WO2024071057A1 - Member for electrochemical element electrode, and electrochemical element - Google Patents

Member for electrochemical element electrode, and electrochemical element Download PDF

Info

Publication number
WO2024071057A1
WO2024071057A1 PCT/JP2023/034795 JP2023034795W WO2024071057A1 WO 2024071057 A1 WO2024071057 A1 WO 2024071057A1 JP 2023034795 W JP2023034795 W JP 2023034795W WO 2024071057 A1 WO2024071057 A1 WO 2024071057A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal expansion
expansion material
electrochemical element
conductive thermal
electrode member
Prior art date
Application number
PCT/JP2023/034795
Other languages
French (fr)
Japanese (ja)
Inventor
明彦 宮崎
健彦 片山
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Publication of WO2024071057A1 publication Critical patent/WO2024071057A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrochemical element electrode member and an electrochemical element.
  • Electrochemical elements such as lithium ion secondary batteries, electric double layer capacitors, and lithium ion capacitors are small, lightweight, have high energy density, and can be repeatedly charged and discharged, and are used in a wide range of applications. Electrochemical elements generally have multiple electrodes and separators that isolate these electrodes and prevent internal short circuits.
  • Patent Document 1 a secondary battery having a positive electrode, a negative electrode, and an electrolyte is proposed, in which the positive electrode comprises a positive electrode current collector, an intermediate layer formed on the positive electrode current collector, and a positive electrode composite layer formed on the intermediate layer, the intermediate layer contains a predetermined thermally expandable material and an insulating inorganic material, and the contents of these materials are within a predetermined range.
  • the insulating inorganic material in the intermediate layer becomes a resistance component between the positive electrode current collector and the positive electrode composite layer, and a sudden drop in resistance is suppressed, and the heat generation speed (temperature rise speed) of the secondary battery is mitigated.
  • the thermally expandable material contained in a predetermined amount in the intermediate layer thermally expands, and the positive electrode composite layer and the intermediate layer or the positive electrode current collector and the intermediate layer are separated, and the electrical connection between the positive electrode composite layer and the positive electrode current collector via the intermediate layer is interrupted, and as a result, the increase in the heat generation temperature of the secondary battery is suppressed, that is, the maximum temperature reached by the secondary battery is reduced.
  • the present inventors have conducted extensive research with the aim of solving the above problems.
  • the present inventors have newly discovered that the above problems can be solved by using an electrochemical element electrode member that includes a current collector and a conductive thermal expansion material-containing portion located on the current collector, in which the coverage of the conductive thermal expansion material on the current collector side surface of the conductive thermal expansion material-containing portion is within a predetermined range, and the product of the coverage and the average particle size of the conductive thermal expansion material is within a predetermined range, and thus have completed the present invention.
  • the present invention aims to advantageously solve the above-mentioned problems, and provides: [1] an electrochemical element electrode member comprising a current collector and a conductive thermally expandable material-containing portion located on the current collector, wherein a coverage rate of the conductive thermally expandable material on a current collector side arrangement surface of the conductive thermally expandable material-containing portion is 20% or more and 98% or less, and the product of the coverage rate and an average particle diameter of the conductive thermally expandable material is 500 or more and 15,000 or less.
  • the above-mentioned electrochemical device electrode member can provide the electrochemical device with excellent cycle characteristics while ensuring a high level of safety of the electrochemical device.
  • the term "conductive thermal expansion material” refers to a material that is conductive and has a thermal expansion coefficient of at least 2 times that measured according to the method described in the Examples. Note that in this specification, “conductive” means that the electrical conductivity is at least 1 S/m.
  • the average particle diameter of the conductive thermal expansion material in the conductive thermal expansion material-containing portion (hereinafter, sometimes referred to as "average particle diameter A") can be measured using a field emission scanning electron microscope (FE-SEM) according to the method described in the examples.
  • the coverage can be measured using an FE-SEM according to the method described in the Examples.
  • the unit of coverage is "%” and the unit of average particle size A is " ⁇ m”. Therefore, although omitted, the unit of the product of the coverage and the average particle size A is " ⁇ m ⁇ %".
  • the coverage is 30% or more and the product is 1,500 or more. If the coverage is equal to or greater than the above lower limit and the product is equal to or greater than the above lower limit, the safety of the electrochemical device can be improved.
  • the coverage is 95% or less
  • the average particle size is 20 ⁇ m or more and 160 ⁇ m or less
  • the product is 9,500 or less.
  • the coverage is 30% or more and 95% or less
  • the average particle size is 20 ⁇ m or more and 160 ⁇ m or less
  • the product is 1,500 or more and 9,500 or less.
  • the conductive thermal expansion material preferably has an average thickness of 0.2 ⁇ m or more and 5 ⁇ m or less.
  • the average thickness of the conductive thermal expansion material is within the above range, the conductive thermal expansion material is effectively disposed in the conductive thermal expansion material-containing portion, and the safety of the electrochemical element can be improved.
  • the average thickness of the conductive thermal expansion material in the conductive thermal expansion material-containing portion (hereinafter, sometimes referred to as "average thickness A”) can be measured using an FE-SEM according to the method described in the examples.
  • the conductive thermal expansion material is preferably expandable graphite. If the conductive thermal expansion material is expanded graphite, the safety of the electrochemical device can be improved.
  • the conductive thermal expansion material-containing portion is preferably a coating layer. If the conductive thermal expansion material-containing portion is a coating layer, the productivity of the electrochemical element electrode member can be improved.
  • the coating layer is formed directly on the surface of the current collector. If the coating layer is formed directly on the surface of the current collector, the cycle characteristics of the electrochemical element can be improved.
  • the conductive thermal expansion material-containing portion further contains a conductive assistant, and the mass ratio of the conductive assistant to the conductive thermal expansion material is 0.01 or more and 0.5 or less. If the conductive thermal expansion material-containing portion further contains a conductive assistant, it is possible to impart more excellent cycle characteristics to the electrochemical element. Furthermore, when the mass ratio of the conductive assistant to the conductive thermal expansion material is equal to or more than the above lower limit, the cycle characteristics of the electrochemical device can be improved. On the other hand, when the mass ratio of the conductive assistant to the conductive thermal expansion material is equal to or less than the above upper limit, the safety of the electrochemical device can be improved.
  • the term "conductive assistant" refers to a material that has electrical conductivity and has a thermal expansion coefficient that is less than twice that of the conductive thermal expansion material, as measured by the same method.
  • the conductive thermal expansion material-containing portion further contains a binder. If the electrically conductive thermally expandable material-containing portion further contains a binder, the cycle characteristics of the electrochemical device can be improved.
  • the electrochemical element electrode member according to any one of [1] to [10] above comprises an electrode mixture layer, the electrode mixture layer having a first surface located on the current collector side and a second surface located on the opposite side to the first surface, and the conductive thermal expansion material-containing portion is located between the current collector and the second surface.
  • the present invention also aims to advantageously solve the above problems, and [12] the present invention is an electrochemical element comprising an electrode formed using the electrochemical element electrode member according to any one of [1] to [11] above.
  • the electrochemical element described above ensures a high degree of safety and has excellent cycle characteristics.
  • an electrode member for an electrochemical device that can impart excellent cycle characteristics to an electrochemical device while ensuring a high level of safety of the electrochemical device. Furthermore, according to the present invention, it is possible to provide an electrochemical element which is highly safe and has excellent cycle characteristics.
  • 1 is a schematic cross-sectional view showing an example of an electrochemical element electrode member of the present invention.
  • 1 is a schematic cross-sectional view showing an example of an electrochemical element electrode member of the present invention.
  • 1 is a schematic cross-sectional view showing an example of an electrochemical element electrode member of the present invention.
  • 1 is a graph summarizing the safety evaluation results in Examples 1-1 to 11-8 and Comparative Examples 1-1 to 13-11.
  • 1 is a graph summarizing evaluation results of cycle characteristics in Examples 1-1 to 11-8 and Comparative Examples 1-1 to 13-11.
  • the electrochemical element electrode member of the present invention (hereinafter may be simply referred to as “electrode member”) is used for an electrochemical element electrode (hereinafter may be simply referred to as “electrode”).
  • the electrochemical element electrode member of the present invention may (1) not have an electrode mixture layer and be used as a substrate when forming an electrode mixture layer to manufacture an electrode, or (2) have an electrode mixture layer and be used as an electrode as it is.
  • the electrochemical element electrode can be used as an electrode for electrochemical elements such as a lithium ion secondary battery, an electric double layer capacitor, and a lithium ion capacitor.
  • the electrochemical device of the present invention includes an electrode formed using the electrochemical device electrode member of the present invention.
  • the electrochemical element electrode member of the present invention comprises a current collector and a conductive thermal expansion material-containing portion located on the current collector, and may optionally comprise an electrode mixture layer.
  • the electrode member of the present invention may also comprise a layer other than the current collector, the conductive thermal expansion material-containing portion, and the electrode mixture layer (hereinafter, sometimes referred to as "other layers").
  • the electrode member of the present invention may or may not have an electrode mixture layer.
  • An electrochemical element electrode member that does not have an electrode mixture layer can be used as a substrate when forming an electrode mixture layer to manufacture an electrode, and an electrochemical element electrode member that has an electrode mixture layer can be used as an electrode as it is.
  • the electrode member of the present invention can be used for either the positive electrode or the negative electrode of an electrochemical element, but is preferably used for the positive electrode, i.e., the electrode member of the present invention is preferably a positive electrode member.
  • FIGS 1 to 3 are schematic cross-sectional views showing an example of an electrochemical element electrode member of the present invention.
  • the electrochemical element electrode member shown in Figure 1 does not have an electrode mixture layer and is used as a substrate when manufacturing an electrode by forming an electrode mixture layer on top, while the electrochemical element electrode members shown in Figures 2 and 3 have an electrode mixture layer and are used as an electrode as is.
  • the electrochemical element electrode members shown in Figures 2 and 3 have an electrode mixture layer and are used as an electrode as is.
  • the conductive thermal expansion material-containing portion 12 contains a conductive thermal expansion material 121.
  • the conductive thermal expansion material-containing portion 12 has a current collector side mounting surface 122. In FIG. 1, the collector side mounting surface 122 is the surface of the collector 11, but if another layer (not shown) is present between the collector 11 and the conductive thermal expansion material-containing portion 12, the collector side mounting surface 122 becomes the surface of that other layer.
  • the electrochemical element electrode member 20 shown in Fig. 2 includes a current collector 11, a conductive thermal expansion material-containing portion 12 located on the current collector 11, and an electrode mixture layer 21.
  • the electrode mixture layer 21 has a first surface 211 located on the current collector 11 side (lower side in Fig. 2) and a second surface 212 located on the opposite side to the first surface 211 (upper side in Fig. 2).
  • the conductive thermal expansion material-containing portion 12 is located between the current collector 11 and the second surface 212. 2
  • the conductive thermal expansion material-containing portion 12 contains a conductive thermal expansion material 121, and is located inside the electrode mixture layer 21 (in other words, it constitutes a part of the electrode mixture layer 21). That is, the electrode mixture layer 21 includes the conductive thermal expansion material-containing portion 12.
  • the current collector side arrangement surface 122 of the conductive thermal expansion material-containing portion 12 is the surface of the current collector 11.
  • the electrochemical element electrode member 20 shown in Fig. 3 includes a current collector 11, a conductive thermal expansion material-containing portion 12 located on the current collector 11, and an electrode mixture layer 21.
  • the electrode mixture layer 21 has a first surface 211 located on the current collector 11 side (lower side in Fig. 3) and a second surface 212 located on the opposite side to the first surface 211 (upper side in Fig. 3).
  • the conductive thermal expansion material-containing portion 12 is located between the current collector 11 and the second surface 212, but unlike Fig. 2, the conductive thermal expansion material-containing portion 12 located on the current collector 11 constitutes a layer separate from the electrode mixture layer 21.
  • the conductive thermal expansion material-containing portion 12 contains a conductive thermal expansion material 121, and is located between the current collector 11 and the first surface 211.
  • the current collector-side arrangement surface 122 of the conductive thermal expansion material-containing portion 12 is the surface of the current collector 11. 3 , when the conductive thermal expansion material-containing portion 12 is located between the current collector 11 and the first surface 211, the current collector-side mounting surface 122 refers to the surface of the current collector 11 only in a portion where the electrode mixture layer 21 is present on the conductive thermal expansion material-containing portion 12.
  • the surface of the current collector 11 in a portion where the electrode mixture layer 21 is not present on the conductive thermal expansion material-containing portion 12 does not correspond to the current collector-side mounting surface 122.
  • the electrode member of the present invention comprises a current collector and a conductive thermal expansion material-containing portion located on the current collector, and the coverage of the conductive thermal expansion material on the current collector side surface of the conductive thermal expansion material-containing portion is 20% or more and 98% or less, and the product of the coverage and the average particle size A is 500 or more and 15,000 or less.
  • the coverage of the conductive thermal expansion material on the current collector side surface of the conductive thermal expansion material-containing portion is 20% or more and 98% or less, and the product of the coverage and the average particle size A is 500 or more and 15,000 or less.
  • the electrochemical element When the separator melts due to this Joule heat and the area of the short circuit portion expands, the electrochemical element is considered to generate abnormal heat.
  • the conductive thermal expansion material of the conductive thermal expansion material-containing portion may suddenly expand. This sudden expansion of the conductive thermal expansion material destroys the electrode structure, cuts off the conductive path, and suppresses abnormal heat generation of the electrochemical element, so that it is presumed that a high level of safety of the electrochemical element can be ensured.
  • the electrode member of the present invention can impart excellent cycle characteristics to the electrochemical element while ensuring a high level of safety for the electrochemical element.
  • a material having electrical conductivity and electrochemical durability can be selected and used according to the type of electrochemical element.
  • a current collector of the electrode for a lithium ion secondary battery a current collector made of iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, platinum, etc. can be used.
  • a metal foil as the current collector.
  • copper foil is particularly preferable as the current collector used for the negative electrode.
  • aluminum foil is particularly preferable as the current collector used for the positive electrode. Note that the above materials may be used alone or in combination of two or more kinds at any ratio.
  • the conductive thermal expansion material-containing portion contains a conductive thermal expansion material, and may optionally contain a conductive assistant and/or a binder.
  • the conductive thermal expansion material-containing portion may contain components other than the conductive thermal expansion material, the conductive assistant, and the binder (hereinafter, may be referred to as "other components").
  • the conductive thermal expansion material-containing portion may contain an electrode active material.
  • the coverage rate of the conductive thermal expansion material on the collector side surface of the conductive thermal expansion material-containing portion must be 20% or more, preferably 30% or more, and more preferably 40% or more, and must be 98% or less, preferably 95% or less, and preferably 70% or less.
  • the coverage rate can be adjusted by the solids concentration and the amount of each component of the slurry composition for electrochemical element electrode members used when forming the conductive thermal expansion material-containing portion, as well as the application conditions and drying conditions of the slurry composition for electrochemical element electrode members.
  • the product of the coverage rate and the average particle size A must be 500 or more, preferably 1500 or more, and more preferably 2500 or more, and must be 15000 or less, preferably 9500 or less, and more preferably 6000 or less.
  • the conductive thermal expansion material-containing portion is preferably a coating layer, since it is easy to form the conductive thermal expansion material-containing portion and can improve the productivity of the electrochemical element electrode member. Furthermore, when the conductive thermal expansion material-containing portion is a coating layer, the coating layer as the conductive thermal expansion material-containing portion is preferably formed directly on the surface of the current collector, for example, as shown in Figures 1 and 3, since it can improve the cycle characteristics of the electrochemical element. In other words, the surface of the coating layer as the conductive thermal expansion material-containing portion that is disposed on the current collector side is preferably the surface of the current collector.
  • the conductive thermal expansion material is not particularly limited as long as it is conductive and has a thermal expansion coefficient of at least two times as measured according to the method described in the examples.
  • the conductive thermal expansion material is preferably a carbon-containing material that is conductive and has the above-mentioned thermal expansion coefficient. Examples of such carbon-containing materials include expandable graphite.
  • As the expandable graphite a conventionally known material (Japanese Patent No. 2529058) can be used.
  • the conductive thermal expansion material is preferably expanded graphite, since it can increase the resistance increase rate of the electrode and improve the safety of the electrochemical device.
  • the conductive thermal expansion material is preferably one that foams when the electrochemical element becomes hot, since this effectively destroys the electrode structure and effectively ensures a high level of safety for the electrochemical element.
  • the conductive thermal expansion material is preferably one that foams at a temperature of 200°C to 500°C.
  • the average particle size A is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, even more preferably 30 ⁇ m or more, even more preferably 40 ⁇ m or more, even more preferably 60 ⁇ m or more, preferably 200 ⁇ m or less, more preferably 160 ⁇ m or less, even more preferably 120 ⁇ m or less, and even more preferably 100 ⁇ m or less.
  • the average thickness (average thickness A) of the conductive thermal expansion material in the conductive thermal expansion material-containing portion is preferably 0.2 ⁇ m or more, more preferably 0.5 ⁇ m or more, and is preferably 5 ⁇ m or less, more preferably 4 ⁇ m or less. If the average thickness A is within the above range, the conductive thermal expansion material is effectively disposed in the conductive thermal expansion material-containing portion, and the safety of the electrochemical element can be improved. Note that the conductive thermal expansion material having the average thickness A in the above range can be called a scaly particle.
  • the content of the conductive thermal expansion material in the conductive thermal expansion material-containing portion is preferably 50% by mass or more, more preferably 60% by mass or more, and even more preferably 70% by mass or more, and is preferably 95% by mass or less, more preferably 90% by mass or less, and even more preferably 85% by mass or less, assuming that the total solid content in the conductive thermal expansion material-containing portion is 100% by mass.
  • the conductive thermal expansion material-containing portion preferably further contains a conductive assistant in addition to the conductive thermal expansion material.
  • the conductive assistant is a component that forms a conductive path in the conductive thermal expansion material-containing portion and can effectively ensure conduction between the current collector and the electrode mixture layer. Therefore, if the conductive thermal expansion material-containing portion further contains a conductive assistant, the electrochemical element can be provided with better cycle characteristics.
  • the conductive assistant is not particularly limited as long as it has electrical conductivity and has a thermal expansion coefficient less than twice that of the conductive thermal expansion material, measured by the same method.
  • a conductive carbon material and fibers or foils of various metals can be used, but a conductive carbon material is preferred.
  • the conductive carbon material examples include carbon black (e.g., acetylene black, Ketjen Black (registered trademark), furnace black, etc.), single-layer or multi-layer carbon nanotubes (multi-layer carbon nanotubes include cup-stack type), carbon nanohorns, vapor-grown carbon fibers, milled carbon fibers obtained by crushing polymer fibers after baking, single-layer or multi-layer graphene, and carbon nonwoven fabric sheets obtained by baking nonwoven fabric made of polymer fibers.
  • carbon black e.g., acetylene black, Ketjen Black (registered trademark), furnace black, etc.
  • single-layer or multi-layer carbon nanotubes include cup-stack type
  • carbon nanohorns vapor-grown carbon fibers
  • milled carbon fibers obtained by crushing polymer fibers after baking single-layer or multi-layer graphene
  • carbon nonwoven fabric sheets obtained by baking nonwoven fabric made of polymer fibers.
  • it is preferable to use carbon black as the conductive assistant it
  • the content of the conductive assistant in the conductive thermal expansion material-containing portion is preferably 0.5% by mass or more, more preferably 1% by mass or more, and even more preferably 5% by mass or more, and is preferably 60% by mass or less, more preferably 40% by mass or less, even more preferably 20% by mass or less, and even more preferably 15% by mass or less, when the total solid content in the conductive thermal expansion material-containing portion is 100% by mass.
  • the content of the conductive assistant in the conductive thermal expansion material-containing portion is equal to or higher than the above lower limit, electrical continuity between the current collector and the electrode mixture layer can be sufficiently ensured, and the cycle characteristics of the electrochemical element can be improved.
  • the content of the conductive assistant in the conductive thermal expansion material-containing portion is equal to or less than the above upper limit, the safety of the electrochemical element can be improved.
  • the mass ratio of the conductive assistant to the conductive thermal expansion material in the conductive thermal expansion material-containing portion is preferably 0.01 or more, more preferably 0.05 or more, and is preferably 0.5 or less, more preferably 0.3 or less, and even more preferably 0.15 or less.
  • the mass ratio of the conductive assistant to the conductive thermal expansion material in the conductive thermal expansion material-containing portion is equal to or greater than the above lower limit, electrical continuity between the current collector and the electrode mixture layer can be sufficiently ensured, thereby improving the cycle characteristics of the electrochemical element.
  • the mass ratio of the conductive assistant to the conductive thermal expansion material in the conductive thermal expansion material-containing portion is equal to or less than the above upper limit, the safety of the electrochemical element can be improved.
  • the conductive thermal expansion material-containing portion preferably further contains a binder in addition to the conductive thermal expansion material.
  • the binder is a component that can suppress the conductive thermal expansion material from being detached from the conductive thermal expansion material-containing portion. Therefore, if the conductive thermal expansion material-containing portion further contains a binder, the cycle characteristics of the electrochemical element can be improved.
  • the binder is not particularly limited as long as it can be used in an electrochemical element.
  • a polymer synthetic polymer, for example, an addition polymer obtained by addition polymerization
  • a monomer composition containing a monomer capable of exhibiting binding properties can be used as the binder.
  • polymers examples include aliphatic conjugated diene/aromatic vinyl copolymers (polymers mainly containing aliphatic conjugated diene monomer units and aromatic vinyl monomer units), acrylic polymers (polymers containing (meth)acrylic acid ester monomer units), fluorine-based polymers (polymers mainly containing fluorine-containing monomer units), acrylic acid/acrylamide copolymers (polymers mainly containing (meth)acrylic acid units and (meth)acrylamide units), acrylonitrile polymers (polymers mainly containing (meth)acrylonitrile units), and the like. These may be used alone or in combination of two or more types at any ratio.
  • aliphatic conjugated diene/aromatic vinyl copolymers acrylic polymers, acrylic acid/acrylamide copolymers, and fluorine-based polymers are preferred.
  • the aliphatic conjugated diene monomer capable of forming the aliphatic conjugated diene monomer unit of the aliphatic conjugated diene/aromatic vinyl copolymer, the aromatic vinyl monomer capable of forming the aromatic vinyl monomer unit of the aliphatic conjugated diene/aromatic vinyl copolymer, the (meth)acrylic acid ester monomer capable of forming the (meth)acrylic acid ester monomer unit of the acrylic polymer, and the fluorine-containing monomer capable of forming the fluorine-containing monomer unit of the fluorine-containing polymer may be any known one.
  • containing a monomer unit means that "a polymer obtained by using the monomer contains a repeating unit derived from the monomer”.
  • mainly containing one or more types of monomer units means that "when the amount of all monomer units contained in the polymer is taken as 100 mass%, the content of that one type of monomer unit or the total content of the multiple types of monomer units exceeds 50 mass%.”
  • (meth)acrylic means acrylic and/or methacrylic
  • (meth)acrylo means acrylo and/or methacrylo.
  • the functional groups that can be contained in the polymer as a binder are not particularly limited, and examples thereof include carboxyl groups, hydroxyl groups, cyano groups, amino groups, epoxy groups, oxazoline groups, isocyanate groups, and sulfonic acid groups (hereinafter, these functional groups may be collectively referred to as "specific functional groups").
  • specific functional groups One type of these may be used alone, or two or more types may be used in combination at any ratio.
  • carboxyl groups, hydroxyl groups, cyano groups, amino groups, and sulfonic acid groups are preferred.
  • the method of introducing the specific functional group into the polymer as the binder is not particularly limited.
  • a polymer may be prepared using a monomer containing the specific functional group (specific functional group-containing monomer) to obtain a polymer containing a specific functional group-containing monomer unit, or an arbitrary polymer may be modified at its terminal to obtain a polymer having the specific functional group at its terminal, but the former is preferred.
  • the polymer as the binder contains at least one of a carboxyl group-containing monomer unit, a hydroxyl group-containing monomer unit, a cyano group-containing monomer unit, an amino group-containing monomer unit, an epoxy group-containing monomer unit, an oxazoline group-containing monomer unit, an isocyanate group-containing monomer unit, and a sulfonic acid group-containing monomer unit as the specific functional group-containing monomer unit, and preferably contains at least one of a carboxyl group-containing monomer unit, a hydroxyl group-containing monomer unit, a cyano group-containing monomer unit, an amino group-containing monomer unit, and a sulfonic acid group-containing monomer unit.
  • Examples of the carboxyl group-containing monomer capable of forming the carboxyl group-containing monomer unit include monocarboxylic acids and derivatives thereof, dicarboxylic acids and acid anhydrides thereof, and derivatives thereof.
  • Examples of the monocarboxylic acid include acrylic acid, methacrylic acid, and crotonic acid.
  • Examples of the monocarboxylic acid derivatives include 2-ethylacrylic acid, isocrotonic acid, ⁇ -acetoxyacrylic acid, ⁇ -trans-aryloxyacrylic acid, ⁇ -chloro- ⁇ -E-methoxyacrylic acid, and the like.
  • the dicarboxylic acid includes maleic acid, fumaric acid, itaconic acid, and the like.
  • dicarboxylic acid derivatives include methylmaleic acid, dimethylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid, and maleic acid monoesters such as nonyl maleate, decyl maleate, dodecyl maleate, octadecyl maleate, and fluoroalkyl maleate.
  • acid anhydrides of dicarboxylic acids include maleic anhydride, acrylic anhydride, methylmaleic anhydride, and dimethylmaleic anhydride.
  • an acid anhydride that generates a carboxyl group by hydrolysis can also be used. Among them, as the carboxyl group-containing monomer, acrylic acid and methacrylic acid are preferable.
  • the carboxyl group-containing monomer one type may be used alone, or two or more types may be used in combination at any ratio.
  • hydroxyl group-containing monomers capable of forming the hydroxyl group-containing monomer unit include ethylenically unsaturated alcohols such as (meth)allyl alcohol, 3-buten-1-ol, and 5-hexen-1-ol; alkanol esters of ethylenically unsaturated carboxylic acids such as 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, di-2-hydroxyethyl maleate, di-4-hydroxybutyl maleate, and di-2-hydroxypropyl itaconate; and esters of ethylenically unsaturated carboxylic acids represented by the general formula: CH 2 ⁇ CR a -COO-(C q H 2q O) p -H (wherein p is an integer of 2 to 9, q is an integer of 2 to 4, and R a represents a hydrogen atom or a methyl group) and (meth)
  • the hydroxyl group-containing monomer may be used alone or in combination of two or more kinds in any ratio.
  • “(meth)allyl” means allyl and/or methallyl
  • “(meth)acryloyl” means acryloyl and/or methacryloyl.
  • Cyano group-containing monomers capable of forming cyano group-containing monomer units include ⁇ , ⁇ -ethylenically unsaturated nitrile monomers.
  • the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer is not particularly limited as long as it is an ⁇ , ⁇ -ethylenically unsaturated compound having a cyano group, but examples include acrylonitrile; ⁇ -halogenoacrylonitriles such as ⁇ -chloroacrylonitrile and ⁇ -bromoacrylonitrile; ⁇ -alkylacrylonitriles such as methacrylonitrile and ⁇ -ethylacrylonitrile; and the like.
  • the cyano group-containing monomers may be used alone or in combination of two or more types in any ratio.
  • amino group-containing monomers capable of forming amino group-containing monomer units include dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, aminoethyl vinyl ether, dimethylaminoethyl vinyl ether, etc.
  • the amino group-containing monomers may be used alone or in combination of two or more kinds in any ratio.
  • (meth)acrylate means acrylate and/or methacrylate.
  • the epoxy group-containing monomer capable of forming the epoxy group-containing monomer unit includes a monomer containing a carbon-carbon double bond and an epoxy group.
  • monomers containing a carbon-carbon double bond and an epoxy group include unsaturated glycidyl ethers such as vinyl glycidyl ether, allyl glycidyl ether, butenyl glycidyl ether, and o-allylphenyl glycidyl ether; monoepoxides of dienes or polyenes such as butadiene monoepoxide, chloroprene monoepoxide, 4,5-epoxy-2-pentene, 3,4-epoxy-1-vinylcyclohexene, and 1,2-epoxy-5,9-cyclododecadiene; 3,4-epoxy-1-butene alkenyl epoxides such as 1,2-epoxy-5-hexene, 1,2-epoxy-9-decen
  • Examples of oxazoline group-containing monomers capable of forming oxazoline group-containing monomer units include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-methyl-2-oxazoline, and 2-isopropenyl-5-ethyl-2-oxazoline.
  • the oxazoline group-containing monomers may be used alone or in combination of two or more in any ratio.
  • isocyanate group-containing monomers that can form isocyanate group-containing monomer units include 2-isocyanatoethyl methacrylate, 2-isocyanatoethyl acrylate, 2-(0-[1'-methylpropylideneamino]carboxyamino)ethyl methacrylate, 2-[(3,5-dimethylpyrazolyl)carbonylamino]ethyl methacrylate, and 1,1-(bisacryloyloxymethyl)ethyl isocyanate. Note that one type of isocyanate group-containing monomer may be used alone, or two or more types may be used in combination in any ratio.
  • Sulfonic acid group-containing monomers that can form sulfonic acid group-containing monomer units include vinyl sulfonic acid, methyl vinyl sulfonic acid, (meth)allyl sulfonic acid, styrene sulfonic acid, (meth)acrylic acid-2-ethyl sulfonate, 2-acrylamido-2-methylpropanesulfonic acid, 3-allyloxy-2-hydroxypropanesulfonic acid, etc.
  • the sulfonic acid group-containing monomers may be used alone or in combination of two or more types in any ratio.
  • the content of the specific functional group-containing monomer unit in the polymer is preferably 0.3 mass% or more, more preferably 0.5 mass% or more, preferably 20 mass% or less, and more preferably 10 mass% or less. If the content of the specific functional group-containing monomer unit in the polymer as a binder is within the above range, the adhesion between the electrode mixture layer and the current collector, and the cycle characteristics of the electrochemical element can be improved.
  • the method for preparing the polymer as the binder is not particularly limited.
  • the polymer as the binder is produced, for example, by polymerizing a monomer composition containing the above-mentioned monomers in an aqueous solvent.
  • the content ratio of each monomer in the monomer composition can be determined according to the content ratio of a desired monomer unit (repeating unit) in the polymer.
  • the polymerization method is not particularly limited, and any of the following methods can be used: solution polymerization, suspension polymerization, bulk polymerization, emulsion polymerization, etc.
  • the polymerization reaction can be any of the following reactions: ionic polymerization, radical polymerization, living radical polymerization, various condensation polymerizations, addition polymerization, etc.
  • known emulsifiers and polymerization initiators can be used during polymerization, if necessary.
  • the content of the binder in the conductive thermal expansion material-containing portion is preferably 0.5% by mass or more, more preferably 1% by mass or more, and even more preferably 2% by mass or more, and is preferably 10% by mass or less, more preferably 5% by mass or less, and even more preferably 3% by mass or less, when the total solid content in the conductive thermal expansion material-containing portion is 100% by mass.
  • the cycle characteristics of the electrochemical element can be further improved.
  • the conductive thermal expansion material-containing portion may contain, for example, a dispersant.
  • the dispersant is a component that is blended to improve the dispersibility of the conductive thermal expansion material, etc.
  • examples of dispersants include nonionic dispersants such as polyvinylpyrrolidone and polyvinyl butyral, metal salts of ⁇ -naphthalenesulfonic acid-formalin condensates, and carboxymethyl cellulose.
  • the conductive thermal expansion material-containing portion may contain a flame retardant such as a phosphorus-based compound or a silicone-based compound.
  • the content of the flame retardant is, for example, 30 parts by mass or less, or may be 15 parts by mass or less per 100 parts by mass of the binder. These other components may be used alone or in combination of two or more.
  • the conductive thermal expansion material-containing portion may contain an electrode active material.
  • the thickness of the conductive thermal expansion material-containing portion is not particularly limited as long as it does not impair the object of the present invention, but is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, and is preferably 10 ⁇ m or less, and more preferably 7 ⁇ m or less.
  • the electrode mixture layer is not particularly limited, and for example, an electrode mixture layer containing an electrode active material and an electrode mixture layer binder can be selected and used according to the type of electrochemical element.
  • the electrode active material (positive electrode active material, negative electrode active material) and the electrode mixture layer binder (positive electrode mixture layer binder, negative electrode mixture layer binder) in the electrode mixture layer of the lithium secondary battery electrode can be known ones described in, for example, JP 2013-145763 A.
  • the thermal expansion coefficient of the conductive thermal expansion material in the conductive thermal expansion material-containing portion is preferably 5 times or more the thermal expansion coefficient of the electrode active material in the electrode mixture layer.
  • the other layer may be located, for example, between the current collector and the conductive thermal expansion material-containing portion.
  • the other layer located between the current collector and the conductive thermal expansion material-containing portion is not particularly limited, but is usually a layer that does not contain a conductive thermal expansion material, for example, an adhesive layer that contains a conductive assistant and a binder.
  • the electrode member of the present invention has an electrode mixture layer
  • other layers may be provided on the electrode mixture layer, such as a known porous membrane layer provided for the purpose of improving heat resistance, or a known adhesive layer provided for the purpose of improving adhesion to a separator, etc.
  • ⁇ Preferred embodiment of electrochemical element electrode member> it is preferable that the coverage of the conductive thermal expansion material on the collector side surface of the conductive thermal expansion material-containing portion of the electrode member is 30% or more, and the product of the coverage and the average particle size A is 1,500 or more. If the coverage is equal to or greater than the above lower limit and the product is equal to or greater than the above lower limit, the safety of the electrochemical device can be improved.
  • the electrode member has a coverage rate of the conductive thermal expansion material on the collector side arrangement surface of the conductive thermal expansion material-containing portion of 95% or less, an average particle diameter A of 20 ⁇ m or more and 160 ⁇ m or less, and a product of the coverage rate and the average particle diameter A of 9,500 or less.
  • coverage is equal to or less than the upper limit
  • the average particle size A is within the above range
  • the product is equal to or less than the upper limit
  • the coverage of the conductive thermal expansion material on the collector side surface of the conductive thermal expansion material-containing portion is 95% or less
  • the average particle diameter A is 20 ⁇ m or more and 160 ⁇ m or less
  • the product of the coverage and the average particle diameter A is 9,500 or less.
  • the method for producing the electrode member of the present invention is not particularly limited as long as it is possible to form a conductive thermally expandable material-containing portion on a current collector.
  • the electrode member of the present invention is manufactured through a process in which a composition (slurry composition for electrochemical element electrode members) containing a predetermined amount of conductive thermal expansion material and a solvent, and which may optionally contain a conductive assistant, a binder, and other components, is applied to a surface of a conductive thermal expansion material-containing portion such as a collector, and the applied slurry composition for electrochemical element electrode members is dried to form a conductive thermal expansion material-containing portion (conductive thermal expansion material-containing portion formation process).
  • the electrode member of the present invention is manufactured through a process of applying a composition (slurry composition for the electrode mixture layer containing conductive thermally expandable material) containing a predetermined amount of conductive thermally expandable material, electrode active material, binder for the electrode mixture layer, and solvent, and optionally containing conductive assistant, binder, and other components, to the surface of the conductive thermally expandable material-containing portion of a collector or the like, and simultaneously drying the conductive thermally expandable material in the applied slurry composition for the electrode mixture layer containing conductive thermally expandable material to be unevenly distributed (so-called migration) toward the collector side, thereby forming an electrode mixture layer containing the conductive thermally expandable material-containing portion therein (electrode mixture layer formation process).
  • a composition slurry composition for the electrode mixture layer containing conductive thermally expandable material
  • the slurry composition for an electrochemical element electrode member (hereinafter, sometimes simply referred to as "slurry composition") used in the manufacture of the electrode member of the present invention contains a conductive thermal expansion material and a solvent, and optionally contains an electrode active material, a conductive assistant, a binder, and other components.
  • slurry composition for an electrochemical element electrode member contains an electrode active material, it can be called a slurry composition for an electrode mixture layer containing a conductive thermal expansion material.
  • the average particle diameter of the conductive thermal expansion material in the slurry composition (hereinafter, sometimes referred to as "average particle diameter B") is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, even more preferably 30 ⁇ m or more, even more preferably 40 ⁇ m or more, even more preferably 60 ⁇ m or more, preferably 200 ⁇ m or less, more preferably 160 ⁇ m or less, even more preferably 120 ⁇ m or less, and even more preferably 100 ⁇ m or less.
  • the average particle size B can be measured using an FE-SEM according to the method described in the Examples.
  • the average thickness of the conductive thermal expansion material in the slurry composition (hereinafter sometimes referred to as "average thickness B") is preferably 0.2 ⁇ m or more, more preferably 0.5 ⁇ m or more, and is preferably 5 ⁇ m or less, more preferably 4 ⁇ m or less.
  • the average thickness B can be measured using an FE-SEM according to the method described in the Examples.
  • the solvent used in the slurry composition is not particularly limited, and may be either water or an organic solvent.
  • the organic solvent include acetonitrile, N-methyl-2-pyrrolidone, tetrahydrofuran, acetone, acetylpyridine, cyclopentanone, dimethylformamide, dimethylsulfoxide, methylformamide, methylethylketone, furfural, ethylenediamine, dimethylbenzene (xylene), methylbenzene (toluene), cyclopentyl methyl ether, and isopropyl alcohol. These solvents may be used alone or in combination in any desired ratio.
  • the slurry composition can be prepared by mixing the above components in predetermined amounts. Specifically, the slurry composition can be prepared by mixing the above components in predetermined amounts using a mixer such as a ball mill, sand mill, bead mill, pigment disperser, crusher, ultrasonic disperser, homogenizer, planetary mixer, or Filmix.
  • a mixer such as a ball mill, sand mill, bead mill, pigment disperser, crusher, ultrasonic disperser, homogenizer, planetary mixer, or Filmix.
  • the method for applying the slurry composition for electrochemical element electrode members onto a current collector is not particularly limited, and examples thereof include a doctor blade method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method.
  • the method for drying the slurry composition for electrochemical element electrode members applied on the current collector is not particularly limited, and any known method can be used. Examples of the drying method include drying with warm air, hot air, or low-humidity air, vacuum drying, and drying by irradiation with infrared rays or electron beams.
  • the drying temperature is not particularly limited as long as it is within a range that does not impair the object of the present invention, but is preferably 80° C. or higher and 120° C. or lower from the viewpoint of the thermal expansion of the conductive thermal expansion material.
  • the method for applying the slurry composition for the electrode mixture layer containing the conductive thermal expansion material onto the current collector is not particularly limited, and the same method as that described above in the section "Conductive thermal expansion material-containing portion forming process" can be used.
  • a method for migrating the conductive thermal expansion material in the applied slurry composition for the electrode mixture layer containing the conductive thermal expansion material to the current collector side for example, a method using thermal convection can be mentioned. That is, when drying the slurry composition for the electrode mixture layer containing the conductive thermal expansion material, the direction, strength, temperature, etc. of the thermal convection can be appropriately adjusted to form an electrode mixture layer in which the conductive thermal expansion material has migrated to the current collector side.
  • the electrochemical element of the present invention is not particularly limited, and may be, for example, a lithium ion secondary battery, an electric double layer capacitor, or a lithium ion capacitor, and is preferably a lithium ion secondary battery.
  • the electrochemical element of the present invention is characterized by comprising an electrode made of the electrode member of the present invention. Since the electrochemical element of the present invention comprises an electrode made of the electrode member of the present invention, safety is highly ensured and the cycle characteristics are excellent.
  • the electrode mixture layer is formed on the conductive thermal expansion material-containing portion of the electrode member before use as an electrode.
  • a lithium ion secondary battery as the electrochemical element of the present invention usually includes electrodes (positive and negative electrodes), an electrolyte, and a separator, and uses an electrode made of the electrode member of the present invention for at least one of the positive and negative electrodes.
  • the electrode other than the electrode made of the above-mentioned electrochemical element electrode member of the present invention that can be used in the lithium ion secondary battery as the electrochemical element of the present invention is not particularly limited, and any known electrode can be used.
  • the electrode other than the electrode made of the above-mentioned electrochemical element electrode member of the present invention can be an electrode formed by forming an electrode mixture layer on a current collector using a known manufacturing method.
  • the separator is not particularly limited, and for example, those described in JP 2012-204303 A can be used. Among these, a microporous film made of a polyolefin resin (polyethylene, polypropylene, polybutene, polyvinyl chloride) is preferred, since it can reduce the thickness of the entire separator, thereby increasing the ratio of the electrode active material in the lithium ion secondary battery and increasing the capacity per volume.
  • a polyolefin resin polyethylene, polypropylene, polybutene, polyvinyl chloride
  • an organic electrolyte in which a supporting electrolyte is dissolved in an organic solvent is usually used.
  • a lithium salt is used in a lithium ion secondary battery.
  • the lithium salt for example, LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi, (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, etc. are listed.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li are preferred because they are easily dissolved in a solvent and show a high degree of dissociation.
  • one type of electrolyte may be used alone, or two or more types may be used in combination.
  • the lithium ion conductivity tends to increase as the supporting electrolyte with a higher degree of dissociation is used, and therefore the lithium ion conductivity can be adjusted by the type of supporting electrolyte.
  • the organic solvent used in the electrolyte is not particularly limited as long as it can dissolve the supporting electrolyte.
  • carbonates such as dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene carbonate (BC), ethyl methyl carbonate (EMC), vinylene carbonate (VC), etc.
  • esters such as ⁇ -butyrolactone and methyl formate
  • ethers such as 1,2-dimethoxyethane and tetrahydrofuran
  • sulfur-containing compounds such as sulfolane and dimethyl sulfoxide; and the like are preferably used.
  • a mixture of these solvents may also be used.
  • carbonates are preferred because they have a high dielectric constant and a wide stable potential region.
  • the lower the viscosity of the solvent used the higher the lithium ion conductivity tends to be, so the lithium ion conductivity can be adjusted by the type of solvent.
  • the concentration of the electrolyte in the electrolytic solution can be appropriately adjusted.
  • Known additives may also be added to the electrolytic solution.
  • the lithium ion secondary battery according to the present invention can be manufactured, for example, by stacking a positive electrode and a negative electrode with a separator therebetween, rolling or folding the stack as necessary, placing the stack in a battery container, injecting an electrolyte into the battery container, and sealing the battery container.
  • At least one of the positive electrode and the negative electrode is an electrode made of the electrochemical element electrode member of the present invention.
  • the battery container may be filled with an expand metal, a fuse, an overcurrent prevention element such as a PTC element, a lead plate, or the like as necessary to prevent pressure rise inside the battery and overcharging and discharging.
  • the shape of the battery may be any of a coin type, a button type, a sheet type, a cylindrical type, a square type, a flat type, and the like.
  • the present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples.
  • “%” and “parts” expressing amounts are based on mass unless otherwise specified.
  • the ratio of a monomer unit formed by polymerizing a certain monomer in the polymer usually coincides with the ratio (feed ratio) of that monomer to all monomers used in the polymerization of the polymer, unless otherwise specified.
  • ⁇ Thermal expansion coefficient of conductive thermal expansion material> A 20% solids aqueous solution of the conductive thermal expansion material:CMC 90:10 (mass ratio) was prepared using a conductive thermal expansion material, carboxymethylcellulose (CMC), and purified water. The prepared aqueous solution was placed in a petri dish and dried to prepare a measurement film with a thickness of 1 mm. The measurement film was set in a thermomechanical analysis (TMA) and the thickness of the measurement film was measured while heating it from 25°C to 500°C at a heating rate of 5°C/min under a helium atmosphere.
  • TMA thermomechanical analysis
  • the ratio of the maximum measured thickness between 200°C and 500°C to the thickness of the measurement film before heating (thickness of the measurement film at 25°C) of 1 mm was taken as the thermal expansion coefficient of the conductive thermal expansion material.
  • TMA thermomechanical analysis
  • NETZSCH NETZSCH
  • the slurry composition for electrochemical element electrode members prepared in the examples and comparative examples was applied onto an aluminum foil, which was then dried to prepare an aluminum foil with a coating layer.
  • the obtained aluminum foil with a coating layer was subjected to cross-section processing for observation using a cross-section polisher (IB-09020CP manufactured by JEOL Ltd.).
  • cross-section observation was performed using an FE-SEM (JSM-7800F manufactured by JEOL Ltd.).
  • the observation was performed under the conditions of a magnification of 1000 times, an irradiation voltage of 10 kV, and an irradiation current of 5.0 ⁇ 10 -8 A.
  • the diameter obtained by fitting a circumscribing circle to the conductive thermal expansion material in the coating layer was defined as the maximum diameter of the conductive thermal expansion material.
  • the average value of the maximum diameters of any 50 points was taken as the average particle diameter B.
  • the observation was performed under the conditions of a magnification of 1000 times, an irradiation voltage of 10 kV, and an irradiation current of 5.0 ⁇ 10 -8 A.
  • the diameter obtained by fitting an inscribed circle to the conductive thermal expansion material in the coating layer was defined as the minimum diameter of the conductive thermal expansion material.
  • the average value of the minimum diameter of any 50 points was taken as the average thickness B.
  • the positive electrodes prepared in the examples and comparative examples were processed for cross-section observation using a cross-section polisher (IB-09020CP manufactured by JEOL Ltd.).
  • cross-section observation was performed using an FE-SEM (JSM-7800F manufactured by JEOL Ltd.). The observation was performed under the conditions of a magnification of 1000 times, an irradiation voltage of 10 kV, and an irradiation current of 5.0 ⁇ 10 -8 A.
  • the diameter obtained by fitting a circumscribing circle to the conductive thermal expansion material in the coating layer was defined as the maximum diameter of the conductive thermal expansion material.
  • the average value of the maximum diameters at any 50 points was defined as the average particle diameter A.
  • the positive electrodes prepared in the examples and comparative examples were processed for cross-section observation using a cross-section polisher (IB-09020CP manufactured by JEOL Ltd.).
  • cross-section observation was performed using an FE-SEM (JSM-7800F manufactured by JEOL Ltd.). The observation was performed under the conditions of a magnification of 1000 times, an irradiation voltage of 10 kV, and an irradiation current of 5.0 ⁇ 10 -8 A.
  • the diameter obtained by fitting an inscribed circle to the conductive thermal expansion material in the coating layer was defined as the minimum diameter of the conductive thermal expansion material.
  • the average value of the minimum diameter of any 50 points was taken as the average thickness A.
  • ⁇ Coverage rate> The positive electrodes prepared in the examples and comparative examples were processed to expose cross sections for observation using a cross-section polisher (IB-09020CP manufactured by JEOL Ltd.). Next, cross-section observation was performed using an FE-SEM (JSM-7800F manufactured by JEOL Ltd.). The observation was performed under the conditions of a magnification of 1000 times, an irradiation voltage of 10 kV, and an irradiation current of 5.0 ⁇ 10 -8 A. In the obtained cross-sectional image, the area where the conductive thermal expansion material is present on the foil was defined as a covered area, and the area where the conductive thermal expansion material is not present on the foil was defined as a non-covered area.
  • the prepared positive electrode was heated using a heating element (manufactured by Kurosaki Harima Co., Ltd.), and the behavior of the resistance during heating was measured. Specifically, the positive electrode was heated from room temperature (25° C.) to 500° C. at a temperature increase rate of 50° C./sec, and the resistance increase rate was calculated using the minimum resistance value during heating and the maximum resistance value during heating after the resistance reached the minimum value by the following calculation formula (2), and the safety of the electrochemical element was evaluated according to the following criteria. The higher the resistance increase rate, the safer the electrochemical element.
  • Resistance increase ratio maximum resistance value / minimum resistance value (2)
  • the lithium ion secondary battery was left to stand at a temperature of 25°C for 5 hours after injecting the electrolyte.
  • the battery was charged to a cell voltage of 3.65V at a constant current of 0.2C at a temperature of 25°C, and then aged for 12 hours at a temperature of 60°C.
  • the battery was discharged to a cell voltage of 3.00V at a constant current of 0.2C at a temperature of 25°C.
  • the battery was CC-CV charged (upper cell voltage 4.25V) at 0.2C, and CC discharged to 3.00V at a constant current of 0.2C. This charge and discharge at 0.2C was repeated three times to perform initialization.
  • Cycle capacity retention rate 100th cycle discharge capacity / 1st cycle discharge capacity ⁇ 100 (3)
  • Example 1-1 ⁇ Preparation of Polymer (Binder)> A monomer composition was obtained by charging 100 parts of ion-exchanged water, as well as 35 parts by mass of acrylonitrile, 62 parts by mass of 1,3-butadiene, and 3 parts by mass of methacrylic acid (a carboxyl group-containing monomer) as monomers into a reactor having an internal volume of 10 L.
  • aqueous dispersion of the polymer 400 mL of the aqueous dispersion of the obtained polymer (total solid content: 48 g) was put into a 1-liter autoclave equipped with a stirrer, and nitrogen gas was passed through for 10 minutes to remove dissolved oxygen in the aqueous dispersion. Then, 50 mg of palladium acetate as a hydrogenation catalyst was dissolved in 180 mL of water to which nitric acid was added in an amount four times the moles of palladium, and the hydrogenation catalyst solution was added to the aqueous dispersion.
  • the contents of the autoclave were heated to 50° C. while pressurizing with hydrogen gas up to 3 MPa, and hydrogenation reaction was carried out for 6 hours. Thereafter, the contents were returned to room temperature, the inside of the system was conditioned with nitrogen, and the contents were concentrated using an evaporator until the solid content reached 40%, to obtain an aqueous dispersion of the polymer (binder).
  • the thermal expansion coefficient of the expanded graphite as the conductive thermal expansion material was measured by the above-mentioned method, and the thermal expansion coefficient of the expanded graphite was found to be 15 times that of the expanded graphite.
  • the electrical conductivity of the expanded graphite was also found to be 100 S/m.
  • ⁇ Preparation of electrode member> The above slurry composition was applied to a current collector of 20 ⁇ m thick aluminum foil with a doctor blade to a coating thickness of 5 ⁇ m. The slurry composition on the aluminum foil was then dried by leaving it in an oven at 90° C. for 10 minutes to obtain an electrode member having a coating layer formed on the aluminum foil.
  • NMP N-methylpyrrolidone
  • the prepared positive electrode raw sheet was roll-pressed under a temperature of 25 ⁇ 3° C. and a load of 14 t (tons) to obtain a positive electrode having a density of a positive electrode composite layer of 3.30 g/cm 3 .
  • the average particle diameter A, the average thickness A, and the coverage of the obtained positive electrode were measured.
  • the resistance increase rate of the electrode was also measured to evaluate the safety of the electrochemical device. The results are shown in Table 1.
  • a slurry composition for a negative electrode composite layer was prepared.
  • the above-mentioned slurry composition for the negative electrode composite layer was applied to the surface of a 15 ⁇ m thick copper foil as a current collector with a comma coater so that the coating amount was 11 ⁇ 0.5 mg/cm 2.
  • the copper foil coated with the slurry composition for the negative electrode composite layer was conveyed at a speed of 400 mm/min through an oven at a temperature of 80° C. for 2 minutes and then through an oven at a temperature of 110° C.
  • the negative electrode composite layer side of the prepared negative electrode raw sheet was roll-pressed under a temperature of 25 ⁇ 3° C. and a linear pressure of 11 t (tons), to obtain a negative electrode having a density of 1.60 g/cm 3 for the negative electrode composite layer.
  • a separator As a separator, a single-layer polypropylene separator substrate (manufactured by Celgard, product name "#2500”) was prepared.
  • the aluminum packaging material was closed by heat sealing at a temperature of 150 ° C., and a lithium ion secondary battery was produced.
  • the capacity retention rate of this lithium ion secondary battery was measured, and the cycle characteristics of the electrochemical device were evaluated. The results are shown in Table 1.
  • Example 1-1 In preparing the slurry composition for an electrochemical element electrode member, various operations, measurements, and evaluations were carried out in the same manner as in Example 1-1, except that the expandable graphite used as the conductive thermal expansion material was changed to one having an average particle size B shown in Table 1. The measurement and evaluation results are shown in Table 1.
  • Example 2-1 In the preparation of the slurry composition for an electrochemical element electrode member, the amount of each component was changed as shown in Table 2, and in the production of the electrode member, the gap of the doctor blade was changed to adjust the application amount of the slurry composition for an electrochemical element electrode member, thereby changing the coating rate as shown in Table 2. Except for this, various operations, measurements, and evaluations were carried out in the same manner as in Example 1-1. The measurement and evaluation results are also shown in Table 2.
  • Example 2-2 to 2-10 Comparative Example 2-1
  • various operations, measurements, and evaluations were carried out in the same manner as in Example 2-1, except that the expandable graphite used as the conductive thermal expansion material was changed to one having an average particle size B shown in Table 2.
  • the results of the measurements and evaluations are shown in Table 2.
  • Example 3-1 In the preparation of the slurry composition for an electrochemical element electrode member, the amount of each component was changed as shown in Table 3, and in the production of the electrode member, the gap of the doctor blade was changed to adjust the application amount of the slurry composition for an electrochemical element electrode member, thereby changing the coating rate as shown in Table 3. Except for this, various operations, measurements, and evaluations were carried out in the same manner as in Example 1-1. The measurement and evaluation results are also shown in Table 3.
  • Example 3-1 In preparing the slurry composition for an electrochemical element electrode member, various operations, measurements, and evaluations were carried out in the same manner as in Example 3-1, except that the expandable graphite used as the conductive thermal expansion material was changed to one having an average particle size B shown in Table 3. The results of the measurements and evaluations are shown in Table 3.
  • Example 4-1 In the preparation of the slurry composition for an electrochemical element electrode member, the amount of each component was changed as shown in Table 4, and in the production of the electrode member, the gap of the doctor blade was changed to adjust the application amount of the slurry composition for an electrochemical element electrode member, thereby changing the coating rate as shown in Table 4. Except for this, various operations, measurements, and evaluations were carried out in the same manner as in Example 1-1. The measurement and evaluation results are also shown in Table 4.
  • Examples 4-2 to 4-9 Comparative Examples 4-1 and 4-2
  • various operations, measurements, and evaluations were carried out in the same manner as in Example 4-1, except that the expandable graphite used as the conductive thermal expansion material was changed to one having an average particle size B shown in Table 4.
  • the results of the measurements and evaluations are shown in Table 4.
  • Example 5-1 In the preparation of the slurry composition for an electrochemical element electrode member, the amount of each component was changed as shown in Table 5, and in the production of the electrode member, the gap of the doctor blade was changed to adjust the application amount of the slurry composition for an electrochemical element electrode member, thereby changing the coating rate as shown in Table 5. Except for this, various operations, measurements, and evaluations were carried out in the same manner as in Example 1-1. The measurement and evaluation results are also shown in Table 5.
  • Examples 5-2 to 5-9, Comparative Examples 5-1 and 5-2 In preparing the slurry composition for an electrochemical element electrode member, various operations, measurements, and evaluations were carried out in the same manner as in Example 5-1, except that the expandable graphite used as the conductive thermal expansion material was changed to one having an average particle size B shown in Table 5. The results of the measurements and evaluations are shown in Table 5.
  • Example 6-1 In the preparation of the slurry composition for an electrochemical element electrode member, the amount of each component was changed as shown in Table 6, and in the production of the electrode member, the gap of the doctor blade was changed to adjust the application amount of the slurry composition for an electrochemical element electrode member, thereby changing the coating rate as shown in Table 6. Except for this, various operations, measurements, and evaluations were carried out in the same manner as in Example 1-1. The measurement and evaluation results are also shown in Table 6.
  • Examples 6-2 to 6-8 Comparative Examples 6-1 to 6-3
  • various operations, measurements, and evaluations were carried out in the same manner as in Example 6-1, except that the expandable graphite used as the conductive thermal expansion material was changed to one having an average particle size B shown in Table 6.
  • the results of the measurements and evaluations are shown in Table 6.
  • Example 7-1 In the preparation of the slurry composition for an electrochemical element electrode member, the amount of each component was changed as shown in Table 7, and in the production of the electrode member, the gap of the doctor blade was changed to adjust the application amount of the slurry composition for an electrochemical element electrode member, thereby changing the coating rate as shown in Table 7. Except for this, various operations, measurements, and evaluations were carried out in the same manner as in Example 1-1. The measurement and evaluation results are shown in Table 7.
  • Example 7-2 to 7-8 Comparative Examples 7-1 to 7-3
  • various operations, measurements, and evaluations were carried out in the same manner as in Example 7-1, except that the expandable graphite used as the conductive thermal expansion material was changed to one having an average particle size B shown in Table 7.
  • the results of the measurements and evaluations are shown in Table 7.
  • Example 8-1 In the preparation of the slurry composition for an electrochemical element electrode member, the amount of each component was changed as shown in Table 8, and in the production of the electrode member, the gap of the doctor blade was changed to adjust the application amount of the slurry composition for an electrochemical element electrode member, thereby changing the coating rate as shown in Table 8. Except for this, various operations, measurements, and evaluations were carried out in the same manner as in Example 1-1. The measurement and evaluation results are shown in Table 8.
  • Example 8-2 to 8-9 Comparative Examples 8-1 and 8-2
  • various operations, measurements, and evaluations were carried out in the same manner as in Example 8-1, except that the expandable graphite used as the conductive thermal expansion material was changed to one having an average particle size B shown in Table 8.
  • the results of the measurements and evaluations are shown in Table 8.
  • Example 9-1 In the preparation of the slurry composition for an electrochemical element electrode member, the amount of each component was changed as shown in Table 9, and in the production of the electrode member, the gap of the doctor blade was changed to adjust the application amount of the slurry composition for an electrochemical element electrode member, thereby changing the coating rate as shown in Table 9. Except for this, various operations, measurements, and evaluations were carried out in the same manner as in Example 1-1. The measurement and evaluation results are also shown in Table 9.
  • Example 9-2 to 9-9 Comparative Examples 9-1 and 9-2
  • various operations, measurements, and evaluations were carried out in the same manner as in Example 9-1, except that the expandable graphite used as the conductive thermal expansion material was changed to one having an average particle size B shown in Table 9.
  • the results of the measurements and evaluations are shown in Table 9.
  • Example 10-1 In the preparation of the slurry composition for an electrochemical element electrode member, the amount of each component was changed as shown in Table 10, and in the production of the electrode member, the gap of the doctor blade was changed to adjust the coating amount of the slurry composition for an electrochemical element electrode member, thereby changing the coating rate as shown in Table 10. Except for this, various operations, measurements, and evaluations were carried out in the same manner as in Example 1-1. The measurement and evaluation results are also shown in Table 10.
  • Example 10-2 to 10-9 Comparative Examples 10-1 and 10-2
  • various operations, measurements, and evaluations were carried out in the same manner as in Example 10-1, except that the expandable graphite used as the conductive thermal expansion material was changed to one having an average particle size B shown in Table 10.
  • the results of the measurements and evaluations are shown in Table 10.
  • Example 11-1 In the preparation of the slurry composition for an electrochemical element electrode member, the amount of each component was changed as shown in Table 11, and in the production of the electrode member, the gap of the doctor blade was changed to adjust the coating amount of the slurry composition for an electrochemical element electrode member, thereby changing the coating rate as shown in Table 11. Except for this, various operations, measurements, and evaluations were carried out in the same manner as in Example 1-1. The measurement and evaluation results are shown in Table 11.
  • Examples 11-2 to 11-8 Comparative Examples 11-1 to 11-3
  • various operations, measurements, and evaluations were carried out in the same manner as in Example 11-1, except that the expandable graphite used as the conductive thermal expansion material was changed to one having an average particle size B shown in Table 11.
  • the results of the measurements and evaluations are shown in Table 11.
  • Example 15 In preparing the slurry composition for the electrochemical element electrode member, the amount of expandable graphite used as the conductive thermal expansion material was changed from 80 parts to 30 parts, and the amount of acetylene black used as the conductive assistant was changed from 10 parts to 60 parts, but other than that, various operations, measurements, and evaluations were carried out in the same manner as in Example 1-1. The measurement and evaluation results are shown in Table 14.
  • Example 16 In preparing the slurry composition for the electrochemical element electrode member, the amount of expandable graphite used as the conductive thermal expansion material was changed from 80 parts to 89.5 parts, and the amount of acetylene black used as the conductive assistant was changed from 10 parts to 0.5 parts. Except for this, various operations, measurements, and evaluations were carried out in the same manner as in Example 1-1. The measurement and evaluation results are shown in Table 14.
  • Example 17 In the preparation of the slurry composition for the electrochemical element electrode member, various operations, measurements, and evaluations were carried out in the same manner as in Example 1-1, except that the aqueous dispersion of the polymer as the binder was not used, and the amount of carboxymethyl cellulose used as the dispersant was changed from 7.5 parts to 10 parts. The measurement and evaluation results are shown in Table 14.
  • an electrode member for an electrochemical device that can provide an electrochemical device with excellent cycle characteristics while ensuring a high level of safety for the electrochemical device. Furthermore, according to the present invention, it is possible to provide an electrochemical element which ensures a high level of safety and has excellent cycle characteristics.
  • Electrochemical element electrode member 11 Current collector 12: Conductive thermal expansion material-containing portion 121: Conductive thermal expansion material 122: Current collector side arrangement surface 20: Electrochemical element electrode member 21: Electrode mixture layer 211: First surface 212: Second surface

