WO2024071042A1 - Compound, hole transport material, and photoelectric conversion element using said compound - Google Patents
Compound, hole transport material, and photoelectric conversion element using said compound Download PDFInfo
- Publication number
- WO2024071042A1 WO2024071042A1 PCT/JP2023/034740 JP2023034740W WO2024071042A1 WO 2024071042 A1 WO2024071042 A1 WO 2024071042A1 JP 2023034740 W JP2023034740 W JP 2023034740W WO 2024071042 A1 WO2024071042 A1 WO 2024071042A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- substituent
- carbon atoms
- compound
- photoelectric conversion
- Prior art date
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 154
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 137
- 230000005525 hole transport Effects 0.000 title claims abstract description 98
- 239000000463 material Substances 0.000 title claims abstract description 75
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 51
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 claims abstract description 24
- 125000002947 alkylene group Chemical group 0.000 claims abstract description 18
- 125000003277 amino group Chemical group 0.000 claims abstract description 18
- 125000001424 substituent group Chemical group 0.000 claims description 179
- 125000004432 carbon atom Chemical group C* 0.000 claims description 175
- 125000004986 diarylamino group Chemical group 0.000 claims description 27
- 125000000623 heterocyclic group Chemical group 0.000 claims description 27
- 125000000217 alkyl group Chemical group 0.000 claims description 23
- 125000006413 ring segment Chemical group 0.000 claims description 17
- 125000003342 alkenyl group Chemical group 0.000 claims description 15
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 15
- 125000000304 alkynyl group Chemical group 0.000 claims description 13
- 125000004149 thio group Chemical group *S* 0.000 claims description 13
- 125000003545 alkoxy group Chemical group 0.000 claims description 11
- 125000000732 arylene group Chemical group 0.000 claims description 11
- 150000001768 cations Chemical class 0.000 claims description 9
- 125000004450 alkenylene group Chemical group 0.000 claims description 8
- 125000002993 cycloalkylene group Chemical group 0.000 claims description 8
- 125000004419 alkynylene group Chemical group 0.000 claims description 7
- 125000004104 aryloxy group Chemical group 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 125000000000 cycloalkoxy group Chemical group 0.000 claims description 7
- 125000004453 alkoxycarbonyl group Chemical group 0.000 claims description 6
- 125000004429 atom Chemical group 0.000 claims description 6
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 6
- 125000005842 heteroatom Chemical group 0.000 claims description 4
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 claims description 3
- 229910006127 SO3X Inorganic materials 0.000 claims 1
- 239000010410 layer Substances 0.000 description 132
- -1 2-ethylhexyl group Chemical group 0.000 description 80
- 239000000243 solution Substances 0.000 description 43
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 39
- 238000000034 method Methods 0.000 description 37
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 33
- 238000000576 coating method Methods 0.000 description 31
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 27
- 239000002904 solvent Substances 0.000 description 27
- 239000011248 coating agent Substances 0.000 description 25
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 22
- 239000000126 substance Substances 0.000 description 21
- 239000002019 doping agent Substances 0.000 description 18
- 239000010408 film Substances 0.000 description 17
- 239000004065 semiconductor Substances 0.000 description 17
- 125000003118 aryl group Chemical group 0.000 description 15
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 14
- 239000002243 precursor Substances 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 13
- 239000000654 additive Substances 0.000 description 12
- 239000012043 crude product Substances 0.000 description 12
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 11
- 239000000741 silica gel Substances 0.000 description 11
- 229910002027 silica gel Inorganic materials 0.000 description 11
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 11
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- YSHMQTRICHYLGF-UHFFFAOYSA-N 4-tert-butylpyridine Chemical compound CC(C)(C)C1=CC=NC=C1 YSHMQTRICHYLGF-UHFFFAOYSA-N 0.000 description 9
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- 238000003786 synthesis reaction Methods 0.000 description 9
- 238000005160 1H NMR spectroscopy Methods 0.000 description 8
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 8
- 238000005481 NMR spectroscopy Methods 0.000 description 8
- 239000012298 atmosphere Substances 0.000 description 8
- 239000012141 concentrate Substances 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 229910001887 tin oxide Inorganic materials 0.000 description 8
- 230000000996 additive effect Effects 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 6
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 229910052792 caesium Inorganic materials 0.000 description 5
- 239000012295 chemical reaction liquid Substances 0.000 description 5
- 239000000706 filtrate Substances 0.000 description 5
- 229910003437 indium oxide Inorganic materials 0.000 description 5
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 5
- 239000012044 organic layer Substances 0.000 description 5
- 238000010992 reflux Methods 0.000 description 5
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 5
- CYPYTURSJDMMMP-WVCUSYJESA-N (1e,4e)-1,5-diphenylpenta-1,4-dien-3-one;palladium Chemical compound [Pd].[Pd].C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1 CYPYTURSJDMMMP-WVCUSYJESA-N 0.000 description 4
- VWEYDBUEGDKEHC-UHFFFAOYSA-N 3-methyloxathiolane 2,2-dioxide Chemical compound CC1CCOS1(=O)=O VWEYDBUEGDKEHC-UHFFFAOYSA-N 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 125000002541 furyl group Chemical group 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 125000004433 nitrogen atom Chemical group N* 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 125000003226 pyrazolyl group Chemical group 0.000 description 4
- 125000004076 pyridyl group Chemical group 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- BWHDROKFUHTORW-UHFFFAOYSA-N tritert-butylphosphane Chemical compound CC(C)(C)P(C(C)(C)C)C(C)(C)C BWHDROKFUHTORW-UHFFFAOYSA-N 0.000 description 4
- OISVCGZHLKNMSJ-UHFFFAOYSA-N 2,6-dimethylpyridine Chemical compound CC1=CC=CC(C)=N1 OISVCGZHLKNMSJ-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 3
- XDXWNHPWWKGTKO-UHFFFAOYSA-N 207739-72-8 Chemical compound C1=CC(OC)=CC=C1N(C=1C=C2C3(C4=CC(=CC=C4C2=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC(=CC=C1C1=CC=C(C=C13)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC=C(OC)C=C1 XDXWNHPWWKGTKO-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 150000004820 halides Chemical class 0.000 description 3
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 3
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 3
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 3
- 235000019341 magnesium sulphate Nutrition 0.000 description 3
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 3
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 239000012312 sodium hydride Substances 0.000 description 3
- 229910000104 sodium hydride Inorganic materials 0.000 description 3
- 238000004528 spin coating Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- 125000003396 thiol group Chemical group [H]S* 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- UBOXGVDOUJQMTN-UHFFFAOYSA-N 1,1,2-trichloroethane Chemical compound ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 2
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 2
- 125000004973 1-butenyl group Chemical group C(=CCC)* 0.000 description 2
- 125000006039 1-hexenyl group Chemical group 0.000 description 2
- 125000006023 1-pentenyl group Chemical group 0.000 description 2
- 125000006017 1-propenyl group Chemical group 0.000 description 2
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 2
- BSKHPKMHTQYZBB-UHFFFAOYSA-N 2-methylpyridine Chemical compound CC1=CC=CC=N1 BSKHPKMHTQYZBB-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-O Methylammonium ion Chemical compound [NH3+]C BAVYZALUXZFZLV-UHFFFAOYSA-O 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910001252 Pd alloy Inorganic materials 0.000 description 2
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 2
- 229920001167 Poly(triaryl amine) Polymers 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- 235000010724 Wisteria floribunda Nutrition 0.000 description 2
- 125000000738 acetamido group Chemical group [H]C([H])([H])C(=O)N([H])[*] 0.000 description 2
- 125000000641 acridinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3C=C12)* 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 239000005456 alcohol based solvent Substances 0.000 description 2
- 229910001413 alkali metal ion Inorganic materials 0.000 description 2
- 125000003282 alkyl amino group Chemical group 0.000 description 2
- 150000001350 alkyl halides Chemical class 0.000 description 2
- 125000002490 anilino group Chemical group [H]N(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 2
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000002635 aromatic organic solvent Substances 0.000 description 2
- 125000001769 aryl amino group Chemical group 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 2
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 2
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 2
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 2
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 2
- 125000006267 biphenyl group Chemical group 0.000 description 2
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(iii) oxide Chemical compound O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 230000005587 bubbling Effects 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- XQPRBTXUXXVTKB-UHFFFAOYSA-M caesium iodide Chemical compound [I-].[Cs+] XQPRBTXUXXVTKB-UHFFFAOYSA-M 0.000 description 2
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 description 2
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 125000004663 dialkyl amino group Chemical group 0.000 description 2
- 125000004988 dibenzothienyl group Chemical group C1(=CC=CC=2SC3=C(C21)C=CC=C3)* 0.000 description 2
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 2
- 125000001664 diethylamino group Chemical group [H]C([H])([H])C([H])([H])N(*)C([H])([H])C([H])([H])[H] 0.000 description 2
- QXYJCZRRLLQGCR-UHFFFAOYSA-N dioxomolybdenum Chemical compound O=[Mo]=O QXYJCZRRLLQGCR-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 2
- 125000000031 ethylamino group Chemical group [H]C([H])([H])C([H])([H])N([H])[*] 0.000 description 2
- 125000004705 ethylthio group Chemical group C(C)S* 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 125000001072 heteroaryl group Chemical group 0.000 description 2
- 125000002883 imidazolyl group Chemical group 0.000 description 2
- 125000001041 indolyl group Chemical group 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- OGQSCIYDJSNCMY-UHFFFAOYSA-H iron(3+);methyl-dioxido-oxo-$l^{5}-arsane Chemical compound [Fe+3].[Fe+3].C[As]([O-])([O-])=O.C[As]([O-])([O-])=O.C[As]([O-])([O-])=O OGQSCIYDJSNCMY-UHFFFAOYSA-H 0.000 description 2
- 125000000555 isopropenyl group Chemical group [H]\C([H])=C(\*)C([H])([H])[H] 0.000 description 2
- 125000005956 isoquinolyl group Chemical group 0.000 description 2
- 229910001507 metal halide Inorganic materials 0.000 description 2
- 150000005309 metal halides Chemical class 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 125000002816 methylsulfanyl group Chemical group [H]C([H])([H])S[*] 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Chemical compound O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 2
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 125000002971 oxazolyl group Chemical group 0.000 description 2
- 125000004625 phenanthrolinyl group Chemical group N1=C(C=CC2=CC=C3C=CC=NC3=C12)* 0.000 description 2
- 125000005561 phenanthryl group Chemical group 0.000 description 2
- 125000003356 phenylsulfanyl group Chemical group [*]SC1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 description 2
- 229910001414 potassium ion Inorganic materials 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 2
- 239000008213 purified water Substances 0.000 description 2
- 125000001725 pyrenyl group Chemical group 0.000 description 2
- 125000000714 pyrimidinyl group Chemical group 0.000 description 2
- 125000000168 pyrrolyl group Chemical group 0.000 description 2
- 125000005493 quinolyl group Chemical group 0.000 description 2
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 229910001419 rubidium ion Inorganic materials 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- MFRIHAYPQRLWNB-UHFFFAOYSA-N sodium tert-butoxide Chemical compound [Na+].CC(C)(C)[O-] MFRIHAYPQRLWNB-UHFFFAOYSA-N 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 2
- DYHSDKLCOJIUFX-UHFFFAOYSA-N tert-butoxycarbonyl anhydride Chemical compound CC(C)(C)OC(=O)OC(=O)OC(C)(C)C DYHSDKLCOJIUFX-UHFFFAOYSA-N 0.000 description 2
- 125000000335 thiazolyl group Chemical group 0.000 description 2
- 125000001544 thienyl group Chemical group 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 125000001425 triazolyl group Chemical group 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- ZXMGHDIOOHOAAE-UHFFFAOYSA-N 1,1,1-trifluoro-n-(trifluoromethylsulfonyl)methanesulfonamide Chemical compound FC(F)(F)S(=O)(=O)NS(=O)(=O)C(F)(F)F ZXMGHDIOOHOAAE-UHFFFAOYSA-N 0.000 description 1
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical group C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 1
- ZPQOPVIELGIULI-UHFFFAOYSA-N 1,3-dichlorobenzene Chemical compound ClC1=CC=CC(Cl)=C1 ZPQOPVIELGIULI-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 1
- 125000004972 1-butynyl group Chemical group [H]C([H])([H])C([H])([H])C#C* 0.000 description 1
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 1
- 125000000530 1-propynyl group Chemical group [H]C([H])([H])C#C* 0.000 description 1
- TZMSYXZUNZXBOL-UHFFFAOYSA-N 10H-phenoxazine Chemical compound C1=CC=C2NC3=CC=CC=C3OC2=C1 TZMSYXZUNZXBOL-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- 125000000069 2-butynyl group Chemical group [H]C([H])([H])C#CC([H])([H])* 0.000 description 1
- XWKFPIODWVPXLX-UHFFFAOYSA-N 2-methyl-5-methylpyridine Natural products CC1=CC=C(C)N=C1 XWKFPIODWVPXLX-UHFFFAOYSA-N 0.000 description 1
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 1
- YXPTXFACOUYRSO-UHFFFAOYSA-N 3,7-dibromo-10h-phenoxazine Chemical compound C1=C(Br)C=C2OC3=CC(Br)=CC=C3NC2=C1 YXPTXFACOUYRSO-UHFFFAOYSA-N 0.000 description 1
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 1
- RPIHBLGJOPSTMS-UHFFFAOYSA-N 3-N,3-N,6-N,6-N-tetrakis(4-methoxyphenyl)-9H-carbazole-3,6-diamine Chemical compound COC1=CC=C(C=C1)N(C=1C=CC=2NC3=CC=C(C=C3C=2C=1)N(C1=CC=C(C=C1)OC)C1=CC=C(C=C1)OC)C1=CC=C(C=C1)OC RPIHBLGJOPSTMS-UHFFFAOYSA-N 0.000 description 1
- SDDGNMXIOGQCCH-UHFFFAOYSA-N 3-fluoro-n,n-dimethylaniline Chemical compound CN(C)C1=CC=CC(F)=C1 SDDGNMXIOGQCCH-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- 238000007125 Buchwald synthesis reaction Methods 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical class [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- PNKUSGQVOMIXLU-UHFFFAOYSA-N Formamidine Chemical compound NC=N PNKUSGQVOMIXLU-UHFFFAOYSA-N 0.000 description 1
- 229910005540 GaP Inorganic materials 0.000 description 1
- RAXXELZNTBOGNW-UHFFFAOYSA-O Imidazolium Chemical compound C1=C[NH+]=CN1 RAXXELZNTBOGNW-UHFFFAOYSA-O 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- 229910018287 SbF 5 Inorganic materials 0.000 description 1
- 229910002370 SrTiO3 Inorganic materials 0.000 description 1
- 238000006161 Suzuki-Miyaura coupling reaction Methods 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- HDVVFJKYLNSKOG-UHFFFAOYSA-N [4-(4-methoxy-n-(4-methoxyphenyl)anilino)phenyl]boronic acid Chemical compound C1=CC(OC)=CC=C1N(C=1C=CC(=CC=1)B(O)O)C1=CC=C(OC)C=C1 HDVVFJKYLNSKOG-UHFFFAOYSA-N 0.000 description 1
- IHWJXGQYRBHUIF-UHFFFAOYSA-N [Ag].[Pt] Chemical compound [Ag].[Pt] IHWJXGQYRBHUIF-UHFFFAOYSA-N 0.000 description 1
- NEIHULKJZQTQKJ-UHFFFAOYSA-N [Cu].[Ag] Chemical compound [Cu].[Ag] NEIHULKJZQTQKJ-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052946 acanthite Inorganic materials 0.000 description 1
- 238000007754 air knife coating Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- JYMITAMFTJDTAE-UHFFFAOYSA-N aluminum zinc oxygen(2-) Chemical compound [O-2].[Al+3].[Zn+2] JYMITAMFTJDTAE-UHFFFAOYSA-N 0.000 description 1
- QHJPGANWSLEMTI-UHFFFAOYSA-N aminomethylideneazanium;iodide Chemical compound I.NC=N QHJPGANWSLEMTI-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 125000002178 anthracenyl group Chemical group C1(=CC=CC2=CC3=CC=CC=C3C=C12)* 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000007514 bases Chemical class 0.000 description 1
- WVMYSOZCZHQCSG-UHFFFAOYSA-N bis(sulfanylidene)zirconium Chemical compound S=[Zr]=S WVMYSOZCZHQCSG-UHFFFAOYSA-N 0.000 description 1
- CLFSUXDTZJJJOK-UHFFFAOYSA-N bis(trifluoromethylsulfonyl)azanide 4-tert-butyl-2-pyrazol-1-ylpyridine cobalt(3+) Chemical compound [N-](S(=O)(=O)C(F)(F)F)S(=O)(=O)C(F)(F)F.[N-](S(=O)(=O)C(F)(F)F)S(=O)(=O)C(F)(F)F.[N-](S(=O)(=O)C(F)(F)F)S(=O)(=O)C(F)(F)F.[Co+3].N1(N=CC=C1)C1=NC=CC(=C1)C(C)(C)C.N1(N=CC=C1)C1=NC=CC(=C1)C(C)(C)C.N1(N=CC=C1)C1=NC=CC(=C1)C(C)(C)C CLFSUXDTZJJJOK-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- OWBTYPJTUOEWEK-UHFFFAOYSA-N butane-2,3-diol Chemical compound CC(O)C(C)O OWBTYPJTUOEWEK-UHFFFAOYSA-N 0.000 description 1
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 1
- 229910000024 caesium carbonate Inorganic materials 0.000 description 1
- 150000001716 carbazoles Chemical class 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000007942 carboxylates Chemical group 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(II) oxide Inorganic materials [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001352 cyclobutyloxy group Chemical group C1(CCC1)O* 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000002933 cyclohexyloxy group Chemical group C1(CCCCC1)O* 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000001887 cyclopentyloxy group Chemical group C1(CCCC1)O* 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 125000000131 cyclopropyloxy group Chemical group C1(CC1)O* 0.000 description 1
- 125000006612 decyloxy group Chemical group 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 125000004431 deuterium atom Chemical group 0.000 description 1
- ZASWJUOMEGBQCQ-UHFFFAOYSA-L dibromolead Chemical compound Br[Pb]Br ZASWJUOMEGBQCQ-UHFFFAOYSA-L 0.000 description 1
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical class C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 239000003759 ester based solvent Substances 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 239000004210 ether based solvent Substances 0.000 description 1
- 125000003754 ethoxycarbonyl group Chemical group C(=O)(OCC)* 0.000 description 1
- 125000004494 ethyl ester group Chemical group 0.000 description 1
- QUSNBJAOOMFDIB-UHFFFAOYSA-O ethylaminium Chemical compound CC[NH3+] QUSNBJAOOMFDIB-UHFFFAOYSA-O 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 125000003914 fluoranthenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC=C4C1=C23)* 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910001418 francium ion Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003353 gold alloy Substances 0.000 description 1
- PQTCMBYFWMFIGM-UHFFFAOYSA-N gold silver Chemical compound [Ag].[Au] PQTCMBYFWMFIGM-UHFFFAOYSA-N 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- ISNICOKBNZOJQG-UHFFFAOYSA-O guanidinium ion Chemical compound C[NH+]=C(N(C)C)N(C)C ISNICOKBNZOJQG-UHFFFAOYSA-O 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 125000005446 heptyloxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 125000003707 hexyloxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 1
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 description 1
- AKUCEXGLFUSJCD-UHFFFAOYSA-N indium(3+);selenium(2-) Chemical compound [Se-2].[Se-2].[Se-2].[In+3].[In+3] AKUCEXGLFUSJCD-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 125000002510 isobutoxy group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])O* 0.000 description 1
- 125000003253 isopropoxy group Chemical group [H]C([H])([H])C([H])(O*)C([H])([H])[H] 0.000 description 1
- 239000005453 ketone based solvent Substances 0.000 description 1
- 238000007759 kiss coating Methods 0.000 description 1
- RQQRAHKHDFPBMC-UHFFFAOYSA-L lead(ii) iodide Chemical compound I[Pb]I RQQRAHKHDFPBMC-UHFFFAOYSA-L 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 1
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- ISWNAMNOYHCTSB-UHFFFAOYSA-N methanamine;hydrobromide Chemical compound [Br-].[NH3+]C ISWNAMNOYHCTSB-UHFFFAOYSA-N 0.000 description 1
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 1
- 125000004492 methyl ester group Chemical group 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 description 1
- 125000006606 n-butoxy group Chemical group 0.000 description 1
- 125000001298 n-hexoxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 125000003935 n-pentoxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 125000005186 naphthyloxy group Chemical group C1(=CC=CC2=CC=CC=C12)O* 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N nickel(II) oxide Inorganic materials [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 125000000018 nitroso group Chemical group N(=O)* 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 125000006611 nonyloxy group Chemical group 0.000 description 1
- 125000005447 octyloxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000002892 organic cations Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 125000001820 oxy group Chemical group [*:1]O[*:2] 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- SWELZOZIOHGSPA-UHFFFAOYSA-N palladium silver Chemical compound [Pd].[Ag] SWELZOZIOHGSPA-UHFFFAOYSA-N 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 125000004115 pentoxy group Chemical group [*]OC([H])([H])C([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- 125000001484 phenothiazinyl group Chemical class C1(=CC=CC=2SC3=CC=CC=C3NC12)* 0.000 description 1
- 125000001644 phenoxazinyl group Chemical group C1(=CC=CC=2OC3=CC=CC=C3NC12)* 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 1
- 229920000548 poly(silane) polymer Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- ROSDSFDQCJNGOL-UHFFFAOYSA-N protonated dimethyl amine Natural products CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 1
- 238000001226 reprecipitation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007763 reverse roll coating Methods 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- HQASLXJEKYYFNY-UHFFFAOYSA-N selenium(2-);titanium(4+) Chemical compound [Ti+4].[Se-2].[Se-2] HQASLXJEKYYFNY-UHFFFAOYSA-N 0.000 description 1
- HVEIXSLGUCQTMP-UHFFFAOYSA-N selenium(2-);zirconium(4+) Chemical compound [Se-2].[Se-2].[Zr+4] HVEIXSLGUCQTMP-UHFFFAOYSA-N 0.000 description 1
- 150000003346 selenoethers Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- XUARKZBEFFVFRG-UHFFFAOYSA-N silver sulfide Chemical compound [S-2].[Ag+].[Ag+] XUARKZBEFFVFRG-UHFFFAOYSA-N 0.000 description 1
- 229940056910 silver sulfide Drugs 0.000 description 1
- HSYLTRBDKXZSGS-UHFFFAOYSA-N silver;bis(trifluoromethylsulfonyl)azanide Chemical compound [Ag+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F HSYLTRBDKXZSGS-UHFFFAOYSA-N 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- 125000005017 substituted alkenyl group Chemical group 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 125000004426 substituted alkynyl group Chemical group 0.000 description 1
- 125000003107 substituted aryl group Chemical group 0.000 description 1
- 125000005346 substituted cycloalkyl group Chemical group 0.000 description 1
- GKCNVZWZCYIBPR-UHFFFAOYSA-N sulfanylideneindium Chemical compound [In]=S GKCNVZWZCYIBPR-UHFFFAOYSA-N 0.000 description 1
- RCYJPSGNXVLIBO-UHFFFAOYSA-N sulfanylidenetitanium Chemical compound [S].[Ti] RCYJPSGNXVLIBO-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 238000005987 sulfurization reaction Methods 0.000 description 1
- 150000008053 sultones Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- AFNRRBXCCXDRPS-UHFFFAOYSA-N tin(ii) sulfide Chemical compound [Sn]=S AFNRRBXCCXDRPS-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 125000004306 triazinyl group Chemical group 0.000 description 1
- 150000001651 triphenylamine derivatives Chemical class 0.000 description 1
- 125000003960 triphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C3=CC=CC=C3C12)* 0.000 description 1
- ITRNXVSDJBHYNJ-UHFFFAOYSA-N tungsten disulfide Chemical compound S=[W]=S ITRNXVSDJBHYNJ-UHFFFAOYSA-N 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/40—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/50—Photovoltaic [PV] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/60—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation in which radiation controls flow of current through the devices, e.g. photoresistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
- H10K30/84—Layers having high charge carrier mobility
- H10K30/86—Layers having high hole mobility, e.g. hole-transporting layers or electron-blocking layers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Definitions
- the present invention relates to a compound useful as a hole transport material and a photoelectric conversion element using the compound.
- perovskite solar cells have attracted attention as a next-generation solar cell that can be manufactured at low cost by a solution process (for example, Patent Document 1, Non-Patent Documents 1 and 2).
- a layer formed of a hole transport material is often provided in the element.
- the purpose of using a hole transport material is (1) to improve the photoelectric conversion efficiency, and (2) to protect the perovskite material that is easily affected by moisture and oxygen (for example, Non-Patent Documents 3-4).
- Spiro-OMeTAD has often been used as a standard organic hole transport material, and there have been few reports of organic hole transport materials that contribute more to photoelectric conversion properties than this material.
- Non-Patent Document 5 When an organic compound is used as a hole transport material, a dopant is conventionally added to the hole transport layer to reduce the electrical resistance of the hole transport material.
- a dopant as an additive not only complicates the manufacturing process but also leads to an increase in manufacturing costs.
- the use of a dopant promotes the deterioration of the hole transport layer due to moisture absorption by the dopant, corrosion of the photoelectric conversion layer, and volatilization, which leads to a decrease in the durability of the element (for example, Non-Patent Document 5).
- the problem to be solved by the present invention is to provide an organic compound useful as a hole transport material, and also to provide a photoelectric conversion element and a solar cell exhibiting excellent photoelectric conversion characteristics.
- the inventors conducted extensive research and discovered that by using a compound having a structure in which a sulfonate group is linked to a phenoxazine skeleton as a hole transport material, it is possible to obtain a photoelectric conversion element or solar cell with good photoelectric conversion efficiency and high durability.
- the present invention has been proposed based on this knowledge and specifically has the following configuration.
- R 1 represents a linear or branched alkylene group having 1 to 18 carbon atoms which may have a substituent, a linear or branched alkenylene group having 2 to 20 carbon atoms which may have a substituent, a linear or branched alkynylene group having 2 to 20 carbon atoms which may have a substituent, a cycloalkylene group having 3 to 12 carbon atoms which may have a substituent, an arylene group having 6 to 36 carbon atoms which may have a substituent, or a divalent heterocyclic group having 5 to 36 ring atoms which may have a substituent, and X represents a monovalent cation other than a hydrogen ion.
- R 2 to R 9 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 18 carbon atoms which may have a substituent, a linear or branched alkenyl group having 2 to 20 carbon atoms which may have a substituent, a linear or branched alkynyl group having 2 to 20 carbon atoms which may have a substituent, a cycloalkyl group having 3 to 12 carbon atoms which may have a substituent, a linear or branched alkoxy group having 1 to 20 carbon atoms which may have a substituent, a cycloalkoxy group having 3 to 10 carbon atoms which may have a substituent, an aryloxy group having 6 to 36 carbon atoms which may have a substituent, a linear or branched alkoxycarbonyl group having 1 to 18 carbon atoms which may have a substituent, a thio group having 0 to 18 carbon atoms which may have a substituent, an amino group having
- the compound of the present invention is useful as a hole transport material.
- a hole transport material By using the compound of the present invention as a hole transport material in a photoelectric conversion element, it is possible to obtain a photoelectric conversion element and a solar cell having good photoelectric conversion efficiency and high durability.
- FIG. 1 is a schematic cross-sectional view showing a configuration example of a photoelectric conversion element of the present invention.
- a numerical range expressed using “to” means a range including the numerical values before and after "to” as the lower and upper limits.
- some or all of the hydrogen atoms present in the compound represented by general formula (1) and the groups represented by R 1 to R 9 may be substituted with deuterium atoms.
- “transparent” and “light-transmitting” refer to a transmittance of light to be used for photoelectric conversion of 50% or more, for example, 80% or more, for example, 90% or more, for example, 99% or more. The transmittance of light can be measured by an ultraviolet-visible spectrophotometer.
- R 1 represents a linear or branched alkylene group having 1 to 18 carbon atoms which may have a substituent, a linear or branched alkenylene group having 2 to 20 carbon atoms which may have a substituent, a linear or branched alkynylene group having 2 to 20 carbon atoms which may have a substituent, a cycloalkylene group having 3 to 12 carbon atoms which may have a substituent, an arylene group having 6 to 36 carbon atoms which may have a substituent, or a divalent heterocyclic group having 5 to 36 ring atoms which may have a substituent.
- the number of carbon atoms in the "straight-chain or branched alkylene group having 1 to 18 carbon atoms" in the "straight-chain or branched alkylene group having 1 to 18 carbon atoms which may have a substituent" represented by R 1 is selected from integers of 1 to 18, and may be selected from the range of, for example, 1 to 12, and may be selected from the range of, for example, 1 to 6.
- the "straight-chain or branched alkylene group having 1 to 18 carbon atoms which may have a substituent" include divalent groups obtained by removing one hydrogen atom from an alkyl group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, a t-butyl group, an n-pentyl group, an isopentyl group, an n-hexyl group, a 2-ethylhexyl group, a heptyl group, an octyl group, an isooctyl group, a nonyl group, or a decyl group, and a divalent group obtained by removing one hydrogen atom from a substituted alkyl group in which at least one hydrogen atom of the alkyl group is substituted with a substituent (the former divalent group obtained
- the number of carbon atoms in the "straight-chain or branched alkenylene group having 2 to 20 carbon atoms" in the "straight-chain or branched alkenylene group having 2 to 20 carbon atoms which may have a substituent" represented by R 1 is selected from integers of 2 to 20, and may be selected from the range of, for example, 2 to 12, or may be selected from the range of, for example, 2 to 6.
- the "straight-chain or branched alkenylene group having 2 to 20 carbon atoms which may have a substituent” include a vinyl group, a 1-propenyl group, an allyl group, a 1-butenyl group, a 2-butenyl group, a 1-pentenyl group, a 1-hexenyl group, an isopropenyl group, an isobutenyl group, or a divalent group obtained by removing one hydrogen atom from a straight-chain or branched alkenyl group having 2 to 20 carbon atoms to which a plurality of these alkenyl groups are bonded, and a divalent group obtained by removing one hydrogen atom from a substituted alkenyl group in which at least one hydrogen atom of the alkenyl group is substituted with a substituent (the first divalent group is preferred).
- the number of carbon atoms in the "linear or branched alkynylene group having 2 to 20 carbon atoms which may have a substituent" represented by R 1 is selected from integers of 2 to 20, and may be selected from the range of, for example, 2 to 12, or may be selected from the range of, for example, 2 to 6.
- linear or branched alkynylene group having 2 to 20 carbon atoms which may have a substituent include divalent groups obtained by removing one hydrogen atom from an alkynyl group, such as an ethynyl group, a 1-propynyl group, a 2-propynyl group, a 1-butynyl group, a 2-butynyl group, a 1-methyl-2-propynyl group, a 1-pentynyl group, a 2-pentynyl group, a 1-methyl-n-butynyl group, a 2-methyl-n-butynyl group, a 3-methyl-n-butynyl group, or a 1-hexynyl group, and divalent groups obtained by removing one hydrogen atom from a substituted alkynyl group in which at least one hydrogen atom of the alkynyl group is substituted with a substituent (the former divalent group is preferred).
- the number of carbon atoms in the "cycloalkylene group having 3 to 12 carbon atoms" in the "cycloalkylene group having 3 to 12 carbon atoms which may have a substituent" represented by R 1 is selected from integers of 3 to 12, and may be selected from the range of, for example, 3 to 6.
- cycloalkylene group having 3 to 12 carbon atoms which may have a substituent include divalent groups obtained by removing one hydrogen atom from a cycloalkyl group such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclodecyl group, and a cyclododecyl group, and divalent groups obtained by removing one hydrogen atom from a substituted cycloalkyl group in which at least one hydrogen atom of the cycloalkyl group is substituted with a substituent (the former divalent group is preferred).
- the aromatic ring constituting the "arylene group having 6 to 36 carbon atoms" in the "arylene group having 6 to 36 carbon atoms which may have a substituent" represented by R 1 may be a single ring, a fused ring in which two or more rings are fused, or a linked ring in which two or more rings are linked by a single bond.
- the number of fused rings is, for example, 2 to 6, for example, 2 to 4.
- the number of linked rings is, for example, 2 to 6, for example, 2 to 4.
- the number of carbon atoms in the aromatic ring is selected from integers of 6 to 36, and may be selected from the range of, for example, 6 to 22 or 6 to 18, or may be selected from the range of, for example, 6 to 14 or 6 to 10.
- Specific examples of the "arylene group having 6 to 36 carbon atoms which may have a substituent" include divalent groups obtained by removing one hydrogen atom from a monovalent aromatic hydrocarbon group (aryl group), such as a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a biphenyl group, an anthracenyl group (anthryl group), a phenanthryl group, a fluorenyl group, an indenyl group, a pyrenyl group, a perylenyl group, a fluoranthenyl group, or a triphenylenyl group, and divalent groups obtained by removing one hydrogen atom from a substituted ary
- the heterocycle constituting the "divalent heterocyclic group having 5 to 36 ring atoms" in the "divalent heterocyclic group having 5 to 36 ring atoms which may have a substituent" represented by R 1 may be a monocycle or a condensed ring in which two or more rings are condensed. In the case of a condensed ring, the number of condensed rings is, for example, 2 to 6, for example, 2 to 4.
- the heterocycle may be an aromatic heterocycle or an aliphatic heterocycle. Examples of heteroatoms constituting the heterocycle include a nitrogen atom, an oxygen atom, and a sulfur atom.
- the number of carbon atoms in the aromatic heterocycle is selected from integers of 5 to 36, and may be selected from the range of, for example, 5 to 30 or 5 to 18.
- Specific examples of the "divalent heterocyclic group having 5 to 36 ring atoms" include divalent groups obtained by removing one hydrogen atom from a monovalent heterocyclic group such as a pyridyl group, a pyrimidinyl group, a triazinyl group, a thienyl group, a furyl group (a furanyl group), a pyrrolyl group, an imidazolyl group, a pyrazolyl group, a triazolyl group, a quinolyl group, an isoquinolyl group, a naphthyldinyl group, an acridinyl group, a phenanthrolinyl group, a benzofuranyl group, a benzothienyl group, an oxazolyl group, an indoly
- examples of the "substituent" in the "linear or branched alkylene group having 1 to 18 carbon atoms which may have a substituent”, “linear or branched alkenylene group having 2 to 20 carbon atoms which may have a substituent”, “linear or branched alkynylene group having 2 to 20 carbon atoms which may have a substituent”, “cycloalkylene group having 3 to 12 carbon atoms which may have a substituent”, “arylene group having 6 to 36 carbon atoms which may have a substituent” or "divalent heterocyclic group having 5 to 36 ring atoms which may have a substituent” represented by R 1 include, Specifically, halogen atoms such as fluorine, chlorine, bromine, and iodine atoms; cyano groups; hydroxyl groups; nitro groups; nitroso groups; carboxyl groups; phosphoric acid groups; carboxylate groups such as methyl ester groups and ethyl
- Each group represented by R1 may contain only one or more substituents selected from the substituent group A, and when more than one is contained, the substituents may be the same or different.
- the hydrogen atom of each of the substituents constituting the substituent group A may be further substituted with a substituent selected from the substituent group A.
- R 1 in the general formula (1) is preferably a linear or branched alkylene group having 1 to 18 carbon atoms (preferably 1 to 12, for example 1 to 6) which may have a substituent, for example an unsubstituted alkylene group, for example an alkylene group substituted with an alkenyl group, an alkynyl group, a cycloalkyl group or an aryl group.
- R 1 in the general formula (1) is also preferably an arylene group having 6 to 36 carbon atoms (preferably 6 to 14, for example 6 to 10) which may have a substituent.
- the atom of R 1 bonded to SO 3 X is preferably a secondary carbon atom or a carbon atom constituting the backbone of a benzene ring.
- X in the sulfonate group (-SO 3 X) in general formula (1) represents a monovalent cation other than a hydrogen ion.
- the monovalent cation is preferably an alkali metal ion, an ammonium ion which may have a substituent, or a phosphonium ion which may have a substituent, but is not limited to these.
- alkali metal ions include lithium ions, sodium ions, potassium ions, rubidium ions, cesium ions, and francium ions, with sodium ions, potassium ions, rubidium ions, and cesium ions being preferred.
- Examples of phosphonium ions which may have a substituent include ethyl phosphonium ion, isopropyl phosphonium ion, n-propyl phosphonium ion, isobutyl phosphonium ion, n-butyl phosphonium ion, t-butyl phosphonium ion, dimethyl phosphonium ion, diethyl phosphonium ion, phenyl phosphonium ion, benzyl phosphonium ion, and the above ammonium ions in which the nitrogen atom is replaced with a phosphorus atom.
- R 2 to R 9 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 18 carbon atoms which may have a substituent, a linear or branched alkenyl group having 2 to 20 carbon atoms which may have a substituent, a linear or branched alkynyl group having 2 to 20 carbon atoms which may have a substituent, a cycloalkyl group having 3 to 10 carbon atoms which may have a substituent, a linear or branched alkoxy group having 1 to 20 carbon atoms which may have a substituent, a cycloalkoxy group having 3 to 10 carbon atoms which may have a substituent, an aryloxy group having 6 to 36 carbon atoms which may have a substituent, a linear or branched alkoxycarbonyl group having 1 to 18 carbon atoms which may have a substituent, a thio group having 0 to 18 carbon atoms which may have a substituent,
- the number of carbon atoms in the "linear or branched alkyl group having 1 to 18 carbon atoms" in the "linear or branched alkyl group having 1 to 18 carbon atoms which may have a substituent" represented by R 2 to R 9 is selected from integers of 1 to 18, and may be selected from the range of, for example, 1 to 12, or may be selected from the range of, for example, 1 to 6.
