものである。消泡剤としては、例えば、Cytiva社製 HyClone ADCF Antifoam Agentを使用することができる。
 灌流培養において、消泡剤は、培養開始時から添加してもよいし、培養開始後の所定の時期(例えば、培養開始後1日目~10日目、好ましくは2日目~9日目、より好ましくは3日目~8日目、特に好ましくは5日目~7日目)から添加を開始してもよい。
 消泡剤の添加速度は特に限定されないが、消泡成分が培養槽に添加されるときの、単位培養液量及び単位時間あたりの消泡成分の添加量は、好ましくは0.70mg/時間/L以下であり、より好ましくは0.07mg/時間/L以上0.70mg/時間/L以下であり、さらに好ましくは0.2mg/時間/L以上0.7mg/時間/L以下である。また、ジメチコンを添加する場合における添加速度は、好ましくは2mg/day/L~30mg/day/Lであり、より好ましくは5mg/day/L~20mg/day/Lであり、さらに好ましくは8mg/day/L~15mg/day/Lである。
 本発明における細胞の培養において用いることができる細胞培養装置の一例を図1に示す。図1においては、培養容器14は、細胞を含む培養液を収容する容器である。培養容器14の内部における培養液において細胞が培養される。
 培地供給配管1からは培地が、培養容器に供給される。
 消泡剤供給配管2からは発泡を抑制するための消泡剤が、培養容器に供給される。
 アルカリ供給配管3からはアルカリが、培養容器に供給される。アルカリ添加をしない場合は、アルカリ供給配管3はなくてもよい。
 送気配管4からは二酸化炭素(CO)および空気が、培養容器の内部の培養液の上部に導入される。
 スパージャー送気配管5からは酸素(O)及び/または空気が送られ、酸素及び/または空気は、孔径20μmのスパージャー15を介して培養液に導入される。スパージャー15により、培養液内の溶存酸素濃度を調節することができる。スパージャー孔径(ガス放出部の孔径)は好ましくは1~300μmであり、より好ましくは1~100μmであり、さらに好ましくは5~50μmであり、特に好ましくは10~30μmであり、一例としては20μmである。スパージャーとしては、好ましくは、酸素を30体積%以上含むガスを放出するスパージャーを使用することができる。
 排気管6は、排気のためのパイプであり、その末端には排気フィルター(図には示されていない)が接続していてもよい。
 サンプリング管7は、培養液を採取(サンプリング)したり、培養液を抜き出す(セルブリード)ためのパイプである。自動で連続的にセルブリードする場合は別途配管を設置してもよい(図示せず)。
 pHセンサー8が、培養液に接触するように装着されている。
 溶存酸素センサー9が、培養液に接触するように装着されている。
 細胞培養装置には、圧力センサー10、11及び13を設けることができる。
 細胞培養装置には、中空糸膜12が設置されている。
 点線で囲んだ領域は、培養容器(培養槽)から膜までのチューブアセンブリを示す。
 培養容器14の内部には、撹拌羽根16を有する撹拌部材が設けられていてもよい。撹拌羽根16を回転させることで、培養容器14の内部の培養液が撹拌され、培養液の均質性が保たれる。撹拌羽根16により培養液が撹拌されることにより、スパージャーにより放出される泡も撹拌される。撹拌羽根を有する撹拌部材の位置、撹拌羽根のサイズ等は、特に限定されず、使用する細胞種、培養液の量、供給する酸素の量、スパージャーの位置、数、サイズ等に応じて設計すればよい。また、スパージャーから出る泡を素早く撹拌し、泡の合一を抑制させるためには、スパージャーから近い位置に撹拌羽根16が配置されることが好ましい。
 本発明においては、培養容器から抜き出した細胞懸濁液を分離膜に通過させて、細胞含有液と透過液とに分離してもよい。この操作は、細胞培養装置を用いて行うことができる。この操作においては、培養容器中から抜き出した細胞懸濁液は、上記細胞懸濁液よりも高い細胞濃度を有する細胞含有液と、上記細胞懸濁液よりも低い細胞濃度を有する透過液とに分離される。細胞濃度はBeckman Coulter製 生死細胞アナライザー Vi-CELL XRによって測定することができる。
 上記した膜分離処理工程は、タンジェンシャルフィルトレーションであることが好ましく、Alternating tangential flow filtrationやTangential flow filtrationであることがより好ましく、Alternating tangential flow filtrationであることが最も好ましい。Alternating tangential flow filtrationを行えるフィルターとしては、Repligen社製のSuATF10-S02PESや、F2 RF02PES等がある。
