WO2024071324A1 - Scraping apparatus and scraping method - Google Patents

Scraping apparatus and scraping method Download PDF

Info

Publication number
WO2024071324A1
WO2024071324A1 PCT/JP2023/035484 JP2023035484W WO2024071324A1 WO 2024071324 A1 WO2024071324 A1 WO 2024071324A1 JP 2023035484 W JP2023035484 W JP 2023035484W WO 2024071324 A1 WO2024071324 A1 WO 2024071324A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
blade
processed
scraping
handle
Prior art date
Application number
PCT/JP2023/035484
Other languages
French (fr)
Japanese (ja)
Inventor
港 町田
正 三ツ橋
雅浩 佐藤
健志 松本
Original Assignee
シチズン時計株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シチズン時計株式会社 filed Critical シチズン時計株式会社
Publication of WO2024071324A1 publication Critical patent/WO2024071324A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D79/00Methods, machines, or devices not covered elsewhere, for working metal by removal of material
    • B23D79/02Machines or devices for scraping
    • B23D79/06Machines or devices for scraping with reciprocating cutting-tool

Definitions

  • the present invention relates to technology for automating scraping processes.
  • Scraping (also called “scraping”) is performed on the sliding surfaces of machine tools and other devices with moving parts to increase their flatness and reduce the coefficient of sliding friction.
  • Scraping is a type of metal processing, and traditionally, the surface to be machined of the workpiece is painted with red lead or a pigment, and the worker uses a scraper with a wide, chisel-shaped tip to manually scrape off and remove any protruding parts while checking the difference in color.
  • the original purpose of scraping is to finish the sliding surface into a highly flat surface, but the minute micron-sized depressions formed on the sliding surface by scraping act as reservoirs for lubricating oil during sliding, improving the lubrication of the sliding surface and preventing ringing during sliding.
  • scraping done manually by a worker requires skill and is also very hard work.
  • Patent Document 1 discloses a configuration in which a scraper is moved so that the trajectory of the scraper forms an acute angle with the surface when the cutting edge of the scraper is brought into contact with or separated from the surface.
  • the workpiece is machined with the scraper bent, so when the cutting edge is moved away from the surface of the workpiece, the scraper unbends and the cutting edge moves at the same time. Therefore, depending on the trajectory of the scraper, the cutting edge moves in the opposite direction to the machining direction. This can result in the cutting edge not being able to machine the intended length, leaving uncut material, or burrs easily occurring near the end of the machining path.
  • the present invention was made in consideration of the above-mentioned problems, and aims to provide a technology for scraping devices that perform scraping, which suppresses the occurrence of uncut areas and burrs on the surface to be processed.
  • a scraping device comprises a processing robot that holds and operates a scraper having a blade portion and a flexible handle portion on which the blade portion is provided, and a control device that controls the processing robot in accordance with processing instruction data, and by moving the handle portion in a direction approaching the processing surface from a state in which the blade portion is in contact with the processing surface of a workpiece, the handle portion is bent so that the blade portion moves in a processing direction along the processing surface, and in a bent state, the handle portion is moved in the processing direction to perform scraping on the processing surface, and the control device controls the processing robot to move the handle portion in a direction away from the processing surface while moving a predetermined amount in the processing direction based on the amount by which the blade portion moves due to the elastic deformation of the handle portion when the blade portion is moved away from the processing surface.
  • the specified amount may be greater than or equal to the amount by which the blade portion moves in the processing direction when the handle portion bends from a state in which the blade portion begins to come into contact with the surface to be processed, in the scraping process, in a direction approaching the surface to be processed.
  • control device may move the handle portion by the predetermined amount in the processing direction before the blade portion separates from the surface to be processed.
  • control device may control the processing robot so that, when the blade portion is moved away from the surface to be processed in the scraping process, the control device controls the processing robot to move the handle portion the predetermined amount in the processing direction before moving the handle portion the push-in amount in the direction away from the surface to be processed in the perpendicular direction.
  • the handle portion is approximately strip-shaped, and the blade portion is provided at one end in the longitudinal direction, and the control device may control the orientation of the scraper during the scraping process so that the blade portion is positioned at the tip of the scraper in the processing direction.
  • the blade portion may be replaceably attached to the handle portion.
  • the processing robot may be configured to be able to adjust a cutting angle between a surface of the blade portion facing the surface to be processed and the surface to be processed.
  • a scraping method is a scraping method using a scraping device that includes a processing robot that holds and operates a scraper having a blade portion and a flexible handle portion on which the blade portion is provided, and a control device that controls the processing robot in accordance with processing instruction data, and performs scraping on a surface to be processed of a workpiece, wherein in the scraping, the control device controls the processing robot to move the handle portion from a state in which the blade portion is in contact with the surface to be processed in a direction approaching the surface to be processed, thereby bending the handle portion so that the blade portion moves in a processing direction along the surface to be processed, and to move the handle portion in the bending state in the processing direction to move the blade portion away from the surface to be processed, while moving the handle portion a predetermined amount in the processing direction based on the amount by which the blade portion moves due to the elastic deformation of the handle portion.
  • the specified amount may be greater than or equal to the amount by which the blade portion moves in the processing direction when the handle portion bends from a state in which the blade portion begins to come into contact with the surface to be processed, in the scraping process, in a direction approaching the surface to be processed.
  • the cutting edge of the blade portion has a convex arc shape at the center in the blade width direction
  • the method may include a first processing step in which a first abutment portion of the cutting edge is abutted against the surface to be machined while an angle between a center line of the blade portion in the blade width direction and the machining direction is set to a first angle when viewed from a direction perpendicular to the surface to be machined, and a second processing step in which a second abutment portion of the cutting edge, located at a position different from the first abutment portion, is abutted against the surface to be machined while the angle is set to a second angle different from the first angle, to machine the surface to be machined.
  • the present invention provides a technology for scraping devices that perform scraping processes and that suppresses the occurrence of uncut areas and burrs on the surface to be processed.
  • FIG. 1 is a diagram showing a schematic configuration of a scraping device according to an embodiment.
  • FIG. 1 is a diagram showing a scraper held by a robot hand in an embodiment.
  • FIG. 2 is a block diagram showing an example of a configuration of a control device according to an embodiment.
  • FIG. 2 is a block diagram illustrating an example of a functional configuration of a control device according to an embodiment.
  • FIG. 13 is a diagram showing a machining path of scraping according to a comparative example.
  • FIG. 13 is a diagram showing the vicinity of the end point of a machining path of scraping in a comparative example.
  • FIG. 4 is a diagram showing a machining path of scraping according to the embodiment.
  • FIG. 1 is a diagram showing a schematic configuration of a scraping device according to an embodiment.
  • FIG. 1 is a diagram showing a scraper held by a robot hand in an embodiment.
  • FIG. 2 is a block diagram showing an example of a configuration of a control
  • FIG. 13 is a diagram showing the vicinity of the end point of the machining path of the scraping process in the embodiment.
  • FIG. 11 is a diagram showing a trajectory of a robot hand during scraping in the embodiment.
  • FIG. 2 is a schematic top view showing the relationship between a scraper and a processing area according to the embodiment.
  • Fig. 1 is a schematic diagram showing a schematic configuration of the scraping apparatus 100 according to the embodiment.
  • the scraping apparatus 100 includes a robot arm 20 that holds and operates a scraper 10, and a control device 30 that controls the robot arm 20 according to processing instruction data.
  • the scraping device 100 is a device that automatically performs scraping on the processing target surface (machined surface) 91 of the workpiece 90, which is the object to be processed.
  • the workpiece 90 is, for example, a metallic sliding member that constitutes a machine tool, and its sliding surface is processed by scraping as the processing target surface 91.
  • Scraping is a type of metal processing, and uses a scraper 10, which is a scraping tool (cutting tool), to scrape off the convex parts of the processing target surface 91, increasing the flatness of the processing target surface 91, and further reducing the coefficient of sliding friction by forming an oil reservoir.
  • the surface 91 to be machined in scraping is generally a flat surface with a certain degree of flatness and minute irregularities, which is achieved by cutting, grinding, or other processes on the cast surface.
  • the original purpose of scraping is to finish the sliding surface into a highly accurate flat surface. Furthermore, in order to prevent the wringing phenomenon from occurring when the sliding surface slides, the scraping process forms many minute depressions on the sliding surface, measuring in microns, as reservoirs for lubricating oil, improving the lubricity of the sliding surface.
  • the scraping device 100 in this embodiment performs a flattening process to cut convex portions of the surface 91 to be machined so that the flatness of the surface 91 meets a predetermined target flatness, and a finishing process to form depressions for oil reservoirs in the surface 91 to be machined after the flattening process.
  • a flattening process to cut convex portions of the surface 91 to be machined so that the flatness of the surface 91 meets a predetermined target flatness
  • a finishing process to form depressions for oil reservoirs in the surface 91 to be machined after the flattening process.
  • different cutting conditions and scraping tools are generally used for each process.
  • the scraper 10 has a blade portion 11 and a flexible handle portion 13 that can be attached and detached to the robot arm 20.
  • the blade portion 11 is made of, for example, a cemented carbide alloy, and is capable of cutting the processing surface 91 of, for example, a metal workpiece 90.
  • the handle 13 is generally strip-shaped and made of a flexible metal material, with the blade 11 replaceably attached to one end in the longitudinal direction. That is, the handle 13 holds the blade 11 in a removable manner. When the blade 11 wears out due to repeated machining, or when a blade 11 with a different cutting edge width or curvature radius is used, a new blade 11 can be attached to the handle 13.
  • the scraper configuration is not limited to the one described above, and may be, for example, one in which the blade is inseparable from the handle, or one in which the blade and handle are formed as one unit.
  • the robot arm 20 is, for example, a six-axis articulated robot arm, and is a processing robot controlled by the control device 30.
  • the robot arm 20 has a robot hand 21 at its tip.
  • the robot hand 21 can detachably hold (grasp) the scraper 10 and a hand chuck (not shown). That is, the robot arm 20 can selectively attach and remove the scraper 10 and the hand chuck to the robot hand 21.
  • the robot arm 20 can move the robot hand 21 to any position in the XYZ three-dimensional orthogonal coordinate system by driving each joint (for example, the first axis to the sixth axis) with a servo motor or the like.
  • the robot arm 20 can also bring the scraper 10 held by the robot hand 21 into contact with the surface 91 to be processed in any direction or angle.
  • the robot arm 20 also includes a force sensor (not shown).
  • the force sensor is a sensor that detects the load (resistance) acting on the scraper 10 during scraping.
  • the control device 30 of the scraping device 100 monitors the load state during scraping output by the force sensor, and can perform feedback control based on the strength of the load as necessary.
  • the above-mentioned robot arm 20 is an example of a scraping robot according to the present invention, and scraping robots are not limited to the robot arm 20.
  • the scraping robot according to the present invention is not particularly limited as long as it is configured to automatically scrape the surface 91 to be processed of the workpiece 90 by operating the scraper 10 held by it.
  • the scraping process for the workpiece surface 91 of the workpiece 90 is performed, for example, by fixing the workpiece 90 to the processing stand 80 and controlling the robot arm 20 with the control device 30 controlling the robot arm 20 while the scraper 10 is held by the robot hand 21.
  • the surface of the processing stand 80 is formed into a horizontal plane, and the workpiece surface 91 may or may not be parallel to this surface.
  • three-dimensional shape data (convex and concave shape data) of the surface 91 to be processed is acquired in advance by a three-dimensional shape measuring device.
  • the three-dimensional shape measuring device may be of either a contact or non-contact type, but since measurement accuracy has a large effect on the finished surface accuracy, it is preferable that the three-dimensional shape data be measured with high accuracy.
  • Fig. 2(a) is a schematic diagram showing a state in which the blade portion 11 of the scraper 10 held by the robot hand 21 is in contact with the processing target surface 91 of the workpiece 90.
  • Fig. 2(b) is a schematic diagram showing a state in which the handle portion 13 has moved in a direction approaching the processing target surface 91 from the state shown in Fig. 2(a) and has been deflected.
  • Fig. 2(c) is an enlarged view of part A in Fig. 2(b).
  • the processing direction during scraping will be described as the first direction X1, and the direction opposite to the first direction X1 will be described as the second direction X2.
  • the direction away from the surface 91 to be processed will be described as the moving away direction Y1
  • the direction approaching the surface 91 to be processed will be described as the approaching direction Y2.
  • FIG. 2(b) The scraper 10 shown in Figure 2(b) is in the state when scraping is being performed.
  • Figure 2(b) shows the scraper 10 and robot hand 21 in the same state as Figure 2(a), with the blade portion 11 beginning to come into contact with the surface 91 to be processed, in dotted lines.
  • the general direction of movement of the robot hand 21 and handle portion 13 after the blade portion 11 begins to come into contact with the surface 91 to be processed is shown by black arrows, and the general direction of movement of the blade portion 11 is shown by white arrows.
  • the robot hand 21 moves in the approach direction Y2 to approach the work surface 91, causing the handle 13 to bend as it approaches the work surface 91.
  • the elastic deformation of the handle 13 causes the blade 11 to move in the first direction X1 while biting into the work surface 91.
  • the amount of movement of the robot hand 21 and handle 13 in the approach direction Y2 at this time will be described as the push-in amount YA, and the amount of movement of the blade 11 in the first direction X1 will be described as the movement amount PA.
  • the reference height of the push-in amount YA is set to the height of a reference point on the surface 91 to be machined, measured by a three-dimensional shape measuring device, with the height set as the zero point.
  • a corner of the surface 91 to be machined may be set as the reference point, and the surface height may be set as the reference height.
  • the scraping process is performed by moving the robot hand 21 and scraper 10 together in a direction along the surface 91 to be processed, with the blade 11 biting into the surface 91 to be processed and the handle 13 bent. At this time, the orientation of the scraper 10 is controlled so that the blade 11 is positioned at the tip of the scraper 10 in the processing direction. That is, in FIG. 2(b), the first direction X1 (the right direction in the figure) is the processing direction.
  • FIG. 2(c) shows details of the blade portion 11 of the scraper 10 in contact with the surface 91 to be machined.
  • the blade portion 11 has a scooping surface 11a located at the tip of the scraper 10, a clearance surface 11b adjacent to the scooping surface 11a that faces the surface 91 to be machined during scraping, and a cutting edge 11c formed on the ridge portion that is the boundary between the scooping surface 11a and the clearance surface 11b.
  • the cutting edge 11c has a convex arc (rounded) shape at the center in the blade width direction, but when applying the present invention, the shape of the cutting edge 11c is not limited to this and may be a straight line.
  • Figure 2(c) shows the amount QA of penetration of the blade portion 11 into the workpiece surface 91, and the amount PA of movement of the cutting edge 11c of the blade portion 11 in the first direction X1 due to bending of the handle portion 13.
  • the amount QA of penetration of the blade portion 11, which corresponds to the cutting depth, is a dimension on the order of microns or submicrons.
  • the amount YA of the robot hand 21 pushing in during processing can be set as a displacement on the order of millimeters. In this way, when the robot hand 21 moves in a direction along the workpiece surface 91 with the blade portion 11 penetrated, the workpiece surface 91 is cut by a thickness on the order of microns or submicrons.
  • the cutting edge 11c of the blade 11 moves in the first direction X1 by the moving amount PA while biting into the work surface 91 by the biting amount QA.
  • the blade 11 behaves differently from the handle 13 and the robot hand 21.
  • the blade 11 moves in the first direction X1, which is the processing direction.
  • the cutting angle which is the angle between the workpiece surface 91 and the clearance surface 11b of the blade portion 11, changes before and after the handle portion 13 is deflected. Specifically, as shown in FIG. 2(c), the cutting angle ⁇ A1 before the handle portion 13 is deflected changes to a smaller cutting angle ⁇ A2 as the handle portion 13 is deflected.
  • the above-mentioned push-in amount YA and cutting angle ⁇ A1 are typically used as control parameters for scraping.
  • the controller 37 operates the robot arm 20 in accordance with each control parameter to perform scraping.
  • the control device 30 controls the robot arm 20 according to the processing instruction data, and as a result, scraping processing is performed on the processing target surface 91 of the workpiece 90 according to the processing instruction data.
  • the control device 30 also generates processing instruction data for controlling the robot arm 20. That is, the control device 30 functions as a device for controlling the robot arm 20 and also functions as an information processing device (processing instruction data generating device) for generating processing instruction data used when controlling the robot arm 20.
  • the processing instruction data for controlling the robot arm 20 may be generated by an information processing device (processing instruction data generating device) other than the control device 30.
  • control device 30 acquires the processing instruction data generated by the information processing device (processing instruction data generating device), and the control device 30 controls the robot arm 20 according to the acquired processing instruction data.
  • the processing instruction data may be transmitted from the information processing device (processing instruction data generating device) to the control device 30 by either wired communication or wireless communication.
  • FIG. 3 is a block diagram showing an example of the configuration of the control device 30.
  • the control device 30 is, for example, a general computer.
  • the computer constituting the control device 30 includes a communication interface (communication I/F) 31, a storage device 32, an input/output device 33, and a processor 34, which are connected via a communication bus 35.
