WO2024071004A1 - Battery energy storage system and management method for battery energy storage system - Google Patents

Battery energy storage system and management method for battery energy storage system Download PDF

Info

Publication number
WO2024071004A1
WO2024071004A1 PCT/JP2023/034636 JP2023034636W WO2024071004A1 WO 2024071004 A1 WO2024071004 A1 WO 2024071004A1 JP 2023034636 W JP2023034636 W JP 2023034636W WO 2024071004 A1 WO2024071004 A1 WO 2024071004A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
energy storage
storage system
bess
deterioration
Prior art date
Application number
PCT/JP2023/034636
Other languages
French (fr)
Japanese (ja)
Inventor
純 川治
宏明 小西
大輝 小松
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2024071004A1 publication Critical patent/WO2024071004A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering

Definitions

  • the present invention relates to a battery energy storage system including a secondary battery and a method for managing the battery energy storage system.
  • each renewable energy generator may be equipped with a battery energy storage system (hereinafter sometimes referred to as BESS) using a secondary battery to mitigate the fluctuation of its own power generation value. If the capacity of this battery can be utilized as an adjustment power, it can contribute to grid stability.
  • BESS battery energy storage system
  • VPP virtual power plant
  • BESS has also come to be used not only for adjustment capacity to stabilize the grid, but also for electricity trading between electricity retailers and consumers in the electricity market.
  • SOH state of health
  • Patent Document 1 discloses a method for providing a capacity estimation system, capacity estimation method, communication device, and computer program that enable remote grasping of the SOH of secondary battery elements for a BESS that can be used as a regulating power. Specifically, when it is determined that the appropriate conditions for a secondary battery in a specific bank extracted in the BESS to perform a process for estimating the full charge capacity of the bank are satisfied, a constant charge or discharge current (e.g., discharging at a constant rate from a charge state of 80% to 50%) is applied to the secondary battery in the bank to estimate the full charge capacity, and the full charge capacity is estimated based on the battery voltage and current at that time.
  • a constant charge or discharge current e.g., discharging at a constant rate from a charge state of 80% to 50%
  • Patent Document 2 discloses a technology for predicting revenues and indicating the risks involved in electricity trading using a BESS. Specifically, the technology discloses a method for preparing a model formula for predicting the deterioration of the battery capacity that the BESS can take in and out, using arguments such as the current and temperature conditions applied to the secondary battery system during electricity trading and the charging rate conditions at that time, and presenting an optimal trading solution for multiple electricity markets, taking into account the electricity buying and selling price at the time of trading and the cost loss due to battery capacity deterioration associated with trading.
  • JP 2020-20654 A International Publication No. 2021/044132 JP 2016-82728 A
  • Patent Document 3 As a method for diagnosing the deterioration of the material base from a secondary battery system in operation, Patent Document 3 and the like can be mentioned.
  • OCV Open Circuit Voltage
  • SOC State of Charge
  • OCP Open Circuit Potential
  • the present invention aims to provide a battery energy storage system and a management method thereof that can extract degradation parameters of the materials in the secondary batteries that make up the BESS without stopping the operation of the entire BESS, and thus enable BESS owners to operate and maintain the BESS appropriately by considering abnormal degradation as well as diagnosing and predicting the SOH.
  • the battery energy storage system including the secondary battery according to the present invention is characterized in that it has a status management unit that selects a battery bank that is the subject of diagnosis and has 50% or less of the total capacity from among the multiple battery banks that make up the battery energy storage system, extracts deterioration parameters of materials that make up at least one of the battery cells, battery modules, and battery racks that make up the selected battery bank, and performs charging and discharging based on a request from the grid when the status management unit extracts the deterioration parameters.
  • the method for managing a battery energy storage system including a secondary battery is characterized by including the steps of: selecting a battery bank with 50% or less of the total capacity to be diagnosed from among a plurality of battery banks constituting the battery energy storage system; transmitting a pulsed charge/discharge command to a power conditioner connected to the selected battery bank, and transmitting a charge/discharge command corresponding to a charge/discharge plan from the grid to a power conditioner of a battery bank not to be diagnosed; obtaining a curve showing the relationship between the charging rate and battery state of the battery rack constituting the battery bank to be diagnosed from the voltage behavior at the time of the pulsed charge/discharge command; and extracting from the obtained curve a deterioration parameter of the material constituting at least one of the battery cells, battery modules, and battery racks constituting the selected battery bank.
  • the present invention by extracting deterioration parameters of the materials of the secondary batteries that make up the BESS without stopping operation of the entire BESS, it is possible to provide BESS owners with a battery energy storage system and a management method thereof that can not only diagnose and predict SOH, but also take abnormal deterioration into consideration, thereby enabling them to operate and maintain the BESS appropriately. For example, it is possible to obtain parameters that are indicators of material deterioration of the secondary batteries that make up the BESS, and from the time series changes in these parameters, it is possible to predict future changes in battery capacity and resistance, as well as to grasp signs of specific performance degradation.
  • FIG. 1 is a diagram showing the configuration of a battery energy storage system (BESS) according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of a form of current distribution to a battery bank constituting a BESS according to the first embodiment of the present invention.
  • FIG. 4 is a diagram showing another example of a form of current distribution to the battery bank constituting the BESS according to the first embodiment of the present invention.
  • 4A and 4B are diagrams showing an example of the input/output current to and from a battery bank in diagnosis mode and the voltage behavior of the battery cells in the bank at that time, in which FIG.
  • FIG. 4(a) is an example of the charge/discharge waveforms (left axis) of a battery bank in diagnosis mode and the battery voltage behavior at that time (right axis)
  • FIG. 4(b) is an example of the battery voltage behavior immediately after pulse discharge
  • FIG. 4(c) shows the DOD dependence of the open circuit voltage (OCV) and its capacity derivative (dV/dQ)
  • FIG. 4(d) shows the DOD dependence of DC resistance at each time.
  • FIG. 13 is a diagram illustrating the process of extracting parameters indicative of material degradation from battery cells in a battery bank in a diagnostic mode.
  • FIG. 2 is a diagram showing a management procedure of the BESS according to the first embodiment of the present invention.
  • FIG. 4 is a diagram showing another example of a form of current distribution to the battery bank constituting the BESS according to the first embodiment of the present invention.
  • FIG. 2 is a diagram showing a mechanism for transmitting a diagnosis result or an abnormality alert to a BESS owner or operator based on the diagnosis result of the BESS according to the first embodiment of the present invention.
  • FIG. 2 is a diagram showing a virtual operation of a plurality of BESSes using parameters obtained by the BESS according to the first embodiment of the present invention.
  • FIG. 1 is a diagram showing an example in which a plurality of BESSes are applied to natural energy power generation using parameters obtained by the BESS according to the first embodiment of the present invention.
  • FIG. 1 is a diagram showing the configuration of a battery energy storage system (BESS) according to an embodiment of the present invention.
  • the battery energy storage system 15 has a configuration in which a plurality of battery banks 1a, 1b, 1c, 1d, ..., 1n are connected in parallel, and each battery bank 1 has a configuration in which an output converter (Power Conditioning System: hereinafter referred to as PCS) 2a, 2b, 2c, 2d, ..., 2n and a plurality of battery racks 3a, 3b, 3c, 3d, ..., 3n are connected.
  • PCS Power Conditioning System
  • the battery rack 3 a plurality of battery modules are connected in series and/or parallel, and the battery module is configured by connecting battery cells, which are the smallest units, in series and/or parallel.
  • the battery banks 1 are connected in parallel, and the number of parallel connections varies depending on the installation location and use of the BESS.
  • the battery bank 1 a group of batteries in multiple hierarchical levels is connected in series or parallel. That is, in the battery bank, a plurality of battery racks 3 are connected in series and/or parallel, and the battery racks 3 further have a configuration in which a plurality of battery modules are connected in series and/or parallel.
  • the battery module is configured with a series/parallel connection of multiple battery cells.
  • a battery management system (BMS, also referred to as a battery management unit BMU) is arranged to diagnose the state of the battery group in each layer and transmit the information to the upper control unit 6.
  • BMS battery management system
  • the reference characters 1a to 1n are used to indicate a specific battery bank, and the reference character 1 is used to indicate a general battery bank.
  • FIG. 1 shows a rack BMS 4 for monitoring the state of the battery rack 3.
  • FIG. 1 shows a rack BMS 4 for monitoring the state of the battery rack 3.
  • the upper control unit 6 is present between each of the multiple battery banks 1 and the system (grid) 5, but here, a system BMS 7 is present to determine the standby state of charge (SOC) of each battery bank 1 and the current distribution rate to each PCS 2 and issue a command, taking into account the state of the battery rack 3 in each battery bank 1.
  • the rack BMS 4 and the system BMS 7 are known by various names, and may be called SBMU (System Battery Management Unit) or MBMU (Master Battery Management Unit), respectively. Battery management systems such as the system BMS 7 and the rack BMS 4 are collectively referred to as a status management unit.
  • the rack BMS 4, the system BMS 7, and the upper control unit 6 are realized by, for example, a processor such as a CPU (not shown), a ROM for storing various programs, a RAM for temporarily storing data in the calculation process, and a storage device such as an external storage device, and the processor such as the CPU reads and executes various programs stored in the ROM, and stores the calculation results, which are the execution results, in the RAM or the external storage device.
  • a processor such as a CPU (not shown), a ROM for storing various programs, a RAM for temporarily storing data in the calculation process, and a storage device such as an external storage device
  • the processor such as the CPU reads and executes various programs stored in the ROM, and stores the calculation results, which are the execution results, in the RAM or the external storage device.
  • the upper control unit 6 receives information from the grid 5 and the energy management system (EMS) 8 connected to the grid 5, determines the charge/discharge current pattern for each battery bank 1, and transmits this to the PCS 2 of each battery bank 1.
  • the system BMS 7 has the function of isolating battery racks 3 whose SOC or SOH deviates based on information on the state of charge (SOC) and state of health (SOH) measured by the rack BMS 4 of each battery bank 1, and determining the current distribution (Current Dispatch) ratio to be passed to each battery bank 1.
  • the simplest method is to divide the current value required by the grid 5 proportionally among the number of battery banks that make up the battery bank, and issue charge/discharge commands equally.
  • the SOC and SOH of the battery racks 3 that make up the BESS 15 are measured by the rack BMS 4, but there is a limit to the detection accuracy, and there is a risk that the measured values will diverge greatly from the actual values due to malfunctions in the BMS itself, so it is necessary to periodically diagnose the condition of each battery rack 3.
  • the simplest way to do this is to stop all operation of the BESS 15 and diagnose the performance of the constituent battery racks 3a, 3b, 3c, 3d, ... 3n using an external power source, but this means stopping operation of the BESS 15 during the diagnosis, which will miss opportunities for grid stabilization and power trading using the BESS 15.
  • the SOC and SOH can be diagnosed by supplying power from an external source to the stopped battery bank 1n and repeating a specific charge/discharge, but connecting the external power source and performing charge/discharge tests requires a lot of human and time resources, and furthermore, there is a risk that long-term diagnosis will relatively increase the load on the other battery banks 1a, 1b, 1c, 1d, ..., 1n-1.
  • FIG. 2 is a diagram showing an example of the current distribution to the battery banks constituting the BESS according to the first embodiment of the present invention.
  • the battery in the battery bank 1n on the far right side of the figure is the subject of diagnosis.
  • the corresponding battery bank 1n is in diagnosis mode
  • the other battery banks 1a, 1b, 1c, 1d, ..., 1n-1 are in diagnosis support mode.
  • a characteristic charge/discharge pattern for diagnosis is issued from the PCS 2 in the battery bank 1n, and for the other battery banks 1a, 1b, 1c, 1d, ..., 1n-1 (not shown), the charge/discharge pattern for the battery in diagnosis mode is subtracted from the charge/discharge pattern from the grid (system) 5, and this is matched with the battery banks 1a, 1b, 1c, 1d, ..., 1n-1 (not shown) in diagnosis support mode, so that diagnosis can be automatically performed on any battery bank without an external power source.
  • Figure 3 is a diagram showing another example of the form of current distribution to the battery banks that make up the BESS according to the first embodiment of the present invention.
  • multiple battery banks 1 are selected to be in diagnostic mode, and electricity is transferred by accommodating charge and discharge current between each of the battery banks 1.
  • Figure 3 shows a case where two battery banks, battery bank 1n-1 and battery bank 1n, are in diagnostic mode. In this case, multiple battery banks can be diagnosed without exchanging power with the outside. Note that, although Figure 3 shows a case where two battery banks are in diagnostic mode, this is not limited to the above, and multiple battery banks may be in diagnostic mode with an upper limit of 50% of the total capacity of the entire BESS 15.
  • FIG. 4 shows an example of charge/discharge waveforms for a battery bank in diagnosis mode, and an example of a charging rate and battery state (OCV, resistance) curve obtained by the analysis.
  • FIG. 4 values normalized by the number of cells connected in series are used. The current value on the left axis of FIG.
  • the allowable range of the pulsed discharge current is 0.1C to 3C, preferably 0.5C to 1.5C.
  • 1C indicates the magnitude of the current when charging or discharging the amount of electricity that the current can charge and discharge at a constant current value over one hour.
  • the right axis of FIG. 4(a) shows the battery voltage waveform when this pulsed discharge current is applied.
  • the inset in the figure shows the change in the battery voltage during one pulsed discharge and the subsequent pause state.
  • a pulsed discharge current is applied, an overvoltage ( ⁇ V) derived from the resistance component in the battery is applied, so the battery voltage drops instantaneously, and then the voltage is relaxed when the battery is at rest.
  • Figure 4(b) shows this battery voltage behavior in more detail.
  • the pulse discharge starts at the point indicated by the ⁇ mark in the figure, and an example is shown in which the battery is discharged for 72 seconds at a 1C rate (the amount of current required to discharge a fully charged amount of electricity over one hour).
  • the battery voltage is measured after 1 second and 10 seconds, and the difference between this and the voltage value immediately before the start of discharge is detected as the overvoltage ( ⁇ V 1sec , ⁇ V 10sec ).
  • the difference between the voltage immediately before the end of discharge and the voltage at the time of rest thereafter is detected as the overvoltage ( ⁇ V 72sec ).
  • OCV-DOD curve The open circuit voltage (OCV) at the corresponding charge rate (DOD) can be obtained from the voltage after relaxation after discharge (e.g., Insert ⁇ ) in Figure 4(a). The curve is obtained by plotting the OCV under multiple SOC conditions.
  • dV/dQ-DOD curve The derivative of OCV (dV/dQ) at a particular SOC is calculated by dividing the change in SOC (DOD) ( ⁇ SOC ( ⁇ DOD), in capacity units) at a particular SOC (DOD) region by the corresponding change in open circuit voltage ( ⁇ OCV), and plotted against DOD to obtain a curve.
  • Figure 4(c) shows the open circuit voltage (OCV) versus state of charge (SOC) and the value (dV/dQ) differentiated on the horizontal axis of the graph
  • Figure 4(d) shows the degree of discharge (DOD) dependency of DC resistance values (R 1s , R 10s , R 72s ) at discharge times of 1 sec, 10 sec, and 72 sec.
  • DOD is the value obtained by subtracting SOC from 100.
  • the discharge times used for measuring DC resistance are 1 sec, 10 sec, and 72 sec, but results from discharge times other than these can also be used in the analysis.
  • the battery is discharged from the fully charged state at SOC 2% intervals, and the subsequent relaxation process is measured, but this SOC range is variable.
  • the battery can respond to charge/discharge commands from the grid 5 as a normal BESS 15.
  • the current value during pulse discharge in the diagnosis mode does not need to be constant during diagnosis, and can be changed.
  • Figure 5 shows an example of a process for acquiring parameters reflecting material degradation from the correlation between the battery state and the charging rate obtained in Figure 4.
  • Figure 5 shows the steps: Step 0 (preparation stage): acquiring positive and negative electrode data, Step 1: acquiring the battery state and charging rate state, Step 2: curve fitting using the battery state parameters, and Step 3: deriving the parameters.
  • a single-electrode curve per unit active material the relationship between the capacity, electrode potential, and resistance of the positive and negative electrodes used in the batteries in each battery bank (hereinafter referred to as a single-electrode curve per unit active material) is obtained.
  • a single-electrode curve per unit active material is shown when a ternary material (LiNi x Co y Mn Z O 2 ) made of lithium-(nickel-cobalt-manganese) oxide is applied to the positive electrode and a graphite material is applied to the negative electrode.
  • a ternary material LiNi x Co y Mn Z O 2
  • the horizontal axis (q p , q n ) indicates the discharge capacity per unit weight of the active material
  • the vertical axis (left axis) indicates the electrode potential (V p (q p ) and V n (q n )) for each discharge state
  • the vertical axis (right axis) indicates the resistance value per unit weight.
  • single-electrode curves per unit active material can be obtained in advance for a plurality of active material materials to prepare a database, and if the database contains material data similar to the positive and negative electrode materials of the batteries in each battery bank 1, this can be used. Even if the material of the secondary battery cell is unknown, if single-electrode data that allows appropriate fitting can be selected in step 2 described below, this can be used as the single-electrode data as it is.
  • Step 1 Get battery status and charging rate Using FIG. 4 and the above-mentioned method, the relationship of OCV, dV/dQ, and DC resistance to the depth of discharge (DOD) of the battery is obtained as curves.
  • Step 2 Curve fitting with battery state parameters
  • the utilization rate of the positive and negative electrodes is defined as the ratio of the weight of the active material that can contribute to the battery reaction to the weight of the active material contained in the electrode.
  • the capacity deviation corresponds to the amount of electricity [Ah] of lithium ions taken into the film.
  • the utilization rate and capacity deviation in the positive electrode (subscript p) and negative electrode (subscript n) made of a single active material are respectively m p , m n , ⁇ p , and ⁇ n , and the capacity per weight, q p and q n , which are characteristic values specific to the active material, are combined to give the following basic formula.
  • Q cell is the discharge capacity of the battery
  • V cell (Q cell ) is the battery voltage for the discharge capacity Q cell
  • Formula (2) means that the discharge capacity of the battery is expressed in the form of the product of the utilization rate and unit capacity of the active material of the positive and negative electrodes minus the capacity deviation
  • formula (3) means that the battery voltage is expressed as the difference between the potentials of the corresponding positive and negative electrodes.
  • V cell (Q cell ) V p (q p ) ⁇ V n (q n ) (3)
  • Pos. and Neg. in the diagram indicate the corresponding positive and negative electrode monopolar curves, respectively, and Cell in FIG. 5 is shown as the difference (Pos.-Neg.) between the positive and negative electrode monopolar curves.
  • Pos. in FIG. 5 is determined by expanding the monopolar curve per unit active material obtained in step 0 in the horizontal axis direction by the utilization rate (m p ) of the active material, and further translating it by the capacity deviation ( ⁇ p ).
  • the positive and negative electrode unipolar curves (Pos., Neg.) in FIG. 5 can be reproduced using these values and the unipolar curve per unit active material obtained in step 0, and further, the voltage-capacity curve per battery (Cell) can be reproduced by subtracting these voltages.
  • the deterioration parameters for each material can be indirectly determined.
  • Step 3 Derive the degradation parameters As in step 0, a single-electrode curve per unit active material is obtained in advance, and a discharge curve (OCV-capacity curve) of the entire battery is predicted from the degradation parameters and single-electrode data. Then, the degradation parameters, for example, m p , m n , ⁇ p , and ⁇ n can be derived by performing curve fitting to minimize the difference by comparing the predicted curve with the actual measured value of the discharge curve of the battery during operation.
  • R 0 is the sum of the Li conductive resistance and various electronic conductive resistances in the electrolyte inside the battery cell
  • a p is the resistance increase rate due to the alteration of the surface of the positive electrode active material
  • a n is the resistance increase rate due to the alteration of the surface of the positive electrode active material.
  • the battery groups from which degradation parameters can be obtained using the above method are either battery cells, battery modules, or battery racks 3, and vary depending on the measurement target of the SOC or DOD-dependent data of the battery state obtained in Figure 4. That is, when the battery rack average voltage and current data is used in Figure 4, the obtained degradation parameters indicate the average material degradation of the battery rack. Similarly, when the battery module average voltage and current data is used, the averaged material degradation of the module can be obtained, and when the individual cell voltage and current data is used, the degradation parameters for each cell can be obtained. It is possible to freely select which layer of degradation information to obtain. When placing importance on accuracy and degree of dispersion, the cell layer can be used as the priority, and when placing importance on the cost and load associated with diagnosis, the battery rack layer can be used as the priority.
  • FIG. 6 is a diagram showing the management procedure of the BESS according to the first embodiment of the present invention.
  • FIG. 6 illustrates an example of the process for obtaining the deterioration parameters of the battery in a specific battery bank 1 from the BESS 15 in operation by the above-mentioned method.
  • the battery bank 1 is selected periodically, and the deterioration parameters of the secondary battery are obtained through the above-mentioned process, but the frequency and the diagnosis order of the battery banks 1 are arbitrary.
  • the battery bank 1 to be diagnosed can be selected in a predetermined order and frequency, and the diagnosis mode can be set as shown in FIG.
  • the battery bank 1 including that battery rack 3 can be preferentially set to the diagnosis mode.
  • the rack BMS 4 in the BESS 15 or a lower battery controller can be used to easily diagnose the SOC and SOH of each battery rack 3a, 3b, 3c, 3d, 3n-1, 3n and the battery modules and cells that compose them.
  • This diagnostic data is automatically acquired for all batteries in the BESS.
  • the lower battery controller is implemented, for example, in the battery module in the battery rack 3.
  • the lower battery controller measures the battery state (charging rate, deterioration degree, voltage, temperature, etc.) in the battery module and transmits the measurement information to the upper rack BMS 4 or system BMS 7. It is the system BMS 7 that determines the current distribution to each battery bank 1a, 1b, 1c, 1d, ...
  • the function of diagnosing the deterioration state can be implemented in either the rack BMS 4 or the system BMS 7, but it is preferable to implement it in the system BMS 7.
  • step S102 the diagnostic data of the simplified diagnosis obtained in step S101 is compared with a predetermined battery bank diagnostic plan to confirm whether or not there is a target battery bank that should be diagnosed at the appropriate time.
  • step S103 if there is one battery bank to be diagnosed, that battery bank is selected; if there are multiple battery banks, the one with the most significant deterioration is selected, and the battery bank to be diagnosed is determined.
  • step S104 the target battery bank is determined, and the charging rate of the battery bank to be diagnosed is obtained.
  • step S105 the charging rates of the other battery banks are obtained.
  • an input/output plan (needs) from the grid 5 is obtained (step S106), and a future charging/discharging plan for each battery bank is determined (step S107).
  • a pulse charging/discharging pattern as shown in FIG. 4 is set and instructed to the PCS2 of the battery bank in the diagnosis mode, and a charging/discharging pattern obtained by subtracting the charging/discharging plan of the diagnosis mode from the input/output plan from the grid 5 is divided and instructed to the PCS2 of the other battery banks.
  • step S108 it is confirmed that the charging/discharging range of the other battery banks in the diagnosis support mode does not exceed the allowable range.
  • the allowable range refers to a charge/discharge allowable range that is set in advance to minimize deterioration of the constituent batteries and ensure safety. If this range is exceeded, the risk of unexpected deterioration and unsafe risks increases. Therefore, if the allowable range is exceeded, the conditions and timing of the diagnosis mode and the diagnosis support mode are reviewed.
  • the set charge/discharge plan can be executed to perform pulse charge/discharge in the bank to be diagnosed (step S109) and charge/discharge response to grid needs by other battery banks in the diagnosis support mode (step S110).
  • the required SOC-battery state (OCV, resistance) curves can be obtained using the procedure described in FIG. 4 above (step S111)
  • each battery bank returns to the normal charge/discharge mode.
  • deterioration parameters of the batteries in the target battery bank are obtained using the procedure described in FIG. 5 above (step S112).
  • the deterioration parameters obtained by the above-mentioned procedure include m p , m n , ⁇ p , ⁇ n , R 0 , ap , and an .
  • the present invention also includes an optimal operation and maintenance method for the BESS 15 using these deterioration parameters. An example of this method will be described below.
  • This function can be arranged either as an internal function of the BESS in FIG. 1 or as an external function that manages the BESS, but below, as an example, an example of predicting the change over time in the SOH inside the BESS is shown.
  • the SOH prediction part can be executed by the system BMS 7 in FIG. 1.
  • deterioration acceleration factors that affect battery deterioration
  • e.g., current, center SOC, ⁇ SOC, temperature, duty ratio ( current application time/(current application time+non-application time)
  • deterioration acceleration factors extracted are input into an equation (deterioration prediction equation) showing the time dependency of the parameters indicating the deterioration of each material, thereby predicting the change over time of each deterioration parameter, and the battery performance (capacity, resistance) is calculated from the predicted future deterioration parameter values to predict the SOH, etc., and information on the remaining life of the BESS15 is obtained.
  • Fig. 7 is an example of a block diagram of a deterioration model calculation unit.
  • the deterioration model calculation unit according to this embodiment is implemented in the system BMS 7 of Fig. 2 or Fig. 3, and includes an input 51, an internal deterioration parameter calculation block 52 (a deterioration parameter rate map reference unit 521, a deterioration parameter calculation unit 522), a deterioration parameter prediction formula correction block 53, a capacity and internal resistance calculation block 54, an SOH calculation block 55, and an output 56.
  • the internal deterioration parameter calculation block 52 (a deterioration parameter rate map reference unit 521, a deterioration parameter calculation unit 522), the capacity and internal resistance calculation block 54, and the SOH calculation block 55 are realized by, for example, a processor such as a CPU (not shown), a ROM for storing various programs, a RAM for temporarily storing data in the calculation process, and a storage device such as an external storage device, and the processor such as a CPU reads out and executes various programs stored in the ROM, and stores the calculation results, which are the execution results, in the RAM or the external storage device.
  • a processor such as a CPU (not shown), a ROM for storing various programs, a RAM for temporarily storing data in the calculation process, and a storage device such as an external storage device, and the processor such as a CPU reads out and executes various programs stored in the ROM, and stores the calculation results, which are the execution results, in the RAM or the external storage device.
  • the input 51 analyzes an expected current distribution pattern and extracts and inputs characteristic quantities (for example, current, median SOC (standby SOC), ⁇ SOC, and temperature) that affect battery degradation.
  • characteristic quantities for example, current, median SOC (standby SOC), ⁇ SOC, and temperature
  • the characteristic quantities of the input 51 are input into an equation (deterioration prediction equation) showing the time dependency of parameters (deterioration parameters) showing the deterioration of each material inside the battery, thereby predicting the change over time of each deterioration parameter.
  • the deterioration parameters are not limited, but may include the utilization efficiency (m p , m n ) of the active material used in the positive and negative electrodes, the amount of lithium ion deactivation due to the formation of a coating on the positive and negative electrode surfaces ( ⁇ p , ⁇ m ), the ohmic resistance (R o ) of the battery components, and the resistivity (a p , a n ) of the positive and negative electrode materials.
  • the equation expressing the time dependency of the deterioration parameters is not limited to one. An example is shown in equation (4).
  • a 0 , a m , k n (m: integer from 1 to M, N is arbitrary): Values that depend on the deterioration acceleration factors of the battery.
  • a 0 , a m , and k n are also values that depend on the operating conditions of the battery (current, center SOC, ⁇ SOC, T batt , Duty), and the g, h, and l functions are those that are expressed as functions. The form of the functions varies depending on the type of battery.
  • a0 g (I, SOC, ⁇ SOC, Tbatt, Duty)
  • a m h (I, SOC, ⁇ SOC, T batt, Duty)
  • kn l (I, SOC, ⁇ SOC, T batt, Duty)
  • I is the current
  • SOC is the center SOC (standby SOC)
  • ⁇ SOC is the SOC range during charging and discharging
  • T batt is the battery temperature.
  • the g, h, and l functions can be expressed as a product of the powers of the respective factors, ⁇ (I ⁇ ) ⁇ (SOC ⁇ ) ⁇ ( ⁇ SOC ⁇ ) ⁇ exp(- ⁇ /T batt ), or as a simple linear expression, ( ⁇ + ⁇ I+ ⁇ SOC+ ⁇ SOC+ ⁇ T batt ), where ⁇ , ⁇ , ⁇ , and ⁇ are coefficients (the specific values are determined by fitting).
  • ⁇ , ⁇ , ⁇ , and ⁇ are coefficients (the specific values are determined by fitting).
  • a capacity and internal resistance calculation block 54 calculates the battery performance (capacity, resistance) from the future deterioration parameter values predicted in step S2, and a SOH calculation block 55 calculates remaining SOH life information.
  • the predictions of the capacity and internal resistance obtained through the processes S1, S2, S2', and S3 indicate future predictions that reflect the actual operating conditions in the battery bank.
  • the degradation parameters, battery capacity, and internal resistance change according to a model formula that is constructed in advance at the time of design.
  • the coefficients of the degradation parameter prediction formula are updated.
  • the function system of the degradation parameter prediction formula can be changed.
  • an alert that the risk of an unusual performance change is high is notified to the operation manager of the BESS 15 via the monitor system via the system BMS 7, and the maintenance timing of the BESS 15 can be promoted earlier.
  • planned maintenance can be performed without interrupting the operation of the BESS 15.
  • the present invention to store the operation history of the BESS 15 and the degradation parameters, SOH, and SOC information of the batteries in each battery bank at that time in a database for multiple projects using the same BESS 15, it is possible to construct a degradation prediction formula for the BESS 15 for any operating conditions.
  • the degradation record of a newly installed BESS 15 deviates from the degradation prediction formula in this database, it is determined that a unique performance change has occurred, and this can be sent as an alert via the system BMS 7 and the monitor system to the BESS 15 operation manager.
  • the deterioration pattern progressing in the battery can be estimated from the change over time of the obtained deterioration parameters, and based on that, it becomes possible to grasp in advance the material deterioration that leads to an increase in safety risk.
  • m n and ⁇ n indicate the amount of lithium ion deactivation due to the use of active material in the negative electrode and the formation of a film occurring at the negative electrode-electrolyte interface.
  • m n and ⁇ n are mentioned, but by finding correlations between the above-mentioned other parameters, such as the utilization efficiency of the positive electrode active material (m p ), the amount of lithium ion deactivation due to the formation of a coating on the positive electrode surface ( ⁇ p ), the ohmic resistance of the battery components (R o ), and the resistivities of the positive and negative electrode materials (a p , a n ), and safety events, other parameters can be similarly utilized for safety prediction and management.
  • other parameters can be similarly utilized for safety prediction and management.
  • FIG. 8 is a diagram showing a mechanism for transmitting diagnostic results and abnormality alerts to the owner or operator of the BESS based on the diagnostic results of the BESS according to the first embodiment of the present invention.
  • FIG. 8 shows an example of a flow for transmitting the deterioration state and deterioration prediction diagnosed using this embodiment, as well as specific performance degradation and increased safety risk to the owner or operator of the BESS.
  • the BESS in FIG. 8 is the same as the BESS 15 in FIG. 2 and FIG. 3, but FIG. 8 shows information exchanged between each part.
  • the system BMS transmits a charge/discharge plan for each battery bank to the battery bank, and transmits charge/discharge commands for system stabilization or battery diagnosis.
  • the rack BMS in the battery bank measures the time series data of voltage, current, and temperature, SOH, and SOC data of each battery rack that has been charged and discharged in response to a battery command, and transmits them to the system BMS.
  • the system BMS derives deterioration parameter information based on the information transmitted from the rack BMS, and updates the coefficients of the deterioration prediction formula in the deterioration model calculation unit.
  • the system transmits operation history and deterioration data to a deterioration/safety database installed on the cloud or on-premise, and expands the database with data from other BESSs.
  • the system BMS transmits the time series data of the deterioration parameters obtained by the deterioration parameter extraction unit and the remaining life derived therefrom to a BESS monitor system that can be viewed by the BESS owner or operator. Furthermore, when a specific performance deterioration or an increase in safety risk is diagnosed, an alert can be displayed on the monitor.
  • the deterioration model calculation unit and the deterioration parameter extraction unit that constitute the system BMS are realized by, for example, a processor such as a CPU (not shown), a ROM that stores various programs, a RAM that temporarily stores data in the calculation process, and a storage device such as an external storage device, and the processor such as the CPU reads and executes various programs stored in the ROM, and stores the calculation results that are the execution results in the RAM or the external storage device.
  • a processor such as a CPU (not shown), a ROM that stores various programs, a RAM that temporarily stores data in the calculation process, and a storage device such as an external storage device, and the processor such as the CPU reads and executes various programs stored in the ROM, and stores the calculation results that are the execution results in the RAM or the external storage device.
  • Fig. 9 is a diagram showing the virtual operation of a plurality of BESSs using the parameters obtained by the BESS according to the first embodiment of the present invention.
  • the virtual power storage management system 100 is composed of a first layer L1, a second layer L2, and a third layer L3.
  • the first layer L1 is a layer mainly targeted at VPP operators (virtual power plant operators) and resource aggregators.
  • the second layer L2 is a layer mainly targeted at resource aggregators, and is a layer that manages multiple BESSs distributed in each region.
  • the third layer L3 is a layer mainly targeted at battery owners (consumers) who own one or multiple BESSs (physical BESSs), such as individual owners who aim to store electricity in commercial facilities or homes.
  • BESSs battery owners
  • the division boundaries of multiple management units existing in the same layer may be physical constraints (division by region or owner unit) or functional constraints (current scale to be handled, etc.).
  • the first level L1, the second level L2, and the third level L3 may be managed by different administrators or by the same administrator.
  • the first management unit 10 exchanges responses regarding whether or not a transaction can be made with the trading market 200.
  • the trading market 200 also includes the electricity transmission and distribution business operator 310, the retail business operator 320, the power generation business operator 330, and the like, and electricity is traded according to the electricity supply and demand needs of these businesses. For example, when there is a surplus of electricity at each business operator, the BESS owner and manager charges the BESS, and conversely, when there is a shortage of electricity, the BESS is discharged, thereby conducting a trade of compensation to stabilize the power grid.
  • the first management unit 10 in the first layer L1 has the function of selecting the electricity trading needs that can be met based on the SOC of the virtual BESS, which is the average of the SOC of the individual physical BESSs, and issuing charging and discharging commands to the lower layers (L2 and L3 layers).
  • the second management unit 20 in the second layer L2 has a function to determine the SOC in the standby state of each physical BESS in consideration of the characteristics (lifespan, input/output) of the physical BESS arranged in the third layer L3, and a function to distribute the charge/discharge pattern of each physical BESS based on the charge/discharge command.
  • the third management unit 30 in the third layer L3 has the function of diagnosing the battery status (SOC, remaining life, resistance, allowable power, etc.) from the operation data (time series data of voltage, current, and temperature) of the battery owner's BESS, and transmitting this information to the second layer L2 in a consolidated manner.
  • the first management unit 10 has, as processing units, a trading management unit 11 that manages trading with the trading market 200, a service management unit 12 that manages a menu of power trading services (e.g., frequency adjustment, peak shift, peak cut) that can be provided by the virtual BESS, a service resource management unit 13 that manages the correspondence between the power trading services and the virtual BESS to be used, and a virtual BESS control unit 14 that issues control commands to the distributed BESS control unit 21 of the second management unit 20.
  • a trading management unit 11 that manages trading with the trading market 200
  • a service management unit 12 that manages a menu of power trading services (e.g., frequency adjustment, peak shift, peak cut) that can be provided by the virtual BESS
  • a service resource management unit 13 that manages the correspondence between the power trading services and the virtual BESS to be used
  • a virtual BESS control unit 14 that issues control commands to the distributed BESS control unit 21 of the second management unit 20.
  • the database 17 of the first management unit 10 stores various information in the processing unit, such as SLA (Service Level Agreement) information 171, which is the default conditions for the energy trading service and the service and maintenance conditions for each contract, trading service information 172, which is a menu of energy trading services that can be provided by the virtual BESS, service resource information 173, which is the correspondence between the energy trading service and the virtual BESS to be used, and virtual BESS_SOC information 174, which is information on the total SOC (the total electrical capacity Ah actually charged compared to the total electrical capacity Ah that can be exchanged) of the physical BESS present in the third layer L3.
  • SLA Service Level Agreement
  • trading service information 172 which is a menu of energy trading services that can be provided by the virtual BESS
  • service resource information 173 which is the correspondence between the energy trading service and the virtual BESS to be used
  • virtual BESS_SOC information 174 which is information on the total SOC (the total electrical capacity Ah actually charged compared to the total electrical capacity Ah that can be exchanged) of the physical BESS present in
  • the second management unit 20 has a distributed BESS control unit 21 that takes into consideration the characteristics (SOC, remaining life, resistance, allowable power, etc.) of the physical BESSes arranged in the third management unit 30 and distributes and controls the standby SOC of each BESS until a charge/discharge command is received and the charge/discharge pattern of each BESS when a charge/discharge command is received, and distributed BESS_SOC information 27 that contains distribution information of the SOC of the physical BESSes managed by each distributed BESS control unit (e.g., the electric capacity of BESSes with an SOC in the range of ⁇ % to ⁇ % among all physical BESSes is xx Ah).
  • distributed BESS control unit 21 that takes into consideration the characteristics (SOC, remaining life, resistance, allowable power, etc.) of the physical BESSes arranged in the third management unit 30 and distributes and controls the standby SOC of each BESS until a charge/discharge command is received and the charge/discharge pattern of each B
  • the third management unit 30 has a BESS 32 which is a physical BESS owned by the battery owner, a BESS control unit 31 which compiles information from a lifespan diagnosis unit 321 of the BESS 32 under the management of the battery owner and transmits it to the second management unit 20, and physical BESS_SOC information 37 which is SOC information of the BESS owned by the battery owner.
  • the BESS 32 has a lifespan diagnosis unit 321 and SOH information 322.
  • the lifespan diagnosis unit 321 is a part which diagnoses the remaining lifespan of each individual BESS, and diagnoses the battery state (remaining lifespan, resistance) from the operating data (time series data of voltage, current, temperature) of the battery owner's BESS 32.
  • SOH is an abbreviation for State of Health, and is an index which indicates the health and deterioration state.
  • the ratio of the remaining battery capacity (Ah) after a certain period of time to the initial battery capacity (Ah) is indicated as SOHQ or SOHC, and the ratio of the increase in resistance ( ⁇ ) after a certain period of time to the initial resistance ( ⁇ ) is indicated as SOHR, and these are usually expressed as percentages.
  • the virtual BESS control unit 14 receives, from the distributed BESS control unit 21 , SOC information of the entire physical BESS under the management of the distributed BESS control unit 21 .
  • the virtual BESS control unit 14 responds to transaction needs, determines appropriate current distribution commands to the L2 layer, and transmits them to the distributed BESS control unit 21.
  • the BESS control unit 31 transmits battery state information such as SOH and SOC information of the physical BESS owned by the battery owner to the distributed BESS control unit 21 .
  • the distributed BESS control unit 21 determines an SOC and a current distribution command for equalizing the life spans of the physical BESSes managed by one distributed BESS control unit 21 , and transmits the SOC and a current distribution command to a BESS control unit 31 .
  • each BESS 32 contains the configuration of the present invention (e.g., FIG. 2, FIG. 3), and the lifespan diagnosis unit 321 is updated appropriately based on the obtained degradation parameters, enabling highly accurate degradation prediction. Furthermore, by sending the degradation prediction and unsafety risk diagnosis results to the BESS control unit 31 and distributed BESS control unit 21, the results can be reflected in the current distribution and SOC setting control between multiple BESSes, contributing to improved reliability of the system as a whole.
  • FIG. 10 is a diagram showing an example of a case where multiple BESSes are applied to natural energy power generation using parameters obtained by the BESS according to the first embodiment of the present invention.
  • a field is shown in which, for example, a wind power generation device and a solar power generation device are connected to a grid as natural energy power generation.
  • BESSA, BESSB, and BESSC are connected to the grid, and a charge/discharge management unit manages these three BESSes.
  • the charge/discharge management unit is realized by, for example, a processor such as a CPU (not shown), a ROM that stores various programs, a RAM that temporarily stores data in the calculation process, and a storage device such as an external storage device, and the processor such as the CPU reads and executes the various programs stored in the ROM, and stores the calculation results that are the execution results in the RAM or the external storage device.
  • a processor such as a CPU (not shown), a ROM that stores various programs, a RAM that temporarily stores data in the calculation process, and a storage device such as an external storage device, and the processor such as the CPU reads and executes the various programs stored in the ROM, and stores the calculation results that are the execution results in the RAM or the external storage device.
  • the charge/discharge management unit is a battery status management unit for charging/discharging the BESS for multi-use energy management, and selects the BESS in consideration of the requested load pattern.
  • the charge/discharge management unit takes into consideration the charge amount of each, and causes BESSA to operate as the BESS for discharging, BESSB to operate as the BESS for charging, and BESSC to operate as the BESS for charging/discharging.
  • the screen display 40 has battery performance on the vertical axis and years of use on the horizontal axis, and displays the performance of BESSA, BESSB, and BESSC in a manner that is easily visible to the administrator.
  • the BESS owner by extracting the deterioration parameters of the materials of the secondary batteries that make up the BESS without stopping the operation of the entire BESS, it is possible to provide the BESS owner with a battery energy storage system and a management method thereof that can appropriately operate and maintain the BESS by taking into account not only SOH diagnosis and prediction but also abnormal deterioration.