- linear or branched alkyl group having 1 to 18 carbon atoms For specific examples of the "linear or branched alkyl group having 1 to 18 carbon atoms", reference may be made to the specific examples of the alkyl group (the alkyl group before removal of one hydrogen atom) given in the explanation of the "linear or branched alkylene group having 1 to 18 carbon atoms which may have a substituent" represented by R 1 above.
- the number of carbon atoms in the "straight- chain or branched alkenyl group having 2 to 20 carbon atoms" in the "straight-chain or branched alkenyl group having 2 to 20 carbon atoms which may have a substituent" represented by R 2 to R 9 is selected from integers from 2 to 20, and may be selected from the range of, for example, 2 to 12, or may be selected from the range of, for example, 2 to 6.
- the number of carbon atoms in the "straight- chain or branched alkynyl group having 2 to 20 carbon atoms" in the "straight-chain or branched alkynyl group having 2 to 20 carbon atoms which may have a substituent" represented by R 2 to R 9 is selected from integers from 2 to 20, and may be selected from the range of, for example, 2 to 12, or may be selected from the range of, for example, 2 to 6.
- the number of carbon atoms in the "cycloalkyl group having 3 to 10 carbon atoms" in the "cycloalkyl group having 3 to 10 carbon atoms which may have a substituent" represented by R 2 to R 9 is selected from integers of 3 to 10, and may be selected, for example, from the range of 3 to 6.
- R 2 to R 9 the number of carbon atoms in the "cycloalkyl group having 3 to 10 carbon atoms" in the "cycloalkyl group having 3 to 10 carbon atoms which may have a substituent" represented by R 2 to R 9 is selected from integers of 3 to 10, and may be selected, for example, from the range of 3 to 6.
- the cycloalkyl group having 3 to 10 carbon atoms reference can be made to the specific examples of the cycloalkyl group (cycloalkyl group before removal of one hydrogen atom) given in the explanation of the "cycloalkylene group having 3 to 12 carbon atoms" in R 1 above.
- the number of carbon atoms in the "straight-chain or branched alkoxy group having 1 to 20 carbon atoms" in the "straight-chain or branched alkoxy group having 1 to 20 carbon atoms which may have a substituent" represented by R 2 to R 9 is selected from an integer of 1 to 20, and may be selected from the range of, for example, 1 to 12, or may be selected from the range of, for example, 1 to 6.
- the "straight-chain or branched alkoxy group having 1 to 20 carbon atoms" include a methoxy group, an ethoxy group, a propoxy group, an n-butoxy group, an n-pentyloxy group, an n-hexyloxy group, a heptyloxy group, an octyloxy group, a nonyloxy group, a decyloxy group, an isopropoxy group, an isobutoxy group, an s-butoxy group, a t-butoxy group, an isooctyloxy group, a t-octyloxy group, and the like.
- the number of carbon atoms in the "straight - chain or branched cycloalkoxy group having 3 to 10 carbon atoms" in the "straight-chain or branched cycloalkoxy group having 3 to 10 carbon atoms which may have a substituent" represented by R 2 to R 9 is selected from integers of 3 to 10, and may be selected, for example, from the range of 3 to 6.
- Specific examples of the "straight-chain or branched cycloalkoxy group having 3 to 10 carbon atoms" include a cyclopropoxy group, a cyclobutoxy group, a cyclopentyloxy group, and a cyclohexyloxy group.
- aryloxy group having 6 to 36 carbon atoms include a phenoxy group, a tolyloxy group, a biphenylyloxy group, a terphenylyloxy group, a naphthyloxy group, an anthryloxy group, a phenanthryloxy group, a fluorenyloxy group, and an indenyloxy group.
- the number of carbon atoms in the "straight-chain or branched alkoxycarbonyl group having 1 to 18 carbon atoms which may have a substituent" represented by R 2 to R 9 is selected from integers of 1 to 18, and may be selected from the range of, for example, 1 to 12, or may be selected from the range of, for example, 1 to 6.
- Specific examples of the "alkoxycarbonyl group having 1 to 18 carbon atoms" include a methoxycarbonyl group, an ethoxycarbonyl group, etc.
- the "thio group having 0 to 18 carbon atoms which may have a substituent" represented by R 2 to R 9 may be an unsubstituted thio group (thiol group: -SH) or a substituted thio group in which the hydrogen atom of the thiol group is substituted with a substituent.
- substituent of the substituted thio group include an alkyl group and an aryl group, and the hydrogen atom of each of these groups may be substituted with a substituent selected from the above-mentioned substituent group A.
- alkyl group which is a substituent of the thio group the description of the "linear or branched alkyl group having 1 to 18 carbon atoms" and the “cycloalkyl group having 3 to 10 carbon atoms" in the above-mentioned R 2 to R 9 can be referred to, and for an explanation and specific examples of the aryl group, the description of the "monovalent aromatic hydrocarbon group having 6 to 36 carbon atoms" in the below-mentioned R 2 to R 9 can be referred to.
- the number of carbon atoms of the substituted thio group is preferably in the range of 1 to 18, and may be, for example, in the range of 1 to 12, or may be, for example, in the range of 1 to 6.
- Specific examples of the "substituted thio group having 1 to 18 carbon atoms" include a methylthio group, an ethylthio group, a propylthio group, a phenylthio group, and a biphenylthio group.
- the "amino group having 0 to 20 carbon atoms which may have a substituent" represented by R 2 to R 9 may be an unsubstituted amino group, a mono-substituted amino group, or a di-substituted amino group.
- substituent of each substituted amino group include an alkyl group, an aryl group, and an acyl group, and the hydrogen atom of each of these groups may be substituted with a substituent selected from the above-mentioned substituent group A.
- the above description of the "linear or branched alkyl group having 1 to 18 carbon atoms” and the “cycloalkyl group having 3 to 10 carbon atoms" in R 2 to R 9 can be referred to, and for the explanation and specific examples of the aryl group, the description of the "monovalent aromatic hydrocarbon group having 6 to 36 carbon atoms" in R 2 to R 9 can be referred to below.
- the number of carbon atoms of the mono-substituted amino group and the di-substituted amino group is preferably 1 to 20, and may be, for example, in the range of 1 to 12.
- the mono-substituted amino group examples include an alkylamino group (e.g., an ethylamino group), an acetylamino group, and an arylamino group (e.g., a phenylamino group).
- the disubstituted amino group examples include a dialkylamino group (eg, a diethylamino group), a diarylamino group (eg, a diphenylamino group), and an acetylphenylamino group.
- substituted group A such as "a linear or branched alkylene group having 1 to 18 carbon atoms which may have a substituent” represented by formula ( 1)
- substituent of the "monovalent aromatic hydrocarbon group having 6 to 36 carbon atoms which may have a substituent” is preferably an amino group substituted with a monovalent aromatic hydrocarbon group (aryl group), more preferably a diarylamino group.
- the monovalent aromatic hydrocarbon group which is the substituent of the amino group may be substituted with a substituent selected from the above substituent group A.
- R 2 to R 9 is a monovalent aromatic hydrocarbon group having 6 to 36 carbon atoms which may have a substituent or an amino group having 0 to 20 carbon atoms which may have a substituent.
- R 3 , R 4 , R 7 and R 8 is a monovalent aromatic hydrocarbon group having 6 to 36 carbon atoms which may have a substituent or an amino group having 0 to 20 carbon atoms which may have a substituent
- at least one of R 4 and R 7 is a monovalent aromatic hydrocarbon group having 6 to 36 carbon atoms which may have a substituent or an amino group having 0 to 20 carbon atoms which may have a substituent.
- the amino group has a substituent, the number of carbon atoms is 1 to 20.
- At least one of R 2 to R 9 in the general formula (1) is a group having a diarylamino group, and it is more preferable that at least one of R 3 , R 4 , R 7 and R 8 is a group having a diarylamino group. It is also preferable that at least one of R 2 to R 5 and at least one of R 6 to R 9 in the general formula (1) is a group having a diarylamino group, it is more preferable that at least one of R 3 and R 4 and at least one of R 7 and R 8 are a group having a diarylamino group, and it is even more preferable that R 4 and R 7 are groups having a diarylamino group.
- the group having a diarylamino group is, for example, a diarylamino group, for example, a diarylaminoaryl group, for example, a diarylaminocarbazol-9-yl group.
- a diarylamino group for example, a diarylaminoaryl group, for example, a diarylaminocarbazol-9-yl group.
- the description of the "monovalent aromatic hydrocarbon group having 6 to 36 carbon atoms" in R 2 to R 9 above can be referred to.
- At least one hydrogen atom of the diarylamino group, diarylaminoaryl group, and diarylaminocarbazol-9-yl group may be substituted with a substituent selected from the above-mentioned Substituent Group A.
- the substituent include a substituent bonded via a heteroatom, such as an alkoxy group (e.g., a methoxy group) or a diarylamino group (e.g., a di(methoxyphenyl)amino group).
- a heteroatom such as an alkoxy group (e.g., a methoxy group) or a diarylamino group (e.g., a di(methoxyphenyl)amino group).
- a heteroaryl group containing a nitrogen atom as a ring skeleton-constituting atom (e.g., a pyridyl group).
- Compound group 1 includes compound group 1a in which R 4 is a diarylamino group which may have a substituent, compound group 1b in which R 4 is a diarylaminoaryl group which may have a substituent (preferably a diarylaminophenyl group which may have a substituent), compound group 1c in which R 4 is a diarylaminocarbazol-9-yl group which may have a substituent, and compound group 1d in which R 4 is a linear or branched alkyl group having 1 to 18 carbon atoms which may have a substituent.
- R 2 , R 3 , and R 5 to R 9 in each group may be hydrogen atoms.
- R 7 in each group may not be a hydrogen atom, and for example, R 4 and R 7 may be the same group, and for example, R 2 , R 3 , R 5 , R 6 , R 8 , and R 9 may be hydrogen atoms.
- Each of the compound groups 1a to 1d can further satisfy at least one of the following additional conditions.
- One additional condition is when the "diarylamino" has an alkoxy group (e.g., an alkoxy group having 1 to 6 carbon atoms) as a substituent.
- One additional condition is when the "diarylamino" has a heteroaryl group (e.g., a pyridyl group) containing a nitrogen atom as a ring skeleton constituent atom as a substituent.
- R 1 is a linear or branched alkylene group having 1 to 18 carbon atoms (preferably 1 to 12, e.g., 1 to 6) that may have a substituent, for example, an unsubstituted alkylene group, for example, an alkylene group substituted with an alkenyl group, an alkynyl group, a cycloalkyl group, or an aryl group.
- R 1 is an arylene group having 6 to 36 carbon atoms (preferably 6 to 14, e.g., 6 to 10) that may have a substituent.
- R 1 bonded to SO 3 X is a secondary carbon atom.
- X is Li, Na, K, Rb or Cs, such as Li, such as Na, such as K, such as Rb, such as Cs.
- Compound group 2 includes compound group 2a in which R 3 is a diarylamino group which may have a substituent, compound group 2b in which R 3 is a diarylaminoaryl group which may have a substituent (preferably a diarylaminophenyl group which may have a substituent), compound group 2c in which R 3 is a diarylaminocarbazol-9-yl group which may have a substituent, and compound group 2d in which R 3 is a linear or branched alkyl group having 1 to 18 carbon atoms which may have a substituent.
- R 2 and R 4 to R 9 in each group may be hydrogen atoms.
- R 8 in each group may not be a hydrogen atom, for example, R 3 and R 8 may be the same group, for example, R 2 , R 4 to R 7 , and R 9 may be hydrogen atoms.
- Compound groups 2a to 2d each can satisfy at least one of the additional conditions described in compound group 1.
- Compound group 3 includes compound group 3a in which R 2 is a diarylamino group which may have a substituent, compound group 3b in which R 2 is a diarylaminoaryl group which may have a substituent (preferably a diarylaminophenyl group which may have a substituent), compound group 3c in which R 2 is a diarylaminocarbazol-9-yl group which may have a substituent, and compound group 3d in which R 2 is a linear or branched alkyl group having 1 to 18 carbon atoms which may have a substituent.
- R 3 to R 9 in each group may be a hydrogen atom.
- R 9 in each group may not be a hydrogen atom, for example, R 2 and R 9 may be the same group, and for example, R 3 to R 8 may be a hydrogen atom.
- Compound groups 3a to 3d each can satisfy at least one of the additional conditions described in compound group 1.
- Compound group 4 includes compound group 4a in which R 5 is a diarylamino group which may have a substituent, compound group 4b in which R 5 is a diarylaminoaryl group which may have a substituent (preferably a diarylaminophenyl group which may have a substituent), compound group 4c in which R 5 is a diarylaminocarbazol-9-yl group which may have a substituent, and compound group 4d in which R 5 is a linear or branched alkyl group having 1 to 18 carbon atoms which may have a substituent.
- R 2 to R 4 and R 6 to R 9 in each group may be hydrogen atoms.
- R 6 in each group may not be a hydrogen atom, for example, R 5 and R 6 may be the same group, for example, R 2 to R 4 and R 7 to R 9 may be hydrogen atoms.
- Compound groups 4a to 4d each can satisfy at least one of the additional conditions described in compound group 1.
- the compound represented by the general formula (1) of the present invention can be synthesized by known methods such as those described in JP 2020-013898 A.
- the corresponding substituent is introduced into 3,7-dibromophenoxazine by Suzuki-Miyaura coupling reaction or Buchwald reaction, and then the corresponding sultone is reacted to obtain compound (A-1).
- the compound represented by the general formula (1) can be obtained by known methods using a halogenated phenothiazine derivative as a precursor.
- Methods for purifying the compound represented by general formula (1) of the present invention include purification by column chromatography, adsorption purification using silica gel, activated carbon, activated clay, etc., recrystallization or crystallization using a solvent, etc. Alternatively, these methods may be used in combination to increase the purity of the compound. Furthermore, these compounds can be identified by nuclear magnetic resonance analysis (NMR).
- NMR nuclear magnetic resonance analysis
- the compound represented by the general formula (1) of the present invention is useful as a hole transport material, and can be effectively used as a hole transport material in a hole transport layer of an organic electronics device such as a photoelectric conversion element or an organic electroluminescence element.
- the "hole transport material” means a material having a function of transporting holes.
- the hole transport material used in the present invention may be composed of a compound represented by the general formula (1), or may contain a hole transport material other than the compound represented by the general formula (1) in addition to the compound represented by the general formula (1).
- the photoelectric conversion element of the present invention is characterized in that it contains a hole transport material containing a compound represented by general formula (1).
- a compound represented by general formula (1) the description in the above column "Compound represented by general formula (1)" can be referred to.
- the compound represented by general formula (1) has excellent hole transport properties, so it can be effectively used as a material for the hole transport layer of the photoelectric conversion element.
- Preferred embodiments of the photoelectric conversion element will be described below, but the embodiments of the photoelectric conversion element of the present invention should not be construed as being limited to the embodiments described below. In one embodiment of the present invention, as shown in FIG.
- the photoelectric conversion element has a conductive support 1, an electron transport layer 2, a photoelectric conversion layer 3, a hole transport layer 4, and a counter electrode 5 in this order, and the hole transport layer 4 contains a compound represented by general formula (1).
- the photoelectric conversion element has a conductive support, a hole transport layer, a photoelectric conversion layer, an electron transport layer, and a counter electrode in this order, and the hole transport layer contains a compound represented by general formula (1).
- the photoelectric conversion layer contains, for example, a perovskite compound.
- the photoelectric conversion element is, for example, a photoelectric conversion element used in a solar cell.
- the conductive support 1 functions as a cathode that extracts electrons transported from the photoelectric conversion layer 3 via the electron transport layer 2.
- the conductive support 1 is a conductive support having translucency that allows light to pass through the conductive support, and is, for example, a conductive substrate in which a film of a conductive material is formed on a translucent substrate.
- conductive materials used for the conductive support include conductive transparent oxide semiconductors such as tin-doped indium oxide (ITO), zinc-doped indium oxide (IZO), tungsten-doped indium oxide (IWO), zinc aluminum oxide (AZO), fluorine-doped tin oxide (FTO), indium oxide (In 2 O 3 ), and indium-tin composite oxide, and it is preferable to use tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), etc.
- ITO tin-doped indium oxide
- IZO zinc-doped indium oxide
- IWO tungsten-doped indium oxide
- AZO zinc aluminum oxide
- FTO fluorine-doped tin oxide
- ITO indium oxide
- FTO fluorine-doped tin oxide
- the electron transport layer 2 is a layer containing a material (electron transport material) having a function of transporting electrons, and is disposed between the conductive support 1 and the photoelectric conversion layer 3, and has a function of transporting electrons generated in the photoelectric conversion layer 3 to the conductive support 1 side. This can improve the efficiency of electron migration from the photoelectric conversion layer to the conductive support.
- the electron transport layer may have a function of suppressing hole injection from the conductive support.
- the electron transport layer 2 may be formed adjacent to the conductive support 1, or another layer may be interposed between the conductive support 1 and the electron transport layer 2.
- semiconductor materials used in the electron transport layer include metal oxides such as tin oxide (SnO, SnO2 , SnO3 , etc.), titanium oxide ( TiO2 , etc.), tungsten oxide ( WO2 , WO3 , W2O3 , etc.), zinc oxide (ZnO), niobium oxide ( Nb2O5 , etc.), tantalum oxide ( Ta2O5 , etc.), yttrium oxide ( Y2O3 , etc.), and strontium titanate ( SrTiO3 , etc.); metal sulfides such as titanium sulfide, zinc sulfide, zirconium sulfide, copper sulfide, tin sulfide, indium sulfide, tungsten sulfide, cadmium sulfide, and silver sulfide; metal selenides such as titanium selenide, zirconium selenide, indium selenide,
- a paste containing fine particles of the semiconductor material can be mentioned.
- the semiconductor paste may be a commercially available product, or may be a preparation prepared by dispersing fine powder of the semiconductor material in a solvent.
- solvents used in preparing the semiconductor paste include, but are not limited to, water; alcohol-based solvents such as methanol, ethanol, and isopropyl alcohol; ketone-based solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; and hydrocarbon-based solvents such as n-hexane, cyclohexane, benzene, and toluene. These solvents may be used alone or as a mixed solvent of two or more types.
- Methods for dispersing semiconductor fine powder in a solvent include grinding the powder in a mortar or the like as necessary, and then dispersing it in the solvent using a dispersing machine such as a ball mill, paint conditioner, vertical bead mill, horizontal bead mill, or attritor.
- a dispersing machine such as a ball mill, paint conditioner, vertical bead mill, horizontal bead mill, or attritor.
- a surfactant or the like to prevent the semiconductor fine particles from agglomerating
- a thickener such as polyethylene glycol
- the electron transport layer can be formed using a known film-forming method. That is, the electron transport layer can be formed using a coating method or a gas-phase process using a coating liquid containing a semiconductor material (for example, a coating liquid for the electron transport layer such as a semiconductor paste).
- a method of forming a film by applying a coating liquid for the electron transport layer to a conductive substrate by a wet coating method such as a spin coating method, an inkjet method, a doctor blade method, a drop casting method, a squeegee method, a screen printing method, a reverse roll coating method, a gravure coating method, a kiss coating method, a roll brush method, a spray coating method, an air knife coating method, a wire barber coating method, a pipe doctor method, an impregnation/coating method, or a curtain coating method, and then removing the solvent or additives by baking, or a method of forming a film of a semiconductor material by a gas-phase film-forming method such as a sputtering method, a vapor deposition method, an electrodeposition method, an electrodeposition method, or a microwave irradiation method.
- a gas-phase film-forming method such as a sputtering method, a vapor deposition method, an electrode
- a coating method in which the prepared coating liquid for the electron transport layer is applied by a spin coating method it is preferable to use a coating method in which the prepared coating liquid for the electron transport layer is applied by a spin coating method, but this is not limited to this.
- the conditions for spin coating can be set appropriately.
- the atmosphere in which the film is formed is not particularly limited, and may be air or an inert atmosphere.
- the thickness of the electron transport layer is, for example, 5 nm to 200 nm, and preferably 10 nm to 150 nm. Furthermore, when a dense electron transport layer is used, for example from the viewpoint of further improving photoelectric conversion efficiency, the thickness of the electron transport layer is usually preferably 5 nm to 100 nm, and more preferably 10 nm to 50 nm. In the present invention, when a porous (mesoporous) metal oxide is used in addition to the dense layer, the thickness is usually preferably 20 nm to 200 nm, and more preferably 50 nm to 150 nm.
- the photoelectric conversion layer 3 is a layer for converting light energy into electricity, more specifically, a layer in which a charge separation state occurs due to light energy to generate holes and electrons.
- the photoelectric conversion layer 3 is formed on the opposite side of the electron transport layer 2 to the conductive support 1.
- the photoelectric conversion layer is a layer (perovskite layer) formed of a perovskite material.
- the "perovskite material” means a material having a perovskite structure represented by the general formula ABX3 .
- A represents a monovalent organic cation or a monovalent metal cation
- B represents a divalent metal cation
- X represents a halogen ion.
- Examples of the divalent metal cation represented by B include Pb 2+ and Sn 2+ .
- Examples of the halogen ion represented by X include I - and Br - .
- perovskite materials include MAPbI 3 , FAPbI 3 , EAPbI 3 , CsPbI 3 , MASnI 3 , FASnI 3 , EASnI 3 , MAPbBr 3 , FAPbBr 3 , EAPbBr 3 , MASnBr 3 , FASnBr 3 , and EASnBr 3 .
- mixed cation type and mixed anion type perovskite materials such as (FAMA)Pb(IBr) 3 , K(FAMA)Pb(IBr) 3 , Rb(FAMA)Pb(IBr) 3 , and Cs(FAMA)Pb(IBr) 3 can also be mentioned.
- the photoelectric conversion layer may contain only one type selected from these perovskite materials, or may contain two or more types.
- the photoelectric conversion layer may be composed of only the perovskite material, or may contain other materials in addition to the perovskite material. Examples of the other materials include a light absorbing agent.
- the perovskite layer can be formed by applying a solution of halide AX and metal halide BX2 (perovskite precursor solution) to form a precursor coating film, and drying the precursor coating film.
- AX and metal halide BX2 perovskite precursor solution
- A, B, and X the description of each ion constituting ABX3 above can be referred to.
- specific examples of the halide AX include methylammonium halide, formamidine halide, and cesium halide
- specific examples of the metal halide BX2 include lead halide and tin halide.
- examples of the solvent for the perovskite precursor solution include, but are not limited to, N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), ⁇ -butyrolactone, etc. Furthermore, these solvents may be used alone or in combination of two or more.
- a preferred example of the solvent is a mixed solvent of N,N-dimethylformamide and dimethyl sulfoxide.
- the application process of the perovskite precursor solution is preferably carried out in a dry atmosphere, and more preferably in a dry inert gas atmosphere such as a glove box. This prevents moisture from being mixed into the perovskite layer, allowing highly efficient perovskite solar cells to be produced with good reproducibility.
- a dry atmosphere such as a glove box.
- the perovskite layer is formed by drying the precursor coating film thus formed.
- the precursor coating film may be dried naturally or by heating using a hot plate or the like.
- the temperature at which the precursor coating film is heated using a hot plate or the like is preferably 50 to 200°C, more preferably 70 to 150°C, from the viewpoint of producing a perovskite material from the precursor.
- the heating time is preferably about 10 to 90 minutes, more preferably about 10 to 60 minutes.
- the thickness of the photoelectric conversion layer is preferably 50 to 1000 nm, and more preferably 300 to 700 nm. This suppresses performance degradation due to defects or peeling in the photoelectric conversion layer, prevents the element resistance from becoming excessively high, and provides the photoelectric conversion layer with sufficient light absorption.
- the hole transport layer 4 is a layer containing a material (hole transport material) having a function of transporting holes, and is disposed between the photoelectric conversion layer 3 and the counter electrode 5, and has a function of transporting holes generated in the photoelectric conversion layer 3 to the counter electrode 5. This can improve the efficiency of hole movement from the photoelectric conversion layer to the electrode.
- the hole transport layer may have a function of suppressing electron injection from the counter electrode.
- the hole transport layer contains a compound represented by general formula (1) as a hole transport material.
- the compound represented by general formula (1) contained in the hole transport layer may be one type or two or more types selected from the group of compounds represented by general formula (1).
- the hole transport layer may contain, in addition to the compound represented by general formula (1), a hole transport material other than the compound represented by general formula (1) (hereinafter referred to as a "second hole transport material") or an additive.
- the second hole transport material may be an inorganic hole transport material or an organic hole transport material.
- inorganic hole transport materials include compound semiconductors containing monovalent copper, such as CuI, CuInSe2 , and CuS, and compounds containing metals other than copper, such as GaP, NiO, CoO, FeO, Bi2O3 , MoO2 , and Cr2O3 .
- organic hole transport material examples include polythiophene derivatives such as poly-3-hexylthiophene (P3HT) and polyethylenedioxythiophene (PEDOT); fluorene derivatives such as 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (Spiro-OMeTAD); carbazole derivatives such as polyvinylcarbazole; triphenylamine derivatives such as poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA); diphenylamine derivatives; polysilane derivatives; polyaniline derivatives, etc.
- These second hole transport materials may be mixed in the hole transport layer, or a hole transport layer containing the second hole transport material may be laminated on a hole transport layer containing the compound represented by general formula (1).
- the solvent used in the coating solution for the hole transport layer may be an aromatic organic solvent such as benzene, toluene, xylene, mesitylene, tetralin (1,2,3,4-tetrahydronaphthalene), monochlorobenzene (chlorobenzene), o-dichlorobenzene, m-dichlorobenzene, p-dichlorobenzene, or nitrobenzene; an alkyl halide organic solvent such as dichloromethane, chloroform, 1,2-dichloroethane, 1,1,2-trichloroethane, or dichloromethane; a nitrile solvent such as benzonitrile or acetonitrile; or a tetrahydrofuran,
- aromatic organic solvent such as benzene, toluene, xylene, mesitylene, tetralin (1,2,3,4-tetrahydronaphthalene), monochlorobenz
- the solvent examples include, but are not limited to, ether solvents such as isopropyl ether, c-pentyl methyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and propylene glycol monomethyl ether; ester solvents such as ethyl acetate and propylene glycol monomethyl ether acetate; and alcohol solvents such as methanol, isopropanol, n-butanol, propylene glycol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, cyclohexanol, and 2-n-butoxyethanol.
- ether solvents such as isopropyl ether, c-pentyl methyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and propylene glycol monomethyl ether
- ester solvents such as ethyl acetate and propy
- the atmosphere during film formation of the hole transport layer is preferably a dry atmosphere.
- a solvent that has been dehydrated so that the moisture content is 10 ppm or less in the coating solution.
- the thickness of the hole transport layer is preferably 5 nm to 500 nm, and more preferably 10 nm to 250 nm.
- additives that may be added to the hole transport layer include an oxidizing agent (dopant) and a basic compound (basic additive). By adding these additives to the hole transport layer, the carrier concentration of the hole transport layer is improved, and the photoelectric conversion efficiency of the photoelectric conversion element can be improved.
- dopants include lithium bis(trifluoromethylsulfonyl)imide (LiTFSI), silver bis(trifluoromethanesulfonyl)imide, tris(2-(1H-pyrazol-1-yl)-4-tert-butylpyridine)cobalt(III) tri[bis(trifluoromethane)sulfonimide] (FK209), NOSbF 6 , SbCl 5 , SbF 5 , and the like. Of these, it is preferable to use lithium bis(trifluoromethylsulfonyl)imide (LiTFSI).
- LiTFSI lithium bis(trifluoromethylsulfonyl)imide
- LiTFSI lithium bis(trifluoromethylsulfonyl)imide
- the concentration of the dopant in the hole transport layer is preferably 2.0 equivalents or less, more preferably 0.5 equivalents or less, relative to 1 equivalent of the hole transport material. While the inclusion of an additive in the hole transport layer leads to an improvement in the photoelectric conversion efficiency of the photoelectric conversion element, if the concentration of the dopant is too high, the durability of the photoelectric conversion element may be reduced.
- Specific examples of the basic additive include 4-tert-butylpyridine (tBP), 2-picoline, and 2,6-lutidine, and among these, it is preferable to use 4-tert-butylpyridine.
- the basic additive may be used in combination with a dopant.
- the concentration of the basic additive in the hole transport layer is preferably 5 equivalents or less, more preferably 3.5 equivalents or less, relative to 1 equivalent of the hole transport material.
- the counter electrode 5 is an electrode formed on the opposite side of the hole transport layer 4 to the photoelectric conversion layer 3, and is disposed opposite the conductive support 1 with the above-mentioned electron transport layer 2, photoelectric conversion layer 3, and hole transport layer 4 sandwiched therebetween.
- the counter electrode functions as an anode that extracts holes transported from the photoelectric conversion layer via the hole transport layer.
- the counter electrode 5 may be provided adjacent to the hole transport layer 4, or an electron blocking layer made of an organic material or an inorganic compound semiconductor may be interposed between the hole transport layer 4 and the counter electrode 5.
- the counter electrode include metals such as platinum, titanium, stainless steel, aluminum, gold, silver, nickel, magnesium, chromium, cobalt, and copper, or alloys thereof. Among these, it is preferable to use gold, silver, or a silver alloy, since it exhibits high electrical conductivity even in a thin film.
- silver alloys include silver-gold alloys, silver-copper alloys, silver-palladium alloys, silver-copper-palladium alloys, and silver-platinum alloys, since they are less susceptible to sulfurization or chlorination and have high stability as a thin film.
- the counter electrode is a material that can be formed by a gas phase process such as deposition. When a metal electrode is used as the counter electrode, the thickness thereof is preferably 10 nm or more, and more preferably 50 nm or more, in order to obtain good electrical conductivity.
- the conductive support 1 serves as the cathode
- the counter electrode 5 serves as the anode. It is preferable to irradiate light such as sunlight (light used for photoelectric conversion) from the conductive support side.
- the photoelectric conversion layer absorbs the light and enters an excited state, generating electrons and holes. These electrons move via the electron transport layer to the conductive support, and the holes move via the hole transport layer to the counter electrode, causing a current to flow and functioning as a photoelectric conversion element.
- the photoelectric conversion element of the present invention may also have a conductive support, a hole transport layer, a photoelectric conversion layer, an electron transport layer, and a counter electrode, in that order.
- the conductive support functions as an anode
- the counter electrode functions as a cathode, with electrons generated in the photoelectric conversion layer moving to the counter electrode via the electron transport layer, and holes generated in the photoelectric conversion layer moving to the conductive support via the hole transport layer. This allows current to be extracted to the outside.
- the corresponding description of the photoelectric conversion element shown in Figure 1 above can be referenced.
- the short circuit current density represents the current per cm2 flowing between the output terminals when the terminals are shorted
- the open circuit voltage represents the voltage between the output terminals when the terminals are open.
- the fill factor is the maximum output (product of current and voltage) divided by the product of the short circuit current density and the open circuit voltage, and is mainly dependent on the internal resistance.
- the photoelectric conversion efficiency is calculated as a percentage by multiplying the maximum output (W) divided by the light intensity (W) per cm2 by 100.
- the photoelectric conversion element of the present invention can be applied to solar cells, various optical sensors, and the like.
- the solar cell to which the photoelectric conversion element of the present invention is applied is preferably a perovskite solar cell.
- a solar cell can be obtained by arranging the required number of photoelectric conversion elements, each of which contains a compound represented by general formula (1) in the hole transport layer, into a module and providing the required electrical wiring.
- a compound (0.5 g) of the following formula (2), [4-[bis(4-methoxyphenyl)amino]phenyl]boronic acid (1.13 g, manufactured by Tokyo Chemical Industry Co., Ltd.), sodium carbonate (0.34 g), tetrahydrofuran (50 mL), and purified water (25 mL) were charged into a reaction vessel, and degassed under reduced pressure.
- Tetrakistriphenylphosphinepalladium (0.08 g, manufactured by Kanto Chemical Co., Ltd.) was charged, and degassed under reduced pressure, and the mixture was stirred for 7 hours by heating and refluxing. After the aqueous layer of the reaction solution was separated and removed, the organic layer was distilled off the solvent under reduced pressure.
- the compound of formula (3) (0.30 g), 55% sodium hydride (0.04 g, manufactured by Kanto Chemical Co., Ltd.), and DMF (10 mL) were added to a reaction vessel and stirred at room temperature for 1 hour. 2,4-butanesultone (0.063 mL, manufactured by Tokyo Chemical Industry Co., Ltd.) was added thereto and stirred at 90°C for 4 hours.
- the solvent was distilled off from the reaction liquid under reduced pressure, and the obtained crude product was purified using a silica gel column (ethyl acetate:methanol).
- the compound of formula (6) (0.251 g), 55% sodium hydride (0.03 g, manufactured by Kanto Chemical Co., Ltd.), and dimethylformamide (10 mL) were added to a reaction vessel and stirred at room temperature for 1 hour. 2,4-butanesultone (0.03 mL, manufactured by Tokyo Chemical Industry Co., Ltd.) was added thereto and stirred at 80° C. for 3 hours.
- Synthesis Example 3 Synthesis of Compound (A-71)
- the compound (0.251 g) of the above formula (6), potassium tert-butoxide (0.017 g, manufactured by Kanto Chemical Co., Ltd.), and dimethylformamide (10 mL) were added to a reaction vessel and stirred at room temperature for 1 hour.
- 2,4-butanesultone (0.02 mL, manufactured by Tokyo Chemical Industry Co., Ltd.) was added thereto and stirred at 80° C. for 6 hours.
- Synthesis Example 4 Synthesis of Compound (A-72) A compound (0.401 g) represented by the following formula (7), a compound (0.930 g) represented by the above formula (4), sodium tert-butoxide (0.200 g, manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), toluene (5 mL), and tetrahydrofuran (5 mL) were added to a reaction vessel, and the mixture was degassed by bubbling with argon for 20 minutes.
- the compound of formula (9) (0.233 g), 55% sodium hydride (0.05 g, manufactured by Kanto Chemical Co., Ltd.), and dimethylformamide (10 mL) were added to a reaction vessel and stirred at room temperature for 1 hour. 2,4-butanesultone (0.055 mL, manufactured by Tokyo Chemical Industry Co., Ltd.) was added thereto and stirred at 80° C. for 2 hours.
- Example 1 Preparation of photoelectric conversion element using compound (A-1) 1
- a glass plate with an ITO film conductive support 1, manufactured by Geomatec Co., Ltd.
- ITO film conductive support 1, manufactured by Geomatec Co., Ltd.
- isopropyl alcohol conductive support 1, manufactured by Geomatec Co., Ltd.
- the following layers were formed by a coating method.
- a tin oxide colloidal solution tin(IV) oxide, 15% in H2O colloidal dispersion: manufactured by Alfa Aesar
- purified water were mixed at a volume ratio of 1:9 to form a tin oxide dispersion (electron transport layer coating solution) on the ITO film.
- the cesium iodide solution was added in an amount such that the amount of cesium charged was 5% in composition ratio.
- This perovskite precursor solution was dropped onto the tin oxide layer, and spin-coated while dropping chlorobenzene (0.3 mL) to form a perovskite precursor coating film. Subsequently, the resultant was heated on a hot plate at 100° C. for 1 hour to form a perovskite layer (photoelectric conversion layer 3) of Cs(MAFA)Pb(IBr) 3 having a thickness of about 500 nm.
- lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and 4-tert-butylpyridine as dopants were dissolved in chlorobenzene to prepare a solution, and compound (A-1) was dissolved in this solution at a concentration of 50 mM to prepare a hole transport layer coating solution.
- concentrations of lithium bis(trifluoromethanesulfonyl)imide and 4-tert-butylpyridine in the hole transport coating solution were 0.5 equivalents and 3 equivalents relative to compound (A-1), respectively.
- This hole transport layer coating solution was spin-coated on the Cs(MAFA)Pb(IBr) 3 layer and then dried to form a hole transport layer 4 with a film thickness of about 200 nm.
- gold was evaporated to a thickness of 80 nm on the hole transport layer 4 by vacuum evaporation at a degree of vacuum of 1 ⁇ 10 ⁇ 4 Pa to form a gold electrode (counter electrode 5 ), thereby completing a photoelectric conversion element.
- Example 2 Preparation of photoelectric conversion element using compound (A-1) 2
- a photoelectric conversion element was produced in the same manner as in Example 1, except that lithium bis(trifluoromethanesulfonyl)imide and 4-tert-butylpyridine were not added when preparing the hole transport layer coating solution, and the prepared hole transport coating solution was spin-coated at room temperature.
- Example 3 Preparation of photoelectric conversion element using compound (A-70) 1
- a photoelectric conversion element was produced in the same manner as in Example 1, except that a solution prepared by the following procedure was used as the hole transport layer coating solution.
- a dopant solution was prepared by dissolving lithium bis(trifluoromethanesulfonyl)imide in acetonitrile at a concentration of 1.8 M in a dry atmosphere with a relative humidity of 10% or less.
- a chlorobenzene solution was prepared in which compound (A-70) was dissolved at a concentration of 28 mM, and the dopant solution was added to compound (A-70) so that the amount of lithium bis(trifluoromethanesulfonyl)imide was 0.5 equivalents.
- 4-tert-butylpyridine was added to compound (A-70) so that the amount of lithium bis(trifluoromethanesulfonyl)imide was 3.3 equivalents to prepare a hole transport layer coating solution.
- Example 4 Preparation of photoelectric conversion element using compound (A-70) 2 A photoelectric conversion element was produced in the same manner as in Example 3, except that the dopant solution and 4-tert-butylpyridine were not added when preparing the coating solution for the hole transport layer.
