WO2024070951A1 - Rotating electrical machine, blower, compressor, and refrigeration device - Google Patents

Rotating electrical machine, blower, compressor, and refrigeration device Download PDF

Info

Publication number
WO2024070951A1
WO2024070951A1 PCT/JP2023/034516 JP2023034516W WO2024070951A1 WO 2024070951 A1 WO2024070951 A1 WO 2024070951A1 JP 2023034516 W JP2023034516 W JP 2023034516W WO 2024070951 A1 WO2024070951 A1 WO 2024070951A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic pole
iron core
rotating electric
tooth
electric machine
Prior art date
Application number
PCT/JP2023/034516
Other languages
French (fr)
Japanese (ja)
Inventor
司 浅利
能成 浅野
尚宏 木戸
寛 日比野
伸 中増
浩和 藤井
靖人 柳田
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2024070951A1 publication Critical patent/WO2024070951A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles

Definitions

  • This disclosure relates to rotating electrical machines, etc.
  • a technology is known that expands (extends) the magnetic poles at the tips of the teeth on which the windings of the stator core are arranged outward in the axial direction of a rotating electric machine, thereby improving the driving force and driving efficiency of the rotating electric machine (see, for example, Patent Documents 1 to 3).
  • the magnetic flux passing through the extended parts at the tips of the teeth tends to concentrate at the axial ends of the teeth, which can result in the axial ends of the teeth becoming magnetically saturated. This can reduce the effect of the extended parts at the tips of the teeth (improvements in driving force and driving efficiency).
  • the purpose of this disclosure is to provide technology that can further improve the driving force and driving efficiency of rotating electric machines.
  • a rotor configured to be rotatable about a rotation axis; a stator facing the rotor in a radial direction,
  • the stator includes an iron core made of a soft magnetic material and a winding,
  • the core includes a main body portion extending in a radial direction and around which the winding is wound, a first core having a first magnetic pole portion provided at a tip of the main body portion and facing the rotor in the radial direction, a second magnetic pole portion disposed adjacent to the first core in the axial direction and facing the rotor in the radial direction, and a second core having a peripheral portion connected to or formed integrally with the second magnetic pole portion and disposed between the first core and the winding in the radial or circumferential direction.
  • a rotating electric machine is provided.
  • the second core faces the first core in the radial or circumferential direction at the peripheral portion, and can be magnetically coupled to the first core through the facing surface. Therefore, the rotating electric machine can use the facing surface as a magnetic path for magnetic flux passing between the first and second cores.
  • the magnetic flux passing between the second magnetic pole portion and the first core passes through the facing surface, and is therefore more likely to pass not only through the axial end of the first core, but also through a portion inside the axial end. Therefore, magnetic saturation of the axial end of the first core due to the magnetic flux passing between the second magnetic pole portion and the first core can be suppressed, and the driving force and driving efficiency of the rotating electric machine can be further improved.
  • the first magnetic pole portion includes a flange portion that protrudes in a circumferential direction from a circumferential end surface of the main body portion,
  • the peripheral portion may be disposed between the flange portion and the winding.
  • the peripheral portion may be disposed between the body portion and the windings.
  • a rotor configured to be rotatable about a rotation axis; a stator facing the rotor in a radial direction,
  • the stator includes an iron core made of a soft magnetic material and a winding.
  • the iron core includes a main body portion extending in a radial direction and around which the winding is wound, a first iron core provided at a tip of the main body portion and having a first magnetic pole portion radially facing the rotor, and a second iron core arranged adjacent to the first iron core in the axial direction and having a second magnetic pole portion radially facing the rotor, and a peripheral portion connected to or formed integrally with the second magnetic pole portion, the peripheral portion has an opposing surface that faces the first iron core in a radial direction or a circumferential direction, the first iron core and the second iron core have a magnetic path between the second magnetic pole portion and the first iron core through the opposing surfaces;
  • a rotating electric machine is provided.
  • the rotating electric machine can utilize the opposing surfaces that face each other in the circumferential and radial directions as a magnetic path for the magnetic flux passing between the first and second iron cores. Therefore, by passing through the opposing surfaces, the magnetic flux passing between the second magnetic pole portion and the first iron core can easily pass not only through the axial end of the first iron core, but also through locations inside the axial end. This suppresses magnetic saturation of the axial end of the first iron core caused by the magnetic flux passing between the second magnetic pole portion and the first iron core, and further improves the driving force and driving efficiency of the rotating electric machine.
  • the first magnetic pole portion includes a flange portion that protrudes in a circumferential direction from a circumferential end surface of the main body portion,
  • the opposing surface may include a surface where the peripheral portion and the flange portion face each other in a radial direction.
  • the opposing surface may include a surface where the peripheral portion and the main body portion oppose each other in a circumferential direction.
  • the second magnetic pole portion may be disposed adjacent to only one of both axial ends of the first core.
  • the second magnetic pole portions may be disposed adjacent to both ends of the first core in the axial direction.
  • the axial dimension of the peripheral portion may be greater than the axial dimension of the second pole portion.
  • An axial dimension of a portion of the peripheral portion adjacent to the first core in the circumferential or radial direction may be the same as the axial dimension of the first core.
  • An area of a surface where the first core and the second core face each other in a circumferential or radial direction may be larger than an area of a surface where the first core and the second core face each other in an axial direction.
  • the magnetic resistance between the circumferentially or radially opposing surfaces of the first iron core and the second iron core may be smaller than the magnetic resistance between the axially opposing surfaces of the first iron core and the second iron core.
  • a rotating electric machine according to any one of the first to twelfth aspects described above is mounted on the vehicle.
  • a compressor is provided.
  • a rotating electric machine according to any one of the first to twelfth aspects described above is mounted on the vehicle.
  • a blower is provided.
  • a rotating electric machine according to any one of the first to twelfth aspects described above is mounted on the vehicle.
  • a refrigeration system is provided.
  • the above-described embodiment can further improve the driving force and driving efficiency of the rotating electric machine.
  • FIG. 2 is a front view showing an example of a motor.
  • FIG. 2 is a front view showing an example of a yoke and teeth of a stator core.
  • 13 is a front view showing another example of the yoke and teeth of the stator core.
  • FIG. FIG. 2 is a perspective view showing the teeth, additional teeth, and coils of a stator.
  • FIG. 13 is a perspective view showing a first example of an additional tooth.
  • FIG. 13 is a perspective view showing a first example of an additional tooth.
  • FIG. 11 is a perspective view showing a second example of an additional tooth.
  • FIG. 11 is a perspective view showing a second example of an additional tooth.
  • FIG. 13 is a perspective view showing a third example of an additional tooth.
  • FIG. 1 is a perspective view showing a first example of an additional tooth.
  • FIG. 13 is a perspective view showing a fourth example of an additional tooth.
  • FIG. 13 is a perspective view showing a fifth example of an additional tooth.
  • FIG. 13 is a perspective view showing a sixth example of an additional tooth.
  • FIG. 13 is a perspective view showing an example of a tooth corresponding to a sixth example of the additional tooth.
  • FIG. 13 is a perspective view showing a seventh example of an additional tooth.
  • FIG. 13 is a perspective view showing an eighth example of an additional tooth.
  • FIG. 13 is a perspective view showing an eighth example of an additional tooth.
  • FIG. 13 is a perspective view showing an eighth example of an additional tooth.
  • FIG. 13 is a perspective view showing an eighth example of an additional tooth.
  • FIG. 13 is a perspective view showing a ninth example of an additional tooth.
  • FIG. 11 is a diagram illustrating a schematic diagram of a flow of magnetic flux through an additional tooth of a motor according to a comparative example.
  • FIG. 5A and 5B are diagrams illustrating a flow of magnetic flux through additional teeth of the motor according to the embodiment.
  • FIG. 1 is a diagram illustrating an example of an air conditioner.
  • FIG. 1 is a front view showing an example of a motor 1.
  • FIG. 1 is a view showing an example of a motor 1 as viewed along an axial direction (hereinafter simply referred to as "axial direction") corresponding to the rotation axis AX of the motor 1.
  • FIG. 2 is a front view showing an example of a yoke 11A and a main tooth 11B of a stator core 11.
  • FIG. 3 is a front view showing another example of a yoke 11A and a main tooth 11B of a stator core 11.
  • FIG. 2 and FIG. 3 are views showing an example and another example of a stator core 11 as viewed along the axial direction.
  • FIG. 1 is a view showing an example of a motor 1 as viewed along an axial direction (hereinafter simply referred to as "axial direction") corresponding to the rotation axis AX of the motor 1.
  • FIG. 2 is a front view showing an example of a yoke 11A and a main tooth 11B
  • FIG. 4 is a perspective view showing a main tooth 11B, an additional tooth 11C, and a coil 12 of a stator 10.
  • FIG. 4 is a perspective view showing a main tooth 11B, an additional tooth 11C, and a coil 12 of a stator 10 as viewed from the outside in a radial direction (hereinafter simply referred to as "radial direction") based on the rotation axis AX of the motor 1, and the additional tooth 11C in FIG. 4 corresponds to a first example (FIGS. 5 and 6) described below.
  • motor 1 is an outer rotor type and is driven by a multi-phase (e.g., three-phase) armature current.
  • multi-phase e.g., three-phase
  • the motor 1 includes a stator 10, a rotor 20, and a shaft 30.
  • the stator 10 is an armature that is positioned radially inward from the rotor 20.
  • the stator 10 includes a stator core 11 and a coil 12.
  • the stator core 11 is made of a soft magnetic material, and acts as a magnetic path for the magnetic flux generated by the armature current of the coil 12 and the magnetic flux of the permanent magnets 21 of the rotor 20.
  • the soft magnetic material used in the stator core 11 is, for example, an iron-based material such as cast iron or steel for mechanical construction.
  • the soft magnetic material used in the stator core 11 may also be a functional material such as a silicon steel sheet (electromagnetic steel sheet) or a powder magnetic core.
  • a powder magnetic core is an iron core manufactured by applying an insulating coating to metal powder of a soft magnetic material and compressing it, and a powder magnetic core can be used to manufacture an iron core with a complex three-dimensional shape. The same may be true for the soft magnetic material used in the rotor core described below.
  • the stator core 11 includes a yoke 11A, main teeth 11B, and additional teeth 11C.
  • the yoke 11A When viewed along the axial direction, the yoke 11A has a circular ring shape centered on the rotation axis AX.
  • the main teeth 11B are arranged at the radially outer (outer periphery) end (e.g., outer periphery) of the yoke 11A so as to face the rotor 20 arranged radially outward via an air gap.
  • the main teeth 11B are arranged at substantially equal intervals (12 in this example) in the circumferential direction (hereinafter simply referred to as the "circumferential direction") based on the rotation axis AX of the motor 1.
  • the main tooth 11B includes a tooth body portion 11B1 and a magnetic pole portion 11B2.
  • the tooth main body portion 11B1 is provided so as to extend radially from the outer peripheral surface of the yoke 11A.
  • the coil 12 is wound around the tooth main body portion 11B1.
  • the magnetic pole portion 11B2 is provided at the radially outer tip of the tooth body portion 11B1 and faces the rotor 20 in the radial direction via an air gap.
  • the magnetic pole portion 11B2 acts as a magnetic pole due to the magnetic flux generated by the armature current of the coil 12.
  • the magnetic pole portion 11B2 has an outer peripheral surface that is composed of a curved surface that is approximately arc-shaped and centered on the rotation axis AX, i.e., a curved surface that corresponds to a circumferential portion of a cylindrical surface, when viewed along the axial direction.
  • the magnetic pole portion 11B2 also has approximately the same axial dimension as the tooth main body portion 11B1.
  • the magnetic pole portion 11B2 also has a widthwise (circumferential) dimension that is larger than that of the tooth main body portion 11B1.
  • the width direction of the main tooth 11B means the dimension perpendicular to the radial direction at the circumferential position where the target main tooth 11B is provided, when viewed along the axial direction.
  • the magnetic pole portion 11B2 has a flange portion 11B3 that corresponds to the portion that protrudes outward at both ends in the widthwise (circumferential) direction from the tooth main body portion 11B1 when the main tooth 11B is viewed from the outside in the radial direction at the circumferential position where the target main tooth 11B is provided.
  • the end of the magnetic pole portion 11C1 (the end opposite to the side adjacent to the main tooth 11B) may be approximately aligned with the end of the permanent magnet 21, or may be located on the inside (main tooth 11B side) of the end of the permanent magnet 21.
  • the magnetic pole portion 11B2 can suppress the movement of the coil 12 radially outward by the action of the flange portion 11B3.
  • the yoke 11A and the main teeth 11B may be formed as one piece, or as shown in FIG. 3, they may be formed as separate pieces. In the latter case, for example, as shown in FIG. 3, the outer peripheral surface of the yoke 11A is provided with a radially extending convex portion 11Aa, and the radially inner end of the main teeth 11B is provided with a concave portion 11Ba into which the convex portion 11Aa can fit. This allows the main teeth 11B to be connected to the yoke 11A by fitting the convex portion 11Aa into the concave portion 11Ba.
  • the additional teeth 11C are arranged so as to face the rotor 20 in the radial direction via an air gap, and to be adjacent to the tips of the main teeth 11B in the axial direction.
  • the additional teeth 11C may be provided for all the main teeth 11B, or may be provided for some of the main teeth 11B. In the latter case, for example, the additional teeth 11C are provided for every other main tooth 11B arranged in the circumferential direction.
  • the additional teeth 11C can be magnetically coupled to the main teeth 11B.
  • the additional teeth 11C act as magnetic poles due to the magnetic flux generated by applying an armature current to the coils 12. Therefore, in addition to the main teeth 11B (magnetic pole portion 11B2), the additional teeth 11C (magnetic pole portion 11C1 described below) can increase the area of the magnetic poles that face the rotor 20 of the stator core 11. This makes it possible to increase the magnetic flux of the rotor 20 (permanent magnet 21) that links with the coils 12 of the stator 10, thereby improving the driving force and driving efficiency of the motor 1.
  • the additional teeth 11C may or may not be fixed to the main teeth 11B.
  • the additional teeth 11C are fixed to the main teeth 11B by adhesive or the like.
  • the stator core 11 and coils 12 of the stator 10 may be held by a resin mold. In this case, since the position is fixed by the resin mold, the additional teeth 11C do not have to be fixed to the main teeth 11B.
  • the additional teeth 11C may or may not be in contact with the main teeth 11B as long as they can be magnetically coupled.
  • the main teeth 11B and the additional teeth 11C may be separated by resin between them as long as they can be magnetically coupled.
  • the additional teeth 11C are connected to the main teeth 11B with an adhesive, the main teeth 11B and the additional teeth 11C may be separated by the adhesive between them as long as they can be magnetically coupled.
  • the coil 12 is formed by winding a conductor around the main tooth 11B (tooth body portion 11B1).
  • the radial outer end of the coil 12 has a predetermined gap between it and the radial inner side of the magnetic pole portion 11B2.
  • the insulating portion is an insulating member disposed between the stator core 11 and the coil 12.
  • the insulating member is insulating paper, a film, an insulator, a bobbin, etc.
  • the insulating portion may also be an insulating coating formed on the conductor of the coil 12.
  • the rotor 20 is a permanent magnet field that is provided radially outside the stator 10.
  • the rotor 20 includes a permanent magnet 21.
  • the permanent magnet 21 has a generally cylindrical shape.
  • the permanent magnet 21 is, for example, a ring magnet with different magnetic poles arranged at approximately equal intervals on the inside in the radial direction.
  • the rotor 20 may also include a rotor core (iron core) made of a soft magnetic material in addition to the permanent magnets 21.
  • the motor 1 may be a surface permanent magnet type (SPM: Surface Permanent Magnet), and the rotor 20 has a cylindrical rotor core arranged adjacent to the radial outside of the permanent magnets 21 that face the stator 10.
  • the motor 1 may also be an interior permanent magnet type (IPM: Interior Permanent Magnet), and the rotor 20 may have a structure in which the permanent magnets 21 are embedded inside the cylindrical rotor core at equal intervals in the circumferential direction.
  • the rotor 20 (permanent magnet 21) is positioned in the axial direction to include the entire range in which the main teeth 11B (magnetic pole portion 11B2) and the additional teeth (magnetic pole portion 11C1 described below) are present. This allows the rotor 20 (permanent magnet 21) to face the main teeth 11B and the additional teeth 11C in the radial direction via a gap.
  • the shaft 30 is provided on the circumferential inside of the stator 10 (yoke 11A) and has a cylindrical shape with the rotation axis AX as its central axis.
  • the shaft 30 may also be provided at a position offset from the range in which the stator 10 is provided in the axial direction.
  • the shaft 30 is coupled to the rotor 20 at a position offset in the axial direction from the range in which the stator 10 is provided, and is rotatably held relative to the fixed part of the motor 1 via a bearing (not shown). This allows the rotor 20 to rotate freely via the shaft 30, and the magnetic interaction between the rotor 20 and the stator 10 allows it to rotate together with the shaft 30 relative to the fixed part of the motor 1.
  • FIG. 4 is used to explain not only the arrangement of the additional teeth 11C in the motor 1 of the first example, but also the arrangements of the additional teeth 11C in the motor 1 of the second to seventh examples.
  • FIG. 15 and FIG. 16 are used to explain not only the arrangement of the additional teeth 11C in the motor 1 of the eighth example and the assembly method of that motor 1, but also the arrangement of the additional teeth in the motor 1 of the ninth example and the assembly method of that motor 1.
  • Fig. 5 is a perspective view of the first example of the additional tooth 11C seen from a direction corresponding to the radial outside
  • Fig. 6 is a perspective view of the first example of the additional tooth 11C seen from a direction corresponding to the radial inside.
  • the additional tooth 11C includes a magnetic pole portion 11C1 and a retaining portion 11C2.
  • the magnetic pole portion 11C1 is disposed axially adjacent to the magnetic pole portion 11B2 of the main tooth 11B, and faces the rotor 20 radially via an air gap.
  • the magnetic pole portion 11C1 acts as a magnetic pole due to the magnetic flux generated by the armature current of the coil 12 wound around the main tooth 11B, which is magnetically coupled to the additional tooth 11C.
  • magnetic pole portion 11C1 has a widthwise (circumferential) dimension that is greater than tooth main body portion 11B1.
  • magnetic pole portion 11C1 has substantially the same widthwise dimension as magnetic pole portion 11B2.
  • Magnetic pole portion 11C1 may have a widthwise dimension greater than magnetic pole portion 11B2, or may have a widthwise dimension smaller than magnetic pole portion 11B2 as long as it has a widthwise dimension greater than tooth main body portion 11B1.
  • the magnetic pole portion 11C1 has an outer peripheral surface that is a curved surface that is substantially arc-shaped about the rotation axis AX when viewed along the axial direction, that is, a curved surface that corresponds to a circumferential portion of a cylindrical surface.
  • the radius of the outer peripheral surface of each of the magnetic pole portions 11B2 and 11C1 about the rotation axis AX may be substantially the same. This allows the outer peripheral surfaces of the magnetic pole portions 11B2 and 11C1 to be substantially flush, as shown in FIG. 4.
  • Two retaining portions 11C2 are provided at both ends of the magnetic pole portion 11C1 in the width direction with a specified distance between them.
  • the specified distance is set to be larger than the width dimension of the tooth main body portion 11B1. This allows the two retaining portions 11C2 to be arranged so that they sandwich the tooth main body portion 11B1 in the width direction (circumferential direction).
  • the retaining portion 11C2 is provided so as to extend in the axial direction from the axial end of the magnetic pole portion 11C1 on the side adjacent to the main tooth 11B (magnetic pole portion 11B2).
  • the retaining portion 11C2 is also offset in the radial direction so that its outer end face is located inside the magnetic pole portion 11C1. This allows the retaining portion 11C2 to be positioned inside the magnetic pole portion 11B2 in the radial direction.
  • the retaining portion 11C2 can be positioned outside the coil 12 in the radial direction. Therefore, the retaining portion 11C2 can be positioned between the magnetic pole portion 11B2 of the main tooth 11B and the coil 12 in the radial direction. Therefore, the additional tooth 11C can retain the position of the magnetic pole portion 11C1 by the action of the retaining portion 11C2.
  • the axial dimension of the retaining portion 11C2 is longer than the axial dimension of the main tooth 11B. Also, the axial dimension of the retaining portion 11C2 may be equal to or shorter than the axial dimension of the main tooth 11B.
  • the axial dimension of the retaining portion 11C2 may be longer than the axial dimension of the magnetic pole portion 11C1. This makes it possible to reduce the force acting from the tip of the retaining portion 11C2 on the main teeth 11B (the flange portion 11B3 and the teeth main body portion 11B1 of the magnetic pole portion 11B2) or the coil 12 due to the magnetic attraction force acting on the magnetic pole portion 11C1 in conjunction with the magnetic force of the permanent magnet 21 of the rotor 20. This is because the length from the fulcrum to the point of action at the tip of the retaining portion 11C2 can be made relatively longer than the distance from the point of application of the magnetic attraction force to the point of application. As a result, the occurrence of damage or failure of the main teeth 11B or the coil 12 can be suppressed.
  • the additional teeth 11C including the magnetic pole portion 11C1 and the retaining portion 11C2, have approximately the same thickness.
  • the additional teeth 11C may be formed by performing a press process or a bending process on a member punched out of a flat plate-shaped soft magnetic material. This allows the additional teeth 11C to be manufactured relatively easily.
  • the additional teeth 11C may also be made of a powder core.
  • the additional teeth 11C are formed by molding metal powder of a soft magnetic material with an insulating coating by die pressing, and then performing a heat treatment.
  • a worker moves the additional tooth 11C from the tip side of the retaining portion 11C2 in the axial direction so that it approaches the main tooth 11B. This allows the worker to attach the additional tooth 11C to the main tooth 11B so that the tooth body portion 11B1 is sandwiched between the two retaining portions 11C2 and the two retaining portions 11C2 are radially inward of the magnetic pole portion 11B2.
