WO2024071080A1 - Base station, communication device, and communication method - Google Patents

Base station, communication device, and communication method Download PDF

Info

Publication number
WO2024071080A1
WO2024071080A1 PCT/JP2023/034833 JP2023034833W WO2024071080A1 WO 2024071080 A1 WO2024071080 A1 WO 2024071080A1 JP 2023034833 W JP2023034833 W JP 2023034833W WO 2024071080 A1 WO2024071080 A1 WO 2024071080A1
Authority
WO
WIPO (PCT)
Prior art keywords
gap
scg
mcg
identifier
network
Prior art date
Application number
PCT/JP2023/034833
Other languages
French (fr)
Japanese (ja)
Inventor
智之 山本
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2024071080A1 publication Critical patent/WO2024071080A1/en

Links

Images

Definitions

  • This disclosure relates to a base station, a communication device, and a communication method used in a mobile communication system.
  • 3GPP 3rd Generation Partnership Project
  • 3rd Generation Partnership Project 3rd Generation Partnership Project
  • 3rd Generation Partnership Project 3rd Generation Partnership Project
  • a MUSIM Multi-Universal Subscriber Identity Module
  • a MUSIM gap can be set during which communication with a certain network (hereinafter referred to as a first network) can be temporarily interrupted in order to receive signaling (e.g., monitoring paging, acquiring system information blocks (SIBs), etc.) from another network (hereinafter referred to as a second network) while maintaining a connection with the first network.
  • SIBs system information blocks
  • SCG gaps MUSIM gaps for secondary cell groups (SCGs) associated with secondary nodes (hereinafter referred to as SCG gaps) have been discussed (see, for example, Non-Patent Document 1).
  • a MUSIM communication device in which a SCG gap is set can communicate with a second network during a SCG gap in which communication with the SCG of a first network can be temporarily interrupted, thereby enabling communication with the second network while continuing communication with the master cell group (MCG) of the first network.
  • MCG master cell group
  • the MUSIM communication device can continue communication with the SCG of the first network even during a gap in which communication with the second network is performed by communicating with the second network during the gap for the MCG.
  • a gap identifier for identifying the MUSIM gap (specifically, MUSIM-GapID) is associated with MUSIM gap information indicating the gap parameters of the MUSIM gap (specifically, MUSIM-GapInfo). Therefore, it is expected that the MUSIM communication device will communicate with the second network during a gap for SCG based on the gap parameters corresponding to the gap identifier specified by the first network.
  • the base station is a base station that operates as a master node in a first network including a master node associated with a master cell group (MCG) configured in a communication device and a secondary node associated with a secondary cell group (SCG) configured in the communication device, and includes a control unit that notifies the communication device of an MCG gap setting related to a gap for an MCG, which is a period during which the communication device can temporarily suspend communication in the MCG to communicate with a second network, and an SCG gap setting related to a gap for an SCG, which is a period during which the communication device can temporarily suspend communication in the SCG to communicate with the second network, each of the MCG gap setting and the SCG gap setting includes a gap identifier, and the control unit notifies the communication device of the gap identifier in a manner that makes it possible to identify whether the gap identifier is for the SCG.
  • MCG master cell group
  • SCG secondary cell group
  • a communication device is a communication device that communicates between a master node associated with a master cell group (MCG) in a first network and a secondary node associated with a secondary cell group (SCG) in the first network, and includes a control unit that acquires from the master node an MCG gap setting related to an MCG-oriented gap, which is a period during which the communication device can temporarily suspend communication in the MCG to communicate with a second network, and an SCG gap setting related to an SCG-oriented gap, which is a period during which the communication device can temporarily suspend communication in the SCG to communicate with the second network, each of the MCG gap setting and the SCG gap setting includes a gap identifier, and the control unit acquires the gap identifier from the master node in a manner that allows identification of whether the gap identifier is for the SCG or not.
  • MCG master cell group
  • SCG secondary cell group
  • the communication method is a communication method executed by a base station operating as a master node in a first network including a master node associated with a master cell group (MCG) configured in a communication device and a secondary node associated with a secondary cell group (SCG) configured in the communication device, and includes a step of notifying the communication device of an MCG gap setting related to a gap for an MCG, which is a period during which the communication device can temporarily suspend communication in the MCG to communicate with a second network, and an SCG gap setting related to a gap for an SCG, which is a period during which the communication device can temporarily suspend communication in the SCG to communicate with the second network, each of the MCG gap setting and the SCG gap setting including a gap identifier, and in the step, notifying the communication device of the gap identifier in a manner that allows identification of whether the gap identifier is for the SCG or not.
  • MCG master cell group
  • SCG secondary cell group
  • the communication method is a communication method executed by a communication device that communicates between a master node associated with a master cell group (MCG) in a first network and a secondary node associated with a secondary cell group (SCG) in the first network, and includes a step of acquiring from the master node an MCG gap setting related to an MCG-oriented gap, which is a period during which the communication device can temporarily suspend communication in the MCG to communicate with a second network, and an SCG gap setting related to an SCG-oriented gap, which is a period during which the communication device can temporarily suspend communication in the SCG to communicate with the second network, each of the MCG gap setting and the SCG gap setting includes a gap identifier, and in the step, the gap identifier is acquired from the master node in a manner that makes it possible to identify whether the gap identifier is for the SCG or not.
  • MCG master cell group
  • SCG secondary cell group
  • FIG. 1 is a diagram illustrating an example of a configuration of a mobile communication system according to an embodiment.
  • FIG. 2 is a diagram showing an example of the configuration of a protocol stack in the mobile communication system according to the embodiment.
  • FIG. 3 is a diagram for explaining the assumed scenario.
  • FIG. 4 is a diagram illustrating an example of the configuration of a UE according to the embodiment.
  • FIG. 5 is a diagram illustrating an example of the configuration of a base station of the first network according to the embodiment.
  • FIG. 6 is a sequence diagram (part 1) showing a first operation example according to the embodiment.
  • FIG. 7 is a diagram (part 1) for explaining information elements in a first operation example according to the embodiment.
  • FIG. 8 is a diagram (part 2) for explaining information elements in the first operation example according to the embodiment.
  • FIG. 9 is a diagram (part 3) for explaining information elements in the first operation example according to the embodiment.
  • FIG. 10 is a diagram (part 4) for explaining information elements in the first operation example according to the embodiment.
  • FIG. 11 is a diagram (part 5) for explaining information elements in the first operation example according to the embodiment.
  • FIG. 12 is a sequence diagram (part 2) illustrating a first operation example according to the embodiment.
  • FIG. 13 is a diagram (part 6) for explaining information elements in the first operation example according to the embodiment.
  • FIG. 14 is a diagram (part 7) for explaining information elements in the first operation example according to the embodiment.
  • FIG. 15 is a diagram (part 8) for explaining information elements in the first operation example according to the embodiment.
  • FIG. 16 is a sequence diagram showing a second operation example according to the embodiment.
  • FIG. 17 is a diagram (part 1) for explaining information elements in a second operation example according to the embodiment.
  • FIG. 18 is a diagram (part 2) for explaining information elements in the second operation example according to the embodiment.
  • one of the objectives is to provide a base station, communication device, and communication method that allows the SCG gap to be appropriately set in the communication device.
  • FIG. 1 A configuration of a mobile communication system 1 according to an embodiment will be described with reference to Fig. 1.
  • the mobile communication system 1 is a fifth generation system (5G/NR: New Radio) of the 3GPP standard
  • 5G/NR New Radio
  • 4G/LTE Long Term Evolution
  • a sixth generation system may be at least partially applied to the mobile communication system 1.
  • the mobile communication system 1 includes a user equipment (UE) 100, a first network 200A, and a second network 200B.
  • UE user equipment
  • UE100 is an example of a communication device.
  • UE100 may be a mobile wireless communication device.
  • UE100 may be a device used by a user.
  • UE100 may be a user device defined in the technical specifications of 3GPP.
  • UE100 is a mobile phone terminal (including a smartphone), a tablet terminal, a notebook PC, a communication module (including a communication card or chipset), a sensor or a device provided in a sensor, a vehicle or a device provided in a vehicle (e.g., a Vehicle UE), an aircraft or a device provided in an aircraft (e.g., an Aerial UE).
  • UE100 may be called by other names such as a mobile station, a mobile terminal, a mobile device, a mobile unit, a subscriber station, a subscriber terminal, a subscriber device, a subscriber unit, a wireless station, a wireless terminal, a wireless device, a wireless unit, a remote station, a remote terminal, a remote device, or a remote unit.
  • UE100 can communicate with multiple networks using multiple subscriber identity modules (SIMs).
  • SIMs subscriber identity modules
  • UE100 may be a multi-SIM device that supports multiple SIMs.
  • UE100 may be referred to as a MUSIM device, for example.
  • MUSIM device for example.
  • SIM subscriber identity module
  • UE100 may support three or more SIMs.
  • "Supporting multiple SIMs" means that UE100 has the ability to handle multiple SIMs, and does not necessarily have to be equipped with multiple SIMs.
  • Such a UE100 may be called a "UE that supports multiple SIMs.”
  • the SIM is not limited to a card-type SIM (a so-called SIM card), but may be an embedded SIM (a so-called eSIM) that is previously built into UE100.
  • the SIM is sometimes called a USIM (Universal Subscriber Identity Module).
  • the first network 200A is a network associated with one SIM of the UE 100.
  • the second network 200B is a network associated with the other SIM of the UE 100.
  • the UE 100 uses one SIM to register its location to the first network 200A, and uses the other SIM to register its location to the second network 200B. That is, the UE 100 is present in both the first network 200A and the second network 200B.
  • the first network 200A and the second network 200B may be networks of different telecommunications carriers. However, the first network 200A and the second network 200B may be networks of the same telecommunications carrier.
  • the first network 200A and the second network 200B may be assigned different PLMN (Public Land Mobile Network) IDs.
  • PLMN Public Land Mobile Network
  • the first network 200A has a base station 210A and a core network 220A that constitute a radio access network.
  • the core network 220A has a mobility management device 221A and a gateway device 222A as core network devices.
  • the second network 200B has a base station 210B and a core network 220B that constitute a radio access network.
  • the core network 220B has a mobility management device 221B and a gateway device 222B as core network devices.
  • the base stations 210A and 200B are not distinguished, they are simply called the base station 210, when the mobility management devices 221A and 221B are not distinguished, they are simply called the mobility management device 221, and when the gateway devices 222A and 222B are not distinguished, they are simply called the gateway device 222.
  • the base station 210 is a wireless communication device that performs wireless communication with the UE 100.
  • the base station 210 manages one or more cells.
  • the base station 210 performs wireless communication with the UE 100 that has established a connection with its own cell in the radio resource control (RRC) layer.
  • the base station 210 has a radio resource management (RRM) function, a routing function for user data (hereinafter simply referred to as "data"), a measurement control function for mobility control and scheduling, and the like.
  • RRM radio resource management
  • Cell is used as a term indicating the smallest unit of a wireless communication area.
  • Cell is also used as a term indicating a function or resource that performs wireless communication with the UE 100.
  • One cell belongs to one carrier frequency.
  • FIG. 1 shows an example in which the base station 210A manages the cell C1, and the base station 210B manages the cell C2.
  • the UE 100 is located in an overlapping area of the cells C1 and C2.
  • the base station 210 may be a gNB, which is a 5G/NR base station, or an eNB, which is a 4G/LTE base station. In the following, an example in which the base station 210 is a gNB will be mainly described.
  • the base station 210 may be functionally divided into a CU (Central Unit) and a DU (Distributed Unit).
  • the base station 210 may be a relay node such as an IAB (Integrated Access and Backhaul) node.
  • the mobility management device 221 is a device corresponding to the control plane, and is a device that performs various mobility management for the UE 100.
  • the mobility management device 221 communicates with the UE 100 using NAS (Non-Access Stratum) signaling, and manages information on the tracking area in which the UE 100 is located.
  • the mobility management device 221 performs paging through the base station 210 to notify the UE 100 of an incoming call.
  • the mobility management device 221 may be a 5G/NR AMF (Access and Mobility Management Function) or a 4G/LTE MME (Mobility Management Entity).
  • the gateway device 222 is a device that supports the user plane and controls the transfer of data for the UE 100.
  • the gateway device 222 may be a 5G/NR UPF (User Plane Function) or a 4G/LTE S-GW (Serving Gateway).
  • the protocol of the wireless section between the UE 100 and the base station 210 includes a physical (PHY) layer, a medium access control (MAC) layer, a radio link control (RLC) layer, a packet data convergence protocol (PDCP) layer, and a radio resource control (RRC) layer.
  • PHY physical
  • MAC medium access control
  • RLC radio link control
  • PDCP packet data convergence protocol
  • RRC radio resource control
  • the PHY layer performs encoding/decoding, modulation/demodulation, antenna mapping/demapping, and resource mapping/demapping. Data and control information are transmitted between the PHY layer of the UE 100 and the PHY layer of the base station 210 via a physical channel.
  • the MAC layer performs data priority control, retransmission processing using hybrid ARQ (HARQ), random access procedures, etc.
  • Data and control information are transmitted between the MAC layer of UE100 and the MAC layer of base station 210 via a transport channel.
  • the MAC layer of base station 210 includes a scheduler. The scheduler determines the uplink and downlink transport format (transport block size, modulation and coding scheme (MCS)) and the resources to be allocated to UE100.
  • MCS modulation and coding scheme
  • the RLC layer uses the functions of the MAC layer and PHY layer to transmit data to the RLC layer on the receiving side. Data and control information are transmitted between the RLC layer of the UE 100 and the RLC layer of the base station 210 via logical channels.
  • the PDCP layer performs header compression/decompression, and encryption/decryption.
  • the SDAP (Service Data Adaptation Protocol) layer may be provided as a layer above the PDCP layer.
  • the SDAP (Service Data Adaptation Protocol) layer maps IP flows, which are the units by which the core network performs QoS (Quality of Service) control, to radio bearers, which are the units by which the AS (Access Stratum) performs QoS control.
  • IP flows which are the units by which the core network performs QoS (Quality of Service) control
  • radio bearers which are the units by which the AS (Access Stratum) performs QoS control.
  • the RRC layer controls logical channels, transport channels, and physical channels in response to the establishment, re-establishment, and release of radio bearers.
  • RRC signaling for various settings is transmitted between the RRC layer of UE100 and the RRC layer of base station 210.
  • UE100 When there is an RRC connection between the RRC of UE100 and the RRC of base station 210, UE100 is in an RRC connected state.
  • UE100 When there is no RRC connection between the RRC of UE100 and the RRC of base station 210, UE100 is in an RRC idle state.
  • UE100 is in an RRC inactive state.
  • the NAS layer which is located above the RRC layer, performs session management and mobility management for UE100.
  • NAS signaling is transmitted between the NAS layer of UE100 and the NAS layer of the mobility management device 221.
  • UE100 has two modes (NAS states) in the NAS layer: idle mode and connected mode. In connected mode, the context information of UE100 is held in the network, and in idle mode, the context information of UE100 is not held in the network. When UE100 is in connected mode, UE100 is in an RRC connected state or an RRC inactive state. When UE100 is in idle mode, UE100 is in an RRC idle state.
  • NAS states NAS states
  • the mode at the NAS layer may be 5G Mobility Management (5GMM) mode.
  • the connected mode may be 5GMM-connected mode
  • the idle mode may be 5GMM-idle mode.
  • UE100 has an application layer and the like in addition to the radio interface protocol.
  • a UE 100 that communicates with a plurality of networks using a plurality of subscriber identity modules is specified.
  • a period (hereinafter, MUSIM gap) during which communication with the first network 200A can be temporarily interrupted can be set in order to perform a signaling reception operation (e.g., paging monitoring, acquisition of a system information block (SIB), measurement, etc.) from another network (e.g., the second network 200B) while maintaining a connection with a certain network (e.g., the first network 200A).
  • a signaling reception operation e.g., paging monitoring, acquisition of a system information block (SIB), measurement, etc.
  • a work item is being launched to formulate a function for a UE 100 having two transceivers to communicate with multiple networks using multiple SIMs.
  • the UE 100 when the UE 100 communicates with the first network 200A using the SIM 111, the UE 100 can use the first transceiver 121 and the second transceiver 122 for communication with the first network 200A.
  • FIG. 3B when the UE 100 communicates with the second network 200B using the SIM 112, it is assumed that the second transceiver 122 is switched to communication with the second network 200B. This allows the UE 100 to communicate with the second network 200B using the second transceiver 122 while maintaining communication with the first network 200A using the first transceiver 121.
  • UE100 when UE100 is communicating with multiple cells in the first network 200A, it is assumed that it will communicate with some of the multiple cells using one transceiver unit (e.g., the first transceiver unit 121) while communicating with the remaining cells of the multiple cells using the other transceiver unit (e.g., the second transceiver unit 122).
  • one transceiver unit e.g., the first transceiver unit 121
  • the other transceiver unit e.g., the second transceiver unit 122
  • UE 100 in which a MUSIM gap is set can continue communication with some cells using the first transceiver unit 121, while interrupting communication with the remaining cells during the MUSIM gap and performing signaling reception operations in the second network 200B using the second transceiver unit 122, thereby continuing communication with the first network 200A even during the MUSIM gap. This can improve communication performance.
  • a UE 100 in which an SCG gap is set can communicate with the second network 200B while continuing communication with the master cell group (MCG) of the first network 200A by communicating with the second network 200B during the SCG gap, in which communication with the SCG of the first network 200A can be temporarily interrupted.
  • MCG master cell group
  • the present disclosure describes an operation for enabling UE100 to handle the SCG gap.
  • the UE 100 can continue communication with the SCG of the first network 200A even during a gap in which communication with the second network 200B is performed by communicating with the second network 200B during the gap for the MCG.
  • a gap identifier for identifying the MUSIM gap (specifically, MUSIM-GapID) is associated with MUSIM gap information indicating the gap parameters of the MUSIM gap (specifically, MUSIM-GapInfo). Therefore, it is expected that the UE 100 will communicate with the second network 200B during a gap for SCG based on the gap parameters corresponding to the gap identifier specified by the first network 200A.
  • the present disclosure describes an operation for enabling UE100 to appropriately set gaps for the SCG.
  • UE100 can transmit a gap recommendation list (specifically, musim-GapPreferenceList) to the network to notify the network of the recommended MUSIM gap.
  • the network can set a MUSIM gap in UE100 based on the MUSIM gap recommendation list.
  • the present disclosure describes an operation for making it possible to know whether or not a gap for SCG can be set.
  • the UE 100 has an antenna 101, an antenna 102, an SIM 111, an SIM 112, a communication unit 120, and a control unit 130.
  • the antenna 101 and the antenna 102 may be provided outside the UE 100.
  • the SIM 111 and the SIM 112 may be a SIM card or an eSIM.
  • SIM111 stores subscriber information and setting information necessary for UE100 to communicate with the first network 200A.
  • SIM111 stores identification information of UE100 in the first network 200A, such as a telephone number and IMSI (International Mobile Subscriber Identity).
  • SIM111 corresponds to a first subscriber information module.
  • UE100 communicates with the first network 200A using SIM111.
  • SIM112 stores subscriber information and setting information necessary for UE100 to communicate with the second network 200B.
  • SIM112 stores identification information of UE100 in the second network 200B, such as a telephone number and IMSI.
  • SIM112 corresponds to a second subscriber information module.
  • UE100 communicates with the second network 200B using SIM112.
  • the communication unit 120 performs wireless communication with the first network 200A and the second network 200B via the antenna 101 and the antenna 102 under the control of the control unit 130.
  • the communication unit 120 has a plurality of transceivers.
  • the transceivers may be referred to as a transceiver or as an RF (Radio Frequency) chain.
  • the communication unit 120 has a first transceiver 121 and a second transceiver 122.
  • the first transceiver 121 and the second transceiver 122 have a receiving unit 120R and a transmitting unit 120T.
  • the receiving unit 120R converts the radio signal received by each antenna into a receiving signal, which is a baseband signal, performs signal processing on the received signal, and outputs it to the control unit 130.
  • the transmitting unit 120T performs signal processing on the transmitting signal, which is a baseband signal output by the control unit 130, converts it into a radio signal, and transmits the radio signal from each antenna.
  • the receiving unit 120R may be referred to as a receiver, an Rx chain, or an Rx branch.
  • the transmitting unit 120T may be referred to as a transmitter, a Tx chain, or a Tx branch.
  • the first transmitting/receiving unit 121 has a first receiving unit 121R as the receiving unit 120R and a first transmitting unit 121T as the transmitting unit 120T.
  • the second transmitting/receiving unit 122 has a second receiving unit 122R as the receiving unit 120R and a second transmitting unit 122T as the transmitting unit 120T.
  • the control unit 130 controls the communication unit 120 and performs various controls in the UE 100.
  • the control unit 130 controls communication with the first network 200A using the SIM 111 and controls communication with the second network 200B using the SIM 112.
  • the control unit 130 includes at least one processor and at least one memory.
  • the memory stores programs executed by the processor and information used for processing by the processor.
  • the memory may include at least one of a ROM (Read Only Memory), an EPROM (Erasable Programmable Read-Only Memory), an EEPROM (Electrically Erasable Programmable Read-Only Memory), a RAM (Random Access Memory), and a flash memory.
  • the processor may include a digital signal processor (DSP) that performs digital processing of digital signals, and a central processing unit (CPU) that executes programs. Note that a portion of the memory may be provided in the communication unit 120. Also, the DSP may be provided in the communication unit 120.
  • the receiver 120R receives an RRC message from the first network 200A, which allows the UE 100 to determine whether or not a gap for the SCG can be set.
  • the control unit 130 of the UE 100 determines whether or not a gap for the SCG can be set based on the RRC message. This allows the UE 100 to know whether or not a gap for the SCG can be set based on the RRC message.
  • the control unit 130 also acquires an MCG gap setting for the gap for the MCG and an SCG gap setting for the gap for the SCG from the master node.
  • Each of the MCG gap setting and the SCG gap setting includes a gap identifier.
  • the control unit 130 acquires the gap identifier from the master node in a manner that allows the control unit 130 to identify whether the gap identifier is for the SCG or not. This allows the UE 100 to identify whether the gap identifier is for the SCG or not, and to appropriately control the gap set for itself.
  • UE100 the operation of the functional units of UE100 (specifically, at least one of antenna 101, antenna 102, SIM 111, SIM 112, communication unit 120, and control unit 130) may be described as the operation of UE100.
  • Example of base station configuration A configuration example of the base station 210A of the first network 200A will be described with reference to Fig. 5. Note that the base station 210B of the second network 200B has a similar configuration to the base station 210A, so a description thereof will be omitted. As shown in Fig. 5, the base station 210A has an antenna 211, a wireless communication unit 212, a network communication unit 213, and a control unit 214.
  • the wireless communication unit 212 communicates with the UE 100 via the antenna 211.
  • the wireless communication unit 212 has a receiving unit 212R and a transmitting unit 212T.
  • the receiving unit 212R converts the wireless signal received by the antenna 211 into a received signal, which is a baseband signal, performs signal processing on the received signal, and outputs it to the control unit 214.
  • the transmitting unit 212T performs signal processing on the transmission signal, which is a baseband signal, output by the control unit 214, converts it into a wireless signal, and transmits the wireless signal from the antenna 211.
  • the network communication unit 213 is connected to the core network 220A. Under the control of the control unit 214, the network communication unit 213 performs network communication with the mobility management device 221A and the gateway device 222A.
  • the control unit 214 controls the wireless communication unit 212 and performs various controls in the base station 210A.
  • the control unit 214 includes at least one processor and at least one memory.
  • the memory stores programs executed by the processor and information used in processing by the processor.
  • the memory may include at least one of ROM, EPROM, EEPROM, RAM, and flash memory.
  • the processor may include a digital signal processor (DSP) that performs digital processing of digital signals, and a central processing unit (CPU) that executes programs. Note that a part of the memory may be provided in the wireless communication unit 212. Also, the DSP may be provided in the wireless communication unit 212.
  • DSP digital signal processor
  • the transmission unit 212T transmits to the UE 100 an RRC message for the UE 100 to determine whether or not a gap for the SCG can be set. This allows the UE 100 to know whether or not a gap for the SCG can be set.
  • the network communication unit 213 of the master node also transmits notification information to the secondary node for the secondary node to identify the gap for SCG.
  • the network communication unit 213 of the secondary node also receives notification information from the master node. This allows the secondary node to identify the gap for SCG and handle the gap for SCG appropriately.
  • the control unit 214 also notifies the UE 100 of an MCG gap setting for the gap for the MCG and an SCG gap setting for the gap for the SCG.
  • Each of the MCG gap setting and the SCG gap setting includes a gap identifier.
  • the control unit 214 notifies the UE 100 of the gap identifier in a manner that makes it possible to identify whether the gap identifier is for the SCG or not. Because it is possible to identify whether the gap identifier is for the SCG or not, the UE 100 can appropriately control the gap set for itself.
  • the operation of the functional units included in the base station 210A may be described as the operation of the base station 210A.
  • Step S101 The UE 100 performs dual connectivity operation. Specifically, the UE 100 communicates with a base station 210M operating as a master node associated with a master cell group (MCG) in the first network 200A, and a base station 210S operating as a secondary node associated with a secondary cell group (SCG) in the first network 200A.
  • MCG master cell group
  • SCG secondary cell group
  • the UE 100 communicates in the MCG set in the UE 100 and also communicates in the SCG set in the UE 100.
  • the MCG is a group of serving cells associated with a master node in the DC.
  • the MCG is composed of an Sp cell (primary cell (P cell)) and optionally one or more secondary cells (S cells).
  • the Sp cell is a P cell of the MCG or SCG.
  • the SCG is a group of serving cells associated with a secondary node in the DC.
  • the SCG is composed of an Sp cell (primary secondary cell (PS cell)) and optionally one or more S cells.
  • the PS cell is an Sp cell of the SCG.
  • the MAC entity of the UE 100 may be associated with the MCG and the SCG in the DC.
  • the base station 210M is associated with the MCG set in the UE 100 in the DC.
  • the base station 210M manages the MCG set in the UE 100.
  • the base station 210M operates as a master node in the first network 200A.
  • the base station 210S is associated with the SCG set in the UE 100 in the dual connectivity.
  • the base station 210S manages the SCG set in the UE 100.
  • the base station 210S operates as a secondary node in the first network 200A.
  • UE100 is in an RRC connected state in the first network 200A.
  • an RRC connection is established between the first network 200A and UE100. Therefore, the control unit 130 of UE100 and the control unit 214 of the base station (base station 210M and base station 210S) may be performing control to establish an RRC connection between UE100 and the base station.
  • UE100 is communicating in the first network 200A.
  • UE100 may be provided with services such as voice calls from the first network 200A.
  • the control unit 130 of UE100 controls communication with the MCG and SCG.
  • Communicaticating means that UE100 is at least in an RRC connected state in the network. Therefore, when UE100 is communicating with the first network 200A, it is continuously exchanging data with the network, either continuously or discontinuously.
  • the communication between UE100 and base station 210M may be, for UE100, communication between UE100 and the cell of base station 210M (specifically, MCG, SCG, P cell, S cell), i.e., communication between UE100 and the cell in which UE100 is located.
  • MCG, SCG, P cell, S cell i.e., communication between UE100 and the cell in which UE100 is located.
  • base station 210S communication between UE100 and a node belonging to the first network 200A (e.g., base station 210A (i.e., MCG, SCG, P cell, S cell), mobility management device 221A, gateway device 222A) may be referred to as communication between UE100 and the first network 200A.
  • UE100 communicates with the first network 200A (specifically, sending and receiving/notifying messages, etc.) via communication unit 120 (specifically, receiving unit 120R and/or transmitting unit 120T), but for ease of explanation, the explanation that the communication is via communication unit 120 will be omitted as appropriate. Similarly, the explanation that the communication between UE100 and the second network 200B is communication via communication unit 120 will be omitted as appropriate. Therefore, the transmission and/or reception of messages, etc. by UE100 may be the transmission and/or reception of messages, etc. by communication unit 120 (specifically, receiving unit 120R and/or transmitting unit 120T) of UE100.
  • Step S102 The transmission unit 212T of the base station 210B may transmit to the UE 100 a radio resource control (RRC) message for the UE 100 to determine whether or not the SCG gap can be set in the MCG.
  • the reception unit 120R of the UE 100 may receive an RRC message in the MCG.
  • the RRC message may be, for example, an RRC reconfiguration message, an SIB message, or the like.
  • the RRC message may include enable/disable information indicating whether or not a gap for an SCG can be configured.
  • the enable/disable information may be included in a cell group configuration (CellGroupConfig) used to configure an MCG or an SCG, as shown in E11 of FIG. 7.
  • CellGroupConfig used to configure an MCG or an SCG, as shown in E11 of FIG. 7.
  • the enable/disable information may also be included in an other configuration (OtherConfig) that includes configurations related to other configurations, as shown in E14 of FIG. 8.
  • the availability information (e.g., musim-GapAvailableForSCG) may be indicated by binary information such as ENUM or BOOL. For example, when the availability information is "true”, it may indicate that a gap for SCG can be set. For example, when the availability information is not "true”, it may indicate that a gap for SCG cannot be set.
  • the RRC message may include configuration number information (e.g., musim-nrofGapForSCG) indicating the number of gaps that can be set for SCG.
  • the configuration number information may be included in the cell group configuration, as shown in E12 and E13 of FIG. 7.
  • the configuration number information may also be included in the other configuration, as shown in E16 and E17 of FIG. 9. If it is not possible to set a gap for SCG, the configuration number information may indicate 0.
  • the number of configurable gaps for SCG may be specified in advance.
  • the number of configurable gaps for SCG may be specified in the 3GPP technical specifications.
  • the RRC message may also include timer information indicating a timer value to be set in a timer (hereinafter, SCG gap prohibit timer) for timing a period during which notification of SCG gap information recommended by UE 100 is prohibited.
  • SCG gap prohibit timer When the SCG gap prohibit timer is running, UE 100 may be prohibited from notifying SCG gap information.
  • the timer information may be specified separately from the MUSIM gap prohibition timer information (specifically, musim-GapProhibitTimer-r17) specified in Release 17 of the 3GPP technical specifications, or may be common to both.
  • the MUSIM gap prohibition timer is a prohibition timer related to MUSIM auxiliary information that reports the recommended gap (gap preference). Therefore, the MUSIM gap prohibition timer may be a timer that measures the period during which notification of MUSIM gap information recommended by UE 100 is prohibited.
  • timer information (e.g., musim-GapProhibitTimer) may be included in the SCG gap setting (e.g., MUSIM-GapAssistanceConfigSCG) related to the gap for SCG.
  • the timer information may be included in the SCG gap setting (e.g., MUSIM-GapAssistanceConfigSCG) together with the setting number information (E13 of FIG. 7).
  • the base station 210M may receive the availability information and/or the setting number information from the secondary node. For example, the base station 210M may receive the availability information and/or the setting number information from the secondary node in a procedure (e.g., SeNB addition) for the base station 210S to operate as a secondary node.
  • a procedure e.g., SeNB addition
  • Step S103 The SIM 112 may be inserted into the UE 100.
  • the control unit 130 of the UE 100 may start a process for communicating with the second network 200B.
  • the setting of the control unit 130 may be changed by an input from a user so as to communicate with the second network 200B.
  • the control unit 130 may determine a target cell (e.g., a cell included in the MCG and/or SCG) among multiple cells for interrupting communication during a MUSIM gap for communicating with the second network 200B, based on, for example, the communication load and other conditions of each cell communicating in the first network 200A.
  • the control unit 130 may also determine a target cell, for example, based on the frequency band used in the second network 200B.
  • the MUSIM gap may be a period during which signaling reception is performed in the second network 200B.
  • Cells in which a gap for MUSIM is set may include a primary cell, a primary secondary cell, and/or a secondary cell. That is, the target cell may include a primary cell, a primary secondary cell, and/or a secondary cell.
  • control unit 130 may, for example, determine the secondary cell as the target cell, or may determine at least one cell belonging to the secondary cell group (for example, the primary secondary cell and/or the secondary cell) as the target cell.
  • the control unit 130 may, for example, determine the target cell as a cell within a frequency range that overlaps with at least a portion of the frequency band used in the second network 200B.
  • the control unit 130 may determine the target cell as a cell in frequency range 2 (FR2).
  • the control unit 130 may perform the following process to determine whether a cell included in the SCG can be determined as a target cell, i.e., whether a gap for the SCG can be set.
  • Step S104 The control unit 130 of the UE 100 determines whether or not a gap for SCG can be set, which is a period during which communication in the SCG can be temporarily interrupted in order to communicate with the second network 200B, based on the RRC message.
  • the control unit 130 may determine whether or not a gap for SCG can be set, for example, when the RRC message of step S102 is received.
  • the control unit 130 may determine whether or not a gap for SCG can be set, for example, when attempting communication with the second network 200B.
  • the control unit 130 determines whether or not a gap for SCG can be set, for example, by the following method.
  • the control unit 130 may determine whether or not a gap for an SCG can be set based on the feasibility information. When the feasibility information indicates that a gap for an SCG can be set, the control unit 130 determines that a gap for an SCG can be set. On the other hand, when the feasibility information indicates that a gap for an SCG cannot be set, the control unit 130 determines that a gap for an SCG cannot be set.
  • the control unit 130 may determine whether or not a gap for SCG can be set based on the setting number information. For example, when the RRC message does not include possible or impossible information, the control unit 130 may determine whether or not a gap for SCG can be set based on the setting number information. When the setting number information indicates that the number of gaps set for SCG is 1 or more, the control unit 130 determines that a gap for SCG can be set. On the other hand, when the setting number information indicates that the number of gaps set for SCG is 0, the control unit 130 determines that a gap for SCG cannot be set.
  • the control unit 130 may determine that it is not possible to set a gap for an SCG if the RRC message does not include information regarding the setting of a gap for an SCG. The control unit 130 may determine that it is not possible to set a gap for an SCG if the RRC message does not include possible/not possible information. The control unit 130 may determine that it is not possible to set a gap for an SCG if the RRC message does not include possible/not possible information and setting number information.
  • the first other setting e.g., OtherConfig specified in Release 17 of the 3GPP Technical Specifications
  • a setting related to the MUSIM gap specifically, a setting for reporting auxiliary information for the recommended gap (gap preference) (musim-GapAssistanceConfig)
  • the second other setting e.g., OtherConfig specified in Release 18 of the 3GPP Technical Specifications
  • the first other setting has information related to whether or not a gap for SCG can be set (e.g., musim-GapAssistanceConfigSCG-r18) set (i.e., includes)
  • any of the following processes may be performed.
  • the control unit 130 may assume that a gap for SCG can be set. Alternatively, the control unit 130 may consider that both the gap for the MCG and the gap for the SCG can be set. Alternatively, the control unit 130 may consider that both the gap for the MCG and the gap for the SCG (i.e., the MUSIM gap) cannot be set.
  • the control unit 130 may generate a gap recommendation list (e.g., musim-GapPreferenceList) to notify of the recommended MUSIM gap.
  • a gap recommendation list e.g., musim-GapPreferenceList
  • the control unit 130 may generate a gap recommendation list including information on the recommended gap for SCG.
  • the control unit 130 may perform control not to generate a gap recommendation list that does not include information on the recommended gap for SCG.
  • the control unit 130 may generate a gap recommendation list that includes information on the recommended gap for MCG and does not include information on the recommended gap for SCG.
  • the preference of UE100 may be what is recommended. Therefore, "recommended” may be replaced with “preference”.
  • the MUSIM gap of UE100's preference may be a recommended MUSIM gap (e.g., a gap for MCG and/or a gap for SCG).
  • “Gap preference” may include the recommended MUSIM gap.
  • the gap recommendation list may include and/or indicate, for example, gap preference (information).
  • the control unit 130 may generate a gap recommendation list including information on gaps for SCGs equal to or less than the number indicated by the setting number information.
  • the control unit 130 may generate a gap recommendation list including information on gaps for SCGs equal to or less than the predefined number.
  • the recommended gap information for MCG and the recommended gap information for SCG may be referred to as MUSIM-GapPrefInfo (see FIG. 10), or may be information used to indicate MUSIM gap parameters (specifically, MUSIM-GapInfo) (see FIG. 11).
  • the control unit 130 may execute the following processing to make it possible to distinguish between the recommended gap information for MCG and the recommended gap information for SCG.
  • the control unit 130 may associate a cell group identifier (cellGroupId) indicating an SCG or a cell identifier indicating a cell included in an SCG as identification information with the recommended gap information for SCG to indicate the recommended gap information for SCG.
  • the control unit 130 may associate a cell group identifier indicating an MCG or a cell identifier indicating a cell included in an MCG with the recommended gap information for MCG to indicate the recommended gap information for MCG.
  • the control unit 130 When associating a cell group identifier or a cell identifier with the recommended gap information for SCG to indicate the recommended gap information for SCG, the control unit 130 does not need to associate a cell group identifier indicating an MCG or a cell identifier indicating a cell included in an MCG with the recommended gap information for MCG.
  • the identification information for distinguishing between the recommended gap information for the MCG and the recommended gap information for the SCG may be an identifier of the frequency of the target cell.
  • the identification information may be, for example, the absolute radio-frequency channel number (ARFCN) of the target cell.
  • ARFCN absolute radio-frequency channel number
  • the identification information may also indicate, for example, the frequency range (e.g., FR1, FR2, etc.) in which the target cell is included.
  • control unit 130 may generate a gap recommendation list by generating a list of information on recommended gaps for SCG (e.g., musim-GapPreferenceList-r17) and a list of information on recommended gaps for SCG (e.g., musim-GapPreferenceListSCG-r18).
  • a gap recommendation list by generating a list of information on recommended gaps for SCG (e.g., musim-GapPreferenceList-r17) and a list of information on recommended gaps for SCG (e.g., musim-GapPreferenceListSCG-r18).
  • the control unit 130 may generate a UE assistance information message including the generated gap recommendation list.
  • the UE assistance information message may be used for indicating the UE assistance information to the first network 200A.
  • the control unit 130 may generate the UE assistance information message, for example, when providing MUSIM assistance information.
  • the MUSIM assistance information may include the above-mentioned recommended MUSIM gap information as the preference of the UE 100 for MUSIM. That is, the recommended MUSIM gap information in this embodiment may be the preferred MUSIM gap information of the UE 100.
  • the gap recommendation information included in the gap recommendation list may include at least one of the following information: information indicating the length of the MUSIM gap length recommended by UE100 (e.g., musim-GapLength); information indicating the gap offset of the MUSIM gap recommended by UE100 (e.g., musim-GapOffset); information indicating the gap start position of the non-periodic MUSIM gap recommended by UE100 while maintaining the RRC connected state (e.g., musim-PrefStarting-SFN-AndSubframex); and information indicating the gap reception period and gap offset of the periodic MUSIM gap recommended by UE100 while maintaining the RRC connected state (e.g., musim-GapRepetitionAndOffsetPeriod).
  • information indicating the length of the MUSIM gap length recommended by UE100 e.g., musim-GapLength
  • information indicating the gap offset of the MUSIM gap recommended by UE100 e.g.,
  • the explanation will proceed assuming that it is possible to set a gap for SCG. Therefore, the explanation will proceed assuming that the control unit 130 of the UE 100 generates a gap recommendation list that includes information about the gap for SCG.
  • Step S105 The transmitter 120T of the UE 100 transmits a UE assistance information message to the first network 200A (specifically, the base station 210A).
  • the receiver 212R of the base station 210A receives the UE assistance information message from the UE 100 in the MCG.
  • the control unit 214 of the base station 210A can ascertain the target cell recommended by the UE 100 based on the identification information included in the UE assistance information message.
  • the control unit 214 can also ascertain the gap recommended by the UE 100 based on the gap recommendation information.
  • the control unit 214 may determine, for example, based on the identification information, whether the gap recommendation list includes information on gaps for the MCG and/or information on gaps for the SCG.
  • the transmission unit 120T of the UE 100 may not be able to transmit a UE assistance information message that includes information about the gap for SCG. Even if the gap prohibit timer for SCG is running, the transmission unit 120T may be able to transmit a UE assistance information message that includes information only about the gap for MCG.
  • the transmitting unit 120T of the UE 100 may be able to transmit a UE assistance information message including information about the gap for the SCG when the gap prohibition timer for the SCG is not running.
  • the transmitting unit 120T may be able to transmit a UE assistance information message including information only about the gap for the SCG even when the MUSIM gap prohibition timer (specifically, musim-GapProhibitTimer-r17) is running.
  • Step S111: 12 the control unit 214 of the base station 210M determines a MUSIM gap setting regarding the MUSIM gap to be set in the UE 100.
  • the control unit 214 may determine the MUSIM gap setting (for example, MUSIM-GapConfig) based on the gap recommendation list.
  • the MUSIM gap setting may include an MCG gap setting and an SCG gap setting.
  • the MCG gap setting may be a gap setting related to a gap for an MCG, which is a period during which the UE 100 can temporarily suspend communication in the MCG in order to communicate with the second network 200B.
  • the SCG gap setting may be a gap setting related to a gap for an SCG, which is a period during which the UE 100 can temporarily suspend communication in the SCG in order to communicate with the second network 200B.
  • the control unit 214 may generate MUSIM gap setting information indicating the determined MUSIM gap setting.
  • the MUSIM gap setting information may, for example, control the setup/release of a gap for MUSIM.
  • the MUSIM gap setting information may, for example, be musim-GapConfig, MUSIM-GapConfig.
  • the MUSIM gap setting information may include at least one of information indicating a list for adding or changing a periodic MUSIM gap pattern identifier without leaving the RRC connected state (e.g., musim-GapToAddModList), information indicating a list for releasing a periodic MUSIM gap pattern identifier without leaving the RRC connected state (e.g., musim-GapToReleaseList), and information indicating that UE100 is permitted to use a non-periodic MUSIM gap when requested by UE100 in a UE assistance information message (e.g., musim-AperiodicGap).
  • information indicating a list for adding or changing a periodic MUSIM gap pattern identifier without leaving the RRC connected state e.g., musim-GapToAddModList
  • information indicating a list for releasing a periodic MUSIM gap pattern identifier without leaving the RRC connected state e.g., musim-GapToReleaseList
  • the MUSIM gap setting information may include at least one of information indicating the gap start position for periodic MUSIM gaps that do not leave the RRC connected state (musim-Start-SFN-AndSubframe), information indicating the MUSIM gap length (musim-GapLength), a gap offset of the number of subframes for periodic MUSIM gaps that do not leave the RRC connected state, and information indicating the gap repetition period in milliseconds (musim-GapRepetitionAndOffset), and a MUSIM gap identifier (e.g., MUSIM-GapID) for identifying the periodic MUSIM gap to add, change, or release.
  • MUSIM gap identifier e.g., MUSIM-GapID
  • the control unit 214 may determine the MCG gap setting when the gap recommendation list includes information on the MCG gap.
  • the control unit 214 may determine a first gap parameter (e.g., musim-GapInfo) indicating the MCG gap.
  • the control unit 214 determines the MCG gap to be set in the UE 100.
  • the control unit 214 may determine the SCG gap setting when the gap recommendation list includes information on the SCG gap. In this operation example, the control unit 214 determines the SCG gap setting in addition to the MCG gap setting. Thus, the control unit 214 determines the SCG gap to be set in the UE 100.
  • the control unit 214 may determine a second gap parameter (e.g., musim-GapInfo) indicating the SCG gap.
  • the first gap parameter and the second gap parameter may include the above-mentioned information.
  • the control unit 214 may determine all the MCG gap settings to be set in the UE 100.
  • control unit 214 may determine, as the MUSIM gap identifier, a first gap identifier associated with a first gap parameter indicating a gap for an MCG. Further, the control unit 214 may determine, as the MUSIM gap identifier, a second gap identifier associated with a second gap parameter indicating a gap for an SCG. Therefore, the MUSIM gap identifier (gap identifier) includes a first gap identifier and a second gap identifier.
  • control unit 214 may determine the first gap identifier and the second gap identifier such that the first gap identifier and the second gap identifier are different.
  • control unit 214 may select (determine) the first gap identifier and the second gap identifier from an identifier space (ID space) having a plurality of assignable gap identifiers.
  • ID space identifier space
  • the gap identifier determined as the first gap identifier cannot be selected (determined) as the second gap identifier, and therefore the first gap identifier and the second gap identifier are different.
  • the first gap identifiers are different from each other.
  • the second gap identifiers are different from each other.
  • Step S112 The network communication unit 213 of the base station 210M transmits notification information for the secondary node to identify the SCG-directed gap to the secondary node (base station 210S).
  • the network communication unit 213 of the base station 210S receives the notification information from the master node.
  • the notification information may include information on the gap for the SCG determined by the master node.
  • the notification information may include an SCG gap setting as information on the gap for the SCG.
  • the SCG gap setting may include the determined second gap parameter and a second gap identifier.
  • the notification information may include a MUSIM gap setting (e.g., MUSIM-GapConfig) as the SCG gap setting (e.g., musim-GapConfigSCG).
  • the control unit 214 may include only the SCG gap setting of all the MUSIM gap settings to be set in the UE 100 in the notification information.
  • the control unit 214 of the base station 210M may not include a second gap identifier in the notification information if only a single SCG gap setting is included in the notification information. For example, if it is specified that a maximum of one SCG gap setting can be set in the UE 100, the notification information may not include a second gap identifier. Therefore, as shown in E32 of FIG. 13, the notification information may include a second gap parameter (e.g., MUSIM-GapInfo) rather than the SCG gap setting itself including the second gap identifier.
  • a second gap parameter e.g., MUSIM-GapInfo
  • the notification information may include information on the gap for the MCG determined by the master node.
  • the notification information may include an MCG gap setting as the information on the gap for the MCG.
  • the MCG gap setting may include the determined first gap parameter and a first gap identifier.
  • the notification information may include all MUSIM gap settings to be set in UE 100.
  • the notification information may include a list of MUSIM gap settings (MCG gap settings and/or SCG gap settings). For example, the list may associate MUSIM gap settings with gap identifiers.
  • the notification information may be, for example, CG setting information (CG-ConfigInfo) for requesting the base station 210S operating as a secondary node to execute a specific action.
  • the notification information may be information (or a message) other than CG setting information.
  • control unit 214 can identify the gap for the SCG based on the SCG gap setting or the second gap parameter included in the notification information.
  • Step S113 The control unit 214 of the base station 210S may determine application of the SCG gap setting.
  • the control unit 214 may determine whether to apply each of the multiple SCG gap settings.
  • Step S114 The network communication unit 213 of the base station 210S transmits a response to the notification information to the master node (base station 210M).
  • the network communication unit 213 of the base station 210M receives the response to the notification information from the secondary node.
  • the response may include specific information that enables the master node (base station 210M) to identify the SCG gap to be applied by the secondary node from among the SCG gaps determined by the master node.
  • the specified information may be a response indicating approval. If the control unit 214 does not apply all SCG gap settings received from the master node, the specified information may be a response indicating rejection.
  • the control unit 214 may include the SCG gap setting to be applied (e.g., MUSIM-GapConfig) in the specified information.
  • the control unit 214 may include, for example, a list of SCG gap settings to be applied (e.g., a list of MUSIM-Gap) in the specified information.
  • the control unit 214 may set the contents of at least a portion of the SCG gap settings to be applied (e.g., musim-GapInfo, musim-GapConfigSCG, etc.) to empty values.
  • control unit 214 When the control unit 214 changes the SCG gap setting, it may include at least a part of the changed SCG gap setting (e.g., musim-GapInfo, musim-GapConfigSCG, etc.) in the specified information.
  • the control unit 214 When the control unit 214 changes the SCG gap setting, it may include only at least a part of the changed SCG gap setting in the specified information, and may not include the SCG gap setting to be applied in the specified information.
  • the control unit 214 may not include SCG gap settings that are not applied in the specified information.
  • the control unit 214 may not include SCG gap settings that are not applied in a list of SCG gap settings to be added/changed that is included in the specified information (e.g., musim-GapToAddModList).
  • the control unit 214 may include SCG gap settings that are not applied in a list of SCG gap settings to be released that is included in the specified information (e.g., musim-GapToReleaseList).
  • the control unit 214 may include information (e.g., boolean or enum) indicating whether each SCG gap setting has been applied in the specified information.
  • information e.g., boolean or enum
  • control unit 214 may include a second gap parameter (e.g., MUSIM-GapInfo) in the specified information instead of the SCG gap setting itself, as shown in E42 of FIG. 14.
  • a second gap parameter e.g., MUSIM-GapInfo
  • the response may be, for example, a CG setting (CG-Config) used to transfer an SCG setting (SCG radio setting) generated by the base station 210S operating as a secondary node.
  • the response may also be information (or a message) other than the CG setting.
  • control unit 214 of the base station 210M can identify the SCG gap to be applied to the secondary node from among the gaps for SCG determined by the master node based on the SCG gap setting or the second gap parameter included in the specified information.
  • control unit 214 may determine a second gap identifier that corresponds to a gap parameter indicating the gap for the SCG to be applied.
  • the control unit 214 may also determine a first gap identifier after receiving the response.
  • the control unit 214 may determine the first gap identifier and/or the second gap identifier such that the first gap identifier and the second gap identifier are different.
  • control unit 214 may determine the MUSIM gap setting to be set in the UE 100.
  • the control unit 214 generates an RRC message including the determined MUSIM gap setting. The following description will be given assuming that the MUSIM gap setting includes the MCG gap setting and the SCG gap setting.
  • each of the MCG gap setting and the SCG gap setting includes a gap identifier.
  • the gap identifier includes a first gap identifier and a second gap identifier.
  • Step S115 The transmitter 212T of the base station 210M transmits an RRC message including the MUSIM gap setting to the UE 100.
  • the receiver 120R of the UE 100 receives an RRC message including the MUSIM gap setting from the base station 210M in the MCG.
  • the control unit 214 of the base station 210M notifies the UE 100 of the MCG gap setting and the SCG gap setting.
  • the control unit 130 of the UE 100 acquires the MCG gap setting and the SCG gap setting.
  • the control unit 214 of the base station 210M can notify the gap identifier to the UE 100 in a manner that makes it possible to identify whether the gap identifier included in the MUSIM gap setting is for the SCG or not.
  • the control unit 130 of the UE 100 can obtain the gap identifier from the master node in a manner that makes it possible to identify whether the gap identifier is for the SCG or not.
  • Step S116 The control unit 130 of the UE 100 sets the MUSIM gap.
  • the control unit 130 sets the MUSIM gap based on the MUSIM gap setting information.
  • the control unit 130 performs the following operations based on the set MUSIM gap. That is, the control unit 130 performs the following operations in the MUSIM gap based on the gap parameter specified by the gap identifier.
  • Step S117 The control unit 130 of the UE 100 controls communication in the MCG and communication in the SCG during a period other than the set MUSIM gap.
  • the control unit 130 controls communication in the MCG using the first transceiver unit 121, for example.
  • the control unit 130 controls communication in the SCG using the second transceiver unit 122.
  • Step S118 The control unit 130 of the UE 100 performs control to interrupt communication in the first network 200A during the set MUSIM gap.
  • the control unit 130 of the UE 100 performs control to interrupt communication in the MCG during the set gap for the MCG.
  • the control unit 130 may perform control to switch the first transceiver unit 121 used for communication in the MCG to a receiving operation for receiving signaling in the second network 200B.
  • the control unit 130 of the UE 100 may continue communication with the SCG during the gap for the MCG.
  • the control unit 130 may perform control to switch the first transceiver unit 121 used for a receiving operation for receiving signaling in the second network 200B to a communication with the MCG.
  • the control unit 130 of the UE 100 performs control to interrupt communication in the SCG during the set gap for SCG.
  • the control unit 130 may perform control to switch the second transceiver unit 122 used for communication in the SCG to a receiving operation for receiving signaling in the second network 200B.
  • the control unit 130 of the UE 100 may continue communication with the MCG during the gap for SCG. After terminating the receiving operation, the control unit 130 may perform control to switch the second transceiver unit 122 used for a receiving operation for receiving signaling in the second network 200B to a communication with the SCG.
  • the transmitter 212T of the base station 210M transmits an RRC message to the UE 100 for the UE 100 to determine whether or not a gap for SCG can be set.
  • the receiver 120R of the UE 100 receives an RRC message from the first network 200A for the UE 100 to determine whether or not a gap for SCG can be set.
  • the control unit 130 of the UE 100 determines whether or not a gap for SCG can be set based on the RRC message. This allows the UE 100 to know whether or not a gap for SCG can be set.
  • control unit 130 may generate a gap recommendation list including information on the recommended gap for SCG. This allows the base station 210M to grasp the gap for SCG as a recommended MUSIM gap when it supports the setting of a gap for SCG.
  • control unit 130 may perform control not to generate a gap recommendation list including information on the gap for SCG recommended by the communication device. This makes it possible to avoid notifying the base station 210M of the gap for SCG even if the UE 100 does not support the setting of the gap for SCG.
  • the RRC message may also include availability information indicating whether or not a gap for an SCG can be set.
  • the control unit 130 may determine whether or not a gap for an SCG can be set based on the availability information.
  • the availability information explicitly indicates whether or not a gap for an SCG can be set, allowing the control unit 130 to know whether or not a gap for an SCG can be set.
  • the number of configurable gaps for SCG may be predefined.
  • the control unit 130 may generate a gap recommendation list including information on recommended gaps for SCG that are equal to or less than the predefined configurable number. This allows the UE 100 to avoid notifying information on a number of gaps for SCG that cannot be installed.
  • the RRC message may also include setting number information indicating the number of SCG gaps that can be set. This allows the network 10 to flexibly change the number of SCG gaps that can be set. The UE 100 can avoid notifying information about an unsettable number of SCG gaps.
  • the control unit 130 may also determine whether or not a gap for SCG can be set based on the setting number information.
  • the UE 100 can grasp whether or not a gap for SCG can be set and the number of gaps set for SCG.
  • the control unit 130 may determine that the setting of a gap for an SCG is not possible. This can reduce the amount of information to be included in the RRC message, thereby saving communication resources.
  • the RRC message also includes timer information indicating a timer value to be set in a timer for timing a period during which notification of information on a recommended gap for an SCG is prohibited. This allows the network 10 to control the period during which notification of information on a recommended gap for an SCG is prohibited.
  • the network communication unit 213 of the master node also transmits notification information to the secondary node for the secondary node to identify the gap for SCG.
  • the network communication unit 213 of the secondary node also receives notification information from the master node. This allows the secondary node to identify the gap for SCG and handle the gap for SCG appropriately.
  • control unit 214 of the master node may determine the gap for SCG to be set in the UE 100.
  • the notification information may include information on the determined gap for SCG. This allows the secondary node to identify the gap for SCG based on the information on the determined gap for SCG.
  • control unit 214 of the master node may determine the gap for MCG to be set in the UE 100.
  • the notification information may include information on the gap for MCG determined in addition to information on the gap for SCG determined. This allows the secondary node to identify the gap for MCG based on the information on the gap for MCG determined. The secondary node may also determine the application of the gap for SCG, for example, taking into account the gap for MCG.
  • the network communication unit 213 of the master node may receive a response to the notification information from the secondary node.
  • the response may include information for the base station to identify an SCG gap to be applied at the secondary node from among the determined SCG gaps. This allows the master node to identify an SCG gap to be applied at the secondary node.
  • the control unit of the secondary node may also determine whether or not to apply an SCG gap at the secondary node from among the determined gaps for SCG.
  • the network communication unit 213 may transmit a response to the notification information to the master node.
  • the response may include information for the master node to identify an SCG gap to be applied at the secondary node from among the determined gaps for SCG. This allows the master node to identify an SCG gap to be applied at the secondary node.
  • the control unit 214 notifies the UE 100 of the MCG gap setting for the gap for the MCG and the SCG gap setting for the gap for the SCG.
  • Each of the MCG gap setting and the SCG gap setting includes a gap identifier.
  • the control unit 214 notifies the UE 100 of the gap identifier in a manner that makes it possible to identify whether the gap identifier is for the SCG.
  • the control unit 130 also acquires the MCG gap setting for the gap for the MCG and the SCG gap setting for the gap for the SCG from the master node.
  • the control unit 130 acquires the gap identifier from the master node in a manner that makes it possible to identify whether the gap identifier is for the SCG. This allows the UE 100 to identify whether the gap identifier is for the SCG and appropriately control the gap set for itself. In other words, an appropriate MUSIM gap can be specified between the UE 100 and the network 10, and the MUSIM gap can be appropriately changed or released.
  • the gap identifier may include a first gap identifier associated with a first gap parameter indicating a gap for the MCG, and a second gap identifier associated with a second gap parameter indicating a gap for the SCG.
  • the control unit 214 of the master node may determine the first gap identifier such that the first gap identifier and the second gap identifier are different. This allows the first gap identifier and the second gap identifier to not overlap, making it possible to appropriately control the gap set for itself.
  • the control unit 214 may also determine a second gap identifier in addition to the first gap identifier. This allows the first gap identifier and the second gap identifier to be different, since each gap identifier is determined by a single base station 210M.
  • control unit 214 may determine a second gap parameter.
  • the network communication unit 213 may transmit an SCG gap setting including the determined second gap parameter and the determined second gap identifier to the secondary node. This allows the secondary node to grasp the SCG gap setting, for example, to determine whether or not to apply it.
  • Step S211 The control unit 214 of the base station 210M determines the MCG gap setting.
  • the control unit 214 determines the MCG gap setting in the same manner as in step S111. In this operation example, the control unit 214 does not determine the SCG gap setting.
  • the control unit 214 may determine the second gap identifier in the same manner as in the first operation example.
  • the control unit 214 may determine the second gap identifier associated with the gap parameters of the recommended gap for SCG.
  • Step S212 The network communication unit 213 of the base station 210M transmits the notification information to the secondary node (base station 210S).
  • the network communication unit 213 of the base station 210S receives the notification information from the master node.
  • the notification information includes information on recommended gaps for SCG.
  • the notification information may include, for example, a gap recommendation list including information on recommended gaps for SCG.
  • the control unit 214 may include only information on recommended gaps for SCG (for example, MUSIM-GapInfo) from the gap recommendation list in the notification information.
  • the notification information may include information on recommended gaps for MCG in addition to information on recommended gaps for SCG.
  • the notification information may include a first gap identifier.
  • the notification information may include information on recommended gaps for SCG and a second gap identifier.
  • Step S213 The control unit 214 of the base station 210S determines the SCG gap setting in the same manner as the master node in the above-described first operation example.
  • the control unit 214 can determine the SCG gap setting based on the information of the recommended SCG gap.
  • the control unit 214 may determine the SCG gap setting including the gap parameters of the SCG gap to be applied from the information of the recommended SCG gap. If the control unit 214 has received the second gap identifier from the master node, the control unit 214 may include the second gap identifier in the SCG gap setting.
  • control unit 214 may determine a second gap identifier for identifying the gap for the SCG, similar to the master node in the first operation example described above.
  • the control unit 214 may determine the second gap identifier such that the first gap identifier and the second gap identifier are different.
  • control unit 214 may determine the second gap identifier regardless of the first gap identifier. Therefore, in this case, the first gap identifier and the second gap identifier may overlap.
  • Step S214 The network communication unit 213 of the base station 210S transmits a response to the notification information to the master node (base station 210M), similarly to step S114.
  • the response may include the second gap identifier as a gap identifier for identifying the gap for the SCG.
  • the notification information may include the second gap identifier determined by the control unit 214 of the secondary node.
  • control unit 214 of the base station 210M may determine a second gap identifier to be associated with each SCG gap (or each second gap parameter).
  • the control unit 214 of the base station 210M may determine the first gap identifier such that the first gap identifier and the second gap identifier are different. In addition, if the first gap identifier and the second gap identifier overlap, the control unit 214 may change one of the overlapping first gap identifier and second gap identifier.
  • the control unit 214 of the base station 210M may generate an RRC message configured to distinguish between the MCG gap setting and the SCG gap setting, regardless of whether the first gap identifier and the second gap identifier overlap.
  • the control unit 214 may, for example, include identification information for the UE 100 to identify the SCG gap setting in the RRC message.
  • the identification information may include a cell group identifier or a cell identifier associated with the gap for SCG.
  • the identification information may be associated with an SCG gap setting or a second gap parameter, similar to E21 in FIG. 10.
  • the UE 100 can determine that the MUSIM gap associated with the identification information is a gap for SCG.
  • the identification information may also be a cell group identifier or a cell identifier associated with the gap for MCG.
  • the identification information may be associated with an MCG gap setting or a first gap parameter.
  • the UE 100 can determine that the MUSIM gap associated with the identification information is a gap for MCG.
  • the identification information may include information (e.g., bool or enum) indicating whether the MUSIM gap setting included in the RRC message is an SCG gap setting. For example, as shown in E61 of FIG. 17, when the information (e.g., forSCG) indicates an SCG gap setting, the UE 100 can determine that the associated MUSIM gap setting is an SCG gap setting. On the other hand, when the information indicates that the information is not an SCG gap setting, the UE 100 can determine that the associated MUSIM gap setting is an MCG gap setting.
  • the identification information may also include information indicating whether the MUSIM gap setting included in the RRC message is an MCG gap setting.
  • the UE 100 can determine that the associated MUSIM gap setting is an MCG gap setting.
  • the UE 100 can determine that the associated MUSIM gap setting is an SCG gap setting.
  • the identification information may include information (e.g., targetCellGroup) indicating whether the MUSIM gap setting included in the RRC message is an MCG gap setting or an SCG gap setting. If the information indicates an MCG gap setting (e.g., mcg), UE100 can determine that the associated MUSIM gap setting is an MCG gap setting. On the other hand, if the information indicates an SCG gap setting (e.g., scg), UE100 can determine that the associated MUSIM gap setting is an SCG gap setting.
  • MCG gap setting e.g., mcg
  • SCG gap setting e.g., scg
  • the control unit 214 of the base station 210M may be configured to distinguish between the MCG gap setting and the SCG gap setting by including a list of MCG gap settings and a list of SCG gap settings in an RRC message.
  • the UE 100 can determine that the MUSIM gap setting indicated by the list of MCG gap settings is the MCG gap setting.
  • the UE 100 can determine that the MUSIM gap setting indicated by the list of SCG gap settings is the SCG gap setting.
  • Steps S215 to S218 This is the same as steps S116 to S118.
  • the receiver 212R of the base station 210M may receive from the UE 100 a gap recommendation list including information on gaps for SCG recommended by the UE 100.
  • the notification information may include information on the recommended gaps for SCG. This allows the secondary node to identify gaps for SCG based on the information on the recommended gaps for SCG, and to appropriately handle the gaps for SCG.
  • the gap recommendation list may further include information on the gap for the MCG recommended by UE100.
  • the notification information may include information on the gap for the MCG recommended in addition to the information on the gap for the SCG recommended. This allows the secondary node to identify the gap for the MCG recommended. The secondary node may also determine the application of the gap for the SCG, for example, taking into account the gap for the MCG recommended.
  • the network communication unit 213 of the base station 210M may receive a response to the notification information from the secondary node.
  • the response may include information for the base station to identify the SCG gap to be set in the UE 100.
  • the master node can identify the SCG gap to be set in the UE 100.
  • the response may include a gap identifier for identifying the gap for the SCG. This allows the base station 210M to identify the gap for the SCG to be set for the UE 100 based on the gap identifier.
  • the receiver 212R of the base station 210M may receive from the UE 100 a gap recommendation list including information on gaps for SCG recommended by the UE 100.
  • the network communication unit 213 may transmit the information on the recommended gaps for SCG and a second gap identifier associated with the gap parameters of the recommended gaps for SCG to the secondary node.
  • the base station 210M which determines the second gap identifier, can determine the second gap identifier so that the first gap identifier and the second gap identifier are different.
  • the network communication unit 213 of the base station 210M may receive the second gap parameter from the secondary node.
  • the control unit 214 of the base station 210M may determine a second gap identifier that corresponds to the second gap parameter received from the secondary node. By determining the second gap identifier, the base station 210M that determines the second gap identifier can make the first gap identifier and the second gap identifier different.
  • the control unit 214 of the base station 210M may also perform control to transmit to the UE 100 an RRC message configured to be able to distinguish between the MCG gap setting and the SCG gap setting. This allows the UE 100 that receives the RRC message to be able to distinguish between the MCG gap setting and the SCG gap setting.
  • control unit 214 of the base station 210M may include identification information for the UE 100 to identify the SCG gap setting in the RRC message. This allows the UE 100 to distinguish between the MCG gap setting and the SCG gap setting based on the identification information.
  • the identification information may also include a cell group identifier or a cell identifier associated with the SCG gap. This allows the UE 100 to distinguish between an MCG gap setting and an SCG gap setting based on the cell group identifier or the cell identifier.
  • the identification information may also include information indicating whether the MUSIM gap setting included in the RRC message is an SCG gap setting. This allows the UE 100 to determine whether the MUSIM gap setting is an SCG gap setting based on the information.
  • control unit 214 of the base station 210M may include a list of MCG gap settings and a list of SCG gap settings in the RRC message.
  • the UE 100 can identify the MCG gap setting based on the list of MCG gap settings, and can identify the SCG gap setting based on the list of SCG gap settings.
  • the UE 100 may perform, for example, the operation of step S105 when the UE 100 is in an RRC idle state or an RRC inactive state in the second network 200B.
  • the UE 100 may perform, for example, the operation of step S105 after performing an initial connection (for example, an attach process) with the second network 200B.
  • the UE 100 may perform the operation of step S105 when the UE 100 receives a paging message from the second network 200B.
  • the operation sequences (and operation flows) in the above-described embodiments do not necessarily have to be executed chronologically in the order depicted in the flow diagram or sequence diagram.
  • the steps in the operations may be executed in an order different from that depicted in the flow diagram or sequence diagram, or may be executed in parallel. Some of the steps in the operations may be deleted, and additional steps may be added to the process.
  • the operation sequences (and operation flows) in the above-described embodiments may be executed separately and independently, or two or more operation sequences (and operation flows) may be executed in combination. For example, some steps of one operation flow may be added to another operation flow, or some steps of one operation flow may be replaced with some steps of another operation flow.
  • the mobile communication system 1 may be a system that complies with the TS of either LTE (Long Term Evolution) or another generation system of the 3GPP standard (e.g., the sixth generation).
  • the base station 210 may be an eNB that provides E-UTRA user plane and control plane protocol termination toward the UE 100 in LTE.
  • the mobile communication system 1 may be a system that complies with the TS of a standard other than the 3GPP standard.
  • the base station 210 may be an IAB (Integrated Access and Backhaul) donor or an IAB node.
  • a program may be provided that causes a computer to execute each process performed by the UE 100 or the base station 210.
  • the program may be recorded in a computer-readable medium.
  • the computer-readable medium on which the program is recorded may be a non-transient recording medium.
  • the non-transient recording medium is not particularly limited, but may be, for example, a recording medium such as a CD-ROM (Compact Disk Read Only Memory) or a DVD-ROM (Digital Versatile Disk Read Only Memory).
  • circuits that execute each process performed by the UE 100 or the base station 210 may be integrated, and at least a part of the UE 100 or the base station 210 may be configured as a semiconductor integrated circuit (chip set, SoC (System On Chip)).
  • transmit may mean performing processing of at least one layer in a protocol stack used for transmission, or may mean physically transmitting a signal wirelessly or wired.
  • transmit may mean a combination of performing processing of at least one layer and physically transmitting a signal wirelessly or wired.
  • receiveive may mean performing processing of at least one layer in a protocol stack used for reception, or may mean physically receiving a signal wirelessly or wired.
  • receiver may mean a combination of performing processing of at least one layer and physically receiving a signal wirelessly or wired.
  • “obtain/acquire” may mean obtaining information from stored information, obtaining information from information received from other nodes, or obtaining the information by generating the information.
  • the terms “based on” and “depending on/in response to” do not mean “based only on” or “only in response to,” unless expressly stated otherwise.
  • the term “based on” means both “based only on” and “based at least in part on.”
  • the term “in response to” means both “only in response to” and “at least in part on.”
  • “include” and “comprise” do not mean including only the recited items, but may include only the recited items or may include additional items in addition to the recited items.
  • any reference to elements using designations such as “first,” “second,” etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and second element does not imply that only two elements may be employed therein, or that the first element must precede the second element in some manner.
  • articles are added by translation such as, for example, a, an, and the in English, these articles are intended to include the plural unless the context clearly indicates otherwise.
  • Each of the MCG gap setting and the SCG gap setting includes a gap identifier;
  • the control unit notifies the communication device of the gap identifier in a manner that enables identification of whether the gap identifier is for the SCG.
  • the gap identifier includes a first gap identifier associated with a first gap parameter indicating the gap for the MCG, and a second gap identifier associated with a second gap parameter indicating the gap for the SCG,
  • the control unit determines the second gap parameter;
  • the base station according to claim 3, further comprising: a network communication unit (213) configured to transmit the SCG gap configuration including the determined second gap parameter and the determined second gap identifier to the secondary node.
  • a receiving unit (212R) that receives a gap recommendation list including information on gaps for SCG recommended by the communication device from the communication device,
  • the base station according to claim 3 or 4 further comprising a network communication unit that transmits to the secondary node information on the recommended SCG gap and the second gap identifier associated with a gap parameter of the recommended SCG gap.
  • control unit includes, in the RRC message, identification information for the communication device to identify the SCG gap setting.
  • control unit 11 The base station according to any one of Supplementary Note 7 to 10, wherein the control unit includes the list of MCG gap settings and the list of SCG gap settings in the RRC message.
  • Each of the MCG gap setting and the SCG gap setting includes a gap identifier;
  • the control unit acquires the gap identifier from the master node in a manner that enables identification of whether the gap identifier is for the SCG.
  • the communication device further comprising: a receiving unit (120R) that receives a radio resource control (RRC) message from the master node, the RRC message being configured to be distinguishable between the MCG gap setting and the SCG gap setting.
  • RRC radio resource control
  • Each of the MCG gap setting and the SCG gap setting includes a gap identifier; In the step, the gap identifier is notified to the communication device in a manner that enables identification of whether the gap identifier is for the SCG.
  • the method includes a step of acquiring from the master node an MCG gap setting for an MCG gap, which is a period during which the communication device can temporarily suspend communication in the MCG to communicate with a second network (200B), and an SCG gap setting for an SCG gap, which is a period during which the communication device can temporarily suspend communication in the SCG to communicate with the second network;
  • Each of the MCG gap setting and the SCG gap setting includes a gap identifier;
  • the gap identifier is acquired from the master node in a manner that makes it possible to identify whether the gap identifier is for the SCG.