- Example 5 Preparation of photoelectric conversion element using compound (A-71) 1 A photoelectric conversion element was prepared in the same manner as in Example 3, except that compound (A-71) was used instead of compound (A-70).
- Example 6 Preparation of photoelectric conversion element using compound (A-71) 2 A photoelectric conversion element was prepared in the same manner as in Example 5, except that the dopant solution and 4-tert-butylpyridine were not added when preparing the coating solution for the hole transport layer.
- the photoelectric conversion element of the Example in which the compound corresponding to the general formula (1) was used as the hole transport material exhibited superior photoelectric conversion efficiency compared to the photoelectric conversion element of Comparative Example 1 in which the compound (B-1), which is a conventional standard hole transport material, was used.
- the compound represented by the general formula (1) when used as a hole transport material, higher photoelectric conversion characteristics were obtained than when the compound (B-1) was used, even without using a dopant. From the above results, it was found that the photoelectric conversion efficiency can be improved by using the compound represented by the general formula (1) as a hole transport material. It was also found that it is possible to eliminate the need for dopants and basic additives, thereby reducing the manufacturing cost and simplifying the manufacturing process.
- the compound of the present invention As a hole transport material, a photoelectric conversion element and a solar cell with good photoelectric conversion efficiency can be realized. This makes it possible to efficiently provide electrical energy converted from solar energy as clean energy.
- hole transport materials containing the compound of the present invention can also be used in organic EL elements, image sensors, and the like. Therefore, the present invention has a high industrial applicability.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Indole Compounds (AREA)
Abstract
A compound represented by the general formula is useful as a hole transport material for photoelectric conversion elements. In the general formula, R1 represents an alkylene group or the like; and R2 to R9 each represent a hydrogen atom, an amino group, an aromatic hydrocarbon group or the like.
Description
本発明は、正孔輸送材料として有用な化合物、および該化合物を用いた光電変換素子に関する。
The present invention relates to a compound useful as a hole transport material and a photoelectric conversion element using the compound.
近年、クリーンエネルギーとして、太陽光発電が注目を浴びており、太陽電池の開発が盛んに行われている。その中でも、低コストかつ溶液プロセスで製造可能な次世代型の太陽電池として、ペロブスカイト材料を光電変換層に用いた太陽電池(以下、「ペロブスカイト型太陽電池」と表記)の開発が注目を集めている(例えば、特許文献1、非特許文献1~2)。
ペロブスカイト型太陽電池では、素子中に正孔輸送材料で形成された層を設けることが多い。正孔輸送材料を使用する目的として、(1)光電変換効率を向上させる、(2)水分や酸素からの影響を受けやすいペロブスカイト材料を保護する、ことが挙げられる(例えば、非特許文献3~4)。従来、標準的な有機正孔輸送材料としてSpiro-OMeTADが使用されること多く、当該材料よりも光電変換特性に高く寄与する有機正孔輸送材料の報告は少ない。
In recent years, solar power generation has been attracting attention as a clean energy source, and the development of solar cells has been actively carried out. Among them, the development of solar cells using perovskite materials in the photoelectric conversion layer (hereinafter referred to as "perovskite solar cells") has attracted attention as a next-generation solar cell that can be manufactured at low cost by a solution process (for example, Patent Document 1, Non-Patent Documents 1 and 2).
In perovskite solar cells, a layer formed of a hole transport material is often provided in the element. The purpose of using a hole transport material is (1) to improve the photoelectric conversion efficiency, and (2) to protect the perovskite material that is easily affected by moisture and oxygen (for example, Non-Patent Documents 3-4). Conventionally, Spiro-OMeTAD has often been used as a standard organic hole transport material, and there have been few reports of organic hole transport materials that contribute more to photoelectric conversion properties than this material.
ペロブスカイト型太陽電池では、素子中に正孔輸送材料で形成された層を設けることが多い。正孔輸送材料を使用する目的として、(1)光電変換効率を向上させる、(2)水分や酸素からの影響を受けやすいペロブスカイト材料を保護する、ことが挙げられる(例えば、非特許文献3~4)。従来、標準的な有機正孔輸送材料としてSpiro-OMeTADが使用されること多く、当該材料よりも光電変換特性に高く寄与する有機正孔輸送材料の報告は少ない。
In perovskite solar cells, a layer formed of a hole transport material is often provided in the element. The purpose of using a hole transport material is (1) to improve the photoelectric conversion efficiency, and (2) to protect the perovskite material that is easily affected by moisture and oxygen (for example, Non-Patent Documents 3-4). Conventionally, Spiro-OMeTAD has often been used as a standard organic hole transport material, and there have been few reports of organic hole transport materials that contribute more to photoelectric conversion properties than this material.
正孔輸送材料として有機化合物を用いる場合、従来は正孔輸送材料の電気的な抵抗を減少させるために正孔輸送層にドーパントを添加している。しかし、添加剤であるドーパントを使用することは、製造プロセスが複雑になってしまうだけでなく、製造コストの増大につながる。また、ドーパントを使用すると、ドーパントによる吸湿、光電変換層の腐食、揮発による正孔輸送層の劣化が進むことが報告されており、これらは素子の耐久性低下を招くことになる(例えば、非特許文献5)。そのため、正孔輸送層がドーパントを含まない場合や正孔輸送層のドーパント濃度が低い場合であっても高い光電変換特性と耐久性を示す光電変換素子を開発することが望まれている。
本発明が解決しようとする課題は、正孔輸送材料として有用な有機化合物を提供することであり、また、優れた光電変換特性を示す光電変換素子および太陽電池を提供することである。 When an organic compound is used as a hole transport material, a dopant is conventionally added to the hole transport layer to reduce the electrical resistance of the hole transport material. However, the use of a dopant as an additive not only complicates the manufacturing process but also leads to an increase in manufacturing costs. In addition, it has been reported that the use of a dopant promotes the deterioration of the hole transport layer due to moisture absorption by the dopant, corrosion of the photoelectric conversion layer, and volatilization, which leads to a decrease in the durability of the element (for example, Non-Patent Document 5). Therefore, it is desired to develop a photoelectric conversion element that shows high photoelectric conversion characteristics and durability even when the hole transport layer does not contain a dopant or the dopant concentration of the hole transport layer is low.
The problem to be solved by the present invention is to provide an organic compound useful as a hole transport material, and also to provide a photoelectric conversion element and a solar cell exhibiting excellent photoelectric conversion characteristics.
本発明が解決しようとする課題は、正孔輸送材料として有用な有機化合物を提供することであり、また、優れた光電変換特性を示す光電変換素子および太陽電池を提供することである。 When an organic compound is used as a hole transport material, a dopant is conventionally added to the hole transport layer to reduce the electrical resistance of the hole transport material. However, the use of a dopant as an additive not only complicates the manufacturing process but also leads to an increase in manufacturing costs. In addition, it has been reported that the use of a dopant promotes the deterioration of the hole transport layer due to moisture absorption by the dopant, corrosion of the photoelectric conversion layer, and volatilization, which leads to a decrease in the durability of the element (for example, Non-Patent Document 5). Therefore, it is desired to develop a photoelectric conversion element that shows high photoelectric conversion characteristics and durability even when the hole transport layer does not contain a dopant or the dopant concentration of the hole transport layer is low.
The problem to be solved by the present invention is to provide an organic compound useful as a hole transport material, and also to provide a photoelectric conversion element and a solar cell exhibiting excellent photoelectric conversion characteristics.
上記課題を解決するため、発明者らが鋭意検討を行った結果、フェノキサジン骨格にスルホン酸塩基が連結した構造を有する化合物を正孔輸送材料として用いることにより、良好な光電変換効率と高い耐久性を有する光電変換素子や太陽電池が得られることを見出した。本発明はこうした知見に基づいて提案されたものであり、具体的に、以下の構成を有する。
In order to solve the above problems, the inventors conducted extensive research and discovered that by using a compound having a structure in which a sulfonate group is linked to a phenoxazine skeleton as a hole transport material, it is possible to obtain a photoelectric conversion element or solar cell with good photoelectric conversion efficiency and high durability. The present invention has been proposed based on this knowledge and specifically has the following configuration.
[1] 下記一般式(1)で表される化合物。
[1] A compound represented by the following general formula (1):
式中、R1は、置換基を有していてもよい炭素原子数1~18の直鎖状もしくは分岐状のアルキレン基、置換基を有していてもよい炭素原子数2~20の直鎖状もしくは分岐状のアルケニレン基、置換基を有していてもよい炭素原子数2~20の直鎖状もしくは分岐状のアルキニレン基、置換基を有していてもよい炭素原子数3~12のシクロアルキレン基、置換基を有していてもよい炭素原子数6~36のアリーレン基、または置換基を有していてもよい環形成原子数5~36の2価の複素環基であり、Xは、水素イオンを除く1価のカチオンを表す。R2~R9は、それぞれ独立して、水素原子、置換基を有していてもよい炭素原子数1~18の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数2~20の直鎖状もしくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数2~20の直鎖状もしくは分岐状のアルキニル基、置換基を有していてもよい炭素原子数3~12のシクロアルキル基、置換基を有していてもよい炭素原子数1~20の直鎖状もしくは分岐状のアルコキシ基、置換基を有していてもよい炭素原子数3~10のシクロアルコキシ基、置換基を有していてもよい炭素原子数6~36のアリールオキシ基、置換基を有していてもよい炭素原子数1~18の直鎖状もしくは分岐状のアルコキシカルボニル基、置換基を有していてもよい炭素原子数0~18のチオ基、置換基を有していてもよい炭素原子数0~20のアミノ基、置換基を有していてもよい炭素原子数6~36の1価の芳香族炭化水素基、または置換基を有していてもよい環形成原子数5~36の1価の複素環基を表す。
In the formula, R 1 represents a linear or branched alkylene group having 1 to 18 carbon atoms which may have a substituent, a linear or branched alkenylene group having 2 to 20 carbon atoms which may have a substituent, a linear or branched alkynylene group having 2 to 20 carbon atoms which may have a substituent, a cycloalkylene group having 3 to 12 carbon atoms which may have a substituent, an arylene group having 6 to 36 carbon atoms which may have a substituent, or a divalent heterocyclic group having 5 to 36 ring atoms which may have a substituent, and X represents a monovalent cation other than a hydrogen ion. R 2 to R 9 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 18 carbon atoms which may have a substituent, a linear or branched alkenyl group having 2 to 20 carbon atoms which may have a substituent, a linear or branched alkynyl group having 2 to 20 carbon atoms which may have a substituent, a cycloalkyl group having 3 to 12 carbon atoms which may have a substituent, a linear or branched alkoxy group having 1 to 20 carbon atoms which may have a substituent, a cycloalkoxy group having 3 to 10 carbon atoms which may have a substituent, an aryloxy group having 6 to 36 carbon atoms which may have a substituent, a linear or branched alkoxycarbonyl group having 1 to 18 carbon atoms which may have a substituent, a thio group having 0 to 18 carbon atoms which may have a substituent, an amino group having 0 to 20 carbon atoms which may have a substituent, a monovalent aromatic hydrocarbon group having 6 to 36 carbon atoms which may have a substituent, or a monovalent heterocyclic group having 5 to 36 ring atoms which may have a substituent.
[2] R1が、置換基を有していてもよい炭素原子数1~18の直鎖状もしくは分岐状のアルキレン基である、[1]に記載の化合物。
[3] SO3Xと結合しているR1の原子が、2級炭素原子またはベンゼン環の骨格構成炭素原子である、[1]または[2]に記載の化合物。
[4] R2~R9のうち、少なくとも1つは、置換基を有していてもよい炭素原子数6~36の1価の芳香族炭化水素基または置換基を有していてもよい炭素数0~20のアミノ基である、[1]~[3]のいずれか1つに記載の化合物。
[5] R2~R9の少なくとも1つが、置換基を有していてもよいジアリールアミノ基を有する基である、[1]~[4]のいずれか1つに記載の化合物。
[6] 前記ジアリールアミノ基がヘテロ原子で結合する置換基で置換されている、[5]に記載の化合物。
[7] 前記置換基を有していてもよいジアリールアミノ基を有する基が、置換基を有していてもよいジアリールアミノ基、置換基を有していてもよいジアリールアミノアリール基、または、置換基を有していてもよいジアリールアミノカルバゾール-9-イル基である、[5]に記載の化合物。
[8] [1]~[7]のいずれか1つに記載の化合物を含む正孔輸送材料。
[9] [8]に記載の正孔輸送材料を用いた光電変換素子。
[10] [9]に記載の光電変換素子を有する太陽電池。 [2] The compound according to [1], wherein R 1 is a linear or branched alkylene group having 1 to 18 carbon atoms which may have a substituent.
[3] The compound according to [1] or [2], wherein the atom of R 1 bonded to SO 3 X is a secondary carbon atom or a skeletal carbon atom of a benzene ring.
[4] The compound according to any one of [1] to [3], wherein at least one of R 2 to R 9 is a monovalent aromatic hydrocarbon group having 6 to 36 carbon atoms which may have a substituent, or an amino group having 0 to 20 carbon atoms which may have a substituent.
[5] The compound according to any one of [1] to [4], wherein at least one of R 2 to R 9 is a group having an optionally substituted diarylamino group.
[6] The compound according to [5], wherein the diarylamino group is substituted with a substituent bonded to a heteroatom.
[7] The compound according to [5], wherein the group having an optionally substituted diarylamino group is an optionally substituted diarylamino group, an optionally substituted diarylaminoaryl group, or an optionally substituted diarylaminocarbazol-9-yl group.
[8] A hole transport material comprising the compound according to any one of [1] to [7].
[9] A photoelectric conversion element using the hole transport material according to [8].
[10] A solar cell comprising the photoelectric conversion element according to [9].
[3] SO3Xと結合しているR1の原子が、2級炭素原子またはベンゼン環の骨格構成炭素原子である、[1]または[2]に記載の化合物。
[4] R2~R9のうち、少なくとも1つは、置換基を有していてもよい炭素原子数6~36の1価の芳香族炭化水素基または置換基を有していてもよい炭素数0~20のアミノ基である、[1]~[3]のいずれか1つに記載の化合物。
[5] R2~R9の少なくとも1つが、置換基を有していてもよいジアリールアミノ基を有する基である、[1]~[4]のいずれか1つに記載の化合物。
[6] 前記ジアリールアミノ基がヘテロ原子で結合する置換基で置換されている、[5]に記載の化合物。
[7] 前記置換基を有していてもよいジアリールアミノ基を有する基が、置換基を有していてもよいジアリールアミノ基、置換基を有していてもよいジアリールアミノアリール基、または、置換基を有していてもよいジアリールアミノカルバゾール-9-イル基である、[5]に記載の化合物。
[8] [1]~[7]のいずれか1つに記載の化合物を含む正孔輸送材料。
[9] [8]に記載の正孔輸送材料を用いた光電変換素子。
[10] [9]に記載の光電変換素子を有する太陽電池。 [2] The compound according to [1], wherein R 1 is a linear or branched alkylene group having 1 to 18 carbon atoms which may have a substituent.
[3] The compound according to [1] or [2], wherein the atom of R 1 bonded to SO 3 X is a secondary carbon atom or a skeletal carbon atom of a benzene ring.
[4] The compound according to any one of [1] to [3], wherein at least one of R 2 to R 9 is a monovalent aromatic hydrocarbon group having 6 to 36 carbon atoms which may have a substituent, or an amino group having 0 to 20 carbon atoms which may have a substituent.
[5] The compound according to any one of [1] to [4], wherein at least one of R 2 to R 9 is a group having an optionally substituted diarylamino group.
[6] The compound according to [5], wherein the diarylamino group is substituted with a substituent bonded to a heteroatom.
[7] The compound according to [5], wherein the group having an optionally substituted diarylamino group is an optionally substituted diarylamino group, an optionally substituted diarylaminoaryl group, or an optionally substituted diarylaminocarbazol-9-yl group.
[8] A hole transport material comprising the compound according to any one of [1] to [7].
[9] A photoelectric conversion element using the hole transport material according to [8].
[10] A solar cell comprising the photoelectric conversion element according to [9].
本発明の化合物は、正孔輸送材料として有用である。本発明の化合物を光電変換素子の正孔輸送材料として用いることにより、良好な光電変換効率と高い耐久性を有する光電変換素子および太陽電池を得ることができる。
The compound of the present invention is useful as a hole transport material. By using the compound of the present invention as a hole transport material in a photoelectric conversion element, it is possible to obtain a photoelectric conversion element and a solar cell having good photoelectric conversion efficiency and high durability.
以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。また、一般式(1)で表される化合物やR1~R9が表す基に存在する水素原子の一部または全部は、重水素原子で置換されていてもよい。
本明細書において、「透明」および「透光性」とは、光電変換に供する光の透過率が50%以上であることをいい、例えば80%以上、例えば90%以上、例えば99%以上である。光の透過率は紫外・可視分光光度計により測定することができる。 The contents of the present invention will be described in detail below. The following description of the constituent elements may be based on representative embodiments and specific examples of the present invention, but the present invention is not limited to such embodiments and specific examples. In this specification, a numerical range expressed using "to" means a range including the numerical values before and after "to" as the lower and upper limits. In addition, some or all of the hydrogen atoms present in the compound represented by general formula (1) and the groups represented by R 1 to R 9 may be substituted with deuterium atoms.
In this specification, "transparent" and "light-transmitting" refer to a transmittance of light to be used for photoelectric conversion of 50% or more, for example, 80% or more, for example, 90% or more, for example, 99% or more. The transmittance of light can be measured by an ultraviolet-visible spectrophotometer.
本明細書において、「透明」および「透光性」とは、光電変換に供する光の透過率が50%以上であることをいい、例えば80%以上、例えば90%以上、例えば99%以上である。光の透過率は紫外・可視分光光度計により測定することができる。 The contents of the present invention will be described in detail below. The following description of the constituent elements may be based on representative embodiments and specific examples of the present invention, but the present invention is not limited to such embodiments and specific examples. In this specification, a numerical range expressed using "to" means a range including the numerical values before and after "to" as the lower and upper limits. In addition, some or all of the hydrogen atoms present in the compound represented by general formula (1) and the groups represented by R 1 to R 9 may be substituted with deuterium atoms.
In this specification, "transparent" and "light-transmitting" refer to a transmittance of light to be used for photoelectric conversion of 50% or more, for example, 80% or more, for example, 90% or more, for example, 99% or more. The transmittance of light can be measured by an ultraviolet-visible spectrophotometer.
<一般式(1)で表される化合物>
本発明の化合物は、上記一般式(1)で表される構造を有するものである。
一般式(1)において、R1は、置換基を有していてもよい炭素原子数1~18の直鎖状もしくは分岐状のアルキレン基、置換基を有していてもよい炭素原子数2~20の直鎖状もしくは分岐状のアルケニレン基、置換基を有していてもよい炭素原子数2~20の直鎖状もしくは分岐状のアルキニレン基、置換基を有していてもよい炭素原子数3~12のシクロアルキレン基、置換基を有していてもよい炭素原子数6~36のアリーレン基、または置換基を有していてもよい環形成原子数5~36の2価の複素環基を表す。 <Compound represented by general formula (1)>
The compound of the present invention has a structure represented by the above general formula (1).
In general formula (1), R 1 represents a linear or branched alkylene group having 1 to 18 carbon atoms which may have a substituent, a linear or branched alkenylene group having 2 to 20 carbon atoms which may have a substituent, a linear or branched alkynylene group having 2 to 20 carbon atoms which may have a substituent, a cycloalkylene group having 3 to 12 carbon atoms which may have a substituent, an arylene group having 6 to 36 carbon atoms which may have a substituent, or a divalent heterocyclic group having 5 to 36 ring atoms which may have a substituent.
本発明の化合物は、上記一般式(1)で表される構造を有するものである。
一般式(1)において、R1は、置換基を有していてもよい炭素原子数1~18の直鎖状もしくは分岐状のアルキレン基、置換基を有していてもよい炭素原子数2~20の直鎖状もしくは分岐状のアルケニレン基、置換基を有していてもよい炭素原子数2~20の直鎖状もしくは分岐状のアルキニレン基、置換基を有していてもよい炭素原子数3~12のシクロアルキレン基、置換基を有していてもよい炭素原子数6~36のアリーレン基、または置換基を有していてもよい環形成原子数5~36の2価の複素環基を表す。 <Compound represented by general formula (1)>
The compound of the present invention has a structure represented by the above general formula (1).
In general formula (1), R 1 represents a linear or branched alkylene group having 1 to 18 carbon atoms which may have a substituent, a linear or branched alkenylene group having 2 to 20 carbon atoms which may have a substituent, a linear or branched alkynylene group having 2 to 20 carbon atoms which may have a substituent, a cycloalkylene group having 3 to 12 carbon atoms which may have a substituent, an arylene group having 6 to 36 carbon atoms which may have a substituent, or a divalent heterocyclic group having 5 to 36 ring atoms which may have a substituent.
一般式(1)において、R1で表される「置換基を有していてもよい炭素原子数1~18の直鎖状もしくは分岐状のアルキレン基」における「炭素原子数1~18の直鎖状もしくは分岐状のアルキレン基」の炭素原子数は、1~18の整数から選択され、例えば1~12の範囲から選択してもよく、例えば1~6の範囲から選択してもよい。「置換基を有していてもよい炭素原子数1~18の直鎖状もしくは分岐状のアルキレン基」としては具体的に、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、n-ヘキシル基、2-エチルヘキシル基、ヘプチル基、オクチル基、イソオクチル基、ノニル基、デシル基などのアルキル基から1個の水素原子を除去した2価基や、アルキル基の少なくとも1個の水素原子が置換基で置換された置換アルキル基から1個の水素原子を除去した2価基を挙げることができる(前者の2価基が好ましい)。
In the general formula ( 1 ), the number of carbon atoms in the "straight-chain or branched alkylene group having 1 to 18 carbon atoms" in the "straight-chain or branched alkylene group having 1 to 18 carbon atoms which may have a substituent" represented by R 1 is selected from integers of 1 to 18, and may be selected from the range of, for example, 1 to 12, and may be selected from the range of, for example, 1 to 6. Specific examples of the "straight-chain or branched alkylene group having 1 to 18 carbon atoms which may have a substituent" include divalent groups obtained by removing one hydrogen atom from an alkyl group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, a t-butyl group, an n-pentyl group, an isopentyl group, an n-hexyl group, a 2-ethylhexyl group, a heptyl group, an octyl group, an isooctyl group, a nonyl group, or a decyl group, and a divalent group obtained by removing one hydrogen atom from a substituted alkyl group in which at least one hydrogen atom of the alkyl group is substituted with a substituent (the former divalent group is preferred).
一般式(1)において、R1で表される「置換基を有していてもよい炭素原子数2~20の直鎖状もしくは分岐状のアルケニレン基」における「炭素原子数2~20の直鎖状もしくは分岐状のアルケニレン基」の炭素原子数は、2~20の整数から選択され、例えば2~12の範囲から選択してもよく、例えば2~6の範囲から選択してもよい。「置換基を有していてもよい炭素原子数2~20の直鎖状もしくは分岐状のアルケニレン基」としては具体的に、ビニル基、1-プロペニル基、アリル基、1-ブテニル基、2-ブテニル基、1-ペンテニル基、1-ヘキセニル基、イソプロペニル基、イソブテニル基、またはこれらのアルケニル基が複数結合した炭素原子数2~20の直鎖状もしくは分岐状のアルケニル基から1個の水素原子を除去した2価基や、アルケニル基の少なくとも1個の水素原子が置換基で置換された置換アルケニル基から1個の水素原子を除去した2価基を挙げることができる(最初の2価基が好ましい)。
In the general formula ( 1 ), the number of carbon atoms in the "straight-chain or branched alkenylene group having 2 to 20 carbon atoms" in the "straight-chain or branched alkenylene group having 2 to 20 carbon atoms which may have a substituent" represented by R 1 is selected from integers of 2 to 20, and may be selected from the range of, for example, 2 to 12, or may be selected from the range of, for example, 2 to 6. Specific examples of the "straight-chain or branched alkenylene group having 2 to 20 carbon atoms which may have a substituent" include a vinyl group, a 1-propenyl group, an allyl group, a 1-butenyl group, a 2-butenyl group, a 1-pentenyl group, a 1-hexenyl group, an isopropenyl group, an isobutenyl group, or a divalent group obtained by removing one hydrogen atom from a straight-chain or branched alkenyl group having 2 to 20 carbon atoms to which a plurality of these alkenyl groups are bonded, and a divalent group obtained by removing one hydrogen atom from a substituted alkenyl group in which at least one hydrogen atom of the alkenyl group is substituted with a substituent (the first divalent group is preferred).
一般式(1)において、R1で表される「置換基を有していてもよい炭素原子数2~20の直鎖状もしくは分岐状のアルキニレン基」における「炭素原子数2~20の直鎖状もしくは分岐状のアルキニレン基」の炭素原子数は、2~20の整数から選択され、例えば2~12の範囲から選択してもよく、例えば2~6の範囲から選択してもよい。「置換基を有していてもよい炭素原子数2~20の直鎖状もしくは分岐状のアルキニレン基」としては具体的に、エチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、1-メチル-2-プロピニル基、1-ペンチニル基、2-ペンチニル基、1-メチル-n-ブチニル基、2-メチル-n-ブチニル基、3-メチル-n-ブチニル基、1-ヘキシニル基などのアルキニル基から1個の水素原子を除去した2価基や、アルキニル基の少なくとも1個の水素原子が置換基で置換された置換アルキニル基から1個の水素原子を除去した2価基を挙げることができる(前者の2価基が好ましい)。
In general formula (1), the number of carbon atoms in the "linear or branched alkynylene group having 2 to 20 carbon atoms which may have a substituent" represented by R 1 is selected from integers of 2 to 20, and may be selected from the range of, for example, 2 to 12, or may be selected from the range of, for example, 2 to 6. Specific examples of the "linear or branched alkynylene group having 2 to 20 carbon atoms which may have a substituent" include divalent groups obtained by removing one hydrogen atom from an alkynyl group, such as an ethynyl group, a 1-propynyl group, a 2-propynyl group, a 1-butynyl group, a 2-butynyl group, a 1-methyl-2-propynyl group, a 1-pentynyl group, a 2-pentynyl group, a 1-methyl-n-butynyl group, a 2-methyl-n-butynyl group, a 3-methyl-n-butynyl group, or a 1-hexynyl group, and divalent groups obtained by removing one hydrogen atom from a substituted alkynyl group in which at least one hydrogen atom of the alkynyl group is substituted with a substituent (the former divalent group is preferred).
一般式(1)において、R1で表される「置換基を有していてもよい炭素原子数3~12のシクロアルキレン基」における「炭素原子数3~12のシクロアルキレン基」の炭素原子数は、3~12の整数から選択され、例えば3~6の範囲から選択してもよい。「置換基を有していてもよい炭素原子数3~12のシクロアルキレン基」としては、具体的に、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロデシル基、シクロドデシル基などのシクロアルキル基から1個の水素原子を除去した2価基や、シクロアルキル基の少なくとも1個の水素原子が置換基で置換された置換シクロアルキル基から1個の水素原子を除去した2価基を挙げることができる(前者の2価基が好ましい)。
In general formula (1), the number of carbon atoms in the "cycloalkylene group having 3 to 12 carbon atoms" in the "cycloalkylene group having 3 to 12 carbon atoms which may have a substituent" represented by R 1 is selected from integers of 3 to 12, and may be selected from the range of, for example, 3 to 6. Specific examples of the "cycloalkylene group having 3 to 12 carbon atoms which may have a substituent" include divalent groups obtained by removing one hydrogen atom from a cycloalkyl group such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclodecyl group, and a cyclododecyl group, and divalent groups obtained by removing one hydrogen atom from a substituted cycloalkyl group in which at least one hydrogen atom of the cycloalkyl group is substituted with a substituent (the former divalent group is preferred).
一般式(1)において、R1で表される「置換基を有していてもよい炭素原子数6~36のアリーレン基」における「炭素原子数6~36のアリーレン基」を構成する芳香環は、単環であっても、2つ以上の環が縮合した縮合環であってもよく、2つ以上の環が単結合で連結した連結環であってもよい。縮合環である場合、縮合している環の数は例えば2~6であり、例えば2~4である。連結環である場合、連結している環の数は例えば2~6であり、例えば2~4である。芳香環の炭素原子数は、6~36の整数から選択され、例えば6~22や6~18の範囲から選択してもよく、例えば6~14や6~10の範囲から選択してもよい。「置換基を有していてもよい炭素原子数6~36のアリーレン基」としては具体的に、フェニル基、ビフェニル基、テルフェニル基、ナフチル基、ビフェニル基、アントラセニル基(アントリル基)、フェナントリル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基などの1価の芳香族炭化水素基(アリール基)から1個の水素原子を除去した2価基や、アリール基の少なくとも1個の水素原子が置換基で置換された置換アリール基から1個の水素原子を除去した2価基を挙げることができる(前者の2価基が好ましい)。
In the general formula (1), the aromatic ring constituting the "arylene group having 6 to 36 carbon atoms" in the "arylene group having 6 to 36 carbon atoms which may have a substituent" represented by R 1 may be a single ring, a fused ring in which two or more rings are fused, or a linked ring in which two or more rings are linked by a single bond. In the case of a fused ring, the number of fused rings is, for example, 2 to 6, for example, 2 to 4. In the case of a linked ring, the number of linked rings is, for example, 2 to 6, for example, 2 to 4. The number of carbon atoms in the aromatic ring is selected from integers of 6 to 36, and may be selected from the range of, for example, 6 to 22 or 6 to 18, or may be selected from the range of, for example, 6 to 14 or 6 to 10. Specific examples of the "arylene group having 6 to 36 carbon atoms which may have a substituent" include divalent groups obtained by removing one hydrogen atom from a monovalent aromatic hydrocarbon group (aryl group), such as a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a biphenyl group, an anthracenyl group (anthryl group), a phenanthryl group, a fluorenyl group, an indenyl group, a pyrenyl group, a perylenyl group, a fluoranthenyl group, or a triphenylenyl group, and divalent groups obtained by removing one hydrogen atom from a substituted aryl group in which at least one hydrogen atom of the aryl group is substituted with a substituent (the former divalent groups are preferred).
一般式(1)において、R1で表される「置換基を有していてもよい環形成原子数5~36の2価の複素環基」における「環形成原子数5~36の2価の複素環基」を構成する複素環は、単環であっても、2つ以上の環が縮合した縮合環であってもよい。縮合環である場合、縮合している環の数は例えば2~6であり、例えば2~4である。また、複素環は芳香族複素環であっても、脂肪族複素環であってもよい。複素環を構成する複素原子として、窒素原子、酸素原子、硫黄原子を挙げることができる。芳香族複素環の炭素原子数は5~36の整数から選択され、例えば5~30や5~18の範囲から選択してもよい。「環形成原子数5~36の2価の複素環基」としては具体的に、ピリジル基、ピリミジリニル基、トリアジニル基、チエニル基、フリル基(フラニル基)、ピロリル基、イミダゾリル基、ピラゾリル基、トリアゾリル基、キノリル基、イソキノリル基、ナフチルジニル基、アクリジニル基、フェナントロリニル基、ベンゾフラニル基、ベンゾチエニル基、オキサゾリル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、チアゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルボニリル基などの1価の複素環基から1個の水素原子を除去した2価基や、1価の複素環基の少なくとも1個の水素原子が置換基で置換された置換複素環基から1個の水素原子を除去した2価基を挙げることができる(前者の2価基が好ましい)。
In the general formula (1), the heterocycle constituting the "divalent heterocyclic group having 5 to 36 ring atoms" in the "divalent heterocyclic group having 5 to 36 ring atoms which may have a substituent" represented by R 1 may be a monocycle or a condensed ring in which two or more rings are condensed. In the case of a condensed ring, the number of condensed rings is, for example, 2 to 6, for example, 2 to 4. In addition, the heterocycle may be an aromatic heterocycle or an aliphatic heterocycle. Examples of heteroatoms constituting the heterocycle include a nitrogen atom, an oxygen atom, and a sulfur atom. The number of carbon atoms in the aromatic heterocycle is selected from integers of 5 to 36, and may be selected from the range of, for example, 5 to 30 or 5 to 18. Specific examples of the "divalent heterocyclic group having 5 to 36 ring atoms" include divalent groups obtained by removing one hydrogen atom from a monovalent heterocyclic group such as a pyridyl group, a pyrimidinyl group, a triazinyl group, a thienyl group, a furyl group (a furanyl group), a pyrrolyl group, an imidazolyl group, a pyrazolyl group, a triazolyl group, a quinolyl group, an isoquinolyl group, a naphthyldinyl group, an acridinyl group, a phenanthrolinyl group, a benzofuranyl group, a benzothienyl group, an oxazolyl group, an indolyl group, a carbazolyl group, a benzoxazolyl group, a thiazolyl group, a benzothiazolyl group, a quinoxalinyl group, a benzimidazolyl group, a pyrazolyl group, a dibenzofuranyl group, a dibenzothienyl group, or a carbonylyl group, and a divalent group obtained by removing one hydrogen atom from a substituted heterocyclic group in which at least one hydrogen atom of the monovalent heterocyclic group is substituted with a substituent (the former divalent group is preferred).
一般式(1)において、R1で表される「置換基を有していてもよい炭素原子数1~18の直鎖状もしくは分岐状のアルキレン基」、「置換基を有していてもよい炭素原子数2~20の直鎖状もしくは分岐状のアルケニレン基」、「置換基を有していてもよい炭素原子数2~20の直鎖状もしくは分岐状のアルキニレン基」、「置換基を有していてもよい炭素原子数3~12のシクロアルキレン基」、「置換基を有していてもよい炭素原子数6~36のアリーレン基」または「置換基を有していてもよい環形成原子数5~36の2価の複素環基」における「置換基」としては、具体的に、フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;シアノ基;水酸基;ニトロ基;ニトロソ基;カルボキシル基;リン酸基;メチルエステル基、エチルエステル基などのカルボン酸エステル基;メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、n-ヘキシル基、2-エチルヘキシル基、ヘプチル基、オクチル基、イソオクチル基、ノニル基、デシル基などの炭素原子数1~18の直鎖状もしくは分岐状のアルキル基;ビニル基、1-プロペニル基、アリル基、1-ブテニル基、2-ブテニル基、1-ペンテニル基、1-ヘキセニル基、イソプロペニル基、イソブテニル基など炭素原子数2~20の直鎖状もしくは分岐状のアルケニル基;メトキシ基、エトキシ基、プロポキシ基、t-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基などの炭素原子数1~18の直鎖状もしくは分岐状のアルコキシ基;フェニル基、ナフチル基、アントリル基、フェナントリル基、ピレニル基などの炭素原子数6~30の1価の芳香族炭化水素基;ピリジル基、ピリミジリニル基、トリアジニル基、チエニル基、フリル基(フラニル基)、ピロリル基、イミダゾリル基、ピラゾリル基、トリアゾリル基、キノリル基、イソキノリル基、ナフチルジニル基、アクリジニル基、フェナントロリニル基、ベンゾフラニル基、ベンゾチエニル基、オキサゾリル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、チアゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルボニリル基などの環形成原子数5~30の1価の複素環基;無置換アミノ基(-NH2);アルキルアミノ基(例えばエチルアミノ基)、アセチルアミノ基、アリールアミノ基(例えばフェニルアミノ基)などの一置換アミノ基、またはジアルキルアミノ基(例えばジエチルアミノ基)、ジアリールアミノ基(例えばジフェニルアミノ基)、アセチルフェニルアミノ基などの二置換アミノ基である、炭素原子数1~18の置換アミノ基;無置換チオ基(チオール基:-SH);メチルチオ基、エチルチオ基、プロピルチオ基、ヘキサ-5-エン-3-チオ基、フェニルチオ基、ビフェニルチオ基などの炭素原子数1~18の置換チオ基;などを挙げることができる(以下、これらの置換基を「置換基群A」という)。
R1で表される各基には、置換基群Aから選択される置換基が1つのみ含まれてもよく、複数含まれてもよく、複数含まれる場合は互いに同一でも異なっていてもよい。また、置換基群Aを構成する各置換基の水素原子は、さらに置換基群Aから選択される置換基で置換されていてもよい。 In the general formula (1), examples of the "substituent" in the "linear or branched alkylene group having 1 to 18 carbon atoms which may have a substituent", "linear or branched alkenylene group having 2 to 20 carbon atoms which may have a substituent", "linear or branched alkynylene group having 2 to 20 carbon atoms which may have a substituent", "cycloalkylene group having 3 to 12 carbon atoms which may have a substituent", "arylene group having 6 to 36 carbon atoms which may have a substituent" or "divalent heterocyclic group having 5 to 36 ring atoms which may have a substituent" represented by R 1 include, Specifically, halogen atoms such as fluorine, chlorine, bromine, and iodine atoms; cyano groups; hydroxyl groups; nitro groups; nitroso groups; carboxyl groups; phosphoric acid groups; carboxylate groups such as methyl ester groups and ethyl ester groups; linear or branched alkyl groups having 1 to 18 carbon atoms such as methyl groups, ethyl groups, n-propyl groups, isopropyl groups, n-butyl groups, isobutyl groups, s-butyl groups, t-butyl groups, n-pentyl groups, isopentyl groups, n-hexyl groups, 2-ethylhexyl groups, heptyl groups, octyl groups, isooctyl groups, nonyl groups, and decyl groups; vinyl groups such as methyl groups, ethyl groups, n-propyl groups, isopropyl groups, n-butyl groups, isobutyl groups, s-butyl groups, t-butyl groups, n-pentyl groups, isopentyl groups, n-hexyl groups, 2-ethylhexyl groups, heptyl groups, octyl groups, isooctyl groups, nonyl groups, and decyl groups; linear or branched alkenyl groups having 2 to 20 carbon atoms, such as an allyl group, a 1-propenyl group, an allyl group, a 1-butenyl group, a 2-butenyl group, a 1-pentenyl group, a 1-hexenyl group, an isopropenyl group, or an isobutenyl group; linear or branched alkoxy groups having 1 to 18 carbon atoms, such as a methoxy group, an ethoxy group, a propoxy group, a t-butoxy group, a pentyloxy group, or a hexyloxy group; monovalent aromatic hydrocarbon groups having 6 to 30 carbon atoms, such as a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, or a pyrenyl group; a pyridyl group, a pyrimidinyl group, a triazine group, or a cyclic group; monovalent heterocyclic groups having 5 to 30 ring atoms, such as a phenyl group, a thienyl group, a furyl group (a furanyl group), a pyrrolyl group, an imidazolyl group, a pyrazolyl group, a triazolyl group, a quinolyl group, an isoquinolyl group, a naphthyldinyl group, an acridinyl group, a phenanthrolinyl group, a benzofuranyl group, a benzothienyl group, an oxazolyl group, an indolyl group, a carbazolyl group, a benzoxazolyl group, a thiazolyl group, a benzothiazolyl group, a quinoxalinyl group, a benzimidazolyl group, a pyrazolyl group, a dibenzofuranyl group, a dibenzothienyl group, or a carbonylyl group; 2 ); substituted amino groups having 1 to 18 carbon atoms, such as mono-substituted amino groups, such as alkylamino groups (e.g., ethylamino groups), acetylamino groups, and arylamino groups (e.g., phenylamino groups), or di-substituted amino groups, such as dialkylamino groups (e.g., diethylamino groups), diarylamino groups (e.g., diphenylamino groups), and acetylphenylamino groups; unsubstituted thio groups (thiol groups: -SH); substituted thio groups having 1 to 18 carbon atoms, such as methylthio groups, ethylthio groups, propylthio groups, hex-5-ene-3-thio groups, phenylthio groups, and biphenylthio groups (hereinafter, these substituents will be referred to as "Substituent Group A").