  • communication I/F communication interface
  • storage device 32 storage device
  • input/output device 33 input/output device 33
  • processor 34 which are connected via a communication bus 35.
  • the communication I/F 31 may be, for example, a network card or a communication module, and communicates with other computers, devices, etc. based on a specific protocol.
  • the control device 30 receives three-dimensional shape information of the machining surface 91 of the workpiece 90 from a three-dimensional shape measuring device via the communication I/F 31.
  • the storage device 32 includes, for example, a main storage device such as a RAM (Random Access Memory) or a ROM (Read Only Memory), and an auxiliary storage device (secondary storage device) such as a HDD (Hard-Disk Drive), an SSD (Solid State Drive), or a flash memory.
  • the main storage device temporarily stores the programs read by the processor 34 and information sent and received between other computers, and secures a working area for the processor 34.
  • the auxiliary storage device stores the programs executed by the processor 34 and information sent and received between other computers.
  • the auxiliary storage device may also include a removable medium (portable recording medium).
  • the removable medium is, for example, a USB memory, an SD card, or a disc recording medium such as a CD-ROM, a DVD disk, or a Blu-ray disk.
  • the storage device 32 (for example, the auxiliary storage device) stores an operating system (OS), various programs, and various information tables.
  • OS operating system
  • various programs various information tables.
  • the input/output device 33 is a user interface, such as an input device such as a keyboard or a mouse, an output device such as a monitor, or an input/output device such as a touch panel. Through the input/output device 33, the worker can input control parameters for setting the machining path for scraping.
  • the processor 34 is an arithmetic processing device such as a CPU (Central Processing Unit) or a DSP (Digital Signal Processor), and performs each process related to this embodiment by executing a program. For example, the processor 34 loads a program stored in the auxiliary storage device of the storage device 32 into the main storage device and executes it, thereby realizing various processes such as a processing instruction data generation process for generating processing instruction data as described below.
  • a CPU Central Processing Unit
  • DSP Digital Signal Processor
  • the control device 30 does not necessarily have to be realized by a single physical configuration, but may be configured by multiple computers that work together.
  • FIG. 4 is a block diagram showing an example of the functional configuration of the control device 30.
  • the control device 30 has a processing instruction data generation unit 36 and a control unit 37 as functional units.
  • the processor 34 of the control device 30 loads a program stored in the auxiliary storage device of the storage device 32 into the main storage device and executes it, thereby realizing each of the above-mentioned functional units.
  • the processing instruction data generation unit 36 executes a processing instruction data generation process that generates processing instruction data.
  • the control unit 37 acquires the processing instruction data generated by the processing instruction data generation unit 36, and controls the robot arm 20 in accordance with the processing instruction data.
  • the scraper 10 is operated by the robot arm 20 controlled by the control device 30.
  • the handle 13 of the scraper 10 bends, when the blade 11 is brought into contact with or separated from the workpiece surface 91, the blade 11 of the scraper 10 behaves differently from the robot hand 21 moving along the workpiece path.
  • the workpiece path is set without taking into account the bending of the handle 13, the intended workpiece may not be processed.
  • the workpiece path during scraping will be described for a comparative example that does not take into account the bending of the handle 13, and this embodiment that takes into account the bending of the handle 13.
  • the present invention can be applied to both a finishing process that forms a recess for an oil reservoir on the workpiece surface 91, and a flattening process.
  • Fig. 5 (a) to (d) are diagrams showing the movement of the scraper 10 and the robot hand 21 in a series of processing paths of the comparative example, showing how the blade portion 11 abuts against, processes, and separates from the processing target surface 91.
  • the scraper 10 and other components in the original position before the movement are shown by dotted lines
  • the general movement direction of the handle portion 13 and the robot hand 21 is shown by a black arrow
  • the general movement direction of the blade portion 11 is shown by a white arrow.
  • the control device 30 moves the robot hand 21 in a separation direction Y1 that is approximately perpendicular to the processing target surface 91.
  • FIG. 5(a) is a side view showing the blade 11 abutting against the surface 91 to be machined with the handle 13 in a substantially unbent state. At this time, the handle 13 is in a substantially straight state, although there is a small amount of bending due to gravity and the like that can be ignored.
  • Figure 5(b) is a side view showing the state when the handle 13 and the robot hand 21 move in the approach direction Y2 by the pushing amount YA from the state in Figure 5(a). At this time, the handle 13 moves in the approach direction Y2, but the cutting edge 11c of the blade 11 moves in the first direction X1 by the moving amount PA while biting into the workpiece surface 91.
  • Figure 5(c) is a side view showing how the scraper 10 and robot hand 21 move in the first direction X1 from the state shown in Figure 5(b), and the surface to be machined 91 is machined by the blade portion 11. At this time, the scraper 10 moves in the first direction X1 together with the robot hand 21 with the handle portion 13 remaining in a bent state.
  • the surface to be machined 91 is machined to a thickness QA that is the amount of penetration of the blade portion 11 into the surface to be machined.
  • FIG. 5(d) is a side view showing the state when the handle 13 and the robot hand 21 have moved an amount YB in the separation direction Y1 from the state shown in FIG. 5(c).
  • the amount YB is approximately the same as the pushing amount YA.
  • the deflection of the handle 13 is released, and the blade 11 moves away from the processing surface 91.
  • the cutting edge 11c moves in the second direction X2 by a return amount PB1 as the handle 13 is unbent. Because the return amount PB1 is the amount of movement caused by the handle 13 being unbent, the return amount PB1 is approximately the same as the movement amount PA. That is, in the machining path of the comparative example, the cutting edge 11c moves in the first direction X1 as the handle 13 bends, and moves in the second direction X2 as the handle 13 is unbent.
  • Figure 6 is an enlarged view of part B in Figure 5 (d). Near the end point of the machining path, the cutting edge 11c moves in the second direction X2, making it easy for burrs 92 to occur on the workpiece 90. If burrs 92 remain on the sliding surface, they will not only significantly affect the sliding properties, but will also damage the surface of the other object against which they slide. Also, adding a new process to remove large burrs 92 will increase manufacturing costs, so it is desirable to suppress the occurrence of burrs 92.
  • the machining path in which the robot hand 21 moves in a direction perpendicular to the machining surface 91 to move the blade portion 11 away from the machining surface 91 has been described, but the occurrence of burrs is not limited to the above-mentioned machining path.
  • a similar problem may occur in a machining path in which the robot hand 21 moves in the first direction X1 while also moving in the separation direction Y1 to move the blade portion 11 away from the machining surface 91.
  • the cutting edge 11c moves in the second direction X2, which may cause burrs. Furthermore, if the cutting edge 11c moves in the second direction X2 opposite to the machining direction, the intended length of machining may not be achieved, and the machining surface 91 may be left uncut near the end point of the machining path. Therefore, the inventors came up with a technology to prevent burrs and uncut areas by controlling the robot arm 20 based on the amount of movement of the blade 11 caused by the elastic deformation of the handle 13.
  • Figures 7(a) to 7(d) are diagrams showing the movement of the scraper 10 and the robot hand 21 in a series of machining paths in this embodiment, showing the state from when the blade 11 comes into contact with the surface 91 to when it is about to separate from the surface 91.
  • the scraper 10 and other components in their original positions before movement are shown by dotted lines
  • the general movement directions of the handle 13 and the robot hand 21 are shown by black arrows
  • the general movement direction of the blade 11 is shown by white arrows.
  • FIG. 7(a) is a side view showing the blade portion 11 abutting against the surface to be machined 91 with the handle portion 13 not substantially bent.
  • FIG. 7(b) is a side view showing the state when the handle portion 13 and the robot hand 21 move in the approach direction Y2 by the pushing amount YA from the state of FIG. 7(a).
  • FIG. 7(c) is a side view showing the state when the scraper 10 and the robot hand 21 move in the first direction X1 from the state of FIG. 7(b) and the surface to be machined 91 is machined by the blade portion 11. That is, in this embodiment, as in the comparative example, the scraper 10 and the robot hand 21 move with the handle portion 13 in a bent state, and the surface to be machined 91 is machined by the blade portion 11.
  • the movement of the robot hand 21 and scraper 10 from when the blade portion 11 comes into contact with the surface to be machined 91 until the robot hand 21 moves parallel to the surface to be machined 91 is the same as in the comparative example.
  • the control device 30 moves the robot hand 21 in the moving away direction Y1 while moving it a predetermined amount in the first direction X1. That is, in this embodiment, the angle formed between the trajectory of the robot hand 21 when the blade portion 11 is moved away from the surface to be machined 91 and the surface to be machined 91 is an acute angle.
  • FIG. 7(d) is a side view showing the state immediately before the blade 11 leaves the processing surface 91 from the state shown in FIG. 7(c).
  • the handle 13 and the robot hand 21 move obliquely relative to the processing surface 91.
  • the movement amount of the handle 13 and the robot hand 21 at this time is a movement amount XB in the first direction X1 and a movement amount YB in the moving away direction Y1.
  • the movement amount YB is approximately the same as the pushing amount YA, as in the comparative example.
  • the handle 13 moves by the movement amount XB in the first direction X1 while the blade 11 remains in contact with the processing surface 91 until the handle 13 moves by the movement amount YB in the moving away direction Y1. Then, from the state shown in FIG. 7(d), the robot hand 21 moves further in the same direction, and the blade 11 is completely moved away from the processing surface 91.
  • the movement amount XB of the handle 13 in the first direction X1 is set to be larger than the movement amount PA of the blade 11 in the first direction X1 when the handle 13 is bent. Since the movement amount PA is approximately the same as the return amount PB1 of the blade 11 in the second direction X2, it can be said that the movement amount XB is set to be larger than the return amount PB1.
  • the robot hand 21 moves in the first direction X1 by more than the amount by which the blade 11 moves in the second direction X2 as the handle 13 is released from the bending. Therefore, according to this embodiment, when the handle 13 moves in the separation direction Y1, the cutting edge 11c also moves in the first direction X1.
  • the movement amount PB2 is approximately the same as the difference between the movement amount XB of the handle 13 and the return amount PB1 of the cutting edge 11c.
  • Figure 8 is an enlarged view of part C in Figure 7(d). According to this embodiment, near the end point of the machining path, the cutting edge 11c moves in the first direction X1 while moving away from the machining target surface 91, so that the occurrence of uncut parts and burrs can be suppressed.
  • FIG. 9 is a schematic diagram showing the trajectory of the robot hand 21 during scraping.
  • the trajectory of the robot hand 21 is shown by a dotted line with an arrow, and representative positions of the robot hand 21 are shown as points D1 to D4.
  • the movement of the robot hand 21 is controlled by the control device 30, and it moves while holding the scraper 10.
  • the handle 13 When the robot hand 21 is located at point D1, the handle 13 is not bent at all, and the blade 11 is in contact with the work surface 91 without digging into it. The robot hand 21 then moves in the approach direction Y2 by the push amount YA from point D1 to point D2. At this time, the handle 13 bends, and the blade 11 moves in the first direction X1 while digging into the work surface 91.
  • the robot hand 21 moves from point D2 to point D3 in the first direction X1.
  • the amount of machining of the surface 91 to be machined is determined by the amount of movement and the amount of depression YA at this time.
  • the machining path up to this point can be determined by setting the coordinate position of point D1, the amount of depression YA, and the amount of movement in the first direction X1.
  • the robot hand 21 moves from point D3 to point D4.
  • the robot hand 21 moves in the first direction X1 by a movement amount XB while moving in the separating direction Y1 by a movement amount YB. That is, the trajectory of the robot hand 21 is inclined at an acute angle RB with respect to the processing target surface 91.
  • the movement amount YB in the separating direction Y1 is approximately the same as the pushing amount YA
  • the movement amount XB in the first direction X1 is greater than the movement amount PA and the return amount PB1.
  • the blade portion 11 moves completely away from the processing target surface 91, and the series of processing passes ends. Processing along such processing passes is repeated to perform flattening processing and finishing processing.
  • the operator may input the movement amount XB and angle RB in advance, or the operator may input the movement amount PA and return amount PB1 and the control device 30 may automatically determine the movement amount XB, etc.
  • an information table in which the movement amount PA and the movement amount XB are associated may be stored in the control device 30, and the operator may input the movement amount PA and the control device 30 may set the movement amount XB.
  • the control device 30 may set the angle RB.
  • the movement amount PA used to set the machining path may be calculated from the shape and physical properties of the handle 13, or may be measured and obtained for each machining condition. For example, when the robot hand 21 is moved in the approach direction Y2 with the blade 11 in contact with the machining surface 91 and then moved in the separation direction Y1, a machining mark is left on the workpiece 90 by the amount of movement of the blade 11 due to the deflection of the handle 13. By performing such measurement machining under various machining conditions and measuring the length of the machining mark, the movement amount PA of the blade 11 corresponding to each machining condition is obtained. Therefore, the movement amount PA for each machining condition obtained by measurement may be stored in the scraping device 100, and the control device 30 may automatically obtain the movement amount PA from the machining conditions and determine the movement amount XB.
  • the cutting edge 11c of the blade portion 11 has a convex arc shape at the center in the blade width direction, and has a predetermined blade width.
  • the push-in amount YA is small, only a part of the cutting edge 11c abuts against the surface 91 to be machined, and the cutting edge 11c will have parts that have been used in machining and worn away, and parts that have not been used in machining and have not worn away. Therefore, the inventors of the present application came up with a technology to extend the tool life by devising a machining method that shifts the position at which the cutting edge abuts, dividing a single cutting edge into multiple parts that can be used individually for machining.
  • FIGS. 10(a) and (b) are schematic top views showing the relationship between the scraper 10 and the machining area 91a of the surface 91 to be machined when viewed from a direction perpendicular to the surface 91 to be machined.
  • the machining area 91a which is the area of the surface 91 to be machined, is shaded with diagonal lines, and the direction of movement of the handle 13 is indicated by a solid black arrow.
  • the handle 13 moves to machine the machining area 91a while the center line 11d of the blade 11 in the blade width direction is parallel to the machining direction. If the angle between the center line 11d and the machining direction at this time is a first angle, the first angle is 0°. Since the center line 91b in the width direction of the machining area 91a is parallel to the machining direction, in the first machining, the robot arm 20 is driven so that the center line 11d and the center line 91b overlap. Therefore, the first abutment portion 11e of the cutting edge 11c that abuts against the machining area 91a is located at the center in the blade width direction. In other words, both ends of the cutting edge 11c in the blade width direction do not abut against the machining target surface 91 during machining, and therefore do not wear out.
  • the center line 11d of the blade 11 is inclined with respect to the processing direction, and the handle 13 moves to process the processing area 91a. That is, in the second processing, the angle between the center line 11d and the processing direction changes compared to the first processing. If the angle between the center line 11d and the processing direction at this time is the second angle, the second angle is an acute angle that is different from the first angle. In addition, the center line 11d of the blade 11 and the center line 91b of the processing area 91a are inclined.
  • the second abutment portion 11f of the cutting edge 11c that abuts against the processing area 91a is located on the end side of the cutting edge 11c in the blade width direction with respect to the first abutment portion 11e. That is, in the second processing, the robot arm 20 is driven so that a different position of the cutting edge 11c abuts against the processing area 91a compared to the first processing, and processing is performed.
  • the machining when the first machining is repeated and the first contact portion 11e of the cutting edge 11c becomes worn, the machining can be switched to the second machining, and the machining can be continued using the unworn second contact portion 11f without the need for tool replacement. Furthermore, when the second contact portion 11f becomes worn, the machining can be continued using a portion of the cutting edge 11c located on the opposite end side of the second contact portion 11f from the first contact portion 11e. That is, in this embodiment, the cutting edge 11c is used in three separate regions, and the robot arm 20 is controlled so that different regions are used for machining as the wear of each region progresses.
  • the life of the blade portion 11 can be extended compared to a scraping method in which only the same part of the cutting edge 11c is used continuously.
  • the first abutment portion 11e is located at the center of the cutting edge 11c in the blade width direction in the first process, but this configuration is not limited to extending the life of the blade portion 11.
  • first abutment portion 11e is located at one end side of the cutting edge 11c and the second abutment portion 11f is located at the other end side opposite to the one end side of the cutting edge 11c in the blade width direction of the cutting edge 11c.
  • first angle is set to 0° in the above embodiment, it is also possible to set both the first angle and the second angle to be acute angles.
  • the machining path is configured as a straight line, but the machining path when the robot hand 21 is moved away from the surface 91 to be machined may be configured to include a curve.
  • the machining path is such that the robot hand 21 moves in the first direction X1 by more than the movement amount PA until the cutting edge 11c moves away from the surface 91 to be machined (until the robot hand 21 moves by the movement amount YB in the moving away direction Y1), the occurrence of uncut areas and burrs can be suppressed.
  • a process that has been described as being performed by one device may be shared and executed by multiple devices. Or, a process that has been described as being performed by different devices may be executed by a single device.
  • the hardware configuration that realizes each function can be flexibly changed.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