Abstract

A base station (210M) that operates as a master node comprises a control unit (214) that notifies a communication device (100) of: an MCG gap configuration pertaining to a for-MCG gap which is a period in which the communication device (100) can temporarily terminate communication in the MCG in order to communicate with a second network (200B); and an SCG gap configuration pertaining to a for-SCG gap which is a period in which the communication device can temporarily terminate communication in the SCG in order to communicate with the second network. Each of the MCG gap configuration and the SCG gap configuration includes a gap identifier. The control unit notifies the communication device of the gap identifier in such a manner that it is possible to identify whether the gap identifier is for the SCG or not.

Description

基地局、通信装置及び通信方法Base station, communication device, and communication method 関連出願への相互参照CROSS-REFERENCE TO RELATED APPLICATIONS
 本出願は、2022年9月30日に出願された特許出願番号2022-158536号に基づくものであって、その優先権の利益を主張するものであり、その特許出願のすべての内容が、参照により本明細書に組み入れられる。 This application is based on and claims the benefit of priority to patent application serial number 2022-158536, filed on September 30, 2022, the entire contents of which are incorporated herein by reference.
 本開示は、移動通信システムで用いる基地局、通信装置及び通信方法に関する。 This disclosure relates to a base station, a communication device, and a communication method used in a mobile communication system.
 移動通信システムの標準化プロジェクトである3GPP(登録商標。以下同じ)(3rd Generation Partnership Project(第3世代パートナーシッププロジェクト))では、複数の加入者識別モジュールを用いて複数のネットワークとの通信を行う通信装置(以下、MUSIM(Multi-Universal Subscriber Identity Module)通信装置と称する)が規定されている。MUSIM通信装置には、あるネットワーク(以下、第1ネットワークと称する)との接続を維持したまま、他のネットワーク(以下、第2ネットワークと称する)からのシグナリングの受信動作(例えば、ページングの監視、システム情報ブロック(SIB)の取得など)を行うために、第1ネットワークとの通信を一時的に中断できる期間(以下、MUSIMギャップと適宜称する)が設定可能である。 3GPP (registered trademark; the same applies below) (3rd Generation Partnership Project), a standardization project for mobile communication systems, specifies a communication device (hereinafter referred to as a MUSIM (Multi-Universal Subscriber Identity Module) communication device) that uses multiple subscriber identity modules to communicate with multiple networks. In the MUSIM communication device, a period (hereinafter referred to as a MUSIM gap) can be set during which communication with a certain network (hereinafter referred to as a first network) can be temporarily interrupted in order to receive signaling (e.g., monitoring paging, acquiring system information blocks (SIBs), etc.) from another network (hereinafter referred to as a second network) while maintaining a connection with the first network.
 近年、二重接続(Dual Connectivity:DC)において、セカンダリノードに関連付けられるセカンダリセルグループ(SCG)向けのMUSIMギャップ(以下、SCG向けギャップと適宜称する)について議論されている(例えば、非特許文献1参照)。SCG向けギャップが設定されたMUSIM通信装置は、第1ネットワークのSCGとの通信を一時的に中断できるSCG向けギャップ中に第2ネットワークとの通信を行うことで、第1ネットワークのマスタセルグループ(MCG)との通信を継続しつつ第2ネットワークとの通信が可能となる。 In recent years, in dual connectivity (DC), MUSIM gaps for secondary cell groups (SCGs) associated with secondary nodes (hereinafter referred to as SCG gaps) have been discussed (see, for example, Non-Patent Document 1). A MUSIM communication device in which a SCG gap is set can communicate with a second network during a SCG gap in which communication with the SCG of a first network can be temporarily interrupted, thereby enabling communication with the second network while continuing communication with the master cell group (MCG) of the first network.
 なお、MUSIM通信装置は、MCG向けのMUSIMギャップ(以下、MCG向けギャップと適宜称する)が設定された場合には、MCG向けギャップ中に第2ネットワークとの通信を行うことで、第2ネットワークとの通信が行われるギャップ中であったとしても第1ネットワークのSCGとの通信を継続可能となる。 In addition, when a MUSIM gap for an MCG (hereinafter referred to as a gap for an MCG) is set, the MUSIM communication device can continue communication with the SCG of the first network even during a gap in which communication with the second network is performed by communicating with the second network during the gap for the MCG.
 ところで、MUSIMギャップの設定では、MUSIMギャップを識別するためのギャップ識別子(具体的には、MUSIM-GapID)と、MUSIMギャップのギャップパラメータを示すMUSIMギャップ情報(具体的には、MUSIM-GapInfo)と、が対応付けられている。従って、MUSIM通信装置は、第1ネットワークから指定されたギャップ識別子に対応するギャップパラメータに基づくSCG向けギャップ中に、第2ネットワークとの通信を行うことが想定される。 Incidentally, when setting the MUSIM gap, a gap identifier for identifying the MUSIM gap (specifically, MUSIM-GapID) is associated with MUSIM gap information indicating the gap parameters of the MUSIM gap (specifically, MUSIM-GapInfo). Therefore, it is expected that the MUSIM communication device will communicate with the second network during a gap for SCG based on the gap parameters corresponding to the gap identifier specified by the first network.
 第1の態様に係る基地局は、通信装置に設定されるマスタセルグループ(MCG)に関連付けられるマスタノードと、前記通信装置に設定されるセカンダリセルグループ(SCG)に関連付けられるセカンダリノードと、を含む第1ネットワークにおいて、前記マスタノードとして動作する基地局であって、前記通信装置が第2ネットワークと通信するために前記MCGにおける通信を一時的に中断できる期間であるMCG向けギャップに関するMCGギャップ設定と、前記通信装置が前記第2ネットワークと通信するために前記SCGにおける通信を一時的に中断できる期間であるSCG向けギャップに関するSCGギャップ設定とを前記通信装置へ通知する制御部を備え、前記MCGギャップ設定及び前記SCGギャップ設定のそれぞれは、ギャップ識別子を含み、前記制御部は、前記ギャップ識別子が前記SCG向けであるか否かを識別可能な態様で前記ギャップ識別子を前記通信装置に通知する。 The base station according to the first aspect is a base station that operates as a master node in a first network including a master node associated with a master cell group (MCG) configured in a communication device and a secondary node associated with a secondary cell group (SCG) configured in the communication device, and includes a control unit that notifies the communication device of an MCG gap setting related to a gap for an MCG, which is a period during which the communication device can temporarily suspend communication in the MCG to communicate with a second network, and an SCG gap setting related to a gap for an SCG, which is a period during which the communication device can temporarily suspend communication in the SCG to communicate with the second network, each of the MCG gap setting and the SCG gap setting includes a gap identifier, and the control unit notifies the communication device of the gap identifier in a manner that makes it possible to identify whether the gap identifier is for the SCG.
 第2の態様に係る通信装置は、第1ネットワークにおいてマスタセルグループ(MCG)に関連付けられるマスタノードと、前記第1ネットワークにおいてセカンダリセルグループ(SCG)に関連付けられるセカンダリノードと、の通信を行う通信装置であって、前記通信装置が第2ネットワークと通信するために前記MCGにおける通信を一時的に中断できる期間であるMCG向けギャップに関するMCGギャップ設定と、前記通信装置が前記第2ネットワークと通信するために前記SCGにおける通信を一時的に中断できる期間であるSCG向けギャップに関するSCGギャップ設定とを、前記マスタノードから取得する制御部を備え、前記MCGギャップ設定及び前記SCGギャップ設定のそれぞれは、ギャップ識別子を含み、前記制御部は、前記ギャップ識別子が前記SCG向けであるか否かを識別可能な態様で前記ギャップ識別子を前記マスタノードから取得する。 A communication device according to a second aspect is a communication device that communicates between a master node associated with a master cell group (MCG) in a first network and a secondary node associated with a secondary cell group (SCG) in the first network, and includes a control unit that acquires from the master node an MCG gap setting related to an MCG-oriented gap, which is a period during which the communication device can temporarily suspend communication in the MCG to communicate with a second network, and an SCG gap setting related to an SCG-oriented gap, which is a period during which the communication device can temporarily suspend communication in the SCG to communicate with the second network, each of the MCG gap setting and the SCG gap setting includes a gap identifier, and the control unit acquires the gap identifier from the master node in a manner that allows identification of whether the gap identifier is for the SCG or not.
 第3の態様に係る通信方法は、通信装置に設定されるマスタセルグループ(MCG)に関連付けられるマスタノードと、前記通信装置に設定されるセカンダリセルグループ(SCG)に関連付けられるセカンダリノードと、を含む第1ネットワークにおいて、前記マスタノードとして動作する基地局で実行される通信方法であって、前記通信装置が第2ネットワークと通信するために前記MCGにおける通信を一時的に中断できる期間であるMCG向けギャップに関するMCGギャップ設定と、前記通信装置が前記第2ネットワークと通信するために前記SCGにおける通信を一時的に中断できる期間であるSCG向けギャップに関するSCGギャップ設定とを前記通信装置へ通知するステップを備え、前記MCGギャップ設定及び前記SCGギャップ設定のそれぞれは、ギャップ識別子を含み、前記ステップにおいて、前記ギャップ識別子が前記SCG向けであるか否かを識別可能な態様で前記ギャップ識別子を前記通信装置に通知する。 The communication method according to the third aspect is a communication method executed by a base station operating as a master node in a first network including a master node associated with a master cell group (MCG) configured in a communication device and a secondary node associated with a secondary cell group (SCG) configured in the communication device, and includes a step of notifying the communication device of an MCG gap setting related to a gap for an MCG, which is a period during which the communication device can temporarily suspend communication in the MCG to communicate with a second network, and an SCG gap setting related to a gap for an SCG, which is a period during which the communication device can temporarily suspend communication in the SCG to communicate with the second network, each of the MCG gap setting and the SCG gap setting including a gap identifier, and in the step, notifying the communication device of the gap identifier in a manner that allows identification of whether the gap identifier is for the SCG or not.
 第4の態様に係る通信方法は、第1ネットワークにおいてマスタセルグループ(MCG)に関連付けられるマスタノードと、前記第1ネットワークにおいてセカンダリセルグループ(SCG)に関連付けられるセカンダリノードと、の通信を行う通信装置で実行される通信方法であって、前記通信装置が第2ネットワークと通信するために前記MCGにおける通信を一時的に中断できる期間であるMCG向けギャップに関するMCGギャップ設定と、前記通信装置が前記第2ネットワークと通信するために前記SCGにおける通信を一時的に中断できる期間であるSCG向けギャップに関するSCGギャップ設定とを、前記マスタノードから取得するステップを備え、前記MCGギャップ設定及び前記SCGギャップ設定のそれぞれは、ギャップ識別子を含み、前記ステップでは、前記ギャップ識別子が前記SCG向けであるか否かを識別可能な態様で前記ギャップ識別子を前記マスタノードから取得する。 The communication method according to the fourth aspect is a communication method executed by a communication device that communicates between a master node associated with a master cell group (MCG) in a first network and a secondary node associated with a secondary cell group (SCG) in the first network, and includes a step of acquiring from the master node an MCG gap setting related to an MCG-oriented gap, which is a period during which the communication device can temporarily suspend communication in the MCG to communicate with a second network, and an SCG gap setting related to an SCG-oriented gap, which is a period during which the communication device can temporarily suspend communication in the SCG to communicate with the second network, each of the MCG gap setting and the SCG gap setting includes a gap identifier, and in the step, the gap identifier is acquired from the master node in a manner that makes it possible to identify whether the gap identifier is for the SCG or not.
 本開示についての目的、特徴、及び利点等は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
図1は、実施形態に係る移動通信システムの構成例を示す図である。 図2は、実施形態に係る移動通信システムのプロトコルスタックの構成例を示す図である。 図3は、想定シナリオを説明するための図である。 図4は、実施形態に係るUEの構成例を示す図である。 図5は、実施形態に係る第1ネットワークの基地局の構成例を示す図である。 図6は、実施形態に係る第1動作例を示すシーケンス図(その1)である。 図7は、実施形態に係る第1動作例における情報要素を説明するための図(その1)である。 図8は、実施形態に係る第1動作例における情報要素を説明するための図(その2)である。 図9は、実施形態に係る第1動作例における情報要素を説明するための図(その3)である。 図10は、実施形態に係る第1動作例における情報要素を説明するための図(その4)である。 図11は、実施形態に係る第1動作例における情報要素を説明するための図(その5)である。 図12は、実施形態に係る第1動作例を示すシーケンス図(その2)である。 図13は、実施形態に係る第1動作例における情報要素を説明するための図(その6)である。 図14は、実施形態に係る第1動作例における情報要素を説明するための図(その7)である。 図15は、実施形態に係る第1動作例における情報要素を説明するための図(その8)である。 図16は、実施形態に係る第2動作例を示すシーケンス図である。 図17は、実施形態に係る第2動作例における情報要素を説明するための図(その1)である。 図18は、実施形態に係る第2動作例における情報要素を説明するための図(その2)である。
The objects, features, and advantages of the present disclosure will become more apparent from the following detailed description taken in conjunction with the accompanying drawings.
FIG. 1 is a diagram illustrating an example of a configuration of a mobile communication system according to an embodiment. FIG. 2 is a diagram showing an example of the configuration of a protocol stack in the mobile communication system according to the embodiment. FIG. 3 is a diagram for explaining the assumed scenario. FIG. 4 is a diagram illustrating an example of the configuration of a UE according to the embodiment. FIG. 5 is a diagram illustrating an example of the configuration of a base station of the first network according to the embodiment. FIG. 6 is a sequence diagram (part 1) showing a first operation example according to the embodiment. FIG. 7 is a diagram (part 1) for explaining information elements in a first operation example according to the embodiment. FIG. 8 is a diagram (part 2) for explaining information elements in the first operation example according to the embodiment. FIG. 9 is a diagram (part 3) for explaining information elements in the first operation example according to the embodiment. FIG. 10 is a diagram (part 4) for explaining information elements in the first operation example according to the embodiment. FIG. 11 is a diagram (part 5) for explaining information elements in the first operation example according to the embodiment. FIG. 12 is a sequence diagram (part 2) illustrating a first operation example according to the embodiment. FIG. 13 is a diagram (part 6) for explaining information elements in the first operation example according to the embodiment. FIG. 14 is a diagram (part 7) for explaining information elements in the first operation example according to the embodiment. FIG. 15 is a diagram (part 8) for explaining information elements in the first operation example according to the embodiment. FIG. 16 is a sequence diagram showing a second operation example according to the embodiment. FIG. 17 is a diagram (part 1) for explaining information elements in a second operation example according to the embodiment. FIG. 18 is a diagram (part 2) for explaining information elements in the second operation example according to the embodiment.
 図面を参照しながら、実施形態に係る移動通信システムについて説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。 The mobile communication system according to the embodiment will be described with reference to the drawings. In the drawings, the same or similar parts are denoted by the same or similar reference numerals.
 既存の3GPP仕様書では、MCG向けギャップのギャップパラメータ及びSCG向けギャップのギャップパラメータのそれぞれに対して、どのようなギャップ識別子を対応付けるかが規定されていない。従って、MCG向けギャップのギャップパラメータに対応付けたギャップ識別子と、SCG向けギャップのギャップパラメータに対応付けたギャップ識別子とが重複することがあり得るため、MUSIM通信装置が、自身に設定されたギャップを適切に制御できないことがある。  Existing 3GPP specifications do not stipulate what gap identifiers should be associated with the gap parameters of the gap for the MCG and the gap parameters of the gap for the SCG. Therefore, there is a possibility that the gap identifiers associated with the gap parameters of the gap for the MCG and the gap identifiers associated with the gap parameters of the gap for the SCG may overlap, and the MUSIM communication device may not be able to properly control the gaps set for itself.
 そこで、SCG向けギャップを適切に通信装置に設定可能とする基地局、通信装置及び通信方法を提供することを目的の一つとする。 Therefore, one of the objectives is to provide a base station, communication device, and communication method that allows the SCG gap to be appropriately set in the communication device.
 [実施形態]
 (システム構成)
 図1を参照して、実施形態に係る移動通信システム1の構成について説明する。以下において、移動通信システム1が3GPP規格の第5世代システム(5G/NR:New Radio)である一例を主として説明するが、移動通信システム1には、第4世代システム(4G/LTE:Long Term Evolution)システム及び/又は第6世代システムが少なくとも部分的に適用されてもよい。
[Embodiment]
(System configuration)
A configuration of a mobile communication system 1 according to an embodiment will be described with reference to Fig. 1. In the following, an example in which the mobile communication system 1 is a fifth generation system (5G/NR: New Radio) of the 3GPP standard will be mainly described, but a fourth generation system (4G/LTE: Long Term Evolution) system and/or a sixth generation system may be at least partially applied to the mobile communication system 1.
 図1に示すように、実施形態に係る移動通信システム1は、ユーザ装置(User Equipment:UE)100と、第1ネットワーク200Aと、第2ネットワーク200Bとを有する。 As shown in FIG. 1, the mobile communication system 1 according to the embodiment includes a user equipment (UE) 100, a first network 200A, and a second network 200B.
 UE100は、通信装置の一例である。UE100は、移動可能な無線通信装置であってよい。UE100は、ユーザにより利用される装置であってよい。UE100は、3GPPの技術仕様で規定されるユーザ装置であってよい。例えば、UE100は、携帯電話端末(スマートフォンを含む)やタブレット端末、ノートPC、通信モジュール(通信カード又はチップセットを含む)、センサ若しくはセンサに設けられる装置、車両若しくは車両に設けられる装置(例えば、Vehicle UE)、飛行体若しくは飛行体に設けられる装置(例えば、Aerial UE)である。なお、UE100は、移動局、移動端末、移動装置、移動ユニット、加入者局、加入者端末、加入者装置、加入者ユニット、ワイヤレス局、ワイヤレス端末、ワイヤレス装置、ワイヤレスユニット、リモート局、リモート端末、リモート装置、又はリモートユニット等の別の名称で呼ばれてもよい。 UE100 is an example of a communication device. UE100 may be a mobile wireless communication device. UE100 may be a device used by a user. UE100 may be a user device defined in the technical specifications of 3GPP. For example, UE100 is a mobile phone terminal (including a smartphone), a tablet terminal, a notebook PC, a communication module (including a communication card or chipset), a sensor or a device provided in a sensor, a vehicle or a device provided in a vehicle (e.g., a Vehicle UE), an aircraft or a device provided in an aircraft (e.g., an Aerial UE). Note that UE100 may be called by other names such as a mobile station, a mobile terminal, a mobile device, a mobile unit, a subscriber station, a subscriber terminal, a subscriber device, a subscriber unit, a wireless station, a wireless terminal, a wireless device, a wireless unit, a remote station, a remote terminal, a remote device, or a remote unit.
 UE100は、複数の加入者識別モジュール(SIM:Subscriber Identity Module)を用いて複数のネットワークと通信可能である。UE100は、複数のSIMに対応するマルチSIMデバイスであってよい。UE100は、例えば、MUSIMデバイスと称されてもよい。以下において、UE100が対応するSIMが2つである一例について主として説明するが、UE100は、3つ以上のSIMに対応していてもよい。「複数のSIMに対応する」とは、UE100が複数のSIMを取り扱う能力を有していることをいい、必ずしもUE100に複数のSIMが搭載されていなくてもよい。このようなUE100は、「複数のSIMをサポートするUE」と呼ばれることがある。なお、SIMは、カード型のSIM(いわゆる、SIMカード)に限らず、予めUE100に組み込まれた組み込み型のSIM(いわゆる、eSIM)であってもよい。SIMは、USIM(Universal Subscriber Identity Module)と呼ばれることがある。 UE100 can communicate with multiple networks using multiple subscriber identity modules (SIMs). UE100 may be a multi-SIM device that supports multiple SIMs. UE100 may be referred to as a MUSIM device, for example. In the following, an example in which UE100 supports two SIMs will be mainly described, but UE100 may support three or more SIMs. "Supporting multiple SIMs" means that UE100 has the ability to handle multiple SIMs, and does not necessarily have to be equipped with multiple SIMs. Such a UE100 may be called a "UE that supports multiple SIMs." The SIM is not limited to a card-type SIM (a so-called SIM card), but may be an embedded SIM (a so-called eSIM) that is previously built into UE100. The SIM is sometimes called a USIM (Universal Subscriber Identity Module).
 第1ネットワーク200Aは、UE100の一方のSIMと対応付けられたネットワークである。第2ネットワーク200Bは、UE100の他方のSIMと対応付けられたネットワークである。UE100は、一方のSIMを用いて第1ネットワーク200Aへの位置登録を行っており、他方のSIMを用いて第2ネットワーク200Bへの位置登録を行っているものとする。すなわち、UE100は、第1ネットワーク200A及び第2ネットワーク200Bのそれぞれに在圏している。第1ネットワーク200A及び第2ネットワーク200Bは、互いに異なる通信事業者のネットワークであってもよい。但し、第1ネットワーク200A及び第2ネットワーク200Bは、同一の通信事業者のネットワークであってもよい。第1ネットワーク200A及び第2ネットワーク200Bには、互いに異なるPLMN(Public Land Mobile Network) IDが割当てられていてもよい。 The first network 200A is a network associated with one SIM of the UE 100. The second network 200B is a network associated with the other SIM of the UE 100. The UE 100 uses one SIM to register its location to the first network 200A, and uses the other SIM to register its location to the second network 200B. That is, the UE 100 is present in both the first network 200A and the second network 200B. The first network 200A and the second network 200B may be networks of different telecommunications carriers. However, the first network 200A and the second network 200B may be networks of the same telecommunications carrier. The first network 200A and the second network 200B may be assigned different PLMN (Public Land Mobile Network) IDs.
 第1ネットワーク200Aは、無線アクセスネットワークを構成する基地局210Aと、コアネットワーク220Aとを有する。コアネットワーク220Aは、コアネットワーク装置として、モビリティ管理装置221Aと、ゲートウェイ装置222Aとを有する。同様に、第2ネットワーク200Bは、無線アクセスネットワークを構成する基地局210Bと、コアネットワーク220Bとを有する。コアネットワーク220Bは、コアネットワーク装置として、モビリティ管理装置221Bと、ゲートウェイ装置222Bとを有する。以下において、基地局210A及び200Bを区別しないときは単に基地局210と呼び、モビリティ管理装置221A及び221Bを区別しないときは単にモビリティ管理装置221と呼び、ゲートウェイ装置222A及び222Bを区別しないときは単にゲートウェイ装置222と呼ぶ。 The first network 200A has a base station 210A and a core network 220A that constitute a radio access network. The core network 220A has a mobility management device 221A and a gateway device 222A as core network devices. Similarly, the second network 200B has a base station 210B and a core network 220B that constitute a radio access network. The core network 220B has a mobility management device 221B and a gateway device 222B as core network devices. In the following, when the base stations 210A and 200B are not distinguished, they are simply called the base station 210, when the mobility management devices 221A and 221B are not distinguished, they are simply called the mobility management device 221, and when the gateway devices 222A and 222B are not distinguished, they are simply called the gateway device 222.
 基地局210は、UE100との無線通信を行う無線通信装置である。基地局210は、1又は複数のセルを管理する。基地局210は、自セルとの無線リソース制御(RRC)レイヤにおける接続を確立したUE100との無線通信を行う。基地局210は、無線リソース管理(RRM)機能、ユーザデータ(以下、単に「データ」という)のルーティング機能、モビリティ制御・スケジューリングのための測定制御機能等を有する。「セル」は、無線通信エリアの最小単位を示す用語として用いられる。「セル」は、UE100との無線通信を行う機能又はリソースを示す用語としても用いられる。1つのセルは1つのキャリア周波数に属する。図1において、基地局210AがセルC1を管理し、基地局210BがセルC2を管理する一例を示している。UE100は、セルC1及びセルC2の重複領域に位置している。 The base station 210 is a wireless communication device that performs wireless communication with the UE 100. The base station 210 manages one or more cells. The base station 210 performs wireless communication with the UE 100 that has established a connection with its own cell in the radio resource control (RRC) layer. The base station 210 has a radio resource management (RRM) function, a routing function for user data (hereinafter simply referred to as "data"), a measurement control function for mobility control and scheduling, and the like. "Cell" is used as a term indicating the smallest unit of a wireless communication area. "Cell" is also used as a term indicating a function or resource that performs wireless communication with the UE 100. One cell belongs to one carrier frequency. FIG. 1 shows an example in which the base station 210A manages the cell C1, and the base station 210B manages the cell C2. The UE 100 is located in an overlapping area of the cells C1 and C2.
 基地局210は、5G/NRの基地局であるgNB、又は4G/LTEの基地局であるeNBであってもよい。以下において、基地局210がgNBである一例について主として説明する。基地局210は、CU(Central Unit)とDU(Distributed Unit)とに機能分割されていてもよい。基地局210は、IAB(Integrated Access and Backhaul)ノード等の中継ノードであってもよい。 The base station 210 may be a gNB, which is a 5G/NR base station, or an eNB, which is a 4G/LTE base station. In the following, an example in which the base station 210 is a gNB will be mainly described. The base station 210 may be functionally divided into a CU (Central Unit) and a DU (Distributed Unit). The base station 210 may be a relay node such as an IAB (Integrated Access and Backhaul) node.
 モビリティ管理装置221は、制御プレーンに対応した装置であって、UE100に対する各種モビリティ管理を行う装置である。モビリティ管理装置221は、NAS(Non-Access Stratum)シグナリングを用いてUE100と通信し、UE100が在圏するトラッキングエリアの情報を管理する。モビリティ管理装置221は、UE100に対して着信を通知するために、基地局210を通じてページングを行う。モビリティ管理装置221は、5G/NRのAMF(Access and Mobility Management Function)、又は4G/LTEのMME(Mobility Management Entity)であってもよい。 The mobility management device 221 is a device corresponding to the control plane, and is a device that performs various mobility management for the UE 100. The mobility management device 221 communicates with the UE 100 using NAS (Non-Access Stratum) signaling, and manages information on the tracking area in which the UE 100 is located. The mobility management device 221 performs paging through the base station 210 to notify the UE 100 of an incoming call. The mobility management device 221 may be a 5G/NR AMF (Access and Mobility Management Function) or a 4G/LTE MME (Mobility Management Entity).
 ゲートウェイ装置222は、ユーザプレーンに対応した装置であって、UE100のデータの転送制御を行う装置である。ゲートウェイ装置222は、5G/NRのUPF(User Plane Function)、又は4G/LTEのS-GW(Serving Gateway)であってもよい。 The gateway device 222 is a device that supports the user plane and controls the transfer of data for the UE 100. The gateway device 222 may be a 5G/NR UPF (User Plane Function) or a 4G/LTE S-GW (Serving Gateway).
 (プロトコルスタックの構成例)
 図2を参照して、移動通信システム1のプロトコルスタックの構成例について説明する。図2に示すように、UE100と基地局210との間の無線区間のプロトコルは、物理(PHY)レイヤと、MAC(Medium Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、RRC(Radio Resource Control)レイヤとを有する。
(Example of protocol stack configuration)
A configuration example of a protocol stack of the mobile communication system 1 will be described with reference to Fig. 2. As shown in Fig. 2, the protocol of the wireless section between the UE 100 and the base station 210 includes a physical (PHY) layer, a medium access control (MAC) layer, a radio link control (RLC) layer, a packet data convergence protocol (PDCP) layer, and a radio resource control (RRC) layer.
 PHYレイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100のPHYレイヤと基地局210のPHYレイヤとの間では、物理チャネルを介してデータ及び制御情報が伝送される。 The PHY layer performs encoding/decoding, modulation/demodulation, antenna mapping/demapping, and resource mapping/demapping. Data and control information are transmitted between the PHY layer of the UE 100 and the PHY layer of the base station 210 via a physical channel.
 MACレイヤは、データの優先制御、ハイブリッドARQ(HARQ)による再送処理、及びランダムアクセスプロシージャ等を行う。UE100のMACレイヤと基地局210のMACレイヤとの間では、トランスポートチャネルを介してデータ及び制御情報が伝送される。基地局210のMACレイヤはスケジューラを含む。スケジューラは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS))及びUE100への割当リソースを決定する。 The MAC layer performs data priority control, retransmission processing using hybrid ARQ (HARQ), random access procedures, etc. Data and control information are transmitted between the MAC layer of UE100 and the MAC layer of base station 210 via a transport channel. The MAC layer of base station 210 includes a scheduler. The scheduler determines the uplink and downlink transport format (transport block size, modulation and coding scheme (MCS)) and the resources to be allocated to UE100.
 RLCレイヤは、MACレイヤ及びPHYレイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤと基地局210のRLCレイヤとの間では、論理チャネルを介してデータ及び制御情報が伝送される。 The RLC layer uses the functions of the MAC layer and PHY layer to transmit data to the RLC layer on the receiving side. Data and control information are transmitted between the RLC layer of the UE 100 and the RLC layer of the base station 210 via logical channels.
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。 The PDCP layer performs header compression/decompression, and encryption/decryption.
 PDCPレイヤの上位レイヤとしてSDAP(Service Data Adaptation Protocol)レイヤが設けられていてもよい。SDAP(Service Data Adaptation Protocol)レイヤは、コアネットワークがQoS(Quality of Service)制御を行う単位であるIPフローとAS(Access Stratum)がQoS制御を行う単位である無線ベアラとのマッピングを行う。 The SDAP (Service Data Adaptation Protocol) layer may be provided as a layer above the PDCP layer. The SDAP (Service Data Adaptation Protocol) layer maps IP flows, which are the units by which the core network performs QoS (Quality of Service) control, to radio bearers, which are the units by which the AS (Access Stratum) performs QoS control.
 RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCレイヤと基地局210のRRCレイヤとの間では、各種設定のためのRRCシグナリングが伝送される。UE100のRRCと基地局210のRRCとの間にRRC接続がある場合、UE100はRRCコネクティッド状態にある。UE100のRRCと基地局210のRRCとの間にRRC接続がない場合、UE100はRRCアイドル状態にある。UE100のRRCと基地局210のRRCとの間のRRC接続がサスペンドされている場合、UE100はRRCインアクティブ状態にある。 The RRC layer controls logical channels, transport channels, and physical channels in response to the establishment, re-establishment, and release of radio bearers. RRC signaling for various settings is transmitted between the RRC layer of UE100 and the RRC layer of base station 210. When there is an RRC connection between the RRC of UE100 and the RRC of base station 210, UE100 is in an RRC connected state. When there is no RRC connection between the RRC of UE100 and the RRC of base station 210, UE100 is in an RRC idle state. When the RRC connection between the RRC of UE100 and the RRC of base station 210 is suspended, UE100 is in an RRC inactive state.
 RRCレイヤの上位に位置するNASレイヤは、UE100のセッション管理及びモビリティ管理を行う。UE100のNASレイヤとモビリティ管理装置221のNASレイヤとの間では、NASシグナリングが伝送される。 The NAS layer, which is located above the RRC layer, performs session management and mobility management for UE100. NAS signaling is transmitted between the NAS layer of UE100 and the NAS layer of the mobility management device 221.
 UE100のNASレイヤにおけるモード(NAS状態)は、アイドルモードとコネクティッドモードとがある。コネクティッドモードでは、UE100のコンテキスト情報がネットワークに保持されており、アイドルモードでは、UE100のコンテキスト情報がネットワークに保持されていない。UE100がコネクティッドモードにある場合、UE100は、RRCコネクティッド状態又はRRCインアクティブ状態にある。UE100がアイドルモードにある場合、UE100は、RRCアイドル状態にある。 UE100 has two modes (NAS states) in the NAS layer: idle mode and connected mode. In connected mode, the context information of UE100 is held in the network, and in idle mode, the context information of UE100 is not held in the network. When UE100 is in connected mode, UE100 is in an RRC connected state or an RRC inactive state. When UE100 is in idle mode, UE100 is in an RRC idle state.