Each group represented by R1 may contain only one or more substituents selected from the substituent group A, and when more than one is contained, the substituents may be the same or different. In addition, the hydrogen atom of each of the substituents constituting the substituent group A may be further substituted with a substituent selected from the substituent group A.
R1で表される各基には、置換基群Aから選択される置換基が1つのみ含まれてもよく、複数含まれてもよく、複数含まれる場合は互いに同一でも異なっていてもよい。また、置換基群Aを構成する各置換基の水素原子は、さらに置換基群Aから選択される置換基で置換されていてもよい。 In the general formula (1), examples of the "substituent" in the "linear or branched alkylene group having 1 to 18 carbon atoms which may have a substituent", "linear or branched alkenylene group having 2 to 20 carbon atoms which may have a substituent", "linear or branched alkynylene group having 2 to 20 carbon atoms which may have a substituent", "cycloalkylene group having 3 to 12 carbon atoms which may have a substituent", "arylene group having 6 to 36 carbon atoms which may have a substituent" or "divalent heterocyclic group having 5 to 36 ring atoms which may have a substituent" represented by R 1 include, Specifically, halogen atoms such as fluorine, chlorine, bromine, and iodine atoms; cyano groups; hydroxyl groups; nitro groups; nitroso groups; carboxyl groups; phosphoric acid groups; carboxylate groups such as methyl ester groups and ethyl ester groups; linear or branched alkyl groups having 1 to 18 carbon atoms such as methyl groups, ethyl groups, n-propyl groups, isopropyl groups, n-butyl groups, isobutyl groups, s-butyl groups, t-butyl groups, n-pentyl groups, isopentyl groups, n-hexyl groups, 2-ethylhexyl groups, heptyl groups, octyl groups, isooctyl groups, nonyl groups, and decyl groups; vinyl groups such as methyl groups, ethyl groups, n-propyl groups, isopropyl groups, n-butyl groups, isobutyl groups, s-butyl groups, t-butyl groups, n-pentyl groups, isopentyl groups, n-hexyl groups, 2-ethylhexyl groups, heptyl groups, octyl groups, isooctyl groups, nonyl groups, and decyl groups; linear or branched alkenyl groups having 2 to 20 carbon atoms, such as an allyl group, a 1-propenyl group, an allyl group, a 1-butenyl group, a 2-butenyl group, a 1-pentenyl group, a 1-hexenyl group, an isopropenyl group, or an isobutenyl group; linear or branched alkoxy groups having 1 to 18 carbon atoms, such as a methoxy group, an ethoxy group, a propoxy group, a t-butoxy group, a pentyloxy group, or a hexyloxy group; monovalent aromatic hydrocarbon groups having 6 to 30 carbon atoms, such as a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, or a pyrenyl group; a pyridyl group, a pyrimidinyl group, a triazine group, or a cyclic group; monovalent heterocyclic groups having 5 to 30 ring atoms, such as a phenyl group, a thienyl group, a furyl group (a furanyl group), a pyrrolyl group, an imidazolyl group, a pyrazolyl group, a triazolyl group, a quinolyl group, an isoquinolyl group, a naphthyldinyl group, an acridinyl group, a phenanthrolinyl group, a benzofuranyl group, a benzothienyl group, an oxazolyl group, an indolyl group, a carbazolyl group, a benzoxazolyl group, a thiazolyl group, a benzothiazolyl group, a quinoxalinyl group, a benzimidazolyl group, a pyrazolyl group, a dibenzofuranyl group, a dibenzothienyl group, or a carbonylyl group; 2 ); substituted amino groups having 1 to 18 carbon atoms, such as mono-substituted amino groups, such as alkylamino groups (e.g., ethylamino groups), acetylamino groups, and arylamino groups (e.g., phenylamino groups), or di-substituted amino groups, such as dialkylamino groups (e.g., diethylamino groups), diarylamino groups (e.g., diphenylamino groups), and acetylphenylamino groups; unsubstituted thio groups (thiol groups: -SH); substituted thio groups having 1 to 18 carbon atoms, such as methylthio groups, ethylthio groups, propylthio groups, hex-5-ene-3-thio groups, phenylthio groups, and biphenylthio groups (hereinafter, these substituents will be referred to as "Substituent Group A").
Each group represented by R1 may contain only one or more substituents selected from the substituent group A, and when more than one is contained, the substituents may be the same or different. In addition, the hydrogen atom of each of the substituents constituting the substituent group A may be further substituted with a substituent selected from the substituent group A.
一般式(1)におけるR1は、置換基を有していてもよい炭素原子数1~18(好ましくは1~12、例えば1~6)の直鎖状もしくは分岐状のアルキレン基であることが好ましく、例えば無置換のアルキレン基を挙げることができ、例えばアルケニル基、アルキニル基、シクロアルキル基またはアリール基で置換されたアルキレン基を挙げることができる。一般式(1)におけるR1は、置換基を有していてもよい炭素原子数6~36(好ましくは6~14、例えば6~10)のアリーレン基であることも好ましい。SO3Xと結合しているR1の原子は、2級炭素原子であるか、ベンゼン環の骨格構成炭素原子であることが好ましい。
R 1 in the general formula (1) is preferably a linear or branched alkylene group having 1 to 18 carbon atoms (preferably 1 to 12, for example 1 to 6) which may have a substituent, for example an unsubstituted alkylene group, for example an alkylene group substituted with an alkenyl group, an alkynyl group, a cycloalkyl group or an aryl group. R 1 in the general formula (1) is also preferably an arylene group having 6 to 36 carbon atoms (preferably 6 to 14, for example 6 to 10) which may have a substituent. The atom of R 1 bonded to SO 3 X is preferably a secondary carbon atom or a carbon atom constituting the backbone of a benzene ring.
一般式(1)のスルホン酸塩基(-SO3X)におけるXは、水素イオンを除く1価のカチオンを表す。1価のカチオンとしては、具体的に、アルカリ金属イオン、置換基を有していてもよいアンモニウムイオン、または置換基を有していてもよいホスホニウムイオンであることが好ましいが、これらに限定されない。
X in the sulfonate group (-SO 3 X) in general formula (1) represents a monovalent cation other than a hydrogen ion. Specifically, the monovalent cation is preferably an alkali metal ion, an ammonium ion which may have a substituent, or a phosphonium ion which may have a substituent, but is not limited to these.
アルカリ金属イオンとしては具体的に、リチウムイオン、ナトリウムイオン、カリウムイオン、ルビジウムイオン、セシウムイオン、フランシウムイオンが挙げられ、ナトリウムイオン、カリウムイオン、ルビジウムイオン、セシウムイオンであることが好ましい。
Specific examples of alkali metal ions include lithium ions, sodium ions, potassium ions, rubidium ions, cesium ions, and francium ions, with sodium ions, potassium ions, rubidium ions, and cesium ions being preferred.
置換基を有していてもよいアンモニウムイオンとしては、具体的に、メチルアンモニウムイオン、モノフッ化メチルアンモニウムイオン、ジフッ化メチルアンモニウムイオン、トリフッ化メチルアンモニウムイオン、エチルアンモニウムイオン、イソプロピルアンモニウムイオン、n-プロピルアンモニウムイオン、イソブチルアンモニウムイオン、n-ブチルアンモニウムイオン、t-ブチルアンモニウムイオン、ジメチルアンモニウムイオン、ジエチルアンモニウムイオン、フェニルアンモニウムイオン、ベンジルアンモニウムイオン、フェネチルアンモニウムイオン、グアニジウムイオン、ホルムアミジニウムイオン、アセトアミジニウムイオン、イミダゾリウムイオン、トリ-n-ブチルアンモニウムイオン、テトラ-n-ブチルアンモニウムイオン等が挙げられる。
Specific examples of ammonium ions that may have a substituent include methylammonium ion, methylammonium monofluoride ion, methylammonium difluoride ion, methylammonium trifluoride ion, ethylammonium ion, isopropylammonium ion, n-propylammonium ion, isobutylammonium ion, n-butylammonium ion, t-butylammonium ion, dimethylammonium ion, diethylammonium ion, phenylammonium ion, benzylammonium ion, phenethylammonium ion, guanidinium ion, formamidinium ion, acetamidinium ion, imidazolium ion, tri-n-butylammonium ion, and tetra-n-butylammonium ion.
置換基を有していてもよいホスホニウムイオンとしては、エチルホスホニウムイオン、イソプロピルホスホニウムイオン、n-プロピルホスホニウムイオン、イソブチルアホスホニウムイオン、n-ブチルホスホニウムイオン、t-ブチルホスホニウムイオン、ジメチルホスホニウムイオン、ジエチルホスホニウムイオン、フェニルホスホニウムイオン、ベンジルホスホニウムイオン等、上記のアンモニウムイオンの窒素原子をリン原子に置き換えたものが挙げられる。
Examples of phosphonium ions which may have a substituent include ethyl phosphonium ion, isopropyl phosphonium ion, n-propyl phosphonium ion, isobutyl phosphonium ion, n-butyl phosphonium ion, t-butyl phosphonium ion, dimethyl phosphonium ion, diethyl phosphonium ion, phenyl phosphonium ion, benzyl phosphonium ion, and the above ammonium ions in which the nitrogen atom is replaced with a phosphorus atom.
一般式(1)において、R2~R9は、それぞれ独立して、水素原子、置換基を有していてもよい炭素原子数1~18の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数2~20の直鎖状もしくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数2~20の直鎖状もしくは分岐状のアルキニル基、置換基を有していてもよい炭素原子数3~10のシクロアルキル基、置換基を有していてもよい炭素原子数1~20の直鎖状もしくは分岐状のアルコキシ基、置換基を有していてもよい炭素原子数3~10のシクロアルコキシ基、置換基を有していてもよい炭素原子数6~36のアリールオキシ基、置換基を有していてもよい炭素原子数1~18の直鎖状もしくは分岐状のアルコキシカルボニル基、置換基を有していてもよい炭素原子数0~18のチオ基、置換基を有していてもよい炭素原子数0~20のアミノ基、置換基を有していてもよい炭素原子数6~36の1価の芳香族炭化水素基、または置換基を有していてもよい環形成原子数5~36の1価の複素環基を表す。
In general formula (1), R 2 to R 9 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 18 carbon atoms which may have a substituent, a linear or branched alkenyl group having 2 to 20 carbon atoms which may have a substituent, a linear or branched alkynyl group having 2 to 20 carbon atoms which may have a substituent, a cycloalkyl group having 3 to 10 carbon atoms which may have a substituent, a linear or branched alkoxy group having 1 to 20 carbon atoms which may have a substituent, a cycloalkoxy group having 3 to 10 carbon atoms which may have a substituent, an aryloxy group having 6 to 36 carbon atoms which may have a substituent, a linear or branched alkoxycarbonyl group having 1 to 18 carbon atoms which may have a substituent, a thio group having 0 to 18 carbon atoms which may have a substituent, an amino group having 0 to 20 carbon atoms which may have a substituent, a monovalent aromatic hydrocarbon group having 6 to 36 carbon atoms which may have a substituent, or a monovalent heterocyclic group having 5 to 36 ring atoms which may have a substituent.
一般式(1)において、R2~R9で表される「置換基を有していてもよい炭素原子数1~18の直鎖状もしくは分岐状のアルキル基」における「炭素原子数1~18の直鎖状もしくは分岐状のアルキル基」の炭素原子数は、1~18の整数から選択され、例えば1~12の範囲から選択してもよく、例えば1~6の範囲から選択してもよい。「炭素原子数1~18の直鎖状もしくは分岐状のアルキル基」の具体例については、上記のR1で表される「置換基を有していてもよい炭素原子数1~18の直鎖状もしくは分岐状のアルキレン基」の説明の中で挙げたアルキル基(1個の水素原子を除去する前のアルキル基)の具体例を参照することができる。
In general formula (1), the number of carbon atoms in the "linear or branched alkyl group having 1 to 18 carbon atoms" in the "linear or branched alkyl group having 1 to 18 carbon atoms which may have a substituent" represented by R 2 to R 9 is selected from integers of 1 to 18, and may be selected from the range of, for example, 1 to 12, or may be selected from the range of, for example, 1 to 6. For specific examples of the "linear or branched alkyl group having 1 to 18 carbon atoms", reference may be made to the specific examples of the alkyl group (the alkyl group before removal of one hydrogen atom) given in the explanation of the "linear or branched alkylene group having 1 to 18 carbon atoms which may have a substituent" represented by R 1 above.
一般式(1)において、R2~R9で表される「置換基を有していてもよい炭素原子数2~20の直鎖状もしくは分岐状のアルケニル基」における「炭素原子数2~20の直鎖状もしくは分岐状のアルケニル基」の炭素原子数は、2~20の整数から選択され、例えば2~12の範囲から選択してもよく、例えば2~6の範囲から選択してもよい。「炭素原子数2~20の直鎖状もしくは分岐状のアルケニル基」の具体例については、上記のR1で表される「炭素原子数2~20の直鎖状もしくは分岐状のアルケニレン基」の説明の中で挙げたアルケニル基(1個の水素原子を除去する前のアルケニル基)の具体例を参照することができる。
In general formula (1), the number of carbon atoms in the "straight- chain or branched alkenyl group having 2 to 20 carbon atoms" in the "straight-chain or branched alkenyl group having 2 to 20 carbon atoms which may have a substituent" represented by R 2 to R 9 is selected from integers from 2 to 20, and may be selected from the range of, for example, 2 to 12, or may be selected from the range of, for example, 2 to 6. For specific examples of the "straight-chain or branched alkenyl group having 2 to 20 carbon atoms", reference may be made to the specific examples of the alkenyl group (alkenyl group before removal of one hydrogen atom) given in the explanation of the "straight-chain or branched alkenylene group having 2 to 20 carbon atoms" represented by R 1 above.
一般式(1)において、R2~R9で表される「置換基を有していてもよい炭素原子数2~20の直鎖状もしくは分岐状のアルキニル基」における「炭素原子数2~20の直鎖状もしくは分岐状のアルキニル基」の炭素原子数は、2~20の整数から選択され、例えば2~12の範囲から選択してもよく、例えば2~6の範囲から選択してもよい。「炭素原子数2~20の直鎖状もしくは分岐状のアルキニル基」の具体例については、上記のR1における「炭素原子数2~20の直鎖状もしくは分岐状のアルキニレン基」の説明の中で挙げたアルキニル基(1個の水素原子を除去する前のアルキニル基)の具体例を参照することができる。
In general formula (1), the number of carbon atoms in the "straight- chain or branched alkynyl group having 2 to 20 carbon atoms" in the "straight-chain or branched alkynyl group having 2 to 20 carbon atoms which may have a substituent" represented by R 2 to R 9 is selected from integers from 2 to 20, and may be selected from the range of, for example, 2 to 12, or may be selected from the range of, for example, 2 to 6. For specific examples of the "straight-chain or branched alkynyl group having 2 to 20 carbon atoms", reference may be made to the specific examples of the alkynyl group (alkynyl group before removal of one hydrogen atom) given in the explanation of the "straight-chain or branched alkynylene group having 2 to 20 carbon atoms" in R 1 above.
一般式(1)において、R2~R9で表される「置換基を有していてもよい炭素原子数3~10のシクロアルキル基」における「炭素原子数3~10のシクロアルキル基」の炭素原子数は、3~10の整数から選択され、例えば3~6の範囲から選択してもよい。「炭素原子数3~10のシクロアルキル基」の具体例については、上記のR1における「炭素原子数3~12のシクロアルキレン基」の説明の中で挙げたシクロアルキル基(1個の水素原子を除去する前のシクロアルキル基)の具体例を参照することができる。
In general formula (1), the number of carbon atoms in the "cycloalkyl group having 3 to 10 carbon atoms" in the "cycloalkyl group having 3 to 10 carbon atoms which may have a substituent" represented by R 2 to R 9 is selected from integers of 3 to 10, and may be selected, for example, from the range of 3 to 6. For specific examples of the "cycloalkyl group having 3 to 10 carbon atoms", reference can be made to the specific examples of the cycloalkyl group (cycloalkyl group before removal of one hydrogen atom) given in the explanation of the "cycloalkylene group having 3 to 12 carbon atoms" in R 1 above.
一般式(1)において、R2~R9で表される「置換基を有していてもよい炭素原子数1~20の直鎖状もしくは分岐状のアルコキシ基」における「炭素原子数1~20の直鎖状もしくは分岐状のアルコキシ基」の炭素原子数は、1~20の整数から選択され、例えば1~12の範囲から選択してもよく、例えば1~6の範囲から選択してもよい。「炭素原子数1~20の直鎖状もしくは分岐状のアルコキシ基」としては、具体的に、メトキシ基、エトキシ基、プロポキシ基、n-ブトキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基、イソプロポキシ基、イソブトキシ基、s-ブトキシ基、t-ブトキシ基、イソオクチルオキシ基、t-オクチルオキシ基などを挙げることができる。
In general formula (1), the number of carbon atoms in the "straight-chain or branched alkoxy group having 1 to 20 carbon atoms" in the "straight-chain or branched alkoxy group having 1 to 20 carbon atoms which may have a substituent" represented by R 2 to R 9 is selected from an integer of 1 to 20, and may be selected from the range of, for example, 1 to 12, or may be selected from the range of, for example, 1 to 6. Specific examples of the "straight-chain or branched alkoxy group having 1 to 20 carbon atoms" include a methoxy group, an ethoxy group, a propoxy group, an n-butoxy group, an n-pentyloxy group, an n-hexyloxy group, a heptyloxy group, an octyloxy group, a nonyloxy group, a decyloxy group, an isopropoxy group, an isobutoxy group, an s-butoxy group, a t-butoxy group, an isooctyloxy group, a t-octyloxy group, and the like.
一般式(1)において、R2~R9で表される「置換基を有していてもよい炭素原子数3~10の直鎖状もしくは分岐状のシクロアルコキシ基」における「炭素原子数3~10の直鎖状もしくは分岐状のシクロアルコキシ基」の炭素原子数は、3~10の整数から選択され、例えば3~6の範囲から選択してもよい。「炭素原子数3~10の直鎖状もしくは分岐状のシクロアルコキシ基」としては、具体的に、シクロプロポキシ基、シクロブトキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基などを挙げることができる。
In general formula (1), the number of carbon atoms in the "straight - chain or branched cycloalkoxy group having 3 to 10 carbon atoms" in the "straight-chain or branched cycloalkoxy group having 3 to 10 carbon atoms which may have a substituent" represented by R 2 to R 9 is selected from integers of 3 to 10, and may be selected, for example, from the range of 3 to 6. Specific examples of the "straight-chain or branched cycloalkoxy group having 3 to 10 carbon atoms" include a cyclopropoxy group, a cyclobutoxy group, a cyclopentyloxy group, and a cyclohexyloxy group.
一般式(1)において、R2~R9で表される「置換基を有していてもよい炭素原子数6~36のアリールオキシ基」における「炭素原子数6~36のアリールオキシ基」のオキシ基に結合するアリール基の説明と具体例については、下記のR2~R9における「炭素原子数6~36の1価の芳香族炭化水素基」についての記載を参照することができる。「炭素原子数6~36のアリールオキシ基」としては、具体的に、フェノキシ基、トリルオキシ基、ビフェニリルオキシ基、ターフェニリルオキシ基、ナフチルオキシ基、アントリルオキシ基、フェナントリルオキシ基、フルオレニルオキシ基、インデニルオキシ基などを挙げることができる。
In general formula (1), for an explanation and specific examples of the aryl group bonded to the oxy group of the "aryloxy group having 6 to 36 carbon atoms" in the "aryloxy group having 6 to 36 carbon atoms which may have a substituent" represented by R 2 to R 9 , reference can be made to the description of the "monovalent aromatic hydrocarbon group having 6 to 36 carbon atoms" in R 2 to R 9 below. Specific examples of the "aryloxy group having 6 to 36 carbon atoms" include a phenoxy group, a tolyloxy group, a biphenylyloxy group, a terphenylyloxy group, a naphthyloxy group, an anthryloxy group, a phenanthryloxy group, a fluorenyloxy group, and an indenyloxy group.
一般式(1)において、R2~R9で表される「置換基を有していてもよい炭素原子数1~18の直鎖状もしくは分岐状のアルコキシカルボニル基」における「炭素原子数1~18の直鎖状もしくは分岐状のアルコキシカルボニル基」の炭素原子数は、1~18の整数から選択され、例えば1~12の範囲から選択してもよく、例えば1~6の範囲から選択してもよい。「炭素原子数1~18のアルコキシカルボニル基」としては、具体的に、メトキシカルボニル基、エトキシカルボニル基などを挙げることができる。
In general formula (1), the number of carbon atoms in the "straight-chain or branched alkoxycarbonyl group having 1 to 18 carbon atoms which may have a substituent" represented by R 2 to R 9 is selected from integers of 1 to 18, and may be selected from the range of, for example, 1 to 12, or may be selected from the range of, for example, 1 to 6. Specific examples of the "alkoxycarbonyl group having 1 to 18 carbon atoms" include a methoxycarbonyl group, an ethoxycarbonyl group, etc.
一般式(1)において、R2~R9で表される「置換基を有していてもよい炭素原子数0~18のチオ基」は、無置換のチオ基(チオール基:-SH)であってもよいし、チオール基の水素原子が置換基で置換された置換チオ基であってもよい。置換チオ基の置換基の例として、アルキル基、アリール基を挙げることができ、これら各基の水素原子は、上記の置換基群Aから選択される置換基で置換されていてもよい。チオ基の置換基であるアルキル基の説明と具体例については、上記のR2~R9における「炭素原子数1~18の直鎖状もしくは分岐状のアルキル基」および「炭素原子数3~10のシクロアルキル基」についての記載を参照することができ、アリール基の説明と具体例については、下記のR2~R9における「炭素原子数6~36の1価の芳香族炭化水素基」についての記載を参照することができる。置換チオ基の炭素原子数は1~18の範囲であることが好ましく、例えば1~12の範囲であってもよく、例えば1~6の範囲であってもよい。「炭素原子数1~18の置換チオ基」としては、具体的には、メチルチオ基、エチルチオ基、プロピルチオ基、フェニルチオ基、ビフェニルチオ基などを挙げることができる。
In the general formula (1), the "thio group having 0 to 18 carbon atoms which may have a substituent" represented by R 2 to R 9 may be an unsubstituted thio group (thiol group: -SH) or a substituted thio group in which the hydrogen atom of the thiol group is substituted with a substituent. Examples of the substituent of the substituted thio group include an alkyl group and an aryl group, and the hydrogen atom of each of these groups may be substituted with a substituent selected from the above-mentioned substituent group A. For an explanation and specific examples of the alkyl group which is a substituent of the thio group, the description of the "linear or branched alkyl group having 1 to 18 carbon atoms" and the "cycloalkyl group having 3 to 10 carbon atoms" in the above-mentioned R 2 to R 9 can be referred to, and for an explanation and specific examples of the aryl group, the description of the "monovalent aromatic hydrocarbon group having 6 to 36 carbon atoms" in the below-mentioned R 2 to R 9 can be referred to. The number of carbon atoms of the substituted thio group is preferably in the range of 1 to 18, and may be, for example, in the range of 1 to 12, or may be, for example, in the range of 1 to 6. Specific examples of the "substituted thio group having 1 to 18 carbon atoms" include a methylthio group, an ethylthio group, a propylthio group, a phenylthio group, and a biphenylthio group.
一般式(1)において、R2~R9で表される「置換基を有していてもよい炭素原子数0~20のアミノ基」は、無置換のアミノ基であってもよいし、一置換アミノ基や二置換アミノ基であってもよい。各置換アミノ基の置換基の例として、アルキル基、アリール基、アシル基を挙げることができ、これら各基の水素原子は、上記の置換基群Aから選択される置換基で置換されていてもよい。アルキル基、および、アシル基を構成するアルキル基の説明と具体例については、上記のR2~R9における「炭素原子数1~18の直鎖状もしくは分岐状のアルキル基」および「炭素原子数3~10のシクロアルキル基」についての記載を参照することができ、アリール基の説明と具体例については、下記のR2~R9における「炭素原子数6~36の1価の芳香族炭化水素基」についての記載を参照することができる。一置換アミノ基および二置換アミノ基の炭素原子数は1~20であることが好ましく、例えば1~12の範囲であってもよい。一置換アミノ基の具体例として、アルキルアミノ基(例えばエチルアミノ基)、アセチルアミノ基、アリールアミノ基(例えばフェニルアミノ基)などを挙げることができる。二置換アミノ基の具体例として、ジアルキルアミノ基(例えばジエチルアミノ基)、ジアリールアミノ基(例えばジフェニルアミノ基)、アセチルフェニルアミノ基などを挙げることができる。
In the general formula (1), the "amino group having 0 to 20 carbon atoms which may have a substituent" represented by R 2 to R 9 may be an unsubstituted amino group, a mono-substituted amino group, or a di-substituted amino group. Examples of the substituent of each substituted amino group include an alkyl group, an aryl group, and an acyl group, and the hydrogen atom of each of these groups may be substituted with a substituent selected from the above-mentioned substituent group A. For the explanation and specific examples of the alkyl group and the alkyl group constituting the acyl group, the above description of the "linear or branched alkyl group having 1 to 18 carbon atoms" and the "cycloalkyl group having 3 to 10 carbon atoms" in R 2 to R 9 can be referred to, and for the explanation and specific examples of the aryl group, the description of the "monovalent aromatic hydrocarbon group having 6 to 36 carbon atoms" in R 2 to R 9 can be referred to below. The number of carbon atoms of the mono-substituted amino group and the di-substituted amino group is preferably 1 to 20, and may be, for example, in the range of 1 to 12. Specific examples of the mono-substituted amino group include an alkylamino group (e.g., an ethylamino group), an acetylamino group, and an arylamino group (e.g., a phenylamino group). Specific examples of the disubstituted amino group include a dialkylamino group (eg, a diethylamino group), a diarylamino group (eg, a diphenylamino group), and an acetylphenylamino group.
一般式(1)において、R2~R9で表される「置換基を有していてもよい炭素原子数6~36の1価の芳香族炭化水素基」における「炭素原子数6~36の1価の芳香族炭化水素基」を構成する芳香環の説明については、上記のR1における「炭素原子数6~36のアリーレン基」を構成する芳香環についての記載を参照することができ、「炭素原子数6~36の1価の芳香族炭化水素基」の具体例については、上記のR1における「炭素原子数6~36のアリーレン基」の説明の中で挙げた1価の芳香族炭化水素基(1個の水素原子を除去する前の1価の芳香族炭化水素基)の具体例を参照することができる。
In general formula (1), for an explanation of the aromatic ring constituting the "monovalent aromatic hydrocarbon group having 6 to 36 carbon atoms" in the "monovalent aromatic hydrocarbon group having 6 to 36 carbon atoms which may have a substituent" represented by R 2 to R 9, the explanation of the aromatic ring constituting the "arylene group having 6 to 36 carbon atoms" in R 1 above can be referred to, and for specific examples of the "monovalent aromatic hydrocarbon group having 6 to 36 carbon atoms", the specific examples of the monovalent aromatic hydrocarbon group (monovalent aromatic hydrocarbon group before removal of one hydrogen atom) given in the explanation of the "arylene group having 6 to 36 carbon atoms" in R 1 above can be referred to.
一般式(1)において、R2~R9で表される「置換基を有していてもよい環形成原子数5~36の1価の複素環基」における「環形成原子数5~36の1価の複素環基」を構成する複素環の説明については、上記のR1における「環形成原子数5~36の2価の複素環基」を構成する複素環についての記載を参照することができ、「環形成原子数5~36の1価の複素環基」の具体例については、上記のR1における「環形成原子数5~36の2価の複素環基」の説明の中で挙げた1価の複素環基(1個の水素原子を除去する前の1価の複素環基)の具体例を参照することができる。
In general formula (1), for an explanation of the heterocycle constituting the "monovalent heterocyclic group having 5 to 36 ring atoms" in the "monovalent heterocyclic group having 5 to 36 ring atoms which may be substituted" represented by R 2 to R 9 , the description of the heterocycle constituting the "divalent heterocyclic group having 5 to 36 ring atoms" in R 1 above can be referred to, and for specific examples of the "monovalent heterocyclic group having 5 to 36 ring atoms", the specific examples of the monovalent heterocyclic group (monovalent heterocyclic group before removal of one hydrogen atom) given in the explanation of the "divalent heterocyclic group having 5 to 36 ring atoms" in R 1 above can be referred to.
一般式(1)において、R2~R9で表される「置換基を有していてもよい炭素原子数1~18の直鎖状もしくは分岐状のアルキル基」、「置換基を有していてもよい炭素原子数2~20の直鎖状もしくは分岐状のアルケニル基」、「置換基を有していてもよい炭素原子数2~20の直鎖状もしくは分岐状のアルキニル基」、「置換基を有していてもよい炭素原子数3~10のシクロアルキル基」、「置換基を有していてもよい炭素原子数1~20の直鎖状もしくは分岐状のアルコキシ基」、「置換基を有していてもよい炭素原子数3~10のシクロアルコキシ基」、「置換基を有していてもよい炭素原子数6~36のアリールオキシ基」、「置換基を有していてもよい炭素原子数1~18の直鎖状もしくは分岐状のアルコキシカルボニル基」、「置換基を有していてもよい炭素原子数0~18のチオ基」、「置換基を有していてもよい炭素数0~20のアミノ基」、「置換基を有していてもよい炭素原子数6~36の1価の芳香族炭化水素基」または「置換基を有していてもよい環形成原子数5~36の1価の複素環基」における「置換基」の説明と具体例については、上記のR1で表される「置換基を有していてもよい炭素原子数1~18の直鎖状もしくは分岐状のアルキレン基」等の「置換基」の説明と具体例(置換基群A)を参照することができる。ここで、「置換基を有していてもよい炭素原子数6~36の1価の芳香族炭化水素基」の置換基は、1価の芳香族炭化水素基(アリール基)で置換されたアミノ基であることが好ましく、ジアリールアミノ基であることがより好ましい。アミノ基の置換基である1価の芳香族炭化水素基は、上記の置換基群Aから選択される置換基で置換されていてもよい。
In the general formula (1), the explanation and specific examples of the "substituents" in the "linear or branched alkyl group having 1 to 18 carbon atoms which may have a substituent", "linear or branched alkenyl group having 2 to 20 carbon atoms which may have a substituent", "linear or branched alkynyl group having 2 to 20 carbon atoms which may have a substituent", "cycloalkyl group having 3 to 10 carbon atoms which may have a substituent", "linear or branched alkoxy group having 1 to 20 carbon atoms which may have a substituent", "cycloalkoxy group having 3 to 10 carbon atoms which may have a substituent", "aryloxy group having 6 to 36 carbon atoms which may have a substituent", "linear or branched alkoxycarbonyl group having 1 to 18 carbon atoms which may have a substituent", "thio group having 0 to 18 carbon atoms which may have a substituent", "amino group having 0 to 20 carbon atoms which may have a substituent", "monovalent aromatic hydrocarbon group having 6 to 36 carbon atoms which may have a substituent", or "monovalent heterocyclic group having 5 to 36 ring atoms which may have a substituent" represented by R 2 to R 9 are described above. The explanation and specific examples (substituent group A) of "substituents" such as "a linear or branched alkylene group having 1 to 18 carbon atoms which may have a substituent" represented by formula ( 1) can be referred to. Here, the substituent of the "monovalent aromatic hydrocarbon group having 6 to 36 carbon atoms which may have a substituent" is preferably an amino group substituted with a monovalent aromatic hydrocarbon group (aryl group), more preferably a diarylamino group. The monovalent aromatic hydrocarbon group which is the substituent of the amino group may be substituted with a substituent selected from the above substituent group A.
一般式(1)において、R2~R9のうち、少なくとも1つは、置換基を有していてもよい炭素原子数6~36の1価の芳香族炭化水素基または置換基を有していてもよい炭素数0~20のアミノ基であることが好ましい。中でも、R3、R4、R7およびR8の少なくとも1つが、置換基を有していてもよい炭素原子数6~36の1価の芳香族炭化水素基または置換基を有していてもよい炭素数0~20のアミノ基であることがより好ましく、R4およびR7の少なくとも1つが、置換基を有していてもよい炭素原子数6~36の1価の芳香族炭化水素基または置換基を有していてもよい炭素数0~20のアミノ基であることがさらに好ましい。ここで、アミノ基が置換基を有する場合の炭素原子数は1~20である。
また、一般式(1)のR2~R9の少なくとも1つは、ジアリールアミノ基を有する基であることも好ましく、R3、R4、R7およびR8の少なくとも1つが、ジアリールアミノ基を有する基であることもより好ましい。また、一般式(1)のR2~R5の少なくとも1つと、R6~R9の少なくとも1つが、ジアリールアミノ基を有する基であることも好ましく、R3およびR4の少なくとも1つと、R7およびR8の少なくとも1つが、ジアリールアミノ基を有する基であることもより好ましく、R4とR7がジアリールアミノ基を有する基であることもさらに好ましい。ここで、ジアリールアミノ基を有する基は、例えばジアリールアミノ基であり、例えばジアリールアミノアリール基であり、例えばジアリールアミノカルバゾール-9-イル基である。ジアリールアミノ基、ジアリールアミノアリール基およびジアリールアミノカルバゾール-9-イル基を構成する各アリール基の説明については、上記のR2~R9における「炭素原子数6~36の1価の芳香族炭化水素基」についての記載を参照することができる。ジアリールアミノ基、ジアリールアミノアリール基およびジアリールアミノカルバゾール-9-イル基の少なくとも1つの水素原子は、上記の置換基群Aから選択される置換基で置換されていてもよい。置換基の好ましい例として、ヘテロ原子で結合する置換基を挙げることができ、例えば、アルコキシ基(メトキシ基等)やジアリールアミノ基(ジ(メトキシフェニル)アミノ基等)を挙げることができる。また、置換基の好ましい例として、環骨格構成原子として窒素原子を含むヘテロアリール基(例えばピリジル基)を挙げることもできる。 In general formula (1), it is preferable that at least one of R 2 to R 9 is a monovalent aromatic hydrocarbon group having 6 to 36 carbon atoms which may have a substituent or an amino group having 0 to 20 carbon atoms which may have a substituent. Of these, it is more preferable that at least one of R 3 , R 4 , R 7 and R 8 is a monovalent aromatic hydrocarbon group having 6 to 36 carbon atoms which may have a substituent or an amino group having 0 to 20 carbon atoms which may have a substituent, and it is even more preferable that at least one of R 4 and R 7 is a monovalent aromatic hydrocarbon group having 6 to 36 carbon atoms which may have a substituent or an amino group having 0 to 20 carbon atoms which may have a substituent. Here, when the amino group has a substituent, the number of carbon atoms is 1 to 20.
It is also preferable that at least one of R 2 to R 9 in the general formula (1) is a group having a diarylamino group, and it is more preferable that at least one of R 3 , R 4 , R 7 and R 8 is a group having a diarylamino group. It is also preferable that at least one of R 2 to R 5 and at least one of R 6 to R 9 in the general formula (1) is a group having a diarylamino group, it is more preferable that at least one of R 3 and R 4 and at least one of R 7 and R 8 are a group having a diarylamino group, and it is even more preferable that R 4 and R 7 are groups having a diarylamino group. Here, the group having a diarylamino group is, for example, a diarylamino group, for example, a diarylaminoaryl group, for example, a diarylaminocarbazol-9-yl group. For the explanation of each aryl group constituting the diarylamino group, diarylaminoaryl group, and diarylaminocarbazol-9-yl group, the description of the "monovalent aromatic hydrocarbon group having 6 to 36 carbon atoms" in R 2 to R 9 above can be referred to. At least one hydrogen atom of the diarylamino group, diarylaminoaryl group, and diarylaminocarbazol-9-yl group may be substituted with a substituent selected from the above-mentioned Substituent Group A. Preferable examples of the substituent include a substituent bonded via a heteroatom, such as an alkoxy group (e.g., a methoxy group) or a diarylamino group (e.g., a di(methoxyphenyl)amino group). Preferable examples of the substituent also include a heteroaryl group containing a nitrogen atom as a ring skeleton-constituting atom (e.g., a pyridyl group).