  • the additional teeth 11C in this example may be provided adjacent to not only one axial side of the magnetic pole portion 11B2 but also the other axial side, and two additional teeth 11C may be attached to one main tooth 11B.
  • the retaining portions 11C2 of the two additional teeth 11C are provided to the main tooth 11B such that at least one of the positions in the width direction (circumferential direction) and radial direction differs from each other. This allows the two additional teeth 11C to be attached to appropriate positions relative to the main tooth 11B while avoiding interference between the retaining portions 11C2 of the two additional teeth 11C.
  • the axial dimension of the retaining portions 11C2 of the two additional teeth 11C may be set to be smaller than half the axial dimension of the main tooth 11B.
  • the retaining portion 11C2 of the additional tooth 11C may be biased in a direction approaching the magnetic pole portion 11B2.
  • a member equivalent to a leaf spring may be sandwiched between the retaining portion 11C2 of the additional tooth 11C and the coil 12, and this member presses the retaining portion 11C2 towards the magnetic pole portion 11B2.
  • the retaining portion 11C2 of the additional tooth 11C may function as a leaf spring between the magnetic pole portion 11B2 and the coil 12, and press a part of itself towards the magnetic pole portion 11B2. The same may be true for the second to ninth examples described below.
  • the retaining portion 11C2 of the additional tooth 11C may be retained (supported) by an insulating member such as an insulator or a bobbin.
  • an insulating member such as an insulator or a bobbin.
  • the radial position of the retaining portion 11C2 is retained by an insulating member between the retaining portion 11C2 and the coil 12. The same may be true for the second to ninth examples described below.
  • ⁇ Second Example> 7 and 8 are perspective views showing a second example of the additional tooth 11C.
  • Fig. 7 is a perspective view of the second example of the additional tooth 11C seen from a direction corresponding to the radial outside
  • Fig. 7 is a perspective view of the second example of the additional tooth 11C seen from a direction corresponding to the radial inside.
  • the additional tooth 11C includes a magnetic pole portion 11C1 and a retaining portion 11C2.
  • the magnetic pole portion 11C1 has a larger radial dimension (thickness) than the first example described above.
  • the magnetic pole portion 11C1 is configured so that it is substantially flush with the magnetic pole portion 11B2 on the radially inner side when viewed along the axial direction. This increases the volume (cross-sectional area) of the magnetic path of the magnetic pole portion 11C1, thereby reducing the magnetic resistance.
  • Fig. 9 is a perspective view showing a third example of the additional tooth 11C. Specifically, Fig. 9 is a perspective view of the third example of the additional tooth 11C as viewed from a direction corresponding to the radial outside.
  • the additional tooth 11C includes a magnetic pole portion 11C1 and a retaining portion 11C2.
  • the additional teeth 11C unlike the first and second examples described above, have a flat plate shape with a generally uniform thickness throughout, including the magnetic pole portion 11C1 and the retaining portion 11C2.
  • the additional teeth 11C are formed by punching out a flat plate of soft magnetic material. This makes it very easy to manufacture the additional teeth 11C.
  • Fig. 10 is a perspective view showing a fourth example of the additional tooth 11C. Specifically, Fig. 10 is a perspective view of the fourth example of the additional tooth 11C as viewed from a direction corresponding to the radial outside.
  • the additional tooth 11C includes a magnetic pole portion 11C1 and a retaining portion 11C2, similar to the second example described above. Also, unlike the second example described above, the additional tooth 11C includes a retaining portion 11C3. In other words, in this example, the additional tooth 11C is based on the second example described above, with the retaining portion 11C3 added.
  • the magnetic pole portion 11C1 is set to have a wider width dimension than the second example described above.
  • the retaining portion 11C3 is provided at both ends of the magnetic pole portion 11C1 so as to extend in the axial direction from the end adjacent to the main tooth 11B (magnetic pole portion 11B2).
  • the retaining portion 11C3 is also provided so as to extend in the axial direction along the outer end of the width direction of the retaining portion 11C2. This allows the retaining portion 11C3 to hold the outer side of the width direction of the magnetic pole portion 11B2. Therefore, the additional tooth 11C can more appropriately hold the position of the magnetic pole portion 11C1 by the action of the retaining portion 11C3 in addition to the retaining portion 11C2.
  • the outer peripheral surface of the retaining portion 11C3 faces the rotor 20 in the radial direction.
  • the outer peripheral surface of the retaining portion 11C3 acts as a magnetic pole due to the magnetic flux generated by the armature current of the coil 12 wound around the main tooth 11B, which is magnetically coupled to the additional tooth 11C. This increases the area of the magnetic pole of the stator core 11 that faces the rotor 20, thereby further improving the driving force and driving efficiency of the motor 1.
  • the retaining portion 11C3 may be applied based on the additional teeth 11C of the first example ( Figures 5 and 6) or the third example ( Figure 9) described above.
  • Fig. 11 is a perspective view showing a fifth example of the additional tooth 11C. Specifically, Fig. 11 is a perspective view of the fifth example of the additional tooth 11C as viewed from a direction corresponding to the radial outside.
  • the additional tooth 11C includes a magnetic pole portion 11C1 and a retaining portion 11C2, similar to the second example described above. Also, unlike the second example described above, the additional tooth 11C includes retaining portions 11C4 and 11C5. In other words, in this example, the additional tooth 11C is based on the second example described above, with retaining portions 11C4 and 11C5 added.
  • the holding portion 11C4 has a flat plate shape that is approximately parallel to the axial direction and extends from the radially inner side of the magnetic pole portion 11C1.
  • the retaining portion 11C4 is arranged so that it can be positioned in the gap between the end face of the tooth main body portion 11B1 on the magnetic pole portion 11C1 side and the coil 12 in the axial direction.
  • the retaining portions 11C5 have a flat plate shape that is approximately parallel in both the radial and axial directions at the circumferential position where the corresponding main tooth 11B is provided, and are provided so as to extend from the radial inner side of each of the retaining portions 11C2. As a result, the widthwise spacing between the two retaining portions 11C5 is set to be larger than the tooth main body portion 11B1.
  • the two retaining portions 11C5 are each provided so that they can be positioned in the gap between the widthwise end face of the tooth body portion 11B1 and the inside of the coil 12.
  • the retaining portion 11C4 is connected to each of the two retaining portions 11C5 at both ends in the width direction. This allows the retaining portions 11C4 and 11C5 to be arranged as a single unit and inserted into the gap between the tooth main body portion 11B1 and the coil 12. Therefore, the additional tooth 11C can more appropriately retain the position of the magnetic pole portion 11C1 through the action of the retaining portions 11C4 and 11C5 in addition to the retaining portion 11C2.
  • retaining portion 11C4 and the retaining portion 11C5 may be applied to the additional tooth 11C.
  • the retaining portion 11C4 and the retaining portion 11C5 may be applied based on the additional tooth 11C of the above-mentioned first example (FIGS. 5 and 6), third example (FIG. 9), or fourth example (FIG. 10).
  • Fig. 12 is a perspective view showing a sixth example of the additional tooth 11C.
  • Fig. 12 is a perspective view of the sixth example of the additional tooth 11C as viewed from a direction corresponding to the radial outside.
  • Fig. 13 is a perspective view of an example of a tooth corresponding to the sixth example of the additional tooth 11C.
  • Fig. 13 is a perspective view of an example of a tooth corresponding to the sixth example of the additional tooth 11C as viewed from a direction corresponding to the radial outside.
  • the additional tooth 11C includes a magnetic pole portion 11C1 and a retaining portion 11C2, similar to the second example described above. Also, unlike the second example described above, the additional tooth 11C includes a retaining portion 11C6. In other words, in this example, the additional tooth 11C is based on the second example described above, with the retaining portion 11C6 added.
  • the retaining portion 11C6 is provided so as to extend in the axial direction from the axial end face of the magnetic pole portion 11C1 on the side adjacent to the magnetic pole portion 11B2.
  • the retaining portion 11C6 has a cylindrical shape, and one is provided in the center of the magnetic pole portion 11C1 in the width direction. Also, multiple retaining portions 11C6 may be provided.
  • a hole 11B4 is provided in the end face of the magnetic pole portion 11B2 of the main tooth 11B adjacent to the magnetic pole portion 11C1.
  • the hole 11B4 is arranged in the main tooth 11B (magnetic pole portion 11B2) so that it is in approximately the same position as the retaining portion 11C6 when viewed along the axial direction when the magnetic pole portion 11B2 and the magnetic pole portion 11C1 are appropriately adjacent to each other in the axial direction.
  • the hole 11B4 has a depth, for example, equal to or greater than the axial length of the retaining portion 11C6.
  • the hole 11B4 may also penetrate the magnetic pole portion 11B2 in the axial direction. This allows the additional tooth 11C to be attached to the main tooth 11B by inserting the retaining portion 11C6 into the hole 11B4 in the axial direction. Therefore, the additional tooth 11C can more appropriately retain the position of the magnetic pole portion 11C1 by the action of the retaining portion 11C6 in addition to the retaining portion 11C2.
  • the retaining portion 11C6 and the hole portion 11B4 may be applied based on the additional teeth 11C of the first example ( Figures 5 and 6), the third example ( Figure 9), the fourth example ( Figure 10), or the fifth example ( Figure 11) described above.
  • Fig. 14 is a perspective view showing a seventh example of the additional tooth 11C. Specifically, Fig. 14 is a perspective view of the seventh example of the additional tooth 11C as viewed from a direction corresponding to the outer side in the radial direction.
  • the additional tooth 11C includes a magnetic pole portion 11C1, similar to the second example described above. Also, unlike the second example described above, the additional tooth 11C omits the retaining portion 11C2 and instead includes a retaining portion 11C6. In other words, in this example, the additional tooth 11C is based on the second example described above, with the retaining portion 11C2 omitted and the retaining portion 11C6 added.
  • two holding portions 11C6 are provided. Also, as in the sixth example described above, there may be one holding portion 11C6, or three or more holding portions 11C6.
  • holes 11B4 corresponding to the retaining portions 11C6 are provided in the magnetic pole portions 11B2 of the main teeth 11B. This allows the additional teeth 11C to be attached to the main teeth 11B by inserting the retaining portions 11C6 axially into the holes 11B4. Therefore, the additional teeth 11C can retain the position of the magnetic pole portions 11C1 by the action of the retaining portions 11C6 instead of the retaining portions 11C2.
  • the retaining portion 11C2 may be omitted and the retaining portion 11C6 may be applied.
  • Figures 15 to 17 are perspective views showing an eighth example of the additional tooth 11C.
  • Figure 15 is a perspective view of the eighth example of the additional tooth 11C as viewed from a direction corresponding to the radially outer side.
  • Figure 16 is a perspective view of the eighth example of the additional tooth 11C attached to the main tooth 11B corresponding to Figure 3 described above.
  • Figure 17 is a perspective view of the eighth example of the additional tooth 11C attached to the main tooth 11B corresponding to Figure 2 described above.
  • the additional tooth 11C includes a magnetic pole portion 11C1 and a retaining portion 11C2, similar to the second example described above. Also, unlike the second example described above, the additional tooth 11C includes two magnetic pole portions 11C1. In other words, in this example, the additional tooth 11C is based on the second example described above, with one additional magnetic pole portion 11C1. This makes it possible to further increase the area of the magnetic pole of the stator core 11 that faces the rotor 20. This makes it possible to further increase the magnetic flux of the rotor 20 (permanent magnet 21) that links with the coil 12 of the stator 10, and as a result, it is possible to further improve the driving force and driving efficiency of the motor 1.
  • two magnetic pole portions 11C1 are provided adjacent to each of the axial end faces of the magnetic pole portion 11B2.
  • the axial distance between the two magnetic pole portions 11C1 is set to be larger than the axial dimension of the magnetic pole portion 11B2 (and the tooth main body portion 11B1).
  • the retaining portion 11C2 connects the two magnetic pole portions 11C1 in the axial direction.
  • a through hole larger than the outer shape of the tooth body portion 11B1 is provided in the center of the additional tooth 11C.
  • the additional teeth 11C can be attached to the main teeth 11B by inserting them into the through holes of the additional teeth 11C from the radial outside.
  • the magnetic pole portions 11B2 at the tips of the main teeth 11B may have the same width dimension as the teeth main body portion 11B1 before the additional teeth 11C are attached. Specifically, before the additional teeth 11C are attached, the magnetic pole portions 11B2 are in a state in which the portion (brim portion 11B3) that protrudes outward from the teeth main body portion 11B1 in the width direction of the magnetic pole portions 11B2 extends radially outward when viewed from the outside in the radial direction.
  • the main teeth 11B can be inserted into the through holes of the additional teeth 11C while the additional teeth 11C are brought closer to the main teeth 11B from the outside in the radial direction, and as a result, the additional teeth 11C can be attached to the main teeth 11B.
  • the portion of the magnetic pole portion 11B2 that extends radially outward is folded from the base end by bending or the like. This allows the width dimension of the magnetic pole portion 11B2 to be larger than that of the tooth body portion 11B1.
  • the magnetic pole portion 11C1 of this example may be added based on the additional teeth 11C of the fourth example ( Figure 10) or the fifth example ( Figure 11) described above.
  • Fig. 18 is a perspective view showing a ninth example of the additional tooth 11C. Specifically, Fig. 18 is a perspective view of the ninth example of the additional tooth 11C as viewed from a direction equivalent to the radial outside.
  • the additional tooth 11C includes a magnetic pole portion 11C1 and a retaining portion 11C2, similar to the third example described above. Also, unlike the third example described above, the additional tooth 11C includes two magnetic pole portions 11C1. In other words, in this example, the additional tooth 11C is based on the third example described above, with one additional magnetic pole portion 11C1.
  • two magnetic pole portions 11C1 are provided adjacent to each of the two axial end faces of the magnetic pole portion 11B2.
  • the axial distance between the two magnetic pole portions 11C1 is set to be larger than the axial dimension of the magnetic pole portion 11B2 (and the tooth main body portion 11B1).
  • the retaining portion 11C2 connects the two magnetic pole portions 11C1 in the axial direction, as in the eighth example described above.
  • a through hole larger than the outer shape of the tooth body portion 11B1 is provided in the center of the additional tooth 11C.
  • the additional teeth 11C like the third example described above, have a flat plate shape with a generally uniform thickness throughout, including the magnetic pole portion 11C1 and the retaining portion 11C2.
  • the additional teeth 11C are formed by punching out a flat plate of soft magnetic material. This makes it very easy to manufacture the additional teeth 11C.
  • FIG. 19 is a diagram showing the flow of magnetic flux through additional tooth 11CC of a motor according to a comparative example.
  • FIG. 20 is a diagram showing the flow of magnetic flux through additional tooth 11C of motor 1 according to an embodiment.
  • the additional teeth 11CC of the motor according to the comparative example are not provided with the retaining portions 11C2-11C6, and the main teeth 11B and the additional teeth 11CC are magnetically coupled only at the opposing surfaces adjacent (opposing) in the axial direction. Therefore, the magnetic flux passing between the magnetic pole portion 11C1 and the main teeth 11B (white arrows in the figure) passes through the opposing surfaces that face each other in the axial direction between the magnetic pole portion 11C1 and the magnetic pole portion 11B2. As a result, the magnetic flux is more likely to flow near the axial end of the teeth main body portion 11B1 (dashed line frame in the figure). This is because the magnetic flux flows through a path with smaller magnetic resistance (shorter path). Therefore, magnetic saturation occurs near the axial end of the teeth main body portion 11B1, and as a result, the effect of the magnetic pole portion 11C1 of the additional teeth 11CC (improvement of driving force and driving efficiency) may be reduced.
  • the additional tooth 11C has a retaining portion 11C2 adjacent (facing) the main tooth 11B in the radial and circumferential directions, and the retaining portion 11C2 and the main tooth 11B are magnetically coupled through the facing surface. Therefore, the magnetic flux passing between the magnetic pole portion 11C1 and the main tooth 11B (white arrow in the figure) can pass through the retaining portion 11C2 in the axial direction. As a result, the magnetic flux is likely to flow through the facing surface between the retaining portion 11C2 and the main tooth 11B not only near the axial end of the tooth main body portion 11B1, but also in the area inside the axial end. Therefore, magnetic saturation near the axial end of the tooth main body portion 11B1 can be suppressed, and the driving force and driving efficiency of the motor 1 can be further improved.
  • the retaining portions 11C3, 11C5, and 11C6 are adjacent to (opposite) the main tooth 11B in the radial and circumferential directions so that they can be magnetically coupled, and therefore can achieve the same effects and advantages as the retaining portion 11C2.
  • the axial length of the portion of the retaining portion 11C2 adjacent to the tooth main body portion 11B1 and the magnetic pole portion 11B2 (flange portion 11B3) is preferable to set the axial length of the portion of the retaining portion 11C2 adjacent to the tooth main body portion 11B1 and the magnetic pole portion 11B2 (flange portion 11B3) so as to be magnetically coupled in the radial and circumferential directions to be larger.
  • the retaining portions 11C3, 11C5, and 11C6 This is because magnetic flux becomes easier to flow on the axial inside of the main tooth 11B, and magnetic saturation near the axial end of the tooth main body portion 11B1 can be more appropriately suppressed.
  • the axial length of the portion of the retaining portion 11C2 adjacent to the tooth main body portion 11B1 and the magnetic pole portion 11B2 (flange portion 11B3) in the radial or circumferential direction so as to be magnetically coupled is at least half the axial dimension of the main tooth 11B (tooth main body portion 11B1).
  • the axial length of the portion of the retaining portion 11C2 adjacent to the tooth main body portion 11B1 and the magnetic pole portion 11B2 (flange portion 11B3) in the radial or circumferential direction so as to be magnetically coupled may be the same as the axial dimension of the main tooth 11B (tooth main body portion 11B1).
  • the magnetic resistance between the circumferentially or radially opposing surfaces of the main teeth 11B and the additional teeth 11C may be smaller than the magnetic resistance between the axially opposing surfaces of the main teeth 11B and the additional teeth 11C.
  • the same may be true for the retaining portions 11C3, 11C5, and 11C6. This makes it easier for the magnetic flux passing between the magnetic pole portion 11C1 and the main teeth 11B to flow through the circumferentially or radially opposing surfaces than through the axially opposing surfaces between the main teeth 11B and the additional teeth 11C. This makes it possible to more reliably suppress magnetic saturation near the axial end of the tooth main body portion 11B1.
  • the magnetic resistance of the faces where the main teeth 11B and the additional teeth 11C face each other in the circumferential or radial direction can be made relatively small.
  • the magnetic resistance of the faces where the main teeth 11B and the additional teeth 11C face each other in the circumferential or radial direction can be made relatively small.
  • the material with a higher magnetic resistance than the main teeth 11B and the additional teeth 11C is, for example, an adhesive with a relatively high magnetic resistance.
  • FIG. 21 is a diagram showing an example of an air conditioner 100 equipped with a motor 1 according to this embodiment.
  • the air conditioner 100 (an example of a refrigeration device) includes an outdoor unit 110, an indoor unit 120, and refrigerant paths 130 and 140.
  • the air conditioner 100 operates a refrigerant circuit made up of the outdoor unit 110, the indoor unit 120, and the refrigerant paths 130 and 140, and adjusts the temperature, humidity, etc., of the room in which the indoor unit 120 is installed.
  • the outdoor unit 110 is placed outside the building whose temperature and other conditions are to be adjusted.
  • the outdoor unit 110 is connected to one end of each of the refrigerant paths 130, 140, and draws in refrigerant from one of the refrigerant paths 130, 140 and discharges the refrigerant to the other.
  • the indoor unit 120 is placed in a room of a building where the temperature and other parameters are to be adjusted.
  • the indoor unit 120 is connected to the other end of each of the refrigerant paths 130, 140, and draws in refrigerant from one of the refrigerant paths 130, 140 and discharges the refrigerant to the other.
  • the refrigerant paths 130, 140 are, for example, constructed of pipes, and connect the outdoor unit 110 and the indoor unit 120 so that the refrigerant can circulate between the outdoor unit 110 and the indoor unit 120.
  • the outdoor unit 110 includes refrigerant paths L1 to L6, a four-way switching valve 111, a compressor 112, an outdoor heat exchanger 113, an outdoor expansion valve 114, and a fan 115.
  • Refrigerant paths L1 to L6 are configured, for example, as pipes.
  • Refrigerant path L1 connects one end of refrigerant path 130 outside the outdoor unit 110 to the four-way switching valve 111.
  • Refrigerant path L2 connects between the four-way switching valve 111 and the inlet of the compressor 112.
  • Refrigerant path L3 connects between the four-way switching valve 111 and the outlet of the compressor 112.
  • Refrigerant path L4 connects the four-way switching valve 111 and the outdoor heat exchanger 113.
  • Refrigerant path L5 connects the outdoor heat exchanger 113 and the outdoor expansion valve 114.
  • Refrigerant path L6 connects one end of refrigerant path 140 outside the outdoor unit 110 to the outdoor expansion valve 114.
  • the four-way switching valve 111 reverses the flow of the refrigerant when the air conditioner 100 is in cooling operation and when it is in heating operation.
  • the four-way switching valve 111 connects the paths indicated by the solid lines in FIG. 21. Specifically, when the air conditioner 100 is in cooling operation, the four-way switching valve 111 connects between refrigerant path L1 and refrigerant path L2, and between refrigerant path L3 and refrigerant path L4.
  • the four-way switching valve 111 connects the paths indicated by the dotted lines in FIG. 21. Specifically, when the air conditioner 100 is in heating operation, the four-way switching valve 111 connects between refrigerant path L4 and refrigerant path L2, and between refrigerant path L1 and refrigerant path L3.
  • Compressor 112 draws in refrigerant from refrigerant path L2, compresses it to high pressure, and discharges it into refrigerant path L3.
  • Compressor 112 is equipped (built-in) with motor 1 and is driven by motor 1.
  • the high-temperature, high-pressure refrigerant compressed by the compressor 112 flows into the outdoor heat exchanger 113 via refrigerant paths L3 and L4.
  • the high-temperature, high-pressure refrigerant compressed by the compressor 112 flows through refrigerant path L3 and refrigerant path L1 into refrigerant path 130 outside the outdoor unit 110.