A scraping apparatus comprises a processing robot that holds and actuates a scraper having a cutting part 11 and a flexible shaft part 13 to which the cutting part is provided, and a control device that controls the processing robot in accordance with processing instruction data, the shaft part 13 being moved in a processing direction in a state in which the shaft part 13 is flexed to perform scraping on a processing object surface 91, and the control device controlling the processing robot so that the shaft part 13 is caused to move in the direction away from the processing object surface 91 while the shaft part 13 is caused to move a prescribed amount in the processing direction on the basis of the amount that the cutting part 11 moves due to elastic deformation of the shaft part 13 during separation of the cutting part 11 from the processing object surface 91.

Description

キサゲ加工装置、及びキサゲ加工方法Scraping device and scraping method
 本発明は、キサゲ加工を自動で行うための技術に関する。 The present invention relates to technology for automating scraping processes.
 移動部を有した工作機械等の摺動面には、その平面度を高めて摺動摩擦係数を低減するために、キサゲ加工(「スクレーピング加工」ともいう)が行われる。キサゲ加工は、金属加工の一種であり、従来、被加工物(ワーク)の加工対象面(被加工面)に光明丹(鉛丹)や顔料を塗り、先端が幅広でノミ状(ヘラ状)のキサゲ工具(スクレーパ)を作業者が使って、色の違いを見ながら手作業で凸部を削り除去する作業を行っていた。 Scraping (also called "scraping") is performed on the sliding surfaces of machine tools and other devices with moving parts to increase their flatness and reduce the coefficient of sliding friction. Scraping is a type of metal processing, and traditionally, the surface to be machined of the workpiece is painted with red lead or a pigment, and the worker uses a scraper with a wide, chisel-shaped tip to manually scrape off and remove any protruding parts while checking the difference in color.
 キサゲ加工の本来の目的は、摺動面を高精度な平面に仕上げることにあるが、このキサゲ加工によって摺動面に形成されたミクロン単位の微小な凹みは、摺動時に潤滑油の油溜まりの作用をするため、摺動面の潤滑性が向上し、摺動時のリンギングを防止する効果がある。しかし、作業者の手作業によるキサゲ加工は、熟練が要求される作業であり、また、大変な重労働でもあった。 The original purpose of scraping is to finish the sliding surface into a highly flat surface, but the minute micron-sized depressions formed on the sliding surface by scraping act as reservoirs for lubricating oil during sliding, improving the lubrication of the sliding surface and preventing ringing during sliding. However, scraping done manually by a worker requires skill and is also very hard work.
 これに関連して、スクレーパの動作を自動制御することによって被加工物の加工対象面に対してキサゲ加工を行う自動キサゲ加工装置も提案されている。例えば、特許文献1には、スクレーパの刃先を被加工面に対して当接、又は離間させる際に、スクレーパの軌道が被加工面に対して鋭角を形成するようにスクレーパを移動させる構成を開示している。 In relation to this, an automatic scraping device has also been proposed that scrapes the surface of a workpiece by automatically controlling the operation of a scraper. For example, Patent Document 1 discloses a configuration in which a scraper is moved so that the trajectory of the scraper forms an acute angle with the surface when the cutting edge of the scraper is brought into contact with or separated from the surface.
国際公開公報WO2022/054674号International Publication No. WO2022/054674
 しかし、上述の構成においては、スクレーパが撓んだ状態で加工対象物が加工されるため、刃先を加工対象面から離間させる際に、スクレーパの撓みが解消されると同時に刃先が移動する。従って、スクレーパの軌道によっては、刃先が加工方向と反対方向に移動してしまう。すると、意図していた長さ分加工できずに削り残しが発生したり、加工パスの終点付近においてバリが発生しやすくなったりする。 However, in the above-mentioned configuration, the workpiece is machined with the scraper bent, so when the cutting edge is moved away from the surface of the workpiece, the scraper unbends and the cutting edge moves at the same time. Therefore, depending on the trajectory of the scraper, the cutting edge moves in the opposite direction to the machining direction. This can result in the cutting edge not being able to machine the intended length, leaving uncut material, or burrs easily occurring near the end of the machining path.
 本発明は、上述の課題に鑑みてなされたものであって、キサゲ加工を行うキサゲ加工装置に関し、加工対象面の削り残しやバリの発生を抑制する技術を提供することを目的とする。 The present invention was made in consideration of the above-mentioned problems, and aims to provide a technology for scraping devices that perform scraping, which suppresses the occurrence of uncut areas and burrs on the surface to be processed.
 (態様1)
 上記課題を解決するため、本発明の態様1に係るキサゲ加工装置は、刃部と、刃部が設けられた可撓性の柄部と、を有するスクレーパを保持して動作させる加工用ロボットと、加工指示データに従い前記加工用ロボットを制御する制御装置と、を備え、前記刃部を被加工物の加工対象面に対して当接させた状態から、前記柄部を前記加工対象面に近づく方向に移動させることによって、前記刃部が前記加工対象面に沿った加工方向に移動するように前記柄部を撓ませ、前記柄部が撓んだ状態で前記柄部を前記加工方向に移動して、前記加工対象面に対してキサゲ加工を行うキサゲ加工装置であって、前記制御装置は、前記刃部を前記加工対象面から離す際に、前記柄部の弾性変形によって前記刃部が移動する量に基づいて前記柄部を前記加工方向へ所定量移動させながら、前記柄部を前記加工対象面から離す方向に移動させるように前記加工用ロボットを制御する。
(Aspect 1)
In order to solve the above problems, a scraping device according to a first aspect of the present invention comprises a processing robot that holds and operates a scraper having a blade portion and a flexible handle portion on which the blade portion is provided, and a control device that controls the processing robot in accordance with processing instruction data, and by moving the handle portion in a direction approaching the processing surface from a state in which the blade portion is in contact with the processing surface of a workpiece, the handle portion is bent so that the blade portion moves in a processing direction along the processing surface, and in a bent state, the handle portion is moved in the processing direction to perform scraping on the processing surface, and the control device controls the processing robot to move the handle portion in a direction away from the processing surface while moving a predetermined amount in the processing direction based on the amount by which the blade portion moves due to the elastic deformation of the handle portion when the blade portion is moved away from the processing surface.
 (態様2)
 上記態様1において、前記所定量は、前記キサゲ加工において、前記刃部が前記加工対象面に対して当接し始めた状態から、前記柄部が前記加工対象面に近づく方向に移動して、前記柄部が撓んだときに前記刃部が前記加工方向に移動した量以上であっても良い。
(Aspect 2)
In the above-mentioned aspect 1, the specified amount may be greater than or equal to the amount by which the blade portion moves in the processing direction when the handle portion bends from a state in which the blade portion begins to come into contact with the surface to be processed, in the scraping process, in a direction approaching the surface to be processed.
 (態様3)
 上記態様1又は2において、前記制御装置は、前記刃部が前記加工対象面から離れるまでに、前記柄部を前記加工方向へ前記所定量移動させても良い。
(Aspect 3)
In the above-mentioned first or second aspect, the control device may move the handle portion by the predetermined amount in the processing direction before the blade portion separates from the surface to be processed.
 (態様4)
 上記態様1~3のいずれか一の態様において、前記加工対象面と垂直な方向において、前記刃部が前記加工対象面に当接した状態から、前記柄部が前記加工対象面に向かって移動する量を押し込み量とすると、前記制御装置は、前記キサゲ加工において前記刃部を前記加工対象面から離す際、前記柄部を、前記垂直な方向において前記加工対象面から離す方向に前記押し込み量分移動させるまでの間に、前記加工方向へ前記所定量移動させるように、前記加工用ロボットを制御しても良い。
(Aspect 4)
In any one of aspects 1 to 3 above, when the amount by which the handle portion moves from a state in which the blade portion is in contact with the surface to be processed toward the surface to be processed in a direction perpendicular to the surface to be processed is defined as a push-in amount, the control device may control the processing robot so that, when the blade portion is moved away from the surface to be processed in the scraping process, the control device controls the processing robot to move the handle portion the predetermined amount in the processing direction before moving the handle portion the push-in amount in the direction away from the surface to be processed in the perpendicular direction.
 (態様5)
 上記態様1~4のいずれか一の態様において、前記柄部は、略帯板形状であり、長手方向の一端に前記刃部が設けられ、前記制御装置は、前記キサゲ加工において、前記刃部が前記スクレーパの前記加工方向の先端に位置するように前記スクレーパの向きを制御しても良い。
(Aspect 5)
In any one of the above aspects 1 to 4, the handle portion is approximately strip-shaped, and the blade portion is provided at one end in the longitudinal direction, and the control device may control the orientation of the scraper during the scraping process so that the blade portion is positioned at the tip of the scraper in the processing direction.
 (態様6)
 上記態様1~5のいずれか一の態様において、前記刃部は、前記柄部に対して交換可能に取り付けられていても良い。
(Aspect 6)
In any one of the above aspects 1 to 5, the blade portion may be replaceably attached to the handle portion.
 (態様7)
 上記態様1~6のいずれか一の態様において、前記加工用ロボットは、前記刃部の前記加工対象面と対向する面と、前記加工対象面がなす切込み角を調整可能に構成されていても良い。
(Aspect 7)
In any one of the above aspects 1 to 6, the processing robot may be configured to be able to adjust a cutting angle between a surface of the blade portion facing the surface to be processed and the surface to be processed.
 (態様8)
 上記課題を解決するため、本発明の態様8に係るキサゲ加工方法は、刃部と、刃部が設けられた可撓性の柄部と、を有するスクレーパを保持して動作させる加工用ロボットと、加工指示データに従い前記加工用ロボットを制御する制御装置と、を備え、被加工物の加工対象面に対してキサゲ加工を行うキサゲ加工装置によるキサゲ加工方法であって、前記キサゲ加工において、前記制御装置は、前記刃部を前記加工対象面に対して当接させた状態から、前記柄部を前記加工対象面に近づく方向に移動させることによって、前記刃部が前記加工対象面に沿った加工方向に移動するように前記柄部を撓ませ、前記柄部が撓んだ状態で前記柄部を前記加工方向に移動して、前記刃部を前記加工対象面から離す際に、前記柄部の弾性変形によって前記刃部が移動する量に基づいて前記柄部を前記加工方向へ所定量移動させながら、前記柄部を前記加工対象面から離す方向に移動させるように前記加工用ロボットを制御する。
(Aspect 8)
In order to solve the above problems, a scraping method according to an eighth aspect of the present invention is a scraping method using a scraping device that includes a processing robot that holds and operates a scraper having a blade portion and a flexible handle portion on which the blade portion is provided, and a control device that controls the processing robot in accordance with processing instruction data, and performs scraping on a surface to be processed of a workpiece, wherein in the scraping, the control device controls the processing robot to move the handle portion from a state in which the blade portion is in contact with the surface to be processed in a direction approaching the surface to be processed, thereby bending the handle portion so that the blade portion moves in a processing direction along the surface to be processed, and to move the handle portion in the bending state in the processing direction to move the blade portion away from the surface to be processed, while moving the handle portion a predetermined amount in the processing direction based on the amount by which the blade portion moves due to the elastic deformation of the handle portion.
 (態様9)
 上記態様8において、前記所定量は、前記キサゲ加工において、前記刃部が前記加工対象面に対して当接し始めた状態から、前記柄部が前記加工対象面に近づく方向に移動して、前記柄部が撓んだときに前記刃部が前記加工方向に移動した量以上であっても良い。
(Aspect 9)
In the above-mentioned aspect 8, the specified amount may be greater than or equal to the amount by which the blade portion moves in the processing direction when the handle portion bends from a state in which the blade portion begins to come into contact with the surface to be processed, in the scraping process, in a direction approaching the surface to be processed.
 (態様10)
 上記態様8又は9において、前記刃部の切れ刃は、刃幅方向の中央部が凸の円弧形状であり、前記加工対象面に垂直な方向から見たときに前記刃部の前記刃幅方向の中心線と前記加工方向とがなす角度を第1の角度とした状態で、前記切れ刃の第1当接部を前記加工対象面に当接させて前記加工対象面を加工する第1加工と、前記角度を前記第1の角度と異なる第2の角度とした状態で、前記切れ刃の前記第1当接部と異なる位置の第2当接部を前記加工対象面に当接させて前記加工対象面を加工する第2加工と、を含んでも良い。
(Aspect 10)
In the above-mentioned aspect 8 or 9, the cutting edge of the blade portion has a convex arc shape at the center in the blade width direction, and the method may include a first processing step in which a first abutment portion of the cutting edge is abutted against the surface to be machined while an angle between a center line of the blade portion in the blade width direction and the machining direction is set to a first angle when viewed from a direction perpendicular to the surface to be machined, and a second processing step in which a second abutment portion of the cutting edge, located at a position different from the first abutment portion, is abutted against the surface to be machined while the angle is set to a second angle different from the first angle, to machine the surface to be machined.
 本発明によれば、キサゲ加工を行うキサゲ加工装置に関し、加工対象面の削り残しやバリの発生を抑制する技術を提供できる。 The present invention provides a technology for scraping devices that perform scraping processes and that suppresses the occurrence of uncut areas and burrs on the surface to be processed.
実施例に係るキサゲ加工装置の概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a scraping device according to an embodiment. 実施例に係るロボットハンドに保持されたスクレーパを示す図である。FIG. 1 is a diagram showing a scraper held by a robot hand in an embodiment. 実施例に係る制御装置の構成の一例を示すブロック図である。FIG. 2 is a block diagram showing an example of a configuration of a control device according to an embodiment. 実施例に係る制御装置の機能構成の一例を概略的に示すブロック図である。FIG. 2 is a block diagram illustrating an example of a functional configuration of a control device according to an embodiment. 比較例に係るキサゲ加工の加工パスを示す図である。FIG. 13 is a diagram showing a machining path of scraping according to a comparative example. 比較例に係るキサゲ加工の加工パスの終点付近を示す図である。FIG. 13 is a diagram showing the vicinity of the end point of a machining path of scraping in a comparative example. 実施例に係るキサゲ加工の加工パスを示す図である。FIG. 4 is a diagram showing a machining path of scraping according to the embodiment. 実施例に係るキサゲ加工の加工パスの終点付近を示す図である。FIG. 13 is a diagram showing the vicinity of the end point of the machining path of the scraping process in the embodiment. 実施例に係るキサゲ加工時のロボットハンドの軌道を示す図である。FIG. 11 is a diagram showing a trajectory of a robot hand during scraping in the embodiment. 実施例に係るスクレーパと加工領域の関係を示す模式的上面図である。FIG. 2 is a schematic top view showing the relationship between a scraper and a processing area according to the embodiment.
 以下に図面を参照して、この発明を実施するための形態を、実施例に基づいて例示的に詳しく説明する。なお、この実施の形態に記載されている構成部品の寸法、材質、形状それらの相対配置などは、発明が適用される装置の構成や各種条件により適宜変更されるべきものである。すなわち、この発明の範囲を以下の実施の形態に限定する趣旨のものではない。 Below, with reference to the drawings, a detailed description of the mode for carrying out this invention will be given by way of example. Note that the dimensions, materials, shapes and relative arrangements of the components described in this embodiment should be modified as appropriate depending on the configuration and various conditions of the device to which the invention is applied. In other words, it is not intended to limit the scope of this invention to the following embodiment.
 <実施例>
 (キサゲ加工装置100)
 まず、本発明の実施例に係るキサゲ加工装置100の概略構成について説明する。図1は、実施例に係るキサゲ加工装置100の概略構成を示す模式図である。キサゲ加工装置100は、スクレーパ10を保持して動作させるロボットアーム20と、加工指示データに従いロボットアーム20を制御する制御装置30と、を備える。
<Example>
(Scrape processing device 100)
First, a schematic configuration of a scraping apparatus 100 according to an embodiment of the present invention will be described. Fig. 1 is a schematic diagram showing a schematic configuration of the scraping apparatus 100 according to the embodiment. The scraping apparatus 100 includes a robot arm 20 that holds and operates a scraper 10, and a control device 30 that controls the robot arm 20 according to processing instruction data.
 キサゲ加工装置100は、被加工物であるワーク90の加工対象面(被加工面)91に対してキサゲ加工(スクレーピング加工)を自動で行う装置である。ワーク90は、例えば、工作機械等を構成する金属製の摺動部材であり、その摺動面が加工対象面91としてキサゲ加工により加工される。キサゲ加工は金属加工の一種であり、キサゲ工具(切削工具)であるスクレーパ10を用いて加工対象面91の凸部を削り取り、加工対象面91の平面度を高め、更に油溜まりを形成することによって摺動摩擦係数を低減させる。 The scraping device 100 is a device that automatically performs scraping on the processing target surface (machined surface) 91 of the workpiece 90, which is the object to be processed. The workpiece 90 is, for example, a metallic sliding member that constitutes a machine tool, and its sliding surface is processed by scraping as the processing target surface 91. Scraping is a type of metal processing, and uses a scraper 10, which is a scraping tool (cutting tool), to scrape off the convex parts of the processing target surface 91, increasing the flatness of the processing target surface 91, and further reducing the coefficient of sliding friction by forming an oil reservoir.
 キサゲ加工における加工対象面91は、一般的に鋳造面に切削や研削等の加工を施すことにより、一定の平面度を有し、微小な凹凸を有する平面である。キサゲ加工の本来の目的は、摺動面をより高精度な平面に仕上げることである。更に、摺動面の摺動時にリンギング(Wringing)現象が発生することを防止すべく、キサゲ仕上げ加工においては、摺動面にミクロン単位の微小な多数の窪みを潤滑油の油溜まりとして形成し、摺動面の潤滑性を向上させる。 The surface 91 to be machined in scraping is generally a flat surface with a certain degree of flatness and minute irregularities, which is achieved by cutting, grinding, or other processes on the cast surface. The original purpose of scraping is to finish the sliding surface into a highly accurate flat surface. Furthermore, in order to prevent the wringing phenomenon from occurring when the sliding surface slides, the scraping process forms many minute depressions on the sliding surface, measuring in microns, as reservoirs for lubricating oil, improving the lubricity of the sliding surface.
 本実施例におけるキサゲ加工装置100は、加工対象面91の平面度が所定の目標平面度を満たすように加工対象面91の凸部を切削する平面出し加工処理と、当該平面出し加工処理の後に、加工対象面91に油溜まり用の窪みを形成する仕上げ加工処理と、を行う。それぞれの加工処理には、高精度化及び加工能率向上のため、一般的には異なる切削条件やキサゲ工具が用いられる。 The scraping device 100 in this embodiment performs a flattening process to cut convex portions of the surface 91 to be machined so that the flatness of the surface 91 meets a predetermined target flatness, and a finishing process to form depressions for oil reservoirs in the surface 91 to be machined after the flattening process. In order to improve precision and processing efficiency, different cutting conditions and scraping tools are generally used for each process.