Abstract

Provided are: a battery energy storage system that extracts a deterioration parameter for a material of secondary batteries constituting a BESS without stopping the operation of the entire BESS, thereby takes into account not only SOH diagnosis and prediction but also abnormal deterioration, and thus makes it possible for the owner of the BESS to suitably perform operation and maintenance of the BESS; and a management method for the battery energy storage system. The battery energy storage system (BESS) comprises a state management unit that selects a battery bank to be diagnosed having less than 50% of total capacity from among a plurality of battery banks constituting the BESS and extracts a deterioration parameter for a material constituting at least one of battery cells, battery modules, and battery racks constituting the selected battery bank. The state management unit executes charging and discharging on the basis of a request from a grid when extracting the deterioration parameter.

Description

電池エネルギー貯蔵システム及び電池エネルギー貯蔵システムの管理方法Battery energy storage system and method for managing battery energy storage system
 本発明は、二次電池等を含むシ電池エネルギー貯蔵システム及び電池エネルギー貯蔵システムの管理方法に関する。 The present invention relates to a battery energy storage system including a secondary battery and a method for managing the battery energy storage system.
 CO排出抑制のために、電力をまかなうエネルギー源として、化石燃料のかわりに、太陽光発電や風力発電等の再生可能エネルギーの比率を高める必要がある。火力発電機が系統から解列すると、需要の変動に対して系統安定のための調整力の供給が困難となる。一方、個々の再生可能エネルギー発電機には自身の発電値の変動を緩和するための二次電池を用いた電池エネルギー貯蔵システム(Battery Energy Storage System:以下、BESSと称する場合もある)を併設している場合がある。この電池の能力を調整力として活用できれば、系統安定に貢献できる。 In order to reduce CO2 emissions, it is necessary to increase the ratio of renewable energy such as solar power generation and wind power generation as an energy source to cover electric power instead of fossil fuels. When a thermal power generator is disconnected from the grid, it becomes difficult to supply the adjustment power to stabilize the grid against fluctuations in demand. On the other hand, each renewable energy generator may be equipped with a battery energy storage system (hereinafter sometimes referred to as BESS) using a secondary battery to mitigate the fluctuation of its own power generation value. If the capacity of this battery can be utilized as an adjustment power, it can contribute to grid stability.
 また、太陽光発電やコジェネ、BESS等の電力需要家が保有するエネルギー・リソースを活用したエネルギー・リソース・アグリゲーション事業が注目を集めている。アグリゲーション事業では、1つ1つのエネルギー・リソースをIoTによる高度なエネルギーマネジメント技術で束ね、あたかも1つの発電所のように機能させるバーチャルパワープラント(仮想発電所:VPP)という仕組みが活用される。 In addition, energy resource aggregation businesses that utilize the energy resources owned by electricity consumers, such as solar power generation, cogeneration, and BESS, are attracting attention. Aggregation businesses utilize a system known as a virtual power plant (VPP), which bundles together individual energy resources using advanced energy management technology based on IoT and makes them function as if they were a single power plant.
 また、近年、BESSを、系統安定化のための調整力だけではなく、電力市場における電力小売事業者と需要家の間での電力取引に用いられるようになっている。 In recent years, BESS has also come to be used not only for adjustment capacity to stabilize the grid, but also for electricity trading between electricity retailers and consumers in the electricity market.
 上記のBESSは、その運用過程において、蓄電性能の劣化が生じ、所定の性能低下により、運用が困難となりリプレイスが必要となる。二次電池の設置/リプレイス、運用に関し需要家は相応の導入コスト、運用コストを負担する必要があるため、運用中の二次電池システムの健全性(State of Health:以下、SOHと称する)を診断し、二次電池システムの性能低下を予測しながら、システム寿命を長期化するための運用を施すことが望ましい。 The above-mentioned BESS will experience degradation in its storage performance during its operation, and operation will become difficult and replacement will be necessary due to a certain drop in performance. Since consumers will need to bear the corresponding introduction and operating costs for the installation/replacement and operation of secondary batteries, it is desirable to diagnose the state of health (hereinafter referred to as SOH) of the secondary battery system during operation and operate it to extend the system's lifespan while predicting performance degradation of the secondary battery system.
 特許文献1には、調整力として用いることのできるBESSに対し、遠隔からの二次電池素子のSOH把握を可能とする容量推定システム、容量推定方法、通信デバイスおよびコンピュータプログラムを提供する方法が開示されている。具体的には、BESS内で抽出された特定のバンク内の二次電池に対し、そのバンクが満充電容量の推定処理をするための適切な条件が満たされると判断される場合、バンク内の二次電池に対し、満充電容量を推定するための一定の充電又は放電電流(例えば、充電状態80%から50%まで一定のレートで放電)が印加され、その際の電池電圧と電流に基づき満充電容量を推定する方法が開示されている。 Patent Document 1 discloses a method for providing a capacity estimation system, capacity estimation method, communication device, and computer program that enable remote grasping of the SOH of secondary battery elements for a BESS that can be used as a regulating power. Specifically, when it is determined that the appropriate conditions for a secondary battery in a specific bank extracted in the BESS to perform a process for estimating the full charge capacity of the bank are satisfied, a constant charge or discharge current (e.g., discharging at a constant rate from a charge state of 80% to 50%) is applied to the secondary battery in the bank to estimate the full charge capacity, and the full charge capacity is estimated based on the battery voltage and current at that time.
 特許文献2には、BESSを用いた電力取引における、取引による収益予測やそのリスクを明示するための技術が開示されている。具体的には、電力取引の際の二次電池システムに印加される電流条件及び温度条件、その際の充電率の条件等を引数にして、BESSが出し入れ可能な電池容量の劣化を予測するためのモデル式を準備し、取引時の電力売買価格と取引に伴う電池容量劣化によるコスト損失を勘案し、複数の電力市場に対する取引最適解を提示する方法が開示されている。 Patent Document 2 discloses a technology for predicting revenues and indicating the risks involved in electricity trading using a BESS. Specifically, the technology discloses a method for preparing a model formula for predicting the deterioration of the battery capacity that the BESS can take in and out, using arguments such as the current and temperature conditions applied to the secondary battery system during electricity trading and the charging rate conditions at that time, and presenting an optimal trading solution for multiple electricity markets, taking into account the electricity buying and selling price at the time of trading and the cost loss due to battery capacity deterioration associated with trading.
特開2020-20654号公報JP 2020-20654 A 国際公開第2021/044132号公報International Publication No. 2021/044132 特開2016-82728号公報JP 2016-82728 A
 しかしながら、特許文献1及び特許文献2では、BESS内の二次電池のSOHとして残存容量や抵抗を診断し、使用条件や使用期間に対するSOHの傾向予測から、BESSの最適運用の実現をめざしているが、本方法では連続的なSOH予測はできるものの、不連続に変化するSOH変化(異常劣化)を予測したり、その予兆を把握したりすることは難しい。この不連続なSOH診断の例としては、運用に伴う、正極と負極の容量の比率の逆転や電池内部で発生する短絡、電池中の電解液の枯渇などさまざまであるが、いずれも電池内部を構成する材料劣化が基になっており、特許文献1及び特許文献2で開示されるSOH診断のみでは、その挙動を把握することは困難である。そのため、BESSを構成する二次電池における材料ベースの劣化を特徴量として診断する必要がある。 However, in Patent Documents 1 and 2, the remaining capacity and resistance of the secondary battery in the BESS are diagnosed as the SOH, and the SOH trend prediction for the usage conditions and period of use is aimed at realizing optimal operation of the BESS. However, although this method can predict the SOH continuously, it is difficult to predict discontinuous SOH changes (abnormal deterioration) or to grasp the signs of such changes. Examples of discontinuous SOH diagnosis include a reversal of the ratio of positive and negative electrode capacities during operation, a short circuit that occurs inside the battery, and depletion of electrolyte in the battery, but all of these are based on the deterioration of the materials that make up the battery, and it is difficult to grasp the behavior of the battery using only the SOH diagnosis disclosed in Patent Documents 1 and 2. Therefore, it is necessary to diagnose the material-based deterioration of the secondary battery that constitutes the BESS as a feature.
 稼働中の二次電池システムから材料ベースの劣化を診断する方法としては、特許文献3などが挙げられる。特許文献3では、極低レートでの充放電、およびパルス状電流の印加時の電圧挙動から、電池の開回路電圧(OCV、Open Circuit Voltage)-充電率(SOC、State Of Charge)曲線を得た後、レファレンスとして取得済の正極および負極の開回路電位(OCP、Open Circuit Potential)-SOC曲線と材料ベースの状態量を用いてSOC―OCV曲線を再現することで、正極と負極の充放電状態パラメータと内部抵抗パラメータの値を設定可能となる。これにより電池内部の材料劣化に伴う、活物質の利用率(mp、mn)や容量ずれ(d、d)、内部抵抗(r、a、a)などを把握することができる。ただし、本手法は、実験室において適切に管理された充放電環境に対して実行されるものであり、BESSにおいて本手法を適用するには、その稼働を止める必要が生じ、BESS所有者(例:需要家)における事業の妨げになるリスクがある。 As a method for diagnosing the deterioration of the material base from a secondary battery system in operation, Patent Document 3 and the like can be mentioned. In Patent Document 3, after obtaining the open circuit voltage (OCV, Open Circuit Voltage)-state of charge (SOC, State of Charge) curve of the battery from the voltage behavior when charging and discharging at an extremely low rate and applying a pulsed current, the open circuit potential (OCP, Open Circuit Potential)-SOC curve of the positive electrode and the negative electrode already obtained as a reference and the state quantity of the material base are used to reproduce the SOC-OCV curve, so that the values of the charge and discharge state parameters and the internal resistance parameters of the positive electrode and the negative electrode can be set. This makes it possible to grasp the utilization rate (mp, mn), capacity deviation (d p , d n ), and internal resistance (r 0 , a p , a n ) of the active material associated with the deterioration of the material inside the battery. However, this method is performed in a laboratory in a properly controlled charging and discharging environment, and applying this method to a BESS requires that the BESS's operation be stopped, which carries a risk of disrupting the business of the BESS owner (e.g., consumer).
 そこで、本発明は、BESS全体の稼働を止めることなく、BESSを構成する二次電池の材料の劣化パラメータを抽出することで、SOH診断、予測のみならず、異常劣化を考慮することで、BESS所有者に対して、適切なBESSの運用、メンテナンスを行い得る電池エネルギー貯蔵システム及びその管理方法を提供することにある。 The present invention aims to provide a battery energy storage system and a management method thereof that can extract degradation parameters of the materials in the secondary batteries that make up the BESS without stopping the operation of the entire BESS, and thus enable BESS owners to operate and maintain the BESS appropriately by considering abnormal degradation as well as diagnosing and predicting the SOH.
 上記課題を解決するため、本発明に係る二次電池を含む電池エネルギー貯蔵システムは、前記電池エネルギー貯蔵システムを構成する複数の電池バンクから診断対象となる総容量の50%以下の電池バンクを選択し、選択された電池バンクを構成する、少なくとも電池セル、電池モジュール及び電池ラックのうちいずれか一つを構成する材料の劣化パラメータを抽出する状態管理部を備え、前記状態管理部が劣化パラメータを抽出する際に、グリッドからの要求に基づいて充放電を実行することを特徴とする。 In order to solve the above problems, the battery energy storage system including the secondary battery according to the present invention is characterized in that it has a status management unit that selects a battery bank that is the subject of diagnosis and has 50% or less of the total capacity from among the multiple battery banks that make up the battery energy storage system, extracts deterioration parameters of materials that make up at least one of the battery cells, battery modules, and battery racks that make up the selected battery bank, and performs charging and discharging based on a request from the grid when the status management unit extracts the deterioration parameters.
 また、本発明に係る二次電池を含む電池エネルギー貯蔵システムの管理方法は、電池エネルギー貯蔵システムを構成する複数の電池バンクから診断対象となる総容量の50%以下の電池バンクを選択する工程と、選択した電池バンクに接続されたパワーコンディショナへパルス状の充放電指令を伝えるとともに、診断対象外の電池バンクのパワーコンディショナへ系統からの充放電計画に対応した充放電指令を伝える工程と、パルス状の充放電指令時の電圧挙動から、診断対象となる電池バンクを構成する電池ラックの充電率及び電池状態の関係性を示す曲線を得る工程と、得られた曲線から前記選択した電池バンクを構成する少なくとも電池セル、電池モジュール及び電池ラックのうちいずれか一つを構成する材料の劣化パラメータを抽出する工程、を含むことを特徴とする。 The method for managing a battery energy storage system including a secondary battery according to the present invention is characterized by including the steps of: selecting a battery bank with 50% or less of the total capacity to be diagnosed from among a plurality of battery banks constituting the battery energy storage system; transmitting a pulsed charge/discharge command to a power conditioner connected to the selected battery bank, and transmitting a charge/discharge command corresponding to a charge/discharge plan from the grid to a power conditioner of a battery bank not to be diagnosed; obtaining a curve showing the relationship between the charging rate and battery state of the battery rack constituting the battery bank to be diagnosed from the voltage behavior at the time of the pulsed charge/discharge command; and extracting from the obtained curve a deterioration parameter of the material constituting at least one of the battery cells, battery modules, and battery racks constituting the selected battery bank.
 本発明によれば、BESS全体の稼働を止めることなく、BESSを構成する二次電池の材料の劣化パラメータを抽出することで、SOH診断、予測のみならず、異常劣化を考慮することで、BESS所有者に対して、適切なBESSの運用、メンテナンスを行い得る電池エネルギー貯蔵システム及びその管理方法を提供することが可能となる。 
 例えば、BESSを構成する二次電池の材料劣化の指標となるパラメータを取得することができ、このパラメータ群の時系列変化から、将来の電池容量や抵抗の推移を予測するだけでなく、特異的な性能低下の予兆を把握することができる。そのため、多種多様な二次電池に対して信頼性の高い運用方法や適切なタイミングでのメンテナンス指令を出すことが可能となり、BESS所有者の生涯コストの最小化ならびにBESSを活用して得ることのできる収益の最大化を達成することができる。 
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, by extracting deterioration parameters of the materials of the secondary batteries that make up the BESS without stopping operation of the entire BESS, it is possible to provide BESS owners with a battery energy storage system and a management method thereof that can not only diagnose and predict SOH, but also take abnormal deterioration into consideration, thereby enabling them to operate and maintain the BESS appropriately.
For example, it is possible to obtain parameters that are indicators of material deterioration of the secondary batteries that make up the BESS, and from the time series changes in these parameters, it is possible to predict future changes in battery capacity and resistance, as well as to grasp signs of specific performance degradation. This makes it possible to provide highly reliable operating methods and timely maintenance instructions for a wide variety of secondary batteries, thereby minimizing the lifetime costs of BESS owners and maximizing the profits that can be obtained by utilizing the BESS.
Problems, configurations and effects other than those described above will become apparent from the following description of the embodiments.
本発明の実施形態に係る電池エネルギー貯蔵システム(BESS)の構成を示す図である。FIG. 1 is a diagram showing the configuration of a battery energy storage system (BESS) according to an embodiment of the present invention. 本発明の実施例1に係るBESSを構成する電池バンクへの電流分配の形態の一例を示す図である。FIG. 2 is a diagram showing an example of a form of current distribution to a battery bank constituting a BESS according to the first embodiment of the present invention. 本発明の実施例1に係るBESSを構成する電池バンクへの電流分配の形態の他の例を示す図である。FIG. 4 is a diagram showing another example of a form of current distribution to the battery bank constituting the BESS according to the first embodiment of the present invention. 診断モードの電池バンクに対する入出力電流とその際のバンク内電池セルの電圧挙動の一例を示す図であって、図4(a)は診断モードの電池バンクに対する充放電波形(左軸)とその際の電池電圧挙動(右軸)の一例であり、図4(b)はパルス放電直後の電池電圧挙動の一例であり、図4(c)は開回路電圧(OCV)およびその容量微分(dV/dQ)のDOD依存性を示し、図4(d)は各時間での直流抵抗のDOD依存性を示す図である。4A and 4B are diagrams showing an example of the input/output current to and from a battery bank in diagnosis mode and the voltage behavior of the battery cells in the bank at that time, in which FIG. 4(a) is an example of the charge/discharge waveforms (left axis) of a battery bank in diagnosis mode and the battery voltage behavior at that time (right axis), FIG. 4(b) is an example of the battery voltage behavior immediately after pulse discharge, FIG. 4(c) shows the DOD dependence of the open circuit voltage (OCV) and its capacity derivative (dV/dQ), and FIG. 4(d) shows the DOD dependence of DC resistance at each time. 診断モードの電池バンク内の電池セルから材料劣化の指標となるパラメータを抽出する工程を説明する図である。FIG. 13 is a diagram illustrating the process of extracting parameters indicative of material degradation from battery cells in a battery bank in a diagnostic mode. 本発明の実施例1に係るBESSの管理手順を示す図である。FIG. 2 is a diagram showing a management procedure of the BESS according to the first embodiment of the present invention. 本発明の実施例1に係るBESSを構成する電池バンクへの電流分配の形態の他の例を示す図である。FIG. 4 is a diagram showing another example of a form of current distribution to the battery bank constituting the BESS according to the first embodiment of the present invention. 本発明の実施例1に係るBESSの診断結果に基づいてBESSの所有者或いは運用者に診断結果や異常アラートを伝達する仕組みを表した図である。FIG. 2 is a diagram showing a mechanism for transmitting a diagnosis result or an abnormality alert to a BESS owner or operator based on the diagnosis result of the BESS according to the first embodiment of the present invention. 本発明の実施例1に係るBESSで得たパラメータを用いて複数のBESSを仮想的に運用することを示した図である。FIG. 2 is a diagram showing a virtual operation of a plurality of BESSes using parameters obtained by the BESS according to the first embodiment of the present invention. 本発明の実施例1に係るBESSで得たパラメータを用いて複数のBESSを自然エネルギー発電に適用した場合の一例を示す図である。FIG. 1 is a diagram showing an example in which a plurality of BESSes are applied to natural energy power generation using parameters obtained by the BESS according to the first embodiment of the present invention.
 本発明を実施するための実施形態について、適宜図面を参照しながら詳細に説明する。
