WO2024071250A1 - Diamondoid compound and method for producing same - Google Patents

Diamondoid compound and method for producing same Download PDF

Info

Publication number
WO2024071250A1
WO2024071250A1 PCT/JP2023/035279 JP2023035279W WO2024071250A1 WO 2024071250 A1 WO2024071250 A1 WO 2024071250A1 JP 2023035279 W JP2023035279 W JP 2023035279W WO 2024071250 A1 WO2024071250 A1 WO 2024071250A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
group
formula
same
general formula
Prior art date
Application number
PCT/JP2023/035279
Other languages
French (fr)
Japanese (ja)
Inventor
八木 亜樹子 岩田
空駆 吉原
祥史 遠山
健一郎 伊丹
Original Assignee
国立大学法人東海国立大学機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東海国立大学機構 filed Critical 国立大学法人東海国立大学機構
Publication of WO2024071250A1 publication Critical patent/WO2024071250A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/62Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings
    • C07C13/64Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings with a bridged ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C25/00Compounds containing at least one halogen atom bound to a six-membered aromatic ring
    • C07C25/18Polycyclic aromatic halogenated hydrocarbons
    • C07C25/22Polycyclic aromatic halogenated hydrocarbons with condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/36Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal
    • C07C29/38Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal by reaction with aldehydes or ketones
    • C07C29/40Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal by reaction with aldehydes or ketones with compounds containing carbon-to-metal bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C35/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C35/22Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring polycyclic, at least one hydroxy group bound to a condensed ring system
    • C07C35/44Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring polycyclic, at least one hydroxy group bound to a condensed ring system with a hydroxy group on a condensed ring system having more than three rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/10Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of aromatic six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D221/00Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00
    • C07D221/02Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems
    • C07D221/22Bridged ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/78Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems condensed with rings other than six-membered or with ring systems containing such rings

Definitions

  • the present invention relates to diamondoid compounds and methods for producing the same.
  • Adamantane is called the smallest diamondoid compound because it is a cage-shaped compound with 10 carbon atoms arranged in a similar manner to the diamond structure.
  • diamondoid compounds with carbon atoms arranged in a similar manner to the diamond structure include higher diamondoid compounds such as diamantane, triamantane, and tetraamantane, which are extensions of the carbon skeleton of adamantane, and it is known that very small amounts of these compounds are isolated from crude oil (see, for example, Non-Patent Document 1).
  • the main method for obtaining diamondoid compounds is isolation from crude oil.
  • diamondoid compounds such as adamantane and diamantane are commercially available, it has been difficult to obtain higher diamondoid compounds such as triamantane and tetramantane.
  • the present invention was made in consideration of the above problems, and aims to synthesize a new diamondoid compound.
  • the inventors conducted intensive research to solve the above problems and discovered that various diamondoid compounds can be synthesized by condensing an adamantane compound with an aromatic compound and then hydrogenating the resultant in the presence of a specific catalyst. Based on this knowledge, the inventors conducted further intensive research and completed the present invention.
  • the present invention encompasses the following configurations.
  • ring A1 represents an aliphatic ring having two or more rings; R1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, or an adamantyl group; and n represents an integer of 0 to 3.
  • ring A2 and ring A3 are the same or different and represent an aliphatic ring.
  • R1a , R1b , and R1c are the same or different and represent a hydrogen atom, an alkyl group, a cycloalkyl group, or an adamantyl group.
  • R2a and R3a are the same or different and represent a hydrogen atom, a hydroxyl group, an alkyl group, an alkoxy group, a cycloalkyl group, an amino group, or an adamantyl group.
  • R2a and R3a may be joined together to form an aliphatic ring.
  • ring A4 and ring A5 are the same or different and represent an aliphatic ring.
  • R1a , R1b and R1c are the same or different and represent a hydrogen atom, an alkyl group, a cycloalkyl group, or an adamantyl group.
  • R4a and R5a are the same or different and represent a hydrogen atom, a hydroxyl group, an alkyl group, an alkoxy group, a cycloalkyl group, an amino group, or an adamantyl group.
  • R4a and R5a may be joined together to form an aliphatic ring.
  • Item 2 The diamondoid compound according to item 1, which is a compound represented by the formula:
  • R 2a , R 2b , R 2c , R 2d , R 3a , R 3b , R 3c and R 3d are the same or different and represent a hydrogen atom, a hydroxyl group, an alkyl group, an alkoxy group, a cycloalkyl group, an amino group, or an adamantyl group.
  • R 2a and R 2b , R 2b and R 2c , R 2c and R 2d , R 3a and R 3b , R 3b and R 3c , R 3c and R 3d , and R 2a and R 3a may be joined together to form an aliphatic ring at least at one position.
  • R 1 and n are the same as above.
  • R 4a , R 4b , R 4c , R 5a , R 5b and R 5c are the same or different and represent a hydrogen atom, a hydroxyl group, an alkyl group, an alkoxy group, a cycloalkyl group, an amino group, or an adamantyl group.
  • R 4a and R 4b , R 4b and R 4c , R 5a and R 5b , R 5b and R 5c , and R 4a and R 5a may be joined together to form an aliphatic ring at least at one position.
  • Item 3 The diamondoid compound according to item 1 or 2, which is a compound represented by the formula:
  • ring A2 and ring A3 are the same or different and represent an aliphatic ring.
  • R1a , R1b , R1c , R1d , R1e , and R1f are the same or different and represent a hydrogen atom, an alkyl group, a cycloalkyl group, or an adamantyl group.
  • ring A4 and ring A5 are the same or different and represent an aliphatic ring.
  • R1a , R1b , R1c , R1d , R1e , and R1f are the same or different and represent a hydrogen atom, an alkyl group, a cycloalkyl group, or an adamantyl group.
  • Item 3 The diamondoid compound according to item 1 or 2, which is a compound represented by the formula:
  • R 2b , R 2c , R 2d , R 3b , R 3c and R 3d are the same or different and each represents a hydrogen atom, a hydroxyl group, an alkyl group, an alkoxy group, a cycloalkyl group, an amino group, or an adamantyl group.
  • R 2b and R 2c , R 2c and R 2d , R 3b and R 3c , and R 3c and R 3d may be joined together at least at one position to form an aliphatic ring.
  • R 4b , R 4c , R 5b and R 5c are the same or different and each represents a hydrogen atom, a hydroxyl group, an alkyl group, an alkoxy group, a cycloalkyl group, an amino group, or an adamantyl group.
  • R 4b and R 4c , and R 5b and R 5c may be joined together at least at one position to form an aliphatic ring.
  • Item 5 The diamondoid compound according to any one of items 1 to 4, which is a compound represented by the formula:
  • the method includes a step of hydrogenating an adamantane-fused aromatic compound represented by the following formula (1):
  • the method of the present invention wherein the catalyst comprises a catalyst containing rhodium and platinum, and a catalyst containing scandium.
  • Item 7 The method according to Item 6, wherein the Lewis acid catalyst has an element of Group 3, Group 13, or Group 14 of the periodic table as the active center.
  • Item 9 The method according to Item 8, wherein the organic solvent is an alkane.
  • ring A 1 ' represents an aromatic ring corresponding to ring A 1 and ring A 1 '.
  • X 1 represents a halogen atom.
  • a 1 ′′, R 1 and n are the same as defined above.
  • (IB) a step of reacting the adamantane-containing arene compound obtained in the step (IA) with a Br ⁇ nsted acid and/or a Lewis acid.
  • Item 11 The method according to Item 10, wherein the nucleophile is an organolithium compound and/or an organomagnesium compound.
  • Ring A2' and ring A3' may be the same or different and each represent an aromatic ring.
  • R2a and R3a may be the same or different and each represent a hydrogen atom, a hydroxyl group, an alkyl group, an alkoxy group, a cycloalkyl group, an amino group, or an adamantyl group.
  • R2a and R3a may be joined together to form an aromatic ring.
  • ring A4 and ring A5 are the same or different and represent an aromatic ring.
  • X2 represents a halogen atom.
  • R4a and R5a are the same or different and represent a hydrogen atom, a hydroxyl group, an alkyl group, an alkoxy group, a cycloalkyl group, an amino group, or an adamantyl group. R4a and R5a may be joined together to form an aromatic ring.
  • Item 12 The method according to item 10 or 11, wherein the compound is represented by the formula:
  • the present invention makes it possible to precisely synthesize a variety of new diamondoid compounds.
  • Diamondoid Compound The diamondoid compound of the present invention has the general formula (1):
  • ring A1 represents an aliphatic ring having two or more rings; R1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, or an adamantyl group; and n represents an integer of 0 to 3.
  • R1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, or an adamantyl group; and n represents an integer of 0 to 3.
  • the alkyl group represented by R1 is not particularly limited, and either a linear alkyl group or a branched alkyl group can be used.
  • the alkyl group include alkyl groups having 1 to 6 carbon atoms (particularly 1 to 4 carbon atoms), such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • alkyl groups may also have a substituent.
  • substituents that the alkyl group may have include a hydroxyl group, an alkoxy group as described below, a cycloalkyl group as described below, an amino group as described below, and an adamantyl group.
  • the number of the substituents may be, for example, 1 to 6, and particularly 1 to 3.
  • the cycloalkyl group represented by R 1 is not particularly limited, and examples thereof include cycloalkyl groups having 3 to 10 carbon atoms (particularly 4 to 8 carbon atoms), such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, and cycloheptyl group.
  • cycloalkyl groups may also have a substituent.
  • substituents that the cycloalkyl group may have include a hydroxyl group, the alkyl groups described above, the alkoxy groups described below, the amino groups described below, and an adamantyl group.
  • the number of the substituents may be, for example, 1 to 6, and particularly 1 to 3.
  • the adamantyl group represented by R 1 is not particularly limited, and examples thereof include a 1-adamantyl group and a 2-adamantyl group.
  • adamantyl groups may also have a substituent.
  • substituents that the adamantyl group may have include a hydroxyl group, the alkyl group described above, the alkoxy group described below, the cycloalkyl group described above, the amino group described below, and the adamantyl group described above.
  • the number of the substituents may be, for example, 1 to 6, and particularly 1 to 3.
  • the number of R1 is not particularly limited and can be, for example, an integer of 0 to 3, preferably an integer of 0 to 2, and more preferably 0 or 1.
  • the substitution position when R1 is present is not particularly limited and various substitution positions can be adopted.
  • R1 is 3, the adamantane ring portion is represented by the general formula (7):
  • R 1a , R 1b and R 1c are the same or different and each represents a hydrogen atom, an alkyl group, a cycloalkyl group, or an adamantyl group.
  • R 1a , R 1b and R 1c are the same or different and each represents a hydrogen atom, an alkyl group, a cycloalkyl group, or an adamantyl group.
  • the alkyl group, cycloalkyl group and adamantyl group represented by R 1a , R 1b and R 1c may be the same as those described above. The same applies to the type and number of the substituents.
  • the ring A1 is not particularly limited as long as it is an aliphatic ring having two or more rings, and various aliphatic rings can be used.
  • the aliphatic ring any of an aliphatic hydrocarbon ring and a heteroaliphatic ring can be used, and it can be a ring in which two or more (e.g., 2 to 1000 rings, particularly 2 to 100 rings) of a cycloalkane ring (cyclohexane ring), an adamantane ring, a heteroaliphatic ring (piperidine ring, tetrahydropyran ring, pyrrolidine ring, tetrahydrofuran ring, tetrahydrothiophene ring, etc.) are combined, such as, for example,
  • the above-mentioned ring A 1 may have a substituent.
  • substituents that the ring A 1 may have include a hydroxyl group, the above-mentioned alkyl group, the below-mentioned alkoxy group, the above-mentioned cycloalkyl group, the below-mentioned amino group, and an adamantyl group.
  • the number of the substituents may be, for example, 1 to 6, and particularly 1 to 3.
  • the diamondoid compound of the present invention is classified according to the structure of ring A1 and has the general formula (1A):
  • ring A2 and ring A3 are the same or different and represent an aliphatic ring.
  • R1a , R1b , and R1c are the same or different and represent a hydrogen atom, an alkyl group, a cycloalkyl group, or an adamantyl group.
  • R2a and R3a are the same or different and represent a hydrogen atom, a hydroxyl group, an alkyl group, an alkoxy group, a cycloalkyl group, an amino group, or an adamantyl group.
  • R2a and R3a may be joined together to form an aliphatic ring.
  • ring A4 and ring A5 are the same or different and represent an aliphatic ring.
  • R1a , R1b and R1c are the same or different and represent a hydrogen atom, an alkyl group, a cycloalkyl group, or an adamantyl group.
  • R4a and R5a are the same or different and represent a hydrogen atom, a hydroxyl group, an alkyl group, an alkoxy group, a cycloalkyl group, an amino group, or an adamantyl group.
  • R4a and R5a may be joined together to form an aliphatic ring.
  • the compound may also be represented by the following formula:
  • the alkyl group, cycloalkyl group and adamantyl group represented by R 1a , R 1b and R 1c may be the same as those described above. The same applies to the types and numbers of the substituents.
  • the alkyl group, cycloalkyl group and adamantyl group represented by R2a and R3a may be the same as those described above. The same applies to the type and number of the substituents.
  • the alkoxy group represented by R 2a and R 3a is not particularly limited, and examples thereof include alkoxy groups having 1 to 6 carbon atoms (particularly 1 to 4 carbon atoms), such as a methoxy group, an ethoxy group, an n-propyloxy group, an isopropyloxy group, an n-butyloxy group, an isobutyloxy group, a sec-butyloxy group, and a tert-butyloxy group.
  • alkyl groups may also have a substituent.
  • substituents that the alkoxy group may have include a hydroxyl group, the alkyl group described above, the alkoxy group described above, the cycloalkyl group described above, the amino group described below, and an adamantyl group.
  • the number of the substituents may be, for example, 1 to 6, and particularly 1 to 3.
  • the amino groups represented by R 2a and R 3a may also have a substituent.
  • substituents that the amino group may have include a hydroxyl group, the above alkyl group, the above alkoxy group, the above cycloalkyl group, and an adamantyl group.
  • the number of the substituents may be, for example, 1 to 6, and particularly 1 to 3.
  • the alkyl group, alkoxy group, cycloalkyl group, amino group and adamantyl group represented by R4a and R5a may be the same as those described above. The same applies to the type and number of the substituents.
  • the aliphatic ring represented by ring A2 and ring A3 is not particularly limited, and may be either an aliphatic hydrocarbon ring or a heteroaliphatic ring.
  • the aliphatic ring may be a cycloalkane ring (cyclohexane ring), an adamantane ring, a heteroaliphatic ring (piperidine ring, tetrahydropyran ring, pyrrolidine ring, tetrahydrofuran ring, etc.), or a ring using two or more (e.g., 1 to 1000 rings, particularly 1 to 100 rings), for example:
  • the aliphatic rings represented by the rings A2 and A3 may have a substituent.
  • substituents that the aliphatic rings represented by the rings A2 and A3 may have include a hydroxyl group, a halogen atom described below, the alkyl group, the alkoxy group, the cycloalkyl group, the amino group, the adamantyl group, etc.
  • the number of the substituents may be, for example, 1 to 6, particularly 1 to 3.
  • the aliphatic rings represented by ring A4 and ring A5 can be those described above for ring A2 and ring A3 .
  • R2a and R3a may be joined together to form an aliphatic ring.
  • the aliphatic ring formed may be the same as that described above for ring A2 and ring A3 . The same applies to the type and number of the substituents.
  • R4a and R5a may combine together to form an aliphatic ring.
  • the aliphatic ring formed may be the same as that described above for ring A2 and ring A3 . The same applies to the type and number of the substituents.
  • R 2a , R 2b , R 2c , R 2d , R 3a , R 3b , R 3c and R 3d are the same or different and represent a hydrogen atom, a hydroxyl group, an alkyl group, an alkoxy group, a cycloalkyl group, an amino group, or an adamantyl group.
  • R 2a and R 2b , R 2b and R 2c , R 2c and R 2d , R 3a and R 3b , R 3b and R 3c , R 3c and R 3d , and R 2a and R 3a may be joined together to form an aliphatic ring at least at one position.
  • R 4a , R 4b , R 4c , R 5a , R 5b and R 5c are the same or different and each represents a hydrogen atom, a hydroxyl group, an alkyl group, an alkoxy group, a cycloalkyl group, an amino group, or an adamantyl group.
  • R 4a and R 4b , R 4b and R 4c , R 5a and R 5b , R 5b and R 5c , and R 4a and R 5a may be joined together to form an aliphatic ring at least at one position.
  • the alkyl group, alkoxy group, cycloalkyl group, amino group and adamantyl group represented by R2a , R2b , R2c , R2d , R3a , R3b , R3c and R3d may be the same as those described above. The same applies to the type and number of the substituents.
  • the alkyl group, alkoxy group, cycloalkyl group, amino group and adamantyl group represented by R 4a , R 4b , R 4c , R 5a , R 5b and R 5c may be the same as those described above. The same applies to the types and numbers of the substituents.
  • R2a and R2b , R2b and R2c, R2c and R2d , R3a and R3b , R3b and R3c , R3c and R3d , and R2a and R3a can be joined together at least one position to form an aliphatic ring.
  • the aliphatic ring formed in this case can be the one described in the above ring A2 and ring A3 . The same applies to the type and number of the substituent.
  • R4a and R4b , R4b and R4c , R5a and R5b , R5b and R5c , and R4a and R5a can be joined together at least one position to form an aliphatic ring.
  • the aliphatic ring formed in this case can be the one described above for ring A2 and ring A3 . The same applies to the type and number of the substituent.
  • the diamondoid compound of the present invention can be said to be a compound having two or more adamantane rings.
  • the diamondoid compound of the present invention can be, for example, a compound represented by the general formula (1A'):
  • ring A2 and ring A3 are the same or different and represent an aliphatic ring.
  • R1a , R1b , R1c , R1d , R1e , and R1f are the same or different and represent a hydrogen atom, an alkyl group, a cycloalkyl group, or an adamantyl group.
  • ring A4 and ring A5 are the same or different and represent an aliphatic ring.
  • R1a , R1b , R1c , R1d , R1e , and R1f are the same or different and represent a hydrogen atom, an alkyl group, a cycloalkyl group, or an adamantyl group.
  • the alkyl group, cycloalkyl group and adamantyl group represented by R 1a , R 1b , R 1c , R 1d , R 1e and R 1f may be the same as those described above. The same applies to the type and number of the substituents.
  • the alkyl group, cycloalkyl group and adamantyl group represented by R 1a , R 1b , R 1c , R 1d , R 1e and R 1f may be the same as those described above. The same applies to the type and number of the substituents.
  • the aliphatic rings represented by ring A2 and ring A3 can be those described for ring A2 and ring A3 in the general formula (1A) above. The same applies to the types and numbers of the substituents.
  • the aliphatic rings represented by ring A4 and ring A5 can be those described for ring A2 and ring A3 in the general formula (1A) above. The same applies to the types and numbers of the substituents.
  • the diamondoid compound of the present invention can be said to be a compound in which two or more adamantane rings are condensed to a structure in which at least four aliphatic rings are condensed.
  • the diamondoid compound of the present invention is represented by general formula (1A'1):
  • R 2b , R 2c , R 2d , R 3b , R 3c and R 3d are the same or different and each represents a hydrogen atom, a hydroxyl group, an alkyl group, an alkoxy group, a cycloalkyl group, an amino group, or an adamantyl group.
  • R 2b and R 2c , R 2c and R 2d , R 3b and R 3c , and R 3c and R 3d may be joined together at least at one position to form an aliphatic ring.
  • R 4b , R 4c , R 5b and R 5c are the same or different and each represents a hydrogen atom, a hydroxyl group, an alkyl group, an alkoxy group, a cycloalkyl group, an amino group, or an adamantyl group.
  • R 4b and R 4c , and R 5b and R 5c may be joined together at least at one position to form an aliphatic ring.
  • the compound may also be represented by the following formula:
  • the alkyl group, alkoxy group, cycloalkyl group, amino group and adamantyl group represented by R2b , R2c , R2d , R3b , R3c and R3d may be the same as those described above. The same applies to the type and number of the substituents.
  • the alkyl group, alkoxy group, cycloalkyl group, amino group and adamantyl group represented by R4b , R4c , R5b and R5c may be the same as those described above. The same applies to the type and number of the substituents.
  • R2b and R2c , R2c and R2d , R3b and R3c , and R3c and R3d can be joined together at least one position to form an aliphatic ring.
  • the aliphatic ring formed in this case can be the same as that described above for ring A2 and ring A3 . The same applies to the type and number of substituents.
  • R 4b and R 4c , and R 5b and R 5c can be joined together at least one position to form an aliphatic ring.
  • the aliphatic ring formed in this case can be one described above for ring A 2 and ring A 3. The same applies to the type and number of the substituents.
  • diamondoid compounds of the present invention can be used in applications generally used for nanodiamonds and known diamondoid compounds, such as electron emission materials, power semiconductors, organic electronics, and bioactive substances that take advantage of their low toxicity and novel structure. Specifically, they can be used for applications such as photoresist materials for fine semiconductors, heat conductive materials (such as heat conductive nanowires), heat conductive films, power semiconductor devices, diamond synthesis seed materials, diamond semiconductors, industrial diamonds, biologically active substances, drug discovery, and highly flexible materials.
  • the diamondoid compound of the present invention can be produced, for example, by (II) General formula (2):
  • the adamantane-fused aromatic compound represented by the following formula (1) can be produced by a production method including a step of hydrogenating an adamantane-fused aromatic compound represented by the following formula (1): in the presence of a catalyst.
  • the catalyst used in this step contains a catalyst containing rhodium and platinum, and a catalyst containing scandium.
  • R 1 and n can be as described above.
  • the structure of the adamantane ring portion in the adamantane-fused aromatic compound can be the same as the structure of the adamantane ring portion in the diamondoid compound of the present invention.
  • ring A 1 ' represents an aromatic ring corresponding to ring A 1 described above.
  • the ring A 1' is not particularly limited as long as it is an aromatic ring having two or more rings, and various aromatic rings can be adopted.
  • the aromatic ring can be a ring obtained by combining two or more (e.g., 2 to 1000, particularly 2 to 100) aromatic hydrocarbon rings (such as a benzene ring) and heteroaromatic rings (such as a pyridine ring, a pyrazine ring, a pyrrole ring, a furan ring, a thiophene ring, an imidazole ring, a pyrazole ring, an oxazole ring, a thiazole ring, etc.).
  • aromatic hydrocarbon rings such as a benzene ring
  • heteroaromatic rings such as a pyridine ring, a pyrazine ring, a pyrrole ring, a furan ring, a thiophene ring, an imidazole ring, a
  • the ring A 1' can also be a structure consisting of only the aromatic rings described above, or a ring obtained by combining a total of two or more (e.g., 2 to 1000, particularly 2 to 100) of the aromatic rings and the aliphatic rings described above.
  • ring A 1′ is, for example,
  • the above-mentioned ring A 1' may have a substituent.
  • substituents that the ring A 1' may have include the above-mentioned halogen atom, the above-mentioned alkyl group, the above-mentioned cycloalkyl group, the above-mentioned adamantyl group, etc.
  • the number of the substituents may be, for example, 1 to 6, particularly 1 to 3.
  • adamantane-fused aromatic compounds are classified according to the structure of ring A1' and are represented by the general formula (2A):
  • R 1a , R 1b and R 1c are the same as defined above.
  • Ring A 2′ and ring A 3′ are aromatic rings corresponding to ring A 2 and ring A 3 , respectively.
  • R 1a , R 1b and R 1c are the same as defined above.
  • Ring A 4′ and ring A 5′ represent aromatic rings corresponding to ring A 4 and ring A 5 , respectively.
  • the compound may also be represented by the following formula:
  • the aromatic rings represented by ring A2 ' and ring A3 ' are not particularly limited, and may be a ring using a single aromatic hydrocarbon ring (such as a benzene ring) and a heteroaromatic ring (such as a pyridine ring, a pyrazine ring, a pyrrole ring, a furan ring, a thiophene ring, an imidazole ring, a pyrazole ring, an oxazole ring, a thiazole ring, etc.), or two or more (e.g., 1 to 1000, particularly 1 to 100) of them.
  • a single aromatic hydrocarbon ring such as a benzene ring
  • a heteroaromatic ring such as a pyridine ring, a pyrazine ring, a pyrrole ring, a furan ring, a thiophene ring, an imidazole ring, a
  • Ring A2 ' and ring A3 ' may also be a structure consisting of only the aromatic ring described above, or may be a ring combining a total of two or more (e.g., 2 to 1000, particularly 2 to 100) of the aromatic ring and the aliphatic ring described above.
  • Examples of the aromatic ring represented by ring A2 ' and ring A3 ' include
  • the aromatic rings represented by the rings A2 ' and A3' may have a substituent.
  • substituents that the aromatic rings represented by the rings A2' and A3 ' may have include the above-mentioned halogen atoms, alkyl groups, cycloalkyl groups, and adamantyl groups.
  • the number of the substituents may be, for example, 1 to 6, and particularly 1 to 3.
  • the aromatic rings represented by ring A4' and ring A5 ' may be those described above for ring A2' and ring A3 ' .
  • R 4a , R 4b , R 4c , R 5a , R 5b and R 5c are the same as above. It is also possible to use a compound represented by the following formula:
  • the adamantane-fused aromatic compound can be said to be a compound having two or more adamantane rings.
  • the adamantane-fused aromatic compound can be, for example, a compound represented by the general formula (2A′):
  • the adamantane-fused aromatic compound can be said to be a compound in which two or more adamantane rings are fused to a structure in which at least four rings are fused.
  • the adamantane-fused aromatic compound is represented by general formula (2A'1):
  • R 4b , R 4c , R 5b and R 5c are the same as above.
  • the compound may also be represented by the following formula:
  • adamantane-fused aromatic compounds that satisfy the above conditions are:
  • the catalyst used in the step (II) contains a catalyst containing rhodium and platinum, and a Lewis acid catalyst.
  • the molar ratio of rhodium and platinum is not particularly limited, but from the viewpoints of reaction conversion rate, yield, selectivity, etc., the catalyst contains preferably 0.10 to 2.00 mol of platinum per mol of rhodium, more preferably 0.15 to 1.00 mol, and even more preferably 0.20 to 0.50 mol.
  • the catalyst containing rhodium and platinum is not particularly limited as long as it contains rhodium and platinum, but it is preferable that the rhodium and platinum are supported on a carrier.
  • Such a carrier is not particularly limited, but from the viewpoint of reaction conversion rate, yield, selectivity, etc., a carrier containing polysilane and alumina (composite carrier) is preferable.
  • polysilanes there are no particular limitations on the polysilane, and examples of the polysilane that can be used include polydialkylsilanes such as polydimethylsilane and polydiethylsilane; polyalkylarylsilanes such as polymethylphenylsilane and polyethylphenylsilane; and known or commercially available products can be used.
  • polydialkylsilanes such as polydimethylsilane and polydiethylsilane
  • polyalkylarylsilanes such as polymethylphenylsilane and polyethylphenylsilane
  • known or commercially available products can be used.
  • rhodium and platinum are supported on a carrier, there are no particular limitations on the amount supported, but for example, it is preferable that rhodium is 0.04 to 5.00 mmol/g (particularly 0.05 to 2.00 mmol/g) and platinum is 0.005 to 0.05 mmol/g (particularly 0.01 to 0.04 mmol/g).
  • Such rhodium and platinum-containing catalysts can be publicly known or commercially available products, or can be synthesized by the method described in J. Am. Chem. Soc. 2018, 140, 11325-11334.
  • the amount of the catalyst containing rhodium and platinum used is not particularly limited, but from the viewpoint of reaction conversion rate, yield, selectivity, etc., it is preferably 0.05 to 1 mol, more preferably 0.06 to 0.5 mol, even more preferably 0.07 to 0.3 mol, and particularly preferably 0.08 to 2 mol per 1 mol of the raw material adamantane fused aromatic compound.
  • Lewis Acid Catalyst In the present invention, the use of both a catalyst containing rhodium and platinum and a Lewis acid catalyst can synergistically improve the catalytic activity.
  • the Lewis acid catalyst used in the present invention is not particularly limited, but from the viewpoint of reaction conversion rate, yield, selectivity, etc., it is preferable that the Lewis acid catalyst has an element of Group 3, Group 13, or Group 14 of the periodic table as the active center.
  • Examples of elements in Group 3, 13, or 14 of the periodic table include scandium (Sc), zinc (Zn), yttrium (Y), indium (In), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu).
  • rare earth elements are preferred, and scandium is more preferred.
  • the catalytic activity of the Lewis acid can be increased.
  • electron-withdrawing groups used for this purpose include the trifluoromethanesulfonyl group (hereinafter sometimes referred to as the "OTf group”), the methanesulfonyl group, various substituted benzenesulfonyl groups, and the trifluoroacetyl group.
  • Lewis acid catalysts that can be used in the present invention include scandium(III) trifluoromethanesulfonate, zinc(II) trifluoromethanesulfonate, indium(III) trifluoromethanesulfonate, ytterbium(III) trifluoromethanesulfonate, etc., with scandium(III) trifluoromethanesulfonate, indium(III) trifluoromethanesulfonate, ytterbium(III) trifluoromethanesulfonate, etc.
  • Lewis acid catalysts can be used alone or in combination of two or more.
  • the amount of Lewis acid catalyst used is not particularly limited, but from the viewpoint of reaction conversion rate, yield, selectivity, etc., it is preferably 0.05 to 1 mol, more preferably 0.06 to 0.5 mol, even more preferably 0.07 to 0.3 mol, and particularly preferably 0.08 to 2 mol per 1 mol of the raw material adamantane-fused aromatic compound.
  • step (II) can usually be carried out in an organic solvent.
  • organic solvents there are no particular limitations on the organic solvents that can be used, but from the standpoint of reaction conversion rate, yield, selectivity, etc., alkanes are preferred, and specific examples include hexane, heptane, and octane. These organic solvents can be used alone or in combination of two or more types.
  • the amount of these organic solvents used is not particularly limited and can be the amount of solvent.
  • the adamantane-fused aromatic compound in the step (II), can usually be hydrogenated by contacting a hydrogen-containing gas such as hydrogen gas with the adamantane-fused aromatic compound.
  • the atmosphere in the system can be a hydrogen-containing gas atmosphere such as hydrogen gas.
  • the pressure of the hydrogen-containing gas atmosphere such as hydrogen gas is not particularly limited, but from the viewpoint of the conversion rate, yield, selectivity, etc. of the reaction, it is preferably 0.1 to 10 MPa, more preferably 0.2 to 5 MPa, and even more preferably 0.3 to 2 MPa.
  • This reaction can be carried out usually at 80 to 200° C., preferably 100 to 150° C. In addition, this reaction can be carried out usually for 1 to 200 hours, preferably 10 to 150 hours, more preferably 50 to 100 hours.
  • the diamondoid compound of the present invention can be obtained by purifying it by a conventional method as necessary. Specifically, for example, an organic solvent (such as ethyl acetate) can be added to the reaction mixture to dissolve the organic matter in the organic layer, and then the metal catalyst can be adsorbed by silica gel and purified by gel filtration chromatography.
  • an organic solvent such as ethyl acetate
  • ring A 1′′ represents an aromatic ring corresponding to ring A 1 and ring A 1 ′, and X 1 represents a halogen atom.
  • a 1 ′′, R 1 and n are the same as defined above.
  • (IB) a step of reacting the adamantane-containing arene compound obtained in the step (IA) with a Br ⁇ nsted acid and/or a Lewis acid.
  • ring A 1′′ represents an aromatic ring corresponding to ring A 1 and ring A 1 ′.
  • ring A1" is not particularly limited as long as it is an aromatic ring having two or more rings, and various aromatic rings can be adopted.
  • the aromatic ring can be a ring obtained by combining two or more (e.g., 2 to 1000 rings, particularly 2 to 100 rings) aromatic hydrocarbon rings (such as a benzene ring) and heteroaromatic rings (such as a pyridine ring, a pyrazine ring, a pyrrole ring, a furan ring, a thiophene ring, an imidazole ring, a pyrazole ring, an oxazole ring, a thiazole ring, etc.).
  • aromatic hydrocarbon rings such as a benzene ring
  • heteroaromatic rings such as a pyridine ring, a pyrazine ring, a pyrrole ring, a furan ring, a thiophene ring, an imidazole ring, a
  • Ring A1 " can also have a structure consisting of only the above-mentioned aromatic ring, or can be a ring obtained by combining a total of two or more (e.g., 2 to 1000 rings, particularly 2 to 100 rings) of the above-mentioned aromatic rings and the above-mentioned aliphatic rings.
  • ring A 1′′ is, for example,
  • the above-mentioned ring A1" may also have a substituent.
  • substituents that ring A1 " may have include the above-mentioned halogen atoms, the above-mentioned alkyl groups, the above-mentioned cycloalkyl groups, the above-mentioned adamantyl groups and adamantanonyl groups.
  • the number of the substituents may be, for example, 1 to 6, particularly 1 to 3.
  • aromatic compounds used as raw materials are specifically:
  • the aromatic compounds used as raw materials can be publicly known or commercially available products.
  • the nucleophile is not particularly limited, and any nucleophile capable of inducing the Friedel-Crafts reaction can be used. Among them, organolithium compounds, organomagnesium compounds, etc. are preferred from the viewpoints of the conversion rate, yield, selectivity, etc. of the reaction.
  • the organolithium compound is not particularly limited, and known compounds can be used, such as alkyllithiums such as methyllithium, ethyllithium, n-propyllithium, isopropyllithium, n-butyllithium, sec-butyllithium, tert-butyllithium, n-pentyllithium, and n-hexyllithium; cycloalkyllithiums such as cyclohexyllithium; and aryllithiums such as phenyllithium.
  • alkyllithiums are preferred, and n-butyllithium is more preferred, from the standpoint of reaction conversion rate, yield, selectivity, and the like.
  • organic magnesium compounds include alkyl magnesium halides such as methyl magnesium chloride, methyl magnesium bromide, n-butyl magnesium chloride, n-butyl magnesium bromide, n-hexyl magnesium chloride, and n-hexyl magnesium bromide; phenyl magnesium chloride, phenyl magnesium bromide, 4-n-butylphenyl magnesium chloride, and 4-n-butylphenyl magnesium bromide.
  • alkyl magnesium halides such as methyl magnesium chloride, methyl magnesium bromide, n-butyl magnesium chloride, n-butyl magnesium bromide, n-hexyl magnesium chloride, and n-hexyl magnesium bromide
  • phenyl magnesium chloride, phenyl magnesium bromide, 4-n-butylphenyl magnesium chloride, and 4-n-butylphenyl magnesium bromide alkyl magnesium halides such as methyl magnesium chloride, methyl magnesium bromide, n
  • nucleophiles can be used alone or in combination of two or more.
  • the amount of nucleophile used is not particularly limited, but from the viewpoint of reaction conversion rate, yield, selectivity, etc., it is preferably 0.2 to 5.0 moles, more preferably 0.3 to 3.0 moles, and even more preferably 0.5 to 2.0 moles per mole of the aromatic compound raw material. When multiple nucleophiles are used, it is preferable to adjust the total amount so that it is within the above range.
  • the amount of the adamantanone compound used is not particularly limited, but from the viewpoint of reaction conversion rate, yield, selectivity, etc., it is preferably 0.2 to 5.0 moles, more preferably 0.3 to 3.0 moles, and even more preferably 0.5 to 2.0 moles per mole of the aromatic compound as the raw material.
  • step (IA) can usually be carried out in an organic solvent.
  • the organic solvent that can be used is not particularly limited, but from the viewpoints of the conversion rate, yield, selectivity, etc. of the reaction, hydrocarbons, ethers, etc. are preferred.
  • the hydrocarbons include aliphatic saturated hydrocarbons such as pentane, hexane, heptane, etc.; and aromatic hydrocarbons such as benzene.
  • the ethers include 1,4-dioxane, tetrahydrofuran, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, etc. Among these, from the viewpoints of the conversion rate, yield, selectivity, etc. of the reaction, ethers are preferred, and tetrahydrofuran is more preferred.
  • These organic solvents can be used alone or in combination of two or more kinds.
  • the amount of these organic solvents used is not particularly limited and can be the amount of solvent.
  • the reaction between the aromatic compound as a raw material and the nucleophile can be carried out usually at ⁇ 120 to ⁇ 30° C., preferably ⁇ 100 to ⁇ 50° C.
  • the subsequent reaction with the adamantanone compound can be carried out usually at 0 to 70° C., preferably 10 to 50° C.
  • the reaction between the aromatic compound as a raw material and the nucleophile can be carried out usually for 1 minute to 10 hours, preferably 5 minutes to 5 hours, more preferably 10 minutes to 3 hours
  • the subsequent reaction with the adamantanone compound can be carried out usually for 1 to 100 hours, preferably 2 to 50 hours, more preferably 5 to 30 hours.
  • the adamantane-containing arene compound can be obtained by purifying it by a conventional method as necessary. Specifically, for example, an organic solvent (such as ethyl acetate) can be added to the reaction mixture to dissolve the organic matter in the organic layer, and then the metal compound can be adsorbed by silica gel and purified by gel filtration chromatography.
  • an organic solvent such as ethyl acetate
  • Bronsted acid and/or Lewis acid there is no particular limitation on the Bronsted acid and/or Lewis acid, and various acids can be used.
  • Inorganic acids such as sulfuric acid, nitric acid, phosphoric acid, polyphosphoric acid, hydrogen fluoride (HF), hydrofluoric acid, hydrochloric acid, hydrogen bromide, hydrogen iodide, hypochlorous acid, chlorous acid, chloric acid, perchloric acid, perbromic acid, and periodic acid;
  • Sulfonic acids such as fluorosulfonic acid, chlorosulfonic acid, methanesulfonic acid, ethanesulfonic acid, trifluoromethanesulfonic acid, difluoromethanesulfonic acid, trichloromethanesulfonic acid, perfluorobutanesulfonic acid, perfluorooctane sulfonic acid, benzenesulfonic acid, toluenesulfonic acid, and nitro
  • Bronsted acid is preferred, mono- or polycarboxylic acid is more preferred, mono- or polyfluoroacetic acid is even more preferred, and trifluoroacetic acid is particularly preferred.
  • the term refers to a compound that is not an acid according to the Bronsted definition, but is an acid according to the Lewis definition.
  • the amount of Bronsted acid and/or Lewis acid used is not particularly limited, but from the viewpoint of reaction conversion rate, yield, selectivity, etc., it is preferably 0.2 to 5.0 moles, more preferably 0.3 to 3.0 moles, and even more preferably 0.5 to 2.0 moles per mole of the raw material adamantane-containing arene compound.
  • the amount used can be the amount of solvent.
  • step (IB) can usually be carried out in an organic solvent.
  • the organic solvents that can be used are not particularly limited, but from the viewpoints of the conversion rate, yield, selectivity, etc. of the reaction, hydrocarbons, halogenated hydrocarbons, ethers, etc. are preferred.
  • hydrocarbons include aliphatic hydrocarbons such as pentane, hexane, and heptane, and aromatic hydrocarbons such as benzene, toluene, and xylene.
  • the halogenated hydrocarbons include chloroform, dichloroethane, trichloroethane, chlorobenzene, and dichlorobenzene.
  • ethers examples include 1,4-dioxane, tetrahydrofuran, ethylene glycol dimethyl ether, and ethylene glycol diethyl ether. Among them, from the viewpoints of the conversion rate, yield, selectivity, etc. of the reaction, halogenated hydrocarbons are preferred, and dichloroethane is more preferred. These organic solvents can be used alone or in combination of two or more.
  • the amount of these organic solvents used is not particularly limited and can be the amount of solvent.
  • This step can be carried out usually at 40 to 100° C., preferably 50 to 90° C. In addition, this step can be carried out usually for 5 minutes to 10 hours, preferably 10 minutes to 8 hours, more preferably 30 minutes to 5 hours.
  • the adamantane-fused aromatic compound can be obtained by purifying it by a conventional method as necessary. Specifically, for example, an organic solvent (such as ethyl acetate) can be added to the reaction mixture to dissolve the organic matter in the organic layer, and then impurities can be adsorbed by silica gel and purified by gel filtration chromatography.
  • an organic solvent such as ethyl acetate
  • 2,2'-Dibromobiphenyl, 2-Bromo-2'-chloro-1,1'-biphenyl, 2-Bromo-1,1'-binaphthalene, 3-Bromo-4-phenylthiophene, and 3-Bromo-2,2'-bithiophene were synthesized according to procedures reported in the literature. All reactions were carried out under N2 gas atmosphere in flame-dried glassware and dehydrated solvents using standard vacuum line techniques. Toluene, tetrahydrofuran (THF), and diethyl ether (Et 2 O) used in the reactions were purified by passing through a solvent purification system (Glass Contour). All steps and purification procedures were carried out in air using reagent grade solvents.
  • THF tetrahydrofuran
  • Et 2 O diethyl ether
  • rt means 25°C.
  • Analytical thin-layer chromatography was performed using E. Merck silica gel 60 F254 precoated plates (0.25 mm). Chromatograms were analyzed with a UV lamp (254 nm or 365 nm). Flash column chromatography was performed on a Biotage Isolera equipped with KANTO Silica Gel 60N (spherical, neutral, 40-100 ⁇ m) or a Biotage SNAP Cartridge KP-Sil column.
  • Preparative recycling gel permeation chromatography was performed on a JAI LC-9260 II NEXT instrument equipped with a JAIGEL-2HR column using chloroform as the eluent.
  • High resolution mass spectrometry was obtained on a JEOL JMS-T100TD (Direct Analysis in Real Time, DART), a JEOL JMS-T100GCV (Direct EI), and a Bruker Daltonics compact (ESI).
  • Electron paramagnetic resonance (EPR) spectra were recorded on a JEOL ESR JES TE-200 instrument using a quartz Schlenk tube filled with argon.
  • Nuclear magnetic resonance (NMR) spectra were recorded on a JEOL ECS-600 ( 1H 600MHz, 13C 150MHz) spectrometer or a JEOL ECS-500 ( 1H 500MHz, 13C 125MHz) spectrometer.
  • the flask was filled with argon, sealed, and placed in a glove box.
  • a flask was charged with tri-tert-butylphosphine (P t Bu 3 ) (0.26 mmol, 54.1 mg, 10 mol%), followed by the addition of toluene (15 mL), 1,4-dioxane (5 mL), and H 2 O (5 mL).
  • the reaction mixture was stirred at 100° C. for 19 h. After cooling to room temperature, the reaction mixture was quenched by adding water, and the organic layer was extracted three times with ethyl acetate. The combined organic layers were dried over Na 2 SO 4 and concentrated under vacuum.
  • n BuLi refers to n-butyl lithium.
  • THF refers to tetrahydrofuran.
  • Step IA At room temperature (25°C), an aromatic compound (0.3 mmol, 1.0 equivalent) was placed in a dried 50 mL two-neck flask, and after nitrogen replacement, dehydrated tetrahydrofuran (THF; 3 mL) was added. The solution was cooled to -78°C, and then normal butyl lithium ( nBuLi ; 1.6 mol/L, normal hexane solution, 0.33 mmol, 1.1 equivalent) was slowly added dropwise and stirred for 1 hour.
  • THF dehydrated tetrahydrofuran
  • Step IB The obtained compound was placed in a dried Schlenk tube at room temperature (25°C), and after nitrogen replacement, 1,2-dichloroethane (1.5mL) and trifluoroacetic acid (1.5mL) were added. After heating to 75°C and stirring for 3 hours, a saturated aqueous solution of sodium bicarbonate was added dropwise at room temperature (25°C) to stop the reaction. An extraction operation using ethyl acetate was performed three times, and the obtained organic layer was dried with sodium sulfate, and the solvent was distilled off under reduced pressure. The crude product was purified by silica gel column chromatography (developing solvent: hexane). Subsequently, purification was performed using gel filtration chromatography to obtain the target compound.
  • Step IA At room temperature (25°C), an aromatic compound (0.3 mmol, 1.0 equivalent) was placed in a dried 50 mL two-neck flask, and after nitrogen replacement, dehydrated tetrahydrofuran (THF; 3 mL) was added. After cooling the solution to -78°C, normal butyl lithium ( nBuLi ; 1.6 mol/L, normal hexane solution, 0.33 mmol, 1.1 equivalent) was slowly added dropwise and stirred for 1 hour.
  • THF dehydrated tetrahydrofuran
  • Step IB The obtained crude product was placed in a dried Schlenk tube at room temperature (25°C), and after nitrogen replacement, 1,1,2,2-tetrachloroethane (1.5mL) and trifluoroacetic acid (1.5mL) were added. After heating to 75°C and stirring for 3 hours, a saturated aqueous solution of sodium bicarbonate was added dropwise at room temperature (25°C) to stop the reaction. An extraction operation using ethyl acetate was performed three times, and the obtained organic layer was dried with sodium sulfate, and the solvent was distilled off under reduced pressure. The crude product was purified by silica gel column chromatography (developing solvent: hexane). Subsequently, purification was performed by gel filtration chromatography (developing solvent: CHCl 3 ) to obtain the target compound.
  • the raw material compounds used in Synthesis Examples 6-1 to 6-36 are as follows:
  • the intermediate (adamantane-containing arene compound) obtained by carrying out step IA using the above-mentioned compound as a raw material compound is as follows.
  • the intermediates (adamantane-fused arene compounds) obtained by carrying out steps IA and IB similarly using the above compounds as raw materials are as follows.
  • the yields listed under each compound are the total yields of steps IA and IB.
  • Synthesis Example 6-1 10,11,12,13,14,14a-hexahydro-9H-8b,12:10,14-dimethanocycloocta[l]phenanthrene
  • Synthesis method A 2-Bromobiphenyl was used. Yield 49.1 mg, yield 57%, white solid.
  • Synthesis Example 6-2 4-bromo-10,11,12,13,14,14a-hexahydro-9H-8b,12:10,14-dimethanocycloocta[l]phenanthrene
  • Synthesis method A 2,2'-dibromo-1,1'-biphenyl was used. Yield 64.7 mg, yield 59%, white solid.
  • Synthesis Example 6-3 4-chloro-10,11,12,13,14,14a-hexahydro-9H-8b,12:10,14-dimethanocycloocta[l]phenanthrene
  • Synthesis method A 2-bromo-2'-chloro-1,1'-biphenyl was used. Yield 24.8 mg, yield 31%, white solid.
  • Synthesis Example 6-4 2,7-dichloro-10,11,12,13,14,14a-hexahydro-9H-8b,12:10,14-dimethanocycloocta[l]phenanthrene
  • Synthesis method A 2-Bromo-2,2'-dichloro-1,1'-biphenyl was used. Yield 33.0 mg, yield 31%, white solid.
  • Synthesis Example 6-5 6,7,8,9,10,10a-hexahydro-5H-4b,8:6,10-dimethanocycloocta[3,4]naphtho[2,1-a]azulene
  • Synthesis method A Compound S2 was used, and the scale was 75 ⁇ mol. Yield: 5.8 mg, yield 23%, blue solid.
  • Synthesis Example 6-6 12c,13,15,16,17,18-Hexahydro-14H-13,17:15,18a-dimethanobenzo[g]cycloocta[p]chrysene
  • Synthesis method A 9-(2-bromophenyl)phenanthrene was used. Yield 60.3 mg, yield 52%, white solid.
  • Synthesis Example 6-7 1,3,4,5,6,18b-hexahydro-2H-1,5:3,6a-dimethanodibenzo[c,g]cycloocta[l]phenanthrene
  • Synthesis method A 2-Bromo-1,1'-binaphthalene was used, 0.8 mmol scale. Yield 133.0 mg, yield 43%, white solid.
  • Synthesis Example 6-8 6b,7,9,10,11,12-Hexahydro-8H-7,11:9,12a-dimethanodibenzo[m,pqr]cycloocta[k]tetraphene
  • Synthesis method A Compound S5 was used. Yield 45.2 mg, yield 37%, white solid.
  • Synthesis Example 6-9 12,13,14,15,16,16a-hexahydro-11H-10b,14: 12,16-dimethanobenzo[pqr]cycloocta[f]picene
  • Synthesis method A Compound S4 was used. Yield 60.4 mg, yield 49%, white solid.
  • Synthesis Example 6-10 7b,8,10,11,12,13-Hexahydro-9H-8,12:10,13a-dimethanocycloocta[3,4]naphtho[1,2-c]thiophene
  • Synthesis method A reaction solvent in step I was changed to dehydrated diethyl ether). 3-Bromo-4-phenylthiophene was used. Yield 49.1 mg, yield 57%, white solid.
  • Synthesis Example 6-11 2,3,4,5,6,6a-hexahydro-1H-2,6:4,16b-dimethanocycloocta[3,4]naphtho[2,1-h]quinoline Synthesis method: Synthesis method A. Compound S6 was used. Yield 37.9 mg, yield 37%, white solid.
  • Synthesis Example 6-12 5,6,7,8,9,9a-hexahydro-4H-3b,7:5,9-dimethanocycloocta[5,6]benzo[2,1-b:3,4-b']dithiophene
  • Synthesis method A (the reaction solvent in step I was dehydrated diethyl ether). 3-Bromo-2,2'-bithiophene was used. Yield 35.8 mg, yield 40%, brown solid.
  • Synthesis Example 6-13 10,11,12,13,14,14a-hexahydro-9H-8b,12: 10,14-dimethanocycloocta[5,6]benzo[1,2,3,4-ghi]perylene
  • Synthesis method A 2-Bromo-1,1'-binaphthalene was used, 0.8 mmol scale. Yield 21.2 mg, 7%, yellow solid.
  • Synthesis Example 6-14 5-phenyl-10,11,12,13,14,14a-hexahydro-9H-8b,12:10,14-dimethanocycloocta[l]phenanthrene
  • Synthesis method A 1-Bromo-2,3-diphenylbenzene was used. Yield 33.2 mg, yield 31%, white solid.
  • Synthesis Example 6-15 12,13,14,15,16,16a-hexahydro-11H-10b,14: 12,16-dimethanobenzo[e]cycloocta[l]pyrene
  • Synthesis method Synthesis method A. 1-Bromo-2,3-diphenylbenzene was used. Yield 16.1 mg, yield 15%, white solid.
  • Synthesis Example 6-16 5-(phenanthren-9-yl)-10,11,12,13,14,14a-hexahydro-9H-8b,12: 10,14-dimethanocycloocta[l]phenanthrene
  • Synthesis method Synthesis method A. 1-Bromo-3-(9-phenanthrene)-2-phenylbenzene was used. Yield 26.4 mg, 19%, white solid. The product was obtained as a 1:1 mixture with rotamers.
  • Synthesis Example 6-17 13,14,15,16,17,17a-hexahydro-12H-11b,15: 13,17-dimethanotribenzo[f,ij,no]cycloocta[l]tetraphene
  • Synthesis method Synthesis method A. 1-Bromo-3-(9-phenanthrene)-2-phenylbenzene was used. Yield 8.3 mg, yield 6%, white solid.
  • Synthesis Example 6-18 8,9,10,11,12,12a-Hexahydro-7H-6b,10:8,12-dimethanocycloocta[a]acenaphthylene Synthesis method: Synthesis method B. 1-Bromonaphthalene was used. Yield 18.7 mg, yield 24%, colorless oil.
  • Synthesis Example 6-19 4-bromo-8,9,10,11,12,12a-hexahydro-7H-6b,10:8,12-dimethanocycloocta[a]acenaphthylene Synthesis method: Synthesis method B. 1,4-Dibromonaphthalene was used. Yield 55.2 mg, yield 55%, white solid.
  • Synthesis Example 6-20 6b,7,9,10,11,12-Hexahydro-8H-7,11:9,12a-dimethanocycloocta[4,5]cyclopenta[1,2,3-cd]pyrene
  • Synthesis method B 1-Bromopyrene was used. Yield 52.1 mg, yield 52%, white solid.
  • Synthesis Example 6-21 8,9,10,11,12,12a-hexahydro-7H-6b,10: 8,12-dimethanocycloocta[4,5]cyclopenta[1,2,3-cd]fluoranthene
  • Synthesis method B 3-Bromofluoranthene was used. Yield 47.2 mg, yield 47%, white solid.
  • Synthesis Example 6-22 4-(naphthalen-1-yl)-8,9,10,11,12,12a-hexahydro-7H-6b,10:8,12-dimethanocycloocta[a]acenaphthylene
  • Synthesis method B 4-Bromo-1,1'-binaphthalene was used. Yield 48.7 mg, 42%, white solid. The product was obtained as a 1:1 mixture with rotamers.
  • Synthesis Example 6-23 7,8,9,10,11,11a-hexahydro-6H-5b,9: 7,11-dimethanocycloocta[4,5]cyclopenta[1,2,3-cd]perylene
  • Synthesis method B 4-Bromo-1,1'-binaphthalene was used. Yield 23.2 mg, 20%, yellow solid.
  • Synthesis Example 6-24 10,11,12,13,14,14a-Hexahydro-9H-8b,12:10,14-dimethanocycloocta[e]pyrene
  • Synthesis method B 4-Bromophenanthrene was used. Yield 23.1 mg, yield 24%, white solid.
  • Synthesis Example 6-25 4,4-Dimethyl-4,8,9,10,11,12,13,13a-octahydro-7b,11:9,13-dimethanocycloocta[l]cyclopenta[def]phenanthrene
  • Synthesis method B 4-Bromo-9,9-dimethyl-9H-fluorene was used. Yield 42.1 mg, yield 43%, white solid.
  • Synthesis Example 6-26 4,4-diphenyl-4,8,9,10,11,12,13,13a-octahydro-7b,11:9,13-dimethanocycloocta[l]cyclopenta[def]phenanthrene
  • Synthesis method B 4-Bromo-9,9-diphenyl-9H-fluorene was used. Yield 41.7 mg, yield 35%, white solid.
  • Synthesis Example 6-27 9',10',11',12',13',13a'-Hexahydro-8'H-spiro[fluorene-9,4'-[7b,11:9,13]dimethanocycloocta[l]cyclopenta[def]phenanthrene
  • Synthesis method B 4-Bromo-9,9'-spirobifluorene was used. Yield 47.1 mg, yield 35%, white solid.
  • Synthesis Example 6-28 4-Phenyl-4,8,9,10,11,12,13,13a-octahydro-7b,11:9,13-dimethanocycloocta[5,6]benzo[1,2,3,4-def]carbazole
  • Synthesis method B 4-Bromo-9-phenyl-9H-carbazole was used. Yield 63.2 mg, yield 55%, white solid.
  • Synthesis Example 6-29 10,11,12,13,14,14a-hexahydro-9H-8b,12:10,14-dimethanocycloocta[e]acephenanthrene
  • Synthesis method B 9-Bromophenanthrene was used. Yield 38.2 mg, 41%, white solid. The product was obtained as a 1:1 mixture with structural isomers.
  • DMPSi denotes polydimethylsilane.
  • Sc(OTf) 3 denotes scandium(III) trifluoromethanesulfonate.
  • reaction solution was cooled to room temperature, filtered using Celite, and washed with ethyl acetate.
  • the obtained organic layer was subjected to solvent distillation under reduced pressure.
  • the crude product was purified by silica gel column chromatography (developing solvent: hexane only). Subsequently, purification was performed using gel filtration chromatography to obtain diamondoid compound 7 (2.7 mg, 12%).
  • Example 5 (8br,10R,12S,14s)-N,N-dimethyloctadecahydro-1H-8b,12:10,14-dimethanocycloocta[l]phenanthren-2-amine 1H NMR (600 MHz, C6D6 ) ⁇ 3.91-3.99 (1H), 3.15-3.22 (1H) , 2.19-2.26 (2H), 1.95-2.04 (2H), 1.80-1.88 (1H), 0.98-1.81 (32H).
  • Example 8 (8bS,14R)-2-((8bS,10S,14R,14aR)-octadecahydro-1H-8b,12:10,14-dimethanocycloocta[l]phenanthren-7-yl)octadecahydro-1H-8b,12:10,14-dimethanocycloocta[l]phenanthrene 1H NMR (600 MHz, C6D6 ) ⁇ 1.93-2.05 ( 5H ), 1.84-1.89 (1H), 1.55-1.80 (20H), 0.97-1.55 (38H).
  • Example 10 1-((8br,10R,12S,14s)-octadecahydro-1H-8b,12:10,14-dimethanocycloocta[l]phenanthren-2-yl)ethan-1-ol Isolation of 2 isomers was difficult, the ratio of isomers is 1:1.5 (from GC) HRMS (ESI) m/z: [MH] + Calcd for C24H37O 341.2844 ; Found 341.2849.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