 NASレイヤにおけるモードは、5GMM(5G Mobility Management)モードであってよい。当該モードでは、コネクティッドモードは5GMM-コネクティッドモードであり、アイドルモードは5GMM-アイドルモードであってよい。 The mode at the NAS layer may be 5G Mobility Management (5GMM) mode. In this mode, the connected mode may be 5GMM-connected mode, and the idle mode may be 5GMM-idle mode.
 なお、UE100は、無線インターフェイスのプロトコル以外にアプリケーションレイヤ等を有する。 In addition, UE100 has an application layer and the like in addition to the radio interface protocol.
 (想定シナリオ)
 図3を用いて、実施形態に係る移動通信システム1における想定シナリオについて説明する。移動通信システム1の標準化プロジェクトである3GPPでは、複数の加入者識別モジュールを用いて複数のネットワークとの通信を行うUE100が規定されている。このようなUE100には、あるネットワーク(例えば、第1ネットワーク200A)との接続を維持したまま、他のネットワーク(例えば、第2ネットワーク200B)からのシグナリングの受信動作(例えば、ページングの監視、システム情報ブロック(SIB)の取得、測定など)を行うために、第1ネットワーク200Aとの通信を一時的に中断できる期間(以下、MUSIMギャップ)が設定可能である。
(Assumed scenario)
An assumed scenario in the mobile communication system 1 according to the embodiment will be described with reference to Fig. 3. In the 3GPP, which is a standardization project for the mobile communication system 1, a UE 100 that communicates with a plurality of networks using a plurality of subscriber identity modules is specified. In such a UE 100, a period (hereinafter, MUSIM gap) during which communication with the first network 200A can be temporarily interrupted can be set in order to perform a signaling reception operation (e.g., paging monitoring, acquisition of a system information block (SIB), measurement, etc.) from another network (e.g., the second network 200B) while maintaining a connection with a certain network (e.g., the first network 200A).
 現在、3GPPのリリース18では、2つの送受信部を有するUE100が複数のSIMを用いて複数のネットワークとの通信を行う機能を策定するためのワークアイテムが立ち上がっている。例えば、図3Aに示すように、UE100は、SIM111を用いて第1ネットワーク200Aと通信を行う場合に、UE100は、第1ネットワーク200Aとの通信用に第1送受信部121及び第2送受信部122を使用できる。図3Bに示すように、UE100は、SIM112を用いて第2ネットワーク200Bと通信を行う場合に、第2送受信部122を第2ネットワーク200Bとの通信用に切り替えることが想定される。これにより、UE100は、第1送受信部121によって第1ネットワーク200Aとの通信を維持しながら、第2送受信部122によって第2ネットワーク200Bとの通信を行うことができる。 Currently, in 3GPP Release 18, a work item is being launched to formulate a function for a UE 100 having two transceivers to communicate with multiple networks using multiple SIMs. For example, as shown in FIG. 3A, when the UE 100 communicates with the first network 200A using the SIM 111, the UE 100 can use the first transceiver 121 and the second transceiver 122 for communication with the first network 200A. As shown in FIG. 3B, when the UE 100 communicates with the second network 200B using the SIM 112, it is assumed that the second transceiver 122 is switched to communication with the second network 200B. This allows the UE 100 to communicate with the second network 200B using the second transceiver 122 while maintaining communication with the first network 200A using the first transceiver 121.
 ここで、UE100が、第1ネットワーク200Aにおいて複数のセルと通信を行っている場合に、一方の送受信部(例えば、第1送受信部121)を用いて複数のセルの一部のセルと通信を行いつつ、他方の送受信部(例えば、第2送受信部122)を用いて複数のセルの残りのセルと通信を行うことが想定される。 Here, when UE100 is communicating with multiple cells in the first network 200A, it is assumed that it will communicate with some of the multiple cells using one transceiver unit (e.g., the first transceiver unit 121) while communicating with the remaining cells of the multiple cells using the other transceiver unit (e.g., the second transceiver unit 122).
 MUSIMギャップが設定されたUE100は、第1送受信部121を用いて一部のセルとの通信を継続しながら、MUSIMギャップ中に残りのセルとの通信を中断して第2送受信部122を用いて第2ネットワーク200Bにおけるシグナリングの受信動作を行うことで、MUSIMギャップ中であっても第1ネットワーク200Aとの通信が継続できる。これにより、通信パフォーマンスの向上を図ることができる。 UE 100 in which a MUSIM gap is set can continue communication with some cells using the first transceiver unit 121, while interrupting communication with the remaining cells during the MUSIM gap and performing signaling reception operations in the second network 200B using the second transceiver unit 122, thereby continuing communication with the first network 200A even during the MUSIM gap. This can improve communication performance.
 近年、二重接続(Dual Connectivity:DC)において、セカンダリノードに関連付けられるセカンダリセルグループ(SCG)向けのMUSIMギャップ(以下、SCG向けギャップと適宜称する)について議論されている。SCG向けギャップが設定されたUE100は、第1ネットワーク200AのSCGとの通信を一時的に中断できるSCG向けギャップ中に第2ネットワーク200Bとの通信を行うことで、第1ネットワーク200Aのマスタセルグループ(MCG)との通信を継続しつつ第2ネットワーク200Bとの通信が可能となる。 In recent years, in dual connectivity (DC), a MUSIM gap for a secondary cell group (SCG) associated with a secondary node (hereinafter referred to as an SCG gap) has been discussed. A UE 100 in which an SCG gap is set can communicate with the second network 200B while continuing communication with the master cell group (MCG) of the first network 200A by communicating with the second network 200B during the SCG gap, in which communication with the SCG of the first network 200A can be temporarily interrupted.
 既存の3GPP仕様書では、UE100のSCG向けギャップを取り扱う方法について規定されていない。このため、セカンダリノードが、UE100へ設定されたSCG向けギャップを把握できず、SCG向けギャップ中にもかかわらず、SCGにおいてUE100との通信を試みる懸念がある。後述の一実施形態において、本開示は、UE100のSCG向けギャップを取り扱うことを可能とするための動作について説明する。  Existing 3GPP specifications do not specify how to handle the SCG gap of UE100. For this reason, there is a concern that the secondary node will not be able to grasp the SCG gap set for UE100, and will attempt to communicate with UE100 in the SCG even during the SCG gap. In one embodiment described below, the present disclosure describes an operation for enabling UE100 to handle the SCG gap.
 また、UE100は、MCG向けのMUSIMギャップ(以下、MCG向けギャップと適宜称する)が設定された場合には、MCG向けギャップ中に第2ネットワーク200Bとの通信を行うことで、第2ネットワーク200Bとの通信が行われるギャップ中であったとしても第1ネットワーク200AのSCGとの通信を継続可能となる。 In addition, when a MUSIM gap for an MCG (hereinafter referred to as a gap for an MCG) is set, the UE 100 can continue communication with the SCG of the first network 200A even during a gap in which communication with the second network 200B is performed by communicating with the second network 200B during the gap for the MCG.
 ところで、MUSIMギャップの設定では、MUSIMギャップを識別するためのギャップ識別子(具体的には、MUSIM-GapID)と、MUSIMギャップのギャップパラメータを示すMUSIMギャップ情報(具体的には、MUSIM-GapInfo)と、が対応付けられている。従って、UE100は、第1ネットワーク200Aから指定されたギャップ識別子に対応するギャップパラメータに基づくSCG向けギャップ中に、第2ネットワーク200Bとの通信を行うことが想定される。 Incidentally, when setting the MUSIM gap, a gap identifier for identifying the MUSIM gap (specifically, MUSIM-GapID) is associated with MUSIM gap information indicating the gap parameters of the MUSIM gap (specifically, MUSIM-GapInfo). Therefore, it is expected that the UE 100 will communicate with the second network 200B during a gap for SCG based on the gap parameters corresponding to the gap identifier specified by the first network 200A.
 ここで、既存の3GPP仕様書では、MCG向けギャップのギャップパラメータ及びSCG向けギャップのギャップパラメータのそれぞれに対して、どのようなギャップ識別子を対応付けるかが規定されていない。従って、MCG向けギャップのギャップパラメータに対応付けたギャップ識別子と、SCG向けギャップのギャップパラメータに対応付けたギャップ識別子とが重複することがあり得るため、UE100が、自身に設定された各ギャップがSCG向けであるのか否かを判別できない。後述の一実施形態において、本開示は、SCG向けギャップを適切にUE100に設定可能とするための動作について説明する。 Here, existing 3GPP specifications do not specify what gap identifiers are associated with the gap parameters of the gap for the MCG and the gap parameters of the gap for the SCG. Therefore, there is a possibility that the gap identifiers associated with the gap parameters of the gap for the MCG and the gap identifiers associated with the gap parameters of the gap for the SCG may overlap, and therefore UE100 cannot determine whether each gap set in itself is for the SCG. In one embodiment described below, the present disclosure describes an operation for enabling UE100 to appropriately set gaps for the SCG.
 また、UE100は、推奨するMUSIMギャップを通知するために、ギャップ推奨リスト(具体的には、musim-GapPreferenceList)をネットワークへ送信することができる。ネットワークは、MUSIMギャップ推奨リストに基づいて、UE100にMUSIMギャップを設定できる。 In addition, UE100 can transmit a gap recommendation list (specifically, musim-GapPreferenceList) to the network to notify the network of the recommended MUSIM gap. The network can set a MUSIM gap in UE100 based on the MUSIM gap recommendation list.
 ここで、ネットワークに属する全ての基地局210がSCG向けギャップの設定についてサポートしているとは限らない。このため、UE100との二重接続を実行する基地局210がSCG向けギャップの設定についてサポートしていないにも関わらず、UE100が、推奨するMUSIMギャップとしてSCG向けギャップを当該基地局210に通知した場合、不具合が発生する懸念がある。後述の一実施形態において、本開示は、SCG向けギャップの設定可否を把握可能とするための動作について説明する。 Here, not all base stations 210 belonging to the network necessarily support the setting of a gap for SCG. For this reason, if the base station 210 that performs dual connectivity with the UE 100 does not support the setting of a gap for SCG, and the UE 100 notifies the base station 210 of a gap for SCG as a recommended MUSIM gap, there is a concern that a malfunction may occur. In one embodiment described later, the present disclosure describes an operation for making it possible to know whether or not a gap for SCG can be set.
 (UEの構成例)
 図4を参照して、UE100の構成例について説明する。図4に示すように、UE100は、アンテナ101と、アンテナ102と、SIM111と、SIM112と、通信部120と、制御部130とを有する。アンテナ101及びアンテナ102は、UE100の外部に設けられてもよい。SIM111及びSIM112は、SIMカード又はeSIMであってよい。
(Example of UE configuration)
A configuration example of the UE 100 will be described with reference to Fig. 4. As shown in Fig. 4, the UE 100 has an antenna 101, an antenna 102, an SIM 111, an SIM 112, a communication unit 120, and a control unit 130. The antenna 101 and the antenna 102 may be provided outside the UE 100. The SIM 111 and the SIM 112 may be a SIM card or an eSIM.
 SIM111は、UE100が第1ネットワーク200Aと通信するために必要な加入者情報及び設定情報を記憶する。SIM111は、第1ネットワーク200AにおけるUE100の識別情報、例えば、電話番号及びIMSI(International Mobile Subscriber Identity)等を記憶する。SIM111は、第1加入者情報モジュールに対応する。UE100は、SIM111を用いて第1ネットワーク200Aと通信する。 SIM111 stores subscriber information and setting information necessary for UE100 to communicate with the first network 200A. SIM111 stores identification information of UE100 in the first network 200A, such as a telephone number and IMSI (International Mobile Subscriber Identity). SIM111 corresponds to a first subscriber information module. UE100 communicates with the first network 200A using SIM111.
 SIM112は、UE100が第2ネットワーク200Bと通信するために必要な加入者情報及び設定情報を記憶する。SIM112は、第2ネットワーク200BにおけるUE100の識別情報、例えば、電話番号及びIMSI等を記憶する。SIM112は、第2加入者情報モジュールに対応する。UE100は、SIM112を用いて第2ネットワーク200Bと通信する。 SIM112 stores subscriber information and setting information necessary for UE100 to communicate with the second network 200B. SIM112 stores identification information of UE100 in the second network 200B, such as a telephone number and IMSI. SIM112 corresponds to a second subscriber information module. UE100 communicates with the second network 200B using SIM112.
 通信部120は、制御部130の制御下で、アンテナ101及びアンテナ102を介して第1ネットワーク200Aとの無線通信及び第2ネットワーク200Bとの無線通信を行う。通信部120は、複数の送受信部を有する。送受信部は、送受信機と称されてもよいし、RF(Radio Frequency)チェーンと称されてもよい。本実施形態では、通信部120は、第1送受信部121と第2送受信部122とを有する。第1送受信部121及び第2送受信部122は、受信部120R及び送信部120Tを有する。受信部120Rは、各アンテナが受信する無線信号をベースバンド信号である受信信号に変換し、受信信号に対する信号処理を行ったうえで制御部130に出力する。送信部120Tは、制御部130が出力するベースバンド信号である送信信号に対する信号処理を行ったうえで無線信号に変換し、無線信号を各アンテナから送信する。受信部120Rは、受信機と称されてもよいし、Rxチェーンと称されてもよいし、Rxブランチと称されてもよい。送信部120Tは、送信機と称されてもよいし、Txチェーンと称されてもよいし、Txブランチと称されてもよい。本実施形態では、第1送受信部121は、受信部120Rとして第1受信部121Rを有し、送信部120Tとして第1送信部121Tを有する。第2送受信部122は、受信部120Rとして第2受信部122Rを有し、送信部120Tとして第2送信部122Tを有する。 The communication unit 120 performs wireless communication with the first network 200A and the second network 200B via the antenna 101 and the antenna 102 under the control of the control unit 130. The communication unit 120 has a plurality of transceivers. The transceivers may be referred to as a transceiver or as an RF (Radio Frequency) chain. In this embodiment, the communication unit 120 has a first transceiver 121 and a second transceiver 122. The first transceiver 121 and the second transceiver 122 have a receiving unit 120R and a transmitting unit 120T. The receiving unit 120R converts the radio signal received by each antenna into a receiving signal, which is a baseband signal, performs signal processing on the received signal, and outputs it to the control unit 130. The transmitting unit 120T performs signal processing on the transmitting signal, which is a baseband signal output by the control unit 130, converts it into a radio signal, and transmits the radio signal from each antenna. The receiving unit 120R may be referred to as a receiver, an Rx chain, or an Rx branch. The transmitting unit 120T may be referred to as a transmitter, a Tx chain, or a Tx branch. In this embodiment, the first transmitting/receiving unit 121 has a first receiving unit 121R as the receiving unit 120R and a first transmitting unit 121T as the transmitting unit 120T. The second transmitting/receiving unit 122 has a second receiving unit 122R as the receiving unit 120R and a second transmitting unit 122T as the transmitting unit 120T.
 制御部130は、通信部120を制御するとともに、UE100における各種の制御を行う。制御部130は、SIM111を用いて第1ネットワーク200Aとの通信を制御するとともに、SIM112を用いて第2ネットワーク200Bとの通信を制御する。制御部130は、少なくとも1つのプロセッサ及び少なくとも1つのメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。メモリは、ROM(Read Only Memory)、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read-Only Memory)、RAM(Random Access Memory)及びフラッシュメモリの少なくとも1つを含んでもよい。プロセッサは、デジタル信号のデジタル処理を行うデジタル信号プロセッサ(DSP)と、プログラムを実行する中央演算処理装置(CPU)とを含んでもよい。なお、メモリの一部は通信部120に設けられていてもよい。また、DSPは、通信部120に設けられていてもよい。 The control unit 130 controls the communication unit 120 and performs various controls in the UE 100. The control unit 130 controls communication with the first network 200A using the SIM 111 and controls communication with the second network 200B using the SIM 112. The control unit 130 includes at least one processor and at least one memory. The memory stores programs executed by the processor and information used for processing by the processor. The memory may include at least one of a ROM (Read Only Memory), an EPROM (Erasable Programmable Read-Only Memory), an EEPROM (Electrically Erasable Programmable Read-Only Memory), a RAM (Random Access Memory), and a flash memory. The processor may include a digital signal processor (DSP) that performs digital processing of digital signals, and a central processing unit (CPU) that executes programs. Note that a portion of the memory may be provided in the communication unit 120. Also, the DSP may be provided in the communication unit 120.
 このように構成されたUE100では、受信部120Rは、SCG向けギャップの設定可否をUE100が判定するためのRRCメッセージを第1ネットワーク200Aから受信する。UE100の制御部130は、RRCメッセージに基づいて、SCG向けギャップの設定可否を判定する。これにより、UE100は、RRCメッセージに基づいて、SCG向けギャップの設定可否を把握できる。 In the UE 100 configured in this manner, the receiver 120R receives an RRC message from the first network 200A, which allows the UE 100 to determine whether or not a gap for the SCG can be set. The control unit 130 of the UE 100 determines whether or not a gap for the SCG can be set based on the RRC message. This allows the UE 100 to know whether or not a gap for the SCG can be set based on the RRC message.
 また、制御部130は、MCG向けギャップに関するMCGギャップ設定と、SCG向けギャップに関するSCGギャップ設定とを、マスタノードから取得する。MCGギャップ設定及びSCGギャップ設定のそれぞれは、ギャップ識別子を含む。制御部130は、ギャップ識別子がSCG向けであるか否かを識別可能な態様でギャップ識別子をマスタノードから取得する。これにより、UE100が、ギャップ識別子がSCG向けであるか否かを識別でき、自身に設定されたギャップを適切に制御できる。 The control unit 130 also acquires an MCG gap setting for the gap for the MCG and an SCG gap setting for the gap for the SCG from the master node. Each of the MCG gap setting and the SCG gap setting includes a gap identifier. The control unit 130 acquires the gap identifier from the master node in a manner that allows the control unit 130 to identify whether the gap identifier is for the SCG or not. This allows the UE 100 to identify whether the gap identifier is for the SCG or not, and to appropriately control the gap set for itself.
 なお、UE100が備える機能部(具体的には、アンテナ101と、アンテナ102と、SIM111と、SIM112と、通信部120と、制御部130との少なくともいずれか)の動作を、UE100の動作として説明することがある。 Note that the operation of the functional units of UE100 (specifically, at least one of antenna 101, antenna 102, SIM 111, SIM 112, communication unit 120, and control unit 130) may be described as the operation of UE100.
 (基地局の構成例)
 図5を参照して、第1ネットワーク200Aの基地局210Aの構成例について説明する。なお、第2ネットワーク200Bの基地局210Bも基地局210Aと同様の構成であるため、説明を省略する。図5に示すように、基地局210Aは、アンテナ211と、無線通信部212と、ネットワーク通信部213と、制御部214とを有する。
(Example of base station configuration)
A configuration example of the base station 210A of the first network 200A will be described with reference to Fig. 5. Note that the base station 210B of the second network 200B has a similar configuration to the base station 210A, so a description thereof will be omitted. As shown in Fig. 5, the base station 210A has an antenna 211, a wireless communication unit 212, a network communication unit 213, and a control unit 214.
 無線通信部212は、制御部214の制御下で、アンテナ211を介してUE100との通信を行う。無線通信部212は、受信部212Rと、送信部212Tとを有する。受信部212Rは、アンテナ211が受信する無線信号をベースバンド信号である受信信号に変換し、受信信号に対する信号処理を行ったうえで制御部214に出力する。送信部212Tは、制御部214が出力するベースバンド信号である送信信号に対する信号処理を行ったうえで無線信号に変換し、無線信号をアンテナ211から送信する。 Under the control of the control unit 214, the wireless communication unit 212 communicates with the UE 100 via the antenna 211. The wireless communication unit 212 has a receiving unit 212R and a transmitting unit 212T. The receiving unit 212R converts the wireless signal received by the antenna 211 into a received signal, which is a baseband signal, performs signal processing on the received signal, and outputs it to the control unit 214. The transmitting unit 212T performs signal processing on the transmission signal, which is a baseband signal, output by the control unit 214, converts it into a wireless signal, and transmits the wireless signal from the antenna 211.
 ネットワーク通信部213は、コアネットワーク220Aと接続される。ネットワーク通信部213は、制御部214の制御下で、モビリティ管理装置221A及びゲートウェイ装置222Aとのネットワーク通信を行う。 The network communication unit 213 is connected to the core network 220A. Under the control of the control unit 214, the network communication unit 213 performs network communication with the mobility management device 221A and the gateway device 222A.
 制御部214は、無線通信部212を制御するとともに、基地局210Aにおける各種の制御を行う。制御部214は、少なくとも1つのプロセッサ及び少なくとも1つのメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。メモリは、ROM、EPROM、EEPROM、RAM及びフラッシュメモリの少なくとも1つを含んでもよい。プロセッサは、デジタル信号のデジタル処理を行うデジタル信号プロセッサ(DSP)と、プログラムを実行する中央演算処理装置(CPU)とを含んでもよい。なお、メモリの一部は無線通信部212に設けられていてもよい。また、DSPは、無線通信部212に設けられていてもよい。 The control unit 214 controls the wireless communication unit 212 and performs various controls in the base station 210A. The control unit 214 includes at least one processor and at least one memory. The memory stores programs executed by the processor and information used in processing by the processor. The memory may include at least one of ROM, EPROM, EEPROM, RAM, and flash memory. The processor may include a digital signal processor (DSP) that performs digital processing of digital signals, and a central processing unit (CPU) that executes programs. Note that a part of the memory may be provided in the wireless communication unit 212. Also, the DSP may be provided in the wireless communication unit 212.
 このように構成された基地局210では、送信部212Tは、SCG向けギャップの設定可否をUE100が判定するためのRRCメッセージをUE100へ送信する。これにより、UE100は、SCG向けギャップの設定可否を把握できる。 In the base station 210 configured in this manner, the transmission unit 212T transmits to the UE 100 an RRC message for the UE 100 to determine whether or not a gap for the SCG can be set. This allows the UE 100 to know whether or not a gap for the SCG can be set.
 また、マスタノードのネットワーク通信部213は、SCG向けギャップをセカンダリノードが特定するための通知情報をセカンダリノードへ送信する。また、セカンダリノードのネットワーク通信部213は、通知情報をマスタノードから受信する。これにより、セカンダリノードが、SCG向けギャップを特定でき、SCG向けギャップを適切に取り扱うことができる。 The network communication unit 213 of the master node also transmits notification information to the secondary node for the secondary node to identify the gap for SCG. The network communication unit 213 of the secondary node also receives notification information from the master node. This allows the secondary node to identify the gap for SCG and handle the gap for SCG appropriately.
 また、制御部214は、MCG向けギャップに関するMCGギャップ設定と、SCG向けギャップに関するSCGギャップ設定とを、UE100へ通知する。MCGギャップ設定及びSCGギャップ設定のそれぞれは、ギャップ識別子を含む。制御部214は、ギャップ識別子がSCG向けであるか否かを識別可能な態様でギャップ識別子をUE100に通知する。ギャップ識別子がSCG向けであるか否かを識別可能であるため、UE100が、自身に設定されたギャップを適切に制御できる。 The control unit 214 also notifies the UE 100 of an MCG gap setting for the gap for the MCG and an SCG gap setting for the gap for the SCG. Each of the MCG gap setting and the SCG gap setting includes a gap identifier. The control unit 214 notifies the UE 100 of the gap identifier in a manner that makes it possible to identify whether the gap identifier is for the SCG or not. Because it is possible to identify whether the gap identifier is for the SCG or not, the UE 100 can appropriately control the gap set for itself.
 なお、基地局210Aが備える機能部(具体的には、アンテナ211と、無線通信部212と、ネットワーク通信部213と、制御部214との少なくともいずれか)の動作を、基地局210Aの動作として説明することがある。 Note that the operation of the functional units (specifically, at least one of the antenna 211, the wireless communication unit 212, the network communication unit 213, and the control unit 214) included in the base station 210A may be described as the operation of the base station 210A.
 (移動通信システムの動作)
 次に、移動通信システム1の動作について、説明する。
(Operation of the mobile communication system)
Next, the operation of the mobile communication system 1 will be described.
 (第1動作例)
 図6から図16を参照して、第1動作例について説明する。
(First operation example)
The first operation example will be described with reference to FIG. 6 to FIG.
 ステップS101:
 UE100は、二重接続(Dual Connectivity)動作を実行する。具体的には、UE100は、第1ネットワーク200Aにおいてマスタセルグループ(MCG)に関連付けられるマスタノードとして動作する基地局210Mと、第1ネットワーク200Aにおいてセカンダリセルグループ(SCG)に関連付けられるセカンダリノードとして動作する基地局210Sと、の通信を行う。UE100は、UE100に設定されているMCGにおける通信を行うとともに、UE100に設定されているSCGにおける通信を行う。MCGは、DCにおいて、マスタノードに関連付けられているサービングセルのグループである。MCGは、Spセル(プライマリセル(Pセル))及びオプションで1以上のセカンダリセル(Sセル)で構成される。Spセルは、MCG又はSCGのPセルである。SCGは、DCにおいて、セカンダリノードに関連付けられているサービングセルのグループである。SCGは、Spセル(プライマリセカンダリセル(PSセル))及びオプションで1以上のSセルで構成される。PSセルは、SCGのSpセルである。UE100のMACエンティティは、DCにおいて、MCG及びSCGに関連付けられてよい。
Step S101:
The UE 100 performs dual connectivity operation. Specifically, the UE 100 communicates with a base station 210M operating as a master node associated with a master cell group (MCG) in the first network 200A, and a base station 210S operating as a secondary node associated with a secondary cell group (SCG) in the first network 200A. The UE 100 communicates in the MCG set in the UE 100 and also communicates in the SCG set in the UE 100. The MCG is a group of serving cells associated with a master node in the DC. The MCG is composed of an Sp cell (primary cell (P cell)) and optionally one or more secondary cells (S cells). The Sp cell is a P cell of the MCG or SCG. The SCG is a group of serving cells associated with a secondary node in the DC. The SCG is composed of an Sp cell (primary secondary cell (PS cell)) and optionally one or more S cells. The PS cell is an Sp cell of the SCG. The MAC entity of the UE 100 may be associated with the MCG and the SCG in the DC.
 基地局210Mは、DCにおいて、UE100に設定されるMCGに関連付けられている。基地局210Mは、UE100に設定されるMCGを管理している。基地局210Mは、第1ネットワーク200Aにおいてマスタノードとして動作する。基地局210Sは、二重接続において、UE100に設定されるSCGに関連付けられている。基地局210Sは、UE100に設定されるSCGを管理している。基地局210Sは、第1ネットワーク200Aにおいてセカンダリノードとして動作する。 The base station 210M is associated with the MCG set in the UE 100 in the DC. The base station 210M manages the MCG set in the UE 100. The base station 210M operates as a master node in the first network 200A. The base station 210S is associated with the SCG set in the UE 100 in the dual connectivity. The base station 210S manages the SCG set in the UE 100. The base station 210S operates as a secondary node in the first network 200A.
 UE100は、第1ネットワーク200AにおいてRRCコネクティッド状態にある。RRCコネクティッド状態にあるUE100は、第1ネットワーク200AとUE100との間でRRC接続が確立されている。従って、UE100の制御部130及び基地局(基地局210M及び基地局210S)の制御部214は、UE100と基地局との間のRRC接続を確立する制御を行っていてよい。 UE100 is in an RRC connected state in the first network 200A. When UE100 is in the RRC connected state, an RRC connection is established between the first network 200A and UE100. Therefore, the control unit 130 of UE100 and the control unit 214 of the base station (base station 210M and base station 210S) may be performing control to establish an RRC connection between UE100 and the base station.
 また、UE100は、第1ネットワーク200Aにおいて通信中である。UE100は、例えば、第1ネットワーク200Aから、音声通話等のサービスの提供を受けていてよい。UE100の制御部130は、MCG及びSCGとの通信を制御している。なお、「通信中」とは、UE100が、ネットワークにおいて少なくともRRCコネクティッド状態であればよい。従って、UE100は、第1ネットワーク200Aと通信中である場合、当該ネットワークと連続的又は非連続的なデータのやり取りを継続的に行っている。 In addition, UE100 is communicating in the first network 200A. UE100 may be provided with services such as voice calls from the first network 200A. The control unit 130 of UE100 controls communication with the MCG and SCG. Note that "communicating" means that UE100 is at least in an RRC connected state in the network. Therefore, when UE100 is communicating with the first network 200A, it is continuously exchanging data with the network, either continuously or discontinuously.
 以下において、UE100と基地局210Mとの通信は、UE100にとって、UE100と基地局210Mのセル(具体的には、MCG、SCG、Pセル、Sセル)、すなわち、UE100が在圏するセルとの通信であってよい。UE100と基地局210Sとの通信も同様である。また、UE100と第1ネットワーク200Aに属するノード(例えば、基地局210A(すなわち、MCG、SCG、Pセル、Sセル)、モビリティ管理装置221A、ゲートウェイ装置222A)との通信を、UE100と第1ネットワーク200Aとの通信と称することがある。UE100と第2ネットワーク200Bに属するノードも同様である。 Hereinafter, the communication between UE100 and base station 210M may be, for UE100, communication between UE100 and the cell of base station 210M (specifically, MCG, SCG, P cell, S cell), i.e., communication between UE100 and the cell in which UE100 is located. The same applies to communication between UE100 and base station 210S. Also, communication between UE100 and a node belonging to the first network 200A (e.g., base station 210A (i.e., MCG, SCG, P cell, S cell), mobility management device 221A, gateway device 222A) may be referred to as communication between UE100 and the first network 200A. The same applies to communication between UE100 and a node belonging to the second network 200B.
 また、以下において、UE100は、通信部120(具体的には、受信部120R及び/又は送信部120T)を介して、第1ネットワーク200Aと通信(具体的には、メッセージ等の送受信/通知)を行うが、説明を簡便にするため、通信部120を介した通信であるとの説明を適宜省略する。UE100と第2ネットワーク200Bとの通信も同様に、通信部120を介した通信であるとの説明を適宜省略する。従って、UE100のメッセージ等の送信及び/又は受信は、UE100の通信部120(具体的には、受信部120R及び/又は送信部120T)のメッセージ等の送信及び/又は受信であってよい。 Furthermore, in the following, UE100 communicates with the first network 200A (specifically, sending and receiving/notifying messages, etc.) via communication unit 120 (specifically, receiving unit 120R and/or transmitting unit 120T), but for ease of explanation, the explanation that the communication is via communication unit 120 will be omitted as appropriate. Similarly, the explanation that the communication between UE100 and the second network 200B is communication via communication unit 120 will be omitted as appropriate. Therefore, the transmission and/or reception of messages, etc. by UE100 may be the transmission and/or reception of messages, etc. by communication unit 120 (specifically, receiving unit 120R and/or transmitting unit 120T) of UE100.
 ステップS102:
 基地局210Bの送信部212Tは、MCGにおいて、SCG向けギャップの設定可否をUE100が判定するための無線リソース制御(RRC)メッセージをUE100へ送信してよい。UE100の受信部120Rは、MCGにおいて、RRCメッセージを受信してよい。RRCメッセージは、例えば、RRC再設定メッセージ、SIBメッセージ等であってよい。
Step S102:
The transmission unit 212T of the base station 210B may transmit to the UE 100 a radio resource control (RRC) message for the UE 100 to determine whether or not the SCG gap can be set in the MCG. The reception unit 120R of the UE 100 may receive an RRC message in the MCG. The RRC message may be, for example, an RRC reconfiguration message, an SIB message, or the like.
 RRCメッセージは、SCG向けギャップの設定可否を示す可否情報を含んでよい。可否情報は、図7のE11に示すように、MCG又はSCGを設定するために用いられるセルグループ設定(CellGroupConfig)に含まれてよい。また、可否情報は、図8のE14に示すよう、その他の設定に関連する設定が含まれるアザー設定(OtherConfig)に含まれてもよい。 The RRC message may include enable/disable information indicating whether or not a gap for an SCG can be configured. The enable/disable information may be included in a cell group configuration (CellGroupConfig) used to configure an MCG or an SCG, as shown in E11 of FIG. 7. The enable/disable information may also be included in an other configuration (OtherConfig) that includes configurations related to other configurations, as shown in E14 of FIG. 8.
 図7のE11及び図8のE14に示すように、可否情報(例えば、musim-GapAvailableForSCG)は、ENUM又はBOOL等の二値情報で示されてよい。可否情報は、例えば、「true」である場合に、SCG向けギャップを設定可能であることを示してよい。可否情報は、例えば、「true」でない場合に、SCG向けギャップを設定不能であることを示してよい。 As shown in E11 of FIG. 7 and E14 of FIG. 8, the availability information (e.g., musim-GapAvailableForSCG) may be indicated by binary information such as ENUM or BOOL. For example, when the availability information is "true", it may indicate that a gap for SCG can be set. For example, when the availability information is not "true", it may indicate that a gap for SCG cannot be set.
 RRCメッセージは、SCG向けギャップを設定可能な数を示す設定数情報(例えば、musim-nrofGapForSCG)を含んでよい。設定数情報は、図7のE12及びE13に示すように、セルグループ設定に含まれてよい。また、設定数情報は、図9のE16及び図E17に示すように、アザー設定に含まれてよい。SCG向けギャップを設定不能である場合、設定数情報は、0を示してもよい。 The RRC message may include configuration number information (e.g., musim-nrofGapForSCG) indicating the number of gaps that can be set for SCG. The configuration number information may be included in the cell group configuration, as shown in E12 and E13 of FIG. 7. The configuration number information may also be included in the other configuration, as shown in E16 and E17 of FIG. 9. If it is not possible to set a gap for SCG, the configuration number information may indicate 0.
