WO2024071022A1 - Touch sensor, and connection structure for touch sensor and object to be connected - Google Patents

Touch sensor, and connection structure for touch sensor and object to be connected Download PDF

Info

Publication number
WO2024071022A1
WO2024071022A1 PCT/JP2023/034688 JP2023034688W WO2024071022A1 WO 2024071022 A1 WO2024071022 A1 WO 2024071022A1 JP 2023034688 W JP2023034688 W JP 2023034688W WO 2024071022 A1 WO2024071022 A1 WO 2024071022A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch sensor
conductive
connector portion
electrode
sensor according
Prior art date
Application number
PCT/JP2023/034688
Other languages
French (fr)
Japanese (ja)
Inventor
翼 神谷
広太 山崎
Original Assignee
積水ポリマテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水ポリマテック株式会社 filed Critical 積水ポリマテック株式会社
Publication of WO2024071022A1 publication Critical patent/WO2024071022A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H36/00Switches actuated by change of magnetic field or of electric field, e.g. by change of relative position of magnet and switch, by shielding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0362Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 1D translations or rotations of an operating part of the device, e.g. scroll wheels, sliders, knobs, rollers or belts

Definitions

  • the disclosure of this application relates to a touch sensor and a connection structure between the touch sensor and an object to be connected.
  • Touch sensors are known as one type of sensor that detects input from an operator.
  • a capacitance sensor which is a typical type of touch sensor, detects changes in capacitance that occur when an operator's finger touches an operating surface that is located on the outer surface of the housing of an electronic device (for example, Patent Document 1).
  • FIG. 1 JP 2016-081818 A, FIG. 1
  • a touch sensor has touch sensor electrodes that correspond to input switches when performing touch operations on an electronic device.
  • the electrical signal obtained from the touch sensor electrodes is analyzed in a detection circuit via a connection object such as a board circuit (circuit electrode).
  • the touch sensor electrodes are provided along the operation surface of the electronic device, for example, along the outer surface of the housing.
  • the connection object may be provided at a position away from the operation surface, for example, deep inside the housing.
  • connection object is placed away from the touch sensor electrode, the number of components required to connect them increases, which may complicate the connection structure.
  • the purpose of this disclosure is to provide a touch sensor that can be electrically connected with a simple structure.
  • one aspect of the present disclosure includes a connector portion having a conductive portion and an insulating portion made of a rubber-like elastic material covering the conductive portion, and a touch sensor electrode located at a first end of the connector portion and in conductive contact with the conductive portion, the connector portion having a second end that conductively connects the touch sensor electrode to an object to be connected by contacting the connector portion with the object to be connected, and the conductive portion extending between the first end and the second end is a touch sensor having a linear shape.
  • One aspect of the present disclosure is a touch sensor having a connector portion and a touch sensor electrode.
  • the touch sensor electrode which is in conductive contact with the conductive portion of the connector portion, is located at a first end of the connector portion. Therefore, the touch sensor can be easily conductively connected to an object to be connected with a simple structure.
  • the connector portion can easily form a conductive path between the touch sensor electrode at its first end and the connection object.
  • the linear conductive portion forms a linear conductive path that conductively connects the touch sensor electrode and the connection object. Therefore, the connection structure can conductively connect the touch sensor electrode and the connection object over a short linear distance.
  • the area of the touch sensor electrode is larger than the end face of the conductive portion.
  • the area of the touch sensor electrode is larger than the end face of the conductive portion. Therefore, even if the touch sensor electrode and the conductive portion are misaligned from the correct contact position as designed, the touch sensor electrode and the conductive portion can be in conductive contact. Furthermore, even if the touch sensor electrode and the conductive portion are misaligned, the touch sensor electrode and the conductive portion can maintain conductive contact.
  • the touch sensor electrode is integrally fixed to the connector portion.
  • the touch sensor electrode and the connector section are integrated. As a result, the touch sensor electrode and the connector section that make up the touch sensor are a single component. This makes the touch sensor easy to handle and easy to electrically connect to the object to which it is connected.
  • the touch sensor electrode is a metal plate.
  • the touch sensor electrode is a metal plate. Therefore, the connector portion can easily have a touch sensor electrode provided at its first end.
  • the metal plate can be provided at the first end by, for example, adhering with a conductive adhesive, insert molding, etc.
  • the touch sensor includes a base film, and the connector portion is formed integrally with the base film.
  • the base film and connector portion of the touch sensor are formed as a single unit. Therefore, because the base film and connector portion are a single component, even if the touch sensor is configured to include a base film, the touch sensor can be easily conductively connected to the object to be connected with a simple structure.
  • the touch sensor includes a base film, and the touch sensor electrode is a conductive layer formed on either the base film or the first end.
  • a conductive layer is formed as a sensor electrode on the base film of the touch sensor. This makes it easy to provide a touch sensor electrode at the first end of the connector part.
  • the conductive layer can be provided, for example, by printing or painting on the base film or the first end of the connector part.
  • the touch sensor electrode has an electrode main body portion located in the operation area and an electrode extension portion located outside the operation area, and the conductive portion is in conductive contact with the electrode extension portion.
  • the conductive portion of the connector portion can be configured to be in conductive contact not only with the electrode main body portion located in the operation area, but also with the electrode extension portion located outside the operation area. Therefore, the touch sensor can bring the touch sensor electrode and the conductive portion into conductive contact even in a position outside the operation area. Therefore, the touch sensor can increase the degree of freedom in the connection position with the connection target in the electrical device in which it is mounted.
  • the touch sensor has a positioning portion that positions the touch sensor electrode and the conductive portion at a predetermined contact position.
  • the touch sensor has a positioning portion that determines the relative positions of the touch sensor electrode and the conductive portion. This allows the touch sensor electrode and the conductive portion to be placed in a predetermined contact position.
  • the touch sensor has a plurality of the connector portions and a plurality of the touch sensor electrodes.
  • the connector portion and the touch sensor electrodes can each be configured in multiple numbers. Therefore, even if there are multiple connector portions and multiple touch sensor electrodes, they can be easily electrically connected.
  • the connector portion is formed in a columnar shape, and has a locking protrusion on its outer periphery that locks onto a first attachment object to which the connector portion is attached.
  • the attachment object here may be, but is not limited to, an electronic device (housing), a circuit board, or a member provided separately from the electronic device, the circuit board, etc.
  • the locking projections on the outer periphery of the columnar connector portion lock into the object to which it is attached. This makes it easy to attach the touch sensor to the object.
  • the locking projection can be provided with a water-stopping section.
  • This provides a waterproof function that prevents water from entering between the locking projection and the mounting object toward the elements mounted on the circuit board.
  • the water-stopping section can be provided, for example, by increasing the adhesion with the mounting object or by increasing the contact area with the mounting object.
  • the touch sensor includes a retainer having a retainer body that holds the connector portion and support legs that protrude from the retainer body and attach the retainer to a second mounting object.
  • the touch sensor includes a retainer. Therefore, the retainer can hold the connector portion.
  • the retainer has a retainer body that holds the connector portion, and support legs that are attached to the mounting object. Therefore, according to one aspect of the present disclosure, the touch sensor can be easily attached to electronic devices, etc.
  • the support legs have a length that forms a space between the retainer body and the second mounting object to accommodate an element to be mounted on a circuit board.
  • the support legs have a predetermined length between the retainer body and the object to which they are attached. This allows a space to be formed between the retainer body and the object to which they are attached. This allows the space between the retainer body and the object to which they are attached to be used as a space to accommodate elements to be mounted on the circuit board.
  • the base film has a three-dimensional shape
  • the touch sensor electrode is formed along the three-dimensional shape of the base film.
  • the touch sensor electrodes are formed to conform to the three-dimensional shape of the base film. This makes it possible to realize a touch sensor with a three-dimensional operating area.
  • the first end of the connector portion that is in conductive contact with the touch sensor electrode is formed with an inclined surface.
  • the first end of the connector portion that is in conductive contact with the touch sensor electrode is formed with an inclined surface. This makes it possible to realize a touch sensor whose operation area is an inclined surface.
  • the touch sensor further has a waterproofing member, which is at least one of a first waterproofing member that seals between the touch sensor and an operation target member that an operator touches, a second waterproofing member that seals between the touch sensor and a first attachment target to which the connector portion is attached, and a third waterproofing member that seals between the second attachment target and the touch sensor.
  • a waterproofing member which is at least one of a first waterproofing member that seals between the touch sensor and an operation target member that an operator touches, a second waterproofing member that seals between the touch sensor and a first attachment target to which the connector portion is attached, and a third waterproofing member that seals between the second attachment target and the touch sensor.
  • the touch sensor has a waterproofing member that seals the space between it and the object it is attached to. This makes the contact point between the touch sensor and the object it is attached to waterproof.
  • the waterproofing member is an annular sealing protrusion formed on the retainer body.
  • the waterproofing member is formed on the retainer body as an annular sealing protrusion. This allows waterproofing between the retainer body and the object to which it is attached.
  • the support leg is formed in a ring shape
  • the waterproofing member is a ring-shaped sealing protrusion formed on the support leg.
  • the support legs are formed in a ring shape. This allows the support legs to cover the periphery of the touch sensor in a ring shape.
  • the waterproofing member is formed on the support legs as a ring-shaped sealing protrusion. This allows waterproofing between the support legs and the object to which they are attached.
  • the waterproofing member is a ring-shaped sealing protrusion formed on a base film of the touch sensor.
  • the waterproofing member is formed on the base film as an annular sealing protrusion. This allows waterproofing between the base film and the object to which it is attached.
  • the connector portion has a flange that extends outwardly, and the waterproofing member is the flange.
  • the flange is formed to extend outward from the connector portion. This allows the flange to cover a wider area of the outer periphery of the touch sensor.
  • the waterproofing member is formed as a flange on the connector portion. This provides waterproofing between the flange and the object to which it is attached.
  • the touch sensor further includes an operation target member that is touched by the operator.
  • the touch sensor further includes an operation target member that is touched by the operator. Therefore, even in a touch sensor that includes an operation target member, it is possible to easily establish a conductive connection with a connection target using a simple structure.
  • connection structure between a touch sensor and a connection object which includes the touch sensor, and the conductive portion has a linear shape and forms a linear conductive path that electrically connects the touch sensor electrode and the connection object.
  • One aspect of the present disclosure is a connection structure between a touch sensor and a connection object.
  • the touch sensor electrode that is in conductive contact with the conductive portion of the connector portion of the touch sensor is located at a first end of the connector portion. Therefore, since the touch sensor electrode is provided with a connector portion or the connector portion is provided with a touch sensor electrode, the touch sensor can be easily conductively connected to the connection object with a simple structure.
  • a conductive path can be easily formed between the touch sensor electrode at the first end of the connector portion and the object to be connected.
  • the linear conductive portion forms a linear conductive path that electrically connects the touch sensor electrode to the object to be connected. Therefore, the connection structure can electrically connect the touch sensor electrode to the object to be connected in a short linear distance.
  • FIG. 1A is an exploded cross-sectional view of a touch sensor body and a retainer corresponding to the IC-IC line in FIG. 1B;
  • FIG. 1B is a plan view of the touch sensor assembled in an electronic device;
  • FIG. 1C is a cross-sectional view of the IC-IC line in FIG. 1B.
  • 1C is a cross-sectional view showing a touch sensor according to a modified example of the first embodiment, taken along line IC-IC in FIG. 3A and 3B are diagrams showing a touch sensor according to a second embodiment, in which FIG. 3A is a plan view of the touch sensor assembled in an electronic device, and FIG. 3B is a cross-sectional view taken along line IIIB-IIIB in FIG. 3A.
  • FIG. 3A is a plan view of the touch sensor assembled in an electronic device
  • FIG. 3B is a cross-sectional view taken along line IIIB-IIIB in FIG. 3A.
  • FIG. 13 is a diagram illustrating a touch sensor according to a first modified example of the second embodiment.
  • 5A and 5B are diagrams showing a touch sensor according to a second modified example of the second embodiment, in which FIG. 5A is a plan view of the touch sensor, and FIG. 5B is an exploded cross-sectional view of the electronic device corresponding to line VB-VB in FIG. 5A.
  • 6A and 6B are diagrams showing a touch sensor according to a third embodiment, in which FIG. 6A is a plan view of the touch sensor assembled in an electronic device, and FIG. 6B is a cross-sectional view taken along line VIB-VIB in FIG. 6A.
  • FIG. 6A is a plan view of the touch sensor assembled in an electronic device
  • FIG. 6B is a cross-sectional view taken along line VIB-VIB in FIG. 6A.
  • FIG. 1C is a cross-sectional view showing a touch sensor according to a fourth embodiment, taken along line IC-IC in FIG. 1C is a cross-sectional view showing a touch sensor according to a modified example of the fourth embodiment, taken along line IC-IC in FIG. 9A and 9B are diagrams showing a touch sensor according to a fifth embodiment, in which FIG. 9A is a plan view of the touch sensor assembled in an electronic device, and FIG. 9B is a cross-sectional view taken along line IXB-IXB of FIG. 9A. 10A and 10B are diagrams showing a touch sensor according to a first modified example of the fifth embodiment, in which FIG. 10A is a plan view of the touch sensor assembled in an electronic device, and FIG.
  • FIG. 10B is a cross-sectional view taken along line XB-XB of FIG. 10A.
  • 11A and 11B are diagrams showing a touch sensor according to a second modified example of the fifth embodiment, in which FIG. 11A is a plan view of the touch sensor assembled in an electronic device, and FIG. 11B is an exploded cross-sectional view along line XIB-XIB of FIG. 11A.
  • a “touch sensor” and a “connection structure between a touch sensor and a connection object” are specifically described.
  • the following description is not intended to limit the scope of the present disclosure, and should be understood as a description explaining an exemplary embodiment. The following description does not unduly limit the scope of the claims, and not all of the configurations described in this embodiment are necessarily essential as a solution.
  • the “touch sensor” of the present disclosure is a sensor that detects the touch operation of an operator touching an operation surface as an input.
  • the "installation target” on which such a “touch sensor” is provided as an input means is not particularly limited, and can be equipped on machines, tools, equipment, components, electrical components such as push button switches, etc. for various applications.
  • the installation target is electronic device D
  • the installation target can also be, for example, a panel material such as a vehicle interior material or a building wall material.
  • the “touch sensor” of the present disclosure can be configured to include or not include an installation target. In either configuration, the member having the operation surface on which the operator performs the touch operation is called the "operation target member.”
  • the left-right direction (left-right direction on the paper) of the touch sensor 10 as one embodiment of the present disclosure is described as the X direction
  • the depth (front-back) direction (up-down direction on the paper) is described as the Y direction
  • the height direction of the touch sensor 10 is described as the Z direction.
  • the side of the operation surface S exposed on the outer surface Cs of the housing C is described as the upper side (outside) in the Z direction.
  • circuit electrode E of the circuit board B installed inside the electronic device D is described as the lower side (inside) in the Z direction. However, these do not limit the arrangement direction of the touch sensor 10, the input operation direction, etc. It should be noted that the circuit electrode E constitutes a "connection object" to which the touch sensor 10 is conductively connected.
  • the touch sensor 10 includes a touch sensor body 20 and a retainer 30. As shown in FIG. 1C, the touch sensor body 20 is held by the retainer 30.
  • the touch sensor 10 is housed in an electronic device D.
  • the touch sensor body 20 is attached so as to be in conductive contact with a circuit electrode E of a circuit board B installed in a lower housing Cd of the electronic device D. In this attached state, the touch sensor body 20 is covered and pressed against an upper housing Cu of the electronic device D.
  • the retainer 30 can be omitted.
  • the "installation target" of the touch sensor 10 is the electronic device D
  • the "operation target member" on which the operator performs a touch operation is the upper housing Cu of the electronic device D.
  • the touch sensor main body 20 includes a connector portion 40 and a touch sensor electrode 50.
  • the connector portion 40 includes a conductive portion 41 and an insulating portion 42.
  • the connector portion 40 is formed in a columnar shape extending in the Z direction (height direction, thickness direction).
  • the connector portion 40 has a first end portion 40a at its upper end in the Z direction and a second end portion 40b at its lower end.
  • the conductive portion 41 is made of a conductive rubber-like elastic body having electrical conductivity.
  • the conductive portion 41 is formed in a columnar, linear shape extending along the Z direction between the first end 40a and the second end 40b of the connector portion 40.
  • the conductive portion 41 has a first end 41a at the upper end in the Z direction and a second end 41b at the lower end.
  • the conductive portion 41 forms a conductive path 41c for electrical conduction between the first end 41a and the second end 41b.
  • the cross section of the conductive portion 41 is circular.
  • the cross section of the conductive portion 41 is not limited to a circular shape, and may be a polygonal shape such as a square, and is not limited thereto.
  • the surfaces of the upper and lower ends of the conductive portion 41 are formed flat.
  • the surface shape of the conductive portion 41 is not limited to a flat shape, and may be a convex curved shape such as a dome shape, a surface shape having minute dot-like or linear irregularities on the surface, and is not limited thereto.
  • the conductive rubber-like elastomer is a rubber-like elastomer, which is a raw material, filled with a conductive medium as an inorganic material that is a filler. That is, as shown in FIG. 1A etc., the conductive rubber-like elastomer contains a large number of conductive particles 43 as conductive filler inside the rubber-like elastomer.
  • the conductive portion 41 is formed by concentrating the conductive particles 43 at such a high density that adjacent conductive particles 43 are in contact with each other.
  • the conductive particles 43 may be uniformly dispersed inside the rubber-like elastic body, but are preferably arranged in the Z direction. By arranging the conductive particles 43 continuously and in a chain, a conductive path 41c is formed in the arrangement direction, reducing the resistance and improving the conductivity of the conductive part 41. By improving the conductivity of the conductive part 41 in the Z direction, the sensor sensitivity of the connector part 40 can be stabilized.
  • a magnetic material can be used for the conductive particles 43. If the conductive particles 43 are magnetic, the connector part 40 can be magnetically oriented. Specifically, by applying a magnetic field along the Z direction when molding the connector part 40 with a mold, the conductive particles 43 can be arranged continuously and in a chain in the Z direction. In addition, the conductive particles 43 can be arranged by aligning the Z direction with the flow direction by using a flow field.
  • the insulating portion 42 is made of a rubber-like elastic body that is non-conductive (insulating).
  • the insulating portion 42 covers the conductive portion 41.
  • the insulating portion 42 has a cylindrical shape that surrounds the outer periphery of the conductive portion 41.
  • the conductive portion 41 and the insulating portion 42 are integrated to form the connector portion 40.
  • the connector portion 40 is housed in the electronic device D, it is compressed by the upper housing Cu and the lower housing Cd that fit together. Therefore, the connector portion 40 is used in a compressed state in which the end-to-end distance between the first end 41a and the second end 41b is shorter than in the uncompressed state. That is, the thickness H0 of the connector portion 40, which is the end-to-end distance in the uncompressed state shown in FIG.
  • the connector portion 40 is shortened to the thickness H1 of the connector portion 40, which is the end-to-end distance in the compressed state shown in FIG. 1C.
  • the connector portion 40 can further reduce the resistance of the conductive path 41c. Accordingly, the dielectric constant of the touch sensor 10 can be increased.
  • the position of the connector portion 40 can be fixed inside the electronic device D by compression by the upper housing Cu and the lower housing Cd. That is, the touch sensor 10 can be fixed inside the electronic device D by the compressive force of the upper housing Cu and the lower housing Cd and the repulsive force of the connector portion 40 without using a fixing member.
  • the ease of assembling the touch sensor 10 to the electronic device D can be improved. Furthermore, since the touch sensor 10 is fixed inside the electronic device D only by the compressive force of the upper housing Cu and the lower housing Cd without using an adhesive or the like, the touch sensor 10 can also be easily removed from the electronic device D.
  • the cross section of the connector portion 40 is circular.
  • the cross section of the connector portion 40 is not limited to a circle, but may be a polygonal shape such as a rectangle, but is not limited to these.
  • the connector portion 40 is formed to have a constant cross section regardless of the position in the Z direction. However, the cross section of the connector portion 40 may differ depending on the position in the Z direction.
  • the connector portion 40 can be configured to be more easily compressed in the Z direction, for example, by being barrel-shaped, with the cross section areas of the upper and lower ends narrower than the cross section area of the part between them.
  • the touch sensor electrode 50 is made of a metal plate.
  • the touch sensor electrode 50 is in the form of a thin plate having a thickness in the Z direction smaller than the length in the X direction and the Y direction.
  • the metal plate is an example, and the touch sensor electrode 50 may be a metal foil thinner than a metal plate, but is not limited thereto.
  • the touch sensor electrode 50 corresponds to an input switch when performing a touch operation on the electronic device D. For this reason, the touch sensor electrode 50 is arranged on the inside of the housing C, which is the back side of the operation surface S, so that the electrode surface is aligned with the operation surface S of the electronic device, etc., which is touched by the operator's finger, etc.
  • the touch sensor electrode 50 may be arranged so as to be in direct contact with the inner surface of the housing C, which is the back side of the operation surface S, or may be arranged indirectly without direct contact with the back side of the operation surface S.
  • one or more layers or members for example, double-sided tape for fixing may be interposed between the inner surface of the housing C and the touch sensor electrode 50.
  • the touch sensor electrode 50 is positioned so that its backside surface faces and contacts the conductive portion 41 at the first end 40a of the connector portion 40.
  • the backside surface of the touch sensor electrode 50 and the conductive portion 41 at the first end 40a of the connector portion 40 are configured to be electrically connectable.
  • the touch sensor electrode 50 is provided with the connector portion 40, or the connector portion 40 is provided with the touch sensor electrode 50, so that the touch sensor 10 can be easily electrically connected to the circuit electrode E with a simple structure.
  • the conductive portion 41 of the connector portion 40 is arranged so that the second end 41b faces the circuit electrode E of the circuit board B.
  • the conductive portion 41 is configured so that it can be electrically connected to the circuit electrode E at the second end 41b. Therefore, according to this embodiment, by placing the touch sensor 10 with the conductive portion 41 at the second end 40b of the connector portion 40 in contact with the circuit electrode E, a conductive path 41c can be easily formed between the touch sensor electrode 50 at the first end 40a of the connector portion 40 and the circuit electrode E.
  • the conductive portion 41 extending between the first end 40a and the second end 40b of the connector portion 40 is columnar, more specifically, linear. Therefore, in the connection structure between the touch sensor 10 and the circuit electrode E, the linear conductive portion 41 forms a linear conductive path 41c that electrically connects the touch sensor electrode 50 and the circuit electrode E. Therefore, according to the connection structure between the touch sensor 10 and the circuit electrode E of this embodiment, the touch sensor electrode 50 and the circuit electrode E can be electrically connected in a short linear distance.
  • the area around the axis of the linear conductive portion 41 that electrically connects in a short linear distance becomes the storage space for the connector portion 40. Therefore, the internal space of the electronic device D can be efficiently utilized. Furthermore, the touch sensor 10 can be arranged on the circuit board B without interfering with the elements e and the like mounted around the circuit electrode E on the circuit board B.
  • the area of the touch sensor electrode 50 is larger than the end face of the conductive portion 41 in a plan view. That is, as shown in FIG. 1A and the like, the area of the back side of the touch sensor electrode 50 is larger than the area of the end face (first end 41a) of the conductive portion 41 at the first end 40a of the connector portion 40.
  • the position where the entire conductive portion 41 overlaps in a plan view within the area of the touch sensor electrode 50 is considered to be the normal contact position of the design between the touch sensor electrode 50 and the conductive portion 41. Therefore, according to this configuration, even if the touch sensor electrode 50 and the conductive portion 41 are deviated from the normal contact position of the design, the touch sensor electrode 50 and the conductive portion 41 can be in conductive contact. Also, even if the touch sensor electrode 50 and the conductive portion 41 are deviated from each other, the conductive contact between the touch sensor electrode 50 and the conductive portion 41 can be maintained.
  • the area of the touch sensor electrode 50 is formed to be larger than the area of the end face of the connector portion 40 in a planar view. That is, as shown in FIG. 1A etc., the area of the back side surface of the touch sensor electrode 50 is larger than the area of the first end portion 40a of the connector portion 40.
  • the touch sensor electrode 50 has a protruding portion 58 that protrudes from the first end portion 40a of the connector portion 40 in a planar view. In this way, the touch sensor electrode 50 may protrude from the end face of the connector portion 40 in a planar view. In other words, the touch sensor electrode 50 may have a portion that does not overlap with the insulating portion 42 in a planar view.
  • the touch sensor electrode 50 is formed with an area larger than the end face of the connector portion 40 in a plan view, so a variety of electrode shapes can be realized regardless of the shape of the connector portion 40.
  • the protruding portion 58 is a portion that faces the inner surface of the upper housing Cu when the touch sensor 10 is housed in the electronic device D.
  • the upper housing Cu and the protruding portion 58 may be attached with a conductive adhesive or the like.
  • the connector portion 40 does not exist below the protruding portion 58 in a plan view. For this reason, the connector portion 40 may have a pressing support portion for the protruding portion 58 protruding from the outer periphery of the connector portion 40. This can also be realized by the flange 45 in the modified example of the fourth embodiment shown in FIG. 8 described later.
  • the flange 45 can press the protruding portion 58 when the touch sensor 10 is housed in the electronic device D.
  • the flange 45 may be formed to a thickness that allows the touch sensor electrode 50 to be pressed against the back surface of the operation surface S.
  • Such a pressing support portion may be provided as a pressing protrusion that holds the protruding portion 58 on the retainer body 31 described later.
  • the touch sensor electrode 50 can be configured to be fixed integrally with the connector portion 40. That is, as shown in FIG. 1A etc., the touch sensor main body 20 is configured such that the touch sensor electrode 50 and the connector portion 40 are fixed in advance. Since the touch sensor electrode 50 and the connector portion 40 are fixed in advance, it is possible to prevent foreign objects from being caught between them.
  • the touch sensor electrode 50 and the connector portion 40 that constitute the touch sensor 10 are integrated. Therefore, the touch sensor electrode 50 and the connector portion 40 that constitute the touch sensor 10 are a single component. Therefore, the touch sensor 10 is easy to handle and can be easily electrically connected to the circuit electrode E. At this time, the contact surfaces of the touch sensor electrode 50 and the conductive portion 41 do not separate, so stable conductivity is maintained between them. This prevents attenuation of the electrical signal obtained from the touch sensor electrode 50 and operational malfunctions such as chattering between the touch sensor electrode 50 and the conductive portion 41, and stabilizes the sensor sensitivity of the touch sensor 10.
  • the touch sensor electrode 50 and the connector portion 40 are a single component, the number of components of the touch sensor 10 can be reduced.
  • the process of attaching the touch sensor main body portion 20 to the retainer 30 can be omitted, and the number of assembly steps for the touch sensor 10 can be reduced.
  • the ease of assembly of the touch sensor 10 to the electronic device D can be improved.
  • the touch sensor electrode 50 is a metal plate as described above, the touch sensor electrode 50 can be easily provided at the first end 40a of the connector portion 40.
  • the metal plate can be provided at the first end 40a by, for example, adhering with a conductive adhesive, insert molding, or the like.
  • the retainer 30 has a retainer body 31 and support legs 32.
  • the retainer body 31 holds the connector portion 40.
  • the retainer body 31 has a flat plate shape that is longer in the X and Y directions than in the Z direction.
  • the retainer body 31 has a length (thickness) in the Z direction sufficient to hold the connector portion 40. Therefore, the retainer body 31 can hold the posture of the connector portion 40, which extends in a columnar shape with the Z direction as its axial direction.
  • the retainer body 31 is provided with a cylindrical opening that penetrates in the Z direction, thereby forming a holding portion 33 that defines the shape of the opening.
  • the holding portion 33 has a cross-sectional shape that corresponds to the outer shape of an X-Y cross section that intersects with the axial direction of the connector portion 40.
  • the holding portion 33 has a cross-sectional shape that is slightly larger than the outer shape of the connector portion 40. This allows the connector portion 40 to be easily attached to the holding portion 33. Then, by attaching the connector portion 40 to the holding portion 33, the retainer 30 can hold the connector portion 40.
  • the support leg 32 is a portion that is attached to an attachment object (second attachment object) when the touch sensor 10 is mounted on the electronic device D.
  • the "attachment object" to which the support leg 32 is attached may be, but is not limited to, the electronic device D (lower housing Cd), the circuit board B, or a member provided separately from the electronic device D, the circuit board B, etc.
  • the support legs 32 are formed to protrude outward in the X-Y plane and in the Z direction, particularly downward, from the retainer body 31.
  • the support legs 32 have an X-Y cross-sectional shape that is a rounded rectangular ring (square tube shape).
  • the components of the touch sensor 10 other than the support legs 32 are contained within the area surrounded by the support legs 32.
  • the upper part in the Z direction i.e., the touch sensor electrodes 50, may protrude above the support legs 32. This is because the touch sensor main body 20 is pressed against the upper housing Cu of the electronic device D in the Z direction.
  • the retainer 30 has a retainer body 31 that holds the connector portion 40 and support legs 32 that are attached to the mounting object, so that the touch sensor 10 can be easily attached to an electronic device or the like.
  • the retainer 30 to which the touch sensor body portion 20 is previously attached may be attached to the mounting object, or the touch sensor body portion 20 may be attached to the retainer 30 that is previously attached to the mounting object.
  • the support legs 32 are configured to protrude downward from the retainer body 31. That is, the support legs 32 have a predetermined length between the retainer body 31 and the lower housing Cd, which is the "mounting object" here, and between the retainer body 31 and the circuit board B fixed to the lower housing Cd. This makes it possible to form a space in the area sandwiched between the retainer body 31 and the circuit board B.
  • the space between the retainer body 31 and the circuit board B can be used as a storage space for elements e such as a control IC (Integrated Circuit) and an LED (Light Emitting Diode) 100 mounted on the circuit board B.