また、一般式(1)のR2~R9の少なくとも1つは、ジアリールアミノ基を有する基であることも好ましく、R3、R4、R7およびR8の少なくとも1つが、ジアリールアミノ基を有する基であることもより好ましい。また、一般式(1)のR2~R5の少なくとも1つと、R6~R9の少なくとも1つが、ジアリールアミノ基を有する基であることも好ましく、R3およびR4の少なくとも1つと、R7およびR8の少なくとも1つが、ジアリールアミノ基を有する基であることもより好ましく、R4とR7がジアリールアミノ基を有する基であることもさらに好ましい。ここで、ジアリールアミノ基を有する基は、例えばジアリールアミノ基であり、例えばジアリールアミノアリール基であり、例えばジアリールアミノカルバゾール-9-イル基である。ジアリールアミノ基、ジアリールアミノアリール基およびジアリールアミノカルバゾール-9-イル基を構成する各アリール基の説明については、上記のR2~R9における「炭素原子数6~36の1価の芳香族炭化水素基」についての記載を参照することができる。ジアリールアミノ基、ジアリールアミノアリール基およびジアリールアミノカルバゾール-9-イル基の少なくとも1つの水素原子は、上記の置換基群Aから選択される置換基で置換されていてもよい。置換基の好ましい例として、ヘテロ原子で結合する置換基を挙げることができ、例えば、アルコキシ基(メトキシ基等)やジアリールアミノ基(ジ(メトキシフェニル)アミノ基等)を挙げることができる。また、置換基の好ましい例として、環骨格構成原子として窒素原子を含むヘテロアリール基(例えばピリジル基)を挙げることもできる。 In general formula (1), it is preferable that at least one of R 2 to R 9 is a monovalent aromatic hydrocarbon group having 6 to 36 carbon atoms which may have a substituent or an amino group having 0 to 20 carbon atoms which may have a substituent. Of these, it is more preferable that at least one of R 3 , R 4 , R 7 and R 8 is a monovalent aromatic hydrocarbon group having 6 to 36 carbon atoms which may have a substituent or an amino group having 0 to 20 carbon atoms which may have a substituent, and it is even more preferable that at least one of R 4 and R 7 is a monovalent aromatic hydrocarbon group having 6 to 36 carbon atoms which may have a substituent or an amino group having 0 to 20 carbon atoms which may have a substituent. Here, when the amino group has a substituent, the number of carbon atoms is 1 to 20.
It is also preferable that at least one of R 2 to R 9 in the general formula (1) is a group having a diarylamino group, and it is more preferable that at least one of R 3 , R 4 , R 7 and R 8 is a group having a diarylamino group. It is also preferable that at least one of R 2 to R 5 and at least one of R 6 to R 9 in the general formula (1) is a group having a diarylamino group, it is more preferable that at least one of R 3 and R 4 and at least one of R 7 and R 8 are a group having a diarylamino group, and it is even more preferable that R 4 and R 7 are groups having a diarylamino group. Here, the group having a diarylamino group is, for example, a diarylamino group, for example, a diarylaminoaryl group, for example, a diarylaminocarbazol-9-yl group. For the explanation of each aryl group constituting the diarylamino group, diarylaminoaryl group, and diarylaminocarbazol-9-yl group, the description of the "monovalent aromatic hydrocarbon group having 6 to 36 carbon atoms" in R 2 to R 9 above can be referred to. At least one hydrogen atom of the diarylamino group, diarylaminoaryl group, and diarylaminocarbazol-9-yl group may be substituted with a substituent selected from the above-mentioned Substituent Group A. Preferable examples of the substituent include a substituent bonded via a heteroatom, such as an alkoxy group (e.g., a methoxy group) or a diarylamino group (e.g., a di(methoxyphenyl)amino group). Preferable examples of the substituent also include a heteroaryl group containing a nitrogen atom as a ring skeleton-constituting atom (e.g., a pyridyl group).
一般式(1)で表される好ましい化合物群として、少なくともR4が水素原子ではない化合物群1を示すことができる。化合物群1は、R4が置換基を有していてもよいジアリールアミノ基である化合物群1a、R4が置換基を有していてもよいジアリールアミノアリール基(好ましくは置換基を有していてもよいジアリールアミノフェニル基)である化合物群1b、R4が置換基を有していてもよいジアリールアミノカルバゾール-9-イル基である化合物群1c、R4が置換基を有していてもよい炭素原子数1~18の直鎖状もしくは分岐状のアルキル基である化合物群1dを含む。化合物群1a~1dは、それぞれの群のR2、R3、R5~R9が水素原子であってもよい。化合物群1a~1dは、それぞれの群のR7が水素原子でなくてもよく、例えばR4とR7が同じ基であってもよく、例えばR2、R3、R5、R6、R8、R9が水素原子であってもよい。化合物群1a~1dは、それぞれがさらに以下の少なくとも1個の追加条件を満たすことができる。
追加条件の1つは、前記「ジアリールアミノ」が置換基としてアルコキシ基(例えば炭素数1~6のアルコキシ基)を有する場合である。追加条件の1つは、前記「ジアリールアミノ」が置換基として窒素原子を環骨格構成原子として含むヘテロアリール基(例えばピリジル基)を有する場合である。追加条件の1つは、R1が置換基を有していてもよい炭素原子数1~18(好ましくは1~12、例えば1~6)の直鎖状もしくは分岐状のアルキレン基である場合であり、例えば無置換のアルキレン基であり、例えばアルケニル基、アルキニル基、シクロアルキル基またはアリール基で置換されたアルキレン基である。追加条件の1つは、R1が置換基を有していてもよい炭素原子数6~36(好ましくは6~14、例えば6~10)のアリーレン基である場合である。追加条件の1つは、SO3Xと結合しているR1の原子が、2級炭素原子である場合である。追加条件の1つは、XがLi、Na、K、RbまたはCsであり、例えばLiであり、例えばNaであり、例えばKであり、例えばRbであり、例えばCsである。 As a preferred compound group represented by the general formula (1), at least compound group 1 in which R 4 is not a hydrogen atom can be mentioned. Compound group 1 includes compound group 1a in which R 4 is a diarylamino group which may have a substituent, compound group 1b in which R 4 is a diarylaminoaryl group which may have a substituent (preferably a diarylaminophenyl group which may have a substituent), compound group 1c in which R 4 is a diarylaminocarbazol-9-yl group which may have a substituent, and compound group 1d in which R 4 is a linear or branched alkyl group having 1 to 18 carbon atoms which may have a substituent. In compound groups 1a to 1d, R 2 , R 3 , and R 5 to R 9 in each group may be hydrogen atoms. In compound groups 1a to 1d, R 7 in each group may not be a hydrogen atom, and for example, R 4 and R 7 may be the same group, and for example, R 2 , R 3 , R 5 , R 6 , R 8 , and R 9 may be hydrogen atoms. Each of the compound groups 1a to 1d can further satisfy at least one of the following additional conditions.
One additional condition is when the "diarylamino" has an alkoxy group (e.g., an alkoxy group having 1 to 6 carbon atoms) as a substituent. One additional condition is when the "diarylamino" has a heteroaryl group (e.g., a pyridyl group) containing a nitrogen atom as a ring skeleton constituent atom as a substituent. One additional condition is when R 1 is a linear or branched alkylene group having 1 to 18 carbon atoms (preferably 1 to 12, e.g., 1 to 6) that may have a substituent, for example, an unsubstituted alkylene group, for example, an alkylene group substituted with an alkenyl group, an alkynyl group, a cycloalkyl group, or an aryl group. One additional condition is when R 1 is an arylene group having 6 to 36 carbon atoms (preferably 6 to 14, e.g., 6 to 10) that may have a substituent. One additional condition is when the atom of R 1 bonded to SO 3 X is a secondary carbon atom. One additional proviso is that X is Li, Na, K, Rb or Cs, such as Li, such as Na, such as K, such as Rb, such as Cs.
追加条件の1つは、前記「ジアリールアミノ」が置換基としてアルコキシ基(例えば炭素数1~6のアルコキシ基)を有する場合である。追加条件の1つは、前記「ジアリールアミノ」が置換基として窒素原子を環骨格構成原子として含むヘテロアリール基(例えばピリジル基)を有する場合である。追加条件の1つは、R1が置換基を有していてもよい炭素原子数1~18(好ましくは1~12、例えば1~6)の直鎖状もしくは分岐状のアルキレン基である場合であり、例えば無置換のアルキレン基であり、例えばアルケニル基、アルキニル基、シクロアルキル基またはアリール基で置換されたアルキレン基である。追加条件の1つは、R1が置換基を有していてもよい炭素原子数6~36(好ましくは6~14、例えば6~10)のアリーレン基である場合である。追加条件の1つは、SO3Xと結合しているR1の原子が、2級炭素原子である場合である。追加条件の1つは、XがLi、Na、K、RbまたはCsであり、例えばLiであり、例えばNaであり、例えばKであり、例えばRbであり、例えばCsである。 As a preferred compound group represented by the general formula (1), at least compound group 1 in which R 4 is not a hydrogen atom can be mentioned. Compound group 1 includes compound group 1a in which R 4 is a diarylamino group which may have a substituent, compound group 1b in which R 4 is a diarylaminoaryl group which may have a substituent (preferably a diarylaminophenyl group which may have a substituent), compound group 1c in which R 4 is a diarylaminocarbazol-9-yl group which may have a substituent, and compound group 1d in which R 4 is a linear or branched alkyl group having 1 to 18 carbon atoms which may have a substituent. In compound groups 1a to 1d, R 2 , R 3 , and R 5 to R 9 in each group may be hydrogen atoms. In compound groups 1a to 1d, R 7 in each group may not be a hydrogen atom, and for example, R 4 and R 7 may be the same group, and for example, R 2 , R 3 , R 5 , R 6 , R 8 , and R 9 may be hydrogen atoms. Each of the compound groups 1a to 1d can further satisfy at least one of the following additional conditions.
One additional condition is when the "diarylamino" has an alkoxy group (e.g., an alkoxy group having 1 to 6 carbon atoms) as a substituent. One additional condition is when the "diarylamino" has a heteroaryl group (e.g., a pyridyl group) containing a nitrogen atom as a ring skeleton constituent atom as a substituent. One additional condition is when R 1 is a linear or branched alkylene group having 1 to 18 carbon atoms (preferably 1 to 12, e.g., 1 to 6) that may have a substituent, for example, an unsubstituted alkylene group, for example, an alkylene group substituted with an alkenyl group, an alkynyl group, a cycloalkyl group, or an aryl group. One additional condition is when R 1 is an arylene group having 6 to 36 carbon atoms (preferably 6 to 14, e.g., 6 to 10) that may have a substituent. One additional condition is when the atom of R 1 bonded to SO 3 X is a secondary carbon atom. One additional proviso is that X is Li, Na, K, Rb or Cs, such as Li, such as Na, such as K, such as Rb, such as Cs.
一般式(1)で表される別の好ましい化合物群として、少なくともR3が水素原子ではない化合物群2を示すことができる。化合物群2は、R3が置換基を有していてもよいジアリールアミノ基である化合物群2a、R3が置換基を有していてもよいジアリールアミノアリール基(好ましくは置換基を有していてもよいジアリールアミノフェニル基)である化合物群2b、R3が置換基を有していてもよいジアリールアミノカルバゾール-9-イル基である化合物群2c、R3が置換基を有していてもよい炭素原子数1~18の直鎖状もしくは分岐状のアルキル基である化合物群2dを含む。化合物群2a~2dは、それぞれの群のR2、R4~R9が水素原子であってもよい。化合物群2a~2dは、それぞれの群のR8が水素原子でなくてもよく、例えばR3とR8が同じ基であってもよく、例えばR2、R4~R7、R9が水素原子であってもよい。化合物群2a~2dは、それぞれが化合物群1にて記載した追加条件の少なくとも1個を満たすことができる。
Another preferred compound group represented by the general formula (1) is compound group 2 in which at least R 3 is not a hydrogen atom. Compound group 2 includes compound group 2a in which R 3 is a diarylamino group which may have a substituent, compound group 2b in which R 3 is a diarylaminoaryl group which may have a substituent (preferably a diarylaminophenyl group which may have a substituent), compound group 2c in which R 3 is a diarylaminocarbazol-9-yl group which may have a substituent, and compound group 2d in which R 3 is a linear or branched alkyl group having 1 to 18 carbon atoms which may have a substituent. In compound groups 2a to 2d, R 2 and R 4 to R 9 in each group may be hydrogen atoms. In compound groups 2a to 2d, R 8 in each group may not be a hydrogen atom, for example, R 3 and R 8 may be the same group, for example, R 2 , R 4 to R 7 , and R 9 may be hydrogen atoms. Compound groups 2a to 2d each can satisfy at least one of the additional conditions described in compound group 1.
一般式(1)で表される別の好ましい化合物群として、少なくともR2が水素原子ではない化合物群3を示すことができる。化合物群3は、R2が置換基を有していてもよいジアリールアミノ基である化合物群3a、R2が置換基を有していてもよいジアリールアミノアリール基(好ましくは置換基を有していてもよいジアリールアミノフェニル基)である化合物群3b、R2が置換基を有していてもよいジアリールアミノカルバゾール-9-イル基である化合物群3c、R2が置換基を有していてもよい炭素原子数1~18の直鎖状もしくは分岐状のアルキル基である化合物群3dを含む。化合物群3a~3dは、それぞれの群のR3~R9が水素原子であってもよい。化合物群3a~3dは、それぞれの群のR9が水素原子でなくてもよく、例えばR2とR9が同じ基であってもよく、例えばR3~R8が水素原子であってもよい。化合物群3a~3dは、それぞれが化合物群1にて記載した追加条件の少なくとも1個を満たすことができる。
Another preferred compound group represented by the general formula (1) is compound group 3 in which at least R 2 is not a hydrogen atom. Compound group 3 includes compound group 3a in which R 2 is a diarylamino group which may have a substituent, compound group 3b in which R 2 is a diarylaminoaryl group which may have a substituent (preferably a diarylaminophenyl group which may have a substituent), compound group 3c in which R 2 is a diarylaminocarbazol-9-yl group which may have a substituent, and compound group 3d in which R 2 is a linear or branched alkyl group having 1 to 18 carbon atoms which may have a substituent. In compound groups 3a to 3d, R 3 to R 9 in each group may be a hydrogen atom. In compound groups 3a to 3d, R 9 in each group may not be a hydrogen atom, for example, R 2 and R 9 may be the same group, and for example, R 3 to R 8 may be a hydrogen atom. Compound groups 3a to 3d each can satisfy at least one of the additional conditions described in compound group 1.
一般式(1)で表される別の好ましい化合物群として、少なくともR5が水素原子ではない化合物群4を示すことができる。化合物群4は、R5が置換基を有していてもよいジアリールアミノ基である化合物群4a、R5が置換基を有していてもよいジアリールアミノアリール基(好ましくは置換基を有していてもよいジアリールアミノフェニル基)である化合物群4b、R5が置換基を有していてもよいジアリールアミノカルバゾール-9-イル基である化合物群4c、R5が置換基を有していてもよい炭素原子数1~18の直鎖状もしくは分岐状のアルキル基である化合物群4dを含む。化合物群4a~4dは、それぞれの群のR2~R4、R6~R9が水素原子であってもよい。化合物群4a~4dは、それぞれの群のR6が水素原子でなくてもよく、例えばR5とR6が同じ基であってもよく、例えばR2~R4、R7~R9が水素原子であってもよい。化合物群4a~4dは、それぞれが化合物群1にて記載した追加条件の少なくとも1個を満たすことができる。
Another preferred compound group represented by the general formula (1) is compound group 4 in which at least R 5 is not a hydrogen atom. Compound group 4 includes compound group 4a in which R 5 is a diarylamino group which may have a substituent, compound group 4b in which R 5 is a diarylaminoaryl group which may have a substituent (preferably a diarylaminophenyl group which may have a substituent), compound group 4c in which R 5 is a diarylaminocarbazol-9-yl group which may have a substituent, and compound group 4d in which R 5 is a linear or branched alkyl group having 1 to 18 carbon atoms which may have a substituent. In compound groups 4a to 4d, R 2 to R 4 and R 6 to R 9 in each group may be hydrogen atoms. In compound groups 4a to 4d, R 6 in each group may not be a hydrogen atom, for example, R 5 and R 6 may be the same group, for example, R 2 to R 4 and R 7 to R 9 may be hydrogen atoms. Compound groups 4a to 4d each can satisfy at least one of the additional conditions described in compound group 1.
本発明の一般式(1)で表される化合物の具体例を以下に示すが、本発明の化合物はこれらの具体例により限定的に解釈されることはない。なお、以下の例示化合物は水素原子、炭素原子等を一部省略して示したものである。また、以下の化学構造式で示す例示化合物は、存在し得る異性体のうちの一例を示したものであり、ここにおいて、その他のすべての異性体、2種以上の異性体の混合物も具体例として挙げる。
Specific examples of the compound represented by general formula (1) of the present invention are shown below, but the compounds of the present invention are not limited to these examples. Note that the following example compounds are shown with some hydrogen atoms, carbon atoms, etc. omitted. Also, the example compound shown in the following chemical structure is one example of isomers that may exist, and all other isomers and mixtures of two or more isomers are also given as specific examples.
本発明の前記一般式(1)で表される化合物は、特開2020-013898号公報等に記載される公知の方法によって合成することができる。一例として、化合物(A-1)を合成する場合について説明すると、3,7-ジブロモフェノキサジンに対し、Suzuki-Miyauraカップリング反応やBuchwald反応で該当する置換基を導入した後、該当するスルトンを反応させることで化合物(A-1)を得ることできる。同様にハロゲン化フェノチアジン誘導体を前駆体として、公知の方法によって、前記一般式(1)に表される化合物を得ることができる。
The compound represented by the general formula (1) of the present invention can be synthesized by known methods such as those described in JP 2020-013898 A. As an example, in the case of synthesizing compound (A-1), the corresponding substituent is introduced into 3,7-dibromophenoxazine by Suzuki-Miyaura coupling reaction or Buchwald reaction, and then the corresponding sultone is reacted to obtain compound (A-1). Similarly, the compound represented by the general formula (1) can be obtained by known methods using a halogenated phenothiazine derivative as a precursor.
本発明の一般式(1)で表される化合物の精製方法としては、カラムクロマトグラフィーによる精製、シリカゲル、活性炭、活性白土等による吸着精製、溶媒による再結晶や晶析等を挙げることができる。あるいはこれらの方法を併用して、純度を高めた化合物を使用してもよい。また、これらの化合物の同定は、核磁気共鳴分析(NMR)により行うことができる。
Methods for purifying the compound represented by general formula (1) of the present invention include purification by column chromatography, adsorption purification using silica gel, activated carbon, activated clay, etc., recrystallization or crystallization using a solvent, etc. Alternatively, these methods may be used in combination to increase the purity of the compound. Furthermore, these compounds can be identified by nuclear magnetic resonance analysis (NMR).
[一般式(1)で表される化合物の有用性]
本発明の一般式(1)で表される化合物は正孔輸送材料として有用であり、光電変換素子や有機エレクトロルミネッセンス素子等の有機エレクトロニクスデバイスにおいて、その正孔輸送層の正孔輸送材料として効果的に使用することができる。本発明における「正孔輸送材料」とは、正孔を輸送する機能を有する材料を意味する。本発明で用いる正孔輸送材料は、一般式(1)で表される化合物からなるものであってもよいし、一般式(1)で表される化合物の他に、一般式(1)で表される化合物に該当しない正孔輸送材料を含むものであってもよい。 [Usefulness of the compound represented by formula (1)]
The compound represented by the general formula (1) of the present invention is useful as a hole transport material, and can be effectively used as a hole transport material in a hole transport layer of an organic electronics device such as a photoelectric conversion element or an organic electroluminescence element. In the present invention, the "hole transport material" means a material having a function of transporting holes. The hole transport material used in the present invention may be composed of a compound represented by the general formula (1), or may contain a hole transport material other than the compound represented by the general formula (1) in addition to the compound represented by the general formula (1).
本発明の一般式(1)で表される化合物は正孔輸送材料として有用であり、光電変換素子や有機エレクトロルミネッセンス素子等の有機エレクトロニクスデバイスにおいて、その正孔輸送層の正孔輸送材料として効果的に使用することができる。本発明における「正孔輸送材料」とは、正孔を輸送する機能を有する材料を意味する。本発明で用いる正孔輸送材料は、一般式(1)で表される化合物からなるものであってもよいし、一般式(1)で表される化合物の他に、一般式(1)で表される化合物に該当しない正孔輸送材料を含むものであってもよい。 [Usefulness of the compound represented by formula (1)]
The compound represented by the general formula (1) of the present invention is useful as a hole transport material, and can be effectively used as a hole transport material in a hole transport layer of an organic electronics device such as a photoelectric conversion element or an organic electroluminescence element. In the present invention, the "hole transport material" means a material having a function of transporting holes. The hole transport material used in the present invention may be composed of a compound represented by the general formula (1), or may contain a hole transport material other than the compound represented by the general formula (1) in addition to the compound represented by the general formula (1).
<光電変換素子>
次に、本発明の光電変換素子について説明する。
本発明の光電変換素子は、一般式(1)で表される化合物を含む正孔輸送材料を含むことを特徴とする。一般式(1)で表される化合物の説明については、上記の<一般式(1)で表される化合物>の欄の記載を参照することができる。一般式(1)で表される化合物は、優れた正孔輸送性を有するため、光電変換素子の正孔輸送層の材料として効果的に用いることができる。
以下において、光電変換素子の好ましい態様について説明するが、本発明の光電変換素子の態様は、以下に示す態様により限定的に解釈されることはない。
本発明の一態様では、光電変換素子は、図1に示すように、導電性支持体1、電子輸送層2、光電変換層3、正孔輸送層4、および対極5をこの順に有し、正孔輸送層4が、一般式(1)で表される化合物を含む。本発明の一態様では、光電変換素子は、導電性支持体、正孔輸送層、光電変換層、電子輸送層、および対極をこの順に有し、正孔輸送層が、一般式(1)で表される化合物を含む。ここで、光電変換層は、例えばペロブスカイト型化合物を含む。また、光電変換素子は、例えば太陽電池に用いられる光電変化素子である。 <Photoelectric conversion element>
Next, the photoelectric conversion element of the present invention will be described.
The photoelectric conversion element of the present invention is characterized in that it contains a hole transport material containing a compound represented by general formula (1). For an explanation of the compound represented by general formula (1), the description in the above column "Compound represented by general formula (1)" can be referred to. The compound represented by general formula (1) has excellent hole transport properties, so it can be effectively used as a material for the hole transport layer of the photoelectric conversion element.
Preferred embodiments of the photoelectric conversion element will be described below, but the embodiments of the photoelectric conversion element of the present invention should not be construed as being limited to the embodiments described below.
In one embodiment of the present invention, as shown in FIG. 1, the photoelectric conversion element has a conductive support 1, an electron transport layer 2, a photoelectric conversion layer 3, a hole transport layer 4, and a counter electrode 5 in this order, and the hole transport layer 4 contains a compound represented by general formula (1). In one embodiment of the present invention, the photoelectric conversion element has a conductive support, a hole transport layer, a photoelectric conversion layer, an electron transport layer, and a counter electrode in this order, and the hole transport layer contains a compound represented by general formula (1). Here, the photoelectric conversion layer contains, for example, a perovskite compound. The photoelectric conversion element is, for example, a photoelectric conversion element used in a solar cell.
次に、本発明の光電変換素子について説明する。
本発明の光電変換素子は、一般式(1)で表される化合物を含む正孔輸送材料を含むことを特徴とする。一般式(1)で表される化合物の説明については、上記の<一般式(1)で表される化合物>の欄の記載を参照することができる。一般式(1)で表される化合物は、優れた正孔輸送性を有するため、光電変換素子の正孔輸送層の材料として効果的に用いることができる。
以下において、光電変換素子の好ましい態様について説明するが、本発明の光電変換素子の態様は、以下に示す態様により限定的に解釈されることはない。
本発明の一態様では、光電変換素子は、図1に示すように、導電性支持体1、電子輸送層2、光電変換層3、正孔輸送層4、および対極5をこの順に有し、正孔輸送層4が、一般式(1)で表される化合物を含む。本発明の一態様では、光電変換素子は、導電性支持体、正孔輸送層、光電変換層、電子輸送層、および対極をこの順に有し、正孔輸送層が、一般式(1)で表される化合物を含む。ここで、光電変換層は、例えばペロブスカイト型化合物を含む。また、光電変換素子は、例えば太陽電池に用いられる光電変化素子である。 <Photoelectric conversion element>
Next, the photoelectric conversion element of the present invention will be described.
The photoelectric conversion element of the present invention is characterized in that it contains a hole transport material containing a compound represented by general formula (1). For an explanation of the compound represented by general formula (1), the description in the above column "Compound represented by general formula (1)" can be referred to. The compound represented by general formula (1) has excellent hole transport properties, so it can be effectively used as a material for the hole transport layer of the photoelectric conversion element.
Preferred embodiments of the photoelectric conversion element will be described below, but the embodiments of the photoelectric conversion element of the present invention should not be construed as being limited to the embodiments described below.
In one embodiment of the present invention, as shown in FIG. 1, the photoelectric conversion element has a conductive support 1, an electron transport layer 2, a photoelectric conversion layer 3, a hole transport layer 4, and a counter electrode 5 in this order, and the hole transport layer 4 contains a compound represented by general formula (1). In one embodiment of the present invention, the photoelectric conversion element has a conductive support, a hole transport layer, a photoelectric conversion layer, an electron transport layer, and a counter electrode in this order, and the hole transport layer contains a compound represented by general formula (1). Here, the photoelectric conversion layer contains, for example, a perovskite compound. The photoelectric conversion element is, for example, a photoelectric conversion element used in a solar cell.
以下において、光電変換素子の各部材および各層について、図1に示す光電変換素子を例にして説明する。
Below, each component and layer of the photoelectric conversion element will be explained using the photoelectric conversion element shown in Figure 1 as an example.
[導電性支持体]
図1に示す光電変換素子において、導電性支持体1は、光電変換層3から電子輸送層2を介して輸送されてきた電子を取り出す、陰極として機能する。本発明の一態様では、導電性支持体1は、光電変換に供される光を透過可能な透光性を有する導電性支持体であり、例えば、透光性基板の上に、導電性材料の膜が形成された導電性基板である。
導電性支持体に用いる導電性材料の具体例としては、スズドープ酸化インジウム(ITO)、亜鉛をドープしたインジウム酸化物(IZO)、タングステンをドープしたインジウム酸化物(IWO)、亜鉛とアルミニウムとの酸化物(AZO)、フッ素ドープの酸化スズ(FTO)、酸化インジウム(In2O3)、インジウム-スズ複合酸化物などの導電性透明酸化物半導体などを挙げることができ、スズドープ酸化インジウム(ITO)、フッ素ドープの酸化スズ(FTO)などを用いることが好ましい。 [Conductive support]
In the photoelectric conversion element shown in Fig. 1, the conductive support 1 functions as a cathode that extracts electrons transported from the photoelectric conversion layer 3 via the electron transport layer 2. In one embodiment of the present invention, the conductive support 1 is a conductive support having translucency that allows light to pass through the conductive support, and is, for example, a conductive substrate in which a film of a conductive material is formed on a translucent substrate.
Specific examples of conductive materials used for the conductive support include conductive transparent oxide semiconductors such as tin-doped indium oxide (ITO), zinc-doped indium oxide (IZO), tungsten-doped indium oxide (IWO), zinc aluminum oxide (AZO), fluorine-doped tin oxide (FTO), indium oxide (In 2 O 3 ), and indium-tin composite oxide, and it is preferable to use tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), etc.
図1に示す光電変換素子において、導電性支持体1は、光電変換層3から電子輸送層2を介して輸送されてきた電子を取り出す、陰極として機能する。本発明の一態様では、導電性支持体1は、光電変換に供される光を透過可能な透光性を有する導電性支持体であり、例えば、透光性基板の上に、導電性材料の膜が形成された導電性基板である。
導電性支持体に用いる導電性材料の具体例としては、スズドープ酸化インジウム(ITO)、亜鉛をドープしたインジウム酸化物(IZO)、タングステンをドープしたインジウム酸化物(IWO)、亜鉛とアルミニウムとの酸化物(AZO)、フッ素ドープの酸化スズ(FTO)、酸化インジウム(In2O3)、インジウム-スズ複合酸化物などの導電性透明酸化物半導体などを挙げることができ、スズドープ酸化インジウム(ITO)、フッ素ドープの酸化スズ(FTO)などを用いることが好ましい。 [Conductive support]
In the photoelectric conversion element shown in Fig. 1, the conductive support 1 functions as a cathode that extracts electrons transported from the photoelectric conversion layer 3 via the electron transport layer 2. In one embodiment of the present invention, the conductive support 1 is a conductive support having translucency that allows light to pass through the conductive support, and is, for example, a conductive substrate in which a film of a conductive material is formed on a translucent substrate.
Specific examples of conductive materials used for the conductive support include conductive transparent oxide semiconductors such as tin-doped indium oxide (ITO), zinc-doped indium oxide (IZO), tungsten-doped indium oxide (IWO), zinc aluminum oxide (AZO), fluorine-doped tin oxide (FTO), indium oxide (In 2 O 3 ), and indium-tin composite oxide, and it is preferable to use tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), etc.
[電子輸送層]
電子輸送層2は、電子を輸送する機能を有する材料(電子輸送材料)を含む層であり、導電性支持体1と光電変換層3との間に配置されて、光電変換層3で発生した電子を導電性支持体1側へ輸送する機能を有する。これにより、光電変換層から導電性支持体への電子の移動効率を向上させることができる。また、電子輸送層は、こうした機能に加えて、導電性支持体からの正孔注入を抑制する機能を有していてもよい。電子輸送層2は、導電性支持体1に隣接して形成されていてもよいし、導電性支持体1と電子輸送層2の間に、他の層が介在していてもよい。 [Electron Transport Layer]
The electron transport layer 2 is a layer containing a material (electron transport material) having a function of transporting electrons, and is disposed between the conductive support 1 and the photoelectric conversion layer 3, and has a function of transporting electrons generated in the photoelectric conversion layer 3 to the conductive support 1 side. This can improve the efficiency of electron migration from the photoelectric conversion layer to the conductive support. In addition to this function, the electron transport layer may have a function of suppressing hole injection from the conductive support. The electron transport layer 2 may be formed adjacent to the conductive support 1, or another layer may be interposed between the conductive support 1 and the electron transport layer 2.
電子輸送層2は、電子を輸送する機能を有する材料(電子輸送材料)を含む層であり、導電性支持体1と光電変換層3との間に配置されて、光電変換層3で発生した電子を導電性支持体1側へ輸送する機能を有する。これにより、光電変換層から導電性支持体への電子の移動効率を向上させることができる。また、電子輸送層は、こうした機能に加えて、導電性支持体からの正孔注入を抑制する機能を有していてもよい。電子輸送層2は、導電性支持体1に隣接して形成されていてもよいし、導電性支持体1と電子輸送層2の間に、他の層が介在していてもよい。 [Electron Transport Layer]
The electron transport layer 2 is a layer containing a material (electron transport material) having a function of transporting electrons, and is disposed between the conductive support 1 and the photoelectric conversion layer 3, and has a function of transporting electrons generated in the photoelectric conversion layer 3 to the conductive support 1 side. This can improve the efficiency of electron migration from the photoelectric conversion layer to the conductive support. In addition to this function, the electron transport layer may have a function of suppressing hole injection from the conductive support. The electron transport layer 2 may be formed adjacent to the conductive support 1, or another layer may be interposed between the conductive support 1 and the electron transport layer 2.
電子輸送層に用いる半導体材料の具体例としては、酸化スズ(SnO、SnO2、SnO3等)、酸化チタン(TiO2等)、酸化タングステン(WO2、WO3、W2O3等)、酸化亜鉛(ZnO)、酸化ニオブ(Nb2O5等)、酸化タンタル(Ta2O5等)、酸化イットリウム(Y2O3等)、チタン酸ストロンチウム(SrTiO3等)などの金属酸化物;硫化チタン、硫化亜鉛、硫化ジルコニウム、硫化銅、硫化スズ、硫化インジウム、硫化タングステン、硫化カドミウム、硫化銀などの金属硫化物;セレン化チタン、セレン化ジルコニウム、セレン化インジウム、セレン化タングステンなどの金属セレン化物;シリコン、ゲルマニウムなどの単体半導体などを挙げることができる。これらの半導体材料は1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。電子輸送層に用いる半導体材料の好ましい例として、酸化スズ、酸化チタンおよび酸化亜鉛から選択される1種または2種以上を組み合わせた材料を挙げることができる。
Specific examples of semiconductor materials used in the electron transport layer include metal oxides such as tin oxide (SnO, SnO2 , SnO3 , etc.), titanium oxide ( TiO2 , etc.), tungsten oxide ( WO2 , WO3 , W2O3 , etc.), zinc oxide (ZnO), niobium oxide ( Nb2O5 , etc.), tantalum oxide ( Ta2O5 , etc.), yttrium oxide ( Y2O3 , etc.), and strontium titanate ( SrTiO3 , etc.); metal sulfides such as titanium sulfide, zinc sulfide, zirconium sulfide, copper sulfide, tin sulfide, indium sulfide, tungsten sulfide, cadmium sulfide, and silver sulfide; metal selenides such as titanium selenide, zirconium selenide, indium selenide, and tungsten selenide; and elemental semiconductors such as silicon and germanium. These semiconductor materials may be used alone or in combination of two or more. Preferred examples of the semiconductor material used in the electron transport layer include one or a combination of two or more selected from tin oxide, titanium oxide, and zinc oxide.
電子輸送層を形成するための材料として、上記の半導体材料の微粒子を含むペースト(半導体ペースト)を挙げることができる。半導体ペーストは市販品であってもよいし、上記の半導体材料の微粉末を溶媒中に分散させることによって調製した調製品であってもよい。半導体ペーストを調製する際に使用する溶媒の具体例としては、水;メタノール、エタノール、イソプロピルアルコールなどのアルコール系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶媒;n-ヘキサン、シクロヘキサン、ベンゼン、トルエンなどの炭化水素系溶媒を挙げることができるが、これらに限定されない。これらの溶媒は1種類を単独で用いてもよいし、2種類以上の混合溶媒として使用することもできる。
As a material for forming the electron transport layer, a paste containing fine particles of the semiconductor material (semiconductor paste) can be mentioned. The semiconductor paste may be a commercially available product, or may be a preparation prepared by dispersing fine powder of the semiconductor material in a solvent. Specific examples of solvents used in preparing the semiconductor paste include, but are not limited to, water; alcohol-based solvents such as methanol, ethanol, and isopropyl alcohol; ketone-based solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; and hydrocarbon-based solvents such as n-hexane, cyclohexane, benzene, and toluene. These solvents may be used alone or as a mixed solvent of two or more types.
半導体微粉末を溶媒中に分散させる方法としては、必要に応じて粉末を乳鉢などですりつぶした後、ボールミル、ペイントコンディショナー、縦型ビーズミル、水平型ビーズミル、アトライターなどの分散機を用いて溶媒中に分散させる方法が挙げられる。ペーストを調製する際には、半導体微粒子の凝集を防ぐために界面活性剤などを添加するのが好ましく、増粘させるためにポリエチレングリコールなどの増粘剤を添加するのが好ましい。
Methods for dispersing semiconductor fine powder in a solvent include grinding the powder in a mortar or the like as necessary, and then dispersing it in the solvent using a dispersing machine such as a ball mill, paint conditioner, vertical bead mill, horizontal bead mill, or attritor. When preparing the paste, it is preferable to add a surfactant or the like to prevent the semiconductor fine particles from agglomerating, and it is preferable to add a thickener such as polyethylene glycol to thicken the paste.
電子輸送層は、公知の製膜方法を用いて形成することができる。すなわち、電子輸送層は、半導体材料を含む塗布液(例えば半導体ペースト等の電子輸送層用塗布液)を用いる塗布法や気相プロセスを用いて形成することができる。具体的には、スピンコート法、インクジェット法、ドクターブレード法、ドロップキャスティング法、スキージ法、スクリーン印刷法、リバースロールコート法、グラビアコート法、キスコート法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、ワイヤーバーバーコート法、パイプドクター法、含浸・コート法またはカーテンコート法などの湿式塗布法で、電子輸送層用塗布液を導電性基板上に塗布した後、焼成により溶媒や添加物を除去して製膜する方法や、スパッタリング法、蒸着法、電着法、電析法、マイクロ波照射法などの気相成膜法を用いて、半導体材料を成膜する方法が挙げられる。中でも、調製した電子輸送層用塗布液をスピンコート法で塗布する塗布法を用いることが好ましいが、これに限定されない。なお、スピンコートの条件は、適宜設定することができる。製膜する雰囲気は特に制限されず、大気中であっても不活性雰囲気であってもよい。
The electron transport layer can be formed using a known film-forming method. That is, the electron transport layer can be formed using a coating method or a gas-phase process using a coating liquid containing a semiconductor material (for example, a coating liquid for the electron transport layer such as a semiconductor paste). Specifically, a method of forming a film by applying a coating liquid for the electron transport layer to a conductive substrate by a wet coating method such as a spin coating method, an inkjet method, a doctor blade method, a drop casting method, a squeegee method, a screen printing method, a reverse roll coating method, a gravure coating method, a kiss coating method, a roll brush method, a spray coating method, an air knife coating method, a wire barber coating method, a pipe doctor method, an impregnation/coating method, or a curtain coating method, and then removing the solvent or additives by baking, or a method of forming a film of a semiconductor material by a gas-phase film-forming method such as a sputtering method, a vapor deposition method, an electrodeposition method, an electrodeposition method, or a microwave irradiation method. Among them, it is preferable to use a coating method in which the prepared coating liquid for the electron transport layer is applied by a spin coating method, but this is not limited to this. The conditions for spin coating can be set appropriately. The atmosphere in which the film is formed is not particularly limited, and may be air or an inert atmosphere.