  図1は、本発明の実施形態に係る電池エネルギー貯蔵システム(BESS)の構成を示す図である。電池エネルギー貯蔵システム15は、複数の電池バンク1a,1b,1c,1d・・・1nが並列に接続した構成をとり、それぞれの電池バンク1において出力変換器(Power Conditioning System:以下、PCSと称する)2a,2b,2c,2d・・・2nと複数の電池ラック3a,3b,3c,3d・・・3nが接続された構成となる。電池ラック3の中には、複数の電池モジュールが直列及び/又は並列で接続されており、電池モジュールは最小単位である電池セルが直列及び/又は並列で接続された構成となる。ここで電池バンク1は並列に接続されており、その並列数はBESSの設置個所や用途によって異なる。電池バンク1内には多段の階層での電池群が直列ないし並列に接続された構成となる。すなわち、電池バンク内には複数の電池ラック3が直列及び/又は並列に接続された構成となり、電池ラック3はさらに複数の電池モジュールの直列及び/又は並列接続構成を有する。さらに電池モジュールは、複数の電池セルの直列/並列接続構成となる。BESS15内では、各階層の電池群の状態を診断し上位制御部6に情報を送信するためのバッテリーマネジメントシステム(BMS、バッテリーマネジメントユニットBMUとも称される)が配置される。本明細書では、特定の電池バンクを示す場合、符号1a~1nを用い、一般的な電池バンクを指す場合は符号1を用いることとする。なお、PCS、電池ラック、ラックBMSも同様である。図1には電池ラック3の状態を監視するためのラックBMS4を記載している。また、図1は複数の各電池バンク1と系統(グリッド)5の間に上位制御部6が存在するが、ここでは各電池バンク1内の電池ラック3の状態を勘案し、それぞれの電池バンク1の待機充電率(SOC)や各PCS2への電流分配率を決定、指令を出すためのシステムBMS7が存在する。ラックBMS4やシステムBMS7の名称は様々であり、それぞれSBMU(System Battery Management Unit)やMBMU(Master Battery Management Unit)と呼ばれることもある。また、システムBMS7やラックBMS4のようなバッテリーマネジメントシステムを総称して状態管理部と呼称する。ここで、ラックBMS4、システムBMS7及び上位制御部6は、例えば、図示しないCPUなどのプロセッサ、各種プログラムを格納するROM、演算過程のデータを一時的に可能するRAM、外部記憶装置などの記憶装置にて実現されると共に、CPUなどのプロセッサがROMに格納された各種プログラムを読み出し実行し、実行結果である演算結果をRAM又は外部記憶装置に格納する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment for carrying out the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a diagram showing the configuration of a battery energy storage system (BESS) according to an embodiment of the present invention. The battery energy storage system 15 has a configuration in which a plurality of battery banks 1a, 1b, 1c, 1d, ..., 1n are connected in parallel, and each battery bank 1 has a configuration in which an output converter (Power Conditioning System: hereinafter referred to as PCS) 2a, 2b, 2c, 2d, ..., 2n and a plurality of battery racks 3a, 3b, 3c, 3d, ..., 3n are connected. In the battery rack 3, a plurality of battery modules are connected in series and/or parallel, and the battery module is configured by connecting battery cells, which are the smallest units, in series and/or parallel. Here, the battery banks 1 are connected in parallel, and the number of parallel connections varies depending on the installation location and use of the BESS. In the battery bank 1, a group of batteries in multiple hierarchical levels is connected in series or parallel. That is, in the battery bank, a plurality of battery racks 3 are connected in series and/or parallel, and the battery racks 3 further have a configuration in which a plurality of battery modules are connected in series and/or parallel. Furthermore, the battery module is configured with a series/parallel connection of multiple battery cells. In the BESS 15, a battery management system (BMS, also referred to as a battery management unit BMU) is arranged to diagnose the state of the battery group in each layer and transmit the information to the upper control unit 6. In this specification, the reference characters 1a to 1n are used to indicate a specific battery bank, and the reference character 1 is used to indicate a general battery bank. The same is true for the PCS, the battery rack, and the rack BMS. FIG. 1 shows a rack BMS 4 for monitoring the state of the battery rack 3. In addition, in FIG. 1, the upper control unit 6 is present between each of the multiple battery banks 1 and the system (grid) 5, but here, a system BMS 7 is present to determine the standby state of charge (SOC) of each battery bank 1 and the current distribution rate to each PCS 2 and issue a command, taking into account the state of the battery rack 3 in each battery bank 1. The rack BMS 4 and the system BMS 7 are known by various names, and may be called SBMU (System Battery Management Unit) or MBMU (Master Battery Management Unit), respectively. Battery management systems such as the system BMS 7 and the rack BMS 4 are collectively referred to as a status management unit. Here, the rack BMS 4, the system BMS 7, and the upper control unit 6 are realized by, for example, a processor such as a CPU (not shown), a ROM for storing various programs, a RAM for temporarily storing data in the calculation process, and a storage device such as an external storage device, and the processor such as the CPU reads and executes various programs stored in the ROM, and stores the calculation results, which are the execution results, in the RAM or the external storage device.
 上位制御部6ではグリッド5及びグリッド5と接続されたエネルギーマネジメントシステム(EMS)8からの情報を受けて、各電池バンク1における充放電電流パターンを決定し、各電池バンク1のPCS2へ伝達する。その中でも、システムBMS7は、各電池バンク1のラックBMS4で計測される充電率(SOC)や健全度(SOH)の情報を基に、SOCやSOHが逸脱した電池ラック3を切り離したり、それぞれの電池バンク1に流す電流分配(Current Dispatch)比率を決定する機能を有する。最もシンプルな方法は、グリッド5から要求される電流値を構成する電池バンク数で案分し、均等に充放電指令を出す方法である。 The upper control unit 6 receives information from the grid 5 and the energy management system (EMS) 8 connected to the grid 5, determines the charge/discharge current pattern for each battery bank 1, and transmits this to the PCS 2 of each battery bank 1. Among these, the system BMS 7 has the function of isolating battery racks 3 whose SOC or SOH deviates based on information on the state of charge (SOC) and state of health (SOH) measured by the rack BMS 4 of each battery bank 1, and determining the current distribution (Current Dispatch) ratio to be passed to each battery bank 1. The simplest method is to divide the current value required by the grid 5 proportionally among the number of battery banks that make up the battery bank, and issue charge/discharge commands equally.
 BESS15を構成する電池ラック3のSOCやSOHはラックBMS4で計測されるが、その検出精度には限りがあり、BMS自体の不具合等により、その計測値と実測値との乖離が大きくなるリスクがあるため、定期的に各電池ラック3の状態を診断する必要がある。一番単純には、BESS15の稼働をすべて停止して、構成する電池ラック3a,3b,3c,3d・・・3nの性能を外部電源を用いて診断することが挙げられるが、診断の間BESS15稼働を停止することになり、BESS15を用いた系統安定化や電力取引の機会を損なうことになる。 The SOC and SOH of the battery racks 3 that make up the BESS 15 are measured by the rack BMS 4, but there is a limit to the detection accuracy, and there is a risk that the measured values will diverge greatly from the actual values due to malfunctions in the BMS itself, so it is necessary to periodically diagnose the condition of each battery rack 3. The simplest way to do this is to stop all operation of the BESS 15 and diagnose the performance of the constituent battery racks 3a, 3b, 3c, 3d, ... 3n using an external power source, but this means stopping operation of the BESS 15 during the diagnosis, which will miss opportunities for grid stabilization and power trading using the BESS 15.
 次に、特定の電池バンク1に対して、診断を実行することを考える。例えば図1の一番右側に示される電池バンク1n内の電池ラック3n内のSOCやSOHを精緻に診断する場合、該当する電池バンク1nに対する入出力指令を停止し、その他残りの電池バンク1a,1b,1c,1d・・・1n-1で案分することが考えられる。この際に停止した電池バンク1nに対し、外部より電源を供給して特定の充放電を繰り返すことでSOCやSOHを診断することができるが、外部電源の接続や充放電試験に際し、多くの人的、時間的リソースを費やすことになり、さらに、長期間診断することで他の電池バンク1a,1b,1c,1d・・・1n-1への負荷が相対的に増すリスクがある。 Next, consider performing a diagnosis on a specific battery bank 1. For example, to precisely diagnose the SOC and SOH in the battery rack 3n in the battery bank 1n shown on the far right of Figure 1, it is possible to stop input/output commands to the relevant battery bank 1n and apportion them among the remaining battery banks 1a, 1b, 1c, 1d, ..., 1n-1. In this case, the SOC and SOH can be diagnosed by supplying power from an external source to the stopped battery bank 1n and repeating a specific charge/discharge, but connecting the external power source and performing charge/discharge tests requires a lot of human and time resources, and furthermore, there is a risk that long-term diagnosis will relatively increase the load on the other battery banks 1a, 1b, 1c, 1d, ..., 1n-1.
 また、その際、単なるSOCやSOHを診断することで連続的な性能変化の傾向を予測することができるが、電池内を構成する材料劣化の情報を得るには至らないため、材料劣化に起因した非連続の性能変化を予兆、予測することが困難である。 In addition, while it is possible to predict the tendency for continuous performance changes by simply diagnosing the SOC and SOH, this does not provide information on the deterioration of the materials that make up the battery, making it difficult to predict or anticipate discontinuous performance changes caused by material deterioration.
 以下、図面を用いて本発明の実施例について説明する。 Below, an embodiment of the present invention will be explained using the drawings.
 上述の課題を解決するための構成及び手順を図2から図6を使って説明する。図2は本発明の実施例1に係るBESSを構成する電池バンクへの電流分配の形態の一例を示す図である。ここでは、図中一番右側の電池バンク1n内の電池を診断対象としている。この際、該当の電池バンク1nを診断モード、その他の電池バンク1a,1b,1c,1d・・・1n-1(図示せず)を診断サポートモードとする。診断モードには電池バンク1n内のPCS2から診断するための特徴的な充放電パターンが発出され、その他の電池バンク1a,1b,1c,1d・・・1n-1(図示せず)にはグリッド(系統)5からの充放電パターンから診断モードの電池に対する充放電パターンを差し引き、これを診断サポートモードの電池バンク1a,1b,1c,1d・・・1n-1(図示せず)で対応させることで、外部電源なしに自動的に任意の電池バンクに対する診断を実行することができる。 The configuration and procedure for solving the above problem will be described with reference to Figs. 2 to 6. Fig. 2 is a diagram showing an example of the current distribution to the battery banks constituting the BESS according to the first embodiment of the present invention. Here, the battery in the battery bank 1n on the far right side of the figure is the subject of diagnosis. In this case, the corresponding battery bank 1n is in diagnosis mode, and the other battery banks 1a, 1b, 1c, 1d, ..., 1n-1 (not shown) are in diagnosis support mode. In the diagnosis mode, a characteristic charge/discharge pattern for diagnosis is issued from the PCS 2 in the battery bank 1n, and for the other battery banks 1a, 1b, 1c, 1d, ..., 1n-1 (not shown), the charge/discharge pattern for the battery in diagnosis mode is subtracted from the charge/discharge pattern from the grid (system) 5, and this is matched with the battery banks 1a, 1b, 1c, 1d, ..., 1n-1 (not shown) in diagnosis support mode, so that diagnosis can be automatically performed on any battery bank without an external power source.
 図3は本発明の実施例1に係るBESSを構成する電池バンクへの電流分配の形態の他の例を示す図である。ここでは、診断モードとなる電池バンク1を複数選び、それぞれの電池バンク1間で充放電電流を融通するようにして電気を移動させる方法である。図3では、一例として、電池バンク1n-1と電池バンク1nの2つの電池バンクが診断モードとなる場合を示している。この場合、外部との電力やり取り無で、複数の電池バンクの診断が可能となる。なお、図3では、2つの電池バンクが診断モードとなる場合を示すが、これに限られず全体のBESS15の総容量の50%を上限として、複数の電池バンクを診断モードとしてもよい。 Figure 3 is a diagram showing another example of the form of current distribution to the battery banks that make up the BESS according to the first embodiment of the present invention. Here, multiple battery banks 1 are selected to be in diagnostic mode, and electricity is transferred by accommodating charge and discharge current between each of the battery banks 1. As an example, Figure 3 shows a case where two battery banks, battery bank 1n-1 and battery bank 1n, are in diagnostic mode. In this case, multiple battery banks can be diagnosed without exchanging power with the outside. Note that, although Figure 3 shows a case where two battery banks are in diagnostic mode, this is not limited to the above, and multiple battery banks may be in diagnostic mode with an upper limit of 50% of the total capacity of the entire BESS 15.
 図4は診断モードの電池バンクに対する充放電波形の一例と、その解析で得られる充電率と電池状態(OCV、抵抗)曲線の一例を示す。図4(a)は、満充電(SOC=100%)となった電池バンク1に対する充放電電流波形(左軸)とその際の電池電圧(右軸)をプロットしたものである。BESS15内の電池モジュールや電池ラック3、電池バンク1では複数の電池セルが多直列、他並列に接続されるため、電池群の電圧は多様である。図4では、直列に接続されたセル数で規格化した値を使用している。図4(a)の左軸の電流値は電池に充電する方向の電流を正、電池から放電する方向の電流を負としている。一般的に電池容量を取得する際には、一定の大きさの充電又は放電電流を継続的に印加し、その際の電池電圧を計測することで、電池の充電量と電圧の関係性を示す曲線を取得している。ただし、この方法では、電池全体の性能変化は分かる一方、電池を構成する材料毎の劣化状態を推定することは難しい。材料毎の劣化状態の推定方法は詳細には後述するが、電池の充電率(SOC)に対する開回路電圧(OCV)あるいは抵抗値の相関性を示す曲線を取得し、これを解析することで材料毎の劣化状態を取得することができる。図4(a)ではその曲線を取得するための充放電電流の一例を示している。具体的には、パルス状に放電と休止を繰り返すパターンを使用している。パルス状の放電電流の許容範囲としては特に規定はないが、診断速度の観点から高レートであることが望ましい。ただし、放電レートが高いと電池内部の発熱による劣化を促進する恐れがある。以上の観点からパルス状の放電電流の許容範囲としては、0.1Cから3C、望ましくは0.5Cから1.5Cがよい。ここで1Cとは、電流が充放電可能な電気量を一定の電流値で1時間かけて充電あるいは放電する際の電流の大きさを示す。図4(a)の右軸には、このパルス状の放電電流を印加した際の電池電圧波形を示している。図中のインセットでは、ある一つのパルス状放電とその後の休止状態における電池電圧の変化を示している。パルス状の放電電流を印加した際、電池内の抵抗成分に由来した過電圧(ΔV)が加わるため、瞬間的に電池電圧が低下し、その後休止となると電圧が緩和される。図4(b)はこの電池電圧挙動をより詳細に示したものである。図中の▼印で示した点でパルス放電が開始され、1Cレート(満充電した電気量を1時間かけて放電する電流量)で72秒間、放電した例を示している。ここでは1秒後、10秒後の電池電圧を測定し、それと放電開始直前の電圧値との差分を過電圧(ΔV1sec、ΔV10sec)として検出している。また、放電終了直前の電圧とその後の休止時の電圧との差分を過電圧(ΔV72sec)として検出している。この過電圧を放電電流で除することで、該当するSOCにおける電池の直流抵抗を得ることができる。 FIG. 4 shows an example of charge/discharge waveforms for a battery bank in diagnosis mode, and an example of a charging rate and battery state (OCV, resistance) curve obtained by the analysis. FIG. 4(a) plots the charge/discharge current waveform (left axis) for a battery bank 1 that is fully charged (SOC=100%) and the battery voltage (right axis) at that time. In the battery module, battery rack 3, and battery bank 1 in the BESS 15, multiple battery cells are connected in multiple series and in parallel, so the voltage of the battery group is diverse. In FIG. 4, values normalized by the number of cells connected in series are used. The current value on the left axis of FIG. 4(a) is positive for the current in the direction of charging the battery and negative for the current in the direction of discharging from the battery. In general, when obtaining the battery capacity, a constant charge or discharge current is continuously applied and the battery voltage is measured to obtain a curve showing the relationship between the charge amount and voltage of the battery. However, while this method can determine the performance change of the entire battery, it is difficult to estimate the deterioration state of each material that constitutes the battery. Although the method of estimating the deterioration state of each material will be described in detail later, a curve showing the correlation between the open circuit voltage (OCV) or resistance value and the state of charge (SOC) of the battery is obtained, and the deterioration state of each material can be obtained by analyzing this curve. FIG. 4(a) shows an example of the charge/discharge current for obtaining the curve. Specifically, a pattern of repeating pulsed discharge and pause is used. There is no particular regulation for the allowable range of the pulsed discharge current, but a high rate is desirable from the viewpoint of diagnostic speed. However, a high discharge rate may promote deterioration due to heat generation inside the battery. From the above viewpoint, the allowable range of the pulsed discharge current is 0.1C to 3C, preferably 0.5C to 1.5C. Here, 1C indicates the magnitude of the current when charging or discharging the amount of electricity that the current can charge and discharge at a constant current value over one hour. The right axis of FIG. 4(a) shows the battery voltage waveform when this pulsed discharge current is applied. The inset in the figure shows the change in the battery voltage during one pulsed discharge and the subsequent pause state. When a pulsed discharge current is applied, an overvoltage (ΔV) derived from the resistance component in the battery is applied, so the battery voltage drops instantaneously, and then the voltage is relaxed when the battery is at rest. Figure 4(b) shows this battery voltage behavior in more detail. The pulse discharge starts at the point indicated by the ▼ mark in the figure, and an example is shown in which the battery is discharged for 72 seconds at a 1C rate (the amount of current required to discharge a fully charged amount of electricity over one hour). Here, the battery voltage is measured after 1 second and 10 seconds, and the difference between this and the voltage value immediately before the start of discharge is detected as the overvoltage (ΔV 1sec , ΔV 10sec ). In addition, the difference between the voltage immediately before the end of discharge and the voltage at the time of rest thereafter is detected as the overvoltage (ΔV 72sec ). By dividing this overvoltage by the discharge current, the DC resistance of the battery at the corresponding SOC can be obtained.
 上記の計測結果を用いることで、診断対象の電池バンク内の電池状態を示す曲線として、(i)開回路電圧(OCV:Open Circuit Voltage)-放電深度(DOD:Depth of Discharge)曲線、(ii)容量の電圧微分(dV/dQ)-DOD曲線、(iii)直流抵抗-DOD曲線を得ることができる。ここでDODは100%からSOCの値を差し引いたものであり、満充電状態(SOC100%)がDOD=0%、完全放電状態がDOD(SOC100%)=100%となる。
(i)OCV-DOD曲線:図4(a)の放電後の緩和後(例えば、Insetの▼)の電圧を該当する充電率(DOD)における開回路電圧(OCV)を得ることができる。複数のSOC条件下のOCVをプロットすることで曲線を得る。
(ii)dV/dQ-DOD曲線:特定のSOC(DOD)領域におけるSOC(DOD)の変化分(ΔSOC(ΔDOD)、容量単位)でこれ対応した開回路電圧の変化分(ΔOCV)を割ることで、特定のSOCにおけるOCVの微分値(dV/dQ)を計算し、DODに対してプロットすることで曲線を得る。
(iii)直流抵抗-DOD曲線:各DODに対して、図4(b)で示される過電圧(ΔV1sec、ΔV10sec、ΔV72sec)をパルス状の放電電流値(Idischarge)で割ることでそれぞれの放電時間に対する直流抵抗R1s、R10s、R72sを得ることができる。式(1)ではR1sの計算式を示す。 
 R1s(SOC)={ΔOCV1s}/Idischarge  ・・・(1)            
 図4(c)には充電率(SOC)に対する開回路電圧(OCV)とそれをグラフの横軸で微分した値(dV/dQ)、図4(d)には放電時間1sec、10sec、72secにおける直流抵抗値(R1s、R10s、R72s)の放電深度(DOD:Degree of discharge)依存性を示す。DODは100からSOCを引いた値である。ここで直流抵抗測定時の放電時間として1sec、10sec、72secとしているが、解析の際はこれら以外の放電時間の結果も使用することができる。 
 図4(a)では、満充電状態からSOC2%毎に放電し、その後の緩和過程を計測しているが、このSOC幅は可変である。例えば、図4(c)及び図4(d)のDOD30-40%では、OCVやdV/dQ、R72secに変曲点、ピークが存在しており、この領域のみ細かなSOC幅で計測し、その他の領域はより広い幅での計測をすることも可能である。また、必ずしもSOC100%から0%(DOD0から100%)までの区間の計測を実施する必要はなく、特長的な挙動をしめすDOD領域を含む形で診断を進めてもよい。さらには、一度に診断を完了させる必要はなく、高SOC(低DOD)領域での計測と低SOC(高DOD)領域での計測の間にインターバルを入れ、そのインターバルの間は、通常のBESS15としてグリッド5からの充放電指令に対応することもできる。また、診断モードにおけるパルス放電時の電流値も診断中、常に一定である必要もなく、変化させることもできる。
Using the above measurement results, it is possible to obtain the following curves showing the battery state in the battery bank to be diagnosed: (i) an open circuit voltage (OCV) vs. depth of discharge (DOD) curve, (ii) a voltage derivative of capacity (dV/dQ) vs. DOD curve, and (iii) a direct current resistance vs. DOD curve. Here, DOD is obtained by subtracting the SOC value from 100%, with a fully charged state (SOC 100%) being DOD=0% and a fully discharged state being DOD(SOC 100%)=100%.
(i) OCV-DOD curve: The open circuit voltage (OCV) at the corresponding charge rate (DOD) can be obtained from the voltage after relaxation after discharge (e.g., Insert ▼) in Figure 4(a). The curve is obtained by plotting the OCV under multiple SOC conditions.
(ii) dV/dQ-DOD curve: The derivative of OCV (dV/dQ) at a particular SOC is calculated by dividing the change in SOC (DOD) (ΔSOC (ΔDOD), in capacity units) at a particular SOC (DOD) region by the corresponding change in open circuit voltage (ΔOCV), and plotted against DOD to obtain a curve.
(iii) DC resistance-DOD curve: For each DOD, the overvoltage (ΔV 1sec , ΔV 10sec , ΔV 72sec ) shown in Figure 4(b) is divided by the pulsed discharge current value (I discharge ) to obtain the DC resistance R 1s , R 10s , R 72s for each discharge time. Equation (1) shows the calculation formula for R 1s .
R1s (SOC) = {ΔOCV1s} / I discharge ... (1)
Figure 4(c) shows the open circuit voltage (OCV) versus state of charge (SOC) and the value (dV/dQ) differentiated on the horizontal axis of the graph, and Figure 4(d) shows the degree of discharge (DOD) dependency of DC resistance values (R 1s , R 10s , R 72s ) at discharge times of 1 sec, 10 sec, and 72 sec. DOD is the value obtained by subtracting SOC from 100. Here, the discharge times used for measuring DC resistance are 1 sec, 10 sec, and 72 sec, but results from discharge times other than these can also be used in the analysis.
In FIG. 4(a), the battery is discharged from the fully charged state at SOC 2% intervals, and the subsequent relaxation process is measured, but this SOC range is variable. For example, in the case of DOD 30-40% in FIG. 4(c) and FIG. 4(d), there are inflection points and peaks in OCV, dV/dQ, and R 72 sec , and it is possible to measure only this region with a narrow SOC range and measure other regions with a wider range. In addition, it is not necessary to perform measurement in the section from SOC 100% to 0% (DOD 0 to 100%), and diagnosis may be performed including a DOD region that shows characteristic behavior. Furthermore, it is not necessary to complete the diagnosis at once, and an interval is inserted between the measurement in the high SOC (low DOD) region and the measurement in the low SOC (high DOD) region, and during the interval, the battery can respond to charge/discharge commands from the grid 5 as a normal BESS 15. In addition, the current value during pulse discharge in the diagnosis mode does not need to be constant during diagnosis, and can be changed.