Abstract

One purpose of the present invention is to provide a member for an electrochemical element electrode, said member being able to impart superior cycle characteristics to the electrochemical element while ensuring that the electrochemical element is highly safe. The present invention is a member for an electrochemical element electrode, said member comprising a current collector and a conductive thermal expansion material-including section that is located on the current collector, wherein the percentage of coverage by the conductive thermal expansion material of a current collector-side positioning surface of the conductive thermal expansion material-including section is 20% to 98%, and the product of this percentage of coverage and the average particle size of the conductive thermal expansion material is 500 to 15000.

Description

電気化学素子電極用部材及び電気化学素子Electrode member for electrochemical element and electrochemical element
 本発明は、電気化学素子電極用部材及び電気化学素子に関する。 The present invention relates to an electrochemical element electrode member and an electrochemical element.
 リチウムイオン二次電池、電気二重層キャパシタ、及びリチウムイオンキャパシタ等の電気化学素子は、小型で軽量、且つ、エネルギー密度が高く、更に繰り返し充放電が可能という特性があり、幅広い用途に使用されている。そして電気化学素子は、一般に、複数の電極と、これら電極を隔離して内部短絡を防止するセパレータとを備えている。 Electrochemical elements such as lithium ion secondary batteries, electric double layer capacitors, and lithium ion capacitors are small, lightweight, have high energy density, and can be repeatedly charged and discharged, and are used in a wide range of applications. Electrochemical elements generally have multiple electrodes and separators that isolate these electrodes and prevent internal short circuits.
 近年では、電気化学素子において内部短絡が発生した場合であっても、電気化学素子の異常な発熱を抑制する技術が開発されている。
 例えば、特許文献1では、正極と、負極と、電解質とを有する二次電池であって、正極が、正極集電体と、正極集電体上に形成された中間層と、中間層上に形成された正極合材層とを備え、中間層が所定の熱膨張性材料と絶縁性無機材料とを含み、これらの材料の含有量を所定の範囲とした二次電池が提案されている。このような正極を有する二次電池であれば、内部短絡が発生した場合に、中間層中の絶縁性無機材料が正極集電体と正極合材層との間の抵抗成分となり、急激な抵抗低下が抑えられ、二次電池の発熱スピード(温度上昇速度)が緩和される。そして、二次電池の電池温度が高温になる前に、中間層中に所定量含まれる熱膨張性材料が熱膨張して、正極合材層と中間層や正極集電体と中間層とが離れ、中間層を介した正極合材層と正極集電体との電気的接続が遮断され、その結果、二次電池の発熱温度の上昇が抑えられ、即ち、二次電池の最高到達温度が低減される。
In recent years, techniques have been developed to suppress abnormal heat generation in an electrochemical element even when an internal short circuit occurs in the electrochemical element.
For example, in Patent Document 1, a secondary battery having a positive electrode, a negative electrode, and an electrolyte is proposed, in which the positive electrode comprises a positive electrode current collector, an intermediate layer formed on the positive electrode current collector, and a positive electrode composite layer formed on the intermediate layer, the intermediate layer contains a predetermined thermally expandable material and an insulating inorganic material, and the contents of these materials are within a predetermined range. In a secondary battery having such a positive electrode, when an internal short circuit occurs, the insulating inorganic material in the intermediate layer becomes a resistance component between the positive electrode current collector and the positive electrode composite layer, and a sudden drop in resistance is suppressed, and the heat generation speed (temperature rise speed) of the secondary battery is mitigated. Then, before the battery temperature of the secondary battery becomes high, the thermally expandable material contained in a predetermined amount in the intermediate layer thermally expands, and the positive electrode composite layer and the intermediate layer or the positive electrode current collector and the intermediate layer are separated, and the electrical connection between the positive electrode composite layer and the positive electrode current collector via the intermediate layer is interrupted, and as a result, the increase in the heat generation temperature of the secondary battery is suppressed, that is, the maximum temperature reached by the secondary battery is reduced.
特許第6857862号公報Patent No. 6857862
 しかしながら、従来の二次電池等の電気化学素子は、異常な発熱を抑制して、高度な安全性を確保する点においては優れているものの、電気化学素子のサイクル特性に関しては改善の余地があった。 However, although conventional electrochemical elements such as secondary batteries are excellent in terms of suppressing abnormal heat generation and ensuring a high level of safety, there is still room for improvement in terms of the cycle characteristics of the electrochemical elements.
 本発明者らは、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者らは、集電体と、集電体上に位置する導電性熱膨張材料含有部とを備える、電気化学素子電極用部材であって、導電性熱膨張材料含有部の集電体側配設面に対する導電性熱膨張材料の被覆率を所定の範囲とし、被覆率と導電性熱膨張材料の平均粒子径との積を所定の範囲とした電気化学素子電極用部材を用いれば、上記課題を解決できることを新たに見出し、本発明を完成させた。 The present inventors have conducted extensive research with the aim of solving the above problems. The present inventors have newly discovered that the above problems can be solved by using an electrochemical element electrode member that includes a current collector and a conductive thermal expansion material-containing portion located on the current collector, in which the coverage of the conductive thermal expansion material on the current collector side surface of the conductive thermal expansion material-containing portion is within a predetermined range, and the product of the coverage and the average particle size of the conductive thermal expansion material is within a predetermined range, and thus have completed the present invention.
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、[1]集電体と、前記集電体上に位置する導電性熱膨張材料含有部とを備える、電気化学素子電極用部材であって、前記導電性熱膨張材料含有部の集電体側配設面に対する前記導電性熱膨張材料の被覆率が、20%以上98%以下であり、前記被覆率と、前記導電性熱膨張材料の平均粒子径との積が、500以上15000以下である、電気化学素子電極用部材である。
 上記電気化学素子電極用部材であれば、電気化学素子の高度な安全性を確保しつつ、電気化学素子に優れたサイクル特性を付与できる。
 本明細書において、「導電性熱膨張材料」とは、導電性を有し、且つ、実施例に記載の方法に従って測定した熱膨張率が2倍以上のものをいう。なお、本明細書において、「導電性を有する」とは、電気伝導率が1S/m以上であることを意味する。
 本明細書において、導電性熱膨張材料含有部中の導電性熱膨張材料の平均粒子径(以下、「平均粒子径A」と称する場合がある。)は、電界放出形走査電子顕微鏡(FE-SEM)を用いて、実施例に記載の方法に従って測定できる。
 本明細書において、被覆率は、FE-SEMを用いて、実施例に記載の方法に従って測定できる。なお、本明細書において、被覆率の単位は「%」であり、平均粒子径Aの単位は「μm」である。従って、省略しているが、被覆率と平均粒子径Aとの積の単位は「μm・%」である。
That is, the present invention aims to advantageously solve the above-mentioned problems, and provides: [1] an electrochemical element electrode member comprising a current collector and a conductive thermally expandable material-containing portion located on the current collector, wherein a coverage rate of the conductive thermally expandable material on a current collector side arrangement surface of the conductive thermally expandable material-containing portion is 20% or more and 98% or less, and the product of the coverage rate and an average particle diameter of the conductive thermally expandable material is 500 or more and 15,000 or less.
The above-mentioned electrochemical device electrode member can provide the electrochemical device with excellent cycle characteristics while ensuring a high level of safety of the electrochemical device.
In this specification, the term "conductive thermal expansion material" refers to a material that is conductive and has a thermal expansion coefficient of at least 2 times that measured according to the method described in the Examples. Note that in this specification, "conductive" means that the electrical conductivity is at least 1 S/m.
In this specification, the average particle diameter of the conductive thermal expansion material in the conductive thermal expansion material-containing portion (hereinafter, sometimes referred to as "average particle diameter A") can be measured using a field emission scanning electron microscope (FE-SEM) according to the method described in the examples.
In this specification, the coverage can be measured using an FE-SEM according to the method described in the Examples. In this specification, the unit of coverage is "%" and the unit of average particle size A is "μm". Therefore, although omitted, the unit of the product of the coverage and the average particle size A is "μm·%".
 [2]上記[1]の電気化学素子電極用部材において、前記被覆率は、30%以上であり、前記積は、1500以上であることが好ましい。
 被覆率が上記下限以上であり、積が上記下限以上であれば、電気化学素子の安全性を向上できる。
[2] In the electrochemical element electrode member according to the above [1], it is preferable that the coverage is 30% or more and the product is 1,500 or more.
If the coverage is equal to or greater than the above lower limit and the product is equal to or greater than the above lower limit, the safety of the electrochemical device can be improved.
 [3]上記[1]の電気化学素子電極用部材において、前記被覆率は、95%以下であり、前記平均粒子径は、20μm以上160μm以下であり、前記積は、9500以下であることが好ましい。
 被覆率が上記上限以下であり、平均粒子径が上記範囲内であり、積が上記上限以下であれば、電気化学素子のサイクル特性を向上できる。
[3] In the electrochemical element electrode member according to [1] above, it is preferable that the coverage is 95% or less, the average particle size is 20 μm or more and 160 μm or less, and the product is 9,500 or less.
When the coverage is equal to or less than the above upper limit, the average particle size is within the above range, and the product is equal to or less than the above upper limit, the cycle characteristics of the electrochemical device can be improved.
 [4]上記[1]の電気化学素子電極用部材において、前記被覆率は、30%以上95%以下であり、前記平均粒子径は、20μm以上160μm以下であり、前記積は、1500以上9500以下であることが好ましい。
 被覆率が上記範囲内であり、平均粒子径が上記範囲内であり、積が上記範囲内であれば、電気化学素子の安全性及びサイクル特性を向上できる。
[4] In the electrochemical element electrode member according to [1] above, it is preferable that the coverage is 30% or more and 95% or less, the average particle size is 20 μm or more and 160 μm or less, and the product is 1,500 or more and 9,500 or less.
When the coverage rate is within the above range, the average particle size is within the above range, and the product is within the above range, the safety and cycle characteristics of the electrochemical device can be improved.
 [5]上記[1]~[4]の何れかの電気化学素子電極用部材において、前記導電性熱膨張材料の平均厚みは、0.2μm以上5μm以下であることが好ましい。
 導電性熱膨張材料の平均厚みが上記範囲内であれば、導電性熱膨張材料含有部中に導電性熱膨張材料が効果的に配置され、電気化学素子の安全性を向上できる。
 本明細書において、導電性熱膨張材料含有部中の導電性熱膨張材料の平均厚み(以下、「平均厚みA」と称する場合がある。)は、FE-SEMを用いて、実施例に記載の方法に従って測定できる。
[5] In the electrochemical element electrode member according to any one of the above [1] to [4], the conductive thermal expansion material preferably has an average thickness of 0.2 μm or more and 5 μm or less.
When the average thickness of the conductive thermal expansion material is within the above range, the conductive thermal expansion material is effectively disposed in the conductive thermal expansion material-containing portion, and the safety of the electrochemical element can be improved.
In this specification, the average thickness of the conductive thermal expansion material in the conductive thermal expansion material-containing portion (hereinafter, sometimes referred to as "average thickness A") can be measured using an FE-SEM according to the method described in the examples.
 [6]上記[1]~[5]の何れかの電気化学素子電極用部材において、前記導電性熱膨張材料は、膨張黒鉛であることが好ましい。
 導電性熱膨張材料が膨張黒鉛であれば、電気化学素子の安全性を向上できる。
[6] In the electrochemical element electrode member according to any one of the above [1] to [5], the conductive thermal expansion material is preferably expandable graphite.
If the conductive thermal expansion material is expanded graphite, the safety of the electrochemical device can be improved.
 [7]上記[1]~[6]の何れかの電気化学素子電極用部材において、前記導電性熱膨張材料含有部は、コート層であることが好ましい。
 導電性熱膨張材料含有部がコート層であれば、電気化学素子電極用部材の生産性を向上できる。
[7] In the electrochemical element electrode member according to any one of the above [1] to [6], the conductive thermal expansion material-containing portion is preferably a coating layer.
If the conductive thermal expansion material-containing portion is a coating layer, the productivity of the electrochemical element electrode member can be improved.
 [8]上記[7]の電気化学素子電極用部材において、前記コート層は、前記集電体の表面に直接形成されていることが好ましい。
 コート層が集電体の表面に直接形成されていれば、電気化学素子のサイクル特性を向上できる。
[8] In the electrochemical element electrode member according to the above [7], it is preferable that the coating layer is formed directly on the surface of the current collector.
If the coating layer is formed directly on the surface of the current collector, the cycle characteristics of the electrochemical element can be improved.
 [9]上記[1]~[8]の何れかの電気化学素子電極用部材において、前記導電性熱膨張材料含有部は、導電助剤を更に含み、前記導電性熱膨張材料に対する前記導電助剤の質量比は、0.01以上0.5以下であることが好ましい。
 導電性熱膨張材料含有部が導電助剤を更に含めば、電気化学素子により優れたサイクル特性を付与できる。
 また、導電性熱膨張材料に対する導電助剤の質量比が上記下限以上であれば、電気化学素子のサイクル特性を向上できる。
 一方、導電性熱膨張材料に対する導電助剤の質量比が上記上限以下であれば、電気化学素子の安全性を向上できる。
 本明細書において、「導電助剤」とは、導電性を有し、且つ、導電性熱膨張材料と同様の方法で測定した熱膨張率が2倍未満のものをいう。
[9] In any one of the electrochemical element electrode members [1] to [8] above, it is preferable that the conductive thermal expansion material-containing portion further contains a conductive assistant, and the mass ratio of the conductive assistant to the conductive thermal expansion material is 0.01 or more and 0.5 or less.
If the conductive thermal expansion material-containing portion further contains a conductive assistant, it is possible to impart more excellent cycle characteristics to the electrochemical element.
Furthermore, when the mass ratio of the conductive assistant to the conductive thermal expansion material is equal to or more than the above lower limit, the cycle characteristics of the electrochemical device can be improved.
On the other hand, when the mass ratio of the conductive assistant to the conductive thermal expansion material is equal to or less than the above upper limit, the safety of the electrochemical device can be improved.
In this specification, the term "conductive assistant" refers to a material that has electrical conductivity and has a thermal expansion coefficient that is less than twice that of the conductive thermal expansion material, as measured by the same method.
 [10]上記[1]~[9]の何れかの電気化学素子電極用部材において、前記導電性熱膨張材料含有部は、結着材を更に含むことが好ましい。
 導電性熱膨張材料含有部が結着材を更に含めば、電気化学素子のサイクル特性を向上できる。
[10] In the electrochemical element electrode member according to any one of the above [1] to [9], it is preferable that the conductive thermal expansion material-containing portion further contains a binder.
If the electrically conductive thermally expandable material-containing portion further contains a binder, the cycle characteristics of the electrochemical device can be improved.
 [11]上記[1]~[10]の何れかの電気化学素子電極用部材は、電極合材層を備え、前記電極合材層が、前記集電体側に位置する第1面と、前記第1面とは反対側に位置する第2面とを有し、前記導電性熱膨張材料含有部が、前記集電体と、前記第2面との間に位置することが好ましい。
 上記電気化学素子電極用部材を電極として用いれば、電気化学素子の高度な安全性を確保しつつ、電気化学素子に優れたサイクル特性を付与できる。
[11] It is preferable that the electrochemical element electrode member according to any one of [1] to [10] above comprises an electrode mixture layer, the electrode mixture layer having a first surface located on the current collector side and a second surface located on the opposite side to the first surface, and the conductive thermal expansion material-containing portion is located between the current collector and the second surface.
By using the above-mentioned electrochemical device electrode member as an electrode, it is possible to impart excellent cycle characteristics to the electrochemical device while ensuring a high level of safety of the electrochemical device.
 また、この発明は、上記課題を有利に解決することを目的とするものであり、[12]本発明は、上記[1]~[11]の何れかの電気化学素子電極用部材を用いてなる電極を備える、電気化学素子である。
 上記電気化学素子であれば、安全性が高度に確保され、且つ、サイクル特性に優れている。
The present invention also aims to advantageously solve the above problems, and [12] the present invention is an electrochemical element comprising an electrode formed using the electrochemical element electrode member according to any one of [1] to [11] above.
The electrochemical element described above ensures a high degree of safety and has excellent cycle characteristics.
 本発明によれば、電気化学素子の高度な安全性を確保しつつ、電気化学素子に優れたサイクル特性を付与し得る電気化学素子電極用部材を提供できる。
 また、本発明によれば、安全性が高度に確保され、且つ、サイクル特性に優れる電気化学素子を提供できる。
According to the present invention, it is possible to provide an electrode member for an electrochemical device that can impart excellent cycle characteristics to an electrochemical device while ensuring a high level of safety of the electrochemical device.
Furthermore, according to the present invention, it is possible to provide an electrochemical element which is highly safe and has excellent cycle characteristics.
本発明の電気化学素子電極用部材の一例を示す概略断面図である。1 is a schematic cross-sectional view showing an example of an electrochemical element electrode member of the present invention. 本発明の電気化学素子電極用部材の一例を示す概略断面図である。1 is a schematic cross-sectional view showing an example of an electrochemical element electrode member of the present invention. 本発明の電気化学素子電極用部材の一例を示す概略断面図である。1 is a schematic cross-sectional view showing an example of an electrochemical element electrode member of the present invention. 実施例1-1~11-8,比較例1-1~13-11における安全性の評価結果を纏めたグラフである。1 is a graph summarizing the safety evaluation results in Examples 1-1 to 11-8 and Comparative Examples 1-1 to 13-11. 実施例1-1~11-8,比較例1-1~13-11におけるサイクル特性の評価結果を纏めたグラフである。1 is a graph summarizing evaluation results of cycle characteristics in Examples 1-1 to 11-8 and Comparative Examples 1-1 to 13-11.
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の電気化学素子電極用部材(以下、単に「電極用部材」と称する場合がある。)は、電気化学素子用電極(以下、単に「電極」と称する場合がある。)に使用されるものである。具体的には、本発明の電気化学素子電極用部材は、(1)電極合材層を有しておらず、電極合材層を形成して電極を製造する際の基板として用いられるものであってもよいし、(2)電極合材層を有し、そのまま電極として用いられるものであってもよい。ここで、電気化学素子用電極は、リチウムイオン二次電池、電気二重層キャパシタ、及びリチウムイオンキャパシタ等の電気化学素子の電極として使用することができる。
 また、本発明の電気化学素子は、本発明の電気化学素子電極用部材を用いてなる電極を備える。
Hereinafter, an embodiment of the present invention will be described in detail.
Here, the electrochemical element electrode member of the present invention (hereinafter may be simply referred to as "electrode member") is used for an electrochemical element electrode (hereinafter may be simply referred to as "electrode"). Specifically, the electrochemical element electrode member of the present invention may (1) not have an electrode mixture layer and be used as a substrate when forming an electrode mixture layer to manufacture an electrode, or (2) have an electrode mixture layer and be used as an electrode as it is. Here, the electrochemical element electrode can be used as an electrode for electrochemical elements such as a lithium ion secondary battery, an electric double layer capacitor, and a lithium ion capacitor.
The electrochemical device of the present invention includes an electrode formed using the electrochemical device electrode member of the present invention.
(電気化学素子電極用部材)
 本発明の電気化学素子電極用部材は、集電体と、集電体上に位置する導電性熱膨張材料含有部とを備え、任意に、電極合材層を備えていてもよい。また、本発明の電極用部材は、集電体、導電性熱膨張材料含有部及び電極合材層以外の層(以下、「その他の層」と称する場合がある。)を備えていてもよい。なお、本発明の電極用部材は、電極合材層を有していてもよいし、電極合材層を有していなくてもよい。電極合材層を有さない電気化学素子電極用部材は、電極合材層を形成して電極を製造する際の基板として用いることができ、電極合材層を有する電気化学素子電極用部材は、そのまま電極として用いることができる。
 本発明の電極用部材は、電気化学素子の正極及び負極の何れにも用いることができるが、正極に用いることが好ましい。即ち、本発明の電極用部材は、正極用部材であることが好ましい。
(Electrode member for electrochemical element)
The electrochemical element electrode member of the present invention comprises a current collector and a conductive thermal expansion material-containing portion located on the current collector, and may optionally comprise an electrode mixture layer. The electrode member of the present invention may also comprise a layer other than the current collector, the conductive thermal expansion material-containing portion, and the electrode mixture layer (hereinafter, sometimes referred to as "other layers"). The electrode member of the present invention may or may not have an electrode mixture layer. An electrochemical element electrode member that does not have an electrode mixture layer can be used as a substrate when forming an electrode mixture layer to manufacture an electrode, and an electrochemical element electrode member that has an electrode mixture layer can be used as an electrode as it is.
The electrode member of the present invention can be used for either the positive electrode or the negative electrode of an electrochemical element, but is preferably used for the positive electrode, i.e., the electrode member of the present invention is preferably a positive electrode member.
 図1~3は、本発明の電気化学素子電極用部材の一例を示す概略断面図である。このうち、図1に示す電気化学素子電極用部材は、電極合材層を有しておらず、上部に電極合材層を形成して電極を製造する際の基板として用いられるものであり、図2,3に示す電気化学素子電極用部材は、電極合材層を有しており、そのまま電極として用いられるものである。以下、各図について説明する。 Figures 1 to 3 are schematic cross-sectional views showing an example of an electrochemical element electrode member of the present invention. Of these, the electrochemical element electrode member shown in Figure 1 does not have an electrode mixture layer and is used as a substrate when manufacturing an electrode by forming an electrode mixture layer on top, while the electrochemical element electrode members shown in Figures 2 and 3 have an electrode mixture layer and are used as an electrode as is. Each figure will be explained below.
 図1に示す電気化学素子電極用部材10は、集電体11と、集電体11上に位置する導電性熱膨張材料含有部12とを備える。導電性熱膨張材料含有部12は、導電性熱膨張材料121を含有する。そして、導電性熱膨張材料含有部12は、集電体側配設面122を有している。
 なお、図1においては、集電体側配設面122は集電体11の表面であるが、集電体11と導電性熱膨張材料含有部12との間にその他の層(図示せず)が存在する場合、集電体側配設面122はその他の層の表面となる。
1 includes a current collector 11 and a conductive thermal expansion material-containing portion 12 located on the current collector 11. The conductive thermal expansion material-containing portion 12 contains a conductive thermal expansion material 121. The conductive thermal expansion material-containing portion 12 has a current collector side mounting surface 122.
In FIG. 1, the collector side mounting surface 122 is the surface of the collector 11, but if another layer (not shown) is present between the collector 11 and the conductive thermal expansion material-containing portion 12, the collector side mounting surface 122 becomes the surface of that other layer.
 図2に示す電気化学素子電極用部材20は、集電体11と、集電体11上に位置する導電性熱膨張材料含有部12と、電極合材層21とを備える。電極合材層21は、集電体11側(図2では下側)に位置する第1面211と、第1面211とは反対側(図2では上側)に位置する第2面212を有している。ここで、導電性熱膨張材料含有部12は、集電体11と、第2面212との間に位置している。
 図2の電気化学素子電極用部材20において、導電性熱膨張材料含有部12は、導電性熱膨張材料121を含有し、且つ、電極合材層21の内部に位置している(換言すれば、電極合材層21の一部を構成している)。即ち、電極合材層21は、導電性熱膨張材料含有部12を含んでいる。そして、導電性熱膨張材料含有部12の集電体側配設面122は、集電体11の表面である。
The electrochemical element electrode member 20 shown in Fig. 2 includes a current collector 11, a conductive thermal expansion material-containing portion 12 located on the current collector 11, and an electrode mixture layer 21. The electrode mixture layer 21 has a first surface 211 located on the current collector 11 side (lower side in Fig. 2) and a second surface 212 located on the opposite side to the first surface 211 (upper side in Fig. 2). Here, the conductive thermal expansion material-containing portion 12 is located between the current collector 11 and the second surface 212.
2 , the conductive thermal expansion material-containing portion 12 contains a conductive thermal expansion material 121, and is located inside the electrode mixture layer 21 (in other words, it constitutes a part of the electrode mixture layer 21). That is, the electrode mixture layer 21 includes the conductive thermal expansion material-containing portion 12. The current collector side arrangement surface 122 of the conductive thermal expansion material-containing portion 12 is the surface of the current collector 11.
 図3に示す電気化学素子電極用部材20は、集電体11と、集電体11上に位置する導電性熱膨張材料含有部12と、電極合材層21とを備える。電極合材層21は、集電体11側(図3では下側)に位置する第1面211と、第1面211とは反対側(図3では上側)に位置する第2面212を有している。ここで、導電性熱膨張材料含有部12は、集電体11と、第2面212との間に位置しているが、図2とは異なり、集電体11上に位置する導電性熱膨張材料含有部12は、電極合材層21とは別の層を構成している。
 図3の電気化学素子電極用部材20において、導電性熱膨張材料含有部12は、導電性熱膨張材料121を含有し、且つ、集電体11と第1面211との間に位置している。そして、導電性熱膨張材料含有部12の集電体側配設面122は、集電体11の表面である。
 なお、図3に示すように、集電体11と第1面211との間に導電性熱膨張材料含有部12が位置している場合、集電体側配設面122は、導電性熱膨張材料含有部12上に電極合材層21が存在する部分のみの集電体11の表面を意味する。言い換えると、導電性熱膨張材料含有部12上に電極合材層21が存在しない部分の集電体11の表面(例えば、導電性熱膨張材料含有部12がむき出しになっている部分の集電体11の表面等)は、集電体側配設面122に相当しない。
The electrochemical element electrode member 20 shown in Fig. 3 includes a current collector 11, a conductive thermal expansion material-containing portion 12 located on the current collector 11, and an electrode mixture layer 21. The electrode mixture layer 21 has a first surface 211 located on the current collector 11 side (lower side in Fig. 3) and a second surface 212 located on the opposite side to the first surface 211 (upper side in Fig. 3). Here, the conductive thermal expansion material-containing portion 12 is located between the current collector 11 and the second surface 212, but unlike Fig. 2, the conductive thermal expansion material-containing portion 12 located on the current collector 11 constitutes a layer separate from the electrode mixture layer 21.
3 , the conductive thermal expansion material-containing portion 12 contains a conductive thermal expansion material 121, and is located between the current collector 11 and the first surface 211. The current collector-side arrangement surface 122 of the conductive thermal expansion material-containing portion 12 is the surface of the current collector 11.
3 , when the conductive thermal expansion material-containing portion 12 is located between the current collector 11 and the first surface 211, the current collector-side mounting surface 122 refers to the surface of the current collector 11 only in a portion where the electrode mixture layer 21 is present on the conductive thermal expansion material-containing portion 12. In other words, the surface of the current collector 11 in a portion where the electrode mixture layer 21 is not present on the conductive thermal expansion material-containing portion 12 (for example, the surface of the current collector 11 in a portion where the conductive thermal expansion material-containing portion 12 is exposed) does not correspond to the current collector-side mounting surface 122.
 ここで、本発明の電極用部材は、集電体と、集電体上に位置する導電性熱膨張材料含有部とを備えるものであると共に、導電性熱膨張材料含有部の集電体側配設面に対する導電性熱膨張材料の被覆率が20%以上98%以下であり、被覆率と平均粒子径Aとの積が500以上15000以下である。このような電極用部材であれば、電気化学素子の高度な安全性を確保しつつ、電気化学素子に優れたサイクル特性を付与できる。その理由は以下の通りであると推察される。
 まず、電気化学素子内部への異物混入、電極製造不良、及び電気化学素子の設計ミス等の原因より、電気化学素子内部で短絡が生じると、短絡部分に電流が流れることでジュール熱が発生する。このジュール熱によりセパレータが溶解して短絡部分の面積が拡大すると、電気化学素子は異常に発熱すると考えられる。ここで、本発明の電極用部材は、ジュール熱により電気化学素子内部が高温になると、導電性熱膨張材料含有部の導電性熱膨張材料が急激に膨張し得る。この導電性熱膨張材料の急激な膨張により、電極構造が破壊され、導電パスが切断されて電気化学素子の異常な発熱が抑制されるため、電気化学素子の高度な安全性を確保できると推察される。そして、導電性熱膨張材料含有部の集電体側配設面に対する導電性熱膨張材料の被覆率を20%以上98%以下とし、被覆率と平均粒子径Aとの積を500以上15000以下とすることで、電気化学素子が高温になった際には、導電性熱膨張材料含有部が効果的に膨張し、他方、電気化学素子の通常使用時には、電気化学素子内部の導電性が高い状態となっているため、本発明の電極用部材は、電気化学素子の高度な安全性を確保しつつ、電気化学素子に優れたサイクル特性を付与できると推察される。
Here, the electrode member of the present invention comprises a current collector and a conductive thermal expansion material-containing portion located on the current collector, and the coverage of the conductive thermal expansion material on the current collector side surface of the conductive thermal expansion material-containing portion is 20% or more and 98% or less, and the product of the coverage and the average particle size A is 500 or more and 15,000 or less. With such an electrode member, it is possible to impart excellent cycle characteristics to an electrochemical element while ensuring a high level of safety of the electrochemical element. The reason for this is presumed to be as follows.