  • the support legs 32 can also be made to a length corresponding to a tall element e such as an electrolytic capacitor.
  • the retainer body 31 has a first waterproof protrusion 34 (retainer body waterproof protrusion).
  • the first waterproof protrusion 34 is a waterproof member (first waterproof member) formed by an annular sealing protrusion formed on the retainer body 31.
  • the first waterproof protrusion 34 protrudes upward from the front side surface in a region including the outer circumferential end of the retainer body 31.
  • the first waterproof protrusion 34 is semicircular in side view with the upper cross-sectional area narrower than the lower cross-sectional area.
  • the first waterproof protrusion 34 into such a semicircular shape, tapered shape, etc., there is also the advantage that the reaction force load on the electronic device D that houses the touch sensor 10 is not large.
  • the tip (upper) end portion of the first waterproof protrusion 34 comes into watertight contact with the upper housing Cu.
  • the touch sensor 10 can be provided with a waterproof function that prevents water from entering from the area on the outer periphery of the retainer body 31 toward the area on the inner periphery. This prevents water from entering the touch sensor electrodes 50, etc., that are arranged in the area on the inner periphery of the retainer body 31.
  • the support leg 32 has a second waterproof protrusion 35 (operation surface side waterproof protrusion, first waterproof member) and a third waterproof protrusion 36 (circuit board side waterproof protrusion, third waterproof member).
  • the second waterproof protrusion 35 and the third waterproof protrusion 36 are waterproof members (first waterproof member and third waterproof member) formed on the support leg 32 by annular sealing protrusions.
  • the second waterproof protrusion 35 protrudes upward from the upper end surface of the support leg 32.
  • the second waterproof protrusion 35 is illustrated as being a separate member from the first waterproof protrusion 34, but may be configured as an integral part with the first waterproof protrusion 34.
  • the third waterproof protrusion 36 protrudes downward from the lower end surface of the support leg 32.
  • the second waterproof protrusion 35 and the third waterproof protrusion 36 are semicircular in side view with a cross-sectional area on the tip side narrower than the cross-sectional area on the base side, and can achieve the same effect as the first waterproof protrusion 34.
  • the second waterproof protrusion 35 has a tip (upper) end portion that makes watertight contact with the upper housing Cu when the touch sensor 10 is attached to the electronic device D.
  • the third waterproof protrusion 36 has a tip (lower) end portion that makes watertight contact with the lower housing Cd when the touch sensor 10 is attached to the electronic device D.
  • the touch sensor 10 can be endowed with a waterproof function that prevents water from entering from the area on the outer periphery of the support leg 32 toward the area on the inner periphery. This prevents water from entering the touch sensor electrode 50, the circuit electrode E, the element e mounted on the circuit board B, and the like that are arranged in the area on the inner periphery of the support leg 32.
  • the touch sensor 10 can be further configured to have a waterproofing member that blocks the gap between the touch sensor 10 and at least one of the operation target member and the mounting target (first mounting target, second mounting target). This makes it possible to make the contact position between the touch sensor 10 and the mounting target waterproof.
  • the touch sensor 10 can be given a waterproofing function that prevents water from entering from the external region of the touch sensor 10 to the internal region. Therefore, it is possible to prevent water from infiltrating the touch sensor electrode 50, the circuit electrode E, the element e mounted on the circuit board B, etc., which are arranged in the internal region of the touch sensor 10. In other words, it is possible to protect the touch sensor electrode 50, the circuit electrode E, the element e, etc. from liquid foreign matter such as water.
  • the touch sensor 10 since the touch sensor 10 has a waterproofing function, it can be applied to electronic devices D used around water such as kitchens, bathrooms, washbasins, and toilets, and electronic devices D used outdoors, on water, underwater, etc.
  • the conductive portion 41 has an electrical resistance of 100 m ⁇ or less when compressed by 25%. If the electrical resistance is 100 m ⁇ or less, the conductive portion 41 is less likely to generate heat even when a large current is passed through it. From this perspective, the electrical resistance is more preferably 20 m ⁇ or less. Due to material and other constraints, the electrical resistance is usually 0.1 m ⁇ or more.
  • the electrical resistance when compressed by 25% can be obtained by passing a current generated by a constant current source through the conductive portion 41 while the conductive portion 41 is compressed by 25%, measuring the voltage, and calculating the electrical resistance value.
  • the conductive particles 43 are preferably magnetic conductive fillers.
  • the material of the magnetic conductive fillers include nickel, cobalt, iron, ferrite, or alloys thereof, and the fillers may be in the form of particles, fibers, flakes, thin wires, etc.
  • the fillers may be made of electrically conductive metals, resins, or ceramics coated with a magnetic conductor, or magnetic conductors coated with electrically conductive metals. Examples of electrically conductive metals include gold, silver, platinum, aluminum, copper, iron, palladium, chromium, and stainless steel.
  • the average particle size of the conductive particles 43 is preferably 1 to 200 ⁇ m, and more preferably 5 to 100 ⁇ m, in that a chain state is easily formed by application of a magnetic field, and a conductor can be efficiently formed.
  • the average particle size of the conductive particles 43 is preferably 10 to 80 ⁇ m in order to suppress transmission loss of electrical signals.
  • the average particle size refers to the particle size (D50) at which the volume accumulation is 50% in the particle size distribution of the conductive filler obtained by a laser diffraction/scattering method.
  • the conductive filler may be used alone or in combination of two or more types.
  • the filling rate of the conductive particles 43 in the conductive portion 41 is, for example, 25 to 80 volume percent, and preferably 30 to 75 volume percent. By setting the filling rate of the conductive particles 43 within this range, it is possible to ensure conductivity while imparting a certain level of strength to the conductive portion 41.
  • the filling rate refers to the volume ratio of the conductive particles 43 to the total volume of the conductive portion 41.
  • the insulating section 42 does not normally contain conductive particles 43, and the filling rate of the conductive particles 43 in the insulating section 42 is 0% by volume.
  • the insulating section 42 may contain a small amount of conductive particles 43 that are inevitably mixed in during the manufacturing process, etc., within a range that does not impair the insulating properties. Therefore, for example, the filling rate of the conductive particles 43 in the insulating section 42 may be less than 5% by volume, and is preferably less than 1% by volume.
  • Thermosetting rubber is rubber that hardens and crosslinks when heated, and specific examples include silicone rubber, natural rubber, isoprene rubber, butadiene rubber, acrylonitrile butadiene rubber, styrene-butadiene rubber, chloroprene rubber, nitrile rubber, butyl rubber, ethylene-propylene rubber, ethylene-propylene-diene rubber, acrylic rubber, fluororubber, and urethane rubber.
  • silicone rubber is preferred because of its excellent moldability, electrical insulation, and weather resistance.
  • Thermoplastic elastomers include styrene-based thermoplastic elastomers, olefin-based thermoplastic elastomers, ester-based thermoplastic elastomers, urethane-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, vinyl chloride-based thermoplastic elastomers, fluorinated thermoplastic elastomers, and ion-crosslinked thermoplastic elastomers.
  • the rubber-like elastomer may be one of the above, or two or more of them may be used in combination.
  • the rubber-like elastic material that forms the polymer matrix constituting the insulating part 42 can be made of thermosetting rubber, thermoplastic elastomer, or the like. Similarly, the rubber-like elastic material that constitutes the insulating part 42 can be made of one type alone or two or more types in combination. As mentioned above, it is preferable that the rubber-like elastic material that constitutes the insulating part 42 and the conductive part 41 be integrally formed. Therefore, it is preferable to use the same type of rubber-like elastic material that constitutes the insulating part 42 and the conductive part 41, and it is more preferable that the rubber-like elastic material that constitutes the insulating part 42 and the conductive part 41 are both silicone rubber.
  • the rubber-like elastic body is preferably a hardened liquid rubber or a material that can be melted by heating.
  • liquid rubber is liquid at room temperature (23°C) and normal pressure (1 atm) before hardening, and specific rubbers that can be used include liquid rubbers listed as thermosetting rubbers, of which liquid silicone rubber is preferred. Examples of materials that can be melted by heating include thermoplastic elastomers.
  • the hardness of the conductive part 41 is preferably 30 to 87, more preferably 40 to 85, and even more preferably 60 to 80. By setting the hardness of the conductive part 41 within this range, it becomes easier to adjust the compressive stress when the conductive member is compressed by 25% within the desired range. From the same perspective, the hardness of the insulating part 42 is preferably 20 to 50, and more preferably 25 to 40. The hardness of the conductive part 41 is measured at 23°C using a type A durometer in accordance with "Vulcanized rubber and thermoplastic rubber - Determination of hardness - Part 3: Durometer hardness" described in JIS K6253-3:2012.
  • the diameter of the conductive portion 41 in the connector portion 40 is, for example, 0.3 to 6.0 mm.
  • the diameter of the conductive portion 41 is preferably 0.3 to 3.0 mm, and more preferably 0.5 to 2.6 mm.
  • the diameter of the conductive portion 41 when the diameter of the conductive portion 41 varies in the thickness direction, the diameter of the conductive portion 41 means the average value of the diameter of the conductive portion 41 on the upper surface and the diameter of the conductive portion 41 on the lower surface.
  • the diameter when the diameter is other than a circle, it can be calculated as the diameter of a circle having an area equal to the area of the conductive portion 41.
  • the diameter of the conductive portion 41 is preferably 35-97% of the diameter of the connector portion 40. By setting this ratio at 35% or more, the electrical resistance can be sufficiently reduced. On the other hand, by setting this ratio at 97% or less, the connector portion 40 can be given appropriate elasticity. From these points of view, the ratio of the diameter of the conductive portion 41 to the diameter of the connector portion 40 is more preferably 50% or more, even more preferably 55% or more, more preferably 60% or more, more preferably 95% or less, and even more preferably 80% or less. By setting such a ratio, it is possible to pass a large current, while rubber elasticity is easily maintained for a long period of time, and more stable conduction is possible. Note that when the diameter of the connector portion 40 differs in the thickness direction, the diameter means the average value of the diameter at the upper surface and the diameter at the lower surface.
  • the diameter of the connector portion 40 is not particularly limited, but is, for example, 0.5 to 8.0 mm, preferably 0.5 to 6.0 mm, and more preferably 0.8 to 5.0 mm.
  • the thickness of the connector portion 40 is not particularly limited, but is preferably 0.2 to 20.0 mm, and more preferably 0.3 to 10.0 mm. By setting the thickness of the connector portion 40 within the above-mentioned range, the connector portion 40 is easily held in a compressed state by the upper housing Cu and the lower housing Cd.
  • the compression ratio is not particularly limited, but is, for example, 5 to 40%, preferably 10 to 35%, and more preferably 15 to 30%.
  • the compression ratio can be calculated by the formula (H0-H1)/H0, where H0 is the thickness of the connector portion 40 when no load is applied, and H1 is the thickness of the connector portion 40 compressed during use.
  • the connector portion 40 of this embodiment With such a configuration, first prepare a mold consisting of an upper mold and a lower mold made of a non-magnetic material such as aluminum or copper. A pin made of a ferromagnetic material such as iron or a magnet is embedded in the upper and lower mold halves at positions corresponding to the conductive portion 41. One end of the pin is exposed on the cavity surface of the upper and lower molds.
  • the liquid rubber or molten thermoplastic elastomer that will be the raw material for the connector part 40 is injected into the cavity.
  • Magnetic conductive particles 43 are premixed into the liquid rubber.
  • a magnetic field is applied from above and below the mold using magnets.
  • a parallel magnetic field that connects the pins is formed inside the cavity, and the conductive particles 43 in the liquid rubber etc. are aligned continuously in the direction of the magnetic field lines.
  • the upper and lower molds are completely clamped and a heat treatment is performed to harden the liquid rubber, resulting in a molded body that will become the connector part 40.
  • a metal plate that will become the touch sensor electrode 50 is then attached to the molded body, resulting in the touch sensor main body part 20 of this embodiment.
  • the touch sensor 10 shown in FIG. 1 has a configuration in which a retainer 30 formed separately from the touch sensor main body 20 holds the touch sensor main body 20.
  • the touch sensor main body 20 and the retainer 30 can also be formed as a single unit.
  • a material that satisfies the functions required of both the touch sensor main body 20 and the retainer 30 is used.
  • the material used for the touch sensor main body 20 and the retainer 30 may be the same material, or two or more different materials.
  • the touch sensor main body 20 and the retainer 30 may be molded simultaneously by molding, or one may be molded after the other, and the integration method is not limited to these.
  • the modified touch sensor 10 shown in FIG. 2 has an integral structure of the touch sensor body 20 and the retainer 30. This allows the touch sensor 10 to have a simpler structure. The touch sensor 10 can therefore be easily conductively connected to the circuit electrode E with a simple structure. Furthermore, since the touch sensor body 20 and the retainer 30 are a single component, the number of components in the touch sensor 10 can be reduced. Furthermore, the touch sensor 10 does not require the step of attaching the touch sensor body 20 to the retainer 30, reducing the number of assembly steps for the touch sensor 10.
  • the area of the touch sensor electrode 50 is larger than the area of the end face of the connector portion 40 in a plan view.
  • the shape of the end face of the connector portion 40, i.e., the first end portion 40a, and the shape of the touch sensor electrode 50 may be the same shape in a plan view.
  • one connector portion 40 is arranged for one touch sensor electrode 50.
  • multiple connector portions 40 may be arranged for one touch sensor electrode 50.
  • the touch sensor 10 shown in FIG. 1 has a configuration in which a metal plate is used as the touch sensor electrode 50.
  • the touch sensor electrode 50 can also have a configuration other than a metal plate. That is, the touch sensor 10 according to this embodiment shown in FIG. 3 includes a base film 51.
  • the touch sensor electrode 50 is formed of a conductive layer 52 formed on the base film 51. Therefore, as shown in FIG. 3, the touch sensor 10 has a conductive sheet 54 in which the conductive layer 52 is formed on the base film 51.
  • the base film 51 is made of a resin film.
  • the base film 51 is in the form of a sheet that is extremely thin in the Z direction compared to the X and Y directions.
  • the base film 51 is a substrate for arranging the touch sensor electrodes 50. For this reason, the base film 51 is arranged along and below (deeper side of) the operation surface S of an electronic device or the like that is touched by an operator's finger or the like.
  • the conductive layer 52 has a wheel shape in a plan view.
  • the conductive layer 52 is arranged so that its backside faces and contacts the conductive portion 41 at the first end 40a of the connector portion 40.
  • the backside of the conductive layer 52 and the conductive portion 41 at the first end 40a of the connector portion 40 are configured to be electrically connectable.
  • the conductive layer 52 can be provided, for example, by printing or painting on the base film 51 or the first end 40a of the connector portion 40.
  • a conductive layer 52 is formed as a touch sensor electrode 50 on a substrate film 51 provided in the touch sensor 10. Therefore, even with this embodiment, the touch sensor electrode 50 can be easily provided on the first end 40a of the connector portion 40. And since the touch sensor 10 has the connector portion 40 on the conductive layer 52 or has the conductive layer 52 on the connector portion 40, the touch sensor 10 can be easily conductively connected to the circuit electrode E with a simple structure.
  • the connector portion 40 can also be formed integrally with the base film 51.
  • the base film 51 and the connector portion 40 are a single component, so even if the touch sensor 10 is configured to include the base film 51, the touch sensor 10 can be easily electrically connected to the circuit electrode E with a simple structure.
  • the base film 51 is made of a material that can be formed integrally with the connector portion 40.
  • the conductive portion 41 and the conductive layer 52 are maintained in a pre-contact state. This prevents the contact surfaces of the conductive portion 41 and the conductive layer 52 from separating, maintaining stable conductivity. This prevents attenuation of the electrical signal obtained from the conductive layer 52 and operational malfunctions such as chattering between the conductive portion 41 and the conductive layer 52, and stabilizes the sensor sensitivity of the touch sensor 10.
  • the conductive layer 52 is formed across the area from the connector portion 40 to the area of the retainer body 31 in a plan view. Therefore, the conductive layer 52 is covered and protected by the base film 51, the insulating portion 42, and the retainer body 31. This improves the durability of the conductive layer 52, and allows the high reliability of the touch sensor 10 to be maintained.
  • the base film 51 has a fourth waterproof protrusion 53 (base waterproof protrusion).
  • the fourth waterproof protrusion 53 is a waterproof member (first waterproof member) formed by an annular sealing protrusion formed on the base film 51.
  • the fourth waterproof protrusion 53 protrudes upward from the front side surface in an area including the outer circumferential end of the base film 51.
  • the tip (upper) end portion of the fourth waterproof protrusion 53 comes into watertight contact with the upper housing Cu.
  • This provides waterproofing between the fourth waterproof protrusion 53 and the upper housing Cu.
  • the touch sensor 10 can be given a waterproof function that prevents water from entering from the outer circumferential area of the base film 51 toward the inner circumferential area. Therefore, it is possible to prevent infiltration into the touch sensor electrodes 50 and the like arranged in the inner circumferential area of the base film 51.
  • the conductive layer 52 can be formed on the base film 51 by a method of conductive printing in the desired sensor shape on the X-Y plane, a method of laminating conductive metal foil in the desired sensor shape, or the like. Furthermore, when the conductive sheet 54 is integrated with the connector portion 40, the conductive layer 52 can also be formed by a method of conductive printing on the first end portion 40a of the connector portion 40, or a method of laminating conductive metal foil. After that, the connector portion 40 and the base film 51 can be integrally formed.
  • the base film 51 can be a thin film, sheet, etc. made of resin, synthetic rubber, thermoplastic elastomer, etc.
  • resin include thermoplastic resins such as polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polycarbonate (PC), polyamide (PA), acrylic (AC), polyvinyl chloride (PVC), etc.
  • synthetic rubber include urethane rubber, silicone rubber, fluororubber, etc.
  • thermoplastic elastomers include urethane-based, olefin-based, styrene-based, polyester-based, silicone-based, fluorine-based, etc.
  • the conductive layer 52 can be made of a metal paste such as silver or copper, a carbon paste, a conductive coating such as a conductive polymer, or a conductive metal foil. Furthermore, the conductive layer 52 can be made of a paste containing conductive nanoparticles such as PEDOT/PSS (Poly(3,4-EthyleneDiOxyThiophene) PolyStyrene Sulfonate (a dispersion of polyethylenedioxythiophene and polystyrenesulfonic acid), ITO (Indium Tin Oxide), nanoscale fine conductive powder, or fine conductive fibers. If the conductive layer 52 is a transparent conductive film using a thin film, paste, or paste containing conductive nanoparticles of PEDOT/PSS or ITO, it will be translucent and can transmit backlight illumination.
  • PEDOT/PSS Poly(3,4-EthyleneDiOxyThiophene) PolyStyrene Sulfonate (a dispersion of
  • the touch sensor electrode 50 and the conductive portion 41 at the first end 41a are positioned opposite each other.
  • the touch sensor electrode 50 has an electrode body 55 and an electrode extension 56.
  • the electrode body 55 is located in the operation area. That is, the electrode body 55 is arranged on the back side of the operation surface S of an electronic device or the like that is touched by the operator's finger or the like.
  • the electrode extension 56 is located outside the operation area. That is, the electrode extension 56 is not located on the back side of the operation surface S.
  • the electrode extension 56 extends in a wire-like manner from the electrode body 55.
  • the tip of the electrode extension 56 is a dead end, and is not connected to other circuits. That is, the electrode extension 56 is not connected to other circuits.
  • the conductive portion 41 is arranged so as to be in conductive contact with such an electrode extension 56.
  • the touch sensor 10 according to this modified example can be applied to a configuration in which the electrode body 55 is arranged along the top surface of the electronic device D, the electrode extension 56 is arranged along the side surface of the electronic device D, and the conductive portion 41 extends in the horizontal direction.
  • the conductive portion 41 of the connector portion 40 can be configured to be in conductive contact not only with the electrode main body portion 55 located in the operation area, but also with the electrode extension portion 56 located outside the operation area. Therefore, the touch sensor 10 can achieve conductive contact between the touch sensor electrode 50 and the conductive portion 41 even when the touch sensor 10 is located outside the operation area. Therefore, the touch sensor 10 can increase the degree of freedom in the connection position with the circuit electrode E on which it is mounted.
  • the touch sensor 10 can be configured to have a "positioning portion" that positions the touch sensor electrode 50 and the conductive portion 41 at a predetermined contact position.
  • the base film 51 has a positioning recess 57 as a "positioning portion", and the retainer body 31 has a positioning protrusion 37 as a "positioning portion”.
  • the positioning recess 57 is a cylindrical opening penetrating the base film 51 in the Z direction.
  • the positioning protrusion 37 is a cylindrical protrusion protruding upward from the front side surface of the retainer body 31.
  • the positioning recess 57 and the positioning protrusion 37 are provided at positions where they overlap each other in a plan view.
  • the touch sensor 10 often has a shape that is symmetrical with respect to the X-axis and Y-axis, as shown in Figure 5A.
  • the number of “positioning portions” There is no particular limit to the number of "positioning portions”. However, if there is one set of “positioning portions”, there is a risk that the base film 51 will rotate around the "positioning portions” in the X-Y plane. On the other hand, if there are three or more sets of “positioning portions”, it becomes difficult to assemble the "positioning portions” at all locations. Therefore, it is preferable that there are two sets of “positioning portions”, in that the touch sensor electrodes 50 and the conductive portions 41 can be reliably positioned at the specified contact positions and can be easily assembled. Furthermore, the number of positioning protrusions 37 and positioning recesses 57 does not necessarily have to be the same. For example, one positioning protrusion 37 and two positioning recesses 57 may be provided.
  • the touch sensor 10 of this modified example has a positioning recess 57 and a positioning protrusion 37 that determine the positional relationship between the base film 51 and the connector portion 40. This allows the touch sensor electrode 50 and the conductive portion 41 to be placed in a predetermined contact position. Furthermore, after the touch sensor electrode 50 and the conductive portion 41 are placed in the predetermined contact position, the mating positioning recess 57 and positioning protrusion 37 allow the touch sensor electrode 50 and the conductive portion 41 to be maintained in the predetermined contact position.
  • the touch sensor 10 can also be configured to have multiple connector portions 40 and multiple touch sensor electrodes 50. This allows the touch sensor 10 to be used as a multi-pole sensor electrode, slider electrode, etc.
  • the touch sensor 10 has four connector parts 40 and four touch sensor electrodes 50.
  • the four connector parts 40 and the four touch sensor electrodes 50 are arranged at equal intervals in the X direction. All four connector parts 40 have the same shape.
  • the four touch sensor electrodes 50 are slider electrodes that are all formed in a W shape in a plan view.
  • the four touch sensor electrodes 50 are formed on a single base material film 51. Therefore, by assembling one base material film 51 to the connector parts 40 and the retainer 30, it is possible to make conductive contact between all four touch sensor electrodes 50 and the conductive parts 41.
  • the connector portion 40 and the touch sensor electrode 50 can each be configured in a plurality of parts. Therefore, the touch sensor 10 can be easily electrically connected even if the connector portion 40 and the touch sensor electrode 50 are each multiple.
  • the connector portion 40 has a simple cylindrical shape and can be positioned arbitrarily in the Z direction relative to the retainer body 31. However, it is also possible to configure the connector portion 40 to determine its position in the Z direction.
  • the connector portion 40 is formed in a columnar shape.
  • a touch sensor electrode 50 made of metal foil is provided at the first end 40a of the connector portion 40.
  • the connector portion 40 has a locking protrusion 44 on its outer periphery that locks the connector portion 40 to an object to which the connector portion 40 is to be attached.
  • the object to be attached here is the retainer 30.
  • the object to be attached may be an attachment member formed on the electronic device D or the like.
  • the locking protrusion 44 is a protrusion that protrudes outward in a semicircular shape from the outer periphery of the connector portion 40 and goes around the connector portion 40 in a ring shape.
  • the locking protrusion 44 When the locking protrusion 44 is simply to lock the connector portion 40 to the object to which the connector portion 40 is to be attached, it does not matter if the locking protrusion 44 does not go around completely and has a partial missing portion.
  • Two locking protrusions 44 are formed with a gap between them at the top and bottom.
  • the connector portion 40 has a tapered shape with a smaller diameter toward the bottom. Therefore, the upper locking protrusion 44 has a larger diameter than the lower locking protrusion 44 in the XY plane.
  • the connector portion 40 When the connector portion 40 is attached to the retainer 30 from above, the connector portion 40 is tapered and is therefore easily pushed into the retainer 30 until the lower locking projection 44 comes into contact with it. Furthermore, when the connector portion 40 is pushed into the retainer 30 from above, the lower locking projection 44 climbs over the retainer 30. That is, the lower locking projection 44 passes through a cylindrical opening formed in the retainer body 31 that penetrates in the Z direction from above to below. On the other hand, the opening of the retainer body 31 is formed with dimensions that do not allow the upper locking projection 44 to climb over it. Therefore, the connector portion 40 is fixed with the retainer 30 sandwiched between the upper locking projection 44 and the lower locking projection 44.
  • the locking protrusions 44 on the outer periphery of the columnar connector portion 40 are configured to lock onto the object to which the touch sensor 10 is attached. Therefore, the connector portion 40 can easily fasten the touch sensor 10 to the object to which the touch sensor 10 is attached.
  • the locking projection 44 can be provided with a water-stopping portion.
  • This can provide a waterproof function that prevents water from entering between the locking projection 44 and the retainer 30 toward the element e and the like mounted on the circuit board B.
  • the water-stopping portion can be provided, for example, by increasing the adhesion with the retainer 30, increasing the contact area with the retainer 30, etc.
  • the retainer 30 is configured to have a waterproof function.
  • the configuration of the connector portion 40 can also be configured to enhance the waterproof function of the touch sensor 10. That is, in a modified example of the fourth embodiment shown in FIG. 8, the connector portion 40 has a flange 45 that extends to the outer periphery, and the waterproof members (first waterproof member and second waterproof member) can be configured to be the flange 45.
  • the connector portion 40 has a cylindrical shape with the same dimensions in the vertical direction. As with the touch sensor 10 shown in FIG. 7, the connector portion 40 has a lower locking protrusion 44, but does not have an upper locking protrusion 44.
  • the connector portion 40 has a flange 45 that protrudes outward in a disk shape from the outer circumferential surface of the upper portion including the first end 40a of the connector portion 40.
  • a touch sensor electrode 50 made of metal foil is provided on the first end 40a of the connector portion 40, and its range extends to the outer circumferential edge of the flange 45.
  • the connector part 40 When the connector part 40 is attached to the retainer 30 from above, the lower locking projection 44 climbs over the retainer 30. At that time, the flange 45 comes into contact with the retainer 30 over a wide area. Therefore, the connector part 40 is fixed with the retainer 30 sandwiched between the upper flange 45 and the lower locking projection 44.
  • the flange 45 is formed to extend toward the outer periphery of the connector portion 40. This allows the flange 45 to cover a wider area of the outer periphery of the touch sensor 10.
  • a waterproofing member is formed on the connector portion 40 as the flange 45. This allows the touch sensor 10 to be waterproof between the flange 45 and the object to which it is attached.
  • the touch sensor 10 is not limited to being embedded under a flat operation surface S without any irregularities, but can also be applied to an electronic device D whose operation surface S is a three-dimensional surface. That is, in the fifth embodiment shown in FIG. 9, the base film 51 has a three-dimensional shape, and the touch sensor electrode 50 can be configured to be formed along the three-dimensional shape of the base film 51.
  • the operation surface S of this embodiment is shaped like a truncated cone, and a base film 51 is provided along the top and side surfaces.
  • the touch sensor electrode 50 is formed across the top and side surfaces. However, the touch sensor electrode 50 is not formed in the center of the top surface. In other words, the touch sensor electrode 50 is shaped like a wheel with a central portion missing.
  • the connector portion 40 extends to a position on the back side of the top surface of the operation surface S to match the operation surface S, which protrudes upward as a three-dimensional shape. By being configured in this way, the touch sensor 10 is configured to be able to detect operations by an operator on the outer periphery and side surfaces of the top surface.
  • the touch sensor electrode 50 is formed along the three-dimensional shape of the base film 51. This makes it possible to realize a touch sensor 10 with a three-dimensional operating area. In this case, if the operating surface S is three-dimensional, the inter-terminal distance from the touch sensor electrode 50 to the circuit electrode E becomes long, which tends to increase electrical resistance. However, the touch sensor 10 according to this embodiment has a linear conductive portion 41, so that a conductive connection can be established from the touch sensor electrode 50 to the circuit electrode E in a short linear distance. As a result, the resistance of the conductive path 41c of the touch sensor 10 can be reduced, thereby improving the sensor sensitivity of the touch sensor 10.
  • the first end 40a of the connector portion 40 is formed perpendicular to the extension direction of the conductive portion 41, i.e., horizontally.
  • the first end 40a of the connector portion 40 that is in conductive contact with the touch sensor electrode 50 can be configured to be formed with an inclined surface.
  • the operation surface S of this modified example has a quadrangular pyramid shape, and a base film 51 is provided along the top and side surfaces.
  • the touch sensor electrode 50 is formed on the side surface.
  • the connector portion 40 extends to a position behind the side surface of the operation surface S to match the operation surface S, which protrudes upward as a three-dimensional shape.
  • the connector portion 40 connects to the touch sensor electrode 50 as an inclined surface at the first end portion 40a.
  • the conductive portion 41 is in conductive contact with the touch sensor electrode 50 as an inclined surface at the first end portion 41a of the conductive portion 41, similar to the connector portion 40.
  • the touch sensor 10 is configured in this manner, and is configured to be able to detect operations by an operator on the side surface.
  • the first end 41a of the connector portion 40 that is in conductive contact with the touch sensor electrode 50 is formed as an inclined surface. This makes it possible to realize a touch sensor 10 whose operation area is an inclined surface.
  • the touch sensor electrodes 50 can also be provided on the three-dimensional side surface and the planar top surface of the upper housing Cu. Furthermore, the touch sensor 10 can also be provided with a light-emitting element such as an LED 100.
  • the operation surface S of this modified example is shaped like a truncated cone, and a base film 51 is provided along its top and side surfaces and the top surface of the planar shape.
  • the touch sensor electrode 50 is formed spanning from the side surface to the top surface of the planar shape.
  • the connector portion 40 extends to a position behind the top surface of the planar shape.
  • the touch sensor 10 is configured in this way, so that it can detect operations by an operator on the side surface and the top surface of the planar shape.
  • An LED 100 is mounted on the circuit board B.
  • a light-transmitting material is used for the upper housing Cu and the base film 51.
  • the touch sensor electrodes 50 are formed along the three-dimensional side portions and the planar top surface of the upper housing Cu. This makes it possible to realize a touch sensor 10 in which the operation area is on a three-dimensional inclined surface, a planar top surface, etc. Furthermore, in this modified example, an LED 100 is provided. This makes it possible to prompt the operator to perform an operation using the LED 100, and to notify the operator of the results of the operation using light, etc.
  • the configurations shown in each embodiment and modification may be freely combined to the extent that no contradictions arise.
  • the multiple connector parts 40 and multiple touch sensor electrodes 50 in the third embodiment may be combined with the configurations of any of the embodiments and modifications.
  • the touch sensor electrode 50 made of a metal plate in the first embodiment and the touch sensor electrode 50 in which a conductive layer 52 is formed on a base film 51 in the second embodiment may have any configuration used in the other embodiments and modifications.
  • the “touch sensor” of this disclosure can also be applied to a “proximity sensor” that does not come into contact with the operation area.