 なお、SCG向けギャップを設定可能な数は、予め規定されていてもよい。例えば、SCG向けギャップを設定可能な数は、3GPP技術仕様書に規定されていてもよい。 The number of configurable gaps for SCG may be specified in advance. For example, the number of configurable gaps for SCG may be specified in the 3GPP technical specifications.
 また、RRCメッセージは、UE100が推奨するSCG向けギャップの情報の通知を禁止する期間を計時するためのタイマ(以下、SCG向けギャップ禁止タイマ)にセットされるタイマ値を示すタイマ情報を含んでよい。UE100は、SCG向けギャップ禁止タイマが稼働中である場合、SCG向けギャップの情報の通知が禁止されてよい。 The RRC message may also include timer information indicating a timer value to be set in a timer (hereinafter, SCG gap prohibit timer) for timing a period during which notification of SCG gap information recommended by UE 100 is prohibited. When the SCG gap prohibit timer is running, UE 100 may be prohibited from notifying SCG gap information.
 タイマ情報は、3GPP技術仕様書のリリース17にて規定されているMUSIMギャップ禁止タイマの情報(具体的には、musim-GapProhibitTimer-r17)とは別に規定されてよいし、共通であってもよい。MUSIMギャップ禁止タイマは、推奨ギャップ(gap preference)を報告するMUSIM補助情報に関する禁止タイマである。従って、MUSIMギャップ禁止タイマは、UE100が推奨するMUSIMギャップの情報の通知を禁止する期間を計時するタイマであってよい。 The timer information may be specified separately from the MUSIM gap prohibition timer information (specifically, musim-GapProhibitTimer-r17) specified in Release 17 of the 3GPP technical specifications, or may be common to both. The MUSIM gap prohibition timer is a prohibition timer related to MUSIM auxiliary information that reports the recommended gap (gap preference). Therefore, the MUSIM gap prohibition timer may be a timer that measures the period during which notification of MUSIM gap information recommended by UE 100 is prohibited.
 図7のE13及び図9のE17に示すように、タイマ情報(例えば、musim-GapProhibitTimer)は、SCG向けギャップに関するSCGギャップ設定(例えば、MUSIM-GapAssistanceConfigSCG)に含まれてよい。タイマ情報は、設定数情報とセットでSCGギャップ設定(例えば、MUSIM-GapAssistanceConfigSCG)に含まれてよい(図7のE13)。 As shown in E13 of FIG. 7 and E17 of FIG. 9, timer information (e.g., musim-GapProhibitTimer) may be included in the SCG gap setting (e.g., MUSIM-GapAssistanceConfigSCG) related to the gap for SCG. The timer information may be included in the SCG gap setting (e.g., MUSIM-GapAssistanceConfigSCG) together with the setting number information (E13 of FIG. 7).
 なお、基地局210Mは、RRCメッセージを送信する前に、可否情報及び/又は設定数情報をセカンダリノードから受信してもよい。基地局210Mは、例えば、基地局210Sがセカンダリノードとして動作するための手順(例えば、SeNB追加)において、可否情報及び/又は設定数情報をセカンダリノードから受信してもよい。 Before transmitting the RRC message, the base station 210M may receive the availability information and/or the setting number information from the secondary node. For example, the base station 210M may receive the availability information and/or the setting number information from the secondary node in a procedure (e.g., SeNB addition) for the base station 210S to operate as a secondary node.
 ステップS103:
 UE100にSIM112が挿入されてよい。これにより、UE100の制御部130は、第2ネットワーク200Bと通信するための処理を開始してもよい。また、制御部130は、ユーザからの入力によって第2ネットワーク200Bと通信するように設定が変更されてよい。
Step S103:
The SIM 112 may be inserted into the UE 100. As a result, the control unit 130 of the UE 100 may start a process for communicating with the second network 200B. In addition, the setting of the control unit 130 may be changed by an input from a user so as to communicate with the second network 200B.
 制御部130は、例えば、第1ネットワーク200Aで通信を行う各セルの通信負荷等の状況に基づいて、第2ネットワーク200Bと通信するためのMUSIMギャップ中に複数のセルのうち通信を中断する対象セル(例えば、MCG及び/又はSCGに含まれるセル)を決定してよい。また、制御部130は、例えば、第2ネットワーク200Bで使用する周波数帯域に基づいて、対象セルを決定してもよい。なお、MUSIMギャップは、第2ネットワーク200Bにおいてシグナリングの受信動作を行う期間であってよい。MUSIMのためのギャップが設定されるセルは、プライマリセル、プライマリセカンダリセル、及び/又は、セカンダリセルが含まれてもよい。すなわち、対象セルは、プライマリセル、プライマリセカンダリセル、及び/又は、セカンダリセルを含んでもよい。 The control unit 130 may determine a target cell (e.g., a cell included in the MCG and/or SCG) among multiple cells for interrupting communication during a MUSIM gap for communicating with the second network 200B, based on, for example, the communication load and other conditions of each cell communicating in the first network 200A. The control unit 130 may also determine a target cell, for example, based on the frequency band used in the second network 200B. The MUSIM gap may be a period during which signaling reception is performed in the second network 200B. Cells in which a gap for MUSIM is set may include a primary cell, a primary secondary cell, and/or a secondary cell. That is, the target cell may include a primary cell, a primary secondary cell, and/or a secondary cell.
 上述の通り、制御部130は、例えば、セカンダリセルを対象セルと決定してもよいし、セカンダリセルグループに属する少なくともいずれかのセル(例えば、プライマリセカンダリセル、及び/又は、セカンダリセル)を対象セルと決定してもよい。制御部130は、例えば、第2ネットワーク200Bで使用する周波数帯域の少なくとも一部と重なる周波数範囲内のセルを対象セルと決定してもよい。制御部130は、周波数範囲2(FR2)におけるセルを対象セルと決定してもよい。 As described above, the control unit 130 may, for example, determine the secondary cell as the target cell, or may determine at least one cell belonging to the secondary cell group (for example, the primary secondary cell and/or the secondary cell) as the target cell. The control unit 130 may, for example, determine the target cell as a cell within a frequency range that overlaps with at least a portion of the frequency band used in the second network 200B. The control unit 130 may determine the target cell as a cell in frequency range 2 (FR2).
 制御部130は、SCGに含まれるセルを対象セルと決定できるか否か、すなわち、SCG向けギャップの設定が可能か否かを判定するために、以下の処理を実行して決定してよい。 The control unit 130 may perform the following process to determine whether a cell included in the SCG can be determined as a target cell, i.e., whether a gap for the SCG can be set.
 ステップS104:
 UE100の制御部130は、RRCメッセージに基づいて、第2ネットワーク200Bと通信するためにSCGにおける通信を一時的に中断できる期間であるSCG向けギャップの設定可否を判定する。制御部130は、例えば、ステップS102のRRCメッセージを受信した場合に、SCG向けギャップの設定可否を判定してもよい。制御部130は、例えば、第2ネットワーク200Bとの通信を試みる場合に、SCG向けギャップの設定可否を判定してもよい。制御部130は、例えば、以下の方法でSCG向けギャップの設定可否を判定する。
Step S104:
The control unit 130 of the UE 100 determines whether or not a gap for SCG can be set, which is a period during which communication in the SCG can be temporarily interrupted in order to communicate with the second network 200B, based on the RRC message. The control unit 130 may determine whether or not a gap for SCG can be set, for example, when the RRC message of step S102 is received. The control unit 130 may determine whether or not a gap for SCG can be set, for example, when attempting communication with the second network 200B. The control unit 130 determines whether or not a gap for SCG can be set, for example, by the following method.
 制御部130は、可否情報に基づいて、SCG向けギャップの設定可否を判定してよい。制御部130は、可否情報がSCG向けギャップの設定が可能であることを示す場合、SCG向けギャップの設定が可能であると判定する。一方で、制御部130は、可否情報がSCG向けギャップの設定が不能であることを示す場合、SCG向けギャップの設定が不能であると判定する。 The control unit 130 may determine whether or not a gap for an SCG can be set based on the feasibility information. When the feasibility information indicates that a gap for an SCG can be set, the control unit 130 determines that a gap for an SCG can be set. On the other hand, when the feasibility information indicates that a gap for an SCG cannot be set, the control unit 130 determines that a gap for an SCG cannot be set.
 制御部130は、設定数情報に基づいて、SCG向けギャップの設定可否を判定してもよい。制御部130は、例えば、RRCメッセージが可否情報を含まない場合に、設定数情報に基づいて、SCG向けギャップの設定可否を判定してもよい。制御部130は、SCG向けギャップの設定数が1以上であることを設定数情報が示す場合、SCG向けギャップの設定が可能であると判定する。一方で、制御部130は、SCG向けギャップの設定数が0であることを設定数情報が示す場合、SCG向けギャップの設定が不能であると判定する。 The control unit 130 may determine whether or not a gap for SCG can be set based on the setting number information. For example, when the RRC message does not include possible or impossible information, the control unit 130 may determine whether or not a gap for SCG can be set based on the setting number information. When the setting number information indicates that the number of gaps set for SCG is 1 or more, the control unit 130 determines that a gap for SCG can be set. On the other hand, when the setting number information indicates that the number of gaps set for SCG is 0, the control unit 130 determines that a gap for SCG cannot be set.
 なお、制御部130は、RRCメッセージがSCG向けギャップの設定に関する情報を含まない場合、SCG向けギャップの設定が不能であると判定してもよい。制御部130は、例えば、RRCメッセージが可否情報を含まない場合、SCG向けギャップの設定が不能であると判定してもよい。制御部130は、例えば、RRCメッセージが可否情報及び設定数情報を含まない場合、SCG向けギャップの設定が不能であると判定してもよい。 The control unit 130 may determine that it is not possible to set a gap for an SCG if the RRC message does not include information regarding the setting of a gap for an SCG. The control unit 130 may determine that it is not possible to set a gap for an SCG if the RRC message does not include possible/not possible information. The control unit 130 may determine that it is not possible to set a gap for an SCG if the RRC message does not include possible/not possible information and setting number information.
 なお、RRCメッセージにおいて、第1のアザー設定(例えば、3GPP技術仕様書のリリース17に規定されているOtherConfig)にMUSIMギャップに関する設定(具体的には、推奨ギャップ(gap preference)の補助情報を報告するための設定(musim-GapAssistanceConfig))がセットされておらず(すなわち含まれておらず)、第1のアザー設定よりも後に規定された第2のアザー設定(例えば、3GPP技術仕様書のリリース18に規定されているOtherConfig)に、SCG向けギャップの設定可否に関する情報(例えば、musim-GapAssistanceConfigSCG-r18)がセットされている(すなわち含まれている)場合、以下のいずれかの処理を実行してよい。制御部130は、SCG向けギャップが設定可能であるとみなしてよい。或いは、制御部130は、MCG向けギャップとSCG向けギャップとの両方が設定可能であるとみなしてよい。或いは、制御部130は、MCG向けギャップとSCG向けギャップとの両方(すなわち、MUSIMギャップ)が設定不能であるとみなしてよい。 In the RRC message, if the first other setting (e.g., OtherConfig specified in Release 17 of the 3GPP Technical Specifications) does not set (i.e., does not include) a setting related to the MUSIM gap (specifically, a setting for reporting auxiliary information for the recommended gap (gap preference) (musim-GapAssistanceConfig)), and the second other setting (e.g., OtherConfig specified in Release 18 of the 3GPP Technical Specifications) specified after the first other setting has information related to whether or not a gap for SCG can be set (e.g., musim-GapAssistanceConfigSCG-r18) set (i.e., includes), then any of the following processes may be performed. The control unit 130 may assume that a gap for SCG can be set. Alternatively, the control unit 130 may consider that both the gap for the MCG and the gap for the SCG can be set. Alternatively, the control unit 130 may consider that both the gap for the MCG and the gap for the SCG (i.e., the MUSIM gap) cannot be set.
 制御部130は、推奨するMUSIMギャップを通知するためにギャップ推奨リスト(例えば、musim-GapPreferenceList)を生成してよい。制御部130は、RRCメッセージに基づいてSCG向けギャップの設定可能であると判定した場合であって、UE100が推奨するSCG向けギャップがある場合、推奨するSCG向けギャップの情報を含むギャップ推奨リストを生成してよい。一方で、制御部130は、RRCメッセージに基づいて、SCG向けギャップの設定不能であると判定した場合、UE100が推奨するSCG向けギャップがあったとしても、推奨するSCG向けギャップの情報を含まないギャップ推奨リストを生成しない制御を行ってよい。制御部130は、SCG向けギャップの設定が不能であると判定した場合、推奨するMCG向けギャップの情報を含み且つ推奨するSCG向けギャップの情報を含まないギャップ推奨リストを生成してもよい。 The control unit 130 may generate a gap recommendation list (e.g., musim-GapPreferenceList) to notify of the recommended MUSIM gap. When the control unit 130 determines that a gap for SCG can be set based on the RRC message and there is a gap for SCG recommended by UE100, the control unit 130 may generate a gap recommendation list including information on the recommended gap for SCG. On the other hand, when the control unit 130 determines that a gap for SCG cannot be set based on the RRC message, even if there is a gap for SCG recommended by UE100, the control unit 130 may perform control not to generate a gap recommendation list that does not include information on the recommended gap for SCG. When the control unit 130 determines that a gap for SCG cannot be set, the control unit 130 may generate a gap recommendation list that includes information on the recommended gap for MCG and does not include information on the recommended gap for SCG.
 なお、UE100の好み(preference)のものが推奨するものであってよい。従って、「推奨」は、「好み(preference)」に置き換えられてもよい。例えば、UE100の好み(preference)のMUSIMギャップが推奨するMUSIMギャップ(例えば、MCG向けギャップ及び/又はSCG向けギャップ)であってよい。「gap preference」は、推奨するMUSIMギャップを含むものであってよい。ギャップ推奨リストは、例えばgap preference(の情報)を含む及び/又は示すものであってよい。 Note that the preference of UE100 may be what is recommended. Therefore, "recommended" may be replaced with "preference". For example, the MUSIM gap of UE100's preference may be a recommended MUSIM gap (e.g., a gap for MCG and/or a gap for SCG). "Gap preference" may include the recommended MUSIM gap. The gap recommendation list may include and/or indicate, for example, gap preference (information).
 制御部130は、RRCメッセージが設定数情報を含む場合、設定数情報によって示される数以下のSCG向けギャップの情報を含むギャップ推奨リストを生成してもよい。制御部130は、SCG向けギャップが設定可能な数が予め規定されている場合、予め規定された数以下のSCG向けギャップの情報を含むギャップ推奨リストを生成してもよい。 When the RRC message includes setting number information, the control unit 130 may generate a gap recommendation list including information on gaps for SCGs equal to or less than the number indicated by the setting number information. When the number of gaps for SCGs that can be set is predefined, the control unit 130 may generate a gap recommendation list including information on gaps for SCGs equal to or less than the predefined number.
 推奨するMCG向けギャップの情報及び推奨するSCG向けギャップの情報は、MUSIM-GapPrefInfoと称されてもよいし(図10参照)、MUSIMギャップパラメータを示すために用いられる情報(具体的には、MUSIM-GapInfo)であってもよい(図11参照)。制御部130は、推奨するMCG向けギャップの情報と推奨するSCG向けギャップの情報とを区別可能とするために、以下の処理を実行してもよい。 The recommended gap information for MCG and the recommended gap information for SCG may be referred to as MUSIM-GapPrefInfo (see FIG. 10), or may be information used to indicate MUSIM gap parameters (specifically, MUSIM-GapInfo) (see FIG. 11). The control unit 130 may execute the following processing to make it possible to distinguish between the recommended gap information for MCG and the recommended gap information for SCG.
 図10のE21に示すように、制御部130は、推奨するSCG向けギャップの情報を示すために、識別情報としてSCGを示すセルグループ識別子(cellGroupId)又はSCGに含まれるセルを示すセル識別子を、推奨するSCG向けギャップの情報に対応付けてよい。制御部130は、推奨するMCG向けギャップの情報を示すために、MCGを示すセルグループ識別子又はMCGに含まれるセルを示すセル識別子を、推奨するMCG向けギャップの情報に対応付けてもよい。制御部130は、推奨するSCG向けギャップの情報を示すために、セルグループ識別子又はセル識別子を推奨するSCG向けギャップの情報に対応付ける場合、MCGを示すセルグループ識別子又はMCGに含まれるセルを示すセル識別子を、推奨するMCG向けギャップの情報に対応付けなくてもよい。 As shown in E21 of FIG. 10, the control unit 130 may associate a cell group identifier (cellGroupId) indicating an SCG or a cell identifier indicating a cell included in an SCG as identification information with the recommended gap information for SCG to indicate the recommended gap information for SCG. The control unit 130 may associate a cell group identifier indicating an MCG or a cell identifier indicating a cell included in an MCG with the recommended gap information for MCG to indicate the recommended gap information for MCG. When associating a cell group identifier or a cell identifier with the recommended gap information for SCG to indicate the recommended gap information for SCG, the control unit 130 does not need to associate a cell group identifier indicating an MCG or a cell identifier indicating a cell included in an MCG with the recommended gap information for MCG.
 なお、推奨するMCG向けギャップの情報と推奨するSCG向けギャップの情報とを区別可能とするための識別情報は、対象セルの周波数の識別子であってよい。識別情報は、例えば、対象セルの絶対無線周波数チャネル番号(ARFCN:Absolute radio-frequency channel number)であってよい。また、識別情報は、例えば、対象セルが含まれる周波数範囲(例えば、FR1、FR2等)を示してもよい。 The identification information for distinguishing between the recommended gap information for the MCG and the recommended gap information for the SCG may be an identifier of the frequency of the target cell. The identification information may be, for example, the absolute radio-frequency channel number (ARFCN) of the target cell. The identification information may also indicate, for example, the frequency range (e.g., FR1, FR2, etc.) in which the target cell is included.
 図11のE22に示すように、制御部130は、推奨するSCG向けギャップの情報のリスト(例えば、musim-GapPreferenceList-r17)と、推奨するSCG向けギャップの情報のリスト(例えば、musim-GapPreferenceListSCG-r18)と、を生成したギャップ推奨リストとして生成してもよい。 As shown in E22 of FIG. 11, the control unit 130 may generate a gap recommendation list by generating a list of information on recommended gaps for SCG (e.g., musim-GapPreferenceList-r17) and a list of information on recommended gaps for SCG (e.g., musim-GapPreferenceListSCG-r18).
 制御部130は、生成したギャップ推奨リストを含むUE補助情報メッセージを生成してよい。なお、UE補助情報メッセージは、第1ネットワーク200AへのUE補助情報のインジケーションのために用いられてよい。制御部130は、例えば、MUSIM補助情報を提供する場合に、UE補助情報メッセージを生成してよい。MUSIM補助情報は、MUSIMのためのUE100の好み(preference)として、上述の推奨するMUSIMギャップの情報を含んでよい。すなわち、本実施形態における推奨するMUSIMギャップ情報は、UE100の好みのMUSIMギャップ情報であってよい。 The control unit 130 may generate a UE assistance information message including the generated gap recommendation list. The UE assistance information message may be used for indicating the UE assistance information to the first network 200A. The control unit 130 may generate the UE assistance information message, for example, when providing MUSIM assistance information. The MUSIM assistance information may include the above-mentioned recommended MUSIM gap information as the preference of the UE 100 for MUSIM. That is, the recommended MUSIM gap information in this embodiment may be the preferred MUSIM gap information of the UE 100.
 なお、ギャップ推奨リストに含まれるギャップ推奨情報は、例えば、UE100が推奨するMUSIMギャップ長の長さを示す情報(例えば、musim-GapLength)、UE100が推奨するMUSIMギャップのギャップオフセットを示す情報(例えば、musim-GapOffset)、RRCコネクティッド状態を維持したまま、UE100が推奨する非周期的なMUSIMギャップのギャップ開始位置を示す情報(例えば、musim-PrefStarting-SFN-AndSubframex)、及び、RRCコネクティッド状態を維持したまま、UE100が推奨する周期的なMUSIMギャップのギャップ受信期間及びギャップオフセットを示す情報(例えば、musim-GapRepetitionAndOffsetPeriod)の少なくともいずれかの情報を含んでよい。 The gap recommendation information included in the gap recommendation list may include at least one of the following information: information indicating the length of the MUSIM gap length recommended by UE100 (e.g., musim-GapLength); information indicating the gap offset of the MUSIM gap recommended by UE100 (e.g., musim-GapOffset); information indicating the gap start position of the non-periodic MUSIM gap recommended by UE100 while maintaining the RRC connected state (e.g., musim-PrefStarting-SFN-AndSubframex); and information indicating the gap reception period and gap offset of the periodic MUSIM gap recommended by UE100 while maintaining the RRC connected state (e.g., musim-GapRepetitionAndOffsetPeriod).
 本実施形態において、SCG向けギャップの設定が可能であるとして説明を進める。従って、UE100の制御部130は、SCG向けギャップの情報を含むギャップ推奨リストを生成したとして、説明を進める。 In this embodiment, the explanation will proceed assuming that it is possible to set a gap for SCG. Therefore, the explanation will proceed assuming that the control unit 130 of the UE 100 generates a gap recommendation list that includes information about the gap for SCG.
 ステップS105:
 UE100の送信部120Tは、UE補助情報メッセージを第1ネットワーク200A(具体的には、基地局210A)へ送信する。基地局210Aの受信部212Rは、MCGにおいて、UE補助情報メッセージをUE100から受信する。
Step S105:
The transmitter 120T of the UE 100 transmits a UE assistance information message to the first network 200A (specifically, the base station 210A). The receiver 212R of the base station 210A receives the UE assistance information message from the UE 100 in the MCG.
 基地局210Aの制御部214は、UE補助情報メッセージに含まれる識別情報に基づいて、UE100が推奨する対象セルを把握できる。また、制御部214は、ギャップ推奨情報に基づいて、UE100が推奨するギャップを把握できる。制御部214は、例えば、識別情報に基づいて、ギャップ推奨リストがMCG向けギャップの情報及び/又はSCG向けギャップの情報を含むか否かを判定してよい。 The control unit 214 of the base station 210A can ascertain the target cell recommended by the UE 100 based on the identification information included in the UE assistance information message. The control unit 214 can also ascertain the gap recommended by the UE 100 based on the gap recommendation information. The control unit 214 may determine, for example, based on the identification information, whether the gap recommendation list includes information on gaps for the MCG and/or information on gaps for the SCG.
 UE100の送信部120Tは、SCG向けギャップ禁止タイマが稼働中である場合、SCG向けギャップの情報を含むUE補助情報メッセージを送信できなくてよい。送信部120Tは、SCG向けギャップ禁止タイマが稼働中であっても、MCG向けギャップのみの情報を含むUE補助情報メッセージを送信できてよい。 If the gap prohibit timer for SCG is running, the transmission unit 120T of the UE 100 may not be able to transmit a UE assistance information message that includes information about the gap for SCG. Even if the gap prohibit timer for SCG is running, the transmission unit 120T may be able to transmit a UE assistance information message that includes information only about the gap for MCG.
 UE100の送信部120Tは、SCG向けギャップ禁止タイマが稼働していない場合、SCG向けギャップの情報を含むUE補助情報メッセージを送信できてよい。送信部120Tは、MUSIMギャップ禁止タイマ(具体的には、musim-GapProhibitTimer-r17)が稼働中であっても、SCG向けギャップのみの情報を含むUE補助情報メッセージを送信できてよい。 The transmitting unit 120T of the UE 100 may be able to transmit a UE assistance information message including information about the gap for the SCG when the gap prohibition timer for the SCG is not running. The transmitting unit 120T may be able to transmit a UE assistance information message including information only about the gap for the SCG even when the MUSIM gap prohibition timer (specifically, musim-GapProhibitTimer-r17) is running.
 ステップS111:
 図12に示すように、基地局210Mの制御部214は、UE100へ設定するMUSIMギャップに関するMUSIMギャップ設定を決定する。制御部214は、ギャップ推奨リストに基づいて、MUSIMギャップ設定(例えば、MUSIM-GapConfig)を決定してよい。
Step S111:
12, the control unit 214 of the base station 210M determines a MUSIM gap setting regarding the MUSIM gap to be set in the UE 100. The control unit 214 may determine the MUSIM gap setting (for example, MUSIM-GapConfig) based on the gap recommendation list.
 MUSIMギャップ設定は、MCGギャップ設定とSCGギャップ設定とを含んでよい。MCGギャップ設定は、UE100が第2ネットワーク200Bと通信するためにMCGにおける通信を一時的に中断できる期間であるMCG向けギャップに関するギャップ設定であってよい。SCGギャップ設定は、UE100が第2ネットワーク200Bと通信するためにSCGにおける通信を一時的に中断できる期間であるSCG向けギャップに関するギャップ設定であってよい。 The MUSIM gap setting may include an MCG gap setting and an SCG gap setting. The MCG gap setting may be a gap setting related to a gap for an MCG, which is a period during which the UE 100 can temporarily suspend communication in the MCG in order to communicate with the second network 200B. The SCG gap setting may be a gap setting related to a gap for an SCG, which is a period during which the UE 100 can temporarily suspend communication in the SCG in order to communicate with the second network 200B.
 制御部214は、決定したMUSIMギャップ設定を示すMUSIMギャップ設定情報を生成してもよい。MUSIMギャップ設定情報は、例えば、MUSIMのためのギャップのセットアップ/解放を制御してよい。MUSIMギャップ設定情報は、例えば、musim-GapConfig、MUSIM-GapConfigであってよい。なお、MUSIMギャップ設定情報は、RRCコネクティッド状態から離れずに周期的なMUSIMギャップパターン識別子を追加又は変更するためのリストを示す情報(例えば、musim-GapToAddModList)、RRCコネクティッド状態から離れない周期的なMUSIMギャップパターン識別子を解放するためのリストを示す情報(例えば、musim-GapToReleaseList)、及び、UE100からUE補助情報メッセージで要求されている場合に非周期的なMUSIMギャップの使用をUE100が許可されていることを示す情報(例えば、musim-AperiodicGap)の少なくともいずれかを含んでよい。また、MUSIMギャップ設定情報は、RRCコネクティッド状態から離れない周期的なMUSIMギャップ用のギャップ開始位置を示す情報(musim-Start-SFN-AndSubframe)、MUSIMギャップ長の長さを示す情報(musim-GapLength)、RRCコネクティッド状態から離れない周期的なMUSIMギャップ用のサブフレームの数のギャップオフセット、及び、ミリ秒単位のギャップ繰り返し期間を示す情報(musim-GapRepetitionAndOffset)、及び、追加、変更又は解放するために周期的なMUSIMギャップを識別するためのMUSIMギャップ識別子(例えば、MUSIM-GapID)の少なくともいずれかを含んでいてよい。 The control unit 214 may generate MUSIM gap setting information indicating the determined MUSIM gap setting. The MUSIM gap setting information may, for example, control the setup/release of a gap for MUSIM. The MUSIM gap setting information may, for example, be musim-GapConfig, MUSIM-GapConfig. In addition, the MUSIM gap setting information may include at least one of information indicating a list for adding or changing a periodic MUSIM gap pattern identifier without leaving the RRC connected state (e.g., musim-GapToAddModList), information indicating a list for releasing a periodic MUSIM gap pattern identifier without leaving the RRC connected state (e.g., musim-GapToReleaseList), and information indicating that UE100 is permitted to use a non-periodic MUSIM gap when requested by UE100 in a UE assistance information message (e.g., musim-AperiodicGap). In addition, the MUSIM gap setting information may include at least one of information indicating the gap start position for periodic MUSIM gaps that do not leave the RRC connected state (musim-Start-SFN-AndSubframe), information indicating the MUSIM gap length (musim-GapLength), a gap offset of the number of subframes for periodic MUSIM gaps that do not leave the RRC connected state, and information indicating the gap repetition period in milliseconds (musim-GapRepetitionAndOffset), and a MUSIM gap identifier (e.g., MUSIM-GapID) for identifying the periodic MUSIM gap to add, change, or release.
 制御部214は、ギャップ推奨リストがMCG向けギャップの情報を含む場合、MCGギャップ設定を決定してよい。制御部214は、MCG向けギャップを示す第1ギャップパラメータ(例えば、musim-GapInfo)を決定してよい。従って、制御部214は、UE100へ設定するMCG向けギャップを決定する。制御部214は、ギャップ推奨リストがSCG向けギャップの情報を含む場合、SCGギャップ設定を決定してよい。本動作例では、制御部214は、MCGギャップ設定に加えて、SCGギャップ設定を決定する。従って、制御部214は、UE100へ設定するSCG向けギャップを決定する。制御部214は、SCG向けギャップを示す第2ギャップパラメータ(例えば、musim-GapInfo)を決定してよい。第1ギャップパラメータ及び第2ギャップパラメータは、上述の情報を含んでよい。制御部214は、UE100へ設定する全MCGギャップ設定を決定してよい。 The control unit 214 may determine the MCG gap setting when the gap recommendation list includes information on the MCG gap. The control unit 214 may determine a first gap parameter (e.g., musim-GapInfo) indicating the MCG gap. Thus, the control unit 214 determines the MCG gap to be set in the UE 100. The control unit 214 may determine the SCG gap setting when the gap recommendation list includes information on the SCG gap. In this operation example, the control unit 214 determines the SCG gap setting in addition to the MCG gap setting. Thus, the control unit 214 determines the SCG gap to be set in the UE 100. The control unit 214 may determine a second gap parameter (e.g., musim-GapInfo) indicating the SCG gap. The first gap parameter and the second gap parameter may include the above-mentioned information. The control unit 214 may determine all the MCG gap settings to be set in the UE 100.
 また、制御部214は、MUSIMギャップ識別子として、MCG向けギャップを示す第1ギャップパラメータに対応付けられる第1ギャップ識別子を決定してよい。また、制御部214は、MUSIMギャップ識別子として、SCG向けギャップを示す第2ギャップパラメータに対応付けられる第2ギャップ識別子を決定してよい。従って、MUSIMギャップ識別子(ギャップ識別子)は、第1ギャップ識別子及び第2ギャップ識別子を含む。 Furthermore, the control unit 214 may determine, as the MUSIM gap identifier, a first gap identifier associated with a first gap parameter indicating a gap for an MCG. Further, the control unit 214 may determine, as the MUSIM gap identifier, a second gap identifier associated with a second gap parameter indicating a gap for an SCG. Therefore, the MUSIM gap identifier (gap identifier) includes a first gap identifier and a second gap identifier.
 ここで、制御部214は、第1ギャップ識別子と第2ギャップ識別子とが異なるように、第1ギャップ識別子及び第2ギャップ識別子を決定してよい。従って、制御部214は、割り当て可能な複数のギャップ識別子を有する識別子空間(ID空間)の中から、第1ギャップ識別子と第2ギャップ識別子とを選択(決定)してよい。これにより、第1ギャップ識別子として決定されたギャップ識別子は、第2ギャップ識別子として選択(決定)できないため、第1ギャップ識別子と第2ギャップ識別子とが異なる。なお、第1ギャップ識別子どうしは互いに異なる。第2ギャップ識別子どうしは互いに異なる。 Here, the control unit 214 may determine the first gap identifier and the second gap identifier such that the first gap identifier and the second gap identifier are different. Thus, the control unit 214 may select (determine) the first gap identifier and the second gap identifier from an identifier space (ID space) having a plurality of assignable gap identifiers. As a result, the gap identifier determined as the first gap identifier cannot be selected (determined) as the second gap identifier, and therefore the first gap identifier and the second gap identifier are different. Note that the first gap identifiers are different from each other. The second gap identifiers are different from each other.
 ステップS112:
 基地局210Mのネットワーク通信部213は、SCG向けギャップをセカンダリノードが特定するための通知情報をセカンダリノード(基地局210S)へ送信する。基地局210Sのネットワーク通信部213は、通知情報をマスタノードから受信する。
Step S112:
The network communication unit 213 of the base station 210M transmits notification information for the secondary node to identify the SCG-directed gap to the secondary node (base station 210S). The network communication unit 213 of the base station 210S receives the notification information from the master node.
 通知情報は、マスタノードにより決定されたSCG向けギャップの情報を含んでよい。通知情報は、当該SCG向けギャップの情報としてSCGギャップ設定を含んでよい。SCGギャップ設定は、決定した第2ギャップパラメータと、第2ギャップ識別子とを含んでよい。図13のE31に示すように、通知情報は、SCGギャップ設定(例えば、musim-GapConfigSCG)として、MUSIMギャップ設定(例えば、MUSIM-GapConfig)を含んでいてよい。制御部214は、UE100へ設定する全MUSIMギャップ設定のうちSCGギャップ設定のみを通知情報に含めてもよい。 The notification information may include information on the gap for the SCG determined by the master node. The notification information may include an SCG gap setting as information on the gap for the SCG. The SCG gap setting may include the determined second gap parameter and a second gap identifier. As shown in E31 of FIG. 13, the notification information may include a MUSIM gap setting (e.g., MUSIM-GapConfig) as the SCG gap setting (e.g., musim-GapConfigSCG). The control unit 214 may include only the SCG gap setting of all the MUSIM gap settings to be set in the UE 100 in the notification information.
 基地局210Mの制御部214は、通知情報に単一のSCGギャップ設定しか含めない場合には、通知情報に第2ギャップ識別子を含めなくてよい。例えば、UE100に設定可能なSCGギャップ設定が最大1つと規定されている場合、通知情報に第2ギャップ識別子を含めなくてもよい。従って、図13のE32に示すように、通知情報は、第2ギャップ識別子を含むSCGギャップ設定そのものではなく、第2ギャップパラメータ(例えば、MUSIM-GapInfo)を含んでもよい。 The control unit 214 of the base station 210M may not include a second gap identifier in the notification information if only a single SCG gap setting is included in the notification information. For example, if it is specified that a maximum of one SCG gap setting can be set in the UE 100, the notification information may not include a second gap identifier. Therefore, as shown in E32 of FIG. 13, the notification information may include a second gap parameter (e.g., MUSIM-GapInfo) rather than the SCG gap setting itself including the second gap identifier.