 図5では、図4で得た電池状態と充電率の相関から、材料劣化を反映したパラメータを取得するプロセスの一例を示す。図5は、ステップ0(準備段階):正極-負極データ取得、ステップ1:電池状態-充電率状態の取得、ステップ2:電池状態パラメータによるカーブフィッティング、ステップ3:パラメータの導出からなる。 
 ステップ0(準備段階):正極-負極データ取得 
 稼働状態のBESS15から図4で示す充放電制御により電池状態と充電率の相関を取得する前に、ステップ0(準備段階)として、各電池バンク内の電池に用いる正極及び負極の単独の容量と電極電位、抵抗の関係性(以降、単位活物質あたりの単極曲線と称する)を得る。図5中では、一例として、正極にリチウム―(ニッケル―コバルト―マンガン)酸化物からなる三元系材料(LiNiCoMn)、負極に黒鉛材料を適用した際の単位活物質あたりの単極曲線を示す。図5中の横軸(q、q)は活物質の単位重量当たりの放電容量を示し、縦軸(左軸)は各放電状態に対する電極電位(V(q)及びV(q))、縦軸(右軸)は単位重量あたりの抵抗値を示す。これら単位活物質あたりの単極曲線は、実際に各電池バンク1に使用する電池セルを解体、取得して得た作用極と、リチウム金属からなる参照極、対極を組み合わせた三極式電気化学セルを用いて取得することができる。また、あらかじめ複数の活物質材料に対して単位活物質あたりの単極曲線を取得しデータベースを準備しておき、各電池バンク1内の電池の正極、負極材料に類似の材料データがデータベースにあれば、これを用いることができる。また、二次電池セルの材料が不明の場合でも、後述のステップ2において、フィッティングが適切に実施できるような単極データを選択できれば、これをそのまま単極データとして使用することもできる。
Figure 5 shows an example of a process for acquiring parameters reflecting material degradation from the correlation between the battery state and the charging rate obtained in Figure 4. Figure 5 shows the steps: Step 0 (preparation stage): acquiring positive and negative electrode data, Step 1: acquiring the battery state and charging rate state, Step 2: curve fitting using the battery state parameters, and Step 3: deriving the parameters.
Step 0 (preparation): Obtaining positive and negative electrode data
Before obtaining the correlation between the battery state and the charging rate by the charge/discharge control shown in FIG. 4 from the BESS 15 in operation, in step 0 (preparation stage), the relationship between the capacity, electrode potential, and resistance of the positive and negative electrodes used in the batteries in each battery bank (hereinafter referred to as a single-electrode curve per unit active material) is obtained. In FIG. 5, as an example, a single-electrode curve per unit active material is shown when a ternary material (LiNi x Co y Mn Z O 2 ) made of lithium-(nickel-cobalt-manganese) oxide is applied to the positive electrode and a graphite material is applied to the negative electrode. In FIG. 5, the horizontal axis (q p , q n ) indicates the discharge capacity per unit weight of the active material, the vertical axis (left axis) indicates the electrode potential (V p (q p ) and V n (q n )) for each discharge state, and the vertical axis (right axis) indicates the resistance value per unit weight. These single-electrode curves per unit active material can be obtained using a three-electrode electrochemical cell that combines a working electrode obtained by disassembling and acquiring a battery cell actually used in each battery bank 1 with a reference electrode and a counter electrode made of lithium metal. Also, single-electrode curves per unit active material can be obtained in advance for a plurality of active material materials to prepare a database, and if the database contains material data similar to the positive and negative electrode materials of the batteries in each battery bank 1, this can be used. Even if the material of the secondary battery cell is unknown, if single-electrode data that allows appropriate fitting can be selected in step 2 described below, this can be used as the single-electrode data as it is.
 ステップ1:電池状態-充電率状態の取得 
 図4及び上述の方法で、電池の放電深度(DOD)に対するOCV、dV/dQ、直流抵抗値の関係性を曲線として得る。
Step 1: Get battery status and charging rate
Using FIG. 4 and the above-mentioned method, the relationship of OCV, dV/dQ, and DC resistance to the depth of discharge (DOD) of the battery is obtained as curves.
 ステップ2:電池状態パラメータによるカーブフィッティング 
 図5のステップ0で取得する各電極の容量及び抵抗の容量依存性と、ステップ1で取得した対象電池バンク1の状態(容量、dV/dQ、直流抵抗)の放電率依存性を比較することで、電池内部の材料劣化状態を反映したパラメータを定量評価することができる。
正極及び負極の充電率と電池の容量が運用中に悪化する「材料劣化」について、様々な要因が挙げられるが、大別すると、既知のように、i)正極及びii)負極活物質の利用率低下、iii)電解質の活物質表面での被膜形成による容量ずれ、を挙げることができる。ここで正極および負極の利用率とは、電極中に含まれる活物質重量のうち、電池反応に寄与できる活物質重量の比率と定義する。 
 容量ずれは、被膜に取り込まれたリチウムイオンの電気量[Ah]に相当する。既知のように、単独の活物質からなる正極(添字p)及び負極(添字n)における利用率と容量ずれをそれぞれ、m,mn,δ,δとし、活物質固有の特性値である重量当たりの容量q、qと合わせて、以下のような基本式が成立する。ここでQcellは電池の放電容量、Vcell(Qcell)は放電容量Qcellに対する電池電圧を示す。式(2)は電池の放電容量が、正極及び負極の活物質利用率と単位容量の積から容量ずれ分を差し引いた形で示されること、式(3)は電池電圧が該当する正極と負極の電位の差分として示されることを意味している。 
 Qcell=m×q-δ=m×q-δ     ・・・(2) 
 Vcell(Qcell)=V(qp)-V(q)  ・・・(3)
 図5のステップ2に示した図における〇プロット(Cell exp)は放電容量に対する電圧値(OCV)の実測値を示す。図中のPos.、Neg.はそれぞれ該当する正極及び負極の単極曲線を示し、図5中のCellは、正極と負極の単極曲線の差分(Pos.-Neg.)として示される。図5中Pos.は式(2)に示されるように、ステップ0で取得される単位活物質当たりの単極曲線を横軸方向に活物質の利用率(m)分だけ拡大し、さらに、その容量ずれ(δ)分だけ平行移動して決定される。同様にして、負極の単極曲線Neg.も同様に、単位活物質当たりの曲線の横軸を利用率(m)分だけ拡大し、容量ずれ(δ)分だけ平行移動して決定される。これら値(m、m、δ、δ)は直接計測できるものではないが、これら値とステップ0で取得する単位活物質あたりの単極曲線で、図5中の正極及び負極の単極曲線(Pos.、Neg.)を再現することができ、さらに、これらの電圧を差し引きすることで、電池当たりの電圧-容量曲線(Cell)を再現することができる。これと実測値の差分が最小化されるようにして、m、m、δ、δを決定することで、間接的に材料毎の劣化パラメータを決定することができる。
Step 2: Curve fitting with battery state parameters
By comparing the capacity dependence of the capacity and resistance of each electrode obtained in step 0 of FIG. 5 with the discharge rate dependence of the state of the target battery bank 1 (capacity, dV/dQ, DC resistance) obtained in step 1, it is possible to quantitatively evaluate parameters reflecting the state of material deterioration inside the battery.
There are various factors that can cause "material degradation," which is the deterioration of the charging rate of the positive and negative electrodes and the capacity of the battery during operation, but these can be broadly categorized as follows, as is well known: i) a decrease in the utilization rate of the positive and negative electrode active materials, and iii) a capacity shift due to the formation of a coating on the surface of the active material of the electrolyte. Here, the utilization rate of the positive and negative electrodes is defined as the ratio of the weight of the active material that can contribute to the battery reaction to the weight of the active material contained in the electrode.
The capacity deviation corresponds to the amount of electricity [Ah] of lithium ions taken into the film. As is known, the utilization rate and capacity deviation in the positive electrode (subscript p) and negative electrode (subscript n) made of a single active material are respectively m p , m n , δ p , and δ n , and the capacity per weight, q p and q n , which are characteristic values specific to the active material, are combined to give the following basic formula. Here, Q cell is the discharge capacity of the battery, and V cell (Q cell ) is the battery voltage for the discharge capacity Q cell . Formula (2) means that the discharge capacity of the battery is expressed in the form of the product of the utilization rate and unit capacity of the active material of the positive and negative electrodes minus the capacity deviation, and formula (3) means that the battery voltage is expressed as the difference between the potentials of the corresponding positive and negative electrodes.
Q cell = m p × q p - δ p = m n × q n - δ n ... (2)
V cell (Q cell )=V p (q p )−V n (q n ) (3)
The ◯ plot (Cell exp) in the diagram shown in step 2 of FIG. 5 indicates the actual measured value of the voltage value (OCV) with respect to the discharge capacity. Pos. and Neg. in the diagram indicate the corresponding positive and negative electrode monopolar curves, respectively, and Cell in FIG. 5 is shown as the difference (Pos.-Neg.) between the positive and negative electrode monopolar curves. As shown in formula (2), Pos. in FIG. 5 is determined by expanding the monopolar curve per unit active material obtained in step 0 in the horizontal axis direction by the utilization rate (m p ) of the active material, and further translating it by the capacity deviation (δ p ). Similarly, the monopolar curve Neg. of the negative electrode is also determined by expanding the horizontal axis of the curve per unit active material by the utilization rate (m n ) and translating it by the capacity deviation (δ n ). Although these values (m p , m n , δ p , δ n ) cannot be measured directly, the positive and negative electrode unipolar curves (Pos., Neg.) in FIG. 5 can be reproduced using these values and the unipolar curve per unit active material obtained in step 0, and further, the voltage-capacity curve per battery (Cell) can be reproduced by subtracting these voltages. By determining m p , m n , δ p , δ n so as to minimize the difference between this and the actual measured value, the deterioration parameters for each material can be indirectly determined.
 ステップ3:劣化パラメータの導出 
 ステップ0のように、事前に単位活物質あたりの単極曲線を取得しておき、劣化パラメータと単極データから電池全体の放電曲線(OCV-容量曲線)を予測し、その後、運用中の電池の放電曲線の実測値と比較し差分が最小化するようにカーブフィッティングを実行することにより、劣化パラメータ、例えば、m、m、δ、δを導出可能である。
  ここでは、図5では、図4(c)のOCV-DOD曲線を電圧-容量曲線の実測結果として用いているが、これをdQ/dV―DOD曲線の実測結果を用い、さらに単位活物質あたりの単極曲線の縦軸を容量微分の形として用いてカーブフィッティングを実施することで、同様にm、m、δ、δを得ることができる。
同様に、図4(c)のようにして得られる抵抗のDOD依存性と図5の単極測定のうち抵抗-容量曲線(r(q)―q)を用いることで、抵抗に関する劣化パラメータR、a、aを取得することができる。ここで、Rは電池セル内部の電解液中のLi伝導抵抗及び各種電子伝導抵抗の総和、aは正極活物質表面の変質に由来する抵抗上昇率、aは正極活物質表面の変質に由来する抵抗上昇率を示す。
Step 3: Derive the degradation parameters
As in step 0, a single-electrode curve per unit active material is obtained in advance, and a discharge curve (OCV-capacity curve) of the entire battery is predicted from the degradation parameters and single-electrode data. Then, the degradation parameters, for example, m p , m n , δ p , and δ n can be derived by performing curve fitting to minimize the difference by comparing the predicted curve with the actual measured value of the discharge curve of the battery during operation.
Here, in FIG. 5, the OCV-DOD curve in FIG. 4(c) is used as the measured voltage-capacity curve, but by using the measured dQ/dV-DOD curve and further performing curve fitting using the vertical axis of the monopolar curve per unit active material as the capacity differential, m p , m n , δ p , and δ n can be obtained in the same manner.
Similarly, by using the DOD dependence of resistance obtained as shown in FIG. 4(c) and the resistance-capacity curve (r p (q p )-q p ) of the single-electrode measurement in FIG. 5, the deterioration parameters R 0 , a p , and a n related to resistance can be obtained. Here, R 0 is the sum of the Li conductive resistance and various electronic conductive resistances in the electrolyte inside the battery cell, a p is the resistance increase rate due to the alteration of the surface of the positive electrode active material, and a n is the resistance increase rate due to the alteration of the surface of the positive electrode active material.
 上述の方法で劣化パラメータを取得できる電池群としては、電池セル、電池モジュール、電池ラック3のいずれかであり、図4で得られる電池状態のSOC或いはDOD依存性のデータの測定対象に依存して変わる。すなわち、図4において電池ラック平均の電圧、電流データを使用する場合には、得られる劣化パラメータは電池ラック平均の材料劣化を示し、同様に電池モジュール平均の電圧、電流データを用いる場合は、そのモジュールで平均化された材料劣化、セル個別の電圧、電流データを用いる場合は、セル毎の劣化パラメータを取得することができる。どのレイヤの劣化情報を得るかは、自由に選択することができる。正確性、分散度を重視する際にはセルレイヤ、診断に係るコスト、負荷を重視する際には電池ラックレイヤでの劣化情報を優先して使用することができる。 The battery groups from which degradation parameters can be obtained using the above method are either battery cells, battery modules, or battery racks 3, and vary depending on the measurement target of the SOC or DOD-dependent data of the battery state obtained in Figure 4. That is, when the battery rack average voltage and current data is used in Figure 4, the obtained degradation parameters indicate the average material degradation of the battery rack. Similarly, when the battery module average voltage and current data is used, the averaged material degradation of the module can be obtained, and when the individual cell voltage and current data is used, the degradation parameters for each cell can be obtained. It is possible to freely select which layer of degradation information to obtain. When placing importance on accuracy and degree of dispersion, the cell layer can be used as the priority, and when placing importance on the cost and load associated with diagnosis, the battery rack layer can be used as the priority.
 図6は、本発明の実施例1に係るBESSの管理手順を示す図である。図6では、上述の方法で、稼働中のBESS15から特定の電池バンク1中の電池の劣化パラメータを取得するまでの工程の一例を図示したものである。本実施例では、定期的に電池バンク1を選択し、上述の工程を経て二次電池の劣化パラメータを取得するが、その頻度や電池バンク1の診断順序は任意である。特に各電池バンクバンク1a,1b,1c,1d・・・1nの劣化状態に有意差がない場合は、あらかじめ設定された順序、頻度で診断すべき電池バンク1を選択し、図2及び図3のように診断モードとすることができる。また、BESS15内のラックBMS4による簡易的なSOC、SOH診断で劣化により優先的に進行する電池ラック3の存在が明らかとなった場合には、その電池ラック3を含む電池バンク1を優先的に診断モードとすることもできる。 FIG. 6 is a diagram showing the management procedure of the BESS according to the first embodiment of the present invention. FIG. 6 illustrates an example of the process for obtaining the deterioration parameters of the battery in a specific battery bank 1 from the BESS 15 in operation by the above-mentioned method. In this embodiment, the battery bank 1 is selected periodically, and the deterioration parameters of the secondary battery are obtained through the above-mentioned process, but the frequency and the diagnosis order of the battery banks 1 are arbitrary. In particular, when there is no significant difference in the deterioration state of each battery bank 1a, 1b, 1c, 1d, ... 1n, the battery bank 1 to be diagnosed can be selected in a predetermined order and frequency, and the diagnosis mode can be set as shown in FIG. 2 and FIG. 3. In addition, when the simple SOC and SOH diagnosis by the rack BMS 4 in the BESS 15 reveals the presence of a battery rack 3 that is preferentially deteriorating, the battery bank 1 including that battery rack 3 can be preferentially set to the diagnosis mode.
 図6のステップS101では、BESS15内のラックBMS4又は下位のバッテリーコントローラ(図示せず)を用いて、各電池ラック3a,3b,3c,3d,3n-1,3n及びそれを構成する電池モジュール、セルのSOCやSOHを簡易的に診断することができる。この診断データは、BESS内のすべての電池に対して自動的に取得されるものである。ここで、下位のバッテリーコントローラは、例えば、電池ラック3中の電池モジュールに実装されている。下位のバッテリーコントローラは、電池モジュール内の電池状態(充電率、劣化度、電圧、温度など)を計測し、上位のラックBMS4或いはシステムBMS7へ計測情報を伝達する。各電池バンク1a,1b,1c,1d・・・1nへの電流分配などを決定するのはシステムBMS7で、その電流に対する電池状態を電池モジュール内のコントローラで計測し、計測結果をラックBMS4でシステムBMS7送信する。劣化状態の診断を実施する機能は、ラックBMS4或いはシステムBMS7のいずれかに実装できるが、システムBMS7に実装することが望ましい。 In step S101 of FIG. 6, the rack BMS 4 in the BESS 15 or a lower battery controller (not shown) can be used to easily diagnose the SOC and SOH of each battery rack 3a, 3b, 3c, 3d, 3n-1, 3n and the battery modules and cells that compose them. This diagnostic data is automatically acquired for all batteries in the BESS. Here, the lower battery controller is implemented, for example, in the battery module in the battery rack 3. The lower battery controller measures the battery state (charging rate, deterioration degree, voltage, temperature, etc.) in the battery module and transmits the measurement information to the upper rack BMS 4 or system BMS 7. It is the system BMS 7 that determines the current distribution to each battery bank 1a, 1b, 1c, 1d, ... 1n, and the battery state for that current is measured by the controller in the battery module, and the measurement result is transmitted to the system BMS 7 by the rack BMS 4. The function of diagnosing the deterioration state can be implemented in either the rack BMS 4 or the system BMS 7, but it is preferable to implement it in the system BMS 7.
 ステップS102では、ステップS101にて得られた簡易的診断の診断データ及びあらかじめ決定された電池バンク診断計画を照らし合わせ、しかるべきタイミングで診断すべき対象電池バンクの有無を確認する。 
 ステップS103では、対象が一つ存在する場合はその電池バンクを、複数ある場合はより劣化が顕著であるものを選択し、診断すべき電池バンクを決定する。 
 ステップS104では、対象電池バンクを決定後、診断対象電池バンク充電率を取得する。ステップS105では、他電池バンクの充電率を取得する。その後或いはそれと並行して、グリッド5からの入出力計画(ニーズ)を取得する(ステップS106)ことで、今後の各電池バンクの充放電計画を決定する(ステップS107)。診断モードの電池バンクのPCS2に対しては、図4のようなパルス充放電パターンを設定、指令し、他電池バンクのPCS2に対してはグリッド5からの入出力計画から、診断モードの充放電計画を差し引いた充放電パターンを分割して指令する。この際、ステップS108において、診断支援モードの他電池バンクの充放電範囲が許容範囲を超えていないことを確認する。ここで許容範囲とは、構成する電池の劣化を最低限に抑制し、さらに、安全性を担保するためにあらかじめ設定した充放電許容範囲のことであり、これを超えると、想定以上の劣化や不安全リスクのリスクが高まる。そのため、許容範囲を超える場合は、診断モード、診断支援モードの条件、タイミングを見直す。ステップS108において、許容範囲内であれば、設定した充放電計画を実行することで、診断対象バンクにおけるパルス充放電(ステップS109)及び診断支援モードの他電池バンクによるグリッドニーズに対する充放電応答(ステップS110)を実行することができる。その後、上述の図4にて説明した手順で必要なSOC-電池状態(OCV、抵抗)の曲線を取得することができれば(ステップS111)、各電池バンクは通常の充放電モードに戻る。それと並行し、上述の図5の手順で対象電池バンク内の電池の劣化パラメータを取得する(ステップS112)。
In step S102, the diagnostic data of the simplified diagnosis obtained in step S101 is compared with a predetermined battery bank diagnostic plan to confirm whether or not there is a target battery bank that should be diagnosed at the appropriate time.
In step S103, if there is one battery bank to be diagnosed, that battery bank is selected; if there are multiple battery banks, the one with the most significant deterioration is selected, and the battery bank to be diagnosed is determined.
In step S104, the target battery bank is determined, and the charging rate of the battery bank to be diagnosed is obtained. In step S105, the charging rates of the other battery banks are obtained. After that, or in parallel with that, an input/output plan (needs) from the grid 5 is obtained (step S106), and a future charging/discharging plan for each battery bank is determined (step S107). A pulse charging/discharging pattern as shown in FIG. 4 is set and instructed to the PCS2 of the battery bank in the diagnosis mode, and a charging/discharging pattern obtained by subtracting the charging/discharging plan of the diagnosis mode from the input/output plan from the grid 5 is divided and instructed to the PCS2 of the other battery banks. At this time, in step S108, it is confirmed that the charging/discharging range of the other battery banks in the diagnosis support mode does not exceed the allowable range. Here, the allowable range refers to a charge/discharge allowable range that is set in advance to minimize deterioration of the constituent batteries and ensure safety. If this range is exceeded, the risk of unexpected deterioration and unsafe risks increases. Therefore, if the allowable range is exceeded, the conditions and timing of the diagnosis mode and the diagnosis support mode are reviewed. In step S108, if the charge/discharge plan is within the allowable range, the set charge/discharge plan can be executed to perform pulse charge/discharge in the bank to be diagnosed (step S109) and charge/discharge response to grid needs by other battery banks in the diagnosis support mode (step S110). After that, if the required SOC-battery state (OCV, resistance) curves can be obtained using the procedure described in FIG. 4 above (step S111), each battery bank returns to the normal charge/discharge mode. In parallel with this, deterioration parameters of the batteries in the target battery bank are obtained using the procedure described in FIG. 5 above (step S112).