電子輸送層の膜厚は、例えば5nm~200nmであり、好ましくは10nm~150nmである。また、例えば光電変換効率をより向上させる観点から、緻密な電子輸送層が用いられる場合は、電子輸送層の厚みは通常5nm~100nmであることが好ましく、また10nm~50nmであることがより好ましい。本発明において、緻密な層に加えて、多孔質(メソポーラス)な金属酸化物が用いられる場合は、その膜厚は通常20nm~200nmであることが好ましく、また50nm~150nmであることがより好ましい。
The thickness of the electron transport layer is, for example, 5 nm to 200 nm, and preferably 10 nm to 150 nm. Furthermore, when a dense electron transport layer is used, for example from the viewpoint of further improving photoelectric conversion efficiency, the thickness of the electron transport layer is usually preferably 5 nm to 100 nm, and more preferably 10 nm to 50 nm. In the present invention, when a porous (mesoporous) metal oxide is used in addition to the dense layer, the thickness is usually preferably 20 nm to 200 nm, and more preferably 50 nm to 150 nm.
[光電変換層]
光電変換層3は、光エネルギーを電気に変換するための層であり、より具体的には、光エネルギーにより電荷分離状態を生じて正孔と電子を発生する層である。図1に示す光電変換素子では、光電変換層3は、電子輸送層2の導電性支持体1と反対側に形成されている。 [Photoelectric conversion layer]
The photoelectric conversion layer 3 is a layer for converting light energy into electricity, more specifically, a layer in which a charge separation state occurs due to light energy to generate holes and electrons. In the photoelectric conversion element shown in FIG. 1, the photoelectric conversion layer 3 is formed on the opposite side of the electron transport layer 2 to the conductive support 1.
光電変換層3は、光エネルギーを電気に変換するための層であり、より具体的には、光エネルギーにより電荷分離状態を生じて正孔と電子を発生する層である。図1に示す光電変換素子では、光電変換層3は、電子輸送層2の導電性支持体1と反対側に形成されている。 [Photoelectric conversion layer]
The photoelectric conversion layer 3 is a layer for converting light energy into electricity, more specifically, a layer in which a charge separation state occurs due to light energy to generate holes and electrons. In the photoelectric conversion element shown in FIG. 1, the photoelectric conversion layer 3 is formed on the opposite side of the electron transport layer 2 to the conductive support 1.
光電変換層の例として、ペロブスカイト材料で形成された層(ペロブスカイト層)を挙げることができる。ここで、「ペロブスカイト材料」は、一般式ABX3で表されるペロブスカイト型構造を持つ材料を意味する。一般式中、Aは1価の有機カチオンまたは1価の金属カチオンを表し、Bは2価の金属カチオンを表し、Xはハロゲンイオンを表す。Aで表される1価のカチオンとして、K+、Rb+、Cs+、CH3NH3
+(以下、MA:メチルアンモニウム)、NH=CHNH2
+(以下、FA:ホルムアミジニウム)、CH3CH2NH3
+(以下、EA:エチルアンモニウム)が挙げられる。Bで表される2価の金属カチオンとして、Pb2+、Sn2+が挙げられる。Xで表されるハロゲンイオンとして、I-、Br-が挙げられる。
ペロブスカイト材料の具体例として、MAPbI3、FAPbI3、EAPbI3、CsPbI3、MASnI3、FASnI3、EASnI3、MAPbBr3、FAPbBr3、EAPbBr3、MASnBr3、FASnBr3、EASnBr3を挙げることができ、さらに、(FAMA)Pb(IBr)3、K(FAMA)Pb(IBr)3、Rb(FAMA)Pb(IBr)3、Cs(FAMA)Pb(IBr)3のような混合カチオン型および混合アニオン型のペロブスカイト材料も挙げることができる。光電変換層は、これらのペロブスカイト材料から選択される1種のみを含んでいてもよいし、2種以上を含んでいてもよい。
また、光電変換層は、ペロブスカイト材料のみから構成されていてもよいし、ペロブスカイト材料に加えて、その他の材料を含んでいてもよい。その他の材料として、光吸収剤を挙げることができる。 An example of the photoelectric conversion layer is a layer (perovskite layer) formed of a perovskite material. Here, the "perovskite material" means a material having a perovskite structure represented by the general formula ABX3 . In the general formula, A represents a monovalent organic cation or a monovalent metal cation, B represents a divalent metal cation, and X represents a halogen ion. Examples of the monovalent cation represented by A include K + , Rb + , Cs + , CH 3 NH 3 + (hereinafter, MA: methylammonium), NH=CHNH 2 + (hereinafter, FA: formamidinium), and CH 3 CH 2 NH 3 + (hereinafter, EA: ethylammonium). Examples of the divalent metal cation represented by B include Pb 2+ and Sn 2+ . Examples of the halogen ion represented by X include I - and Br - .
Specific examples of perovskite materials include MAPbI 3 , FAPbI 3 , EAPbI 3 , CsPbI 3 , MASnI 3 , FASnI 3 , EASnI 3 , MAPbBr 3 , FAPbBr 3 , EAPbBr 3 , MASnBr 3 , FASnBr 3 , and EASnBr 3 . In addition, mixed cation type and mixed anion type perovskite materials such as (FAMA)Pb(IBr) 3 , K(FAMA)Pb(IBr) 3 , Rb(FAMA)Pb(IBr) 3 , and Cs(FAMA)Pb(IBr) 3 can also be mentioned. The photoelectric conversion layer may contain only one type selected from these perovskite materials, or may contain two or more types.
The photoelectric conversion layer may be composed of only the perovskite material, or may contain other materials in addition to the perovskite material. Examples of the other materials include a light absorbing agent.
ペロブスカイト材料の具体例として、MAPbI3、FAPbI3、EAPbI3、CsPbI3、MASnI3、FASnI3、EASnI3、MAPbBr3、FAPbBr3、EAPbBr3、MASnBr3、FASnBr3、EASnBr3を挙げることができ、さらに、(FAMA)Pb(IBr)3、K(FAMA)Pb(IBr)3、Rb(FAMA)Pb(IBr)3、Cs(FAMA)Pb(IBr)3のような混合カチオン型および混合アニオン型のペロブスカイト材料も挙げることができる。光電変換層は、これらのペロブスカイト材料から選択される1種のみを含んでいてもよいし、2種以上を含んでいてもよい。
また、光電変換層は、ペロブスカイト材料のみから構成されていてもよいし、ペロブスカイト材料に加えて、その他の材料を含んでいてもよい。その他の材料として、光吸収剤を挙げることができる。 An example of the photoelectric conversion layer is a layer (perovskite layer) formed of a perovskite material. Here, the "perovskite material" means a material having a perovskite structure represented by the general formula ABX3 . In the general formula, A represents a monovalent organic cation or a monovalent metal cation, B represents a divalent metal cation, and X represents a halogen ion. Examples of the monovalent cation represented by A include K + , Rb + , Cs + , CH 3 NH 3 + (hereinafter, MA: methylammonium), NH=CHNH 2 + (hereinafter, FA: formamidinium), and CH 3 CH 2 NH 3 + (hereinafter, EA: ethylammonium). Examples of the divalent metal cation represented by B include Pb 2+ and Sn 2+ . Examples of the halogen ion represented by X include I - and Br - .
Specific examples of perovskite materials include MAPbI 3 , FAPbI 3 , EAPbI 3 , CsPbI 3 , MASnI 3 , FASnI 3 , EASnI 3 , MAPbBr 3 , FAPbBr 3 , EAPbBr 3 , MASnBr 3 , FASnBr 3 , and EASnBr 3 . In addition, mixed cation type and mixed anion type perovskite materials such as (FAMA)Pb(IBr) 3 , K(FAMA)Pb(IBr) 3 , Rb(FAMA)Pb(IBr) 3 , and Cs(FAMA)Pb(IBr) 3 can also be mentioned. The photoelectric conversion layer may contain only one type selected from these perovskite materials, or may contain two or more types.
The photoelectric conversion layer may be composed of only the perovskite material, or may contain other materials in addition to the perovskite material. Examples of the other materials include a light absorbing agent.
ペロブスカイト層は、ハロゲン化物AXと金属ハロゲン化物BX2の溶液(ペロブスカイト前駆体溶液)を塗布して前駆体塗膜を形成し、この前駆体塗膜を乾燥することにより形成することができる。A、B、Xの具体例については、上記のABX3を構成する各イオンについての記載を参照することができる。例えば、ハロゲン化物AXの具体例として、メチルアンモニウムハロゲン化物、ホルムアミジンハロゲン化物、セシウムハロゲン化物を挙げることができ、金属ハロゲン化物BX2の具体例として、鉛ハロゲン化物や錫ハロゲン化物を挙げることができる。
The perovskite layer can be formed by applying a solution of halide AX and metal halide BX2 (perovskite precursor solution) to form a precursor coating film, and drying the precursor coating film. For specific examples of A, B, and X, the description of each ion constituting ABX3 above can be referred to. For example, specific examples of the halide AX include methylammonium halide, formamidine halide, and cesium halide, and specific examples of the metal halide BX2 include lead halide and tin halide.
ペロブスカイト前駆体溶液の溶媒は、前駆体の溶解性の観点から、N,N-ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、γ-ブチロラクトン等が挙げられるが、これらに限定されない。また、これらの溶媒は、1種類を単独で用いてもよいし、2種以上を混合して使用してもよい。溶媒の好ましい例として、N,N-ジメチルホルムアミドとジメチルスルホキシドの混合溶媒を挙げることができる。また、溶媒には、水分含有量が10ppm以下の脱水された溶媒を用いることが好ましい。溶媒の脱水は、モレキュラーシーブ等を用いて行うことができる。
From the viewpoint of solubility of the precursor, examples of the solvent for the perovskite precursor solution include, but are not limited to, N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), γ-butyrolactone, etc. Furthermore, these solvents may be used alone or in combination of two or more. A preferred example of the solvent is a mixed solvent of N,N-dimethylformamide and dimethyl sulfoxide. Furthermore, it is preferable to use a dehydrated solvent with a water content of 10 ppm or less. The solvent can be dehydrated using a molecular sieve, etc.
ペロブスカイト前駆体溶液の塗布工程は、乾燥雰囲気下で行うことが好ましく、グローブボックス等の乾燥不活性気体雰囲気下で行うことがより好ましい。これにより、ペロブスカイト層への水分の混入が防止されて、高効率ペロブスカイト型太陽電池を再現性よく製造することができる。塗布方法については、上記の[電子輸送層]の欄に記載した電子輸送層用塗布液の塗布方法についての記載を参照することができる。
The application process of the perovskite precursor solution is preferably carried out in a dry atmosphere, and more preferably in a dry inert gas atmosphere such as a glove box. This prevents moisture from being mixed into the perovskite layer, allowing highly efficient perovskite solar cells to be produced with good reproducibility. For the application method, please refer to the description of the application method for the electron transport layer coating solution described in the [Electron transport layer] section above.
ペロブスカイト層は、こうして形成した前駆体塗膜を乾燥させることにより形成される。前駆体塗膜の乾燥は、自然乾燥であってもよいし、ホットプレート等を用いた加熱乾燥であってもよい。前駆体塗膜をホットプレート等により加熱する際の温度は、前駆体よりペロブスカイト材料を生成する観点から、50~200℃が好ましく、70~150℃がより好ましい。また、加熱時間は、10~90分程度が好ましく、10~60分程度がより好ましい。
The perovskite layer is formed by drying the precursor coating film thus formed. The precursor coating film may be dried naturally or by heating using a hot plate or the like. The temperature at which the precursor coating film is heated using a hot plate or the like is preferably 50 to 200°C, more preferably 70 to 150°C, from the viewpoint of producing a perovskite material from the precursor. The heating time is preferably about 10 to 90 minutes, more preferably about 10 to 60 minutes.
光電変換層(ペロブスカイト層)の膜厚は、50~1000nmが好ましく、300~700nmがより好ましい。これにより、光変換層の欠陥や剥離による性能劣化が抑制されるとともに、素子抵抗が過度に高くなることが回避され、また、光電変換層に十分な光吸収率を持たせることができる。
The thickness of the photoelectric conversion layer (perovskite layer) is preferably 50 to 1000 nm, and more preferably 300 to 700 nm. This suppresses performance degradation due to defects or peeling in the photoelectric conversion layer, prevents the element resistance from becoming excessively high, and provides the photoelectric conversion layer with sufficient light absorption.
[正孔輸送層]
図1に示す光電変換素子において、正孔輸送層4は、正孔を輸送する機能を有する材料(正孔輸送材料)を含む層であり、光電変換層3と対極5との間に配置されて、光電変換層3で発生した正孔を対極5側へを輸送する機能を有する。これにより、光電変換層から電極への正孔の移動効率を向上させることができる。また、正孔輸送層は、こうした機能に加えて、対極からの電子注入を抑制する機能を有していてもよい。 [Hole transport layer]
In the photoelectric conversion element shown in Fig. 1, the hole transport layer 4 is a layer containing a material (hole transport material) having a function of transporting holes, and is disposed between the photoelectric conversion layer 3 and the counter electrode 5, and has a function of transporting holes generated in the photoelectric conversion layer 3 to the counter electrode 5. This can improve the efficiency of hole movement from the photoelectric conversion layer to the electrode. In addition to this function, the hole transport layer may have a function of suppressing electron injection from the counter electrode.
図1に示す光電変換素子において、正孔輸送層4は、正孔を輸送する機能を有する材料(正孔輸送材料)を含む層であり、光電変換層3と対極5との間に配置されて、光電変換層3で発生した正孔を対極5側へを輸送する機能を有する。これにより、光電変換層から電極への正孔の移動効率を向上させることができる。また、正孔輸送層は、こうした機能に加えて、対極からの電子注入を抑制する機能を有していてもよい。 [Hole transport layer]
In the photoelectric conversion element shown in Fig. 1, the hole transport layer 4 is a layer containing a material (hole transport material) having a function of transporting holes, and is disposed between the photoelectric conversion layer 3 and the counter electrode 5, and has a function of transporting holes generated in the photoelectric conversion layer 3 to the counter electrode 5. This can improve the efficiency of hole movement from the photoelectric conversion layer to the electrode. In addition to this function, the hole transport layer may have a function of suppressing electron injection from the counter electrode.
本発明の光電変換素子では、正孔輸送層は、一般式(1)で表される化合物を正孔輸送材料として含有する。正孔輸送層が含有する、一般式(1)で表される化合物は、一般式(1)で表される化合物群から選択される1種類であっても2種類以上であってもよい。また、正孔輸送層は、一般式(1)で表される化合物に加えて、一般式(1)で表される化合物に該当しない正孔輸送材料(以下、「第2正孔輸送材料」という)や添加剤を含んでいてもよい。
In the photoelectric conversion element of the present invention, the hole transport layer contains a compound represented by general formula (1) as a hole transport material. The compound represented by general formula (1) contained in the hole transport layer may be one type or two or more types selected from the group of compounds represented by general formula (1). Furthermore, the hole transport layer may contain, in addition to the compound represented by general formula (1), a hole transport material other than the compound represented by general formula (1) (hereinafter referred to as a "second hole transport material") or an additive.
第2正孔輸送材料は無機正孔輸送材料であっても有機正孔輸送材料であってもよい。、無機正孔輸送材料の具体例としては、例えば、CuI、CuInSe2、CuS等の1価銅を含む化合物半導体;GaP、NiO、CoO、FeO、Bi2O3、MoO2、Cr2O3等の銅以外の金属を含む化合物が挙げられる。有機正孔輸送材料としては、例えば、ポリ-3-ヘキシルチオフェン(P3HT)、ポリエチレンジオキシチオフェン(PEDOT)等のポリチオフェン誘導体;2,2’,7,7’-テトラキス-(N,N-ジ-p-メトキシフェニルアミン)-9,9’-スピロビフルオレン(Spiro-OMeTAD)等のフルオレン誘導体;ポリビニルカルバゾール等のカルバゾール誘導体;ポリ[ビス(4-フェニル)(2,4,6-トリメチルフェニル)アミン](PTAA)等のトリフェニルアミン誘導体;ジフェニルアミン誘導体;ポリシラン誘導体;ポリアニリン誘導体等が挙げられる。これらの第2正孔輸送材料は正孔輸送層中に混合してもよく、一般式(1)で表される化合物を含む正孔輸送層の上に、第2正孔輸送材料を含む正孔輸送層を積層してもよい。
The second hole transport material may be an inorganic hole transport material or an organic hole transport material. Specific examples of inorganic hole transport materials include compound semiconductors containing monovalent copper, such as CuI, CuInSe2 , and CuS, and compounds containing metals other than copper, such as GaP, NiO, CoO, FeO, Bi2O3 , MoO2 , and Cr2O3 . Examples of the organic hole transport material include polythiophene derivatives such as poly-3-hexylthiophene (P3HT) and polyethylenedioxythiophene (PEDOT); fluorene derivatives such as 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (Spiro-OMeTAD); carbazole derivatives such as polyvinylcarbazole; triphenylamine derivatives such as poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA); diphenylamine derivatives; polysilane derivatives; polyaniline derivatives, etc. These second hole transport materials may be mixed in the hole transport layer, or a hole transport layer containing the second hole transport material may be laminated on a hole transport layer containing the compound represented by general formula (1).
正孔輸送層の形成方法については、上記の電子輸送層の形成方法についての記載を参照することができる。また、正孔輸送層用塗布液の溶媒には、下記のものも用いることができる。
すなわち、正孔輸送層用塗布液に使用される溶媒は、ベンゼン、トルエン、キシレン、メシチレン、テトラリン(1,2,3,4‐テトラヒドロナフタレン)、モノクロロベンゼン(クロロベンゼン)、o-ジクロロベンゼン、m-ジクロロベンゼン、p-ジクロロベンゼン、ニトロベンゼン等の芳香族系有機溶媒;ジクロロメタン、クロロホルム、1,2-ジクロロエタン、1,1,2-トリクロロエタン、ジクロロメタン等のハロゲン化アルキル系有機溶媒;ベンゾニトリル、アセトニトリル等のニトリル系溶媒;テトラヒドロフラン、ジオキサン、ジイソプロピルエーテル、c-ペンチルメチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル等のエーテル系溶媒;酢酸エチル、プロピレングリコールモノメチルエーテルアセテート等のエステル系溶媒;メタノール、イソプロパノール、n-ブタノール、プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、シクロヘキサノール、2-n-ブトキシエタノール等のアルコール系溶媒等が挙げられるが、これらに限定されない。これらの溶媒は、1種類を単独で用いてもよいし、2種類以上を混合して使用してもよい。中でも、正孔輸送層形成用塗布液の溶媒には、芳香族系有機溶媒およびハロゲン化アルキル系有機溶媒を使用することが好ましい。 For the method of forming the hole transport layer, the description of the method of forming the electron transport layer can be referred to. In addition, the following can also be used as a solvent for the coating solution for the hole transport layer.
That is, the solvent used in the coating solution for the hole transport layer may be an aromatic organic solvent such as benzene, toluene, xylene, mesitylene, tetralin (1,2,3,4-tetrahydronaphthalene), monochlorobenzene (chlorobenzene), o-dichlorobenzene, m-dichlorobenzene, p-dichlorobenzene, or nitrobenzene; an alkyl halide organic solvent such as dichloromethane, chloroform, 1,2-dichloroethane, 1,1,2-trichloroethane, or dichloromethane; a nitrile solvent such as benzonitrile or acetonitrile; or a tetrahydrofuran, dioxane, or diisopropyl ether solvent. Examples of the solvent include, but are not limited to, ether solvents such as isopropyl ether, c-pentyl methyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and propylene glycol monomethyl ether; ester solvents such as ethyl acetate and propylene glycol monomethyl ether acetate; and alcohol solvents such as methanol, isopropanol, n-butanol, propylene glycol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, cyclohexanol, and 2-n-butoxyethanol. These solvents may be used alone or in combination of two or more. Among them, it is preferable to use an aromatic organic solvent and an alkyl halide organic solvent as the solvent for the hole transport layer forming coating liquid.
すなわち、正孔輸送層用塗布液に使用される溶媒は、ベンゼン、トルエン、キシレン、メシチレン、テトラリン(1,2,3,4‐テトラヒドロナフタレン)、モノクロロベンゼン(クロロベンゼン)、o-ジクロロベンゼン、m-ジクロロベンゼン、p-ジクロロベンゼン、ニトロベンゼン等の芳香族系有機溶媒;ジクロロメタン、クロロホルム、1,2-ジクロロエタン、1,1,2-トリクロロエタン、ジクロロメタン等のハロゲン化アルキル系有機溶媒;ベンゾニトリル、アセトニトリル等のニトリル系溶媒;テトラヒドロフラン、ジオキサン、ジイソプロピルエーテル、c-ペンチルメチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル等のエーテル系溶媒;酢酸エチル、プロピレングリコールモノメチルエーテルアセテート等のエステル系溶媒;メタノール、イソプロパノール、n-ブタノール、プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、シクロヘキサノール、2-n-ブトキシエタノール等のアルコール系溶媒等が挙げられるが、これらに限定されない。これらの溶媒は、1種類を単独で用いてもよいし、2種類以上を混合して使用してもよい。中でも、正孔輸送層形成用塗布液の溶媒には、芳香族系有機溶媒およびハロゲン化アルキル系有機溶媒を使用することが好ましい。 For the method of forming the hole transport layer, the description of the method of forming the electron transport layer can be referred to. In addition, the following can also be used as a solvent for the coating solution for the hole transport layer.
That is, the solvent used in the coating solution for the hole transport layer may be an aromatic organic solvent such as benzene, toluene, xylene, mesitylene, tetralin (1,2,3,4-tetrahydronaphthalene), monochlorobenzene (chlorobenzene), o-dichlorobenzene, m-dichlorobenzene, p-dichlorobenzene, or nitrobenzene; an alkyl halide organic solvent such as dichloromethane, chloroform, 1,2-dichloroethane, 1,1,2-trichloroethane, or dichloromethane; a nitrile solvent such as benzonitrile or acetonitrile; or a tetrahydrofuran, dioxane, or diisopropyl ether solvent. Examples of the solvent include, but are not limited to, ether solvents such as isopropyl ether, c-pentyl methyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and propylene glycol monomethyl ether; ester solvents such as ethyl acetate and propylene glycol monomethyl ether acetate; and alcohol solvents such as methanol, isopropanol, n-butanol, propylene glycol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, cyclohexanol, and 2-n-butoxyethanol. These solvents may be used alone or in combination of two or more. Among them, it is preferable to use an aromatic organic solvent and an alkyl halide organic solvent as the solvent for the hole transport layer forming coating liquid.
正孔輸送層の製膜時の雰囲気は、乾燥雰囲気であることが好ましい。また、水分含有量が10ppm以下となるように脱水された溶媒を塗布液に用いることが好ましい。水分の混入を防ぐことにより再現性よく高効率ペロブスカイト型太陽電池を製造することができる。
正孔輸送層の膜厚は、光電変換効率をより向上させる観点から、5nm~500nmであることが好ましく、10nm~250nmであることがより好ましい。 The atmosphere during film formation of the hole transport layer is preferably a dry atmosphere. In addition, it is preferable to use a solvent that has been dehydrated so that the moisture content is 10 ppm or less in the coating solution. By preventing the inclusion of moisture, a highly efficient perovskite solar cell can be produced with good reproducibility.
From the viewpoint of further improving the photoelectric conversion efficiency, the thickness of the hole transport layer is preferably 5 nm to 500 nm, and more preferably 10 nm to 250 nm.
正孔輸送層の膜厚は、光電変換効率をより向上させる観点から、5nm~500nmであることが好ましく、10nm~250nmであることがより好ましい。 The atmosphere during film formation of the hole transport layer is preferably a dry atmosphere. In addition, it is preferable to use a solvent that has been dehydrated so that the moisture content is 10 ppm or less in the coating solution. By preventing the inclusion of moisture, a highly efficient perovskite solar cell can be produced with good reproducibility.
From the viewpoint of further improving the photoelectric conversion efficiency, the thickness of the hole transport layer is preferably 5 nm to 500 nm, and more preferably 10 nm to 250 nm.
添加剤
正孔輸送層に添加してもよい添加剤として、酸化剤(ドーパント)や塩基性化合物(塩基性添加剤)を挙げることができる。これらの添加剤を正孔輸送層に添加することにより、正孔輸送層のキャリア濃度が向上して、光電変換素子の光電変換効率を向上させることができる。 Additives The additives that may be added to the hole transport layer include an oxidizing agent (dopant) and a basic compound (basic additive). By adding these additives to the hole transport layer, the carrier concentration of the hole transport layer is improved, and the photoelectric conversion efficiency of the photoelectric conversion element can be improved.
正孔輸送層に添加してもよい添加剤として、酸化剤(ドーパント)や塩基性化合物(塩基性添加剤)を挙げることができる。これらの添加剤を正孔輸送層に添加することにより、正孔輸送層のキャリア濃度が向上して、光電変換素子の光電変換効率を向上させることができる。 Additives The additives that may be added to the hole transport layer include an oxidizing agent (dopant) and a basic compound (basic additive). By adding these additives to the hole transport layer, the carrier concentration of the hole transport layer is improved, and the photoelectric conversion efficiency of the photoelectric conversion element can be improved.
ドーパントの具体例としては、ビス(トリフルオロメチルスルホニル)イミドリチウム(LiTFSI)、ビス(トリフルオロメタンスルホニル)イミド銀、トリス(2-(1H-ピラゾール-1-イル)-4-tert-ブチルピリジン)コバルト(III)トリ[ビス(トリフルオロメタン)スルホンイミド](FK209)、NOSbF6、SbCl5、SbF5などを挙げることができ、中でも、ビス(トリフルオロメチルスルホニル)イミドリチウム(LiTFSI)を用いることが好ましい。
Specific examples of dopants include lithium bis(trifluoromethylsulfonyl)imide (LiTFSI), silver bis(trifluoromethanesulfonyl)imide, tris(2-(1H-pyrazol-1-yl)-4-tert-butylpyridine)cobalt(III) tri[bis(trifluoromethane)sulfonimide] (FK209), NOSbF 6 , SbCl 5 , SbF 5 , and the like. Of these, it is preferable to use lithium bis(trifluoromethylsulfonyl)imide (LiTFSI).
正孔輸送層におけるドーパントの濃度は、正孔輸送材料1当量に対して、2.0当量以下が好ましく、0.5当量以下であることがより好ましい。正孔輸送層に添加剤を含有させることは、光電変換素子の光電変換効率向上につながる一方で、ドーパントの濃度が高すぎると、光電変換素子の耐久性が低くなるおそれがあるためである。
塩基性添加剤の具体例としては、4-tert-ブチルピリジン(tBP)、2-ピコリン、2,6-ルチジンなどが挙げられ、中でも、4-tert-ブチルピリジンを用いることが好ましい。なお、塩基性添加剤を、ドーパントと併用するようにしてもよい。
正孔輸送層における塩基性添加剤の濃度は、正孔輸送材料1当量に対して、5当量以下であることが好ましく、3.5当量以下であることがより好ましい。 The concentration of the dopant in the hole transport layer is preferably 2.0 equivalents or less, more preferably 0.5 equivalents or less, relative to 1 equivalent of the hole transport material. While the inclusion of an additive in the hole transport layer leads to an improvement in the photoelectric conversion efficiency of the photoelectric conversion element, if the concentration of the dopant is too high, the durability of the photoelectric conversion element may be reduced.
Specific examples of the basic additive include 4-tert-butylpyridine (tBP), 2-picoline, and 2,6-lutidine, and among these, it is preferable to use 4-tert-butylpyridine. The basic additive may be used in combination with a dopant.
The concentration of the basic additive in the hole transport layer is preferably 5 equivalents or less, more preferably 3.5 equivalents or less, relative to 1 equivalent of the hole transport material.
塩基性添加剤の具体例としては、4-tert-ブチルピリジン(tBP)、2-ピコリン、2,6-ルチジンなどが挙げられ、中でも、4-tert-ブチルピリジンを用いることが好ましい。なお、塩基性添加剤を、ドーパントと併用するようにしてもよい。
正孔輸送層における塩基性添加剤の濃度は、正孔輸送材料1当量に対して、5当量以下であることが好ましく、3.5当量以下であることがより好ましい。 The concentration of the dopant in the hole transport layer is preferably 2.0 equivalents or less, more preferably 0.5 equivalents or less, relative to 1 equivalent of the hole transport material. While the inclusion of an additive in the hole transport layer leads to an improvement in the photoelectric conversion efficiency of the photoelectric conversion element, if the concentration of the dopant is too high, the durability of the photoelectric conversion element may be reduced.
Specific examples of the basic additive include 4-tert-butylpyridine (tBP), 2-picoline, and 2,6-lutidine, and among these, it is preferable to use 4-tert-butylpyridine. The basic additive may be used in combination with a dopant.
The concentration of the basic additive in the hole transport layer is preferably 5 equivalents or less, more preferably 3.5 equivalents or less, relative to 1 equivalent of the hole transport material.
[対極]
対極5は、正孔輸送層4の光電変換層3と反対側に形成される電極であり、上記の電子輸送層2、光電変換層3および正孔輸送層4を間に挟んで、導電性支持体1に対向配置されている。対極は、光電変換層から正孔輸送層を介して輸送されてきた正孔を取り出す、陽極として機能する。対極5は、正孔輸送層4に隣接して設けられていてもよいし、正孔輸送層4と対極5との間に、有機材料もしくは無機化合物半導体からなる電子ブロッキング層が介在していてもよい。 [Opposite]
The counter electrode 5 is an electrode formed on the opposite side of the hole transport layer 4 to the photoelectric conversion layer 3, and is disposed opposite the conductive support 1 with the above-mentioned electron transport layer 2, photoelectric conversion layer 3, and hole transport layer 4 sandwiched therebetween. The counter electrode functions as an anode that extracts holes transported from the photoelectric conversion layer via the hole transport layer. The counter electrode 5 may be provided adjacent to the hole transport layer 4, or an electron blocking layer made of an organic material or an inorganic compound semiconductor may be interposed between the hole transport layer 4 and the counter electrode 5.
対極5は、正孔輸送層4の光電変換層3と反対側に形成される電極であり、上記の電子輸送層2、光電変換層3および正孔輸送層4を間に挟んで、導電性支持体1に対向配置されている。対極は、光電変換層から正孔輸送層を介して輸送されてきた正孔を取り出す、陽極として機能する。対極5は、正孔輸送層4に隣接して設けられていてもよいし、正孔輸送層4と対極5との間に、有機材料もしくは無機化合物半導体からなる電子ブロッキング層が介在していてもよい。 [Opposite]
The counter electrode 5 is an electrode formed on the opposite side of the hole transport layer 4 to the photoelectric conversion layer 3, and is disposed opposite the conductive support 1 with the above-mentioned electron transport layer 2, photoelectric conversion layer 3, and hole transport layer 4 sandwiched therebetween. The counter electrode functions as an anode that extracts holes transported from the photoelectric conversion layer via the hole transport layer. The counter electrode 5 may be provided adjacent to the hole transport layer 4, or an electron blocking layer made of an organic material or an inorganic compound semiconductor may be interposed between the hole transport layer 4 and the counter electrode 5.
対極の構成材料としては具体的に、白金、チタン、ステンレス、アルミニウム、金、銀、ニッケル、マグネシウム、クロム、コバルト、銅などの金属またはこれらの合金が挙げられる。これらのなかでも、薄膜においても高い電気伝導性を示す点で、金、銀、または銀の合金を用いることが好ましい。銀の合金としては、硫化または塩素化の影響を受けにくく薄膜としての安定性が高いことから、銀と金の合金、銀と銅の合金、銀とパラジウムの合金、銀と銅とパラジウムの合金、銀と白金の合金などが挙げられる。また、対極は、蒸着等の気相プロセスで形成できる材料であることが好ましい。
対極として金属電極を用いる場合は、その膜厚は、良好な導電性を得るために10nm以上であることが好ましく、50nm以上であることがより好ましい。 Specific examples of the counter electrode include metals such as platinum, titanium, stainless steel, aluminum, gold, silver, nickel, magnesium, chromium, cobalt, and copper, or alloys thereof. Among these, it is preferable to use gold, silver, or a silver alloy, since it exhibits high electrical conductivity even in a thin film. Examples of silver alloys include silver-gold alloys, silver-copper alloys, silver-palladium alloys, silver-copper-palladium alloys, and silver-platinum alloys, since they are less susceptible to sulfurization or chlorination and have high stability as a thin film. In addition, it is preferable that the counter electrode is a material that can be formed by a gas phase process such as deposition.
When a metal electrode is used as the counter electrode, the thickness thereof is preferably 10 nm or more, and more preferably 50 nm or more, in order to obtain good electrical conductivity.
対極として金属電極を用いる場合は、その膜厚は、良好な導電性を得るために10nm以上であることが好ましく、50nm以上であることがより好ましい。 Specific examples of the counter electrode include metals such as platinum, titanium, stainless steel, aluminum, gold, silver, nickel, magnesium, chromium, cobalt, and copper, or alloys thereof. Among these, it is preferable to use gold, silver, or a silver alloy, since it exhibits high electrical conductivity even in a thin film. Examples of silver alloys include silver-gold alloys, silver-copper alloys, silver-palladium alloys, silver-copper-palladium alloys, and silver-platinum alloys, since they are less susceptible to sulfurization or chlorination and have high stability as a thin film. In addition, it is preferable that the counter electrode is a material that can be formed by a gas phase process such as deposition.
When a metal electrode is used as the counter electrode, the thickness thereof is preferably 10 nm or more, and more preferably 50 nm or more, in order to obtain good electrical conductivity.
図1に示す光電変換素子においては、導電性支持体1が陰極となり、対極5が陽極となる。太陽光などの光(光電変換に供する光)は導電性支持体側から照射する方が好ましい。太陽光などの照射により、光電変換層が光を吸収して励起状態となって電子と正孔が生成する。この電子が電子輸送層を経由して導電性支持体へ、正孔が正孔輸送層を経由して対極へそれぞれ移動することにより電流が流れ、光電変換素子として機能するようになる。
In the photoelectric conversion element shown in Figure 1, the conductive support 1 serves as the cathode, and the counter electrode 5 serves as the anode. It is preferable to irradiate light such as sunlight (light used for photoelectric conversion) from the conductive support side. When irradiated with sunlight or the like, the photoelectric conversion layer absorbs the light and enters an excited state, generating electrons and holes. These electrons move via the electron transport layer to the conductive support, and the holes move via the hole transport layer to the counter electrode, causing a current to flow and functioning as a photoelectric conversion element.
また、本発明の光電変換素子は、導電性支持体、正孔輸送層、光電変換層、電子輸送層および対極を順に有するものであってもよい。この場合、導電性支持体が陽極、対極が陰極として機能して、光電変換層で発生した電子が、電子輸送層を経由して対極へ移動し、光電変換層で発生した正孔が、正孔輸送層を経由して導電性支持体へ移動する。これにより、外部に電流を取りだすことができる。この態様で用いる各部および各層の材料の説明と具体例については、上記の図1に示す光電変換素子についての対応する記載を参照することができる。
The photoelectric conversion element of the present invention may also have a conductive support, a hole transport layer, a photoelectric conversion layer, an electron transport layer, and a counter electrode, in that order. In this case, the conductive support functions as an anode, and the counter electrode functions as a cathode, with electrons generated in the photoelectric conversion layer moving to the counter electrode via the electron transport layer, and holes generated in the photoelectric conversion layer moving to the conductive support via the hole transport layer. This allows current to be extracted to the outside. For an explanation and specific examples of the materials of each part and layer used in this embodiment, the corresponding description of the photoelectric conversion element shown in Figure 1 above can be referenced.
本発明の光電変換素子の性能(特性)を評価する際には、短絡電流密度、開放電圧、フィルファクター、光電変換効率の測定を行う。短絡電流密度とは、出力端子を短絡させたときの両端子間に流れる1cm2あたりの電流を表し、開放電圧とは、出力端子を開放させたときの両端子間の電圧を表す。また、フィルファクターとは最大出力(電流と電圧の積)を、短絡電流密度と開放電圧の積で割った値であり、主に内部抵抗に左右される。光電変換効率は、最大出力(W)を1cm2あたりの光強度(W)で割った値に100を乗じてパーセント表示した値として求められる。
When evaluating the performance (characteristics) of the photoelectric conversion element of the present invention, the short circuit current density, open circuit voltage, fill factor, and photoelectric conversion efficiency are measured. The short circuit current density represents the current per cm2 flowing between the output terminals when the terminals are shorted, and the open circuit voltage represents the voltage between the output terminals when the terminals are open. The fill factor is the maximum output (product of current and voltage) divided by the product of the short circuit current density and the open circuit voltage, and is mainly dependent on the internal resistance. The photoelectric conversion efficiency is calculated as a percentage by multiplying the maximum output (W) divided by the light intensity (W) per cm2 by 100.