First, when a short circuit occurs inside the electrochemical element due to contamination of the inside of the electrochemical element, poor electrode manufacturing, or design error of the electrochemical element, a current flows through the short circuit portion, generating Joule heat. When the separator melts due to this Joule heat and the area of the short circuit portion expands, the electrochemical element is considered to generate abnormal heat. Here, in the electrode member of the present invention, when the inside of the electrochemical element becomes hot due to Joule heat, the conductive thermal expansion material of the conductive thermal expansion material-containing portion may suddenly expand. This sudden expansion of the conductive thermal expansion material destroys the electrode structure, cuts off the conductive path, and suppresses abnormal heat generation of the electrochemical element, so that it is presumed that a high level of safety of the electrochemical element can be ensured. Furthermore, by setting the coverage rate of the conductive thermal expansion material on the collector side surface of the conductive thermal expansion material-containing portion to 20% or more and 98% or less, and setting the product of the coverage rate and the average particle diameter A to 500 or more and 15,000 or less, the conductive thermal expansion material-containing portion effectively expands when the electrochemical element becomes hot, and on the other hand, during normal use of the electrochemical element, the conductivity inside the electrochemical element is high. Therefore, it is presumed that the electrode member of the present invention can impart excellent cycle characteristics to the electrochemical element while ensuring a high level of safety for the electrochemical element.
<集電体>
 集電体としては、電気伝導性を有し、かつ、電気化学的に耐久性のある材料を、電気化学素子の種類に応じて選択して用いることができる。例えば、リチウムイオン二次電池用電極の集電体としては、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金等からなる集電体を用い得る。また、集電体としては、金属箔を用いることが好ましい。中でも、負極に用いる集電体としては銅箔が特に好ましい。また、正極に用いる集電体としては、アルミニウム箔が特に好ましい。なお、上記材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
<Current collector>
As the current collector, a material having electrical conductivity and electrochemical durability can be selected and used according to the type of electrochemical element. For example, as the current collector of the electrode for a lithium ion secondary battery, a current collector made of iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, platinum, etc. can be used. In addition, it is preferable to use a metal foil as the current collector. Among them, copper foil is particularly preferable as the current collector used for the negative electrode. In addition, aluminum foil is particularly preferable as the current collector used for the positive electrode. Note that the above materials may be used alone or in combination of two or more kinds at any ratio.
<導電性熱膨張材料含有部>
 導電性熱膨張材料含有部は、導電性熱膨張材料を含有し、任意に、導電助剤及び/又は結着材を含有していてもよい。また、導電性熱膨張材料含有部は、導電性熱膨張材料、導電助剤及び結着材以外の成分(以下、「その他の成分」と称する場合がある。)を含んでいてよい。例えば、図2に示すように、導電性熱膨張材料含有部が電極合材層の一部を構成する場合には、導電性熱膨張材料含有部は電極活物質を含有していてもよい。
<Conductive Thermal Expansion Material-Containing Part>
The conductive thermal expansion material-containing portion contains a conductive thermal expansion material, and may optionally contain a conductive assistant and/or a binder. The conductive thermal expansion material-containing portion may contain components other than the conductive thermal expansion material, the conductive assistant, and the binder (hereinafter, may be referred to as "other components"). For example, as shown in FIG. 2, when the conductive thermal expansion material-containing portion constitutes a part of the electrode mixture layer, the conductive thermal expansion material-containing portion may contain an electrode active material.
 導電性熱膨張材料含有部の集電体側配設面に対する導電性熱膨張材料の被覆率は、20%以上である必要があり、30%以上であることが好ましく、40%以上であることがより好ましく、98%以下である必要があり、95%以下であることが好ましく、70%以下であることが好ましい。
 なお、上記被覆率は、導電性熱膨張材料含有部を形成する際に用いる電気化学素子電極部材用スラリー組成物の固形分濃度や各成分の量、並びに、電気化学素子電極部材用スラリー組成物の塗布条件や乾燥条件により調整できる。
The coverage rate of the conductive thermal expansion material on the collector side surface of the conductive thermal expansion material-containing portion must be 20% or more, preferably 30% or more, and more preferably 40% or more, and must be 98% or less, preferably 95% or less, and preferably 70% or less.
The coverage rate can be adjusted by the solids concentration and the amount of each component of the slurry composition for electrochemical element electrode members used when forming the conductive thermal expansion material-containing portion, as well as the application conditions and drying conditions of the slurry composition for electrochemical element electrode members.
 被覆率と平均粒子径Aとの積は、500以上である必要があり、1500以上であることが好ましく、2500以上であることがより好ましく、15000以下である必要があり、9500以下であることが好ましく、6000以下であることがより好ましい。 The product of the coverage rate and the average particle size A must be 500 or more, preferably 1500 or more, and more preferably 2500 or more, and must be 15000 or less, preferably 9500 or less, and more preferably 6000 or less.
 導電性熱膨張材料含有部は、導電性熱膨張材料含有部の形成が容易であり、電気化学素子電極用部材の生産性を向上できることから、コート層であることが好ましい。また、導電性熱膨張材料含有部がコート層である場合、導電性熱膨張材料含有部としてのコート層は、電気化学素子のサイクル特性を向上できることから、例えば、図1及び図3に示されているように、集電体の表面に直接形成されていることが好ましい。即ち、導電性熱膨張材料含有部としてのコート層の集電体側配設面は、集電体の表面であることが好ましい。 The conductive thermal expansion material-containing portion is preferably a coating layer, since it is easy to form the conductive thermal expansion material-containing portion and can improve the productivity of the electrochemical element electrode member. Furthermore, when the conductive thermal expansion material-containing portion is a coating layer, the coating layer as the conductive thermal expansion material-containing portion is preferably formed directly on the surface of the current collector, for example, as shown in Figures 1 and 3, since it can improve the cycle characteristics of the electrochemical element. In other words, the surface of the coating layer as the conductive thermal expansion material-containing portion that is disposed on the current collector side is preferably the surface of the current collector.
<<導電性熱膨張材料>>
 導電性熱膨張材料は、導電性を有し、且つ、実施例に記載の方法に従って測定した熱膨張率が2倍以上のものであれば特に限定されるものではない。
 導電性熱膨張材料としては、導電性を有し、且つ、上記熱膨張率を有する炭素含有材料が好ましい。このような炭素含有材料としては、例えば、膨張黒鉛等が挙げられる。膨張黒鉛としては、従来公知のもの(特許第2529058号公報)を用いることができる。
 導電性熱膨張材料は、電極の抵抗上昇倍率を高め、電気化学素子の安全性を向上できることから、膨張黒鉛であることが好ましい。
<<Conductive thermal expansion material>>
The conductive thermal expansion material is not particularly limited as long as it is conductive and has a thermal expansion coefficient of at least two times as measured according to the method described in the examples.
The conductive thermal expansion material is preferably a carbon-containing material that is conductive and has the above-mentioned thermal expansion coefficient. Examples of such carbon-containing materials include expandable graphite. As the expandable graphite, a conventionally known material (Japanese Patent No. 2529058) can be used.
The conductive thermal expansion material is preferably expanded graphite, since it can increase the resistance increase rate of the electrode and improve the safety of the electrochemical device.
 導電性熱膨張材料は、電気化学素子が高温になった際に、電極構造が効果的に破壊され、電気化学素子の高度な安全性を効果的に確保できることから、発泡するものであることが好ましい。導電性熱膨張材料は、200℃~500℃の温度において、発泡するものであることが好ましい。 The conductive thermal expansion material is preferably one that foams when the electrochemical element becomes hot, since this effectively destroys the electrode structure and effectively ensures a high level of safety for the electrochemical element. The conductive thermal expansion material is preferably one that foams at a temperature of 200°C to 500°C.
 平均粒子径Aは、10μm以上であることが好ましく、20μm以上であることがより好ましく、30μm以上であることが更に好ましく、40μm以上であることがより更に好ましく、60μm以上であることがより一層好ましく、200μm以下であることが好ましく、160μm以下であることがより好ましく、120μm以下であることが更に好ましく、100μm以下でありことが更により好ましい。 The average particle size A is preferably 10 μm or more, more preferably 20 μm or more, even more preferably 30 μm or more, even more preferably 40 μm or more, even more preferably 60 μm or more, preferably 200 μm or less, more preferably 160 μm or less, even more preferably 120 μm or less, and even more preferably 100 μm or less.
 導電性熱膨張材料含有部中の導電性熱膨張材料の平均厚み(平均厚みA)は、0.2μm以上であることが好ましく、0.5μm以上であることがより好ましく、5μm以下であることが好ましく、4μm以下であることがより好ましい。
 平均厚みAが上記範囲内であれば、導電性熱膨張材料含有部中に導電性熱膨張材料が効果的に配置され、電気化学素子の安全性を向上できる。なお、上記範囲の平均厚みAを有する導電性熱膨張材料は、鱗片状粒子と称することができる。
The average thickness (average thickness A) of the conductive thermal expansion material in the conductive thermal expansion material-containing portion is preferably 0.2 μm or more, more preferably 0.5 μm or more, and is preferably 5 μm or less, more preferably 4 μm or less.
If the average thickness A is within the above range, the conductive thermal expansion material is effectively disposed in the conductive thermal expansion material-containing portion, and the safety of the electrochemical element can be improved. Note that the conductive thermal expansion material having the average thickness A in the above range can be called a scaly particle.
 導電性熱膨張材料含有部中の導電性熱膨張材料の含有割合は、導電性熱膨張材料含有部中の全固形分を100質量%とした場合に、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることが更に好ましく、95質量%以下であることが好ましく、90質量%以下であることがより好ましく、85質量%以下であることが更に好ましい。 The content of the conductive thermal expansion material in the conductive thermal expansion material-containing portion is preferably 50% by mass or more, more preferably 60% by mass or more, and even more preferably 70% by mass or more, and is preferably 95% by mass or less, more preferably 90% by mass or less, and even more preferably 85% by mass or less, assuming that the total solid content in the conductive thermal expansion material-containing portion is 100% by mass.
<<導電助剤>>
 導電性熱膨張材料含有部は導電性熱膨張材料の他に、導電助剤を更に含むことが好ましい。導電助剤は、導電性熱膨張材料含有部中で導電パスを形成し、集電体と電極合材層の間の導通を効果的に確保し得る成分である。従って、導電性熱膨張材料含有部が導電助剤を更に含めば、電気化学素子により優れたサイクル特性を付与できる。
<<Conductive assistant>>
The conductive thermal expansion material-containing portion preferably further contains a conductive assistant in addition to the conductive thermal expansion material. The conductive assistant is a component that forms a conductive path in the conductive thermal expansion material-containing portion and can effectively ensure conduction between the current collector and the electrode mixture layer. Therefore, if the conductive thermal expansion material-containing portion further contains a conductive assistant, the electrochemical element can be provided with better cycle characteristics.
 導電助剤は、導電性を有し、且つ、導電性熱膨張材料と同様の方法で測定した熱膨張率が2倍未満のものであれば特に限定されるものではない。
 ここで、導電助剤としては、例えば、導電性炭素材料、及び、各種金属のファイバー又は箔等を用いることができるが、導電性炭素材料が好ましい。導電性炭素材料としては、カーボンブラック(例えば、アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラック等)、単層又は多層カーボンナノチューブ(多層カーボンナノチューブにはカップスタック型が含まれる)、カーボンナノホーン、気相成長炭素繊維、ポリマー繊維を焼成後に破砕して得られるミルドカーボン繊維、単層又は多層グラフェン、ポリマー繊維からなる不織布を焼成して得られるカーボン不織布シート等が挙げられる。これらの中でも、導電助剤としては、カーボンブラックを用いることが好ましく、アセチレンブラックを用いることがより好ましい。なお、導電助剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
The conductive assistant is not particularly limited as long as it has electrical conductivity and has a thermal expansion coefficient less than twice that of the conductive thermal expansion material, measured by the same method.
Here, as the conductive assistant, for example, a conductive carbon material and fibers or foils of various metals can be used, but a conductive carbon material is preferred. Examples of the conductive carbon material include carbon black (e.g., acetylene black, Ketjen Black (registered trademark), furnace black, etc.), single-layer or multi-layer carbon nanotubes (multi-layer carbon nanotubes include cup-stack type), carbon nanohorns, vapor-grown carbon fibers, milled carbon fibers obtained by crushing polymer fibers after baking, single-layer or multi-layer graphene, and carbon nonwoven fabric sheets obtained by baking nonwoven fabric made of polymer fibers. Among these, it is preferable to use carbon black as the conductive assistant, and it is more preferable to use acetylene black. Note that one type of conductive assistant may be used alone, or two or more types may be used in combination at any ratio.
 導電性熱膨張材料含有部中の導電助剤の含有割合は、導電性熱膨張材料含有部中の全固形分を100質量%とした場合に、0.5質量%以上であることが好ましく、1質量%以上であることがより好ましく、5質量%以上であることが更に好ましく、60質量%以下であることが好ましく、40質量%以下であることがより好ましく、20質量%以下であることが更に好ましく、15質量%以下であることが更により好ましい。
 導電性熱膨張材料含有部中の導電助剤の含有割合が上記下限以上であれば、集電体と電極合材層の間の導通を十分に確保して、電気化学素子のサイクル特性を向上できる。
 一方、導電性熱膨張材料含有部中の導電助剤の含有割合が上記上限以下であれば、電気化学素子の安全性を向上できる。
The content of the conductive assistant in the conductive thermal expansion material-containing portion is preferably 0.5% by mass or more, more preferably 1% by mass or more, and even more preferably 5% by mass or more, and is preferably 60% by mass or less, more preferably 40% by mass or less, even more preferably 20% by mass or less, and even more preferably 15% by mass or less, when the total solid content in the conductive thermal expansion material-containing portion is 100% by mass.
When the content of the conductive assistant in the conductive thermal expansion material-containing portion is equal to or higher than the above lower limit, electrical continuity between the current collector and the electrode mixture layer can be sufficiently ensured, and the cycle characteristics of the electrochemical element can be improved.
On the other hand, if the content of the conductive assistant in the conductive thermal expansion material-containing portion is equal to or less than the above upper limit, the safety of the electrochemical element can be improved.
 導電性熱膨張材料含有部中の導電性熱膨張材料に対する導電助剤の質量比(導電助剤の含有量/導電性熱膨張材料の含有量)は、0.01以上であることが好ましく、0.05以上であることがより好ましく、0.5以下であることが好ましく、0.3以下であることがより好ましく、0.15以下であることが更に好ましい。
 導電性熱膨張材料含有部中の導電性熱膨張材料に対する導電助剤の質量比が上記下限以上であれば、集電体と電極合材層の間の導通を十分に確保して、電気化学素子のサイクル特性を向上できる。
 一方、導電性熱膨張材料含有部中の導電性熱膨張材料に対する導電助剤の質量比が上記上限以下であれば、電気化学素子の安全性を向上できる。
The mass ratio of the conductive assistant to the conductive thermal expansion material in the conductive thermal expansion material-containing portion (conductive assistant content/conductive thermal expansion material content) is preferably 0.01 or more, more preferably 0.05 or more, and is preferably 0.5 or less, more preferably 0.3 or less, and even more preferably 0.15 or less.
When the mass ratio of the conductive assistant to the conductive thermal expansion material in the conductive thermal expansion material-containing portion is equal to or greater than the above lower limit, electrical continuity between the current collector and the electrode mixture layer can be sufficiently ensured, thereby improving the cycle characteristics of the electrochemical element.
On the other hand, if the mass ratio of the conductive assistant to the conductive thermal expansion material in the conductive thermal expansion material-containing portion is equal to or less than the above upper limit, the safety of the electrochemical element can be improved.
<<結着材>>
 導電性熱膨張材料含有部は導電性熱膨張材料の他に、結着材を更に含むことが好ましい。結着材は、導電性熱膨張材料が導電性熱膨張材料含有部から脱離することを抑制し得る成分である。従って、導電性熱膨張材料含有部が結着材を更に含めば、電気化学素子のサイクル特性を向上できる。
<<Binding material>>
The conductive thermal expansion material-containing portion preferably further contains a binder in addition to the conductive thermal expansion material. The binder is a component that can suppress the conductive thermal expansion material from being detached from the conductive thermal expansion material-containing portion. Therefore, if the conductive thermal expansion material-containing portion further contains a binder, the cycle characteristics of the electrochemical element can be improved.
[結着材の種類]
 結着材としては、電気化学素子内において使用可能なものであれば特に限定されない。例えば、結着材としては、結着性を発現し得る単量体を含む単量体組成物を重合して得られる重合体(合成高分子、例えば、付加重合して得られる付加重合体)を用いることができる。このような重合体としては、脂肪族共役ジエン/芳香族ビニル系共重合体(脂肪族共役ジエン単量体単位及び芳香族ビニル単量体単位を主として含む重合体)、アクリル系重合体((メタ)アクリル酸エステル単量体単位を含む重合体)、フッ素系重合体(フッ素含有単量体単位を主として含む重合体)、アクリル酸/アクリルアミド系共重合体((メタ)アクリル酸単位及び(メタ)アクリルアミド単位を主として含む重合体)、アクリロニトリル系重合体((メタ)アクリロニトリル単位を主として含む重合体)等が挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。そしてこれらの中でも、脂肪族共役ジエン/芳香族ビニル系共重合体、アクリル系重合体、アクリル酸/アクリルアミド系共重合体、フッ素系重合体が好ましい。
 ここで、脂肪族共役ジエン/芳香族ビニル系共重合体の脂肪族共役ジエン単量体単位を形成し得る脂肪族共役ジエン単量体、脂肪族共役ジエン/芳香族ビニル系共重合体の芳香族ビニル単量体単位を形成し得る芳香族ビニル単量体、アクリル系重合体の(メタ)アクリル酸エステル単量体単位を形成し得る(メタ)アクリル酸エステル単量体、フッ素系重合体のフッ素含有単量体単位を形成し得るフッ素含有単量体は、既知のものを使用することができる。
 なお、本明細書において、「単量体単位を含む」とは、「その単量体を用いて得た重合体中に単量体由来の繰り返し単位が含まれている」ことを意味する。
 また、本明細書において、1種又は複数種の単量体単位を「主として含む」とは、「重合体に含有される全単量体単位の量を100質量%とした場合に、当該1種の単量体単位の含有割合、又は当該複数種の単量体単位の含有割合の合計が50質量%を超える」ことを意味する。
 そして、本明細書において、(メタ)アクリルとは、アクリル及び/又はメタクリルを意味し、(メタ)アクリロとは、アクリロ及び/又はメタクリロを意味する。
[Type of binder]
The binder is not particularly limited as long as it can be used in an electrochemical element. For example, a polymer (synthetic polymer, for example, an addition polymer obtained by addition polymerization) obtained by polymerizing a monomer composition containing a monomer capable of exhibiting binding properties can be used as the binder. Examples of such polymers include aliphatic conjugated diene/aromatic vinyl copolymers (polymers mainly containing aliphatic conjugated diene monomer units and aromatic vinyl monomer units), acrylic polymers (polymers containing (meth)acrylic acid ester monomer units), fluorine-based polymers (polymers mainly containing fluorine-containing monomer units), acrylic acid/acrylamide copolymers (polymers mainly containing (meth)acrylic acid units and (meth)acrylamide units), acrylonitrile polymers (polymers mainly containing (meth)acrylonitrile units), and the like. These may be used alone or in combination of two or more types at any ratio. Among these, aliphatic conjugated diene/aromatic vinyl copolymers, acrylic polymers, acrylic acid/acrylamide copolymers, and fluorine-based polymers are preferred.
Here, the aliphatic conjugated diene monomer capable of forming the aliphatic conjugated diene monomer unit of the aliphatic conjugated diene/aromatic vinyl copolymer, the aromatic vinyl monomer capable of forming the aromatic vinyl monomer unit of the aliphatic conjugated diene/aromatic vinyl copolymer, the (meth)acrylic acid ester monomer capable of forming the (meth)acrylic acid ester monomer unit of the acrylic polymer, and the fluorine-containing monomer capable of forming the fluorine-containing monomer unit of the fluorine-containing polymer may be any known one.
In this specification, "containing a monomer unit" means that "a polymer obtained by using the monomer contains a repeating unit derived from the monomer".
In addition, in this specification, "mainly containing" one or more types of monomer units means that "when the amount of all monomer units contained in the polymer is taken as 100 mass%, the content of that one type of monomer unit or the total content of the multiple types of monomer units exceeds 50 mass%."
In this specification, (meth)acrylic means acrylic and/or methacrylic, and (meth)acrylo means acrylo and/or methacrylo.
[結着材の官能基]
 結着材としての重合体に含まれ得る官能基としては、特に制限はなく、例えば、カルボキシル基、ヒドロキシル基、シアノ基、アミノ基、エポキシ基、オキサゾリン基、イソシアネート基、スルホン酸基(以下、これらの官能基を纏めて「特定官能基」と称する場合がある。)等が挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。これらの中でも、カルボキシル基、ヒドロキシル基、シアノ基、アミノ基、スルホン酸基が好ましい。
[Functional Group of Binder]
The functional groups that can be contained in the polymer as a binder are not particularly limited, and examples thereof include carboxyl groups, hydroxyl groups, cyano groups, amino groups, epoxy groups, oxazoline groups, isocyanate groups, and sulfonic acid groups (hereinafter, these functional groups may be collectively referred to as "specific functional groups"). One type of these may be used alone, or two or more types may be used in combination at any ratio. Among these, carboxyl groups, hydroxyl groups, cyano groups, amino groups, and sulfonic acid groups are preferred.
 結着材としての重合体に上述した特定官能基を導入する方法は特に限定されず、上述した特定官能基を含有する単量体(特定官能基含有単量体)を用いて重合体を調製し、特定官能基含有単量体単位を含む重合体を得てもよいし、任意の重合体を末端変性することにより、上述した特定官能基を末端に有する重合体を得てもよいが、前者が好ましい。即ち、結着材としての重合体は、特定官能基含有単量体単位として、カルボキシル基含有単量体単位、ヒドロキシル基含有単量体単位、シアノ基含有単量体単位、アミノ基含有単量体単位、エポキシ基含有単量体単位、オキサゾリン基含有単量体単位、イソシアネート基含有単量体単位、及びスルホン酸基含有単量体単位の少なくとも何れかを含み、カルボキシル基含有単量体単位、ヒドロキシル基含有単量体単位、シアノ基含有単量体単位、アミノ基含有単量体単位、及びスルホン酸基含有単量体単位の少なくとも何れかを含むことが好ましい。 The method of introducing the specific functional group into the polymer as the binder is not particularly limited. A polymer may be prepared using a monomer containing the specific functional group (specific functional group-containing monomer) to obtain a polymer containing a specific functional group-containing monomer unit, or an arbitrary polymer may be modified at its terminal to obtain a polymer having the specific functional group at its terminal, but the former is preferred. That is, the polymer as the binder contains at least one of a carboxyl group-containing monomer unit, a hydroxyl group-containing monomer unit, a cyano group-containing monomer unit, an amino group-containing monomer unit, an epoxy group-containing monomer unit, an oxazoline group-containing monomer unit, an isocyanate group-containing monomer unit, and a sulfonic acid group-containing monomer unit as the specific functional group-containing monomer unit, and preferably contains at least one of a carboxyl group-containing monomer unit, a hydroxyl group-containing monomer unit, a cyano group-containing monomer unit, an amino group-containing monomer unit, and a sulfonic acid group-containing monomer unit.
 カルボキシル基含有単量体単位を形成し得るカルボキシル基含有単量体としては、モノカルボン酸及びその誘導体や、ジカルボン酸及びその酸無水物並びにそれらの誘導体等が挙げられる。
 モノカルボン酸としては、アクリル酸、メタクリル酸、クロトン酸等が挙げられる。
 モノカルボン酸誘導体としては、2-エチルアクリル酸、イソクロトン酸、α-アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸等が挙げられる。
 ジカルボン酸としては、マレイン酸、フマル酸、イタコン酸等が挙げられる。
 ジカルボン酸誘導体としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸や、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキル等のマレイン酸モノエステルが挙げられる。
 ジカルボン酸の酸無水物としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸等が挙げられる。
 また、カルボキシル基含有単量体としては、加水分解によりカルボキシル基を生成する酸無水物も使用できる。中でも、カルボキシル基含有単量体としては、アクリル酸及びメタクリル酸が好ましい。なお、カルボキシル基含有単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
Examples of the carboxyl group-containing monomer capable of forming the carboxyl group-containing monomer unit include monocarboxylic acids and derivatives thereof, dicarboxylic acids and acid anhydrides thereof, and derivatives thereof.
Examples of the monocarboxylic acid include acrylic acid, methacrylic acid, and crotonic acid.
Examples of the monocarboxylic acid derivatives include 2-ethylacrylic acid, isocrotonic acid, α-acetoxyacrylic acid, β-trans-aryloxyacrylic acid, α-chloro-β-E-methoxyacrylic acid, and the like.
The dicarboxylic acid includes maleic acid, fumaric acid, itaconic acid, and the like.
Examples of dicarboxylic acid derivatives include methylmaleic acid, dimethylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid, and maleic acid monoesters such as nonyl maleate, decyl maleate, dodecyl maleate, octadecyl maleate, and fluoroalkyl maleate.
Examples of the acid anhydrides of dicarboxylic acids include maleic anhydride, acrylic anhydride, methylmaleic anhydride, and dimethylmaleic anhydride.
In addition, as the carboxyl group-containing monomer, an acid anhydride that generates a carboxyl group by hydrolysis can also be used. Among them, as the carboxyl group-containing monomer, acrylic acid and methacrylic acid are preferable. In addition, as the carboxyl group-containing monomer, one type may be used alone, or two or more types may be used in combination at any ratio.
 ヒドロキシル基含有単量体単位を形成し得るヒドロキシル基含有単量体としては、(メタ)アリルアルコール、3-ブテン-1-オール、5-ヘキセン-1-オール等のエチレン性不飽和アルコール;アクリル酸-2-ヒドロキシエチル、アクリル酸-2-ヒドロキシプロピル、メタクリル酸-2-ヒドロキシエチル、メタクリル酸-2-ヒドロキシプロピル、マレイン酸ジ-2-ヒドロキシエチル、マレイン酸ジ-4-ヒドロキシブチル、イタコン酸ジ-2-ヒドロキシプロピル等のエチレン性不飽和カルボン酸のアルカノールエステル類;一般式:CH=CR-COO-(C2qO)-H(式中、pは2~9の整数、qは2~4の整数、Rは水素原子又はメチル基を表す)で表されるポリアルキレングリコールと(メタ)アクリル酸とのエステル類;2-ヒドロキシエチル-2’-(メタ)アクリロイルオキシフタレート、2-ヒドロキシエチル-2’-(メタ)アクリロイルオキシサクシネート等のジカルボン酸のジヒドロキシエステルのモノ(メタ)アクリル酸エステル類;2-ヒドロキシエチルビニルエーテル、2-ヒドロキシプロピルビニルエーテル等のビニルエーテル類;(メタ)アリル-2-ヒドロキシエチルエーテル、(メタ)アリル-2-ヒドロキシプロピルエーテル、(メタ)アリル-3-ヒドロキシプロピルエーテル、(メタ)アリル-2-ヒドロキシブチルエーテル、(メタ)アリル-3-ヒドロキシブチルエーテル、(メタ)アリル-4-ヒドロキシブチルエーテル、(メタ)アリル-6-ヒドロキシヘキシルエーテル等のアルキレングリコールのモノ(メタ)アリルエーテル類;ジエチレングリコールモノ(メタ)アリルエーテル、ジプロピレングリコールモノ(メタ)アリルエーテル等のポリオキシアルキレングリコールモノ(メタ)アリルエーテル類;グリセリンモノ(メタ)アリルエーテル、(メタ)アリル-2-クロロ-3-ヒドロキシプロピルエーテル、(メタ)アリル-2-ヒドロキシ-3-クロロプロピルエーテル等の、(ポリ)アルキレングリコールのハロゲン及びヒドロキシ置換体のモノ(メタ)アリルエーテル;オイゲノール、イソオイゲノール等の多価フェノールのモノ(メタ)アリルエーテル及びそのハロゲン置換体;(メタ)アリル-2-ヒドロキシエチルチオエーテル、(メタ)アリル-2-ヒドロキシプロピルチオエーテル等のアルキレングリコールの(メタ)アリルチオエーテル類;N-ヒドロキシメチルアクリルアミド(N-メチロールアクリルアミド)、N-ヒドロキシメチルメタクリルアミド、N-ヒドロキシエチルアクリルアミド、N-ヒドロキシエチルメタクリルアミド等のヒドロキシル基を有するアミド類等が挙げられる。なお、ヒドロキシル基含有単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 なお、本発明において、「(メタ)アリル」とは、アリル及び/又はメタリルを意味し、「(メタ)アクリロイル」とは、アクリロイル及び/又はメタクリロイルを意味する。
Examples of hydroxyl group-containing monomers capable of forming the hydroxyl group-containing monomer unit include ethylenically unsaturated alcohols such as (meth)allyl alcohol, 3-buten-1-ol, and 5-hexen-1-ol; alkanol esters of ethylenically unsaturated carboxylic acids such as 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, di-2-hydroxyethyl maleate, di-4-hydroxybutyl maleate, and di-2-hydroxypropyl itaconate; and esters of ethylenically unsaturated carboxylic acids represented by the general formula: CH 2 ═CR a -COO-(C q H 2q O) p -H (wherein p is an integer of 2 to 9, q is an integer of 2 to 4, and R a represents a hydrogen atom or a methyl group) and (meth)acrylic acid esters; mono(meth)acrylic acid esters of dihydroxy esters of dicarboxylic acids such as 2-hydroxyethyl-2'-(meth)acryloyloxyphthalate and 2-hydroxyethyl-2'-(meth)acryloyloxysuccinate; vinyl ethers such as 2-hydroxyethyl vinyl ether and 2-hydroxypropyl vinyl ether; mono(meth)allyl ethers of alkylene glycols such as (meth)allyl-2-hydroxyethyl ether, (meth)allyl-2-hydroxypropyl ether, (meth)allyl-3-hydroxypropyl ether, (meth)allyl-2-hydroxybutyl ether, (meth)allyl-3-hydroxybutyl ether, (meth)allyl-4-hydroxybutyl ether, and (meth)allyl-6-hydroxyhexyl ether; diethylene glycol mono(meth)allyl ether, dipropylene glycol Examples of the hydroxyl group-containing monomer include polyoxyalkylene glycol mono(meth)allyl ethers such as pyrene glycol mono(meth)allyl ether; mono(meth)allyl ethers of halogen- and hydroxy-substituted (poly)alkylene glycols such as glycerin mono(meth)allyl ether, (meth)allyl-2-chloro-3-hydroxypropyl ether, and (meth)allyl-2-hydroxy-3-chloropropyl ether; mono(meth)allyl ethers of polyhydric phenols such as eugenol and isoeugenol and halogen-substituted derivatives thereof; (meth)allyl thioethers of alkylene glycols such as (meth)allyl-2-hydroxyethyl thioether and (meth)allyl-2-hydroxypropyl thioether; and amides having a hydroxyl group such as N-hydroxymethylacrylamide (N-methylolacrylamide), N-hydroxymethylmethacrylamide, N-hydroxyethylacrylamide, and N-hydroxyethylmethacrylamide. The hydroxyl group-containing monomer may be used alone or in combination of two or more kinds in any ratio.
In the present invention, "(meth)allyl" means allyl and/or methallyl, and "(meth)acryloyl" means acryloyl and/or methacryloyl.