Abstract

Provided is a touch sensor with which it is possible to establish a conductive connection by means of a simple structure. A touch sensor 10 is provided with: a connector part 40 which has a conductive part 41 and an insulated part 42 formed from a rubber-like elastic body covering the conductive part 41; and a touch sensor electrode 50 which is located at a first end 40a of the connector part 40 and is in conductive contact with the conductive part 41. By providing the touch sensor electrode 50 with the connector part 40, or providing the connector part 40 with the touch sensor electrode 50, it is possible to easily conductively connect the touch sensor 10 to a circuit electrode E by means of a simple structure.

Description

タッチセンサ及びタッチセンサと接続対象物との接続構造Touch sensor and connection structure between touch sensor and connection object
 本出願による開示は、タッチセンサ及びタッチセンサと接続対象物との接続構造に関する。 The disclosure of this application relates to a touch sensor and a connection structure between the touch sensor and an object to be connected.
 操作者の入力を検出するセンサの一つとして、タッチセンサが知られている。タッチセンサの代表的な方式である静電容量センサは、例えば電子機器の筐体の外表面に配置された操作面に操作者の指が触れることによって生じる静電容量の変化を検出するものである(例えば特許文献1)。 Touch sensors are known as one type of sensor that detects input from an operator. A capacitance sensor, which is a typical type of touch sensor, detects changes in capacitance that occur when an operator's finger touches an operating surface that is located on the outer surface of the housing of an electronic device (for example, Patent Document 1).
特開2016-081818号公報、図1JP 2016-081818 A, FIG. 1
 タッチセンサは、電子機器に対してタッチ操作を行う際の入力スイッチに相当するタッチセンサ電極を有する。そして、タッチセンサ電極から得られる電気信号は、基板回路(回路電極)等の接続対象物を介して検出回路において解析される。このとき、タッチセンサ電極は、電子機器の操作面、例えば筐体の外表面に沿って設けられる。他方で、接続対象物は、操作面から離れた位置、例えば筐体の内部の奥深い位置に設けられることがある。 A touch sensor has touch sensor electrodes that correspond to input switches when performing touch operations on an electronic device. The electrical signal obtained from the touch sensor electrodes is analyzed in a detection circuit via a connection object such as a board circuit (circuit electrode). At this time, the touch sensor electrodes are provided along the operation surface of the electronic device, for example, along the outer surface of the housing. On the other hand, the connection object may be provided at a position away from the operation surface, for example, deep inside the housing.
 しかしながら、タッチセンサ電極に対して接続対象物を離して配置すると、これらの間を接続する部品点数が増えて接続構造が複雑化しまうおそれがある。 However, if the connection object is placed away from the touch sensor electrode, the number of components required to connect them increases, which may complicate the connection structure.
 本開示は、簡易な構造で導通接続可能なタッチセンサの提供を目的とする。 The purpose of this disclosure is to provide a touch sensor that can be electrically connected with a simple structure.
 本出願で開示するいくつかの態様は、以下の特徴を有するものとして構成される。 Some aspects disclosed in this application are configured to have the following features:
 すなわち、本開示の一態様は、導電部と前記導電部を覆うゴム状弾性体でなる絶縁部とを有するコネクタ部と、前記コネクタ部の第1の端部に位置して前記導電部と導通接触するタッチセンサ電極とを備え、前記コネクタ部は、接続対象物に接触させることによって、前記タッチセンサ電極と前記接続対象物とを導通接続する第2の端部を有し、前記第1の端部と前記第2の端部との間を伸長する前記導電部は、直線形状であるタッチセンサである。 In other words, one aspect of the present disclosure includes a connector portion having a conductive portion and an insulating portion made of a rubber-like elastic material covering the conductive portion, and a touch sensor electrode located at a first end of the connector portion and in conductive contact with the conductive portion, the connector portion having a second end that conductively connects the touch sensor electrode to an object to be connected by contacting the connector portion with the object to be connected, and the conductive portion extending between the first end and the second end is a touch sensor having a linear shape.
 本開示の一態様は、コネクタ部と、タッチセンサ電極とを有するタッチセンサである。そして、コネクタ部の導電部と導通接触するタッチセンサ電極はコネクタ部の第1の端部に位置する。このため、タッチセンサは接続対象物と簡易な構造で容易に導通接続することができる。 One aspect of the present disclosure is a touch sensor having a connector portion and a touch sensor electrode. The touch sensor electrode, which is in conductive contact with the conductive portion of the connector portion, is located at a first end of the connector portion. Therefore, the touch sensor can be easily conductively connected to an object to be connected with a simple structure.
 さらに、コネクタ部の第2の端部を接続対象物に接触させてタッチセンサを配置することで、コネクタ部は、その第1の端部にあるタッチセンサ電極と接続対象物との導通路を容易に形成することができる。そして、直線形状の導電部は、タッチセンサ電極と接続対象物とを導通接続する直線状の導通路を形成する。このため、前記接続構造は、タッチセンサ電極と接続対象物とを短い直線距離で導通接続することができる。 Furthermore, by placing the touch sensor with the second end of the connector portion in contact with the connection object, the connector portion can easily form a conductive path between the touch sensor electrode at its first end and the connection object. The linear conductive portion forms a linear conductive path that conductively connects the touch sensor electrode and the connection object. Therefore, the connection structure can conductively connect the touch sensor electrode and the connection object over a short linear distance.
 本開示の一態様では、前記タッチセンサ電極の面積は、前記導電部の端面よりも大きな面積で形成されている。 In one aspect of the present disclosure, the area of the touch sensor electrode is larger than the end face of the conductive portion.
 タッチセンサ電極の面積は導電部の端面よりも大きい。このため、タッチセンサ電極と導電部との設計上の正規の接触位置からのずれが生じたとしても、タッチセンサ電極と導電部とを導通接触させることができる。また、タッチセンサ電極と導電部とにずれが生じたとしても、タッチセンサ電極と導電部とは導通接触を維持することができる。 The area of the touch sensor electrode is larger than the end face of the conductive portion. Therefore, even if the touch sensor electrode and the conductive portion are misaligned from the correct contact position as designed, the touch sensor electrode and the conductive portion can be in conductive contact. Furthermore, even if the touch sensor electrode and the conductive portion are misaligned, the touch sensor electrode and the conductive portion can maintain conductive contact.
 本開示の一態様では、前記タッチセンサ電極は、前記コネクタ部と一体に固着している。 In one aspect of the present disclosure, the touch sensor electrode is integrally fixed to the connector portion.
 タッチセンサ電極とコネクタ部とが一体化している。このため、タッチセンサを構成するタッチセンサ電極とコネクタ部とが単一部品となる。したがって、タッチセンサは、取扱いが容易であり、また接続対象物に対して容易に導通接続できる。 The touch sensor electrode and the connector section are integrated. As a result, the touch sensor electrode and the connector section that make up the touch sensor are a single component. This makes the touch sensor easy to handle and easy to electrically connect to the object to which it is connected.
 本開示の一態様では、前記タッチセンサ電極は、金属板である。 In one aspect of the present disclosure, the touch sensor electrode is a metal plate.
 タッチセンサ電極が金属板である。このため、コネクタ部は、その第1の端部にタッチセンサ電極を容易に設けることができる。この場合、金属板は、例えば導電性接着剤による固着、インサート成形等により第1の端部に設けることができる。 The touch sensor electrode is a metal plate. Therefore, the connector portion can easily have a touch sensor electrode provided at its first end. In this case, the metal plate can be provided at the first end by, for example, adhering with a conductive adhesive, insert molding, etc.
 本開示の一態様では、前記タッチセンサは、基材フィルムを備えており、前記コネクタ部は、前記基材フィルムと一体に形成されている。 In one aspect of the present disclosure, the touch sensor includes a base film, and the connector portion is formed integrally with the base film.
 タッチセンサが備える基材フィルムとコネクタ部とが一体に形成されている。このため、基材フィルムとコネクタ部とが単一部品であるので、タッチセンサが基材フィルムを備える構成であっても、タッチセンサを接続対象物と簡易な構造で容易に導通接続することができる。 The base film and connector portion of the touch sensor are formed as a single unit. Therefore, because the base film and connector portion are a single component, even if the touch sensor is configured to include a base film, the touch sensor can be easily conductively connected to the object to be connected with a simple structure.
 本開示の一態様では、前記タッチセンサは、基材フィルムを備えており、前記タッチセンサ電極は、前記基材フィルム及び前記第1の端部のいずれかに形成した導電層である。 In one aspect of the present disclosure, the touch sensor includes a base film, and the touch sensor electrode is a conductive layer formed on either the base film or the first end.
 タッチセンサが備える基材フィルムにセンサ電極として導電層が形成されている。このため、コネクタ部の第1の端部にタッチセンサ電極を容易に設けることができる。この場合、導電層は、例えば基材フィルム又はコネクタ部の第1の端部に対する印刷、塗装等により設けることができる。 A conductive layer is formed as a sensor electrode on the base film of the touch sensor. This makes it easy to provide a touch sensor electrode at the first end of the connector part. In this case, the conductive layer can be provided, for example, by printing or painting on the base film or the first end of the connector part.
 本開示の一態様では、前記タッチセンサ電極は、操作領域に位置する電極本体部と、操作領域外に位置する電極延長部とを有し、前記導電部は、前記電極延長部と導通接触する。 In one aspect of the present disclosure, the touch sensor electrode has an electrode main body portion located in the operation area and an electrode extension portion located outside the operation area, and the conductive portion is in conductive contact with the electrode extension portion.
 コネクタ部の導電部は、操作領域に位置する電極本体部に限らず、操作領域外に位置する電極延長部と導通接触するようにも構成できる。このため、タッチセンサは、操作領域外の位置であっても、タッチセンサ電極と導電部とを導通接触させることができる。したがってタッチセンサは、それが搭載される電気機器における、接続対象物との接続位置の自由度を高めることができる。 The conductive portion of the connector portion can be configured to be in conductive contact not only with the electrode main body portion located in the operation area, but also with the electrode extension portion located outside the operation area. Therefore, the touch sensor can bring the touch sensor electrode and the conductive portion into conductive contact even in a position outside the operation area. Therefore, the touch sensor can increase the degree of freedom in the connection position with the connection target in the electrical device in which it is mounted.
 本開示の一態様では、前記タッチセンサは、前記タッチセンサ電極と前記導電部とを所定の接触位置に配置する位置決め部を有する。 In one aspect of the present disclosure, the touch sensor has a positioning portion that positions the touch sensor electrode and the conductive portion at a predetermined contact position.
 タッチセンサは、タッチセンサ電極と導電部との互いの位置関係を決める位置決め部を有する。このため、タッチセンサ電極と導電部とを所定の接触位置に据えることができる。 The touch sensor has a positioning portion that determines the relative positions of the touch sensor electrode and the conductive portion. This allows the touch sensor electrode and the conductive portion to be placed in a predetermined contact position.
 本開示の一態様では、前記タッチセンサは、複数の前記コネクタ部と、複数の前記タッチセンサ電極とを有する。 In one aspect of the present disclosure, the touch sensor has a plurality of the connector portions and a plurality of the touch sensor electrodes.
 コネクタ部及びタッチセンサ電極は、それぞれ複数としても構成できる。このため、コネクタ部及びタッチセンサ電極がそれぞれ複数であっても、それらは容易に導通接続することができる。 The connector portion and the touch sensor electrodes can each be configured in multiple numbers. Therefore, even if there are multiple connector portions and multiple touch sensor electrodes, they can be easily electrically connected.
 本開示の一態様では、前記コネクタ部は、柱状に形成されており、その外周には前記コネクタ部を取り付ける第1の取付対象物に対して係止する係止突起を有する。ここでの取付対象物は、電子機器(筐体)でも、回路基板でも、電子機器、回路基板等とは別に設けられた部材でも良く、それらに限定されない。 In one aspect of the present disclosure, the connector portion is formed in a columnar shape, and has a locking protrusion on its outer periphery that locks onto a first attachment object to which the connector portion is attached. The attachment object here may be, but is not limited to, an electronic device (housing), a circuit board, or a member provided separately from the electronic device, the circuit board, etc.
 柱状のコネクタ部の外周に有する係止突起は、取付対象物に対して係止する。このため、タッチセンサを取付対象物に容易に留めることができる。 The locking projections on the outer periphery of the columnar connector portion lock into the object to which it is attached. This makes it easy to attach the touch sensor to the object.
 前記係止突起には、止水部を設けることができる。これによって、係止突起と取付対象物との間から回路基板に実装する素子等に向かって水の浸入を防ぐ防水機能を付与することができる。この場合、止水部は、例えば取付対象物との密着性を高めること、取付対象物との接触面積を大きくすること等によって設けることができる。 The locking projection can be provided with a water-stopping section. This provides a waterproof function that prevents water from entering between the locking projection and the mounting object toward the elements mounted on the circuit board. In this case, the water-stopping section can be provided, for example, by increasing the adhesion with the mounting object or by increasing the contact area with the mounting object.
 本開示の一態様では、前記タッチセンサは、リテーナを備え、前記リテーナは、前記コネクタ部を保持するリテーナ本体と、前記リテーナ本体から突出して前記リテーナを第2の取付対象物に取り付ける支持脚とを有する。 In one aspect of the present disclosure, the touch sensor includes a retainer having a retainer body that holds the connector portion and support legs that protrude from the retainer body and attach the retainer to a second mounting object.
 タッチセンサはリテーナを備える。このため、リテーナはコネクタ部を保持することができる。リテーナは、コネクタ部を保持するリテーナ本体と、取付対象物に取り付ける支持脚とを有する。このため、本開示の一態様によれば、タッチセンサを電子機器等に容易に取り付けることができる。 The touch sensor includes a retainer. Therefore, the retainer can hold the connector portion. The retainer has a retainer body that holds the connector portion, and support legs that are attached to the mounting object. Therefore, according to one aspect of the present disclosure, the touch sensor can be easily attached to electronic devices, etc.
 本開示の一態様では、前記支持脚は、前記リテーナ本体と前記第2の取付対象物との間に、回路基板に実装する素子の収容空間を形成する長さを有する。 In one aspect of the present disclosure, the support legs have a length that forms a space between the retainer body and the second mounting object to accommodate an element to be mounted on a circuit board.
 支持脚は、リテーナ本体と取付対象物との間に所定の長さを有する。このため、リテーナ本体と取付対象物とに挟まれた部分に空間を形成することができる。したがって、リテーナ本体と取付対象物との間を回路基板に実装する素子の収容空間とすることができる。 The support legs have a predetermined length between the retainer body and the object to which they are attached. This allows a space to be formed between the retainer body and the object to which they are attached. This allows the space between the retainer body and the object to which they are attached to be used as a space to accommodate elements to be mounted on the circuit board.
 本開示の一態様では、前記基材フィルムが立体形状であり、前記タッチセンサ電極が前記基材フィルムの前記立体形状に沿って形成されている。 In one aspect of the present disclosure, the base film has a three-dimensional shape, and the touch sensor electrode is formed along the three-dimensional shape of the base film.
 タッチセンサ電極は、基材フィルムの立体形状に沿って形成されている。このため、操作領域が立体形状のタッチセンサを実現することができる。 The touch sensor electrodes are formed to conform to the three-dimensional shape of the base film. This makes it possible to realize a touch sensor with a three-dimensional operating area.
 本開示の一態様では、前記タッチセンサ電極と導通接触する前記コネクタ部の前記第1の端部が傾斜面で形成される。 In one aspect of the present disclosure, the first end of the connector portion that is in conductive contact with the touch sensor electrode is formed with an inclined surface.
 タッチセンサ電極と導通接触するコネクタ部の第1の端部は、傾斜面で形成されている。このため、操作領域が傾斜面のタッチセンサを実現することができる。 The first end of the connector portion that is in conductive contact with the touch sensor electrode is formed with an inclined surface. This makes it possible to realize a touch sensor whose operation area is an inclined surface.
 本開示の一態様では、前記タッチセンサは、さらに、防水用部材を有し、前記防水用部材は、操作者がタッチ操作を行う操作対象部材と前記タッチセンサとの間を閉塞する第1の防水用部材と、前記コネクタ部を取り付ける第1の取付対象物と前記タッチセンサとの間を閉塞する第2の防水用部材と、前記第2の取付対象物と前記タッチセンサとの間を閉塞する第3の防水用部材の少なくともいずれかである。 In one aspect of the present disclosure, the touch sensor further has a waterproofing member, which is at least one of a first waterproofing member that seals between the touch sensor and an operation target member that an operator touches, a second waterproofing member that seals between the touch sensor and a first attachment target to which the connector portion is attached, and a third waterproofing member that seals between the second attachment target and the touch sensor.
 タッチセンサが取付対象物との間を閉塞する防水用部材を有する。このため、タッチセンサと取付対象物との接触位置において防水ができる。 The touch sensor has a waterproofing member that seals the space between it and the object it is attached to. This makes the contact point between the touch sensor and the object it is attached to waterproof.
 本開示の一態様では、前記防水用部材は、前記リテーナ本体に形成された環状のシーリング突起である。 In one aspect of the present disclosure, the waterproofing member is an annular sealing protrusion formed on the retainer body.
 防水用部材が環状のシーリング突起としてリテーナ本体に形成されている。このため、リテーナ本体と取付対象物との間で防水ができる。 The waterproofing member is formed on the retainer body as an annular sealing protrusion. This allows waterproofing between the retainer body and the object to which it is attached.
 本開示の一態様では、前記支持脚は、環状に形成されており、前記防水用部材は、前記支持脚に形成された環状のシーリング突起である。 In one aspect of the present disclosure, the support leg is formed in a ring shape, and the waterproofing member is a ring-shaped sealing protrusion formed on the support leg.
 支持脚は環状に形成されている。このため、支持脚がタッチセンサの周囲を環状に覆うことができる。そして、防水用部材は、環状のシーリング突起として支持脚に形成されている。このため、支持脚と取付対象物との間で防水ができる。 The support legs are formed in a ring shape. This allows the support legs to cover the periphery of the touch sensor in a ring shape. The waterproofing member is formed on the support legs as a ring-shaped sealing protrusion. This allows waterproofing between the support legs and the object to which they are attached.
 本開示の一態様では、前記防水用部材は、前記タッチセンサが備える基材フィルムに形成された環状のシーリング突起である。 In one aspect of the present disclosure, the waterproofing member is a ring-shaped sealing protrusion formed on a base film of the touch sensor.
 防水用部材は、環状のシーリング突起として基材フィルムに形成されている。このため、基材フィルムと取付対象物との間で防水ができる。 The waterproofing member is formed on the base film as an annular sealing protrusion. This allows waterproofing between the base film and the object to which it is attached.
 本開示の一態様では、前記コネクタ部は、外周側に伸長するフランジを有し、前記防水用部材は、前記フランジである。 In one aspect of the present disclosure, the connector portion has a flange that extends outwardly, and the waterproofing member is the flange.
 フランジは、コネクタ部の外周側に伸長して形成されている。このため、フランジがタッチセンサの外周側をより広い面積で覆うことができる。そして、防水用部材は、フランジとしてコネクタ部に形成されている。このため、フランジと取付対象物との間で防水ができる。 The flange is formed to extend outward from the connector portion. This allows the flange to cover a wider area of the outer periphery of the touch sensor. The waterproofing member is formed as a flange on the connector portion. This provides waterproofing between the flange and the object to which it is attached.
 本開示の一態様では、前記タッチセンサは、さらに、操作者がタッチ操作を行う操作対象部材を備える。 In one aspect of the present disclosure, the touch sensor further includes an operation target member that is touched by the operator.
 タッチセンサは、さらに、操作者がタッチ操作を行う操作対象部材を備える。このため、操作対象部材を備えるタッチセンサにおいても、接続対象物と簡易な構造で容易に導通接続することができる。 The touch sensor further includes an operation target member that is touched by the operator. Therefore, even in a touch sensor that includes an operation target member, it is possible to easily establish a conductive connection with a connection target using a simple structure.
 本開示の一態様は、前記タッチセンサを備え、前記導電部は、直線形状であり、前記タッチセンサ電極と前記接続対象物とを導通接続する直線状の導通路を形成するタッチセンサと接続対象物との接続構造である。 One aspect of the present disclosure is a connection structure between a touch sensor and a connection object, which includes the touch sensor, and the conductive portion has a linear shape and forms a linear conductive path that electrically connects the touch sensor electrode and the connection object.
 本開示の一態様は、タッチセンサと接続対象物との接続構造である。そして、タッチセンサのコネクタ部の導電部と導通接触するタッチセンサ電極は、コネクタ部の第1の端部に位置する。このため、タッチセンサ電極にコネクタ部を備える又はコネクタ部にタッチセンサ電極を備えるので、タッチセンサは、接続対象物と簡易な構造で容易に導通接続することができる。 One aspect of the present disclosure is a connection structure between a touch sensor and a connection object. The touch sensor electrode that is in conductive contact with the conductive portion of the connector portion of the touch sensor is located at a first end of the connector portion. Therefore, since the touch sensor electrode is provided with a connector portion or the connector portion is provided with a touch sensor electrode, the touch sensor can be easily conductively connected to the connection object with a simple structure.
 コネクタ部は、その第2の端部を接続対象物に接触させてタッチセンサを配置することで、コネクタ部の第1の端部にあるタッチセンサ電極と接続対象物との導通路を容易に形成することができる。 By placing the touch sensor in such a way that the second end of the connector portion is in contact with the object to be connected, a conductive path can be easily formed between the touch sensor electrode at the first end of the connector portion and the object to be connected.
 直線形状の導電部は、タッチセンサ電極と接続対象物とを導通接続する直線状の導通路を形成する。このため、前記接続構造は、タッチセンサ電極と接続対象物とを短い直線距離で導通接続することができる。 The linear conductive portion forms a linear conductive path that electrically connects the touch sensor electrode to the object to be connected. Therefore, the connection structure can electrically connect the touch sensor electrode to the object to be connected in a short linear distance.
第1実施形態によるタッチセンサを示す図であって、図1Aは図1BのIC-IC線に相当するタッチセンサ本体部とリテーナとの分解断面図、図1Bは電子機器に組み付けられたタッチセンサの平面図、図1Cは図1BのIC-IC線断面図。1A is an exploded cross-sectional view of a touch sensor body and a retainer corresponding to the IC-IC line in FIG. 1B; FIG. 1B is a plan view of the touch sensor assembled in an electronic device; and FIG. 1C is a cross-sectional view of the IC-IC line in FIG. 1B. 第1実施形態の変形例によるタッチセンサを示す図1BのIC-IC線相当断面図。1C is a cross-sectional view showing a touch sensor according to a modified example of the first embodiment, taken along line IC-IC in FIG. 第2実施形態によるタッチセンサを示す図であって、図3Aは電子機器に組み付けられたタッチセンサの平面図、図3Bは図3AのIIIB-IIIB線断面図。3A and 3B are diagrams showing a touch sensor according to a second embodiment, in which FIG. 3A is a plan view of the touch sensor assembled in an electronic device, and FIG. 3B is a cross-sectional view taken along line IIIB-IIIB in FIG. 3A. 第2実施形態の第1変形例によるタッチセンサを模式的に示す図。FIG. 13 is a diagram illustrating a touch sensor according to a first modified example of the second embodiment. 第2実施形態の第2変形例によるタッチセンサを示す図であって、図5Aはタッチセンサの平面図、図5Bは図5AのVB-VB線に相当する電子機器の分解断面図。5A and 5B are diagrams showing a touch sensor according to a second modified example of the second embodiment, in which FIG. 5A is a plan view of the touch sensor, and FIG. 5B is an exploded cross-sectional view of the electronic device corresponding to line VB-VB in FIG. 5A. 第3実施形態によるタッチセンサを示す図であって、図6Aは電子機器に組み付けられたタッチセンサの平面図、図6Bは図6AのVIB-VIB線断面図。6A and 6B are diagrams showing a touch sensor according to a third embodiment, in which FIG. 6A is a plan view of the touch sensor assembled in an electronic device, and FIG. 6B is a cross-sectional view taken along line VIB-VIB in FIG. 6A. 第4実施形態によるタッチセンサを示す図1BのIC-IC線相当断面図。FIG. 1C is a cross-sectional view showing a touch sensor according to a fourth embodiment, taken along line IC-IC in FIG. 第4実施形態の変形例によるタッチセンサを示す図1BのIC-IC線相当断面図。1C is a cross-sectional view showing a touch sensor according to a modified example of the fourth embodiment, taken along line IC-IC in FIG. 第5実施形態によるタッチセンサを示す図であって、図9Aは電子機器に組み付けられたタッチセンサの平面図、図9Bは図9AのIXB-IXB線断面図。9A and 9B are diagrams showing a touch sensor according to a fifth embodiment, in which FIG. 9A is a plan view of the touch sensor assembled in an electronic device, and FIG. 9B is a cross-sectional view taken along line IXB-IXB of FIG. 9A. 第5実施形態の第1変形例によるタッチセンサを示す図であって、図10Aは電子機器に組み付けられたタッチセンサの平面図、図10Bは図10AのXB-XB線断面図。10A and 10B are diagrams showing a touch sensor according to a first modified example of the fifth embodiment, in which FIG. 10A is a plan view of the touch sensor assembled in an electronic device, and FIG. 10B is a cross-sectional view taken along line XB-XB of FIG. 10A. 第5実施形態の第2変形例によるタッチセンサを示す図であって、図11Aは電子機器に組み付けられたタッチセンサの平面図、図11Bは図11AのXIB-XIB線分解断面図。11A and 11B are diagrams showing a touch sensor according to a second modified example of the fifth embodiment, in which FIG. 11A is a plan view of the touch sensor assembled in an electronic device, and FIG. 11B is an exploded cross-sectional view along line XIB-XIB of FIG. 11A.
 以下、本開示の一態様による「タッチセンサ」及び「タッチセンサと接続対象物との接続構造」を具体的に説明する。しかしながら、以下の説明は、本開示の範囲を限定することを意図するものではなく、例示的な実施形態を説明する記載として理解すべきものである。以下の説明は、特許請求の範囲を不当に限定するものではなく、本実施形態で説明される構成の全てが解決手段として必須であるとは限らない。 Below, a "touch sensor" and a "connection structure between a touch sensor and a connection object" according to one aspect of the present disclosure are specifically described. However, the following description is not intended to limit the scope of the present disclosure, and should be understood as a description explaining an exemplary embodiment. The following description does not unduly limit the scope of the claims, and not all of the configurations described in this embodiment are necessarily essential as a solution.
 以下の説明で「上」、「下」、「左」、「右」の方向を示す用語は、説明の便宜のために使用するものであり、方向を限定することを文脈上明確に記載しない限り、使用方法、使用態様を示すものではない。本明細書及び特許請求の範囲に記載する「第1」と「第1」に続く「第n」等の用語は、異なる要素を区別するための識別用語として使用するものであり、特定の順序や優劣等を示すものではない。 In the following explanation, terms indicating directions such as "up," "down," "left," and "right" are used for convenience of explanation, and do not indicate a method or manner of use unless the context clearly specifies a limitation of the direction. Terms such as "first" and "nth" following "first" used in this specification and claims are used as identifying terms to distinguish between different elements, and do not indicate a particular order or superiority or inferiority.
 以下の説明で使用される用語は、特定の実施形態を説明することのみを目的とし、本開示の範囲を限定することを意図するものではない。本明細書及び特許請求の範囲に記載する一態様による構成要素は、単数形又は複数形であることを文脈上明確に記載しない限り、複数形も含むことが意図される。用語「及び/又は」は、関連する列挙された要素のうちの1つ以上のいずれか及び全ての考えられる組み合わせを指し、かつこれを含むことが意図される。本明細書及び特許請求の範囲に記載する用語「含む(includes)」、「含む(including)」、「含む、備える(comprises)」、及び/又は「含む、備える(comprising)」は、特徴、動作、要素、ステップの存在を特定するものである。しかしながら、1つ以上の他の特徴、動作、要素、ステップ及び/又はそれらのグループの存在又は追加を除外するものではない用語として用いられている。 The terms used in the following description are intended to describe particular embodiments only and are not intended to limit the scope of the present disclosure. Elements according to one aspect described in the present specification and claims are intended to include the plural, unless the context clearly dictates otherwise. The term "and/or" is intended to refer to and include any and all possible combinations of one or more of the associated listed elements. The terms "includes," "including," "comprises," and/or "comprising" used in the present specification and claims specify the presence of features, operations, elements, steps. However, they are not used as terms that exclude the presence or addition of one or more other features, operations, elements, steps, and/or groups thereof.
 本開示の「タッチセンサ」は、操作者が操作面に触れるタッチ操作を入力として検出するセンサである。このような「タッチセンサ」を入力手段として設ける「設置対象物」は、特に限定するものではなく、各種用途の機械、器具、設備、部材、押し釦スイッチ等の電気部品等に備えることができる。以下では、設置対象物を電子機器Dとする例を説明するが、例えば車両の内装材や建築物の壁材などのパネル材を設置対象物としてもよい。本開示の「タッチセンサ」は、設置対象物を含む構成又は含まない構成とすることができる。このどちらの構成においても、操作者がタッチ操作を行う操作面を有する部材を「操作対象部材」という。 The "touch sensor" of the present disclosure is a sensor that detects the touch operation of an operator touching an operation surface as an input. The "installation target" on which such a "touch sensor" is provided as an input means is not particularly limited, and can be equipped on machines, tools, equipment, components, electrical components such as push button switches, etc. for various applications. In the following, an example in which the installation target is electronic device D is described, but the installation target can also be, for example, a panel material such as a vehicle interior material or a building wall material. The "touch sensor" of the present disclosure can be configured to include or not include an installation target. In either configuration, the member having the operation surface on which the operator performs the touch operation is called the "operation target member."
 本明細書及び特許請求の範囲では、便宜上、図1Bで示すように、本開示の一態様としてのタッチセンサ10の左右方向(紙面の左右方向)をX方向、奥行き(前後)方向(紙面の上下方向)をY方向、図1Aで示すように、タッチセンサ10の高さ方向(紙面の上下方向)をZ方向として記載する。さらに、図1Cで示す電子機器Dにおいて、その筐体Cの外表面Csに露出する操作面Sの側をZ方向における上側(外側)として記載する。そして、電子機器Dの内部に設置された回路基板Bの回路電極Eの側をZ方向における下側(内側)として記載する。しかしながら、それらは、タッチセンサ10の配置の向き、入力操作方向等を限定するものではない。なお、回路電極Eは、タッチセンサ10が導通接続する「接続対象物」を構成する。 For the sake of convenience, in this specification and claims, as shown in FIG. 1B, the left-right direction (left-right direction on the paper) of the touch sensor 10 as one embodiment of the present disclosure is described as the X direction, the depth (front-back) direction (up-down direction on the paper) is described as the Y direction, and as shown in FIG. 1A, the height direction of the touch sensor 10 (up-down direction on the paper) is described as the Z direction. Furthermore, in the electronic device D shown in FIG. 1C, the side of the operation surface S exposed on the outer surface Cs of the housing C is described as the upper side (outside) in the Z direction. And the side of the circuit electrode E of the circuit board B installed inside the electronic device D is described as the lower side (inside) in the Z direction. However, these do not limit the arrangement direction of the touch sensor 10, the input operation direction, etc. It should be noted that the circuit electrode E constitutes a "connection object" to which the touch sensor 10 is conductively connected.
第1実施形態〔図1A~図1C〕First embodiment (FIGS. 1A to 1C)