 また、通知情報は、マスタノードにより決定されたMCG向けギャップの情報を含んでよい。通知情報は、当該MCG向けギャップの情報としてMCGギャップ設定を含んでよい。MCGギャップ設定は、決定した第1ギャップパラメータと、第1ギャップ識別子とを含んでよい。 Furthermore, the notification information may include information on the gap for the MCG determined by the master node. The notification information may include an MCG gap setting as the information on the gap for the MCG. The MCG gap setting may include the determined first gap parameter and a first gap identifier.
 通知情報は、UE100へ設定する全MUSIMギャップ設定を含んでいてよい。通知情報は、MUSIMギャップ設定(MCGギャップ設定及び/又はSCGギャップ設定)のリストを含んでいてもよい。例えば、当該リストでは、MUSIMギャップ設定とギャップ識別子とが対応付けられていてもよい。 The notification information may include all MUSIM gap settings to be set in UE 100. The notification information may include a list of MUSIM gap settings (MCG gap settings and/or SCG gap settings). For example, the list may associate MUSIM gap settings with gap identifiers.
 図13に示すように、通知情報は、例えば、セカンダリノードとして動作する基地局210Sに特定のアクションを実行することを要求するためのCG設定情報(CG-ConfigInfo)であってよい。通知情報は、CG設定情報以外の情報(又はメッセージ)であってもよい。 As shown in FIG. 13, the notification information may be, for example, CG setting information (CG-ConfigInfo) for requesting the base station 210S operating as a secondary node to execute a specific action. The notification information may be information (or a message) other than CG setting information.
 本動作例では、制御部214は、通知情報に含まれるSCGギャップ設定又は第2ギャップパラメータに基づいて、SCG向けギャップを特定できる。 In this operation example, the control unit 214 can identify the gap for the SCG based on the SCG gap setting or the second gap parameter included in the notification information.
 ステップS113:
 基地局210Sの制御部214は、SCGギャップ設定の適用を判定してよい。制御部214は、通知情報が複数のSCGギャップ設定を含む場合、複数のSCGギャップ設定のそれぞれを適用するか否かを判定してよい。
Step S113:
The control unit 214 of the base station 210S may determine application of the SCG gap setting. When the notification information includes multiple SCG gap settings, the control unit 214 may determine whether to apply each of the multiple SCG gap settings.
 ステップS114:
 基地局210Sのネットワーク通信部213は、通知情報に対する応答をマスタノード(基地局210M)へ送信する。基地局210Mのネットワーク通信部213は、通知情報に対する応答をセカンダリノードから受信する。
Step S114:
The network communication unit 213 of the base station 210S transmits a response to the notification information to the master node (base station 210M). The network communication unit 213 of the base station 210M receives the response to the notification information from the secondary node.
 応答は、マスタノードにより決定されたSCG向けギャップのうちセカンダリノードで適用されるSCGギャップをマスタノード(基地局210M)が特定するための所定情報を含んでよい。 The response may include specific information that enables the master node (base station 210M) to identify the SCG gap to be applied by the secondary node from among the SCG gaps determined by the master node.
 例えば、マスタノードから受信したSCGギャップ設定を全て適用する場合、所定情報は、承認を示す応答であってよい。制御部214は、マスタノードから受信したSCGギャップ設定を全て適用しない場合、所定情報は、拒絶を示す応答であってよい。 For example, if all SCG gap settings received from the master node are to be applied, the specified information may be a response indicating approval. If the control unit 214 does not apply all SCG gap settings received from the master node, the specified information may be a response indicating rejection.
 図14のE41に示すように、制御部214は、適用するSCGギャップ設定(例えば、MUSIM-GapConfig)を所定情報に含めてもよい。制御部214は、例えば、適用するSCGギャップ設定のリスト(例えば、MUSIM-Gapのリスト)を所定情報に含めてもよい。制御部214は、適用するSCGギャップ設定の少なくとも一部(例えば、musim-GapInfo、musim-GapConfigSCG等)の中身を空の値にしてもよい。 As shown in E41 of FIG. 14, the control unit 214 may include the SCG gap setting to be applied (e.g., MUSIM-GapConfig) in the specified information. The control unit 214 may include, for example, a list of SCG gap settings to be applied (e.g., a list of MUSIM-Gap) in the specified information. The control unit 214 may set the contents of at least a portion of the SCG gap settings to be applied (e.g., musim-GapInfo, musim-GapConfigSCG, etc.) to empty values.
 制御部214は、SCGギャップ設定を変更する場合、変更されたSCGギャップ設定の少なくとも一部(例えば、musim-GapInfo、musim-GapConfigSCG等)を所定情報に含めてもよい。制御部214は、SCGギャップ設定を変更する場合、変更されたSCGギャップ設定の少なくとも一部のみを所定情報に含めて、適用するSCGギャップ設定を所定情報に含めなくてもよい。 When the control unit 214 changes the SCG gap setting, it may include at least a part of the changed SCG gap setting (e.g., musim-GapInfo, musim-GapConfigSCG, etc.) in the specified information. When the control unit 214 changes the SCG gap setting, it may include only at least a part of the changed SCG gap setting in the specified information, and may not include the SCG gap setting to be applied in the specified information.
 制御部214は、適用しないSCGギャップ設定を所定情報に含めなくてもよい。制御部214は、所定情報に含める追加/変更するSCGギャップ設定のリスト(例えば、musim-GapToAddModList)に適用しないSCGギャップ設定を含めなくてもよい。制御部214は、所定情報に含める解放するSCGギャップ設定のリスト(例えば、musim-GapToReleaseList)に適用しないSCGギャップ設定を含めてもよい。 The control unit 214 may not include SCG gap settings that are not applied in the specified information. The control unit 214 may not include SCG gap settings that are not applied in a list of SCG gap settings to be added/changed that is included in the specified information (e.g., musim-GapToAddModList). The control unit 214 may include SCG gap settings that are not applied in a list of SCG gap settings to be released that is included in the specified information (e.g., musim-GapToReleaseList).
 制御部214は、各SCGギャップ設定が適用されたか否かを示す情報(例えば、bool又はenum)を所定情報に含めてもよい。 The control unit 214 may include information (e.g., boolean or enum) indicating whether each SCG gap setting has been applied in the specified information.
 制御部214は、UE100に設定されるSCGギャップ設定が単一である場合、図14のE42に示すように、所定情報に、SCGギャップ設定そのものではなく、第2ギャップパラメータ(例えば、MUSIM-GapInfo)を含めてもよい。 When a single SCG gap setting is set in UE 100, the control unit 214 may include a second gap parameter (e.g., MUSIM-GapInfo) in the specified information instead of the SCG gap setting itself, as shown in E42 of FIG. 14.
 図14に示すように、応答は、例えば、セカンダリノードとして動作する基地局210Sにより生成されたSCG設定(SCG無線設定)を転送するために用いられるCG設定(CG-Config)であってよい。応答は、CG設定以外の情報(又はメッセージ)であってもよい。 As shown in FIG. 14, the response may be, for example, a CG setting (CG-Config) used to transfer an SCG setting (SCG radio setting) generated by the base station 210S operating as a secondary node. The response may also be information (or a message) other than the CG setting.
 本動作例では、基地局210Mの制御部214は、所定情報に含まれるSCGギャップ設定又は第2ギャップパラメータに基づいて、マスタノードで決定されたSCG向けギャップのうちセカンダリノードで適用されるSCGギャップを特定できる。 In this operation example, the control unit 214 of the base station 210M can identify the SCG gap to be applied to the secondary node from among the gaps for SCG determined by the master node based on the SCG gap setting or the second gap parameter included in the specified information.
 制御部214は、応答を受信した後に、適用されるSCG向けギャップを示すギャップパラメータに対応づけられる第2ギャップ識別子を決定してよい。また、制御部214は、応答を受信した後に、第1ギャップ識別子を決定してもよい。制御部214は、第1ギャップ識別子と第2ギャップ識別子とが異なるように、第1ギャップ識別子及び/又は第2ギャップ識別子を決定してよい。 After receiving the response, the control unit 214 may determine a second gap identifier that corresponds to a gap parameter indicating the gap for the SCG to be applied. The control unit 214 may also determine a first gap identifier after receiving the response. The control unit 214 may determine the first gap identifier and/or the second gap identifier such that the first gap identifier and the second gap identifier are different.
 制御部214は、応答を受信した後に、UE100に設定するMUSIMギャップ設定を決定してもよい。制御部214は、決定したMUSIMギャップ設定を含むRRCメッセージを生成する。MUSIMギャップ設定は、MCGギャップ設定とSCGギャップ設定とを含むとして、説明を進める。 After receiving the response, the control unit 214 may determine the MUSIM gap setting to be set in the UE 100. The control unit 214 generates an RRC message including the determined MUSIM gap setting. The following description will be given assuming that the MUSIM gap setting includes the MCG gap setting and the SCG gap setting.
 なお、MCGギャップ設定とSCGギャップ設定とのそれぞれは、ギャップ識別子を含む。ギャップ識別子は、第1ギャップ識別子と第2ギャップ識別子とを含む。 Note that each of the MCG gap setting and the SCG gap setting includes a gap identifier. The gap identifier includes a first gap identifier and a second gap identifier.
 ステップS115:
 基地局210Mの送信部212Tは、MUSIMギャップ設定を含むRRCメッセージをUE100へ送信する。UE100の受信部120Rは、MCGにおいて、MUSIMギャップ設定を含むRRCメッセージを基地局210Mから受信する。これにより、基地局210Mの制御部214は、MCGギャップ設定とSCGギャップ設定とをUE100へ通知する。UE100の制御部130は、MCGギャップ設定とSCGギャップ設定とを取得する。
Step S115:
The transmitter 212T of the base station 210M transmits an RRC message including the MUSIM gap setting to the UE 100. The receiver 120R of the UE 100 receives an RRC message including the MUSIM gap setting from the base station 210M in the MCG. As a result, the control unit 214 of the base station 210M notifies the UE 100 of the MCG gap setting and the SCG gap setting. The control unit 130 of the UE 100 acquires the MCG gap setting and the SCG gap setting.
 本動作例では、第1ギャップ識別子と第2ギャップ識別子とが異なるため、基地局210Mの制御部214は、MUSIMギャップ設定に含まれるギャップ識別子がSCG向けかであるか否かを識別可能な態様でギャップ識別子をUE100に通知できる。また、UE100の制御部130は、当該ギャップ識別子がSCG向けかであるか否かを識別可能な態様でギャップ識別子をマスタノードから取得できる。 In this operation example, since the first gap identifier and the second gap identifier are different, the control unit 214 of the base station 210M can notify the gap identifier to the UE 100 in a manner that makes it possible to identify whether the gap identifier included in the MUSIM gap setting is for the SCG or not. In addition, the control unit 130 of the UE 100 can obtain the gap identifier from the master node in a manner that makes it possible to identify whether the gap identifier is for the SCG or not.
 ステップS116:
 UE100の制御部130は、MUSIMギャップを設定する。制御部130は、MUSIMギャップ設定情報に基づいて、MUSIMギャップを設定する。制御部130は、設定されたMUSIMギャップに基づいて、以下の動作を実行する。すなわち、制御部130は、ギャップ識別子によって指定されたギャップパラメータに基づくMUSIMギャップで以下の動作を実行する。
Step S116:
The control unit 130 of the UE 100 sets the MUSIM gap. The control unit 130 sets the MUSIM gap based on the MUSIM gap setting information. The control unit 130 performs the following operations based on the set MUSIM gap. That is, the control unit 130 performs the following operations in the MUSIM gap based on the gap parameter specified by the gap identifier.
 ステップS117:
 UE100の制御部130は、設定されたMUSIMギャップ以外の期間において、MCGにおける通信及びSCGにおける通信を制御する。制御部130は、例えば、第1送受信部121を用いたMCGにおける通信を制御する。制御部130は、第2送受信部122を用いたSCGにおける通信を制御する。
Step S117:
The control unit 130 of the UE 100 controls communication in the MCG and communication in the SCG during a period other than the set MUSIM gap. The control unit 130 controls communication in the MCG using the first transceiver unit 121, for example. The control unit 130 controls communication in the SCG using the second transceiver unit 122.
 ステップS118:
 UE100の制御部130は、設定されたMUSIMギャップ中において、第1ネットワーク200Aにおける通信を中断する制御を行う。
Step S118:
The control unit 130 of the UE 100 performs control to interrupt communication in the first network 200A during the set MUSIM gap.
 UE100の制御部130は、例えば、設定されたMCG向けギャップ中において、MCGにおける通信を中断する制御を行う。制御部130は、MCGにおける通信に使用している第1送受信部121を、第2ネットワーク200Bにおけるシグナリングを受信するための受信動作用へと切り替える制御を行ってよい。UE100の制御部130は、MCG向けギャップ中において、SCGとの通信を継続してよい。制御部130は、受信動作を終了した後、第2ネットワーク200Bにおけるシグナリングを受信するための受信動作に使用している第1送受信部121を、MCGとの通信用に切り替える制御を行ってよい。 The control unit 130 of the UE 100, for example, performs control to interrupt communication in the MCG during the set gap for the MCG. The control unit 130 may perform control to switch the first transceiver unit 121 used for communication in the MCG to a receiving operation for receiving signaling in the second network 200B. The control unit 130 of the UE 100 may continue communication with the SCG during the gap for the MCG. After terminating the receiving operation, the control unit 130 may perform control to switch the first transceiver unit 121 used for a receiving operation for receiving signaling in the second network 200B to a communication with the MCG.
 UE100の制御部130は、例えば、設定されたSCG向けギャップ中において、SCGにおける通信を中断する制御を行う。制御部130は、SCGにおける通信に使用している第2送受信部122を、第2ネットワーク200Bにおけるシグナリングを受信するための受信動作用へと切り替える制御を行ってよい。UE100の制御部130は、SCG向けギャップ中において、MCGとの通信を継続してよい。制御部130は、受信動作を終了した後、第2ネットワーク200Bにおけるシグナリングを受信するための受信動作に使用している第2送受信部122を、SCGとの通信用に切り替える制御を行ってよい。 The control unit 130 of the UE 100, for example, performs control to interrupt communication in the SCG during the set gap for SCG. The control unit 130 may perform control to switch the second transceiver unit 122 used for communication in the SCG to a receiving operation for receiving signaling in the second network 200B. The control unit 130 of the UE 100 may continue communication with the MCG during the gap for SCG. After terminating the receiving operation, the control unit 130 may perform control to switch the second transceiver unit 122 used for a receiving operation for receiving signaling in the second network 200B to a communication with the SCG.
 以上のように、基地局210Mの送信部212Tは、SCG向けギャップの設定可否をUE100が判定するためのRRCメッセージをUE100へ送信する。UE100の受信部120Rは、SCG向けギャップの設定可否をUE100が判定するためのRRCメッセージを第1ネットワーク200Aから受信する。UE100の制御部130は、RRCメッセージに基づいて、SCG向けギャップの設定可否を判定する。これにより、UE100は、SCG向けギャップの設定可否を把握できる。 As described above, the transmitter 212T of the base station 210M transmits an RRC message to the UE 100 for the UE 100 to determine whether or not a gap for SCG can be set. The receiver 120R of the UE 100 receives an RRC message from the first network 200A for the UE 100 to determine whether or not a gap for SCG can be set. The control unit 130 of the UE 100 determines whether or not a gap for SCG can be set based on the RRC message. This allows the UE 100 to know whether or not a gap for SCG can be set.
 また、制御部130は、RRCメッセージに基づいてSCG向けギャップの設定が可能であると判定した場合であって、前記通信装置が推奨するSCG向けギャップがある場合、推奨するSCG向けギャップの情報を含むギャップ推奨リストを生成してよい。これにより、基地局210Mは、SCG向けギャップの設定をサポートしている場合に、推奨するMUSIMギャップとしてSCG向けギャップを把握できる。 In addition, when the control unit 130 determines that it is possible to set a gap for SCG based on the RRC message, and there is a gap for SCG recommended by the communication device, the control unit 130 may generate a gap recommendation list including information on the recommended gap for SCG. This allows the base station 210M to grasp the gap for SCG as a recommended MUSIM gap when it supports the setting of a gap for SCG.
 また、制御部130は、RRCメッセージに基づいて前記SCG向けギャップの設定が不能であると判定した場合、前記通信装置が推奨するSCG向けギャップがあったとしても、推奨するSCG向けギャップの情報を含むギャップ推奨リストを生成しない制御を行ってよい。これにより、UE100が、SCG向けギャップの設定をサポートしていないにも関わらず、SCG向けギャップを基地局210Mへ通知することを避けることができる。 In addition, when the control unit 130 determines based on the RRC message that the gap for SCG cannot be set, even if there is a gap for SCG recommended by the communication device, the control unit 130 may perform control not to generate a gap recommendation list including information on the gap for SCG recommended by the communication device. This makes it possible to avoid notifying the base station 210M of the gap for SCG even if the UE 100 does not support the setting of the gap for SCG.
 また、RRCメッセージは、SCG向けギャップの設定可否を示す可否情報を含んでよい。制御部130は、可否情報に基づいて、SCG向けギャップの設定可否を判定してよい。可否情報によりSCG向けギャップの設定可否が明示的に示されることで、制御部130は、SCG向けギャップの設定可否を把握できる。 The RRC message may also include availability information indicating whether or not a gap for an SCG can be set. The control unit 130 may determine whether or not a gap for an SCG can be set based on the availability information. The availability information explicitly indicates whether or not a gap for an SCG can be set, allowing the control unit 130 to know whether or not a gap for an SCG can be set.
 また、SCG向けギャップが設定可能な数が予め規定されていてよい。制御部130は、可否情報がSCG向けギャップの設定が可能であることを示す場合、予め規定された設定可能な数以下の推奨するSCG向けギャップの情報を含むギャップ推奨リストを生成してよい。これにより、UE100は、設置不能な数のSCG向けギャップの情報を通知することを避けることができる。 Furthermore, the number of configurable gaps for SCG may be predefined. When the feasibility information indicates that a gap for SCG can be configured, the control unit 130 may generate a gap recommendation list including information on recommended gaps for SCG that are equal to or less than the predefined configurable number. This allows the UE 100 to avoid notifying information on a number of gaps for SCG that cannot be installed.
 また、RRCメッセージは、SCG向けギャップを設定可能な数を示す設定数情報を含んでよい。これにより、ネットワーク10は、SCG向けギャップの設定数を柔軟に変更可能となる。UE100は、SCG向けギャップの設定不能な数のSCG向けギャップの情報を通知することを避けることができる。 The RRC message may also include setting number information indicating the number of SCG gaps that can be set. This allows the network 10 to flexibly change the number of SCG gaps that can be set. The UE 100 can avoid notifying information about an unsettable number of SCG gaps.
 また、制御部130は、設定数情報に基づいて、SCG向けギャップの設定可否を判定してよい。UE100は、SCG向けギャップの設定可否とSCG向けギャップの設定数とを把握できる。 The control unit 130 may also determine whether or not a gap for SCG can be set based on the setting number information. The UE 100 can grasp whether or not a gap for SCG can be set and the number of gaps set for SCG.
 また、制御部130は、RRCメッセージがSCG向けギャップの設定に関する情報を含まない場合、SCG向けギャップの設定が不能であると判定してよい。これにより、RRCメッセージに含める情報量を低減でき、通信リソースを節約できる。 In addition, if the RRC message does not include information regarding the setting of a gap for an SCG, the control unit 130 may determine that the setting of a gap for an SCG is not possible. This can reduce the amount of information to be included in the RRC message, thereby saving communication resources.
 また、RRCメッセージは、推奨するSCG向けギャップの情報の通知を禁止する期間を計時するためのタイマにセットされるタイマ値を示すタイマ情報を含む。これにより、ネットワーク10は、推奨するSCG向けギャップの情報の通知を禁止する期間を制御することができる。 The RRC message also includes timer information indicating a timer value to be set in a timer for timing a period during which notification of information on a recommended gap for an SCG is prohibited. This allows the network 10 to control the period during which notification of information on a recommended gap for an SCG is prohibited.
 また、マスタノードのネットワーク通信部213は、SCG向けギャップをセカンダリノードが特定するための通知情報をセカンダリノードへ送信する。また、セカンダリノードのネットワーク通信部213は、通知情報をマスタノードから受信する。これにより、セカンダリノードが、SCG向けギャップを特定でき、SCG向けギャップを適切に取り扱うことができる。 The network communication unit 213 of the master node also transmits notification information to the secondary node for the secondary node to identify the gap for SCG. The network communication unit 213 of the secondary node also receives notification information from the master node. This allows the secondary node to identify the gap for SCG and handle the gap for SCG appropriately.
 また、マスタノードの制御部214は、UE100へ設定するSCG向けギャップを決定してよい。通知情報は、決定されたSCG向けギャップの情報を含んでよい。これにより、セカンダリノードは、決定されたSCG向けギャップの情報に基づいて、SCG向けギャップを特定できる。 Furthermore, the control unit 214 of the master node may determine the gap for SCG to be set in the UE 100. The notification information may include information on the determined gap for SCG. This allows the secondary node to identify the gap for SCG based on the information on the determined gap for SCG.
 また、マスタノードの制御部214は、UE100へ設定するMCG向けギャップを決定してよい。通知情報は、決定されたSCG向けギャップの情報に加えて、決定されたMCG向けギャップの情報を含んでよい。これにより、セカンダリノードは、決定されたMCG向けギャップの情報に基づいて、MCG向けギャップを特定できる。セカンダリノードは、例えば、MCG向けギャップを考慮して、SCG向けギャップの適用を判定することもできる。 Furthermore, the control unit 214 of the master node may determine the gap for MCG to be set in the UE 100. The notification information may include information on the gap for MCG determined in addition to information on the gap for SCG determined. This allows the secondary node to identify the gap for MCG based on the information on the gap for MCG determined. The secondary node may also determine the application of the gap for SCG, for example, taking into account the gap for MCG.
 また、マスタノードのネットワーク通信部213は、通知情報に対する応答をセカンダリノードから受信してよい。応答は、決定されたSCG向けギャップのうちセカンダリノードで適用されるSCGギャップを基地局が特定するための情報を含んでよい。これにより、マスタノードは、セカンダリノードで適用されるSCGギャップを特定できる。 Furthermore, the network communication unit 213 of the master node may receive a response to the notification information from the secondary node. The response may include information for the base station to identify an SCG gap to be applied at the secondary node from among the determined SCG gaps. This allows the master node to identify an SCG gap to be applied at the secondary node.
 また、セカンダリノードの制御部は、決定されたSCG向けギャップのうちセカンダリノードでSCGギャップを適用するか否かを判定してよい。ネットワーク通信部213は、通知情報に対する応答をマスタノードへ送信してよい。応答は、決定されたSCG向けギャップのうちセカンダリノードで適用されるSCGギャップをマスタノードが特定するための情報を含んでよい。これにより、マスタノードは、セカンダリノードで適用されるSCGギャップを特定できる。 The control unit of the secondary node may also determine whether or not to apply an SCG gap at the secondary node from among the determined gaps for SCG. The network communication unit 213 may transmit a response to the notification information to the master node. The response may include information for the master node to identify an SCG gap to be applied at the secondary node from among the determined gaps for SCG. This allows the master node to identify an SCG gap to be applied at the secondary node.
 制御部214は、MCG向けギャップに関するMCGギャップ設定と、SCG向けギャップに関するSCGギャップ設定とを、UE100へ通知する。MCGギャップ設定及びSCGギャップ設定のそれぞれは、ギャップ識別子を含む。制御部214は、ギャップ識別子がSCG向けであるか否かを識別可能な態様でギャップ識別子をUE100に通知する。また、制御部130は、MCG向けギャップに関するMCGギャップ設定と、SCG向けギャップに関するSCGギャップ設定とを、マスタノードから取得する。制御部130は、ギャップ識別子がSCG向けであるか否かを識別可能な態様でギャップ識別子をマスタノードから取得する。これにより、UE100が、ギャップ識別子がSCG向けであるか否かを識別でき、自身に設定されたギャップを適切に制御できる。すなわち、UE100とネットワーク10との間で、適切なMUSIMギャップを指定することができ、MUSIMギャップの変更や解放を適切にできる。 The control unit 214 notifies the UE 100 of the MCG gap setting for the gap for the MCG and the SCG gap setting for the gap for the SCG. Each of the MCG gap setting and the SCG gap setting includes a gap identifier. The control unit 214 notifies the UE 100 of the gap identifier in a manner that makes it possible to identify whether the gap identifier is for the SCG. The control unit 130 also acquires the MCG gap setting for the gap for the MCG and the SCG gap setting for the gap for the SCG from the master node. The control unit 130 acquires the gap identifier from the master node in a manner that makes it possible to identify whether the gap identifier is for the SCG. This allows the UE 100 to identify whether the gap identifier is for the SCG and appropriately control the gap set for itself. In other words, an appropriate MUSIM gap can be specified between the UE 100 and the network 10, and the MUSIM gap can be appropriately changed or released.
 また、ギャップ識別子は、MCG向けギャップを示す第1ギャップパラメータに対応付けられる第1ギャップ識別子と、SCG向けギャップを示す第2ギャップパラメータに対応付けられる第2ギャップ識別子と、を含んでよい。マスタノードの制御部214は、第1ギャップ識別子と第2ギャップ識別子とが異なるように、第1ギャップ識別子を決定してよい。これにより、第1ギャップ識別子と第2ギャップ識別子とが重複しないため、自身に設定されたギャップを適切に制御できる。 Furthermore, the gap identifier may include a first gap identifier associated with a first gap parameter indicating a gap for the MCG, and a second gap identifier associated with a second gap parameter indicating a gap for the SCG. The control unit 214 of the master node may determine the first gap identifier such that the first gap identifier and the second gap identifier are different. This allows the first gap identifier and the second gap identifier to not overlap, making it possible to appropriately control the gap set for itself.
 また、制御部214は、第1ギャップ識別子に加えて、第2ギャップ識別子を決定してよい。これにより、1つの基地局210Mで各ギャップ識別子を決定するため、第1ギャップ識別子と第2ギャップ識別子とが異ならせることができる。 The control unit 214 may also determine a second gap identifier in addition to the first gap identifier. This allows the first gap identifier and the second gap identifier to be different, since each gap identifier is determined by a single base station 210M.
 また、制御部214は、第2ギャップパラメータを決定してよい。ネットワーク通信部213は、決定した第2ギャップパラメータと決定した第2ギャップ識別子とを含むSCGギャップ設定をセカンダリノードへ送信してよい。これにより、セカンダリノードは、例えば、適用するか否かを判定するためのSCGギャップ設定を把握できる。 Furthermore, the control unit 214 may determine a second gap parameter. The network communication unit 213 may transmit an SCG gap setting including the determined second gap parameter and the determined second gap identifier to the secondary node. This allows the secondary node to grasp the SCG gap setting, for example, to determine whether or not to apply it.
 (第2動作例)
 図15及び図16を参照して、第2動作例について説明する。本動作例では、セカンダリノードがSCGギャップ設定を決定する。上述の動作例と同様の部分は説明を省略する。ステップS101からS105の動作は、第1動作例と同様であるため、説明を省略する。
(Second operation example)
A second operation example will be described with reference to Fig. 15 and Fig. 16. In this operation example, the secondary node determines the SCG gap setting. The same parts as the above operation examples will not be described. The operations from steps S101 to S105 are the same as the first operation example, and therefore will not be described.
 ステップS211:
 基地局210Mの制御部214は、MCGギャップ設定を決定する。制御部214は、ステップS111と同様に、MCGギャップ設定を決定する。本動作例では、制御部214は、SCGギャップ設定を決定しない。
Step S211:
The control unit 214 of the base station 210M determines the MCG gap setting. The control unit 214 determines the MCG gap setting in the same manner as in step S111. In this operation example, the control unit 214 does not determine the SCG gap setting.
 制御部214は、第1動作例と同様に、第2ギャップ識別子を決定してよい。制御部214は、推奨するSCG向けギャップのギャップパラメータに対応付けられた第2ギャップ識別子を決定してよい。 The control unit 214 may determine the second gap identifier in the same manner as in the first operation example. The control unit 214 may determine the second gap identifier associated with the gap parameters of the recommended gap for SCG.
 ステップS212:
 基地局210Mのネットワーク通信部213は、通知情報をセカンダリノード(基地局210S)へ送信する。基地局210Sのネットワーク通信部213は、通知情報をマスタノードから受信する。
Step S212:
The network communication unit 213 of the base station 210M transmits the notification information to the secondary node (base station 210S). The network communication unit 213 of the base station 210S receives the notification information from the master node.
 通知情報は、推奨するSCG向けギャップの情報を含む。図16のE51に示すように、通知情報は、例えば、推奨するSCG向けギャップの情報を含むギャップ推奨リストを含んでいてもよい。制御部214は、ギャップ推奨リストの中から、推奨するSCG向けギャップの情報(例えば、MUSIM-GapInfo)のみを通知情報に含めてもよい。また、通知情報は、推奨するSCG向けギャップの情報に加えて、推奨するMCG向けギャップの情報を含んでもよい。通知情報は、第1ギャップ識別子を含んでいてもよい。また、通知情報は、推奨するSCG向けギャップの情報と第2ギャップ識別子を含んでいてもよい。 The notification information includes information on recommended gaps for SCG. As shown in E51 of FIG. 16, the notification information may include, for example, a gap recommendation list including information on recommended gaps for SCG. The control unit 214 may include only information on recommended gaps for SCG (for example, MUSIM-GapInfo) from the gap recommendation list in the notification information. Furthermore, the notification information may include information on recommended gaps for MCG in addition to information on recommended gaps for SCG. The notification information may include a first gap identifier. Furthermore, the notification information may include information on recommended gaps for SCG and a second gap identifier.
 ステップS213:
 基地局210Sの制御部214は、上述の第1動作例におけるマスタノードと同様に、SCGギャップ設定を決定する。制御部214は、推奨するSCG向けギャップの情報に基づいて、SCGギャップ設定を決定できる。制御部214は、推奨するSCG向けギャップの情報のうち適用するSCG向けギャップのギャップパラメータを含むSCGギャップ設定を決定してよい。制御部214は、第2ギャップ識別子をマスタノードから受信している場合、SCGギャップ設定に第2ギャップ識別子を含めてよい。
Step S213:
The control unit 214 of the base station 210S determines the SCG gap setting in the same manner as the master node in the above-described first operation example. The control unit 214 can determine the SCG gap setting based on the information of the recommended SCG gap. The control unit 214 may determine the SCG gap setting including the gap parameters of the SCG gap to be applied from the information of the recommended SCG gap. If the control unit 214 has received the second gap identifier from the master node, the control unit 214 may include the second gap identifier in the SCG gap setting.
 或いは、制御部214は、上述の第1動作例におけるマスタノードと同様に、SCG向けギャップを識別するための第2ギャップ識別子を決定してもよい。制御部214は、第1ギャップ識別子と第2ギャップ識別子とが異なるように、第2ギャップ識別子を決定してよい。 Alternatively, the control unit 214 may determine a second gap identifier for identifying the gap for the SCG, similar to the master node in the first operation example described above. The control unit 214 may determine the second gap identifier such that the first gap identifier and the second gap identifier are different.
 或いは、制御部214は、第1ギャップ識別子とは関係なく、第2ギャップ識別子を決定してよい。従って、この場合、第1ギャップ識別子と第2ギャップ識別子とが重複していてもよい。 Alternatively, the control unit 214 may determine the second gap identifier regardless of the first gap identifier. Therefore, in this case, the first gap identifier and the second gap identifier may overlap.
 ステップS214:
 基地局210Sのネットワーク通信部213は、ステップS114と同様に、通知情報に対する応答をマスタノード(基地局210M)へ送信する。
Step S214:
The network communication unit 213 of the base station 210S transmits a response to the notification information to the master node (base station 210M), similarly to step S114.
 基地局210Sが第2ギャップ識別子を決定した場合、応答は、SCG向けギャップを識別するためのギャップ識別子として第2ギャップ識別子を含んでよい。通知情報は、セカンダリノードの制御部214が決定した第2ギャップ識別子を含んでいてもよい。 If the base station 210S determines the second gap identifier, the response may include the second gap identifier as a gap identifier for identifying the gap for the SCG. The notification information may include the second gap identifier determined by the control unit 214 of the secondary node.
 基地局210Mの制御部214は、セカンダリノードが決定したSCGギャップ設定(又は第2ギャップパラメータ)に第2ギャップ識別子が対応付けられていない場合、各SCGギャップ(又は各第2ギャップパラメータ)に対応付けられる第2ギャップ識別子を決定してよい。 If a second gap identifier is not associated with the SCG gap setting (or second gap parameter) determined by the secondary node, the control unit 214 of the base station 210M may determine a second gap identifier to be associated with each SCG gap (or each second gap parameter).