 スクレーパ10は、刃部11と、ロボットアーム20に着脱自在で可撓性を有する柄部13と、を有する。刃部11は、例えば超硬合金によって形成されており、例えば金属製のワーク90の加工対象面91を切削することが可能である。 The scraper 10 has a blade portion 11 and a flexible handle portion 13 that can be attached and detached to the robot arm 20. The blade portion 11 is made of, for example, a cemented carbide alloy, and is capable of cutting the processing surface 91 of, for example, a metal workpiece 90.
 柄部13は、可撓性を有する金属材料により形成された略帯板形状であり、長手方向の一端に刃部11が交換可能に設けられる。すなわち、柄部13は、刃部11を着脱自在に保持する。繰り返し加工が行われて刃部11が摩耗したときや、異なる切れ刃幅や曲率半径を有する刃部11が用いられるときは、柄部13に新しい刃部11を付け替えることができる。なお、本発明の適用にあたっては、スクレーパの構成は上述のものに限られず、例えば、刃部が柄部に対して分離不能なものや、刃部と柄部が一体的に形成されたものでも良い。 The handle 13 is generally strip-shaped and made of a flexible metal material, with the blade 11 replaceably attached to one end in the longitudinal direction. That is, the handle 13 holds the blade 11 in a removable manner. When the blade 11 wears out due to repeated machining, or when a blade 11 with a different cutting edge width or curvature radius is used, a new blade 11 can be attached to the handle 13. Note that when applying the present invention, the scraper configuration is not limited to the one described above, and may be, for example, one in which the blade is inseparable from the handle, or one in which the blade and handle are formed as one unit.
 ロボットアーム20は、例えば、6軸の多関節ロボットアームであり、制御装置30によって制御される加工用ロボットである。ロボットアーム20は、その先端側にロボットハンド21を有する。ロボットハンド21は、スクレーパ10やハンドチャック(不図示)等を着脱自在に保持(把持)できる。すなわち、ロボットアーム20は、ロボットハンド21にスクレーパ10やハンドチャックを選択的に付け替えることができる。そして、ロボットアーム20は、各関節(例えば、第1軸~第6軸)をサーボモータ等によって駆動することで、ロボットハンド21をXYZ三次元直交座標系の任意の位置へと移動させることができる。また、ロボットアーム20により、ロボットハンド21が保持するスクレーパ10を任意の向きや角度で加工対象面91に当接させることができる。 The robot arm 20 is, for example, a six-axis articulated robot arm, and is a processing robot controlled by the control device 30. The robot arm 20 has a robot hand 21 at its tip. The robot hand 21 can detachably hold (grasp) the scraper 10 and a hand chuck (not shown). That is, the robot arm 20 can selectively attach and remove the scraper 10 and the hand chuck to the robot hand 21. The robot arm 20 can move the robot hand 21 to any position in the XYZ three-dimensional orthogonal coordinate system by driving each joint (for example, the first axis to the sixth axis) with a servo motor or the like. The robot arm 20 can also bring the scraper 10 held by the robot hand 21 into contact with the surface 91 to be processed in any direction or angle.
 また、ロボットアーム20は、不図示の力覚センサを備える。力覚センサは、キサゲ加工時に、スクレーパ10に作用する負荷(抵抗)を検出するセンサである。キサゲ加工装置100の制御装置30は、力覚センサが出力するキサゲ加工中における負荷の状態を監視(モニタリング)し、必要に応じて、負荷の強弱に基づいたフィードバック制御を行うことができる。なお、上述したロボットアーム20は本発明に係るキサゲ加工用ロボットの一例であり、キサゲ加工用ロボットはロボットアーム20に限定されない。本発明に係るキサゲ加工用ロボットは、保持したスクレーパ10を動作させることによってワーク90の加工対象面91に対して自動でキサゲ加工を行うことができる構成であれば特に限定されない。 The robot arm 20 also includes a force sensor (not shown). The force sensor is a sensor that detects the load (resistance) acting on the scraper 10 during scraping. The control device 30 of the scraping device 100 monitors the load state during scraping output by the force sensor, and can perform feedback control based on the strength of the load as necessary. Note that the above-mentioned robot arm 20 is an example of a scraping robot according to the present invention, and scraping robots are not limited to the robot arm 20. The scraping robot according to the present invention is not particularly limited as long as it is configured to automatically scrape the surface 91 to be processed of the workpiece 90 by operating the scraper 10 held by it.
 ワーク90の加工対象面91に対するキサゲ加工は、例えば加工用架台80にワーク90を固定し、ロボットハンド21にスクレーパ10を保持した状態で制御装置30がロボットアーム20を制御することによって行われる。加工用架台80の表面は、水平な平面状に形成され、加工対象面91は当該表面に対して平行であっても、平行でなくても良い。 The scraping process for the workpiece surface 91 of the workpiece 90 is performed, for example, by fixing the workpiece 90 to the processing stand 80 and controlling the robot arm 20 with the control device 30 controlling the robot arm 20 while the scraper 10 is held by the robot hand 21. The surface of the processing stand 80 is formed into a horizontal plane, and the workpiece surface 91 may or may not be parallel to this surface.
 また、キサゲ加工においては、予め、三次元形状計測器によって加工対象面91の三次元形状データ(凹凸形状データ)が取得される。三次元形状計測器としては、接触式であっても非接触式であっても良いが、測定精度が仕上がりの面精度に大きく影響するため、高精度に三次元形状データが計測されることが好ましい。 In addition, in scraping, three-dimensional shape data (convex and concave shape data) of the surface 91 to be processed is acquired in advance by a three-dimensional shape measuring device. The three-dimensional shape measuring device may be of either a contact or non-contact type, but since measurement accuracy has a large effect on the finished surface accuracy, it is preferable that the three-dimensional shape data be measured with high accuracy.
 (スクレーパ10)
 次に、本実施例に係るスクレーパ10の詳細構成とその動きについて説明する。図2(a)は、ロボットハンド21に保持されたスクレーパ10の刃部11がワーク90の加工対象面91に当接している状態を示す模式図である。図2(b)は、図2(a)の状態から、柄部13が加工対象面91に近づく方向に移動し、柄部13が撓んだ状態を示す模式図である。図2(c)は、図2(b)のA部拡大図である。
(Scraper 10)
Next, a detailed configuration and movement of the scraper 10 according to this embodiment will be described. Fig. 2(a) is a schematic diagram showing a state in which the blade portion 11 of the scraper 10 held by the robot hand 21 is in contact with the processing target surface 91 of the workpiece 90. Fig. 2(b) is a schematic diagram showing a state in which the handle portion 13 has moved in a direction approaching the processing target surface 91 from the state shown in Fig. 2(a) and has been deflected. Fig. 2(c) is an enlarged view of part A in Fig. 2(b).
 以下、加工対象面91に沿った方向(加工対象面91と略平行な方向)のうち、キサゲ加工時の加工方向を第1方向X1、第1方向X1と反対の方向を第2方向X2として説明する。また、加工対象面91に略垂直な方向のうち、加工対象面91から離間する方向を離間方向Y1、加工対象面91に近づく方向を接近方向Y2として説明する。 In the following, among the directions along the surface 91 to be processed (directions roughly parallel to the surface 91 to be processed), the processing direction during scraping will be described as the first direction X1, and the direction opposite to the first direction X1 will be described as the second direction X2. Furthermore, among the directions roughly perpendicular to the surface 91 to be processed, the direction away from the surface 91 to be processed will be described as the moving away direction Y1, and the direction approaching the surface 91 to be processed will be described as the approaching direction Y2.
 図2(b)に示されるスクレーパ10は、キサゲ加工が行われるときの状態である。図2(b)には、図2(a)と同様の状態であって、刃部11が加工対象面91に当接し始めた状態のスクレーパ10とロボットハンド21が点線で示される。更に、図2(b)には、刃部11が加工対象面91に当接し始めた後のロボットハンド21と柄部13の大まかな移動方向が黒塗り矢印で示され、刃部11の大まかな移動方向が白塗り矢印で示される。 The scraper 10 shown in Figure 2(b) is in the state when scraping is being performed. Figure 2(b) shows the scraper 10 and robot hand 21 in the same state as Figure 2(a), with the blade portion 11 beginning to come into contact with the surface 91 to be processed, in dotted lines. Furthermore, in Figure 2(b), the general direction of movement of the robot hand 21 and handle portion 13 after the blade portion 11 begins to come into contact with the surface 91 to be processed is shown by black arrows, and the general direction of movement of the blade portion 11 is shown by white arrows.
 刃部11が加工対象面91に当接して、柄部13が略真っ直ぐな状態から、ロボットハンド21が加工対象面91に近づくように接近方向Y2に移動すると、柄部13は撓みながら加工対象面91に近づく。このとき、図2(b)に白塗り矢印で示されるように、柄部13の弾性変形によって、刃部11は加工対象面91に食い込みながら、第1方向X1に移動する。以下、このときのロボットハンド21と柄部13の接近方向Y2の移動量を押し込み量YA、刃部11の第1方向X1の移動量を移動量PAとして説明する。 When the blade 11 comes into contact with the work surface 91 and the handle 13 is in a generally straight position, the robot hand 21 moves in the approach direction Y2 to approach the work surface 91, causing the handle 13 to bend as it approaches the work surface 91. At this time, as shown by the white arrow in Figure 2(b), the elastic deformation of the handle 13 causes the blade 11 to move in the first direction X1 while biting into the work surface 91. Below, the amount of movement of the robot hand 21 and handle 13 in the approach direction Y2 at this time will be described as the push-in amount YA, and the amount of movement of the blade 11 in the first direction X1 will be described as the movement amount PA.
 押し込み量YAの基準高さは、例えば三次元形状計測器によって計測される加工対象面91の基準点における高さをゼロ点として設定される。例えば、加工対象面91の隅部が基準点として設定され、その表面高さが基準高さとして設定されても良い。 The reference height of the push-in amount YA is set to the height of a reference point on the surface 91 to be machined, measured by a three-dimensional shape measuring device, with the height set as the zero point. For example, a corner of the surface 91 to be machined may be set as the reference point, and the surface height may be set as the reference height.
 キサゲ加工は、刃部11が加工対象面91に食い込み、かつ、柄部13が撓んだ状態で、ロボットハンド21とスクレーパ10が加工対象面91に沿った方向に一体的に移動することで行われる。このとき、刃部11がスクレーパ10の加工方向の先端に位置するように、スクレーパ10の向きは制御される。すなわち、図2(b)においては、第1方向X1(図中の右方向)が、加工方向となる。 The scraping process is performed by moving the robot hand 21 and scraper 10 together in a direction along the surface 91 to be processed, with the blade 11 biting into the surface 91 to be processed and the handle 13 bent. At this time, the orientation of the scraper 10 is controlled so that the blade 11 is positioned at the tip of the scraper 10 in the processing direction. That is, in FIG. 2(b), the first direction X1 (the right direction in the figure) is the processing direction.
 図2(c)には、加工対象面91に当接しているスクレーパ10の刃部11の詳細が示される。刃部11は、スクレーパ10の先端に位置するすくい面11aと、すくい面11aに隣接して、キサゲ加工時に加工対象面91と対向する逃げ面11bと、すくい面11aと逃げ面11bとの境界である稜線部に形成された切れ刃11cと、を有する。本実施例の切れ刃11cは、刃幅方向の中央部が凸の円弧(ラウンド)形状であるが、本発明の適用にあたっては、切れ刃11cの形状はこれに限定されず、直線形状であっても良い。 Figure 2(c) shows details of the blade portion 11 of the scraper 10 in contact with the surface 91 to be machined. The blade portion 11 has a scooping surface 11a located at the tip of the scraper 10, a clearance surface 11b adjacent to the scooping surface 11a that faces the surface 91 to be machined during scraping, and a cutting edge 11c formed on the ridge portion that is the boundary between the scooping surface 11a and the clearance surface 11b. In this embodiment, the cutting edge 11c has a convex arc (rounded) shape at the center in the blade width direction, but when applying the present invention, the shape of the cutting edge 11c is not limited to this and may be a straight line.
 図2(c)には、刃部11の加工対象面91に対する食い込み量QAと、柄部13の撓みによる刃部11の切れ刃11cの第1方向X1への移動量PAが図示されている。切削深さに相当する刃部11の食い込み量QAは、ミクロンオーダー或いはサブミクロンオーダーの寸法である。一方、加工時におけるロボットハンド21の押し込み量YAは、ミリオーダーの変位量として設定することができる。このように、刃部11が食い込んだ状態で、ロボットハンド21が加工対象面91に沿った方向に移動することで、加工対象面91がミクロンオーダー或いはサブミクロンオーダーの厚さ分だけ切削される。 Figure 2(c) shows the amount QA of penetration of the blade portion 11 into the workpiece surface 91, and the amount PA of movement of the cutting edge 11c of the blade portion 11 in the first direction X1 due to bending of the handle portion 13. The amount QA of penetration of the blade portion 11, which corresponds to the cutting depth, is a dimension on the order of microns or submicrons. Meanwhile, the amount YA of the robot hand 21 pushing in during processing can be set as a displacement on the order of millimeters. In this way, when the robot hand 21 moves in a direction along the workpiece surface 91 with the blade portion 11 penetrated, the workpiece surface 91 is cut by a thickness on the order of microns or submicrons.
 上述の通り、柄部13が押し込み量YA分、接近方向Y2に移動すると、刃部11の切れ刃11cは、加工対象面91に食い込み量QAだけ食い込みながら、第1方向X1に移動量PAだけ移動する。すなわち、刃部11が加工対象面91に当接し始めてから、柄部13が撓みきるまでの間、刃部11は、柄部13やロボットハンド21と異なる挙動を示す。具体的には、柄部13が接近方向Y2に移動して撓むことで、刃部11は加工方向である第1方向X1に移動する。 As described above, when the handle 13 moves in the approach direction Y2 by the pushing amount YA, the cutting edge 11c of the blade 11 moves in the first direction X1 by the moving amount PA while biting into the work surface 91 by the biting amount QA. In other words, from the time the blade 11 starts to come into contact with the work surface 91 until the handle 13 is completely bent, the blade 11 behaves differently from the handle 13 and the robot hand 21. Specifically, as the handle 13 moves in the approach direction Y2 and bends, the blade 11 moves in the first direction X1, which is the processing direction.
 また、加工対象面91と刃部11の逃げ面11bがなす角である切込み角は、柄部13が撓む前後で変化する。具体的には、図2(c)に示されるように、柄部13が撓む前の切込み角θA1は、柄部13が撓むことで、より小さい切込み角θA2へと変化する。これらの角度や押し込み量YAは、ロボットアーム20の動作により任意に調整可能である。 The cutting angle, which is the angle between the workpiece surface 91 and the clearance surface 11b of the blade portion 11, changes before and after the handle portion 13 is deflected. Specifically, as shown in FIG. 2(c), the cutting angle θA1 before the handle portion 13 is deflected changes to a smaller cutting angle θA2 as the handle portion 13 is deflected. These angles and the amount of depression YA can be adjusted as desired by the operation of the robot arm 20.
 キサゲ加工の制御用パラメータとしては、上述の押し込み量YAや切込み角θA1が代表的に用いられる。制御部37により、各制御用パラメータに従って、ロボットアーム20が動作することによって、キサゲ加工が行われる。 The above-mentioned push-in amount YA and cutting angle θA1 are typically used as control parameters for scraping. The controller 37 operates the robot arm 20 in accordance with each control parameter to perform scraping.
 (制御装置30)
 次に、キサゲ加工装置100の制御装置30について説明する。制御装置30は、加工指示データに従ってロボットアーム20を制御し、その結果、ワーク90の加工対象面91に対して加工指示データに応じたキサゲ加工が行われる。また、制御装置30は、ロボットアーム20を制御するための加工指示データを生成する。すなわち、制御装置30は、ロボットアーム20を制御する装置として機能すると共に、ロボットアーム20を制御する際に用いる加工指示データを生成するための情報処理装置(加工指示データ生成装置)として機能する。但し、ロボットアーム20を制御するための加工指示データは、制御装置30とは別の情報処理装置(加工指示データ生成装置)によって生成されてもよい。この場合、当該情報処理装置(加工指示データ生成装置)が生成した加工指示データを制御装置30が取得し、取得した加工指示データに従って制御装置30がロボットアーム20を制御する。なお、情報処理装置(加工指示データ生成装置)から制御装置30への加工指示データの送信は有線通信、又は無線通信のいずれによって行われてもよい。
(Control device 30)
Next, the control device 30 of the scraping device 100 will be described. The control device 30 controls the robot arm 20 according to the processing instruction data, and as a result, scraping processing is performed on the processing target surface 91 of the workpiece 90 according to the processing instruction data. The control device 30 also generates processing instruction data for controlling the robot arm 20. That is, the control device 30 functions as a device for controlling the robot arm 20 and also functions as an information processing device (processing instruction data generating device) for generating processing instruction data used when controlling the robot arm 20. However, the processing instruction data for controlling the robot arm 20 may be generated by an information processing device (processing instruction data generating device) other than the control device 30. In this case, the control device 30 acquires the processing instruction data generated by the information processing device (processing instruction data generating device), and the control device 30 controls the robot arm 20 according to the acquired processing instruction data. The processing instruction data may be transmitted from the information processing device (processing instruction data generating device) to the control device 30 by either wired communication or wireless communication.
 図3は、制御装置30の構成の一例を示すブロック図である。制御装置30は、例えば、一般的なコンピュータである。制御装置30を構成するコンピュータは、通信インターフェース(通信I/F)31、記憶装置32、入出力装置33、及びプロセッサ34を備え、これらが通信バス35を介して接続されている。 FIG. 3 is a block diagram showing an example of the configuration of the control device 30. The control device 30 is, for example, a general computer. The computer constituting the control device 30 includes a communication interface (communication I/F) 31, a storage device 32, an input/output device 33, and a processor 34, which are connected via a communication bus 35.
 通信I/F31は、例えばネットワークカードや通信モジュールであってもよく、所定のプロトコルに基づき、他のコンピュータ、機器等と通信を行う。例えば、制御装置30は、通信I/F31を介してワーク90における加工対象面91の三次元形状情報を三次元形状計測器から受信する。 The communication I/F 31 may be, for example, a network card or a communication module, and communicates with other computers, devices, etc. based on a specific protocol. For example, the control device 30 receives three-dimensional shape information of the machining surface 91 of the workpiece 90 from a three-dimensional shape measuring device via the communication I/F 31.
 記憶装置32は、例えば、RAM(Random Access Memory)やROM(Read Only Memory)等の主記憶装置、及びHDD(Hard-Disk Drive)やSSD(Solid State Drive)、フラッシュメモリ等の補助記憶装置(二次記憶装置)を含む。主記憶装置は、プロセッサ34が読み出すプログラムや他のコンピュータとの間で送受信する情報を一時的に記憶したり、プロセッサ34の作業領域を確保したりする。補助記憶装置は、プロセッサ34が実行するプログラムや他のコンピュータとの間で送受信する情報等を記憶する。また、補助記憶装置は、リムーバブルメディア(可搬記録媒体)を含んでいてもよい。リムーバブルメディアは、例えば、USBメモリ、SDカード、又は、CD-ROM、DVDディスク、若しくはブルーレイディスクのようなディスク記録媒体である。記憶装置32(例えば、補助記憶装置)には、オペレーティングシステム(OS)、各種プログラム、及び各種情報テーブル等が格納されている。 The storage device 32 includes, for example, a main storage device such as a RAM (Random Access Memory) or a ROM (Read Only Memory), and an auxiliary storage device (secondary storage device) such as a HDD (Hard-Disk Drive), an SSD (Solid State Drive), or a flash memory. The main storage device temporarily stores the programs read by the processor 34 and information sent and received between other computers, and secures a working area for the processor 34. The auxiliary storage device stores the programs executed by the processor 34 and information sent and received between other computers. The auxiliary storage device may also include a removable medium (portable recording medium). The removable medium is, for example, a USB memory, an SD card, or a disc recording medium such as a CD-ROM, a DVD disk, or a Blu-ray disk. The storage device 32 (for example, the auxiliary storage device) stores an operating system (OS), various programs, and various information tables.