 図1Aで示すように、タッチセンサ10は、タッチセンサ本体部20と、リテーナ30とを備える。図1Cで示すように、タッチセンサ本体部20は、リテーナ30によって保持される。タッチセンサ10は、電子機器Dに収容される。タッチセンサ本体部20は、電子機器Dの下側筐体Cdに設置された回路基板Bの回路電極Eと導通接触するように取り付けられる。その取付状態で、タッチセンサ本体部20は、電子機器Dの上側筐体Cuに押し付けられるように覆われる。ただし、タッチセンサ10は、他の構成によってタッチセンサ本体部20を保持可能である場合には、リテーナ30を省略することもできる。本実施形態では、タッチセンサ10の「設置対象物」は電子機器Dであり、操作者がタッチ操作を行う「操作対象部材」は電子機器Dの上側筐体Cuである。 1A, the touch sensor 10 includes a touch sensor body 20 and a retainer 30. As shown in FIG. 1C, the touch sensor body 20 is held by the retainer 30. The touch sensor 10 is housed in an electronic device D. The touch sensor body 20 is attached so as to be in conductive contact with a circuit electrode E of a circuit board B installed in a lower housing Cd of the electronic device D. In this attached state, the touch sensor body 20 is covered and pressed against an upper housing Cu of the electronic device D. However, if the touch sensor 10 can hold the touch sensor body 20 by another configuration, the retainer 30 can be omitted. In this embodiment, the "installation target" of the touch sensor 10 is the electronic device D, and the "operation target member" on which the operator performs a touch operation is the upper housing Cu of the electronic device D.
 図1Aで示すように、タッチセンサ本体部20は、コネクタ部40と、タッチセンサ電極50とを備える。コネクタ部40は、導電部41と、絶縁部42とを有する。コネクタ部40は、Z方向(高さ方向、厚さ方向)に伸長する柱状に形成される。そして、コネクタ部40は、Z方向における上端に第1の端部40aを有し、下端には第2の端部40bを有する。 As shown in FIG. 1A, the touch sensor main body 20 includes a connector portion 40 and a touch sensor electrode 50. The connector portion 40 includes a conductive portion 41 and an insulating portion 42. The connector portion 40 is formed in a columnar shape extending in the Z direction (height direction, thickness direction). The connector portion 40 has a first end portion 40a at its upper end in the Z direction and a second end portion 40b at its lower end.
 導電部41は、導電性を有する導電性ゴム状弾性体でなる。導電部41は、コネクタ部40の第1の端部40aと第2の端部40bとの間をZ方向に沿って伸長する柱状、直線形状に形成される。導電部41は、Z方向における上端に第1の端部41aを有し、下端には第2の端部41bを有する。そして、導電部41は、第1の端部41aと第2の端部41bとの間を導通するための導通路41cを構成する。導電部41の断面は円形状である。導電部41の断面形状は、円形状に限らず、四角形のような多角形状等であっても良く、それらに限定されない。さらに、導電部41の上端及び下端の表面は、平坦に形成される。しかしながら、導電部41の表面形状は、平坦に限らず、ドーム状のような凸曲面形状、表面に点状、線状の微小凹凸を有する面形状等であっても良く、それらに限定されない。 The conductive portion 41 is made of a conductive rubber-like elastic body having electrical conductivity. The conductive portion 41 is formed in a columnar, linear shape extending along the Z direction between the first end 40a and the second end 40b of the connector portion 40. The conductive portion 41 has a first end 41a at the upper end in the Z direction and a second end 41b at the lower end. The conductive portion 41 forms a conductive path 41c for electrical conduction between the first end 41a and the second end 41b. The cross section of the conductive portion 41 is circular. The cross section of the conductive portion 41 is not limited to a circular shape, and may be a polygonal shape such as a square, and is not limited thereto. Furthermore, the surfaces of the upper and lower ends of the conductive portion 41 are formed flat. However, the surface shape of the conductive portion 41 is not limited to a flat shape, and may be a convex curved shape such as a dome shape, a surface shape having minute dot-like or linear irregularities on the surface, and is not limited thereto.
 導電性ゴム状弾性体は、素材原料であるゴム状弾性体に、填料(フィラー)である無機材料として導電性媒体が充填されたものである。すなわち、図1A等で示すように導電性ゴム状弾性体は、ゴム状弾性体の内部に多数の導電性フィラーとしての導電性粒子43を含むものである。導電部41は、隣り合う導電性粒子43が互いに接触する程度に導電性粒子43が高密度に集中することによって形成される。 The conductive rubber-like elastomer is a rubber-like elastomer, which is a raw material, filled with a conductive medium as an inorganic material that is a filler. That is, as shown in FIG. 1A etc., the conductive rubber-like elastomer contains a large number of conductive particles 43 as conductive filler inside the rubber-like elastomer. The conductive portion 41 is formed by concentrating the conductive particles 43 at such a high density that adjacent conductive particles 43 are in contact with each other.
 導電性粒子43は、ゴム状弾性体の内部に均一分散した状態のものでもよいが、Z方向に配列した状態で構成されることが好ましい。導電性粒子43を連続的、連鎖的に配列させることによって、配列方向に導通路41cが形成されて低抵抗化し、導電部41の導電性が向上する。導電部41のZ方向における導電性が向上することによって、コネクタ部40のセンサ感度を安定化させることができる。導電性粒子43には、磁性を有する材料を用いることができる。導電性粒子43が磁性を有すると、コネクタ部40を磁場配向できる。具体的には、コネクタ部40を金型成形するときにZ方向に沿う磁場をかけることで、導電性粒子43をZ方向に連続的、連鎖的に配列させることができる。そのほか流動場を利用して流動方向にZ方向を合わせて導電性粒子43を配列させることもできる。 The conductive particles 43 may be uniformly dispersed inside the rubber-like elastic body, but are preferably arranged in the Z direction. By arranging the conductive particles 43 continuously and in a chain, a conductive path 41c is formed in the arrangement direction, reducing the resistance and improving the conductivity of the conductive part 41. By improving the conductivity of the conductive part 41 in the Z direction, the sensor sensitivity of the connector part 40 can be stabilized. A magnetic material can be used for the conductive particles 43. If the conductive particles 43 are magnetic, the connector part 40 can be magnetically oriented. Specifically, by applying a magnetic field along the Z direction when molding the connector part 40 with a mold, the conductive particles 43 can be arranged continuously and in a chain in the Z direction. In addition, the conductive particles 43 can be arranged by aligning the Z direction with the flow direction by using a flow field.
 絶縁部42は、非導電性(絶縁性)を有するゴム状弾性体でなる。そして、絶縁部42は、導電部41を覆う。すなわち、絶縁部42は、導電部41の外周を取り囲む筒形状である。コネクタ部40が絶縁部42を有することによって、コネクタ部40の周囲への絶縁性を確保することができる。また、絶縁部42は、導電性粒子43の脱落を阻止するとともに、導電部41の柱状の形状を保持することができる。 The insulating portion 42 is made of a rubber-like elastic body that is non-conductive (insulating). The insulating portion 42 covers the conductive portion 41. In other words, the insulating portion 42 has a cylindrical shape that surrounds the outer periphery of the conductive portion 41. By having the insulating portion 42 in the connector portion 40, it is possible to ensure insulation of the connector portion 40 from the surroundings. Furthermore, the insulating portion 42 prevents the conductive particles 43 from falling off, and can maintain the columnar shape of the conductive portion 41.
 いずれもゴム状弾性体でなる導電部41と絶縁部42とは、一体となってコネクタ部40を構成する。これによって、コネクタ部40は、全体としてZ方向で圧縮変形可能に構成される。コネクタ部40は、電子機器Dに収容される際に、嵌合する上側筐体Cuと下側筐体Cdとによって圧縮される。したがって、コネクタ部40は、第1の端部41aと第2の端部41bとの間の端部間距離が未圧縮状態よりも短い圧縮状態で用いられる。すなわち、図1Aで示す未圧縮状態での端部間距離であるコネクタ部40の厚さH0が、図1Cで示す圧縮状態での端部間距離であるコネクタ部40の厚さH1に短くなる。コネクタ部40は、端部間距離が短くなることによって、導通路41cをより低抵抗化することができる。それに伴ってタッチセンサ10としての誘電率を高めることができる。さらに、コネクタ部40が圧縮可能に構成されることによって、上側筐体Cuと下側筐体Cdとによる圧縮によって電子機器Dの内部においてコネクタ部40の位置が固定可能となる。すなわち、上側筐体Cuと下側筐体Cdとによる圧縮力とコネクタ部40の反発力とによって、固定用部材を用いなくても、タッチセンサ10を電子機器Dの内部に固定することができる。したがって、本実施形態によれば、タッチセンサ10の電子機器Dへの組み付け性を向上させることができる。さらに、粘着剤等が用いられずに、上側筐体Cuと下側筐体Cdとによる圧縮力のみでタッチセンサ10が電子機器Dの内部に固定されているので、タッチセンサ10を電子機器Dから容易に取り外すこともできる。 The conductive portion 41 and the insulating portion 42, both of which are made of a rubber-like elastic material, are integrated to form the connector portion 40. This allows the connector portion 40 to be compressively deformed in the Z direction as a whole. When the connector portion 40 is housed in the electronic device D, it is compressed by the upper housing Cu and the lower housing Cd that fit together. Therefore, the connector portion 40 is used in a compressed state in which the end-to-end distance between the first end 41a and the second end 41b is shorter than in the uncompressed state. That is, the thickness H0 of the connector portion 40, which is the end-to-end distance in the uncompressed state shown in FIG. 1A, is shortened to the thickness H1 of the connector portion 40, which is the end-to-end distance in the compressed state shown in FIG. 1C. By shortening the end-to-end distance, the connector portion 40 can further reduce the resistance of the conductive path 41c. Accordingly, the dielectric constant of the touch sensor 10 can be increased. Furthermore, by allowing the connector portion 40 to be compressible, the position of the connector portion 40 can be fixed inside the electronic device D by compression by the upper housing Cu and the lower housing Cd. That is, the touch sensor 10 can be fixed inside the electronic device D by the compressive force of the upper housing Cu and the lower housing Cd and the repulsive force of the connector portion 40 without using a fixing member. Therefore, according to this embodiment, the ease of assembling the touch sensor 10 to the electronic device D can be improved. Furthermore, since the touch sensor 10 is fixed inside the electronic device D only by the compressive force of the upper housing Cu and the lower housing Cd without using an adhesive or the like, the touch sensor 10 can also be easily removed from the electronic device D.
 コネクタ部40の断面は円形状である。コネクタ部40の断面形状は、円形状に限らず、四角形のような多角形状等であっても良いが、それらに限定されない。コネクタ部40は、Z方向における位置によらず断面積が一定に形成される。しかしながら、コネクタ部40は、Z方向における位置によって断面積が異なっても良い。コネクタ部40は、例えば上下端の断面積がその間の部分の断面積よりも狭い洋樽形状等とされることによって、Z方向により圧縮しやすい構成とすることができる。 The cross section of the connector portion 40 is circular. The cross section of the connector portion 40 is not limited to a circle, but may be a polygonal shape such as a rectangle, but is not limited to these. The connector portion 40 is formed to have a constant cross section regardless of the position in the Z direction. However, the cross section of the connector portion 40 may differ depending on the position in the Z direction. The connector portion 40 can be configured to be more easily compressed in the Z direction, for example, by being barrel-shaped, with the cross section areas of the upper and lower ends narrower than the cross section area of the part between them.
 タッチセンサ電極50は金属板でなる。タッチセンサ電極50は、X方向及びY方向での長さに比べてZ方向での厚みが薄い薄板形状とされる。金属板は例示であり、タッチセンサ電極50は金属板よりも薄い金属箔であっても良いが、それらに限定されない。タッチセンサ電極50は、電子機器Dに対してタッチ操作を行う際の入力スイッチに相当する。このため、タッチセンサ電極50は、操作者の指等が触れる電子機器等の操作面Sに電極面が沿うように、操作面Sの裏面側となる筐体Cの内側に配置される。タッチセンサ電極50の配置は、操作面Sの裏面となる筐体Cの内面に対して直接接触するように配置してもよく、又は操作面Sの裏面に対して直接接触せず間接的に配置してもよい。タッチセンサ電極50を間接的に配置する場合には、筐体Cの内面とタッチセンサ電極50との間に1又は複数の層又は部材(例えば固着用の両面テープ等)を介在させてもよい。 The touch sensor electrode 50 is made of a metal plate. The touch sensor electrode 50 is in the form of a thin plate having a thickness in the Z direction smaller than the length in the X direction and the Y direction. The metal plate is an example, and the touch sensor electrode 50 may be a metal foil thinner than a metal plate, but is not limited thereto. The touch sensor electrode 50 corresponds to an input switch when performing a touch operation on the electronic device D. For this reason, the touch sensor electrode 50 is arranged on the inside of the housing C, which is the back side of the operation surface S, so that the electrode surface is aligned with the operation surface S of the electronic device, etc., which is touched by the operator's finger, etc. The touch sensor electrode 50 may be arranged so as to be in direct contact with the inner surface of the housing C, which is the back side of the operation surface S, or may be arranged indirectly without direct contact with the back side of the operation surface S. When the touch sensor electrode 50 is arranged indirectly, one or more layers or members (for example, double-sided tape for fixing) may be interposed between the inner surface of the housing C and the touch sensor electrode 50.
 タッチセンサ電極50は、その裏側面が、コネクタ部40の第1の端部40aにおける導電部41と対向して接触するように配置される。すなわち、タッチセンサ電極50における裏側面と、コネクタ部40の第1の端部40aにおける導電部41とは、電気的に接続可能に構成される。このようにタッチセンサ電極50にコネクタ部40を備える又はコネクタ部40にタッチセンサ電極50を備えるので、タッチセンサ10を回路電極Eと簡易な構造で容易に導通接続することができる。 The touch sensor electrode 50 is positioned so that its backside surface faces and contacts the conductive portion 41 at the first end 40a of the connector portion 40. In other words, the backside surface of the touch sensor electrode 50 and the conductive portion 41 at the first end 40a of the connector portion 40 are configured to be electrically connectable. In this way, the touch sensor electrode 50 is provided with the connector portion 40, or the connector portion 40 is provided with the touch sensor electrode 50, so that the touch sensor 10 can be easily electrically connected to the circuit electrode E with a simple structure.
 コネクタ部40の導電部41は、第2の端部41bが回路基板Bの回路電極Eと対向するように配置される。そして、導電部41は、第2の端部41bにおいて回路電極Eと電気的に接続可能に構成されている。このため、本実施形態によれば、コネクタ部40の第2の端部40bにおける導電部41を回路電極Eに接触させてタッチセンサ10を配置することで、コネクタ部40の第1の端部40aにあるタッチセンサ電極50と、回路電極Eとの導通路41cを容易に形成することができる。 The conductive portion 41 of the connector portion 40 is arranged so that the second end 41b faces the circuit electrode E of the circuit board B. The conductive portion 41 is configured so that it can be electrically connected to the circuit electrode E at the second end 41b. Therefore, according to this embodiment, by placing the touch sensor 10 with the conductive portion 41 at the second end 40b of the connector portion 40 in contact with the circuit electrode E, a conductive path 41c can be easily formed between the touch sensor electrode 50 at the first end 40a of the connector portion 40 and the circuit electrode E.
 そして、コネクタ部40の第1の端部40aと第2の端部40bとの間を伸長する導電部41は柱状であり、より具体的には直線形状である。このため、タッチセンサ10と回路電極Eとの接続構造において、直線形状の導電部41は、タッチセンサ電極50と回路電極Eとを導通接続する直線状の導通路41cを形成する。このため、本実施形態のタッチセンサ10と回路電極Eとの接続構造によれば、タッチセンサ電極50と回路電極Eとを短い直線距離で導通接続することができる。そして、短い直線距離を導通接続する直線形状の導電部41の軸周りがコネクタ部40の収容空間となる。このため、電子機器Dの内部空間を効率的に利用することができる。さらに、回路基板Bにおいて回路電極Eの周囲に実装されている素子e等と干渉することなく、タッチセンサ10を回路基板B上に配置することができる。 The conductive portion 41 extending between the first end 40a and the second end 40b of the connector portion 40 is columnar, more specifically, linear. Therefore, in the connection structure between the touch sensor 10 and the circuit electrode E, the linear conductive portion 41 forms a linear conductive path 41c that electrically connects the touch sensor electrode 50 and the circuit electrode E. Therefore, according to the connection structure between the touch sensor 10 and the circuit electrode E of this embodiment, the touch sensor electrode 50 and the circuit electrode E can be electrically connected in a short linear distance. The area around the axis of the linear conductive portion 41 that electrically connects in a short linear distance becomes the storage space for the connector portion 40. Therefore, the internal space of the electronic device D can be efficiently utilized. Furthermore, the touch sensor 10 can be arranged on the circuit board B without interfering with the elements e and the like mounted around the circuit electrode E on the circuit board B.
 タッチセンサ電極50の面積は、平面視で導電部41の端面よりも大きな面積で形成されている。すなわち、図1A等で示すように、タッチセンサ電極50の裏側面の面積は、コネクタ部40の第1の端部40aにおける導電部41の端面(第1の端部41a)の面積よりも大きい。そして、通常では、タッチセンサ電極50の領域内で導電部41全体が平面視で重なる位置が、タッチセンサ電極50と導電部41との設計上の正規の接触位置とされる。したがって、この構成によれば、タッチセンサ電極50と導電部41との設計上の正規の接触位置からのずれが生じたとしても、タッチセンサ電極50と導電部41とを導通接触させることができる。また、タッチセンサ電極50と導電部41とにずれが生じたとしても、タッチセンサ電極50と導電部41との導通接触を維持することができる。 The area of the touch sensor electrode 50 is larger than the end face of the conductive portion 41 in a plan view. That is, as shown in FIG. 1A and the like, the area of the back side of the touch sensor electrode 50 is larger than the area of the end face (first end 41a) of the conductive portion 41 at the first end 40a of the connector portion 40. Usually, the position where the entire conductive portion 41 overlaps in a plan view within the area of the touch sensor electrode 50 is considered to be the normal contact position of the design between the touch sensor electrode 50 and the conductive portion 41. Therefore, according to this configuration, even if the touch sensor electrode 50 and the conductive portion 41 are deviated from the normal contact position of the design, the touch sensor electrode 50 and the conductive portion 41 can be in conductive contact. Also, even if the touch sensor electrode 50 and the conductive portion 41 are deviated from each other, the conductive contact between the touch sensor electrode 50 and the conductive portion 41 can be maintained.
 さらに、タッチセンサ電極50の面積は、平面視でコネクタ部40の端面よりも大きな面積で形成されている。すなわち、図1A等で示すように、タッチセンサ電極50の裏側面の面積は、コネクタ部40の第1の端部40aの面積よりも大きい。タッチセンサ電極50は、平面視でコネクタ部40の第1の端部40aからはみ出たはみ出し部58を有する。このようにタッチセンサ電極50は、平面視でコネクタ部40の端面からはみ出てもよい。言い換えると、タッチセンサ電極50は、平面視で絶縁部42と重ならない部分があってもよい。 Furthermore, the area of the touch sensor electrode 50 is formed to be larger than the area of the end face of the connector portion 40 in a planar view. That is, as shown in FIG. 1A etc., the area of the back side surface of the touch sensor electrode 50 is larger than the area of the first end portion 40a of the connector portion 40. The touch sensor electrode 50 has a protruding portion 58 that protrudes from the first end portion 40a of the connector portion 40 in a planar view. In this way, the touch sensor electrode 50 may protrude from the end face of the connector portion 40 in a planar view. In other words, the touch sensor electrode 50 may have a portion that does not overlap with the insulating portion 42 in a planar view.
 タッチセンサ電極50が、平面視でコネクタ部40の端面よりも大きな面積で形成されているため、コネクタ部40の形状によらず、多様な電極形状を実現することができる。 The touch sensor electrode 50 is formed with an area larger than the end face of the connector portion 40 in a plan view, so a variety of electrode shapes can be realized regardless of the shape of the connector portion 40.
 はみ出し部58は、タッチセンサ10が電子機器Dに収容される際に、上側筐体Cuの内側の面と対向する部分である。そして、上側筐体Cuとはみ出し部58とは、導電性接着剤等によって貼り付けられてもよい。さらに、平面視ではみ出し部58の下方には、コネクタ部40が存在しない。このため、コネクタ部40には、はみ出し部58の押圧支持部が、コネクタ部40の外周部から突出して設けられてもよい。これは、後述の図8で示す第4実施形態の変形例におけるフランジ45によっても実現することができる。すなわち、コネクタ部40がフランジ45を有するため、タッチセンサ10を電子機器Dに収容した際に、フランジ45がはみ出し部58を押圧することができる。フランジ45は、操作面Sの裏面に対して、タッチセンサ電極50を押圧可能とする厚さとして形成してもよい。このような押圧支持部は、後述のリテーナ本体31に、はみ出し部58を保持する押圧突起として設けられてもよい。 The protruding portion 58 is a portion that faces the inner surface of the upper housing Cu when the touch sensor 10 is housed in the electronic device D. The upper housing Cu and the protruding portion 58 may be attached with a conductive adhesive or the like. Furthermore, the connector portion 40 does not exist below the protruding portion 58 in a plan view. For this reason, the connector portion 40 may have a pressing support portion for the protruding portion 58 protruding from the outer periphery of the connector portion 40. This can also be realized by the flange 45 in the modified example of the fourth embodiment shown in FIG. 8 described later. That is, since the connector portion 40 has the flange 45, the flange 45 can press the protruding portion 58 when the touch sensor 10 is housed in the electronic device D. The flange 45 may be formed to a thickness that allows the touch sensor electrode 50 to be pressed against the back surface of the operation surface S. Such a pressing support portion may be provided as a pressing protrusion that holds the protruding portion 58 on the retainer body 31 described later.
 本実施形態では、タッチセンサ電極50は、コネクタ部40と一体に固着しているように構成することができる。すなわち、図1A等で示すように、タッチセンサ本体部20は、タッチセンサ電極50とコネクタ部40とがあらかじめ固着したものである。タッチセンサ電極50とコネクタ部40とがあらかじめ固着しているので、これらの間での異物等の挟み込みを防止することができる。 In this embodiment, the touch sensor electrode 50 can be configured to be fixed integrally with the connector portion 40. That is, as shown in FIG. 1A etc., the touch sensor main body 20 is configured such that the touch sensor electrode 50 and the connector portion 40 are fixed in advance. Since the touch sensor electrode 50 and the connector portion 40 are fixed in advance, it is possible to prevent foreign objects from being caught between them.
 このように、タッチセンサ10を構成するタッチセンサ電極50とコネクタ部40とは、一体化している。このため、タッチセンサ10を構成するタッチセンサ電極50とコネクタ部40とは単一部品となる。したがって、タッチセンサ10は、取扱いが容易であり、回路電極Eに対して容易に導通接続できる。このとき、タッチセンサ電極50と導電部41との接触面同士が離れることがなくなるので、これらの間では、安定した導通性が維持される。これによって、タッチセンサ電極50からから得られる電気信号が減衰すること、タッチセンサ電極50と導電部41との間におけるチャタリング等の動作不良等を防止して、タッチセンサ10のセンサ感度を安定化させることができる。 In this way, the touch sensor electrode 50 and the connector portion 40 that constitute the touch sensor 10 are integrated. Therefore, the touch sensor electrode 50 and the connector portion 40 that constitute the touch sensor 10 are a single component. Therefore, the touch sensor 10 is easy to handle and can be easily electrically connected to the circuit electrode E. At this time, the contact surfaces of the touch sensor electrode 50 and the conductive portion 41 do not separate, so stable conductivity is maintained between them. This prevents attenuation of the electrical signal obtained from the touch sensor electrode 50 and operational malfunctions such as chattering between the touch sensor electrode 50 and the conductive portion 41, and stabilizes the sensor sensitivity of the touch sensor 10.
 さらに、タッチセンサ電極50とコネクタ部40とが単一部品であるので、タッチセンサ10の部品点数を削減することができる。そして、タッチセンサ本体部20をリテーナ30に取り付ける工程を省略することができて、タッチセンサ10の組み付け工数を削減することができる。その際に、微小な部品であるタッチセンサ電極50を単独で電子機器Dに組み付ける必要がなくなるので、タッチセンサ10の電子機器Dへの組み付け性を向上させることができる。 Furthermore, since the touch sensor electrode 50 and the connector portion 40 are a single component, the number of components of the touch sensor 10 can be reduced. In addition, the process of attaching the touch sensor main body portion 20 to the retainer 30 can be omitted, and the number of assembly steps for the touch sensor 10 can be reduced. In this case, since it is no longer necessary to assemble the touch sensor electrode 50, which is a tiny component, separately to the electronic device D, the ease of assembly of the touch sensor 10 to the electronic device D can be improved.
 このとき、本実施形態では、タッチセンサ電極50が上述のように金属板であるので、コネクタ部40の第1の端部40aにタッチセンサ電極50を容易に設けることができる。この場合、金属板は、例えば導電性接着剤による固着、インサート成形等により第1の端部40aに設けることができる。 In this embodiment, since the touch sensor electrode 50 is a metal plate as described above, the touch sensor electrode 50 can be easily provided at the first end 40a of the connector portion 40. In this case, the metal plate can be provided at the first end 40a by, for example, adhering with a conductive adhesive, insert molding, or the like.
 リテーナ30は、リテーナ本体31と、支持脚32とを有する。リテーナ本体31は、コネクタ部40を保持するものである。リテーナ本体31は、Z方向に比べてX方向及びY方向に長い平板形状とされている。リテーナ本体31は、コネクタ部40を保持するために充分なZ方向の長さ(厚さ)を有する。このため、リテーナ本体31は、Z方向を軸方向として柱状に伸長するコネクタ部40の姿勢を保持することができる。 The retainer 30 has a retainer body 31 and support legs 32. The retainer body 31 holds the connector portion 40. The retainer body 31 has a flat plate shape that is longer in the X and Y directions than in the Z direction. The retainer body 31 has a length (thickness) in the Z direction sufficient to hold the connector portion 40. Therefore, the retainer body 31 can hold the posture of the connector portion 40, which extends in a columnar shape with the Z direction as its axial direction.
 リテーナ本体31には、Z方向に貫通する円柱形状の開孔が形成されることによって、その開孔の形状を規定する保持部33が設けられる。保持部33は、コネクタ部40の軸方向と交差するX-Y断面の外形に対応した断面形状とされる。例えば保持部33は、コネクタ部40の外形よりも僅かに一回り大きな断面形状とされる。こうすることで、保持部33にコネクタ部40を容易に取り付けることができる。そして、保持部33にコネクタ部40が取り付けられることによって、リテーナ30は、コネクタ部40を保持することができる。 The retainer body 31 is provided with a cylindrical opening that penetrates in the Z direction, thereby forming a holding portion 33 that defines the shape of the opening. The holding portion 33 has a cross-sectional shape that corresponds to the outer shape of an X-Y cross section that intersects with the axial direction of the connector portion 40. For example, the holding portion 33 has a cross-sectional shape that is slightly larger than the outer shape of the connector portion 40. This allows the connector portion 40 to be easily attached to the holding portion 33. Then, by attaching the connector portion 40 to the holding portion 33, the retainer 30 can hold the connector portion 40.
 支持脚32は、タッチセンサ10を電子機器Dに実装する際に、取付対象物(第2の取付対象物)に取り付けられる部位である。支持脚32が取り付けられる「取付対象物」は、電子機器D(下側筐体Cd)でも、回路基板Bでも、電子機器D、回路基板B等とは別に設けられた部材でも良く、それらに限定されない。 The support leg 32 is a portion that is attached to an attachment object (second attachment object) when the touch sensor 10 is mounted on the electronic device D. The "attachment object" to which the support leg 32 is attached may be, but is not limited to, the electronic device D (lower housing Cd), the circuit board B, or a member provided separately from the electronic device D, the circuit board B, etc.
 支持脚32は、リテーナ本体31から、X-Y平面における外方かつZ方向、特に下方に突出して形成される。こうして支持脚32は、X-Y断面形状が角丸長方形状の環状(四角筒形状)とされる。そして、タッチセンサ10の支持脚32以外の構成は、支持脚32が囲む領域内に収容される。ただし、Z方向における上部、すなわち、タッチセンサ電極50は、支持脚32よりも上方にはみ出ていてもかまわない。タッチセンサ本体部20が、電子機器Dの上側筐体CuにZ方向で押し付けられるからである。 The support legs 32 are formed to protrude outward in the X-Y plane and in the Z direction, particularly downward, from the retainer body 31. Thus, the support legs 32 have an X-Y cross-sectional shape that is a rounded rectangular ring (square tube shape). The components of the touch sensor 10 other than the support legs 32 are contained within the area surrounded by the support legs 32. However, the upper part in the Z direction, i.e., the touch sensor electrodes 50, may protrude above the support legs 32. This is because the touch sensor main body 20 is pressed against the upper housing Cu of the electronic device D in the Z direction.
 このようなタッチセンサ10によれば、リテーナ30が、コネクタ部40を保持するリテーナ本体31と、取付対象物に取り付ける支持脚32とを有するので、タッチセンサ10を電子機器等に容易に取り付けることができる。このとき、タッチセンサ本体部20があらかじめ取り付けられたリテーナ30が取付対象物に取り付けられても良く、取付対象物にあらかじめ取り付けられたリテーナ30に対してタッチセンサ本体部20が取り付けられても良い。 With such a touch sensor 10, the retainer 30 has a retainer body 31 that holds the connector portion 40 and support legs 32 that are attached to the mounting object, so that the touch sensor 10 can be easily attached to an electronic device or the like. At this time, the retainer 30 to which the touch sensor body portion 20 is previously attached may be attached to the mounting object, or the touch sensor body portion 20 may be attached to the retainer 30 that is previously attached to the mounting object.
 リテーナ本体31は、回路基板Bとの距離が近い配置であると、回路基板Bに実装されている素子eと干渉してしまうおそれがある。しかしながら、上述のように支持脚32は、リテーナ本体31から下方に突出する構成である。すなわち、支持脚32は、リテーナ本体31とここでの「取付対象物」としての下側筐体Cdとの間及びリテーナ本体31と下側筐体Cdに固定された回路基板Bとの間に所定の長さを有する。これによって、リテーナ本体31と回路基板Bとに挟まれた部分に空間を形成することができる。したがって、リテーナ本体31と回路基板Bとの間を回路基板Bに実装する制御IC(Integrated Circuit)、LED(Light Emitting Diode)100等の素子eの収容空間とすることができる。このとき、支持脚32は、背の高い素子eである電解コンデンサ等に対応した長さとすることもできる。 If the retainer body 31 is arranged close to the circuit board B, there is a risk of interference with the element e mounted on the circuit board B. However, as described above, the support legs 32 are configured to protrude downward from the retainer body 31. That is, the support legs 32 have a predetermined length between the retainer body 31 and the lower housing Cd, which is the "mounting object" here, and between the retainer body 31 and the circuit board B fixed to the lower housing Cd. This makes it possible to form a space in the area sandwiched between the retainer body 31 and the circuit board B. Therefore, the space between the retainer body 31 and the circuit board B can be used as a storage space for elements e such as a control IC (Integrated Circuit) and an LED (Light Emitting Diode) 100 mounted on the circuit board B. In this case, the support legs 32 can also be made to a length corresponding to a tall element e such as an electrolytic capacitor.
 リテーナ本体31は、第1の防水突起34(リテーナ本体防水突起)を有する。第1の防水突起34は、リテーナ本体31に形成された環状のシーリング突起による防水用部材(第1の防水用部材)である。第1の防水突起34は、リテーナ本体31の外周端を含む領域における表側面から上方に突出する。第1の防水突起34は、上側の断面積が下側の断面積よりも狭い側面視で半円形状とされる。第1の防水突起34は、このような半円形状、先細り形状等とされることによって、Z方向により圧縮しやすい構成とすることができる。さらに、第1の防水突起34は、このような半円形状、先細り形状等とされることによって、タッチセンサ10を収容する電子機器Dへの反力負荷が大きくならないという利点もある。第1の防水突起34は、タッチセンサ10が電子機器Dに取り付けられた際に、先(上)端部分が上側筐体Cuと水密に接触する。 The retainer body 31 has a first waterproof protrusion 34 (retainer body waterproof protrusion). The first waterproof protrusion 34 is a waterproof member (first waterproof member) formed by an annular sealing protrusion formed on the retainer body 31. The first waterproof protrusion 34 protrudes upward from the front side surface in a region including the outer circumferential end of the retainer body 31. The first waterproof protrusion 34 is semicircular in side view with the upper cross-sectional area narrower than the lower cross-sectional area. By making the first waterproof protrusion 34 into such a semicircular shape, tapered shape, etc., it can be configured to be more easily compressed in the Z direction. Furthermore, by making the first waterproof protrusion 34 into such a semicircular shape, tapered shape, etc., there is also the advantage that the reaction force load on the electronic device D that houses the touch sensor 10 is not large. When the touch sensor 10 is attached to the electronic device D, the tip (upper) end portion of the first waterproof protrusion 34 comes into watertight contact with the upper housing Cu.