 基地局210Mの制御部214は、応答が第2ギャップ識別子を含む場合、第1ギャップ識別子と第2ギャップ識別子とが異なるように、第1ギャップ識別子を決定してもよい。また、制御部214は、第1ギャップ識別子と第2ギャップ識別子とが重複している場合、重複している第1ギャップ識別子と第2ギャップ識別子との一方を変更してもよい。 If the response includes a second gap identifier, the control unit 214 of the base station 210M may determine the first gap identifier such that the first gap identifier and the second gap identifier are different. In addition, if the first gap identifier and the second gap identifier overlap, the control unit 214 may change one of the overlapping first gap identifier and second gap identifier.
 基地局210Mの制御部214は、第1ギャップ識別子と第2ギャップ識別子とが重複しているか否かに関わらず、MCGギャップ設定とSCGギャップ設定とが区別可能に構成されているRRCメッセージを生成してもよい。制御部214は、例えば、UE100がSCGギャップ設定を特定するための識別情報をRRCメッセージに含めてよい。 The control unit 214 of the base station 210M may generate an RRC message configured to distinguish between the MCG gap setting and the SCG gap setting, regardless of whether the first gap identifier and the second gap identifier overlap. The control unit 214 may, for example, include identification information for the UE 100 to identify the SCG gap setting in the RRC message.
 識別情報は、SCG向けギャップと対応付けられたセルグループ識別子又はセル識別子を含んでいてよい。識別情報は、図10のE21と同様に、SCGギャップ設定又は第2ギャップパラメータと対応付けられてよい。UE100は、セルグループ識別子がSCGを示したり、セル識別子がSCGに含まれるセルを示したりする場合、識別情報に対応付けられたMUSIMギャップがSCG向けギャップであると判定できる。また、識別情報は、MCG向けギャップと対応付けられたセルグループ識別子又はセル識別子であってもよい。識別情報は、MCGギャップ設定又は第1ギャップパラメータと対応付けられてよい。UE100は、セルグループ識別子がMCGを示したり、セル識別子がMCGに含まれるセルを示したりする場合、識別情報に対応付けられたMUSIMギャップがMCG向けギャップであると判定できる。 The identification information may include a cell group identifier or a cell identifier associated with the gap for SCG. The identification information may be associated with an SCG gap setting or a second gap parameter, similar to E21 in FIG. 10. When the cell group identifier indicates an SCG or the cell identifier indicates a cell included in the SCG, the UE 100 can determine that the MUSIM gap associated with the identification information is a gap for SCG. The identification information may also be a cell group identifier or a cell identifier associated with the gap for MCG. The identification information may be associated with an MCG gap setting or a first gap parameter. When the cell group identifier indicates an MCG or the cell identifier indicates a cell included in the MCG, the UE 100 can determine that the MUSIM gap associated with the identification information is a gap for MCG.
 識別情報は、RRCメッセージに含まれるMUSIMギャップ設定がSCGギャップ設定であるか否かを示す情報(例えば、bool又はenum)を含んでよい。例えば、図17のE61に示すように、UE100は、当該情報(例えば、forSCG)がSCGギャップ設定であることを示す場合、対応付けられたMUSIMギャップ設定がSCGギャップ設定であると判定できる。一方で、UE100は、当該情報がSCGギャップ設定でないことを示す場合、対応付けられたMUSIMギャップ設定がMCGギャップ設定であると判定できる。また、識別情報は、RRCメッセージに含まれるMUSIMギャップ設定がMCGギャップ設定であるか否かを示す情報を含んでよい。UE100は、当該情報がMCGギャップ設定であることを示す場合、対応付けられたMUSIMギャップ設定がMCGギャップ設定であると判定できる。一方で、UE100は、当該情報がMCGギャップ設定でないことを示す場合、対応付けられたMUSIMギャップ設定がSCGギャップ設定であると判定できる。 The identification information may include information (e.g., bool or enum) indicating whether the MUSIM gap setting included in the RRC message is an SCG gap setting. For example, as shown in E61 of FIG. 17, when the information (e.g., forSCG) indicates an SCG gap setting, the UE 100 can determine that the associated MUSIM gap setting is an SCG gap setting. On the other hand, when the information indicates that the information is not an SCG gap setting, the UE 100 can determine that the associated MUSIM gap setting is an MCG gap setting. The identification information may also include information indicating whether the MUSIM gap setting included in the RRC message is an MCG gap setting. When the information indicates that the information is an MCG gap setting, the UE 100 can determine that the associated MUSIM gap setting is an MCG gap setting. On the other hand, when the information indicates that the information is not an MCG gap setting, the UE 100 can determine that the associated MUSIM gap setting is an SCG gap setting.
 識別情報は、RRCメッセージに含まれるMUSIMギャップ設定がMCGギャップ設定であるかSCGギャップ設定であるかを示す情報(例えば、targetCellGroup)を含んでいてよい。UE100は、当該情報がMCGギャップ設定であることを示す(例えば、mcg)場合、対応付けられたMUSIMギャップ設定がMCGギャップ設定であると判定できる。一方で、UE100は、当該情報がSCGギャップ設定であることを示す(例えば、scg)場合、対応付けられたMUSIMギャップ設定がSCGギャップ設定であると判定できる。 The identification information may include information (e.g., targetCellGroup) indicating whether the MUSIM gap setting included in the RRC message is an MCG gap setting or an SCG gap setting. If the information indicates an MCG gap setting (e.g., mcg), UE100 can determine that the associated MUSIM gap setting is an MCG gap setting. On the other hand, if the information indicates an SCG gap setting (e.g., scg), UE100 can determine that the associated MUSIM gap setting is an SCG gap setting.
 また、基地局210Mの制御部214は、MCGギャップ設定のリストと、SCGギャップ設定のリストとをRRCメッセージに含めることで、MCGギャップ設定とSCGギャップ設定とが区別可能に構成されていてよい。UE100は、MCGギャップ設定のリストにより示されるMUSIMギャップ設定がMCGギャップ設定であると判定できる。UE100は、SCGギャップ設定のリストにより示されるMUSIMギャップ設定がSCGギャップ設定であると判定できる。 The control unit 214 of the base station 210M may be configured to distinguish between the MCG gap setting and the SCG gap setting by including a list of MCG gap settings and a list of SCG gap settings in an RRC message. The UE 100 can determine that the MUSIM gap setting indicated by the list of MCG gap settings is the MCG gap setting. The UE 100 can determine that the MUSIM gap setting indicated by the list of SCG gap settings is the SCG gap setting.
 ステップS215~S218:
 ステップS116~S118と同様である。
Steps S215 to S218:
This is the same as steps S116 to S118.
 以上によれば、基地局210Mの受信部212Rは、UE100が推奨するSCG向けギャップの情報を含むギャップ推奨リストをUE100から受信してよい。通知情報は、推奨するSCG向けギャップの情報を含んでよい。これにより、セカンダリノードが、推奨するSCG向けギャップの情報に基づいて、SCG向けギャップを特定でき、SCG向けギャップを適切に取り扱うことができる。 In accordance with the above, the receiver 212R of the base station 210M may receive from the UE 100 a gap recommendation list including information on gaps for SCG recommended by the UE 100. The notification information may include information on the recommended gaps for SCG. This allows the secondary node to identify gaps for SCG based on the information on the recommended gaps for SCG, and to appropriately handle the gaps for SCG.
 また、ギャップ推奨リストは、UE100が推奨するMCG向けギャップの情報をさらに含んでよい。通知情報は、推奨するSCG向けギャップの情報に加えて、推奨するMCG向けギャップの情報を含んでよい。これにより、セカンダリノードは、推奨するMCG向けギャップを特定できる。セカンダリノードは、例えば、推奨するMCG向けギャップを考慮して、SCG向けギャップの適用を判定することもできる。 The gap recommendation list may further include information on the gap for the MCG recommended by UE100. The notification information may include information on the gap for the MCG recommended in addition to the information on the gap for the SCG recommended. This allows the secondary node to identify the gap for the MCG recommended. The secondary node may also determine the application of the gap for the SCG, for example, taking into account the gap for the MCG recommended.
 また、基地局210Mのネットワーク通信部213は、通知情報に対する応答をセカンダリノードから受信してよい。応答は、UE100へ設定するSCG向けギャップを基地局が特定するための情報を含んでよい。マスタノードは、UE100へ設定するSCGギャップを特定できる。 Furthermore, the network communication unit 213 of the base station 210M may receive a response to the notification information from the secondary node. The response may include information for the base station to identify the SCG gap to be set in the UE 100. The master node can identify the SCG gap to be set in the UE 100.
 応答は、SCG向けギャップを識別するためのギャップ識別子を含んでよい。これにより、基地局210Mは、ギャップ識別子に基づいて、UE100へ設定されるSCG向けギャップを識別できる。 The response may include a gap identifier for identifying the gap for the SCG. This allows the base station 210M to identify the gap for the SCG to be set for the UE 100 based on the gap identifier.
 また、基地局210Mの受信部212Rは、UE100が推奨するSCG向けギャップの情報を含むギャップ推奨リストをUE100から受信してよい。ネットワーク通信部213は、推奨するSCG向けギャップの情報と、推奨するSCG向けギャップのギャップパラメータに対応付けられた第2ギャップ識別子と、をセカンダリノードへ送信してよい。これにより、第2ギャップ識別子を決定する基地局210Mが、第2ギャップ識別子を決定することで、第1ギャップ識別子と第2ギャップ識別子とが異なるようにすることができる。 Furthermore, the receiver 212R of the base station 210M may receive from the UE 100 a gap recommendation list including information on gaps for SCG recommended by the UE 100. The network communication unit 213 may transmit the information on the recommended gaps for SCG and a second gap identifier associated with the gap parameters of the recommended gaps for SCG to the secondary node. In this way, the base station 210M, which determines the second gap identifier, can determine the second gap identifier so that the first gap identifier and the second gap identifier are different.
 また、基地局210Mのネットワーク通信部213は、第2ギャップパラメータをセカンダリノードから受信してよい。基地局210Mの制御部214は、セカンダリノードから受信した第2ギャップパラメータに対応付けられる第2ギャップ識別子を決定してよい。第2ギャップ識別子を決定する基地局210Mが、第2ギャップ識別子を決定することで、第1ギャップ識別子と第2ギャップ識別子とが異なるようにすることができる。 Furthermore, the network communication unit 213 of the base station 210M may receive the second gap parameter from the secondary node. The control unit 214 of the base station 210M may determine a second gap identifier that corresponds to the second gap parameter received from the secondary node. By determining the second gap identifier, the base station 210M that determines the second gap identifier can make the first gap identifier and the second gap identifier different.
 また、基地局210Mの制御部214は、MCGギャップ設定とSCGギャップ設定とが区別可能に構成されているRRCメッセージをUE100へ送信する制御を行ってよい。これにより、RRCメッセージを受信したUE100は、MCGギャップ設定とSCGギャップ設定とが区別可能となる。 The control unit 214 of the base station 210M may also perform control to transmit to the UE 100 an RRC message configured to be able to distinguish between the MCG gap setting and the SCG gap setting. This allows the UE 100 that receives the RRC message to be able to distinguish between the MCG gap setting and the SCG gap setting.
 また、基地局210Mの制御部214は、UE100がSCGギャップ設定を特定するための識別情報をRRCメッセージに含めてよい。これにより、UE100は、識別情報に基づいて、MCGギャップ設定とSCGギャップ設定とが区別可能となる。 In addition, the control unit 214 of the base station 210M may include identification information for the UE 100 to identify the SCG gap setting in the RRC message. This allows the UE 100 to distinguish between the MCG gap setting and the SCG gap setting based on the identification information.
 また、識別情報は、SCG向けギャップと対応付けられたセルグループ識別子又はセル識別子を含んでよい。これにより、UE100は、セルグループ識別子又はセル識別子に基づいて、MCGギャップ設定とSCGギャップ設定とが区別可能となる。 The identification information may also include a cell group identifier or a cell identifier associated with the SCG gap. This allows the UE 100 to distinguish between an MCG gap setting and an SCG gap setting based on the cell group identifier or the cell identifier.
 また、識別情報は、RRCメッセージに含まれるMUSIMギャップ設定がSCGギャップ設定であるか否かを示す情報を含んでよい。これにより、UE100は、当該情報に基づいて、MUSIMギャップ設定がSCGギャップ設定であるか否かを判定できる。 The identification information may also include information indicating whether the MUSIM gap setting included in the RRC message is an SCG gap setting. This allows the UE 100 to determine whether the MUSIM gap setting is an SCG gap setting based on the information.
 また、基地局210Mの制御部214は、MCGギャップ設定のリストと、SCGギャップ設定のリストとをRRCメッセージに含めてよい。UE100は、MCGギャップ設定のリストに基づいてMCGギャップ設定を特定でき、SCGギャップ設定のリストに基づいて、SCGギャップ設定を特定できる。 Furthermore, the control unit 214 of the base station 210M may include a list of MCG gap settings and a list of SCG gap settings in the RRC message. The UE 100 can identify the MCG gap setting based on the list of MCG gap settings, and can identify the SCG gap setting based on the list of SCG gap settings.
 [その他の実施形態]
 上述の実施形態において、UE100は、第2ネットワーク200BにおいてRRCアイドル状態又はRRCインアクティブ状態にある場合に、例えば、ステップS105の動作を実行してよい。UE100は、例えば、第2ネットワーク200Bとの初期接続(例えば、アタッチ処理)を実行した後に、ステップS105の動作を実行してもよい。UE100は、第2ネットワーク200Bからページングメッセージを受信した場合に、ステップS105の動作を実行してもよい。
[Other embodiments]
In the above embodiment, the UE 100 may perform, for example, the operation of step S105 when the UE 100 is in an RRC idle state or an RRC inactive state in the second network 200B. The UE 100 may perform, for example, the operation of step S105 after performing an initial connection (for example, an attach process) with the second network 200B. The UE 100 may perform the operation of step S105 when the UE 100 receives a paging message from the second network 200B.
 上述の実施形態における動作シーケンス(及び動作フロー)は、必ずしもフロー図又はシーケンス図に記載された順序に沿って時系列に実行されなくてよい。例えば、動作におけるステップは、フロー図又はシーケンス図として記載した順序と異なる順序で実行されても、並列的に実行されてもよい。また、動作におけるステップの一部が削除されてもよく、さらなるステップが処理に追加されてもよい。また、上述の実施形態における動作シーケンス(及び動作フロー)は、別個独立に実施してもよいし、2以上の動作シーケンス(及び動作フロー)を組み合わせて実施してもよい。例えば、1つの動作フローの一部のステップを他の動作フローに追加してもよいし、1つの動作フローの一部のステップを他の動作フローの一部のステップと置換してもよい。 The operation sequences (and operation flows) in the above-described embodiments do not necessarily have to be executed chronologically in the order depicted in the flow diagram or sequence diagram. For example, the steps in the operations may be executed in an order different from that depicted in the flow diagram or sequence diagram, or may be executed in parallel. Some of the steps in the operations may be deleted, and additional steps may be added to the process. The operation sequences (and operation flows) in the above-described embodiments may be executed separately and independently, or two or more operation sequences (and operation flows) may be executed in combination. For example, some steps of one operation flow may be added to another operation flow, or some steps of one operation flow may be replaced with some steps of another operation flow.
 上述の実施形態において、移動通信システム1としてNRに基づく移動通信システムを例に挙げて説明した。しかしながら、移動通信システム1は、この例に限定されない。移動通信システム1は、LTE(Long Term Evolution)又は3GPP規格の他の世代システム(例えば、第6世代)のいずれかのTSに準拠したシステムであってよい。基地局210は、LTEにおいてUE100へ向けたE-UTRAユーザプレーン及び制御プレーンプロトコル終端を提供するeNBであってよい。移動通信システム1は、3GPP規格以外の規格のTSに準拠したシステムであってよい。基地局210は、IAB(Integrated Access and Backhaul)ドナー又はIABノードであってよい。 In the above embodiment, a mobile communication system based on NR has been described as an example of the mobile communication system 1. However, the mobile communication system 1 is not limited to this example. The mobile communication system 1 may be a system that complies with the TS of either LTE (Long Term Evolution) or another generation system of the 3GPP standard (e.g., the sixth generation). The base station 210 may be an eNB that provides E-UTRA user plane and control plane protocol termination toward the UE 100 in LTE. The mobile communication system 1 may be a system that complies with the TS of a standard other than the 3GPP standard. The base station 210 may be an IAB (Integrated Access and Backhaul) donor or an IAB node.
 UE100又は基地局210が行う各処理をコンピュータに実行させるプログラムが提供されてもよい。プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROM(Compact Disk Read Only Memory)やDVD-ROM(Digital Versatile Disc Read Only Memory)等の記録媒体であってもよい。また、UE100又は基地局210が行う各処理を実行する回路を集積化し、UE100又は基地局210の少なくとも一部を半導体集積回路(チップセット、SoC(System On Chip))として構成してもよい。 A program may be provided that causes a computer to execute each process performed by the UE 100 or the base station 210. The program may be recorded in a computer-readable medium. Using the computer-readable medium, it is possible to install the program in the computer. Here, the computer-readable medium on which the program is recorded may be a non-transient recording medium. The non-transient recording medium is not particularly limited, but may be, for example, a recording medium such as a CD-ROM (Compact Disk Read Only Memory) or a DVD-ROM (Digital Versatile Disk Read Only Memory). In addition, circuits that execute each process performed by the UE 100 or the base station 210 may be integrated, and at least a part of the UE 100 or the base station 210 may be configured as a semiconductor integrated circuit (chip set, SoC (System On Chip)).
 上述の実施形態において、「送信する(transmit)」は、送信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に送信することを意味してもよい。或いは、「送信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に送信することとの組合せを意味してもよい。同様に、「受信する(receive)」は、受信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に受信することを意味してもよい。或いは、「受信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に受信することとの組合せを意味してもよい。同様に、「取得する(obtain/acquire)」は、記憶されている情報の中から情報を取得することを意味してもよく、他のノードから受信した情報の中から情報を取得することを意味してもよく、又は、情報を生成することにより当該情報を取得することを意味してもよい。同様に、「に基づいて(based on)」、「に応じて(depending on/in response to)」という記載は、別段に明記されていない限り、「のみに基づいて」、「のみに応じて」を意味しない。「に基づいて」という記載は、「のみに基づいて」及び「に少なくとも部分的に基づいて」の両方を意味する。同様に、「に応じて」という記載は、「のみに応じて」及び「に少なくとも部分的に応じて」の両方を意味する。同様に、「~を含む(include)」及び「~を備える(comprise)」は、列挙する項目のみを含むことを意味せず、列挙する項目のみを含んでもよいし、列挙する項目に加えてさらなる項目を含んでもよいことを意味する。同様に、本開示において、「又は(or)」は、排他的論理和を意味せず、論理和を意味する。さらに、本開示で使用した「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示で使用され得る。従って、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。本開示において、例えば、英語でのa,an,及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含むものとする。 In the above embodiment, "transmit" may mean performing processing of at least one layer in a protocol stack used for transmission, or may mean physically transmitting a signal wirelessly or wired. Alternatively, "transmit" may mean a combination of performing processing of at least one layer and physically transmitting a signal wirelessly or wired. Similarly, "receive" may mean performing processing of at least one layer in a protocol stack used for reception, or may mean physically receiving a signal wirelessly or wired. Alternatively, "receive" may mean a combination of performing processing of at least one layer and physically receiving a signal wirelessly or wired. Similarly, "obtain/acquire" may mean obtaining information from stored information, obtaining information from information received from other nodes, or obtaining the information by generating the information. Similarly, the terms "based on" and "depending on/in response to" do not mean "based only on" or "only in response to," unless expressly stated otherwise. The term "based on" means both "based only on" and "based at least in part on." Similarly, the term "in response to" means both "only in response to" and "at least in part on." Similarly, "include" and "comprise" do not mean including only the recited items, but may include only the recited items or may include additional items in addition to the recited items. Similarly, in this disclosure, "or" does not mean an exclusive or, but does mean an or. Furthermore, any reference to elements using designations such as "first," "second," etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and second element does not imply that only two elements may be employed therein, or that the first element must precede the second element in some manner. In this disclosure, where articles are added by translation, such as, for example, a, an, and the in English, these articles are intended to include the plural unless the context clearly indicates otherwise.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described with reference to the embodiments, it is understood that the present disclosure is not limited to the embodiments or structures. The present disclosure also encompasses various modifications and modifications within the scope of equivalents. In addition, various combinations and forms, as well as other combinations and forms including only one element, more than one element, or less than one element, are also within the scope and spirit of the present disclosure.
 (付記)
 上述の実施形態に関する特徴について付記する。
(Additional Note)
The following additional features relate to the above-described embodiment.
 (付記1)
 通信装置(100)に設定されるマスタセルグループ(MCG)に関連付けられるマスタノードと、前記通信装置に設定されるセカンダリセルグループ(SCG)に関連付けられるセカンダリノードと、を含む第1ネットワーク(100A)において、前記マスタノードとして動作する基地局(210M)であって、
 前記通信装置が第2ネットワーク(200B)と通信するために前記MCGにおける通信を一時的に中断できる期間であるMCG向けギャップに関するMCGギャップ設定と、前記通信装置が前記第2ネットワークと通信するために前記SCGにおける通信を一時的に中断できる期間であるSCG向けギャップに関するSCGギャップ設定とを前記通信装置へ通知する制御部(214)を備え、
 前記MCGギャップ設定及び前記SCGギャップ設定のそれぞれは、ギャップ識別子を含み、
 前記制御部は、前記ギャップ識別子が前記SCG向けであるか否かを識別可能な態様で前記ギャップ識別子を前記通信装置に通知する
 基地局。
(Appendix 1)
A base station (210M) operating as a master node in a first network (100A) including a master node associated with a master cell group (MCG) configured in a communication device (100) and a secondary node associated with a secondary cell group (SCG) configured in the communication device,
a control unit (214) that notifies the communication device of an MCG gap setting related to an MCG gap, which is a period during which the communication device can temporarily suspend communication in the MCG to communicate with a second network (200B), and an SCG gap setting related to an SCG gap, which is a period during which the communication device can temporarily suspend communication in the SCG to communicate with the second network;
Each of the MCG gap setting and the SCG gap setting includes a gap identifier;
The control unit notifies the communication device of the gap identifier in a manner that enables identification of whether the gap identifier is for the SCG.
 (付記2)
 前記ギャップ識別子は、前記MCG向けギャップを示す第1ギャップパラメータに対応付けられる第1ギャップ識別子と、前記SCG向けギャップを示す第2ギャップパラメータに対応付けられる第2ギャップ識別子と、を含み、
 前記制御部は、前記第1ギャップ識別子と前記第2ギャップ識別子とが異なるように、前記第1ギャップ識別子を決定する
 付記1に記載の基地局。
(Appendix 2)
the gap identifier includes a first gap identifier associated with a first gap parameter indicating the gap for the MCG, and a second gap identifier associated with a second gap parameter indicating the gap for the SCG,
The base station according to claim 1, wherein the control unit determines the first gap identifier such that the first gap identifier and the second gap identifier are different from each other.
 (付記3)
 前記制御部は、前記第1ギャップ識別子に加えて、前記第2ギャップ識別子を決定する
 付記2に記載の基地局。
(Appendix 3)
The base station according to claim 2, wherein the control unit determines the second gap identifier in addition to the first gap identifier.
 (付記4)
 前記制御部は、前記第2ギャップパラメータを決定し、
 前記決定した第2ギャップパラメータと前記決定した第2ギャップ識別子とを含む前記SCGギャップ設定を前記セカンダリノードへ送信するネットワーク通信部(213)を備える
 付記3に記載の基地局。
(Appendix 4)
The control unit determines the second gap parameter;
The base station according to claim 3, further comprising: a network communication unit (213) configured to transmit the SCG gap configuration including the determined second gap parameter and the determined second gap identifier to the secondary node.
 (付記5)
 前記通信装置が推奨するSCG向けギャップの情報を含むギャップ推奨リストを前記通信装置から受信する受信部(212R)と、を備え、
 前記推奨するSCG向けギャップの情報と、前記推奨するSCG向けギャップのギャップパラメータに対応付けられた前記第2ギャップ識別子と、を前記セカンダリノードへ送信するネットワーク通信部を備える
 付記3又は4に記載の基地局。
(Appendix 5)
A receiving unit (212R) that receives a gap recommendation list including information on gaps for SCG recommended by the communication device from the communication device,
The base station according to claim 3 or 4, further comprising a network communication unit that transmits to the secondary node information on the recommended SCG gap and the second gap identifier associated with a gap parameter of the recommended SCG gap.
 (付記6)
 前記第2ギャップパラメータを前記セカンダリノードから受信するネットワーク通信部を備え、
 前記制御部は、前記セカンダリノードから受信した前記第2ギャップパラメータに対応付けられる前記第2ギャップ識別子を決定する
 付記3から5のいずれか1項に記載の基地局。
(Appendix 6)
a network communication unit that receives the second gap parameter from the secondary node;
The base station according to any one of Supplementary Note 3 to 5, wherein the control unit determines the second gap identifier associated with the second gap parameter received from the secondary node.
 (付記7)
 前記制御部は、前記MCGギャップ設定と前記SCGギャップ設定とが区別可能に構成されている無線リソース制御(RRC)メッセージを前記通信装置へ送信する制御を行う
 付記1から6のいずれか1項に記載の基地局。
(Appendix 7)
The base station according to any one of Supplementary Note 1 to 6, wherein the control unit controls transmission of a radio resource control (RRC) message to the communication device, the RRC message being configured to distinguish between the MCG gap setting and the SCG gap setting.
 (付記8)
 前記制御部は、前記通信装置が前記SCGギャップ設定を特定するための識別情報を前記RRCメッセージに含める
 付記7に記載の基地局。
(Appendix 8)
The base station according to Supplementary Note 7, wherein the control unit includes, in the RRC message, identification information for the communication device to identify the SCG gap setting.
 (付記9)
 前記識別情報は、前記SCG向けギャップと対応付けられたセルグループ識別子又はセル識別子を含む
 付記8に記載の基地局。
(Appendix 9)
The base station according to Supplementary Note 8, wherein the identification information includes a cell group identifier or a cell identifier associated with the SCG-directed gap.
 (付記10)
 前記識別情報は、前記RRCメッセージに含まれるギャップの設定が前記SCGギャップ設定であるか否かを示す情報を含む
 付記8に記載の基地局。
(Appendix 10)
The base station according to Supplementary Note 8, wherein the identification information includes information indicating whether the gap setting included in the RRC message is the SCG gap setting.
 (付記11)
 前記制御部は、前記MCGギャップ設定のリストと、前記SCGギャップ設定のリストとを前記RRCメッセージに含める
 付記7から10のいずれか1項に記載の基地局。
(Appendix 11)
The base station according to any one of Supplementary Note 7 to 10, wherein the control unit includes the list of MCG gap settings and the list of SCG gap settings in the RRC message.
 (付記12)
 第1ネットワーク(200A)においてマスタセルグループ(MCG)に関連付けられるマスタノードと、前記第1ネットワークにおいてセカンダリセルグループ(SCG)に関連付けられるセカンダリノードと、の通信を行う通信装置(100)であって、
 前記通信装置が第2ネットワーク(200B)と通信するために前記MCGにおける通信を一時的に中断できる期間であるMCG向けギャップに関するMCGギャップ設定と、前記通信装置が前記第2ネットワークと通信するために前記SCGにおける通信を一時的に中断できる期間であるSCG向けギャップに関するSCGギャップ設定とを、前記マスタノードから取得する制御部(130)を備え、
 前記MCGギャップ設定及び前記SCGギャップ設定のそれぞれは、ギャップ識別子を含み、
 前記制御部は、前記ギャップ識別子が前記SCG向けであるか否かを識別可能な態様で前記ギャップ識別子を前記マスタノードから取得する
 通信装置。
(Appendix 12)
A communication device (100) for communicating with a master node associated with a master cell group (MCG) in a first network (200A) and a secondary node associated with a secondary cell group (SCG) in the first network,
a control unit (130) that acquires from the master node an MCG gap setting for an MCG gap, which is a period during which the communication device can temporarily suspend communication in the MCG to communicate with a second network (200B), and an SCG gap setting for an SCG gap, which is a period during which the communication device can temporarily suspend communication in the SCG to communicate with the second network;
Each of the MCG gap setting and the SCG gap setting includes a gap identifier;
The control unit acquires the gap identifier from the master node in a manner that enables identification of whether the gap identifier is for the SCG.
 (付記13)
 前記MCGギャップ設定と前記SCGギャップ設定とが区別可能に構成されている無線リソース制御(RRC)メッセージを前記マスタノードから受信する受信部(120R)を備える
 付記12に記載の通信装置。
(Appendix 13)
The communication device according to claim 12, further comprising: a receiving unit (120R) that receives a radio resource control (RRC) message from the master node, the RRC message being configured to be distinguishable between the MCG gap setting and the SCG gap setting.
 (付記14)
 通信装置(100)に設定されるマスタセルグループ(MCG)に関連付けられるマスタノードと、前記通信装置に設定されるセカンダリセルグループ(SCG)に関連付けられるセカンダリノードと、を含む第1ネットワーク(100A)において、前記マスタノードとして動作する基地局(210M)で実行される通信方法であって、
 前記通信装置が第2ネットワーク(200B)と通信するために前記MCGにおける通信を一時的に中断できる期間であるMCG向けギャップに関するMCGギャップ設定と、前記通信装置が前記第2ネットワークと通信するために前記SCGにおける通信を一時的に中断できる期間であるSCG向けギャップに関するSCGギャップ設定とを前記通信装置へ通知するステップを備え、
 前記MCGギャップ設定及び前記SCGギャップ設定のそれぞれは、ギャップ識別子を含み、
 前記ステップにおいて、前記ギャップ識別子が前記SCG向けであるか否かを識別可能な態様で前記ギャップ識別子を前記通信装置に通知する
 通信方法。
(Appendix 14)
A communication method executed in a base station (210M) operating as a master node in a first network (100A) including a master node associated with a master cell group (MCG) configured in a communication device (100) and a secondary node associated with a secondary cell group (SCG) configured in the communication device,
notifying the communication device of an MCG gap setting for an MCG gap, which is a period during which the communication device can temporarily suspend communication in the MCG to communicate with a second network (200B), and an SCG gap setting for an SCG gap, which is a period during which the communication device can temporarily suspend communication in the SCG to communicate with the second network;
Each of the MCG gap setting and the SCG gap setting includes a gap identifier;
In the step, the gap identifier is notified to the communication device in a manner that enables identification of whether the gap identifier is for the SCG.
 (付記15)
 第1ネットワーク(200A)においてマスタセルグループ(MCG)に関連付けられるマスタノードと、前記第1ネットワークにおいてセカンダリセルグループ(SCG)に関連付けられるセカンダリノードと、の通信を行う通信装置(100)で実行される通信方法であって、
 前記通信装置が第2ネットワーク(200B)と通信するために前記MCGにおける通信を一時的に中断できる期間であるMCG向けギャップに関するMCGギャップ設定と、前記通信装置が前記第2ネットワークと通信するために前記SCGにおける通信を一時的に中断できる期間であるSCG向けギャップに関するSCGギャップ設定とを、前記マスタノードから取得するステップを備え、
 前記MCGギャップ設定及び前記SCGギャップ設定のそれぞれは、ギャップ識別子を含み、
 前記ステップでは、前記ギャップ識別子が前記SCG向けであるか否かを識別可能な態様で前記ギャップ識別子を前記マスタノードから取得する
 通信方法。
(Appendix 15)
A communication method executed by a communication device (100) that communicates with a master node associated with a master cell group (MCG) in a first network (200A) and a secondary node associated with a secondary cell group (SCG) in the first network, comprising:
The method includes a step of acquiring from the master node an MCG gap setting for an MCG gap, which is a period during which the communication device can temporarily suspend communication in the MCG to communicate with a second network (200B), and an SCG gap setting for an SCG gap, which is a period during which the communication device can temporarily suspend communication in the SCG to communicate with the second network;
Each of the MCG gap setting and the SCG gap setting includes a gap identifier;
In the step, the gap identifier is acquired from the master node in a manner that makes it possible to identify whether the gap identifier is for the SCG.