 入出力装置33は、例えば、キーボード、マウス等の入力装置、モニタ等の出力装置、タッチパネルのような入出力装置等のユーザインターフェースである。作業者は、入出力装置33を通じて、キサゲ加工の加工パス設定のための制御用パラメータを入力できる。 The input/output device 33 is a user interface, such as an input device such as a keyboard or a mouse, an output device such as a monitor, or an input/output device such as a touch panel. Through the input/output device 33, the worker can input control parameters for setting the machining path for scraping.
 プロセッサ34は、CPU(Central Processing Unit)やDSP(Digital Signal Processor)等の演算処理装置であり、プログラムを実行することにより本実施例に係る各処理を行う。例えば、プロセッサ34が、記憶装置32の補助記憶装置に記憶されたプログラムを主記憶装置にロードして実行することによって、後述するような加工指示データを生成するための加工指示データ生成処理等といった各種の処理が実現される。 The processor 34 is an arithmetic processing device such as a CPU (Central Processing Unit) or a DSP (Digital Signal Processor), and performs each process related to this embodiment by executing a program. For example, the processor 34 loads a program stored in the auxiliary storage device of the storage device 32 into the main storage device and executes it, thereby realizing various processes such as a processing instruction data generation process for generating processing instruction data as described below.
 なお、制御装置30は、必ずしも単一の物理的構成によって実現される必要はなく、互いに連携する複数台のコンピュータによって構成されてもよい。 The control device 30 does not necessarily have to be realized by a single physical configuration, but may be configured by multiple computers that work together.
 次に、制御装置30の機能構成について図4を参照して説明する。図4は、制御装置30の機能構成の一例を概略的に示すブロック図である。制御装置30は、加工指示データ生成部36、制御部37を機能部として有している。制御装置30のプロセッサ34は、記憶装置32の補助記憶装置に記憶されたプログラムを主記憶装置にロードして実行することにより、上述した各機能部を実現する。加工指示データ生成部36は、加工指示データを生成する加工指示データ生成処理を実行する。制御部37は、加工指示データ生成部36が生成した加工指示データを取得し、当該加工指示データに従ってロボットアーム20を制御する。 Next, the functional configuration of the control device 30 will be described with reference to FIG. 4. FIG. 4 is a block diagram showing an example of the functional configuration of the control device 30. The control device 30 has a processing instruction data generation unit 36 and a control unit 37 as functional units. The processor 34 of the control device 30 loads a program stored in the auxiliary storage device of the storage device 32 into the main storage device and executes it, thereby realizing each of the above-mentioned functional units. The processing instruction data generation unit 36 executes a processing instruction data generation process that generates processing instruction data. The control unit 37 acquires the processing instruction data generated by the processing instruction data generation unit 36, and controls the robot arm 20 in accordance with the processing instruction data.
 上述の通り、スクレーパ10は、制御装置30によって制御されるロボットアーム20により動作される。しかし、スクレーパ10の柄部13は撓むため、刃部11を加工対象面91に対して当接、又は離間させる際、スクレーパ10の刃部11は、加工パスに沿って移動するロボットハンド21と異なる挙動を示す。すなわち、柄部13の撓みが考慮されずに加工パスが設定された場合、意図通りの加工が行えない場合がある。そこで、次に、柄部13の撓みを考慮していない比較例と、柄部13の撓みを考慮した本実施例とのキサゲ加工時の加工パスについて、説明する。なお、本発明は、加工対象面91に油溜まり用の窪みを形成する仕上げ加工処理と、平面出し加工処理のいずれにも適用できる。 As described above, the scraper 10 is operated by the robot arm 20 controlled by the control device 30. However, because the handle 13 of the scraper 10 bends, when the blade 11 is brought into contact with or separated from the workpiece surface 91, the blade 11 of the scraper 10 behaves differently from the robot hand 21 moving along the workpiece path. In other words, if the workpiece path is set without taking into account the bending of the handle 13, the intended workpiece may not be processed. Next, the workpiece path during scraping will be described for a comparative example that does not take into account the bending of the handle 13, and this embodiment that takes into account the bending of the handle 13. The present invention can be applied to both a finishing process that forms a recess for an oil reservoir on the workpiece surface 91, and a flattening process.
 (比較例の加工パス)
 まずは、比較例のキサゲ加工方法に係る加工パスについて、図5(a)~(d)と図6を参照して説明する。図5(a)~(d)は、比較例の一連の加工パスにおけるスクレーパ10とロボットハンド21の動きを示す図であり、刃部11が加工対象面91に対して当接、加工、離間する様子を示す。これらの図において、移動前の元の位置にあるスクレーパ10等が点線で、柄部13とロボットハンド21の大まかな移動方向が黒塗り矢印で、刃部11の大まかな移動方向が白塗り矢印で示される。比較例においては、刃部11を加工対象面91から離す際に、制御装置30は、ロボットハンド21を加工対象面91に対して略垂直な離間方向Y1に移動させる。
(Comparative Example Machining Path)
First, the processing path of the scraping method of the comparative example will be described with reference to Fig. 5 (a) to (d) and Fig. 6. Fig. 5 (a) to (d) are diagrams showing the movement of the scraper 10 and the robot hand 21 in a series of processing paths of the comparative example, showing how the blade portion 11 abuts against, processes, and separates from the processing target surface 91. In these diagrams, the scraper 10 and other components in the original position before the movement are shown by dotted lines, the general movement direction of the handle portion 13 and the robot hand 21 is shown by a black arrow, and the general movement direction of the blade portion 11 is shown by a white arrow. In the comparative example, when the blade portion 11 is separated from the processing target surface 91, the control device 30 moves the robot hand 21 in a separation direction Y1 that is approximately perpendicular to the processing target surface 91.
 図5(a)は、柄部13がほぼ撓んでいない状態で、刃部11が加工対象面91に当接している様子を示す側面図である。このとき、柄部13は、重力等による無視できる程度の微小な撓みはあるものの、略真っ直ぐの状態である。 FIG. 5(a) is a side view showing the blade 11 abutting against the surface 91 to be machined with the handle 13 in a substantially unbent state. At this time, the handle 13 is in a substantially straight state, although there is a small amount of bending due to gravity and the like that can be ignored.
 図5(b)は、図5(a)の状態から、柄部13やロボットハンド21が押し込み量YAだけ、接近方向Y2に移動したときの様子を示す側面図である。このとき、柄部13は、接近方向Y2に移動するが、刃部11の切れ刃11cは、加工対象面91に食い込みながら第1方向X1に移動量PAだけ移動する。 Figure 5(b) is a side view showing the state when the handle 13 and the robot hand 21 move in the approach direction Y2 by the pushing amount YA from the state in Figure 5(a). At this time, the handle 13 moves in the approach direction Y2, but the cutting edge 11c of the blade 11 moves in the first direction X1 by the moving amount PA while biting into the workpiece surface 91.
 図5(c)は、図5(b)の状態から、スクレーパ10やロボットハンド21が第1方向X1に移動して、加工対象面91が刃部11により加工される様子を示す側面図である。このとき、柄部13が撓んだ状態のまま、スクレーパ10はロボットハンド21と一体的に第1方向X1に移動する。そして、刃部11が加工対象面91に食い込んだ食い込み量QAの厚さで、加工対象面91が加工される。 Figure 5(c) is a side view showing how the scraper 10 and robot hand 21 move in the first direction X1 from the state shown in Figure 5(b), and the surface to be machined 91 is machined by the blade portion 11. At this time, the scraper 10 moves in the first direction X1 together with the robot hand 21 with the handle portion 13 remaining in a bent state. The surface to be machined 91 is machined to a thickness QA that is the amount of penetration of the blade portion 11 into the surface to be machined.
 図5(d)は、図5(c)の状態から、柄部13やロボットハンド21が移動量YBだけ、離間方向Y1に移動したときの様子を示す側面図である。移動量YBは、押し込み量YAと略同量である。このとき、柄部13の撓みは解消され、刃部11は加工対象面91から離間する。 FIG. 5(d) is a side view showing the state when the handle 13 and the robot hand 21 have moved an amount YB in the separation direction Y1 from the state shown in FIG. 5(c). The amount YB is approximately the same as the pushing amount YA. At this time, the deflection of the handle 13 is released, and the blade 11 moves away from the processing surface 91.
 刃部11を加工対象面91から離間させる際、柄部13の撓みが解消されるに伴って、切れ刃11cは第2方向X2に戻り量PB1だけ移動する。戻り量PB1は柄部13の撓みの解消による移動量であるため、戻り量PB1は移動量PAと略同量である。すなわち、比較例の加工パスにおいては、切れ刃11cは、柄部13の撓みに伴って第1方向X1に移動し、柄部13の撓みの解消に伴って第2方向X2に移動する。 When the blade 11 is moved away from the machining surface 91, the cutting edge 11c moves in the second direction X2 by a return amount PB1 as the handle 13 is unbent. Because the return amount PB1 is the amount of movement caused by the handle 13 being unbent, the return amount PB1 is approximately the same as the movement amount PA. That is, in the machining path of the comparative example, the cutting edge 11c moves in the first direction X1 as the handle 13 bends, and moves in the second direction X2 as the handle 13 is unbent.
 図6は、図5(d)のB部拡大図である。加工パスの終点付近において、切れ刃11cは第2方向X2に移動するため、ワーク90にはバリ92が発生しやすくなる。摺動面にバリ92が残っていると、摺動性に大きく影響する上に、摺動する相手方の面を傷つける。また、大きなバリ92を除去するために新たな工程を加えると製造コストの上昇につながるため、バリ92の発生は抑制されることが望ましい。 Figure 6 is an enlarged view of part B in Figure 5 (d). Near the end point of the machining path, the cutting edge 11c moves in the second direction X2, making it easy for burrs 92 to occur on the workpiece 90. If burrs 92 remain on the sliding surface, they will not only significantly affect the sliding properties, but will also damage the surface of the other object against which they slide. Also, adding a new process to remove large burrs 92 will increase manufacturing costs, so it is desirable to suppress the occurrence of burrs 92.
 なお、比較例においては、ロボットハンド21を加工対象面91に垂直な方向に移動して、刃部11を加工対象面91から離す加工パスについて説明したが、バリの発生は上述の加工パスに限り起きるものではない。例えば、ロボットハンド21を第1方向X1に移動しつつ、離間方向Y1にも移動して、刃部11を加工対象面91から離す加工パスにおいても、同様の問題が発生しうる。具体的には、刃部11を加工対象面91から離す際に、ロボットハンド21の第1方向X1への移動量が上述の戻り量PB1に対して小さい場合、切れ刃11cは第2方向X2に移動して、バリが発生しうる。更に、切れ刃11cが加工方向とは反対の第2方向X2に移動することによって、意図した長さ分加工できず、加工パスの終点付近において、加工対象面91の削り残しが発生する可能性もある。そこで、本願発明者らは、柄部13の弾性変形によって刃部11が移動する量に基づいて、ロボットアーム20を制御させることで、バリや削り残しの発生を抑制する技術を着想した。 In the comparative example, the machining path in which the robot hand 21 moves in a direction perpendicular to the machining surface 91 to move the blade portion 11 away from the machining surface 91 has been described, but the occurrence of burrs is not limited to the above-mentioned machining path. For example, a similar problem may occur in a machining path in which the robot hand 21 moves in the first direction X1 while also moving in the separation direction Y1 to move the blade portion 11 away from the machining surface 91. Specifically, when moving the blade portion 11 away from the machining surface 91, if the movement amount of the robot hand 21 in the first direction X1 is smaller than the return amount PB1 described above, the cutting edge 11c moves in the second direction X2, which may cause burrs. Furthermore, if the cutting edge 11c moves in the second direction X2 opposite to the machining direction, the intended length of machining may not be achieved, and the machining surface 91 may be left uncut near the end point of the machining path. Therefore, the inventors came up with a technology to prevent burrs and uncut areas by controlling the robot arm 20 based on the amount of movement of the blade 11 caused by the elastic deformation of the handle 13.
 (本実施例の加工パス)
 次に、本実施例のキサゲ加工方法に係る加工パスについて、図7(a)~(d)と図8を参照して説明する。図7(a)~(d)は本実施例の一連の加工パスにおけるスクレーパ10とロボットハンド21の動きを示す図であり、刃部11が加工対象面91に対して当接してから離間する直前に至るまでの様子を示す。これらの図において、移動前の元の位置にあるスクレーパ10等が点線で、柄部13とロボットハンド21の大まかな移動方向が黒塗り矢印で、刃部11の大まかな移動方向が白塗り矢印で示される。
(Processing path in this embodiment)
Next, the machining paths according to the scraping method of this embodiment will be described with reference to Figures 7(a) to 7(d) and 8. Figures 7(a) to 7(d) are diagrams showing the movement of the scraper 10 and the robot hand 21 in a series of machining paths in this embodiment, showing the state from when the blade 11 comes into contact with the surface 91 to when it is about to separate from the surface 91. In these diagrams, the scraper 10 and other components in their original positions before movement are shown by dotted lines, the general movement directions of the handle 13 and the robot hand 21 are shown by black arrows, and the general movement direction of the blade 11 is shown by white arrows.
 図7(a)は、柄部13が略撓んでいない状態で、刃部11が加工対象面91に当接している様子を示す側面図である。図7(b)は、図7(a)の状態から柄部13やロボットハンド21が押し込み量YAだけ、接近方向Y2に移動したときの様子を示す側面図である。図7(c)は、図7(b)の状態からスクレーパ10やロボットハンド21が第1方向X1に移動して、加工対象面91が刃部11により加工される様子を示す側面図である。すなわち、本実施例においては、比較例と同様に、柄部13が撓んだ状態のままスクレーパ10とロボットハンド21が移動し、刃部11により加工対象面91が加工される。 FIG. 7(a) is a side view showing the blade portion 11 abutting against the surface to be machined 91 with the handle portion 13 not substantially bent. FIG. 7(b) is a side view showing the state when the handle portion 13 and the robot hand 21 move in the approach direction Y2 by the pushing amount YA from the state of FIG. 7(a). FIG. 7(c) is a side view showing the state when the scraper 10 and the robot hand 21 move in the first direction X1 from the state of FIG. 7(b) and the surface to be machined 91 is machined by the blade portion 11. That is, in this embodiment, as in the comparative example, the scraper 10 and the robot hand 21 move with the handle portion 13 in a bent state, and the surface to be machined 91 is machined by the blade portion 11.
 図7(a)~(c)に示されるように、本実施例において、刃部11が加工対象面91に当接してから、ロボットハンド21が加工対象面91と平行に移動するまでのロボットハンド21とスクレーパ10の動きは、比較例と同様である。一方、図7(d)に示されるように、本実施例においては、加工残りやバリの発生を抑制するため、刃部11を加工対象面91から離す際に、制御装置30は、ロボットハンド21を第1方向X1に所定量移動させながら、離間方向Y1に移動させる。すなわち、本実施例においては、刃部11を加工対象面91から離す際のロボットハンド21の軌道と、加工対象面91とがなす角は鋭角である。 As shown in Figures 7(a) to (c), in this embodiment, the movement of the robot hand 21 and scraper 10 from when the blade portion 11 comes into contact with the surface to be machined 91 until the robot hand 21 moves parallel to the surface to be machined 91 is the same as in the comparative example. On the other hand, as shown in Figure 7(d), in this embodiment, in order to suppress the occurrence of machining residues and burrs, when the blade portion 11 is moved away from the surface to be machined 91, the control device 30 moves the robot hand 21 in the moving away direction Y1 while moving it a predetermined amount in the first direction X1. That is, in this embodiment, the angle formed between the trajectory of the robot hand 21 when the blade portion 11 is moved away from the surface to be machined 91 and the surface to be machined 91 is an acute angle.
 図7(d)は、図7(c)の状態から、刃部11が加工対象面91から離れる直前の様子を示す側面図である。本実施例においては、刃部11を加工対象面91から離間させる際に、柄部13やロボットハンド21は、加工対象面91に対して斜めに移動する。このときの柄部13とロボットハンド21の移動量は、第1方向X1に移動量XB、離間方向Y1に移動量YBである。移動量YBは、比較例と同等に、押し込み量YAと略同量である。言い換えると、柄部13が離間方向Y1に移動量YBだけ移動するまでの間、刃部11が加工対象面91に当接したままの状態で、柄部13は第1方向X1に移動量XBだけ移動する。そして、図7(d)に示される状態から、更にロボットハンド21が同じ方向に移動することで、刃部11が加工対象面91から完全に離間する。 FIG. 7(d) is a side view showing the state immediately before the blade 11 leaves the processing surface 91 from the state shown in FIG. 7(c). In this embodiment, when the blade 11 is moved away from the processing surface 91, the handle 13 and the robot hand 21 move obliquely relative to the processing surface 91. The movement amount of the handle 13 and the robot hand 21 at this time is a movement amount XB in the first direction X1 and a movement amount YB in the moving away direction Y1. The movement amount YB is approximately the same as the pushing amount YA, as in the comparative example. In other words, the handle 13 moves by the movement amount XB in the first direction X1 while the blade 11 remains in contact with the processing surface 91 until the handle 13 moves by the movement amount YB in the moving away direction Y1. Then, from the state shown in FIG. 7(d), the robot hand 21 moves further in the same direction, and the blade 11 is completely moved away from the processing surface 91.
 柄部13の第1方向X1への移動量XBは、柄部13が撓む際の刃部11の第1方向X1への移動量PAより大きく設定される。移動量PAは刃部11の第2方向X2への戻り量PB1と略同量であるため、移動量XBは戻り量PB1よりも大きく設定されると言い換えることもできる。このように加工パスが設定されることで、柄部13の撓みの解消に伴って刃部11が第2方向X2に移動する分以上に、ロボットハンド21が第1方向X1に移動する。従って、本実施例によれば、柄部13の離間方向Y1への移動の際に、切れ刃11cも第1方向X1へと移動する。このときの切れ刃11cの第1方向X1への移動量を移動量PB2とすると、移動量PB2は、柄部13の移動量XBと切れ刃11cの戻り量PB1との差分量と略同量である。 The movement amount XB of the handle 13 in the first direction X1 is set to be larger than the movement amount PA of the blade 11 in the first direction X1 when the handle 13 is bent. Since the movement amount PA is approximately the same as the return amount PB1 of the blade 11 in the second direction X2, it can be said that the movement amount XB is set to be larger than the return amount PB1. By setting the machining path in this manner, the robot hand 21 moves in the first direction X1 by more than the amount by which the blade 11 moves in the second direction X2 as the handle 13 is released from the bending. Therefore, according to this embodiment, when the handle 13 moves in the separation direction Y1, the cutting edge 11c also moves in the first direction X1. If the movement amount of the cutting edge 11c in the first direction X1 at this time is set to the movement amount PB2, the movement amount PB2 is approximately the same as the difference between the movement amount XB of the handle 13 and the return amount PB1 of the cutting edge 11c.