 これによって、第1の防水突起34と上側筐体Cuとの間で防水ができる。すなわち、タッチセンサ10に対して、リテーナ本体31より外周側の領域から内周側の領域に向かって水の浸入を防ぐ防水機能を付与することができる。したがって、リテーナ本体31の内周側の領域に配置されるタッチセンサ電極50等への浸潤を防止することができる。 This provides waterproofing between the first waterproof protrusions 34 and the upper housing Cu. In other words, the touch sensor 10 can be provided with a waterproof function that prevents water from entering from the area on the outer periphery of the retainer body 31 toward the area on the inner periphery. This prevents water from entering the touch sensor electrodes 50, etc., that are arranged in the area on the inner periphery of the retainer body 31.
 支持脚32は、第2の防水突起35(操作面側防水突起、第1の防水用部材)と、第3の防水突起36(回路基板側防水突起、第3の防水用部材)とを有する。第2の防水突起35及び第3の防水突起36は、支持脚32に形成された環状のシーリング突起による防水用部材(第1の防水用部材及び第3の防水用部材)である。第2の防水突起35は、支持脚32の上端面から上方に突出する。第2の防水突起35は、第1の防水突起34と別部材であるものを例示しているが、第1の防水突起34と一体物として構成されていてもよい。第3の防水突起36は、支持脚32の下端面から下方に突出する。第2の防水突起35及び第3の防水突起36は、第1の防水突起34と同様に、先端側の断面積が基部側の断面積よりも狭い側面視で半円形状とされており、第1の防水突起34と同様の効果を奏することができる。第2の防水突起35は、タッチセンサ10が電子機器Dに取り付けられた際に、先(上)端部分が上側筐体Cuと水密に接触する。第3の防水突起36は、タッチセンサ10が電子機器Dに取り付けられた際に、先(下)端部分が下側筐体Cdと水密に接触する。 The support leg 32 has a second waterproof protrusion 35 (operation surface side waterproof protrusion, first waterproof member) and a third waterproof protrusion 36 (circuit board side waterproof protrusion, third waterproof member). The second waterproof protrusion 35 and the third waterproof protrusion 36 are waterproof members (first waterproof member and third waterproof member) formed on the support leg 32 by annular sealing protrusions. The second waterproof protrusion 35 protrudes upward from the upper end surface of the support leg 32. The second waterproof protrusion 35 is illustrated as being a separate member from the first waterproof protrusion 34, but may be configured as an integral part with the first waterproof protrusion 34. The third waterproof protrusion 36 protrudes downward from the lower end surface of the support leg 32. Like the first waterproof protrusion 34, the second waterproof protrusion 35 and the third waterproof protrusion 36 are semicircular in side view with a cross-sectional area on the tip side narrower than the cross-sectional area on the base side, and can achieve the same effect as the first waterproof protrusion 34. The second waterproof protrusion 35 has a tip (upper) end portion that makes watertight contact with the upper housing Cu when the touch sensor 10 is attached to the electronic device D. The third waterproof protrusion 36 has a tip (lower) end portion that makes watertight contact with the lower housing Cd when the touch sensor 10 is attached to the electronic device D.
 これによって、第2の防水突起35と上側筐体Cuとの間及び第3の防水突起36と下側筐体Cdとの間で防水ができる。すなわち、タッチセンサ10に対して、支持脚32より外周側の領域から内周側の領域に向かって水の浸入を防ぐ防水機能を付与することができる。したがって、支持脚32の内周側の領域に配置されるタッチセンサ電極50、回路電極E、回路基板Bに実装された素子e等への浸潤を防止することができる。 This provides waterproofing between the second waterproof protrusion 35 and the upper housing Cu, and between the third waterproof protrusion 36 and the lower housing Cd. In other words, the touch sensor 10 can be endowed with a waterproof function that prevents water from entering from the area on the outer periphery of the support leg 32 toward the area on the inner periphery. This prevents water from entering the touch sensor electrode 50, the circuit electrode E, the element e mounted on the circuit board B, and the like that are arranged in the area on the inner periphery of the support leg 32.
 このようにタッチセンサ10は、さらに、タッチセンサ10と、操作対象部材及び取付対象物(第1の取付対象物、第2の取付対象物)の少なくとも一つとの間を閉塞する防水用部材を有するように構成することができる。これによって、タッチセンサ10と取付対象物との接触位置において防水ができる。すなわち、タッチセンサ10に対して、タッチセンサ10の外部領域から内部領域に向かって水の浸入を防ぐ防水機能を付与することができる。したがって、タッチセンサ10の内部領域に配置されるタッチセンサ電極50、回路電極E、回路基板Bに実装された素子e等への浸潤を防止することができる。すなわち、タッチセンサ電極50、回路電極E、素子e等を水等の液状の異物から保護することができる。そして、タッチセンサ10における導通信頼性を確保することができる。このようにタッチセンサ10は、防水機能を有するので、台所、浴室、洗面台、トイレ等の水回りで用いられる電子機器D、屋外、水上、水中等で用いられる電子機器Dにも適用することができる。 In this way, the touch sensor 10 can be further configured to have a waterproofing member that blocks the gap between the touch sensor 10 and at least one of the operation target member and the mounting target (first mounting target, second mounting target). This makes it possible to make the contact position between the touch sensor 10 and the mounting target waterproof. In other words, the touch sensor 10 can be given a waterproofing function that prevents water from entering from the external region of the touch sensor 10 to the internal region. Therefore, it is possible to prevent water from infiltrating the touch sensor electrode 50, the circuit electrode E, the element e mounted on the circuit board B, etc., which are arranged in the internal region of the touch sensor 10. In other words, it is possible to protect the touch sensor electrode 50, the circuit electrode E, the element e, etc. from liquid foreign matter such as water. And it is possible to ensure the reliability of conduction in the touch sensor 10. In this way, since the touch sensor 10 has a waterproofing function, it can be applied to electronic devices D used around water such as kitchens, bathrooms, washbasins, and toilets, and electronic devices D used outdoors, on water, underwater, etc.
 導電部41は、25%圧縮時の電気抵抗が100mΩ以下であることが好ましい。電気抵抗が100mΩ以下となると、大電流が流されても導電部41が発熱し難くなる。そのような観点から、当該電気抵抗は、20mΩ以下がより好ましい。電気抵抗は、材料等の制約から、通常は0.1mΩ以上となる。なお、25%圧縮時の電気抵抗は、導電部41を25%圧縮した状態で、定電流源から発生させた電流を導電部41に通して電圧を計測し、電気抵抗値を算出することにより得ることができる。 It is preferable that the conductive portion 41 has an electrical resistance of 100 mΩ or less when compressed by 25%. If the electrical resistance is 100 mΩ or less, the conductive portion 41 is less likely to generate heat even when a large current is passed through it. From this perspective, the electrical resistance is more preferably 20 mΩ or less. Due to material and other constraints, the electrical resistance is usually 0.1 mΩ or more. The electrical resistance when compressed by 25% can be obtained by passing a current generated by a constant current source through the conductive portion 41 while the conductive portion 41 is compressed by 25%, measuring the voltage, and calculating the electrical resistance value.
 導電性粒子43は、磁性導電性フィラーであることが好ましい。磁性導電性フィラーの材質としては、ニッケル、コバルト、鉄、フェライト、又はこれらの合金が挙げられ、形状としては粒子状、繊維状、細片状、細線状等である。さらに、良電性の金属、樹脂、セラミックに磁性導電体を被覆したもの、磁性導電体に良電性の金属を被覆したものとしてもよい。良電性の金属には、金、銀、白金、アルミニウム、銅、鉄、パラジウム、クロム、ステンレス等が挙げられる。 The conductive particles 43 are preferably magnetic conductive fillers. Examples of the material of the magnetic conductive fillers include nickel, cobalt, iron, ferrite, or alloys thereof, and the fillers may be in the form of particles, fibers, flakes, thin wires, etc. Furthermore, the fillers may be made of electrically conductive metals, resins, or ceramics coated with a magnetic conductor, or magnetic conductors coated with electrically conductive metals. Examples of electrically conductive metals include gold, silver, platinum, aluminum, copper, iron, palladium, chromium, and stainless steel.
 導電性粒子43の平均粒径は、磁場印加によって連鎖状態を形成しやすく、効率よく導体を形成することができる点で、1~200μmとすることが好ましく、5~100μmとすることがより好ましい。特に、本実施形態では、電気信号の伝送損失を抑制するために、導電性粒子43の平均粒径が10~80μmであることが好ましい。なお、平均粒径は、レーザー回折・散乱法によって求めた導電性フィラーの粒度分布において、体積積算が50%での粒径(D50)を意味する。導電性フィラーは、1種単独で使用してもよいし、2種以上を併用してもよい。 The average particle size of the conductive particles 43 is preferably 1 to 200 μm, and more preferably 5 to 100 μm, in that a chain state is easily formed by application of a magnetic field, and a conductor can be efficiently formed. In particular, in this embodiment, the average particle size of the conductive particles 43 is preferably 10 to 80 μm in order to suppress transmission loss of electrical signals. The average particle size refers to the particle size (D50) at which the volume accumulation is 50% in the particle size distribution of the conductive filler obtained by a laser diffraction/scattering method. The conductive filler may be used alone or in combination of two or more types.
 導電部41における導電性粒子43の充填率は、例えば25~80体積%、好ましくは30~75体積%である。導電性粒子43の充填率をこれら範囲内とすることで、導電部41に一定の強度を付与しつつ導電性を確保できる。なお、充填率とは、導電部41の全体積に対する導電性粒子43の体積割合を意味する。 The filling rate of the conductive particles 43 in the conductive portion 41 is, for example, 25 to 80 volume percent, and preferably 30 to 75 volume percent. By setting the filling rate of the conductive particles 43 within this range, it is possible to ensure conductivity while imparting a certain level of strength to the conductive portion 41. The filling rate refers to the volume ratio of the conductive particles 43 to the total volume of the conductive portion 41.
 一方で、絶縁部42は、通常、導電性粒子43を含有せず、絶縁部42における導電性粒子43の充填率は、0体積%である。ただし、絶縁部42には、絶縁性を損なわない範囲内において、その製造過程等において不可避的に混入される導電性粒子43が少量含有されていてもよい。したがって、例えば、絶縁部42における導電性粒子43の充填率は、5体積%未満であってもよく、好ましくは1体積%未満である。 On the other hand, the insulating section 42 does not normally contain conductive particles 43, and the filling rate of the conductive particles 43 in the insulating section 42 is 0% by volume. However, the insulating section 42 may contain a small amount of conductive particles 43 that are inevitably mixed in during the manufacturing process, etc., within a range that does not impair the insulating properties. Therefore, for example, the filling rate of the conductive particles 43 in the insulating section 42 may be less than 5% by volume, and is preferably less than 1% by volume.
 また、導電部41を構成するゴム状弾性体としては、熱硬化性ゴム、熱可塑性エラストマー等が例示できる。熱硬化性ゴムは、加熱により硬化して、架橋されるゴムであり、具体的には、シリコーンゴム、天然ゴム、イソプレンゴム、ブタジエンゴム、アクリロニトリルブタジエンゴム、スチレン・ブタジエンゴム、クロロプレンゴム、ニトリルゴム、ブチルゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエンゴム、アクリルゴム、フッ素ゴム、ウレタンゴム等が挙げられる。中でも、成形加工性、電気絶縁性、耐候性等が優れるシリコーンゴムが好ましい。 Examples of the rubber-like elastic material constituting the conductive portion 41 include thermosetting rubber and thermoplastic elastomer. Thermosetting rubber is rubber that hardens and crosslinks when heated, and specific examples include silicone rubber, natural rubber, isoprene rubber, butadiene rubber, acrylonitrile butadiene rubber, styrene-butadiene rubber, chloroprene rubber, nitrile rubber, butyl rubber, ethylene-propylene rubber, ethylene-propylene-diene rubber, acrylic rubber, fluororubber, and urethane rubber. Among these, silicone rubber is preferred because of its excellent moldability, electrical insulation, and weather resistance.
 熱可塑性エラストマーとしては、スチレン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、エステル系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー、フッ化系熱可塑性エラストマー、イオン架橋系熱可塑性エラストマー等が挙げられる。ゴム状弾性体は、前述したものの中から1種単独で使用してもよいし、2種以上を併用してもよい。 Thermoplastic elastomers include styrene-based thermoplastic elastomers, olefin-based thermoplastic elastomers, ester-based thermoplastic elastomers, urethane-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, vinyl chloride-based thermoplastic elastomers, fluorinated thermoplastic elastomers, and ion-crosslinked thermoplastic elastomers. The rubber-like elastomer may be one of the above, or two or more of them may be used in combination.
 また、絶縁部42を構成する高分子マトリクスとなるゴム状弾性体としても、熱硬化性ゴム、熱可塑性エラストマー等を使用することができる。絶縁部42を構成するゴム状弾性体も、同様に1種単独で使用してもよいし、2種以上を併用してもよい。前述のように、絶縁部42及び導電部41を構成するゴム状弾性体は、一体的に形成されることが好ましい。したがって、絶縁部42及び導電部41を構成するゴム状弾性体は同じ種類のものを使用することが好ましく、絶縁部42及び導電部41を構成するゴム状弾性体は、いずれもシリコーンゴムであることがより好ましい。 The rubber-like elastic material that forms the polymer matrix constituting the insulating part 42 can be made of thermosetting rubber, thermoplastic elastomer, or the like. Similarly, the rubber-like elastic material that constitutes the insulating part 42 can be made of one type alone or two or more types in combination. As mentioned above, it is preferable that the rubber-like elastic material that constitutes the insulating part 42 and the conductive part 41 be integrally formed. Therefore, it is preferable to use the same type of rubber-like elastic material that constitutes the insulating part 42 and the conductive part 41, and it is more preferable that the rubber-like elastic material that constitutes the insulating part 42 and the conductive part 41 are both silicone rubber.
 ゴム状弾性体は、導電性フィラーを磁場印加等により厚さ方向に配列しやすくする観点から、液状ゴムを硬化したもの、又は、加熱溶融可能なものであることが好ましい。なお、液状ゴムは、硬化前には常温(23℃)、常圧(1気圧)下で液体となるものであり、具体的なゴムは、熱硬化性ゴムとして列挙したものの液状ゴムを使用すればよく、中でも液状シリコーンゴムが好ましい。また、加熱溶融可能なものとしては、熱可塑性エラストマーが挙げられる。 From the viewpoint of facilitating the alignment of the conductive filler in the thickness direction by application of a magnetic field or the like, the rubber-like elastic body is preferably a hardened liquid rubber or a material that can be melted by heating. Note that liquid rubber is liquid at room temperature (23°C) and normal pressure (1 atm) before hardening, and specific rubbers that can be used include liquid rubbers listed as thermosetting rubbers, of which liquid silicone rubber is preferred. Examples of materials that can be melted by heating include thermoplastic elastomers.
 導電部41の硬度は、30~87が好ましく、40~85がより好ましく、60~80がさらに好ましい。導電部41の硬度をこの範囲内とすることで、導電部材の25%圧縮した際の圧縮応力を所望の範囲内に調整しやすくなる。同様の観点から、絶縁部42の硬度は、20~50が好ましく、25~40がより好ましい。なお、導電部41の硬度は、JIS K6253-3:2012に記載される「加硫ゴム及び熱可塑性ゴム-硬さの求め方-第3部:デュロメータ硬さ」に準拠して、タイプAデュロメータを用いて23℃で測定されたものである。 The hardness of the conductive part 41 is preferably 30 to 87, more preferably 40 to 85, and even more preferably 60 to 80. By setting the hardness of the conductive part 41 within this range, it becomes easier to adjust the compressive stress when the conductive member is compressed by 25% within the desired range. From the same perspective, the hardness of the insulating part 42 is preferably 20 to 50, and more preferably 25 to 40. The hardness of the conductive part 41 is measured at 23°C using a type A durometer in accordance with "Vulcanized rubber and thermoplastic rubber - Determination of hardness - Part 3: Durometer hardness" described in JIS K6253-3:2012.
 コネクタ部40における導電部41の直径は、例えば、0.3~6.0mmである。導電部41の直径を前述の範囲内とすることによって、25%圧縮時の電気抵抗を所定の範囲内にしやすくなる。その結果、圧縮時にコネクタ部40の上面と下面の間に、大電流を流しても、コネクタ部40の温度上昇を抑制できる。これら観点から、導電部41の直径は、好ましくは0.3~3.0mmであり、より好ましくは0.5~2.6mmである。なお、導電部41の直径は、厚さ方向において異なる場合には、上面における導電部41の直径と、下面における導電部41の直径の平均値を意味する。また、本明細書において直径とは、円以外の場合、その面積と等しい面積を有する円の直径として算出できる。 The diameter of the conductive portion 41 in the connector portion 40 is, for example, 0.3 to 6.0 mm. By setting the diameter of the conductive portion 41 within the aforementioned range, it becomes easier to set the electrical resistance at 25% compression within a specified range. As a result, even if a large current flows between the upper and lower surfaces of the connector portion 40 during compression, the temperature rise of the connector portion 40 can be suppressed. From these perspectives, the diameter of the conductive portion 41 is preferably 0.3 to 3.0 mm, and more preferably 0.5 to 2.6 mm. Note that, when the diameter of the conductive portion 41 varies in the thickness direction, the diameter of the conductive portion 41 means the average value of the diameter of the conductive portion 41 on the upper surface and the diameter of the conductive portion 41 on the lower surface. In addition, in this specification, when the diameter is other than a circle, it can be calculated as the diameter of a circle having an area equal to the area of the conductive portion 41.
 導電部41の直径は、コネクタ部40の直径に対して、35~97%の割合であることが好ましい。この割合を35%以上とすることで、電気抵抗を十分に低くすることができる。他方で、この割合を97%以下とすることで、コネクタ部40に適切な弾性を付与できる。これらの観点から、導電部41の直径のコネクタ部40の直径に対する割合は、50%以上がより好ましく、55%以上がさらに好ましく、より好ましくは60%以上であり、また、95%以下がより好ましく、80%以下がさらに好ましい。このような比率とすることで、大電流を流すことが可能でありながらも、長期間にわたってゴム弾性が維持され易くなり、より一層安定した導通が可能になる。なお、コネクタ部40の直径は、厚さ方向において異なる場合には、上面における直径と、下面における直径の平均値を意味する。 The diameter of the conductive portion 41 is preferably 35-97% of the diameter of the connector portion 40. By setting this ratio at 35% or more, the electrical resistance can be sufficiently reduced. On the other hand, by setting this ratio at 97% or less, the connector portion 40 can be given appropriate elasticity. From these points of view, the ratio of the diameter of the conductive portion 41 to the diameter of the connector portion 40 is more preferably 50% or more, even more preferably 55% or more, more preferably 60% or more, more preferably 95% or less, and even more preferably 80% or less. By setting such a ratio, it is possible to pass a large current, while rubber elasticity is easily maintained for a long period of time, and more stable conduction is possible. Note that when the diameter of the connector portion 40 differs in the thickness direction, the diameter means the average value of the diameter at the upper surface and the diameter at the lower surface.
 コネクタ部40の直径は、特に限定されないが、例えば、0.5~8.0mm、好ましくは0.5~6.0mm、さらに好ましくは0.8~5.0mmである。また、コネクタ部40の厚さは、特に限定されないが、好ましくは0.2~20.0mmであることが好ましく、0.3~10.0mmであることがより好ましい。コネクタ部40は、厚さを前述の範囲内とすることで、上側筐体Cuと下側筐体Cdとによって、圧縮された状態に保持され易くなる。また、コネクタ部40は、厚さ方向に圧縮された状態に保持されて使用されるとき、その圧縮率は、特に限定されないが、例えば、5~40%、好ましくは10~35%、さらに好ましくは15~30%である。なお、圧縮率は、荷重が作用されない状態におけるコネクタ部40の厚さをH0、使用時の圧縮されたコネクタ部40の厚さをH1とすると、(H0-H1)/H0の式にて算出できる。 The diameter of the connector portion 40 is not particularly limited, but is, for example, 0.5 to 8.0 mm, preferably 0.5 to 6.0 mm, and more preferably 0.8 to 5.0 mm. The thickness of the connector portion 40 is not particularly limited, but is preferably 0.2 to 20.0 mm, and more preferably 0.3 to 10.0 mm. By setting the thickness of the connector portion 40 within the above-mentioned range, the connector portion 40 is easily held in a compressed state by the upper housing Cu and the lower housing Cd. When the connector portion 40 is used while being held in a compressed state in the thickness direction, the compression ratio is not particularly limited, but is, for example, 5 to 40%, preferably 10 to 35%, and more preferably 15 to 30%. The compression ratio can be calculated by the formula (H0-H1)/H0, where H0 is the thickness of the connector portion 40 when no load is applied, and H1 is the thickness of the connector portion 40 compressed during use.
 このような構成の本実施形態のコネクタ部40を製造するには、まず、アルミニウム、銅等の非磁性体でなる上型と下型で構成される金型を準備する。金型の上型と下型には、それぞれ導電部41に対応する位置に、鉄や磁石等の強磁性体からなるピンが埋め込まれる。ピンの一端は、上型と下型のキャビティ面に露出している。 To manufacture the connector portion 40 of this embodiment with such a configuration, first prepare a mold consisting of an upper mold and a lower mold made of a non-magnetic material such as aluminum or copper. A pin made of a ferromagnetic material such as iron or a magnet is embedded in the upper and lower mold halves at positions corresponding to the conductive portion 41. One end of the pin is exposed on the cavity surface of the upper and lower molds.
 次に、コネクタ部40の原料となる液状ゴムや、溶融した熱可塑性エラストマー等をキャビティ内に注入する。液状ゴムには、磁性を有する導電性粒子43が予め混合されている。 Next, the liquid rubber or molten thermoplastic elastomer that will be the raw material for the connector part 40 is injected into the cavity. Magnetic conductive particles 43 are premixed into the liquid rubber.
 その後、磁石を用いて金型の上下から磁場をかける。キャビティ内には、ピンを繋ぐ平行磁場が形成され、液状ゴム等の中の導電性粒子43が磁力線方向に連続的に配列する。この配列後に上下の金型を完全に締めて加熱処理を行い、液状ゴムを硬化させると、コネクタ部40となる成形体が得られる。その後、成形体にタッチセンサ電極50となる金属板を取り付けることによって、本実施形態のタッチセンサ本体部20が得られる。 After that, a magnetic field is applied from above and below the mold using magnets. A parallel magnetic field that connects the pins is formed inside the cavity, and the conductive particles 43 in the liquid rubber etc. are aligned continuously in the direction of the magnetic field lines. After this alignment, the upper and lower molds are completely clamped and a heat treatment is performed to harden the liquid rubber, resulting in a molded body that will become the connector part 40. A metal plate that will become the touch sensor electrode 50 is then attached to the molded body, resulting in the touch sensor main body part 20 of this embodiment.
第1実施形態の変形例〔図2〕Modification of the first embodiment (FIG. 2)
 図1で示すタッチセンサ10は、タッチセンサ本体部20とは別体で形成されたリテーナ30がタッチセンサ本体部20を保持する構成である。しかしながら、タッチセンサ本体部20と、リテーナ30とを一体で形成することもできる。このとき、タッチセンサ本体部20及びリテーナ30で要求される機能を双方ともに満たす材料が用いられる。使用する材料は、タッチセンサ本体部20とリテーナ30とで同一材料としても、2種以上の別材料としてもよい。また、タッチセンサ本体部20とリテーナ30は、型成形により同時に成形するものでも、一方の成形後に他方を成形するものでもよく、一体化の方法はこれらに限られない。 The touch sensor 10 shown in FIG. 1 has a configuration in which a retainer 30 formed separately from the touch sensor main body 20 holds the touch sensor main body 20. However, the touch sensor main body 20 and the retainer 30 can also be formed as a single unit. In this case, a material that satisfies the functions required of both the touch sensor main body 20 and the retainer 30 is used. The material used for the touch sensor main body 20 and the retainer 30 may be the same material, or two or more different materials. In addition, the touch sensor main body 20 and the retainer 30 may be molded simultaneously by molding, or one may be molded after the other, and the integration method is not limited to these.
 図2で示す変形例によるタッチセンサ10は、タッチセンサ本体部20とリテーナ30とが一体構造である。これによって、タッチセンサ10をより簡易な構造とすることができる。したがって、タッチセンサ10は、回路電極Eと簡易な構造で容易に導通接続することができる。さらに、タッチセンサ本体部20とリテーナ30とが単一部品であるので、タッチセンサ10の部品点数を削減することができる。そして、タッチセンサ10は、タッチセンサ本体部20をリテーナ30に取り付ける工程を省略することができて、タッチセンサ10の組み付け工数を削減することができる。 The modified touch sensor 10 shown in FIG. 2 has an integral structure of the touch sensor body 20 and the retainer 30. This allows the touch sensor 10 to have a simpler structure. The touch sensor 10 can therefore be easily conductively connected to the circuit electrode E with a simple structure. Furthermore, since the touch sensor body 20 and the retainer 30 are a single component, the number of components in the touch sensor 10 can be reduced. Furthermore, the touch sensor 10 does not require the step of attaching the touch sensor body 20 to the retainer 30, reducing the number of assembly steps for the touch sensor 10.
その他の変形例Other variations
 本実施形態では、タッチセンサ電極50の面積が、平面視でコネクタ部40の端面よりも大きな面積で形成されている例が示された。しかしながら、コネクタ部40の端面、すなわち、第1の端部40aの形状と、タッチセンサ電極50の形状とが平面視で同一形状でもよい。 In this embodiment, an example has been shown in which the area of the touch sensor electrode 50 is larger than the area of the end face of the connector portion 40 in a plan view. However, the shape of the end face of the connector portion 40, i.e., the first end portion 40a, and the shape of the touch sensor electrode 50 may be the same shape in a plan view.
 さらに、本実施形態では、1つのタッチセンサ電極50に対して1つのコネクタ部40が配置される例が示された。しかしながら、1つのタッチセンサ電極50に対して複数のコネクタ部40が配置されてもよい。 Furthermore, in this embodiment, an example has been shown in which one connector portion 40 is arranged for one touch sensor electrode 50. However, multiple connector portions 40 may be arranged for one touch sensor electrode 50.
第2実施形態〔図3A~図3B〕Second embodiment (FIGS. 3A to 3B)
 図1で示すタッチセンサ10は、タッチセンサ電極50として金属板が用いられる構成である。しかしながら、タッチセンサ電極50を金属板とは異なる構成とすることもできる。すなわち、図3で示す本実施形態によるタッチセンサ10は、基材フィルム51を備える。そして、タッチセンサ電極50は、基材フィルム51に形成した導電層52によって構成される。したがって、図3で示すようにタッチセンサ10は、基材フィルム51に導電層52が形成された導電シート54を有する。 The touch sensor 10 shown in FIG. 1 has a configuration in which a metal plate is used as the touch sensor electrode 50. However, the touch sensor electrode 50 can also have a configuration other than a metal plate. That is, the touch sensor 10 according to this embodiment shown in FIG. 3 includes a base film 51. The touch sensor electrode 50 is formed of a conductive layer 52 formed on the base film 51. Therefore, as shown in FIG. 3, the touch sensor 10 has a conductive sheet 54 in which the conductive layer 52 is formed on the base film 51.
 基材フィルム51は樹脂フィルムでなる。基材フィルム51は、X方向及びY方向に比べてZ方向に極めて薄いシート形状とされている。基材フィルム51は、タッチセンサ電極50を配置するための基材である。このため、基材フィルム51は、操作者の指等が触れる電子機器等の操作面Sに沿って、その下方(深層側)に配置される。 The base film 51 is made of a resin film. The base film 51 is in the form of a sheet that is extremely thin in the Z direction compared to the X and Y directions. The base film 51 is a substrate for arranging the touch sensor electrodes 50. For this reason, the base film 51 is arranged along and below (deeper side of) the operation surface S of an electronic device or the like that is touched by an operator's finger or the like.
 導電層52は、平面視でホイール形状とされる。導電層52は、その裏側面が、コネクタ部40の第1の端部40aにおける導電部41と対向して接触するように配置される。すなわち、導電層52における裏側面と、コネクタ部40の第1の端部40aにおける導電部41とは、電気的に接続可能に構成される。導電層52は、例えば基材フィルム51又はコネクタ部40の第1の端部40aに対する印刷、塗装等により設けることができる。 The conductive layer 52 has a wheel shape in a plan view. The conductive layer 52 is arranged so that its backside faces and contacts the conductive portion 41 at the first end 40a of the connector portion 40. In other words, the backside of the conductive layer 52 and the conductive portion 41 at the first end 40a of the connector portion 40 are configured to be electrically connectable. The conductive layer 52 can be provided, for example, by printing or painting on the base film 51 or the first end 40a of the connector portion 40.
 本実施形態では、タッチセンサ10が備える基材フィルム51にタッチセンサ電極50として導電層52が形成される。このため、本実施形態によっても、コネクタ部40の第1の端部40aにタッチセンサ電極50を容易に設けることができる。そして、タッチセンサ10は、導電層52にコネクタ部40を備える又はコネクタ部40に導電層52を備えるので、タッチセンサ10を回路電極Eと簡易な構造で容易に導通接続することができる。 In this embodiment, a conductive layer 52 is formed as a touch sensor electrode 50 on a substrate film 51 provided in the touch sensor 10. Therefore, even with this embodiment, the touch sensor electrode 50 can be easily provided on the first end 40a of the connector portion 40. And since the touch sensor 10 has the connector portion 40 on the conductive layer 52 or has the conductive layer 52 on the connector portion 40, the touch sensor 10 can be easily conductively connected to the circuit electrode E with a simple structure.
 ここで、コネクタ部40は、基材フィルム51と一体に形成することもできる。これによって、基材フィルム51とコネクタ部40とが単一部品であるので、タッチセンサ10が基材フィルム51を備える構成であっても、タッチセンサ10を回路電極Eと簡易な構造で容易に導通接続することができる。 Here, the connector portion 40 can also be formed integrally with the base film 51. As a result, the base film 51 and the connector portion 40 are a single component, so even if the touch sensor 10 is configured to include the base film 51, the touch sensor 10 can be easily electrically connected to the circuit electrode E with a simple structure.
 このとき、基材フィルム51には、コネクタ部40と一体に形成することが可能な材料が用いられる。コネクタ部40と基材フィルム51とを一体に形成した際には、導電部41と導電層52とは、あらかじめ接触した状態が維持される。これによって、導電部41と導電層52との接触面同士が離れることがないので、安定した導通性が維持される。これによって、導電層52からから得られる電気信号の減衰、導電部41と導電層52との間におけるチャタリング等の動作不良等を防止して、タッチセンサ10のセンサ感度を安定化させることができる。 In this case, the base film 51 is made of a material that can be formed integrally with the connector portion 40. When the connector portion 40 and the base film 51 are formed integrally, the conductive portion 41 and the conductive layer 52 are maintained in a pre-contact state. This prevents the contact surfaces of the conductive portion 41 and the conductive layer 52 from separating, maintaining stable conductivity. This prevents attenuation of the electrical signal obtained from the conductive layer 52 and operational malfunctions such as chattering between the conductive portion 41 and the conductive layer 52, and stabilizes the sensor sensitivity of the touch sensor 10.
 図3で示すタッチセンサ10では、平面視で導電層52がコネクタ部40の領域からリテーナ本体31の領域に跨がって形成されている。このため、導電層52は、基材フィルム51と絶縁部42とリテーナ本体31とで覆われて保護される。したがって、導電層52の耐久性を向上させることができ、タッチセンサ10の高い信頼性を維持することができる。 In the touch sensor 10 shown in FIG. 3, the conductive layer 52 is formed across the area from the connector portion 40 to the area of the retainer body 31 in a plan view. Therefore, the conductive layer 52 is covered and protected by the base film 51, the insulating portion 42, and the retainer body 31. This improves the durability of the conductive layer 52, and allows the high reliability of the touch sensor 10 to be maintained.
 基材フィルム51は、第4の防水突起53(基材防水突起)を有する。第4の防水突起53は、基材フィルム51に形成された環状のシーリング突起による防水用部材(第1の防水用部材)である。第4の防水突起53は、基材フィルム51の外周端を含む領域における表側面から上方に突出する。第4の防水突起53は、タッチセンサ10が電子機器Dに取り付けられた際に、先(上)端部分が上側筐体Cuと水密に接触する。これによって、第4の防水突起53と上側筐体Cuとの間で防水ができる。すなわち、タッチセンサ10に対して、基材フィルム51より外周側の領域から内周側の領域に向かって水の浸入を防ぐ防水機能を付与することができる。したがって、基材フィルム51の内周側の領域に配置されるタッチセンサ電極50等への浸潤を防止することができる。 The base film 51 has a fourth waterproof protrusion 53 (base waterproof protrusion). The fourth waterproof protrusion 53 is a waterproof member (first waterproof member) formed by an annular sealing protrusion formed on the base film 51. The fourth waterproof protrusion 53 protrudes upward from the front side surface in an area including the outer circumferential end of the base film 51. When the touch sensor 10 is attached to the electronic device D, the tip (upper) end portion of the fourth waterproof protrusion 53 comes into watertight contact with the upper housing Cu. This provides waterproofing between the fourth waterproof protrusion 53 and the upper housing Cu. In other words, the touch sensor 10 can be given a waterproof function that prevents water from entering from the outer circumferential area of the base film 51 toward the inner circumferential area. Therefore, it is possible to prevent infiltration into the touch sensor electrodes 50 and the like arranged in the inner circumferential area of the base film 51.