This diamondoid compound is a new compound represented by general formula (1) [in the formula, ring A1 represents an aliphatic ring having two or more rings, R1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, or an adamantyl group, and n represents an integer of 0-3].

Description

ダイヤモンドイド化合物及びその製造方法Diamondoid compounds and methods for producing same
 本発明は、ダイヤモンドイド化合物及びその製造方法に関する。 The present invention relates to diamondoid compounds and methods for producing the same.
 アダマンタンは、10個の炭素原子がダイヤモンドの構造と同様に配置されたかご状の化合物であることから、最小のダイヤモンドイド化合物と呼ばれている。このように、ダイヤモンドの構造と同様に炭素原子が配置されたダイヤモンドイド化合物としては、アダマンタンの他、アダマンタンの炭素骨格を拡張したジアマンタン、トリアマンタン、テトラアマンタン等のような高次ダイヤモンドイド化合物が挙げられ、原油中からごく微量が単離されることが知られている(例えば、非特許文献1参照)。 Adamantane is called the smallest diamondoid compound because it is a cage-shaped compound with 10 carbon atoms arranged in a similar manner to the diamond structure. In addition to adamantane, diamondoid compounds with carbon atoms arranged in a similar manner to the diamond structure include higher diamondoid compounds such as diamantane, triamantane, and tetraamantane, which are extensions of the carbon skeleton of adamantane, and it is known that very small amounts of these compounds are isolated from crude oil (see, for example, Non-Patent Document 1).
 これらの高次ダイヤモンドイド化合物は、ナノダイヤモンドよりもさらに小さなダイヤモンドであり、高融点であること、負の電子親和力を有すること、構造によりバンドギャップや反応性等が異なること等が知られている。 These higher diamondoid compounds are even smaller than nanodiamonds, and are known to have high melting points, negative electron affinities, and different band gaps and reactivity depending on their structure.
 ここ20年ほど精力的に研究がなされ様々な官能基化が実現された一方で、新奇の高次ダイヤモンド化合物の精密合成は報告されていない。 While intensive research has been conducted over the past 20 years and various functionalizations have been achieved, the precise synthesis of novel high-order diamond compounds has not been reported.
 ダイヤモンドイド化合物を得るためには、原油からの単離が主な手法である。ダイヤモンドイド化合物としては、アダマンタン、ジアマンタン等は市販されているものの、トリアマンタン、テトラマンタン等の他、それ以上の高次ダイヤモンドイド化合物を得ることは困難であった。また、すでに単離されたダイヤモンドイド化合物以外の構造のダイヤモンドイド化合物を合成する手法はなく、ダイヤモンドイド化合物の化学及び応用の発展を阻んでいた。 The main method for obtaining diamondoid compounds is isolation from crude oil. Although diamondoid compounds such as adamantane and diamantane are commercially available, it has been difficult to obtain higher diamondoid compounds such as triamantane and tetramantane. Furthermore, there is no method for synthesizing diamondoid compounds with structures other than those that have already been isolated, which has hindered the development of the chemistry and applications of diamondoid compounds.
 本発明は、上記のような課題に鑑みてなされたものであり、新規ダイヤモンドイド化合物を合成することを目的とする。 The present invention was made in consideration of the above problems, and aims to synthesize a new diamondoid compound.
 本発明者らは、前記の課題を解決すべく鋭意研究を重ねた結果、アダマンタン化合物と芳香族化合物とを縮合させた後に、特定の触媒の存在下で水素化することにより、様々なダイヤモンドイド化合物を合成することができることを見出した。本発明者らは、このような知見に基づき、さらに鋭意研究を重ね、本発明を完成した。本発明は、以下の構成を包含する。 The inventors conducted intensive research to solve the above problems and discovered that various diamondoid compounds can be synthesized by condensing an adamantane compound with an aromatic compound and then hydrogenating the resultant in the presence of a specific catalyst. Based on this knowledge, the inventors conducted further intensive research and completed the present invention. The present invention encompasses the following configurations.
 項1.一般式(1): Section 1. General formula (1):
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
[式中、環Aは環の数が2個以上である脂肪族環を示す。Rは水素原子、アルキル基、シクロアルキル基、又はアダマンチル基を示す。nは0~3の整数を示す。]
で表されるダイヤモンドイド化合物。
[In the formula, ring A1 represents an aliphatic ring having two or more rings; R1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, or an adamantyl group; and n represents an integer of 0 to 3.]
A diamondoid compound represented by the formula:
 項2.一般式(1A): Section 2. General formula (1A):
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
[式中、環A及び環Aは同一又は異なって、脂肪族環を示す。R1a、R1b及びR1cは同一又は異なって、水素原子、アルキル基、シクロアルキル基、又はアダマンチル基を示す。R2a及びR3aは同一又は異なって、水素原子、水酸基、アルキル基、アルコキシ基、シクロアルキル基、アミノ基、又はアダマンチル基を示す。R2a及びR3aは一緒になって脂肪族環を形成してもよい。]
、又は一般式(1B):
[In the formula, ring A2 and ring A3 are the same or different and represent an aliphatic ring. R1a , R1b , and R1c are the same or different and represent a hydrogen atom, an alkyl group, a cycloalkyl group, or an adamantyl group. R2a and R3a are the same or different and represent a hydrogen atom, a hydroxyl group, an alkyl group, an alkoxy group, a cycloalkyl group, an amino group, or an adamantyl group. R2a and R3a may be joined together to form an aliphatic ring.]
Or general formula (1B):
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
[式中、環A及び環Aは同一又は異なって、脂肪族環を示す。R1a、R1b及びR1cは同一又は異なって、水素原子、アルキル基、シクロアルキル基、又はアダマンチル基を示す。R4a及びR5aは同一又は異なって、水素原子、水酸基、アルキル基、アルコキシ基、シクロアルキル基、アミノ基、又はアダマンチル基を示す。R4a及びR5aは一緒になって脂肪族環を形成してもよい。]
で表される化合物である、項1に記載のダイヤモンドイド化合物。
[Wherein, ring A4 and ring A5 are the same or different and represent an aliphatic ring. R1a , R1b and R1c are the same or different and represent a hydrogen atom, an alkyl group, a cycloalkyl group, or an adamantyl group. R4a and R5a are the same or different and represent a hydrogen atom, a hydroxyl group, an alkyl group, an alkoxy group, a cycloalkyl group, an amino group, or an adamantyl group. R4a and R5a may be joined together to form an aliphatic ring.]
Item 2. The diamondoid compound according to item 1, which is a compound represented by the formula:
 項3.一般式(1A1): Section 3. General formula (1A1):
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
[式中、R2a、R2b、R2c、R2d、R3a、R3b、R3c及びR3dは同一又は異なって、水素原子、水酸基、アルキル基、アルコキシ基、シクロアルキル基、アミノ基、又はアダマンチル基を示す。R2a及びR2b、R2b及びR2c、R2c及びR2d、R3a及びR3b、R3b及びR3c、R3c及びR3d、並びにR2a及びR3aは、少なくとも1箇所において、一緒になって脂肪族環を形成してもよい。]
、又は一般式(1B1):
[In the formula, R 2a , R 2b , R 2c , R 2d , R 3a , R 3b , R 3c and R 3d are the same or different and represent a hydrogen atom, a hydroxyl group, an alkyl group, an alkoxy group, a cycloalkyl group, an amino group, or an adamantyl group. R 2a and R 2b , R 2b and R 2c , R 2c and R 2d , R 3a and R 3b , R 3b and R 3c , R 3c and R 3d , and R 2a and R 3a may be joined together to form an aliphatic ring at least at one position.]
Or general formula (1B1):
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
[式中、R及びnは前記に同じである。R4a、R4b、R4c、R5a、R5b及びR5cは同一又は異なって、水素原子、水酸基、アルキル基、アルコキシ基、シクロアルキル基、アミノ基、又はアダマンチル基を示す。R4a及びR4b、R4b及びR4c、R5a及びR5b、R5b及びR5c、並びにR4a及びR5aは、少なくとも1箇所において、一緒になって脂肪族環を形成してもよい。]
で表される化合物である、項1又は2に記載のダイヤモンドイド化合物。
[In the formula, R 1 and n are the same as above. R 4a , R 4b , R 4c , R 5a , R 5b and R 5c are the same or different and represent a hydrogen atom, a hydroxyl group, an alkyl group, an alkoxy group, a cycloalkyl group, an amino group, or an adamantyl group. R 4a and R 4b , R 4b and R 4c , R 5a and R 5b , R 5b and R 5c , and R 4a and R 5a may be joined together to form an aliphatic ring at least at one position.]
Item 3. The diamondoid compound according to item 1 or 2, which is a compound represented by the formula:
 項4.一般式(1A’): Section 4. General formula (1A'):
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
[式中、環A及び環Aは同一又は異なって、脂肪族環を示す。R1a、R1b、R1c、R1d、R1e及びR1fは同一又は異なって、水素原子、アルキル基、シクロアルキル基、又はアダマンチル基を示す。]
、又は一般式(1B’):
[In the formula, ring A2 and ring A3 are the same or different and represent an aliphatic ring. R1a , R1b , R1c , R1d , R1e , and R1f are the same or different and represent a hydrogen atom, an alkyl group, a cycloalkyl group, or an adamantyl group.]
Or general formula (1B'):
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
[式中、環A及び環Aは同一又は異なって、脂肪族環を示す。R1a、R1b、R1c、R1d、R1e及びR1fは同一又は異なって、水素原子、アルキル基、シクロアルキル基、又はアダマンチル基を示す。]
で表される化合物である、項1又は2に記載のダイヤモンドイド化合物。
[In the formula, ring A4 and ring A5 are the same or different and represent an aliphatic ring. R1a , R1b , R1c , R1d , R1e , and R1f are the same or different and represent a hydrogen atom, an alkyl group, a cycloalkyl group, or an adamantyl group.]
Item 3. The diamondoid compound according to item 1 or 2, which is a compound represented by the formula:
 項5.一般式(1A’1): Section 5. General formula (1A'1):
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
[式中、R2b、R2c、R2d、R3b、R3c及びR3dは同一又は異なって、水素原子、水酸基、アルキル基、アルコキシ基、シクロアルキル基、アミノ基、又はアダマンチル基を示す。R2b及びR2c、R2c及びR2d、R3b及びR3c、並びにR3c及びR3dは、少なくとも1箇所において、一緒になって脂肪族環を形成してもよい。]
、又は一般式(1B’1):
[In the formula, R 2b , R 2c , R 2d , R 3b , R 3c and R 3d are the same or different and each represents a hydrogen atom, a hydroxyl group, an alkyl group, an alkoxy group, a cycloalkyl group, an amino group, or an adamantyl group. R 2b and R 2c , R 2c and R 2d , R 3b and R 3c , and R 3c and R 3d may be joined together at least at one position to form an aliphatic ring.]
Or general formula (1B'1):
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
[式中、R4b、R4c、R5b及びR5cは同一又は異なって、水素原子、水酸基、アルキル基、アルコキシ基、シクロアルキル基、アミノ基、又はアダマンチル基を示す。R4b及びR4c、並びにR5b及びR5cは、少なくとも1箇所において、一緒になって脂肪族環を形成してもよい。]
で表される化合物である、項1~4のいずれか1項に記載のダイヤモンドイド化合物。
[In the formula, R 4b , R 4c , R 5b and R 5c are the same or different and each represents a hydrogen atom, a hydroxyl group, an alkyl group, an alkoxy group, a cycloalkyl group, an amino group, or an adamantyl group. R 4b and R 4c , and R 5b and R 5c may be joined together at least at one position to form an aliphatic ring.]
Item 5. The diamondoid compound according to any one of items 1 to 4, which is a compound represented by the formula:
 項6.項1~5のいずれか1項に記載のダイヤモンドイド化合物の製造方法であって、
(II)一般式(2):
Item 6. A method for producing the diamondoid compound according to any one of items 1 to 5, comprising the steps of:
(II) General formula (2):
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
[式中、R及びnは前記に同じである。環A’は、前記環Aに対応する芳香環を示す。]
で表されるアダマンタン縮環芳香族化合物を触媒の存在下に水素化する工程
を備え、
前記触媒が、ロジウム及び白金を含む触媒と、スカンジウムを含む触媒とを含有する、製造方法。
[In the formula, R 1 and n are the same as defined above. Ring A 1 ' represents an aromatic ring corresponding to ring A 1. ]
The method includes a step of hydrogenating an adamantane-fused aromatic compound represented by the following formula (1):
The method of the present invention, wherein the catalyst comprises a catalyst containing rhodium and platinum, and a catalyst containing scandium.
 項7.前記ルイス酸触媒が、周期表第3族、第13族又は第14族元素を活性中心とするルイス酸触媒である、項6に記載の製造方法。 Item 7. The method according to Item 6, wherein the Lewis acid catalyst has an element of Group 3, Group 13, or Group 14 of the periodic table as the active center.
 項8.前記工程(II)が、有機溶媒の存在下に行われる、項6又は7に記載の製造方法。 Item 8. The method according to item 6 or 7, wherein step (II) is carried out in the presence of an organic solvent.
 項9.前記有機溶媒が、アルカンである、項8に記載の製造方法。 Item 9. The method according to Item 8, wherein the organic solvent is an alkane.
 項10.前記アダマンタン縮環芳香族化合物が、
(IA)一般式(4):
Item 10. The adamantane-fused aromatic compound is
(IA) General formula (4):
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
[式中、環A’は、前記環A及び環A’に対応する芳香環を示す。Xはハロゲン原子を示す。]
で表される芳香族化合物と、求核剤とを反応をさせ、次いで、一般式(5A)又は(5B):
[In the formula, ring A 1 ' represents an aromatic ring corresponding to ring A 1 and ring A 1 '. X 1 represents a halogen atom.]
and then reacting an aromatic compound represented by the general formula (5A) or (5B):
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
[式中、R及びnは前記に同じである。]
で表されるアダマンタノン化合物と反応させ、
一般式(6):
[In the formula, R 1 and n are the same as above.]
and reacting the compound with an adamantanone compound represented by the formula:
General formula (6):
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
[式中、A”、R及びnは前記に同じである。]
で表されるアダマンタン含有アレーン化合物を得る工程、及び
(IB)前記工程(IA)で得られたアダマンタン含有アレーン化合物と、ブレンステッド酸及び/又はルイス酸とを反応させる工程
を備える製造方法により得られる、項6~9のいずれか1項に記載の製造方法。
[In the formula, A 1 ″, R 1 and n are the same as defined above.]
and (IB) a step of reacting the adamantane-containing arene compound obtained in the step (IA) with a Brønsted acid and/or a Lewis acid.
 項11.前記求核剤が、有機リチウム化合物及び/又は有機マグネシウム化合物である、項10に記載の製造方法。 Item 11. The method according to Item 10, wherein the nucleophile is an organolithium compound and/or an organomagnesium compound.
 項12.前記一般式(4)で表される芳香族化合物が、
一般式(4A):
Item 12. The aromatic compound represented by the general formula (4) is
General formula (4A):
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
[式中、Xは前記に同じである。環A2’及び環A3’は同一又は異なって、芳香環を示す。R2a及びR3aは同一又は異なって、水素原子、水酸基、アルキル基、アルコキシ基、シクロアルキル基、アミノ基、又はアダマンチル基を示す。R2a及びR3aは一緒になって芳香環を形成してもよい。]
、又は一般式(4B):
[In the formula, X1 is the same as defined above. Ring A2' and ring A3' may be the same or different and each represent an aromatic ring. R2a and R3a may be the same or different and each represent a hydrogen atom, a hydroxyl group, an alkyl group, an alkoxy group, a cycloalkyl group, an amino group, or an adamantyl group. R2a and R3a may be joined together to form an aromatic ring.]
Or general formula (4B):
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
[式中、環A及び環Aは同一又は異なって、芳香環を示す。Xはハロゲン原子を示す。R4a及びR5aは同一又は異なって、水素原子、水酸基、アルキル基、アルコキシ基、シクロアルキル基、アミノ基、又はアダマンチル基を示す。R4a及びR5aは一緒になって芳香環を形成してもよい。]
で表される化合物である、項10又は11に記載の製造方法。
[In the formula, ring A4 and ring A5 are the same or different and represent an aromatic ring. X2 represents a halogen atom. R4a and R5a are the same or different and represent a hydrogen atom, a hydroxyl group, an alkyl group, an alkoxy group, a cycloalkyl group, an amino group, or an adamantyl group. R4a and R5a may be joined together to form an aromatic ring.]
Item 12. The method according to item 10 or 11, wherein the compound is represented by the formula:
 本発明によれば、多様な新規ダイヤモンドイド化合物を精密合成することができる。 The present invention makes it possible to precisely synthesize a variety of new diamondoid compounds.
 本明細書において、「含有」は、「含む(comprise)」、「実質的にのみからなる(consist essentially of)」、及び「のみからなる(consist of)」のいずれも包含する概念である。 In this specification, "containing" is a concept that encompasses all of "comprise," "consist essentially of," and "consist of."
 また、本明細書において、数値範囲を「A~B」で示す場合、A以上B以下を意味する。 In addition, in this specification, when a numerical range is indicated as "A to B," it means A or more and B or less.
 1.ダイヤモンドイド化合物
 本発明のダイヤモンドイド化合物は、一般式(1):
1. Diamondoid Compound The diamondoid compound of the present invention has the general formula (1):
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
[式中、環Aは環の数が2個以上である脂肪族環を示す。Rは水素原子、アルキル基、シクロアルキル基、又はアダマンチル基を示す。nは0~3の整数を示す。]
で表される化合物である。
[In the formula, ring A1 represents an aliphatic ring having two or more rings; R1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, or an adamantyl group; and n represents an integer of 0 to 3.]
It is a compound represented by the formula:
 Rで示されるアルキル基としては、特に制限はなく、直鎖状アルキル基及び分岐鎖状アルキル基のいずれも採用でき、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基等の炭素数1~6(特に1~4)のアルキル基が挙げられる。 The alkyl group represented by R1 is not particularly limited, and either a linear alkyl group or a branched alkyl group can be used. Examples of the alkyl group include alkyl groups having 1 to 6 carbon atoms (particularly 1 to 4 carbon atoms), such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
 これらのアルキル基は、置換基を有することもできる。アルキル基が有していてもよい置換基としては、例えば、水酸基、後述のアルコキシ基、後述のシクロアルキル基、後述のアミノ基、アダマンチル基等が挙げられる。アルキル基が置換基を有する場合、置換基の数は、例えば、1~6個、特に1~3個とすることができる。 These alkyl groups may also have a substituent. Examples of the substituent that the alkyl group may have include a hydroxyl group, an alkoxy group as described below, a cycloalkyl group as described below, an amino group as described below, and an adamantyl group. When the alkyl group has a substituent, the number of the substituents may be, for example, 1 to 6, and particularly 1 to 3.
 Rで示されるシクロアルキル基としては、特に制限はなく、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等の炭素数3~10(特に4~8)のシクロアルキル基が挙げられる。 The cycloalkyl group represented by R 1 is not particularly limited, and examples thereof include cycloalkyl groups having 3 to 10 carbon atoms (particularly 4 to 8 carbon atoms), such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, and cycloheptyl group.
 これらのシクロアルキル基は、置換基を有することもできる。シクロアルキル基が有していてもよい置換基としては、例えば、水酸基、上記のアルキル基、後述のアルコキシ基、後述のアミノ基、アダマンチル基等が挙げられる。シクロアルキル基が置換基を有する場合、置換基の数は、例えば、1~6個、特に1~3個とすることができる。 These cycloalkyl groups may also have a substituent. Examples of the substituent that the cycloalkyl group may have include a hydroxyl group, the alkyl groups described above, the alkoxy groups described below, the amino groups described below, and an adamantyl group. When the cycloalkyl group has a substituent, the number of the substituents may be, for example, 1 to 6, and particularly 1 to 3.
 Rで示されるアダマンチル基としては、特に制限はなく、例えば、1-アダマンチル基、2-アダマンチル基等が挙げられる。 The adamantyl group represented by R 1 is not particularly limited, and examples thereof include a 1-adamantyl group and a 2-adamantyl group.
 これらのアダマンチル基は、置換基を有することもできる。アダマンチル基が有していてもよい置換基としては、例えば、水酸基、上記のアルキル基、後述のアルコキシ基、上記のシクロアルキル基、後述のアミノ基、上記のアダマンチル基等が挙げられる。アダマンチル基が置換基を有する場合、置換基の数は、例えば、1~6個、特に1~3個とすることができる。 These adamantyl groups may also have a substituent. Examples of the substituent that the adamantyl group may have include a hydroxyl group, the alkyl group described above, the alkoxy group described below, the cycloalkyl group described above, the amino group described below, and the adamantyl group described above. When the adamantyl group has a substituent, the number of the substituents may be, for example, 1 to 6, and particularly 1 to 3.
 なお、Rの個数は、特に制限はなく、例えば、0~3の整数とすることができ、0~2の整数が好ましく、0又は1がより好ましい。なお、Rを有する場合の置換位置は特に制限されず、様々な置換位置を採用することができる。例えば、Rが3個である場合、アダマンタン環部分は、一般式(7): The number of R1 is not particularly limited and can be, for example, an integer of 0 to 3, preferably an integer of 0 to 2, and more preferably 0 or 1. The substitution position when R1 is present is not particularly limited and various substitution positions can be adopted. For example, when R1 is 3, the adamantane ring portion is represented by the general formula (7):
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
[式中、R1a、R1b及びR1cは同一又は異なって、水素原子、アルキル基、シクロアルキル基、又はアダマンチル基を示す。]
で表される構造とすることも可能である。
[In the formula, R 1a , R 1b and R 1c are the same or different and each represents a hydrogen atom, an alkyl group, a cycloalkyl group, or an adamantyl group.]
It is also possible to use a structure represented by the following formula:
 一般式(7)において、R1a、R1b及びR1cで示されるアルキル基、シクロアルキル基及びアダマンチル基としては、上記したものを採用することができる。置換基の種類及び数についても同様である。 In the general formula (7), the alkyl group, cycloalkyl group and adamantyl group represented by R 1a , R 1b and R 1c may be the same as those described above. The same applies to the type and number of the substituents.
 また、環Aは、環の数が2個以上である脂肪族環であれば特に制限はなく、様々な脂肪族環を採用できる。脂肪族環としては、脂肪族炭化水素環及びヘテロ脂肪族環のいずれも採用することができ、シクロアルカン環(シクロヘキサン環)、アダマンタン環、ヘテロ脂肪族環(ピペリジン環、テトラヒドロピラン環、ピロリジン環、テトラヒドロフラン環、テトラヒドロチオフェン等)等を2個以上(例えば2~1000個、特に2~100個)組み合わせた環とすることができ、例えば、 In addition, the ring A1 is not particularly limited as long as it is an aliphatic ring having two or more rings, and various aliphatic rings can be used. As the aliphatic ring, any of an aliphatic hydrocarbon ring and a heteroaliphatic ring can be used, and it can be a ring in which two or more (e.g., 2 to 1000 rings, particularly 2 to 100 rings) of a cycloalkane ring (cyclohexane ring), an adamantane ring, a heteroaliphatic ring (piperidine ring, tetrahydropyran ring, pyrrolidine ring, tetrahydrofuran ring, tetrahydrothiophene ring, etc.) are combined, such as, for example,
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
等が挙げられる。 These include:
 上記した環Aは、置換基を有することもできる。環Aが有していてもよい置換基としては、例えば、水酸基、上記のアルキル基、後述のアルコキシ基、上記のシクロアルキル基、後述のアミノ基、アダマンチル基等が挙げられる。環Aが置換基を有する場合、置換基の数は、例えば、1~6個、特に1~3個とすることができる。 The above-mentioned ring A 1 may have a substituent. Examples of the substituent that the ring A 1 may have include a hydroxyl group, the above-mentioned alkyl group, the below-mentioned alkoxy group, the above-mentioned cycloalkyl group, the below-mentioned amino group, and an adamantyl group. When the ring A 1 has a substituent, the number of the substituents may be, for example, 1 to 6, and particularly 1 to 3.
 以上から、本発明のダイヤモンドイド化合物は、環Aの構造で場合分けして、一般式(1A): From the above, the diamondoid compound of the present invention is classified according to the structure of ring A1 and has the general formula (1A):
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
[式中、環A及び環Aは同一又は異なって、脂肪族環を示す。R1a、R1b及びR1cは同一又は異なって、水素原子、アルキル基、シクロアルキル基、又はアダマンチル基を示す。R2a及びR3aは同一又は異なって、水素原子、水酸基、アルキル基、アルコキシ基、シクロアルキル基、アミノ基、又はアダマンチル基を示す。R2a及びR3aは一緒になって脂肪族環を形成してもよい。]
、又は一般式(1B):
[In the formula, ring A2 and ring A3 are the same or different and represent an aliphatic ring. R1a , R1b , and R1c are the same or different and represent a hydrogen atom, an alkyl group, a cycloalkyl group, or an adamantyl group. R2a and R3a are the same or different and represent a hydrogen atom, a hydroxyl group, an alkyl group, an alkoxy group, a cycloalkyl group, an amino group, or an adamantyl group. R2a and R3a may be joined together to form an aliphatic ring.]
Or general formula (1B):
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
[式中、環A及び環Aは同一又は異なって、脂肪族環を示す。R1a、R1b及びR1cは同一又は異なって、水素原子、アルキル基、シクロアルキル基、又はアダマンチル基を示す。R4a及びR5aは同一又は異なって、水素原子、水酸基、アルキル基、アルコキシ基、シクロアルキル基、アミノ基、又はアダマンチル基を示す。R4a及びR5aは一緒になって脂肪族環を形成してもよい。]
で表される化合物とすることもできる。
[Wherein, ring A4 and ring A5 are the same or different and represent an aliphatic ring. R1a , R1b and R1c are the same or different and represent a hydrogen atom, an alkyl group, a cycloalkyl group, or an adamantyl group. R4a and R5a are the same or different and represent a hydrogen atom, a hydroxyl group, an alkyl group, an alkoxy group, a cycloalkyl group, an amino group, or an adamantyl group. R4a and R5a may be joined together to form an aliphatic ring.]
The compound may also be represented by the following formula:
 一般式(1A)及び(1B)において、R1a、R1b及びR1cで示されるアルキル基、シクロアルキル基及びアダマンチル基としては、上記したものを採用することができる。置換基の種類及び数についても同様である。 In the general formulae (1A) and (1B), the alkyl group, cycloalkyl group and adamantyl group represented by R 1a , R 1b and R 1c may be the same as those described above. The same applies to the types and numbers of the substituents.
 一般式(1A)において、R2a及びR3aで示されるアルキル基、シクロアルキル基及びアダマンチル基としては、上記したものを採用することができる。置換基の種類及び数についても同様である。 In the general formula (1A), the alkyl group, cycloalkyl group and adamantyl group represented by R2a and R3a may be the same as those described above. The same applies to the type and number of the substituents.
 一般式(1A)において、R2a及びR3aで示されるアルコキシ基としては、特に制限はなく、メトキシ基、エトキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、イソブチルオキシ基、sec-ブチルオキシ基、tert-ブチルオキシ基等の炭素数1~6(特に1~4)のアルコキシ基が挙げられる。 In general formula (1A), the alkoxy group represented by R 2a and R 3a is not particularly limited, and examples thereof include alkoxy groups having 1 to 6 carbon atoms (particularly 1 to 4 carbon atoms), such as a methoxy group, an ethoxy group, an n-propyloxy group, an isopropyloxy group, an n-butyloxy group, an isobutyloxy group, a sec-butyloxy group, and a tert-butyloxy group.
 これらのアルキル基は、置換基を有することもできる。アルコキシ基が有していてもよい置換基としては、例えば、水酸基、上記のアルキル基、上記のアルコキシ基、上記のシクロアルキル基、後述のアミノ基、アダマンチル基等が挙げられる。アルコキシ基が置換基を有する場合、置換基の数は、例えば、1~6個、特に1~3個とすることができる。 These alkyl groups may also have a substituent. Examples of the substituent that the alkoxy group may have include a hydroxyl group, the alkyl group described above, the alkoxy group described above, the cycloalkyl group described above, the amino group described below, and an adamantyl group. When the alkoxy group has a substituent, the number of the substituents may be, for example, 1 to 6, and particularly 1 to 3.
 一般式(1A)において、R2a及びR3aで示されるアミノ基は、置換基を有することもできる。アミノ基が有していてもよい置換基としては、例えば、水酸基、上記のアルキル基、上記のアルコキシ基、上記のシクロアルキル基、アダマンチル基等が挙げられる。アミノ基が置換基を有する場合、置換基の数は、例えば、1~6個、特に1~3個とすることができる。 In general formula (1A), the amino groups represented by R 2a and R 3a may also have a substituent. Examples of the substituent that the amino group may have include a hydroxyl group, the above alkyl group, the above alkoxy group, the above cycloalkyl group, and an adamantyl group. When the amino group has a substituent, the number of the substituents may be, for example, 1 to 6, and particularly 1 to 3.
 一般式(1B)において、R4a及びR5aで示されるアルキル基、アルコキシ基、シクロアルキル基、アミノ基及びアダマンチル基としては、上記したものを採用することができる。置換基の種類及び数についても同様である。 In the general formula (1B), the alkyl group, alkoxy group, cycloalkyl group, amino group and adamantyl group represented by R4a and R5a may be the same as those described above. The same applies to the type and number of the substituents.
 一般式(1A)において、環A及び環Aで示される脂肪族環としては、特に制限はなく、脂肪族炭化水素環及びヘテロ脂肪族環のいずれも採用することができ、シクロアルカン環(シクロヘキサン環)、アダマンタン環、ヘテロ脂肪族環(ピペリジン環、テトラヒドロピラン環、ピロリジン環、テトラヒドロフラン環等)等を単独又は2個以上(例えば1~1000個、特に1~100個)用いた環とすることができ、例えば、 In general formula (1A), the aliphatic ring represented by ring A2 and ring A3 is not particularly limited, and may be either an aliphatic hydrocarbon ring or a heteroaliphatic ring. The aliphatic ring may be a cycloalkane ring (cyclohexane ring), an adamantane ring, a heteroaliphatic ring (piperidine ring, tetrahydropyran ring, pyrrolidine ring, tetrahydrofuran ring, etc.), or a ring using two or more (e.g., 1 to 1000 rings, particularly 1 to 100 rings), for example:
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
等が挙げられる。 These include:
 上記した環A及び環Aで示される脂肪族環は、置換基を有することもできる。環A及び環Aで示される脂肪族環が有していてもよい置換基としては、例えば、水酸基、後述のハロゲン原子、上記のアルキル基、上記のアルコキシ基、上記のシクロアルキル基、上記のアミノ基、上記のアダマンチル基等が挙げられる。環Aが置換基を有する場合、置換基の数は、例えば、1~6個、特に1~3個とすることができる。 The aliphatic rings represented by the rings A2 and A3 may have a substituent. Examples of the substituent that the aliphatic rings represented by the rings A2 and A3 may have include a hydroxyl group, a halogen atom described below, the alkyl group, the alkoxy group, the cycloalkyl group, the amino group, the adamantyl group, etc. When the ring A1 has a substituent, the number of the substituents may be, for example, 1 to 6, particularly 1 to 3.
 一般式(1B)において、環A及び環Aで示される脂肪族環としては、上記環A及び環Aにおいて説明したものを採用することができる。置換基の種類及び数についても同様である。 In the general formula (1B), the aliphatic rings represented by ring A4 and ring A5 can be those described above for ring A2 and ring A3 . The same applies to the types and numbers of the substituents.
 なお、一般式(1A)において、R2a及びR3aは一緒になって、脂肪族環を形成することもできる。この際形成される脂肪族環は、上記環A及び環Aにおいて説明したものを採用することができる。置換基の種類及び数についても同様である。 In addition, in general formula (1A), R2a and R3a may be joined together to form an aliphatic ring. In this case, the aliphatic ring formed may be the same as that described above for ring A2 and ring A3 . The same applies to the type and number of the substituents.
 また、一般式(1B)において、R4a及びR5aは一緒になって、脂肪族環を形成することもできる。この際形成される脂肪族環は、上記環A及び環Aにおいて説明したものを採用することができる。置換基の種類及び数についても同様である。 In addition, in general formula (1B), R4a and R5a may combine together to form an aliphatic ring. In this case, the aliphatic ring formed may be the same as that described above for ring A2 and ring A3 . The same applies to the type and number of the substituents.
 以上から、本発明のダイヤモンドイド化合物は、一般式(1A)における環A及び環A、並びに一般式(1B)における環A及び環Aがいずれもシクロヘキサン環である場合には、一般式(1A1): From the above, when ring A2 and ring A3 in general formula (1A), and ring A4 and ring A5 in general formula (1B) are all cyclohexane rings, the diamondoid compound of the present invention is represented by general formula (1A1):
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
[式中、R2a、R2b、R2c、R2d、R3a、R3b、R3c及びR3dは同一又は異なって、水素原子、水酸基、アルキル基、アルコキシ基、シクロアルキル基、アミノ基、又はアダマンチル基を示す。R2a及びR2b、R2b及びR2c、R2c及びR2d、R3a及びR3b、R3b及びR3c、R3c及びR3d、並びにR2a及びR3aは、少なくとも1箇所において、一緒になって脂肪族環を形成してもよい。]
、又は一般式(1B1):
[In the formula, R 2a , R 2b , R 2c , R 2d , R 3a , R 3b , R 3c and R 3d are the same or different and represent a hydrogen atom, a hydroxyl group, an alkyl group, an alkoxy group, a cycloalkyl group, an amino group, or an adamantyl group. R 2a and R 2b , R 2b and R 2c , R 2c and R 2d , R 3a and R 3b , R 3b and R 3c , R 3c and R 3d , and R 2a and R 3a may be joined together to form an aliphatic ring at least at one position.]
Or general formula (1B1):
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
[式中、R4a、R4b、R4c、R5a、R5b及びR5cは同一又は異なって、水素原子、水酸基、アルキル基、アルコキシ基、シクロアルキル基、アミノ基、又はアダマンチル基を示す。R4a及びR4b、R4b及びR4c、R5a及びR5b、R5b及びR5c、並びにR4a及びR5aは、少なくとも1箇所において、一緒になって脂肪族環を形成してもよい。]
で表される化合物とすることも可能である。
[In the formula, R 4a , R 4b , R 4c , R 5a , R 5b and R 5c are the same or different and each represents a hydrogen atom, a hydroxyl group, an alkyl group, an alkoxy group, a cycloalkyl group, an amino group, or an adamantyl group. R 4a and R 4b , R 4b and R 4c , R 5a and R 5b , R 5b and R 5c , and R 4a and R 5a may be joined together to form an aliphatic ring at least at one position.]
It is also possible to use a compound represented by the following formula:
 一般式(1A1)において、R2a、R2b、R2c、R2d、R3a、R3b、R3c及びR3dで示されるアルキル基、アルコキシ基、シクロアルキル基、アミノ基及びアダマンチル基としては、上記したものを採用することができる。置換基の種類及び数についても同様である。 In the general formula (1A1), the alkyl group, alkoxy group, cycloalkyl group, amino group and adamantyl group represented by R2a , R2b , R2c , R2d , R3a , R3b , R3c and R3d may be the same as those described above. The same applies to the type and number of the substituents.
 一般式(1B1)において、R4a、R4b、R4c、R5a、R5b及びR5cで示されるアルキル基、アルコキシ基、シクロアルキル基、アミノ基及びアダマンチル基としては、上記したものを採用することができる。置換基の種類及び数についても同様である。 In the general formula (1B1), the alkyl group, alkoxy group, cycloalkyl group, amino group and adamantyl group represented by R 4a , R 4b , R 4c , R 5a , R 5b and R 5c may be the same as those described above. The same applies to the types and numbers of the substituents.
 なお、一般式(1A1)において、R2a及びR2b、R2b及びR2c、R2c及びR2d、R3a及びR3b、R3b及びR3c、R3c及びR3d、並びにR2a及びR3aは、少なくとも1箇所において、一緒になって、脂肪族環を形成することもできる。この際形成される脂肪族環は、上記環A及び環Aにおいて説明したものを採用することができる。置換基の種類及び数についても同様である。 In addition , in general formula (1A1), R2a and R2b , R2b and R2c, R2c and R2d , R3a and R3b , R3b and R3c , R3c and R3d , and R2a and R3a can be joined together at least one position to form an aliphatic ring. The aliphatic ring formed in this case can be the one described in the above ring A2 and ring A3 . The same applies to the type and number of the substituent.
 また、一般式(1B1)において、R4a及びR4b、R4b及びR4c、R5a及びR5b、R5b及びR5c、並びにR4a及びR5aは、少なくとも1箇所において、一緒になって、脂肪族環を形成することもできる。この際形成される脂肪族環は、上記環A及び環Aにおいて説明したものを採用することができる。置換基の種類及び数についても同様である。 In addition, in general formula (1B1), R4a and R4b , R4b and R4c , R5a and R5b , R5b and R5c , and R4a and R5a can be joined together at least one position to form an aliphatic ring. The aliphatic ring formed in this case can be the one described above for ring A2 and ring A3 . The same applies to the type and number of the substituent.
 また、環Aが、アダマンタン環が縮合されている脂肪族環である場合、本発明のダイヤモンドイド化合物は、アダマンタン環を2個以上有する化合物と言うことができる。この場合、本発明のダイヤモンドイド化合物は、例えば、一般式(1A’): In addition, when ring A1 is an aliphatic ring to which an adamantane ring is condensed, the diamondoid compound of the present invention can be said to be a compound having two or more adamantane rings. In this case, the diamondoid compound of the present invention can be, for example, a compound represented by the general formula (1A'):
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
[式中、環A及び環Aは同一又は異なって、脂肪族環を示す。R1a、R1b、R1c、R1d、R1e及びR1fは同一又は異なって、水素原子、アルキル基、シクロアルキル基、又はアダマンチル基を示す。]
、又は一般式(1B’):
[In the formula, ring A2 and ring A3 are the same or different and represent an aliphatic ring. R1a , R1b , R1c , R1d , R1e , and R1f are the same or different and represent a hydrogen atom, an alkyl group, a cycloalkyl group, or an adamantyl group.]
Or general formula (1B'):
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
[式中、環A及び環Aは同一又は異なって、脂肪族環を示す。R1a、R1b、R1c、R1d、R1e及びR1fは同一又は異なって、水素原子、アルキル基、シクロアルキル基、又はアダマンチル基を示す。]
で表される化合物とすることも可能である。
[In the formula, ring A4 and ring A5 are the same or different and represent an aliphatic ring. R1a , R1b , R1c , R1d , R1e , and R1f are the same or different and represent a hydrogen atom, an alkyl group, a cycloalkyl group, or an adamantyl group.]
It is also possible to use a compound represented by the following formula:
 一般式(1A’)において、R1a、R1b、R1c、R1d、R1e及びR1fで示されるアルキル基、シクロアルキル基及びアダマンチル基としては、上記したものを採用することができる。置換基の種類及び数についても同様である。 In the general formula (1A'), the alkyl group, cycloalkyl group and adamantyl group represented by R 1a , R 1b , R 1c , R 1d , R 1e and R 1f may be the same as those described above. The same applies to the type and number of the substituents.
 一般式(1B’)において、R1a、R1b、R1c、R1d、R1e及びR1fで示されるアルキル基、シクロアルキル基及びアダマンチル基としては、上記したものを採用することができる。置換基の種類及び数についても同様である。 In the general formula (1B'), the alkyl group, cycloalkyl group and adamantyl group represented by R 1a , R 1b , R 1c , R 1d , R 1e and R 1f may be the same as those described above. The same applies to the type and number of the substituents.
 一般式(1A’)において、環A及び環Aで示される脂肪族環としては、上記一般式(1A)における環A及び環Aにおいて説明したものを採用することができる。置換基の種類及び数についても同様である。 In the general formula (1A'), the aliphatic rings represented by ring A2 and ring A3 can be those described for ring A2 and ring A3 in the general formula (1A) above. The same applies to the types and numbers of the substituents.
 一般式(1B’)において、環A及び環Aで示される脂肪族環としては、上記一般式(1A)における環A及び環Aにおいて説明したものを採用することができる。置換基の種類及び数についても同様である。 In the general formula (1B'), the aliphatic rings represented by ring A4 and ring A5 can be those described for ring A2 and ring A3 in the general formula (1A) above. The same applies to the types and numbers of the substituents.
 また、環Aが、アダマンタン環が縮合されている脂肪族環であり、且つ、一般式(1A)における環A及び環A、並びに一般式(1B)における環A及び環Aがいずれもシクロヘキサン環である場合には、本発明のダイヤモンドイド化合物は、少なくとも4個の脂肪族環が縮合した構造に対して、アダマンタン環が2個以上縮合した化合物と言うことができる。この場合、本発明のダイヤモンドイド化合物は、一般式(1A’1): In addition, when ring A1 is an aliphatic ring condensed with an adamantane ring, and ring A2 and ring A3 in general formula (1A), and ring A4 and ring A5 in general formula (1B) are all cyclohexane rings, the diamondoid compound of the present invention can be said to be a compound in which two or more adamantane rings are condensed to a structure in which at least four aliphatic rings are condensed.In this case, the diamondoid compound of the present invention is represented by general formula (1A'1):
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
[式中、R2b、R2c、R2d、R3b、R3c及びR3dは同一又は異なって、水素原子、水酸基、アルキル基、アルコキシ基、シクロアルキル基、アミノ基、又はアダマンチル基を示す。R2b及びR2c、R2c及びR2d、R3b及びR3c、並びにR3c及びR3dは、少なくとも1箇所において、一緒になって脂肪族環を形成してもよい。]
、又は一般式(1B’1):
[In the formula, R 2b , R 2c , R 2d , R 3b , R 3c and R 3d are the same or different and each represents a hydrogen atom, a hydroxyl group, an alkyl group, an alkoxy group, a cycloalkyl group, an amino group, or an adamantyl group. R 2b and R 2c , R 2c and R 2d , R 3b and R 3c , and R 3c and R 3d may be joined together at least at one position to form an aliphatic ring.]
Or general formula (1B'1):
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
[式中、R4b、R4c、R5b及びR5cは同一又は異なって、水素原子、水酸基、アルキル基、アルコキシ基、シクロアルキル基、アミノ基、又はアダマンチル基を示す。R4b及びR4c、並びにR5b及びR5cは、少なくとも1箇所において、一緒になって脂肪族環を形成してもよい。]
で表される化合物とすることもできる。
[In the formula, R 4b , R 4c , R 5b and R 5c are the same or different and each represents a hydrogen atom, a hydroxyl group, an alkyl group, an alkoxy group, a cycloalkyl group, an amino group, or an adamantyl group. R 4b and R 4c , and R 5b and R 5c may be joined together at least at one position to form an aliphatic ring.]
The compound may also be represented by the following formula:
 一般式(1A’1)において、R2b、R2c、R2d、R3b、R3c及びR3dで示されるアルキル基、アルコキシ基、シクロアルキル基、アミノ基及びアダマンチル基としては、上記したものを採用することができる。置換基の種類及び数についても同様である。 In the general formula (1A'1), the alkyl group, alkoxy group, cycloalkyl group, amino group and adamantyl group represented by R2b , R2c , R2d , R3b , R3c and R3d may be the same as those described above. The same applies to the type and number of the substituents.
 一般式(1B’1)において、R4b、R4c、R5b及びR5cで示されるアルキル基、アルコキシ基、シクロアルキル基、アミノ基及びアダマンチル基としては、上記したものを採用することができる。置換基の種類及び数についても同様である。 In the general formula (1B'1), the alkyl group, alkoxy group, cycloalkyl group, amino group and adamantyl group represented by R4b , R4c , R5b and R5c may be the same as those described above. The same applies to the type and number of the substituents.
 なお、一般式(1A’1)において、R2b及びR2c、R2c及びR2d、R3b及びR3c、並びにR3c及びR3dは、少なくとも1箇所において、一緒になって、脂肪族環を形成することもできる。この際形成される脂肪族環は、上記環A及び環Aにおいて説明したものを採用することができる。置換基の種類及び数についても同様である。 In addition, in general formula (1A'1), R2b and R2c , R2c and R2d , R3b and R3c , and R3c and R3d can be joined together at least one position to form an aliphatic ring. The aliphatic ring formed in this case can be the same as that described above for ring A2 and ring A3 . The same applies to the type and number of substituents.
 また、一般式(1B’1)において、R4b及びR4c、並びにR5b及びR5cは、少なくとも1箇所において、一緒になって、脂肪族環を形成することもできる。この際形成される脂肪族環は、上記環A及び環Aにおいて説明したものを採用することができる。置換基の種類及び数についても同様である。 In addition, in general formula (1B'1), R 4b and R 4c , and R 5b and R 5c can be joined together at least one position to form an aliphatic ring. The aliphatic ring formed in this case can be one described above for ring A 2 and ring A 3. The same applies to the type and number of the substituents.
 上記のような条件を満たす本発明のダイヤモンドイド化合物は、具体的には、 The diamondoid compounds of the present invention that satisfy the above conditions are specifically
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
等が挙げられる。 These include:
 これらの本発明のダイヤモンドイド化合物は、一般的にナノダイヤモンドや公知のダイヤモンドイド化合物が適用される用途、例えば、電子放出材料、パワー半導体、有機エレクトロニクス、低毒性・新規構造を活かした生物活性物質等として使用することができ、具体的には、微細半導体向けフォトレジスト材料、熱伝導材料(熱伝導性ナノワイヤ等)、熱伝導フィルム、パワー半導体デバイス、ダイヤモンド合成種物質、ダイヤモンド半導体、工業用ダイヤモンド、生理活性物質、創薬、高屈材料等の用途に使用することができる。 These diamondoid compounds of the present invention can be used in applications generally used for nanodiamonds and known diamondoid compounds, such as electron emission materials, power semiconductors, organic electronics, and bioactive substances that take advantage of their low toxicity and novel structure. Specifically, they can be used for applications such as photoresist materials for fine semiconductors, heat conductive materials (such as heat conductive nanowires), heat conductive films, power semiconductor devices, diamond synthesis seed materials, diamond semiconductors, industrial diamonds, biologically active substances, drug discovery, and highly flexible materials.
 2.ダイヤモンドイド化合物の製造方法
 本発明のダイヤモンドイド化合物は、例えば、
(II)一般式(2):
2. Method for Producing Diamondoid Compound The diamondoid compound of the present invention can be produced, for example, by
(II) General formula (2):
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
[式中、R及びnは前記に同じである。環A’は、前記環Aに対応する芳香環を示す。]
で表されるアダマンタン縮環芳香族化合物を触媒の存在下に水素化する工程
を備える製造方法により製造することができる。この際使用する触媒は、ロジウム及び白金を含む触媒と、スカンジウムを含む触媒とを含有する。
[In the formula, R 1 and n are the same as defined above. Ring A 1 ' represents an aromatic ring corresponding to ring A 1. ]
The adamantane-fused aromatic compound represented by the following formula (1) can be produced by a production method including a step of hydrogenating an adamantane-fused aromatic compound represented by the following formula (1): in the presence of a catalyst. The catalyst used in this step contains a catalyst containing rhodium and platinum, and a catalyst containing scandium.
 (2-1)アダマンタン縮環芳香族化合物
 一般式(1)において、R及びnは前記説明したものを採用することができる。つまり、アダマンタン縮環芳香族化合物におけるアダマンタン環部分の構造は、本発明のダイヤモンドイド化合物におけるアダマンタン環部分の構造と同じ構造とすることができる。