 シアノ基含有単量体単位を形成し得るシアノ基含有単量体としては、α,β-エチレン性不飽和ニトリル単量体が挙げられる。具体的には、α,β-エチレン性不飽和ニトリル単量体としては、シアノ基を有するα,β-エチレン性不飽和化合物であれば特に限定されないが、例えば、アクリロニトリル;α-クロロアクリロニトリル、α-ブロモアクリロニトリル等のα-ハロゲノアクリロニトリル;メタクリロニトリル、α-エチルアクリロニトリル等のα-アルキルアクリロニトリル;等が挙げられる。なお、シアノ基含有単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Cyano group-containing monomers capable of forming cyano group-containing monomer units include α,β-ethylenically unsaturated nitrile monomers. Specifically, the α,β-ethylenically unsaturated nitrile monomer is not particularly limited as long as it is an α,β-ethylenically unsaturated compound having a cyano group, but examples include acrylonitrile; α-halogenoacrylonitriles such as α-chloroacrylonitrile and α-bromoacrylonitrile; α-alkylacrylonitriles such as methacrylonitrile and α-ethylacrylonitrile; and the like. The cyano group-containing monomers may be used alone or in combination of two or more types in any ratio.
 アミノ基含有単量体単位を形成し得るアミノ基含有単量体としては、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、アミノエチルビニルエーテル、ジメチルアミノエチルビニルエーテル等が挙げられる。なお、アミノ基含有単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 なお、本発明において、「(メタ)アクリレート」とは、アクリレート及び/又はメタクリレートを意味する。
Examples of amino group-containing monomers capable of forming amino group-containing monomer units include dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, aminoethyl vinyl ether, dimethylaminoethyl vinyl ether, etc. The amino group-containing monomers may be used alone or in combination of two or more kinds in any ratio.
In the present invention, the term "(meth)acrylate" means acrylate and/or methacrylate.
 エポキシ基含有単量体単位を形成し得るエポキシ基含有単量体としては、炭素-炭素二重結合及びエポキシ基を含有する単量体が挙げられる。
 炭素-炭素二重結合及びエポキシ基を含有する単量体としては、例えば、ビニルグリシジルエーテル、アリルグリシジルエーテル、ブテニルグリシジルエーテル、o-アリルフェニルグリシジルエーテル等の不飽和グリシジルエーテル;ブタジエンモノエポキシド、クロロプレンモノエポキシド、4,5-エポキシ-2-ペンテン、3,4-エポキシ-1-ビニルシクロヘキセン、1,2-エポキシ-5,9-シクロドデカジエン等のジエン又はポリエンのモノエポキシド;3,4-エポキシ-1-ブテン、1,2-エポキシ-5-ヘキセン、1,2-エポキシ-9-デセン等のアルケニルエポキシド;グリシジルアクリレート、グリシジルメタクリレート、グリシジルクロトネート、グリシジル-4-ヘプテノエート、グリシジルソルベート、グリシジルリノレート、グリシジル-4-メチル-3-ペンテノエート、3-シクロヘキセンカルボン酸のグリシジルエステル、4-メチル-3-シクロヘキセンカルボン酸のグリシジルエステル等の、不飽和カルボン酸のグリシジルエステル類;が挙げられる。なお、エポキシ基含有単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
The epoxy group-containing monomer capable of forming the epoxy group-containing monomer unit includes a monomer containing a carbon-carbon double bond and an epoxy group.
Examples of monomers containing a carbon-carbon double bond and an epoxy group include unsaturated glycidyl ethers such as vinyl glycidyl ether, allyl glycidyl ether, butenyl glycidyl ether, and o-allylphenyl glycidyl ether; monoepoxides of dienes or polyenes such as butadiene monoepoxide, chloroprene monoepoxide, 4,5-epoxy-2-pentene, 3,4-epoxy-1-vinylcyclohexene, and 1,2-epoxy-5,9-cyclododecadiene; 3,4-epoxy-1-butene alkenyl epoxides such as 1,2-epoxy-5-hexene, 1,2-epoxy-9-decene, etc.; glycidyl acrylate, glycidyl methacrylate, glycidyl crotonate, glycidyl-4-heptenoate, glycidyl sorbate, glycidyl linoleate, glycidyl-4-methyl-3-pentenoate, glycidyl ester of 3-cyclohexene carboxylic acid, glycidyl ester of 4-methyl-3-cyclohexene carboxylic acid, etc. The epoxy group-containing monomer may be used alone or in combination of two or more kinds in any ratio.
 オキサゾリン基含有単量体単位を形成し得るオキサゾリン基含有単量体としては、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-メチル-2-オキサゾリン、2-イソプロペニル-5-エチル-2-オキサゾリン等が挙げられる。なお、オキサゾリン基含有単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of oxazoline group-containing monomers capable of forming oxazoline group-containing monomer units include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-methyl-2-oxazoline, and 2-isopropenyl-5-ethyl-2-oxazoline. The oxazoline group-containing monomers may be used alone or in combination of two or more in any ratio.
 イソシアネート基含有単量体単位を形成し得るイソシアネート基含有単量体としては、2-イソシアナトエチルメタクリレート、2-イソシアナトエチルアクリラート、メタクリル酸2-(0-[1’-メチルプロピリデンアミノ]カルボキシアミノ)エチル、2-[(3,5-ジメチルピラゾリル)カルボニルアミノ]エチルメタクリレート、1,1-(ビスアクリロイルオキシメチル)エチルイソシアネート等が挙げられる。なお、イソシアネート基含有単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of isocyanate group-containing monomers that can form isocyanate group-containing monomer units include 2-isocyanatoethyl methacrylate, 2-isocyanatoethyl acrylate, 2-(0-[1'-methylpropylideneamino]carboxyamino)ethyl methacrylate, 2-[(3,5-dimethylpyrazolyl)carbonylamino]ethyl methacrylate, and 1,1-(bisacryloyloxymethyl)ethyl isocyanate. Note that one type of isocyanate group-containing monomer may be used alone, or two or more types may be used in combination in any ratio.
 スルホン酸基含有単量体単位を形成し得るスルホン酸基含有単量体としては、ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アリルスルホン酸、スチレンスルホン酸、(メタ)アクリル酸-2-スルホン酸エチル、2-アクリルアミド-2-メチルプロパンスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸等が挙げられる。なお、スルホン酸基含有単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Sulfonic acid group-containing monomers that can form sulfonic acid group-containing monomer units include vinyl sulfonic acid, methyl vinyl sulfonic acid, (meth)allyl sulfonic acid, styrene sulfonic acid, (meth)acrylic acid-2-ethyl sulfonate, 2-acrylamido-2-methylpropanesulfonic acid, 3-allyloxy-2-hydroxypropanesulfonic acid, etc. The sulfonic acid group-containing monomers may be used alone or in combination of two or more types in any ratio.
 結着材としての重合体に含有される全単量体単位の量を100質量%とした場合の重合体における特定官能基含有単量体単位の含有割合は、0.3質量%以上であることが好ましく、0.5質量%以上であることがより好ましく、20質量%以下であることが好ましく、10質量%以下であることがより好ましい。結着材としての重合体中の特定官能基含有単量体単位の含有割合が上記範囲内であれば、電極合材層と集電体との接着性、及び電気化学素子のサイクル特性を向上できる。 When the amount of all monomer units contained in the polymer as a binder is taken as 100 mass%, the content of the specific functional group-containing monomer unit in the polymer is preferably 0.3 mass% or more, more preferably 0.5 mass% or more, preferably 20 mass% or less, and more preferably 10 mass% or less. If the content of the specific functional group-containing monomer unit in the polymer as a binder is within the above range, the adhesion between the electrode mixture layer and the current collector, and the cycle characteristics of the electrochemical element can be improved.
[結着材の調製方法]
 結着材としての重合体の調製方法は特に限定されない。結着材としての重合体は、例えば、上述した単量体を含む単量体組成物を水系溶媒中で重合することにより製造される。なお、単量体組成物中の各単量体の含有割合は、重合体中の所望の単量体単位(繰り返し単位)の含有割合に準じて定めることができる。
[Method of preparing binder]
The method for preparing the polymer as the binder is not particularly limited. The polymer as the binder is produced, for example, by polymerizing a monomer composition containing the above-mentioned monomers in an aqueous solvent. The content ratio of each monomer in the monomer composition can be determined according to the content ratio of a desired monomer unit (repeating unit) in the polymer.
 なお、重合様式は、特に制限なく、溶液重合法、懸濁重合法、塊状重合法、乳化重合法等のいずれの方法も用いることができる。また、重合反応としては、イオン重合、ラジカル重合、リビングラジカル重合、各種縮合重合、付加重合等いずれの反応も用いることができる。そして、重合に際しては、必要に応じて既知の乳化剤や重合開始剤を使用できる。 The polymerization method is not particularly limited, and any of the following methods can be used: solution polymerization, suspension polymerization, bulk polymerization, emulsion polymerization, etc. The polymerization reaction can be any of the following reactions: ionic polymerization, radical polymerization, living radical polymerization, various condensation polymerizations, addition polymerization, etc. In addition, known emulsifiers and polymerization initiators can be used during polymerization, if necessary.
[結着材の含有割合]
 導電性熱膨張材料含有部中の結着材の含有割合は、導電性熱膨張材料含有部中の全固形分を100質量%とした場合に、0.5質量%以上であることが好ましく、1質量%以上であることがより好ましく、2質量%以上であることが更に好ましく、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、3質量%以下であることが更に好ましい。
 導電性熱膨張材料含有部中の結着材の含有割合が上記範囲内であれば、電気化学素子のサイクル特性をより向上できる。
[Binder content]
The content of the binder in the conductive thermal expansion material-containing portion is preferably 0.5% by mass or more, more preferably 1% by mass or more, and even more preferably 2% by mass or more, and is preferably 10% by mass or less, more preferably 5% by mass or less, and even more preferably 3% by mass or less, when the total solid content in the conductive thermal expansion material-containing portion is 100% by mass.
When the content of the binder in the conductive thermally expandable material-containing portion is within the above range, the cycle characteristics of the electrochemical element can be further improved.
<<その他の成分>>
 導電性熱膨張材料含有部に任意に含まれるその他の成分としては、特に限定されない。導電性熱膨張材料含有部は、例えば、分散剤等を含んでいてもよい。分散剤は、導電性熱膨張材料等の分散性向上のために配合される成分である。分散剤としては、例えば、ポリビニルピロリドン及びポリビニルブチラール等のノニオン系分散剤や、β-ナフタレンスルホン酸ホルマリン縮合物の金属塩、カルボキシメチルセルロース等が挙げられる。
 また、導電性熱膨張材料含有部は、電気化学素子の安全性向上の観点から、リン系化合物やシリコーン系化合物等の難燃剤を含有してもよい。なお、上述した難燃剤の含有量は、結着材100質量部当たり、例えば30質量部以下であり、15質量部以下でもよい。
 これらのその他の成分は、1種類を単独で使用してもよいし、2種類以上を組み合わせて用いてもよい。また、導電性熱膨張材料含有部が電極合材層の一部を構成する場合、導電性熱膨張材料含有部は、電極活物質を含んでいてもよい。
<<Other ingredients>>
Other components optionally contained in the conductive thermal expansion material-containing portion are not particularly limited. The conductive thermal expansion material-containing portion may contain, for example, a dispersant. The dispersant is a component that is blended to improve the dispersibility of the conductive thermal expansion material, etc. Examples of dispersants include nonionic dispersants such as polyvinylpyrrolidone and polyvinyl butyral, metal salts of β-naphthalenesulfonic acid-formalin condensates, and carboxymethyl cellulose.
From the viewpoint of improving the safety of the electrochemical element, the conductive thermal expansion material-containing portion may contain a flame retardant such as a phosphorus-based compound or a silicone-based compound. The content of the flame retardant is, for example, 30 parts by mass or less, or may be 15 parts by mass or less per 100 parts by mass of the binder.
These other components may be used alone or in combination of two or more. In addition, when the conductive thermal expansion material-containing portion constitutes a part of the electrode mixture layer, the conductive thermal expansion material-containing portion may contain an electrode active material.
<<導電性熱膨張材料含有部の厚み>>
 導電性熱膨張材料含有部の厚みは、本発明の目的を損なわない範囲であれば特に限定されるものではないが、1μm以上であることが好ましく、3μm以上であることがより好ましく、10μm以下であることが好ましく、7μm以下であることがより好ましい。
<<Thickness of conductive thermal expansion material-containing portion>>
The thickness of the conductive thermal expansion material-containing portion is not particularly limited as long as it does not impair the object of the present invention, but is preferably 1 μm or more, more preferably 3 μm or more, and is preferably 10 μm or less, and more preferably 7 μm or less.
<電極合材層>
 電極合材層としては、特に限定されることなく、例えば、電極活物質と、電極合材層用結着材を含む電極合材層を、電気化学素子の種類に応じて選択して用いることができる。例えば、リチウム二次電池用電極の電極合材層中の電極活物質(正極活物質、負極活物質)及び電極合材層用結着材(正極合材層用結着材、負極合材層用結着材)には、例えば、特開2013-145763号公報等に記載された既知のものを用いることができる。
<Electrode mixture layer>
The electrode mixture layer is not particularly limited, and for example, an electrode mixture layer containing an electrode active material and an electrode mixture layer binder can be selected and used according to the type of electrochemical element. For example, the electrode active material (positive electrode active material, negative electrode active material) and the electrode mixture layer binder (positive electrode mixture layer binder, negative electrode mixture layer binder) in the electrode mixture layer of the lithium secondary battery electrode can be known ones described in, for example, JP 2013-145763 A.
 ここで、本発明の電極用部材において、導電性熱膨張材料含有部中の導電性熱膨張材料の熱膨張率は、電極合材層中の電極活物質の熱膨張率の5倍以上であることが好ましい。このような電極用部材であれば、電気化学素子の電極構造が効果的に破壊され、電気化学素子の安全性を向上できる。
 本明細書において、電極活物質の熱膨張率は、導電性熱膨張材料と同様の方法で測定できる。
In the electrode member of the present invention, the thermal expansion coefficient of the conductive thermal expansion material in the conductive thermal expansion material-containing portion is preferably 5 times or more the thermal expansion coefficient of the electrode active material in the electrode mixture layer. With such an electrode member, the electrode structure of the electrochemical element can be effectively destroyed, and the safety of the electrochemical element can be improved.
In this specification, the thermal expansion coefficient of the electrode active material can be measured in the same manner as that of the conductive thermal expansion material.
<その他の層>
 その他の層は、例えば、集電体と導電性熱膨張材料含有部との間に位置していてもよい。集電体と導電性熱膨張材料含有部との間に位置しているその他の層は、特に限定されないが、通常、導電性熱膨張材料を含まない層であり、例えば、導電助剤及び結着材を含む接着層等が挙げられる。
<Other demographics>
The other layer may be located, for example, between the current collector and the conductive thermal expansion material-containing portion. The other layer located between the current collector and the conductive thermal expansion material-containing portion is not particularly limited, but is usually a layer that does not contain a conductive thermal expansion material, for example, an adhesive layer that contains a conductive assistant and a binder.
 本発明の電極用部材が電極合材層を備える場合、電極合材層上には、その他の層として、耐熱性向上を目的として設けられる既知の多孔膜層や、セパレータ等との接着性向上を目的として設けられる既知の接着層が設けられていてもよい。 When the electrode member of the present invention has an electrode mixture layer, other layers may be provided on the electrode mixture layer, such as a known porous membrane layer provided for the purpose of improving heat resistance, or a known adhesive layer provided for the purpose of improving adhesion to a separator, etc.
<電気化学素子電極用部材の好ましい実施形態>
 一実施形態において、電極用部材は、導電性熱膨張材料含有部の集電体側配設面に対する導電性熱膨張材料の被覆率が30%以上であり、該被覆率と平均粒子径Aとの積が1500以上であることが好ましい。
 被覆率が上記下限以上であり、積が上記下限以上であれば、電気化学素子の安全性を向上できる。
<Preferred embodiment of electrochemical element electrode member>
In one embodiment, it is preferable that the coverage of the conductive thermal expansion material on the collector side surface of the conductive thermal expansion material-containing portion of the electrode member is 30% or more, and the product of the coverage and the average particle size A is 1,500 or more.
If the coverage is equal to or greater than the above lower limit and the product is equal to or greater than the above lower limit, the safety of the electrochemical device can be improved.
 別の実施形態において、電極用部材は、導電性熱膨張材料含有部の集電体側配設面に対する導電性熱膨張材料の被覆率が95%以下であり、平均粒子径Aが20μm以上160μm以下であり、該被覆率と平均粒子径Aとの積が9500以下であることが好ましい。
 被覆率が上記上限以下であり、平均粒子径Aが上記範囲内であり、積が上記上限以下であれば、電気化学素子のサイクル特性を向上できる。
In another embodiment, it is preferable that the electrode member has a coverage rate of the conductive thermal expansion material on the collector side arrangement surface of the conductive thermal expansion material-containing portion of 95% or less, an average particle diameter A of 20 μm or more and 160 μm or less, and a product of the coverage rate and the average particle diameter A of 9,500 or less.
When the coverage is equal to or less than the upper limit, the average particle size A is within the above range, and the product is equal to or less than the upper limit, the cycle characteristics of the electrochemical device can be improved.
 そして、本発明の電極用部材のより好ましい実施形態は、導電性熱膨張材料含有部の集電体側配設面に対する導電性熱膨張材料の被覆率が95%以下であり、平均粒子径Aが20μm以上160μm以下であり、該被覆率と平均粒子径Aとの積が9500以下である。
 被覆率が上記範囲内であり、平均粒子径Aが上記範囲内であり、積が上記範囲内であれば、電気化学素子の安全性及びサイクル特性を向上できる。
In a more preferred embodiment of the electrode member of the present invention, the coverage of the conductive thermal expansion material on the collector side surface of the conductive thermal expansion material-containing portion is 95% or less, the average particle diameter A is 20 μm or more and 160 μm or less, and the product of the coverage and the average particle diameter A is 9,500 or less.
When the coverage rate is within the above range, the average particle size A is within the above range, and the product is within the above range, the safety and cycle characteristics of the electrochemical device can be improved.
<電気化学素子電極用部材の製造方法>
 本発明の電極用部材を製造する方法は、集電体上に、導電性熱膨張材料含有部を形成できれば特に限定されない。
 例えば、図1,3に示す例のような場合には、本発明の電極用部材は、所定量の導電性熱膨張材料及び溶媒を含み、任意に、導電助剤、結着材、その他の成分を含み得る組成物(電気化学素子電極部材用スラリー組成物)を集電体等の導電性熱膨張材料含有部の配設面上に塗布し、塗布した電気化学素子電極部材用スラリー組成物を乾燥して導電性熱膨張材料含有部を形成する工程(導電性熱膨張材料含有部形成工程)を経て製造される。
 なお、図1に示す例のような本発明の電極用部材に電極合材層を形成して電極として用いる場合の電極合材層の形成は、特に限定されることなく、公知の電極合材層の形成方法を用いて行うことができる。
 他方、図2に示す例のような、導電性熱膨張材料含有部が電極合材層の一部を構成する場合には、本発明の電極用部材は、所定量の導電性熱膨張材料、電極活物質、電極合材層用結着材、及び溶媒を含み、任意に、導電助剤、結着材、その他の成分を含み得る組成物(導電性熱膨張材料含有電極合材層用スラリー組成物)を集電体等の導電性熱膨張材料含有部の配設面上に塗布し、塗布した導電性熱膨張材料含有電極合材層用スラリー組成物中の導電性熱膨張材料を集電体側に偏在(所謂、マイグレーション)させるのと同時に乾燥し、導電性熱膨張材料含有部を内部に含む電極合材層を形成する工程(電極合材層形成工程)を経て製造される。
<Method of manufacturing an electrochemical element electrode member>
The method for producing the electrode member of the present invention is not particularly limited as long as it is possible to form a conductive thermally expandable material-containing portion on a current collector.
For example, in the case of the examples shown in Figures 1 and 3, the electrode member of the present invention is manufactured through a process in which a composition (slurry composition for electrochemical element electrode members) containing a predetermined amount of conductive thermal expansion material and a solvent, and which may optionally contain a conductive assistant, a binder, and other components, is applied to a surface of a conductive thermal expansion material-containing portion such as a collector, and the applied slurry composition for electrochemical element electrode members is dried to form a conductive thermal expansion material-containing portion (conductive thermal expansion material-containing portion formation process).
In addition, when an electrode mixture layer is formed on the electrode member of the present invention such as the example shown in Figure 1 and used as an electrode, the formation of the electrode mixture layer is not particularly limited and can be performed using a known method for forming an electrode mixture layer.
On the other hand, in the case where the conductive thermally expandable material-containing portion constitutes a part of the electrode mixture layer as in the example shown in FIG. 2, the electrode member of the present invention is manufactured through a process of applying a composition (slurry composition for the electrode mixture layer containing conductive thermally expandable material) containing a predetermined amount of conductive thermally expandable material, electrode active material, binder for the electrode mixture layer, and solvent, and optionally containing conductive assistant, binder, and other components, to the surface of the conductive thermally expandable material-containing portion of a collector or the like, and simultaneously drying the conductive thermally expandable material in the applied slurry composition for the electrode mixture layer containing conductive thermally expandable material to be unevenly distributed (so-called migration) toward the collector side, thereby forming an electrode mixture layer containing the conductive thermally expandable material-containing portion therein (electrode mixture layer formation process).
<<電気化学素子電極部材用スラリー組成物>>
 本発明の電極用部材の製造に用いられる電気化学素子電極部材用スラリー組成物(以下、単に「スラリー組成物」と称する場合がある。)は、導電性熱膨張材料と、溶媒とを含み、任意に、電極活物質、導電助剤、結着材、その他の成分を含んでいる。なお、電気化学素子電極部材用スラリー組成物が電極活物質を含む場合には、導電性熱膨張材料含有電極合材層用スラリー組成物と称することができる。
<<Slurry composition for electrochemical element electrode members>>
The slurry composition for an electrochemical element electrode member (hereinafter, sometimes simply referred to as "slurry composition") used in the manufacture of the electrode member of the present invention contains a conductive thermal expansion material and a solvent, and optionally contains an electrode active material, a conductive assistant, a binder, and other components. When the slurry composition for an electrochemical element electrode member contains an electrode active material, it can be called a slurry composition for an electrode mixture layer containing a conductive thermal expansion material.
 ここで、スラリー組成物中の導電性熱膨張材料の平均粒子径(以下、「平均粒子径B」と称する場合がある。)は、10μm以上であることが好ましく、20μm以上であることがより好ましく、30μm以上であることが更に好ましく、40μm以上であることがより更に好ましく、60μm以上であることがより一層好ましく、200μm以下であることが好ましく、160μm以下であることがより好ましく、120μm以下であることが更に好ましく、100μm以下でありことが更により好ましい。
 平均粒子径Bは、FE-SEMを用いて、実施例に記載の方法に従って測定できる。
Here, the average particle diameter of the conductive thermal expansion material in the slurry composition (hereinafter, sometimes referred to as "average particle diameter B") is preferably 10 μm or more, more preferably 20 μm or more, even more preferably 30 μm or more, even more preferably 40 μm or more, even more preferably 60 μm or more, preferably 200 μm or less, more preferably 160 μm or less, even more preferably 120 μm or less, and even more preferably 100 μm or less.
The average particle size B can be measured using an FE-SEM according to the method described in the Examples.
 また、スラリー組成物中における導電性熱膨張材料の平均厚み(以下、「平均厚みB」と称する場合がある。)は、0.2μm以上であることが好ましく、0.5μm以上であることがより好ましく、5μm以下であることが好ましく、4μm以下であることがより好ましい。
 なお、本明細書において、平均厚みBは、FE-SEMを用いて、実施例に記載の方法に従って測定できる。
In addition, the average thickness of the conductive thermal expansion material in the slurry composition (hereinafter sometimes referred to as "average thickness B") is preferably 0.2 μm or more, more preferably 0.5 μm or more, and is preferably 5 μm or less, more preferably 4 μm or less.
In this specification, the average thickness B can be measured using an FE-SEM according to the method described in the Examples.
 スラリー組成物に用いる溶媒としては、特に限定されず、水及び有機溶媒の何れも使用することができる。有機溶媒としては、例えば、アセトニトリル、N-メチル-2-ピロリドン、テトラヒドロフラン、アセトン、アセチルピリジン、シクロペンタノン、ジメチルホルムアミド、ジメチルスルホキシド、メチルホルムアミド、メチルエチルケトン、フルフラール、エチレンジアミン、ジメチルベンゼン(キシレン)、メチルベンゼン(トルエン)、シクロペンチルメチルエーテル、及びイソプロピルアルコール等を用いることができる。
 なお、これらの溶媒は、一種単独で、或いは複数種を任意の混合比率で混合して用いることができる。
The solvent used in the slurry composition is not particularly limited, and may be either water or an organic solvent. Examples of the organic solvent that may be used include acetonitrile, N-methyl-2-pyrrolidone, tetrahydrofuran, acetone, acetylpyridine, cyclopentanone, dimethylformamide, dimethylsulfoxide, methylformamide, methylethylketone, furfural, ethylenediamine, dimethylbenzene (xylene), methylbenzene (toluene), cyclopentyl methyl ether, and isopropyl alcohol.
These solvents may be used alone or in combination in any desired ratio.
 スラリー組成物は、上記各成分を所定量混合することにより調製できる。具体的には、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、フィルミックス等の混合機を用いて、上記各成分を所定量混合することにより、スラリー組成物を調製できる。 The slurry composition can be prepared by mixing the above components in predetermined amounts. Specifically, the slurry composition can be prepared by mixing the above components in predetermined amounts using a mixer such as a ball mill, sand mill, bead mill, pigment disperser, crusher, ultrasonic disperser, homogenizer, planetary mixer, or Filmix.
<<導電性熱膨張材料含有部形成工程>>
 電気化学素子電極部材用スラリー組成物を集電体の上に塗布する方法としては、特に制限は無く、例えば、ドクターブレード法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り等の方法が挙げられる。
 また、集電体上に塗布された電気化学素子電極部材用スラリー組成物を乾燥する方法としては、特に限定されず公知の方法を用いることができる。乾燥法としては、例えば、温風、熱風、低湿風による乾燥、真空乾燥、赤外線や電子線等の照射による乾燥が挙げられる。なお、乾燥温度は、本発明の目的を損なわない範囲であれば特に限定されるものではないが、導電性熱膨張材料の熱膨張の観点から、80℃以上120℃以下とすることが好ましい。
<<Conductive Thermal Expansion Material-Containing Part Forming Process>>
The method for applying the slurry composition for electrochemical element electrode members onto a current collector is not particularly limited, and examples thereof include a doctor blade method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method.
The method for drying the slurry composition for electrochemical element electrode members applied on the current collector is not particularly limited, and any known method can be used. Examples of the drying method include drying with warm air, hot air, or low-humidity air, vacuum drying, and drying by irradiation with infrared rays or electron beams. The drying temperature is not particularly limited as long as it is within a range that does not impair the object of the present invention, but is preferably 80° C. or higher and 120° C. or lower from the viewpoint of the thermal expansion of the conductive thermal expansion material.
<<電極合材層形成工程>>
 集電体上に、導電性熱膨張材料含有電極合材層用スラリー組成物を塗布する方法としては、特に制限は無く、上記した「導電性熱膨張材料含有部形成工程」の項で挙げたものと同様のものを使用できる。
<<Electrode mixture layer forming process>>
The method for applying the slurry composition for the electrode mixture layer containing the conductive thermal expansion material onto the current collector is not particularly limited, and the same method as that described above in the section "Conductive thermal expansion material-containing portion forming process" can be used.
 塗布した導電性熱膨張材料含有電極合材層用スラリー組成物中の導電性熱膨張材料を集電体側にマイグレーションさせる方法としては、例えば、熱対流を用いる方法が挙げられる。即ち、導電性熱膨張材料含有電極合材層用スラリー組成物の乾燥時において、熱対流の方向、強さ及び温度等を適宜調整することにより、導電性熱膨張材料が集電体側にマイグレーションした電極合材層を形成することができる。 As a method for migrating the conductive thermal expansion material in the applied slurry composition for the electrode mixture layer containing the conductive thermal expansion material to the current collector side, for example, a method using thermal convection can be mentioned. That is, when drying the slurry composition for the electrode mixture layer containing the conductive thermal expansion material, the direction, strength, temperature, etc. of the thermal convection can be appropriately adjusted to form an electrode mixture layer in which the conductive thermal expansion material has migrated to the current collector side.
(電気化学素子)
 本発明の電気化学素子は、特に限定されることなく、例えば、リチウムイオン二次電池、電気二重層キャパシタ、及びリチウムイオンキャパシタであり、好ましくはリチウムイオン二次電池である。そして、本発明の電気化学素子は、本発明の電極用部材を用いてなる電極を備えることを特徴とする。本発明の電気化学素子は、本発明の電極用部材を用いてなる電極を備えているので、安全性が高度に確保され、且つ、サイクル特性に優れている。なお、本発明の電気化学素子において、電極用部材が電極合材層を備えていない場合は、電極用部材の導電性熱膨張材料含有部の上に電極合材層を形成した後に電極として用いる。
 以下では、一例として電気化学素子がリチウムイオン二次電池である場合について説明するが、本発明は下記の一例に限定されるものではない。本発明の電気化学素子としてのリチウムイオン二次電池は、通常、電極(正極及び負極)、電解液、並びにセパレータを備え、正極及び負極の少なくとも一方に本発明の電極用部材を用いてなる電極を使用する。
(Electrochemical element)
The electrochemical element of the present invention is not particularly limited, and may be, for example, a lithium ion secondary battery, an electric double layer capacitor, or a lithium ion capacitor, and is preferably a lithium ion secondary battery. The electrochemical element of the present invention is characterized by comprising an electrode made of the electrode member of the present invention. Since the electrochemical element of the present invention comprises an electrode made of the electrode member of the present invention, safety is highly ensured and the cycle characteristics are excellent. In the electrochemical element of the present invention, when the electrode member does not comprise an electrode mixture layer, the electrode mixture layer is formed on the conductive thermal expansion material-containing portion of the electrode member before use as an electrode.
In the following, a case where the electrochemical element is a lithium ion secondary battery will be described as an example, but the present invention is not limited to the following example. A lithium ion secondary battery as the electrochemical element of the present invention usually includes electrodes (positive and negative electrodes), an electrolyte, and a separator, and uses an electrode made of the electrode member of the present invention for at least one of the positive and negative electrodes.
<電極>
 ここで、本発明の電気化学素子としてのリチウムイオン二次電池に使用し得る、上述した本発明の電気化学素子電極用部材を用いてなる電極以外の電極としては、特に限定されることなく、既知の電極を用いることができる。具体的には、上述した本発明の電気化学素子電極用部材を用いてなる電極以外の電極としては、既知の製造方法を用いて集電体上に電極合材層を形成してなる電極を用いることができる。