 上述の手順で得た劣化パラメータとしては、m、m、δ、δ、R、a、aが挙げられる。本発明はこの劣化パラメータを用いたBESS15の最適運用、保守方法も含む。以下に、その一例を説明する。 
 劣化パラメータを用いることで、BESS15を構成する電池セル、モジュール、電池ラックのSOHの経時変化を予測することができる。本機能は図1のBESSの内部機能あるいはBESSを管理する外部機能、どちらとしても配置することができるが、以下では一例として、BESS内部でSOH経時変化を予測する例を示す。SOH予測部分は図1のシステムBMS7で実行することができる。システムBMS7内には、劣化予測式を用いてSOHを診断するモデル演算部を含むが、ここでは、想定される電流分配パターンを解析して電池劣化に影響する劣化加速因子(例えば、電流、中心SOC、ΔSOC、温度、Duty比率(=電流印加時間/(印加時間+非印加時間)))を抽出して、指定された電流分配パターンを用いて充放電を繰り返した場合の電池の劣化を予測する。電池劣化の予測方法はいくつかあり、対象電池に関する経験式から予測する方法や、電池内部の材料毎の劣化を考慮した物理モデル式から予測する方法等がある。後者では、材料毎の劣化を示すパラメータの時間依存性を示す式(劣化予測式)に、抽出した劣化加速因子を入れることで各劣化パラメータの経時変化を予測し、予測した将来の劣化パラメータ値から電池 性能(容量、抵抗)を計算してSOH等を予測し、BESS15の残寿命情報を得る。
The deterioration parameters obtained by the above-mentioned procedure include m p , m n , δ p , δ n , R 0 , ap , and an . The present invention also includes an optimal operation and maintenance method for the BESS 15 using these deterioration parameters. An example of this method will be described below.
By using the deterioration parameters, it is possible to predict the change over time in the SOH of the battery cells, modules, and battery racks that constitute the BESS 15. This function can be arranged either as an internal function of the BESS in FIG. 1 or as an external function that manages the BESS, but below, as an example, an example of predicting the change over time in the SOH inside the BESS is shown. The SOH prediction part can be executed by the system BMS 7 in FIG. 1. The system BMS 7 includes a model calculation unit that diagnoses the SOH using a deterioration prediction formula, but here, the assumed current distribution pattern is analyzed to extract deterioration acceleration factors that affect battery deterioration (e.g., current, center SOC, ΔSOC, temperature, duty ratio (=current application time/(current application time+non-application time))), and the deterioration of the battery when charging and discharging are repeated using the specified current distribution pattern is predicted. There are several methods for predicting battery deterioration, such as a method of predicting from an empirical formula for the target battery and a method of predicting from a physical model formula that takes into account the deterioration of each material inside the battery. In the latter, the deterioration acceleration factors extracted are input into an equation (deterioration prediction equation) showing the time dependency of the parameters indicating the deterioration of each material, thereby predicting the change over time of each deterioration parameter, and the battery performance (capacity, resistance) is calculated from the predicted future deterioration parameter values to predict the SOH, etc., and information on the remaining life of the BESS15 is obtained.
 図7は、劣化モデル演算部のブロック図の一例である。本実施例に係る劣化モデル演算部は、図2又は図3のシステムBMS7に実装されるものであり、インプット51、内部劣化パラメータの計算ブロック52(劣化パラメータレートマップの参照部521、劣化パラメータの計算部522)、劣化パラメータ予測式補正ブロック53、容量と内部抵抗の計算ブロック54、SOH計算ブロック55及びアウトプット56を有する。ここで、内部劣化パラメータの計算ブロック52(劣化パラメータレートマップの参照部521、劣化パラメータの計算部522)、容量と内部抵抗の計算ブロック54お及びSOH計算ブロック55は、例えば、図示しないCPUなどのプロセッサ、各種プログラムを格納するROM、演算過程のデータを一時的に可能するRAM、外部記憶装置などの記憶装置にて実現されると共に、CPUなどのプロセッサがROMに格納された各種プログラムを読み出し実行し、実行結果である演算結果をRAM又は外部記憶装置に格納する。
(処理S1) 
 インプット51は、入力として、想定される電流分配パターンを解析して電池劣化に影響する特徴量(例えば、電流、中心SOC(待機SOC)、ΔSOC、温度)を抽出して入力とする。
(処理S2) 
 内部劣化パラメータの計算ブロック52では、電池内部の材料毎の劣化を示すパラメータ(劣化パラメータ)の時間依存性を示す式(劣化予測式)に、インプット51の特徴量を入れることで各劣化パラメータの経時変化を予測する。ここで劣化パラメータについては限定されないが、正極及び負極に用いる活物質の利用効率(m、m)、正極及び負極表面での被膜形成によるリチウムイオン失活量(δ、δ)、電池部材のオーミック抵抗(R)、正極及び負極材料の抵抗率(a,a)等を挙げることができる。また、劣化パラメータの時間依存性を表す式は、ひとつに限定されない。一例を式(4)に示す。
Fig. 7 is an example of a block diagram of a deterioration model calculation unit. The deterioration model calculation unit according to this embodiment is implemented in the system BMS 7 of Fig. 2 or Fig. 3, and includes an input 51, an internal deterioration parameter calculation block 52 (a deterioration parameter rate map reference unit 521, a deterioration parameter calculation unit 522), a deterioration parameter prediction formula correction block 53, a capacity and internal resistance calculation block 54, an SOH calculation block 55, and an output 56. Here, the internal deterioration parameter calculation block 52 (a deterioration parameter rate map reference unit 521, a deterioration parameter calculation unit 522), the capacity and internal resistance calculation block 54, and the SOH calculation block 55 are realized by, for example, a processor such as a CPU (not shown), a ROM for storing various programs, a RAM for temporarily storing data in the calculation process, and a storage device such as an external storage device, and the processor such as a CPU reads out and executes various programs stored in the ROM, and stores the calculation results, which are the execution results, in the RAM or the external storage device.
(Process S1)
The input 51 analyzes an expected current distribution pattern and extracts and inputs characteristic quantities (for example, current, median SOC (standby SOC), ΔSOC, and temperature) that affect battery degradation.
(Process S2)
In the internal deterioration parameter calculation block 52, the characteristic quantities of the input 51 are input into an equation (deterioration prediction equation) showing the time dependency of parameters (deterioration parameters) showing the deterioration of each material inside the battery, thereby predicting the change over time of each deterioration parameter. Here, the deterioration parameters are not limited, but may include the utilization efficiency (m p , m n ) of the active material used in the positive and negative electrodes, the amount of lithium ion deactivation due to the formation of a coating on the positive and negative electrode surfaces (δ p , δ m ), the ohmic resistance (R o ) of the battery components, and the resistivity (a p , a n ) of the positive and negative electrode materials. In addition, the equation expressing the time dependency of the deterioration parameters is not limited to one. An example is shown in equation (4).
Figure JPOXMLDOC01-appb-M000001
ここで、t:時間、 
    a、a、k(m:1~Mの整数、Nは任意):電池の劣化加速因子に依存した値である。ここでのa、a、kも、電池の稼働条件(電流、中心SOC、ΔSOC、Tbatt、Duty)に依存する値であり、それを関数として表記したものがg、h、l関数となる。その関数の形は電池の種類によって変わってくる。 
    a=g(I、SOC、ΔSOC、Tbatt、Duty) 
    a=h(I、SOC、ΔSOC、Tbatt、Duty) 
    k=l(I、SOC、ΔSOC、Tbatt、Duty) 
である。なお、Iは電流、SOCは中心SOC(待機SOC)、ΔSOCは充放電時のSOC幅、Tbattは電池温度である。
Figure JPOXMLDOC01-appb-M000001
Where t is time,
a 0 , a m , k n (m: integer from 1 to M, N is arbitrary): Values that depend on the deterioration acceleration factors of the battery. Here, a 0 , a m , and k n are also values that depend on the operating conditions of the battery (current, center SOC, ΔSOC, T batt , Duty), and the g, h, and l functions are those that are expressed as functions. The form of the functions varies depending on the type of battery.
a0 = g (I, SOC, ΔSOC, Tbatt, Duty)
a m =h (I, SOC, ΔSOC, T batt, Duty)
kn = l (I, SOC, ΔSOC, T batt, Duty)
Here, I is the current, SOC is the center SOC (standby SOC), ΔSOC is the SOC range during charging and discharging, and T batt is the battery temperature.
 g、h、l関数の式の形状としては、それぞれの因子のべき乗の積α×(I^β)×(SOC^γ)×(ΔSOC^δ)×exp(-η/Tbatt)や単純な線形式(α+β×I+γ×SOC+δ×ΔSOC+η×Tbatt)のような形で表すこともできる。ここでα、β、γ、δ、ηは係数(具体的な数値はフィッティングで決定)である。
(処理S2’) 
 上述の関数そのものやその中の係数は、稼働前にあらかじめ設定したものを用い、劣化パラメータレートマップの参照部521に実装されている。その結果、劣化パラメータの計算部522で得られる劣化パラメータの予測値(図中“predicted”)と、図4乃至図6の方法で取得する稼働中の劣化パラメータ(図中“diagnosed”)との間に乖離がある場合、劣化パラメータ予測式補正ブロック53にて係数を適宜変更し、予測値と実測値を一致させる(図7中処理S2’)。このようにして稼働中のBESS15内の特定の電池バンクから得られる劣化パラメータにより劣化予測式を更新することで、その予測精度を高めたり、特異的な性能低下を予測することができる。
(処理S3) 
 容量と内部抵抗の計算ブロック54は、処理S2で予測した将来の劣化パラメータ値から電池性能(容量、抵抗)を計算し、SОH計算ブロック55は、SOHの残寿命情報を算出する。
The g, h, and l functions can be expressed as a product of the powers of the respective factors, α×(I^β)×(SOC^γ)×(ΔSOC^δ)×exp(-η/T batt ), or as a simple linear expression, (α+β×I+γ×SOC+δ×ΔSOC+η×T batt ), where α, β, γ, δ, and η are coefficients (the specific values are determined by fitting).
(Process S2′)
The above-mentioned functions themselves and the coefficients therein are set in advance before operation and implemented in the deterioration parameter rate map reference unit 521. As a result, if there is a discrepancy between the predicted value of the deterioration parameter obtained by the deterioration parameter calculation unit 522 ("predicted" in the figure) and the deterioration parameter during operation obtained by the method of Figures 4 to 6 ("diagnosed" in the figure), the coefficients are appropriately changed in the deterioration parameter prediction formula correction block 53 to make the predicted value coincide with the actual measured value (process S2' in Figure 7). In this way, by updating the deterioration prediction formula using the deterioration parameters obtained from a specific battery bank in the BESS 15 during operation, it is possible to improve the prediction accuracy and predict specific performance degradation.
(Process S3)
A capacity and internal resistance calculation block 54 calculates the battery performance (capacity, resistance) from the future deterioration parameter values predicted in step S2, and a SOH calculation block 55 calculates remaining SOH life information.
 処理S1、S2、S2’、S3を経て得られる、容量と内部抵抗の予測は、電池バンク内の実稼働状況を反映した将来予測を示している。通常、劣化パラメータや電池容量及び内部抵抗は、あらかじめ設計時に構築したモデル式に沿って変化する。一方、前述のようにモデルによる予測値と実測値に乖離が見られる場合、劣化パラメータ予測式の係数を更新するが、係数の更新で乖離が解消できないほど乖離が大きい場合、当初予想していない特異的な性能低下が開始されたことを示唆している。その場合、劣化パラメータ予測式の関数系を変更することができる。また、同時に、特異的な性能変化のリスクが高いことをアラートとして、システムBMS7経由でモニタシステムを介して、BESS15の運用管理者に通達し、BESS15のメンテナンス時期の早期化を促すことができる。 
 特異的な性能低下を加味してBESS15内の電池ラック1の交換時期を明確化することで、BESS15の稼働を妨げることなく、計画的なメンテナンスが可能となる。
The predictions of the capacity and internal resistance obtained through the processes S1, S2, S2', and S3 indicate future predictions that reflect the actual operating conditions in the battery bank. Normally, the degradation parameters, battery capacity, and internal resistance change according to a model formula that is constructed in advance at the time of design. On the other hand, as described above, when a deviation is observed between the predicted value by the model and the actual measured value, the coefficients of the degradation parameter prediction formula are updated. However, when the deviation is so large that the deviation cannot be eliminated by updating the coefficients, it suggests that an unusual performance degradation that was not initially expected has started. In that case, the function system of the degradation parameter prediction formula can be changed. At the same time, an alert that the risk of an unusual performance change is high is notified to the operation manager of the BESS 15 via the monitor system via the system BMS 7, and the maintenance timing of the BESS 15 can be promoted earlier.
By clarifying the replacement timing of the battery rack 1 in the BESS 15 taking into account specific performance degradation, planned maintenance can be performed without interrupting the operation of the BESS 15.
 また、同様のBESS15を用いた複数のプロジェクトに対し、本発明を用いてBESS15の稼働履歴とその際の各電池バンク内の電池群の劣化パラメータ、SOH、SOC情報をデータベースとして蓄積しておくことで、任意の稼働条件に対するBESS15の劣化予測式を構築することができる。このデータベース内の劣化予測式に対し、新規に設置したBESS15の劣化実績が乖離する際に、特異的な性能変化が生じていると判断し、これをアラートとしてシステムBMS7経由でモニタシステムを介して、BESSの15運用管理者に通達することができる。 Furthermore, by using the present invention to store the operation history of the BESS 15 and the degradation parameters, SOH, and SOC information of the batteries in each battery bank at that time in a database for multiple projects using the same BESS 15, it is possible to construct a degradation prediction formula for the BESS 15 for any operating conditions. When the degradation record of a newly installed BESS 15 deviates from the degradation prediction formula in this database, it is determined that a unique performance change has occurred, and this can be sent as an alert via the system BMS 7 and the monitor system to the BESS 15 operation manager.
 また、本実施例の他の態様として、得られる劣化パラメータの経時変化から、電池内で進行する劣化様式を推定し、それに基づき、安全リスク増大につながる材料劣化を事前に把握することが可能となる。例えば、劣化パラメータのうち、m及びδは負極における活物質利用および負極-電解質界面で発生する被膜形成によるリチウムイオン失活量を示しており、mの減少およびδの増大により、負極内での反応活性点が限定的になると充放電電流集中により負極表面でリチウムイオンが活物質内に適切に挿入(インターカレーション)されず、表面でリチウム金属として析出するリスクが高まる。事前検討により、これらmとδの挙動と不安全実証発生確率を蓄積したデータベースを準備しておくことで、処理S2で得られるmとδの挙動予測から、BESS15不安全現象の予兆診断が可能となる。不安全現象の予兆が確認された場合、BESS15運用に関するモニタを介して、BESS15の所有者或いは運用者へ不安全リスク上昇をアラートとして伝えることが可能となる。計画的な電池ラック交換に反映するか、m及びδの劣化速度を緩和するよう各電池バンクへの充放電電流を調整することで、不安全リスクを緩和することができる。ここでは、m及びδのみに着目して言及したが、上述の他のパラメータ、例えば、正極活物質の利用効率(m)、正極表面での被膜形成によるリチウムイオン失活量(δ)、電池部材のオーミック抵抗(R)、正極および負極材料の抵抗率(a,a)と安全事象との相関性を見出すことで、他のパラメータも同様にして安全予測、管理に活用することができる。 In another aspect of this embodiment, the deterioration pattern progressing in the battery can be estimated from the change over time of the obtained deterioration parameters, and based on that, it becomes possible to grasp in advance the material deterioration that leads to an increase in safety risk. For example, among the deterioration parameters, m n and δ n indicate the amount of lithium ion deactivation due to the use of active material in the negative electrode and the formation of a film occurring at the negative electrode-electrolyte interface. When the reactive active points in the negative electrode become limited due to a decrease in m n and an increase in δ n , the risk that lithium ions are not properly inserted (intercalated) into the active material on the negative electrode surface due to the concentration of charge and discharge current increases, and lithium metal is precipitated on the surface. By preparing a database that accumulates the behavior of these m n and δ n and the probability of occurrence of unsafe demonstrations through advance consideration, it becomes possible to perform a sign diagnosis of unsafe phenomena of BESS15 from the behavior prediction of m n and δ n obtained in process S2. When a sign of unsafe phenomena is confirmed, it becomes possible to convey the increase in unsafe risk as an alert to the owner or operator of BESS15 via a monitor related to the operation of BESS15. The risk of unsafety can be mitigated by reflecting this in planned battery rack replacement or by adjusting the charge/discharge current to each battery bank to mitigate the rate of deterioration of m n and δ n . Here, only m n and δ n are mentioned, but by finding correlations between the above-mentioned other parameters, such as the utilization efficiency of the positive electrode active material (m p ), the amount of lithium ion deactivation due to the formation of a coating on the positive electrode surface (δ p ), the ohmic resistance of the battery components (R o ), and the resistivities of the positive and negative electrode materials (a p , a n ), and safety events, other parameters can be similarly utilized for safety prediction and management.
 図8は、本発明の実施例1に係るBESSの診断結果に基づいてBESSの所有者或いは運用者に診断結果や異常アラートを伝達する仕組みを表した図である。図8では、本実施例を用いて診断した劣化状態や劣化予測、さらには特異的な性能低下、安全リスク上昇をBESSの所有者や運用者へ発信する流れの一例を示している。図8中のBESSは図2及び図3のBESS15と同じであるが、図8では各部間でやり取りする情報に特化して示している。システムBMSから電池バンクに対しては、各電池バンクへの充放電計画が伝達され、系統安定化のための充放電或いは電池診断のための充放電指令が伝達される。電池バンク内のラックBMSでは、電池指令を受けて充放電した各電池ラックの電圧、電流、温度の時系列データ、SOH及びSOCデータを計測し、システムBMSへ伝達する。システムBMSでは、ラックBMSから伝達される情報を基にして、劣化パラメータ情報を導出するとともに、劣化モデル演算部にて劣化予測式の係数を更新する。また、クラウド、オンプレミス上に設けられた劣化・安全データベースに稼働履歴や劣化データを送信し、他のBESSからのデータと併せてデータベースを拡充する。この際、劣化データベースにある劣化予測式とシステムBMSから伝達される劣化情報に乖離が存在する場合、特異的な劣化が進行していると判断し、アラートをシステムBMSへ伝達する。システムBMSでは、劣化パラメータ抽出部で得られる劣化パラメータの時系列データやそこから導かれる残寿命をBESS所有者や運用者が閲覧可能なBESSモニタシステムに伝達する。さらに、特異的な性能低下や安全リスク上昇が診断された際に、アラートをモニタに表示することができる。ここで、システムBMSを構成する劣化モデル演算部及び劣化パラメータ抽出部は、例えば、図示しないCPUなどのプロセッサ、各種プログラムを格納するROM、演算過程のデータを一時的に可能するRAM、外部記憶装置などの記憶装置にて実現されると共に、CPUなどのプロセッサがROMに格納された各種プログラムを読み出し実行し、実行結果である演算結果をRAM又は外部記憶装置に格納する。 FIG. 8 is a diagram showing a mechanism for transmitting diagnostic results and abnormality alerts to the owner or operator of the BESS based on the diagnostic results of the BESS according to the first embodiment of the present invention. FIG. 8 shows an example of a flow for transmitting the deterioration state and deterioration prediction diagnosed using this embodiment, as well as specific performance degradation and increased safety risk to the owner or operator of the BESS. The BESS in FIG. 8 is the same as the BESS 15 in FIG. 2 and FIG. 3, but FIG. 8 shows information exchanged between each part. The system BMS transmits a charge/discharge plan for each battery bank to the battery bank, and transmits charge/discharge commands for system stabilization or battery diagnosis. The rack BMS in the battery bank measures the time series data of voltage, current, and temperature, SOH, and SOC data of each battery rack that has been charged and discharged in response to a battery command, and transmits them to the system BMS. The system BMS derives deterioration parameter information based on the information transmitted from the rack BMS, and updates the coefficients of the deterioration prediction formula in the deterioration model calculation unit. In addition, the system transmits operation history and deterioration data to a deterioration/safety database installed on the cloud or on-premise, and expands the database with data from other BESSs. At this time, if there is a discrepancy between the deterioration prediction formula in the deterioration database and the deterioration information transmitted from the system BMS, it is determined that specific deterioration is progressing, and an alert is transmitted to the system BMS. The system BMS transmits the time series data of the deterioration parameters obtained by the deterioration parameter extraction unit and the remaining life derived therefrom to a BESS monitor system that can be viewed by the BESS owner or operator. Furthermore, when a specific performance deterioration or an increase in safety risk is diagnosed, an alert can be displayed on the monitor. Here, the deterioration model calculation unit and the deterioration parameter extraction unit that constitute the system BMS are realized by, for example, a processor such as a CPU (not shown), a ROM that stores various programs, a RAM that temporarily stores data in the calculation process, and a storage device such as an external storage device, and the processor such as the CPU reads and executes various programs stored in the ROM, and stores the calculation results that are the execution results in the RAM or the external storage device.