  • the high-temperature, high-pressure refrigerant then flows into the indoor unit 120 through refrigerant path 130.
  • the outdoor heat exchanger 113 exchanges heat between the outside air and the refrigerant passing through the interior.
  • the outdoor heat exchanger 113 is provided with a fan 115, and the outdoor heat exchanger 113 exchanges heat between the outside air blown by the fan 115 and the refrigerant flowing through the interior.
  • the outdoor heat exchanger 113 causes the high-temperature, high-pressure refrigerant compressed by the compressor 112, which flows in from the refrigerant path L4, to dissipate heat to the outside air, and causes the condensed and liquefied refrigerant (liquid refrigerant) to flow into the refrigerant path L5.
  • the outdoor heat exchanger 113 causes the low-temperature, low-pressure liquid refrigerant flowing in from the refrigerant path L5 to absorb heat from the outside air, and causes the evaporated refrigerant to flow into the refrigerant path L4.
  • the outdoor expansion valve 114 When the air conditioner 100 is in heating operation, the outdoor expansion valve 114 is closed to a predetermined opening and reduces the pressure of the refrigerant (liquid refrigerant) flowing in from the refrigerant path L6 to a predetermined pressure. On the other hand, when the air conditioner 100 is in cooling operation, the outdoor expansion valve 114 is fully open and passes the refrigerant (liquid refrigerant) from the refrigerant path L5 to the refrigerant path L6.
  • the fan 115 (an example of a blower) blows air to the outdoor heat exchanger 113, promoting heat exchange in the outdoor heat exchanger 113.
  • the fan 115 is equipped with, for example, an impeller 115A and a motor 1, and operates when the impeller 115A is driven by the motor 1.
  • the indoor unit 120 includes an indoor expansion valve 121, an indoor heat exchanger 122, and a fan 123.
  • the indoor expansion valve 121 When the air conditioner 100 is in cooling operation, the indoor expansion valve 121 is closed to a predetermined opening and reduces the pressure of the supercooled liquid refrigerant flowing in from the refrigerant path 140 to a predetermined pressure. On the other hand, when the air conditioner 100 is in heating operation, the indoor expansion valve 121 is fully open and allows the refrigerant (liquid refrigerant) flowing out of the indoor heat exchanger 122 to pass toward the refrigerant path 140.
  • the indoor heat exchanger 122 exchanges heat between the indoor air and the refrigerant passing through it. Specifically, the indoor air is passed around the indoor heat exchanger 122 by the action of the fan 123 mounted in the indoor unit 120, and the indoor air that has exchanged heat with the refrigerant inside the indoor heat exchanger 122 is blown out of the indoor unit 120, thereby cooling or heating the room.
  • the indoor heat exchanger 122 absorbs heat from the indoor air into the low-temperature, low-pressure liquid refrigerant decompressed by the indoor expansion valve 121, thereby lowering the temperature of the indoor air.
  • the indoor heat exchanger 122 causes the high-temperature, high-pressure refrigerant flowing in from the outdoor unit 110 through the refrigerant path 130 to dissipate heat into the indoor air, thereby raising the temperature of the indoor air.
  • the fan 123 (an example of a blower) blows air to the indoor heat exchanger 122, and blows the indoor air that has exchanged heat with the refrigerant inside the indoor heat exchanger 122 out to the outside of the indoor unit 120.
  • the fan 123 is equipped with, for example, an impeller 123A and a motor 1, and operates when the impeller 123A is driven by the motor 1.
  • the motor 1 may be mounted on one or two of the compressor 112, the fan 115, and the fan 123.
  • the motor 1 according to this embodiment can be applied to the compressor 112, fan 115, and fan 123 of the air conditioner 100.
  • the motor 1 according to this embodiment may also be applied to refrigeration devices other than the air conditioner 100.
  • the rotating electric machine includes a rotor and a stator.
  • the rotating electric machine is, for example, the motor 1 described above.
  • the rotor is, for example, the rotor 20 described above.
  • the stator is, for example, the stator 10.
  • the rotor is freely rotatable around the rotation axis.
  • the rotation axis is, for example, the rotation axis AX described above.
  • the stator is radially opposed to the rotor.
  • the stator includes an iron core made of a soft magnetic material and a winding.
  • the iron core is, for example, the stator core 11 described above.
  • the winding is, for example, the coil 12 described above.
  • the iron core includes a first iron core and a second iron core.
  • the first iron core is, for example, the main tooth 11B described above.
  • the second iron core is, for example, the additional tooth 11C described above.
  • the first core has a main body portion that extends in the radial direction and around which the winding is wound, and a first magnetic pole portion that is provided at the tip of the main body portion and faces the rotor in the radial direction.
  • the main body portion is, for example, the above-mentioned teeth main body portion 11B1.
  • the first magnetic pole is, for example, the above-mentioned magnetic pole portion 11B2.
  • the second core has a second magnetic pole portion that is arranged adjacent to the first core in the axial direction and faces the rotor in the radial direction, and a peripheral portion that is connected to or formed integrally with the second magnetic pole portion and is arranged between the first core and the winding in at least one of the radial and circumferential directions.
  • the second magnetic pole portion is, for example, the above-mentioned magnetic pole portion 11C1.
  • the peripheral portion is, for example, the above-mentioned holding portions 11C2, 11C3, and 11C5.
  • the second core faces the first core in the radial or circumferential direction at the peripheral portion, and can be magnetically coupled to the first core through the facing surface. Therefore, the rotating electric machine can use the facing surface as a magnetic path for magnetic flux passing between the first and second cores.
  • the magnetic flux passing between the second magnetic pole portion and the first core passes through the facing surface, making it easier for it to pass not only through the axial end of the first core, but also through points inside the axial end. Therefore, magnetic saturation of the axial end of the first core due to the magnetic flux passing between the second magnetic pole portion and the first core can be suppressed, and the driving force and driving efficiency of the rotating electric machine can be further improved.
  • the first magnetic pole portion may have a flange portion that protrudes circumferentially beyond the circumferential end face of the main body portion.
  • the flange portion is, for example, the flange portion 11B3 described above.
  • the peripheral portion may be disposed between the flange portion and the winding.
  • the second core is magnetically coupled to the first core through the opposing surface at the periphery that faces the flange in the radial direction, and as a result, the rotating electric machine can use the opposing surface as a magnetic path for magnetic flux passing between the first and second cores.
  • the peripheral portion may be disposed between the main body portion and the winding.
  • the second core is magnetically coupled to the first core through an opposing surface that faces the main body in the circumferential direction at the peripheral portion, and as a result, the rotating electric machine can use the opposing surface as a magnetic path between the first core and the second core.
  • the rotating electric machine includes a rotor and a stator.
  • the rotating electric machine is, for example, the motor 1 described above.
  • the rotor is, for example, the rotor 20 described above.
  • the stator is, for example, the stator 10.
  • the rotor is freely rotatable around the rotation axis.
  • the rotation axis is, for example, the rotation axis AX described above.
  • the stator is radially opposed to the rotor.
  • the stator includes an iron core made of a soft magnetic material and a winding.
  • the iron core is, for example, the stator core 11 described above.
  • the winding is, for example, the coil 12 described above.
  • the iron core includes a first iron core and a second iron core.
  • the first iron core is, for example, the main tooth 11B described above.
  • the second iron core is, for example, the additional tooth 11C described above.
  • the first core has a main body portion that extends in the radial direction and around which the winding is wound, and a first magnetic pole portion that is provided at the tip of the main body portion and faces the rotor in the radial direction.
  • the main body portion is, for example, the above-mentioned teeth main body portion 11B1.
  • the first magnetic pole is, for example, the above-mentioned magnetic pole portion 11B2.
  • the second core has a second magnetic pole portion that is arranged adjacent to the first core in the axial direction and faces the rotor in the radial direction, and a peripheral portion that is connected to or formed integrally with the second magnetic pole portion.
  • the second magnetic pole portion is, for example, the above-mentioned magnetic pole portion 11C1.
  • the peripheral portion is, for example, the above-mentioned holding portions 11C2, 11C3, and 11C5.
  • the peripheral portion has an opposing surface that faces the first core in the radial direction or circumferential direction.
  • the first core and the second core have a magnetic path through the opposing surfaces between the second magnetic pole portion and the first core.
  • the rotating electric machine can utilize the opposing surfaces that face each other in the circumferential and radial directions as a magnetic path for the magnetic flux passing between the first and second iron cores. Therefore, by passing through the opposing surfaces, the magnetic flux passing between the second magnetic pole portion and the first iron core is more likely to pass not only through the axial end of the first iron core, but also through points inside the axial end. This suppresses magnetic saturation of the axial end of the first iron core caused by the magnetic flux passing between the second magnetic pole portion and the first iron core, and further improves the driving force and driving efficiency of the rotating electric machine.
  • the first magnetic pole portion may have a flange portion that protrudes circumferentially beyond the circumferential end face of the main body portion.
  • the flange portion is, for example, the flange portion 11B3 described above.
  • the opposing surface may include a surface where the peripheral portion and the flange portion face each other in the radial direction.
  • the rotating electric machine can utilize the radially opposing surfaces between the flange portion and the peripheral portion as a magnetic path for magnetic flux passing between the first iron core and the second iron core.
  • the opposing surfaces may include surfaces where the peripheral portion and the main body portion face each other in the circumferential direction.
  • the rotating electric machine can utilize the circumferentially opposing surfaces between the main body and the peripheral portion as a magnetic path for the magnetic flux passing between the first and second iron cores.
  • the second magnetic pole portion may be disposed adjacent to only one of the axial ends of the first iron core.
  • the second iron core including the second magnetic pole portion and the peripheral portion can be assembled to the first iron core by bringing the second iron core closer to the first iron core from the other end side where the second magnetic pole portion is not provided.
  • the second magnetic pole portions may be disposed adjacent to both axial ends of the first iron core.
  • the axial dimension of the peripheral portion may be longer than the axial dimension of the second magnetic pole portion.
  • the magnetic attraction force acting on the second magnetic pole portion due to the magnetic force of the rotor's permanent magnets can reduce the force that the peripheral portion located between the first iron core and the windings exerts on the first iron core and the windings.
  • the axial dimension of the portion of the peripheral portion adjacent to the first iron core in the circumferential or radial direction may be the same as the axial dimension of the first iron core.
  • the rotating electric machine can utilize the opposing surfaces between the first and second iron cores, which cover the entire axial direction of the first iron core, as a magnetic path for the magnetic flux passing between the first and second iron cores. Therefore, the magnetic flux passing between the second magnetic pole portion and the first iron core passes through the opposing surfaces, making it easier to pass through the entire axial direction of the first iron core. This further suppresses magnetic saturation of the axial end of the first iron core caused by the magnetic flux passing between the second magnetic pole portion and the first iron core, and further improves the driving force and driving efficiency of the rotating electric machine.
  • the area of the surface where the first iron core and the second iron core face each other in the circumferential or radial direction may be larger than the area of the surface where the first iron core and the second iron core face each other in the axial direction.
  • the peripheral portion can be positioned between the first iron core and the winding, thereby maintaining the position of the second iron core (second magnetic pole). Also, by ensuring that the axial dimension of the peripheral portion is relatively long, the area of the peripheral portion facing the first iron core in the radial or circumferential direction becomes relatively large, and as a result, the position of the second iron core can be maintained while relatively reducing stress.
  • the magnetic resistance between the surfaces of the first iron core and the second iron core that face each other in the circumferential or radial direction may be smaller than the magnetic resistance between the surfaces of the first iron core and the second iron core that face each other in the axial direction.
  • the magnetic flux passing between the second magnetic pole portion and the first iron core is more likely to flow through the circumferentially or radially opposing surfaces between the first iron core and the second iron core than through the axially opposing surfaces between the first iron core and the second iron core.
  • This makes it possible to more reliably suppress magnetic saturation of the axial end of the first iron core caused by the magnetic flux passing between the second magnetic pole portion and the first iron core, and more reliably improve the driving force and driving efficiency of the rotating electric machine.

Abstract

Provided is a technique that makes it possible to further improve the drive power and drive efficiency of a rotating electrical machine. A motor 1 according to one embodiment of the present disclosure comprises: a rotor 20 that is rotatably configured about a rotating shaft center AX; and a stator 10 that faces the rotor 20 in the radial direction. The stator 10 includes a stator core 11 formed of a soft magnetic material and a coil 12. The stator core 11 includes: a main tooth 11B having a tooth body portion 11B1 extending in the radial direction and around which the coil 12 is wound and a magnetic pole portion 11B2 provided at the end of the tooth body portion 11B1 and facing the rotor 20 in the radial direction; and an added tooth 11C having a magnetic pole portion 11C1 disposed adjacent to the main tooth 11B in the axial direction and facing the rotor 20 in the radial direction and holding portions 11C2, 11C3, 11C5 connected to or formed integrally with the magnetic pole portion 11C1 and disposed between the main tooth 11B and the coil 12 in the radial direction or the circumferential direction.

Description

回転電機、送風機、圧縮機、冷凍装置Rotating electric machines, blowers, compressors, refrigeration equipment
 本開示は、回転電機等に関する。 This disclosure relates to rotating electrical machines, etc.
 回転電機の軸方向において、ステータコアにおける巻線が配置されるティースの先端の磁極部をティースより外側に拡張(延長)し、回転電機の駆動力や駆動効率を向上させる技術が知られている(例えば、特許文献1~3参照)。 A technology is known that expands (extends) the magnetic poles at the tips of the teeth on which the windings of the stator core are arranged outward in the axial direction of a rotating electric machine, thereby improving the driving force and driving efficiency of the rotating electric machine (see, for example, Patent Documents 1 to 3).
国際公開第2008/47895号WO 2008/47895 特開2014-124007号公報JP 2014-124007 A 特開2007-104781号公報JP 2007-104781 A
 しかしながら、ティースの先端の拡張部分を通過する磁束は、ティースの軸方向の端部に集中し易く、その結果、ティースの軸方向の端部が磁気飽和に至る可能性がある。そのため、ティースの先端の拡張部分による効果(駆動力や駆動効率の向上)が減少してしまう可能性がある。 However, the magnetic flux passing through the extended parts at the tips of the teeth tends to concentrate at the axial ends of the teeth, which can result in the axial ends of the teeth becoming magnetically saturated. This can reduce the effect of the extended parts at the tips of the teeth (improvements in driving force and driving efficiency).
 本開示は、回転電機の駆動力や駆動効率をより向上させることが可能な技術を提供することを目的とする。 The purpose of this disclosure is to provide technology that can further improve the driving force and driving efficiency of rotating electric machines.
 本開示の第1の態様では、
 回転軸心回りに回転自在に構成される回転子と、
 前記回転子と径方向で対向する固定子と、を備え、
 前記固定子は、軟磁性材料で構成される鉄心と、巻線と、を含み、
 前記鉄心は、径方向に延び、前記巻線が巻き回される本体部、及び前記本体部の先端に設けられ、前記回転子と径方向で対向する第1の磁極部を有する第1の鉄心と、前記第1の鉄心の軸方向に隣接して配置され、前記回転子と径方向で対向する第2の磁極部、及び前記第2の磁極部と接続又は一体に形成され、径方向又は周方向で前記第1の鉄心と前記巻線との間に配置される周辺部を有する第2の鉄心と、を含む、
 回転電機が提供される。
In a first aspect of the present disclosure,
A rotor configured to be rotatable about a rotation axis;
a stator facing the rotor in a radial direction,
The stator includes an iron core made of a soft magnetic material and a winding,
The core includes a main body portion extending in a radial direction and around which the winding is wound, a first core having a first magnetic pole portion provided at a tip of the main body portion and facing the rotor in the radial direction, a second magnetic pole portion disposed adjacent to the first core in the axial direction and facing the rotor in the radial direction, and a second core having a peripheral portion connected to or formed integrally with the second magnetic pole portion and disposed between the first core and the winding in the radial or circumferential direction.
A rotating electric machine is provided.
 本態様によれば、例えば、第2の鉄心は、周辺部において、径方向や周方向で第1の鉄心に対向し、その対向面を通じて、第1の鉄心と磁気的に結合することができる。そのため、回転電機は、第1の鉄心及び第2の鉄心の間を通過する磁束の磁路として、その対向面を利用することができる。その結果、第2の磁極部と第1の鉄心との間を通過する磁束は、その対向面を通過することで、第1の鉄心の軸方向の端部だけでなく、軸方向の端部よりも内側の箇所も通過し易くなる。よって、第2の磁極部と第1の鉄心との間を通過する磁束による第1の鉄心の軸方向の端部の磁気飽和を抑制し、回転電機の駆動力や駆動効率をより向上させることができる。 According to this aspect, for example, the second core faces the first core in the radial or circumferential direction at the peripheral portion, and can be magnetically coupled to the first core through the facing surface. Therefore, the rotating electric machine can use the facing surface as a magnetic path for magnetic flux passing between the first and second cores. As a result, the magnetic flux passing between the second magnetic pole portion and the first core passes through the facing surface, and is therefore more likely to pass not only through the axial end of the first core, but also through a portion inside the axial end. Therefore, magnetic saturation of the axial end of the first core due to the magnetic flux passing between the second magnetic pole portion and the first core can be suppressed, and the driving force and driving efficiency of the rotating electric machine can be further improved.
 また、本開示の第2の態様では、上述の第1の態様を前提として、
 前記第1の磁極部は、前記本体部の周方向の端面よりも周方向に突出した鍔部を備え、
 前記周辺部は、前記鍔部と前記巻線との間に配置されてもよい。
In addition, in a second aspect of the present disclosure, based on the first aspect described above,
the first magnetic pole portion includes a flange portion that protrudes in a circumferential direction from a circumferential end surface of the main body portion,
The peripheral portion may be disposed between the flange portion and the winding.
 また、本開示の第3の態様では、上述の第1又は第2の態様を前提として、
 前記周辺部は、前記本体部と前記巻線との間に配置されてもよい。
In addition, in a third aspect of the present disclosure, on the premise of the first or second aspect described above,
The peripheral portion may be disposed between the body portion and the windings.
 また、本開示の第4の態様では、
 回転軸心回りに回転自在に構成される回転子と、
 前記回転子と径方向で対向する固定子と、を備え、
 前記固定子は、軟磁性材料で構成される鉄心と、巻線とを含み、
 前記鉄心は、径方向に延び、前記巻線が巻き回される本体部、及び前記本体部の先端に設けられ、前記回転子と径方向で対向する第1の磁極部を有する第1の鉄心と、前記第1の鉄心の軸方向に隣接して配置され、前記回転子と径方向で対向する第2の磁極部、及び前記第2の磁極部と接続又は一体に形成される周辺部を有する第2の鉄心と、を含み、
 前記周辺部は、前記第1の鉄心と径方向又は周方向で対向する対向面を有し、
 前記第1の鉄心及び前記第2の鉄心は、前記第2の磁極部と前記第1の鉄心との間で前記対向面を通じた磁路を有する、
 回転電機が提供される。
In addition, in a fourth aspect of the present disclosure,
A rotor configured to be rotatable about a rotation axis;
a stator facing the rotor in a radial direction,
The stator includes an iron core made of a soft magnetic material and a winding.
The iron core includes a main body portion extending in a radial direction and around which the winding is wound, a first iron core provided at a tip of the main body portion and having a first magnetic pole portion radially facing the rotor, and a second iron core arranged adjacent to the first iron core in the axial direction and having a second magnetic pole portion radially facing the rotor, and a peripheral portion connected to or formed integrally with the second magnetic pole portion,
the peripheral portion has an opposing surface that faces the first iron core in a radial direction or a circumferential direction,
the first iron core and the second iron core have a magnetic path between the second magnetic pole portion and the first iron core through the opposing surfaces;
A rotating electric machine is provided.
 本態様によれば、回転電機は、第1の鉄心及び第2の鉄心の間を通過する磁束の磁路として、周方向や径方向で対向する対向面を利用することができる。そのため、第2の磁極部と第1の鉄心との間を通過する磁束は、その対向面を通過することで、第1の鉄心の軸方向の端部だけでなく、軸方向の端部よりも内側の箇所も通過し易くなる。よって、第2の磁極部と第1の鉄心との間を通過する磁束による第1の鉄心の軸方向の端部の磁気飽和を抑制し、回転電機の駆動力や駆動効率をより向上させることができる。 According to this aspect, the rotating electric machine can utilize the opposing surfaces that face each other in the circumferential and radial directions as a magnetic path for the magnetic flux passing between the first and second iron cores. Therefore, by passing through the opposing surfaces, the magnetic flux passing between the second magnetic pole portion and the first iron core can easily pass not only through the axial end of the first iron core, but also through locations inside the axial end. This suppresses magnetic saturation of the axial end of the first iron core caused by the magnetic flux passing between the second magnetic pole portion and the first iron core, and further improves the driving force and driving efficiency of the rotating electric machine.
 また、本開示の第5の態様では、上述の第4の態様を前提として、
 前記第1の磁極部は、前記本体部の周方向の端面よりも周方向に突出した鍔部を備え、
 前記対向面は、前記周辺部と前記鍔部が径方向で対向する面を含んでもよい。
In addition, in a fifth aspect of the present disclosure, based on the above-mentioned fourth aspect,
the first magnetic pole portion includes a flange portion that protrudes in a circumferential direction from a circumferential end surface of the main body portion,
The opposing surface may include a surface where the peripheral portion and the flange portion face each other in a radial direction.
 また、本開示の第6の態様では、上述の第4又は第5の態様を前提として、
 前記対向面は、前記周辺部と前記本体部が周方向で対向する面を含んでもよい。
In addition, in a sixth aspect of the present disclosure, on the premise of the fourth or fifth aspect described above,
The opposing surface may include a surface where the peripheral portion and the main body portion oppose each other in a circumferential direction.
 また、本開示の第7の態様では、上述の第1乃至第6の態様の何れか1つを前提として、
 前記第2の磁極部は、前記第1の鉄心の軸方向の両端のうちの一端のみに隣接して配置されてもよい。
In addition, in a seventh aspect of the present disclosure, on the premise of any one of the first to sixth aspects described above,
The second magnetic pole portion may be disposed adjacent to only one of both axial ends of the first core.