<Electrodes>
Here, the electrode other than the electrode made of the above-mentioned electrochemical element electrode member of the present invention that can be used in the lithium ion secondary battery as the electrochemical element of the present invention is not particularly limited, and any known electrode can be used. Specifically, the electrode other than the electrode made of the above-mentioned electrochemical element electrode member of the present invention can be an electrode formed by forming an electrode mixture layer on a current collector using a known manufacturing method.
<セパレータ>
 セパレータとしては、特に限定されることなく、例えば特開2012-204303号公報に記載のものを用いることができる。これらの中でも、セパレータ全体の膜厚を薄くすることができ、これにより、リチウムイオン二次電池内の電極活物質の比率を高くして体積あたりの容量を高くすることができるという点より、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)の樹脂からなる微多孔膜が好ましい。
<Separator>
The separator is not particularly limited, and for example, those described in JP 2012-204303 A can be used. Among these, a microporous film made of a polyolefin resin (polyethylene, polypropylene, polybutene, polyvinyl chloride) is preferred, since it can reduce the thickness of the entire separator, thereby increasing the ratio of the electrode active material in the lithium ion secondary battery and increasing the capacity per volume.
<電解液>
 電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。支持電解質としては、例えば、リチウムイオン二次電池においてはリチウム塩が用いられる。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLi等が挙げられる。なかでも、溶媒に溶けやすく高い解離度を示すので、LiPF、LiClO、CFSOLiが好ましい。なお、電解質は1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
<Electrolyte>
As the electrolyte, an organic electrolyte in which a supporting electrolyte is dissolved in an organic solvent is usually used. As the supporting electrolyte, for example, a lithium salt is used in a lithium ion secondary battery. As the lithium salt, for example, LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi, (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, etc. are listed. Among them, LiPF 6 , LiClO 4 , and CF 3 SO 3 Li are preferred because they are easily dissolved in a solvent and show a high degree of dissociation. Note that one type of electrolyte may be used alone, or two or more types may be used in combination. Generally, the lithium ion conductivity tends to increase as the supporting electrolyte with a higher degree of dissociation is used, and therefore the lithium ion conductivity can be adjusted by the type of supporting electrolyte.
 電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、例えばリチウムイオン二次電池においては、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、エチルメチルカーボネート(EMC)、ビニレンカーボネート(VC)等のカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;等が好適に用いられる。また、これらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いので、カーボネート類が好ましい。通常、用いる溶媒の粘度が低いほどリチウムイオン伝導度が高くなる傾向があるので、溶媒の種類によりリチウムイオン伝導度を調節することができる。
 なお、電解液中の電解質の濃度は適宜調整することができる。また、電解液には、既知の添加剤を添加してもよい。
The organic solvent used in the electrolyte is not particularly limited as long as it can dissolve the supporting electrolyte. For example, in a lithium ion secondary battery, carbonates such as dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene carbonate (BC), ethyl methyl carbonate (EMC), vinylene carbonate (VC), etc.; esters such as γ-butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfur-containing compounds such as sulfolane and dimethyl sulfoxide; and the like are preferably used. A mixture of these solvents may also be used. Among them, carbonates are preferred because they have a high dielectric constant and a wide stable potential region. Usually, the lower the viscosity of the solvent used, the higher the lithium ion conductivity tends to be, so the lithium ion conductivity can be adjusted by the type of solvent.
The concentration of the electrolyte in the electrolytic solution can be appropriately adjusted. Known additives may also be added to the electrolytic solution.
<リチウムイオン二次電池の製造方法>
 本発明に従うリチウムイオン二次電池は、例えば、正極と負極とをセパレータを介して重ね合わせ、これを必要に応じて、巻く、折る等して電池容器に入れ、電池容器に電解液を注入して封口することで製造することができる。なお、正極及び負極の少なくとも何れかを、本発明の電気化学素子電極用部材を用いてなる電極とする。また、電池容器には、必要に応じてエキスパンドメタルや、ヒューズ、PTC素子等の過電流防止素子、リード板等を入れ、電池内部の圧力上昇、過充放電の防止をしてもよい。電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型等、何れであってもよい。
<Method of manufacturing lithium-ion secondary battery>
The lithium ion secondary battery according to the present invention can be manufactured, for example, by stacking a positive electrode and a negative electrode with a separator therebetween, rolling or folding the stack as necessary, placing the stack in a battery container, injecting an electrolyte into the battery container, and sealing the battery container. At least one of the positive electrode and the negative electrode is an electrode made of the electrochemical element electrode member of the present invention. In addition, the battery container may be filled with an expand metal, a fuse, an overcurrent prevention element such as a PTC element, a lead plate, or the like as necessary to prevent pressure rise inside the battery and overcharging and discharging. The shape of the battery may be any of a coin type, a button type, a sheet type, a cylindrical type, a square type, a flat type, and the like.
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」及び「部」は、特に断らない限り、質量基準である。
 また、複数種類の単量体を重合して製造される重合体において、ある単量体を重合して形成される単量体単位の重合体における割合は、別に断らない限り、通常は、その重合体の重合に用いる全単量体に占める当該単量体の比率(仕込み比)と一致する。
 更に、実施例及び比較例において、導電性熱膨張材料の熱膨張率、電気化学素子電極部材用スラリー組成物中の導電性熱膨張材料の平均粒子径(平均粒子径B)、電気化学素子電極部材用スラリー組成物中の導電性熱膨張材料の平均厚み(平均厚みB)、導電性熱膨張材料含有部中の導電性熱膨張材料の平均粒子径(平均粒子径A)、導電性熱膨張材料含有部中の導電性熱膨張材料の平均厚み(平均厚みA)、被覆率、電気化学素子の安全性、及び電気化学素子のサイクル特性は、以下の手順で測定及び評価した。
The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples. In the following description, "%" and "parts" expressing amounts are based on mass unless otherwise specified.
In addition, in a polymer produced by polymerizing a plurality of types of monomers, the ratio of a monomer unit formed by polymerizing a certain monomer in the polymer usually coincides with the ratio (feed ratio) of that monomer to all monomers used in the polymerization of the polymer, unless otherwise specified.
Furthermore, in the examples and comparative examples, the thermal expansion coefficient of the conductive thermal expansion material, the average particle diameter (average particle diameter B) of the conductive thermal expansion material in the slurry composition for electrochemical element electrode members, the average thickness (average thickness B) of the conductive thermal expansion material in the slurry composition for electrochemical element electrode members, the average particle diameter (average particle diameter A) of the conductive thermal expansion material in the conductive thermal expansion material-containing portion, the average thickness (average thickness A) of the conductive thermal expansion material in the conductive thermal expansion material-containing portion, the coverage, the safety of the electrochemical element, and the cycle characteristics of the electrochemical element were measured and evaluated by the following procedures.
<導電性熱膨張材料の熱膨張率>
 導電性熱膨張材料、カルボキシメチルセルロース(CMC)、及び精製水を用いて、導電性熱膨張材料:CMCが90:10(質量比)の固形分20%の水溶液を作製した。作製した水溶液をシャーレに入れて乾燥し、厚み1mmの測定用膜を作製した。測定用膜を熱機械分析(TMA)にセットし、ヘリウム雰囲気下で、25℃から500℃まで昇温速度5℃/分で昇温させながら測定用膜の厚みを測定した。そして、昇温前における測定用膜の厚み(25℃における測定用膜の厚み)1mmに対する、200℃~500℃の間での厚みの測定最大値の比(「厚みの測定最大値(単位:mm)」/「1mm」)を導電性熱膨張材料の熱膨張率とした。なお、熱機械分析(TMA)には、TMA402 F1 Hyperion(NETZSCH 製)を用いた。
<Thermal expansion coefficient of conductive thermal expansion material>
A 20% solids aqueous solution of the conductive thermal expansion material:CMC 90:10 (mass ratio) was prepared using a conductive thermal expansion material, carboxymethylcellulose (CMC), and purified water. The prepared aqueous solution was placed in a petri dish and dried to prepare a measurement film with a thickness of 1 mm. The measurement film was set in a thermomechanical analysis (TMA) and the thickness of the measurement film was measured while heating it from 25°C to 500°C at a heating rate of 5°C/min under a helium atmosphere. The ratio of the maximum measured thickness between 200°C and 500°C to the thickness of the measurement film before heating (thickness of the measurement film at 25°C) of 1 mm ("maximum measured thickness (unit: mm)"/"1 mm") was taken as the thermal expansion coefficient of the conductive thermal expansion material. For the thermomechanical analysis (TMA), a TMA402 F1 Hyperion (manufactured by NETZSCH) was used.
<電気化学素子電極部材用スラリー組成物中の導電性熱膨張材料の平均粒子径(平均粒子径B)>
 まず、実施例及び比較例で調整した電気化学素子電極部材用スラリー組成物をアルミ箔上に塗布し、これを乾燥してコート層付きアルミ箔を作製した。得られたコート層付きアルミ箔にクロスセクションポリッシャ(日本電子製IB-09020CP)を用いて観察断面出し加工を行った。次に、FE-SEM(日本電子株式会社製JSM-7800F)にて断面観察を行った。観察倍率は1000倍、照射電圧は10kV、照射電流は5.0×10-8Aの条件にて行った。得られた断面像において、コート層中の導電性熱膨張材料に対して外接円フィッティングをすることにより得られた直径を導電性熱膨張材料の最大直径と定義した。任意の50点の最大直径の平均値を平均粒子径Bとした。
<Average particle size (average particle size B) of conductive thermal expansion material in slurry composition for electrochemical element electrode member>
First, the slurry composition for electrochemical element electrode members prepared in the examples and comparative examples was applied onto an aluminum foil, which was then dried to prepare an aluminum foil with a coating layer. The obtained aluminum foil with a coating layer was subjected to cross-section processing for observation using a cross-section polisher (IB-09020CP manufactured by JEOL Ltd.). Next, cross-section observation was performed using an FE-SEM (JSM-7800F manufactured by JEOL Ltd.). The observation was performed under the conditions of a magnification of 1000 times, an irradiation voltage of 10 kV, and an irradiation current of 5.0 × 10 -8 A. In the obtained cross-sectional image, the diameter obtained by fitting a circumscribing circle to the conductive thermal expansion material in the coating layer was defined as the maximum diameter of the conductive thermal expansion material. The average value of the maximum diameters of any 50 points was taken as the average particle diameter B.
<電気化学素子電極部材用スラリー組成物中の導電性熱膨張材料の平均厚み(平均厚みB)>
 まず、実施例及び比較例で調整した電気化学素子電極部材用スラリー組成物をアルミ箔上に塗布し、これを乾燥してコート層付きアルミ箔を作製した。得られたコート層付きアルミ箔にクロスセクションポリッシャ(日本電子製IB-09020CP)を用いて観察断面出し加工を行った。次に、FE-SEM(日本電子株式会社製JSM-7800F)にて断面観察を行った。観察倍率は1000倍、照射電圧は10kV、照射電流は5.0×10-8Aの条件にて行った。得られた断面像において、コート層中の導電性熱膨張材料に対して内接円フィッティングをすることにより得られた直径を導電性熱膨張材料の最小直径と定義した。任意の50点の最小直径の平均値を平均厚みBとした。
<Average thickness (average thickness B) of conductive thermal expansion material in slurry composition for electrochemical element electrode member>
First, the slurry composition for electrochemical element electrode members prepared in the examples and comparative examples was applied onto an aluminum foil, which was then dried to prepare an aluminum foil with a coating layer. The obtained aluminum foil with a coating layer was subjected to cross-section processing for observation using a cross-section polisher (IB-09020CP manufactured by JEOL Ltd.). Next, cross-section observation was performed using an FE-SEM (JSM-7800F manufactured by JEOL Ltd.). The observation was performed under the conditions of a magnification of 1000 times, an irradiation voltage of 10 kV, and an irradiation current of 5.0 × 10 -8 A. In the obtained cross-sectional image, the diameter obtained by fitting an inscribed circle to the conductive thermal expansion material in the coating layer was defined as the minimum diameter of the conductive thermal expansion material. The average value of the minimum diameter of any 50 points was taken as the average thickness B.
<導電性熱膨張材料含有部中の導電性熱膨張材料の平均粒子径(平均粒子径A)>
 実施例及び比較例で作製した正極にクロスセクションポリッシャ(日本電子製IB-09020CP)を用いて観察断面出し加工を行った。次に、FE-SEM(日本電子株式会社製JSM-7800F)にて断面観察を行った。観察倍率は1000倍、照射電圧は10kV、照射電流は5.0×10-8Aの条件にて行った。得られた断面像において、コート層中の導電性熱膨張材料に対して外接円フィッティングをすることにより得られた直径を導電性熱膨張材料の最大直径と定義した。任意の50点の最大直径の平均値を平均粒子径Aとした。
<Average particle size (average particle size A) of the conductive thermal expansion material in the conductive thermal expansion material-containing portion>
The positive electrodes prepared in the examples and comparative examples were processed for cross-section observation using a cross-section polisher (IB-09020CP manufactured by JEOL Ltd.). Next, cross-section observation was performed using an FE-SEM (JSM-7800F manufactured by JEOL Ltd.). The observation was performed under the conditions of a magnification of 1000 times, an irradiation voltage of 10 kV, and an irradiation current of 5.0 × 10 -8 A. In the obtained cross-sectional image, the diameter obtained by fitting a circumscribing circle to the conductive thermal expansion material in the coating layer was defined as the maximum diameter of the conductive thermal expansion material. The average value of the maximum diameters at any 50 points was defined as the average particle diameter A.
<導電性熱膨張材料含有部中の導電性熱膨張材料の平均厚み(平均厚みA)>
 実施例及び比較例で作製した正極にクロスセクションポリッシャ(日本電子製IB-09020CP)を用いて観察断面出し加工を行った。次に、FE-SEM(日本電子株式会社製JSM-7800F)にて断面観察を行った。観察倍率は1000倍、照射電圧は10kV、照射電流は5.0×10-8Aの条件にて行った。得られた断面像において、コート層中の導電性熱膨張材料に対して内接円フィッティングをすることにより得られた直径を導電性熱膨張材料の最小直径と定義した。任意の50点の最小直径の平均値を平均厚みAとした。
<Average thickness (average thickness A) of the conductive thermal expansion material in the conductive thermal expansion material-containing portion>
The positive electrodes prepared in the examples and comparative examples were processed for cross-section observation using a cross-section polisher (IB-09020CP manufactured by JEOL Ltd.). Next, cross-section observation was performed using an FE-SEM (JSM-7800F manufactured by JEOL Ltd.). The observation was performed under the conditions of a magnification of 1000 times, an irradiation voltage of 10 kV, and an irradiation current of 5.0 × 10 -8 A. In the obtained cross-sectional image, the diameter obtained by fitting an inscribed circle to the conductive thermal expansion material in the coating layer was defined as the minimum diameter of the conductive thermal expansion material. The average value of the minimum diameter of any 50 points was taken as the average thickness A.
<被覆率>
 実施例及び比較例で作製した正極にクロスセクションポリッシャ(日本電子製IB-09020CP)を用いて観察断面出し加工をおこなった。次に、FE-SEM(日本電子株式会社製JSM-7800F)にて断面観察をおこなった。観察倍率は1000倍、照射電圧は10kV、照射電流は5.0×10-8Aの条件にておこなった。得られた断面像において、導電性熱膨張材料が箔上に存在する箇所を被覆部、導電性熱膨張材料が箔上に存在しない箇所を非被覆部として、下記計算式(1)にて導電性熱膨張材料含有部の集電体側配設面に対する導電性熱膨張材料の被覆率を計算した。なお、下記計算式(1)の「被覆部+非被覆部」は、上述した「導電性熱膨張材料含有部の集電体側配設面」に相当する。
 被覆率=被覆部/(被覆部+非被覆部)×100 (1)
<Coverage rate>
The positive electrodes prepared in the examples and comparative examples were processed to expose cross sections for observation using a cross-section polisher (IB-09020CP manufactured by JEOL Ltd.). Next, cross-section observation was performed using an FE-SEM (JSM-7800F manufactured by JEOL Ltd.). The observation was performed under the conditions of a magnification of 1000 times, an irradiation voltage of 10 kV, and an irradiation current of 5.0 × 10 -8 A. In the obtained cross-sectional image, the area where the conductive thermal expansion material is present on the foil was defined as a covered area, and the area where the conductive thermal expansion material is not present on the foil was defined as a non-covered area. The coverage rate of the conductive thermal expansion material with respect to the collector-side arrangement surface of the conductive thermal expansion material-containing portion was calculated using the following calculation formula (1). Note that the "covered area + non-covered area" in the following calculation formula (1) corresponds to the above-mentioned "collector-side arrangement surface of the conductive thermal expansion material-containing portion".
Coverage rate = Covered part / (Coated part + Non-coated part) × 100 (1)
<電気化学素子の安全性>
 作製した正極を、加熱素子(黒崎播磨製)に用いて加熱し、加熱中の抵抗の挙動を測定した。具体的には、正極を室温(25℃)から500℃まで、50℃/SECの昇温速度で加熱し、加熱中における最小抵抗値と、抵抗が最小値に到達した後の加熱中における最大抵抗値とを用いて、抵抗上昇倍率を下記計算式(2)にて算出し、下記の基準で電気化学素子の安全性を評価した。抵抗上昇倍率が高い程、電気化学素子が安全性に優れていることを示す。
 抵抗上昇倍率=最大抵抗値/最小抵抗値 (2)
 A:抵抗上昇倍率が5以上
 B:抵抗上昇倍率が2以上5未満
 C:抵抗上昇倍率が2未満
<Safety of electrochemical elements>
The prepared positive electrode was heated using a heating element (manufactured by Kurosaki Harima Co., Ltd.), and the behavior of the resistance during heating was measured. Specifically, the positive electrode was heated from room temperature (25° C.) to 500° C. at a temperature increase rate of 50° C./sec, and the resistance increase rate was calculated using the minimum resistance value during heating and the maximum resistance value during heating after the resistance reached the minimum value by the following calculation formula (2), and the safety of the electrochemical element was evaluated according to the following criteria. The higher the resistance increase rate, the safer the electrochemical element.
Resistance increase ratio = maximum resistance value / minimum resistance value (2)
A: Resistance increase ratio is 5 or more B: Resistance increase ratio is 2 or more but less than 5 C: Resistance increase ratio is less than 2
<電気化学素子のサイクル特性>
 まず、リチウムイオン二次電池を、電解液注液後、温度25℃で5時間静置した。次に、温度25℃、0.2Cの定電流法にて、セル電圧3.65Vまで充電し、その後、温度60℃で12時間エージング処理を行った。そして、温度25℃、0.2Cの定電流法にて、セル電圧3.00Vまで放電した。その後、0.2Cにて、CC-CV充電(上限セル電圧4.25V)を行い、0.2Cの定電流法にて3.00VまでCC放電した。この0.2Cにおける充放電を3回繰り返し実施して、初期化成を行った。
 初期化成済のリチウムイオン二次電池を温度45℃まで昇温後、1.0Cの定電流法にて、セル電圧4.10Vまで充電した。その後、1.0Cにてセル電圧3.00Vまで放電した。充放電のサイクルを100サイクル実施し、1サイクル目の放電容量と100サイクル目の放電容量を用いて、下記計算式(3)にてサイクル容量保持率を算出し、下記の基準で電気化学素子のサイクル特性を評価した。サイクル容量保持率が高い程、電気化学素子がサイクル特性に優れていることを示す。
 サイクル容量保持率=100サイクル目の放電容量/1サイクル目の放電容量×100 (3)
 A:サイクル容量保持率が90%以上
 B:サイクル容量保持率が80%以上90%未満
 C:サイクル容量保持率が79%未満
<Cycle characteristics of electrochemical element>
First, the lithium ion secondary battery was left to stand at a temperature of 25°C for 5 hours after injecting the electrolyte. Next, the battery was charged to a cell voltage of 3.65V at a constant current of 0.2C at a temperature of 25°C, and then aged for 12 hours at a temperature of 60°C. Then, the battery was discharged to a cell voltage of 3.00V at a constant current of 0.2C at a temperature of 25°C. Then, the battery was CC-CV charged (upper cell voltage 4.25V) at 0.2C, and CC discharged to 3.00V at a constant current of 0.2C. This charge and discharge at 0.2C was repeated three times to perform initialization.
The initialized lithium ion secondary battery was heated to a temperature of 45° C., and then charged at a constant current of 1.0 C to a cell voltage of 4.10 V. It was then discharged at 1.0 C to a cell voltage of 3.00 V. 100 charge/discharge cycles were performed, and the cycle capacity retention rate was calculated using the discharge capacity at the first cycle and the discharge capacity at the 100th cycle according to the following calculation formula (3), and the cycle characteristics of the electrochemical element were evaluated according to the following criteria. A higher cycle capacity retention rate indicates that the electrochemical element has better cycle characteristics.
Cycle capacity retention rate = 100th cycle discharge capacity / 1st cycle discharge capacity × 100 (3)
A: Cycle capacity retention rate is 90% or more. B: Cycle capacity retention rate is 80% or more but less than 90%. C: Cycle capacity retention rate is less than 79%.
(実施例1-1)
<重合体(結着材)の調製>
 内容積10リットルの反応器中に、イオン交換水100部、並びに、単量体としての、アクリロニトリル35質量部、1,3-ブタジエン62質量部及びメタクリル酸(カルボキシル基含有単量体)3質量部を仕込み、単量体組成物を得た。単量体組成物中に、乳化剤としてオレイン酸カリウム2部、安定剤としてリン酸カリウム0.1部、分子量調整剤として2,2’,4,6,6’-ペンタメチルヘプタン-4-チオール(TIBM)0.5部を加えて、重合開始剤として過硫酸カリウム0.35部の存在下に30℃で乳化重合を行った。
 重合転化率が90%に達した時点で、単量体100部あたり0.2部のヒドロキシルアミン硫酸塩を添加して重合を停止させた。続いて、加温し、減圧下で約70℃にて水蒸気蒸留して、残留単量体を回収した後、老化防止剤としてアルキル化フェノールを2部添加して、重合体の水分散液を得た。
 次に、得られた重合体の水分散液400mL(全固形分:48g)を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して水分散液中の溶存酸素を除去した。その後、水素化反応触媒としての酢酸パラジウム50mgを、パラジウムに対して4倍モルの硝酸を添加した水180mLに溶解して、水素化反応触媒溶液を水分散液に添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素化反応させた。
 その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮して、重合体(結着材)の水分散液を得た。
(Example 1-1)
<Preparation of Polymer (Binder)>
A monomer composition was obtained by charging 100 parts of ion-exchanged water, as well as 35 parts by mass of acrylonitrile, 62 parts by mass of 1,3-butadiene, and 3 parts by mass of methacrylic acid (a carboxyl group-containing monomer) as monomers into a reactor having an internal volume of 10 L. To the monomer composition, 2 parts of potassium oleate as an emulsifier, 0.1 parts of potassium phosphate as a stabilizer, and 0.5 parts of 2,2',4,6,6'-pentamethylheptane-4-thiol (TIBM) as a molecular weight regulator were added, and emulsion polymerization was carried out at 30°C in the presence of 0.35 parts of potassium persulfate as a polymerization initiator.
When the polymerization conversion rate reached 90%, 0.2 parts of hydroxylamine sulfate was added per 100 parts of monomer to terminate the polymerization. Then, the mixture was heated and steam distilled at about 70° C. under reduced pressure to recover the residual monomer, and 2 parts of alkylated phenol were added as an antioxidant to obtain an aqueous dispersion of the polymer.
Next, 400 mL of the aqueous dispersion of the obtained polymer (total solid content: 48 g) was put into a 1-liter autoclave equipped with a stirrer, and nitrogen gas was passed through for 10 minutes to remove dissolved oxygen in the aqueous dispersion. Then, 50 mg of palladium acetate as a hydrogenation catalyst was dissolved in 180 mL of water to which nitric acid was added in an amount four times the moles of palladium, and the hydrogenation catalyst solution was added to the aqueous dispersion. After replacing the inside of the system twice with hydrogen gas, the contents of the autoclave were heated to 50° C. while pressurizing with hydrogen gas up to 3 MPa, and hydrogenation reaction was carried out for 6 hours.
Thereafter, the contents were returned to room temperature, the inside of the system was conditioned with nitrogen, and the contents were concentrated using an evaporator until the solid content reached 40%, to obtain an aqueous dispersion of the polymer (binder).
<電気化学素子電極部材用スラリー組成物の調製>
 導電性熱膨張材料としての膨張黒鉛80部、導電助剤としてのアセチレンブラック(デンカ製C65)10部、分散剤としてのカルボキシメチルセルロース(CMC)7.5部(固形分相当)、及び、上記で調製した結着材の水分散液2.5部(固形分相当)を混合した。この混合物に、溶媒としてのイオン交換水400部加えて、スラリー固形分濃度を20%とし、更なる分散剤としてのβ-ナフタレンスルホン酸ホルマリン縮合物のNa塩(花王製デモールT45)(表中では、「ホルマリン縮合物」と記載)2.5部を追加してスリーワンモーターで30分間撹拌し、スラリー組成物を調製した。
 得られたスラリー組成物を用いて、平均粒子径B、平均厚みBを測定した。結果を表1に示す。
 なお、上述した方法により、導電性熱膨張材料としての膨張黒鉛の熱膨張率を測定した結果、膨張黒鉛の熱膨張率は15倍であった。また、膨張黒鉛の電気伝導率は100S/mであった。
<Preparation of Slurry Composition for Electrochemical Element Electrode Member>
80 parts of expanded graphite as a conductive thermal expansion material, 10 parts of acetylene black (C65 manufactured by Denka) as a conductive assistant, 7.5 parts (solid content equivalent) of carboxymethyl cellulose (CMC) as a dispersant, and 2.5 parts (solid content equivalent) of the aqueous dispersion of the binder prepared above were mixed. 400 parts of ion-exchanged water as a solvent was added to this mixture to make the slurry solid content concentration 20%, and 2.5 parts of Na salt of β-naphthalenesulfonic acid formalin condensate (Demol T45 manufactured by Kao) (referred to as "formalin condensate" in the table) was added as a further dispersant, and the mixture was stirred for 30 minutes with a three-one motor to prepare a slurry composition.
The obtained slurry composition was used to measure the average particle size B and the average thickness B. The results are shown in Table 1.
The thermal expansion coefficient of the expanded graphite as the conductive thermal expansion material was measured by the above-mentioned method, and the thermal expansion coefficient of the expanded graphite was found to be 15 times that of the expanded graphite. The electrical conductivity of the expanded graphite was also found to be 100 S/m.
<電極用部材の作製>
 上記スラリー組成物を、ドクターブレードで、集電体である厚さ20μmのアルミニウム箔の上に、塗布厚みが5μmとなるように塗布した。更に、温度90℃のオーブン内を10分間放置することで、アルミニウム箔上のスラリー組成物を乾燥させ、アルミニウム箔上にコート層が形成された電極用部材を得た。
<Preparation of electrode member>
The above slurry composition was applied to a current collector of 20 μm thick aluminum foil with a doctor blade to a coating thickness of 5 μm. The slurry composition on the aluminum foil was then dried by leaving it in an oven at 90° C. for 10 minutes to obtain an electrode member having a coating layer formed on the aluminum foil.
<正極の作製>
 プラネタリーミキサーに、正極活物質としてのNMC811(LiNi0.8Mn0.1Co0.1)96.0部、導電助剤としてのカーボンブラック(デンカ社製、商品名「Li-100」)固形分相当で2.0部、及びポリフッ化ビニリデン(Solvay社製、商品名「ソレフ(登録商標)5130」)2.0部を投入して混合した。更に、N-メチルピロリドン(NMP)を徐々に加えて、温度25±3℃、回転数60rpmにて撹拌混合することで、粘度3,600mPa・s(B型粘度計、25±3℃、60rpm(ローターM4)で測定)の正極合材層用スラリー組成物を得た。
 上記正極合材層用スラリー組成物を、アプリケータで、上記電極用部材のコート層上に、塗布量が18±0.5mg/cmとなるように塗布した。更に、温度120℃のオーブン内を2分間かけて搬送することにより、電極用部材のコート層上の正極合材層用スラリー組成物を乾燥させ、電極用部材のコート層上に正極合材層が形成された正極原反を得た。その後、作製した正極原反を温度25±3℃の環境下、荷重14t(トン)の条件でロールプレスし、正極合材層の密度が3.30g/cmの正極を得た。
 得られた正極を用いて、平均粒子径A、平均厚みA、及び被覆率を測定した。また、電極の抵抗上昇倍率を測定し、電気化学素子の安全性を評価した。結果を表1に示す。
<Preparation of Positive Electrode>
96.0 parts of NMC811 ( LiNi0.8Mn0.1Co0.1O2 ) as a positive electrode active material , 2.0 parts of carbon black (manufactured by Denka, product name "Li- 100 ") as a conductive assistant in terms of solid content, and 2.0 parts of polyvinylidene fluoride (manufactured by Solvay, product name "Solef (registered trademark) 5130") were charged into a planetary mixer and mixed. Furthermore, N-methylpyrrolidone (NMP) was gradually added and stirred and mixed at a temperature of 25±3°C and a rotation speed of 60 rpm to obtain a slurry composition for a positive electrode mixture layer with a viscosity of 3,600 mPa·s (measured with a Brookfield viscometer at 25±3°C and 60 rpm (rotor M4)).
The slurry composition for the positive electrode composite layer was applied to the coating layer of the electrode member with an applicator so that the coating amount was 18±0.5 mg/cm 2. Furthermore, the slurry composition for the positive electrode composite layer on the coating layer of the electrode member was dried by conveying it through an oven at a temperature of 120° C. for 2 minutes, and a positive electrode raw sheet in which a positive electrode composite layer was formed on the coating layer of the electrode member was obtained. Thereafter, the prepared positive electrode raw sheet was roll-pressed under a temperature of 25±3° C. and a load of 14 t (tons) to obtain a positive electrode having a density of a positive electrode composite layer of 3.30 g/cm 3 .
The average particle diameter A, the average thickness A, and the coverage of the obtained positive electrode were measured. The resistance increase rate of the electrode was also measured to evaluate the safety of the electrochemical device. The results are shown in Table 1.
<負極の作製>
 撹拌機付き5MPa耐圧容器に、スチレン63部、1,3-ブタジエン34部、イタコン酸2部及びアクリル酸-2-ヒドロキシエチル1部、分子量調整剤としてのt-ドデシルメルカプタン0.3部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム5部、イオン交換水150部、並びに、重合開始剤としての過硫酸カリウム1部を投入し、十分に撹拌した後、温度55℃に加温して重合を開始した。重合転化率が95.0%になった時点で冷却し、反応を停止した。こうして得られた重合体を含んだ水分散液に、5%水酸化ナトリウム水溶液を添加して、pHを8に調整した。その後、加熱減圧蒸留によって未反応単量体の除去を行った。更にその後、温度30℃以下まで冷却することにより、負極用結着材を含む水分散液(負極用結着材組成物)を得た。