本発明の光電変換素子は、太陽電池や各種光センサーなどに応用できる。本発明の光電変換素子を適用する太陽電池はペロブスカイト型太陽電池であること好ましい。太陽電池は、一般式(1)で表される化合物を正孔輸送層に含む光電変換素子をセルとして、そのセルを必要枚数配列してモジュール化し、所定の電気配線を設けることによって得られる。
The photoelectric conversion element of the present invention can be applied to solar cells, various optical sensors, and the like. The solar cell to which the photoelectric conversion element of the present invention is applied is preferably a perovskite solar cell. A solar cell can be obtained by arranging the required number of photoelectric conversion elements, each of which contains a compound represented by general formula (1) in the hole transport layer, into a module and providing the required electrical wiring.
以下において実施例を示すことにより本発明の特徴をさらに具体的に説明する。以下に示す材料、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明は以下の実施例に限定されるものではない。なお、合成実施例において得られた化合物の同定は、1H-NMR(1H-NMR(日本電子株式会社製核磁気共鳴装置、JNM-ECZ400S/L1型)により行った。
The features of the present invention will be explained in more detail below by showing examples. The materials, processing contents, processing procedures, etc. shown below can be appropriately changed without departing from the spirit of the present invention. Therefore, the present invention is not limited to the following examples. The compounds obtained in the synthesis examples were identified by 1 H-NMR (1H-NMR (JNM-ECZ400S/L1 nuclear magnetic resonance apparatus manufactured by JEOL Ltd.).
[合成実施例1]化合物(A-1)の合成
反応容器にフェノキサジン(2.0g、東京化成工業社製)、酢酸(100mL)を投入し、攪拌を行った。攪拌下にて臭素(3.8g)の酢酸(90mL)の溶液を1時間かけて滴下した。3時間攪拌後、氷水浴にて冷却し、5%チオ硫酸ナトリウム水溶液(60g)を加えた。得られた溶液を市水(400mL)、48%水酸化カリム水溶液(3.2g)にて調製した水溶液に加え、析出した固体を粗生成物として取得した。粗生成物をシリカゲルカラム(ヘキサン:酢酸エチル)により精製することで、下記式(2)で表される化合物(収量:2.02g、収率54%)を得た。
1H-NMR(400MHz、DMSO-d6):δ(ppm)=6.37-6.39(2H)、6.80-6.81(2H)、6.90-6.92(2H)、8.54(1H)。 [Synthesis Example 1] Synthesis of Compound (A-1) Phenoxazine (2.0 g, manufactured by Tokyo Chemical Industry Co., Ltd.) and acetic acid (100 mL) were added to a reaction vessel and stirred. A solution of bromine (3.8 g) in acetic acid (90 mL) was added dropwise over 1 hour while stirring. After stirring for 3 hours, the mixture was cooled in an ice-water bath and a 5% aqueous solution of sodium thiosulfate (60 g) was added. The resulting solution was added to an aqueous solution prepared from city water (400 mL) and a 48% aqueous solution of potassium hydroxide (3.2 g), and the precipitated solid was obtained as a crude product. The crude product was purified using a silica gel column (hexane:ethyl acetate) to obtain a compound represented by the following formula (2) (yield: 2.02 g, 54%).
1 H-NMR (400 MHz, DMSO-d 6 ): δ (ppm) = 6.37-6.39 (2H), 6.80-6.81 (2H), 6.90-6.92 (2H), 8.54 (1H).
反応容器にフェノキサジン(2.0g、東京化成工業社製)、酢酸(100mL)を投入し、攪拌を行った。攪拌下にて臭素(3.8g)の酢酸(90mL)の溶液を1時間かけて滴下した。3時間攪拌後、氷水浴にて冷却し、5%チオ硫酸ナトリウム水溶液(60g)を加えた。得られた溶液を市水(400mL)、48%水酸化カリム水溶液(3.2g)にて調製した水溶液に加え、析出した固体を粗生成物として取得した。粗生成物をシリカゲルカラム(ヘキサン:酢酸エチル)により精製することで、下記式(2)で表される化合物(収量:2.02g、収率54%)を得た。
1H-NMR(400MHz、DMSO-d6):δ(ppm)=6.37-6.39(2H)、6.80-6.81(2H)、6.90-6.92(2H)、8.54(1H)。 [Synthesis Example 1] Synthesis of Compound (A-1) Phenoxazine (2.0 g, manufactured by Tokyo Chemical Industry Co., Ltd.) and acetic acid (100 mL) were added to a reaction vessel and stirred. A solution of bromine (3.8 g) in acetic acid (90 mL) was added dropwise over 1 hour while stirring. After stirring for 3 hours, the mixture was cooled in an ice-water bath and a 5% aqueous solution of sodium thiosulfate (60 g) was added. The resulting solution was added to an aqueous solution prepared from city water (400 mL) and a 48% aqueous solution of potassium hydroxide (3.2 g), and the precipitated solid was obtained as a crude product. The crude product was purified using a silica gel column (hexane:ethyl acetate) to obtain a compound represented by the following formula (2) (yield: 2.02 g, 54%).
1 H-NMR (400 MHz, DMSO-d 6 ): δ (ppm) = 6.37-6.39 (2H), 6.80-6.81 (2H), 6.90-6.92 (2H), 8.54 (1H).
反応容器に下記式(2)の化合物(0.5g)、[4-[ビス(4-メトキシフェニル)アミノ]フェニル]ボロン酸(1.13g、東京化成社工業製)、炭酸ナトリウム(0.34g)、テトラヒドロフラン(50mL)、精製水(25mL)を投入し減圧下、脱気を行った。テトラキストリフェニルホスフィンパラジウム(0.08g、関東化学社製)を投入し減圧下、脱気を行い、加熱還流にて7時間撹拌した。反応液の水層を分液して除去後、有機層を減圧下で溶媒を留去した。さらに得られた粗体にトルエンを加え、分液後、有機層を減圧下で溶媒留去した。得られた粗生成物をシリカゲルカラム(トルエン:酢酸エチル)により精製することで、下記式(3)で表される化合物(収量:0.6g、収率:52%)として得た。
1H-NMR(400MHz、DMSO-d6):δ(ppm)=3.74(12H)、6.48-6.50(2H)、6.76-6.79(4H)、6.87(2H)、6.90-6.93(8H)、6.98-7.03(10H)、7.38-7.40(4H)、8.39(1H)
A compound (0.5 g) of the following formula (2), [4-[bis(4-methoxyphenyl)amino]phenyl]boronic acid (1.13 g, manufactured by Tokyo Chemical Industry Co., Ltd.), sodium carbonate (0.34 g), tetrahydrofuran (50 mL), and purified water (25 mL) were charged into a reaction vessel, and degassed under reduced pressure. Tetrakistriphenylphosphinepalladium (0.08 g, manufactured by Kanto Chemical Co., Ltd.) was charged, and degassed under reduced pressure, and the mixture was stirred for 7 hours by heating and refluxing. After the aqueous layer of the reaction solution was separated and removed, the organic layer was distilled off the solvent under reduced pressure. Further, toluene was added to the obtained crude product, and after separation, the organic layer was distilled off the solvent under reduced pressure. The obtained crude product was purified using a silica gel column (toluene:ethyl acetate) to obtain a compound represented by the following formula (3) (yield: 0.6 g, yield: 52%).
1H -NMR (400MHz, DMSO- d6 ): δ(ppm) = 3.74 (12H), 6.48-6.50 (2H), 6.76-6.79 (4H), 6.87 (2H), 6.90-6.93 (8H), 6.98-7.03 (10H), 7.38-7.40 (4H), 8.39 (1H)
1H-NMR(400MHz、DMSO-d6):δ(ppm)=3.74(12H)、6.48-6.50(2H)、6.76-6.79(4H)、6.87(2H)、6.90-6.93(8H)、6.98-7.03(10H)、7.38-7.40(4H)、8.39(1H)
1H -NMR (400MHz, DMSO- d6 ): δ(ppm) = 3.74 (12H), 6.48-6.50 (2H), 6.76-6.79 (4H), 6.87 (2H), 6.90-6.93 (8H), 6.98-7.03 (10H), 7.38-7.40 (4H), 8.39 (1H)
反応容器に上記式(3)の化合物(0.30g)、55%水素化ナトリウム(0.04g、関東化学社製)、DMF(10mL)を投入し、室温で1時間撹拌した。そこに2,4-ブタンスルトン(0.063mL、東京化成社製)を投入し、90℃、4時間撹拌した。反応液を減圧下で溶媒留去し、得られた粗生成物をシリカゲルカラム(酢酸エチル:メタノール)にて精製した。さらに、再結晶(酢酸エチル:エタノール)により精製を行い、下記式(A-1)で表される化合物(収量:0.22g、収率:62%)として得た。
1H-NMR(400MHz、DMSO-d6):δ(ppm)=1.19-1.21(3H)、1.57-1.66(1H)、1.92-2.01(1H)、2.54-2.62(1H)、3.65-3.74(13H)、3.86-3.96(1H)、6.76-6.82(6H)、6.89-6.93(10H)、7.01-7.09(10H)、7.42-7.44(4H)
The compound of formula (3) (0.30 g), 55% sodium hydride (0.04 g, manufactured by Kanto Chemical Co., Ltd.), and DMF (10 mL) were added to a reaction vessel and stirred at room temperature for 1 hour. 2,4-butanesultone (0.063 mL, manufactured by Tokyo Chemical Industry Co., Ltd.) was added thereto and stirred at 90°C for 4 hours. The solvent was distilled off from the reaction liquid under reduced pressure, and the obtained crude product was purified using a silica gel column (ethyl acetate:methanol). Further, purification was carried out by recrystallization (ethyl acetate:ethanol) to obtain a compound represented by the following formula (A-1) (yield: 0.22 g, yield: 62%).
1H -NMR (400MHz, DMSO- d6 ): δ(ppm)=1.19-1.21(3H), 1.57-1.66(1H), 1.92-2.01(1H), 2.54-2.62(1H), 3.65-3.74(13H), 3.86-3.96(1H), 6.76-6.82(6H), 6.89-6.93(10H), 7.01-7.09(10H), 7.42-7.44(4H).
1H-NMR(400MHz、DMSO-d6):δ(ppm)=1.19-1.21(3H)、1.57-1.66(1H)、1.92-2.01(1H)、2.54-2.62(1H)、3.65-3.74(13H)、3.86-3.96(1H)、6.76-6.82(6H)、6.89-6.93(10H)、7.01-7.09(10H)、7.42-7.44(4H)
1H -NMR (400MHz, DMSO- d6 ): δ(ppm)=1.19-1.21(3H), 1.57-1.66(1H), 1.92-2.01(1H), 2.54-2.62(1H), 3.65-3.74(13H), 3.86-3.96(1H), 6.76-6.82(6H), 6.89-6.93(10H), 7.01-7.09(10H), 7.42-7.44(4H).
[合成実施例2]化合物(A-70)の合成
反応容器に上記式(2)の化合物(1.50g)、4-ジメチルアミノピリジン(0.107g、関東化学社製)、二炭酸ジ-tert-ブチル(1.49g、東京化成社製)、テトラヒドロフラン(30mL)、を投入し、室温で1時間撹拌した。反応液をそのまま減圧下で濃縮し、残渣を酢酸エチル(50mL)に溶かした後、市水(100mL)で分液洗浄した。得られた有機層を硫酸マグネシウムで脱水した後、ろ過して得たろ液を減圧下で濃縮した。濃縮物を再沈殿(テトラヒドロフラン:メタノール)で精製し、得られた固体を減圧乾燥することで、下記式(4)で表される化合物(収量:1.58g、収率:83%)を得た。
1H-NMR(400MHz、DMSO-d6):δ(ppm)=7.42-7.49(2H)、7.31-7.47(4H)、1.42(9H)。
[Synthesis Example 2] Synthesis of Compound (A-70) The compound of the above formula (2) (1.50 g), 4-dimethylaminopyridine (0.107 g, manufactured by Kanto Chemical Co., Ltd.), di-tert-butyl dicarbonate (1.49 g, manufactured by Tokyo Chemical Industry Co., Ltd.), and tetrahydrofuran (30 mL) were added to a reaction vessel and stirred at room temperature for 1 hour. The reaction solution was concentrated under reduced pressure as it was, and the residue was dissolved in ethyl acetate (50 mL), and then separated and washed with city water (100 mL). The obtained organic layer was dehydrated with magnesium sulfate, and the filtrate obtained by filtration was concentrated under reduced pressure. The concentrate was purified by reprecipitation (tetrahydrofuran:methanol), and the obtained solid was dried under reduced pressure to obtain a compound represented by the following formula (4) (yield: 1.58 g, yield: 83%).
1 H-NMR (400 MHz, DMSO-d 6 ): δ (ppm) = 7.42-7.49 (2H), 7.31-7.47 (4H), 1.42 (9H).
反応容器に上記式(2)の化合物(1.50g)、4-ジメチルアミノピリジン(0.107g、関東化学社製)、二炭酸ジ-tert-ブチル(1.49g、東京化成社製)、テトラヒドロフラン(30mL)、を投入し、室温で1時間撹拌した。反応液をそのまま減圧下で濃縮し、残渣を酢酸エチル(50mL)に溶かした後、市水(100mL)で分液洗浄した。得られた有機層を硫酸マグネシウムで脱水した後、ろ過して得たろ液を減圧下で濃縮した。濃縮物を再沈殿(テトラヒドロフラン:メタノール)で精製し、得られた固体を減圧乾燥することで、下記式(4)で表される化合物(収量:1.58g、収率:83%)を得た。
1H-NMR(400MHz、DMSO-d6):δ(ppm)=7.42-7.49(2H)、7.31-7.47(4H)、1.42(9H)。
1 H-NMR (400 MHz, DMSO-d 6 ): δ (ppm) = 7.42-7.49 (2H), 7.31-7.47 (4H), 1.42 (9H).
反応容器に3,6-ビス[N,N-ビス(4-メトキシフェニル)アミノ]-9H-カルバゾール(0.930g、東京化成社製)、上記式(4)の化合物(0.930g)、炭酸セシウム(0.668g、関東化学社製)、トルエン(15mL)、tert-ブタノール(3mL)を投入し、20分間、アルゴンでバブリングを行い脱気した。反応液に、トリス(ジベンジリデンアセトン)ジパラジウム(0)(0.040g、東京化成社製)、トリ-tert-ブチルホスフィン(0.020g、富士フィルム和光純薬社製)、を4時間毎、2回に分けて投入し、加熱還流下、8時間撹拌した。反応液を放冷後、セライトろ過し、得たろ液を減圧下で濃縮した。粗生成物をシリカゲルカラム(トルエン:酢酸エチル=50:1)で精製した。得られた精製物フラクションを減圧濃縮し、濃縮物を減圧乾燥することにより下記式(5)で表される化合物を黄色固体(収量:0.831g、収率:80%)として得た。
1H-NMR(400MHz、DMSO-d6):δ(ppm)=7.79(2H)、7.63(4H)、7.27-7,40(8H)、7.03(4H)、6.75-6.84(32H)、3.67(24H)、1.56(9H)。 3,6-bis[N,N-bis(4-methoxyphenyl)amino]-9H-carbazole (0.930 g, manufactured by Tokyo Chemical Industry Co., Ltd.), the compound of the above formula (4) (0.930 g), cesium carbonate (0.668 g, manufactured by Kanto Chemical Industry Co., Ltd.), toluene (15 mL), and tert-butanol (3 mL) were added to a reaction vessel, and the mixture was degassed by bubbling with argon for 20 minutes. Tris(dibenzylideneacetone)dipalladium(0) (0.040 g, manufactured by Tokyo Chemical Industry Co., Ltd.) and tri-tert-butylphosphine (0.020 g, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) were added to the reaction liquid in two portions every 4 hours, and the mixture was stirred for 8 hours under heating and reflux. After cooling, the reaction liquid was filtered through Celite, and the obtained filtrate was concentrated under reduced pressure. The crude product was purified with a silica gel column (toluene:ethyl acetate=50:1). The obtained purified fraction was concentrated under reduced pressure, and the concentrate was dried under reduced pressure to obtain a compound represented by the following formula (5) as a yellow solid (yield: 0.831 g, 80%).
1 H-NMR (400 MHz, DMSO-d 6 ): δ (ppm) = 7.79 (2H), 7.63 (4H), 7.27-7.40 (8H), 7.03 (4H), 6.75-6.84 (32H), 3.67 (24H), 1.56 (9H).
1H-NMR(400MHz、DMSO-d6):δ(ppm)=7.79(2H)、7.63(4H)、7.27-7,40(8H)、7.03(4H)、6.75-6.84(32H)、3.67(24H)、1.56(9H)。 3,6-bis[N,N-bis(4-methoxyphenyl)amino]-9H-carbazole (0.930 g, manufactured by Tokyo Chemical Industry Co., Ltd.), the compound of the above formula (4) (0.930 g), cesium carbonate (0.668 g, manufactured by Kanto Chemical Industry Co., Ltd.), toluene (15 mL), and tert-butanol (3 mL) were added to a reaction vessel, and the mixture was degassed by bubbling with argon for 20 minutes. Tris(dibenzylideneacetone)dipalladium(0) (0.040 g, manufactured by Tokyo Chemical Industry Co., Ltd.) and tri-tert-butylphosphine (0.020 g, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) were added to the reaction liquid in two portions every 4 hours, and the mixture was stirred for 8 hours under heating and reflux. After cooling, the reaction liquid was filtered through Celite, and the obtained filtrate was concentrated under reduced pressure. The crude product was purified with a silica gel column (toluene:ethyl acetate=50:1). The obtained purified fraction was concentrated under reduced pressure, and the concentrate was dried under reduced pressure to obtain a compound represented by the following formula (5) as a yellow solid (yield: 0.831 g, 80%).
1 H-NMR (400 MHz, DMSO-d 6 ): δ (ppm) = 7.79 (2H), 7.63 (4H), 7.27-7.40 (8H), 7.03 (4H), 6.75-6.84 (32H), 3.67 (24H), 1.56 (9H).
反応容器に下記式(5)の化合物(0.450g)、36%塩酸(6.5mL)、酢酸エチル(10mL)を投入し、加熱還流下、8時間撹拌した。反応液を放冷後、飽和炭酸水素ナトリウム水溶液(100mL)を投入した後、テトラヒドロフラン(50mL)を用いて抽出し分液した。得られた有機層を、硫酸マグネシウムを用いて脱水した後、ろ過して得たろ液を減圧下で濃縮した。粗生成物をシリカゲルカラム(トルエン:酢酸エチル=50:1~20:1)で精製した。得られた精製物フラクションを減圧濃縮し、濃縮物を減圧乾燥することで、下記式(6)で表される化合物を黄色固体(収量:0.325g、収率:77%)として得た。
1H-NMR(400MHz、DMSO-d6):δ(ppm)=8.66(1H)、7.62-7.66(4H)、7.21-7.27(4H)、7.03-7.10(4H)、6.92-6.98(2H)、6.76-6.89(34H)、6.71(2H)、3.62-3.71(24H)。
A compound (0.450 g) of the following formula (5), 36% hydrochloric acid (6.5 mL), and ethyl acetate (10 mL) were added to a reaction vessel, and the mixture was stirred for 8 hours under heating and reflux. After the reaction solution was allowed to cool, a saturated aqueous sodium bicarbonate solution (100 mL) was added, followed by extraction and separation using tetrahydrofuran (50 mL). The obtained organic layer was dehydrated using magnesium sulfate, and the filtrate obtained by filtration was concentrated under reduced pressure. The crude product was purified using a silica gel column (toluene: ethyl acetate = 50: 1 to 20: 1). The obtained purified fraction was concentrated under reduced pressure, and the concentrate was dried under reduced pressure to obtain a compound represented by the following formula (6) as a yellow solid (yield: 0.325 g, yield: 77%).
1 H-NMR (400 MHz, DMSO-d 6 ): δ (ppm) = 8.66 (1H), 7.62-7.66 (4H), 7.21-7.27 (4H), 7.03-7.10 (4H), 6.92-6.98 (2H), 6.76-6.89 (34H), 6.71 (2H), 3.62-3.71 (24H).
1H-NMR(400MHz、DMSO-d6):δ(ppm)=8.66(1H)、7.62-7.66(4H)、7.21-7.27(4H)、7.03-7.10(4H)、6.92-6.98(2H)、6.76-6.89(34H)、6.71(2H)、3.62-3.71(24H)。
1 H-NMR (400 MHz, DMSO-d 6 ): δ (ppm) = 8.66 (1H), 7.62-7.66 (4H), 7.21-7.27 (4H), 7.03-7.10 (4H), 6.92-6.98 (2H), 6.76-6.89 (34H), 6.71 (2H), 3.62-3.71 (24H).
反応容器に上記式(6)の化合物(0.251g)、55%水素化ナトリウム(0.03g、関東化学社製)、ジメチルホルムアミド(10mL)を投入し、室温で1時間撹拌した。そこに2,4-ブタンスルトン(0.03mL、東京化成社製)を投入し、80℃で、3時間撹拌した。反応液を減圧下で溶媒留去し、得られた粗生成物をシリカゲルカラム(酢酸エチル:メタノール=9:1~4:1)にて精製した。精製物フラクションを減圧濃縮し、濃縮物を減圧乾燥することで、下記式(A-70)で表される化合物を黄色固体(収量:0.230g、収率:83%)として得た。
1H-NMR(400MHz、DMSO-d6):δ(ppm)=7.63(4H)、7.27(4H)、7.02-7.07(8H)、6.77-6.92(34H)、4.01-4.08(1H)、3.77-3.85(1H)、3.64-3.72(24H)、2.61(1H)、2.07(1H)、1.73-1,79(1H)、1.15-1.26(3H)。
The compound of formula (6) (0.251 g), 55% sodium hydride (0.03 g, manufactured by Kanto Chemical Co., Ltd.), and dimethylformamide (10 mL) were added to a reaction vessel and stirred at room temperature for 1 hour. 2,4-butanesultone (0.03 mL, manufactured by Tokyo Chemical Industry Co., Ltd.) was added thereto and stirred at 80° C. for 3 hours. The solvent was distilled off from the reaction solution under reduced pressure, and the obtained crude product was purified using a silica gel column (ethyl acetate:methanol=9:1 to 4:1). The purified fraction was concentrated under reduced pressure, and the concentrate was dried under reduced pressure to obtain a compound represented by the following formula (A-70) as a yellow solid (yield: 0.230 g, yield: 83%).
1H -NMR (400MHz, DMSO- d6 ): δ (ppm) = 7.63 (4H), 7.27 (4H), 7.02-7.07 (8H), 6.77-6.92 (34H), 4.01-4.08 (1H), 3.77-3.85 (1H), 3.64-3.72 (24H), 2.61 (1H), 2.07 (1H), 1.73-1,79 (1H), 1.15-1.26 (3H).
1H-NMR(400MHz、DMSO-d6):δ(ppm)=7.63(4H)、7.27(4H)、7.02-7.07(8H)、6.77-6.92(34H)、4.01-4.08(1H)、3.77-3.85(1H)、3.64-3.72(24H)、2.61(1H)、2.07(1H)、1.73-1,79(1H)、1.15-1.26(3H)。
1H -NMR (400MHz, DMSO- d6 ): δ (ppm) = 7.63 (4H), 7.27 (4H), 7.02-7.07 (8H), 6.77-6.92 (34H), 4.01-4.08 (1H), 3.77-3.85 (1H), 3.64-3.72 (24H), 2.61 (1H), 2.07 (1H), 1.73-1,79 (1H), 1.15-1.26 (3H).
[合成実施例3]化合物(A-71)の合成
反応容器に上記式(6)の化合物(0.251g)、カリウムtert-ブトキシド(0.017g、関東化学社製)、ジメチルホルムアミド(10mL)を投入し、室温で1時間撹拌した。そこに2,4-ブタンスルトン(0.02mL、東京化成社製)を投入し、80℃で、6時間撹拌した。反応液を減圧下で溶媒留去し、得られた粗生成物をシリカゲルカラム(酢酸エチル:メタノール=9:1~4:1)にて精製した。精製物フラクションを減圧濃縮し、濃縮物を減圧乾燥することで、下記式(A-71)で表される化合物を黄色固体(収量:0.021g、収率:17%)として得た。
1H-NMR(400MHz、DMSO-d6):δ(ppm)=7.62(4H)、7.51(4H)、7.08(4H)、6.75-6.85(38H)、4.44(2H)、3.65(24H)、2.43(1H)、2.14(1H)、1.63-1,70(1H)、1.14(3H)。
Synthesis Example 3 Synthesis of Compound (A-71) The compound (0.251 g) of the above formula (6), potassium tert-butoxide (0.017 g, manufactured by Kanto Chemical Co., Ltd.), and dimethylformamide (10 mL) were added to a reaction vessel and stirred at room temperature for 1 hour. 2,4-butanesultone (0.02 mL, manufactured by Tokyo Chemical Industry Co., Ltd.) was added thereto and stirred at 80° C. for 6 hours. The reaction solution was distilled under reduced pressure to remove the solvent, and the obtained crude product was purified using a silica gel column (ethyl acetate:methanol=9:1 to 4:1). The purified fraction was concentrated under reduced pressure, and the concentrate was dried under reduced pressure to obtain a compound represented by the following formula (A-71) as a yellow solid (yield: 0.021 g, yield: 17%).
1 H-NMR (400 MHz, DMSO-d 6 ): δ (ppm) = 7.62 (4H), 7.51 (4H), 7.08 (4H), 6.75-6.85 (38H), 4.44 (2H), 3.65 (24H), 2.43 (1H), 2.14 (1H), 1.63-1,70 (1H), 1.14 (3H).
反応容器に上記式(6)の化合物(0.251g)、カリウムtert-ブトキシド(0.017g、関東化学社製)、ジメチルホルムアミド(10mL)を投入し、室温で1時間撹拌した。そこに2,4-ブタンスルトン(0.02mL、東京化成社製)を投入し、80℃で、6時間撹拌した。反応液を減圧下で溶媒留去し、得られた粗生成物をシリカゲルカラム(酢酸エチル:メタノール=9:1~4:1)にて精製した。精製物フラクションを減圧濃縮し、濃縮物を減圧乾燥することで、下記式(A-71)で表される化合物を黄色固体(収量:0.021g、収率:17%)として得た。
1H-NMR(400MHz、DMSO-d6):δ(ppm)=7.62(4H)、7.51(4H)、7.08(4H)、6.75-6.85(38H)、4.44(2H)、3.65(24H)、2.43(1H)、2.14(1H)、1.63-1,70(1H)、1.14(3H)。
1 H-NMR (400 MHz, DMSO-d 6 ): δ (ppm) = 7.62 (4H), 7.51 (4H), 7.08 (4H), 6.75-6.85 (38H), 4.44 (2H), 3.65 (24H), 2.43 (1H), 2.14 (1H), 1.63-1,70 (1H), 1.14 (3H).
[合成実施例4]化合物(A-72)の合成
反応容器に下記式(7)で表される化合物(0.401g)、上記式(4)の化合物(0.930g)、ナトリウムtert-ブトキシド(0.200g、富士フィルム和光純薬社製)、トルエン(5mL)、テトラヒドロフラン(5mL)を投入し、20分間、アルゴンでバブリングを行い、脱気した。反応液に、トリス(ジベンジリデンアセトン)ジパラジウム(0)(0.040g、東京化成社製)、トリ-tert-ブチルホスフィン(0.020g、富士フィルム和光純薬社製)、を4時間毎、2回に分けて投入し、加熱還流下、12時間撹拌した。反応液を放冷後、セライトろ過し、得たろ液を減圧下で濃縮した。粗生成物をシリカゲルカラム(トルエン:メタノール=100:1~20:1)で精製した。得られた精製物フラクションを減圧濃縮し、濃縮物を減圧乾燥することで、下記式(8)で表される化合物を黄色固体(収量:0.559g、収率:61%)として得た。
1H-NMR(400MHz、DMSO-d6):δ(ppm)=8.49-8.54(4H)、7.66-7.68(4H)、7.55-7.61(4H)、7.41(2H)、7.08(4H)、6.92-6.98(8H)、6.74(2H)、6.57(2H)、3.72(6H)、1.40-1.48(9H)。
Synthesis Example 4 Synthesis of Compound (A-72) A compound (0.401 g) represented by the following formula (7), a compound (0.930 g) represented by the above formula (4), sodium tert-butoxide (0.200 g, manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), toluene (5 mL), and tetrahydrofuran (5 mL) were added to a reaction vessel, and the mixture was degassed by bubbling with argon for 20 minutes. Tris(dibenzylideneacetone)dipalladium(0) (0.040 g, manufactured by Tokyo Chemical Industry Co., Ltd.) and tri-tert-butylphosphine (0.020 g, manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) were added to the reaction liquid in two portions every 4 hours, and the mixture was stirred for 12 hours under heating and reflux. After cooling, the reaction liquid was filtered through Celite, and the obtained filtrate was concentrated under reduced pressure. The crude product was purified with a silica gel column (toluene:methanol=100:1 to 20:1). The obtained purified fraction was concentrated under reduced pressure, and the concentrate was dried under reduced pressure to obtain a compound represented by the following formula (8) as a yellow solid (yield: 0.559 g, 61%).
1H -NMR (400MHz, DMSO- d6 ): δ (ppm) = 8.49-8.54 (4H), 7.66-7.68 (4H), 7.55-7.61 (4H), 7.41 (2H), 7.08 (4H), 6.92-6.98 (8H), 6.74 (2H), 6.57 (2H), 3.72 (6H), 1.40-1.48 (9H).
反応容器に下記式(7)で表される化合物(0.401g)、上記式(4)の化合物(0.930g)、ナトリウムtert-ブトキシド(0.200g、富士フィルム和光純薬社製)、トルエン(5mL)、テトラヒドロフラン(5mL)を投入し、20分間、アルゴンでバブリングを行い、脱気した。反応液に、トリス(ジベンジリデンアセトン)ジパラジウム(0)(0.040g、東京化成社製)、トリ-tert-ブチルホスフィン(0.020g、富士フィルム和光純薬社製)、を4時間毎、2回に分けて投入し、加熱還流下、12時間撹拌した。反応液を放冷後、セライトろ過し、得たろ液を減圧下で濃縮した。粗生成物をシリカゲルカラム(トルエン:メタノール=100:1~20:1)で精製した。得られた精製物フラクションを減圧濃縮し、濃縮物を減圧乾燥することで、下記式(8)で表される化合物を黄色固体(収量:0.559g、収率:61%)として得た。
1H-NMR(400MHz、DMSO-d6):δ(ppm)=8.49-8.54(4H)、7.66-7.68(4H)、7.55-7.61(4H)、7.41(2H)、7.08(4H)、6.92-6.98(8H)、6.74(2H)、6.57(2H)、3.72(6H)、1.40-1.48(9H)。
1H -NMR (400MHz, DMSO- d6 ): δ (ppm) = 8.49-8.54 (4H), 7.66-7.68 (4H), 7.55-7.61 (4H), 7.41 (2H), 7.08 (4H), 6.92-6.98 (8H), 6.74 (2H), 6.57 (2H), 3.72 (6H), 1.40-1.48 (9H).
反応容器に上記式(8)の化合物(0.500g)、36%塩酸(7mL)、酢酸エチル(20mL)を投入し、加熱還流下、2時間撹拌した。反応液を放冷後、飽和炭酸水素ナトリウム水溶液(50mL)を投入した後、テトラヒドロフラン(50mL)、トルエン(50mL)を用いて抽出し、分液した。得られた有機層を、硫酸マグネシウムを用いて脱水した後、ろ過して得たろ液を減圧下で濃縮した。粗生成物をシリカゲルカラム(トルエン:メタノール=80:1~20:1)で精製した。得られた精製物フラクションを減圧濃縮し、濃縮物を減圧乾燥することで、下記式(9)で表される化合物を黄色固体(収量:0.233g、収率:58%)として得た。
1H-NMR(400MHz、DMSO-d6):δ(ppm)=8.50(4H)、8.30(1H)、7.56-7,62(8H)、7.06(4H)、6.91(4H)、6.80(4H)、6.32-6.53(6H)、3.72(6H)。
The compound of formula (8) (0.500 g), 36% hydrochloric acid (7 mL), and ethyl acetate (20 mL) were added to a reaction vessel, and the mixture was stirred for 2 hours under heating and reflux. After the reaction solution was allowed to cool, a saturated aqueous sodium bicarbonate solution (50 mL) was added, followed by extraction and separation using tetrahydrofuran (50 mL) and toluene (50 mL). The organic layer obtained was dehydrated using magnesium sulfate, and the filtrate obtained by filtration was concentrated under reduced pressure. The crude product was purified using a silica gel column (toluene:methanol=80:1 to 20:1). The obtained purified fraction was concentrated under reduced pressure, and the concentrate was dried under reduced pressure to obtain a compound represented by the following formula (9) as a yellow solid (yield: 0.233 g, yield: 58%).
1 H-NMR (400 MHz, DMSO-d 6 ): δ (ppm) = 8.50 (4H), 8.30 (1H), 7.56-7.62 (8H), 7.06 (4H), 6.91 (4H), 6.80 (4H), 6.32-6.53 (6H), 3.72 (6H).
1H-NMR(400MHz、DMSO-d6):δ(ppm)=8.50(4H)、8.30(1H)、7.56-7,62(8H)、7.06(4H)、6.91(4H)、6.80(4H)、6.32-6.53(6H)、3.72(6H)。
1 H-NMR (400 MHz, DMSO-d 6 ): δ (ppm) = 8.50 (4H), 8.30 (1H), 7.56-7.62 (8H), 7.06 (4H), 6.91 (4H), 6.80 (4H), 6.32-6.53 (6H), 3.72 (6H).
反応容器に上記式(9)の化合物(0.233g)、55%水素化ナトリウム(0.05g、関東化学社製)、ジメチルホルムアミド(10mL)を投入し、室温で1時間撹拌した。そこに2,4-ブタンスルトン(0.055mL、東京化成社製)を投入し、80℃で、2時間撹拌した。反応液を減圧下で溶媒留去し、得られた粗生成物をシリカゲルカラム(酢酸エチル:メタノール=9:1~4:1)にて精製した。精製物フラクションを減圧濃縮し、濃縮物を減圧乾燥することで、下記式(A-72)で表される化合物を黄色固体(収量:0.140g、収率:49%)として得た。
1H-NMR(400MHz、DMSO-d6):δ(ppm)=8.50(4H)、7.57-7.67(8H)、7.07(4H)、6.74-6.92(10H)、6.54-6.56(2H)、6.31-6.35(2H)、3.79-3.90(1H)、3.73(6H)、3.54-3.60(1H)、2.35-2.42(1H)、1.87-1.96(1H)、1.56(1H)、1.10-1.14(3H)。
The compound of formula (9) (0.233 g), 55% sodium hydride (0.05 g, manufactured by Kanto Chemical Co., Ltd.), and dimethylformamide (10 mL) were added to a reaction vessel and stirred at room temperature for 1 hour. 2,4-butanesultone (0.055 mL, manufactured by Tokyo Chemical Industry Co., Ltd.) was added thereto and stirred at 80° C. for 2 hours. The solvent was distilled off from the reaction solution under reduced pressure, and the obtained crude product was purified using a silica gel column (ethyl acetate:methanol=9:1 to 4:1). The purified fraction was concentrated under reduced pressure, and the concentrate was dried under reduced pressure to obtain a compound represented by the following formula (A-72) as a yellow solid (yield: 0.140 g, yield: 49%).
1H -NMR (400MHz, DMSO- d6 ): δ (ppm) = 8.50 (4H), 7.57-7.67 (8H), 7.07 (4H), 6.74-6.92 (10H), 6.54-6.56 (2H), 6.31-6.35 (2H), 3.79-3.90 (1H), 3.73 (6H), 3.54-3.60 (1H), 2.35-2.42 (1H), 1.87-1.96 (1H), 1.56 (1H), 1.10-1.14 (3H).
1H-NMR(400MHz、DMSO-d6):δ(ppm)=8.50(4H)、7.57-7.67(8H)、7.07(4H)、6.74-6.92(10H)、6.54-6.56(2H)、6.31-6.35(2H)、3.79-3.90(1H)、3.73(6H)、3.54-3.60(1H)、2.35-2.42(1H)、1.87-1.96(1H)、1.56(1H)、1.10-1.14(3H)。
1H -NMR (400MHz, DMSO- d6 ): δ (ppm) = 8.50 (4H), 7.57-7.67 (8H), 7.07 (4H), 6.74-6.92 (10H), 6.54-6.56 (2H), 6.31-6.35 (2H), 3.79-3.90 (1H), 3.73 (6H), 3.54-3.60 (1H), 2.35-2.42 (1H), 1.87-1.96 (1H), 1.56 (1H), 1.10-1.14 (3H).