 細胞培養に用いる培地としては、通常の動物細胞の培養で使用されている培地を用いることができる。例えば、CD OptiCHO(ThermoFisher社製)、ダルベッコ変法イーグル培地(DMEM)、イーグル最小必須培地(MEM)、RPMI-1640培地、RPMI-1641培地、F-12K培地、ハムF12培地、イスコブ変法ダルベッコ培地(IMDM)、マッコイ5A培地、ライボビッツL-15培地、及びEX-CELL(商標)300シリーズ(JRH  Biosciences社)、CHO-S-SFMII(Invitrogen社)、CHO-SF(Sigma-Aldrich社)、CD-CHO(Invitrogen社)、IS  CHO-V(Irvine  Scientific社)、PF-ACF-CHO (Sigma-Aldrich社)などを使用することができる。又は自作培地を用いてもよい。
  培地には牛胎児血清(FCS)等の血清を添加してもよいし、血清を添加しなくてもよい。 培地には、アミノ酸、塩、糖類、ビタミン、ホルモン、増殖因子、緩衝液、抗生物質、脂質、微量元素、植物タンパク質の加水分解物などの追加成分を補充してもよい。タンパク質不含培地を用いることもできる。
  培養温度は、一般的には30℃~40℃であり、好ましくは32℃~39℃であり、より好ましくは36℃~38℃であり、培養中に培養温度を変更してもよい。
  培養は、CO濃度が0~40体積%、好ましくは2~25体積%、さらに好ましくは3~20体積%の雰囲気下で行うことができる。
 培養スケールは、好ましくは5L以上100000L以下であり、より好ましくは50L以上100000L以下であり、さらに好ましくは500L以上100000L以下であり、さらに好ましくは1000L以上100000L以下である。培養スケールの上限は、10000Lが好ましく、5000Lがより好ましい。
 培養においては、必要に応じて培地の交換、通気、攪拌を加えることができる。培養液の攪拌を行う場合、攪拌回転数は特に限定されないが、単位体積当たりの攪拌動力は、一般的には10~300kW/mであり、好ましくは20~200kW/mであり、より好ましくは30~100kW/mである。
 培養液における溶存酸素濃度は適宜設定することができ、特に限定されないが、一般的には10~100%であり、好ましくは30~90%である。
 また、細胞密度が80×10cells/mL以上に維持される期間の溶存CO濃度は、好ましくは60~180mmHgであり、より好ましくは、80~160mmHgであり、さらに好ましくは、100~140mmHgである。
  細胞培養は、本明細書において上記した構成を有する細胞培養装置を用いて行うことができる。細胞培養装置としては、発酵槽型タンク培養装置、エアーリフト型培養装置、カルチャーフラスコ型培養装置、スピンナーフラスコ型培養装置、マイクロキャリアー型培養装置、流動層型培養装置、ホロファイバー型培養装置、ローラーボトル型培養装置、又は充填槽型培養装置等のいずれでもよい。培養容器は、培養環境の均質化等の観点からは、シングルユース培養槽であることが好ましい。
 生産物の製造時における培養液中の乳酸デヒドロゲナーゼ(LDH)の濃度(乳酸デヒドロゲナーゼの最大濃度)[U/L]は、好ましくは0より大きく100000以下であり、より好ましくは10以上30000以下であり、さらに好ましくは100以上5000以下である。
 培養液中の乳酸デヒドロゲナーゼ(LDH)の濃度は、培養液を抜き取り、300G/5分で細胞と上清を分離し、上清についてRoche社のCedex Bioで測定することができる。
 生産物の製造時における37℃下での培養液の粘度μ[mPa・s]は、好ましくは0.5≦μ≦10であり、より好ましくは1.0≦μ≦5であり、より好ましくは1.3≦μ≦3である。
 培養液の粘度は、培養槽から抜き取った培養液を37℃に維持し、セコニック社の振動式粘度計(型番:VM-10A)を使って測定することができる。
 本発明における細胞の種類は特に限定されないが、動物細胞、植物細胞、酵母などの真核細胞、枯草菌などの原核細胞及び大腸菌などが挙げられる。細胞は、好ましくは、動物細胞(より好ましくは哺乳類細胞)、又は昆虫細胞であり、哺乳類細胞が最も好ましい。細胞としては、初代細胞でも株化細胞でもよい。