 プラネタリーミキサーに、負極活物質としての人造黒鉛(理論容量360mAh/g)を48.75部、天然黒鉛(理論容量360mAh/g)を48.75部、そしてカルボキシメチルセルロースを固形分相当で1部投入した。更に、イオン交換水にて固形分濃度が60%となるように希釈し、その後、回転速度45rpmで60分間混練した。その後、上述で得られた負極用結着材組成物を固形分相当で1.5部投入し、回転速度40rpmで40分間混練した。そして、粘度が3000±500mPa・s(B型粘度計、25℃、60rpmで測定)となるようにイオン交換水を加えることにより、負極合材層用スラリー組成物を調製した。
 上記負極合材層用スラリー組成物を、コンマコーターで、集電体である厚さ15μmの銅箔の表面に、塗付量が11±0.5mg/cmとなるように塗布した。その後、負極合材層用スラリー組成物が塗布された銅箔を、400mm/分の速度で、温度80℃のオーブン内を2分間、更に温度110℃のオーブン内を2分間かけて搬送することにより、銅箔上の負極合材層用スラリー組成物を乾燥させ、集電体上に負極合材層が形成された負極原反を得た。その後、作製した負極原反の負極合材層側を温度25±3℃の環境下、線圧11t(トン)の条件でロールプレスし、負極合材層の密度が1.60g/cmの負極を得た。
<Preparation of negative electrode>
In a 5 MPa pressure vessel equipped with a stirrer, 63 parts of styrene, 34 parts of 1,3-butadiene, 2 parts of itaconic acid, 1 part of 2-hydroxyethyl acrylate, 0.3 parts of t-dodecyl mercaptan as a molecular weight regulator, 5 parts of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water, and 1 part of potassium persulfate as a polymerization initiator were added, and after sufficient stirring, the temperature was raised to 55 ° C. to start polymerization. When the polymerization conversion rate reached 95.0%, the reaction was stopped by cooling. A 5% aqueous sodium hydroxide solution was added to the aqueous dispersion containing the polymer thus obtained, and the pH was adjusted to 8. Thereafter, unreacted monomers were removed by heating and reduced pressure distillation. Further, by cooling to a temperature of 30 ° C. or less, an aqueous dispersion containing a binder for a negative electrode (a binder composition for a negative electrode) was obtained.
Into a planetary mixer, 48.75 parts of artificial graphite (theoretical capacity 360 mAh / g) as a negative electrode active material, 48.75 parts of natural graphite (theoretical capacity 360 mAh / g), and 1 part of carboxymethyl cellulose in solid content equivalent were added. Further, the mixture was diluted with ion-exchanged water so that the solid content concentration was 60%, and then kneaded for 60 minutes at a rotation speed of 45 rpm. Then, 1.5 parts of the negative electrode binder composition obtained above in solid content equivalent were added, and kneaded for 40 minutes at a rotation speed of 40 rpm. Then, ion-exchanged water was added so that the viscosity was 3000 ± 500 mPa · s (measured at 25 ° C. and 60 rpm) to prepare a slurry composition for a negative electrode composite layer.
The above-mentioned slurry composition for the negative electrode composite layer was applied to the surface of a 15 μm thick copper foil as a current collector with a comma coater so that the coating amount was 11±0.5 mg/cm 2. Then, the copper foil coated with the slurry composition for the negative electrode composite layer was conveyed at a speed of 400 mm/min through an oven at a temperature of 80° C. for 2 minutes and then through an oven at a temperature of 110° C. for 2 minutes, thereby drying the slurry composition for the negative electrode composite layer on the copper foil, and obtaining a negative electrode raw sheet having a negative electrode composite layer formed on the current collector. Then, the negative electrode composite layer side of the prepared negative electrode raw sheet was roll-pressed under a temperature of 25±3° C. and a linear pressure of 11 t (tons), to obtain a negative electrode having a density of 1.60 g/cm 3 for the negative electrode composite layer.
<セパレータの準備>
 セパレータとして、単層のポリプロピレン製セパレータ基材(セルガード社製、製品名「#2500」)を準備した。
<Preparing the separator>
As a separator, a single-layer polypropylene separator substrate (manufactured by Celgard, product name "#2500") was prepared.
<二次電池の作製>
 上記で得られた負極、正極及びセパレータを用いて、単層ラミネートセル(初期設計放電容量30mAh相当)を作製した。この際、セパレータの機能層が正極に対向するように配置した。得られた積層体をアルミ包材内に配置して、60℃、10時間の条件にて真空乾燥を行った。その後、電解液として濃度1.0MのLiPF溶液(溶媒:エチレンカーボネート(EC)/ジエチルカーボネート(DEC)=3/7(体積比)の混合溶媒、添加剤:ビニレンカーボネート2体積%(溶媒比)を含有)を充填した。更に、アルミ包材の開口を密封するために、温度150℃のヒートシールをしてアルミ包材を閉口し、リチウムイオン二次電池を製造した。
 このリチウムイオン二次電池について、二次電池の容量保持率を測定し、電気化学素子のサイクル特性を評価した。結果を表1に示す。
<Preparation of secondary battery>
A single-layer laminate cell (equivalent to an initial design discharge capacity of 30 mAh) was produced using the negative electrode, positive electrode and separator obtained above. At this time, the functional layer of the separator was arranged so as to face the positive electrode. The obtained laminate was placed in an aluminum packaging material and vacuum dried at 60 ° C. for 10 hours. Then, a 1.0 M LiPF 6 solution (solvent: mixed solvent of ethylene carbonate (EC) / diethyl carbonate (DEC) = 3 / 7 (volume ratio), additive: containing 2 vol% vinylene carbonate (solvent ratio)) was filled as an electrolyte. Furthermore, in order to seal the opening of the aluminum packaging material, the aluminum packaging material was closed by heat sealing at a temperature of 150 ° C., and a lithium ion secondary battery was produced.
The capacity retention rate of this lithium ion secondary battery was measured, and the cycle characteristics of the electrochemical device were evaluated. The results are shown in Table 1.
(実施例1-2~1-10、比較例1-1)
 電気化学素子電極部材用スラリー組成物の調製において、導電性熱膨張材料としての膨張黒鉛を、表1に示す平均粒子径Bを有するものに変更したこと以外は、実施例1-1と同様にして各種操作、測定、及び評価を実施した。測定及び評価結果を表1に示す。
(Examples 1-2 to 1-10, Comparative Example 1-1)
In preparing the slurry composition for an electrochemical element electrode member, various operations, measurements, and evaluations were carried out in the same manner as in Example 1-1, except that the expandable graphite used as the conductive thermal expansion material was changed to one having an average particle size B shown in Table 1. The measurement and evaluation results are shown in Table 1.
(実施例2-1)
 電気化学素子電極部材用スラリー組成物の調製において、各成分の量を表2に示す通りに変更し、且つ、電極用部材の作製において、ドクターブレードのギャップを変更して電気化学素子電極部材用スラリー組成物の塗布量を調製することによって、被膜率を表2に示す通りに変更したこと以外は、実施例1-1と同様にして各種操作、測定、及び評価を実施した。また、測定及び評価結果を表2に示す。
(Example 2-1)
In the preparation of the slurry composition for an electrochemical element electrode member, the amount of each component was changed as shown in Table 2, and in the production of the electrode member, the gap of the doctor blade was changed to adjust the application amount of the slurry composition for an electrochemical element electrode member, thereby changing the coating rate as shown in Table 2. Except for this, various operations, measurements, and evaluations were carried out in the same manner as in Example 1-1. The measurement and evaluation results are also shown in Table 2.
(実施例2-2~2-10、比較例2-1)
 電気化学素子電極部材用スラリー組成物の調製において、導電性熱膨張材料としての膨張黒鉛を、表2に示す平均粒子径Bを有するものにそれぞれ変更したこと以外は、実施例2-1と同様にして各種操作、測定、及び評価を実施した。また、測定及び評価結果を表2に示す。
(Examples 2-2 to 2-10, Comparative Example 2-1)
In preparing the slurry composition for an electrochemical element electrode member, various operations, measurements, and evaluations were carried out in the same manner as in Example 2-1, except that the expandable graphite used as the conductive thermal expansion material was changed to one having an average particle size B shown in Table 2. The results of the measurements and evaluations are shown in Table 2.
(実施例3-1)
 電気化学素子電極部材用スラリー組成物の調製において、各成分の量を表3に示す通りに変更し、且つ、電極用部材の作製において、ドクターブレードのギャップを変更して電気化学素子電極部材用スラリー組成物の塗布量を調製することによって、被膜率を表3に示す通りに変更したこと以外は、実施例1-1と同様にして各種操作、測定、及び評価を実施した。また、測定及び評価結果を表3に示す。
(Example 3-1)
In the preparation of the slurry composition for an electrochemical element electrode member, the amount of each component was changed as shown in Table 3, and in the production of the electrode member, the gap of the doctor blade was changed to adjust the application amount of the slurry composition for an electrochemical element electrode member, thereby changing the coating rate as shown in Table 3. Except for this, various operations, measurements, and evaluations were carried out in the same manner as in Example 1-1. The measurement and evaluation results are also shown in Table 3.
(実施例3-2~3-10、比較例3-1)
 電気化学素子電極部材用スラリー組成物の調製において、導電性熱膨張材料としての膨張黒鉛を、表3に示す平均粒子径Bを有するものにそれぞれ変更したこと以外は、実施例3-1と同様にして各種操作、測定、及び評価を実施した。また、測定及び評価結果を表3に示す。
(Examples 3-2 to 3-10, Comparative Example 3-1)
In preparing the slurry composition for an electrochemical element electrode member, various operations, measurements, and evaluations were carried out in the same manner as in Example 3-1, except that the expandable graphite used as the conductive thermal expansion material was changed to one having an average particle size B shown in Table 3. The results of the measurements and evaluations are shown in Table 3.
(実施例4-1)
 電気化学素子電極部材用スラリー組成物の調製において、各成分の量を表4に示す通りに変更し、且つ、電極用部材の作製において、ドクターブレードのギャップを変更して電気化学素子電極部材用スラリー組成物の塗布量を調製することによって、被膜率を表4に示す通りに変更したこと以外は、実施例1-1と同様にして各種操作、測定、及び評価を実施した。また、測定及び評価結果を表4に示す。
(Example 4-1)
In the preparation of the slurry composition for an electrochemical element electrode member, the amount of each component was changed as shown in Table 4, and in the production of the electrode member, the gap of the doctor blade was changed to adjust the application amount of the slurry composition for an electrochemical element electrode member, thereby changing the coating rate as shown in Table 4. Except for this, various operations, measurements, and evaluations were carried out in the same manner as in Example 1-1. The measurement and evaluation results are also shown in Table 4.
(実施例4-2~4-9、比較例4-1、4-2)
 電気化学素子電極部材用スラリー組成物の調製において、導電性熱膨張材料としての膨張黒鉛を、表4に示す平均粒子径Bを有するものにそれぞれ変更したこと以外は、実施例4-1と同様にして各種操作、測定、及び評価を実施した。また、測定及び評価結果を表4に示す。
(Examples 4-2 to 4-9, Comparative Examples 4-1 and 4-2)
In preparing the slurry composition for an electrochemical element electrode member, various operations, measurements, and evaluations were carried out in the same manner as in Example 4-1, except that the expandable graphite used as the conductive thermal expansion material was changed to one having an average particle size B shown in Table 4. The results of the measurements and evaluations are shown in Table 4.
(実施例5-1)
 電気化学素子電極部材用スラリー組成物の調製において、各成分の量を表5に示す通りに変更し、且つ、電極用部材の作製において、ドクターブレードのギャップを変更して電気化学素子電極部材用スラリー組成物の塗布量を調製することによって、被膜率を表5に示す通りに変更したこと以外は、実施例1-1と同様にして各種操作、測定、及び評価を実施した。また、測定及び評価結果を表5に示す。
(Example 5-1)
In the preparation of the slurry composition for an electrochemical element electrode member, the amount of each component was changed as shown in Table 5, and in the production of the electrode member, the gap of the doctor blade was changed to adjust the application amount of the slurry composition for an electrochemical element electrode member, thereby changing the coating rate as shown in Table 5. Except for this, various operations, measurements, and evaluations were carried out in the same manner as in Example 1-1. The measurement and evaluation results are also shown in Table 5.
(実施例5-2~5-9、比較例5-1、5-2)
 電気化学素子電極部材用スラリー組成物の調製において、導電性熱膨張材料としての膨張黒鉛を、表5に示す平均粒子径Bを有するものにそれぞれ変更したこと以外は、実施例5-1と同様にして各種操作、測定、及び評価を実施した。また、測定及び評価結果を表5に示す。
(Examples 5-2 to 5-9, Comparative Examples 5-1 and 5-2)
In preparing the slurry composition for an electrochemical element electrode member, various operations, measurements, and evaluations were carried out in the same manner as in Example 5-1, except that the expandable graphite used as the conductive thermal expansion material was changed to one having an average particle size B shown in Table 5. The results of the measurements and evaluations are shown in Table 5.
(実施例6-1)
 電気化学素子電極部材用スラリー組成物の調製において、各成分の量を表6に示す通りに変更し、且つ、電極用部材の作製において、ドクターブレードのギャップを変更して電気化学素子電極部材用スラリー組成物の塗布量を調製することによって、被膜率を表6に示す通りに変更したこと以外は、実施例1-1と同様にして各種操作、測定、及び評価を実施した。また、測定及び評価結果を表6に示す。
(Example 6-1)
In the preparation of the slurry composition for an electrochemical element electrode member, the amount of each component was changed as shown in Table 6, and in the production of the electrode member, the gap of the doctor blade was changed to adjust the application amount of the slurry composition for an electrochemical element electrode member, thereby changing the coating rate as shown in Table 6. Except for this, various operations, measurements, and evaluations were carried out in the same manner as in Example 1-1. The measurement and evaluation results are also shown in Table 6.
(実施例6-2~6-8、比較例6-1~6-3)
 電気化学素子電極部材用スラリー組成物の調製において、導電性熱膨張材料としての膨張黒鉛を、表6に示す平均粒子径Bを有するものにそれぞれ変更したこと以外は、実施例6-1と同様にして各種操作、測定、及び評価を実施した。また、測定及び評価結果を表6に示す。
(Examples 6-2 to 6-8, Comparative Examples 6-1 to 6-3)
In preparing the slurry composition for an electrochemical element electrode member, various operations, measurements, and evaluations were carried out in the same manner as in Example 6-1, except that the expandable graphite used as the conductive thermal expansion material was changed to one having an average particle size B shown in Table 6. The results of the measurements and evaluations are shown in Table 6.
(実施例7-1)
 電気化学素子電極部材用スラリー組成物の調製において、各成分の量を表7に示す通りに変更し、且つ、電極用部材の作製において、ドクターブレードのギャップを変更して電気化学素子電極部材用スラリー組成物の塗布量を調製することによって、被膜率を表7に示す通りに変更したこと以外は、実施例1-1と同様にして各種操作、測定、及び評価を実施した。また、測定及び評価結果を表7に示す。
(Example 7-1)
In the preparation of the slurry composition for an electrochemical element electrode member, the amount of each component was changed as shown in Table 7, and in the production of the electrode member, the gap of the doctor blade was changed to adjust the application amount of the slurry composition for an electrochemical element electrode member, thereby changing the coating rate as shown in Table 7. Except for this, various operations, measurements, and evaluations were carried out in the same manner as in Example 1-1. The measurement and evaluation results are shown in Table 7.
(実施例7-2~7-8、比較例7-1~7-3)
 電気化学素子電極部材用スラリー組成物の調製において、導電性熱膨張材料としての膨張黒鉛を、表7に示す平均粒子径Bを有するものにそれぞれ変更したこと以外は、実施例7-1と同様にして各種操作、測定、及び評価を実施した。また、測定及び評価結果を表7に示す。
(Examples 7-2 to 7-8, Comparative Examples 7-1 to 7-3)
In preparing the slurry composition for an electrochemical element electrode member, various operations, measurements, and evaluations were carried out in the same manner as in Example 7-1, except that the expandable graphite used as the conductive thermal expansion material was changed to one having an average particle size B shown in Table 7. The results of the measurements and evaluations are shown in Table 7.
(実施例8-1)
 電気化学素子電極部材用スラリー組成物の調製において、各成分の量を表8に示す通りに変更し、且つ、電極用部材の作製において、ドクターブレードのギャップを変更して電気化学素子電極部材用スラリー組成物の塗布量を調製することによって、被膜率を表8に示す通りに変更したこと以外は、実施例1-1と同様にして各種操作、測定、及び評価を実施した。また、測定及び評価結果を表8に示す。
(Example 8-1)
In the preparation of the slurry composition for an electrochemical element electrode member, the amount of each component was changed as shown in Table 8, and in the production of the electrode member, the gap of the doctor blade was changed to adjust the application amount of the slurry composition for an electrochemical element electrode member, thereby changing the coating rate as shown in Table 8. Except for this, various operations, measurements, and evaluations were carried out in the same manner as in Example 1-1. The measurement and evaluation results are shown in Table 8.
(実施例8-2~8-9、比較例8-1、8-2)
 電気化学素子電極部材用スラリー組成物の調製において、導電性熱膨張材料としての膨張黒鉛を、表8に示す平均粒子径Bを有するものにそれぞれ変更したこと以外は、実施例8-1と同様にして各種操作、測定、及び評価を実施した。また、測定及び評価結果を表8に示す。
(Examples 8-2 to 8-9, Comparative Examples 8-1 and 8-2)
In preparing the slurry composition for an electrochemical element electrode member, various operations, measurements, and evaluations were carried out in the same manner as in Example 8-1, except that the expandable graphite used as the conductive thermal expansion material was changed to one having an average particle size B shown in Table 8. The results of the measurements and evaluations are shown in Table 8.
(実施例9-1)
 電気化学素子電極部材用スラリー組成物の調製において、各成分の量を表9に示す通りに変更し、且つ、電極用部材の作製において、ドクターブレードのギャップを変更して電気化学素子電極部材用スラリー組成物の塗布量を調製することによって、被膜率を表9に示す通りに変更したこと以外は、実施例1-1と同様にして各種操作、測定、及び評価を実施した。また、測定及び評価結果を表9に示す。
(Example 9-1)
In the preparation of the slurry composition for an electrochemical element electrode member, the amount of each component was changed as shown in Table 9, and in the production of the electrode member, the gap of the doctor blade was changed to adjust the application amount of the slurry composition for an electrochemical element electrode member, thereby changing the coating rate as shown in Table 9. Except for this, various operations, measurements, and evaluations were carried out in the same manner as in Example 1-1. The measurement and evaluation results are also shown in Table 9.
(実施例9-2~9-9、比較例9-1、9-2)
 電気化学素子電極部材用スラリー組成物の調製において、導電性熱膨張材料としての膨張黒鉛を、表9に示す平均粒子径Bを有するものにそれぞれ変更したこと以外は、実施例9-1と同様にして各種操作、測定、及び評価を実施した。また、測定及び評価結果を表9に示す。
(Examples 9-2 to 9-9, Comparative Examples 9-1 and 9-2)
In preparing the slurry composition for the electrochemical element electrode member, various operations, measurements, and evaluations were carried out in the same manner as in Example 9-1, except that the expandable graphite used as the conductive thermal expansion material was changed to one having an average particle size B shown in Table 9. The results of the measurements and evaluations are shown in Table 9.
(実施例10-1)
 電気化学素子電極部材用スラリー組成物の調製において、各成分の量を表10に示す通りに変更し、且つ、電極用部材の作製において、ドクターブレードのギャップを変更して電気化学素子電極部材用スラリー組成物の塗布量を調製することによって、被膜率を表10に示す通りに変更したこと以外は、実施例1-1と同様にして各種操作、測定、及び評価を実施した。また、測定及び評価結果を表10に示す。
(Example 10-1)
In the preparation of the slurry composition for an electrochemical element electrode member, the amount of each component was changed as shown in Table 10, and in the production of the electrode member, the gap of the doctor blade was changed to adjust the coating amount of the slurry composition for an electrochemical element electrode member, thereby changing the coating rate as shown in Table 10. Except for this, various operations, measurements, and evaluations were carried out in the same manner as in Example 1-1. The measurement and evaluation results are also shown in Table 10.
(実施例10-2~10-9、比較例10-1、10-2)
 電気化学素子電極部材用スラリー組成物の調製において、導電性熱膨張材料としての膨張黒鉛を、表10に示す平均粒子径Bを有するものにそれぞれ変更したこと以外は、実施例10-1と同様にして各種操作、測定、及び評価を実施した。また、測定及び評価結果を表10に示す。
(Examples 10-2 to 10-9, Comparative Examples 10-1 and 10-2)
In preparing the slurry composition for an electrochemical element electrode member, various operations, measurements, and evaluations were carried out in the same manner as in Example 10-1, except that the expandable graphite used as the conductive thermal expansion material was changed to one having an average particle size B shown in Table 10. The results of the measurements and evaluations are shown in Table 10.
(実施例11-1)
 電気化学素子電極部材用スラリー組成物の調製において、各成分の量を表11に示す通りに変更し、且つ、電極用部材の作製において、ドクターブレードのギャップを変更して電気化学素子電極部材用スラリー組成物の塗布量を調製することによって、被膜率を表11に示す通りに変更したこと以外は、実施例1-1と同様にして各種操作、測定、及び評価を実施した。また、測定及び評価結果を表11に示す。
(Example 11-1)
In the preparation of the slurry composition for an electrochemical element electrode member, the amount of each component was changed as shown in Table 11, and in the production of the electrode member, the gap of the doctor blade was changed to adjust the coating amount of the slurry composition for an electrochemical element electrode member, thereby changing the coating rate as shown in Table 11. Except for this, various operations, measurements, and evaluations were carried out in the same manner as in Example 1-1. The measurement and evaluation results are shown in Table 11.
(実施例11-2~11-8、比較例11-1~11-3)
 電気化学素子電極部材用スラリー組成物の調製において、導電性熱膨張材料としての膨張黒鉛を、表11に示す平均粒子径Bを有するものにそれぞれ変更したこと以外は、実施例11-1と同様にして各種操作、測定、及び評価を実施した。また、測定及び評価結果を表11に示す。
(Examples 11-2 to 11-8, Comparative Examples 11-1 to 11-3)
In preparing the slurry composition for an electrochemical element electrode member, various operations, measurements, and evaluations were carried out in the same manner as in Example 11-1, except that the expandable graphite used as the conductive thermal expansion material was changed to one having an average particle size B shown in Table 11. The results of the measurements and evaluations are shown in Table 11.
(比較例12-1)
 電気化学素子電極部材用スラリー組成物の調製において、各成分の量を表12に示す通りに変更し、且つ、電極用部材の作製において、ドクターブレードのギャップを変更して電気化学素子電極部材用スラリー組成物の塗布量を調製することによって、被膜率を表12に示す通りに変更したこと以外は、実施例1-1と同様にして各種操作、測定、及び評価を実施した。また、測定及び評価結果を表12に示す。
(Comparative Example 12-1)
In the preparation of the slurry composition for an electrochemical element electrode member, the amount of each component was changed as shown in Table 12, and in the production of the electrode member, the gap of the doctor blade was changed to adjust the coating amount of the slurry composition for an electrochemical element electrode member, thereby changing the coating rate as shown in Table 12. Except for this, various operations, measurements, and evaluations were carried out in the same manner as in Example 1-1. The measurement and evaluation results are shown in Table 12.
(比較例12-2~12-11)
 電気化学素子電極部材用スラリー組成物の調製において、導電性熱膨張材料としての膨張黒鉛を、表12に示す平均粒子径Bを有するものにそれぞれ変更したこと以外は、比較例12-1と同様にして各種操作、測定、及び評価を実施した。また、測定及び評価結果を表12に示す。
(Comparative Examples 12-2 to 12-11)
In preparing the slurry composition for an electrochemical element electrode member, various operations, measurements, and evaluations were carried out in the same manner as in Comparative Example 12-1, except that the expandable graphite used as the conductive thermal expansion material was changed to one having an average particle size B shown in Table 12. The results of the measurements and evaluations are shown in Table 12.
(比較例13-1)
 電気化学素子電極部材用スラリー組成物の調製において、各成分の量を表13に示す通りに変更し、且つ、電極用部材の作製において、ドクターブレードのギャップを変更して電気化学素子電極部材用スラリー組成物の塗布量を調製することによって、被膜率を表13に示す通りに変更したこと以外は、実施例1-1と同様にして各種操作、測定、及び評価を実施した。また、測定及び評価結果を表13に示す。
(Comparative Example 13-1)
In the preparation of the slurry composition for an electrochemical element electrode member, the amount of each component was changed as shown in Table 13, and in the production of the electrode member, the gap of the doctor blade was changed to adjust the coating amount of the slurry composition for an electrochemical element electrode member, thereby changing the coating rate as shown in Table 13. Except for this, various operations, measurements, and evaluations were carried out in the same manner as in Example 1-1. The measurement and evaluation results are also shown in Table 13.
(比較例13-2~13-11)
 電気化学素子電極部材用スラリー組成物の調製において、導電性熱膨張材料としての膨張黒鉛を、表13に示す平均粒子径Bを有するものにそれぞれ変更したこと以外は、比較例13-1と同様にして各種操作、測定、及び評価を実施した。また、測定及び評価結果を表13に示す。
(Comparative Examples 13-2 to 13-11)
In preparing the slurry composition for an electrochemical element electrode member, various operations, measurements, and evaluations were carried out in the same manner as in Comparative Example 13-1, except that the expandable graphite used as the conductive thermal expansion material was changed to one having an average particle size B shown in Table 13. The results of the measurements and evaluations are shown in Table 13.
(比較例14)
 電気化学素子電極部材用スラリー組成物の調製において、各成分の量を表14に示す通りに変更したこと、即ち、導電性熱膨張材料を使用せずに電気化学素子電極部材用スラリー組成物を調製したこと以外は、実施例1-1と同様にして各種操作、測定、及び評価を実施した。また、測定及び評価結果を表14に示す。
(Comparative Example 14)
In preparing the slurry composition for an electrochemical element electrode member, the amount of each component was changed as shown in Table 14, i.e., the slurry composition for an electrochemical element electrode member was prepared without using the conductive thermal expansion material, and the same operations, measurements, and evaluations were carried out as in Example 1-1. The results of the measurements and evaluations are shown in Table 14.
(実施例15)
 電気化学素子電極部材用スラリー組成物の調製において、導電性熱膨張材料としての膨張黒鉛の使用量を80部から30部に変更し、導電助剤としてのアセチレンブラックの使用量を10部から60部に変更したこと以外は、実施例1-1と同様にして各種操作、測定、及び評価を実施した。また、測定及び評価結果を表14に示す。
(Example 15)
In preparing the slurry composition for the electrochemical element electrode member, the amount of expandable graphite used as the conductive thermal expansion material was changed from 80 parts to 30 parts, and the amount of acetylene black used as the conductive assistant was changed from 10 parts to 60 parts, but other than that, various operations, measurements, and evaluations were carried out in the same manner as in Example 1-1. The measurement and evaluation results are shown in Table 14.
(実施例16)
 電気化学素子電極部材用スラリー組成物の調製において、導電性熱膨張材料としての膨張黒鉛の使用量を80部から89.5部に変更し、導電助剤としてのアセチレンブラックの使用量を10部から0.5部に変更したこと以外は、実施例1-1と同様にして各種操作、測定、及び評価を実施した。また、測定及び評価結果を表14に示す。
(Example 16)
In preparing the slurry composition for the electrochemical element electrode member, the amount of expandable graphite used as the conductive thermal expansion material was changed from 80 parts to 89.5 parts, and the amount of acetylene black used as the conductive assistant was changed from 10 parts to 0.5 parts. Except for this, various operations, measurements, and evaluations were carried out in the same manner as in Example 1-1. The measurement and evaluation results are shown in Table 14.
(実施例17)
 電気化学素子電極部材用スラリー組成物の調製において、結着材としての重合体の水分散液を使用せず、分散剤としてのカルボキシメチルセルロースの使用量を7.5部から10部に変更したこと以外は、実施例1-1と同様にして各種操作、測定、及び評価を実施した。また、測定及び評価結果を表14に示す。
(Example 17)
In the preparation of the slurry composition for the electrochemical element electrode member, various operations, measurements, and evaluations were carried out in the same manner as in Example 1-1, except that the aqueous dispersion of the polymer as the binder was not used, and the amount of carboxymethyl cellulose used as the dispersant was changed from 7.5 parts to 10 parts. The measurement and evaluation results are shown in Table 14.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表1~14からも明らかな通り、実施例の電気化学素子電極用部材を用いれば、電気化学素子の高度な安全性を確保しつつ、電気化学素子に優れたサイクル特性を付与できることが分かる。また、図4,5からも明らかな通り、実施例の電気化学素子電極用部材を用いたものは、安全性及びサイクル特性の評価結果が、何れも「B」以上であることが分かる。 As is clear from Tables 1 to 14, by using the electrochemical element electrode members of the examples, it is possible to impart excellent cycle characteristics to the electrochemical element while ensuring a high level of safety for the electrochemical element. Also, as is clear from Figures 4 and 5, the evaluation results for safety and cycle characteristics for those using the electrochemical element electrode members of the examples are both "B" or higher.
 本発明によれば、電気化学素子の高度な安全性を確保しつつ、電気化学素子に優れたサイクル特性を付与し得る電気化学素子電極用部材を提供できる。
 また、本発明によれば、安全性が高度に確保され、且つ、サイクル特性に優れる電気化学素子を提供できる。
According to the present invention, it is possible to provide an electrode member for an electrochemical device that can provide an electrochemical device with excellent cycle characteristics while ensuring a high level of safety for the electrochemical device.
Furthermore, according to the present invention, it is possible to provide an electrochemical element which ensures a high level of safety and has excellent cycle characteristics.
10:電気化学素子電極用部材
11:集電体
12:導電性熱膨張材料含有部
121:導電性熱膨張材料
122:集電体側配設面
20:電気化学素子電極用部材
21:電極合材層
211:第1面
212:第2面
10: Electrochemical element electrode member 11: Current collector 12: Conductive thermal expansion material-containing portion 121: Conductive thermal expansion material 122: Current collector side arrangement surface 20: Electrochemical element electrode member 21: Electrode mixture layer 211: First surface 212: Second surface