 また、本開示の第8の態様では、上述の第1乃至第6の態様の何れか1つを前提として、
 前記第2の磁極部は、前記第1の鉄心の軸方向の両端のそれぞれに隣接して配置されてもよい。
In addition, in an eighth aspect of the present disclosure, on the premise of any one of the first to sixth aspects described above,
The second magnetic pole portions may be disposed adjacent to both ends of the first core in the axial direction.
 また、本開示の第9の態様では、上述の第1乃至第8の態様の何れか1つを前提として、
 前記周辺部の軸方向の寸法は、前記第2の磁極部の軸方向の寸法よりも長くてもよい。
In addition, in a ninth aspect of the present disclosure, on the premise of any one of the first to eighth aspects described above,
The axial dimension of the peripheral portion may be greater than the axial dimension of the second pole portion.
 また、本開示の第10の態様では、上述の第1乃至第9の態様の何れか1つを前提として、
 前記周辺部における前記第1の鉄心と周方向又は径方向で隣接している部分の軸方向の寸法は、前記第1の鉄心の軸方向の寸法と同じであってもよい。
In addition, in a tenth aspect of the present disclosure, on the premise of any one of the first to ninth aspects described above,
An axial dimension of a portion of the peripheral portion adjacent to the first core in the circumferential or radial direction may be the same as the axial dimension of the first core.
 また、本開示の第11の態様では、上述の第1乃至第10の態様の何れか1つを前提として、
 前記第1の鉄心及び前記第2の鉄心が周方向又は径方向で対向する面の面積は、前記第1の鉄心及び前記第2の鉄心が軸方向で対向する面の面積よりも大きくてもよい。
In addition, in an eleventh aspect of the present disclosure, on the premise of any one of the first to tenth aspects described above,
An area of a surface where the first core and the second core face each other in a circumferential or radial direction may be larger than an area of a surface where the first core and the second core face each other in an axial direction.
 また、本開示の第12の態様では、上述の第1乃至第11の態様の何れか1つを前提として、
 前記第1の鉄心及び前記第2の鉄心が周方向又は径方向で対向する面の間の磁気抵抗は、前記第1の鉄心及び前記第2の鉄心が軸方向で対向する面の間の磁気抵抗よりも小さくてもよい。
In addition, in a twelfth aspect of the present disclosure, on the premise of any one of the first to eleventh aspects described above,
The magnetic resistance between the circumferentially or radially opposing surfaces of the first iron core and the second iron core may be smaller than the magnetic resistance between the axially opposing surfaces of the first iron core and the second iron core.
 また、本開示の第13の態様では、
 上述の第1乃至第12の態様の何れか1つに記載の回転電機を搭載する、
 圧縮機が提供される。
In addition, in a thirteenth aspect of the present disclosure,
A rotating electric machine according to any one of the first to twelfth aspects described above is mounted on the vehicle.
A compressor is provided.
 また、本開示の第14の態様では、
 上述の第1乃至第12の態様の何れか1つに記載の回転電機を搭載する、
 送風機が提供される。
In addition, in a fourteenth aspect of the present disclosure,
A rotating electric machine according to any one of the first to twelfth aspects described above is mounted on the vehicle.
A blower is provided.
 また、本開示の第15の態様では、
 上述の第1乃至第12の態様の何れか1つに記載の回転電機を搭載する、
 冷凍装置が提供される。
In addition, in a fifteenth aspect of the present disclosure,
A rotating electric machine according to any one of the first to twelfth aspects described above is mounted on the vehicle.
A refrigeration system is provided.
 上述の実施形態によれば、回転電機の駆動力や駆動効率をより向上させることができる。 The above-described embodiment can further improve the driving force and driving efficiency of the rotating electric machine.
モータの一例を示す正面図である。FIG. 2 is a front view showing an example of a motor. ステータコアのヨーク及びティースの一例を示す正面図である。FIG. 2 is a front view showing an example of a yoke and teeth of a stator core. ステータコアのヨーク及びティースの他の例を示す正面図である。13 is a front view showing another example of the yoke and teeth of the stator core. FIG. ステータのティース、付加ティース、及びコイルを示す斜視図である。FIG. 2 is a perspective view showing the teeth, additional teeth, and coils of a stator. 付加ティースの第1例を示す斜視図である。FIG. 13 is a perspective view showing a first example of an additional tooth. 付加ティースの第1例を示す斜視図である。FIG. 13 is a perspective view showing a first example of an additional tooth. 付加ティースの第2例を示す斜視図である。FIG. 11 is a perspective view showing a second example of an additional tooth. 付加ティースの第2例を示す斜視図である。FIG. 11 is a perspective view showing a second example of an additional tooth. 付加ティースの第3例を示す斜視図である。FIG. 13 is a perspective view showing a third example of an additional tooth. 付加ティースの第4例を示す斜視図である。FIG. 13 is a perspective view showing a fourth example of an additional tooth. 付加ティースの第5例を示す斜視図である。FIG. 13 is a perspective view showing a fifth example of an additional tooth. 付加ティースの第6例を示す斜視図である。FIG. 13 is a perspective view showing a sixth example of an additional tooth. 付加ティースの第6例に対応するティースの一例を示す斜視図である。FIG. 13 is a perspective view showing an example of a tooth corresponding to a sixth example of the additional tooth. 付加ティースの第7例を示す斜視図である。FIG. 13 is a perspective view showing a seventh example of an additional tooth. 付加ティースの第8例を示す斜視図である。FIG. 13 is a perspective view showing an eighth example of an additional tooth. 付加ティースの第8例を示す斜視図である。FIG. 13 is a perspective view showing an eighth example of an additional tooth. 付加ティースの第8例を示す斜視図である。FIG. 13 is a perspective view showing an eighth example of an additional tooth. 付加ティースの第9例を示す斜視図である。FIG. 13 is a perspective view showing a ninth example of an additional tooth. 比較例に係るモータの付加ティースによる磁束の流れを模式的に示す図である。11 is a diagram illustrating a schematic diagram of a flow of magnetic flux through an additional tooth of a motor according to a comparative example. FIG. 実施形態に係るモータの付加ティースによる磁束の流れを模式的に示す図である。5A and 5B are diagrams illustrating a flow of magnetic flux through additional teeth of the motor according to the embodiment. 空気調和機の一例を示す図である。FIG. 1 is a diagram illustrating an example of an air conditioner.
 以下、図面を参照して実施形態について説明する。 The following describes the embodiment with reference to the drawings.
 [モータの構成]
 図1~図4を参照して、本実施形態に係るモータ1の構成について説明する。
[Motor configuration]
The configuration of a motor 1 according to this embodiment will be described with reference to FIGS.
 図1は、モータ1の一例を示す正面図である。具体的には、図1は、モータ1の回転軸心AXに対応する軸方向(以下、単に「軸方向」)に沿って見たモータ1の一例を示す図である。図2は、ステータコア11のヨーク11A及び主ティース11Bの一例を示す正面図である。図3は、ステータコア11のヨーク11A及び主ティース11Bの他の例を示す正面図である。具体的には、図2、図3は、軸方向に沿って見たときのステータコア11の一例及び他の例を示す図である。図4は、ステータ10の主ティース11B、付加ティース11C、及びコイル12を示す斜視図である。具体的には、図4は、ステータ10の主ティース11B、付加ティース11C、及びコイル12をモータ1の回転軸心AXを基準とする径方向(以下、単に「径方向」)の外側から見た斜視図であり、図4の付加ティース11Cは、後述の第1例(図5、図6)に相当する。 1 is a front view showing an example of a motor 1. Specifically, FIG. 1 is a view showing an example of a motor 1 as viewed along an axial direction (hereinafter simply referred to as "axial direction") corresponding to the rotation axis AX of the motor 1. FIG. 2 is a front view showing an example of a yoke 11A and a main tooth 11B of a stator core 11. FIG. 3 is a front view showing another example of a yoke 11A and a main tooth 11B of a stator core 11. Specifically, FIG. 2 and FIG. 3 are views showing an example and another example of a stator core 11 as viewed along the axial direction. FIG. 4 is a perspective view showing a main tooth 11B, an additional tooth 11C, and a coil 12 of a stator 10. Specifically, FIG. 4 is a perspective view showing a main tooth 11B, an additional tooth 11C, and a coil 12 of a stator 10 as viewed from the outside in a radial direction (hereinafter simply referred to as "radial direction") based on the rotation axis AX of the motor 1, and the additional tooth 11C in FIG. 4 corresponds to a first example (FIGS. 5 and 6) described below.
 図1に示すように、モータ1は、アウタロータ型であり、複数相(例えば、3相)の電機子電流で駆動される。 As shown in FIG. 1, motor 1 is an outer rotor type and is driven by a multi-phase (e.g., three-phase) armature current.
 図1~図4に示すように、モータ1は、ステータ10と、ロータ20と、軸30とを含む。 As shown in Figures 1 to 4, the motor 1 includes a stator 10, a rotor 20, and a shaft 30.
 ステータ10は、ロータ20から見て径方向の内側に配置される電機子である。 The stator 10 is an armature that is positioned radially inward from the rotor 20.
 ステータ10は、ステータコア11と、コイル12とを含む。 The stator 10 includes a stator core 11 and a coil 12.
 ステータコア11は、軟磁性材料で構成され、コイル12の電機子電流により生じる磁束やロータ20の永久磁石21の磁束の磁路として作用する。ステータコア11に使用される軟磁性材料は、例えば、鋳鉄や機械構造用鋼等の鉄系材料である。また、ステータコア11に使用される軟磁性材料は、ケイ素鋼板(電磁鋼板)や圧粉磁心等の機能材料であってもよい。圧粉磁心は、軟磁性材料の金属粉末に絶縁被覆を施し圧縮成形することにより製造される鉄心であり、圧粉磁心によって、複雑な三次元形状の鉄心を製造することができる。以下、後述のロータコアに使用される軟磁性材料についても同様であってよい。 The stator core 11 is made of a soft magnetic material, and acts as a magnetic path for the magnetic flux generated by the armature current of the coil 12 and the magnetic flux of the permanent magnets 21 of the rotor 20. The soft magnetic material used in the stator core 11 is, for example, an iron-based material such as cast iron or steel for mechanical construction. The soft magnetic material used in the stator core 11 may also be a functional material such as a silicon steel sheet (electromagnetic steel sheet) or a powder magnetic core. A powder magnetic core is an iron core manufactured by applying an insulating coating to metal powder of a soft magnetic material and compressing it, and a powder magnetic core can be used to manufacture an iron core with a complex three-dimensional shape. The same may be true for the soft magnetic material used in the rotor core described below.
 ステータコア11は、ヨーク11Aと、主ティース11Bと、付加ティース11Cとを含む。 The stator core 11 includes a yoke 11A, main teeth 11B, and additional teeth 11C.
 ヨーク11Aは、軸方向に沿ってみたときに、回転軸心AXを中心とする円環形状を有する。 When viewed along the axial direction, the yoke 11A has a circular ring shape centered on the rotation axis AX.
 主ティース11Bは、ヨーク11Aの径方向の外側(外周側)の端部(例えば、外周面)において、径方向の外側に配置されるロータ20とエアギャップ(空隙)を介して対向するように設けられる。 The main teeth 11B are arranged at the radially outer (outer periphery) end (e.g., outer periphery) of the yoke 11A so as to face the rotor 20 arranged radially outward via an air gap.
 主ティース11Bは、モータ1の回転軸心AXを基準とする周方向(以下、単に「周方向」)において、略等間隔に複数(本例では、12個)設けられる。 The main teeth 11B are arranged at substantially equal intervals (12 in this example) in the circumferential direction (hereinafter simply referred to as the "circumferential direction") based on the rotation axis AX of the motor 1.
 尚、「略」は、例えば、製造誤差等を許容する意図であり、以下同様の意味で用いる。 The word "abbreviated" is intended to allow for manufacturing errors, for example, and will be used in the same sense below.
 主ティース11Bは、ティース本体部11B1と、磁極部11B2とを含む。 The main tooth 11B includes a tooth body portion 11B1 and a magnetic pole portion 11B2.
 ティース本体部11B1は、ヨーク11Aの外周面から径方向に延び出すように設けられる。ティース本体部11B1には、コイル12が巻回される。 The tooth main body portion 11B1 is provided so as to extend radially from the outer peripheral surface of the yoke 11A. The coil 12 is wound around the tooth main body portion 11B1.
 磁極部11B2は、ティース本体部11B1の径方向の外側の先端部に設けられ、エアギャップを介してロータ20と径方向で対向している。磁極部11B2は、コイル12の電機子電流により発生する磁束によって、磁極として作用する。 The magnetic pole portion 11B2 is provided at the radially outer tip of the tooth body portion 11B1 and faces the rotor 20 in the radial direction via an air gap. The magnetic pole portion 11B2 acts as a magnetic pole due to the magnetic flux generated by the armature current of the coil 12.
 例えば、図1~図3に示すように、磁極部11B2は、軸方向に沿って見たときに、回転軸心AXを中心とする略円弧形状の曲面、即ち、円筒面の周方向の一部に相当する曲面で構成される外周面を有する。また、磁極部11B2は、ティース本体部11B1と略同じ軸方向の寸法を有する。また、磁極部11B2は、ティース本体部11B1よりも大きい幅方向(周方向)の寸法を有する。主ティース11Bにおける幅方向は、軸方向に沿って見たときに、対象の主ティース11Bが設けられる周方向の位置での径方向に対する垂直な方向の寸法を意味する。後述の付加ティース11Cにおける幅についても同様の意味で用いる。具体的には、磁極部11B2は、対象の主ティース11Bが設けられる周方向の位置でその主ティース11Bを径方向の外側から見たときに、ティース本体部11B1よりも幅方向(周方向)の両端で外側に突出する部分に相当する鍔部11B3を有する。軸方向において、磁極部11C1の端部(主ティース11Bと隣り合う側と反対側の端部)は、永久磁石21の端部と略一致していてもよいし、永久磁石21の端部に対して内側(主ティース11B側)に配置されていてもよい。これにより、磁極部11B2のロータ20と対向する部分の面積(ロータ20との対向面積)を相対的に大きくすることができる。そのため、ステータ10のコイル12に鎖交する、ロータ20(永久磁石21)の磁束を増加させることができ、その結果、モータ1の駆動力や駆動効率を向上させることができる。また、磁極部11B2は、鍔部11B3の作用によって、径方向の外側へのコイル12の移動を抑制することができる。 For example, as shown in Figures 1 to 3, the magnetic pole portion 11B2 has an outer peripheral surface that is composed of a curved surface that is approximately arc-shaped and centered on the rotation axis AX, i.e., a curved surface that corresponds to a circumferential portion of a cylindrical surface, when viewed along the axial direction. The magnetic pole portion 11B2 also has approximately the same axial dimension as the tooth main body portion 11B1. The magnetic pole portion 11B2 also has a widthwise (circumferential) dimension that is larger than that of the tooth main body portion 11B1. The width direction of the main tooth 11B means the dimension perpendicular to the radial direction at the circumferential position where the target main tooth 11B is provided, when viewed along the axial direction. The width of the additional tooth 11C described below is also used in the same sense. Specifically, the magnetic pole portion 11B2 has a flange portion 11B3 that corresponds to the portion that protrudes outward at both ends in the widthwise (circumferential) direction from the tooth main body portion 11B1 when the main tooth 11B is viewed from the outside in the radial direction at the circumferential position where the target main tooth 11B is provided. In the axial direction, the end of the magnetic pole portion 11C1 (the end opposite to the side adjacent to the main tooth 11B) may be approximately aligned with the end of the permanent magnet 21, or may be located on the inside (main tooth 11B side) of the end of the permanent magnet 21. This allows the area of the portion of the magnetic pole portion 11B2 facing the rotor 20 (facing area with the rotor 20) to be relatively large. Therefore, the magnetic flux of the rotor 20 (permanent magnet 21) that links with the coil 12 of the stator 10 can be increased, and as a result, the driving force and driving efficiency of the motor 1 can be improved. In addition, the magnetic pole portion 11B2 can suppress the movement of the coil 12 radially outward by the action of the flange portion 11B3.
 図2に示すように、ヨーク11Aと主ティース11Bとは、一体に形成されていてもよいし、図3に示すように、別体として形成されていてもよい。後者の場合、例えば、図3に示すように、ヨーク11Aの外周面には、径方向に延びる凸部11Aaが設けられると共に、主ティース11Bの径方向の内側の端部には、凸部11Aaが嵌合可能な凹部11Baが設けられる。これにより、凸部11Aa及び凹部11Baの嵌合によって、ヨーク11Aに主ティース11Bを連結することができる。 As shown in FIG. 2, the yoke 11A and the main teeth 11B may be formed as one piece, or as shown in FIG. 3, they may be formed as separate pieces. In the latter case, for example, as shown in FIG. 3, the outer peripheral surface of the yoke 11A is provided with a radially extending convex portion 11Aa, and the radially inner end of the main teeth 11B is provided with a concave portion 11Ba into which the convex portion 11Aa can fit. This allows the main teeth 11B to be connected to the yoke 11A by fitting the convex portion 11Aa into the concave portion 11Ba.
 付加ティース11Cは、ロータ20とエアギャップを介して径方向で対向し、且つ、主ティース11Bの先端付近と軸方向に隣り合うように設けられる。付加ティース11Cは、全ての主ティース11Bに対して設けられてもよいし、一部の主ティース11Bに対して設けられてもよい。後者の場合、例えば、付加ティース11Cは、周方向に並ぶ主ティース11Bについて、1つおきで設けられる。 The additional teeth 11C are arranged so as to face the rotor 20 in the radial direction via an air gap, and to be adjacent to the tips of the main teeth 11B in the axial direction. The additional teeth 11C may be provided for all the main teeth 11B, or may be provided for some of the main teeth 11B. In the latter case, for example, the additional teeth 11C are provided for every other main tooth 11B arranged in the circumferential direction.
 付加ティース11Cは、主ティース11Bと磁気的に結合可能である。これにより、付加ティース11Cは、コイル12に電機子電流を印加することにより発生する磁束によって、磁極として作用する。そのため、主ティース11B(磁極部11B2)に加えて、付加ティース11C(後述の磁極部11C1)によって、ステータコア11のロータ20と対向する磁極の面積を増加させることができる。よって、ステータ10のコイル12に鎖交する、ロータ20(永久磁石21)の磁束を増加させることができ、その結果、モータ1の駆動力や駆動効率を向上させることができる。 The additional teeth 11C can be magnetically coupled to the main teeth 11B. As a result, the additional teeth 11C act as magnetic poles due to the magnetic flux generated by applying an armature current to the coils 12. Therefore, in addition to the main teeth 11B (magnetic pole portion 11B2), the additional teeth 11C (magnetic pole portion 11C1 described below) can increase the area of the magnetic poles that face the rotor 20 of the stator core 11. This makes it possible to increase the magnetic flux of the rotor 20 (permanent magnet 21) that links with the coils 12 of the stator 10, thereby improving the driving force and driving efficiency of the motor 1.
 付加ティース11Cは、主ティース11Bに固定されていてもよいし、固定されていなくてもよい。例えば、付加ティース11Cは、接着剤等によって主ティース11Bと固定される。また、ステータ10のステータコア11及びコイル12が樹脂モールドにより保持されてもよく、この場合、樹脂モールドによって位置が固定されることから、付加ティース11Cは、主ティース11Bに固定されていなくてもよい。 The additional teeth 11C may or may not be fixed to the main teeth 11B. For example, the additional teeth 11C are fixed to the main teeth 11B by adhesive or the like. Also, the stator core 11 and coils 12 of the stator 10 may be held by a resin mold. In this case, since the position is fixed by the resin mold, the additional teeth 11C do not have to be fixed to the main teeth 11B.
 また、付加ティース11Cは、主ティース11Bと磁気的に結合可能であれば接触していてもよいし接触していなくてもよい。例えば、ステータ10のステータコア11及びコイル12が樹脂モールドにより絶縁保持される構造の場合、主ティース11B及び付加ティース11Cは、磁気的に結合可能な限り、その間に樹脂が入り込んで離隔されていてもよい。また、例えば、付加ティース11Cが主ティース11Bと接着材で接続される場合、主ティース11B及び付加ティース11Cは、磁気的に結合可能な限り、その間の接着剤によって離隔されていてもよい。 Furthermore, the additional teeth 11C may or may not be in contact with the main teeth 11B as long as they can be magnetically coupled. For example, in a structure in which the stator core 11 and coils 12 of the stator 10 are insulated by a resin mold, the main teeth 11B and the additional teeth 11C may be separated by resin between them as long as they can be magnetically coupled. Also, for example, in a case in which the additional teeth 11C are connected to the main teeth 11B with an adhesive, the main teeth 11B and the additional teeth 11C may be separated by the adhesive between them as long as they can be magnetically coupled.
 コイル12は、主ティース11B(ティース本体部11B1)に導線が巻き回されることにより構成される。 The coil 12 is formed by winding a conductor around the main tooth 11B (tooth body portion 11B1).
 コイル12の径方向の外端部は、磁極部11B2の径方向の内側との間に所定の隙間を有する。 The radial outer end of the coil 12 has a predetermined gap between it and the radial inner side of the magnetic pole portion 11B2.
 ステータコア11とコイル12との間は、絶縁部によって電気的な絶縁が確保される。 Electrical insulation is ensured between the stator core 11 and the coil 12 by an insulating section.
 例えば、絶縁部は、ステータコア11とコイル12との間に配置される絶縁部材である。絶縁部材は、絶縁紙、フィルム、インシュレータ、ボビン等である。また、絶縁部は、コイル12の導線に形成される絶縁被膜(コーティング)であってもよい。 For example, the insulating portion is an insulating member disposed between the stator core 11 and the coil 12. The insulating member is insulating paper, a film, an insulator, a bobbin, etc. The insulating portion may also be an insulating coating formed on the conductor of the coil 12.