 細胞としては、チャイニーズハムスター卵巣(CHO)細胞、HEK細胞(Human Embryonic Kidney 由来細胞)、BHK細胞、293細胞、C127細胞、ミエローマ細胞(NS0細胞など)、PerC6細胞、SP2/0細胞、ハイブリドーマ細胞、COS細胞(アフリカミドリザル腎臓由来細胞)、3T3細胞、HeLa細胞、Vero細胞(アフリカミドリザル腎臓上皮細胞)、MDCK細胞(イヌ腎臓尿細管上皮細胞由来細胞)、PC12細胞、WI38細胞などを挙げることができる。細胞は、胚性幹細胞(ES細胞)または人工多能性幹細胞(iPS細胞)などの幹細胞であってもよい。上記の中でも、CHO細胞、HEK細胞、BHK細胞、ハイブリドーマが好ましく、より好ましくは、CHO細胞、HEK細胞であり、最も好ましくはCHO細胞である。CHO細胞は、組換えタンパク質、例えば、サイトカイン、凝固因子、及び抗体の産生に広く使用されている。ジヒドロ葉酸還元酵素(DHFR)を欠損したCHO細胞を使用することが好ましく、DHFR欠損CHO細胞としては、例えば、CHO-DG44を使用することができる。
 細胞の生存率としては、高い方が好ましいが、85%以上が好ましく、90%以上がより好ましく、95%以上が特に好ましく、99%以上が最も好ましい。
 これらの細胞は、発現させたいタンパク質(例えば、抗体など)をコードする外来遺伝子を導入した細胞であってもよい。細胞としては、抗体を産生する細胞であることが好ましい。発現させたいタンパク質をコードする外来遺伝子を細胞に導入するためには、発現ベクターを使用することができる。発現させたいタンパク質をコードするDNAと、発現調節配列(例えば、エンハンサー、プロモーター及びターミネーターなど)と、所望により選択マーカー遺伝子とを含む発現ベクターを細胞に導入することにより、発現させたいタンパク質をコードする外来遺伝子を導入した細胞を作製することができる。発現ベクターとしては特に限定はなく、細胞の種類、用途などに応じて適宜選択して使用することができる。
  プロモーターとしては、哺乳動物細胞中で機能を発揮できるものであればいずれも用いることができる。例えば、サイトメガロウイルス(CMV)のIE(immediate  early)遺伝子のプロモーター、SV40の初期プロモーター、レトロウイルスのプロモーター、メタロチオネインプロモーター、ヒートショックプロモーター、SRαプロモーター、モロニーマウス白血病ウイルス(moloney  murine  leukemia  virus)のプロモーター及びエンハンサー等を挙げることができる。また、ヒトCMVのIE遺伝子のエンハンサーをプロモーターと共に用いてもよい。
  選択マーカー遺伝子としては、例えば、薬剤耐性遺伝子(ネオマイシン耐性遺伝子、ジヒドロ葉酸レダクター(DHFR)遺伝子、ピューロマイシン耐性遺伝子、ブラストサイジン耐性遺伝子、ハイグロマイシン耐性遺伝子、シクロヘキシミド耐性遺伝子など)、又は蛍光遺伝子(緑色蛍光タンパクGFPなどをコードする遺伝子)などを用いることができる。
  細胞に発現ベクターを導入する方法は、特に限定はなく、例えば、リン酸カルシウム法、エレクトロポレーション法、リポソーム法、ジーンガン法及びリポフェクション法などを用いることができる。
 本発明による生産物の製造方法は、細胞培養装置を用いて細胞を培養して上記細胞から生産物を産生させることを含む。
 本発明によれば、本発明による生産物の製造方法により製造される生産物が提供される。
  本発明において、生産物の種類は特に限定されないが、好ましくはタンパク質であり、より好ましくは組み換えタンパク質である。生産物としては、例えば、組み換えポリペプチド鎖、組み換え分泌ポリペプチド鎖、抗原結合タンパク質、抗体(例えば、ヒト抗体、ヒト化抗体、キメラ抗体、マウス抗体、バイスペシフィック抗体など)、Fc融合タンパク質、断片化免疫イムノグロブリン、一本鎖抗体(scFv)などが挙げられる。また、他にもアデノウイルス、アデノ随伴ウイルス、レンチウイルスなどであってもよい。
 生産物は、好ましくは抗体であり、より好ましくはヒト抗体、ヒト化抗体、キメラ抗体、又はマウス抗体である。断片化免疫イムノグロブリンとしては、Fab、F(ab’)2、Fvなどが挙げられる。抗体のクラスも特に限定されるものではなく、IgG1、IgG2、IgG3、IgG4などのIgG、IgA、IgD、IgE、IgMなどいずれのクラスでもよいが、医薬として用いる場合はIgG及びIgMが好ましい。
  ヒト抗体は、ヒト免疫グロブリン配列から誘導される1つ又は複数の可変及び定常領域を有する全ての抗体を含む。一実施形態では、可変及び定常ドメインの全てが、ヒト免疫グロブリン配列から誘導される(完全ヒト抗体)。