 導電層52は、基材フィルム51に対して、X-Y平面上に所望のセンサ形状で導電印刷する方法、所望のセンサ形状とした導電金属箔を積層する方法等によって形成することができる。さらに、導電シート54をコネクタ部40と一体化する場合には、導電層52は、コネクタ部40の第1の端部40aに導電印刷する方法、導電金属箔を積層する方法によっても形成することができる。その後に、コネクタ部40と、基材フィルム51とが一体形成されれば良い。 The conductive layer 52 can be formed on the base film 51 by a method of conductive printing in the desired sensor shape on the X-Y plane, a method of laminating conductive metal foil in the desired sensor shape, or the like. Furthermore, when the conductive sheet 54 is integrated with the connector portion 40, the conductive layer 52 can also be formed by a method of conductive printing on the first end portion 40a of the connector portion 40, or a method of laminating conductive metal foil. After that, the connector portion 40 and the base film 51 can be integrally formed.
 基材フィルム51には、樹脂、合成ゴム、熱可塑性エラストマー等を薄く成形したフィルム、シート等を用いることができる。樹脂としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)、ポリアミド(PA)、アクリル(AC)、ポリ塩化ビニル(PVC)等の熱可塑性樹脂が挙げられる。合成ゴムとしては、ウレタンゴム、シリコーンゴム、フッ素ゴム等が挙げられる。熱可塑性エラストマーとしては、ウレタン系、オレフィン系、スチレン系、ポリエステル系、シリコーン系、フッ素系等が挙げられる。 The base film 51 can be a thin film, sheet, etc. made of resin, synthetic rubber, thermoplastic elastomer, etc. Examples of resin include thermoplastic resins such as polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polycarbonate (PC), polyamide (PA), acrylic (AC), polyvinyl chloride (PVC), etc. Examples of synthetic rubber include urethane rubber, silicone rubber, fluororubber, etc. Examples of thermoplastic elastomers include urethane-based, olefin-based, styrene-based, polyester-based, silicone-based, fluorine-based, etc.
 導電層52には、銀、銅等の金属ペースト、カーボンペースト、導電性高分子等の導電性塗膜、導電性の金属箔等を用いることができる。さらに、導電層52には、PEDOT/PSS(Poly(3,4-EthyleneDiOxyThiophene) PolyStyrene Sulfonate(ポリエチレンジオキシチオフェンとポリスチレンスルホン酸の分散体))、ITO(Indium Tin Oxide(酸化インジウムスズ))、ナノスケールの微細導電粉末、微細導電繊維等の導電性ナノ粒子を含むペーストを用いることができる。導電層52は、PEDOT/PSS、ITOによる薄膜、ペースト、導電性ナノ粒子を含むペーストを利用した透明導電膜であると、透光性がありバックライト照光を透過させることができる。 The conductive layer 52 can be made of a metal paste such as silver or copper, a carbon paste, a conductive coating such as a conductive polymer, or a conductive metal foil. Furthermore, the conductive layer 52 can be made of a paste containing conductive nanoparticles such as PEDOT/PSS (Poly(3,4-EthyleneDiOxyThiophene) PolyStyrene Sulfonate (a dispersion of polyethylenedioxythiophene and polystyrenesulfonic acid), ITO (Indium Tin Oxide), nanoscale fine conductive powder, or fine conductive fibers. If the conductive layer 52 is a transparent conductive film using a thin film, paste, or paste containing conductive nanoparticles of PEDOT/PSS or ITO, it will be translucent and can transmit backlight illumination.
第2実施形態の第1変形例〔図4〕First modified example of the second embodiment (FIG. 4)
 図1等で示すタッチセンサ10では、タッチセンサ電極50と第1の端部41aにおける導電部41とが互いに対向して位置する。しかしながら、例えば電子機器Dの内部においてX-Y平面でコネクタ部40の占有面積を充分に確保できない場合もあり得る。この例のように、タッチセンサ電極50と第1の端部41aにおける導電部41とを互いに対向して配置することが難しい場合には、互いの接触位置をずらした構成とすることもできる。 In the touch sensor 10 shown in FIG. 1 etc., the touch sensor electrode 50 and the conductive portion 41 at the first end 41a are positioned opposite each other. However, for example, there may be cases where it is not possible to secure a sufficient area for the connector portion 40 in the X-Y plane inside electronic device D. As in this example, when it is difficult to position the touch sensor electrode 50 and the conductive portion 41 at the first end 41a opposite each other, it is also possible to configure them so that their contact positions are shifted.
 図4で示す第1変形例によるタッチセンサ10では、タッチセンサ電極50は、電極本体部55と、電極延長部56とを有する。電極本体部55は、操作領域に位置する。すなわち、電極本体部55は、操作者の指等が触れる電子機器等の操作面Sに沿って、その裏面側に配置される。これに対し、電極延長部56は、操作領域外に位置する。すなわち、電極延長部56は、操作面Sの裏面側には位置しない。電極延長部56は、電極本体部55から配線状に伸長する。電極延長部56は、先端が袋小路となっており、他の回路とは接続しない。すなわち、電極延長部56は、他の回路と非接続である。そして、導電部41は、このような電極延長部56と導通接触するように配置される。本変形例によるタッチセンサ10は、例えば電子機器Dの上面に沿って電極本体部55が配置され、電子機器Dの側面に沿って電極延長部56が配置され、導電部41が水平方向に伸長するような構成に適用することができる。 In the touch sensor 10 according to the first modified example shown in FIG. 4, the touch sensor electrode 50 has an electrode body 55 and an electrode extension 56. The electrode body 55 is located in the operation area. That is, the electrode body 55 is arranged on the back side of the operation surface S of an electronic device or the like that is touched by the operator's finger or the like. In contrast, the electrode extension 56 is located outside the operation area. That is, the electrode extension 56 is not located on the back side of the operation surface S. The electrode extension 56 extends in a wire-like manner from the electrode body 55. The tip of the electrode extension 56 is a dead end, and is not connected to other circuits. That is, the electrode extension 56 is not connected to other circuits. The conductive portion 41 is arranged so as to be in conductive contact with such an electrode extension 56. The touch sensor 10 according to this modified example can be applied to a configuration in which the electrode body 55 is arranged along the top surface of the electronic device D, the electrode extension 56 is arranged along the side surface of the electronic device D, and the conductive portion 41 extends in the horizontal direction.
 本変形例では、コネクタ部40の導電部41が操作領域に位置する電極本体部55に限らず、操作領域外に位置する電極延長部56と導通接触するようにも構成できる。このため、タッチセンサ10は、操作領域外の位置であっても、タッチセンサ電極50と導電部41とを導通接触させることができる。したがって、タッチセンサ10は、それが搭載される回路電極Eとの接続位置の自由度を高めることができる。 In this modified example, the conductive portion 41 of the connector portion 40 can be configured to be in conductive contact not only with the electrode main body portion 55 located in the operation area, but also with the electrode extension portion 56 located outside the operation area. Therefore, the touch sensor 10 can achieve conductive contact between the touch sensor electrode 50 and the conductive portion 41 even when the touch sensor 10 is located outside the operation area. Therefore, the touch sensor 10 can increase the degree of freedom in the connection position with the circuit electrode E on which it is mounted.
第2実施形態の第2変形例〔図5A~図5B〕Second Modification of Second Embodiment (FIGS. 5A to 5B)
 タッチセンサ10では、タッチセンサ電極50と導電部41との位置がずれて、これらの間で正しく導通接触されないと、操作者によるタッチ操作を確実に検出できないおそれがある。このような不具合が生じないようにするために、タッチセンサ10は、タッチセンサ電極50と導電部41とを所定の接触位置に配置する「位置決め部」を有するように構成することができる。 In the touch sensor 10, if the touch sensor electrode 50 and the conductive portion 41 are misaligned and do not make proper conductive contact between them, there is a risk that the touch operation by the operator cannot be reliably detected. To prevent such a problem from occurring, the touch sensor 10 can be configured to have a "positioning portion" that positions the touch sensor electrode 50 and the conductive portion 41 at a predetermined contact position.
 図5で示す第2変形例によるタッチセンサ10では、基材フィルム51は「位置決め部」としての位置決め凹部57を有し、リテーナ本体31は「位置決め部」としての位置決め凸部37を有する。位置決め凹部57は、基材フィルム51をZ方向に貫通する円柱形状の開孔である。位置決め凸部37は、リテーナ本体31の表側面から上方に突出する円柱形状の突起である。位置決め凹部57と位置決め凸部37とは、平面視で互いに重なる位置に設けられる。リテーナ本体31の上方から基材フィルム51が設けられる際に、リテーナ本体31の位置決め凸部37に対して基材フィルム51の位置決め凹部57が嵌合する。これによって、タッチセンサ電極50と導電部41とを所定の接触位置に配置することができる。 In the touch sensor 10 according to the second modified example shown in FIG. 5, the base film 51 has a positioning recess 57 as a "positioning portion", and the retainer body 31 has a positioning protrusion 37 as a "positioning portion". The positioning recess 57 is a cylindrical opening penetrating the base film 51 in the Z direction. The positioning protrusion 37 is a cylindrical protrusion protruding upward from the front side surface of the retainer body 31. The positioning recess 57 and the positioning protrusion 37 are provided at positions where they overlap each other in a plan view. When the base film 51 is provided from above the retainer body 31, the positioning recess 57 of the base film 51 fits into the positioning protrusion 37 of the retainer body 31. This allows the touch sensor electrode 50 and the conductive portion 41 to be positioned at a predetermined contact position.
 タッチセンサ10は、図5Aで示すようにX軸及びY軸で対称の形状である場合が多い。この場合には、タッチセンサ本体部20及びリテーナ30に対して基材フィルム51がX-Y平面において180°回転した際にも同じ位置(点対称)となるように、位置決め凹部57及び位置決め凸部37が設けられると、組み付けの効率が高まって好ましい。 The touch sensor 10 often has a shape that is symmetrical with respect to the X-axis and Y-axis, as shown in Figure 5A. In this case, it is preferable to provide the positioning recess 57 and the positioning protrusion 37 so that the base film 51 is in the same position (point symmetry) even when rotated 180° in the XY plane with respect to the touch sensor body 20 and the retainer 30, as this increases assembly efficiency.
 「位置決め部」の数には、特に限定はない。しかしながら、「位置決め部」が1組の場合には、X-Y平面において「位置決め部」を中心として基材フィルム51が回転するおそれがある。他方で、「位置決め部」が3組以上の場合には、全ての箇所において「位置決め部」を組み付けることが難しくなる。したがって、タッチセンサ電極50と導電部41とを所定の接触位置に確実に配置することができ、かつ、容易に組み付けができる点で、「位置決め部」の数は2組であることが好ましい。さらに、位置決め凸部37と位置決め凹部57とは必ずしも同じ数でなくてもよい。例えば1つの位置決め凸部37と2つの位置決め凹部57とが設けられてもよい。 There is no particular limit to the number of "positioning portions". However, if there is one set of "positioning portions", there is a risk that the base film 51 will rotate around the "positioning portions" in the X-Y plane. On the other hand, if there are three or more sets of "positioning portions", it becomes difficult to assemble the "positioning portions" at all locations. Therefore, it is preferable that there are two sets of "positioning portions", in that the touch sensor electrodes 50 and the conductive portions 41 can be reliably positioned at the specified contact positions and can be easily assembled. Furthermore, the number of positioning protrusions 37 and positioning recesses 57 does not necessarily have to be the same. For example, one positioning protrusion 37 and two positioning recesses 57 may be provided.
 本変形例のタッチセンサ10は、基材フィルム51とコネクタ部40との位置関係を決める位置決め凹部57と位置決め凸部37とを有する。このため、タッチセンサ電極50と導電部41とを所定の接触位置に据えることができる。さらに、タッチセンサ電極50と導電部41とを所定の接触位置に配置された後には、嵌合する位置決め凹部57と位置決め凸部37とによって、タッチセンサ電極50と導電部41とを所定の接触位置に維持することができる。 The touch sensor 10 of this modified example has a positioning recess 57 and a positioning protrusion 37 that determine the positional relationship between the base film 51 and the connector portion 40. This allows the touch sensor electrode 50 and the conductive portion 41 to be placed in a predetermined contact position. Furthermore, after the touch sensor electrode 50 and the conductive portion 41 are placed in the predetermined contact position, the mating positioning recess 57 and positioning protrusion 37 allow the touch sensor electrode 50 and the conductive portion 41 to be maintained in the predetermined contact position.
第3実施形態〔図6A~図6B〕Third embodiment (FIGS. 6A to 6B)
 図6A及び図6Bで示すように、タッチセンサ10は、複数のコネクタ部40と、複数のタッチセンサ電極50とを有するように構成することもできる。これによって、タッチセンサ10を多極のセンサ電極、スライダ電極等に適用することができる。 As shown in Figures 6A and 6B, the touch sensor 10 can also be configured to have multiple connector portions 40 and multiple touch sensor electrodes 50. This allows the touch sensor 10 to be used as a multi-pole sensor electrode, slider electrode, etc.
 図6で示す第3実施形態によるタッチセンサ10は、4つのコネクタ部40と、4つのタッチセンサ電極50とを有する。4つのコネクタ部40及び4つのタッチセンサ電極50は、それぞれX方向に等間隔で配置される。4つのコネクタ部40は、いずれも同じ形状とされる。4つのタッチセンサ電極50は、平面視で全てW字状に形成されたスライダ電極である。4つのタッチセンサ電極50は、単一の基材フィルム51に形成される。このため、コネクタ部40及びリテーナ30に対して1つの基材フィルム51を組み付けることによって、それぞれ4つ全てのタッチセンサ電極50と導電部41とを導通接触させることができる。 The touch sensor 10 according to the third embodiment shown in FIG. 6 has four connector parts 40 and four touch sensor electrodes 50. The four connector parts 40 and the four touch sensor electrodes 50 are arranged at equal intervals in the X direction. All four connector parts 40 have the same shape. The four touch sensor electrodes 50 are slider electrodes that are all formed in a W shape in a plan view. The four touch sensor electrodes 50 are formed on a single base material film 51. Therefore, by assembling one base material film 51 to the connector parts 40 and the retainer 30, it is possible to make conductive contact between all four touch sensor electrodes 50 and the conductive parts 41.
 本実施形態では、コネクタ部40及びタッチセンサ電極50がそれぞれ複数としても構成できる。このため、タッチセンサ10は、コネクタ部40及びタッチセンサ電極50がそれぞれ複数であっても、容易に導通接続することができる。 In this embodiment, the connector portion 40 and the touch sensor electrode 50 can each be configured in a plurality of parts. Therefore, the touch sensor 10 can be easily electrically connected even if the connector portion 40 and the touch sensor electrode 50 are each multiple.
第4実施形態〔図7〕Fourth embodiment (FIG. 7)
 図1で示すタッチセンサ10では、コネクタ部40が単純な円柱形状であって、リテーナ本体31に対してZ方向に任意に配置することができる。しかしながら、コネクタ部40がZ方向の位置を規定する構成とすることもできる。 In the touch sensor 10 shown in FIG. 1, the connector portion 40 has a simple cylindrical shape and can be positioned arbitrarily in the Z direction relative to the retainer body 31. However, it is also possible to configure the connector portion 40 to determine its position in the Z direction.
 すなわち、図7で示す第4実施形態によるタッチセンサ10では、コネクタ部40は、柱状に形成されている。コネクタ部40の第1の端部40aには金属箔でなるタッチセンサ電極50が設けられている。コネクタ部40は、その外周に、コネクタ部40の取付対象物に対して係止する係止突起44を有する。ここでの取付対象物は、リテーナ30である。しかしながら、取付対象物は、電子機器Dに形成された取付け用の部材等であっても良い。係止突起44は、コネクタ部40の外周面から外方に半円形状に突出する突起がコネクタ部40を環状に周回する。係止突起44は、単にコネクタ部40を取付対象物に係止する場合には、完全に周回せずに部分的に欠如部があってもかまわない。係止突起44は、上下に間隔を開けて2本形成される。コネクタ部40は、下側ほど径の小さい先細り形状である。したがって、上側の係止突起44は、XY平面で下側の係止突起44よりも大きな径を有する。 That is, in the touch sensor 10 according to the fourth embodiment shown in FIG. 7, the connector portion 40 is formed in a columnar shape. A touch sensor electrode 50 made of metal foil is provided at the first end 40a of the connector portion 40. The connector portion 40 has a locking protrusion 44 on its outer periphery that locks the connector portion 40 to an object to which the connector portion 40 is to be attached. The object to be attached here is the retainer 30. However, the object to be attached may be an attachment member formed on the electronic device D or the like. The locking protrusion 44 is a protrusion that protrudes outward in a semicircular shape from the outer periphery of the connector portion 40 and goes around the connector portion 40 in a ring shape. When the locking protrusion 44 is simply to lock the connector portion 40 to the object to which the connector portion 40 is to be attached, it does not matter if the locking protrusion 44 does not go around completely and has a partial missing portion. Two locking protrusions 44 are formed with a gap between them at the top and bottom. The connector portion 40 has a tapered shape with a smaller diameter toward the bottom. Therefore, the upper locking protrusion 44 has a larger diameter than the lower locking protrusion 44 in the XY plane.
 リテーナ30に対してコネクタ部40が上方から取り付けられると、コネクタ部40が先細り形状であるので、リテーナ30に対して下側の係止突起44が接触するまで容易に押し込まれる。さらに、リテーナ30に対してコネクタ部40が上方から押し込まれると、下側の係止突起44がリテーナ30を乗り越える。すなわち、下側の係止突起44は、リテーナ本体31に形成されたZ方向に貫通する円柱形状の開孔をその上方から下方に通り抜ける。他方で、リテーナ本体31の開孔は、上側の係止突起44が乗り越えられない寸法で形成される。したがって、コネクタ部40は、上側の係止突起44と下側の係止突起44との間にリテーナ30が挟まれた状態で固定される。 When the connector portion 40 is attached to the retainer 30 from above, the connector portion 40 is tapered and is therefore easily pushed into the retainer 30 until the lower locking projection 44 comes into contact with it. Furthermore, when the connector portion 40 is pushed into the retainer 30 from above, the lower locking projection 44 climbs over the retainer 30. That is, the lower locking projection 44 passes through a cylindrical opening formed in the retainer body 31 that penetrates in the Z direction from above to below. On the other hand, the opening of the retainer body 31 is formed with dimensions that do not allow the upper locking projection 44 to climb over it. Therefore, the connector portion 40 is fixed with the retainer 30 sandwiched between the upper locking projection 44 and the lower locking projection 44.
 本実施形態では、柱状のコネクタ部40の外周に有する係止突起44が取付対象物に対して係止するように構成されている。このため、コネクタ部40は、タッチセンサ10を取付対象物に容易に留めることができる。 In this embodiment, the locking protrusions 44 on the outer periphery of the columnar connector portion 40 are configured to lock onto the object to which the touch sensor 10 is attached. Therefore, the connector portion 40 can easily fasten the touch sensor 10 to the object to which the touch sensor 10 is attached.
 さらに、係止突起44には、止水部を設けることができる。これによって、係止突起44とリテーナ30との間から回路基板Bに実装する素子e等に向かって水の浸入を防ぐ防水機能を付与することができる。この場合、止水部は、例えばリテーナ30との密着性を高めること、リテーナ30との接触面積を大きくすること等によって設けることができる。 Furthermore, the locking projection 44 can be provided with a water-stopping portion. This can provide a waterproof function that prevents water from entering between the locking projection 44 and the retainer 30 toward the element e and the like mounted on the circuit board B. In this case, the water-stopping portion can be provided, for example, by increasing the adhesion with the retainer 30, increasing the contact area with the retainer 30, etc.
第4実施形態の変形例〔図8〕Modification of the fourth embodiment (FIG. 8)
 図1で示すタッチセンサ10では、リテーナ30が防水機能を有する構成である。しかしながら、コネクタ部40の構成によって、タッチセンサ10の防水機能を高める構成とすることもできる。すなわち、図8で示す第4実施形態の変形例では、コネクタ部40は、外周側に伸長するフランジ45を有し、防水用部材(第1の防水用部材及び第2の防水用部材)は、フランジ45であるように構成することができる。 In the touch sensor 10 shown in FIG. 1, the retainer 30 is configured to have a waterproof function. However, the configuration of the connector portion 40 can also be configured to enhance the waterproof function of the touch sensor 10. That is, in a modified example of the fourth embodiment shown in FIG. 8, the connector portion 40 has a flange 45 that extends to the outer periphery, and the waterproof members (first waterproof member and second waterproof member) can be configured to be the flange 45.
 本変形例によるタッチセンサ10では、コネクタ部40は、上下方向に同寸の円柱形状である。そして、図7で示すタッチセンサ10と同様にコネクタ部40は、下側の係止突起44を有するものの、上側の係止突起44を有しない。そして、コネクタ部40は、コネクタ部40の第1の端部40aを含む上部の外周面から外方に円板形状に突出するフランジ45を有する。コネクタ部40の第1の端部40aには金属箔でなるタッチセンサ電極50が設けられており、その範囲はフランジ45の外周端まで及ぶ。 In the touch sensor 10 according to this modified example, the connector portion 40 has a cylindrical shape with the same dimensions in the vertical direction. As with the touch sensor 10 shown in FIG. 7, the connector portion 40 has a lower locking protrusion 44, but does not have an upper locking protrusion 44. The connector portion 40 has a flange 45 that protrudes outward in a disk shape from the outer circumferential surface of the upper portion including the first end 40a of the connector portion 40. A touch sensor electrode 50 made of metal foil is provided on the first end 40a of the connector portion 40, and its range extends to the outer circumferential edge of the flange 45.
 リテーナ30に対してコネクタ部40が上方から取り付けられると、下側の係止突起44がリテーナ30を乗り越える。その際に、フランジ45は、リテーナ30と広い面積で接触する。したがって、コネクタ部40は、上側のフランジ45と下側の係止突起44との間にリテーナ30が挟まれた状態で固定される。 When the connector part 40 is attached to the retainer 30 from above, the lower locking projection 44 climbs over the retainer 30. At that time, the flange 45 comes into contact with the retainer 30 over a wide area. Therefore, the connector part 40 is fixed with the retainer 30 sandwiched between the upper flange 45 and the lower locking projection 44.
 本変形例では、フランジ45がコネクタ部40の外周側に伸長して形成されている。このため、フランジ45は、タッチセンサ10の外周側をより広い面積で覆うことができる。そして、本変形例では、防水用部材がフランジ45としてコネクタ部40に形成されている。このため、タッチセンサ10は、フランジ45と取付対象物との間で防水ができる。 In this modified example, the flange 45 is formed to extend toward the outer periphery of the connector portion 40. This allows the flange 45 to cover a wider area of the outer periphery of the touch sensor 10. In this modified example, a waterproofing member is formed on the connector portion 40 as the flange 45. This allows the touch sensor 10 to be waterproof between the flange 45 and the object to which it is attached.
第5実施形態〔図9A~図9B〕Fifth embodiment (FIGS. 9A to 9B)
 タッチセンサ10は、凹凸のない平坦な操作面Sの下方に埋め込まれる形態に限らず、操作面Sが立体形状面となっている電子機器Dに適用することもできる。すなわち、図9で示す第5実施形態では、基材フィルム51が立体形状であり、タッチセンサ電極50が基材フィルム51の立体形状に沿って形成されているように構成することができる。 The touch sensor 10 is not limited to being embedded under a flat operation surface S without any irregularities, but can also be applied to an electronic device D whose operation surface S is a three-dimensional surface. That is, in the fifth embodiment shown in FIG. 9, the base film 51 has a three-dimensional shape, and the touch sensor electrode 50 can be configured to be formed along the three-dimensional shape of the base film 51.
 本実施形態の操作面Sは円錐台形状とされており、その天面及び側面に沿って基材フィルム51が設けられる。タッチセンサ電極50は、天面から側面に跨がって形成される。ただし、タッチセンサ電極50は、天面の中心部には形成されていない。すなわち、タッチセンサ電極50は、中央部分が欠如したホイール形状とされている。コネクタ部40は、立体形状として上方に突出する操作面Sに合わせて操作面Sの天面の裏側の位置まで伸長する。タッチセンサ10は、このように構成されることによって、天面の外周部及び側面において操作者による操作を検出可能に構成されている。 The operation surface S of this embodiment is shaped like a truncated cone, and a base film 51 is provided along the top and side surfaces. The touch sensor electrode 50 is formed across the top and side surfaces. However, the touch sensor electrode 50 is not formed in the center of the top surface. In other words, the touch sensor electrode 50 is shaped like a wheel with a central portion missing. The connector portion 40 extends to a position on the back side of the top surface of the operation surface S to match the operation surface S, which protrudes upward as a three-dimensional shape. By being configured in this way, the touch sensor 10 is configured to be able to detect operations by an operator on the outer periphery and side surfaces of the top surface.
 タッチセンサ電極50は、基材フィルム51の立体形状に沿って形成されている。このため、操作領域が立体形状のタッチセンサ10を実現することができる。このとき、操作面Sが立体形状であると、タッチセンサ電極50から回路電極Eまでの端子間距離が長くなるので、電気抵抗が高くなりやすい。しかしながら、本実施形態によるタッチセンサ10は、直線形状の導電部41を有するので、タッチセンサ電極50から回路電極Eまでを短い直線距離で導通接続することができる。その結果として、タッチセンサ10の導通路41cを低抵抗化することができるので、タッチセンサ10のセンサ感度を向上させることができる。 The touch sensor electrode 50 is formed along the three-dimensional shape of the base film 51. This makes it possible to realize a touch sensor 10 with a three-dimensional operating area. In this case, if the operating surface S is three-dimensional, the inter-terminal distance from the touch sensor electrode 50 to the circuit electrode E becomes long, which tends to increase electrical resistance. However, the touch sensor 10 according to this embodiment has a linear conductive portion 41, so that a conductive connection can be established from the touch sensor electrode 50 to the circuit electrode E in a short linear distance. As a result, the resistance of the conductive path 41c of the touch sensor 10 can be reduced, thereby improving the sensor sensitivity of the touch sensor 10.
第5実施形態の第1変形例〔図10A~図10B〕First modified example of the fifth embodiment (FIGS. 10A to 10B)
 図9で示すタッチセンサ10は、コネクタ部40の第1の端部40aは、導電部41の伸長方向に対して直交、すなわち水平に形成される。しかしながら、第5実施形態の第1変形例では、タッチセンサ電極50と導通接触するコネクタ部40の第1の端部40aが傾斜面で形成されるように構成することができる。 In the touch sensor 10 shown in FIG. 9, the first end 40a of the connector portion 40 is formed perpendicular to the extension direction of the conductive portion 41, i.e., horizontally. However, in a first modified example of the fifth embodiment, the first end 40a of the connector portion 40 that is in conductive contact with the touch sensor electrode 50 can be configured to be formed with an inclined surface.
 本変形例の操作面Sは四角錐台形状とされており、その天面及び側面に沿って基材フィルム51が設けられる。タッチセンサ電極50は、側面に形成される。コネクタ部40は、立体形状として上方に突出する操作面Sに合わせて操作面Sの側面の裏側の位置まで伸長する。そして、コネクタ部40は、第1の端部40aにおいて傾斜面としてタッチセンサ電極50と接続する。導電部41は、コネクタ部40と同様に導電部41の第1の端部41aにおいて傾斜面としてタッチセンサ電極50と導通接触する。タッチセンサ10は、このように構成されることによって、側面において操作者による操作を検出可能に構成されている。 The operation surface S of this modified example has a quadrangular pyramid shape, and a base film 51 is provided along the top and side surfaces. The touch sensor electrode 50 is formed on the side surface. The connector portion 40 extends to a position behind the side surface of the operation surface S to match the operation surface S, which protrudes upward as a three-dimensional shape. The connector portion 40 connects to the touch sensor electrode 50 as an inclined surface at the first end portion 40a. The conductive portion 41 is in conductive contact with the touch sensor electrode 50 as an inclined surface at the first end portion 41a of the conductive portion 41, similar to the connector portion 40. The touch sensor 10 is configured in this manner, and is configured to be able to detect operations by an operator on the side surface.
 本変形例では、タッチセンサ電極50と導通接触する側のコネクタ部40の第1の端部41aが傾斜面で形成されている。このため、操作領域が傾斜面のタッチセンサ10を実現することができる。 In this modified example, the first end 41a of the connector portion 40 that is in conductive contact with the touch sensor electrode 50 is formed as an inclined surface. This makes it possible to realize a touch sensor 10 whose operation area is an inclined surface.
第5実施形態の第2変形例〔図11A~図11B〕Second Modification of Fifth Embodiment (FIGS. 11A to 11B)
 タッチセンサ電極50は、上側筐体Cuの立体形状の側面及び平面形状の上面に設けることもできる。さらに、タッチセンサ10には、LED100等の発光素子を設けることもできる。 The touch sensor electrodes 50 can also be provided on the three-dimensional side surface and the planar top surface of the upper housing Cu. Furthermore, the touch sensor 10 can also be provided with a light-emitting element such as an LED 100.
 本変形例の操作面Sは円錐台形状とされており、その天面及び側面並びに平面形状の上面に沿って基材フィルム51が設けられる。タッチセンサ電極50は、側面から平面形状の上面に跨がって形成される。コネクタ部40は、平面形状の上面の裏側の位置まで伸長する。タッチセンサ10は、このように構成されることによって、側面及び平面形状の上面において操作者による操作を検出可能に構成されている。回路基板BにはLED100が実装される。上側筐体Cu及び基材フィルム51には、透光性を有する材料が用いられる。 The operation surface S of this modified example is shaped like a truncated cone, and a base film 51 is provided along its top and side surfaces and the top surface of the planar shape. The touch sensor electrode 50 is formed spanning from the side surface to the top surface of the planar shape. The connector portion 40 extends to a position behind the top surface of the planar shape. The touch sensor 10 is configured in this way, so that it can detect operations by an operator on the side surface and the top surface of the planar shape. An LED 100 is mounted on the circuit board B. A light-transmitting material is used for the upper housing Cu and the base film 51.
 本変形例では、上側筐体Cuの立体形状の側面部及び平面形状の上面に沿ってタッチセンサ電極50が形成されている。このため、操作領域が立体形状の傾斜面、平面形状の上面等に有するタッチセンサ10を実現することができる。さらに、本変形例では、LED100が設けられている。このため、LED100によって操作者による操作を促すこと、操作者による操作の結果を光によって報知すること等ができる。 In this modified example, the touch sensor electrodes 50 are formed along the three-dimensional side portions and the planar top surface of the upper housing Cu. This makes it possible to realize a touch sensor 10 in which the operation area is on a three-dimensional inclined surface, a planar top surface, etc. Furthermore, in this modified example, an LED 100 is provided. This makes it possible to prompt the operator to perform an operation using the LED 100, and to notify the operator of the results of the operation using light, etc.
 本開示の「タッチセンサ」では、各実施形態及び変形例で示した構成を矛盾の生じない範囲で自由に組み合わせることができる。例えば第3実施形態における複数のコネクタ部40と、複数のタッチセンサ電極50は、いずれの実施形態及び変形例の構成と組み合わされても良い。さらに、例えば第1実施形態における金属板でなるタッチセンサ電極50と、第2実施形態における基材フィルム51に導電層52が形成されたタッチセンサ電極50とは、他の実施形態及び変形例においていずれの構成が用いられても良い。 In the "touch sensor" of the present disclosure, the configurations shown in each embodiment and modification may be freely combined to the extent that no contradictions arise. For example, the multiple connector parts 40 and multiple touch sensor electrodes 50 in the third embodiment may be combined with the configurations of any of the embodiments and modifications. Furthermore, for example, the touch sensor electrode 50 made of a metal plate in the first embodiment and the touch sensor electrode 50 in which a conductive layer 52 is formed on a base film 51 in the second embodiment may have any configuration used in the other embodiments and modifications.
 本開示では、操作領域に接触する「タッチセンサ」について説明した。しかしながら、操作領域とは非接触である「近接センサ」に本開示の「タッチセンサ」を適用することもできる。 In this disclosure, we have described a "touch sensor" that comes into contact with the operation area. However, the "touch sensor" of this disclosure can also be applied to a "proximity sensor" that does not come into contact with the operation area.
 なお、上記のように本発明の各実施形態について詳細に説明したが、本発明の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは、当業者には、容易に理解できるであろう。したがって、このような変形例は、全て本発明の範囲に含まれるものとする。 Although each embodiment of the present invention has been described in detail above, those skilled in the art will easily understand that many modifications are possible that do not substantially deviate from the novel aspects and effects of the present invention. Therefore, all such modifications are intended to be included within the scope of the present invention.
  10   タッチセンサ
  20   タッチセンサ本体部
  30   リテーナ
  31   リテーナ本体
  32   支持脚
  40   コネクタ部
  40a  第1の端部
  40b  第2の端部
  41   導電部
  41c  導通路
  42   絶縁部
  50   タッチセンサ電極
  51   基材フィルム
  52   導電層
REFERENCE SIGNS LIST 10 Touch sensor 20 Touch sensor body 30 Retainer 31 Retainer body 32 Support leg 40 Connector section 40a First end 40b Second end 41 Conductive section 41c Conductive path 42 Insulating section 50 Touch sensor electrode 51 Base film 52 Conductive layer