Claims (12)

  1.  集電体と、前記集電体上に位置する導電性熱膨張材料含有部とを備える、電気化学素子電極用部材であって、
     前記導電性熱膨張材料含有部の集電体側配設面に対する前記導電性熱膨張材料の被覆率が、20%以上98%以下であり、
     前記被覆率と、前記導電性熱膨張材料の平均粒子径との積が、500以上15000以下である、電気化学素子電極用部材。
    An electrochemical element electrode member comprising a current collector and a conductive thermal expansion material-containing portion located on the current collector,
    a coverage rate of the conductive thermal expansion material with respect to a collector side surface of the conductive thermal expansion material-containing portion is 20% or more and 98% or less;
    The product of the coverage and the average particle size of the conductive thermal expansion material is 500 or more and 15,000 or less.
  2.  前記被覆率が、30%以上であり、
     前記積が、1500以上である、請求項1に記載の電気化学素子電極用部材。
    The coverage is 30% or more,
    2. The electrode member for an electrochemical element according to claim 1, wherein the product is 1,500 or more.
  3.  前記被覆率が、95%以下であり、
     前記平均粒子径が、20μm以上160μm以下であり、
     前記積が、9500以下である、請求項1に記載の電気化学素子電極用部材。
    The coverage is 95% or less,
    The average particle size is 20 μm or more and 160 μm or less,
    2. The electrode member for an electrochemical element according to claim 1, wherein the product is 9,500 or less.
  4.  前記被覆率が、30%以上95%以下であり、
     前記平均粒子径が、20μm以上160μm以下であり、
     前記積が、1500以上9500以下である、請求項1に記載の電気化学素子電極用部材。
    The coverage is 30% or more and 95% or less,
    The average particle size is 20 μm or more and 160 μm or less,
    2. The electrode member for an electrochemical element according to claim 1, wherein the product is 1,500 or more and 9,500 or less.
  5.  前記導電性熱膨張材料の平均厚みが、0.2μm以上5μm以下である、請求項1に記載の電気化学素子電極用部材。 The electrochemical element electrode member according to claim 1, wherein the conductive thermal expansion material has an average thickness of 0.2 μm or more and 5 μm or less.
  6.  前記導電性熱膨張材料が、膨張黒鉛である、請求項1に記載の電気化学素子電極用部材。 The electrochemical element electrode member according to claim 1, wherein the conductive thermal expansion material is expanded graphite.
  7.  前記導電性熱膨張材料含有部が、コート層である、請求項1に記載の電気化学素子電極用部材。 The electrochemical element electrode member according to claim 1, wherein the conductive thermal expansion material-containing portion is a coating layer.
  8.  前記コート層が、前記集電体の表面に直接形成されている、請求項7に記載の電気化学素子電極用部材。 The electrochemical element electrode member according to claim 7, wherein the coating layer is formed directly on the surface of the current collector.
  9.  前記導電性熱膨張材料含有部が、導電助剤を更に含み、
     前記導電性熱膨張材料に対する前記導電助剤の質量比が、0.01以上0.5以下である、請求項1に記載の電気化学素子電極用部材。
    The conductive thermal expansion material-containing portion further contains a conductive assistant,
    2. The electrode member for an electrochemical element according to claim 1, wherein a mass ratio of said conductive assistant to said conductive thermal expansion material is 0.01 or more and 0.5 or less.
  10.  前記導電性熱膨張材料含有部が、結着材を更に含む、請求項1に記載の電気化学素子電極用部材。 The electrochemical element electrode member according to claim 1, wherein the conductive thermal expansion material-containing portion further contains a binder.
  11.  電極合材層を備え、
     前記電極合材層が、前記集電体側に位置する第1面と、前記第1面とは反対側に位置する第2面とを有し、
     前記導電性熱膨張材料含有部が、前記集電体と、前記第2面との間に位置する、請求項1~10の何れかに記載の電気化学素子電極用部材。
    An electrode mixture layer is provided,
    the electrode mixture layer has a first surface located on the current collector side and a second surface located on the opposite side to the first surface,
    11. The electrode member for an electrochemical element according to claim 1, wherein the electrically conductive thermally expandable material-containing portion is located between the current collector and the second surface.
  12.  請求項11に記載の電気化学素子電極用部材を用いてなる電極を備える、電気化学素子。
     