  ヒト化抗体は、ヒト対象に投与されたときに、非ヒト種抗体と比較して、ヒト化抗体が免疫反応を誘発する可能性が低くなるように、及び/又は重篤な免疫反応の誘発がより少なくなるように、1つ又は複数のアミノ酸置換、欠失、及び/又は付加により非ヒト種から誘導された抗体の配列と異なる配列を有する。一例では、非ヒト種抗体の重鎖及び/又は軽鎖のフレームワーク及び定常ドメイン内のある特定のアミノ酸は、ヒト化抗体を産生するように変異している。別の例では、ヒト抗体からの定常ドメインは、非ヒト種の可変ドメインに融合される。
  キメラ抗体とは、互いに由来の異なる可変領域と定常領域を連結した抗体である。例えば、マウス抗体の重鎖及び軽鎖の可変領域と、ヒト抗体の重鎖及び軽鎖の定常領域からなる抗体は、マウス・ヒト異種キメラ抗体である。マウス抗体の可変領域をコードするDNAをヒト抗体の定常領域をコードするDNAと連結させ、これを発現ベクターに組み込むことによって、キメラ抗体を発現する組換えベクターが作製できる。上記ベクターにより形質転換された組換え細胞を培養し、組み込まれたDNAを発現させることによって、培養中に生産されるキメラ抗体を取得できる。
  バイスペシフィック抗体とは、2つの異なる抗原特異性を認識する抗体である。様々な形態のバイスペシフィック抗体が存在する。バイスペシフィック抗体を作製する方法としては、2つのイムノグロブリン分子をN-サクシンイミジル 3-(2-ピリジルジチオール) プロピオネート又はS-アセチルメルカプトサクシニックアシッドアンハイドライドなどの架橋剤を用いて結合して作製する方法、イムノグロブリン分子のFabフラグメントどうしを結合して作製する方法などが報告されている。また、バイスペシフィック抗体をコードする遺伝子を細胞に導入することにより、発現させることも可能である。
  Fc融合タンパク質とは、Fc領域を有するタンパク質を示し、抗体を含む。
  Fabは、VL、VH、CL及びCH1ドメインを有する一価断片である。
  F(ab’)2は、ヒンジ領域でジスルフィド架橋により結合された2つのFab断片を有する二価断片である。
  Fv断片は、抗体のシングルアームのVL及びVHドメインを有する。
  一本鎖抗体(scFv)は、VL及びVH領域がリンカー(例えば、アミノ酸残基の合成配列)を介して接合して、連続したタンパク質鎖を形成する抗体であり、ここでリンカーは、タンパク質鎖をそれ自身に折り重ね、一価抗原結合部位を形成させるのに十分な長さである。
 抗体としては、特に限定されないが、例えば、抗IL-6レセプター抗体、抗IL-6抗体、抗グリピカン-3抗体、抗CD3抗体、抗CD20抗体、抗GPIIb/IIIa抗体、抗TNF抗体、抗CD25抗体、抗EGFR抗体、抗Her2/neu抗体、抗RSV抗体、抗CD33抗体、抗CD52抗体、抗IgE抗体、抗CD11a抗体、抗VEGF抗体及び抗VLA4抗体などが挙げられる。
 生産物の回収は、単に培養液を回収してもよいし、例えば、フィルタ又は遠心分離機を用い、培養液から細胞の少なくとも一部を除いた液体を回収してもよく、公知の方法が特に制限なく用いられる。生産物の純度を向上したり、溶媒を変更したり、例えば粉末状にするなど形態を変更したい場合には、培養液又は上記液体をさらなる処理に供することができる。
 また、灌流しながら培養液の一部を回収する、又は、灌流しながら灌流中の培養液の一部に対してフィルター又は遠心分離機を用い、培養液から細胞の少なくとも一部を除いた液体を回収することも可能である。 
 生産物は、精製処理により精製することができる。得られた生産物は、高い純度にまで精製することができる。生産物の分離及び精製は通常のタンパク質で使用されている分離及び精製方法を使用すればよい。例えば、アフィニティークロマトグラフィー等のクロマトグラフィーカラム、フィルター、限外ろ過、塩析、透析、ドデシル硫酸ナトリウム(SDS)ポリアクリルアミドゲル電気泳動、等電点電気泳動等を適宜選択及び組み合わせることにより、生産物を分離及び精製することができるが、これらに限定されるものではない。上記で得られた生産物の濃度測定は、吸光度測定又は酵素結合免疫吸着検定法(Enzyme-linked  immunosorbent  assay;ELISA)等により行うことができる。また、生産物が抗体である場合、抗体の力価(Titer)は、Roche社のCedex Bioなどの市販の分析機器で測定することもできる。