 ロータ20は、ステータ10の径方向の外側に設けられる永久磁石界磁である。 The rotor 20 is a permanent magnet field that is provided radially outside the stator 10.
 ロータ20は、永久磁石21を含む。 The rotor 20 includes a permanent magnet 21.
 例えば、図1に示すように、永久磁石21は、略円筒形状を有する。 For example, as shown in FIG. 1, the permanent magnet 21 has a generally cylindrical shape.
 永久磁石21は、例えば、径方向の内側に略等間隔で互いに異なる磁極が並ぶリング磁石である。 The permanent magnet 21 is, for example, a ring magnet with different magnetic poles arranged at approximately equal intervals on the inside in the radial direction.
 また、ロータ20は、永久磁石21に加えて、軟磁性材料で構成されるロータコア(鉄心)を含んでもよい。例えば、モータ1は、表面磁石型(SPM:Surface Permanent Magnet)であり、ロータ20は、ステータ10と対向する永久磁石21の径方向の外側に隣接して配置される円筒形状のロータコアを有する。また、モータ1は、埋込磁石型(IPM:Interior Permanent Magnet)であってもよく、ロータ20は、円筒形状のロータコアの内部に周方向で等間隔に永久磁石21が埋設される構造を有していてもよい。 The rotor 20 may also include a rotor core (iron core) made of a soft magnetic material in addition to the permanent magnets 21. For example, the motor 1 may be a surface permanent magnet type (SPM: Surface Permanent Magnet), and the rotor 20 has a cylindrical rotor core arranged adjacent to the radial outside of the permanent magnets 21 that face the stator 10. The motor 1 may also be an interior permanent magnet type (IPM: Interior Permanent Magnet), and the rotor 20 may have a structure in which the permanent magnets 21 are embedded inside the cylindrical rotor core at equal intervals in the circumferential direction.
 ロータ20(永久磁石21)は、軸方向において、主ティース11B(磁極部11B2)及び付加ティース(後述の磁極部11C1)が存在する範囲全体を含むように配置される。これにより、ロータ20(永久磁石21)は、ギャップを介して、主ティース11B及び付加ティース11Cと径方向で対向することができる。 The rotor 20 (permanent magnet 21) is positioned in the axial direction to include the entire range in which the main teeth 11B (magnetic pole portion 11B2) and the additional teeth (magnetic pole portion 11C1 described below) are present. This allows the rotor 20 (permanent magnet 21) to face the main teeth 11B and the additional teeth 11C in the radial direction via a gap.
 軸30は、ステータ10(ヨーク11A)の周方向の内側に設けられ、回転軸心AXを中心軸とする円柱形状を有する。また、軸30は、軸方向におけるステータ10が設けられる範囲からオフセットした位置に設けられてもよい。 The shaft 30 is provided on the circumferential inside of the stator 10 (yoke 11A) and has a cylindrical shape with the rotation axis AX as its central axis. The shaft 30 may also be provided at a position offset from the range in which the stator 10 is provided in the axial direction.
 軸30は、軸方向におけるステータ10が設けられる範囲からオフセットした位置において、ロータ20と結合されると共に、モータ1の固定部に対して図示しない軸受を介して回転可能に保持される。これにより、ロータ20は、軸30を介して回転自在に構成され、ステータ10との間の磁気的作用によって、モータ1の固定部に対して、軸30と共に回転することができる。 The shaft 30 is coupled to the rotor 20 at a position offset in the axial direction from the range in which the stator 10 is provided, and is rotatably held relative to the fixed part of the motor 1 via a bearing (not shown). This allows the rotor 20 to rotate freely via the shaft 30, and the magnetic interaction between the rotor 20 and the stator 10 allows it to rotate together with the shaft 30 relative to the fixed part of the motor 1.
 [付加ティースの詳細]
 次に、図4に加えて、図5~図17を参照して、付加ティース11Cの詳細について説明する。
[Additional teeth details]
Next, the additional teeth 11C will be described in detail with reference to FIGS. 5 to 17 in addition to FIG.
 以下、図4は、付加ティース11Cの第1例のモータ1における配置だけでなく、付加ティース11Cの第2例~第7例のモータ1における配置を説明する図として援用する。また、図15、図16は、付加ティース11Cの第8例のモータ1における配置やそのモータ1の組立方法だけでなく、付加ティースの第9例のモータ1における配置やそのモータ1の組立方法を説明する図として援用する。 In the following, FIG. 4 is used to explain not only the arrangement of the additional teeth 11C in the motor 1 of the first example, but also the arrangements of the additional teeth 11C in the motor 1 of the second to seventh examples. Also, FIG. 15 and FIG. 16 are used to explain not only the arrangement of the additional teeth 11C in the motor 1 of the eighth example and the assembly method of that motor 1, but also the arrangement of the additional teeth in the motor 1 of the ninth example and the assembly method of that motor 1.
  <第1例>
 図5、図6は、付加ティース11Cの第1例を示す斜視図である。具体的には、図5は、径方向の外側に相当する方向から見た付加ティース11Cの第1例の斜視図であり、図6は、径方向の内側に相当する方向から見た付加ティース11Cの第1例の斜視図である。
<First Example>
5 and 6 are perspective views showing a first example of the additional tooth 11C. Specifically, Fig. 5 is a perspective view of the first example of the additional tooth 11C seen from a direction corresponding to the radial outside, and Fig. 6 is a perspective view of the first example of the additional tooth 11C seen from a direction corresponding to the radial inside.
 図4~図6に示すように、付加ティース11Cは、磁極部11C1と、保持部11C2とを含む。 As shown in Figures 4 to 6, the additional tooth 11C includes a magnetic pole portion 11C1 and a retaining portion 11C2.
 磁極部11C1は、主ティース11Bの磁極部11B2に軸方向で隣り合うように配置され、エアギャップを介してロータ20と径方向で対向している。磁極部11C1は、付加ティース11Cと磁気的に結合される主ティース11Bに巻き回されるコイル12の電機子電流により発生する磁束によって、磁極として作用する。 The magnetic pole portion 11C1 is disposed axially adjacent to the magnetic pole portion 11B2 of the main tooth 11B, and faces the rotor 20 radially via an air gap. The magnetic pole portion 11C1 acts as a magnetic pole due to the magnetic flux generated by the armature current of the coil 12 wound around the main tooth 11B, which is magnetically coupled to the additional tooth 11C.
 磁極部11C1は、磁極部11B2と同様、ティース本体部11B1よりも大きい幅方向(周方向)の寸法を有する。例えば、磁極部11C1は、磁極部11B2と略同じ幅方向の寸法を有する。磁極部11C1は、磁極部11B2より大きい幅方向の寸法を有してもよいし、ティース本体部11B1よりも大きい幅方向の寸法を有する限り、磁極部11B2より小さい幅方向の寸法を有してもよい。 Like magnetic pole portion 11B2, magnetic pole portion 11C1 has a widthwise (circumferential) dimension that is greater than tooth main body portion 11B1. For example, magnetic pole portion 11C1 has substantially the same widthwise dimension as magnetic pole portion 11B2. Magnetic pole portion 11C1 may have a widthwise dimension greater than magnetic pole portion 11B2, or may have a widthwise dimension smaller than magnetic pole portion 11B2 as long as it has a widthwise dimension greater than tooth main body portion 11B1.
 また、本例では、磁極部11C1は、軸方向に沿って見たときに、回転軸心AXを中心とする略円弧形状の曲面、即ち、円筒面の周方向の一部に相当する曲面で構成される外周面を有する。この場合、磁極部11B2,11C1のそれぞれの外周面の回転軸心AXを中心とする半径は、略同じであってもよい。これにより、図4に示すように、磁極部11B2,11C1の外周面を略面一にすることができる。 In addition, in this example, the magnetic pole portion 11C1 has an outer peripheral surface that is a curved surface that is substantially arc-shaped about the rotation axis AX when viewed along the axial direction, that is, a curved surface that corresponds to a circumferential portion of a cylindrical surface. In this case, the radius of the outer peripheral surface of each of the magnetic pole portions 11B2 and 11C1 about the rotation axis AX may be substantially the same. This allows the outer peripheral surfaces of the magnetic pole portions 11B2 and 11C1 to be substantially flush, as shown in FIG. 4.
 保持部11C2は、磁極部11C1の幅方向の両端側に所定の間隔を持って2つ設けられる。所定の間隔は、ティース本体部11B1の幅方向の寸法よりも大きく設定される。これにより、2つの保持部11C2を、ティース本体部11B1を幅方向(周方向)で挟む形で配置することができる。 Two retaining portions 11C2 are provided at both ends of the magnetic pole portion 11C1 in the width direction with a specified distance between them. The specified distance is set to be larger than the width dimension of the tooth main body portion 11B1. This allows the two retaining portions 11C2 to be arranged so that they sandwich the tooth main body portion 11B1 in the width direction (circumferential direction).
 保持部11C2は、磁極部11C1の主ティース11B(磁極部11B2)と隣り合う側の軸方向の端部から軸方向に延びるように設けられる。また、保持部11C2は、径方向において、外側の端面が磁極部11C1よりも内側にあるように、オフセットされている。これにより、径方向において、保持部11C2を磁極部11B2の内側に配置することができる。また、オフセット量が適宜設定されることによって、径方向において、保持部11C2をコイル12の外側に配置することができる。そのため、保持部11C2を径方向で主ティース11Bの磁極部11B2とコイル12との間に配置することができる。そのため、付加ティース11Cは、保持部11C2の作用によって、磁極部11C1の位置を保持することができる。 The retaining portion 11C2 is provided so as to extend in the axial direction from the axial end of the magnetic pole portion 11C1 on the side adjacent to the main tooth 11B (magnetic pole portion 11B2). The retaining portion 11C2 is also offset in the radial direction so that its outer end face is located inside the magnetic pole portion 11C1. This allows the retaining portion 11C2 to be positioned inside the magnetic pole portion 11B2 in the radial direction. By appropriately setting the offset amount, the retaining portion 11C2 can be positioned outside the coil 12 in the radial direction. Therefore, the retaining portion 11C2 can be positioned between the magnetic pole portion 11B2 of the main tooth 11B and the coil 12 in the radial direction. Therefore, the additional tooth 11C can retain the position of the magnetic pole portion 11C1 by the action of the retaining portion 11C2.
 例えば、図4に示すように、保持部11C2の軸方向の寸法は、主ティース11Bの軸方向の寸法よりも長い。また、保持部11C2の軸方向の寸法は、主ティース11Bの軸方向の寸法と同等であってもよいし、それより短くてもよい。 For example, as shown in FIG. 4, the axial dimension of the retaining portion 11C2 is longer than the axial dimension of the main tooth 11B. Also, the axial dimension of the retaining portion 11C2 may be equal to or shorter than the axial dimension of the main tooth 11B.
 また、保持部11C2の軸方向の寸法は、磁極部11C1の軸方向の寸法より長くてもよい。これにより、ロータ20の永久磁石21の磁力に伴い磁極部11C1に作用する磁気吸引力によって保持部11C2の先端から主ティース11B(磁極部11B2の鍔部11B3やティース本体部11B1)或いはコイル12に作用する力を低減することができる。磁気吸引力の力点から作用点までの距離より支点から保持部11C2の先端の作用点までの長さを相対的に大きくできるからである。そのため、主ティース11Bやコイル12の損傷や故障等の発生を抑制することができる。 Furthermore, the axial dimension of the retaining portion 11C2 may be longer than the axial dimension of the magnetic pole portion 11C1. This makes it possible to reduce the force acting from the tip of the retaining portion 11C2 on the main teeth 11B (the flange portion 11B3 and the teeth main body portion 11B1 of the magnetic pole portion 11B2) or the coil 12 due to the magnetic attraction force acting on the magnetic pole portion 11C1 in conjunction with the magnetic force of the permanent magnet 21 of the rotor 20. This is because the length from the fulcrum to the point of action at the tip of the retaining portion 11C2 can be made relatively longer than the distance from the point of application of the magnetic attraction force to the point of application. As a result, the occurrence of damage or failure of the main teeth 11B or the coil 12 can be suppressed.
 本例では、付加ティース11Cは、磁極部11C1及び保持部11C2を含む全体が略同じ厚みを有している。例えば、付加ティース11Cは、平板状の軟磁性材料から打ち抜き加工により打ち抜かれた部材に対してプレス加工や折り曲げ加工を施すことにより形成されてよい。これにより、付加ティース11Cを比較的容易に製造することができる。また、付加ティース11Cは、圧粉磁心によって構成されてもよい。例えば、付加ティース11Cは、絶縁被膜が施された軟磁性材料の金属粉末が金型プレス加工により成形された後、加熱処理が施されることにより形成される。 In this example, the additional teeth 11C, including the magnetic pole portion 11C1 and the retaining portion 11C2, have approximately the same thickness. For example, the additional teeth 11C may be formed by performing a press process or a bending process on a member punched out of a flat plate-shaped soft magnetic material. This allows the additional teeth 11C to be manufactured relatively easily. The additional teeth 11C may also be made of a powder core. For example, the additional teeth 11C are formed by molding metal powder of a soft magnetic material with an insulating coating by die pressing, and then performing a heat treatment.
 例えば、モータ1の製造工程において、作業者は、付加ティース11Cを保持部11C2の先端側から軸方向で主ティース11Bに近づけるように移動させる。これにより、作業者は、ティース本体部11B1を2つの保持部11C2の間に挟み、且つ、2つの保持部11C2が磁極部11B2の径方向の内側にあるように、付加ティース11Cを主ティース11Bに取り付けることができる。 For example, in the manufacturing process of the motor 1, a worker moves the additional tooth 11C from the tip side of the retaining portion 11C2 in the axial direction so that it approaches the main tooth 11B. This allows the worker to attach the additional tooth 11C to the main tooth 11B so that the tooth body portion 11B1 is sandwiched between the two retaining portions 11C2 and the two retaining portions 11C2 are radially inward of the magnetic pole portion 11B2.
 尚、本例の付加ティース11Cは、磁極部11B2の軸方向の一方側だけでなく、他方側にも隣り合うように設けられ、1つの主ティース11Bに対して2つの付加ティース11Cが取り付けられてもよい。この場合、例えば、2つの付加ティース11Cの保持部11C2は、幅方向(周方向)及び径方向の少なくとも一方の位置が互いに異なるように主ティース11Bに対して設けられる。これにより、2つの付加ティース11Cの互いの保持部11C2同士の干渉を回避しつつ、2つの付加ティース11Cを主ティース11Bに対して適切な位置に取り付けることができる。また、2つの付加ティース11Cの保持部11C2は、軸方向の寸法が主ティース11Bの軸方向の寸法の半分より小さく設定されてもよい。これにより、2つの付加ティース11Cの保持部11C2の幅方向(周方向)及び径方向の位置が略同じであっても、互いの保持部11C2同士の干渉を回避しつつ、2つの付加ティース11Cを主ティース11Bに対して適切な位置に取り付けることができる。そのため、2つの付加ティース11Cを同じ部品を用いて実現することができ、コストの低減や組立性の向上を図ることができる。以下、後述の第2例~第7例についても同様であってよい。 In addition, the additional teeth 11C in this example may be provided adjacent to not only one axial side of the magnetic pole portion 11B2 but also the other axial side, and two additional teeth 11C may be attached to one main tooth 11B. In this case, for example, the retaining portions 11C2 of the two additional teeth 11C are provided to the main tooth 11B such that at least one of the positions in the width direction (circumferential direction) and radial direction differs from each other. This allows the two additional teeth 11C to be attached to appropriate positions relative to the main tooth 11B while avoiding interference between the retaining portions 11C2 of the two additional teeth 11C. Furthermore, the axial dimension of the retaining portions 11C2 of the two additional teeth 11C may be set to be smaller than half the axial dimension of the main tooth 11B. As a result, even if the widthwise (circumferential) and radial positions of the retaining portions 11C2 of the two additional teeth 11C are approximately the same, the two additional teeth 11C can be attached to appropriate positions relative to the main teeth 11B while avoiding interference between the retaining portions 11C2. Therefore, the two additional teeth 11C can be realized using the same parts, which reduces costs and improves assembly. The same may be true for the second to seventh examples described below.
 また、付加ティース11Cの保持部11C2は、磁極部11B2に近づく方向に付勢されていてもよい。例えば、付加ティース11Cの保持部11C2とコイル12との間に板バネに相当する部材が挟まれ、その部材が保持部11C2を磁極部11B2側に押し付ける。また、付加ティース11Cの保持部11C2は、自身が磁極部11B2及びコイル12の間で板バネとして機能し、自身の一部を磁極部11B2に近づくように押し付けてもよい。以下、後述の第2例~第9例についても同様であってよい。 Furthermore, the retaining portion 11C2 of the additional tooth 11C may be biased in a direction approaching the magnetic pole portion 11B2. For example, a member equivalent to a leaf spring may be sandwiched between the retaining portion 11C2 of the additional tooth 11C and the coil 12, and this member presses the retaining portion 11C2 towards the magnetic pole portion 11B2. Furthermore, the retaining portion 11C2 of the additional tooth 11C may function as a leaf spring between the magnetic pole portion 11B2 and the coil 12, and press a part of itself towards the magnetic pole portion 11B2. The same may be true for the second to ninth examples described below.
 また、付加ティース11Cの保持部11C2は、インシュレータやボビン等の絶縁部材によって、保持(支持)されてもよい。例えば、保持部11C2とコイル12との間の絶縁部材によって、保持部11C2の径方向の位置が保持される。以下、後述の第2例~第9例についても同様であってよい。 The retaining portion 11C2 of the additional tooth 11C may be retained (supported) by an insulating member such as an insulator or a bobbin. For example, the radial position of the retaining portion 11C2 is retained by an insulating member between the retaining portion 11C2 and the coil 12. The same may be true for the second to ninth examples described below.
  <第2例>
 図7、図8は、付加ティース11Cの第2例を示す斜視図である。具体的には、図7は、径方向の外側に相当する方向から見た付加ティース11Cの第2例の斜視図であり、図7は、径方向の内側に相当する方向から見た付加ティース11Cの第2例の斜視図である。
<Second Example>
7 and 8 are perspective views showing a second example of the additional tooth 11C. Specifically, Fig. 7 is a perspective view of the second example of the additional tooth 11C seen from a direction corresponding to the radial outside, and Fig. 7 is a perspective view of the second example of the additional tooth 11C seen from a direction corresponding to the radial inside.
 以下、上述の第1例と同じ或いは対応する構成に同一の符号を付し、上述の第1例と異なる部分を中心に説明を行う。  In the following, the same reference numerals will be used to designate configurations that are the same as or correspond to those in the first example described above, and the following description will focus on the differences from the first example described above.
 図7、図8に示すように、付加ティース11Cは、磁極部11C1と、保持部11C2とを含む。 As shown in Figures 7 and 8, the additional tooth 11C includes a magnetic pole portion 11C1 and a retaining portion 11C2.
 本例では、磁極部11C1は、上述の第1例よりも径方向の寸法(厚み)が大きい。例えば、磁極部11C1は、軸方向に沿って見たときに、径方向の内周側で磁極部11B2と略面一になるように構成される。これにより、磁極部11C1の磁路の体積(断面積)を大きくして磁気抵抗を低下させることができる。 In this example, the magnetic pole portion 11C1 has a larger radial dimension (thickness) than the first example described above. For example, the magnetic pole portion 11C1 is configured so that it is substantially flush with the magnetic pole portion 11B2 on the radially inner side when viewed along the axial direction. This increases the volume (cross-sectional area) of the magnetic path of the magnetic pole portion 11C1, thereby reducing the magnetic resistance.
  <第3例>
 図9は、付加ティース11Cの第3例を示す斜視図である。具体的には、図9は、径方向の外側に相当する方向から見た付加ティース11Cの第3例の斜視図である。
<Third Example>
Fig. 9 is a perspective view showing a third example of the additional tooth 11C. Specifically, Fig. 9 is a perspective view of the third example of the additional tooth 11C as viewed from a direction corresponding to the radial outside.
 以下、上述の第1例、第2例と同じ或いは対応する構成に同一の符号を付し、上述の第1例、第2例と異なる部分を中心に説明を行う。 In the following, the same reference numerals will be used to designate configurations that are the same as or correspond to those in the first and second examples described above, and the following description will focus on the differences from the first and second examples described above.
 図9に示すように、付加ティース11Cは、磁極部11C1と、保持部11C2とを含む。 As shown in FIG. 9, the additional tooth 11C includes a magnetic pole portion 11C1 and a retaining portion 11C2.
 本例では、付加ティース11Cは、上述の第1例、第2例と異なり、磁極部11C1及び保持部11C2を含む全体が略均一の厚みの平板形状を有する。例えば、付加ティース11Cは、平板状の軟磁性材料から打ち抜き加工により形成される。これにより、付加ティース11Cを非常に容易に製造することができる。 In this example, the additional teeth 11C, unlike the first and second examples described above, have a flat plate shape with a generally uniform thickness throughout, including the magnetic pole portion 11C1 and the retaining portion 11C2. For example, the additional teeth 11C are formed by punching out a flat plate of soft magnetic material. This makes it very easy to manufacture the additional teeth 11C.
  <第4例>
 図10は、付加ティース11Cの第4例を示す斜視図である。具体的には、図10は、径方向の外側に相当する方向から見た付加ティース11Cの第4例の斜視図である。
<Fourth Example>
Fig. 10 is a perspective view showing a fourth example of the additional tooth 11C. Specifically, Fig. 10 is a perspective view of the fourth example of the additional tooth 11C as viewed from a direction corresponding to the radial outside.
 以下、上述の第1例~第3例と同じ或いは対応する構成に同一の符号を付し、上述の第1例~第3例と異なる部分を中心に説明を行う。  In the following, the same reference numerals will be used to designate configurations that are the same as or correspond to those in the first to third examples described above, and the following description will focus on the differences from the first to third examples described above.