Claims (15)

  1.  通信装置(100)に設定されるマスタセルグループ(MCG)に関連付けられるマスタノードと、前記通信装置に設定されるセカンダリセルグループ(SCG)に関連付けられるセカンダリノードと、を含む第1ネットワーク(100A)において、前記マスタノードとして動作する基地局(210M)であって、
     前記通信装置が第2ネットワーク(200B)と通信するために前記MCGにおける通信を一時的に中断できる期間であるMCG向けギャップに関するMCGギャップ設定と、前記通信装置が前記第2ネットワークと通信するために前記SCGにおける通信を一時的に中断できる期間であるSCG向けギャップに関するSCGギャップ設定とを前記通信装置へ通知する制御部(214)を備え、
     前記MCGギャップ設定及び前記SCGギャップ設定のそれぞれは、ギャップ識別子を含み、
     前記制御部は、前記ギャップ識別子が前記SCG向けであるか否かを識別可能な態様で前記ギャップ識別子を前記通信装置に通知する
     基地局。
    A base station (210M) operating as a master node in a first network (100A) including a master node associated with a master cell group (MCG) configured in a communication device (100) and a secondary node associated with a secondary cell group (SCG) configured in the communication device,
    a control unit (214) that notifies the communication device of an MCG gap setting related to an MCG gap, which is a period during which the communication device can temporarily suspend communication in the MCG to communicate with a second network (200B), and an SCG gap setting related to an SCG gap, which is a period during which the communication device can temporarily suspend communication in the SCG to communicate with the second network;
    Each of the MCG gap setting and the SCG gap setting includes a gap identifier;
    The control unit notifies the communication device of the gap identifier in a manner that enables identification of whether the gap identifier is for the SCG.
  2.  前記ギャップ識別子は、前記MCG向けギャップを示す第1ギャップパラメータに対応付けられる第1ギャップ識別子と、前記SCG向けギャップを示す第2ギャップパラメータに対応付けられる第2ギャップ識別子と、を含み、
     前記制御部は、前記第1ギャップ識別子と前記第2ギャップ識別子とが異なるように、前記第1ギャップ識別子を決定する
     請求項1に記載の基地局。
    the gap identifier includes a first gap identifier associated with a first gap parameter indicating the gap for the MCG, and a second gap identifier associated with a second gap parameter indicating the gap for the SCG,
    The base station according to claim 1 , wherein the control unit determines the first gap identifier such that the first gap identifier is different from the second gap identifier.
  3.  前記制御部は、前記第1ギャップ識別子に加えて、前記第2ギャップ識別子を決定する
     請求項2に記載の基地局。
    The base station according to claim 2 , wherein the control unit determines the second gap identifier in addition to the first gap identifier.
  4.  前記制御部は、前記第2ギャップパラメータを決定し、
     前記決定した第2ギャップパラメータと前記決定した第2ギャップ識別子とを含む前記SCGギャップ設定を前記セカンダリノードへ送信するネットワーク通信部(213)を備える
     請求項3に記載の基地局。
    The control unit determines the second gap parameter;
    The base station according to claim 3, further comprising a network communication unit (213) configured to transmit the SCG gap configuration including the determined second gap parameter and the determined second gap identifier to the secondary node.
  5.  前記通信装置が推奨するSCG向けギャップの情報を含むギャップ推奨リストを前記通信装置から受信する受信部(212R)と、を備え、
     前記推奨するSCG向けギャップの情報と、前記推奨するSCG向けギャップのギャップパラメータに対応付けられた前記第2ギャップ識別子と、を前記セカンダリノードへ送信するネットワーク通信部を備える
     請求項3又は4に記載の基地局。
    A receiving unit (212R) that receives a gap recommendation list including information on gaps for SCG recommended by the communication device from the communication device,
    The base station according to claim 3 or 4, comprising a network communication unit that transmits information of the recommended SCG gap and the second gap identifier associated with a gap parameter of the recommended SCG gap to the secondary node.
  6.  前記第2ギャップパラメータを前記セカンダリノードから受信するネットワーク通信部を備え、
     前記制御部は、前記セカンダリノードから受信した前記第2ギャップパラメータに対応付けられる前記第2ギャップ識別子を決定する
     請求項3又は4に記載の基地局。
    a network communication unit that receives the second gap parameter from the secondary node;
    The base station according to claim 3 or 4, wherein the control unit determines the second gap identifier associated with the second gap parameter received from the secondary node.
  7.  前記制御部は、前記MCGギャップ設定と前記SCGギャップ設定とが区別可能に構成されている無線リソース制御(RRC)メッセージを前記通信装置へ送信する制御を行う
     請求項1に記載の基地局。
    The base station according to claim 1 , wherein the control unit performs control to transmit, to the communication device, a radio resource control (RRC) message configured to be able to distinguish between the MCG gap setting and the SCG gap setting.
  8.  前記制御部は、前記通信装置が前記SCGギャップ設定を特定するための識別情報を前記RRCメッセージに含める
     請求項7に記載の基地局。
    The base station according to claim 7 , wherein the control unit includes, in the RRC message, identification information for the communication device to identify the SCG gap setting.
  9.  前記識別情報は、前記SCG向けギャップと対応付けられたセルグループ識別子又はセル識別子を含む
     請求項8に記載の基地局。
    The base station according to claim 8 , wherein the identification information includes a cell group identifier or a cell identifier associated with the SCG-directed gap.
  10.  前記識別情報は、前記RRCメッセージに含まれるギャップの設定が前記SCGギャップ設定であるか否かを示す情報を含む
     請求項8に記載の基地局。
    The base station according to claim 8 , wherein the identification information includes information indicating whether or not the gap setting included in the RRC message is the SCG gap setting.
  11.  前記制御部は、前記MCGギャップ設定のリストと、前記SCGギャップ設定のリストとを前記RRCメッセージに含める
     請求項7に記載の基地局。
    The base station according to claim 7 , wherein the control unit includes the list of MCG gap settings and the list of SCG gap settings in the RRC message.
  12.  第1ネットワーク(200A)においてマスタセルグループ(MCG)に関連付けられるマスタノードと、前記第1ネットワークにおいてセカンダリセルグループ(SCG)に関連付けられるセカンダリノードと、の通信を行う通信装置(100)であって、
     前記通信装置が第2ネットワーク(200B)と通信するために前記MCGにおける通信を一時的に中断できる期間であるMCG向けギャップに関するMCGギャップ設定と、前記通信装置が前記第2ネットワークと通信するために前記SCGにおける通信を一時的に中断できる期間であるSCG向けギャップに関するSCGギャップ設定とを、前記マスタノードから取得する制御部(130)を備え、
     前記MCGギャップ設定及び前記SCGギャップ設定のそれぞれは、ギャップ識別子を含み、
     前記制御部は、前記ギャップ識別子が前記SCG向けであるか否かを識別可能な態様で前記ギャップ識別子を前記マスタノードから取得する
     通信装置。
    A communication device (100) for communicating with a master node associated with a master cell group (MCG) in a first network (200A) and a secondary node associated with a secondary cell group (SCG) in the first network,
    a control unit (130) that acquires from the master node an MCG gap setting for an MCG gap, which is a period during which the communication device can temporarily suspend communication in the MCG to communicate with a second network (200B), and an SCG gap setting for an SCG gap, which is a period during which the communication device can temporarily suspend communication in the SCG to communicate with the second network;
    Each of the MCG gap setting and the SCG gap setting includes a gap identifier;
    The control unit acquires the gap identifier from the master node in a manner that enables identification of whether the gap identifier is for the SCG.
  13.  前記MCGギャップ設定と前記SCGギャップ設定とが区別可能に構成されている無線リソース制御(RRC)メッセージを前記マスタノードから受信する受信部(120R)を備える
     請求項12に記載の通信装置。
    The communication device according to claim 12, comprising: a receiving unit (120R) that receives a radio resource control (RRC) message from the master node, the RRC message being configured to be distinguishable between the MCG gap setting and the SCG gap setting.
  14.  通信装置(100)に設定されるマスタセルグループ(MCG)に関連付けられるマスタノードと、前記通信装置に設定されるセカンダリセルグループ(SCG)に関連付けられるセカンダリノードと、を含む第1ネットワーク(100A)において、前記マスタノードとして動作する基地局(210M)で実行される通信方法であって、
     前記通信装置が第2ネットワーク(200B)と通信するために前記MCGにおける通信を一時的に中断できる期間であるMCG向けギャップに関するMCGギャップ設定と、前記通信装置が前記第2ネットワークと通信するために前記SCGにおける通信を一時的に中断できる期間であるSCG向けギャップに関するSCGギャップ設定とを前記通信装置へ通知するステップを備え、
     前記MCGギャップ設定及び前記SCGギャップ設定のそれぞれは、ギャップ識別子を含み、
     前記ステップにおいて、前記ギャップ識別子が前記SCG向けであるか否かを識別可能な態様で前記ギャップ識別子を前記通信装置に通知する
     通信方法。
    A communication method executed in a base station (210M) operating as a master node in a first network (100A) including a master node associated with a master cell group (MCG) configured in a communication device (100) and a secondary node associated with a secondary cell group (SCG) configured in the communication device,
    notifying the communication device of an MCG gap setting for an MCG gap, which is a period during which the communication device can temporarily suspend communication in the MCG to communicate with a second network (200B), and an SCG gap setting for an SCG gap, which is a period during which the communication device can temporarily suspend communication in the SCG to communicate with the second network;
    Each of the MCG gap setting and the SCG gap setting includes a gap identifier;
    In the step, the gap identifier is notified to the communication device in a manner that enables identification of whether the gap identifier is for the SCG.
  15.  第1ネットワーク(200A)においてマスタセルグループ(MCG)に関連付けられるマスタノードと、前記第1ネットワークにおいてセカンダリセルグループ(SCG)に関連付けられるセカンダリノードと、の通信を行う通信装置(100)で実行される通信方法であって、
     前記通信装置が第2ネットワーク(200B)と通信するために前記MCGにおける通信を一時的に中断できる期間であるMCG向けギャップに関するMCGギャップ設定と、前記通信装置が前記第2ネットワークと通信するために前記SCGにおける通信を一時的に中断できる期間であるSCG向けギャップに関するSCGギャップ設定とを、前記マスタノードから取得するステップを備え、
     前記MCGギャップ設定及び前記SCGギャップ設定のそれぞれは、ギャップ識別子を含み、
     前記ステップでは、前記ギャップ識別子が前記SCG向けであるか否かを識別可能な態様で前記ギャップ識別子を前記マスタノードから取得する
     通信方法。
    A communication method executed in a communication device (100) that communicates between a master node associated with a master cell group (MCG) in a first network (200A) and a secondary node associated with a secondary cell group (SCG) in the first network, the method comprising:
    The method includes a step of acquiring from the master node an MCG gap setting for an MCG gap, which is a period during which the communication device can temporarily suspend communication in the MCG to communicate with a second network (200B), and an SCG gap setting for an SCG gap, which is a period during which the communication device can temporarily suspend communication in the SCG to communicate with the second network;
    Each of the MCG gap setting and the SCG gap setting includes a gap identifier;
    In the step, the gap identifier is acquired from the master node in a manner that makes it possible to identify whether the gap identifier is for the SCG.
PCT/JP2023/034833 2022-09-30 2023-09-26 Base station, communication device, and communication method WO2024071080A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022158536 2022-09-30
JP2022-158536 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024071080A1 true WO2024071080A1 (en) 2024-04-04