(2-1) Adamantane-fused aromatic compound In the general formula (1), R 1 and n can be as described above. In other words, the structure of the adamantane ring portion in the adamantane-fused aromatic compound can be the same as the structure of the adamantane ring portion in the diamondoid compound of the present invention.
 また、一般式(1)において、環A’は、前記環Aに対応する芳香環を示す。 In addition, in formula (1), ring A 1 ' represents an aromatic ring corresponding to ring A 1 described above.
 つまり、環A1’は、環の数が2個以上である芳香環であれば特に制限はなく、様々な芳香環を採用できる。芳香環としては、芳香族炭化水素環(ベンゼン環等)及び複素芳香環(ピリジン環、ピラジン環、ピロール環、フラン環、チオフェン環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環等)等を2個以上(例えば2~1000個、特に2~100個)組み合わせた環とすることができる。また、環A1’は、上記した芳香環のみからなる構造とすることもできるし、上記した芳香環と上記した脂肪族環とを合計で2個以上(例えば2~1000個、特に2~100個)組み合わせた環とすることもできる。 That is, the ring A 1' is not particularly limited as long as it is an aromatic ring having two or more rings, and various aromatic rings can be adopted. The aromatic ring can be a ring obtained by combining two or more (e.g., 2 to 1000, particularly 2 to 100) aromatic hydrocarbon rings (such as a benzene ring) and heteroaromatic rings (such as a pyridine ring, a pyrazine ring, a pyrrole ring, a furan ring, a thiophene ring, an imidazole ring, a pyrazole ring, an oxazole ring, a thiazole ring, etc.). The ring A 1' can also be a structure consisting of only the aromatic rings described above, or a ring obtained by combining a total of two or more (e.g., 2 to 1000, particularly 2 to 100) of the aromatic rings and the aliphatic rings described above.
 つまり、環A1’は、例えば、 That is, ring A 1′ is, for example,
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
等が挙げられる。 These include:
 上記した環A1’は、置換基を有することもできる。環A1’が有していてもよい置換基としては、例えば、上記のハロゲン原子、上記のアルキル基、上記のシクロアルキル基、上記のアダマンチル基等が挙げられる。環A1’が置換基を有する場合、置換基の数は、例えば、1~6個、特に1~3個とすることができる。 The above-mentioned ring A 1' may have a substituent. Examples of the substituent that the ring A 1' may have include the above-mentioned halogen atom, the above-mentioned alkyl group, the above-mentioned cycloalkyl group, the above-mentioned adamantyl group, etc. When the ring A 1' has a substituent, the number of the substituents may be, for example, 1 to 6, particularly 1 to 3.
 このため、アダマンタン縮環芳香族化合物は、環A1’の構造で場合分けして、一般式(2A): For this reason, adamantane-fused aromatic compounds are classified according to the structure of ring A1' and are represented by the general formula (2A):
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
[式中、R1a、R1b及びR1cは前記に同じである。環A2’及び環A3’は、それぞれ、前記環A及び環Aに対応する芳香環を示す。]
、又は一般式(2B):
[In the formula, R 1a , R 1b and R 1c are the same as defined above. Ring A 2′ and ring A 3′ are aromatic rings corresponding to ring A 2 and ring A 3 , respectively.]
Or general formula (2B):
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
[式中、R1a、R1b及びR1cは前記に同じである。環A4’及び環A5’は、それぞれ、前記環A及び環Aに対応する芳香環を示す。]
で表される化合物とすることもできる。
[In the formula, R 1a , R 1b and R 1c are the same as defined above. Ring A 4′ and ring A 5′ represent aromatic rings corresponding to ring A 4 and ring A 5 , respectively.]
The compound may also be represented by the following formula:
 一般式(2A)において、環A2’及び環A3’で示される芳香環としては、特に制限はなく、芳香族炭化水素環(ベンゼン環等)及び複素芳香環(ピリジン環、ピラジン環、ピロール環、フラン環、チオフェン環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環等)等を単独又は2個以上(例えば1~1000個、特に1~100個)用いた環とすることができる。また、環A2’及び環A3’は、上記した芳香環のみからなる構造とすることもできるし、上記した芳香環と上記した脂肪族環とを合計で2個以上(例えば2~1000個、特に2~100個)組み合わせた環とすることもできる。 In general formula (2A), the aromatic rings represented by ring A2 ' and ring A3 ' are not particularly limited, and may be a ring using a single aromatic hydrocarbon ring (such as a benzene ring) and a heteroaromatic ring (such as a pyridine ring, a pyrazine ring, a pyrrole ring, a furan ring, a thiophene ring, an imidazole ring, a pyrazole ring, an oxazole ring, a thiazole ring, etc.), or two or more (e.g., 1 to 1000, particularly 1 to 100) of them. Ring A2 ' and ring A3 ' may also be a structure consisting of only the aromatic ring described above, or may be a ring combining a total of two or more (e.g., 2 to 1000, particularly 2 to 100) of the aromatic ring and the aliphatic ring described above.
 環A2’及び環A3’で示される芳香環としては、例えば、 Examples of the aromatic ring represented by ring A2 ' and ring A3 ' include
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
等が挙げられる。 These include:
 上記した環A2’及び環A3’で示される芳香環は、置換基を有することもできる。環A2’及び環A3’で示される芳香環が有していてもよい置換基としては、例えば、上記のハロゲン原子、上記のアルキル基、上記のシクロアルキル基、上記のアダマンチル基等が挙げられる。環A2’及び環A3’が置換基を有する場合、置換基の数は、例えば、1~6個、特に1~3個とすることができる。 The aromatic rings represented by the rings A2 ' and A3' may have a substituent. Examples of the substituents that the aromatic rings represented by the rings A2' and A3 ' may have include the above-mentioned halogen atoms, alkyl groups, cycloalkyl groups, and adamantyl groups. When the rings A2' and A3 ' have a substituent, the number of the substituents may be, for example, 1 to 6, and particularly 1 to 3.
 一般式(2B)において、環A4’及び環A5’で示される芳香環としては、上記環A2’及び環A3’において説明したものを採用することができる。置換基の種類及び数についても同様である。 In the general formula (2B), the aromatic rings represented by ring A4' and ring A5 ' may be those described above for ring A2' and ring A3 ' . The same applies to the types and numbers of the substituents.
 また、アダマンタン縮環芳香族化合物は、一般式(2A)における環A2’及び環A3’、並びに一般式(2B)における環A4’及び環A5’がいずれもベンゼン環である場合には、一般式(2A1): When ring A 2′ and ring A 3′ in general formula (2A) and ring A 4′ and ring A 5′ in general formula (2B) are all benzene rings, the adamantane-fused aromatic compound can be represented by general formula (2A1):
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
[式中、R2a、R2b、R2c、R2d、R3a、R3b、R3c及びR3dは前記に同じである。]
、又は一般式(2B1):
[In the formula, R 2a , R 2b , R 2c , R 2d , R 3a , R 3b , R 3c and R 3d are the same as above.]
Or general formula (2B1):
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
[式中、R4a、R4b、R4c、R5a、R5b及びR5cは前記に同じである。]
で表される化合物とすることも可能である。
[In the formula, R 4a , R 4b , R 4c , R 5a , R 5b and R 5c are the same as above.]
It is also possible to use a compound represented by the following formula:
 また、環A1’が、アダマンタン環が縮合されている芳香環である場合、アダマンタン縮環芳香族化合物は、アダマンタン環を2個以上有する化合物と言うことができる。この場合、アダマンタン縮環芳香族化合物は、例えば、一般式(2A’): Furthermore, when ring A 1′ is an aromatic ring to which an adamantane ring is fused, the adamantane-fused aromatic compound can be said to be a compound having two or more adamantane rings. In this case, the adamantane-fused aromatic compound can be, for example, a compound represented by the general formula (2A′):
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
[式中、環A2’、環A3’、R1a、R1b、R1c、R1d、R1e及びR1fは前記に同じである。]
、又は一般式(2B’):
[In the formula, ring A 2′ , ring A 3′ , R 1a , R 1b , R 1c , R 1d , R 1e and R 1f are the same as defined above.]
Or general formula (2B'):
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
[式中、環A4’、環A5’、R1a、R1b、R1c、R1d、R1e及びR1fは前記に同じである。]
で表される化合物とすることも可能である。
[In the formula, ring A 4′ , ring A 5′ , R 1a , R 1b , R 1c , R 1d , R 1e and R 1f are the same as defined above.]
It is also possible to use a compound represented by the following formula:
 また、環A1’が、アダマンタン環が縮合されている芳香環であり、且つ、一般式(2A)における環A2’及び環A3’、並びに一般式(2B)における環A4’及び環A5’がいずれもベンゼン環である場合には、アダマンタン縮環芳香族化合物は、少なくとも4個の環が縮合した構造に対して、アダマンタン環が2個以上縮合した化合物と言うことができる。この場合、アダマンタン縮環芳香族化合物は、一般式(2A’1): In addition, when ring A1' is an aromatic ring fused with an adamantane ring, and ring A2 ' and ring A3 ' in general formula (2A) and ring A4' and ring A5 ' in general formula (2B) are all benzene rings, the adamantane-fused aromatic compound can be said to be a compound in which two or more adamantane rings are fused to a structure in which at least four rings are fused. In this case, the adamantane-fused aromatic compound is represented by general formula (2A'1):
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
[式中、R2b、R2c、R2d、R3b、R3c及びR3dは前記に同じである。]
、又は一般式(2B’1):
[In the formula, R 2b , R 2c , R 2d , R 3b , R 3c and R 3d are the same as above.]
Or general formula (2B'1):
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
[式中、R4b、R4c、R5b及びR5cは前記に同じである。]
で表される化合物とすることもできる。
[In the formula, R 4b , R 4c , R 5b and R 5c are the same as above.]
The compound may also be represented by the following formula:
 上記のような条件を満たすアダマンタン縮環芳香族化合物は、具体的には、 Specific examples of adamantane-fused aromatic compounds that satisfy the above conditions are:
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
等が挙げられる。 These include:
 なお、このようなアダマンタン縮環芳香族化合物の製造方法は、詳細には後述する。 The method for producing such adamantane-fused aromatic compounds will be described in detail later.
 (2-2)触媒
 本発明において、工程(II)において使用する触媒は、ロジウム及び白金を含む触媒と、ルイス酸触媒とを含有する。
(2-2) Catalyst In the present invention, the catalyst used in the step (II) contains a catalyst containing rhodium and platinum, and a Lewis acid catalyst.
 ロジウム及び白金を含む触媒
 ロジウム及び白金を含む触媒において、ロジウム及び白金のモル比は特に制限されるわけではないが、反応の転化率、収率、選択率等の観点から、ロジウム1モルに対して、白金を0.10~2.00モル含むことが好ましく、0.15~1.00モル含むことがより好ましく、0.20~0.50モル含むことがさらに好ましい。
Catalyst containing rhodium and platinum In the catalyst containing rhodium and platinum, the molar ratio of rhodium and platinum is not particularly limited, but from the viewpoints of reaction conversion rate, yield, selectivity, etc., the catalyst contains preferably 0.10 to 2.00 mol of platinum per mol of rhodium, more preferably 0.15 to 1.00 mol, and even more preferably 0.20 to 0.50 mol.
 ロジウム及び白金を含む触媒は、ロジウム及び白金を含んでいれば特に制限されるわけではないが、ロジウム及び白金が担体上に担持されていることが好ましい。 The catalyst containing rhodium and platinum is not particularly limited as long as it contains rhodium and platinum, but it is preferable that the rhodium and platinum are supported on a carrier.
 このような担体としては、特に制限されるわけではないが、反応の転化率、収率、選択率等の観点から、ポリシラン及びアルミナを含む担体(複合担体)であることが好ましい。 Such a carrier is not particularly limited, but from the viewpoint of reaction conversion rate, yield, selectivity, etc., a carrier containing polysilane and alumina (composite carrier) is preferable.
 ポリシランとしては、特に制限はなく、ポリジメチルシラン、ポリジエチルシラン等のポリジアルキルシラン;ポリメチルフェニルシラン、ポリエチルフェニルシラン等のポリアルキルアリールシラン等を使用することができ、公知又は市販品を使用することができる。 There are no particular limitations on the polysilane, and examples of the polysilane that can be used include polydialkylsilanes such as polydimethylsilane and polydiethylsilane; polyalkylarylsilanes such as polymethylphenylsilane and polyethylphenylsilane; and known or commercially available products can be used.
 アルミナとしても特に制限はなく、公知又は市販品を使用することができる。 There are no particular limitations on the alumina, and any publicly known or commercially available product can be used.
 ロジウム及び白金が担体上に担持されている場合、担持量としては、特に制限はなく、例えば、ロジウムを0.04~5.00mmol/g(特に0.05~2.00mmol/g)とすることが好ましく、白金を0.005~0.05mmol/g(特に0.01~0.04mmol/g)とすることが好ましい。 When rhodium and platinum are supported on a carrier, there are no particular limitations on the amount supported, but for example, it is preferable that rhodium is 0.04 to 5.00 mmol/g (particularly 0.05 to 2.00 mmol/g) and platinum is 0.005 to 0.05 mmol/g (particularly 0.01 to 0.04 mmol/g).
 このようなロジウム及び白金を含む触媒は、公知又は市販品を使用することもできるし、J. Am. Chem. Soc. 2018, 140, 11325-11334に記載の方法で合成することもできる。 Such rhodium and platinum-containing catalysts can be publicly known or commercially available products, or can be synthesized by the method described in J. Am. Chem. Soc. 2018, 140, 11325-11334.
 ロジウム及び白金を含む触媒の使用量は、特に制限されるわけではないが、反応の転化率、収率、選択率等の観点から、原料であるアダマンタン縮環芳香族化合物1モルに対して、0.05~1モルが好ましく、0.06~0.5モルがより好ましく、0.07~0.3モルがさらに好ましく、0.08~2モルが特に好ましい。 The amount of the catalyst containing rhodium and platinum used is not particularly limited, but from the viewpoint of reaction conversion rate, yield, selectivity, etc., it is preferably 0.05 to 1 mol, more preferably 0.06 to 0.5 mol, even more preferably 0.07 to 0.3 mol, and particularly preferably 0.08 to 2 mol per 1 mol of the raw material adamantane fused aromatic compound.
 ルイス酸触媒
 本発明では、ロジウム及び白金を含む触媒と、ルイス酸触媒との双方を使用することにより、触媒活性を相乗的に向上させることができる。
Lewis Acid Catalyst In the present invention, the use of both a catalyst containing rhodium and platinum and a Lewis acid catalyst can synergistically improve the catalytic activity.
 本発明で使用するルイス酸触媒は、特に制限されるわけではないが、反応の転化率、収率、選択率等の観点から、周期表第3族、第13族又は第14族元素を活性中心とするルイス酸触媒であることが好ましい。 The Lewis acid catalyst used in the present invention is not particularly limited, but from the viewpoint of reaction conversion rate, yield, selectivity, etc., it is preferable that the Lewis acid catalyst has an element of Group 3, Group 13, or Group 14 of the periodic table as the active center.
 周期表第3族、第13族又は第14族元素としては、例えば、スカンジウム(Sc)、亜鉛(Zn)、イットリウム(Y)、インジウム(In)、ランタン(La)、セリウム(Ce)、プラセオジウム(Pr)、ネオジウム(Nd)、サマリウム(Sm)、ユーロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)等が挙げられる。なかでも、希土類元素(周期表第3族元素)が好ましく、スカンジウムがより好ましい。 Examples of elements in Group 3, 13, or 14 of the periodic table include scandium (Sc), zinc (Zn), yttrium (Y), indium (In), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu). Among these, rare earth elements (elements in Group 3 of the periodic table) are preferred, and scandium is more preferred.
 また、強い電子吸引性基を採用することにより、ルイス酸の触媒活性を高めることができる。このような目的に用いられる電子吸引性基としては、例えば、トリフルオロメタンスルホニル基(以下、「OTf基」と称することがある)、メタンスルホニル基、各種置換ベンゼンスルホニル基、トリフルオロアセチル基等が挙げられる。 Furthermore, by employing a strong electron-withdrawing group, the catalytic activity of the Lewis acid can be increased. Examples of electron-withdrawing groups used for this purpose include the trifluoromethanesulfonyl group (hereinafter sometimes referred to as the "OTf group"), the methanesulfonyl group, various substituted benzenesulfonyl groups, and the trifluoroacetyl group.
 本発明で使用できるルイス酸触媒としては、具体的には、トリフルオロメタンスルホン酸スカンジウム(III)、トリフルオロメタンスルホン酸亜鉛(II)、トリフルオロメタンスルホン酸インジウム(III)、トリフルオロメタンスルホン酸イッテルビウム(III)等が挙げられ、トリフルオロメタンスルホン酸スカンジウム(III)、トリフルオロメタンスルホン酸インジウム(III)、トリフルオロメタンスルホン酸イッテルビウム(III)等が好ましく、トリフルオロメタンスルホン酸スカンジウム(III)、トリフルオロメタンスルホン酸イッテルビウム(III)等がより好ましく、トリフルオロメタンスルホン酸スカンジウム(III)がさらに好ましい。これらのルイス酸触媒は、単独で用いることもでき、2種以上を組合せて用いることもできる。 Specific examples of Lewis acid catalysts that can be used in the present invention include scandium(III) trifluoromethanesulfonate, zinc(II) trifluoromethanesulfonate, indium(III) trifluoromethanesulfonate, ytterbium(III) trifluoromethanesulfonate, etc., with scandium(III) trifluoromethanesulfonate, indium(III) trifluoromethanesulfonate, ytterbium(III) trifluoromethanesulfonate, etc. being preferred, with scandium(III) trifluoromethanesulfonate, ytterbium(III) trifluoromethanesulfonate, etc. being more preferred, with scandium(III) trifluoromethanesulfonate being even more preferred. These Lewis acid catalysts can be used alone or in combination of two or more.
 ルイス酸触媒の使用量は、特に制限されるわけではないが、反応の転化率、収率、選択率等の観点から、原料であるアダマンタン縮環芳香族化合物1モルに対して、0.05~1モルが好ましく、0.06~0.5モルがより好ましく、0.07~0.3モルがさらに好ましく、0.08~2モルが特に好ましい。 The amount of Lewis acid catalyst used is not particularly limited, but from the viewpoint of reaction conversion rate, yield, selectivity, etc., it is preferably 0.05 to 1 mol, more preferably 0.06 to 0.5 mol, even more preferably 0.07 to 0.3 mol, and particularly preferably 0.08 to 2 mol per 1 mol of the raw material adamantane-fused aromatic compound.
 (2-3)溶媒
 本発明において、工程(II)は、通常、有機溶媒中で行うことができる。
(2-3) Solvent In the present invention, the step (II) can usually be carried out in an organic solvent.
 使用できる有機溶媒としては、特に制限されるわけではないが、反応の転化率、収率、選択率等の観点から、アルカンが好ましく、具体的には、ヘキサン、ヘプタン、オクタン等が挙げられる。これらの有機溶媒は、単独で用いることもでき、2種以上を組合せて用いることもできる。 There are no particular limitations on the organic solvents that can be used, but from the standpoint of reaction conversion rate, yield, selectivity, etc., alkanes are preferred, and specific examples include hexane, heptane, and octane. These organic solvents can be used alone or in combination of two or more types.
 なお、これらの有機溶媒の使用量は、特に制限はなく、溶媒量とすることができる。 The amount of these organic solvents used is not particularly limited and can be the amount of solvent.
 (2-4)水素化
 本発明において、工程(II)は、通常、水素ガス等の水素含有気体をアダマンタン縮環芳香族化合物と接触させることにより、アダマンタン縮環芳香族化合物の水素化を行うことができる。
(2-4) Hydrogenation In the present invention, in the step (II), the adamantane-fused aromatic compound can usually be hydrogenated by contacting a hydrogen-containing gas such as hydrogen gas with the adamantane-fused aromatic compound.
 具体的には、系中の雰囲気を水素ガス等の水素含有気体雰囲気とすることができる。この際、水素ガス等の水素含有気体雰囲気の圧力は、特に制限されるわけではないが、反応の転化率、収率、選択率等の観点から、0.1~10MPaが好ましく、0.2~5MPaがより好ましく、0.3~2MPaがさらに好ましい。 Specifically, the atmosphere in the system can be a hydrogen-containing gas atmosphere such as hydrogen gas. In this case, the pressure of the hydrogen-containing gas atmosphere such as hydrogen gas is not particularly limited, but from the viewpoint of the conversion rate, yield, selectivity, etc. of the reaction, it is preferably 0.1 to 10 MPa, more preferably 0.2 to 5 MPa, and even more preferably 0.3 to 2 MPa.
 (2-5)その他条件
 本反応は通常、80~200℃、好ましくは100~150℃で実施することができる。また、本反応は通常、1~200時間、好ましくは10~150時間、より好ましくは50~100時間実施することができる。
(2-5) Other Conditions This reaction can be carried out usually at 80 to 200° C., preferably 100 to 150° C. In addition, this reaction can be carried out usually for 1 to 200 hours, preferably 10 to 150 hours, more preferably 50 to 100 hours.
 本反応終了後、必要に応じて常法で精製し、本発明のダイヤモンドイド化合物を得ることができる。具体的に例えば、前記反応混合物に有機溶媒(酢酸エチル等)を添加して有機物を有機層に溶解させた後、金属触媒をシリカゲルにより吸着させ、ゲル濾過クロマトグラフィーにより精製することができる。 After the reaction is completed, the diamondoid compound of the present invention can be obtained by purifying it by a conventional method as necessary. Specifically, for example, an organic solvent (such as ethyl acetate) can be added to the reaction mixture to dissolve the organic matter in the organic layer, and then the metal catalyst can be adsorbed by silica gel and purified by gel filtration chromatography.
 3.アダマンタン縮環芳香族化合物の製造方法
 また、上記工程(II)において原料として使用するアダマンタン縮環芳香族化合物は、例えば、
(IA)一般式(4):
3. Method for Producing Adamantane-Fused Aromatic Compound The adamantane-fused aromatic compound used as a raw material in the above step (II) is, for example,
(IA) General formula (4):
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
[式中、環A1”は、前記環A及び環A’に対応する芳香環を示す。Xはハロゲン原子を示す。]
で表される芳香族化合物と、求核剤とを反応をさせ、次いで、一般式(5A)又は(5B):
[In the formula, ring A 1″ represents an aromatic ring corresponding to ring A 1 and ring A 1 ′, and X 1 represents a halogen atom.]
and then reacting an aromatic compound represented by the general formula (5A) or (5B):
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
[式中、R及びnは前記に同じである。]
で表されるアダマンタノン化合物と反応させ、
一般式(6):
[In the formula, R 1 and n are the same as above.]
and reacting the compound with an adamantanone compound represented by the formula:
General formula (6):
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
[式中、A”、R及びnは前記に同じである。]
で表されるアダマンタン含有アレーン化合物を得る工程、及び
(IB)前記工程(IA)で得られたアダマンタン含有アレーン化合物と、ブレンステッド酸及び/又はルイス酸とを反応させる工程
を備える製造方法により製造することができる。
[In the formula, A 1 ″, R 1 and n are the same as defined above.]
and (IB) a step of reacting the adamantane-containing arene compound obtained in the step (IA) with a Brønsted acid and/or a Lewis acid.
 (3-1)工程(IA)
 芳香族化合物(一般式(4))
 一般式(4)において、Xで示されるハロゲン原子としては、例えば、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
(3-1) Step (IA)
Aromatic Compound (General Formula (4))
In the general formula (4), examples of the halogen atom represented by X 1 include a chlorine atom, a bromine atom, and an iodine atom.
 また、一般式(4)において、環A1”は、前記環A及び環A’に対応する芳香環を示す。 In addition, in formula (4), ring A 1″ represents an aromatic ring corresponding to ring A 1 and ring A 1 ′.
 つまり、環A1”は、環の数が2個以上である芳香環であれば特に制限はなく、様々な芳香環を採用できる。芳香環としては、芳香族炭化水素環(ベンゼン環等)及び複素芳香環(ピリジン環、ピラジン環、ピロール環、フラン環、チオフェン環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環等)等を2個以上(例えば2~1000個、特に2~100個)組み合わせた環とすることができる。また、環A1”は、上記した芳香環のみからなる構造とすることもできるし、上記した芳香環と上記した脂肪族環とを合計で2個以上(例えば2~1000個、特に2~100個)組み合わせた環とすることもできる。 In other words, ring A1" is not particularly limited as long as it is an aromatic ring having two or more rings, and various aromatic rings can be adopted. The aromatic ring can be a ring obtained by combining two or more (e.g., 2 to 1000 rings, particularly 2 to 100 rings) aromatic hydrocarbon rings (such as a benzene ring) and heteroaromatic rings (such as a pyridine ring, a pyrazine ring, a pyrrole ring, a furan ring, a thiophene ring, an imidazole ring, a pyrazole ring, an oxazole ring, a thiazole ring, etc.). Ring A1 " can also have a structure consisting of only the above-mentioned aromatic ring, or can be a ring obtained by combining a total of two or more (e.g., 2 to 1000 rings, particularly 2 to 100 rings) of the above-mentioned aromatic rings and the above-mentioned aliphatic rings.
 つまり、環A1”は、例えば、 That is, ring A 1″ is, for example,
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
等が挙げられる。 These include:
 上記した環A1”は、置換基を有することもできる。環A1”が有していてもよい置換基としては、例えば、上記のハロゲン原子、上記のアルキル基、上記のシクロアルキル基、上記のアダマンチル基、アダマンタノニル基等が挙げられる。環A1”が置換基を有する場合、置換基の数は、例えば、1~6個、特に1~3個とすることができる。 The above-mentioned ring A1" may also have a substituent. Examples of the substituent that ring A1 " may have include the above-mentioned halogen atoms, the above-mentioned alkyl groups, the above-mentioned cycloalkyl groups, the above-mentioned adamantyl groups and adamantanonyl groups. When ring A1 " has a substituent, the number of the substituents may be, for example, 1 to 6, particularly 1 to 3.
 以上から、原料としての芳香族化合物としては、具体的には、 From the above, the aromatic compounds used as raw materials are specifically:
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
等が挙げられる。 These include:
 これらの原料としての芳香族化合物は、公知又は市販品を使用することができる。 The aromatic compounds used as raw materials can be publicly known or commercially available products.
 求核剤
 求核剤としては、特に制限はなく、フリーデル・クラフツ反応を引き起こすことができるものであれば使用することができる。なかでも、反応の転化率、収率、選択率等の観点から、有機リチウム化合物、有機マグネシウム化合物等が好ましい。
The nucleophile is not particularly limited, and any nucleophile capable of inducing the Friedel-Crafts reaction can be used. Among them, organolithium compounds, organomagnesium compounds, etc. are preferred from the viewpoints of the conversion rate, yield, selectivity, etc. of the reaction.
 有機リチウム化合物としては、特に制限はなく、公知のものが採用でき、例えば、メチルリチウム、エチルリチウム、n-プロピルリチウム、イソプロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、n-ペンチルリチウム、n-ヘキシルリチウム等のアルキルリチウム;シクロヘキシルリチウム等のシクロアルキルリチウム;フェニルリチウム等のアリールリチウム等が挙げられる。これらの有機リチウム化合物は、単独で用いることもでき、2種以上を組合せて用いることもできる。これらのうち、本工程では、反応の転化率、収率、選択率等の観点から、アルキルリチウムが好ましく、n-ブチルリチウムがより好ましい。 The organolithium compound is not particularly limited, and known compounds can be used, such as alkyllithiums such as methyllithium, ethyllithium, n-propyllithium, isopropyllithium, n-butyllithium, sec-butyllithium, tert-butyllithium, n-pentyllithium, and n-hexyllithium; cycloalkyllithiums such as cyclohexyllithium; and aryllithiums such as phenyllithium. These organolithium compounds can be used alone or in combination of two or more. Of these, in this step, alkyllithiums are preferred, and n-butyllithium is more preferred, from the standpoint of reaction conversion rate, yield, selectivity, and the like.
 有機マグネシウム化合物としては、例えば、メチルマグネシウムクロリド、メチルマグネシウムブロミド、n-ブチルマグネシウムクロリド、n-ブチルマグネシウムブロミド、n-ヘキシルマグネシウムクロリド、n-ヘキシルマグネシウムブロミド等のハロゲン化アルキルマグネシウム;フェニルマグネシウムクロリド、フェニルマグネシウムブロミド、4-n-ブチルフェニルマグネシウムクロリド、4-n-ブチルフェニルマグネシウムブロミド等が挙げられる。 Examples of organic magnesium compounds include alkyl magnesium halides such as methyl magnesium chloride, methyl magnesium bromide, n-butyl magnesium chloride, n-butyl magnesium bromide, n-hexyl magnesium chloride, and n-hexyl magnesium bromide; phenyl magnesium chloride, phenyl magnesium bromide, 4-n-butylphenyl magnesium chloride, and 4-n-butylphenyl magnesium bromide.
 これらの求核剤は、単独で用いることができ、2種以上を組み合わせて用いることもできる。 These nucleophiles can be used alone or in combination of two or more.
 求核剤の使用量は、特に制限されるわけではないが、反応の転化率、収率、選択率等の観点から、原料である芳香族化合物1モルに対して、0.2~5.0モルが好ましく、0.3~3.0モルがより好ましく、0.5~2.0モルがさらに好ましい。求核剤を複数使用する場合は、その合計量が上記範囲内となるように調整することが好ましい。 The amount of nucleophile used is not particularly limited, but from the viewpoint of reaction conversion rate, yield, selectivity, etc., it is preferably 0.2 to 5.0 moles, more preferably 0.3 to 3.0 moles, and even more preferably 0.5 to 2.0 moles per mole of the aromatic compound raw material. When multiple nucleophiles are used, it is preferable to adjust the total amount so that it is within the above range.
 アダマンタノン化合物(一般式(5A)又は(5B))
 使用できるアダマンタノン化合物としては、具体的には、
Adamantanone Compound (General Formula (5A) or (5B))
Specific examples of the adamantanone compound that can be used include:
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
等が挙げられる。 These include:
 アダマンタノン化合物の使用量は、特に制限されるわけではないが、反応の転化率、収率、選択率等の観点から、原料である芳香族化合物1モルに対して、0.2~5.0モルが好ましく、0.3~3.0モルがより好ましく、0.5~2.0モルがさらに好ましい。 The amount of the adamantanone compound used is not particularly limited, but from the viewpoint of reaction conversion rate, yield, selectivity, etc., it is preferably 0.2 to 5.0 moles, more preferably 0.3 to 3.0 moles, and even more preferably 0.5 to 2.0 moles per mole of the aromatic compound as the raw material.
 溶媒
 本発明において、工程(IA)は、通常、有機溶媒中で行うことができる。
Solvent In the present invention, step (IA) can usually be carried out in an organic solvent.
 使用できる有機溶媒としては、特に制限されるわけではないが、反応の転化率、収率、選択率等の観点から、炭化水素、エーテル等が好ましい。炭化水素としては、例えば、ペンタン、ヘキサン、へプタン等の脂肪族飽和炭化水素;ベンゼン等の芳香族炭化水素が挙げられる。エーテルとしては、例えば、1,4-ジオキサン、テトラヒドロフラン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル等が挙げられる。なかでも、反応の転化率、収率、選択率等の観点から、エーテルが好ましく、テトラヒドロフランがより好ましい。これらの有機溶媒は、単独で用いることもでき、2種以上を組合せて用いることもできる。 The organic solvent that can be used is not particularly limited, but from the viewpoints of the conversion rate, yield, selectivity, etc. of the reaction, hydrocarbons, ethers, etc. are preferred. Examples of the hydrocarbons include aliphatic saturated hydrocarbons such as pentane, hexane, heptane, etc.; and aromatic hydrocarbons such as benzene. Examples of the ethers include 1,4-dioxane, tetrahydrofuran, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, etc. Among these, from the viewpoints of the conversion rate, yield, selectivity, etc. of the reaction, ethers are preferred, and tetrahydrofuran is more preferred. These organic solvents can be used alone or in combination of two or more kinds.
 なお、これらの有機溶媒の使用量は、特に制限はなく、溶媒量とすることができる。 The amount of these organic solvents used is not particularly limited and can be the amount of solvent.
 その他条件
 本工程において、原料としての芳香族化合物と求核剤との反応は通常、-120~-30℃、好ましくは-100~-50℃で実施することができ、その後のアダマンタノン化合物との反応は通常、0~70℃、好ましくは10~50℃で実施することができる。また、本工程において、原料としての芳香族化合物と求核剤との反応は通常、1分~10時間、好ましくは5分~5時間、より好ましくは10分~3時間実施することができ、その後のアダマンタノン化合物との反応は通常、1~100時間、好ましくは2~50時間、より好ましくは5~30時間実施することができる。
Other Conditions In this step, the reaction between the aromatic compound as a raw material and the nucleophile can be carried out usually at −120 to −30° C., preferably −100 to −50° C., and the subsequent reaction with the adamantanone compound can be carried out usually at 0 to 70° C., preferably 10 to 50° C. Furthermore, in this step, the reaction between the aromatic compound as a raw material and the nucleophile can be carried out usually for 1 minute to 10 hours, preferably 5 minutes to 5 hours, more preferably 10 minutes to 3 hours, and the subsequent reaction with the adamantanone compound can be carried out usually for 1 to 100 hours, preferably 2 to 50 hours, more preferably 5 to 30 hours.
 本工程終了後、必要に応じて常法で精製し、アダマンタン含有アレーン化合物を得ることができる。具体的に例えば、前記反応混合物に有機溶媒(酢酸エチル等)を添加して有機物を有機層に溶解させた後、金属化合物をシリカゲルにより吸着させ、ゲル濾過クロマトグラフィーにより精製することができる。 After this step is completed, the adamantane-containing arene compound can be obtained by purifying it by a conventional method as necessary. Specifically, for example, an organic solvent (such as ethyl acetate) can be added to the reaction mixture to dissolve the organic matter in the organic layer, and then the metal compound can be adsorbed by silica gel and purified by gel filtration chromatography.
 (3-2)工程(IB)
 アダマンタン含有アレーン化合物(一般式(6))
 アダマンタン含有アレーン化合物は、上記した一般式(IA)により得られる化合物である、具体的には、
(3-2) Step (IB)
Adamantane-containing arene compound (general formula (6))
The adamantane-containing arene compound is a compound obtained by the above-mentioned general formula (IA), specifically,
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
等が挙げられる。 These include:
 ブレンステッド酸及び/又はルイス酸
 ブレンステッド酸及び/又はルイス酸としては、特に制限はなく、様々なものを使用することができ、例えば、
硫酸、硝酸、リン酸、ポリリン酸、フッ化水素(HF)、フッ酸、塩酸、臭化水素、ヨウ化水素、次亜塩素酸、亜塩素酸、塩素酸、過塩素酸、過臭素酸、過ヨウ素酸等の無機酸;
フルオロスルホン酸、クロロスルホン酸、メタンスルホン酸、エタンスルホン酸、トリフルオロメタンスルホン酸、ジフルオロメタンスルホン酸、トリクロロメタンスルホン酸、パーフルオロブタンスルホン酸、パーフルオロオクタンスルホン酸、ベンゼンスルホン酸、トルエンスルホン酸、ニトロベンゼンスルホン酸等のスルホン酸;
ギ酸、酢酸、プロピオン酸、モノクロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、フルオロ酢酸、ジフルオロ酢酸、トリフルオロ酢酸、グリコール酸、乳酸、安息香酸、シュウ酸、コハク酸等のモノ若しくはポリカルボン酸;
SO、BF、BCl、B(OCH、AlCl、AlBr、SbF、SbCl、SbF、PF、PF、AsF、AsCl、AsF、TiCl、NbF、TaF等のルイス酸;
HBF、HPF、HAsF、HSbF、HSbCl等の、ルイス酸とハロゲン化水素とからなる酸
等が挙げられる。これらの酸は、単独で用いることもでき、2種以上を組合せて用いることもできる。なかでも、反応の転化率、収率、選択率等の観点から、ブレンステッド酸が好ましく、モノ若しくはポリカルボン酸がより好ましく、モノ若しくはポリフルオロ酢酸がさらに好ましく、トリフルオロ酢酸が特に好ましい。なお、本明細書では、ブレンステッドの定義では酸ではないものの、ルイスの定義では酸である化合物を意味する。
Bronsted acid and/or Lewis acid There is no particular limitation on the Bronsted acid and/or Lewis acid, and various acids can be used. For example,
Inorganic acids such as sulfuric acid, nitric acid, phosphoric acid, polyphosphoric acid, hydrogen fluoride (HF), hydrofluoric acid, hydrochloric acid, hydrogen bromide, hydrogen iodide, hypochlorous acid, chlorous acid, chloric acid, perchloric acid, perbromic acid, and periodic acid;
Sulfonic acids such as fluorosulfonic acid, chlorosulfonic acid, methanesulfonic acid, ethanesulfonic acid, trifluoromethanesulfonic acid, difluoromethanesulfonic acid, trichloromethanesulfonic acid, perfluorobutanesulfonic acid, perfluorooctane sulfonic acid, benzenesulfonic acid, toluenesulfonic acid, and nitrobenzenesulfonic acid;
Mono- or polycarboxylic acids such as formic acid, acetic acid, propionic acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, fluoroacetic acid, difluoroacetic acid, trifluoroacetic acid, glycolic acid, lactic acid, benzoic acid, oxalic acid, and succinic acid;
Lewis acids such as SO3 , BF3 , BCl3 , B( OCH3 ) 3 , AlCl3 , AlBr3 , SbF3 , SbCl3 , SbF5 , PF3 , PF5 , AsF3 , AsCl3 , AsF5 , TiCl4 , NbF5 , TaF5 ;
Examples of the acid include acids composed of Lewis acid and hydrogen halide, such as HBF 4 , HPF 6 , HAsF 6 , HSbF 6 , and HSbCl 6. These acids can be used alone or in combination of two or more. Among them, from the viewpoint of reaction conversion rate, yield, selectivity, etc., Bronsted acid is preferred, mono- or polycarboxylic acid is more preferred, mono- or polyfluoroacetic acid is even more preferred, and trifluoroacetic acid is particularly preferred. In this specification, the term refers to a compound that is not an acid according to the Bronsted definition, but is an acid according to the Lewis definition.
 ブレンステッド酸及び/又はルイス酸の使用量は、特に制限されるわけではないが、反応の転化率、収率、選択率等の観点から、原料であるアダマンタン含有アレーン化合物1モルに対して、0.2~5.0モルが好ましく、0.3~3.0モルがより好ましく、0.5~2.0モルがさらに好ましい。なお、ブレンステッド酸及び/又はルイス酸が液体である場合は、使用量は溶媒量とすることができる。また、ブレンステッド酸及び/又はルイス酸を複数使用する場合は、その合計量が上記範囲内となるように調整することが好ましい。 The amount of Bronsted acid and/or Lewis acid used is not particularly limited, but from the viewpoint of reaction conversion rate, yield, selectivity, etc., it is preferably 0.2 to 5.0 moles, more preferably 0.3 to 3.0 moles, and even more preferably 0.5 to 2.0 moles per mole of the raw material adamantane-containing arene compound. When the Bronsted acid and/or Lewis acid is liquid, the amount used can be the amount of solvent. When multiple Bronsted acids and/or Lewis acids are used, it is preferable to adjust the total amount to be within the above range.
 溶媒
 本発明において、工程(IB)は、通常、有機溶媒中で行うことができる。
Solvent In the present invention, step (IB) can usually be carried out in an organic solvent.
 使用できる有機溶媒としては、特に制限されるわけではないが、反応の転化率、収率、選択率等の観点から、炭化水素、ハロゲン化炭化水素、エーテル等が好ましい。炭化水素としては、例えば、ペンタン、ヘキサン、へプタン等の脂肪族炭化水素、ベンゼン、トルエン、キシレン等の芳香族炭化水素が挙げられる。ハロゲン化炭化水素としては、例えば、クロロホルム、ジクロロエタン、トリクロロエタン、クロロベンゼン、ジクロロベンゼン等が挙げられる。エーテルとしては、例えば、1,4-ジオキサン、テトラヒドロフラン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル等が挙げられる。なかでも、反応の転化率、収率、選択率等の観点から、ハロゲン化炭化水素が好ましく、ジクロロエタンがより好ましい。これらの有機溶媒は、単独で用いることもでき、2種以上を組合せて用いることもできる。 The organic solvents that can be used are not particularly limited, but from the viewpoints of the conversion rate, yield, selectivity, etc. of the reaction, hydrocarbons, halogenated hydrocarbons, ethers, etc. are preferred. Examples of the hydrocarbons include aliphatic hydrocarbons such as pentane, hexane, and heptane, and aromatic hydrocarbons such as benzene, toluene, and xylene. Examples of the halogenated hydrocarbons include chloroform, dichloroethane, trichloroethane, chlorobenzene, and dichlorobenzene. Examples of the ethers include 1,4-dioxane, tetrahydrofuran, ethylene glycol dimethyl ether, and ethylene glycol diethyl ether. Among them, from the viewpoints of the conversion rate, yield, selectivity, etc. of the reaction, halogenated hydrocarbons are preferred, and dichloroethane is more preferred. These organic solvents can be used alone or in combination of two or more.
 なお、これらの有機溶媒の使用量は、特に制限はなく、溶媒量とすることができる。 The amount of these organic solvents used is not particularly limited and can be the amount of solvent.
 その他条件
 本工程は通常、40~100℃、好ましくは50~90℃で実施することができる。また、本工程は通常、5分~10時間、好ましくは10分~8時間、より好ましくは30分~5時間実施することができる。
Other Conditions This step can be carried out usually at 40 to 100° C., preferably 50 to 90° C. In addition, this step can be carried out usually for 5 minutes to 10 hours, preferably 10 minutes to 8 hours, more preferably 30 minutes to 5 hours.
 本工程終了後、必要に応じて常法で精製し、アダマンタン縮環芳香族化合物を得ることができる。具体的に例えば、前記反応混合物に有機溶媒(酢酸エチル等)を添加して有機物を有機層に溶解させた後、不純物をシリカゲルにより吸着させ、ゲル濾過クロマトグラフィーにより精製することができる。 After this step is completed, the adamantane-fused aromatic compound can be obtained by purifying it by a conventional method as necessary. Specifically, for example, an organic solvent (such as ethyl acetate) can be added to the reaction mixture to dissolve the organic matter in the organic layer, and then impurities can be adsorbed by silica gel and purified by gel filtration chromatography.
 以下に実施例等を挙げて本発明を具体的に説明するが、本発明は何ら限定されるものではない。 The present invention will be specifically explained below with reference to examples, but the present invention is not limited in any way.
 なお、特に断りのない限り、脱水溶媒を含む全ての試薬は、市販品を精製せずに使用した。アズレン、キノリン-8-ボロン酸、2-ブロモビフェニル、1-ヨード-2-ブロモベンゼン、4-ブロモ-9,9-ジメチル-9H-フルオレン、4-ブロモ-9,9-ジフェニル-9H-フルオレン、4-ブロモ-9,9’-スピロビフルオレン、4-ブロモ-9-フェニル-9H-カルバゾール、1-ブロモナフタレン、1-ブロモピレン、3-ブロモフルオランテン、1,4-ジブロモナフタレン及び2-アダマンタノンは、東京化成工業(株)から購入した。[IrCl(cod)]2、[Ir(OMe)(cod)]2、Pd(OAc)2、ピレン-1-ボロン酸、B2pin2、PtBu3、Cs2CO3、K3PO4及びNOSbF6は、Sigma-Aldrich Co. LLCから購入した。1,1,2,2-テトラクロロエタン、シクロヘキサン及びヘキサンは、富士フイルム和光純薬(株)から購入した。2,2’-ジブロモビフェニル、2-ブロモ-2’-クロロ-1,1’-ビフェニル、2-ブロモ-1,1’-ビナフタレン、3-ブロモ-4-フェニルチオフェン、及び3-ブロモ-2,2’-ビチオフェンは、文献に報告されている手順で合成した。すべての反応は、Nガス雰囲気下、フレームドライしたガラス器具を用い、標準的な真空ライン技術で脱水溶媒を使用して行った。反応に使用したトルエン、テトラヒドロフラン(THF)、ジエチルエーテル(Et2O)は、溶媒精製システム(Glass Contour)を通過させることで精製した。すべての工程及び精製手順は、大気中で試薬グレードの溶媒を使用して実施した。「r.t.(室温)」は25℃を意味する。分析用薄層クロマトグラフィー(TLC)は、E. Merck silica gel 60 F254 precoated plates (0.25 mm)を用いて実施した。クロマトグラムは、UVランプ(254 nm又は365 nm)で分析した。フラッシュカラムクロマトグラフィーは、KANTO Silica Gel 60N(球形、中性、40~100μm)又はBiotage SNAP Cartridge KP-Silカラムを備えたBiotage Isoleraで実施した。分取リサイクルゲル浸透クロマトグラフィー(GPC)は、JAIGEL-2HRカラムを装着したJAI LC-9260 II NEXT装置でクロロホルムを溶離液として実施した。高分解能質量分析(HRMS)は、JEOL JMS-T100TD(Direct Analysis in Real Time, DART)、JEOL JMS-T100GCV(Direct EI)、Bruker Daltonics compact(ESI)により取得した。電子常磁性共鳴(EPR)スペクトルは、アルゴンを充填した石英シュレンク管を用いて、JEOL ESR JES TE-200装置で記録した。核磁気共鳴(NMR)スペクトルは、JEOL ECS-600(1H 600MHz、13C 150MHz)分光器又はJEOL ECS-500(1H 500MHz、13C 125MHz)分光器を用いて記録した。1H NMR の化学シフトは、CDCl3(7.26 ppm)、CD2Cl2(5.34 ppm)又はテトラクロロエタン(TCE)-d2(5.94 ppm)に対する parts per million (ppm) で表した。13C NMRの化学シフトは、CDCl3(77.16 ppm)、Cl2CDCl2(73.78 ppm)又はCD2Cl2(53.84 ppm)に対するppmで表した。データは、化学シフト、multiplicity(s = singlet、d = doublet、dd = doublet of doublets、t = triplet、td = triplet of doublets、q = quartet、dq = doublet of quartet、m = multiplet、brs = broad singlet、brd = broad doublet)、coupling constant(Hz)、integrationで報告した。 Unless otherwise specified, all reagents including dehydrated solvents were used as commercially available products without purification. Azulene, quinoline-8-boronic acid, 2-bromobiphenyl, 1-iodo-2-bromobenzene, 4-bromo-9,9-dimethyl-9H-fluorene, 4-bromo-9,9-diphenyl-9H-fluorene, 4-bromo-9,9'-spirobifluorene, 4-bromo-9-phenyl-9H-carbazole, 1-bromonaphthalene, 1-bromopyrene, 3-bromofluoranthene, 1,4-dibromonaphthalene, and 2-adamantanone were purchased from Tokyo Chemical Industry Co., Ltd. [IrCl(cod)] 2 , [Ir(OMe)(cod)] 2 , Pd(OAc) 2 , pyrene-1-boronic acid, B2pin2 , PtBu3 , Cs2CO3 , K3PO4 , and NOSbF6 were purchased from Sigma-Aldrich Co. LLC. 1,1,2,2 -Tetrachloroethane, cyclohexane , and hexane were purchased from Fujifilm Wako Pure Chemical Industries, Ltd. 2,2'-Dibromobiphenyl, 2-Bromo-2'-chloro-1,1'-biphenyl, 2-Bromo-1,1'-binaphthalene, 3-Bromo-4-phenylthiophene, and 3-Bromo-2,2'-bithiophene were synthesized according to procedures reported in the literature. All reactions were carried out under N2 gas atmosphere in flame-dried glassware and dehydrated solvents using standard vacuum line techniques. Toluene, tetrahydrofuran (THF), and diethyl ether (Et 2 O) used in the reactions were purified by passing through a solvent purification system (Glass Contour). All steps and purification procedures were carried out in air using reagent grade solvents. "rt" means 25°C. Analytical thin-layer chromatography (TLC) was performed using E. Merck silica gel 60 F254 precoated plates (0.25 mm). Chromatograms were analyzed with a UV lamp (254 nm or 365 nm). Flash column chromatography was performed on a Biotage Isolera equipped with KANTO Silica Gel 60N (spherical, neutral, 40-100 μm) or a Biotage SNAP Cartridge KP-Sil column. Preparative recycling gel permeation chromatography (GPC) was performed on a JAI LC-9260 II NEXT instrument equipped with a JAIGEL-2HR column using chloroform as the eluent. High resolution mass spectrometry (HRMS) was obtained on a JEOL JMS-T100TD (Direct Analysis in Real Time, DART), a JEOL JMS-T100GCV (Direct EI), and a Bruker Daltonics compact (ESI). Electron paramagnetic resonance (EPR) spectra were recorded on a JEOL ESR JES TE-200 instrument using a quartz Schlenk tube filled with argon. Nuclear magnetic resonance (NMR) spectra were recorded on a JEOL ECS-600 ( 1H 600MHz, 13C 150MHz) spectrometer or a JEOL ECS-500 ( 1H 500MHz, 13C 125MHz) spectrometer. 1H NMR chemical shifts are expressed in parts per million (ppm) relative to CDCl3 (7.26 ppm), CD2Cl2 ( 5.34 ppm), or tetrachloroethane (TCE) -d2 (5.94 ppm). 13C NMR chemical shifts are expressed in ppm relative to CDCl3 (77.16 ppm), Cl2CDCl2 (73.78 ppm), or CD2Cl2 (53.84 ppm). Data are reported as chemical shift, multiplicity (s = singlet, d = doublet , dd = doublet of doublets , t = triplet, td = triplet of doublets, q = quartet, dq = doublet of quartet, m = multiplet, brs = broad singlet, brd = broad doublet), coupling constant (Hz), and integration.
 合成例1 Synthesis Example 1
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
 2-(2-アズレニル)-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン(化合物S1)の合成