 本願発明で得られる劣化パラメータによる寿命、安全性に関する診断/予測は、複数のBESSを仮想的に運用する際に活用することもできる。図9は、本発明の実施例1に係るBESSで得たパラメータを用いて複数のBESSを仮想的に運用することを示した図である。 
 図9に示すように、仮想電力貯蔵管理システム100は、第1階層L1、第2階層L2、第3階層L3から構成される。第1階層L1は、主にVPP事業者(仮想発電所事業者)、リソースアグリゲータを対象とする階層である。第2階層L2は、主にリソースアグリゲータを対象とする階層であり、地域ごとに分散する複数のBESSを統括管理する階層である。第3階層L3は、主に1又は複数のBESS(物理BESS)を保有している電池オーナ(需要家)を対象とする階層であり、例えば、商用施設や家庭での蓄電を目的とした個人所有者等である。図中では、L1層の下のL2層には、ふたつの第2管理部、さらにその下のL3層にはそれぞれ2つの第3管理部が存在するが、枝分かれの数に制限はなく、ひとつでも、3つ以上でもよい。また、同じ層に存在する複数の管理部の分割境界は、物理的制約(地域やオーナー単位で分割)でもよいし、機能制約(取り扱う電流規模等)で分割してもよい。 
 なお、第1階層L1、第2階層L2、および第3階層L3は、別々の管理者が管理してもよいし、同一の管理者が管理してもよい。
The diagnosis/prediction of life and safety based on the deterioration parameters obtained in the present invention can also be utilized when virtually operating a plurality of BESSs. Fig. 9 is a diagram showing the virtual operation of a plurality of BESSs using the parameters obtained by the BESS according to the first embodiment of the present invention.
As shown in FIG. 9, the virtual power storage management system 100 is composed of a first layer L1, a second layer L2, and a third layer L3. The first layer L1 is a layer mainly targeted at VPP operators (virtual power plant operators) and resource aggregators. The second layer L2 is a layer mainly targeted at resource aggregators, and is a layer that manages multiple BESSs distributed in each region. The third layer L3 is a layer mainly targeted at battery owners (consumers) who own one or multiple BESSs (physical BESSs), such as individual owners who aim to store electricity in commercial facilities or homes. In the figure, there are two second management units in the L2 layer below the L1 layer, and two third management units in the L3 layer below that, but there is no limit to the number of branches, and there may be one or more than three. In addition, the division boundaries of multiple management units existing in the same layer may be physical constraints (division by region or owner unit) or functional constraints (current scale to be handled, etc.).
The first level L1, the second level L2, and the third level L3 may be managed by different administrators or by the same administrator.
 第1管理部10は、取引市場200と取引可否応答のやり取りを行う。取引市場200には、第1管理部10のほか、送配電事業者310、小売事業者320、発電事業者330等が参画し、これら事業者からの電力需給ニーズに従い、電力の取引が実施される。例えば、各事業者において電力が余剰になった場合、BESS所有者および管理者はBESSを充電し、逆に電力が不足する場合、BESSから放電することで、系統電力網を安定化させるための対価の取引を実施する。ここで、第1階層L1の第1管理部10は、個別の物理BESSのSOCを平均化した仮想BESSのSOCを基に対応可能な電力取引ニーズを選択し、下層(L2、L3層)へ充放電指令を出す機能を有する。 The first management unit 10 exchanges responses regarding whether or not a transaction can be made with the trading market 200. In addition to the first management unit 10, the trading market 200 also includes the electricity transmission and distribution business operator 310, the retail business operator 320, the power generation business operator 330, and the like, and electricity is traded according to the electricity supply and demand needs of these businesses. For example, when there is a surplus of electricity at each business operator, the BESS owner and manager charges the BESS, and conversely, when there is a shortage of electricity, the BESS is discharged, thereby conducting a trade of compensation to stabilize the power grid. Here, the first management unit 10 in the first layer L1 has the function of selecting the electricity trading needs that can be met based on the SOC of the virtual BESS, which is the average of the SOC of the individual physical BESSs, and issuing charging and discharging commands to the lower layers (L2 and L3 layers).
 第2階層L2の第2管理部20は、第3階層L3に配置された物理BESSの特性(寿命、入出力)を鑑みて、各物理BESSの待機状態でのSOCを決定する機能や、充放電指令に基づいて各物理BESSの充放電パターンを分配する機能を有する。 The second management unit 20 in the second layer L2 has a function to determine the SOC in the standby state of each physical BESS in consideration of the characteristics (lifespan, input/output) of the physical BESS arranged in the third layer L3, and a function to distribute the charge/discharge pattern of each physical BESS based on the charge/discharge command.
 第3階層L3の第3管理部30は、電池オーナのBESSの稼働データ(電圧、電流、温度の時系列データ)から電池状態(SOC、残寿命、抵抗、許容電力量等)を診断し、その情報をまとめて第2階層L2へ伝達する機能を有する。 The third management unit 30 in the third layer L3 has the function of diagnosing the battery status (SOC, remaining life, resistance, allowable power, etc.) from the operation data (time series data of voltage, current, and temperature) of the battery owner's BESS, and transmitting this information to the second layer L2 in a consolidated manner.
 以下、各管理部の詳細を説明する。 The details of each management department are explained below.
 第1管理部10は、処理部として、取引市場200との取引を管理する取引管理部11、仮想BESSで提供可能な電力取引サービス(例えば、周波数調整、ピークシフト、ピークカット)のメニューを管理するサービス管理部12、電力取引サービスと使用する仮想BESSの対応関係を管理するサービスリソース管理部13、第2管理部20の分散BESS制御部21に制御指令等をする仮想BESS制御部14を有する。 The first management unit 10 has, as processing units, a trading management unit 11 that manages trading with the trading market 200, a service management unit 12 that manages a menu of power trading services (e.g., frequency adjustment, peak shift, peak cut) that can be provided by the virtual BESS, a service resource management unit 13 that manages the correspondence between the power trading services and the virtual BESS to be used, and a virtual BESS control unit 14 that issues control commands to the distributed BESS control unit 21 of the second management unit 20.
 第1管理部10のデータベース17には、処理部での各情報が記憶されており、電力取引サービスのデフォルト条件や契約締結ごとのサービス・保守の条件であるSLA(Service Level Agreement)情報171、仮想BESSで提供可能な電力取引サービスのメニューである取引サービス情報172、電力取引サービスと使用する仮想BESSの対応関係であるサービスリソース情報173、第3階層L3に存在する物理BESSの総SOC(トータルでやり取り可能な電気容量Ahに対して、実際に充電されている総電気容量Ah)情報である仮想BESS_SOC情報174等がある。 The database 17 of the first management unit 10 stores various information in the processing unit, such as SLA (Service Level Agreement) information 171, which is the default conditions for the energy trading service and the service and maintenance conditions for each contract, trading service information 172, which is a menu of energy trading services that can be provided by the virtual BESS, service resource information 173, which is the correspondence between the energy trading service and the virtual BESS to be used, and virtual BESS_SOC information 174, which is information on the total SOC (the total electrical capacity Ah actually charged compared to the total electrical capacity Ah that can be exchanged) of the physical BESS present in the third layer L3.
 第2管理部20は、第3管理部30に配置された物理BESSの特性(SOC、残寿命、抵抗、許容電力量等)を鑑みて、充放電指令が来るまでの各BESSの待機SOCや充放電指令が来た際に各BESSの充放電パターンを分配制御する分散BESS制御部21、各分散BESS制御部が管理する物理BESSのSOCの分布情報(物理BESS全体のうち、SOCが〇%から△%の範囲にあるBESSの電気容量は××Ahある等)の分散BESS_SOC情報27等を有する。 The second management unit 20 has a distributed BESS control unit 21 that takes into consideration the characteristics (SOC, remaining life, resistance, allowable power, etc.) of the physical BESSes arranged in the third management unit 30 and distributes and controls the standby SOC of each BESS until a charge/discharge command is received and the charge/discharge pattern of each BESS when a charge/discharge command is received, and distributed BESS_SOC information 27 that contains distribution information of the SOC of the physical BESSes managed by each distributed BESS control unit (e.g., the electric capacity of BESSes with an SOC in the range of 〇% to △% among all physical BESSes is xx Ah).
 第3管理部30は、電池オーナが所有する物理BESSであるBESS32、電池オーナの管理下にあるBESS32の寿命診断部321からの情報をまとめて、第2管理部20へ伝達するBESS制御部31、電池オーナが有するBESSのSOC情報である物理BESS_SOC情報37を有する。BESS32には、電池本体のほか、寿命診断部321、SOH情報322を有する。寿命診断部321は、各個別のBESSの残寿命を診断する部位であり、電池オーナのBESS32の稼働データ(電圧、電流、温度の時系列データ)から電池状態(残寿命、抵抗)を診断する。なお、SOHは、State of Healthの略で、健全度や劣化状態を表す指標である。初期の電池容量(Ah)に対して一定期間後に残存する電池容量(Ah)の比率をSOHQないしSOHC、初期の抵抗(Ω)に対して一定期間後の抵抗(Ω)の上昇比率をSOHRで表示し、百分率で示すことが通例である。 The third management unit 30 has a BESS 32 which is a physical BESS owned by the battery owner, a BESS control unit 31 which compiles information from a lifespan diagnosis unit 321 of the BESS 32 under the management of the battery owner and transmits it to the second management unit 20, and physical BESS_SOC information 37 which is SOC information of the BESS owned by the battery owner. In addition to the battery itself, the BESS 32 has a lifespan diagnosis unit 321 and SOH information 322. The lifespan diagnosis unit 321 is a part which diagnoses the remaining lifespan of each individual BESS, and diagnoses the battery state (remaining lifespan, resistance) from the operating data (time series data of voltage, current, temperature) of the battery owner's BESS 32. SOH is an abbreviation for State of Health, and is an index which indicates the health and deterioration state. The ratio of the remaining battery capacity (Ah) after a certain period of time to the initial battery capacity (Ah) is indicated as SOHQ or SOHC, and the ratio of the increase in resistance (Ω) after a certain period of time to the initial resistance (Ω) is indicated as SOHR, and these are usually expressed as percentages.
 ここで、仮想BESS制御部14、分散BESS制御部21、BESS制御部31との関係を説明する。 
(第2階層L2→第1階層L1) 
 仮想BESS制御部14は、分散BESS制御部21から、分散BESS制御部21の管理下にある物理BESS全体のSOC情報を受け取る。 
(第1階層L1→第2階層L2) 
 仮想BESS制御部14は、取引ニーズに対応し、L2層への適正な電流分配指令を決定し、分散BESS制御部21へ伝える。 
(第3階層L3→第2階層L2) 
 BESS制御部31は、電池オーナの有する物理BESSのSOH等の電池状態、SOC情報を分散BESS制御部21に伝える。 
(第2階層L2→第3階層L3) 
 分散BESS制御部21は、一つの分散BESS制御部21が管理する物理BESSの寿命を均等化させるためのSOC、電流分配指令を決定し、をBESS制御部31に伝える。
Here, the relationship between the virtual BESS control unit 14, the distributed BESS control unit 21, and the BESS control unit 31 will be described.
(Second layer L2 → First layer L1)
The virtual BESS control unit 14 receives, from the distributed BESS control unit 21 , SOC information of the entire physical BESS under the management of the distributed BESS control unit 21 .
(First layer L1 → Second layer L2)
The virtual BESS control unit 14 responds to transaction needs, determines appropriate current distribution commands to the L2 layer, and transmits them to the distributed BESS control unit 21.
(Third layer L3 → Second layer L2)
The BESS control unit 31 transmits battery state information such as SOH and SOC information of the physical BESS owned by the battery owner to the distributed BESS control unit 21 .
(Second layer L2 → Third layer L3)
The distributed BESS control unit 21 determines an SOC and a current distribution command for equalizing the life spans of the physical BESSes managed by one distributed BESS control unit 21 , and transmits the SOC and a current distribution command to a BESS control unit 31 .
 図9において、ひとつひとつのBESS32の中に、本発明の構成(例えば図2、図3)が含まれ、得られる劣化パラメータにより321の寿命診断部が適宜更新され、高精度な劣化予測が可能となる。さらに、その劣化予測および不安全リスク診断結果を、BESS制御部31及び分散BESS制御部21)に送ることで、複数のBESSの間での電流分配、SOC設定制御に反映させることができ、システム全体としての信頼性向上に貢献することができる。 In FIG. 9, each BESS 32 contains the configuration of the present invention (e.g., FIG. 2, FIG. 3), and the lifespan diagnosis unit 321 is updated appropriately based on the obtained degradation parameters, enabling highly accurate degradation prediction. Furthermore, by sending the degradation prediction and unsafety risk diagnosis results to the BESS control unit 31 and distributed BESS control unit 21, the results can be reflected in the current distribution and SOC setting control between multiple BESSes, contributing to improved reliability of the system as a whole.
 図10は、本発明の実施例1に係るBESSで得たパラメータを用いて複数のBESSを自然エネルギー発電に適用した場合の一例を示す図である。図10に示すように、自然エネルギー発電として、例えば、風力発電装置及び太陽光発電装置がグリッドに接続されている場を示している。BESSA、BESSB及びBESSCがグリッドに接続されおり、充放電管理部がこれら3つのBESSを管理する。ここで、充放電管理部は、例えば、図示しないCPUなどのプロセッサ、各種プログラムを格納するROM、演算過程のデータを一時的に可能するRAM、外部記憶装置などの記憶装置にて実現されると共に、CPUなどのプロセッサがROMに格納された各種プログラムを読み出し実行し、実行結果である演算結果をRAM又は外部記憶装置に格納する。 FIG. 10 is a diagram showing an example of a case where multiple BESSes are applied to natural energy power generation using parameters obtained by the BESS according to the first embodiment of the present invention. As shown in FIG. 10, a field is shown in which, for example, a wind power generation device and a solar power generation device are connected to a grid as natural energy power generation. BESSA, BESSB, and BESSC are connected to the grid, and a charge/discharge management unit manages these three BESSes. Here, the charge/discharge management unit is realized by, for example, a processor such as a CPU (not shown), a ROM that stores various programs, a RAM that temporarily stores data in the calculation process, and a storage device such as an external storage device, and the processor such as the CPU reads and executes the various programs stored in the ROM, and stores the calculation results that are the execution results in the RAM or the external storage device.
 図10に示すように、充放電管理部は、マルチユースエネルギ管理のためのBESSを充放電するためのバッテリ状態管理部であって、要求された負荷パターンを考慮してBESSを選択する。図10位示す例では、充放電管理部は、それぞれの充電量を考慮し、BESSAが放電のためのBESSとして動作し、BESSBが充電のためのBESSとして動作し、BESSCが充放電のためのBESSとして動作させている。また、画面表示40として、縦軸に電池性能を、横軸に使用年数をとり、それぞれBESSA、BESSB及びBESSCの性能を管理者が容易に視認可能に表示する。 As shown in FIG. 10, the charge/discharge management unit is a battery status management unit for charging/discharging the BESS for multi-use energy management, and selects the BESS in consideration of the requested load pattern. In the example shown in FIG. 10, the charge/discharge management unit takes into consideration the charge amount of each, and causes BESSA to operate as the BESS for discharging, BESSB to operate as the BESS for charging, and BESSC to operate as the BESS for charging/discharging. In addition, the screen display 40 has battery performance on the vertical axis and years of use on the horizontal axis, and displays the performance of BESSA, BESSB, and BESSC in a manner that is easily visible to the administrator.
 以上の通り、本実施例によれば、BESS全体の稼働を止めることなく、BESSを構成する二次電池の材料の劣化パラメータを抽出することで、SOH診断、予測のみならず、異常劣化を考慮することで、BESS所有者に対して、適切なBESSの運用、メンテナンスを行い得る電池エネルギー貯蔵システム及びその管理方法を提供することが可能となる。 As described above, according to this embodiment, by extracting the deterioration parameters of the materials of the secondary batteries that make up the BESS without stopping the operation of the entire BESS, it is possible to provide the BESS owner with a battery energy storage system and a management method thereof that can appropriately operate and maintain the BESS by taking into account not only SOH diagnosis and prediction but also abnormal deterioration.
 また、BESSを構成する二次電池の材料劣化の指標となるパラメータを取得することができ、このパラメータ群の時系列変化から、将来の電池容量や抵抗の推移を予測するだけでなく、特異的な性能低下の予兆を把握することができる。そのため、多種多様な二次電池に対して信頼性の高い運用方法や適切なタイミングでのメンテナンス指令を出力したり、可視化したりすることが可能となり、BESS所有者の生涯コストの最小化ならびにBESSを活用して得ることのできる収益の最大化を達成することができる。 In addition, it is possible to obtain parameters that are indicators of material degradation of the secondary batteries that make up the BESS, and from the time series changes in these parameters, it is possible not only to predict future trends in battery capacity and resistance, but also to grasp signs of specific performance degradation. This makes it possible to output and visualize reliable operating methods and timely maintenance instructions for a wide variety of secondary batteries, thereby minimizing the lifetime costs for BESS owners and maximizing the profits that can be obtained by using the BESS.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。 The present invention is not limited to the above-described embodiment, but includes various modifications. For example, the above-described embodiment has been described in detail to clearly explain the present invention, and is not necessarily limited to having all of the configurations described.
1a,1b,1c,1d,1n-1,1n…電池バンク
2a,2b,2c,2d,2n-1,2n…PCS
3a,3b,3c,3d,3n-1,3n…電池ラック
4a,4b,4c,4d,4n-1,4n…ラックBMS
5…グリッド
6…上位制御部
7…システムBMS
8…エネルギーマネジメントシステム(EMS)
10…第1管理部
11…取引管理部
12…サービス管理部
13…サービスリソース管理部
14…仮想BESS制御部
15…電池エネルギー貯蔵システム(BESS)
17…データベース
20…第2管理部
21…分散BESS制御部
211…待機SOC・電流分配決定部
212…物理モデル演算部
27…分散BESS_SOC情報
30…第3管理部(BESS保有者)
31…BESS制御部
32…BESS(物理BESS)
37…物理BESS_SOC情報
40…画面表示
51…インプット
52…内部劣化パラメータの計算ブロック
53…劣化パラメータ予測式補正ブロック
54…容量と内部抵抗の計算ブロック
55…SОH計算ブロック
56…アウトプット
100…仮想電力貯蔵管理システム
171…SLA情報
172…取引サービス情報
173…サービスリソース情報
174…仮想BESS_SOC情報
200…取引市場
310…送配電事業者
320…小売事業者
321…寿命診断部
322…SOH情報
330…発電事業者
521…劣化パラメータレートマップの参照部
522…劣化パラメータの計算部
L1…第1階層
L2…第2階層
L3…第3階層
1a, 1b, 1c, 1d, 1n-1, 1n... Battery banks 2a, 2b, 2c, 2d, 2n-1, 2n... PCS
3a, 3b, 3c, 3d, 3n-1, 3n... Battery rack 4a, 4b, 4c, 4d, 4n-1, 4n... Rack BMS
5... Grid 6... Upper control unit 7... System BMS
8. Energy Management System (EMS)
10... First management unit 11... Transaction management unit 12... Service management unit 13... Service resource management unit 14... Virtual BESS control unit 15... Battery energy storage system (BESS)
17...database 20...second management unit 21...distributed BESS control unit 211...standby SOC/current distribution determination unit 212...physical model calculation unit 27...distributed BESS_SOC information 30...third management unit (BESS holder)
31...BESS control unit 32...BESS (physical BESS)
37...Physical BESS_SOC information 40...Screen display 51...Input 52...Internal deterioration parameter calculation block 53...Deterioration parameter prediction formula correction block 54...Capacity and internal resistance calculation block 55...SOH calculation block 56...Output 100...Virtual power storage management system 171...SLA information 172...Transaction service information 173...Service resource information 174...Virtual BESS_SOC information 200...Trading market 310...Power transmission and distribution company 320...Retailer 321...Life diagnosis unit 322...SOH information 330...Power generation company 521...Deterioration parameter rate map reference unit 522...Deterioration parameter calculation unit L1...First layer L2...Second layer L3...Third layer