    An electrochemical element comprising an electrode formed using the electrochemical element electrode member according to claim 11.
PCT/JP2023/034795 2022-09-30 2023-09-25 Member for electrochemical element electrode, and electrochemical element WO2024071057A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022158928 2022-09-30
JP2022-158928 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024071057A1 true WO2024071057A1 (en) 2024-04-04

Family

ID=90477922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034795 WO2024071057A1 (en) 2022-09-30 2023-09-25 Member for electrochemical element electrode, and electrochemical element

Country Status (1)

Country Link
WO (1) WO2024071057A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008262785A (en) * 2007-04-11 2008-10-30 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2013080627A (en) * 2011-10-04 2013-05-02 Toyota Motor Corp Nonaqueous electrolyte secondary battery
WO2014050653A1 (en) * 2012-09-28 2014-04-03 古河電気工業株式会社 Collector, electrode structure, nonaqueous electrolyte battery, conductive filler, and electricity storage component
CN113113603A (en) * 2020-01-13 2021-07-13 荣盛盟固利新能源科技有限公司 Lithium ion battery electrode plate, preparation method thereof and lithium ion battery
WO2021166422A1 (en) * 2020-02-20 2021-08-26 パナソニックIpマネジメント株式会社 Battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008262785A (en) * 2007-04-11 2008-10-30 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2013080627A (en) * 2011-10-04 2013-05-02 Toyota Motor Corp Nonaqueous electrolyte secondary battery
WO2014050653A1 (en) * 2012-09-28 2014-04-03 古河電気工業株式会社 Collector, electrode structure, nonaqueous electrolyte battery, conductive filler, and electricity storage component
CN113113603A (en) * 2020-01-13 2021-07-13 荣盛盟固利新能源科技有限公司 Lithium ion battery electrode plate, preparation method thereof and lithium ion battery
WO2021166422A1 (en) * 2020-02-20 2021-08-26 パナソニックIpマネジメント株式会社 Battery

Similar Documents

Publication Publication Date Title
JP7081583B2 (en) Electrodes for electrochemical devices and electrochemical devices
US9660238B2 (en) Slurry for secondary battery porous membrane, a secondary battery porous membrane, an electrode for secondary battery, a separator for secondary battery and a secondary battery
JP6070570B2 (en) Lithium ion secondary battery electrode, lithium ion secondary battery and slurry composition, and method for producing lithium ion secondary battery electrode
WO2013151144A1 (en) Separator for secondary cell
JP7314802B2 (en) Additive for electrochemical element, binder composition for electrochemical element, slurry composition for electrochemical element, electrode for electrochemical element, and electrochemical element
KR102401458B1 (en) Binder composition for secondary battery positive electrode, slurry composition for secondary battery positive electrode, positive electrode for secondary battery and secondary battery
WO2014156195A1 (en) Binder composition for secondary battery electrodes, method for producing same, slurry composition for secondary battery electrodes, electrode for secondary batteries, and secondary battery
WO2018155345A1 (en) Binder composition for nonaqueous secondary batteries, slurry composition for nonaqueous secondary battery functional layers, functional layer for nonaqueous secondary batteries, and nonaqueous secondary battery
JPWO2020040031A1 (en) Slurry composition for non-aqueous secondary battery functional layer, non-aqueous secondary battery functional layer, non-aqueous secondary battery separator and non-aqueous secondary battery
JPWO2020040163A1 (en) Slurry composition for non-aqueous secondary battery functional layer, separator for non-aqueous secondary battery and non-aqueous secondary battery
JP7388506B2 (en) Non-aqueous secondary battery
KR20200060365A (en) Composition for functional layer of non-aqueous secondary battery, functional layer for non-aqueous secondary battery, and non-aqueous secondary battery
JP7143848B2 (en) Binder composition for electrochemical element, slurry composition for electrochemical element functional layer, slurry composition for electrochemical element adhesive layer, and composite film
US20220200000A1 (en) Composite particle for electrochemical device functional layer, binder composition for electrochemical device functional layer, conductive material paste for electrode mixed material layer, slurry for electrode mixed material layer, electrode for electrochemical device, and electrochemical device
WO2024071057A1 (en) Member for electrochemical element electrode, and electrochemical element
JP7143849B2 (en) Binder composition for electrochemical element, slurry composition for electrochemical element functional layer, slurry composition for electrochemical element adhesive layer, and composite film
WO2018163761A1 (en) Composition for nonaqueous secondary battery functional layers, functional layer for nonaqueous secondary batteries, and nonaqueous secondary battery
WO2023276738A1 (en) Slurry composition for non-aqueous secondary battery functional layers, separator for non-aqueous secondary batteries, and non-aqueous secondary battery
WO2023008267A1 (en) Electrode for electrochemical element, and method of manufacturing electrode for electrochemical element
WO2023008266A1 (en) Binder composition for electrochemical elements, slurry composition for electrochemical element electrodes, electrode for electrochemical elements, and electrochemical element