 乾燥した100mL二口フラスコに、アズレン(7.8 mmol, 1.00 g)、シクロオクタジエンイリジウム塩化物二量体([IrCl(cod)]2)(0.19 mmol, 131 mg, 3 mol%)、2,2’-ビピリジル(0.39 mmol, 60.4 mg, 6 mol%)、及びビス(ピナコラート)ジボロン(B2pin2)(4.3 mmol, 1.09 g, 0.55当量)を加えた。フラスコを脱気し、次いでシクロヘキサン(50 mL)を添加した。反応混合物を80℃で29時間攪拌した。室温まで冷却した後、反応混合物に水を加えて反応をクエンチさせ、有機層を酢酸エチルで3回抽出した。合わせた有機層をNa2SO4で乾燥させ、真空下で濃縮した。粗生成物をシリカゲルカラムクロマトグラフィー(溶離液:ヘキサン/酢酸エチル= 100 : 0 to 80 : 20)で精製し、2-(2-アズレニル)-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン(化合物S1)を青色固体として得た(971 mg, 57 %)。化合物S1の1H NMRスペクトルは報告されているデータと一致した。
Synthesis of 2-(2-azulenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (compound S1) Azulene (7.8 mmol, 1.00 g), cyclooctadiene iridium chloride dimer ([IrCl(cod)] 2 ) (0.19 mmol, 131 mg, 3 mol%), 2,2'-bipyridyl (0.39 mmol, 60.4 mg, 6 mol%), and bis( pinacolato )diboron ( B2pin2 ) (4.3 mmol, 1.09 g, 0.55 equiv.) were added to a dry 100 mL two-neck flask. The flask was degassed, and then cyclohexane (50 mL) was added. The reaction mixture was stirred at 80°C for 29 h. After cooling to room temperature, water was added to the reaction mixture to quench the reaction, and the organic layer was extracted three times with ethyl acetate. The combined organic layers were dried over Na2SO4 and concentrated in vacuo. The crude product was purified by silica gel column chromatography (eluent: hexane/ethyl acetate = 100:0 to 80:20) to give 2-(2-azulenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (compound S1) as a blue solid (971 mg, 57%). The 1H NMR spectrum of compound S1 was consistent with the reported data.
 2-(2-ブロモフェニル)-アズレン(化合物S2)の合成
 乾燥した100 mL三口フラスコに、化合物S1(2.68 mmol, 680 mg)、1-ヨード-2-ブロモベンゼン(5.35 mmol, 1.51 g, 2.0当量)、トリス(ジベンジリデンアセトン)二パラジウム(0)クロロホルム付加物(Pd2(dba)3・CHCl3)(0.26 mmol, 282 mg, 10 mol%)、及びCs2CO3(8.04 mmol, 2.62 g, 3.0当量)を開放下で加えた。フラスコをアルゴンで充填して密封し、グローブボックス内に設置した。フラスコにトリ-tert-ブチルホスフィン(PtBu3)(0.26 mmol, 54.1 mg, 10 mol%)を加え、トルエン(15 mL)、1,4-ジオキサン(5 mL)、及びH2O(5 mL)を添加した。反応混合物を100℃で19時間撹拌した。室温まで冷却した後、反応混合物に水を加えて反応をクエンチさせ、有機層を酢酸エチルで3回抽出した。合わせた有機層をNa2SO4で乾燥させ、真空下で濃縮した。粗生成物をシリカゲルカラムクロマトグラフィー(溶離液:ヘキサン)で精製し、2-(2-ブロモフェニル)アズレン(化合物S2)を青色固体として得た(462 mg, 62 %)。
1H NMR (600 MHz, CDCl3) δ8.38 (d, J = 9.6 Hz, 2H), 7.74 (dd, J = 8.4, 1.2 Hz, 1H), 7.65 (s, 2H), 7.57-7.62 (m, 2H), 7.41 (td, J = 6.0, 1.2 Hz, 1H), 7.19-7.23 (m, 3H)
13C NMR (150 MHz, CDCl3) δ149.70, 140.14, 138.70, 137.30, 136.99, 133.82, 132.57, 128.91, 127.56, 123.68, 122.86, 118.41.
HRMS (DART, positive) m/z calcd for C16H12Br [M+H]+: m/z 283.01169. Found: m/z 283.01170。
Synthesis of 2-(2-bromophenyl)-azulene (compound S2) Compound S1 (2.68 mmol, 680 mg), 1-iodo-2-bromobenzene (5.35 mmol, 1.51 g, 2.0 equiv.), tris(dibenzylideneacetone)dipalladium(0) chloroform adduct (Pd 2 (dba) 3 ·CHCl 3 ) (0.26 mmol, 282 mg, 10 mol%), and Cs 2 CO 3 (8.04 mmol, 2.62 g, 3.0 equiv.) were added to a dry 100 mL three-neck flask under open conditions. The flask was filled with argon, sealed, and placed in a glove box. A flask was charged with tri-tert-butylphosphine (P t Bu 3 ) (0.26 mmol, 54.1 mg, 10 mol%), followed by the addition of toluene (15 mL), 1,4-dioxane (5 mL), and H 2 O (5 mL). The reaction mixture was stirred at 100° C. for 19 h. After cooling to room temperature, the reaction mixture was quenched by adding water, and the organic layer was extracted three times with ethyl acetate. The combined organic layers were dried over Na 2 SO 4 and concentrated under vacuum. The crude product was purified by silica gel column chromatography (eluent: hexane) to obtain 2-(2-bromophenyl)azulene (compound S2) as a blue solid (462 mg, 62%).
1H NMR (600 MHz, CDCl3 ) δ8.38 (d, J = 9.6 Hz, 2H), 7.74 (dd, J = 8.4, 1.2 Hz, 1H), 7.65 (s, 2H), 7.57-7.62 (m, 2H), 7.41 (td, J = 6.0, 1.2 Hz, 1H), 7.19-7.23 (m, 3H).
13C NMR (150 MHz, CDCl3 ) δ 149.70, 140.14, 138.70, 137.30, 136.99, 133.82, 132.57, 128.91, 127.56, 123.68, 122.86, 118.41.
HRMS (DART, positive) m/z calcd for C16H12Br [ M+H] + : m/z 283.01169. Found: m/z 283.01170.
 合成例2 Synthesis Example 2
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
 2-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ピレン(化合物S3)の合成
 乾燥した100mLの二口フラスコに、ピレン(1.0 mmol, 202 mg, 1.0当量)、シクロオクタジエンメトキシイリジウム(I)二量体([Ir(OMe)(cod)]2)(50μmol, 33.1 mg, 5 mol%)、4,4’-ジ-tert-ブチル-2,2’-ビピリジル(dtbpy, 100μmol, 26.8 mg, 10 mol%)、及びビス(ピナコラート)ジボロン(B2pin2)(1.1 mmol, 279 mg, 1.1当量)を添加した。フラスコを脱気し、次いでシクロヘキサン(20 mL)を添加した。反応混合物を80℃で16時間撹拌した。室温まで冷却後、反応混合物に水を加えて反応をクエンチさせ、有機層を酢酸エチルで3回抽出した。合わせた有機層をNa2SO4で乾燥させ、真空下で濃縮した。粗生成物をシリカゲルカラムクロマトグラフィー(溶離液:ヘキサン/酢酸エチル= 100 : 0 to 80 : 20)で精製し、4,4,5,5-テトラメチル-2-(2-ピレニル)-1,3,2-ジオキサボロラン(化合物S3)を白色固体として得た(236 mg, 72 %)。化合物S3の1H NMRスペクトルは報告されているデータと一致した。
Synthesis of 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrene (compound S3) To a dry 100 mL two-neck flask was added pyrene (1.0 mmol, 202 mg, 1.0 equiv.), cyclooctadienemethoxyiridium(I) dimer ([Ir(OMe)(cod)] 2 ) (50 μmol, 33.1 mg, 5 mol%), 4,4'-di-tert-butyl-2,2'-bipyridyl (dtbpy, 100 μmol, 26.8 mg, 10 mol%), and bis( pinacolato )diboron ( B2pin2 ) (1.1 mmol, 279 mg, 1.1 equiv.). The flask was degassed and then cyclohexane (20 mL) was added. The reaction mixture was stirred at 80 °C for 16 h. After cooling to room temperature, the reaction mixture was quenched by adding water, and the organic layer was extracted with ethyl acetate three times. The combined organic layers were dried over Na 2 SO 4 and concentrated in vacuo. The crude product was purified by silica gel column chromatography (eluent: hexane/ethyl acetate = 100 : 0 to 80 : 20) to give 4,4,5,5-tetramethyl-2-(2-pyrenyl)-1,3,2-dioxaborolane (compound S3) as a white solid (236 mg, 72%). The 1 H NMR spectrum of compound S3 was consistent with the reported data.
 2-(2-ブロモフェニル)ピレン(化合物S4)の合成
 乾燥した100 mLの三口フラスコに、1-ブロモ-2-ヨードベンゼン(1.00 mmol, 282 mg, 1.0当量)、2-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ピレン(1.0 mmol, 328 mg, 1.0当量)、酢酸パラジウム(30μmol, 8.98 mg, 3 mol%)、トリフェニルホスフィン(90μmol, 31.5 mg, 9 mol%)、及びK2CO3(3.00 mmol, 414 mg, 3.0当量)を添加した。フラスコを脱気し、続いてトルエン(4.0 mL)、エタノール(1.0 mL)、及びH2O(1.0 mL)を添加した。反応混合物を80℃で15時間攪拌した。室温まで冷却した後、反応混合物に水を加えて反応をクエンチさせ、有機層を酢酸エチルで3回抽出した。合わせた有機層をNa2SO4で乾燥させ、真空下で濃縮した。粗生成物をシリカゲルカラムクロマトグラフィー(溶離液:ヘキサン/CHCl3= 100 : 0 to 90 : 10)で精製し、熱エタノールからの再結晶により、2-(2-ブロモフェニル)ピレン(化合物S4)を白色固体として得た(279 mg、78 %)。
1H NMR (600 MHz, CDCl3) δ8.20-8.23 (m, 4H), 8.11 (d, J = 1.2 Hz, 4H), 8.03 (t, J = 7.8 Hz, 1H), 7.78 (dd, J = 7.8, 1.2 Hz, 1H), 7.56 (dd, J = 7.2, 1.2 Hz, 1H), 7.46 (td, J = 7.8, 1.2 Hz, 1H), 7.30 (td, J = 7.8, 1.8 Hz, 1H).
13C NMR (150 MHz, CDCl3) δ143.04, 138.93, 133.34, 132.18, 131.39, 131.02, 129.08, 127.96, 127.60, 126.19, 126.02, 125.30, 124.73, 124.09, 123.25.
HRMS (DART, positive) m/z calcd for C22H14 [M+H]+: m/z 357.02734. Found: m/z 357.02735。
Synthesis of 2-(2-bromophenyl)pyrene (compound S4) To a dry 100 mL three-neck flask were added 1-bromo-2-iodobenzene (1.00 mmol, 282 mg, 1.0 equiv.), 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrene (1.0 mmol, 328 mg, 1.0 equiv.), palladium acetate (30 μmol, 8.98 mg, 3 mol%), triphenylphosphine (90 μmol, 31.5 mg, 9 mol%), and K 2 CO 3 (3.00 mmol, 414 mg, 3.0 equiv.). The flask was degassed, followed by the addition of toluene (4.0 mL), ethanol (1.0 mL), and H 2 O (1.0 mL). The reaction mixture was stirred at 80° C. for 15 h. After cooling to room temperature, water was added to the reaction mixture to quench the reaction, and the organic layer was extracted with ethyl acetate three times. The combined organic layers were dried over Na2SO4 and concentrated in vacuum. The crude product was purified by silica gel column chromatography (eluent: hexane/ CHCl3 = 100:0 to 90:10) and recrystallized from hot ethanol to give 2-(2-bromophenyl)pyrene (compound S4) as a white solid (279 mg, 78%).
1H NMR (600 MHz, CDCl3 ) δ 8.20-8.23 (m, 4H), 8.11 (d, J = 1.2 Hz, 4H), 8.03 (t, J = 7.8 Hz, 1H), 7.78 (dd, J = 7.8, 1.2 Hz, 1H), 7.56 (dd, J = 7.2, 1.2 Hz, 1H), 7.46 (td, J = 7.8, 1.2 Hz, 1H), 7.30 (td, J = 7.8, 1.8 Hz, 1H).
13C NMR (150 MHz, CDCl3 ) δ 143.04, 138.93, 133.34, 132.18, 131.39, 131.02, 129.08, 127.96, 127.60, 126.19, 126.02, 125.30, 124.73, 124.09, 123.25.
HRMS (DART, positive) m/z calcd for C22H14 [ M+H] + : m/z 357.02734. Found: m/z 357.02735.
 合成例3 Synthesis Example 3
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
 1-(2-ブロモフェニル)ピレン(化合物S5)の合成
 100 mL二口フラスコに、1-ブロモ-2-ヨードベンゼン(800μmol, 226 mg, 1.0当量)、ピレン-1-ボロン酸(880μmol, 216 mg, 1.1当量)、酢酸パラジウム(Pd(OAc)2)(40μmol, 8.98 mg, 5 mol%)、トリフェニルホスフィン(PPh3)(120μmol, 31.5 mg, 15 mol%)、及びNa2CO3(2.40 mmol, 254 mg, 3.0当量)を添加した。フラスコを脱気した後、トルエン(8.0 mL)、及びH2O(4.0 mL)を添加した。反応混合物を80℃で18時間攪拌した。室温まで冷却した後、反応混合物に水を加えて反応をクエンチさせ、有機層を酢酸エチルで3回抽出した。合わせた有機層をNa2SO4で乾燥させ、真空下で濃縮した。粗生成物をシリカゲルカラムクロマトグラフィー(溶離液:ヘキサン)で精製して、1-(2-ブロモフェニル)ピレン(化合物S5)を白色固体として得た(228 mg, 80 %)。化合物S5の1H NMRスペクトルは報告されているデータと一致した。
Synthesis of 1-(2-bromophenyl)pyrene (compound S5) 1-Bromo-2-iodobenzene (800 μmol, 226 mg, 1.0 equiv.), pyrene-1-boronic acid (880 μmol, 216 mg, 1.1 equiv.), palladium acetate (Pd(OAc) 2 ) (40 μmol, 8.98 mg, 5 mol%), triphenylphosphine (PPh 3 ) (120 μmol, 31.5 mg, 15 mol%), and Na 2 CO 3 (2.40 mmol, 254 mg, 3.0 equiv.) were added to a 100 mL two-neck flask. After degassing the flask, toluene (8.0 mL) and H 2 O (4.0 mL) were added. The reaction mixture was stirred at 80° C. for 18 h. After cooling to room temperature, water was added to the reaction mixture to quench the reaction, and the organic layer was extracted three times with ethyl acetate. The combined organic layers were dried over Na2SO4 and concentrated in vacuo. The crude product was purified by silica gel column chromatography (eluent: hexane) to give 1-(2-bromophenyl)pyrene (compound S5) as a white solid (228 mg, 80%). The 1H NMR spectrum of compound S5 was consistent with the reported data.
 合成例4 Synthesis Example 4
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
 8-(2-ブロモフェニル)キノリン(化合物S6)の合成
 乾燥した100 mLの二口フラスコに、キノリン-8-ボロン酸(960μmol, 167.1 mg, 1.2当量)、1-ブロモ-2-ヨードベンゼン(800μmol, 226.3 mg, 1.0当量)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)ジクロロメタン付加物(PdCl2(dppf)・CH2Cl2)(40μmol, 32.4 mg, 5 mol%)、及びNa2CO3(2.40 mmol, 253.1 mg, 3.0当量)を添加した。フラスコを脱気し、続いてトルエン(3.0 mL)、エタノール(0.5 mL)、及びH2O(0.5 mL)を添加した。反応混合物を80℃で18時間攪拌した。室温まで冷却した後、反応混合物に水を加えて反応をクエンチさせ、有機層を酢酸エチルで3回抽出した。合わせた有機層をNa2SO4で乾燥させ、真空下で濃縮した。粗生成物をシリカゲルカラムクロマトグラフィー(溶離液:ヘキサン/酢酸エチル= 100 : 0 to 95 : 5)で精製して、8-(2-ブロモフェニル)キノリン(化合物S6)を白色固体として得た(182 mg, 80 %)。
1H NMR (600 MHz, CDCl3) δ8.92 (dd, J = 4.2, 1.8 Hz, 1H), 8.21 (dd, J = 8.4, 1.8 Hz, 1H), 7.90 (dd, J = 7.8, 1.8 Hz, 1H), 7.73 (dd, J = 7.2, 1.2 Hz, 1H), 7.60-7.65 (m, 2H), 7.39-7.44 (m, 3H), 7.28-7.31 (m, 1H).
13C NMR (150 MHz, CDCl3) δ150.62, 146.43, 141.13, 140.69, 136.25, 132.80, 132.06, 130.80, 129.18, 128.56, 128.36, 127.09, 126.03, 124.47, 121.22.
HRMS (DART, positive) m/z calcd for C15H11BrN [M+H]+: m/z 284.00694. Found: m/z 284.00708。
Synthesis of 8-(2-bromophenyl)quinoline (compound S6) To a dry 100 mL two-neck flask were added quinoline-8-boronic acid (960 μmol, 167.1 mg, 1.2 equiv.), 1-bromo- 2-iodobenzene (800 μmol, 226.3 mg, 1.0 equiv.), [1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium(II) dichloromethane adduct (PdCl2(dppf)·CH2Cl2) (40 μmol, 32.4 mg, 5 mol%), and Na2CO3 ( 2.40 mmol , 253.1 mg, 3.0 equiv.). The flask was degassed, followed by the addition of toluene (3.0 mL), ethanol (0.5 mL), and H2O (0.5 mL). The reaction mixture was stirred at 80° C. for 18 h. After cooling to room temperature, water was added to the reaction mixture to quench the reaction, and the organic layer was extracted with ethyl acetate three times. The combined organic layers were dried over Na2SO4 and concentrated in vacuum. The crude product was purified by silica gel column chromatography (eluent: hexane/ethyl acetate = 100:0 to 95:5) to obtain 8-(2-bromophenyl)quinoline (compound S6) as a white solid (182 mg, 80%).
1H NMR (600 MHz, CDCl3 ) δ 8.92 (dd, J = 4.2, 1.8 Hz, 1H), 8.21 (dd, J = 8.4, 1.8 Hz, 1H), 7.90 (dd, J = 7.8, 1.8 Hz, 1H), 7.73 (dd, J = 7.2, 1.2 Hz, 1H), 7.60-7.65 (m, 2H), 7.39-7.44 (m, 3H), 7.28-7.31 (m, 1H).
13C NMR (150 MHz, CDCl3 ) δ 150.62, 146.43, 141.13, 140.69, 136.25, 132.80, 132.06, 130.80, 129.18, 128.56, 128.36, 127.09, 126.03, 124.47, 121.22.
HRMS ( DART , positive) m/z calcd for C15H11BrN [M+H] + : m/z 284.00694. Found: m/z 284.00708.
 合成例5 Synthesis Example 5
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
 4-プロトアダマンタノンの合成
 乾燥した500mL三口フラスコに磁気撹拌棒を入れ、酢酸鉛(IV)(Pb(OAc)4)(60.0 g, 115 mmol, 1.8当量)、1-アダマンタノール(10.0 g, 65.7 mmol, 1.0当量)、ヨウ素(29.2 g, 115 mmol, 1.8当量)、及び脱水ベンゼン(300 mL)を加えた。反応混合物を73℃で4時間撹拌した。室温まで冷却した後、混合物をNaHCO3水溶液で中和した。有機層をNa2S2O3水溶液で洗浄し、Na2SO4で乾燥させ、真空下で濃縮した。得られた粗生成物を、精製することなく使用した。
Synthesis of 4-protoadamantanone A dry 500 mL three-neck flask equipped with a magnetic stir bar was charged with lead(IV) acetate (Pb(OAc) 4 ) (60.0 g, 115 mmol, 1.8 equiv.), 1-adamantanol (10.0 g, 65.7 mmol, 1.0 equiv.), iodine (29.2 g, 115 mmol, 1.8 equiv.), and anhydrous benzene (300 mL). The reaction mixture was stirred at 73 °C for 4 h. After cooling to room temperature, the mixture was neutralized with aqueous NaHCO3 . The organic layer was washed with aqueous Na2S2O3 , dried over Na2SO4 , and concentrated under vacuum . The crude product obtained was used without purification.
 磁気撹拌棒を入れた300mL丸底フラスコに、得られた粗生成物、メタノール(300 mL)、及び水酸化カリウム(22.1 g, 394 mmol, 6.0当量)を加えた。反応混合物を85℃で16時間攪拌した。室温まで冷却した後、有機層をジエチルエーテルで5回抽出し、Na2SO4で乾燥させ、真空下で濃縮させた。粗生成物をシリカゲルカラムクロマトグラフィー(溶離液:ヘキサン/酢酸エチル= 90 : 10 to 80 : 20)で精製し、化合物1を得た(5.63 g, 57 %)。化合物1の1H NMR スペクトルは報告されているデータと一致した。
1H NMR (600 MHz, CDCl3) δ2.72-2.76 (m, 1H), 2.61 (q, J = 6.0 Hz, 2H), 2.54 (dd, J = 18.0, 3.0 Hz, 1H), 2.41 (t, J = 3.6 Hz, 1H), 2.23-2.31 (m, 2H), 1.92-1.99 (m, 2H), 1.80 (dd, J =12.0, 2.4 Hz, 1H), 1.67-1.71 (m, 3H), 1.63 (dd, J = 11.4, 2.4 Hz, 1H), 1.53 (dq, J = 13.1, 2.4 Hz, 1H).
13C NMR (150 MHz, CDCl3) δ216.73, 51.25, 45.15, 41.50, 38.26, 37.50, 37.38, 37.28, 49.96 39.26。
The crude product, methanol (300 mL), and potassium hydroxide (22.1 g, 394 mmol, 6.0 equiv.) were added to a 300 mL round-bottom flask equipped with a magnetic stir bar. The reaction mixture was stirred at 85 °C for 16 h. After cooling to room temperature, the organic layer was extracted five times with diethyl ether, dried over Na2SO4 , and concentrated in vacuum. The crude product was purified by silica gel column chromatography (eluent: hexane/ethyl acetate = 90:10 to 80:20) to give compound 1 ( 5.63 g, 57%). The 1H NMR spectrum of compound 1 was consistent with the reported data.
1H NMR (600 MHz, CDCl3 ) δ2.72-2.76 (m, 1H), 2.61 (q, J = 6.0 Hz, 2H), 2.54 (dd, J = 18.0, 3.0 Hz, 1H), 2.41 (t, J = 3.6 Hz, 1H), 2.23-2.31 (m, 2H), 1.92-1.99 (m, 2H), 1.80 (dd, J = 12.0, 2.4 Hz, 1H), 1.67-1.71 (m, 3H), 1.63 (dd, J = 11.4, 2.4 Hz, 1H), 1.53 (dq, J = 13.1, 2.4 Hz, 1H).
13C NMR (150 MHz, CDCl3 ) δ 216.73, 51.25, 45.15, 41.50, 38.26, 37.50, 37.38, 37.28, 49.96 39.26.
 合成例6-1~6-17、6-30、6-31、6-34、6-36 Synthesis Examples 6-1 to 6-17, 6-30, 6-31, 6-34, and 6-36
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
 BuLiはn-ブチルリチウムを示す。THFはテトラヒドロフランを示す。 n BuLi refers to n-butyl lithium. THF refers to tetrahydrofuran.
 (工程IA)
 室温(25℃)下、乾燥させた50mLの2口フラスコに対して芳香族化合物(0.3mmol,1.0当量)を入れ、窒素置換を行ったのち脱水テトラヒドロフラン(THF;3mL)を加えた。溶液を-78℃に冷却したのち、ノルマルブチルリチウム(BuLi;1.6mol/L,ノルマルヘキサン溶液,0.33mmol、1.1当量)をゆっくり滴下し1時間攪拌した。その反応溶液に対し、-78℃で固体の4-プロトアダマンタノン(化合物1;0.33mmol,1.1当量)をN気流下に加え、室温(25℃)まで上昇させたのち12時間攪拌した。その後、反応溶液を0℃に冷却し、メタノールを加えることで反応を停止させた。その後、得られた反応溶液に対して、酢酸エチルを用いた抽出操作を3度行い、得られた有機層を硫酸マグネシウムで乾燥させたのち減圧下で溶媒留去を行った。得られた粗精製物は、精製せずに次に工程に使用した。
(Step IA)
At room temperature (25°C), an aromatic compound (0.3 mmol, 1.0 equivalent) was placed in a dried 50 mL two-neck flask, and after nitrogen replacement, dehydrated tetrahydrofuran (THF; 3 mL) was added. The solution was cooled to -78°C, and then normal butyl lithium ( nBuLi ; 1.6 mol/L, normal hexane solution, 0.33 mmol, 1.1 equivalent) was slowly added dropwise and stirred for 1 hour. To the reaction solution, solid 4-protoadamantanone (compound 1; 0.33 mmol, 1.1 equivalent) was added at -78°C under N2 gas flow, and the temperature was raised to room temperature (25°C) and stirred for 12 hours. Thereafter, the reaction solution was cooled to 0°C, and the reaction was stopped by adding methanol. Thereafter, the obtained reaction solution was subjected to extraction operation using ethyl acetate three times, and the obtained organic layer was dried over magnesium sulfate, and the solvent was distilled off under reduced pressure. The obtained crude product was used in the next step without purification.
 (工程IB)
 室温(25℃)下、乾燥させたシュレンク菅に対して、得られた化合物を入れ、窒素置換を行ったのち1,2-ジクロロエタン(1.5mL)及びトリフルオロ酢酸(1.5mL)を加えた。75℃に加熱し3時間攪拌させたのち、室温(25℃)において飽和炭酸水素ナトリウム水溶液を滴下して加え、反応を停止させた。酢酸エチルを用いた抽出操作を3度行い、得られた有機層を硫酸ナトリウムで乾燥させたのち減圧下で溶媒留去を行った。粗精製物をシリカゲルカラムクロマトグラフィーで精製した(展開溶媒:ヘキサン)。続いて、ゲル濾過クロマトグラフィーを用いて精製を行い、目的化合物を得た。
(Step IB)
The obtained compound was placed in a dried Schlenk tube at room temperature (25°C), and after nitrogen replacement, 1,2-dichloroethane (1.5mL) and trifluoroacetic acid (1.5mL) were added. After heating to 75°C and stirring for 3 hours, a saturated aqueous solution of sodium bicarbonate was added dropwise at room temperature (25°C) to stop the reaction. An extraction operation using ethyl acetate was performed three times, and the obtained organic layer was dried with sodium sulfate, and the solvent was distilled off under reduced pressure. The crude product was purified by silica gel column chromatography (developing solvent: hexane). Subsequently, purification was performed using gel filtration chromatography to obtain the target compound.
 合成例6-18~6-29、6-32、6-33、6-35 Synthesis Examples 6-18 to 6-29, 6-32, 6-33, and 6-35
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000086
 (工程IA)
 室温(25℃)下、乾燥させた50mLの2口フラスコに対して芳香族化合物(0.3mmol,1.0当量)を入れ、窒素置換を行ったのち脱水テトラヒドロフラン(THF;3mL)を加えた。溶液を-78℃に冷却したのち、ノルマルブチルリチウム(BuLi;1.6mol/L,ノルマルヘキサン溶液,0.33mmol,1.1当量)をゆっくり滴下し1時間攪拌した。その反応溶液に対し、-78℃で固体の4-プロトアダマンタノン(化合物1;0.33mmol,1.1当量)をN気流下に加え、室温(25℃)まで上昇させたのち12時間攪拌した。その後、反応溶液を0℃に冷却し、メタノールを加えることで反応を停止させた。その後、得られた反応溶液に対して、酢酸エチルを用いた抽出操作を3度行い、得られた有機層を硫酸マグネシウムで乾燥させたのち減圧下で溶媒留去を行った。その後、精製せずに次の工程を行った。
(Step IA)
At room temperature (25°C), an aromatic compound (0.3 mmol, 1.0 equivalent) was placed in a dried 50 mL two-neck flask, and after nitrogen replacement, dehydrated tetrahydrofuran (THF; 3 mL) was added. After cooling the solution to -78°C, normal butyl lithium ( nBuLi ; 1.6 mol/L, normal hexane solution, 0.33 mmol, 1.1 equivalent) was slowly added dropwise and stirred for 1 hour. To the reaction solution, solid 4-protoadamantanone (compound 1; 0.33 mmol, 1.1 equivalent) was added at -78°C under N2 gas flow, and the temperature was raised to room temperature (25°C) and stirred for 12 hours. Thereafter, the reaction solution was cooled to 0°C, and the reaction was stopped by adding methanol. Thereafter, the obtained reaction solution was subjected to extraction operation using ethyl acetate three times, and the obtained organic layer was dried with magnesium sulfate, and the solvent was distilled off under reduced pressure. Thereafter, the next step was carried out without purification.
 (工程IB)
 室温(25℃)下、乾燥させたシュレンク菅に対して、得られた粗生成物を入れ、窒素置換を行ったのち1,1,2,2-テトラクロロエタン(1.5mL)及びトリフルオロ酢酸(1.5mL)を加えた。75℃に加熱し3時間攪拌させたのち、室温(25℃)において飽和炭酸水素ナトリウム水溶液を滴下して加え、反応を停止させた。酢酸エチルを用いた抽出操作を3度行い、得られた有機層を硫酸ナトリウムで乾燥させたのち減圧下で溶媒留去を行った。粗精製物をシリカゲルカラムクロマトグラフィーで精製した(展開溶媒:ヘキサン)。続いて、ゲル濾過クロマトグラフィーを用いて精製を行い(展開溶媒:CHCl)、目的化合物を得た。
(Step IB)
The obtained crude product was placed in a dried Schlenk tube at room temperature (25°C), and after nitrogen replacement, 1,1,2,2-tetrachloroethane (1.5mL) and trifluoroacetic acid (1.5mL) were added. After heating to 75°C and stirring for 3 hours, a saturated aqueous solution of sodium bicarbonate was added dropwise at room temperature (25°C) to stop the reaction. An extraction operation using ethyl acetate was performed three times, and the obtained organic layer was dried with sodium sulfate, and the solvent was distilled off under reduced pressure. The crude product was purified by silica gel column chromatography (developing solvent: hexane). Subsequently, purification was performed by gel filtration chromatography (developing solvent: CHCl 3 ) to obtain the target compound.
 実施例合成例6-1~6-36において使用した原料化合物は、以下のとおりである。 The raw material compounds used in Synthesis Examples 6-1 to 6-36 are as follows:
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000088
 上記した化合物を原料化合物として用いて、工程IAを行って得られた中間体(アダマンタン含有アレーン化合物)は、以下のとおりである。 The intermediate (adamantane-containing arene compound) obtained by carrying out step IA using the above-mentioned compound as a raw material compound is as follows.
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000090
 上記した化合物を原料化合物として用いて、同様に工程IA及びIBを行って得られた中間体(アダマンタン縮環アレーン化合物)は、以下のとおりである。なお、各化合物の下に記載した収率は、工程IA及びIBの総収率である。 The intermediates (adamantane-fused arene compounds) obtained by carrying out steps IA and IB similarly using the above compounds as raw materials are as follows. The yields listed under each compound are the total yields of steps IA and IB.
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000093
 合成例6-1:10,11,12,13,14,14a-ヘキサヒドロ-9H-8b,12:10,14-ジメタノシクロオクタ[l]フェナントレン
合成方法:合成方法A。2-ブロモビフェニルを使用した。収量49.1 mg、収率57 %、白色固体。
1H NMR (600 MHz, CD2Cl2) δ 7.83-7.81 (m, 1H), 7.78-7.80 (m, 1H), 7.44-7.40 (m, 2H), 7.34-7.27 (m, 4H), 2.96 (s, 1H), 2.77 (q, J = 3.0 Hz, 1H), 2.58 (dt, J = 12.0, 2.4 Hz, 1H), 2.25 (t, J = 3.0 Hz, 1H), 2.07-2.11 (m, 1H), 1.86-1.96 (m, 3H), 1.76-1.85 (m, 3H), 1.68 (dq, J = 12.6, 3.0 Hz, 1H), 1.58 (dt, J = 12.6, 1.2 Hz, 1H), 1.27-1.30 (m, 1H).
13C NMR (150 MHz, CDCl3) δ 145.02, 137.94, 134.16, 133.00, 128.06, 127.74, 126.64, 126.37, 125.77, 124.22, 123.92, 123.87, 45.76, 41.42, 38.68, 37.90, 37.63, 35.77, 30.68, 28.90, 28.51, 28.41.
HRMS (DART, positive) m/z calcd for C22H21[M-H]+: m/z 285.16378. Found: m/z 285.16426。
Synthesis Example 6-1: 10,11,12,13,14,14a-hexahydro-9H-8b,12:10,14-dimethanocycloocta[l]phenanthrene Synthesis method: Synthesis method A. 2-Bromobiphenyl was used. Yield 49.1 mg, yield 57%, white solid.
1H NMR (600 MHz, CD2Cl2 ) δ 7.83-7.81 (m, 1H), 7.78-7.80 (m, 1H) , 7.44-7.40 (m, 2H), 7.34-7.27 (m, 4H), 2.96 (s, 1H), 2.77 (q, J = 3.0 Hz, 1H), 2.58 (dt, J = 12.0, 2.4 Hz, 1H), 2.25 (t, J = 3.0 Hz, 1H), 2.07-2.11 (m, 1H), 1.86-1.96 (m, 3H), 1.76-1.85 (m, 3H), 1.68 (dq, J = 12.6, 3.0 Hz, 1H), 1.58 (dt, J = 12.6, 1.2 Hz, 1H), 1.27-1.30 (m, 1H).
13C NMR (150 MHz, CDCl3 ) δ 145.02, 137.94, 134.16, 133.00, 128.06, 127.74, 126.64, 126.37, 125.77, 124.22, 123.92, 123.87, 45.76, 41.42, 38.68, 37.90, 37.63, 35.77, 30.68, 28.90, 28.51, 28.41.
HRMS (DART, positive) m/z calcd for C22H21 [MH ] + : m/z 285.16378. Found: m/z 285.16426.
 合成例6-2:4-ブロモ-10,11,12,13,14,14a-ヘキサヒドロ-9H-8b,12:10,14-ジメタノシクロオクタ[l]フェナントレン
合成方法:合成方法A。2,2’-ジブロモ-1,1’-ビフェニルを使用した。収量64.7 mg、収率59 %、白色固体。
1H NMR (600 MHz, CD2Cl2) δ 8.26 (dd, J = 6.6, 1.2 Hz, 1H), 7.59 (td, J = 7.8, 1.2 Hz, 1H), 7.42 (dd, J = 6.6, 1.2Hz, 1H), 7.38 (d, J = 7.8 Hz, 1H), 7.33 (td, J = 7.2, 1.8 Hz, 1H), 7.26, (td, J = 7.2, 1.2 Hz, 1H), 7.15 (t, J = 8.4 Hz, 1H), 2.78 (s, 1H), 2.69 (d, J = 2.4 Hz, 1H), 2.55 (dt, J = 12.0, 2.4 Hz, 1H), 2.24 (t, J = 3.0 Hz, 1H), 2.07 (dq, J = 9.6, 2.4 Hz, 1H), 1.91-1.93 (m, 1H), 1.68-1.83 (m, 6H), 1.52 (d, J = 12.0 Hz, 1H), 1.38 (dd, J = 7.8, 2.4 Hz, 1H).
13C NMR (150 MHz, CDCl3) δ 146.13, 142.26, 134.71, 132.97, 131.77, 129.04, 128.40, 128.05, 125.20, 125.03, 123.54, 120.23, 46.43, 41.96, 37.77, 37.59, 37.57, 35.54, 30.67, 30.47, 29.54, 28.70, 28.09.
HRMS (DART, positive) m/z calcd for C22H20Br [M-H]+: m/z 363.07429. Found: m/z 363.07532。
Synthesis Example 6-2: 4-bromo-10,11,12,13,14,14a-hexahydro-9H-8b,12:10,14-dimethanocycloocta[l]phenanthrene Synthesis method: Synthesis method A. 2,2'-dibromo-1,1'-biphenyl was used. Yield 64.7 mg, yield 59%, white solid.
1H NMR (600 MHz, CD2Cl2 ) δ 8.26 (dd, J = 6.6, 1.2 Hz, 1H ), 7.59 (td, J = 7.8, 1.2 Hz, 1H), 7.42 (dd, J = 6.6, 1.2Hz, 1H), 7.38 (d, J = 7.8 Hz, 1H), 7.33 (td, J = 7.2, 1.8 Hz, 1H), 7.26, (td, J = 7.2, 1.2 Hz, 1H), 7.15 (t, J = 8.4 Hz, 1H), 2.78 (s, 1H), 2.69 (d, J = 2.4 Hz, 1H), 2.55 (dt, J = 12.0, 2.4 Hz, 1H), 2.24 (t, J = 3.0 Hz, 1H), 2.07 (dq, J = 9.6, 2.4 Hz, 1H), 1.91-1.93 (m, 1H), 1.68-1.83 (m, 6H), 1.52 (d, J = 12.0 Hz, 1H), 1.38 (dd, J = 7.8, 2.4 Hz, 1H).
13C NMR (150 MHz, CDCl3 ) δ 146.13, 142.26, 134.71, 132.97, 131.77, 129.04, 128.40, 128.05, 125.20, 125.03, 123.54, 120.23, 46.43, 41.96, 37.77, 37.59, 37.57, 35.54, 30.67, 30.47, 29.54, 28.70, 28.09.
HRMS (DART, positive) m/z calcd for C22H20Br [MH ] + : m/z 363.07429. Found: m/z 363.07532.
 合成例6-3:4-クロロ-10,11,12,13,14,14a-ヘキサヒドロ-9H-8b,12:10,14-ジメタノシクロオクタ[l]フェナントレン
合成方法:合成方法A。2-ブロモ-2’-クロロ-1,1’-ビフェニルを使用した。収量24.8 mg、収率31 %、白色固体。
1H NMR (600 MHz, CDCl3) δ 8.28 (dd, J = 7.8, 1.2 Hz, 1H), 7.42 (dd, J = 7.8, 1.2 Hz, 1H), 7.37 (d, J = 7.8 Hz, 1H), 7.34-7.31 (m, 2H), 7.28 (td, J = 7.8, 1.2 Hz, 1H), 7.21 (t, J = 7.8 Hz, 1H), 2.80 (s, 1H), 2.70 (d, J = 3,0 Hz, 1H), 2.54 (dt, J = 12.0, 2.4 Hz, 1H), 2.25 (s, 1H), 2.07 (dq, J = 12.6, 3.0 Hz, 1H), 1.92 (d, J = 12.6 Hz, 1H), 1.73-1.84 (m, 6H), 1.51 (d, J = 12.6 Hz, 1H), 1.37 (d, J = 13.2, 1H).
13C NMR (150 MHz, CDCl3) δ 146.21, 142.08, 132.93, 131.10, 130.86, 129.46, 128.91, 128.36, 127.73, 125.25, 124.62, 123.64, 46.25, 42.00, 37.78, 37.66, 37.61, 35.58, 30.62, 29.49, 28.73, 28.14.
HRMS (DART, positive) m/z calcd for C22H20Cl [M-H]+: m/z 319.12480. Found: m/z 319.12505。
Synthesis Example 6-3: 4-chloro-10,11,12,13,14,14a-hexahydro-9H-8b,12:10,14-dimethanocycloocta[l]phenanthrene Synthesis method: Synthesis method A. 2-bromo-2'-chloro-1,1'-biphenyl was used. Yield 24.8 mg, yield 31%, white solid.
1H NMR (600 MHz, CDCl3 ) δ 8.28 (dd, J = 7.8, 1.2 Hz, 1H), 7.42 (dd, J = 7.8, 1.2 Hz, 1H), 7.37 (d, J = 7.8 Hz, 1H), 7.34-7.31 (m, 2H), 7.28 (td, J = 7.8, 1.2 Hz, 1H), 7.21 (t, J = 7.8 Hz, 1H), 2.80 (s, 1H), 2.70 (d, J = 3,0 Hz, 1H), 2.54 (dt, J = 12.0, 2.4 Hz, 1H), 2.25 (s, 1H), 2.07 (dq, J = 12.6, 3.0 Hz, 1H), 1.92 (d, J = 12.6 Hz, 1H), 1.73-1.84 (m, 6H), 1.51 (d, J = 12.6 Hz, 1H), 1.37 (d, J = 13.2, 1H).
13C NMR (150 MHz, CDCl3 ) δ 146.21, 142.08, 132.93, 131.10, 130.86, 129.46, 128.91, 128.36, 127.73, 125.25, 124.62, 123.64, 46.25, 42.00, 37.78, 37.66, 37.61, 35.58, 30.62, 29.49, 28.73, 28.14.
HRMS (DART, positive) m/z calcd for C22H20Cl [ MH ] + : m/z 319.12480. Found: m/z 319.12505.
 合成例6-4:2,7-ジクロロ-10,11,12,13,14,14a-ヘキサヒドロ-9H-8b,12:10,14-ジメタノシクロオクタ[l]フェナントレン
合成方法:合成方法A。2-ブロモ-2,2’-ジクロロ-1,1’-ビフェニルを使用した。収量33.0 mg、収率31 %、白色固体。
1H NMR (600 MHz, CD2Cl2) δ 7.71 (d, J = 9.0 Hz, 1H), 7.67 (d, J = 8.4 Hz, 1H), 7.39 (d, J = 2.4 Hz, 1H), 7.37 (s, 1H), 7.25-7.29 (m, 2H), 2.93 (s, 1H), 2.69 (d, J = 3.0 Hz, 1H), 2.49 (dt, J = 10.2 Hz, 1H), 2.26 (t, J = 2.4 Hz, 1H), 2.07-2.10 (m, 1H), 1.74-1.93 (m, 6H), 1.65 (dq, J = 12.6, 3.0 Hz, 1H), 1.58-1.61 (m, 2H), 1.27 (dq, J = 12.6, 1.8 Hz, 1H).
13C NMR (150 MHz, CDCl3) δ 146.60, 139.74, 134.20, 134.08, 131.82, 130.62, 126.84, 126.69, 126.24, 125.51, 125.11, 124.58, 45.64, 42.22, 38.45, 37.59, 37.34, 36.04, 30.48, 28.65, 28.44, 28.16 (one sp3 carbon atom was overlapping with others.)
HRMS (DART, positive) m/z calcd for C22H20Cl2[M]+: m/z 354.09421. Found: m/z 354.09401。
Synthesis Example 6-4: 2,7-dichloro-10,11,12,13,14,14a-hexahydro-9H-8b,12:10,14-dimethanocycloocta[l]phenanthrene Synthesis method: Synthesis method A. 2-Bromo-2,2'-dichloro-1,1'-biphenyl was used. Yield 33.0 mg, yield 31%, white solid.
1H NMR (600 MHz, CD2Cl2 ) δ 7.71 (d, J = 9.0 Hz, 1H ), 7.67 (d, J = 8.4 Hz, 1H), 7.39 (d, J = 2.4 Hz, 1H), 7.37 (s, 1H), 7.25-7.29 (m, 2H), 2.93 (s, 1H), 2.69 (d, J = 3.0 Hz, 1H), 2.49 (dt, J = 10.2 Hz, 1H), 2.26 (t, J = 2.4 Hz, 1H), 2.07-2.10 (m, 1H), 1.74-1.93 (m, 6H), 1.65 (dq, J = 12.6, 3.0 Hz, 1H), 1.58-1.61 (m, 2H), 1.27 (dq, J = 12.6, 1.8 Hz, 1H).
13C NMR (150 MHz, CDCl3 ) δ 146.60, 139.74, 134.20, 134.08, 131.82, 130.62, 126.84, 126.69, 126.24, 125.51, 125.11, 124.58, 45.64, 42.22, 38.45, 37.59, 37.34, 36.04, 30.48, 28.65, 28.44, 28.16 (one sp3 carbon atom was overlapping with others.)
HRMS (DART , positive) m/z calcd for C22H20Cl2 [ M ] + : m/z 354.09421. Found: m/z 354.09401.
 合成例6-5:6,7,8,9,10,10a-ヘキサヒドロ-5H-4b,8:6,10-ジメタノシクロオクタ[3,4]ナフト[2,1-a]アズレン
合成方法:合成方法A。化合物S2を使用し、75μmolスケールとした。収量5.8 mg、収率23 %、青色固体。
1H NMR (600 MHz, CDCl3) δ 8.53 (d, J = 10.2 Hz, 1H), 8.20 (d, J = 9.0 Hz, 1H), 7.91 (dd, J = 5.4, 1.8 Hz, 1H), 7.69 (s, 1H), 7.46 (dd, J = 6.0, 1.2 Hz, 1H), 7.41 (t, J = 3.6 Hz, 1H), 7.30-7.39 (m, 2H), 7.00-7.06 (m, 2H), 3.63 (s, 1H), 3.45 (q, J = 3.0 Hz, 1H), 2.61 (dt, J = 12.0, 1.8 Hz, 1H), 2.29 (t, J = 6.0 Hz, 1H), 2.02-2.10 (m, 4H), 1.82-1.87 (m, 4H), 1.69 (d, J = 12.0 Hz, 1H), 1.31 (d, J = 10.8 Hz, 1H).
13C NMR (150 MHz, CDCl3) δ 146.58, 146.42, 142.48, 136.05, 135.13, 134.02, 131.61, 129.09, 127.18, 126.64, 126.15, 125.78, 124.09, 123.16, 122.34, 111.97, 47.37, 40.77, 40.43, 38.06, 38.03, 37.44, 31.85, 30.14, 28.97, 28.74.
HRMS (DART, positive) m/z calcd for C26H25[M+H]+: m/z 337.19508. Found: m/z 337.19458。
Synthesis Example 6-5: 6,7,8,9,10,10a-hexahydro-5H-4b,8:6,10-dimethanocycloocta[3,4]naphtho[2,1-a]azulene Synthesis method: Synthesis method A. Compound S2 was used, and the scale was 75 μmol. Yield: 5.8 mg, yield 23%, blue solid.
1H NMR (600 MHz, CDCl3 ) δ 8.53 (d, J = 10.2 Hz, 1H), 8.20 (d, J = 9.0 Hz, 1H), 7.91 (dd, J = 5.4, 1.8 Hz, 1H), 7.69 (s, 1H), 7.46 (dd, J = 6.0, 1.2 Hz, 1H), 7.41 (t, J = 3.6 Hz, 1H), 7.30-7.39 (m, 2H), 7.00-7.06 (m, 2H), 3.63 (s, 1H), 3.45 (q, J = 3.0 Hz, 1H), 2.61 (dt, J = 12.0, 1.8 Hz, 1H), 2.29 (t, J = 6.0 Hz, 1H), 2.02-2.10 (m, 4H), 1.82-1.87 (m, 4H), 1.69 (d, J = 12.0 Hz, 1H), 1.31 (d, J = 10.8 Hz, 1H).
13C NMR (150 MHz, CDCl3 ) δ 146.58, 146.42, 142.48, 136.05, 135.13, 134.02, 131.61, 129.09, 127.18, 126.64, 126.15, 125.78, 124.09, 123.16, 122.34, 111.97, 47.37, 40.77, 40.43, 38.06, 38.03, 37.44, 31.85, 30.14, 28.97, 28.74.
HRMS (DART, positive) m/z calcd for C26H25 [ M+H] + : m/z 337.19508. Found: m/z 337.19458.
 合成例6-6:12c,13,15,16,17,18-ヘキサヒドロ-14H-13,17:15,18a-ジメタノベンゾ[g]シクロオクタ[p]クリセン
合成方法:合成方法A。9-(2-ブロモフェニル)フェナントレンを使用した。収量60.3 mg、収率52 %、白色固体。
1H NMR (600 MHz, CD2Cl2) δ 8.69 (d, J = 8.4 Hz, 1H), 8.65 (d, J = 7.2 Hz, 1H), 8.46 (d, J = 7.2 Hz, 1H), 7.91 (d, J = 8.4 Hz, 1H), 7.63-7.66 (m, 1H), 7.57-7.61 (m, 3H), 7.50 (td, J = 7.2, 1.8 Hz, 1H), 7.45 (d, J = 7.8 Hz, 1H), 7.33 (td, J = 7.8, 1.2 Hz, 1H), 7.22-7.27 (m, 1H), 3.41 (s, 1H), 3.17 (d, J = 3.0 Hz, 1H), 2.61 (dt, J = 12.0, 2.4 Hz, 1H), 2.32 (d, J = 3.0 Hz, 1H), 2.18 (d, J = 12.0 Hz, 2H), 2.10 (dq, J = 13.2, 2.4 Hz, 1H), 2.02 (dd, J = 12.0, 2.4 Hz, 1H), 1.76 (s, 2H), 1.59 (t, J = 1.8 Hz, 1H), 1.45 (d, J = 13.2, 1.8 Hz, 1H), 1.27 (dd, J = 12.6, 3.0 Hz, 1H), 0.90 (d, J = 13.8 Hz, 1H).
13C NMR (150 MHz, CDCl3) δ 145.12, 135.07, 133.59, 133.54, 130.95, 130.80, 130.39, 129.38, 128.86, 127.17, 126.66, 126.40, 125.98, 125.71, 125.59, 125.47, 125.33, 123.67, 123.32, 122.55, 47.16, 41.25, 40.59, 38.60, 37.42, 36.49, 32.88, 30.98, 29.03, 27.04.
HRMS (EI, positive) m/z calcd for C30H24[M]+: m/z 386.20345. Found: m/z 386.20250。
Synthesis Example 6-6: 12c,13,15,16,17,18-Hexahydro-14H-13,17:15,18a-dimethanobenzo[g]cycloocta[p]chrysene Synthesis method: Synthesis method A. 9-(2-bromophenyl)phenanthrene was used. Yield 60.3 mg, yield 52%, white solid.
1H NMR (600 MHz, CD2Cl2 ) δ 8.69 (d, J = 8.4 Hz, 1H ), 8.65 (d, J = 7.2 Hz, 1H), 8.46 (d, J = 7.2 Hz, 1H), 7.91 (d, J = 8.4 Hz, 1H), 7.63-7.66 (m, 1H), 7.57-7.61 (m, 3H), 7.50 (td, J = 7.2, 1.8 Hz, 1H), 7.45 (d, J = 7.8 Hz, 1H), 7.33 (td, J = 7.8, 1.2 Hz, 1H), 7.22-7.27 (m, 1H), 3.41 (s, 1H), 3.17 (d, J = 3.0 Hz, 1H), 2.61 (dt, J = 12.0, 2.4 Hz, 1H), 2.32 (d, J = 3.0 Hz, 1H), 2.18 (d, J = 12.0 Hz, 2H), 2.10 (dq, J = 13.2, 2.4 Hz, 1H), 2.02 (dd, J = 12.0, 2.4 Hz, 1H), 1.76 (s, 2H), 1.59 (t, J = 1.8 Hz, 1H), 1.45 (d, J = 13.2, 1.8 Hz, 1H), 1.27 (dd, J = 12.6, 3.0 Hz, 1H), 0.90 (d, J = 13.8 Hz, 1H).
13C NMR (150 MHz, CDCl3 ) δ 145.12, 135.07, 133.59, 133.54, 130.95, 130.80, 130.39, 129.38, 128.86, 127.17, 126.66, 126.40, 125.98, 125.71, 125.59, 125.47, 125.33, 123.67, 123.32, 122.55, 47.16, 41.25, 40.59, 38.60, 37.42, 36.49, 32.88, 30.98, 29.03, 27.04.
HRMS (EI, positive) m/z calcd for C30H24 [M ] + : m/z 386.20345. Found: m/z 386.20250.
 合成例6-7:1,3,4,5,6,18b-ヘキサヒドロ-2H-1,5:3,6a-ジメタノジベンゾ[c,g]シクロオクタ[l]フェナントレン
合成方法:合成方法A。2-ブロモ-1,1’-ビナフタレンを使用し、0.8 mmolスケールとした。収量133.0 mg、収率43 %、白色固体。
1H NMR (600 MHz, CD2Cl2) δ 7.89-7.92 (m, 4H), 7.70-7.72 (m, 2H), 7.36-7.42 (m, 2H), 7.14-7.18 (m, 2H), 3.03 (s, 1H), 2.89 (d, J = 3.0 Hz, 1H), 2.68 (dt, J = 12.0, 3.0 Hz 1H), 2.28 (t, J = 3.0 Hz, 1H), 2.10 (dq, J = 12.0, 2.4 Hz, 1H), 1.98 (d, J = 13.2 Hz, 1H), 1.83-1.87 (m, 3H), 1.71-1.74 (m, 2H), 1.65 (d, J = 13.2 Hz, 1H), 1.54-1.55 (m, 1H), 1.50 (d, J = 13.2 Hz, 1H).
13C NMR (150 MHz, CDCl3) δ 145.01, 138.50, 132.54, 130.94, 130.65, 130.48, 129.74, 128.05, 127.96, 127.90, 127.81, 127.51, 124.96, 124.92, 124.72, 124.60, 124.03, 122.26, 46,66, 42.43, 37.98, 37.80, 37.05, 36.49, 31.17, 29.56, 29.06, 27.98.
HRMS (DART, positive) m/z calcd for C30H27[M+H]+: m/z 387.21073. Found: m/z 387.21131。
Synthesis Example 6-7: 1,3,4,5,6,18b-hexahydro-2H-1,5:3,6a-dimethanodibenzo[c,g]cycloocta[l]phenanthrene Synthesis method: Synthesis method A. 2-Bromo-1,1'-binaphthalene was used, 0.8 mmol scale. Yield 133.0 mg, yield 43%, white solid.
1H NMR (600 MHz, CD2Cl2 ) δ 7.89-7.92 (m, 4H), 7.70-7.72 (m, 2H) , 7.36-7.42 (m, 2H), 7.14-7.18 (m, 2H), 3.03 (s, 1H), 2.89 (d, J = 3.0 Hz, 1H), 2.68 (dt, J = 12.0, 3.0 Hz 1H), 2.28 (t, J = 3.0 Hz, 1H), 2.10 (dq, J = 12.0, 2.4 Hz, 1H), 1.98 (d, J = 13.2 Hz, 1H), 1.83-1.87 (m, 3H), 1.71-1.74 (m, 2H), 1.65 (d, J = 13.2 Hz, 1H), 1.54-1.55 (m, 1H), 1.50 (d, J = 13.2 Hz, 1H).
13C NMR (150 MHz, CDCl3 ) δ 145.01, 138.50, 132.54, 130.94, 130.65, 130.48, 129.74, 128.05, 127.96, 127.90, 127.81, 127.51, 124.96, 124.92, 124.72, 124.60, 124.03, 122.26, 46,66, 42.43, 37.98, 37.80, 37.05, 36.49, 31.17, 29.56, 29.06, 27.98.
HRMS (DART, positive) m/z calcd for C30H27 [ M+H] + : m/z 387.21073. Found: m/z 387.21131.
 合成例6-8:6b,7,9,10,11,12-ヘキサヒドロ-8H-7,11:9,12a-ジメタノジベンゾ[m,pqr]シクロオクタ[k]テトラフェン
合成方法:合成方法A。化合物S5を使用した。収量45.2 mg、収率37 %、白色固体。
1H NMR (600 MHz, CDCl3) δ 8.72 (d, J = 9.6 Hz, 1H), 8.21 (s, 1H), 8.13-8.15 (m, 2H), 8.06 (s, 1H), 8.04 (d, J = 3.0 Hz, 2H), 7.96-7.98 (m, 2H), 7.57 (dd, J = 7.2, 1.8 Hz, 1H), 7.39-7.43 (m, 2H), 3.22 (s, 1H), 3.09 (d, J = 2.4 Hz, 1H), 2.64 (dt, J = 7.2, 2.4 Hz, 1H), 2.33 (t, J = 3.0 Hz, 1H), 2.17-2.20 (m, 1H), 2.06-2.08 (m, 1H), 2.00-2.02 (m, 1H), 1.78-1.84 (m, 3H), 1.69-1.72 (m, 2H), 1.53-1.57 (m, 1H), 1.44 (d, J = 6.6 Hz, 1H).
13C NMR (150 MHz, CDCl3) δ 146.93, 137.48, 133.10, 131.50, 130.98, 130.83, 130.73, 130.63, 127.79, 127.71, 127.25, 127.01, 126.97, 126.35, 125.84, 125.72, 125.22, 125.02, 124.66, 124.45, 124.08, 122.36, 46.67, 41.96, 38.00, 37.74, 35.55, 30.84, 29.85, 28.89, 28.13.
HRMS (DART, positive) m/z calcd for C32H27[M+H]+: m/z 411.21073. Found: m/z 411.21043。
Synthesis Example 6-8: 6b,7,9,10,11,12-Hexahydro-8H-7,11:9,12a-dimethanodibenzo[m,pqr]cycloocta[k]tetraphene Synthesis method: Synthesis method A. Compound S5 was used. Yield 45.2 mg, yield 37%, white solid.
1H NMR (600 MHz, CDCl3 ) δ 8.72 (d, J = 9.6 Hz, 1H), 8.21 (s, 1H), 8.13-8.15 (m, 2H), 8.06 (s, 1H), 8.04 (d, J = 3.0 Hz, 2H), 7.96-7.98 (m, 2H), 7.57 (dd, J = 7.2, 1.8 Hz, 1H), 7.39-7.43 (m, 2H), 3.22 (s, 1H), 3.09 (d, J = 2.4 Hz, 1H), 2.64 (dt, J = 7.2, 2.4 Hz, 1H), 2.33 (t, J = 3.0 Hz, 1H), 2.17-2.20 (m, 1H), 2.06-2.08 (m, 1H), 2.00-2.02 (m, 1H), 1.78-1.84 (m, 3H), 1.69-1.72 (m, 2H), 1.53-1.57 (m, 1H), 1.44 (d, J = 6.6 Hz, 1H).
13C NMR (150 MHz, CDCl3 ) δ 146.93, 137.48, 133.10, 131.50, 130.98, 130.83, 130.73, 130.63, 127.79, 127.71, 127.25, 127.01, 126.97, 126.35, 125.84, 125.72, 125.22, 125.02, 124.66, 124.45, 124.08, 122.36, 46.67, 41.96, 38.00, 37.74, 35.55, 30.84, 29.85, 28.89, 28.13.
HRMS (DART, positive) m/z calcd for C32H27 [ M+H] + : m/z 411.21073. Found: m/z 411.21043.
 合成例6-9:12,13,14,15,16,16a-ヘキサヒドロ-11H-10b,14:12,16-ジメタノベンゾ[pqr]シクロオクタ[f]ピセン
合成方法:合成方法A。化合物S4を使用した。収量60.4 mg、収率49 %、白色固体。
1H NMR (600 MHz, CDCl3) δ 8.58 (s, 1H), 8.19 (d, J = 9.6 Hz, 1H), 8.10-8.14 (m, 3H), 8.02 (d, J = 9.0 Hz, 1H), 7.93-7.96 (m, 2H), 7.68-7.70 (m, 1H), 7.46-7.47 (m, 1H), 7.36-7.38 (m, 2H), 3.86 (s, 1H), 3.56 (d, J = 3.0 Hz, 1H), 2.64 (dt, J = 12.0, 2.4 Hz, 1H), 2.35 (t, J = 3.0 Hz, 1H), 2.22-2.26 (m, 2H), 2.10 (d, J = 2.4 Hz, 1H), 2.00 (d, J = 13.2 Hz, 1H), 1.75 (s, 2H), 1.59 (s, 1H), 1.39 (d, J = 13.2 Hz, 1H), 1.27 (dd, J = 10.2, 2.4 Hz, 1H), 0.91 (d, J = 12.6 Hz, 1H).
13C NMR (150 MHz, CDCl3) δ 144.83, 134.64, 134.17, 133.78, 131.46, 130.70, 130.18, 128.41, 127.81, 127.72, 127.12, 127.04, 126.90, 125.79, 125.54, 125.33, 125.20, 125.15, 125.10, 124.85, 122.53, 119.95, 47.43, 41.88, 41.06, 38.72, 37.22, 36.57, 33.27, 30.93, 28.78, 27.27.
HRMS (DART, positive) m/z calcd for C32H27[M+H]+: m/z 411.21073. Found: m/z 411.21062。
Synthesis Example 6-9: 12,13,14,15,16,16a-hexahydro-11H-10b,14: 12,16-dimethanobenzo[pqr]cycloocta[f]picene Synthesis method: Synthesis method A. Compound S4 was used. Yield 60.4 mg, yield 49%, white solid.
1H NMR (600 MHz, CDCl3 ) δ 8.58 (s, 1H), 8.19 (d, J = 9.6 Hz, 1H), 8.10-8.14 (m, 3H), 8.02 (d, J = 9.0 Hz, 1H), 7.93-7.96 (m, 2H), 7.68-7.70 (m, 1H), 7.46-7.47 (m, 1H), 7.36-7.38 (m, 2H), 3.86 (s, 1H), 3.56 (d, J = 3.0 Hz, 1H), 2.64 (dt, J = 12.0, 2.4 Hz, 1H), 2.35 (t, J = 3.0 Hz, 1H), 2.22-2.26 (m, 2H), 2.10 (d, J = 2.4 Hz, 1H), 2.00 (d, J = 13.2 Hz, 1H), 1.75 (s, 2H), 1.59 (s, 1H), 1.39 (d, J = 13.2 Hz, 1H), 1.27 (dd, J = 10.2, 2.4 Hz, 1H), 0.91 (d, J = 12.6 Hz, 1H).
13C NMR (150 MHz, CDCl3 ) δ 144.83, 134.64, 134.17, 133.78, 131.46, 130.70, 130.18, 128.41, 127.81, 127.72, 127.12, 127.04, 126.90, 125.79, 125.54, 125.33, 125.20, 125.15, 125.10, 124.85, 122.53, 119.95, 47.43, 41.88, 41.06, 38.72, 37.22, 36.57, 33.27, 30.93, 28.78, 27.27.
HRMS (DART, positive) m/z calcd for C32H27 [ M+H] + : m/z 411.21073. Found: m/z 411.21062.
 合成例6-10:7b,8,10,11,12,13-ヘキサヒドロ-9H-8,12:10,13a-ジメタノシクロオクタ[3,4]ナフト[1,2-c]チオフェン
合成方法:合成方法A(工程Iにおける反応溶媒を脱水ジエチルエーテルとした)。3-ブロモ-4-フェニルチオフェンを使用した。収量49.1 mg、収率57 %、白色固体。
1H NMR (600 MHz, CD2Cl2) δ 7.68 (dd, J = 6.0, 1.8 Hz, 1H), 7.51 (d, J = 3.0 Hz, 1H), 7.37 (d, J = 7.2 Hz, 1H), 7.24-7.30 (m, 2H), 7.03 (d, J = 3.0 Hz, 1H), 2.91 (s, 1H), 2.72 (d, J = 3.0 Hz, 1H), 2.40-2.43 (dt, J = 12.0, 3.0 Hz 1H), 2.19 (d, J = 3.0 Hz, 1H), 2.06-2.09 (m, 1H), 1.98 (dq, J = 6.0, 1.8 Hz, 1H), 1.91-1.97 (m, 2H), 1.78-1.84 (m, 3H), 1.66 (dq, J = 12.0, 3.0 Hz, 1H), 1.60 (d, J = 12.0 Hz 1H), 1.30 (dq, J = 12.0, 1.8 Hz, 1H).
13C NMR (150 MHz, CDCl3) δ 148.13, 137.10, 136.48, 132.06, 127.35, 126.25, 126.13, 124.02, 118.24, 117.45, 47.18, 42.06, 39.81, 38.14, 37.34, 36.08, 30.69, 28.59, 28.38.
HRMS (DART, positive) m/z calcd for C28H26N [M+H]+: m/z 293.13585. Found: m/z 293.13595。
Synthesis Example 6-10: 7b,8,10,11,12,13-Hexahydro-9H-8,12:10,13a-dimethanocycloocta[3,4]naphtho[1,2-c]thiophene Synthesis method: Synthesis method A (reaction solvent in step I was changed to dehydrated diethyl ether). 3-Bromo-4-phenylthiophene was used. Yield 49.1 mg, yield 57%, white solid.
1H NMR (600 MHz, CD2Cl2 ) δ 7.68 (dd, J = 6.0, 1.8 Hz, 1H ), 7.51 (d, J = 3.0 Hz, 1H), 7.37 (d, J = 7.2 Hz, 1H), 7.24-7.30 (m, 2H), 7.03 (d, J = 3.0 Hz, 1H), 2.91 (s, 1H), 2.72 (d, J = 3.0 Hz, 1H), 2.40-2.43 (dt, J = 12.0, 3.0 Hz 1H), 2.19 (d, J = 3.0 Hz, 1H), 2.06-2.09 (m, 1H), 1.98 (dq, J = 6.0, 1.8 Hz, 1H), 1.91-1.97 (m, 2H), 1.78-1.84 (m, 3H), 1.66 (dq, J = 12.0, 3.0 Hz, 1H), 1.60 (d, J = 12.0 Hz 1H), 1.30 (dq, J = 12.0, 1.8 Hz, 1H).