 図8は、図7(d)のC部拡大図である。本実施例によれば、加工パスの終点付近において、切れ刃11cは第1方向X1に移動しながら、加工対象面91から離れるため、削り残しやバリの発生を抑制することができる。 Figure 8 is an enlarged view of part C in Figure 7(d). According to this embodiment, near the end point of the machining path, the cutting edge 11c moves in the first direction X1 while moving away from the machining target surface 91, so that the occurrence of uncut parts and burrs can be suppressed.
 次に、本実施例に係るキサゲ加工時のロボットハンド21の軌道について、図9を参照して、より詳細に説明する。図9は、キサゲ加工時のロボットハンド21の軌道を示す模式図である。図9には、ロボットハンド21の軌道が矢印付きの点線で示され、ロボットハンド21の代表的な位置が点D1~D4として示される。上述の通り、ロボットハンド21は、制御装置30により動きを制御され、スクレーパ10を保持しながら移動する。 Next, the trajectory of the robot hand 21 during scraping in this embodiment will be described in more detail with reference to FIG. 9. FIG. 9 is a schematic diagram showing the trajectory of the robot hand 21 during scraping. In FIG. 9, the trajectory of the robot hand 21 is shown by a dotted line with an arrow, and representative positions of the robot hand 21 are shown as points D1 to D4. As described above, the movement of the robot hand 21 is controlled by the control device 30, and it moves while holding the scraper 10.
 ロボットハンド21が点D1に位置するとき、柄部13は略撓んでおらず、刃部11は加工対象面91に食い込まずに当接している状態である。そして、ロボットハンド21は、点D1から点D2に押し込み量YAだけ接近方向Y2に移動する。このとき、柄部13は撓み、刃部11は加工対象面91に食い込みながら第1方向X1に移動する。 When the robot hand 21 is located at point D1, the handle 13 is not bent at all, and the blade 11 is in contact with the work surface 91 without digging into it. The robot hand 21 then moves in the approach direction Y2 by the push amount YA from point D1 to point D2. At this time, the handle 13 bends, and the blade 11 moves in the first direction X1 while digging into the work surface 91.
 柄部13が撓んだ状態のまま、ロボットハンド21は点D2から点D3へ、第1方向X1に移動する。このときの移動量や押し込み量YAによって、加工対象面91の加工量が決まる。ここまでの加工パスは、点D1の座標位置や、押し込み量YA、第1方向X1への移動量を設定することによって定めることが可能である。 With the handle 13 in a bent state, the robot hand 21 moves from point D2 to point D3 in the first direction X1. The amount of machining of the surface 91 to be machined is determined by the amount of movement and the amount of depression YA at this time. The machining path up to this point can be determined by setting the coordinate position of point D1, the amount of depression YA, and the amount of movement in the first direction X1.
 その後、ロボットハンド21は点D3から点D4へ移動する。このとき、ロボットハンド21は、離間方向Y1に移動量YBだけ移動しながら、第1方向X1に移動量XBだけ移動する。すなわち、ロボットハンド21の軌道は、加工対象面91に対して鋭角の角度RBで傾斜している。上述の通り、離間方向Y1への移動量YBは押し込み量YAと略同量であり、第1方向X1への移動量XBは移動量PAや戻り量PB1より大きい値である。そして、点D4から更にロボットハンド21が加工対象面91から離れる方向に移動することで、刃部11は完全に加工対象面91から離れて、一連の加工パスは終了する。このような加工パスに沿った加工が繰り返されて、平面出し加工処理や仕上げ加工処理が行われる。 Then, the robot hand 21 moves from point D3 to point D4. At this time, the robot hand 21 moves in the first direction X1 by a movement amount XB while moving in the separating direction Y1 by a movement amount YB. That is, the trajectory of the robot hand 21 is inclined at an acute angle RB with respect to the processing target surface 91. As described above, the movement amount YB in the separating direction Y1 is approximately the same as the pushing amount YA, and the movement amount XB in the first direction X1 is greater than the movement amount PA and the return amount PB1. Then, by moving further from point D4 in a direction away from the processing target surface 91, the blade portion 11 moves completely away from the processing target surface 91, and the series of processing passes ends. Processing along such processing passes is repeated to perform flattening processing and finishing processing.
 点D3から点D4までの加工パスの設定にあたっては、作業者が予め移動量XBや角度RBを入力する構成としても良いし、作業者が移動量PAや戻り量PB1を入力することで制御装置30が移動量XB等を自動的に決める構成としても良い。例えば、移動量PAと移動量XBとが対応付けられた情報テーブルが制御装置30に格納されていて、作業者が移動量PAを入力することで、制御装置30が移動量XBを設定する構成としても良い。 When setting the machining path from point D3 to point D4, the operator may input the movement amount XB and angle RB in advance, or the operator may input the movement amount PA and return amount PB1 and the control device 30 may automatically determine the movement amount XB, etc. For example, an information table in which the movement amount PA and the movement amount XB are associated may be stored in the control device 30, and the operator may input the movement amount PA and the control device 30 may set the movement amount XB.
 また、その他の刃部11離間時の加工パスの設定方法として、制御装置30が角度RBを設定する構成としても良い。角度RBはtan(RB)=YB/XBで表され、移動量YBは押し込み量YAと略同量である。従って、角度RBが鋭角の範囲において、XB>PAとするには、RB<tan-1(YA/PA)を満たせば良い。そこで、制御装置30の演算機能により、作業者が押し込み量YAと移動量PAを入力することで、制御装置30が角度RBを算出する構成とすることもできる。このように加工パスが設定されることで、刃部11が第1方向X1に移動しながら加工対象面91から離れる。 As another method for setting the machining path when the blade portion 11 is separated, the control device 30 may set the angle RB. The angle RB is expressed by tan(RB)=YB/XB, and the movement amount YB is approximately equal to the push-in amount YA. Therefore, in order to make XB>PA when the angle RB is in the acute angle range, it is sufficient to satisfy RB<tan -1 (YA/PA). Therefore, the control device 30 may be configured to calculate the angle RB by inputting the push-in amount YA and the movement amount PA by the operator using the calculation function of the control device 30. By setting the machining path in this manner, the blade portion 11 moves in the first direction X1 while moving away from the machining target surface 91.
 また、加工パスの設定に用いる移動量PAは、柄部13の形状や物性値等から算出しても良いし、加工条件ごとに測定して取得しても良い。例えば、刃部11を加工対象面91に当接させた状態で、ロボットハンド21を接近方向Y2に移動させ、その後離間方向Y1に移動させると、柄部13の撓みによって刃部11が移動した分の加工痕がワーク90上に残る。このような計測用の加工を様々な加工条件で行い、加工痕の長さを計測することで、それぞれの加工条件に対応した刃部11の移動量PAが取得される。そこで、測定によって得られた加工条件ごとの移動量PAをキサゲ加工装置100に記憶させておくことで、制御装置30が加工条件から自動的に移動量PAを取得し、移動量XBが定められる構成としても良い。 The movement amount PA used to set the machining path may be calculated from the shape and physical properties of the handle 13, or may be measured and obtained for each machining condition. For example, when the robot hand 21 is moved in the approach direction Y2 with the blade 11 in contact with the machining surface 91 and then moved in the separation direction Y1, a machining mark is left on the workpiece 90 by the amount of movement of the blade 11 due to the deflection of the handle 13. By performing such measurement machining under various machining conditions and measuring the length of the machining mark, the movement amount PA of the blade 11 corresponding to each machining condition is obtained. Therefore, the movement amount PA for each machining condition obtained by measurement may be stored in the scraping device 100, and the control device 30 may automatically obtain the movement amount PA from the machining conditions and determine the movement amount XB.
 以上より、本実施例によれば、柄部13の弾性変形によって移動する刃部11の移動量を加味した加工パスを設定できる。ひいては、加工パスの終点付近において、柄部13の撓みの解消に伴って切れ刃11cが加工方向(第1方向X1)と反対方向(第2方向X2)に移動することを防止できるため、削り残しやバリの発生を抑制できる。 As described above, according to this embodiment, it is possible to set a machining path that takes into account the amount of movement of the blade 11, which moves due to the elastic deformation of the handle 13. Furthermore, near the end point of the machining path, it is possible to prevent the cutting edge 11c from moving in the opposite direction (second direction X2) to the machining direction (first direction X1) as the deflection of the handle 13 is eliminated, thereby suppressing the occurrence of uncut parts and burrs.
 次に、スクレーパ10の刃部11の寿命を延長するキサゲ加工方法について、図10(a)、(b)を参照して説明する。キサゲ加工が繰り返し行われ、刃部11の切れ刃11cが摩耗すると、刃先が丸まって切れ味が落ちるため、削りが浅くなる。しかしながら、刃部11又はスクレーパ10の交換が頻繁に行われると、交換時間の増大や工具費の増大により、加工コストの増大につながる。 Next, a scraping method for extending the life of the blade portion 11 of the scraper 10 will be described with reference to Figures 10(a) and (b). When scraping is performed repeatedly and the cutting edge 11c of the blade portion 11 wears, the cutting edge becomes rounded and loses its sharpness, resulting in shallower cuts. However, frequent replacement of the blade portion 11 or the scraper 10 leads to increased processing costs due to increased replacement time and tool costs.
 一方、刃部11の切れ刃11cは、上述の通り、刃幅方向の中央部が凸の円弧形状であり、所定の刃幅を有する。キサゲ加工の際、例えば、押し込み量YAが小さい場合、切れ刃11cの一部のみが加工対象面91に当接し、切れ刃11cには加工に使用されて摩耗した部分と、加工に使用されずに摩耗しなかった部分とが存在することになる。そこで、本願発明者らは刃先当接位置をずらすように加工方法を工夫して、単一の切れ刃を複数部分に分けて個別に加工に使用することで、工具寿命を延長する技術を着想した。 On the other hand, as described above, the cutting edge 11c of the blade portion 11 has a convex arc shape at the center in the blade width direction, and has a predetermined blade width. During scraping, for example, if the push-in amount YA is small, only a part of the cutting edge 11c abuts against the surface 91 to be machined, and the cutting edge 11c will have parts that have been used in machining and worn away, and parts that have not been used in machining and have not worn away. Therefore, the inventors of the present application came up with a technology to extend the tool life by devising a machining method that shifts the position at which the cutting edge abuts, dividing a single cutting edge into multiple parts that can be used individually for machining.
 図10(a)、(b)は、加工対象面91に垂直な方向から見たときのスクレーパ10と加工対象面91の加工領域91aの関係を示す模式的上面図である。図10(a)、(b)のそれぞれには、加工対象面91の加工される領域である加工領域91aが斜線で塗りつぶされ、柄部13の移動方向が黒塗り矢印で示される。 10(a) and (b) are schematic top views showing the relationship between the scraper 10 and the machining area 91a of the surface 91 to be machined when viewed from a direction perpendicular to the surface 91 to be machined. In each of Figs. 10(a) and (b), the machining area 91a, which is the area of the surface 91 to be machined, is shaded with diagonal lines, and the direction of movement of the handle 13 is indicated by a solid black arrow.
 まず、図10(a)に示される状態で行われる第1加工について説明する。第1加工においては、刃部11の刃幅方向の中心線11dが加工方向に対して平行な状態で、柄部13が移動して加工領域91aの加工が行われる。このときの中心線11dと加工方向がなす角度を第1の角度とすると、第1の角度は0°である。加工領域91aの幅方向の中心線91bは加工方向と平行であるため、第1加工においては、中心線11dと中心線91bが重なるようにロボットアーム20は駆動する。従って、加工領域91aに当接する切れ刃11cの第1当接部11eは、刃幅方向の中心部に位置する。言い換えると、切れ刃11cの刃幅方向の両端部は、加工の際に加工対象面91には当接しないため、摩耗しない。 First, the first machining performed in the state shown in FIG. 10(a) will be described. In the first machining, the handle 13 moves to machine the machining area 91a while the center line 11d of the blade 11 in the blade width direction is parallel to the machining direction. If the angle between the center line 11d and the machining direction at this time is a first angle, the first angle is 0°. Since the center line 91b in the width direction of the machining area 91a is parallel to the machining direction, in the first machining, the robot arm 20 is driven so that the center line 11d and the center line 91b overlap. Therefore, the first abutment portion 11e of the cutting edge 11c that abuts against the machining area 91a is located at the center in the blade width direction. In other words, both ends of the cutting edge 11c in the blade width direction do not abut against the machining target surface 91 during machining, and therefore do not wear out.
 次に、図10(b)に示される状態で行われる第2加工について説明する。第2加工においては、刃部11の中心線11dが加工方向に対して傾斜した状態で、柄部13が移動して加工領域91aの加工が行われる。すなわち、第2加工は、第1加工に対して、中心線11dと加工方向とがなす角度が変化する。このときの中心線11dと加工方向がなす角度を第2の角度とすると、第2の角度は第1の角度と異なる角度であり、鋭角である。また、刃部11の中心線11dと加工領域91aの中心線91bとは傾斜した状態である。このとき加工領域91aに当接する切れ刃11cの第2当接部11fは、第1当接部11eに対して切れ刃11cの刃幅方向の端部側に位置する。すなわち、第2加工では、第1加工に対して切れ刃11cの異なる位置が加工領域91aに当接するようにロボットアーム20が駆動して、加工が行われる。 Next, the second processing performed in the state shown in FIG. 10(b) will be described. In the second processing, the center line 11d of the blade 11 is inclined with respect to the processing direction, and the handle 13 moves to process the processing area 91a. That is, in the second processing, the angle between the center line 11d and the processing direction changes compared to the first processing. If the angle between the center line 11d and the processing direction at this time is the second angle, the second angle is an acute angle that is different from the first angle. In addition, the center line 11d of the blade 11 and the center line 91b of the processing area 91a are inclined. At this time, the second abutment portion 11f of the cutting edge 11c that abuts against the processing area 91a is located on the end side of the cutting edge 11c in the blade width direction with respect to the first abutment portion 11e. That is, in the second processing, the robot arm 20 is driven so that a different position of the cutting edge 11c abuts against the processing area 91a compared to the first processing, and processing is performed.
 本実施例によれば、第1加工が繰り返し行われ、切れ刃11cの第1当接部11eの摩耗が進行した場合に、第2加工へと切り替えられることで、工具交換等を挟むことなく、摩耗していない第2当接部11fを用いて、加工を継続することができる。また、第2当接部11fの摩耗が進行した場合には、更に、第1当接部11eに対して、切れ刃11cの第2当接部11fとは反対側の端部側に位置する部分を用いて、加工を継続することもできる。すなわち、本実施例においては、切れ刃11cを3つの領域に分けて使用しており、各領域の摩耗の進行に伴って、異なる領域が加工に用いられるようにロボットアーム20が制御される。 In this embodiment, when the first machining is repeated and the first contact portion 11e of the cutting edge 11c becomes worn, the machining can be switched to the second machining, and the machining can be continued using the unworn second contact portion 11f without the need for tool replacement. Furthermore, when the second contact portion 11f becomes worn, the machining can be continued using a portion of the cutting edge 11c located on the opposite end side of the second contact portion 11f from the first contact portion 11e. That is, in this embodiment, the cutting edge 11c is used in three separate regions, and the robot arm 20 is controlled so that different regions are used for machining as the wear of each region progresses.
 このように、切れ刃11cの異なる位置を加工に使用する第1加工と第2加工と、を含むようなキサゲ加工方法とすることで、切れ刃11cの同一部分のみを使用し続けるキサゲ加工方法と比較して、刃部11の寿命を延長することができる。なお、上述の実施例においては、第1加工において、第1当接部11eが切れ刃11cの刃幅方向の中心部に位置する構成としたが、刃部11の寿命延長にあたってはこの構成に限られない。例えば、切れ刃11cの刃幅方向において、第1当接部11eが切れ刃11cの一端部側、第2当接部11fが切れ刃11cの一端部と反対側の他端部側に位置するように、切れ刃11cを2つの領域に分けることも可能である。また、上述の実施例においては第1の角度を0°としたが、第1の角度と第2の角度の両方を鋭角とすることも可能である。 In this way, by using a scraping method including a first process and a second process in which different positions of the cutting edge 11c are used for processing, the life of the blade portion 11 can be extended compared to a scraping method in which only the same part of the cutting edge 11c is used continuously. In the above embodiment, the first abutment portion 11e is located at the center of the cutting edge 11c in the blade width direction in the first process, but this configuration is not limited to extending the life of the blade portion 11. For example, it is also possible to divide the cutting edge 11c into two regions so that the first abutment portion 11e is located at one end side of the cutting edge 11c and the second abutment portion 11f is located at the other end side opposite to the one end side of the cutting edge 11c in the blade width direction of the cutting edge 11c. In addition, although the first angle is set to 0° in the above embodiment, it is also possible to set both the first angle and the second angle to be acute angles.
 <その他の実施例>
 上述の実施例はあくまでも一例であって、本開示はその要旨を逸脱しない範囲内で適宜変更して実施し得る。また、本開示において説明した処理や手段は、技術的な矛盾が生じない限りにおいて、自由に組み合わせて実施することができる。
<Other Examples>
The above-mentioned embodiment is merely an example, and the present disclosure may be modified as appropriate without departing from the spirit and scope of the present disclosure. Furthermore, the processes and means described in the present disclosure may be freely combined and implemented as long as no technical contradiction occurs.
 例えば、上述の実施例においては、加工パスが直線で構成されていたが、ロボットハンド21を加工対象面91から離す際の加工パスが曲線を含むように構成されていても良い。すなわち、切れ刃11cが加工対象面91から離れるまでの間(ロボットハンド21が離間方向Y1に移動量YBだけ移動するまでの間)に、ロボットハンド21が第1方向X1に移動量PA以上移動する加工パスであれば、削り残しやバリの発生を抑制できる。 For example, in the above embodiment, the machining path is configured as a straight line, but the machining path when the robot hand 21 is moved away from the surface 91 to be machined may be configured to include a curve. In other words, if the machining path is such that the robot hand 21 moves in the first direction X1 by more than the movement amount PA until the cutting edge 11c moves away from the surface 91 to be machined (until the robot hand 21 moves by the movement amount YB in the moving away direction Y1), the occurrence of uncut areas and burrs can be suppressed.
 また、1つの装置が行うものとして説明した処理が、複数の装置によって分担して実行されてもよい。あるいは、異なる装置が行うものとして説明した処理が、1つの装置によって実行されても構わない。コンピュータシステムにおいて、各機能をどのようなハードウェア構成によって実現するかは柔軟に変更可能である。 Furthermore, a process that has been described as being performed by one device may be shared and executed by multiple devices. Or, a process that has been described as being performed by different devices may be executed by a single device. In a computer system, the hardware configuration that realizes each function can be flexibly changed.
 10…スクレーパ、11…刃部、13…柄部、20…ロボットアーム(加工用ロボット)、30…制御装置、90…ワーク(被加工物)、91…加工対象面、100…キサゲ加工装置 10... scraper, 11... blade, 13... handle, 20... robot arm (machining robot), 30... control device, 90... workpiece (workpiece), 91... surface to be machined, 100... scraping device