 図10に示すように、付加ティース11Cは、上述の第2例と同様、磁極部11C1と、保持部11C2とを含む。また、付加ティース11Cは、上述の第2例と異なり、保持部11C3を含む。つまり、本例では、付加ティース11Cは、上述の第2例をベースにして、保持部11C3が追加されている。 As shown in FIG. 10, the additional tooth 11C includes a magnetic pole portion 11C1 and a retaining portion 11C2, similar to the second example described above. Also, unlike the second example described above, the additional tooth 11C includes a retaining portion 11C3. In other words, in this example, the additional tooth 11C is based on the second example described above, with the retaining portion 11C3 added.
 磁極部11C1は、上述の第2例よりも幅方向の寸法が広く設定される。 The magnetic pole portion 11C1 is set to have a wider width dimension than the second example described above.
 保持部11C3は、磁極部11C1の両端部において、主ティース11B(磁極部11B2)と隣り合う側の端部から軸方向に延びるように設けられる。また、保持部11C3は、保持部11C2の幅方向の外側の端部に沿って軸方向に延びるように設けられる。これにより、保持部11C3は、磁極部11B2の幅方向の外側を保持することができる。そのため、付加ティース11Cは、保持部11C2に加えて、保持部11C3の作用によって、磁極部11C1の位置をより適切に保持することができる。 The retaining portion 11C3 is provided at both ends of the magnetic pole portion 11C1 so as to extend in the axial direction from the end adjacent to the main tooth 11B (magnetic pole portion 11B2). The retaining portion 11C3 is also provided so as to extend in the axial direction along the outer end of the width direction of the retaining portion 11C2. This allows the retaining portion 11C3 to hold the outer side of the width direction of the magnetic pole portion 11B2. Therefore, the additional tooth 11C can more appropriately hold the position of the magnetic pole portion 11C1 by the action of the retaining portion 11C3 in addition to the retaining portion 11C2.
 また、保持部11C3の外周面は、径方向でロータ20と対向する。これにより、保持部11C3の外周面は、付加ティース11Cと磁気的に結合される主ティース11Bに巻き回されるコイル12の電機子電流により発生する磁束によって、磁極として作用する。そのため、ステータコア11のロータ20と対向する磁極の面積を増加させ、モータ1の駆動力や駆動効率をより向上させることができる。 In addition, the outer peripheral surface of the retaining portion 11C3 faces the rotor 20 in the radial direction. As a result, the outer peripheral surface of the retaining portion 11C3 acts as a magnetic pole due to the magnetic flux generated by the armature current of the coil 12 wound around the main tooth 11B, which is magnetically coupled to the additional tooth 11C. This increases the area of the magnetic pole of the stator core 11 that faces the rotor 20, thereby further improving the driving force and driving efficiency of the motor 1.
 尚、上述の第1例(図5、図6)や第3例(図9)の付加ティース11Cをベースにして、保持部11C3が適用されてもよい。 In addition, the retaining portion 11C3 may be applied based on the additional teeth 11C of the first example (Figures 5 and 6) or the third example (Figure 9) described above.
  <第5例>
 図11は、付加ティース11Cの第5例を示す斜視図である。具体的には、図11は、径方向の外側に相当する方向から見た付加ティース11Cの第5例の斜視図である。
<Fifth Example>
Fig. 11 is a perspective view showing a fifth example of the additional tooth 11C. Specifically, Fig. 11 is a perspective view of the fifth example of the additional tooth 11C as viewed from a direction corresponding to the radial outside.
 以下、上述の第1例~第4例と同じ或いは対応する構成に同一の符号を付し、上述の第1例~第4例と異なる部分を中心に説明を行う。  In the following, the same reference numerals will be used to designate configurations that are the same as or correspond to those in the first to fourth examples described above, and the following description will focus on the differences from the first to fourth examples described above.
 図11に示すように、付加ティース11Cは、上述の第2例と同様、磁極部11C1と、保持部11C2とを含む。また、付加ティース11Cは、上述の第2例と異なり、保持部11C4,11C5を含む。つまり、本例では、付加ティース11Cは、上述の第2例をベースにして、保持部11C4,11C5が追加されている。 As shown in FIG. 11, the additional tooth 11C includes a magnetic pole portion 11C1 and a retaining portion 11C2, similar to the second example described above. Also, unlike the second example described above, the additional tooth 11C includes retaining portions 11C4 and 11C5. In other words, in this example, the additional tooth 11C is based on the second example described above, with retaining portions 11C4 and 11C5 added.
 保持部11C4は、軸方向に対して略平行な平板形状を有し、磁極部11C1の径方向の内側から延び出すように設けられる。 The holding portion 11C4 has a flat plate shape that is approximately parallel to the axial direction and extends from the radially inner side of the magnetic pole portion 11C1.
 保持部11C4は、軸方向において、ティース本体部11B1における磁極部11C1側の端面とコイル12のとの間の隙間に配置可能なように設けられる。 The retaining portion 11C4 is arranged so that it can be positioned in the gap between the end face of the tooth main body portion 11B1 on the magnetic pole portion 11C1 side and the coil 12 in the axial direction.
 保持部11C5は、対象の主ティース11Bが設けられる周方向の位置の径方向、及び軸方向の双方に略平行な平板形状を有し、保持部11C2のそれぞれの径方向の内側から延び出すように設けられる。これにより、2つの保持部11C5の幅方向の間隔は、ティース本体部11B1より大きく設定される。 The retaining portions 11C5 have a flat plate shape that is approximately parallel in both the radial and axial directions at the circumferential position where the corresponding main tooth 11B is provided, and are provided so as to extend from the radial inner side of each of the retaining portions 11C2. As a result, the widthwise spacing between the two retaining portions 11C5 is set to be larger than the tooth main body portion 11B1.
 2つの保持部11C5は、それぞれ、ティース本体部11B1の幅方向の端面とコイル12の内側との間の隙間に配置可能なように設けられる。 The two retaining portions 11C5 are each provided so that they can be positioned in the gap between the widthwise end face of the tooth body portion 11B1 and the inside of the coil 12.
 保持部11C4は、幅方向の両端部において、2つの保持部11C5のそれぞれと連結される。これにより、保持部11C4,11C5を一体として、ティース本体部11B1とコイル12との間の隙間に差し込む形で配置することができる。そのため、付加ティース11Cは、保持部11C2に加えて、保持部11C4,11C5の作用によって、磁極部11C1の位置をより適切に保持することができる。 The retaining portion 11C4 is connected to each of the two retaining portions 11C5 at both ends in the width direction. This allows the retaining portions 11C4 and 11C5 to be arranged as a single unit and inserted into the gap between the tooth main body portion 11B1 and the coil 12. Therefore, the additional tooth 11C can more appropriately retain the position of the magnetic pole portion 11C1 through the action of the retaining portions 11C4 and 11C5 in addition to the retaining portion 11C2.
 尚、付加ティース11Cには、保持部11C4及び保持部11C5のうちの後者(保持部11C5)だけが適用されてもよい。また、上述の第1例(図5、図6)や第3例(図9)や第4例(図10)の付加ティース11Cをベースにして、保持部11C4や保持部11C5が適用されてもよい。 In addition, only the latter of the retaining portion 11C4 and the retaining portion 11C5 (retaining portion 11C5) may be applied to the additional tooth 11C. Also, the retaining portion 11C4 and the retaining portion 11C5 may be applied based on the additional tooth 11C of the above-mentioned first example (FIGS. 5 and 6), third example (FIG. 9), or fourth example (FIG. 10).
  <第6例>
 図12は、付加ティース11Cの第6例を示す斜視図である。具体的には、図12は、径方向の外側に相当する方向から見た付加ティース11Cの第6例の斜視図である。図13は、付加ティース11Cの第6例に対応するティースの一例を示す斜視図である。具体的には、図13は、径方向の外側に相当する方向から見た付加ティース11Cの第6例に対応するティースの一例の斜視図である。
<Sixth Example>
Fig. 12 is a perspective view showing a sixth example of the additional tooth 11C. Specifically, Fig. 12 is a perspective view of the sixth example of the additional tooth 11C as viewed from a direction corresponding to the radial outside. Fig. 13 is a perspective view of an example of a tooth corresponding to the sixth example of the additional tooth 11C. Specifically, Fig. 13 is a perspective view of an example of a tooth corresponding to the sixth example of the additional tooth 11C as viewed from a direction corresponding to the radial outside.
 以下、上述の第1例~第5例と同じ或いは対応する構成に同一の符号を付し、上述の第1例~第5例と異なる部分を中心に説明を行う。  In the following, the same reference numerals will be used to designate configurations that are the same as or correspond to those in the first to fifth examples described above, and the following description will focus on the differences from the first to fifth examples described above.
 図12に示すように、付加ティース11Cは、上述の第2例と同様、磁極部11C1と、保持部11C2とを含む。また、付加ティース11Cは、上述の第2例と異なり、保持部11C6を含む。つまり、本例では、付加ティース11Cは、上述の第2例をベースにして、保持部11C6が追加されている。 As shown in FIG. 12, the additional tooth 11C includes a magnetic pole portion 11C1 and a retaining portion 11C2, similar to the second example described above. Also, unlike the second example described above, the additional tooth 11C includes a retaining portion 11C6. In other words, in this example, the additional tooth 11C is based on the second example described above, with the retaining portion 11C6 added.
 保持部11C6は、磁極部11C1における磁極部11B2と隣り合う側の軸方向の端面から軸方向に延びるように設けられる。例えば、図12に示すように、保持部11C6は、円柱形状を有し、磁極部11C1の幅方向の中央部に1つ設けられる。また、保持部11C6は、複数設けられてもよい。 The retaining portion 11C6 is provided so as to extend in the axial direction from the axial end face of the magnetic pole portion 11C1 on the side adjacent to the magnetic pole portion 11B2. For example, as shown in FIG. 12, the retaining portion 11C6 has a cylindrical shape, and one is provided in the center of the magnetic pole portion 11C1 in the width direction. Also, multiple retaining portions 11C6 may be provided.
 図13に示すように、本例では、主ティース11Bの磁極部11B2における磁極部11C1と隣り合う側の端面には、孔部11B4が設けられる。 As shown in FIG. 13, in this example, a hole 11B4 is provided in the end face of the magnetic pole portion 11B2 of the main tooth 11B adjacent to the magnetic pole portion 11C1.
 孔部11B4は、磁極部11B2及び磁極部11C1が軸方向で適切に隣り合う状態において、軸方向に沿って見たときに、保持部11C6と略同じ位置になるように主ティース11B(磁極部11B2)に配置される。そして、孔部11B4は、例えば、保持部11C6の軸方向の長さ以上の深さを有する。また、孔部11B4は、軸方向に磁極部11B2を貫通していてもよい。これにより、保持部11C6を軸方向で孔部11B4に差し込むことにより、付加ティース11Cを主ティース11Bに取り付けることができる。そのため、付加ティース11Cは、保持部11C2に加えて、保持部11C6の作用によって、磁極部11C1の位置をより適切に保持することができる。 The hole 11B4 is arranged in the main tooth 11B (magnetic pole portion 11B2) so that it is in approximately the same position as the retaining portion 11C6 when viewed along the axial direction when the magnetic pole portion 11B2 and the magnetic pole portion 11C1 are appropriately adjacent to each other in the axial direction. The hole 11B4 has a depth, for example, equal to or greater than the axial length of the retaining portion 11C6. The hole 11B4 may also penetrate the magnetic pole portion 11B2 in the axial direction. This allows the additional tooth 11C to be attached to the main tooth 11B by inserting the retaining portion 11C6 into the hole 11B4 in the axial direction. Therefore, the additional tooth 11C can more appropriately retain the position of the magnetic pole portion 11C1 by the action of the retaining portion 11C6 in addition to the retaining portion 11C2.
 尚、上述の第1例(図5、図6)や第3例(図9)や第4例(図10)や第5例(図11)の付加ティース11Cをベースにして、保持部11C6及び孔部11B4が適用されてもよい。 In addition, the retaining portion 11C6 and the hole portion 11B4 may be applied based on the additional teeth 11C of the first example (Figures 5 and 6), the third example (Figure 9), the fourth example (Figure 10), or the fifth example (Figure 11) described above.
  <第7例>
 図14は、付加ティース11Cの第7例を示す斜視図である。具体的には、図14は、径方向の外側に相当する方向から見た付加ティース11Cの第7例の斜視図である。
<Example 7>
Fig. 14 is a perspective view showing a seventh example of the additional tooth 11C. Specifically, Fig. 14 is a perspective view of the seventh example of the additional tooth 11C as viewed from a direction corresponding to the outer side in the radial direction.
 以下、上述の第1例~第6例と同じ或いは対応する構成に同一の符号を付し、上述の第1例~第6例と異なる部分を中心に説明を行う。  In the following, the same reference numerals will be used to designate configurations that are the same as or correspond to the first to sixth examples described above, and the following description will focus on the differences from the first to sixth examples described above.
 図14に示すように、付加ティース11Cは、上述の第2例と同様、磁極部11C1を含む。また、付加ティース11Cは、上述の第2例と異なり、保持部11C2が省略され、代わりに、保持部11C6を含む。つまり、本例では、付加ティース11Cは、上述の第2例をベースにして、保持部11C2が省略され、保持部11C6が追加されている。 As shown in FIG. 14, the additional tooth 11C includes a magnetic pole portion 11C1, similar to the second example described above. Also, unlike the second example described above, the additional tooth 11C omits the retaining portion 11C2 and instead includes a retaining portion 11C6. In other words, in this example, the additional tooth 11C is based on the second example described above, with the retaining portion 11C2 omitted and the retaining portion 11C6 added.
 例えば、保持部11C6は、2つ設けられる。また、保持部11C6は、上述の第6例と同様、1つであってもよいし、3つ以上であってもよい。 For example, two holding portions 11C6 are provided. Also, as in the sixth example described above, there may be one holding portion 11C6, or three or more holding portions 11C6.
 本例では、上述の第6例と同様、主ティース11Bの磁極部11B2には、保持部11C6のそれぞれに対応する孔部11B4が設けられる。これにより、保持部11C6を軸方向で孔部11B4に差し込むことにより、付加ティース11Cを主ティース11Bに取り付けることができる。そのため、付加ティース11Cは、保持部11C2に代えて、保持部11C6の作用によって、磁極部11C1の位置を保持することができる。 In this example, as in the sixth example described above, holes 11B4 corresponding to the retaining portions 11C6 are provided in the magnetic pole portions 11B2 of the main teeth 11B. This allows the additional teeth 11C to be attached to the main teeth 11B by inserting the retaining portions 11C6 axially into the holes 11B4. Therefore, the additional teeth 11C can retain the position of the magnetic pole portions 11C1 by the action of the retaining portions 11C6 instead of the retaining portions 11C2.
 尚、上述の第1例(図5、図6)や第3例(図9)や第5例(図11)において、保持部11C2が省略され、保持部11C6が適用されてもよい。 In addition, in the above-mentioned first example (FIGS. 5 and 6), third example (FIG. 9), and fifth example (FIG. 11), the retaining portion 11C2 may be omitted and the retaining portion 11C6 may be applied.
  <第8例>
 図15~図17は、付加ティース11Cの第8例を示す斜視図である。具体的には、図15は、径方向の外側に相当する方向から見た付加ティース11Cの第8例の斜視図である。図16は、上述の図3に対応する主ティース11Bに取り付けられた状態の付加ティース11Cの第8例の斜視図である。図17は、上述の図2に対応する主ティース11Bに取り付けられた状態の付加ティース11Cの第8例の斜視図である。
<Example 8>
Figures 15 to 17 are perspective views showing an eighth example of the additional tooth 11C. Specifically, Figure 15 is a perspective view of the eighth example of the additional tooth 11C as viewed from a direction corresponding to the radially outer side. Figure 16 is a perspective view of the eighth example of the additional tooth 11C attached to the main tooth 11B corresponding to Figure 3 described above. Figure 17 is a perspective view of the eighth example of the additional tooth 11C attached to the main tooth 11B corresponding to Figure 2 described above.
 以下、上述の第1例~第7例と同じ或いは対応する構成に同一の符号を付し、上述の第1例~第7例と異なる部分を中心に説明を行う。  In the following, the same reference numerals will be used to designate configurations that are the same as or correspond to the first to seventh examples described above, and the following description will focus on the differences from the first to seventh examples described above.
 図15~図17に示すように、付加ティース11Cは、上述の第2例と同様、磁極部11C1と、保持部11C2とを含む。また、付加ティース11Cは、上述の第2例と異なり、2つの磁極部11C1を含む。つまり、本例では、付加ティース11Cは、上述の第2例をベースにして、磁極部11C1が1つ追加される。これにより、ステータコア11のロータ20と対向する磁極の面積を更に増加させることができる。そのため、ステータ10のコイル12に鎖交する、ロータ20(永久磁石21)の磁束を更に増加させることができ、その結果、モータ1の駆動力や駆動効率を更に向上させることができる。 As shown in Figures 15 to 17, the additional tooth 11C includes a magnetic pole portion 11C1 and a retaining portion 11C2, similar to the second example described above. Also, unlike the second example described above, the additional tooth 11C includes two magnetic pole portions 11C1. In other words, in this example, the additional tooth 11C is based on the second example described above, with one additional magnetic pole portion 11C1. This makes it possible to further increase the area of the magnetic pole of the stator core 11 that faces the rotor 20. This makes it possible to further increase the magnetic flux of the rotor 20 (permanent magnet 21) that links with the coil 12 of the stator 10, and as a result, it is possible to further improve the driving force and driving efficiency of the motor 1.
 本例では、磁極部11C1は、磁極部11B2における軸方向の両端面のそれぞれに隣り合うように2つ設けられる。これにより、2つの磁極部11C1の間の軸方向の間隔は、磁極部11B2(及びティース本体部11B1)の軸方向の寸法よりも大きく設定される。 In this example, two magnetic pole portions 11C1 are provided adjacent to each of the axial end faces of the magnetic pole portion 11B2. As a result, the axial distance between the two magnetic pole portions 11C1 is set to be larger than the axial dimension of the magnetic pole portion 11B2 (and the tooth main body portion 11B1).
 保持部11C2は、2つの磁極部11C1を軸方向で連結する。これにより、対象の主ティース11Bが配置される周方向の位置の径方向に沿って見たときに、付加ティース11Cの中央部には、ティース本体部11B1の外形よりも大きい貫通孔が設けられる。 The retaining portion 11C2 connects the two magnetic pole portions 11C1 in the axial direction. As a result, when viewed radially from the circumferential position where the corresponding main tooth 11B is located, a through hole larger than the outer shape of the tooth body portion 11B1 is provided in the center of the additional tooth 11C.
 例えば、図16に示すように、ヨーク11Aと別体に構成される主ティース11Bの場合、径方向の外側から付加ティース11Cの貫通孔に挿通させ、付加ティース11Cを主ティース11Bに取り付けることができる。 For example, as shown in FIG. 16, in the case of main teeth 11B that are formed separately from the yoke 11A, the additional teeth 11C can be attached to the main teeth 11B by inserting them into the through holes of the additional teeth 11C from the radial outside.
 また、図17に示すように、ヨーク11A及び主ティース11Bが一体に構成される場合、主ティース11Bの先端の磁極部11B2は、付加ティース11Cが取り付けられる前の状態で、ティース本体部11B1と同じ幅方向の寸法になっていてもよい。具体的には、付加ティース11Cが取り付けられる前の状態において、磁極部11B2は、径方向の外側から見て、磁極部11B2の幅方向でティース本体部11B1より外側に飛び出す部分(鍔部11B3)が径方向の外側に延びる状態になっている。これにより、径方向の外側から付加ティース11Cを主ティース11Bに近づけながら、付加ティース11Cの貫通孔に主ティース11Bを挿通させることができ、その結果、付加ティース11Cを主ティース11Bに取り付けることができる。そして、付加ティース11Cの取り付け後、磁極部11B2の径方向の外側に延びる部分(鍔部11B3に相当する部分)が基端部を起点として折り曲げ加工等により折り曲げられる。これにより、磁極部11B2の幅方向の寸法をティース本体部11B1よりも大きい状態にすることができる。 17, when the yoke 11A and the main teeth 11B are integrally formed, the magnetic pole portions 11B2 at the tips of the main teeth 11B may have the same width dimension as the teeth main body portion 11B1 before the additional teeth 11C are attached. Specifically, before the additional teeth 11C are attached, the magnetic pole portions 11B2 are in a state in which the portion (brim portion 11B3) that protrudes outward from the teeth main body portion 11B1 in the width direction of the magnetic pole portions 11B2 extends radially outward when viewed from the outside in the radial direction. This allows the main teeth 11B to be inserted into the through holes of the additional teeth 11C while the additional teeth 11C are brought closer to the main teeth 11B from the outside in the radial direction, and as a result, the additional teeth 11C can be attached to the main teeth 11B. After the additional tooth 11C is attached, the portion of the magnetic pole portion 11B2 that extends radially outward (the portion corresponding to the flange portion 11B3) is folded from the base end by bending or the like. This allows the width dimension of the magnetic pole portion 11B2 to be larger than that of the tooth body portion 11B1.
 尚、上述の第4例(図10)や第5例(図11)の付加ティース11Cをベースにして、本例の磁極部11C1が追加されてもよい。 In addition, the magnetic pole portion 11C1 of this example may be added based on the additional teeth 11C of the fourth example (Figure 10) or the fifth example (Figure 11) described above.
  <第9例>
 図18は、付加ティース11Cの第9例を示す斜視図である。具体的には、図18は、径方向の外側に相当する方向から見た付加ティース11Cの第9例の斜視図である。
<Example 9>
Fig. 18 is a perspective view showing a ninth example of the additional tooth 11C. Specifically, Fig. 18 is a perspective view of the ninth example of the additional tooth 11C as viewed from a direction equivalent to the radial outside.
 以下、上述の第1例~第8例と同じ或いは対応する構成に同一の符号を付し、上述の第1例~第8例と異なる部分を中心に説明を行う。 In the following, the same reference numerals will be used to designate configurations that are the same as or correspond to those in the first to eighth examples described above, and the following description will focus on the differences from the first to eighth examples described above.