13C NMR (150 MHz, CDCl3 ) δ 148.13, 137.10, 136.48, 132.06, 127.35, 126.25, 126.13, 124.02, 118.24, 117.45, 47.18, 42.06, 39.81, 38.14, 37.34, 36.08, 30.69, 28.59, 28.38.
HRMS (DART, positive) m/z calcd for C28H26N [ M+H] + : m/z 293.13585. Found: m/z 293.13595.
 合成例6-11:2,3,4,5,6,6a-ヘキサヒドロ-1H-2,6:4,16b-ジメタノシクロオクタ[3,4]ナフト[2,1-h]キノリン
合成方法:合成方法A。化合物S6を使用した。収量37.9 mg、収率37 %、白色固体。
1H NMR (600 MHz, CDCl3) δ 8.97 (dd, J = 6.0, 1.8 Hz, 1H), 8.70 (dd, J = 7.8, 1.8 Hz, 1H), 8.16 (dd, J = 4.8, 1.8 Hz, 1H), 7.76 (d, J = 8.4 Hz, 1H), 7.69 (d, J = 8.4 Hz, 1H), 7.44 (d, J = 8.4 Hz, 1H), 7.35-7.40 (m, 3H), 3.06 (s, 1H), 2.88 (d, J = 2.4 Hz, 1H), 2.60 (dt, J = 6.0, 2.4 Hz, 1H), 2.29 (t, J = 3.0 Hz, 1H), 2.11 (dq, J = 7.2, 3.0 Hz, 1H), 1.98-2.01 (m, 1H), 1.94 (dq, J = 10.4, 1.8Hz, 1H), 1.68-1.87 (m, 5H), 1.55 (s, 1H), 1.35 (d, J = 12.0 Hz, 1H).
13C NMR (150 MHz, CDCl3) δ 149.45, 145.91, 145.63 ,140.48, 136.21, 131,96, 131.65, 127.95, 127.68, 126.89, 125.55, 124.67, 123.13, 120.41, 46.55, 41.85, 37.92, 37.69, 37.61, 35.15, 31.15, 29.45, 28.84, 28.03.
HRMS (DART, positive) m/z calcd for C25H24N [M+H]+: m/z 338.19032. Found: m/z 354.19078。
Synthesis Example 6-11: 2,3,4,5,6,6a-hexahydro-1H-2,6:4,16b-dimethanocycloocta[3,4]naphtho[2,1-h]quinoline Synthesis method: Synthesis method A. Compound S6 was used. Yield 37.9 mg, yield 37%, white solid.
1H NMR (600 MHz, CDCl3 ) δ 8.97 (dd, J = 6.0, 1.8 Hz, 1H), 8.70 (dd, J = 7.8, 1.8 Hz, 1H), 8.16 (dd, J = 4.8, 1.8 Hz, 1H), 7.76 (d, J = 8.4 Hz, 1H), 7.69 (d, J = 8.4 Hz, 1H), 7.44 (d, J = 8.4 Hz, 1H), 7.35-7.40 (m, 3H), 3.06 (s, 1H), 2.88 (d, J = 2.4 Hz, 1H), 2.60 (dt, J = 6.0, 2.4 Hz, 1H), 2.29 (t, J = 3.0 Hz, 1H), 2.11 (dq, J = 7.2, 3.0 Hz, 1H), 1.98-2.01 (m, 1H), 1.94 (dq, J = 10.4, 1.8Hz, 1H), 1.68-1.87 (m, 5H), 1.55 (s, 1H), 1.35 (d, J = 12.0 Hz, 1H).
13C NMR (150 MHz, CDCl3 ) δ 149.45, 145.91, 145.63,140.48, 136.21, 131,96, 131.65, 127.95, 127.68, 126.89, 125.55, 124.67, 123.13, 120.41, 46.55, 41.85, 37.92, 37.69, 37.61, 35.15, 31.15, 29.45, 28.84, 28.03.
HRMS (DART, positive) m/z calcd for C25H24N [M+H] + : m/z 338.19032. Found : m/z 354.19078.
 合成例6-12:5,6,7,8,9,9a-ヘキサヒドロ-4H-3b,7:5,9-ジメタノシクロオクタ[5,6]ベンゾ[2,1-b:3,4-b’]ジチオフェン
合成方法:合成方法A(工程Iにおける反応溶媒を脱水ジエチルエーテルとした)。3-ブロモ-2,2’-ビチオフェンを使用した。収量35.8 mg、収率40 %、茶色固体。
1H NMR (600 MHz, CDCl3) δ 7.11 (d, J = 5.4 Hz, 1H), 7.07 (d, J = 4.8 Hz, 1H), 6.97 (d, J = 4.8 Hz, 1H), 6.96 (d, J = 4.8 Hz, 1H), 2.99 (s, 1H), 2.55 (q, J = 3.0 Hz, 1H), 2.33 (dt, J = 12.0, 2.4 Hz, 1H), 2.20 (t, J = 3.0 Hz, 1H), 1.98-2.03 (m, 2H), 1.91 (dd, J = 12.0, 2.4 Hz, 2H), 1.76-1.83 (m, 4H), 1.64-1.67 (m, 1H), 1.30 (d, J = 12.6 Hz, 1H).
13C NMR (150 MHz, CDCl3) δ 145.15, 138.39, 130.67, 129.97, 125.59, 124.26, 121.77, 121.50, 47.58, 41.49, 38.07, 37.81, 37.29, 36.89, 31.62, 30.24, 29.04, 27.67.
HRMS (DART, positive) m/z calcd for C18H19S2[M+H]+: m/z 299.09220. Found: m/z 299.09219。
Synthesis Example 6-12: 5,6,7,8,9,9a-hexahydro-4H-3b,7:5,9-dimethanocycloocta[5,6]benzo[2,1-b:3,4-b']dithiophene Synthesis method: Synthesis method A (the reaction solvent in step I was dehydrated diethyl ether). 3-Bromo-2,2'-bithiophene was used. Yield 35.8 mg, yield 40%, brown solid.
1H NMR (600 MHz, CDCl3 ) δ 7.11 (d, J = 5.4 Hz, 1H), 7.07 (d, J = 4.8 Hz, 1H), 6.97 (d, J = 4.8 Hz, 1H), 6.96 (d, J = 4.8 Hz, 1H), 2.99 (s, 1H), 2.55 (q, J = 3.0 Hz, 1H), 2.33 (dt, J = 12.0, 2.4 Hz, 1H), 2.20 (t, J = 3.0 Hz, 1H), 1.98-2.03 (m, 2H), 1.91 (dd, J = 12.0, 2.4 Hz, 2H), 1.76-1.83 (m, 4H), 1.64-1.67 (m, 1H), 1.30 (d, J = 12.6 Hz, 1H).
13C NMR (150 MHz, CDCl3 ) δ 145.15, 138.39, 130.67, 129.97, 125.59, 124.26, 121.77, 121.50, 47.58, 41.49, 38.07, 37.81, 37.29, 36.89, 31.62, 30.24, 29.04, 27.67.
HRMS (DART, positive) m/z calcd for C18H19S2 [ M+H] + : m/z 299.09220. Found: m /z 299.09219.
 合成例6-13:10,11,12,13,14,14a-ヘキサヒドロ-9H-8b,12:10,14-ジメタノシクロオクタ[5,6]ベンゾ[1,2,3,4-ghi]ペリレン
合成方法:合成方法A。2-ブロモ-1,1’-ビナフタレンを使用し、0.8 mmolスケールとした。収量21.2 mg、収率7 %、黄色固体。
1H NMR (600 MHz, CDCl3) δ 8.16-8.18 (m, 2H), 7.67 (t, J = 7.8 Hz, 2H), 7.74 (t, J = 7.8 Hz, 2H), 7.52 (t, J = 8.4 Hz, 2H), 7.43 (td, J = 7.8, 1.2 Hz, 2H), 3.24 (s, 1H), 2.84 (d, J = 3.0 Hz, 1H), 2.63 (d, J = 12.0 Hz, 1H), 2,32 (d, J = 3.0 Hz, 1H), 2.05-2.10 (m, 3H), 1.92-1.97 (m, 2H), 1.84-1.86 (m, 2H), 1.78-1.82 (m, 1H), 1.69 (d, J = 13.2 Hz, 1H), 1.26 (d, J = 12.6 Hz, 1H).
13C NMR (150 MHz, CD2Cl2) δ 141.24, 134.29, 133.40, 133.32, 131.58, 131.33, 128.49, 128.35, 128.25, 127.74, 127.71, 127.55, 126.33, 126.28, 126.10, 124.79, 123.13, 120.44, 120.28, 46.85, 41.05, 38.26, 38.01, 37.63, 36.28, 31.51, 29.44, 28.58, 28.28。
HRMS (EI, positive) m/z calcd for C30H24[M]+: m/z 384.18780. Found: m/z 384.18730。
Synthesis Example 6-13: 10,11,12,13,14,14a-hexahydro-9H-8b,12: 10,14-dimethanocycloocta[5,6]benzo[1,2,3,4-ghi]perylene Synthesis method: Synthesis method A. 2-Bromo-1,1'-binaphthalene was used, 0.8 mmol scale. Yield 21.2 mg, 7%, yellow solid.
1H NMR (600 MHz, CDCl3 ) δ 8.16-8.18 (m, 2H), 7.67 (t, J = 7.8 Hz, 2H), 7.74 (t, J = 7.8 Hz, 2H), 7.52 (t, J = 8.4 Hz, 2H), 7.43 (td, J = 7.8, 1.2 Hz, 2H), 3.24 (s, 1H), 2.84 (d, J = 3.0 Hz, 1H), 2.63 (d, J = 12.0 Hz, 1H), 2,32 (d, J = 3.0 Hz, 1H), 2.05-2.10 (m, 3H), 1.92-1.97 (m, 2H), 1.84-1.86 (m, 2H), 1.78-1.82 (m, 1H), 1.69 (d, J = 13.2 Hz, 1H), 1.26 (d, J = 12.6 Hz, 1H).
13C NMR (150 MHz, CD2Cl2 ) δ 141.24, 134.29, 133.40, 133.32, 131.58, 131.33, 128.49 , 128.35, 128.25, 127.74, 127.71, 127.55, 126.33, 126.28, 126.10, 124.79, 123.13, 120.44, 120.28, 46.85, 41.05, 38.26, 38.01, 37.63, 36.28, 31.51, 29.44, 28.58, 28.28.
HRMS (EI, positive) m/z calcd for C30H24 [M ] + : m/z 384.18780. Found: m/z 384.18730.
 合成例6-14:5-フェニル-10,11,12,13,14,14a-ヘキサヒドロ-9H-8b,12:10,14-ジメタノシクロオクタ[l]フェナントレン
合成方法:合成方法A。1-ブロモ-2,3-ジフェニルベンゼンを使用した。収量33.2 mg、収率31 %、白色固体。
1H NMR (600 MHz, CDCl2CDCl2) δ 7.38-7.48 (m, 2H), 7.17-7.32 (m, 7H), 7.06 (td, J = 6.6, 1.8 Hz, 1H), 6.79 (dd, J = 6.6, 1.8 Hz, 1H), 6.69 (t, J = 7.8 Hz, 1H), 2.98 (s, 1H), 2.69 (d, J = 2.4 Hz, 1H), 2.52 (dt, J = 12.0, 2.4 Hz, 1H), 2.21 (bs, 1H), 2.02 (dd, J = 10.8, 1.8 Hz, 1H), 1.72-1.92 (m, 6H), 1.48 (d, J = 12.6 Hz, 2H), 1.27 (d, J = 12.0 Hz, 1H).
13C NMR (150 MHz, CDCl3) δ 147.31, 144.17, 139.94, 138.96, 133.00, 132.10, 130.73, 130.16, 127.49, 126.60, 126.56, 125.40, 124.47, 123.36, 45.50, 42.50, 37.99, 37.78, 36.75, 30.66, 29.15, 28.75, 28.42 (four sp2 carbon atoms and one sp3 carbon atom were overlapping with others.).
HRMS (DART, positive) m/z calcd for C28H25[M-H]+: m/z 361.19556. Found: m/z 361.19483。
Synthesis Example 6-14: 5-phenyl-10,11,12,13,14,14a-hexahydro-9H-8b,12:10,14-dimethanocycloocta[l]phenanthrene Synthesis method: Synthesis method A. 1-Bromo-2,3-diphenylbenzene was used. Yield 33.2 mg, yield 31%, white solid.
1H NMR (600 MHz, CDCl2CDCl2 ) δ 7.38-7.48 (m, 2H), 7.17-7.32 (m, 7H) , 7.06 (td, J = 6.6, 1.8 Hz, 1H), 6.79 (dd, J = 6.6, 1.8 Hz, 1H), 6.69 (t, J = 7.8 Hz, 1H), 2.98 (s, 1H), 2.69 (d, J = 2.4 Hz, 1H), 2.52 (dt, J = 12.0, 2.4 Hz, 1H), 2.21 (bs, 1H), 2.02 (dd, J = 10.8, 1.8 Hz, 1H), 1.72-1.92 (m, 6H), 1.48 (d, J = 12.6 Hz, 2H), 1.27 (d, J = 12.0 Hz, 1H).
13C NMR (150 MHz, CDCl3 ) δ 147.31, 144.17, 139.94, 138.96, 133.00, 132.10, 130.73, 130.16, 127.49, 126.60, 126.56, 125.40, 124.47, 123.36, 45.50, 42.50, 37.99, 37.78, 36.75, 30.66, 29.15, 28.75, 28.42 (four sp2 carbon atoms and one sp3 carbon atom were overlapping with others.).
HRMS (DART, positive) m/z calcd for C28H25 [MH ] + : m/z 361.19556. Found: m/z 361.19483.
 合成例6-15:12,13,14,15,16,16a-ヘキサヒドロ-11H-10b,14:12,16-ジメタノベンゾ[e]シクロオクタ[l]ピレン
合成方法:合成方法A。1-ブロモ-2,3-ジフェニルベンゼンを使用した。収量16.1 mg、収率15 %、白色固体。
1H NMR (600 MHz, CDCl3) δ 8.64-8.67 (m, 2H), 8.51-8.53 (m, 2H), 7.62-7.68 (m, 6H), 3.34 (s, 1H), 2.93 (d, J = 3.0 Hz, 1H), 2.73 (dt, J = 12.0, 2.4 Hz, 1H), 2.35 (d, J = 2.4 Hz, 1H), 2.12-2.20 (m, 3H), 2.03 (dt, J = 12.0, 3.0 Hz, 1H), 1.80-1.90 (m, 4H), 1.69 (d, J = 12.6 Hz, 1H), 1.28 (dd, J = 12.0, 1.8 Hz, 1H).
13C NMR (150 MHz, CDCl3) δ 144.75, 137.34, 130.15, 129.20, 129.01, 127.46, 127.18, 127.14, 127.11, 127.05, 125.82, 124.05, 123.59, 123.57, 121.93, 120.87, 120.68, 46.49, 41.18, 40.09, 37.93, 37.58, 36.39, 31.14, 28.99, 28.67, 28.45 (one sp2 carbon atom was overlapping with others.).
HRMS (DART, positive) m/z calcd for C28H25[M+H]+: m/z 361.19508. Found: m/z 361.19483。
Synthesis Example 6-15: 12,13,14,15,16,16a-hexahydro-11H-10b,14: 12,16-dimethanobenzo[e]cycloocta[l]pyrene Synthesis method: Synthesis method A. 1-Bromo-2,3-diphenylbenzene was used. Yield 16.1 mg, yield 15%, white solid.
1H NMR (600 MHz, CDCl3 ) δ 8.64-8.67 (m, 2H), 8.51-8.53 (m, 2H), 7.62-7.68 (m, 6H), 3.34 (s, 1H), 2.93 (d, J = 3.0 Hz, 1H), 2.73 (dt, J = 12.0, 2.4 Hz, 1H), 2.35 (d, J = 2.4 Hz, 1H), 2.12-2.20 (m, 3H), 2.03 (dt, J = 12.0, 3.0 Hz, 1H), 1.80-1.90 (m, 4H), 1.69 (d, J = 12.6 Hz, 1H), 1.28 (dd, J = 12.0, 1.8 Hz, 1H).
13C NMR (150 MHz, CDCl3 ) δ 144.75, 137.34, 130.15, 129.20, 129.01, 127.46, 127.18, 127.14, 127.11, 127.05, 125.82, 124.05, 123.59, 123.57, 121.93, 120.87, 120.68, 46.49, 41.18, 40.09, 37.93, 37.58, 36.39, 31.14, 28.99, 28.67, 28.45 (one sp2 carbon atom was overlapping with others).
HRMS (DART, positive) m/z calcd for C28H25 [ M+H] + : m/z 361.19508. Found: m/z 361.19483.
 合成例6-16:5-(フェナントレン-9-イル)-10,11,12,13,14,14a-ヘキサヒドロ-9H-8b,12:10,14-ジメタノシクロオクタ[l]フェナントレン
合成方法:合成方法A。1-ブロモ-3-(9-フェナントレン)-2-フェニルベンゼンを使用した。収量26.4 mg、収率19 %、白色固体。生成物は、回転異性体との1:1混合物として得られた。
1H NMR (600 MHz, CDCl2CDCl2) δ 8.78 (d, J = 7.8 Hz, 1H), 8.66-8.69 (m, 2H), 8.56 (d, J = 8.4 Hz, 1H), 8.14 (d, J = 8.4 Hz, 1H), 7.99 (s, 1H), 7.96 (d, J = 7.2 Hz, 1H), 7.71 (t, J = 7.2 Hz, 1H), 7.58-7.65 (m, 5H), 7.17-7.53 (m, 14H), 7.31-7.40 (m, 4H), 7.06 (m, 2H), 6.94 (t, J = 7.2 Hz, 1H), 6.84 (t, J = 7.8 Hz, 1H), 6.77 (d, J = 7.8 Hz, 1H), 6.43 (t, J = 7.8 Hz, 1H), 6.31 (t, J = 7.8 Hz, 1H), 2.91 (s, 1H), 2.87 (s, 1H), 2.80 (d, J = 11.4 Hz, 2H), 2.51 (d, J = 9.0 Hz, 2H), 2.24 (brs, 2H), 1.78-2.10 (m, 16H), 1.55-1.59 (m, 2H), 1.48 (t, J = 11.4 Hz, 2H).
13C NMR (150 MHz, CDCl3) δ 145.96, 145.33, 141.75, 140.65, 140.22, 139.58, 137.79, 137.55, 134.96, 132.87, 132.47, 132.33, 131.87, 131.44, 131.13, 130.28, 130.16, 129.78, 129.59, 128.89, 128.73, 128.22, 127.90, 127.74, 127.70, 127.34, 127.08, 126.99, 126.90, 126.70, 126.65, 126.52, 126.42, 126.34, 126.28, 126.03, 125.80, 125.27, 125.21, 125.04, 123.28, 123.23, 122.80, 122.58, 122.54, 46.46, 46.16, 42.23, 42.04, 38.16, 38.01, 37.87, 37.78, 37.53, 35.63, 35.50, 30.95, 30.81, 29.51, 29.36, 28.97, 28.94, 28.57, 28.48 (seven sp2 carbon atoms and one sp3 carbon atom were overlapping with others.).
HRMS (DART, positive) m/z calcd for C36H30[M]+: m/z 462.23475. Found: m/z 462.23445。
Synthesis Example 6-16: 5-(phenanthren-9-yl)-10,11,12,13,14,14a-hexahydro-9H-8b,12: 10,14-dimethanocycloocta[l]phenanthrene Synthesis method: Synthesis method A. 1-Bromo-3-(9-phenanthrene)-2-phenylbenzene was used. Yield 26.4 mg, 19%, white solid. The product was obtained as a 1:1 mixture with rotamers.
1H NMR (600 MHz, CDCl2CDCl2 ) δ 8.78 (d, J = 7.8 Hz, 1H), 8.66-8.69 (m, 2H) , 8.56 (d, J = 8.4 Hz, 1H), 8.14 (d, J = 8.4 Hz, 1H), 7.99 (s, 1H), 7.96 (d, J = 7.2 Hz, 1H), 7.71 (t, J = 7.2 Hz, 1H), 7.58-7.65 (m, 5H), 7.17-7.53 (m, 14H), 7.31-7.40 (m, 4H), 7.06 (m, 2H), 6.94 (t, J = 7.2 Hz, 1H), 6.84 (t, J = 7.8 Hz, 1H), 6.77 (d, J = 7.8 Hz, 1H), 6.43 (t, J = 7.8 Hz, 1H), 6.31 (t, J = 7.8 Hz, 1H), 2.91 (s, 1H), 2.87 (s, 1H), 2.80 (d, J = 11.4 Hz, 2H), 2.51 (d, J = 9.0 Hz, 2H), 2.24 (brs, 2H), 1.78-2.10 (m, 16H), 1.55-1.59 (m, 2H), 1.48 (t, J = 11.4 Hz, 2H).
13C NMR (150 MHz, CDCl3 ) δ 145.96, 145.33, 141.75, 140.65, 140.22, 139.58, 137.79, 137.55, 134.96, 132.87, 132.47, 132.33, 131.87, 131.44, 131.13, 130.28, 130.16, 129.78, 129.59, 128.89, 128.73, 128.22, 127.90, 127.74, 127.70, 127.34, 127.08, 126.99, 126.90, 126.70, 126.65, 126.52, 126.42, 126.34, 126.28, 126.03, 125.80, 125.27, 125.21, 125.04, 123.28, 123.23, 122.80, 122.58, 122.54, 46.46, 46.16, 42.23, 42.04, 38.16, 38.01, 37.87, 37.78, 37.53, 35.63, 35.50, 30.95, 30.81, 29.51, 29.36, 28.97, 28.94, 28.57, 28.48 (seven sp2 carbon atoms and one sp3 carbon atom were overlapping with others.).
HRMS (DART, positive) m/z calcd for C36H30 [M] + : m/z 462.23475 . Found: m/z 462.23445.
 合成例6-17:13,14,15,16,17,17a-ヘキサヒドロ-12H-11b,15:13,17-ジメタノトリベンゾ[f,ij,no]シクロオクタ[l]テトラフェン
合成方法:合成方法A。1-ブロモ-3-(9-フェナントレン)-2-フェニルベンゼンを使用した。収量8.3 mg、収率6 %、白色固体。
1H NMR (600 MHz, CDCl3) δ 8.77 (dd, J = 8.4, 1.2 Hz, 1H), 8.70-8.73 (m, 3H), 8.55-8.57 (m, 2H), 7.61-7.69 (m, 8H), 3.36 (s, 1H), 2.99 (d, J = 2.4 Hz, 1H), 2.79 (dt, J = 12.0, 2.4 Hz, 1H), 2.40 (t, J = 1.8 Hz, 1H), 2.17-2.27 (m, 3H), 2.08 (d, J = 12.6 Hz, 1H), 1.98 (dd, J = 12.6, 2.4 Hz, 1H), 1.87-1.93 (m, 3H), 1.74 (d, J = 13.2 Hz, 1H), 1.34 (dd, J = 12.6, 1.2 Hz, 1H).
13C NMR (150 MHz, CDCl3) δ 144.31, 137.11, 130.98, 129.58, 129.24, 129.09, 128.49, 128.36, 127.78, 127.66, 127.60, 127.05, 126.68, 126.57, 126.38, 123.68, 123.31, 121.23, 46.45, 41.59, 39.39, 38.04, 37.71, 36.22, 31.35, 29.10, 28.74, 28.66 (eight sp2 carbon atoms were overlapping with others.).
HRMS (DART, positive) m/z calcd for C36H28[M]+: m/z 460.21910. Found: m/z 460.22123。
Synthesis Example 6-17: 13,14,15,16,17,17a-hexahydro-12H-11b,15: 13,17-dimethanotribenzo[f,ij,no]cycloocta[l]tetraphene Synthesis method: Synthesis method A. 1-Bromo-3-(9-phenanthrene)-2-phenylbenzene was used. Yield 8.3 mg, yield 6%, white solid.
1H NMR (600 MHz, CDCl3 ) δ 8.77 (dd, J = 8.4, 1.2 Hz, 1H), 8.70-8.73 (m, 3H), 8.55-8.57 (m, 2H), 7.61-7.69 (m, 8H), 3.36 (s, 1H), 2.99 (d, J = 2.4 Hz, 1H), 2.79 (dt, J = 12.0, 2.4 Hz, 1H), 2.40 (t, J = 1.8 Hz, 1H), 2.17-2.27 (m, 3H), 2.08 (d, J = 12.6 Hz, 1H), 1.98 (dd, J = 12.6, 2.4 Hz, 1H), 1.87-1.93 (m, 3H), 1.74 (d, J = 13.2 Hz, 1H), 1.34 (dd, J = 12.6, 1.2 Hz, 1H).
13C NMR (150 MHz, CDCl3 ) δ 144.31, 137.11, 130.98, 129.58, 129.24, 129.09, 128.49, 128.36, 127.78, 127.66, 127.60, 127.05, 126.68, 126.57, 126.38, 123.68, 123.31, 121.23, 46.45, 41.59, 39.39, 38.04, 37.71, 36.22, 31.35, 29.10, 28.74, 28.66 (eight sp2 carbon atoms were overlapping with others.).
HRMS (DART, positive) m/z calcd for C36H28 [ M] + : m/z 460.21910. Found: m/z 460.22123.
 合成例6-18:8,9,10,11,12,12a-ヘキサヒドロ-7H-6b,10:8,12-ジメタノシクロオクタ[a]アセナフチレン
合成方法:合成方法B。1-ブロモナフタレンを使用した。収量18.7 mg、収率24 %、無色油。
1H NMR (600 MHz, CDCl3) δ 7.59 (dd, J = 7.8, 1.8 Hz, 2H), 7.41-7.45 (m, 2H), 7.23 (dd, J = 6.6, 1.2 Hz, 1H), 7.17 (d, J = 6.0 Hz, 1H), 3.51 (s, 1H), 2.77 (d, J = 2.4 Hz, 1H), 2.47 (dt, J = 12.0, 1.8 Hz, 1H), 2.21-2.27 (m, 2H), 2.03 (dq, J = 12.6, 2.4 Hz, 1H), 1.80-1.93 (m, 6H), 1.66 (dt, J = 12.0, 1.2 Hz, 1H), 1.32 (dt, J = 13.2, 2.4 Hz, 1H).
13C NMR (150 MHz, CDCl3) δ 152.71, 145.26, 137.11, 132.12, 127.48, 127.46, 123.06, 122.87, 117.54, 116.58, 57.65, 47.08, 44.71, 39.40, 39.04, 37.29, 31.90, 29.37, 28.93, 28.04.
HRMS (DART, positive) m/z calcd for C20H19[M-H]+: m/z 259.14813. Found: m/z 259.14792。
Synthesis Example 6-18: 8,9,10,11,12,12a-Hexahydro-7H-6b,10:8,12-dimethanocycloocta[a]acenaphthylene Synthesis method: Synthesis method B. 1-Bromonaphthalene was used. Yield 18.7 mg, yield 24%, colorless oil.
1H NMR (600 MHz, CDCl3 ) δ 7.59 (dd, J = 7.8, 1.8 Hz, 2H), 7.41-7.45 (m, 2H), 7.23 (dd, J = 6.6, 1.2 Hz, 1H), 7.17 (d, J = 6.0 Hz, 1H), 3.51 (s, 1H), 2.77 (d, J = 2.4 Hz, 1H), 2.47 (dt, J = 12.0, 1.8 Hz, 1H), 2.21-2.27 (m, 2H), 2.03 (dq, J = 12.6, 2.4 Hz, 1H), 1.80-1.93 (m, 6H), 1.66 (dt, J = 12.0, 1.2 Hz, 1H), 1.32 (dt, J = 13.2, 2.4 Hz, 1H).
13C NMR (150 MHz, CDCl3 ) δ 152.71, 145.26, 137.11, 132.12, 127.48, 127.46, 123.06, 122.87, 117.54, 116.58, 57.65, 47.08, 44.71, 39.40, 39.04, 37.29, 31.90, 29.37, 28.93, 28.04.
HRMS (DART, positive) m/z calcd for C20H19 [MH] + : m/z 259.14813. Found: m/ z 259.14792.
 合成例6-19:4-ブロモ-8,9,10,11,12,12a-ヘキサヒドロ-7H-6b,10:8,12-ジメタノシクロオクタ[a]アセナフチレン
合成方法:合成方法B。1,4-ジブロモナフタレンを使用した。収量55.2 mg、収率55 %、白色固体。
1H NMR (600 MHz, CD2Cl2) δ 7.74 (dt, J = 7.2, 1.2 Hz, 1H), 7.64 (s, J = 7.2 Hz, 1H), 7.54-7.56 (m, 1H), 7.29 (dd, J = 6.0, 1.2 Hz, 1H), 7.05 (d, J = 7.2 Hz, 1H), 3.50 (s, 1H), 2.75 (d, J = 2.4 Hz, 1H), 2.45 (dt, J = 12.0, 2.4 Hz, 1H), 2.24 (t, J = 3.0 Hz, 1H), 2.18-2.21 (m, 1H), 2.02-2.05 (m, 1H), 1.80-1.92 (m, 6H), 1.65-1.68 (m, 1H), 1.24 (dq, J = 10.4, 2.4 Hz, 1H).
13C NMR (150 MHz, CDCl3) δ 152.68, 145.52, 138.27, 131.58, 130.60, 128.76, 122.34, 118.56, 117.67, 117.48, 57.698, 46.87, 44.78, 39.24, 38.88, 37.19, 31.81, 29.29, 28.92, 28.01.
HRMS (DART, positive) m/z calcd for C20H18Br [M-H]+: m/z 337.05864. Found: m/z 337.06045。
Synthesis Example 6-19: 4-bromo-8,9,10,11,12,12a-hexahydro-7H-6b,10:8,12-dimethanocycloocta[a]acenaphthylene Synthesis method: Synthesis method B. 1,4-Dibromonaphthalene was used. Yield 55.2 mg, yield 55%, white solid.
1H NMR (600 MHz, CD2Cl2 ) δ 7.74 (dt, J = 7.2, 1.2 Hz, 1H), 7.64 (s, J = 7.2 Hz, 1H ), 7.54-7.56 (m, 1H), 7.29 (dd, J = 6.0, 1.2 Hz, 1H), 7.05 (d, J = 7.2 Hz, 1H), 3.50 (s, 1H), 2.75 (d, J = 2.4 Hz, 1H), 2.45 (dt, J = 12.0, 2.4 Hz, 1H), 2.24 (t, J = 3.0 Hz, 1H), 2.18-2.21 (m, 1H), 2.02-2.05 (m, 1H), 1.80-1.92 (m, 6H), 1.65-1.68 (m, 1H), 1.24 (dq, J = 10.4, 2.4 Hz, 1H).
13C NMR (150 MHz, CDCl3 ) δ 152.68, 145.52, 138.27, 131.58, 130.60, 128.76, 122.34, 118.56, 117.67, 117.48, 57.698, 46.87, 44.78, 39.24, 38.88, 37.19, 31.81, 29.29, 28.92, 28.01.
HRMS (DART, positive) m/z calcd for C20H18Br [MH ] + : m/z 337.05864. Found: m/z 337.06045.
 合成例6-20:6b,7,9,10,11,12-ヘキサヒドロ-8H-7,11:9,12a-ジメタノシクロオクタ[4,5]シクロペンタ[1,2,3-cd]ピレン
合成方法:合成方法B。1-ブロモピレンを使用した。収量52.1 mg、収率52 %、白色固体。
1H NMR (600 MHz, CDCl3) δ 8.10-8.12 (m, 2H), 8.03-8.05 (m, 2H), 7.92-7.97 (m, 2H), 7.84 (dd, J = 7.2, 1.2 Hz, 1H), 7.68 (s, 1H), 3.82 (s, 1H), 2.92 (d, J = 3.0 Hz, 1H), 2.64 (dt, J = 12.0, 2.4 Hz, 1H), 2.40 (dq, J = 12.0, 2.4 Hz, 1H), 2.34 (t, J = 3.0 Hz, 1H), 2.09 (qdJ = 12.6, 3.0 Hz 1H), 1.97-2.01 (m, 2H), 1.88-1.92 (m, 4H), 1.79 (d, J = 12.6 Hz, 1H), 1.53-1.55 (m, 1H).
13C NMR (150 MHz, CDCl3) δ 151.52, 141.80, 134.71, 133.33, 131.32, 128.86, 126.79, 126.53, 126.23, 124.83, 124.51, 124.25, 123.29, 120.02, 116.33, 58.80, 48.05, 44.50, 39.43, 39.04, 37.44, 32.08, 29.44, 29.38, 28.33 (one sp2 carbon atom was overlapping with others).
HRMS (DART, positive) m/z calcd for C26H23[M+H]+: 335.17943, found: 335.17893。
Synthesis Example 6-20: 6b,7,9,10,11,12-Hexahydro-8H-7,11:9,12a-dimethanocycloocta[4,5]cyclopenta[1,2,3-cd]pyrene Synthesis method: Synthesis method B. 1-Bromopyrene was used. Yield 52.1 mg, yield 52%, white solid.
1H NMR (600 MHz, CDCl3 ) δ 8.10-8.12 (m, 2H), 8.03-8.05 (m, 2H), 7.92-7.97 (m, 2H), 7.84 (dd, J = 7.2, 1.2 Hz, 1H), 7.68 (s, 1H), 3.82 (s, 1H), 2.92 (d, J = 3.0 Hz, 1H), 2.64 (dt, J = 12.0, 2.4 Hz, 1H), 2.40 (dq, J = 12.0, 2.4 Hz, 1H), 2.34 (t, J = 3.0 Hz, 1H), 2.09 (qdJ = 12.6, 3.0 Hz 1H), 1.97-2.01 (m, 2H), 1.88-1.92 (m, 4H), 1.79 (d, J = 12.6 Hz, 1H), 1.53-1.55 (m, 1H).
13C NMR (150 MHz, CDCl3 ) δ 151.52, 141.80, 134.71, 133.33, 131.32, 128.86, 126.79, 126.53, 126.23, 124.83, 124.51, 124.25, 123.29, 120.02, 116.33, 58.80, 48.05, 44.50, 39.43, 39.04, 37.44, 32.08, 29.44, 29.38, 28.33 (one sp2 carbon atom was overlapping with others).
HRMS (DART, positive) m/z calcd for C26H23 [M+H ]+ : 335.17943, found: 335.17893.
 合成例6-21:8,9,10,11,12,12a-ヘキサヒドロ-7H-6b,10:8,12-ジメタノシクロオクタ[4,5]シクロペンタ[1,2,3-cd]フルオランテン
合成方法:合成方法B。3-ブロモフルオランテンを使用した。収量47.2 mg、収率47 %、白色固体。
1H NMR (600 MHz, CD2Cl2) δ 7.86-7.93 (m, 4H), 7.34-7.39 (m, 3H), 7.32 (d, J = 7.0 Hz, 1H), 3.74 (s, 1H), 2.86 (d, J = 2.4 Hz, 1H), 2.57 (dt, J = 12.0, 2.4 Hz, 1H), 2.29 (dq, J = 12.0, 3.0 Hz 1H), 2.26 (t, J = 2.4 Hz, 1H), 2.05 (dq, J = 12.0, 2.4 Hz, 1H), 1.96 (d, J = 12.6 Hz, 1H), 1.80-1.87 (m, 6H), 1.28 (d, J = 13.2 Hz, 1H).
13C NMR (150 MHz, CDCl3) δ 152.90, 145.70, 140.73, 134.57, 133.56, 133.45, 132.20, 126.97, 122.21, 121.57, 119.50, 118.50, 60.10, 50.22, 45.76, 39.44, 39.29, 37.17, 32.26, 29.98, 29.15, 28.60 (four sp2 carbon atoms were overlapping with others).
HRMS (DART, positive) m/z calcd for C26H23[M+H]+: m/z 335.17943. Found: m/z 335.17893。
Synthesis Example 6-21: 8,9,10,11,12,12a-hexahydro-7H-6b,10: 8,12-dimethanocycloocta[4,5]cyclopenta[1,2,3-cd]fluoranthene Synthesis method: Synthesis method B. 3-Bromofluoranthene was used. Yield 47.2 mg, yield 47%, white solid.
1H NMR (600 MHz, CD2Cl2 ) δ 7.86-7.93 (m, 4H ), 7.34-7.39 (m, 3H), 7.32 (d, J = 7.0 Hz, 1H), 3.74 (s, 1H), 2.86 (d, J = 2.4 Hz, 1H), 2.57 (dt, J = 12.0, 2.4 Hz, 1H), 2.29 (dq, J = 12.0, 3.0 Hz 1H), 2.26 (t, J = 2.4 Hz, 1H), 2.05 (dq, J = 12.0, 2.4 Hz, 1H), 1.96 (d, J = 12.6 Hz, 1H), 1.80-1.87 (m, 6H), 1.28 (d, J = 13.2 Hz, 1H).
13C NMR (150 MHz, CDCl3 ) δ 152.90, 145.70, 140.73, 134.57, 133.56, 133.45, 132.20, 126.97, 122.21, 121.57, 119.50, 118.50, 60.10, 50.22, 45.76, 39.44, 39.29, 37.17, 32.26, 29.98, 29.15, 28.60 (four sp2 carbon atoms were overlapping with others).
HRMS (DART, positive) m/z calcd for C26H23 [ M+H] + : m/z 335.17943. Found: m/z 335.17893.
 合成例6-22:4-(ナフタレン-1-イル)-8,9,10,11,12,12a-ヘキサヒドロ-7H-6b,10:8,12-ジメタノシクロオクタ[a]アセナフチレン
合成方法:合成方法B。4-ブロモ-1,1’-ビナフタレンを使用した。収量48.7 mg、収率42 %、白色固体。生成物は、回転異性体との1:1混合物として得られた。
1H NMR (600 MHz, CD2Cl2) δ 7.93-7.96 (m, 2×2H), 7.57-7.61 (m, 2×1H), 7.53-7.55 (m, 2×1H), 7.45-7.50 (m, 2×2H), 7.43 (d, J = 6.6 Hz, 2×1H), 7.23-7.33 (m, 2×4H), 7.06-7.08 (m, 2×1H), 3.62 (s, 1H), 3.57 (s, 1H), 2.80 (d, J = 2.4 Hz, 2×1H), 2.55-2.57 (m, 2×1H), 2.27-2.31 (m, 2×2H), 2.08 (dt, J = 12.6, 3.0 Hz, 2×1H), 1.84-1.99 (m, 2×6H), 1.80 (t, J = 13.2 Hz, 1H), 1.76 (d, J = 13.2 Hz, 1H), 1.47 (d, J = 12.6 Hz, 1H), 1.37 (d, J = 12.6 Hz, 1H).
13C NMR (150 MHz, CDCl3) δ 152.45, 145.32, 138.49, 138.41, 137.15, 137.07, 134.68, 134.60, 133.75, 132.94, 131.74, 129.23, 129.18, 128.25, 128.23, 128.07, 127.99, 127.76, 127.53, 127.46, 126.86, 125.90, 125.85, 125.81, 125.52, 122.08, 117.73, 117.61, 116.48, 116.35, 57.82, 46.91, 44.91, 44.86, 39.45, 39.13, 37.35, 37.33, 31.91, 29.44, 29.01, 28.98, 28.10 (ten sp2 carbon signals and seven sp3 carbon signals were overlapping with others).
HRMS (DART, positive) m/z calcd for C30H27[M+H]+: m/z 387.21073. Found: m/z 387.21074。
Synthesis Example 6-22: 4-(naphthalen-1-yl)-8,9,10,11,12,12a-hexahydro-7H-6b,10:8,12-dimethanocycloocta[a]acenaphthylene Synthesis method: Synthesis method B. 4-Bromo-1,1'-binaphthalene was used. Yield 48.7 mg, 42%, white solid. The product was obtained as a 1:1 mixture with rotamers.
1H NMR (600 MHz, CD2Cl2 ) δ 7.93-7.96 (m, 2x2H), 7.57-7.61 (m, 2x1H) , 7.53-7.55 (m, 2x1H), 7.45-7.50 (m, 2x2H), 7.43 (d, J = 6.6 Hz, 2x1H), 7.23-7.33 (m, 2x4H), 7.06-7.08 (m, 2x1H), 3.62 (s, 1H), 3.57 (s, 1H), 2.80 (d, J = 2.4 Hz, 2x1H), 2.55-2.57 (m, 2x1H), 2.27-2.31 (m, 2x2H), 2.08 (dt, J = 12.6, 3.0 Hz, 2×1H), 1.84-1.99 (m, 2×6H), 1.80 (t, J = 13.2 Hz, 1H), 1.76 (d, J = 13.2 Hz, 1H), 1.47 (d, J = 12.6 Hz, 1H), 1.37 (d, J = 12.6 Hz, 1H).
13C NMR (150 MHz, CDCl3 ) δ 152.45, 145.32, 138.49, 138.41, 137.15, 137.07, 134.68, 134.60, 133.75, 132.94, 131.74, 129.23, 129.18, 128.25, 128.23, 128.07, 127.99, 127.76, 127.53, 127.46, 126.86, 125.90, 125.85, 125.81, 125.52, 122.08, 117.73, 117.61, 116.48, 116.35, 57.82, 46.91, 44.91, 44.86, 39.45, 39.13, 37.35, 37.33, 31.91, 29.44, 29.01, 28.98, 28.10 (ten sp2 carbon signals and seven sp3 carbon signals were overlapping with others).
HRMS (DART, positive) m/z calcd for C30H27 [ M+H] + : m/z 387.21073. Found: m/z 387.21074.
 合成例6-23:7,8,9,10,11,11a-ヘキサヒドロ-6H-5b,9:7,11-ジメタノシクロオクタ[4,5]シクロペンタ[1,2,3-cd]ペリレン
合成方法:合成方法B。4-ブロモ-1,1’-ビナフタレンを使用した。収量23.2 mg、収率20 %、黄色固体。
1H NMR (600 MHz, CDCl3) δ 8.10 (t, J = 7.8 Hz, 2H), 8.04-8.07 (m, 2H), 7.61 (d, J = 8.4 Hz, 2H), 7.43 (td, J = 12.6, 2.4 Hz, 2H), 7.25 (dd, J = 5.4, 1.8 Hz, 1H), 7.19 (d, J = 7.2 Hz, 1H), 3.48 (s, 1H), 2.76 (d, J = 2.4 Hz, 1H), 2.46 (d, J = 12.0 Hz, 1H), 2.22-2.27 (m, 2H), 2.03 (dq, J = 8.4, 1.2 Hz, 1H), 1.80-1.93 (m, 6H), 1.70 (d, J = 13.2 Hz, 1H), 1.39 (dd, J = 13.2, 1.2 Hz, 1H).
13C NMR (150 MHz, CDCl3) δ 152.38, 144.99, 137.99, 135.50, 131.66, 129.56, 128.72, 128.60, 127.55, 127.52, 126.48, 120.76, 120.69, 119.42, 119.01, 118.01, 58.08, 47.71, 44.71, 39.33, 38.94, 37.24, 32.05, 29.30, 29.07, 28.08 (four sp2 carbon signals were overlapping with others).
HRMS (DART, positive) m/z calcd for C30H25[M+H]+: m/z 385.19508. Found: m/z 385.19567。
Synthesis Example 6-23: 7,8,9,10,11,11a-hexahydro-6H-5b,9: 7,11-dimethanocycloocta[4,5]cyclopenta[1,2,3-cd]perylene Synthesis method: Synthesis method B. 4-Bromo-1,1'-binaphthalene was used. Yield 23.2 mg, 20%, yellow solid.
1H NMR (600 MHz, CDCl3 ) δ 8.10 (t, J = 7.8 Hz, 2H), 8.04-8.07 (m, 2H), 7.61 (d, J = 8.4 Hz, 2H), 7.43 (td, J = 12.6, 2.4 Hz, 2H), 7.25 (dd, J = 5.4, 1.8 Hz, 1H), 7.19 (d, J = 7.2 Hz, 1H), 3.48 (s, 1H), 2.76 (d, J = 2.4 Hz, 1H), 2.46 (d, J = 12.0 Hz, 1H), 2.22-2.27 (m, 2H), 2.03 (dq, J = 8.4, 1.2 Hz, 1H), 1.80-1.93 (m, 6H), 1.70 (d, J = 13.2 Hz, 1H), 1.39 (dd, J = 13.2, 1.2 Hz, 1H).
13C NMR (150 MHz, CDCl3 ) δ 152.38, 144.99, 137.99, 135.50, 131.66, 129.56, 128.72, 128.60, 127.55, 127.52, 126.48, 120.76, 120.69, 119.42, 119.01, 118.01, 58.08, 47.71, 44.71, 39.33, 38.94, 37.24, 32.05, 29.30, 29.07, 28.08 (four sp2 carbon signals were overlapping with others).
HRMS (DART, positive) m/z calcd for C30H25 [ M+H] + : m/z 385.19508. Found: m/z 385.19567.
 合成例6-24:10,11,12,13,14,14a-ヘキサヒドロ-9H-8b,12:10,14-ジメタノシクロオクタ[e]ピレン
合成方法:合成方法B。4-ブロモフェナントレンを使用した。収量23.1 mg、収率24 %、白色固体。
1H NMR (600 MHz, CDCl3) δ 7.74-7.76 (m, 4H), 7.57-7.62 (m, 4H), 3.38 (s, 1H), 2.94 (d, J = 3.0 Hz, 1H), 2.74 (dt, J = 12.0, 3.0 Hz, 1H), 2.36 (t, J = 3.0 Hz, 1H), 2.14-2.18 (m, 3H), 2.01-2.04 (m, 1H), 1.82-1.92 (m, 4H), 1.70 (d, J = 13.2 Hz, 1H), 1.26 (dq, J = 12.0, 3.0 Hz, 1H).
13C NMR (150 MHz, CDCl3) δ 144.32, 136.89, 131.37, 131.12, 127.47, 126.97, 126.89, 126.70, 126.26, 125.87, 125.60, 123.02, 120.92, 46.88, 41.11, 40.55, 38.03, 37.56, 36.79, 31.44, 29.01, 28.75, 28.28 (one sp2 carbon atom was overlapping with others).
HRMS (DART, positive) m/z calcd for C24H23[M+H]+: m/z 311.17943. Found: m/z 311.18003。
Synthesis Example 6-24: 10,11,12,13,14,14a-Hexahydro-9H-8b,12:10,14-dimethanocycloocta[e]pyrene Synthesis method: Synthesis method B. 4-Bromophenanthrene was used. Yield 23.1 mg, yield 24%, white solid.
1H NMR (600 MHz, CDCl3 ) δ 7.74-7.76 (m, 4H), 7.57-7.62 (m, 4H), 3.38 (s, 1H), 2.94 (d, J = 3.0 Hz, 1H), 2.74 (dt, J = 12.0, 3.0 Hz, 1H), 2.36 (t, J = 3.0 Hz, 1H), 2.14-2.18 (m, 3H), 2.01-2.04 (m, 1H), 1.82-1.92 (m, 4H), 1.70 (d, J = 13.2 Hz, 1H), 1.26 (dq, J = 12.0, 3.0 Hz, 1H).
13C NMR (150 MHz, CDCl3 ) δ 144.32, 136.89, 131.37, 131.12, 127.47, 126.97, 126.89, 126.70, 126.26, 125.87, 125.60, 123.02, 120.92, 46.88, 41.11, 40.55, 38.03, 37.56, 36.79, 31.44, 29.01, 28.75, 28.28 (one sp2 carbon atom was overlapping with others).
HRMS (DART, positive) m/z calcd for C24H23 [ M+H] + : m/z 311.17943. Found: m/z 311.18003.
 合成例6-25:4,4-ジメチル-4,8,9,10,11,12,13,13a-オクタヒドロ-7b,11:9,13-ジメタノシクロオクタ[l]シクロペンタ[def]フェナントレン
合成方法:合成方法B。4-ブロモ-9,9-ジメチル-9H-フルオレンを使用した。収量42.1 mg、収率43 %、白色固体。
1H NMR (600 MHz, CD2Cl2) δ 7.22-7.27 (m, 4H), 7.16-7.19 (m, 2H), 3.26 (s, 1H), 2.78 (d, J = 3.0 Hz, 1H), 2.57 (dt, J = 12.0, 2.4 Hz, 1H), 2.25 (d, J = 2.4 Hz, 1H), 2.04-2.09 (m, 2H), 1.92-1.99 (m, 2H), 1.80-1.87 (m, 3H), 1.70-1.75 (m, 2H), 1.50 (s, 3H), 1.50 (s, 3H), 1.32 (d, J = 12.0 Hz, 1H).
13C NMR (150 MHz, CDCl3) δ 151.21, 150.76, 140.69, 136.88, 135.49, 133.67, 128.05, 127.87, 122.48, 120.85, 120.16, 119.90, 50.19, 48.83, 41.27, 39.51, 38.74, 38.28, 37.23, 31.58, 28.80, 28.36, 28.30, 26.73, 26.54.
HRMS (DART, positive) m/z calcd for C25H27[M-H]+: m/z 327.19508. Found: m/z 327.19515。
Synthesis Example 6-25: 4,4-Dimethyl-4,8,9,10,11,12,13,13a-octahydro-7b,11:9,13-dimethanocycloocta[l]cyclopenta[def]phenanthrene Synthesis method: Synthesis method B. 4-Bromo-9,9-dimethyl-9H-fluorene was used. Yield 42.1 mg, yield 43%, white solid.
1H NMR (600 MHz, CD2Cl2 ) δ 7.22-7.27 (m, 4H ), 7.16-7.19 (m, 2H), 3.26 (s, 1H), 2.78 (d, J = 3.0 Hz, 1H), 2.57 (dt, J = 12.0, 2.4 Hz, 1H), 2.25 (d, J = 2.4 Hz, 1H), 2.04-2.09 (m, 2H), 1.92-1.99 (m, 2H), 1.80-1.87 (m, 3H), 1.70-1.75 (m, 2H), 1.50 (s, 3H), 1.50 (s, 3H), 1.32 (d, J = 12.0 Hz, 1H).
13C NMR (150 MHz, CDCl3 ) δ 151.21, 150.76, 140.69, 136.88, 135.49, 133.67, 128.05, 127.87, 122.48, 120.85, 120.16, 119.90, 50.19, 48.83, 41.27, 39.51, 38.74, 38.28, 37.23, 31.58, 28.80, 28.36, 28.30, 26.73, 26.54.
HRMS (DART, positive) m/z calcd for C25H27 [MH ] + : m/z 327.19508. Found: m/z 327.19515.
 合成例6-26:4,4-ジフェニル-4,8,9,10,11,12,13,13a-オクタヒドロ-7b,11:9,13-ジメタノシクロオクタ[l]シクロペンタ[def]フェナントレン
合成方法:合成方法B。4-ブロモ-9,9-ジフェニル-9H-フルオレンを使用した。収量41.7 mg、収率35 %、白色固体。
1H NMR (600 MHz, CD2Cl2) δ 7.19-7.28 (m, 16H), 3.31 (s, 1H), 2.80 (d, J = 3.0 Hz, 1H), 2.58 (dt, J = 12.0, 3.0 Hz, 1H), 2.26 (t, J = 3.0 Hz, 1H), 2.07-2.10 (m, 2H), 1.93-2.01 (m, 2H), 1.77-1.86 (m, 3H), 1.71-1.76 (m, 2H), 1.34 (d, J = 11.4 Hz, 1H).
13C NMR (150 MHz, CDCl3) δ 148.59, 148.19, 146.04, 145.73, 141.18, 137.79, 136.45, 134.03, 128.50, 128.34, 128.31, 128.28, 128.15, 128.11, 126.66, 123.57, 123.30, 123.02, 121.39, 68.32, 48.70, 41.40, 39.50, 38.74, 38.24, 37.24, 31.48, 28.80, 28.38, 28.34 (five sp2 carbon atoms were overlapping with others.).
HRMS (DART, positive) m/z calcd for C35H31[M+H]+: m/z 451.24203. Found: m/z 451.23986。
Synthesis Example 6-26: 4,4-diphenyl-4,8,9,10,11,12,13,13a-octahydro-7b,11:9,13-dimethanocycloocta[l]cyclopenta[def]phenanthrene Synthesis method: Synthesis method B. 4-Bromo-9,9-diphenyl-9H-fluorene was used. Yield 41.7 mg, yield 35%, white solid.
1H NMR (600 MHz, CD2Cl2 ) δ 7.19-7.28 (m, 16H), 3.31 (s, 1H), 2.80 (d, J = 3.0 Hz, 1H ), 2.58 (dt, J = 12.0, 3.0 Hz, 1H), 2.26 (t, J = 3.0 Hz, 1H), 2.07-2.10 (m, 2H), 1.93-2.01 (m, 2H), 1.77-1.86 (m, 3H), 1.71-1.76 (m, 2H), 1.34 (d, J = 11.4 Hz, 1H).
13C NMR (150 MHz, CDCl3 ) δ 148.59, 148.19, 146.04, 145.73, 141.18, 137.79, 136.45, 134.03, 128.50, 128.34, 128.31, 128.28, 128.15, 128.11, 126.66, 123.57, 123.30, 123.02, 121.39, 68.32, 48.70, 41.40, 39.50, 38.74, 38.24, 37.24, 31.48, 28.80, 28.38, 28.34 (five sp2 carbon atoms were overlapping with others.).
HRMS (DART, positive) m/z calcd for C35H31 [ M+H] + : m/z 451.24203. Found: m/z 451.23986.
 合成例6-27:9’,10’,11’,12’,13’,13a’-ヘキサヒドロ-8’H-スピロ[フルオレン-9,4’-[7b,11:9,13]ジメタノシクロオクタ[l]シクロペンタ[def]フェナントレン
合成方法:合成方法B。4-ブロモ-9,9’-スピロビフルオレンを使用した。収量47.1 mg、収率35 %、白色固体。
1H NMR (600 MHz, CDCl3) δ 7.84 (dt, J = 7.8, 1.2 Hz, 2H), 7.35-7.38 (m, 2H), 7.21 (t, J = 7.8 Hz, 2H), 7.06-7.13 (m, 4H), 6.80 (d, J = 7.8 Hz, 1H), 6.72 (d, J = 7.8 Hz, 1H), 6.59-6.62 (m, 2H), 3.45 (s, 1H), 2.85 (d, J = 2.4 Hz, 1H), 2.62 (dt, J = 12.0, 2.4 Hz, 1H), 2.33 (t, J = 1.8 Hz, 1H), 2.08-2.17 (m, 3H), 1.93-2.02 (m, 3H), 1.85-1.92 (m, 2H), 1.75 (d, J = 12.6 Hz, 1H), 1.46 (d, J = 12.0 Hz, 1H).
13C NMR (150 MHz, CDCl3) δ 148.28, 148.06, 146.83, 146.38, 141.91, 141.76, 140.78, 139.53, 138.21, 133.71, 128.73, 128.52, 127.81, 127.73, 124.37, 124.23, 123.31, 121.66, 121.35, 121.12, 120.07, 49.03, 41.47, 39.52, 39.02, 38.30, 37.28, 31.58, 28.83, 28.50, 28.40 (one sp3 carbon atom and three sp2 carbon atom were overlapping with others.).
HRMS (DART, positive) m/z calcd for C35H27[M-H]+: m/z 447.21073. Found: m/z 447.20926。
Synthesis Example 6-27: 9',10',11',12',13',13a'-Hexahydro-8'H-spiro[fluorene-9,4'-[7b,11:9,13]dimethanocycloocta[l]cyclopenta[def]phenanthrene Synthesis method: Synthesis method B. 4-Bromo-9,9'-spirobifluorene was used. Yield 47.1 mg, yield 35%, white solid.
1H NMR (600 MHz, CDCl3 ) δ 7.84 (dt, J = 7.8, 1.2 Hz, 2H), 7.35-7.38 (m, 2H), 7.21 (t, J = 7.8 Hz, 2H), 7.06-7.13 (m, 4H), 6.80 (d, J = 7.8 Hz, 1H), 6.72 (d, J = 7.8 Hz, 1H), 6.59-6.62 (m, 2H), 3.45 (s, 1H), 2.85 (d, J = 2.4 Hz, 1H), 2.62 (dt, J = 12.0, 2.4 Hz, 1H), 2.33 (t, J = 1.8 Hz, 1H), 2.08-2.17 (m, 3H), 1.93-2.02 (m, 3H), 1.85-1.92 (m, 2H), 1.75 (d, J = 12.6 Hz, 1H), 1.46 (d, J = 12.0 Hz, 1H).
13C NMR (150 MHz, CDCl3 ) δ 148.28, 148.06, 146.83, 146.38, 141.91, 141.76, 140.78, 139.53, 138.21, 133.71, 128.73, 128.52, 127.81, 127.73, 124.37, 124.23, 123.31, 121.66, 121.35, 121.12, 120.07, 49.03, 41.47, 39.52, 39.02, 38.30, 37.28, 31.58, 28.83, 28.50, 28.40 (one sp3 carbon atom and three sp2 carbon atoms were overlapping with others.).
HRMS (DART, positive) m/z calcd for C35H27 [MH ] + : m/z 447.21073. Found: m/z 447.20926.
 合成例6-28:4-フェニル-4,8,9,10,11,12,13,13a-オクタヒドロ-7b,11:9,13-ジメタノシクロオクタ[5,6]ベンゾ[1,2,3,4-def]カルバゾール
合成方法:合成方法B。4-ブロモ-9-フェニル-9H-カルバゾールを使用した。収量63.2 mg、収率55 %、白色固体。
1H NMR (600 MHz, CDCl3) δ 7.69 (dd, J = 8.4, 1.2 Hz, 2H), 7.57 (t, J = 7.8 Hz, 2H), 7.35-7.42 (m, 5H), 7.14 (d, J = 6.6 Hz, 1H), 7.11 (d, J = 6.6 Hz, 1H), 3.55 (d, J = 3.0 Hz, 1H), 2.92 (d, J = 3.0 Hz, 1H), 2.67 (td, J = 12.0, 3.0 Hz, 1H), 2.32 (s, 1H), 2.20 (dd, J = 12.6, 1.8 Hz, 1H), 2.10-2.13 (m, 2H), 2.01 (d, J = 12.6 Hz, 1H), 1.87-1.90 (m, 4H), 1.78 (d, J = 11.4 Hz, 1H), 1.45 (d, J = 12.6 Hz, 1H).
13C NMR (150 MHz, CDCl3) δ 140.93, 139.53, 138.33, 138.02, 134.01, 129.86, 127.32, 127.12, 126.03, 124.518, 123.02, 122.01, 115.75, 113.95, 108.07, 108.00, 50.09, 41.40, 40.06, 39.66, 38.42, 37.24, 32.34, 28.90, 28.82, 28.33 (two sp2 carbon atoms were overlapping with others.).
HRMS (DART, positive) m/z calcd for C28H26N [M+H]+: m/z 376.20597. Found: m/z 376.20772。
Synthesis Example 6-28: 4-Phenyl-4,8,9,10,11,12,13,13a-octahydro-7b,11:9,13-dimethanocycloocta[5,6]benzo[1,2,3,4-def]carbazole Synthesis method: Synthesis method B. 4-Bromo-9-phenyl-9H-carbazole was used. Yield 63.2 mg, yield 55%, white solid.
1H NMR (600 MHz, CDCl3 ) δ 7.69 (dd, J = 8.4, 1.2 Hz, 2H), 7.57 (t, J = 7.8 Hz, 2H), 7.35-7.42 (m, 5H), 7.14 (d, J = 6.6 Hz, 1H), 7.11 (d, J = 6.6 Hz, 1H), 3.55 (d, J = 3.0 Hz, 1H), 2.92 (d, J = 3.0 Hz, 1H), 2.67 (td, J = 12.0, 3.0 Hz, 1H), 2.32 (s, 1H), 2.20 (dd, J = 12.6, 1.8 Hz, 1H), 2.10-2.13 (m, 2H), 2.01 (d, J = 12.6 Hz, 1H), 1.87-1.90 (m, 4H), 1.78 (d, J = 11.4 Hz, 1H), 1.45 (d, J = 12.6 Hz, 1H).
13C NMR (150 MHz, CDCl3 ) δ 140.93, 139.53, 138.33, 138.02, 134.01, 129.86, 127.32, 127.12, 126.03, 124.518, 123.02, 122.01, 115.75, 113.95, 108.07, 108.00, 50.09, 41.40, 40.06, 39.66, 38.42, 37.24, 32.34, 28.90, 28.82, 28.33 (two sp2 carbon atoms were overlapping with others.).
HRMS (DART, positive) m/z calcd for C28H26N [ M+H] + : m/z 376.20597. Found: m/z 376.20772.
 合成例6-29:10,11,12,13,14,14a-ヘキサヒドロ-9H-8b,12:10,14-ジメタノシクロオクタ[e]アセフェナンチレン
合成方法:合成方法B。9-ブロモフェナントレンを使用した。収量38.2 mg、収率41 %、白色固体。生成物は、構造異性体との1:1混合物として得られた。
1H NMR (600 MHz, CDCl3) δ 8.57-8.61 (m, 2×1H), 8.26-8.33 (m, 2×1H), 7.87-7.89 (m, 2×1H), 7.52-7.65 (m, 2×3H), 7.45 (d, J = 14.4 Hz, 1H), 7.38-7.40 (m, 2×1H), 7.30-7.34 (d, J = 6.6 Hz, 1H), 3.55 (s, 1H), 3.52 (s, 1H), 2.83 (d, J = 2.4 Hz, 1H), 2.79 (d, J = 2.4 Hz, 1H), 2.51-2.57 (m, 2×1H), 2.24-2.31 (m, 2×2H), 2.07-2.09 (m, 2×1H), 1.83-2.00 (m, 2×6H), 1.70 (dt, J = 13.2, 2.4 Hz, 2×1H), 1.46-1.49 (m, 1H), 1.33 (dt, J = 13.2, 2.4 Hz, 1H).
13C NMR (150 MHz, CDCl3) δ 152.44, 150.51, 144.99, 143.14, 136.11, 135.95, 134.25, 134.21, 129.38, 129.33, 128.91, 128.73, 127.82, 127.78, 126.53, 126.48, 125.29, 122.98, 119.39, 119.35, 119.23, 118.26, 117.71, 116.59, 57.46, 57.09, 50.97, 46.88, 46.47, 44.75, 44.19, 39.31, 39.15, 38.95, 37.37, 37.19, 31.84, 31.77, 29.40, 29.35, 28.87, 28.81, 28.22, 28.04.
HRMS (DART, positive) m/z calcd for C30H25[M+H]+: m/z 311.17943. Found: m/z 311.17946。
Synthesis Example 6-29: 10,11,12,13,14,14a-hexahydro-9H-8b,12:10,14-dimethanocycloocta[e]acephenanthrene Synthesis method: Synthesis method B. 9-Bromophenanthrene was used. Yield 38.2 mg, 41%, white solid. The product was obtained as a 1:1 mixture with structural isomers.
1H NMR (600 MHz, CDCl3 ) δ 8.57-8.61 (m, 2x1H), 8.26-8.33 (m, 2x1H), 7.87-7.89 (m, 2x1H), 7.52-7.65 (m, 2x3H), 7.45 (d, J = 14.4 Hz, 1H), 7.38-7.40 (m, 2x1H), 7.30-7.34 (d, J = 6.6 Hz, 1H), 3.55 (s, 1H), 3.52 (s, 1H), 2.83 (d, J = 2.4 Hz, 1H), 2.79 (d, J = 2.4 Hz, 1H), 2.51-2.57 (m, 2x1H), 2.24-2.31 (m, 2×2H), 2.07-2.09 (m, 2×1H), 1.83-2.00 (m, 2×6H), 1.70 (dt, J = 13.2, 2.4 Hz, 2×1H), 1.46-1.49 (m, 1H), 1.33 (dt, J = 13.2, 2.4 Hz, 1H).
13C NMR (150 MHz, CDCl3 ) δ 152.44, 150.51, 144.99, 143.14, 136.11, 135.95, 134.25, 134.21, 129.38, 129.33, 128.91, 128.73, 127.82, 127.78, 126.53, 126.48, 125.29, 122.98, 119.39, 119.35, 119.23, 118.26, 117.71, 116.59, 57.46, 57.09, 50.97, 46.88, 46.47, 44.75, 44.19, 39.31, 39.15, 38.95, 37.37, 37.19, 31.84, 31.77, 29.40, 29.35, 28.87, 28.81, 28.22, 28.04.
HRMS (DART, positive) m/z calcd for C30H25 [ M+H] + : m/z 311.17943. Found: m/z 311.17946.
 他の化合物も、1H NMR等により同定した。 Other compounds were also identified by 1 H NMR and other methods.
 実施例1 Example 1
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000094
 DMPSiはポリジメチルシランを示す。Sc(OTf)はトリフルオロメタンスルホン酸スカンジウム(III)を示す。 DMPSi denotes polydimethylsilane. Sc(OTf) 3 denotes scandium(III) trifluoromethanesulfonate.
 室温(25℃)下、乾燥させた30mLの耐圧試験管に対して、合成例6-1で得たアダマンタン縮環アレーン化合物6(0.1mmol,1当量)、ポリジメチルシラン及びアルミナに担持したロジウム及び白金複合触媒(Rh/Pt(DMPSi/Al;10mol%)、トリフルオロメタンスルホン酸スカンジウム(III)(Sc(OTf);10mol%)を加えたのちに脱水ヘプタン(1.5mL)を加えた。ステンレス製の耐圧容器に試験管を入れ、容器内を水素ガス(10気圧(1MPa))で十分に置換した。反応溶液を125℃まで加熱させた後、72時間攪拌した。その後、反応溶液を室温まで冷却させ、セライトを用いて濾過操作、酢酸エチルによる洗浄を行った。得られた有機層を減圧下で溶媒留去を行った。粗精製物をシリカゲルカラムクロマトグラフィーで精製した(展開溶媒:ヘキサンのみ)。続いて、ゲル濾過クロマトグラフィーを用いて精製を行い、ダイヤモンドイド化合物7(2.7mg,12%)を得た。
1H NMR (600 MHz, C6D6) δ 1.62-2.06 (m, 18H), 1.40 (d, J = 12 Hz 1H), 1.08-1.34 (m, 8H), 1.01 (d, J = 10.2 Hz 1H),0.85-0.95 (m, 2H), 0.58-0.79 (m, 4H). 
GC-MS(EI) 298.30 (m/z)。
Adamantane-fused arene compound 6 (0.1 mmol, 1 equivalent) obtained in Synthesis Example 6-1, a rhodium and platinum composite catalyst supported on polydimethylsilane and alumina (Rh/Pt(DMPSi/Al 2 O 3 ; 10 mol%), scandium(III) trifluoromethanesulfonate (Sc(OTf) 3 10 mol%) was added, followed by dehydrated heptane (1.5 mL). The test tube was placed in a stainless steel pressure vessel, and the inside of the vessel was fully replaced with hydrogen gas (10 atm (1 MPa)). The reaction solution was heated to 125°C and then stirred for 72 hours. Thereafter, the reaction solution was cooled to room temperature, filtered using Celite, and washed with ethyl acetate. The obtained organic layer was subjected to solvent distillation under reduced pressure. The crude product was purified by silica gel column chromatography (developing solvent: hexane only). Subsequently, purification was performed using gel filtration chromatography to obtain diamondoid compound 7 (2.7 mg, 12%).
1H NMR (600 MHz, C6D6 ) δ 1.62-2.06 (m, 18H), 1.40 (d, J = 12 Hz 1H) , 1.08-1.34 (m, 8H), 1.01 (d, J = 10.2 Hz 1H),0.85-0.95 (m, 2H), 0.58-0.79 (m, 4H).
GC-MS(EI) 298.30 (m/z).
 実施例2~10
 原料化合物として適切な化合物を使用した他は実施例1と同様に、反応を行った。
Examples 2 to 10
The reaction was carried out in the same manner as in Example 1, except that appropriate compounds were used as raw materials.
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000095
 実施例3:(6br,8R,10S,12s)-ヘキサデカヒドロ-1H-6b,10:8,12-ジメタノシクロオクタ[a]アセナフチレン
1H NMR (600 MHz, C6D6) δ 2.26-2.21 (m, 1H), 1.94 (t, J = 2.7 Hz, 1H), 1.87 (d, J = 2.4 Hz, 1H), 1.82-1.39 (m, 21H), 1.35-1.31 (m, 1H), 1.21 (d, J = 11.3 Hz, 1H), 1.15-1.04 (m, 3H), 0.77-0.73 (m, 1H).
13C NMR (600 MHz, CDCl3) δ 55.2, 48.2, 41.6, 39.8, 39.4, 39.3, 38.3, 37.2, 36.2, 33.1, 31.7, 31.4, 29.5, 29.5, 28.8, 27.3, 26.1, 25.2, 25.1, 17.9.
 