  アフィニティークロマトグラフィーに用いるカラムとしては、プロテインAカラム、プロテインGカラムが挙げられる。アフィニティークロマトグラフィー以外のクロマトグラフィーとしては、例えば、イオン交換クロマトグラフィー、疎水性クロマトグラフィー、ゲルろ過、逆相クロマトグラフィー、吸着クロマトグラフィー等が挙げられる。これらのクロマトグラフィーはHPLC(high  performance  liquid  chromatography;高速液体クロマトグラフィー)又はFPLC(fast  protein  liquid  chromatography)等の液相クロマトグラフィーを用いて行うことができる。
  なお、生産物には、精製前又は精製後に適当なポリペプチド修飾酵素を作用させることにより、生産物を修飾したり、部分的にペプチドを除去することもできる。ポリペプチド修飾酵素としては、例えば、トリプシン、キモトリプシン、リシルエンドペプチダーゼ、プロテインキナーゼ、グルコシダーゼなどが用いられる。
 本発明により製造される生産物は、例えばバイオ医薬品及び再生医療等において用いることができる。
 以下の実施例により本発明をさらに具体的に説明するが、本発明は実施例によって限定されるものではない。
<抗体産生細胞の樹立>
 IgG1及びIgG4をコードする核酸配列を含むベクターを構築し、構築したベクターをCHO-DG44細胞へ導入することにより、IgG1を発現させるCHO-DG44細胞(IgG1細胞)とIgG4を発現させるCHO-DG44細胞(IgG4細胞)を作製した。ベクターの構築及び細胞への導入は、特表2016-517691号公報の実施例2に準じて行った。上記により、モノクローナル抗体を産生するCHO細胞を準備し、以下の実験において使用した。
<培養容器>
実施例1~4:
培養容器:直径349mm、槽高さ685mmのプラスチック製シングルユース培養容器、攪拌翼は直径116mmのプロペラ翼
ろ過:Repligen社製ATF4のシステムにF4 RF02PES-V2膜を使用した。F4 RF02PES-V2膜の孔径は0.2μm、中空糸径は1mm、ろ過面積は0.77mである。
実施例5:
培養容器:直径225mm、槽高さ400mmのガラス製培養容器、攪拌翼は直径150mmのパドル翼
ろ過:Repligen社製ATF2のシステムにF2 RF02PES膜を使用した。F2 RF02PES膜の孔径は0.2μm、中空糸径は1mm、ろ過面積は0.13mである。
<細胞培養>
 CHO細胞を0.5×10cells/mlで播種する。培地にはCD OptiCHO(Thermo Fisher Scientific社製)を用いた。
 下面から培養液中の酸素濃度が90%になるように培養槽に設置されたスパージャーからOを自動制御し供給した。培養期間中、アルカリ水溶液を添加しなかった。
 播種後2日目に培養した後、灌流比0.8vvdで培地を連続供給しながら、Repligen社製ATFを運転し、細胞培養液を連続濾過し回収液を回収した。
 更に5日目に灌流比1.2vvdに変更した。
 更に6日目に消泡剤中のシメチコンの添加速度を12.0mg/day/Lとした。
 細胞密度が120×10cells/mlに到達したら、細胞密度が120×10cells/mlで維持されるよう培養液の一部を引き抜きながら、セルブリードを行った。
 膜詰まりが発生し、ATFが動作できなくなるまで培養を継続した。
 培養条件は、下記表に記載する。
<評価方法>
(1)細胞密度、Viabilityの測定
 培養槽内の培養液を抜き取り、Beckman Coulter社のCell Viability Analyzer Vi-cell XRを用い測定した。なおVi-cellソフトはVi-cell XR2.04を用い、測定時のパラメータは以下のように設定した。
 Min diameter:6μm、 Max diameter:50μm
 Dilution:細胞濃度が10×10cells/mL以下のときは、サンプル希釈せず、Dilutionを1とした。細胞濃度が10×10cells/mLより高いときは、サンプルを10倍希釈し、Dilutionを10とした。
 Cell brightness:75%、 Cell sharpness:100
 Viable cell spоt brightness:75%
 Viable cell spоt area:5%
 Minimum circularity:0
 Decluster degree:Medium
(2)pH、溶存酸素濃度の測定
 培養槽内の培養液を抜き取り、SIEMENS社のRAPIDLab 348EXを用い測定した。
(3)ATFにおけるろ過流束および往復流量
 ろ過流束は一定時間内にろ過膜を通過した液の重量を記録して測定した。往復流量はコントローラーに設定値を入力し、コントローラーにより制御した。