Claims (14)

  1.  二次電池を含む電池エネルギー貯蔵システムであって、
     前記電池エネルギー貯蔵システムを構成する複数の電池バンクから診断対象となる総容量の50%以下の電池バンクを選択し、選択された電池バンクを構成する、少なくとも電池セル、電池モジュール及び電池ラックのうちいずれか一つを構成する材料の劣化パラメータを抽出する状態管理部を備え、
     前記状態管理部が劣化パラメータを抽出する際に、グリッドからの要求に基づいて充放電を実行することを特徴とする電池エネルギー貯蔵システム。
    A battery energy storage system including a secondary battery,
    a state management unit that selects a battery bank that is a diagnosis target and has a total capacity of 50% or less from among a plurality of battery banks that constitute the battery energy storage system, and extracts deterioration parameters of materials that constitute at least one of a battery cell, a battery module, and a battery rack that constitute the selected battery bank;
    A battery energy storage system characterized in that, when the state management unit extracts deterioration parameters, charging and discharging are performed based on requests from a grid.
  2.  請求項1に記載の電池エネルギー貯蔵システムであって、
     前記状態管理部は、記診断対象の電池バンクに印加されたパルス状の充放電電流に対する電池電圧応答から前記劣化パラメータを抽出することを特徴とする電池エネルギー貯蔵システム。
    2. The battery energy storage system of claim 1,
    A battery energy storage system, wherein the state management unit extracts the deterioration parameters from a battery voltage response to a pulsed charge/discharge current applied to the battery bank to be diagnosed.
  3.  請求項1に記載の電池エネルギー貯蔵システムであって、
     前記状態管理部は、抽出された前記劣化パラメータを用いて前記電池エネルギー貯蔵システムの運用及び/又は保守計画を出力することを特徴とする電池エネルギー貯蔵システム。
    2. The battery energy storage system of claim 1,
    A battery energy storage system characterized in that the status management unit outputs an operation and/or maintenance plan for the battery energy storage system using the extracted deterioration parameters.
  4.  請求項2に記載の電池エネルギー貯蔵システムであって、
     診断対象となる電池バンクへのパルス状の充放電電流は、グリッドから電池エネルギー貯蔵システムへ要求される充放電電流の一部を兼ねていることを特徴とする電池エネルギー貯蔵システム。
    3. The battery energy storage system of claim 2,
    A battery energy storage system, characterized in that the pulsed charge/discharge current to the battery bank to be diagnosed also serves as part of the charge/discharge current required from the grid to the battery energy storage system.
  5.  請求項2に記載の電池エネルギー貯蔵システムであって、
     診断対象外の電池バンクの充放電電流は、グリッドからの充放電計画から診断対象のB電池バンクへの充放電電流を差し引くことで決定されることを特徴とする電池エネルギー貯蔵システム。
    3. The battery energy storage system of claim 2,
    A battery energy storage system, characterized in that the charge/discharge current of a battery bank not subject to diagnosis is determined by subtracting the charge/discharge current to the B battery bank subject to diagnosis from a charge/discharge plan from the grid.
  6.  請求項2に記載の電池エネルギー貯蔵システムであって、
     前記診断対象となる電池バンクが複数あり、
     前記状態管理部は、前記複数の電池バンクの間でパルス状の充放電電流を双方向に印加することで、前記劣化パラメータを抽出することを特徴とする電池エネルギー貯蔵システム。
    3. The battery energy storage system of claim 2,
    There are multiple battery banks to be diagnosed,
    A battery energy storage system characterized in that the state management unit extracts the deterioration parameters by applying a pulsed charge/discharge current in both directions between the multiple battery banks.
  7.  請求項1乃至請求項6のうち、いずれか1項に記載の電池エネルギー貯蔵システムであって、
     前記状態管理部は、電池バンクの充電率と電池状態の関係性を示す曲線を得ることで前記劣化パラメータを抽出し、
     前記診断対象となる電池バンクから得られる電池状態が、開回路電圧及び/又は直流抵抗であることを特徴とする電池エネルギー貯蔵システム。
    A battery energy storage system according to any one of claims 1 to 6,
    The state management unit extracts the deterioration parameters by obtaining a curve showing a relationship between a charging rate of the battery bank and a battery state;
    A battery energy storage system, characterized in that the battery condition obtained from the battery bank to be diagnosed is open circuit voltage and/or DC resistance.
  8.  二次電池を含む電池エネルギー貯蔵システムの管理方法であって、
     電池エネルギー貯蔵システムを構成する複数の電池バンクから診断対象となる総容量の50%以下の電池バンクを選択する工程と、
     選択した電池バンクに接続されたパワーコンディショナへパルス状の充放電指令を伝えるとともに、診断対象外の電池バンクのパワーコンディショナへ系統からの充放電計画に対応した充放電指令を伝える工程と、
     パルス状の充放電指令時の電圧挙動から、診断対象となる電池バンクを構成する電池ラックの充電率及び電池状態の関係性を示す曲線を得る工程と、
     得られた曲線から前記選択した電池バンクを構成する少なくとも電池セル、電池モジュール及び電池ラックのうちいずれか一つを構成する材料の劣化パラメータを抽出する工程、を含むことを特徴とする電池エネルギー貯蔵システムの管理方法。
    A method for managing a battery energy storage system including a secondary battery, comprising:
    selecting a battery bank having a total capacity of 50% or less as a diagnosis target from a plurality of battery banks constituting a battery energy storage system;
    transmitting a pulsed charge/discharge command to a power conditioner connected to the selected battery bank, and transmitting a charge/discharge command corresponding to a charge/discharge plan from the grid to a power conditioner of a battery bank not being diagnosed;
    obtaining a curve showing the relationship between the charging rate and the battery state of the battery rack constituting the battery bank to be diagnosed from the voltage behavior when a pulse-like charge/discharge command is issued;
    A method for managing a battery energy storage system, comprising a step of extracting deterioration parameters of materials constituting at least one of the battery cells, battery modules and battery racks constituting the selected battery bank from the obtained curve.
  9.  請求項8に記載の電池エネルギー貯蔵システムの管理方法であって、前記診断対象となる電池バンクから得られる開回路電圧及び直流抵抗並びに充電率の相関曲線に基づき、前記診断対象となる電池バンクを構成する二次電池の劣化パラメータとして、正極の活物質利用率m、負極の活物質利用率m、正極表面の皮膜形成に伴うリチウムイオン損失量δ、負極表面の皮膜形成に伴うリチウムイオン損失量δ、電池内部の高周波抵抗R、正極活物質表面の抵抗上昇率a、及び負極活物質表面の抵抗上昇率aのうち少なくとも一つを抽出することを特徴とする電池エネルギー貯蔵システムの管理方法。 9. A method for managing a battery energy storage system according to claim 8, characterized in that at least one of the following is extracted as deterioration parameters of secondary batteries constituting the battery bank to be diagnosed, based on a correlation curve of the open circuit voltage, DC resistance, and charging rate obtained from the battery bank to be diagnosed: positive electrode active material utilization rate m p , negative electrode active material utilization rate m n , amount of lithium ion loss associated with film formation on the positive electrode surface δ p , amount of lithium ion loss associated with film formation on the negative electrode surface δ n , high frequency resistance R 0 inside the battery, rate of resistance increase of the positive electrode active material surface ap , and rate of resistance increase of the negative electrode active material surface an .
  10.  請求項8に記載の電池エネルギー貯蔵システムの管理方法であって、前記診断対象となる電池バンクの劣化パラメータに基づいて、これらパラメータの劣化予測式を更新する工程を含むことを特徴とする電池エネルギー貯蔵システムの管理方法。 The method for managing a battery energy storage system according to claim 8, further comprising a step of updating a deterioration prediction formula for the deterioration parameters of the battery bank to be diagnosed based on the deterioration parameters.
  11.  請求項10に記載の電池エネルギー貯蔵システムの管理方法であって、各電池バンクに対して更新された劣化パラメータの劣化予測式を用いることで、電池バンク毎の残寿命及び電池交換の推奨時期を提示することを特徴とする電池エネルギー貯蔵システムの管理方法。 The method for managing a battery energy storage system according to claim 10, characterized in that the remaining life and the recommended timing for battery replacement for each battery bank are presented by using a deterioration prediction formula for the deterioration parameters updated for each battery bank.
  12.  請求項10に記載の電池エネルギー貯蔵システムの管理方法であって、各電池バンクに対して更新された劣化パラメータの劣化予測式を用いて、各電池バンクの性能低下が均等化されるように、BESS内の電池バンクへの充放電計画を更新することを特徴とする電池エネルギー貯蔵システムの管理方法。 The method for managing a battery energy storage system according to claim 10, characterized in that a charge/discharge plan for the battery banks in the BESS is updated using a deterioration prediction equation for the deterioration parameters updated for each battery bank so that the performance degradation of each battery bank is equalized.
  13.  請求項10に記載の電池エネルギー貯蔵システムの管理方法であって、各電池バンクに対して更新された劣化パラメータの劣化予測式を用いて、BESS内で発生し得る不安全事象のリスクを出力することを特徴とする電池エネルギー貯蔵システムの管理方法。 The method for managing a battery energy storage system according to claim 10, characterized in that the risk of an unsafe event that may occur within the BESS is output using a deterioration prediction equation for the deterioration parameters updated for each battery bank.
  14.  請求項8に記載の電池エネルギー貯蔵システムの管理方法において、電池エネルギー貯蔵システム及びこれを群として統合制御した仮想的な電池エネルギー貯蔵システムを用いてグリッドからの指令に基づき電力需給を調整するための仮想電力貯蔵管理方法であって、各電池エネルギー貯蔵システムから抽出した劣化パラメータ情報を統合管理し、複数の電池エネルギー貯蔵システムへの待機SOC条件、充放電電流条件、及び保守計画のうち少なくとも一つを決定し、電池エネルギー貯蔵システムを構成する制御部に決定事項を送信することを特徴とする電池エネルギー貯蔵システムの管理方法。 The battery energy storage system management method according to claim 8 is a virtual power storage management method for adjusting power supply and demand based on commands from the grid using battery energy storage systems and virtual battery energy storage systems that are integrated and controlled as a group, and is characterized in that the method integrates and manages deterioration parameter information extracted from each battery energy storage system, determines at least one of standby SOC conditions, charge/discharge current conditions, and maintenance plans for multiple battery energy storage systems, and transmits the determined items to a control unit that constitutes the battery energy storage system.
PCT/JP2023/034636 2022-09-30 2023-09-25 Battery energy storage system and management method for battery energy storage system WO2024071004A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022157293A JP2024051240A (en) 2022-09-30 2022-09-30 Battery energy storage system and method for managing battery energy storage system
JP2022-157293 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024071004A1 true WO2024071004A1 (en) 2024-04-04