Claims (22)

  1. 導電部と前記導電部を覆うゴム状弾性体でなる絶縁部とを有するコネクタ部と、
    前記コネクタ部の第1の端部に位置して前記導電部と導通接触するタッチセンサ電極とを備え、
    前記コネクタ部は、接続対象物に接触させることによって、前記タッチセンサ電極と前記接続対象物とを導通接続する第2の端部を有し、
    前記第1の端部と前記第2の端部との間を伸長する前記導電部は、直線形状である
    タッチセンサ。
    a connector portion having a conductive portion and an insulating portion made of a rubber-like elastic material covering the conductive portion;
    a touch sensor electrode located at a first end of the connector portion and in conductive contact with the conductive portion;
    the connector portion has a second end portion that electrically connects the touch sensor electrode and the connection object by contacting the second end portion with the connection object;
    The conductive portion extending between the first end and the second end of the touch sensor is linear.
  2. 前記タッチセンサ電極の面積は、前記導電部の端面よりも大きな面積で形成されている
    請求項1記載のタッチセンサ。
    The touch sensor according to claim 1 , wherein an area of the touch sensor electrode is larger than an area of an end face of the conductive portion.
  3. 前記タッチセンサ電極は、前記コネクタ部と一体に固着している
    請求項1又は請求項2記載のタッチセンサ。
    3. The touch sensor according to claim 1, wherein the touch sensor electrode is fixed integrally with the connector portion.
  4. 前記コネクタ部は、柱状に形成されており、その外周には前記コネクタ部を取り付ける第1の取付対象物に対して係止する係止突起を有する
    請求項1~請求項3いずれか1項記載のタッチセンサ。
    The touch sensor according to any one of claims 1 to 3, wherein the connector portion is formed in a columnar shape and has a locking projection on its outer periphery for locking with a first mounting object to which the connector portion is attached.
  5. 前記タッチセンサは、リテーナを備え、
    前記リテーナは、前記コネクタ部を保持するリテーナ本体と、前記リテーナ本体から突出して前記リテーナを第2の取付対象物に取り付ける支持脚とを有する
    請求項1~請求項4いずれか1項記載のタッチセンサ。
    The touch sensor includes a retainer.
    The touch sensor according to any one of claims 1 to 4, wherein the retainer has a retainer body that holds the connector portion, and support legs that protrude from the retainer body and attach the retainer to a second mounting object.
  6. 前記支持脚は、前記リテーナ本体と前記第2の取付対象物との間に、回路基板に実装する素子の収容空間を形成する長さを有する
    請求項5記載のタッチセンサ。
    The touch sensor according to claim 5 , wherein the support legs have a length sufficient to form a space for accommodating an element mounted on a circuit board between the retainer body and the second mounting object.
  7. 前記タッチセンサは、さらに、防水用部材を有し、
    前記防水用部材は、
     操作者がタッチ操作を行う操作対象部材と前記タッチセンサとの間を閉塞する第1の防水用部材と、
     前記コネクタ部を取り付ける第1の取付対象物と前記タッチセンサとの間を閉塞する第2の防水用部材と、
     前記第2の取付対象物と前記タッチセンサとの間を閉塞する第3の防水用部材の少なくともいずれかである
    請求項5又は請求項6記載のタッチセンサ。
    The touch sensor further includes a waterproof member,
    The waterproof member is
    a first waterproof member that blocks a gap between an operation target member that an operator touches and the touch sensor;
    a second waterproof member that seals a gap between a first attachment object to which the connector portion is attached and the touch sensor;
    7. The touch sensor according to claim 5, further comprising at least one third waterproof member that seals a gap between the second mounting object and the touch sensor.
  8. 前記防水用部材は、前記リテーナ本体に形成された環状のシーリング突起である
    請求項7記載のタッチセンサ。
    8. The touch sensor according to claim 7, wherein the waterproof member is an annular sealing protrusion formed on the retainer body.
  9. 前記支持脚は、環状に形成されており、
    前記防水用部材は、前記支持脚に形成された環状のシーリング突起である
    請求項7又は請求項8記載のタッチセンサ。
    The support leg is formed in an annular shape,
    9. The touch sensor according to claim 7, wherein the waterproof member is an annular sealing protrusion formed on the support leg.
  10. 前記コネクタ部は、外周側に伸長するフランジを有し、
    前記防水用部材は、前記フランジである
    請求項7~請求項9いずれか1項記載のタッチセンサ。
    The connector portion has a flange extending outwardly,
    10. The touch sensor according to claim 7, wherein the waterproof member is the flange.
  11. 前記タッチセンサは、基材フィルムを備えており、
    前記コネクタ部は、前記基材フィルムと一体に形成されている
    請求項1~請求項10いずれか1項記載のタッチセンサ。
    The touch sensor includes a base film,
    The touch sensor according to any one of claims 1 to 10, wherein the connector portion is formed integrally with the base film.
  12. 前記タッチセンサは、基材フィルムを備えており、
    前記タッチセンサ電極は、前記基材フィルム及び前記第1の端部のいずれかに形成した導電層である
    請求項1~請求項10いずれか1項記載のタッチセンサ。
    The touch sensor includes a base film,
    The touch sensor according to any one of claims 1 to 10, wherein the touch sensor electrode is a conductive layer formed on either the base film or the first end portion.
  13. 前記防水用部材は、前記タッチセンサが備える基材フィルムに形成された環状のシーリング突起である
    請求項7~請求項10いずれか1項記載のタッチセンサ。
    The touch sensor according to any one of claims 7 to 10, wherein the waterproof member is an annular sealing protrusion formed on a base film of the touch sensor.
  14. 前記基材フィルムが立体形状であり、
    前記タッチセンサ電極が前記基材フィルムの前記立体形状に沿って形成されている
    請求項11~請求項13いずれか1項記載のタッチセンサ。
    The base film has a three-dimensional shape,
    The touch sensor according to any one of claims 11 to 13, wherein the touch sensor electrode is formed along the three-dimensional shape of the base film.
  15. 前記タッチセンサ電極と導通接触する前記コネクタ部の前記第1の端部が傾斜面で形成される
    請求項14記載のタッチセンサ。
    The touch sensor according to claim 14 , wherein the first end of the connector portion that is in conductive contact with the touch sensor electrode is formed as an inclined surface.
  16. 前記タッチセンサ電極は、操作領域に位置する電極本体部と、操作領域外に位置する電極延長部とを有し、
    前記導電部は、前記電極延長部と導通接触する
    請求項11~請求項15いずれか1項記載のタッチセンサ。
    The touch sensor electrode has an electrode main body portion located in an operation area and an electrode extension portion located outside the operation area,
    The touch sensor according to any one of claims 11 to 15, wherein the conductive portion is in conductive contact with the electrode extension portion.
  17. 前記タッチセンサは、前記タッチセンサ電極と前記導電部とを所定の接触位置に配置する位置決め部を有する
    請求項11~請求項16いずれか1項記載のタッチセンサ。
    The touch sensor according to any one of claims 11 to 16, further comprising a positioning portion for arranging the touch sensor electrode and the conductive portion at a predetermined contact position.
  18. 前記タッチセンサ電極は、金属板である
    請求項1~請求項10いずれか1項記載のタッチセンサ。
    The touch sensor according to any one of claims 1 to 10, wherein the touch sensor electrode is a metal plate.
  19. 前記タッチセンサは、複数の前記コネクタ部と、複数の前記タッチセンサ電極とを有する
    請求項1~請求項18いずれか1項記載のタッチセンサ。
    The touch sensor according to any one of claims 1 to 18, comprising a plurality of the connector portions and a plurality of the touch sensor electrodes.
  20. 前記タッチセンサは、さらに、操作者がタッチ操作を行う操作対象部材を備える
    請求項1~請求項19いずれか1項記載のタッチセンサ。
    The touch sensor according to any one of claims 1 to 19, further comprising an operation target member on which an operator performs a touch operation.
  21. 前記導電部は、導電性粒子が前記第1の端部と前記第2の端部とを結ぶ方向であるZ方向に配列した直線状の導通路を有する
    請求項1~請求項20いずれか1項記載のタッチセンサ。
    The touch sensor according to any one of claims 1 to 20, wherein the conductive portion has a linear conductive path in which conductive particles are arranged in a Z direction, which is a direction connecting the first end and the second end.
  22. 請求項1~請求項21いずれか1項記載のタッチセンサを備え、
    前記導電部は、直線形状であり、前記タッチセンサ電極と前記接続対象物とを導通接続する直線状の導通路を形成する
    タッチセンサと接続対象物との接続構造。
    A touch sensor according to any one of claims 1 to 21,
    The conductive portion is linear in shape, and forms a linear conductive path that electrically connects the touch sensor electrode and the connection object.
PCT/JP2023/034688 2022-09-29 2023-09-25 Touch sensor, and connection structure for touch sensor and object to be connected WO2024071022A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022157030 2022-09-29
JP2022-157030 2022-09-29