Isomer
1H NMR (600 MHz, C6D6) δ 2.32-2.27 (m, 1H), 2.00 (t, J = 3.1 Hz, 1H), 1.93 (d, J = 2.7 Hz, 1H), 1.88-1.37 (m, 22H), 1.27 (d, J = 12.4 Hz, 1H), 1.21-1.09 (m, 3H), 0.80 (dd, J = 12.7, 3.4 Hz, 1H).
13C NMR (600 MHz, CDCl3) δ 56.9, 49.4, 45.5, 43.4, 42.3, 40.8, 40.4, 39.8, 39.2, 38.4, 37.9, 34.0, 33.5, 31.8, 31.3, 30.1, 29.8, 29.6, 29.3, 28.7, 28.1, 27.3, 26.8, 25.9, 25.4, 22.6, 22.0, 18.5.
HRMS (ESI) m/z: [M+H]+ Calcd for C20H30 270.2348; Found 270.2339。
Example 3: (6br,8R,10S,12s)-Hexadecahydro-1H-6b,10:8,12-dimethanocycloocta[a]acenaphthylene
1H NMR (600 MHz, C6D6 ) δ 2.26-2.21 (m, 1H ), 1.94 (t, J = 2.7 Hz, 1H), 1.87 (d, J = 2.4 Hz, 1H), 1.82-1.39 (m, 21H), 1.35-1.31 (m, 1H), 1.21 (d, J = 11.3 Hz, 1H), 1.15-1.04 (m, 3H), 0.77-0.73 (m, 1H).
13C NMR (600 MHz, CDCl3 ) δ 55.2, 48.2, 41.6, 39.8, 39.4, 39.3, 38.3, 37.2, 36.2, 33.1, 31.7, 31.4, 29.5, 29.5, 28.8, 27.3, 26.1, 25.2, 25.1, 17.9.