(4)培養槽から膜までのチューブアセンブリおよび膜内におけるせん断速度(D)
(5)培養槽から膜までのチューブアセンブリおよび膜内における時間頻度(T)
(6)累積せん断頻度
 累積時間頻度Ttotaは、各せん断速度における時間頻度Tの和を計算により算出した。
つまり、累積時間頻度Ttotaは一日に一つの細胞が100~100000[1/s]のせん断を受けている時間の合計を表す。
(7)微粒子密度の測定
 培養槽内の培養液を抜き取り、Beckman Coulter社のISOTONで10000倍希釈した。上記希釈培養液について、Beckman Coulter社の精密粒度分布測定装置Multisizer 4eを用いて1.46~42μmの粒度分布を測定した。データは約0.0124μm刻みで出力される。1.47~6.00μm粒子の累積個数とは、1.47~6.00μmの範囲で検出された粒子数を合計したものである。
(8)乳酸脱水素酵素(LDH)測定
 培養液を抜き取り、300G/5分で細胞と上清を分離した。上清をRoche社のCedex Bioで測定した。
(9)粘度の測定
 培養槽内の培養液を抜き取り、抜き取った培養液を37℃に維持し、セコニック社の振動式粘度計(型番:VM-10A)を使って、粘度を測定した。
(10)レイノルズ数Reを算出するために使用する密度(ρ)の測定
 EPPENDORF社製のマイクロピペット(型番:4920 000.083)で1ml定量し、その重量をMETTLER TOLED社製の天びん(ML6002T/00)で測定した。上記重量を1000倍して、密度[kg/m]とした。
(11)通気速度
 KOFLOC社製の酸素用マスフローメーター(型番:8500MC-S1-1-2、ガス種:O)と、空気用マスフローメーター(型番8500MC-S1-1-2、ガス種:Air)で実測した。
(12)圧力
 ATF1次側の圧力はRepligen社製のACPM-05TC-01Nで測定した。ATF2次側の圧力はRepligen社製のACPM-799-01Nで測定した。day30までの1次側最大差圧を、下記表に記載した。
(13)膜詰まりの評価
 膜詰まりの評価の基準を以下に示す。
A:培養開始から詰まるまでの日数が30日以上である場合。
B:培養開始から詰まるまでの日数が20日以上29日以下である場合。
C:培養開始から詰まるまでの日数が10日以上19日以下である場合。
<培養条件および結果>
 実施例1~5についての培養条件および結果を下記表に示す。
<結果の説明>
 実施例1~5において、培養継続日数は16日以上であった。上記の結果から、培養槽内の粒子の累積個数(せん断速度)と、通気速度とを適切な領域に制御することによって、灌流培養中の膜の詰まりを抑制した状態で培養を継続できることが実証された。
1 培地供給配管
2 消泡剤供給配管
3 アルカリ供給配管
4 送気配管
5 スパージャー送気配管
6 排気管
7 サンプリング管
8 pHセンサー
9 溶存酸素センサー
10 圧力センサー
11 圧力センサー
12 中空糸膜
13 圧力センサー
14 培養容器
15 スパージャー
16 撹拌羽根

Claims (24)

  1. 培養槽において細胞を培養することを含む、生産物の製造方法であって、
    生産物の製造時における細胞密度が80×10cells/mL以上300×10cells/mL以下であり、
    培養が灌流培養であり、
    培養スケールが5L以上100000L以下であり、
    培養液中の細胞と生産物とを分離する膜の表面積あたりの、生産物の製造時における粒径1.47~6.00μmの粒子のDay10における累積個数X[個/mm]が、0<X≦1.0×10であり、
    通気速度V[vvm]が、0.09≦V≦1.0である、
    生産物の製造方法:ここで、累積個数Xとは、培養液について1.46~42μmの粒度分布を測定した時に、1.47~6.00μmの範囲で検出された粒子数を合計したものである。
  2. 前記のDay10における累積個数X[個/mm]が、0<X≦9.7×10である、請求項1に記載の生産物の製造方法。
  3. 前記のDay10における累積個数X[個/mm]が、0<X≦1.3×10である、請求項1に記載の生産物の製造方法。
  4. Day10以降の培養期間における最大の累積個数X[個/mm]が、0<X≦1.0×10である、請求項1に記載の生産物の製造方法。
  5. Day10以降の培養期間における最大の累積個数X[個/mm]が、0<X≦1.5×10である、請求項1に記載の生産物の製造方法。