Claims (10)

  1.  刃部と、前記刃部が設けられた可撓性の柄部と、を有するスクレーパを保持して動作させる加工用ロボットと、
     加工指示データに従い前記加工用ロボットを制御する制御装置と、
    を備え、
     前記刃部を被加工物の加工対象面に対して当接させた状態から、前記柄部を前記加工対象面に近づく方向に移動させることによって、前記刃部が前記加工対象面に沿った加工方向に移動するように前記柄部を撓ませ、前記柄部が撓んだ状態で前記柄部を前記加工方向に移動して、前記加工対象面に対してキサゲ加工を行うキサゲ加工装置であって、
     前記制御装置は、前記刃部を前記加工対象面から離す際に、前記柄部の弾性変形によって前記刃部が移動する量に基づいて前記柄部を前記加工方向へ所定量移動させながら、前記柄部を前記加工対象面から離す方向に移動させるように前記加工用ロボットを制御することを特徴とするキサゲ加工装置。
    A processing robot that holds and operates a scraper having a blade portion and a flexible handle portion on which the blade portion is provided;
    A control device that controls the processing robot in accordance with processing instruction data;
    Equipped with
    a scraping device for scraping the surface to be processed by moving the handle in a direction approaching the surface to be processed from a state in which the blade is in contact with the surface to be processed, thereby bending the handle so that the blade moves in a processing direction along the surface to be processed, and moving the handle in the bent state in the processing direction,
    The scraping device is characterized in that the control device controls the processing robot to move the handle portion in a direction away from the surface to be processed while moving the handle portion a predetermined amount in the processing direction based on the amount by which the blade portion moves due to elastic deformation of the handle portion when the blade portion is moved away from the surface to be processed.
  2.  前記所定量は、前記キサゲ加工において、前記刃部が前記加工対象面に対して当接し始めた状態から、前記柄部が前記加工対象面に近づく方向に移動して、前記柄部が撓んだときに前記刃部が前記加工方向に移動した量以上であることを特徴とする請求項1に記載のキサゲ加工装置。 The scraping device according to claim 1, characterized in that the predetermined amount is equal to or greater than the amount by which the blade moves in the processing direction when the handle bends and moves in a direction approaching the processing surface from a state in which the blade begins to come into contact with the processing surface during the scraping process.
  3.  前記制御装置は、前記刃部が前記加工対象面から離れるまでに、前記柄部を前記加工方向へ前記所定量移動させることを特徴とする請求項1に記載のキサゲ加工装置。 The scraping device according to claim 1, characterized in that the control device moves the handle portion in the processing direction by the predetermined amount before the blade portion separates from the surface to be processed.
  4.  前記加工対象面と垂直な方向において、前記刃部が前記加工対象面に当接した状態から、前記柄部が前記加工対象面に向かって移動する量を押し込み量とすると、
     前記制御装置は、前記キサゲ加工において前記刃部を前記加工対象面から離す際、前記柄部を、前記垂直な方向において前記加工対象面から離す方向に前記押し込み量分移動させるまでの間に、前記加工方向へ前記所定量移動させるように、前記加工用ロボットを制御することを特徴とする請求項1に記載のキサゲ加工装置。
    When the amount of movement of the handle portion toward the surface to be processed from the state where the blade portion is in contact with the surface to be processed in a direction perpendicular to the surface to be processed is defined as a pressing amount,
    The scraping device according to claim 1, characterized in that the control device controls the processing robot so that, when the blade portion is moved away from the workpiece surface during the scraping process, the handle portion is moved the predetermined amount in the processing direction before the handle portion is moved the amount of the push-in in the direction away from the workpiece surface in the perpendicular direction.
  5.  前記柄部は、略帯板形状であり、長手方向の一端に前記刃部が設けられ、
     前記制御装置は、前記キサゲ加工において、前記刃部が前記スクレーパの前記加工方向の先端に位置するように前記スクレーパの向きを制御することを特徴とする請求項1に記載のキサゲ加工装置。
    The handle portion has a generally band-like shape, and the blade portion is provided at one end in a longitudinal direction.
    The scraping device according to claim 1 , wherein the control device controls the orientation of the scraper during the scraping process so that the blade portion is positioned at a tip of the scraper in the processing direction.
  6.  前記刃部は、前記柄部に対して交換可能に取り付けられていることを特徴とする請求項1に記載のキサゲ加工装置。 The scraping device according to claim 1, characterized in that the blade portion is replaceably attached to the handle portion.
  7.  前記加工用ロボットは、前記刃部の前記加工対象面と対向する面と、前記加工対象面がなす切込み角を調整可能に構成されていることを特徴とする請求項1に記載のキサゲ加工装置。 The scraping device according to claim 1, characterized in that the processing robot is configured to be able to adjust the cutting angle between the surface of the blade portion that faces the surface to be processed and the surface to be processed.
  8.  刃部と、前記刃部が設けられた可撓性の柄部と、を有するスクレーパを保持して動作させる加工用ロボットと、
     加工指示データに従い前記加工用ロボットを制御する制御装置と、
    を備え、被加工物の加工対象面に対してキサゲ加工を行うキサゲ加工装置によるキサゲ加工方法であって、
     前記キサゲ加工において、前記制御装置は、
      前記刃部を前記加工対象面に対して当接させた状態から、前記柄部を前記加工対象面に近づく方向に移動させることによって、前記刃部が前記加工対象面に沿った加工方向に移動するように前記柄部を撓ませ、
      前記柄部が撓んだ状態で前記柄部を前記加工方向に移動して、
      前記刃部を前記加工対象面から離す際に、前記柄部の弾性変形によって前記刃部が移動する量に基づいて前記柄部を前記加工方向へ所定量移動させながら、前記柄部を前記加工対象面から離す方向に移動させる
    ように前記加工用ロボットを制御するキサゲ加工方法。
    A processing robot that holds and operates a scraper having a blade portion and a flexible handle portion on which the blade portion is provided;
    A control device that controls the processing robot in accordance with processing instruction data;
    A scraping method using a scraping device that performs scraping on a surface to be processed of a workpiece, comprising:
    In the scraping process, the control device
    From a state in which the blade portion is in contact with the surface to be processed, the handle portion is moved in a direction approaching the surface to be processed, thereby bending the handle portion so that the blade portion moves in a processing direction along the surface to be processed;
    The handle portion is moved in the processing direction while the handle portion is bent.
    A scraping method in which, when the blade portion is moved away from the surface to be processed, the processing robot is controlled so as to move the handle portion in a direction away from the surface to be processed while moving the handle portion a predetermined amount in the processing direction based on an amount by which the blade portion moves due to elastic deformation of the handle portion.
  9.  前記所定量は、前記キサゲ加工において、前記刃部が前記加工対象面に対して当接し始めた状態から、前記柄部が前記加工対象面に近づく方向に移動して、前記柄部が撓んだときに前記刃部が前記加工方向に移動した量以上であることを特徴とする請求項8に記載のキサゲ加工方法。 The scraping method according to claim 8, characterized in that the predetermined amount is equal to or greater than the amount by which the blade moves in the processing direction when the handle bends after the blade starts to come into contact with the processing surface and the handle moves in a direction approaching the processing surface.
  10.  前記刃部の切れ刃は、刃幅方向の中央部が凸の円弧形状であり、
     前記加工対象面に垂直な方向から見たときに前記刃部の前記刃幅方向の中心線と前記加工方向とがなす角度を第1の角度とした状態で、前記切れ刃の第1当接部を前記加工対象面に当接させて前記加工対象面を加工する第1加工と、
     前記角度を前記第1の角度と異なる第2の角度とした状態で、前記切れ刃の前記第1当接部と異なる位置の第2当接部を前記加工対象面に当接させて前記加工対象面を加工する第2加工と、
    を含むことを特徴とする請求項8に記載のキサゲ加工方法。
    The cutting edge of the blade portion has a convex arc shape at the center in the blade width direction,
    a first processing step in which a first contact portion of the cutting edge is brought into contact with the surface to be processed while a center line of the blade portion in the blade width direction and the processing direction form a first angle when viewed from a direction perpendicular to the surface to be processed;
    a second processing step of processing the surface to be processed by bringing a second contact portion of the cutting edge, which is located at a position different from the first contact portion, into contact with the surface to be processed while the angle is set to a second angle different from the first angle;
    The scraping method according to claim 8, further comprising the steps of:
PCT/JP2023/035484 2022-09-30 2023-09-28 Scraping apparatus and scraping method WO2024071324A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022158601 2022-09-30
JP2022-158601 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024071324A1 true WO2024071324A1 (en) 2024-04-04