 図18に示すように、付加ティース11Cは、上述の第3例と同様、磁極部11C1と、保持部11C2とを含む。また、付加ティース11Cは、上述の第3例と異なり、2つの磁極部11C1を含む。つまり、本例では、付加ティース11Cは、上述の第3例をベースにして、磁極部11C1が1つ追加される。 As shown in FIG. 18, the additional tooth 11C includes a magnetic pole portion 11C1 and a retaining portion 11C2, similar to the third example described above. Also, unlike the third example described above, the additional tooth 11C includes two magnetic pole portions 11C1. In other words, in this example, the additional tooth 11C is based on the third example described above, with one additional magnetic pole portion 11C1.
 本例では、磁極部11C1は、上述の第8例と同様、磁極部11B2における軸方向の両端面のそれぞれに隣り合うように2つ設けられる。これにより、2つの磁極部11C1の間の軸方向の間隔は、磁極部11B2(及びティース本体部11B1)の軸方向の寸法よりも大きく設定される。 In this example, as in the eighth example described above, two magnetic pole portions 11C1 are provided adjacent to each of the two axial end faces of the magnetic pole portion 11B2. As a result, the axial distance between the two magnetic pole portions 11C1 is set to be larger than the axial dimension of the magnetic pole portion 11B2 (and the tooth main body portion 11B1).
 保持部11C2は、上述の第8例と同様、2つの磁極部11C1を軸方向で連結する。これにより、対象の主ティース11Bが配置される周方向の位置の径方向に沿って見たときに、付加ティース11Cの中央部には、ティース本体部11B1の外形よりも大きい貫通孔が設けられる。 The retaining portion 11C2 connects the two magnetic pole portions 11C1 in the axial direction, as in the eighth example described above. As a result, when viewed radially from the circumferential position where the corresponding main tooth 11B is located, a through hole larger than the outer shape of the tooth body portion 11B1 is provided in the center of the additional tooth 11C.
 本例では、付加ティース11Cは、上述の第3例と同様、磁極部11C1及び保持部11C2を含む全体が略均一の厚みの平板形状を有する。例えば、付加ティース11Cは、上述の第3例と同様、平板状の軟磁性材料から打ち抜き加工により形成される。これにより、非常に容易に付加ティース11Cを製造することができる。 In this example, the additional teeth 11C, like the third example described above, have a flat plate shape with a generally uniform thickness throughout, including the magnetic pole portion 11C1 and the retaining portion 11C2. For example, like the third example described above, the additional teeth 11C are formed by punching out a flat plate of soft magnetic material. This makes it very easy to manufacture the additional teeth 11C.
 [比較例との対比]
 次に、図19、図20を参照して、本実施形態に係るモータ1(付加ティース11C)について、比較例に係るモータ(付加ティース11CC)との対比を行う。
[Comparison with Comparative Example]
Next, with reference to FIGS. 19 and 20, the motor 1 (additional teeth 11C) according to this embodiment will be compared with a motor (additional teeth 11CC) according to a comparative example.
 図19は、比較例に係るモータの付加ティース11CCによる磁束の流れを模式的に示す図である。図20は、実施形態に係るモータ1の付加ティース11Cによる磁束の流れを模式的に示す図である。 FIG. 19 is a diagram showing the flow of magnetic flux through additional tooth 11CC of a motor according to a comparative example. FIG. 20 is a diagram showing the flow of magnetic flux through additional tooth 11C of motor 1 according to an embodiment.
 尚、図19では、比較例に係るモータについて、モータ1と同じ構成には同一の符号を付している。 In FIG. 19, the same reference numerals are used for the components of the motor according to the comparative example that are the same as those of motor 1.
 図19に示すように、比較例に係るモータの付加ティース11CCには、保持部11C2~11C6等が設けられず、主ティース11B及び付加ティース11CCは、軸方向で隣り合う(対向する)対向面同士でのみ磁気的に結合する。そのため、磁極部11C1と主ティース11Bとの間を通過する磁束(図中の白抜き矢印)は、磁極部11C1と磁極部11B2との間の軸方向で対向する対向面を通過する。その結果、その磁束は、ティース本体部11B1の軸方向の端部付近(図中の一点鎖線の枠)に流れ易くなる。磁束は、磁気抵抗がより小さい経路(より短い経路)で流れるからである。よって、ティース本体部11B1の軸方向の端部付近に磁気飽和が生じ、その結果、付加ティース11CCの磁極部11C1による効果(駆動力や駆動効率の向上)が減少してしまう可能性がある。 As shown in FIG. 19, the additional teeth 11CC of the motor according to the comparative example are not provided with the retaining portions 11C2-11C6, and the main teeth 11B and the additional teeth 11CC are magnetically coupled only at the opposing surfaces adjacent (opposing) in the axial direction. Therefore, the magnetic flux passing between the magnetic pole portion 11C1 and the main teeth 11B (white arrows in the figure) passes through the opposing surfaces that face each other in the axial direction between the magnetic pole portion 11C1 and the magnetic pole portion 11B2. As a result, the magnetic flux is more likely to flow near the axial end of the teeth main body portion 11B1 (dashed line frame in the figure). This is because the magnetic flux flows through a path with smaller magnetic resistance (shorter path). Therefore, magnetic saturation occurs near the axial end of the teeth main body portion 11B1, and as a result, the effect of the magnetic pole portion 11C1 of the additional teeth 11CC (improvement of driving force and driving efficiency) may be reduced.
 これに対して、例えば、図20に示すように、本実施形態に係る付加ティース11Cは、主ティース11Bと径方向や周方向で隣り合う(対向する)保持部11C2を有し、その対向面を通じて、保持部11C2及び主ティース11Bが磁気的に結合する。そのため、磁極部11C1と主ティース11Bとの間を通過する磁束(図中の白抜き矢印)は、保持部11C2を軸方向に通過することができる。その結果、磁束は、保持部11C2と主ティース11Bとの対向面を通じて、ティース本体部11B1の軸方向の端部付近だけでなく、軸方向の端部よりも内側の領域にも磁束が流れ易くなる。よって、ティース本体部11B1の軸方向の端部付近での磁気飽和を抑制し、モータ1の駆動力や駆動効率をより向上させることができる。 In contrast, as shown in FIG. 20, for example, the additional tooth 11C according to this embodiment has a retaining portion 11C2 adjacent (facing) the main tooth 11B in the radial and circumferential directions, and the retaining portion 11C2 and the main tooth 11B are magnetically coupled through the facing surface. Therefore, the magnetic flux passing between the magnetic pole portion 11C1 and the main tooth 11B (white arrow in the figure) can pass through the retaining portion 11C2 in the axial direction. As a result, the magnetic flux is likely to flow through the facing surface between the retaining portion 11C2 and the main tooth 11B not only near the axial end of the tooth main body portion 11B1, but also in the area inside the axial end. Therefore, magnetic saturation near the axial end of the tooth main body portion 11B1 can be suppressed, and the driving force and driving efficiency of the motor 1 can be further improved.
 また、保持部11C3,11C5,11C6についても、主ティース11Bと径方向や周方向で磁気的に結合可能に隣り合っている(対向している)ことから、保持部11C2と同様の作用・効果を得ることができる。 In addition, the retaining portions 11C3, 11C5, and 11C6 are adjacent to (opposite) the main tooth 11B in the radial and circumferential directions so that they can be magnetically coupled, and therefore can achieve the same effects and advantages as the retaining portion 11C2.
 保持部11C2がティース本体部11B1や磁極部11B2(鍔部11B3)と径方向や周方向で磁気的に結合可能に隣り合っている部分の軸方向の長さは、より大きく設定されるのが好ましい。また、保持部11C3,11C5,11C6についても同様であってよい。主ティース11Bの軸方向の内側に磁束が流れ易くなり、ティース本体部11B1の軸方向の端部付近での磁気飽和をより適切に抑制することができるからである。 It is preferable to set the axial length of the portion of the retaining portion 11C2 adjacent to the tooth main body portion 11B1 and the magnetic pole portion 11B2 (flange portion 11B3) so as to be magnetically coupled in the radial and circumferential directions to be larger. The same may be true for the retaining portions 11C3, 11C5, and 11C6. This is because magnetic flux becomes easier to flow on the axial inside of the main tooth 11B, and magnetic saturation near the axial end of the tooth main body portion 11B1 can be more appropriately suppressed.
 例えば、保持部11C2がティース本体部11B1や磁極部11B2(鍔部11B3)と径方向や周方向で磁気的に結合可能に隣り合っている部分の軸方向の長さは、主ティース11B(ティース本体部11B1)の軸方向の寸法の半分以上である。また、保持部11C2がティース本体部11B1や磁極部11B2(鍔部11B3)と径方向や周方向で磁気的に結合可能に隣り合っている部分の軸方向の長さは、主ティース11B(ティース本体部11B1)の軸方向の寸法と同じであってもよい。 For example, the axial length of the portion of the retaining portion 11C2 adjacent to the tooth main body portion 11B1 and the magnetic pole portion 11B2 (flange portion 11B3) in the radial or circumferential direction so as to be magnetically coupled is at least half the axial dimension of the main tooth 11B (tooth main body portion 11B1). In addition, the axial length of the portion of the retaining portion 11C2 adjacent to the tooth main body portion 11B1 and the magnetic pole portion 11B2 (flange portion 11B3) in the radial or circumferential direction so as to be magnetically coupled may be the same as the axial dimension of the main tooth 11B (tooth main body portion 11B1).
 また、主ティース11B及び付加ティース11Cが周方向や径方向で対向する面の間の磁気抵抗は、主ティース11B及び付加ティース11Cが軸方向で対向する面の間の磁気抵抗よりも小さくてもよい。また、保持部11C3,11C5,11C6についても同様であってよい。これにより、磁極部11C1と主ティース11Bとの間を通過する磁束が、主ティース11B及び付加ティース11Cの間の軸方向で対向する面よりも周方向や径方向で対向する面に流れ易くなる。そのため、ティース本体部11B1の軸方向の端部付近での磁気飽和をより確実に抑制することができる。 Furthermore, the magnetic resistance between the circumferentially or radially opposing surfaces of the main teeth 11B and the additional teeth 11C may be smaller than the magnetic resistance between the axially opposing surfaces of the main teeth 11B and the additional teeth 11C. The same may be true for the retaining portions 11C3, 11C5, and 11C6. This makes it easier for the magnetic flux passing between the magnetic pole portion 11C1 and the main teeth 11B to flow through the circumferentially or radially opposing surfaces than through the axially opposing surfaces between the main teeth 11B and the additional teeth 11C. This makes it possible to more reliably suppress magnetic saturation near the axial end of the tooth main body portion 11B1.
 例えば、主ティース11B及び付加ティース11Cが周方向や径方向で対向する面の面積をより大きく確保することにより、主ティース11B及び付加ティース11Cが周方向や径方向で対向する面の磁気抵抗を相対的に小さくする。また、主ティース11B及び付加ティース11Cが軸方向で対向する面の間に、主ティース11B及び付加ティース11Cよりも磁気抵抗が大きい物質を設けることにより、主ティース11B及び付加ティース11Cが周方向や径方向で対向する面の磁気抵抗を相対的に小さくしてもよい。主ティース11B及び付加ティース11Cよりも磁気抵抗が大きい物質は、例えば、磁気抵抗が相対的に大きい接着材である。 For example, by ensuring a larger surface area of the faces where the main teeth 11B and the additional teeth 11C face each other in the circumferential or radial direction, the magnetic resistance of the faces where the main teeth 11B and the additional teeth 11C face each other in the circumferential or radial direction can be made relatively small. Also, by providing a material with a higher magnetic resistance than the main teeth 11B and the additional teeth 11C between the faces where the main teeth 11B and the additional teeth 11C face each other in the axial direction, the magnetic resistance of the faces where the main teeth 11B and the additional teeth 11C face each other in the circumferential or radial direction can be made relatively small. The material with a higher magnetic resistance than the main teeth 11B and the additional teeth 11C is, for example, an adhesive with a relatively high magnetic resistance.
 [モータの適用例]
 次に、図21を参照して、本実施形態に係るモータ1の具体的な適用例について説明する。
[Motor application examples]
Next, a specific application example of the motor 1 according to this embodiment will be described with reference to FIG.
 図21は、本実施形態に係るモータ1を搭載する空気調和機100の一例を示す図である。 FIG. 21 is a diagram showing an example of an air conditioner 100 equipped with a motor 1 according to this embodiment.
 空気調和機100(冷凍装置の一例)は、室外機110と、室内機120と、冷媒経路130,140とを含む。空気調和機100は、室外機110、室内機120、冷媒経路130,140等で構成される冷媒回路を動作させ、室内機120が設置される室内の温度や湿度等を調整する。 The air conditioner 100 (an example of a refrigeration device) includes an outdoor unit 110, an indoor unit 120, and refrigerant paths 130 and 140. The air conditioner 100 operates a refrigerant circuit made up of the outdoor unit 110, the indoor unit 120, and the refrigerant paths 130 and 140, and adjusts the temperature, humidity, etc., of the room in which the indoor unit 120 is installed.
 室外機110は、温度等の調整対象の建物の室外に配置される。室外機110は、冷媒経路130,140のそれぞれの一端に接続され、冷媒経路130,140の何れか一方から冷媒を吸入し、何れか他方に冷媒を排出する。 The outdoor unit 110 is placed outside the building whose temperature and other conditions are to be adjusted. The outdoor unit 110 is connected to one end of each of the refrigerant paths 130, 140, and draws in refrigerant from one of the refrigerant paths 130, 140 and discharges the refrigerant to the other.
 室内機120は、温度等の調整対象の建物の室内に配置される。室内機120は、冷媒経路130,140のそれぞれの他端に接続され、冷媒経路130,140の何れか一方から冷媒を吸入し、何れか他方に冷媒を排出する。 The indoor unit 120 is placed in a room of a building where the temperature and other parameters are to be adjusted. The indoor unit 120 is connected to the other end of each of the refrigerant paths 130, 140, and draws in refrigerant from one of the refrigerant paths 130, 140 and discharges the refrigerant to the other.
 冷媒経路130,140は、例えば、管路により構成され、冷媒が室外機110及び室内機120の間で循環可能なように、室外機110及び室内機120との間を接続する。 The refrigerant paths 130, 140 are, for example, constructed of pipes, and connect the outdoor unit 110 and the indoor unit 120 so that the refrigerant can circulate between the outdoor unit 110 and the indoor unit 120.
 室外機110は、冷媒経路L1~L6と、四方切換弁111と、圧縮機112と、室外熱交換器113と、室外膨張弁114と、ファン115とを含む。 The outdoor unit 110 includes refrigerant paths L1 to L6, a four-way switching valve 111, a compressor 112, an outdoor heat exchanger 113, an outdoor expansion valve 114, and a fan 115.
 冷媒経路L1~L6は、例えば、管路として構成される。 Refrigerant paths L1 to L6 are configured, for example, as pipes.
 冷媒経路L1は、室外機110の外部の冷媒経路130の一端と四方切換弁111との間を接続する。 Refrigerant path L1 connects one end of refrigerant path 130 outside the outdoor unit 110 to the four-way switching valve 111.
 冷媒経路L2は、四方切換弁111と圧縮機112の入口との間を接続する。 Refrigerant path L2 connects between the four-way switching valve 111 and the inlet of the compressor 112.
 冷媒経路L3は、四方切換弁111と圧縮機112の出口との間を接続する。 Refrigerant path L3 connects between the four-way switching valve 111 and the outlet of the compressor 112.
 冷媒経路L4は、四方切換弁111と室外熱交換器113との間を接続する。 Refrigerant path L4 connects the four-way switching valve 111 and the outdoor heat exchanger 113.
 冷媒経路L5は、室外熱交換器113と室外膨張弁114との間を接続する。 Refrigerant path L5 connects the outdoor heat exchanger 113 and the outdoor expansion valve 114.
 冷媒経路L6は、室外機110の外部の冷媒経路140の一端と室外膨張弁114との間を接続する。 Refrigerant path L6 connects one end of refrigerant path 140 outside the outdoor unit 110 to the outdoor expansion valve 114.
 四方切換弁111は、空気調和機100の冷房運転の場合と暖房運転の場合とで冷媒が循環する流れを逆転させる。 The four-way switching valve 111 reverses the flow of the refrigerant when the air conditioner 100 is in cooling operation and when it is in heating operation.
 空気調和機100の冷房運転時に、四方切換弁111は、図21中の実線の経路を接続する。具体的には、空気調和機100の冷房運転時に、四方切換弁111は、冷媒経路L1と冷媒経路L2との間、及び冷媒経路L3と冷媒経路L4との間を接続させる。 When the air conditioner 100 is in cooling operation, the four-way switching valve 111 connects the paths indicated by the solid lines in FIG. 21. Specifically, when the air conditioner 100 is in cooling operation, the four-way switching valve 111 connects between refrigerant path L1 and refrigerant path L2, and between refrigerant path L3 and refrigerant path L4.
 一方、空気調和機100の暖房運転の場合、四方切換弁111は、図21中の点線の経路を接続する。具体的には、空気調和機100の暖房運転時に、四方切換弁111は、冷媒経路L4と冷媒経路L2との間、及び冷媒経路L1と冷媒経路L3との間を接続させる。 On the other hand, when the air conditioner 100 is in heating operation, the four-way switching valve 111 connects the paths indicated by the dotted lines in FIG. 21. Specifically, when the air conditioner 100 is in heating operation, the four-way switching valve 111 connects between refrigerant path L4 and refrigerant path L2, and between refrigerant path L1 and refrigerant path L3.
 圧縮機112は、冷媒経路L2から冷媒を吸入し、高圧に圧縮して冷媒経路L3に吐出する。圧縮機112は、モータ1を搭載(内蔵)し、モータ1により駆動される。 Compressor 112 draws in refrigerant from refrigerant path L2, compresses it to high pressure, and discharges it into refrigerant path L3. Compressor 112 is equipped (built-in) with motor 1 and is driven by motor 1.
 空気調和機100の冷房運転時において、圧縮機112により圧縮された高温高圧の冷媒は、冷媒経路L3及び冷媒経路L4を通じて、室外熱交換器113に流入する。 When the air conditioner 100 is in cooling operation, the high-temperature, high-pressure refrigerant compressed by the compressor 112 flows into the outdoor heat exchanger 113 via refrigerant paths L3 and L4.
 一方、空気調和機100の暖房運転時において、圧縮機112により圧縮された高温高圧の冷媒は、冷媒経路L3及び冷媒経路L1を通じて、室外機110の外部の冷媒経路130に流出する。そして、高温高圧の冷媒は、冷媒経路130を通じて、室内機120に流入する。 On the other hand, when the air conditioner 100 is in heating operation, the high-temperature, high-pressure refrigerant compressed by the compressor 112 flows through refrigerant path L3 and refrigerant path L1 into refrigerant path 130 outside the outdoor unit 110. The high-temperature, high-pressure refrigerant then flows into the indoor unit 120 through refrigerant path 130.
 室外熱交換器113は、外気と内部を通過する冷媒との間で熱交換を行う。具体的には、室外熱交換器113には、ファン115が併設され、室外熱交換器113は、ファン115により送風される外気と内部を通流する冷媒との間で熱交換を行う。 The outdoor heat exchanger 113 exchanges heat between the outside air and the refrigerant passing through the interior. Specifically, the outdoor heat exchanger 113 is provided with a fan 115, and the outdoor heat exchanger 113 exchanges heat between the outside air blown by the fan 115 and the refrigerant flowing through the interior.
 空気調和機100の冷房運転時において、室外熱交換器113は、冷媒経路L4から流入する、圧縮機112で圧縮された高温高圧の冷媒に外気への放熱を行わせ、凝縮・液化した冷媒(液冷媒)を冷媒経路L5に流出させる。 When the air conditioner 100 is in cooling operation, the outdoor heat exchanger 113 causes the high-temperature, high-pressure refrigerant compressed by the compressor 112, which flows in from the refrigerant path L4, to dissipate heat to the outside air, and causes the condensed and liquefied refrigerant (liquid refrigerant) to flow into the refrigerant path L5.
 また、空気調和機100の暖房運転時において、室外熱交換器113は、冷媒経路L5から流入する低温低圧の液冷媒に外気から吸熱を行わせ、蒸発した冷媒を冷媒経路L4に流出させる。 In addition, when the air conditioner 100 is in heating operation, the outdoor heat exchanger 113 causes the low-temperature, low-pressure liquid refrigerant flowing in from the refrigerant path L5 to absorb heat from the outside air, and causes the evaporated refrigerant to flow into the refrigerant path L4.
 室外膨張弁114は、空気調和機100の暖房運転時において、所定の開度に閉じられ、冷媒経路L6から流入する冷媒(液冷媒)を所定の圧力に減圧させる。一方、室外膨張弁114は、空気調和機100の冷房運転時において、全開状態にされ、冷媒経路L5から冷媒経路L6に冷媒(液冷媒)を通過させる。 When the air conditioner 100 is in heating operation, the outdoor expansion valve 114 is closed to a predetermined opening and reduces the pressure of the refrigerant (liquid refrigerant) flowing in from the refrigerant path L6 to a predetermined pressure. On the other hand, when the air conditioner 100 is in cooling operation, the outdoor expansion valve 114 is fully open and passes the refrigerant (liquid refrigerant) from the refrigerant path L5 to the refrigerant path L6.
 ファン115(送風機の一例)は、上述の如く、室外熱交換器113に送風を行い、室外熱交換器113における熱交換を促進させる。ファン115は、例えば、羽根車(「インペラ」とも称する)115Aと、モータ1とを搭載し、羽根車115Aがモータ1によって駆動されることにより稼働する。 As described above, the fan 115 (an example of a blower) blows air to the outdoor heat exchanger 113, promoting heat exchange in the outdoor heat exchanger 113. The fan 115 is equipped with, for example, an impeller 115A and a motor 1, and operates when the impeller 115A is driven by the motor 1.
 室内機120は、室内膨張弁121と、室内熱交換器122と、ファン123とを含む。 The indoor unit 120 includes an indoor expansion valve 121, an indoor heat exchanger 122, and a fan 123.