Isomer
1H NMR (600 MHz, C6D6 ) δ 2.32-2.27 (m, 1H ), 2.00 (t, J = 3.1 Hz, 1H), 1.93 (d, J = 2.7 Hz, 1H), 1.88-1.37 (m, 22H), 1.27 (d, J = 12.4 Hz, 1H), 1.21-1.09 (m, 3H), 0.80 (dd, J = 12.7, 3.4 Hz, 1H).
13C NMR (600 MHz, CDCl3 ) δ 56.9, 49.4, 45.5, 43.4, 42.3, 40.8, 40.4, 39.8, 39.2, 38.4, 37.9, 34.0, 33.5, 31.8, 31.3, 30.1, 29.8, 29.6, 29.3, 28.7, 28.1, 27.3, 26.8, 25.9, 25.4, 22.6, 22.0, 18.5.
HRMS (ESI) m/z: [M+H]+ Calcd for C20H30 270.2348 ; Found 270.2339.
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000096
 実施例4:(8br,10R,12S,14s)-2-メトキシオクタデカヒドロ-1H-8b,12:10,14-ジメタノシクロオクタ[l]フェナントレン
1H NMR (600 MHz, C6D6) δ 3.54 (q, 1H), 3.13 (m, 3H), 2.06-1.43 (m, 22H), 1.42-1.35 (m, 6H), 1.31-1.24 (m, 3H), 1.06 (dd, J = 11.9, 2.6 Hz, 1H).
13C NMR (600 MHz, CDCl3) δ 131.5, 126.2, 76.8, 55.7, 52.9, 43.0, 42.4, 40.3, 38.6, 37.5, 36.8, 35.6, 32.6, 32.4, 28.9, 28.8, 27.9, 26.9, 26.7, 26.2, 24.6, 23.4.
HRMS (ESI) m/z: [M+H]+ Calcd for C22H48O 328.3705; Found 328.3714。
Example 4: (8br,10R,12S,14s)-2-Methoxyoctadecahydro-1H-8b,12:10,14-dimethanocycloocta[l]phenanthrene
1H NMR (600 MHz, C6D6 ) δ 3.54 (q, 1H), 3.13 (m, 3H), 2.06-1.43 (m, 22H) , 1.42-1.35 (m, 6H), 1.31-1.24 (m, 3H), 1.06 (dd, J = 11.9, 2.6 Hz, 1H).
13C NMR (600 MHz, CDCl3 ) δ 131.5, 126.2, 76.8, 55.7, 52.9, 43.0, 42.4, 40.3, 38.6, 37.5, 36.8, 35.6, 32.6, 32.4, 28.9, 28.8, 27.9, 26.9, 26.7, 26.2, 24.6, 23.4.
HRMS (ESI) m/z: [M+H] + Calcd for C22H48O 328.3705 ; Found 328.3714.
 実施例5:(8br,10R,12S,14s)-N,N-ジメチルオクタデカヒドロ-1H-8b,12:10,14-ジメタノシクロオクタ[l]フェナントレン-2-アミン
1H NMR (600 MHz, C6D6) δ 3.91-3.99 (1H), 3.15-3.22 (1H), 2.19-2.26 (2H), 1.95-2.04 (2H), 1.80-1.88 (1H), 0.98-1.81 (32H).
13C NMR (600 MHz, CDCl3) δ 64.3, 52.9, 42.7, 42.1, 39.6, 38.3, 37.2, 36.7, 35.6, 32.5, 28.8, 28.7, 28.6, 28.2, 27.7, 27.1, 26.7, 26.6, 26.0, 25.5, 24.5, 24.3, 23.7, 23.2.
HRMS (ESI) m/z: [M+H]+ Calcd for C24H38N 341.3083; Found 341.3081。
Example 5: (8br,10R,12S,14s)-N,N-dimethyloctadecahydro-1H-8b,12:10,14-dimethanocycloocta[l]phenanthren-2-amine
1H NMR (600 MHz, C6D6 ) δ 3.91-3.99 (1H), 3.15-3.22 (1H) , 2.19-2.26 (2H), 1.95-2.04 (2H), 1.80-1.88 (1H), 0.98-1.81 (32H).
13C NMR (600 MHz, CDCl3 ) δ 64.3, 52.9, 42.7, 42.1, 39.6, 38.3, 37.2, 36.7, 35.6, 32.5, 28.8, 28.7, 28.6, 28.2, 27.7, 27.1, 26.7, 26.6, 26.0, 25.5, 24.5, 24.3, 23.7, 23.2.
HRMS (ESI) m/z: [M+H] + Calcd for C24H38N 341.3083 ; Found 341.3081.
 実施例6:(6br,8R,10S,12s)-ヘキサデカヒドロ-1H-6b,10:8,12-ジメタノシクロオクタ[a]アセナフチレン-1-オール
1H NMR (600 MHz, C6D6) δ 1.99-1.85 (m, 7H), 1.80-0.71 (m, 23H).
13C NMR (600 MHz, CDCl3) δ 86.2, 77.0, 76.8, 53.6, 42.4, 41.5, 38.9, 37.6, 36.6, 31.7, 31.2, 30.4, 30.3, 29.3, 29.0, 28.1, 26.8, 26.8, 22.1, 20.5.
HRMS (ESI) m/z: [M+H]+ Calcd for C20H30O 286.2296; Found 286.2297。
Example 6: (6br,8R,10S,12s)-Hexadecahydro-1H-6b,10:8,12-dimethanocycloocta[a]acenaphthylene-1-ol
1H NMR (600 MHz, C6D6 ) δ 1.99-1.85 (m, 7H ), 1.80-0.71 (m, 23H).
13C NMR (600 MHz, CDCl3 ) δ 86.2, 77.0, 76.8, 53.6, 42.4, 41.5, 38.9, 37.6, 36.6, 31.7, 31.2, 30.4, 30.3, 29.3, 29.0, 28.1, 26.8, 26.8, 22.1, 20.5.
HRMS (ESI) m/z: [M+H] + Calcd for C20H30O 286.2296 ; Found 286.2297.
 実施例7:(4br,6R,8S,10s)-オクタデカヒドロ-1H-4b,8:6,10-ジメタノシクロオクタ[a]シクロペンタ[fg]アセナフチレン
1H NMR (600 MHz, C6D6) δ 2.53 (td, J = 11.9, 8.5 Hz, 1H), 2.42-2.36 (m, 1H), 2.30-2.25 (m, 1H), 2.10-1.95 (m, 3H), 1.89-1.78 (m, 5H), 1.76-1.68 (m, 3H), 1.65-1.33 (m, 14H), 1.29-1.21 (m, 2H), 1.10-1.01 (m, 2H).
13C NMR (600 MHz, CDCl3) δ 52.8, 48.4, 39.9, 39.4, 39.3, 38.7, 38.5, 38.1, 37.6, 37.3, 34.9, 34.2, 32.5, 31.5, 30.9, 29.6, 29.2, 29.0, 29.0, 27.1, 25.6, 20.5.
HRMS (ESI) m/z: [M+H]+ Calcd for C22H32 296.2504; Found 296.2510。
Example 7: (4br,6R,8S,10s)-Octadecahydro-1H-4b,8:6,10-dimethanocycloocta[a]cyclopenta[fg]acenaphthylene
1H NMR (600 MHz, C6D6 ) δ 2.53 (td, J = 11.9, 8.5 Hz, 1H), 2.42-2.36 (m, 1H) , 2.30-2.25 (m, 1H), 2.10-1.95 (m, 3H), 1.89-1.78 (m, 5H), 1.76-1.68 (m, 3H), 1.65-1.33 (m, 14H), 1.29-1.21 (m, 2H), 1.10-1.01 (m, 2H).
13C NMR (600 MHz, CDCl3 ) δ 52.8, 48.4, 39.9, 39.4, 39.3, 38.7, 38.5, 38.1, 37.6, 37.3, 34.9, 34.2, 32.5, 31.5, 30.9, 29.6, 29.2, 29.0, 29.0, 27.1, 25.6, 20.5.
HRMS (ESI) m/z: [M+H]+ Calcd for C22H32 296.2504 ; Found 296.2510.
 実施例8:(8bS,14R)-2-((8bS,10S,14R,14aR)-オクタデカヒドロ-1H-8b,12:10,14-ジメタノシクロオクタ[l]フェナントレン-7-イル)オクタデカヒドロ-1H-8b,12:10,14-ジメタノシクロオクタ[l]フェナントレン
1H NMR (600 MHz, C6D6) δ 1.93-2.05 (5H), 1.84-1.89 (1H), 1.55-1.80 (20H), 0.97-1.55 (38H).
HRMS (ESI) m/z: [M+H]+ Calcd for C44H46 594.5164; Found 594.5120。
Example 8: (8bS,14R)-2-((8bS,10S,14R,14aR)-octadecahydro-1H-8b,12:10,14-dimethanocycloocta[l]phenanthren-7-yl)octadecahydro-1H-8b,12:10,14-dimethanocycloocta[l]phenanthrene
1H NMR (600 MHz, C6D6 ) δ 1.93-2.05 ( 5H ), 1.84-1.89 (1H), 1.55-1.80 (20H), 0.97-1.55 (38H).
HRMS (ESI) m/z: [M+H] + Calcd for C44H46 594.5164 ; Found 594.5120.
 実施例9:(9s,11R,13S,14ar)-イコサヒドロ-1H-9,13:11,14a-ジメタノシクロオクタ[e]アセフェナントレン
Isolation of 3 isomers was difficult, The ratio of isomers are 1: 1.4: 0.5. (from GC)
HRMS (ESI) m/z: [M+H]+ Calcd for C24H36 324.2817; Found 324.2833。
Example 9: (9s,11R,13S,14ar)-icosahydro-1H-9,13:11,14a-dimethanocycloocta[e]acephenanthrene
Isolation of 3 isomers was difficult, the ratio of isomers is 1:1.4:0.5. (from GC)
HRMS (ESI) m/z: [M+H] + Calcd for C24H36 324.2817 ; Found 324.2833.
 実施例10:1-((8br,10R,12S,14s)-オクタデカヒドロ-1H-8b,12:10,14-ジメタノシクロオクタ[l]フェナントレン-2-イル)エタン-1-オール
Isolation of 2 isomers was difficult, The ratio of isomers are 1: 1.5 (from GC)
HRMS (ESI) m/z: [M-H]+ Calcd for C24H37O 341.2844; Found 341.2849。
Example 10: 1-((8br,10R,12S,14s)-octadecahydro-1H-8b,12:10,14-dimethanocycloocta[l]phenanthren-2-yl)ethan-1-ol
Isolation of 2 isomers was difficult, the ratio of isomers is 1:1.5 (from GC)
HRMS (ESI) m/z: [MH] + Calcd for C24H37O 341.2844 ; Found 341.2849.