  6. Day10以降の培養期間における最小の累積個数X[個/mm]が、0<X≦1.0×10である、請求項1に記載の生産物の製造方法。
  7. Day10以降の培養期間における最小の累積個数X[個/mm]が、0<X≦0.9×10である、請求項1に記載の生産物の製造方法。
  8. 前記累積個数X[個/mm]と前記通気速度V[vvm]との関係が-10≦V-10×X-0.9≦0.1である、請求項1から7の何れか一項に記載の生産物の製造方法。
  9. 前記培養槽から前記膜までのチューブアセンブリ、および前記膜内において、細胞にかかる最大せん断速度D[1/s]が、0<D≦65000である、請求項1から7の何れか一項に記載の生産物の製造方法。
  10. 前記最大せん断速度D[1/s]が、0<D≦39000である、請求項9に記載の生産物の製造方法。
  11. 前記最大せん断速度D[1/s]が、0<D≦3000である、請求項9に記載の生産物の製造方法。
  12. 培養液の液量[L]あたりの膜面積[m]の比率[m/L]が、0.015以上1.0以下である、請求項1から7の何れか一項に記載の生産物の製造方法。
  13. 前記培養槽から前記膜までのチューブアセンブリ、および前記膜内において、最大せん断速度が細胞にかかる時間頻度T[s/day]が、0<T≦10000である、請求項1から7の何れか一項に記載の生産物の製造方法。
  14. 前記培養槽から前記膜までのチューブアセンブリ、および前記膜内において、100[1/s]以上100000[1/s]以下のせん断速度が細胞にかかる累積時間頻度Ttotal[s/day]が、0<Ttotal≦100000である、請求項1から7の何れか一項に記載の生産物の製造方法。
  15. 前記培養槽から前記膜までのチューブアセンブリのチューブおよび継手の最小内径d[mm]と培養液量C[L]との関係が、0.0001≦d/C≦100である、請求項1から7の何れか一項に記載の生産物の製造方法。
  16. 前記培養槽から前記膜までのチューブアセンブリのチューブおよび継手において、最小内径d[mm]となる流路の長さL[mm]と培養液量C[L]との関係が、0.001≦L/C≦1000である、請求項1から7の何れか一項に記載の生産物の製造方法。
  17. 生産物の製造時における培養液中の乳酸デヒドロゲナーゼの濃度[U/L]が0より大きく100000以下である、請求項1から7の何れか一項に記載の生産物の製造方法。
  18. 細胞を培養する期間が10日以上100日以下である、請求項1から7の何れか一項に記載の生産物の製造方法。
  19. 細胞を培養する期間が20日以上90日以下である、請求項1から7の何れか一項に記載の生産物の製造方法。
  20. 培養液中に通気されるスパージャー孔径が1~100μmである、請求項1から7の何れか一項に記載の生産物の製造方法。
  21. 濾過時の流束Y[LMH]が、0<Y≦10である、請求項1から7の何れか一項に記載の生産物の製造方法。
  22. 前記細胞が動物細胞である、請求項1から7の何れか一項に記載の生産物の製造方法。
  23. 前記細胞がCHO細胞である、請求項1から7の何れか一項に記載の生産物の製造方法。
  24. 前記生産物が抗体である、請求項1から7の何れか一項に記載の生産物の製造方法。
PCT/JP2023/035594 2022-09-29 2023-09-29 生産物の製造方法 WO2024071373A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-156714 2022-09-29
JP2022156714 2022-09-29

Publications (1)

Publication Number Publication Date
WO2024071373A1 true WO2024071373A1 (ja) 2024-04-04

Family

ID=90478111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035594 WO2024071373A1 (ja) 2022-09-29 2023-09-29 生産物の製造方法

Country Status (1)

Country Link
WO (1) WO2024071373A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159847A1 (ja) * 2017-03-03 2018-09-07 富士フイルム株式会社 細胞培養装置及び細胞培養方法