Publications (1)

Publication Number Publication Date
WO2024071022A1 true WO2024071022A1 (en) 2024-04-04

Family

ID=90477841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034688 WO2024071022A1 (en) 2022-09-29 2023-09-25 Touch sensor, and connection structure for touch sensor and object to be connected

Country Status (1)

Country Link
WO (1) WO2024071022A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006318735A (en) * 2005-05-12 2006-11-24 Matsushita Electric Ind Co Ltd Touch key and electromagnetic cooker using the same
WO2010090263A1 (en) * 2009-02-04 2010-08-12 信越ポリマー株式会社 Capacitance-type input switch
JP2015515693A (en) * 2012-04-11 2015-05-28 コミサリア ア エナジー アトミック エ オックス エナジーズ オルタネティヴ User interface device with transparent electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006318735A (en) * 2005-05-12 2006-11-24 Matsushita Electric Ind Co Ltd Touch key and electromagnetic cooker using the same
WO2010090263A1 (en) * 2009-02-04 2010-08-12 信越ポリマー株式会社 Capacitance-type input switch
JP2015515693A (en) * 2012-04-11 2015-05-28 コミサリア ア エナジー アトミック エ オックス エナジーズ オルタネティヴ User interface device with transparent electrode

Similar Documents

Publication Publication Date Title
US10373775B2 (en) Pushbutton switch member
US7829813B2 (en) Touch sensor switch
US8610017B2 (en) Capacitive input switch
US10403451B2 (en) Pushbutton switch member
US20080014796A1 (en) Anisotropic Conductive Film
CN101373865B (en) Anisotropic conductive connector and anisotropic conductive connector connection structure
US7795554B2 (en) Antistatic component and method of manufacturing the same
EP3364436B1 (en) Push switch
US10930448B2 (en) Push-button switch member
US20110083946A1 (en) Slide Switch
WO2024071022A1 (en) Touch sensor, and connection structure for touch sensor and object to be connected
JP5797159B2 (en) Waterproof pushbutton switch member
CN107230574B (en) Push switch structure
CN212625301U (en) Member for push-button switch
KR101204085B1 (en) Tact switch for electronic component
KR101923733B1 (en) Signal input device having waterproof function
JP5973631B1 (en) Capacitance type push-down key structure
JP6464450B2 (en) Seal member and electronic device
CN102511206A (en) Member and system for electromagnetic shielding
JP6718794B2 (en) Push button switch
KR100458968B1 (en) Tact switch form pcb printed circuit board
KR101307643B1 (en) Tact switch for electronic component
US20080160822A1 (en) Discharge tube connector
KR20060076521A (en) Electric contacts pusher and key switch of mobile phone having the same pusher
JP2004281064A (en) Zebra type connector and acoustic component holder attached to the same