Claims (12)

  1. 一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式中、環Aは環の数が2個以上である脂肪族環を示す。Rは水素原子、アルキル基、シクロアルキル基、又はアダマンチル基を示す。nは0~3の整数を示す。]
    で表されるダイヤモンドイド化合物。
    General formula (1):
    Figure JPOXMLDOC01-appb-C000001
    [In the formula, ring A1 represents an aliphatic ring having two or more rings; R1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, or an adamantyl group; and n represents an integer of 0 to 3.]
    A diamondoid compound represented by the formula:
  2. 一般式(1A):
    Figure JPOXMLDOC01-appb-C000002
    [式中、環A及び環Aは同一又は異なって、脂肪族環を示す。R1a、R1b及びR1cは同一又は異なって、水素原子、アルキル基、シクロアルキル基、又はアダマンチル基を示す。R2a及びR3aは同一又は異なって、水素原子、水酸基、アルキル基、アルコキシ基、シクロアルキル基、アミノ基、又はアダマンチル基を示す。R2a及びR3aは一緒になって脂肪族環を形成してもよい。]
    、又は一般式(1B):
    Figure JPOXMLDOC01-appb-C000003
    [式中、環A及び環Aは同一又は異なって、脂肪族環を示す。R1a、R1b及びR1cは同一又は異なって、水素原子、アルキル基、シクロアルキル基、又はアダマンチル基を示す。R4a及びR5aは同一又は異なって、水素原子、水酸基、アルキル基、アルコキシ基、シクロアルキル基、アミノ基、又はアダマンチル基を示す。R4a及びR5aは一緒になって脂肪族環を形成してもよい。]
    で表される化合物である、請求項1に記載のダイヤモンドイド化合物。
    General formula (1A):
    Figure JPOXMLDOC01-appb-C000002
    [In the formula, ring A2 and ring A3 are the same or different and represent an aliphatic ring. R1a , R1b , and R1c are the same or different and represent a hydrogen atom, an alkyl group, a cycloalkyl group, or an adamantyl group. R2a and R3a are the same or different and represent a hydrogen atom, a hydroxyl group, an alkyl group, an alkoxy group, a cycloalkyl group, an amino group, or an adamantyl group. R2a and R3a may be joined together to form an aliphatic ring.]
    Or general formula (1B):
    Figure JPOXMLDOC01-appb-C000003
    [Wherein, ring A4 and ring A5 are the same or different and represent an aliphatic ring. R1a , R1b and R1c are the same or different and represent a hydrogen atom, an alkyl group, a cycloalkyl group, or an adamantyl group. R4a and R5a are the same or different and represent a hydrogen atom, a hydroxyl group, an alkyl group, an alkoxy group, a cycloalkyl group, an amino group, or an adamantyl group. R4a and R5a may be joined together to form an aliphatic ring.]
    The diamondoid compound according to claim 1, which is a compound represented by the formula:
  3. 一般式(1A1):
    Figure JPOXMLDOC01-appb-C000004
    [式中、R2a、R2b、R2c、R2d、R3a、R3b、R3c及びR3dは同一又は異なって、水素原子、水酸基、アルキル基、アルコキシ基、シクロアルキル基、アミノ基、又はアダマンチル基を示す。R2a及びR2b、R2b及びR2c、R2c及びR2d、R3a及びR3b、R3b及びR3c、R3c及びR3d、並びにR2a及びR3aは、少なくとも1箇所において、一緒になって脂肪族環を形成してもよい。]
    、又は一般式(1B1):
    Figure JPOXMLDOC01-appb-C000005
    [式中、R及びnは前記に同じである。R4a、R4b、R4c、R5a、R5b及びR5cは同一又は異なって、水素原子、水酸基、アルキル基、アルコキシ基、シクロアルキル基、アミノ基、又はアダマンチル基を示す。R4a及びR4b、R4b及びR4c、R5a及びR5b、R5b及びR5c、並びにR4a及びR5aは、少なくとも1箇所において、一緒になって脂肪族環を形成してもよい。]
    で表される化合物である、請求項2に記載のダイヤモンドイド化合物。
    General formula (1A1):
    Figure JPOXMLDOC01-appb-C000004
    [In the formula, R 2a , R 2b , R 2c , R 2d , R 3a , R 3b , R 3c and R 3d are the same or different and represent a hydrogen atom, a hydroxyl group, an alkyl group, an alkoxy group, a cycloalkyl group, an amino group, or an adamantyl group. R 2a and R 2b , R 2b and R 2c , R 2c and R 2d , R 3a and R 3b , R 3b and R 3c , R 3c and R 3d , and R 2a and R 3a may be joined together to form an aliphatic ring at least at one position.]
    Or general formula (1B1):
    Figure JPOXMLDOC01-appb-C000005
    [In the formula, R 1 and n are the same as above. R 4a , R 4b , R 4c , R 5a , R 5b and R 5c are the same or different and represent a hydrogen atom, a hydroxyl group, an alkyl group, an alkoxy group, a cycloalkyl group, an amino group, or an adamantyl group. R 4a and R 4b , R 4b and R 4c , R 5a and R 5b , R 5b and R 5c , and R 4a and R 5a may be joined together to form an aliphatic ring at least at one position.]
    The diamondoid compound according to claim 2, which is a compound represented by the formula:
  4. 一般式(1A’):
    Figure JPOXMLDOC01-appb-C000006
    [式中、環A及び環Aは同一又は異なって、脂肪族環を示す。R1a、R1b、R1c、R1d、R1e及びR1fは同一又は異なって、水素原子、アルキル基、シクロアルキル基、又はアダマンチル基を示す。]
    、又は一般式(1B’):
    Figure JPOXMLDOC01-appb-C000007
    [式中、環A及び環Aは同一又は異なって、脂肪族環を示す。R1a、R1b、R1c、R1d、R1e及びR1fは同一又は異なって、水素原子、アルキル基、シクロアルキル基、アダマンチル基を示す。]
    で表される化合物である、請求項2に記載のダイヤモンドイド化合物。
    General formula (1A'):
    Figure JPOXMLDOC01-appb-C000006
    [In the formula, ring A2 and ring A3 are the same or different and represent an aliphatic ring. R1a , R1b , R1c , R1d , R1e , and R1f are the same or different and represent a hydrogen atom, an alkyl group, a cycloalkyl group, or an adamantyl group.]
    Or general formula (1B'):
    Figure JPOXMLDOC01-appb-C000007
    [In the formula, ring A4 and ring A5 are the same or different and represent an aliphatic ring. R1a , R1b , R1c , R1d , R1e , and R1f are the same or different and represent a hydrogen atom, an alkyl group, a cycloalkyl group, or an adamantyl group.]
    The diamondoid compound according to claim 2, which is a compound represented by the formula:
  5. 一般式(1A’1):
    Figure JPOXMLDOC01-appb-C000008
    [式中、R2b、R2c、R2d、R3b、R3c及びR3dは同一又は異なって、水素原子、水酸基、アルキル基、アルコキシ基、シクロアルキル基、アミノ基、又はアダマンチル基を示す。R2b及びR2c、R2c及びR2d、R3b及びR3c、並びにR3c及びR3dは、少なくとも1箇所において、一緒になって脂肪族環を形成してもよい。]
    、又は一般式(1B’1):
    Figure JPOXMLDOC01-appb-C000009
    [式中、R4b、R4c、R5b及びR5cは同一又は異なって、水素原子、水酸基、アルキル基、アルコキシ基、シクロアルキル基、アミノ基、又はアダマンチル基を示す。R4b及びR4c、並びにR5b及びR5cは、少なくとも1箇所において、一緒になって脂肪族環を形成してもよい。]
    で表される化合物である、請求項4に記載のダイヤモンドイド化合物。
    General formula (1A'1):
    Figure JPOXMLDOC01-appb-C000008
    [In the formula, R 2b , R 2c , R 2d , R 3b , R 3c and R 3d are the same or different and each represents a hydrogen atom, a hydroxyl group, an alkyl group, an alkoxy group, a cycloalkyl group, an amino group, or an adamantyl group. R 2b and R 2c , R 2c and R 2d , R 3b and R 3c , and R 3c and R 3d may be joined together at least at one position to form an aliphatic ring.]
    Or general formula (1B'1):
    Figure JPOXMLDOC01-appb-C000009
    [In the formula, R 4b , R 4c , R 5b and R 5c are the same or different and each represents a hydrogen atom, a hydroxyl group, an alkyl group, an alkoxy group, a cycloalkyl group, an amino group, or an adamantyl group. R 4b and R 4c , and R 5b and R 5c may be joined together at least at one position to form an aliphatic ring.]
    The diamondoid compound according to claim 4, which is a compound represented by the formula:
  6. 請求項1~5のいずれか1項に記載のダイヤモンドイド化合物の製造方法であって、
    (II)一般式(2):
    Figure JPOXMLDOC01-appb-C000010
    [式中、R及びnは前記に同じである。環A’は、前記環Aに対応する芳香環を示す。]
    で表されるアダマンタン縮環芳香族化合物を触媒の存在下に水素化する工程
    を備え、
    前記触媒が、ロジウム及び白金を含む触媒と、ルイス酸触媒とを含有する、製造方法。
    A method for producing the diamondoid compound according to any one of claims 1 to 5, comprising the steps of:
    (II) General formula (2):
    Figure JPOXMLDOC01-appb-C000010
    [In the formula, R 1 and n are the same as defined above. Ring A 1 ' represents an aromatic ring corresponding to ring A 1. ]
    The method includes a step of hydrogenating an adamantane-fused aromatic compound represented by the following formula (1):
    The method of the present invention, wherein the catalyst comprises a catalyst containing rhodium and platinum and a Lewis acid catalyst.
  7. 前記ルイス酸触媒が、周期表第3族、第13族又は第14族元素を活性中心とするルイス酸触媒である、請求項6に記載の製造方法。 The method according to claim 6, wherein the Lewis acid catalyst has an active center in an element of Group 3, Group 13, or Group 14 of the periodic table.
  8. 前記工程(II)が、有機溶媒の存在下に行われる、請求項6に記載の製造方法。 The method according to claim 6, wherein step (II) is carried out in the presence of an organic solvent.
  9. 前記有機溶媒が、アルカンである、請求項8に記載の製造方法。 The method according to claim 8, wherein the organic solvent is an alkane.
  10. 前記アダマンタン縮環芳香族化合物が、
    (IA)一般式(4):
    Figure JPOXMLDOC01-appb-C000011
    [式中、環A’は、前記環A及び環A’に対応する芳香環を示す。Xはハロゲン原子を示す。]
    で表される芳香族化合物と、求核剤とを反応をさせ、次いで、一般式(5A)又は(5B):
    Figure JPOXMLDOC01-appb-C000012
    [式中、R及びnは前記に同じである。]
    で表されるアダマンタノン化合物と反応させ、
    一般式(6):
    Figure JPOXMLDOC01-appb-C000013
    [式中、A1”、R及びnは前記に同じである。]
    で表されるアダマンタン含有アレーン化合物を得る工程、及び
    (IB)前記工程(IA)で得られたアダマンタン含有アレーン化合物と、ブレンステッド酸及び/又はルイス酸とを反応させる工程
    を備える製造方法により得られる、請求項6に記載の製造方法。
    The adamantane-fused aromatic compound is
    (IA) General formula (4):
    Figure JPOXMLDOC01-appb-C000011
    [In the formula, ring A 1 ' represents an aromatic ring corresponding to ring A 1 and ring A 1 '. X 1 represents a halogen atom.]
    and then reacting an aromatic compound represented by the general formula (5A) or (5B):
    Figure JPOXMLDOC01-appb-C000012
    [In the formula, R 1 and n are the same as above.]
    and reacting the compound with an adamantanone compound represented by the formula:
    General formula (6):
    Figure JPOXMLDOC01-appb-C000013
    [In the formula, A 1″ , R 1 and n are the same as defined above.]
    and (IB) a step of reacting the adamantane-containing arene compound obtained in the step (IA) with a Bronsted acid and/or a Lewis acid.
  11. 前記求核剤が、有機リチウム化合物及び/又は有機マグネシウム化合物である、請求項10に記載の製造方法。 The method according to claim 10, wherein the nucleophile is an organolithium compound and/or an organomagnesium compound.
  12. 前記一般式(4)で表される芳香族化合物が、
    一般式(4A):
    Figure JPOXMLDOC01-appb-C000014
    [式中、Xは前記に同じである。環A2’及び環A3’は同一又は異なって、芳香環を示す。R2a及びR3aは同一又は異なって、水素原子、水酸基、アルキル基、アルコキシ基、シクロアルキル基、アミノ基、又はアダマンチル基を示す。R2a及びR3aは一緒になって芳香環を形成してもよい。]
    、又は一般式(4B):
    Figure JPOXMLDOC01-appb-C000015
    [式中、環A及び環Aは同一又は異なって、芳香環を示す。Xはハロゲン原子を示す。R4a及びR5aは同一又は異なって、水素原子、水酸基、アルキル基、アルコキシ基、シクロアルキル基、アミノ基、又はアダマンチル基を示す。R4a及びR5aは一緒になって芳香環を形成してもよい。]
    で表される化合物である、請求項10に記載の製造方法。
    The aromatic compound represented by the general formula (4) is
    General formula (4A):
    Figure JPOXMLDOC01-appb-C000014
    [In the formula, X1 is the same as defined above. Ring A2' and ring A3' may be the same or different and each represent an aromatic ring. R2a and R3a may be the same or different and each represent a hydrogen atom, a hydroxyl group, an alkyl group, an alkoxy group, a cycloalkyl group, an amino group, or an adamantyl group. R2a and R3a may be joined together to form an aromatic ring.]
    Or general formula (4B):
    Figure JPOXMLDOC01-appb-C000015
    [In the formula, ring A4 and ring A5 are the same or different and each represents an aromatic ring. X2 represents a halogen atom. R4a and R5a are the same or different and each represents a hydrogen atom, a hydroxyl group, an alkyl group, an alkoxy group, a cycloalkyl group, an amino group, or an adamantyl group. R4a and R5a may be joined together to form an aromatic ring.]
    The method according to claim 10, wherein the compound is represented by the formula:
PCT/JP2023/035279 2022-09-27 2023-09-27 Diamondoid compound and method for producing same WO2024071250A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-154208 2022-09-27
JP2022154208 2022-09-27

Publications (1)

Publication Number Publication Date
WO2024071250A1 true WO2024071250A1 (en) 2024-04-04

Family

ID=90477974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035279 WO2024071250A1 (en) 2022-09-27 2023-09-27 Diamondoid compound and method for producing same

Country Status (1)

Country Link
WO (1) WO2024071250A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107353944A (en) * 2016-07-14 2017-11-17 湖北航天化学技术研究所 A kind of high density cage modle heat absorbing type liquid carbon hydrogen fuel and preparation method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107353944A (en) * 2016-07-14 2017-11-17 湖北航天化学技术研究所 A kind of high density cage modle heat absorbing type liquid carbon hydrogen fuel and preparation method thereof

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
DAHL J E, LIU S G, CARLSON R M K: "Isolation and structure of higher diamondoids, nanometer-sized diamond molecules", SCIENCE, AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE, US, vol. 299, no. 5603, 3 January 2003 (2003-01-03), US , pages 96 - 99, XP002275555, ISSN: 0036-8075, DOI: 10.1126/science.1078239 *
DIETER LENOIR: "Elektrochemische Erzeugung von Adamanten", CHEMISCHE BERICHTE, VCH, DE, vol. 116, no. 6, 1 June 1983 (1983-06-01), DE , pages 2390 - 2393, XP093153660, ISSN: 0009-2940, DOI: 10.1002/cber.19831160630 *
DONAL G GILLESPIE: "Reactions of metal phosphides and arsenides. Adamantene from 1,2-dibromo- and 1,2-diiodoadamantane.", TETRAHEDRON LETTERS, vol. 18, no. 19, 1 January 1977 (1977-01-01), pages 1673 - 1676, XP093153659, DOI: 10.1016/S0040-4039(01)93246-0 *
DONAL G. GILLESPIE: "Phosphides and arsenides as metal–halogen exchange reagents. Part 1. Dehalogenation of aliphatic dihalides", JOURNAL OF THE CHEMICAL SOCIETY, PERKIN TRANSACTIONS 1, ROYAL SOCIETY OF CHEMISTRY, CAMBRIDGE, UK, 1 January 1983 (1983-01-01), Cambridge, UK , pages 1689 - 1695, XP093153664, ISSN: 0300-922X, DOI: 10.1039/P19830001689 *
MIYAMURA HIROYUKI, SUZUKI AYA, YASUKAWA TOMOHIRO, KOBAYASHI SHU̅: "Polysilane-Immobilized Rh–Pt Bimetallic Nanoparticles as Powerful Arene Hydrogenation Catalysts: Synthesis, Reactions under Batch and Flow Conditions and Reaction Mechanism", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, vol. 140, no. 36, 12 September 2018 (2018-09-12), pages 11325 - 11334, XP055964331, ISSN: 0002-7863, DOI: 10.1021/jacs.8b06015 *
TAKAKU YOSHIHARA: "Adamantane Annulation to Arenes: A Strategy for Property Modulation of Aromatic π-Systems", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, vol. 145, no. 21, 19 May 2023 (2023-05-19), pages 11754 - 11763, XP093153690, ISSN: 0002-7863, DOI: 10.1021/jacs.3c02788 *
TAKAKU YOSHIHARA: "An adamantane-annulation of arenes", 102ND CSJ ANNUAL MEETING, THE CHEMICAL SOCIETY OF JAPAN, 9 March 2022 (2022-03-09), pages K3 - 1am, XP093153671 *
TAO QU: "Four-directional synthesis of adamantane derivatives", ARKIVOC, ARKAT USA, INC., US, vol. 2021, no. 4, 30 June 2021 (2021-06-30), US , pages 18 - 50, XP093153684, ISSN: 1551-7004, DOI: 10.24820/ark.5550190.p011.237 *
WILLIAM BURNS: "Gas-phase reactions on platinum. Mechanism of the 1,2-bond shift rearrangement of alkanes", JOURNAL OF THE CHEMICAL SOCIETY, CHEMICAL COMMUNICATIONS, ROYAL SOCIETY OF CHEMISTRY, GB, no. 3, 1 January 1977 (1977-01-01), GB , pages 95 - 96, XP093153646, ISSN: 0022-4936, DOI: 10.1039/C39770000095 *

Similar Documents

Publication Publication Date Title
CN111094223B (en) binaphthyl compounds
US5347063A (en) Method for direct arylation of diamondoids
US7273953B2 (en) Process for producing arylamine
US9029551B2 (en) Carbon nanoring, method for producing same, compound suitable as starting material for producing the carbon nanoring, and method for producing the compound
JPS6226240A (en) Synthesis of hexafluorobutadiene and higher perfluorinated diene
KR20180046851A (en) Boronic acid or boronic acid ester, or method for producing polycyclic aromatic compound or oligomer of polycyclic aromatic compound using same
EP3495342B1 (en) Polymerizable triptycene derivative compound
WO2024071250A1 (en) Diamondoid compound and method for producing same
EP2546219A1 (en) Carbon nanoring and method for producing a ring-shaped compound suitable as a starting material for production of the same
EP4116308A1 (en) Naphthyl silole production method, naphthyl silole having heterocyclic group, and graphene nanoribbons having heterocyclic group
CN109970789B (en) Preparation method of triarylphosphine compound
CN113024375B (en) Preparation method of trans, trans-4-alkyl-4' -amyl-3 (E) alkene-bicyclohexane liquid crystal monomer
JP2022084019A (en) Enantioselective alkenylation of aldehydes
JP4992027B2 (en) Aromatizing agent
EP3766868A1 (en) Method for producing aniline derivative
CN112409176A (en) Synthesis method of p-acetoxystyrene
Liese et al. A convenient general access to methyl 2-chloro-2-cyclopropylidenacetates, reactive Michael acceptors and cycloaddends
JP2010280637A (en) Method for producing b-arylborazine
CN112321433B (en) Synthesis method of tert-butyl 3- (hydroxymethyl) cyclohexanecarboxylate
JP4238046B2 (en) Method for producing conjugated polycyclic compound
CN108047087A (en) 3 '-(4- bromonaphthalene -1- bases) [1,1 '-xenyl] -4- nitriles and its synthetic method
CN114751939B (en) Tetradentate ONCN platinum complex containing polyazacycle
CN115521282A (en) Synthetic process of coumarin compound E-Suberenol
CN108178737B (en) 4 '- (4-bromonaphthalene-1-yl) [1, 1' -biphenyl ] -4-nitrile and synthesis method thereof
JPWO2016047766A1 (en) Method for producing transparent body, transparent body and amorphous body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872472

Country of ref document: EP

Kind code of ref document: A1