Family

ID=90477956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034833 WO2024071080A1 (en) 2022-09-30 2023-09-26 Base station, communication device, and communication method

Country Status (1)

Country Link
WO (1) WO2024071080A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021213495A1 (en) * 2020-04-24 2021-10-28 维沃移动通信有限公司 Gap configuration method, ue, and network device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021213495A1 (en) * 2020-04-24 2021-10-28 维沃移动通信有限公司 Gap configuration method, ue, and network device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON, HUAWEI: "Correction CR for QoE Measurement Collection in NR", 3GPP DRAFT; R2-2207722, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, 9 August 2022 (2022-08-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052261041 *

Similar Documents

Publication Publication Date Title
JPWO2016031662A1 (en) Base station, processor and network device
WO2024071080A1 (en) Base station, communication device, and communication method
WO2024071081A1 (en) Communication device, base station, and communication method
WO2024071079A1 (en) Base station and communication method
WO2024019062A1 (en) Communication device, base station, and communication method
WO2024034475A1 (en) Communication device, base station, and communication method
WO2022220218A1 (en) User equipment and communication control method
WO2022249975A1 (en) User device, core network device, and communications control method
WO2024034474A1 (en) Communication device, base station, and communication method
WO2022220219A1 (en) User device, base station, and communication control method
WO2022209905A1 (en) User device, base station, and communication control method
WO2022220220A1 (en) User equipment, base station, and communication control method
WO2022234795A1 (en) Communication device and communication method
EP4329339A1 (en) User equipment and communication control method
US20230422074A1 (en) User equipment, base station, and communication control method
US20240090070A1 (en) Communication apparatus, and communication method
WO2023013751A1 (en) Communication device, base station, and communication method
WO2024019060A1 (en) Communication device and communication method
WO2023276830A1 (en) Base station and communication control method
WO2024019061A1 (en) Communication device, base station, and communication method
WO2023276829A1 (en) User device, base station, and communication control method
WO2024019058A1 (en) Communication device, base station, and communication method
WO2023276832A1 (en) User device, base station, and communication control method
WO2022209906A1 (en) User equipment, base station, and communication control method
JP2022182163A (en) Core network device, base station, and communication control method