Family

ID=90478093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035484 WO2024071324A1 (en) 2022-09-30 2023-09-28 Scraping apparatus and scraping method

Country Status (1)

Country Link
WO (1) WO2024071324A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016137551A (en) * 2015-01-28 2016-08-04 ファナック株式会社 Scraping apparatus and scraping method, using robot
WO2021015075A1 (en) * 2019-07-24 2021-01-28 シチズン時計株式会社 Machining device, control device used thereby, and machining device control method
JP2021058975A (en) * 2019-10-08 2021-04-15 ファナック株式会社 Surface finishing device
JP2021122937A (en) * 2020-02-03 2021-08-30 シチズン時計株式会社 Cutting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016137551A (en) * 2015-01-28 2016-08-04 ファナック株式会社 Scraping apparatus and scraping method, using robot
WO2021015075A1 (en) * 2019-07-24 2021-01-28 シチズン時計株式会社 Machining device, control device used thereby, and machining device control method
JP2021058975A (en) * 2019-10-08 2021-04-15 ファナック株式会社 Surface finishing device
JP2021122937A (en) * 2020-02-03 2021-08-30 シチズン時計株式会社 Cutting device

Similar Documents

Publication Publication Date Title
JP5236596B2 (en) Processing robot system
JP6630073B2 (en) Machining device and machining method
JP4451381B2 (en) NC machining program creation method and NC machining program creation device of NC machining apparatus
JP5088678B2 (en) Long neck radius end mill
JP2004164328A (en) One person cam system and one person cam program
EP3056324B1 (en) Cutter blade, and processing device
JP6497086B2 (en) Cutting equipment
JP2012035383A (en) Method for manufacturing bandsaw blade, and the bandsaw blade
JPWO2015052846A6 (en) Cutter blade, processing equipment
KR20170129163A (en) Device, method and cutting plate for machining a rotary work piece
WO2024071324A1 (en) Scraping apparatus and scraping method
WO2023190290A1 (en) Autonomous scraping machining device, autonomous scraping machining method, information processing device, method for generating machining instruction data, and machining instruction data generation program
JP4517156B2 (en) Method for calculating uneven shape of cutting surface in milling and processing control method for uneven shape
WO2023190242A1 (en) Automatic scraping processing device and automatic scraping processing method
WO2021171574A1 (en) Processing method, processing device, and processing program
JP2010089235A (en) Slotting tool and slotting method
WO2024071330A1 (en) Scraping method and scraping device
WO2024116979A1 (en) Scraping device and scraping method
WO2023190215A1 (en) Automatic scraping device, automatic scraping method, information processing device, method for generating processing instruction data, and processing instruction data generation program
JP2023151110A (en) Automatic scraping processing device, automatic scraping processing method, information processing device, and processing instruction data generation program
JP2023152592A (en) Automatic scraping processing device, automatic scraping processing method, information processing device, processing instruction data generation method, and processing instruction data generation program
JP2024071989A (en) Scraping device and scraping method
CN103442835A (en) Shaving tool
JPH10230493A (en) Force control robot and its control method
JP2023150710A (en) Automatic scraping processing device, automatic scraping processing method, information processing device, processing instruction data generation method, and processing instruction data generation program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872545

Country of ref document: EP

Kind code of ref document: A1