[実施例1]化合物(A-1)を用いた光電変換素子の作製1
ITO膜付きガラス(導電性支持体1、ジオマテック社製)をイソプロピルアルコールで超音波洗浄し、UVオゾン処理を行った。その後、相対湿度10%以下の乾燥雰囲気下で、下記の各層を塗布法にて形成した。
まず、酸化スズコロイド溶液(酸化スズ(IV),15% in H2O colloidal dispersion:Alfa Aesar社製)と精製水を1:9(体積比)で混合した酸化スズ分散液(電子輸送層用塗布液)をITO膜上にスピンコートした。その後、ホットプレート上で、150℃にて30分加熱することで、膜厚が約20nmの酸化スズ層(電子輸送層2)を形成した。
次に、ホルムアミジンヨウ化水素酸塩(1M、東京化成工業社製)、ヨウ化鉛(II)(1.1M、東京化成工業社製)、メチルアミン臭化水素酸塩(0.2M、東京化成工業社製)、および臭化鉛(II)(0.2M、東京化成工業社製)を、ジメチルホルムアミド:ジメチルスルホキシド=4:1(体積比)の混合溶媒に溶解させ、さらに、ヨウ化セシウム(1.5M、東京化成工業社製)のジメチルスルホキシド溶液を加えてペロブスカイト前駆体溶液を調製した。ここで、ヨウ化セシウムの溶液は、セシウムの仕込み量が組成比で5%となるような量で添加した。このペロブスカイト前駆体溶液を、酸化スズ層の上に滴下し、クロロベンゼン(0.3mL)を滴下しながらスピンコートすることで、ペロブスカイトの前駆体塗膜を形成した。続いて、ホットプレート上で、100℃で1時間加熱することにより、膜厚が約500nmのCs(MAFA)Pb(IBr)3のペロブスカイト層(光電変換層3)を形成した。
次に、ドーパントとしての、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiTFSI)と4-tert-ブチルピリジンをクロロベンゼンに溶解させて溶液を調製し、この溶液に、化合物(A-1)を50mM濃度で溶解させて正孔輸送層用塗布溶液を調製した。ここで、正孔輸送用塗布溶液における、ビス(トリフルオロメタンスルホニル)イミドリチウムおよび4-tert-ブチルピリジンの濃度は、化合物(A-1)に対して、それぞれ、0.5当量、3当量とした。この正孔輸送層用塗布溶液を、Cs(MAFA)Pb(IBr)3層の上にスピンコートした後、乾燥させることにより、膜厚が約200nmの正孔輸送層4を形成した。
次に、正孔輸送層4の上に、真空蒸着法にて真空度1×10-4Paで、金を厚さ80nmに蒸着して金電極(対極5)を形成し、光電変換素子を作製した。 [Example 1] Preparation of photoelectric conversion element using compound (A-1) 1
A glass plate with an ITO film (conductive support 1, manufactured by Geomatec Co., Ltd.) was ultrasonically cleaned with isopropyl alcohol and subjected to UV ozone treatment. After that, in a dry atmosphere with a relative humidity of 10% or less, the following layers were formed by a coating method.
First, a tin oxide colloidal solution (tin(IV) oxide, 15% in H2O colloidal dispersion: manufactured by Alfa Aesar) and purified water were mixed at a volume ratio of 1:9 to form a tin oxide dispersion (electron transport layer coating solution) on the ITO film. Then, the film was heated on a hot plate at 150°C for 30 minutes to form a tin oxide layer (electron transport layer 2) with a thickness of about 20 nm.
Next, formamidine hydroiodide (1M, manufactured by Tokyo Chemical Industry Co., Ltd.), lead (II) iodide (1.1M, manufactured by Tokyo Chemical Industry Co., Ltd.), methylamine hydrobromide (0.2M, manufactured by Tokyo Chemical Industry Co., Ltd.), and lead (II) bromide (0.2M, manufactured by Tokyo Chemical Industry Co., Ltd.) were dissolved in a mixed solvent of dimethylformamide: dimethyl sulfoxide = 4: 1 (volume ratio), and a dimethyl sulfoxide solution of cesium iodide (1.5M, manufactured by Tokyo Chemical Industry Co., Ltd.) was added to prepare a perovskite precursor solution. Here, the cesium iodide solution was added in an amount such that the amount of cesium charged was 5% in composition ratio. This perovskite precursor solution was dropped onto the tin oxide layer, and spin-coated while dropping chlorobenzene (0.3 mL) to form a perovskite precursor coating film. Subsequently, the resultant was heated on a hot plate at 100° C. for 1 hour to form a perovskite layer (photoelectric conversion layer 3) of Cs(MAFA)Pb(IBr) 3 having a thickness of about 500 nm.
Next, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and 4-tert-butylpyridine as dopants were dissolved in chlorobenzene to prepare a solution, and compound (A-1) was dissolved in this solution at a concentration of 50 mM to prepare a hole transport layer coating solution. Here, the concentrations of lithium bis(trifluoromethanesulfonyl)imide and 4-tert-butylpyridine in the hole transport coating solution were 0.5 equivalents and 3 equivalents relative to compound (A-1), respectively. This hole transport layer coating solution was spin-coated on the Cs(MAFA)Pb(IBr) 3 layer and then dried to form a hole transport layer 4 with a film thickness of about 200 nm.
Next, gold was evaporated to a thickness of 80 nm on the hole transport layer 4 by vacuum evaporation at a degree of vacuum of 1×10 −4 Pa to form a gold electrode (counter electrode 5 ), thereby completing a photoelectric conversion element.
ITO膜付きガラス(導電性支持体1、ジオマテック社製)をイソプロピルアルコールで超音波洗浄し、UVオゾン処理を行った。その後、相対湿度10%以下の乾燥雰囲気下で、下記の各層を塗布法にて形成した。
まず、酸化スズコロイド溶液(酸化スズ(IV),15% in H2O colloidal dispersion:Alfa Aesar社製)と精製水を1:9(体積比)で混合した酸化スズ分散液(電子輸送層用塗布液)をITO膜上にスピンコートした。その後、ホットプレート上で、150℃にて30分加熱することで、膜厚が約20nmの酸化スズ層(電子輸送層2)を形成した。
次に、ホルムアミジンヨウ化水素酸塩(1M、東京化成工業社製)、ヨウ化鉛(II)(1.1M、東京化成工業社製)、メチルアミン臭化水素酸塩(0.2M、東京化成工業社製)、および臭化鉛(II)(0.2M、東京化成工業社製)を、ジメチルホルムアミド:ジメチルスルホキシド=4:1(体積比)の混合溶媒に溶解させ、さらに、ヨウ化セシウム(1.5M、東京化成工業社製)のジメチルスルホキシド溶液を加えてペロブスカイト前駆体溶液を調製した。ここで、ヨウ化セシウムの溶液は、セシウムの仕込み量が組成比で5%となるような量で添加した。このペロブスカイト前駆体溶液を、酸化スズ層の上に滴下し、クロロベンゼン(0.3mL)を滴下しながらスピンコートすることで、ペロブスカイトの前駆体塗膜を形成した。続いて、ホットプレート上で、100℃で1時間加熱することにより、膜厚が約500nmのCs(MAFA)Pb(IBr)3のペロブスカイト層(光電変換層3)を形成した。
次に、ドーパントとしての、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiTFSI)と4-tert-ブチルピリジンをクロロベンゼンに溶解させて溶液を調製し、この溶液に、化合物(A-1)を50mM濃度で溶解させて正孔輸送層用塗布溶液を調製した。ここで、正孔輸送用塗布溶液における、ビス(トリフルオロメタンスルホニル)イミドリチウムおよび4-tert-ブチルピリジンの濃度は、化合物(A-1)に対して、それぞれ、0.5当量、3当量とした。この正孔輸送層用塗布溶液を、Cs(MAFA)Pb(IBr)3層の上にスピンコートした後、乾燥させることにより、膜厚が約200nmの正孔輸送層4を形成した。
次に、正孔輸送層4の上に、真空蒸着法にて真空度1×10-4Paで、金を厚さ80nmに蒸着して金電極(対極5)を形成し、光電変換素子を作製した。 [Example 1] Preparation of photoelectric conversion element using compound (A-1) 1
A glass plate with an ITO film (conductive support 1, manufactured by Geomatec Co., Ltd.) was ultrasonically cleaned with isopropyl alcohol and subjected to UV ozone treatment. After that, in a dry atmosphere with a relative humidity of 10% or less, the following layers were formed by a coating method.
First, a tin oxide colloidal solution (tin(IV) oxide, 15% in H2O colloidal dispersion: manufactured by Alfa Aesar) and purified water were mixed at a volume ratio of 1:9 to form a tin oxide dispersion (electron transport layer coating solution) on the ITO film. Then, the film was heated on a hot plate at 150°C for 30 minutes to form a tin oxide layer (electron transport layer 2) with a thickness of about 20 nm.
Next, formamidine hydroiodide (1M, manufactured by Tokyo Chemical Industry Co., Ltd.), lead (II) iodide (1.1M, manufactured by Tokyo Chemical Industry Co., Ltd.), methylamine hydrobromide (0.2M, manufactured by Tokyo Chemical Industry Co., Ltd.), and lead (II) bromide (0.2M, manufactured by Tokyo Chemical Industry Co., Ltd.) were dissolved in a mixed solvent of dimethylformamide: dimethyl sulfoxide = 4: 1 (volume ratio), and a dimethyl sulfoxide solution of cesium iodide (1.5M, manufactured by Tokyo Chemical Industry Co., Ltd.) was added to prepare a perovskite precursor solution. Here, the cesium iodide solution was added in an amount such that the amount of cesium charged was 5% in composition ratio. This perovskite precursor solution was dropped onto the tin oxide layer, and spin-coated while dropping chlorobenzene (0.3 mL) to form a perovskite precursor coating film. Subsequently, the resultant was heated on a hot plate at 100° C. for 1 hour to form a perovskite layer (photoelectric conversion layer 3) of Cs(MAFA)Pb(IBr) 3 having a thickness of about 500 nm.
Next, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and 4-tert-butylpyridine as dopants were dissolved in chlorobenzene to prepare a solution, and compound (A-1) was dissolved in this solution at a concentration of 50 mM to prepare a hole transport layer coating solution. Here, the concentrations of lithium bis(trifluoromethanesulfonyl)imide and 4-tert-butylpyridine in the hole transport coating solution were 0.5 equivalents and 3 equivalents relative to compound (A-1), respectively. This hole transport layer coating solution was spin-coated on the Cs(MAFA)Pb(IBr) 3 layer and then dried to form a hole transport layer 4 with a film thickness of about 200 nm.
Next, gold was evaporated to a thickness of 80 nm on the hole transport layer 4 by vacuum evaporation at a degree of vacuum of 1×10 −4 Pa to form a gold electrode (counter electrode 5 ), thereby completing a photoelectric conversion element.
[実施例2]化合物(A-1)を用いた光電変換素子の作製2
正孔輸送層用塗布溶液の調製時にビス(トリフルオロメタンスルホニル)イミドリチウムと4-tert-ブチルピリジンを添加せず、調製した正孔輸送用塗布溶液を室温でスピンコートしたこと以外は、実施例1と同様に光電変換素子を作製した。 [Example 2] Preparation of photoelectric conversion element using compound (A-1) 2
A photoelectric conversion element was produced in the same manner as in Example 1, except that lithium bis(trifluoromethanesulfonyl)imide and 4-tert-butylpyridine were not added when preparing the hole transport layer coating solution, and the prepared hole transport coating solution was spin-coated at room temperature.
正孔輸送層用塗布溶液の調製時にビス(トリフルオロメタンスルホニル)イミドリチウムと4-tert-ブチルピリジンを添加せず、調製した正孔輸送用塗布溶液を室温でスピンコートしたこと以外は、実施例1と同様に光電変換素子を作製した。 [Example 2] Preparation of photoelectric conversion element using compound (A-1) 2
A photoelectric conversion element was produced in the same manner as in Example 1, except that lithium bis(trifluoromethanesulfonyl)imide and 4-tert-butylpyridine were not added when preparing the hole transport layer coating solution, and the prepared hole transport coating solution was spin-coated at room temperature.
[実施例3]化合物(A-70)を用いた光電変換素子の作製1
正孔輸送層用塗布溶液として、以下の手順により調製した溶液を用いたこと以外は、実施例1と同様に光電変換素子を作製した。
相対湿度10%以下の乾燥雰囲気下にて、ビス(トリフルオロメタンスルホニル)イミドリチウムを1.8Mの濃度でアセトニトリルに溶解させてドーパント溶液を調製した。化合物(A-70)を28mMの濃度で溶解させたクロロベンゼン溶液を調製し、化合物(A-70)に対してビス(トリフルオロメタンスルホニル)イミドリチウムが0.5当量となるようドーパント溶液を添加した。さらに、化合物(A-70)に対して4-tert-ブチルピリジンが3.3当量となるよう添加し、正孔輸送層用塗布溶液とした。 [Example 3] Preparation of photoelectric conversion element using compound (A-70) 1
A photoelectric conversion element was produced in the same manner as in Example 1, except that a solution prepared by the following procedure was used as the hole transport layer coating solution.
A dopant solution was prepared by dissolving lithium bis(trifluoromethanesulfonyl)imide in acetonitrile at a concentration of 1.8 M in a dry atmosphere with a relative humidity of 10% or less. A chlorobenzene solution was prepared in which compound (A-70) was dissolved at a concentration of 28 mM, and the dopant solution was added to compound (A-70) so that the amount of lithium bis(trifluoromethanesulfonyl)imide was 0.5 equivalents. Furthermore, 4-tert-butylpyridine was added to compound (A-70) so that the amount of lithium bis(trifluoromethanesulfonyl)imide was 3.3 equivalents to prepare a hole transport layer coating solution.
正孔輸送層用塗布溶液として、以下の手順により調製した溶液を用いたこと以外は、実施例1と同様に光電変換素子を作製した。
相対湿度10%以下の乾燥雰囲気下にて、ビス(トリフルオロメタンスルホニル)イミドリチウムを1.8Mの濃度でアセトニトリルに溶解させてドーパント溶液を調製した。化合物(A-70)を28mMの濃度で溶解させたクロロベンゼン溶液を調製し、化合物(A-70)に対してビス(トリフルオロメタンスルホニル)イミドリチウムが0.5当量となるようドーパント溶液を添加した。さらに、化合物(A-70)に対して4-tert-ブチルピリジンが3.3当量となるよう添加し、正孔輸送層用塗布溶液とした。 [Example 3] Preparation of photoelectric conversion element using compound (A-70) 1
A photoelectric conversion element was produced in the same manner as in Example 1, except that a solution prepared by the following procedure was used as the hole transport layer coating solution.
A dopant solution was prepared by dissolving lithium bis(trifluoromethanesulfonyl)imide in acetonitrile at a concentration of 1.8 M in a dry atmosphere with a relative humidity of 10% or less. A chlorobenzene solution was prepared in which compound (A-70) was dissolved at a concentration of 28 mM, and the dopant solution was added to compound (A-70) so that the amount of lithium bis(trifluoromethanesulfonyl)imide was 0.5 equivalents. Furthermore, 4-tert-butylpyridine was added to compound (A-70) so that the amount of lithium bis(trifluoromethanesulfonyl)imide was 3.3 equivalents to prepare a hole transport layer coating solution.
[実施例4]化合物(A-70)を用いた光電変換素子の作製2
正孔輸送層用塗布溶液の調製時にドーパント溶液と4-tert-ブチルピリジンを添加しなかったこと以外は実施例3と同様に光電変換素子を作製した。 [Example 4] Preparation of photoelectric conversion element using compound (A-70) 2
A photoelectric conversion element was produced in the same manner as in Example 3, except that the dopant solution and 4-tert-butylpyridine were not added when preparing the coating solution for the hole transport layer.
正孔輸送層用塗布溶液の調製時にドーパント溶液と4-tert-ブチルピリジンを添加しなかったこと以外は実施例3と同様に光電変換素子を作製した。 [Example 4] Preparation of photoelectric conversion element using compound (A-70) 2
A photoelectric conversion element was produced in the same manner as in Example 3, except that the dopant solution and 4-tert-butylpyridine were not added when preparing the coating solution for the hole transport layer.
[実施例5]化合物(A-71)を用いた光電変換素子の作製1
化合物(A-70)に代えて化合物(A-71)を使用したこと以外は実施例3と同様に光電変換素子を作製した。 [Example 5] Preparation of photoelectric conversion element using compound (A-71) 1
A photoelectric conversion element was prepared in the same manner as in Example 3, except that compound (A-71) was used instead of compound (A-70).
化合物(A-70)に代えて化合物(A-71)を使用したこと以外は実施例3と同様に光電変換素子を作製した。 [Example 5] Preparation of photoelectric conversion element using compound (A-71) 1
A photoelectric conversion element was prepared in the same manner as in Example 3, except that compound (A-71) was used instead of compound (A-70).
[実施例6]化合物(A-71)を用いた光電変換素子の作製2
正孔輸送層用塗布溶液の調製時にドーパント溶液と4-tert-ブチルピリジンを添加しなかったこと以外は実施例5と同様に光電変換素子を作製した。 [Example 6] Preparation of photoelectric conversion element using compound (A-71) 2
A photoelectric conversion element was prepared in the same manner as in Example 5, except that the dopant solution and 4-tert-butylpyridine were not added when preparing the coating solution for the hole transport layer.
正孔輸送層用塗布溶液の調製時にドーパント溶液と4-tert-ブチルピリジンを添加しなかったこと以外は実施例5と同様に光電変換素子を作製した。 [Example 6] Preparation of photoelectric conversion element using compound (A-71) 2
A photoelectric conversion element was prepared in the same manner as in Example 5, except that the dopant solution and 4-tert-butylpyridine were not added when preparing the coating solution for the hole transport layer.
[比較例1]化合物(B-1)を用いた光電変換素子の作製
化合物(A-1)に代えて、標準的な正孔輸送材料である上記Spiro-OMeTAD(Sigma-Aldrich社製)を化合物(B-1)として用いたこと以外は、実施例1と同様に光電変換素子を作製した。 Comparative Example 1 Preparation of Photoelectric Conversion Element Using Compound (B-1) A photoelectric conversion element was prepared in the same manner as in Example 1, except that the above-mentioned Spiro-OMeTAD (manufactured by Sigma-Aldrich), which is a standard hole transport material, was used as compound (B-1) instead of compound (A-1).
化合物(A-1)に代えて、標準的な正孔輸送材料である上記Spiro-OMeTAD(Sigma-Aldrich社製)を化合物(B-1)として用いたこと以外は、実施例1と同様に光電変換素子を作製した。 Comparative Example 1 Preparation of Photoelectric Conversion Element Using Compound (B-1) A photoelectric conversion element was prepared in the same manner as in Example 1, except that the above-mentioned Spiro-OMeTAD (manufactured by Sigma-Aldrich), which is a standard hole transport material, was used as compound (B-1) instead of compound (A-1).
[特性の評価1]
作製した光電変換素子について、白色光照射装置(分光計器株式会社製、OTENTO-SUN SH型)で発生させた疑似太陽光(AM1.5、1000W/m2)を導電性支持体側から照射し、ソースメータ(KEITHLEY社製、Model 2400 Series SourceMeter)にて測定した初期光電変換効率(PCE)を表1に示す。また、各光電変換素子の短絡電流、開放電圧およびフィルファクターも表1に併せて示す。
[Characteristics Evaluation 1]
The prepared photoelectric conversion elements were irradiated from the conductive support side with simulated sunlight (AM1.5, 1000 W/ m2 ) generated by a white light irradiation device (OTENTO-SUN SH model, manufactured by Bunkoukeiki Co., Ltd.), and the initial photoelectric conversion efficiency (PCE) measured with a source meter (Model 2400 Series Source Meter, manufactured by Keithley Co., Ltd.) is shown in Table 1. The short-circuit current, open-circuit voltage, and fill factor of each photoelectric conversion element are also shown in Table 1.
作製した光電変換素子について、白色光照射装置(分光計器株式会社製、OTENTO-SUN SH型)で発生させた疑似太陽光(AM1.5、1000W/m2)を導電性支持体側から照射し、ソースメータ(KEITHLEY社製、Model 2400 Series SourceMeter)にて測定した初期光電変換効率(PCE)を表1に示す。また、各光電変換素子の短絡電流、開放電圧およびフィルファクターも表1に併せて示す。
The prepared photoelectric conversion elements were irradiated from the conductive support side with simulated sunlight (AM1.5, 1000 W/ m2 ) generated by a white light irradiation device (OTENTO-SUN SH model, manufactured by Bunkoukeiki Co., Ltd.), and the initial photoelectric conversion efficiency (PCE) measured with a source meter (Model 2400 Series Source Meter, manufactured by Keithley Co., Ltd.) is shown in Table 1. The short-circuit current, open-circuit voltage, and fill factor of each photoelectric conversion element are also shown in Table 1.
表1に示すように、一般式(1)に該当する化合物を正孔輸送材料に用いた実施例の光電変換素子は、従来の標準的な正孔輸送材料である化合物(B-1)を用いた比較例1の光電変換素子と比較して優れた光電変換効率を示した。
また、一般式(1)に該当する化合物を正孔輸送材料として用いた場合、ドーパントを使用しなくても、化合物(B-1)を用いた場合よりも、高い光電変換特性が得られた。
以上の結果から、一般式(1)で表される化合物を正孔輸送材料として用いることにより光電変換効率が向上することがわかった。また、ドーパントおよび塩基性添加剤を非添加とすることが可能になり、製造コストの削減、製造プロセスの簡易化が図れることもわかった。 As shown in Table 1, the photoelectric conversion element of the Example in which the compound corresponding to the general formula (1) was used as the hole transport material exhibited superior photoelectric conversion efficiency compared to the photoelectric conversion element of Comparative Example 1 in which the compound (B-1), which is a conventional standard hole transport material, was used.
In addition, when the compound represented by the general formula (1) was used as a hole transport material, higher photoelectric conversion characteristics were obtained than when the compound (B-1) was used, even without using a dopant.
From the above results, it was found that the photoelectric conversion efficiency can be improved by using the compound represented by the general formula (1) as a hole transport material. It was also found that it is possible to eliminate the need for dopants and basic additives, thereby reducing the manufacturing cost and simplifying the manufacturing process.
また、一般式(1)に該当する化合物を正孔輸送材料として用いた場合、ドーパントを使用しなくても、化合物(B-1)を用いた場合よりも、高い光電変換特性が得られた。
以上の結果から、一般式(1)で表される化合物を正孔輸送材料として用いることにより光電変換効率が向上することがわかった。また、ドーパントおよび塩基性添加剤を非添加とすることが可能になり、製造コストの削減、製造プロセスの簡易化が図れることもわかった。 As shown in Table 1, the photoelectric conversion element of the Example in which the compound corresponding to the general formula (1) was used as the hole transport material exhibited superior photoelectric conversion efficiency compared to the photoelectric conversion element of Comparative Example 1 in which the compound (B-1), which is a conventional standard hole transport material, was used.
In addition, when the compound represented by the general formula (1) was used as a hole transport material, higher photoelectric conversion characteristics were obtained than when the compound (B-1) was used, even without using a dopant.
From the above results, it was found that the photoelectric conversion efficiency can be improved by using the compound represented by the general formula (1) as a hole transport material. It was also found that it is possible to eliminate the need for dopants and basic additives, thereby reducing the manufacturing cost and simplifying the manufacturing process.
[特性の評価2]
作製した光電変換素子の初期光電変換効率を上記と同じ方法により測定した後、窒素雰囲気下のグローブボックスにて、光電変換素子をチャック付きラミネート袋(株式会社生産日本社、AL-8)に封入した。封入した光電変換素子を真空定温乾燥器(東京理科器械株式会社、VOS-310C)に入れて85℃で1000時間保管し、疑似太陽光照射下において再び上記と同じ方法により加熱1000時間後の光電変換効率(PCE)を測定した。得られた初期光電変換効率と加熱1000時間後の光電変換効率を用いて、下記式(a-1)より算出した保持率(%)を表2に示す。
[Characteristics Evaluation 2]
The initial photoelectric conversion efficiency of the prepared photoelectric conversion element was measured by the same method as above, and then the photoelectric conversion element was sealed in a laminated bag with a zipper (AL-8, Seizo Nippon Co., Ltd.) in a glove box under a nitrogen atmosphere. The sealed photoelectric conversion element was placed in a vacuum constant temperature dryer (VOS-310C, Tokyo Rikakikai Co., Ltd.) and stored at 85 ° C. for 1000 hours, and the photoelectric conversion efficiency (PCE) after 1000 hours of heating was measured again by the same method as above under irradiation with pseudo solar light. The retention rate (%) calculated from the following formula (a-1) using the obtained initial photoelectric conversion efficiency and the photoelectric conversion efficiency after 1000 hours of heating is shown in Table 2.
作製した光電変換素子の初期光電変換効率を上記と同じ方法により測定した後、窒素雰囲気下のグローブボックスにて、光電変換素子をチャック付きラミネート袋(株式会社生産日本社、AL-8)に封入した。封入した光電変換素子を真空定温乾燥器(東京理科器械株式会社、VOS-310C)に入れて85℃で1000時間保管し、疑似太陽光照射下において再び上記と同じ方法により加熱1000時間後の光電変換効率(PCE)を測定した。得られた初期光電変換効率と加熱1000時間後の光電変換効率を用いて、下記式(a-1)より算出した保持率(%)を表2に示す。
The initial photoelectric conversion efficiency of the prepared photoelectric conversion element was measured by the same method as above, and then the photoelectric conversion element was sealed in a laminated bag with a zipper (AL-8, Seizo Nippon Co., Ltd.) in a glove box under a nitrogen atmosphere. The sealed photoelectric conversion element was placed in a vacuum constant temperature dryer (VOS-310C, Tokyo Rikakikai Co., Ltd.) and stored at 85 ° C. for 1000 hours, and the photoelectric conversion efficiency (PCE) after 1000 hours of heating was measured again by the same method as above under irradiation with pseudo solar light. The retention rate (%) calculated from the following formula (a-1) using the obtained initial photoelectric conversion efficiency and the photoelectric conversion efficiency after 1000 hours of heating is shown in Table 2.
表2の結果から、一般式(1)に該当する化合物を正孔輸送材料として用いた実施例の光電変換素子が、加熱1000時間後の光電変換効率においても、従来の標準的な正孔輸送材料である化合物(B-1)を用いた比較例1の光電変換素子と比較して高い光電変換効率を維持しており、優れた耐熱性を示すことがわかった。
The results in Table 2 show that the photoelectric conversion element of the example using the compound corresponding to general formula (1) as the hole transport material maintained a high photoelectric conversion efficiency even after 1000 hours of heating, compared to the photoelectric conversion element of Comparative Example 1 using compound (B-1), a conventional standard hole transport material, and exhibited excellent heat resistance.
本発明の化合物を正孔輸送材料として用いることにより、良好な光電変換効率を有する光電変換素子および太陽電池が実現する。これにより、太陽光エネルギーから変換された電気エネルギーをクリーンエネルギーとして効率よく提供することができる。また、本発明の化合物を含む正孔輸送材料は、有機EL素子やイメージセンサーなどにも展開することが可能である。したがって、本発明は産業上の利用可能性が高い。
By using the compound of the present invention as a hole transport material, a photoelectric conversion element and a solar cell with good photoelectric conversion efficiency can be realized. This makes it possible to efficiently provide electrical energy converted from solar energy as clean energy. In addition, hole transport materials containing the compound of the present invention can also be used in organic EL elements, image sensors, and the like. Therefore, the present invention has a high industrial applicability.
1 導電性支持体
2 電子輸送層
3 光電変換層
4 正孔輸送層
5 対極 1 Conductive support 2 Electron transport layer 3 Photoelectric conversion layer 4 Hole transport layer 5 Counter electrode
2 電子輸送層
3 光電変換層
4 正孔輸送層
5 対極 1 Conductive support 2 Electron transport layer 3 Photoelectric conversion layer 4 Hole transport layer 5 Counter electrode
Claims (10)
- 下記一般式(1)で表される化合物。
置換基を有していてもよい炭素原子数1~18の直鎖状もしくは分岐状のアルキレン基、
置換基を有していてもよい炭素原子数2~20の直鎖状もしくは分岐状のアルケニレン基、
置換基を有していてもよい炭素原子数2~20の直鎖状もしくは分岐状のアルキニレン基、
置換基を有していてもよい炭素原子数3~12のシクロアルキレン基、
置換基を有していてもよい炭素原子数6~36のアリーレン基、または
置換基を有していてもよい環形成原子数5~36の2価の複素環基であり、
Xは、水素イオンを除く1価のカチオンを表す。
R2~R9は、それぞれ独立して、
水素原子、
置換基を有していてもよい炭素原子数1~18の直鎖状もしくは分岐状のアルキル基、
置換基を有していてもよい炭素原子数2~20の直鎖状もしくは分岐状のアルケニル基、
置換基を有していてもよい炭素原子数2~20の直鎖状もしくは分岐状のアルキニル基、
置換基を有していてもよい炭素原子数3~12のシクロアルキル基、
置換基を有していてもよい炭素原子数1~20の直鎖状もしくは分岐状のアルコキシ基、
置換基を有していてもよい炭素原子数3~10のシクロアルコキシ基、
置換基を有していてもよい炭素原子数6~36のアリールオキシ基、
置換基を有していてもよい炭素原子数1~18の直鎖状もしくは分岐状のアルコキシカルボニル基、
置換基を有していてもよい炭素原子数0~18のチオ基、
置換基を有していてもよい炭素原子数0~20のアミノ基、
置換基を有していてもよい炭素原子数6~36の1価の芳香族炭化水素基、または
置換基を有していてもよい環形成原子数5~36の1価の複素環基を表す。] A compound represented by the following general formula (1):
a linear or branched alkylene group having 1 to 18 carbon atoms which may have a substituent;
a linear or branched alkenylene group having 2 to 20 carbon atoms which may have a substituent,
a linear or branched alkynylene group having 2 to 20 carbon atoms which may have a substituent;
a cycloalkylene group having 3 to 12 carbon atoms which may have a substituent;
an arylene group having 6 to 36 carbon atoms which may have a substituent, or a divalent heterocyclic group having 5 to 36 ring atoms which may have a substituent,
X represents a monovalent cation other than a hydrogen ion.
R 2 to R 9 each independently represent
Hydrogen atoms,
a linear or branched alkyl group having 1 to 18 carbon atoms which may have a substituent;
a linear or branched alkenyl group having 2 to 20 carbon atoms which may have a substituent;
a linear or branched alkynyl group having 2 to 20 carbon atoms which may have a substituent;
a cycloalkyl group having 3 to 12 carbon atoms which may have a substituent;
a linear or branched alkoxy group having 1 to 20 carbon atoms which may have a substituent;
a cycloalkoxy group having 3 to 10 carbon atoms which may have a substituent;
an aryloxy group having 6 to 36 carbon atoms which may have a substituent;
a linear or branched alkoxycarbonyl group having 1 to 18 carbon atoms which may have a substituent,
a thio group having 0 to 18 carbon atoms which may have a substituent;
an amino group having 0 to 20 carbon atoms which may have a substituent;
represents a monovalent aromatic hydrocarbon group having 6 to 36 carbon atoms which may have a substituent, or a monovalent heterocyclic group having 5 to 36 ring atoms which may have a substituent.] - R1が、置換基を有していてもよい炭素原子数1~18の直鎖状もしくは分岐状のアルキレン基である、請求項1に記載の化合物。 2. The compound according to claim 1, wherein R 1 is a linear or branched alkylene group having 1 to 18 carbon atoms which may have a substituent.
- SO3Xと結合しているR1の原子が、2級炭素原子またはベンゼン環の骨格構成炭素原子である、請求項1に記載の化合物。 2. The compound according to claim 1, wherein the atom of R1 which is bonded to SO3X is a secondary carbon atom or a skeletal carbon atom of a benzene ring.
- R2~R9のうち、少なくとも1つは、置換基を有していてもよい炭素原子数6~36の1価の芳香族炭化水素基または置換基を有していてもよい炭素数0~20のアミノ基である請求項1に記載の化合物。 The compound according to claim 1, wherein at least one of R 2 to R 9 is a monovalent aromatic hydrocarbon group having 6 to 36 carbon atoms which may have a substituent, or an amino group having 0 to 20 carbon atoms which may have a substituent.
- R2~R9の少なくとも1つが、置換基を有していてもよいジアリールアミノ基を有する基である、請求項1に記載の化合物。 2. The compound according to claim 1, wherein at least one of R 2 to R 9 is a group having an optionally substituted diarylamino group.
- 前記ジアリールアミノ基がヘテロ原子で結合する置換基で置換されている、請求項5に記載の化合物。 The compound of claim 5, wherein the diarylamino group is substituted with a substituent bonded to a heteroatom.
- 前記置換基を有していてもよいジアリールアミノ基を有する基が、置換基を有していてもよいジアリールアミノ基、置換基を有していてもよいジアリールアミノアリール基、または、置換基を有していてもよいジアリールアミノカルバゾール-9-イル基である、請求項5に記載の化合物。 The compound according to claim 5, wherein the group having an optionally substituted diarylamino group is an optionally substituted diarylamino group, an optionally substituted diarylaminoaryl group, or an optionally substituted diarylaminocarbazol-9-yl group.
- 請求項1~請求項7のいずれか一項に記載の化合物を含む正孔輸送材料。 A hole transport material comprising the compound according to any one of claims 1 to 7.
- 請求項8に記載の正孔輸送材料を用いた光電変換素子。 A photoelectric conversion element using the hole transport material according to claim 8.
- 請求項9に記載の光電変換素子を有する太陽電池。 A solar cell having the photoelectric conversion element according to claim 9.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022158142 | 2022-09-30 | ||
JP2022-158142 | 2022-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024071042A1 true WO2024071042A1 (en) | 2024-04-04 |
Family
ID=90477888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/034740 WO2024071042A1 (en) | 2022-09-30 | 2023-09-25 | Compound, hole transport material, and photoelectric conversion element using said compound |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202428568A (en) |
WO (1) | WO2024071042A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11511031A (en) * | 1996-04-15 | 1999-09-28 | ピアース ケミカル カンパニー | Assay for peroxidase activity |
US20080176251A1 (en) * | 2007-01-24 | 2008-07-24 | Cyanagen Srl | Preparation of high purity phenothiazine N-alkylsulfonates and their use in chemiluminescent assays for the measurement of peroxidase acitivity |
JP2015503671A (en) * | 2012-01-16 | 2015-02-02 | ケンブリッジ ディスプレイ テクノロジー リミテッド | Polymers containing asymmetric diarylamine fluorene units |
EP3855185A1 (en) * | 2020-01-23 | 2021-07-28 | Cyanagen Srl | Chemiluminescent substrates for peroxidase with extended shelf-life |
-
2023
- 2023-09-25 WO PCT/JP2023/034740 patent/WO2024071042A1/en unknown
- 2023-09-26 TW TW112136714A patent/TW202428568A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11511031A (en) * | 1996-04-15 | 1999-09-28 | ピアース ケミカル カンパニー | Assay for peroxidase activity |
US20080176251A1 (en) * | 2007-01-24 | 2008-07-24 | Cyanagen Srl | Preparation of high purity phenothiazine N-alkylsulfonates and their use in chemiluminescent assays for the measurement of peroxidase acitivity |
JP2015503671A (en) * | 2012-01-16 | 2015-02-02 | ケンブリッジ ディスプレイ テクノロジー リミテッド | Polymers containing asymmetric diarylamine fluorene units |
EP3855185A1 (en) * | 2020-01-23 | 2021-07-28 | Cyanagen Srl | Chemiluminescent substrates for peroxidase with extended shelf-life |
Also Published As
Publication number | Publication date |
---|---|
TW202428568A (en) | 2024-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101823719B1 (en) | Naphtalene monoimide derivatives and use thereof as photosensitizers in solar cells and photodetectors | |
KR102028331B1 (en) | perovskite solar cells | |
KR101157743B1 (en) | Dye for dye-sensitized solar cell and solar cell including the same | |
WO2022025074A1 (en) | Compound, hole transport material for photoelectric conversion element, hole transport layer, and photoelectric conversion element and solar cell using same | |
JP2021163968A (en) | Hole transport layer for photoelectric conversion element, photoelectric conversion element including the same, and perovskite solar cell | |
WO2022153962A1 (en) | Compound, hole transport material, and photoelectric conversion element including same | |
WO2024071042A1 (en) | Compound, hole transport material, and photoelectric conversion element using said compound | |
CN111548348A (en) | Fluorenoazanaphthalene derivative, synthesis method thereof and electronic device thereof | |
KR101760492B1 (en) | Novel compounds, method of preparation thereof and organic solar cell comprising the same | |
JP6945841B2 (en) | Near-infrared absorption squarylium derivatives and organic electronic devices containing them | |
WO2022210445A1 (en) | Compound having sulfonate group, and photoelectric conversion element using said compound | |
WO2024204541A1 (en) | Compound, hole transport material, and photoelectric conversion element using same | |
WO2024181493A1 (en) | Material for hole transportation layer, and photoelectric conversion element and compound using same | |
WO2023054393A1 (en) | Compound having sulfonate group, hole-transporting material, hole-transporting material composition for photoelectric conversion element, photoelectric conversion element and solar cell | |
WO2023054344A1 (en) | Compound, hole transport material, and photoelectric conversion element using same | |
JP2024130904A (en) | Compound, hole transport material, and photoelectric conversion element using the same | |
JP2023143104A (en) | Compound, hole transport material, and photoelectric conversion element using the same | |
JP2022058213A (en) | Compound with 1,3-dithiol skeleton, and photoelectric conversion element employing that compound | |
JP2024051648A (en) | Compound, hole transport material, and photoelectric conversion device employing the same | |
JP2023005703A (en) | Compound, hole transport material, and photoelectric converter based thereon | |
JP2022027575A (en) | Compound, hole transport material for photoelectric conversion element, and photoelectric conversion element and solar cell based thereon | |
KR101760493B1 (en) | Benzobisoxazole derivatives, method of preparation thereof and organic solar cell comprising the same | |
EP4006021A1 (en) | Triphenylamine functionalized oligothiophenes: stable and low cost hole-transporting materials for high performance perovskite solar cells | |
KR101987259B1 (en) | Fused ring derivative and organic solar cell comprising the same | |
KR101778292B1 (en) | Triphenylene derivatives, method of preparation thereof and organic solar cell comprising the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23872265 Country of ref document: EP Kind code of ref document: A1 |