US20190085284A1 (en) * 2017-09-21 2019-03-21 Codiak Biosciences, Inc. Production of Extracellular Vesicles in Single-Cell Suspension using Chemically-Defined Cell Culture Media
WO2019181234A1 (ja) * 2018-03-19 2019-09-26 富士フイルム株式会社 生産物の製造方法
WO2023190829A1 (ja) * 2022-03-31 2023-10-05 富士フイルム株式会社 生産物の製造方法、及び生産物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159847A1 (ja) * 2017-03-03 2018-09-07 富士フイルム株式会社 細胞培養装置及び細胞培養方法
US20190085284A1 (en) * 2017-09-21 2019-03-21 Codiak Biosciences, Inc. Production of Extracellular Vesicles in Single-Cell Suspension using Chemically-Defined Cell Culture Media
WO2019181234A1 (ja) * 2018-03-19 2019-09-26 富士フイルム株式会社 生産物の製造方法
WO2023190829A1 (ja) * 2022-03-31 2023-10-05 富士フイルム株式会社 生産物の製造方法、及び生産物

Similar Documents

Publication Publication Date Title
JP7377316B2 (ja) 哺乳類細胞培養物を回収するための方法
US8765415B2 (en) Methods for enhanced protein production
US20160289633A1 (en) Use of Perfusion Seed Cultures to Improve Biopharmaceutical Fed-Batch Production Capacity and Product Quality
MX2009000522A (es) Proceso mejorado para el cultivo de celulas.
JP2011518790A (ja) ポリクローナルタンパク質を製造する方法
JP7138135B2 (ja) 還元剤を添加することによるタンパク質溶液中のジスルフィド結合の形成の制御
WO2023190829A1 (ja) 生産物の製造方法、及び生産物
WO2021143699A1 (en) An apparatus and a method for continuously harvesting a biological substance produced by a cultured cell
WO2024071373A1 (ja) 生産物の製造方法
JP2018531619A (ja) 灌流様式において組換えたんぱく質の生産プロファイルを調節する方法
US20210403971A1 (en) Method for preparing liquid medium
WO2023054556A1 (ja) 細胞培養方法、及び有用物質の製造方法
WO2023190300A1 (ja) 生産物の生産方法、及び生産物
WO2023112952A1 (ja) 生産物の製造方法、及び細胞培養装置
US20160108357A1 (en) Methods of culturing a cell
US20240002784A1 (en) Culture method for cells and production method for useful substance
EP2660315A1 (en) Method for preparing aqueous solution containing culture medium and chelating agent
JP2023538581A (ja) 細胞培養プロセス
EP4370647A1 (en) Bidirectional tangential flow filtration (tff) perfusion system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872593

Country of ref document: EP

Kind code of ref document: A1