Family

ID=90477790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034636 WO2024071004A1 (en) 2022-09-30 2023-09-25 Battery energy storage system and management method for battery energy storage system

Country Status (2)

Country Link
JP (1) JP2024051240A (en)
WO (1) WO2024071004A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002044880A (en) * 2000-07-19 2002-02-08 Kyushu Electric Power Co Inc Decision method and apparatus for full charge of secondary battery, degree of battery deterioration and dischargeable capacity
WO2009093684A1 (en) * 2008-01-24 2009-07-30 Toyota Jidosha Kabushiki Kaisha Lithium-ion secondary battery, assembled battery, vehicle, battery-equipped device, battery system, and method for detecting deterioration of lithium-ion secondary battery
JP2017069011A (en) * 2015-09-30 2017-04-06 株式会社日立製作所 Lifetime controlled secondary battery system
JP2017111860A (en) * 2015-12-14 2017-06-22 株式会社日立製作所 Secondary battery control system
JP2017166874A (en) * 2016-03-14 2017-09-21 株式会社東芝 Storage battery evaluation device, storage battery, storage battery evaluation method, and program
JP2018156739A (en) * 2017-03-15 2018-10-04 株式会社東芝 Battery safety evaluation device, battery control apparatus, battery safety evaluation method, program, control circuit, and power storage system
JP2019184581A (en) * 2018-04-17 2019-10-24 三菱電機株式会社 Storage battery diagnostic device, storage battery diagnostic method and storage battery diagnostic system
JP2020020654A (en) * 2018-07-31 2020-02-06 株式会社Gsユアサ Capacity estimating system, capacity estimating method, communication device, and computer program

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002044880A (en) * 2000-07-19 2002-02-08 Kyushu Electric Power Co Inc Decision method and apparatus for full charge of secondary battery, degree of battery deterioration and dischargeable capacity
WO2009093684A1 (en) * 2008-01-24 2009-07-30 Toyota Jidosha Kabushiki Kaisha Lithium-ion secondary battery, assembled battery, vehicle, battery-equipped device, battery system, and method for detecting deterioration of lithium-ion secondary battery
JP2017069011A (en) * 2015-09-30 2017-04-06 株式会社日立製作所 Lifetime controlled secondary battery system
JP2017111860A (en) * 2015-12-14 2017-06-22 株式会社日立製作所 Secondary battery control system
JP2017166874A (en) * 2016-03-14 2017-09-21 株式会社東芝 Storage battery evaluation device, storage battery, storage battery evaluation method, and program
JP2018156739A (en) * 2017-03-15 2018-10-04 株式会社東芝 Battery safety evaluation device, battery control apparatus, battery safety evaluation method, program, control circuit, and power storage system
JP2019184581A (en) * 2018-04-17 2019-10-24 三菱電機株式会社 Storage battery diagnostic device, storage battery diagnostic method and storage battery diagnostic system
JP2020020654A (en) * 2018-07-31 2020-02-06 株式会社Gsユアサ Capacity estimating system, capacity estimating method, communication device, and computer program

Also Published As

Publication number Publication date
JP2024051240A (en) 2024-04-11

Similar Documents

Publication Publication Date Title
US11368030B2 (en) Battery management system
US20220121260A1 (en) Power distribution management based on distributed networking protocol analytics
US9442165B2 (en) Method for estimating battery life in presence of partial charge and discharge cycles
CN101149422B (en) Battery life forecasting system and method, communication terminal device and battery life forecasting device
CN110383095B (en) Evaluation device, power storage system, evaluation method, and computer program
US20130024042A1 (en) Method for real-time power management of a grid-tied microgrid to extend storage lifetime and reduce cost of energy
US20190058330A1 (en) Electric power control apparatus, electric power control method, and program
CN106463794A (en) Secondary-battery monitoring device and method for predicting capacity of secondary battery
EP2881749B1 (en) Control method and control device using same
Naumann Techno-economic evaluation of stationary battery energy storage systems with special consideration of aging
Sayfutdinov et al. Alternating direction method of multipliers for the optimal siting, sizing, and technology selection of Li-ion battery storage
JP6069738B2 (en) Charge / discharge control system, charge / discharge control method, and charge / discharge control program
US8612362B2 (en) Appliance cooperation operation device
WO2024071004A1 (en) Battery energy storage system and management method for battery energy storage system
Haq et al. Performance analysis of energy storage in smart microgrid based on historical data of individual battery temperature and voltage changes
Galeela et al. Reliability Framework Integrating Grid Scale BESS Considering BESS Degradation
EP4287442A1 (en) Charge/discharge plan creating device, command device, power system management system, terminal device, power storage system, charge/discharge system, power storage cell, electric vehicle, charge/discharge plan creating method, and charge/discharge plan creating program
CN110291693A (en) Energy storage device and its application
CN115117472A (en) Battery management system and battery management method
Vazquez-Rodriguez et al. Integrating thermal properties and degradation modelling of batteries into the scheduling of hybrid power plants with photovoltaics
JP6629137B2 (en) Power storage system management device, power storage system management method, power storage system
US20210083329A1 (en) Monitoring battery packs within a battery energy storage system
Fares A framework to model and optimize the operation of lithium-ion energy storage in electricity markets, and an assessment of lithium-ion energy storage in Texas
WO2023181111A1 (en) Information processing device, information processing method, information processing system, and computer program
WO2024014245A1 (en) Estimation device, diagnosis device, estimation method, estimation program, and diagnosis method