 室内膨張弁121は、空気調和機100の冷房運転時において、所定の開度に閉じられ、冷媒経路140から流入する、過冷却状態の液冷媒を所定の圧力に減圧させる。一方、室内膨張弁121は、空気調和機100の暖房運転時において、全開状態にされ、室内熱交換器122から流出する冷媒(液冷媒)を冷媒経路140に向かって通過させる。 When the air conditioner 100 is in cooling operation, the indoor expansion valve 121 is closed to a predetermined opening and reduces the pressure of the supercooled liquid refrigerant flowing in from the refrigerant path 140 to a predetermined pressure. On the other hand, when the air conditioner 100 is in heating operation, the indoor expansion valve 121 is fully open and allows the refrigerant (liquid refrigerant) flowing out of the indoor heat exchanger 122 to pass toward the refrigerant path 140.
 室内熱交換器122は、室内空気と内部を通過する冷媒との間で熱交換を行う。具体的には、室内機120に搭載されるファン123の作用で、室内熱交換器122の周囲に室内空気を通過させ、室内熱交換器122の内部の冷媒との間で熱交換が行われた室内空気を室内機120の外部に吹き出すことにより、室内の冷房或いは暖房が実現される。 The indoor heat exchanger 122 exchanges heat between the indoor air and the refrigerant passing through it. Specifically, the indoor air is passed around the indoor heat exchanger 122 by the action of the fan 123 mounted in the indoor unit 120, and the indoor air that has exchanged heat with the refrigerant inside the indoor heat exchanger 122 is blown out of the indoor unit 120, thereby cooling or heating the room.
 具体的には、空気調和機100の冷房運転時において、室内熱交換器122は、室内膨張弁121により減圧された低温低圧の液冷媒に室内空気から吸熱させ、室内空気の温度を下げる。 Specifically, when the air conditioner 100 is in cooling operation, the indoor heat exchanger 122 absorbs heat from the indoor air into the low-temperature, low-pressure liquid refrigerant decompressed by the indoor expansion valve 121, thereby lowering the temperature of the indoor air.
 一方、空気調和機100の暖房運転時において、室内熱交換器122は、冷媒経路130を通じて室外機110から流入する高温高圧の冷媒に室内空気への放熱を行わせ、室内空気の温度を上げる。 On the other hand, when the air conditioner 100 is in heating operation, the indoor heat exchanger 122 causes the high-temperature, high-pressure refrigerant flowing in from the outdoor unit 110 through the refrigerant path 130 to dissipate heat into the indoor air, thereby raising the temperature of the indoor air.
 ファン123(送風機の一例)は、上述の如く、室内熱交換器122に送風を行い、室内熱交換器122の内部の冷媒との間で熱交換が行われた室内空気を室内機120の外部に吹き出させる。ファン123は、例えば、羽根車(「インペラ」とも称する)123Aと、モータ1とを搭載し、羽根車123Aがモータ1によって駆動されることにより稼働する。 As described above, the fan 123 (an example of a blower) blows air to the indoor heat exchanger 122, and blows the indoor air that has exchanged heat with the refrigerant inside the indoor heat exchanger 122 out to the outside of the indoor unit 120. The fan 123 is equipped with, for example, an impeller 123A and a motor 1, and operates when the impeller 123A is driven by the motor 1.
 尚、圧縮機112、ファン115、及びファン123のうちの一部、即ち、何れか1つ或いは2つにモータ1が搭載される態様であってもよい。 In addition, the motor 1 may be mounted on one or two of the compressor 112, the fan 115, and the fan 123.
 このように、本実施形態に係るモータ1は、空気調和機100の圧縮機112やファン115やファン123に適用することができる。 In this way, the motor 1 according to this embodiment can be applied to the compressor 112, fan 115, and fan 123 of the air conditioner 100.
 尚、本実施形態に係るモータ1は、空気調和機100以外の冷凍装置に適用されてもよい。 The motor 1 according to this embodiment may also be applied to refrigeration devices other than the air conditioner 100.
 [作用]
 次に、本実施形態に係る回転電機の作用について説明する。
[Action]
Next, the operation of the rotating electrical machine according to this embodiment will be described.
 本実施形態では、回転電機は、回転子と、固定子と、を備える。回転電機は、例えば、上述のモータ1である。回転子は、例えば、上述のロータ20である。固定子は、例えば、ステータ10である。具体的には、回転子は、回転軸心回りに回転自在である。回転軸心は、例えば、上述の回転軸心AXである。また、固定子は、回転子と径方向で対向する。また、固定子は、軟磁性材料で構成される鉄心と、巻線と、を含む。鉄心は、例えば、上述のステータコア11である。巻線は、例えば、上述のコイル12である。具体的には、鉄心は、第1の鉄心と、第2の鉄心と、を含む。第1の鉄心は、例えば、上述の主ティース11Bである。第2の鉄心は、例えば、上述の付加ティース11Cである。より具体的には、第1の鉄心は、径方向に延び、巻線が巻き回される本体部、及び本体部の先端に設けられ、回転子と径方向で対向する第1の磁極部を有する。本体部は、例えば、上述のティース本体部11B1である。第1の磁極は、例えば、上述の磁極部11B2である。そして、第2の鉄心は、第1の鉄心の軸方向に隣接して配置され、回転子と径方向で対向する第2の磁極部、及び第2の磁極部と接続又は一体に形成され、径方向及び周方向の少なくとも一方で第1の鉄心と巻線との間に配置される周辺部を有する。第2の磁極部は、例えば、上述の磁極部11C1である。周辺部は、例えば、上述の保持部11C2,11C3,11C5である。 In this embodiment, the rotating electric machine includes a rotor and a stator. The rotating electric machine is, for example, the motor 1 described above. The rotor is, for example, the rotor 20 described above. The stator is, for example, the stator 10. Specifically, the rotor is freely rotatable around the rotation axis. The rotation axis is, for example, the rotation axis AX described above. The stator is radially opposed to the rotor. The stator includes an iron core made of a soft magnetic material and a winding. The iron core is, for example, the stator core 11 described above. The winding is, for example, the coil 12 described above. Specifically, the iron core includes a first iron core and a second iron core. The first iron core is, for example, the main tooth 11B described above. The second iron core is, for example, the additional tooth 11C described above. More specifically, the first core has a main body portion that extends in the radial direction and around which the winding is wound, and a first magnetic pole portion that is provided at the tip of the main body portion and faces the rotor in the radial direction. The main body portion is, for example, the above-mentioned teeth main body portion 11B1. The first magnetic pole is, for example, the above-mentioned magnetic pole portion 11B2. The second core has a second magnetic pole portion that is arranged adjacent to the first core in the axial direction and faces the rotor in the radial direction, and a peripheral portion that is connected to or formed integrally with the second magnetic pole portion and is arranged between the first core and the winding in at least one of the radial and circumferential directions. The second magnetic pole portion is, for example, the above-mentioned magnetic pole portion 11C1. The peripheral portion is, for example, the above-mentioned holding portions 11C2, 11C3, and 11C5.
 これにより、例えば、第2の鉄心は、周辺部において、径方向や周方向で第1の鉄心に対向し、その対向面を通じて、第1の鉄心と磁気的に結合することができる。そのため、回転電機は、第1の鉄心及び第2の鉄心の間を通過する磁束の磁路として、その対向面を利用することができる。その結果、第2の磁極部と第1の鉄心との間を通過する磁束は、その対向面を通過することで、第1の鉄心の軸方向の端部だけでなく、軸方向の端部よりも内側の箇所も通過し易くなる。よって、第2の磁極部と第1の鉄心との間を通過する磁束による第1の鉄心の軸方向の端部の磁気飽和を抑制し、回転電機の駆動力や駆動効率をより向上させることができる。 As a result, for example, the second core faces the first core in the radial or circumferential direction at the peripheral portion, and can be magnetically coupled to the first core through the facing surface. Therefore, the rotating electric machine can use the facing surface as a magnetic path for magnetic flux passing between the first and second cores. As a result, the magnetic flux passing between the second magnetic pole portion and the first core passes through the facing surface, making it easier for it to pass not only through the axial end of the first core, but also through points inside the axial end. Therefore, magnetic saturation of the axial end of the first core due to the magnetic flux passing between the second magnetic pole portion and the first core can be suppressed, and the driving force and driving efficiency of the rotating electric machine can be further improved.
 また、本実施形態では、第1の磁極部は、本体部の周方向の端面よりも周方向に突出した鍔部を備えてもよい。鍔部は、例えば、上述の鍔部11B3である。そして、周辺部は、鍔部と巻線との間に配置されてもよい。 In addition, in this embodiment, the first magnetic pole portion may have a flange portion that protrudes circumferentially beyond the circumferential end face of the main body portion. The flange portion is, for example, the flange portion 11B3 described above. The peripheral portion may be disposed between the flange portion and the winding.
 これにより、例えば、第2の鉄心は、周辺部において、鍔部と径方向で対向する対向面を通じて、第1の鉄心と磁気的に結合し、その結果、回転電機は、その対向面を第1の鉄心及び第2の鉄心の間を通過する磁束の磁路として利用することができる。 As a result, for example, the second core is magnetically coupled to the first core through the opposing surface at the periphery that faces the flange in the radial direction, and as a result, the rotating electric machine can use the opposing surface as a magnetic path for magnetic flux passing between the first and second cores.
 また、本実施形態では、周辺部は、本体部と巻線との間に配置されてもよい。 In addition, in this embodiment, the peripheral portion may be disposed between the main body portion and the winding.
 これにより、例えば、第2の鉄心は、周辺部において、本体部と周方向で対向する対向面を通じて、第1の鉄心と磁気的に結合し、その結果、回転電機は、その対向面を第1の鉄心及び第2の鉄心の間を磁路として利用することができる。 As a result, for example, the second core is magnetically coupled to the first core through an opposing surface that faces the main body in the circumferential direction at the peripheral portion, and as a result, the rotating electric machine can use the opposing surface as a magnetic path between the first core and the second core.
 また、本実施形態では、回転電機は、回転子と、固定子と、を備える。回転電機は、例えば、上述のモータ1である。回転子は、例えば、上述のロータ20である。固定子は、例えば、ステータ10である。具体的には、回転子は、回転軸心回りに回転自在である。回転軸心は、例えば、上述の回転軸心AXである。また、固定子は、回転子と径方向で対向する。また、固定子は、軟磁性材料で構成される鉄心と、巻線とを含む。鉄心は、例えば、上述のステータコア11である。巻線は、例えば、上述のコイル12である。具体的には、鉄心は、第1の鉄心と、第2の鉄心と、を含む。第1の鉄心は、例えば、上述の主ティース11Bである。第2の鉄心は、例えば、上述の付加ティース11Cである。より具体的には、第1の鉄心は、径方向に延び、巻線が巻き回される本体部、及び本体部の先端に設けられ、回転子と径方向で対向する第1の磁極部を有する。本体部は、例えば、上述のティース本体部11B1である。第1の磁極は、例えば、上述の磁極部11B2である。また、第2の鉄心は、第1の鉄心の軸方向に隣接して配置され、回転子と径方向で対向する第2の磁極部、及び第2の磁極部と接続又は一体に形成される周辺部を有する。第2の磁極部は、例えば、上述の磁極部11C1である。周辺部は、例えば、上述の保持部11C2,11C3,11C5である。また、周辺部は、第1の鉄心と径方向又は周方向で対向する対向面を有する。そして、第1の鉄心及び第2の鉄心は、第2の磁極部と第1の鉄心との間でその対向面を通じた磁路を有する。 In this embodiment, the rotating electric machine includes a rotor and a stator. The rotating electric machine is, for example, the motor 1 described above. The rotor is, for example, the rotor 20 described above. The stator is, for example, the stator 10. Specifically, the rotor is freely rotatable around the rotation axis. The rotation axis is, for example, the rotation axis AX described above. The stator is radially opposed to the rotor. The stator includes an iron core made of a soft magnetic material and a winding. The iron core is, for example, the stator core 11 described above. The winding is, for example, the coil 12 described above. Specifically, the iron core includes a first iron core and a second iron core. The first iron core is, for example, the main tooth 11B described above. The second iron core is, for example, the additional tooth 11C described above. More specifically, the first core has a main body portion that extends in the radial direction and around which the winding is wound, and a first magnetic pole portion that is provided at the tip of the main body portion and faces the rotor in the radial direction. The main body portion is, for example, the above-mentioned teeth main body portion 11B1. The first magnetic pole is, for example, the above-mentioned magnetic pole portion 11B2. The second core has a second magnetic pole portion that is arranged adjacent to the first core in the axial direction and faces the rotor in the radial direction, and a peripheral portion that is connected to or formed integrally with the second magnetic pole portion. The second magnetic pole portion is, for example, the above-mentioned magnetic pole portion 11C1. The peripheral portion is, for example, the above-mentioned holding portions 11C2, 11C3, and 11C5. The peripheral portion has an opposing surface that faces the first core in the radial direction or circumferential direction. The first core and the second core have a magnetic path through the opposing surfaces between the second magnetic pole portion and the first core.
 これにより、回転電機は、第1の鉄心及び第2の鉄心の間を通過する磁束の磁路として、周方向や径方向で対向する対向面を利用することができる。そのため、第2の磁極部と第1の鉄心との間を通過する磁束は、その対向面を通過することで、第1の鉄心の軸方向の端部だけでなく、軸方向の端部よりも内側の箇所も通過し易くなる。よって、第2の磁極部と第1の鉄心との間を通過する磁束による第1の鉄心の軸方向の端部の磁気飽和を抑制し、回転電機の駆動力や駆動効率をより向上させることができる。 As a result, the rotating electric machine can utilize the opposing surfaces that face each other in the circumferential and radial directions as a magnetic path for the magnetic flux passing between the first and second iron cores. Therefore, by passing through the opposing surfaces, the magnetic flux passing between the second magnetic pole portion and the first iron core is more likely to pass not only through the axial end of the first iron core, but also through points inside the axial end. This suppresses magnetic saturation of the axial end of the first iron core caused by the magnetic flux passing between the second magnetic pole portion and the first iron core, and further improves the driving force and driving efficiency of the rotating electric machine.
 また、本実施形態では、第1の磁極部は、本体部の周方向の端面よりも周方向に突出した鍔部を備えてもよい。鍔部は、例えば、上述の鍔部11B3である。そして、上記の対向面は、周辺部と鍔部が径方向で対向する面を含んでもよい。 In addition, in this embodiment, the first magnetic pole portion may have a flange portion that protrudes circumferentially beyond the circumferential end face of the main body portion. The flange portion is, for example, the flange portion 11B3 described above. The opposing surface may include a surface where the peripheral portion and the flange portion face each other in the radial direction.
 これにより、回転電機は、鍔部と周辺部との間の径方向で対向する対向面を第1の鉄心及び第2の鉄心の間を通過する磁束の磁路として利用することができる。 As a result, the rotating electric machine can utilize the radially opposing surfaces between the flange portion and the peripheral portion as a magnetic path for magnetic flux passing between the first iron core and the second iron core.
 また、本実施形態では、対向面は、周辺部と本体部が周方向で対向する面を含んでもよい。 In addition, in this embodiment, the opposing surfaces may include surfaces where the peripheral portion and the main body portion face each other in the circumferential direction.
 これにより、回転電機は、本体部と周辺部との間の周方向で対向する対向面を第1の鉄心及び第2の鉄心の間を通過する磁束の磁路として利用することができる。 As a result, the rotating electric machine can utilize the circumferentially opposing surfaces between the main body and the peripheral portion as a magnetic path for the magnetic flux passing between the first and second iron cores.
 また、本実施形態では、第2の磁極部は、第1の鉄心の軸方向の両端のうちの一端のみに隣接して配置されてもよい。 In addition, in this embodiment, the second magnetic pole portion may be disposed adjacent to only one of the axial ends of the first iron core.
 これにより、例えば、第2の磁極部及び周辺部を含む第2の鉄心を第2の磁極部が設けられない他端側から第1の鉄心に近づける形で、第1の鉄心に第2の鉄心を組み付けることができる。 This allows, for example, the second iron core including the second magnetic pole portion and the peripheral portion to be assembled to the first iron core by bringing the second iron core closer to the first iron core from the other end side where the second magnetic pole portion is not provided.
 また、本実施形態では、第2の磁極部は、第1の鉄心の軸方向の両端のそれぞれに隣接して配置されてもよい。 In addition, in this embodiment, the second magnetic pole portions may be disposed adjacent to both axial ends of the first iron core.
 これにより、回転電機は、固定子において、回転子に径方向で対向する磁極に相当する部分の面積を相対的に大きく確保することができる。 This allows the rotating electric machine to ensure that the area of the stator corresponding to the magnetic poles that face radially opposite the rotor is relatively large.
 また、本実施形態では、周辺部の軸方向の寸法は、第2の磁極部の軸方向の寸法よりも長くてもよい。 In addition, in this embodiment, the axial dimension of the peripheral portion may be longer than the axial dimension of the second magnetic pole portion.
 これにより、回転子の永久磁石の磁力に伴って第2の磁極部に作用する磁気吸引力によって、第1の鉄心と巻線との間に配置される周辺部が第1の鉄心や巻線に作用させる(加える)力を低減させることができる。 As a result, the magnetic attraction force acting on the second magnetic pole portion due to the magnetic force of the rotor's permanent magnets can reduce the force that the peripheral portion located between the first iron core and the windings exerts on the first iron core and the windings.
 また、本実施形態では、周辺部における第1の鉄心と周方向又は径方向で隣接している部分の軸方向の寸法は、第1の鉄心の軸方向の寸法と同じであってもよい。 In addition, in this embodiment, the axial dimension of the portion of the peripheral portion adjacent to the first iron core in the circumferential or radial direction may be the same as the axial dimension of the first iron core.
 これにより、回転電機は、第1の鉄心及び第2の鉄心の間を通過する磁束の磁路として、第1の鉄心の軸方向の全体に亘る、第1の鉄心と第2の鉄心との間の対向面を利用することができる。そのため、第2の磁極部と第1の鉄心との間を通過する磁束は、その対向面を通過することで、第1の鉄心の軸方向の全体を通過し易くなる。よって、第2の磁極部と第1の鉄心との間を通過する磁束による第1の鉄心の軸方向の端部の磁気飽和を更に抑制し、回転電機の駆動力や駆動効率を更に向上させることができる。 As a result, the rotating electric machine can utilize the opposing surfaces between the first and second iron cores, which cover the entire axial direction of the first iron core, as a magnetic path for the magnetic flux passing between the first and second iron cores. Therefore, the magnetic flux passing between the second magnetic pole portion and the first iron core passes through the opposing surfaces, making it easier to pass through the entire axial direction of the first iron core. This further suppresses magnetic saturation of the axial end of the first iron core caused by the magnetic flux passing between the second magnetic pole portion and the first iron core, and further improves the driving force and driving efficiency of the rotating electric machine.
 また、本実施形態では、第1の鉄心と第2の鉄心が周方向又は径方向で対向する面の面積は、第1の鉄心と第2の鉄心が軸方向で対向する面の面積よりも大きくてもよい。 In addition, in this embodiment, the area of the surface where the first iron core and the second iron core face each other in the circumferential or radial direction may be larger than the area of the surface where the first iron core and the second iron core face each other in the axial direction.
 これにより、例えば、周辺部は、第1の鉄心と巻線との間に挟まれる形で配置されることで、第2の鉄心(第2の磁極)の位置を保持することができる。また、周辺部の軸方向の寸法が相対的に長く確保されることで、周辺部が径方向或いは周方向で第1の鉄心と対向する面積が相対的に大きくなり、その結果、応力を相対的に低減しつつ、第2の鉄心の位置を保持することができる。 As a result, for example, the peripheral portion can be positioned between the first iron core and the winding, thereby maintaining the position of the second iron core (second magnetic pole). Also, by ensuring that the axial dimension of the peripheral portion is relatively long, the area of the peripheral portion facing the first iron core in the radial or circumferential direction becomes relatively large, and as a result, the position of the second iron core can be maintained while relatively reducing stress.
 また、本実施形態では、第1の鉄心及び第2の鉄心が周方向又は径方向で対向する面の間の磁気抵抗は、第1の鉄心及び第2の鉄心が軸方向で対向する面の間の磁気抵抗よりも小さくてもよい。 In addition, in this embodiment, the magnetic resistance between the surfaces of the first iron core and the second iron core that face each other in the circumferential or radial direction may be smaller than the magnetic resistance between the surfaces of the first iron core and the second iron core that face each other in the axial direction.
 これにより、第2の磁極部と第1の鉄心との間を通過する磁束は、第1の鉄心及び第2の鉄心の間の軸方向で対向する面よりも、第1の鉄心及び第2の鉄心の間の周方向や径方向で対向する面を通じて流れ易くなる。そのため、第2の磁極部と第1の鉄心との間を通過する磁束による第1の鉄心の軸方向の端部の磁気飽和をより確実に抑制し、回転電機の駆動力や駆動効率をより確実に向上させることができる。 As a result, the magnetic flux passing between the second magnetic pole portion and the first iron core is more likely to flow through the circumferentially or radially opposing surfaces between the first iron core and the second iron core than through the axially opposing surfaces between the first iron core and the second iron core. This makes it possible to more reliably suppress magnetic saturation of the axial end of the first iron core caused by the magnetic flux passing between the second magnetic pole portion and the first iron core, and more reliably improve the driving force and driving efficiency of the rotating electric machine.
 以上、実施形態を説明したが、特許請求の範囲の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。 Although the embodiments have been described above, it will be understood that various changes in form and details are possible without departing from the spirit and scope of the claims.
 最後に、本願は、2022年9月30日に出願した日本国特許出願2022-158317号に基づく優先権を主張するものであり、日本国特許出願の全内容を本願に参照により援用する。 Finally, this application claims priority based on Japanese Patent Application No. 2022-158317, filed on September 30, 2022, the entire contents of which are incorporated herein by reference.
1 モータ
10 ステータ
11 ステータコア
11A ヨーク
11Aa 凸部
11B 主ティース
11B1 ティース本体部
11B2 磁極部
11B3 鍔部
11B4 孔部
11Ba 凹部
11C 付加ティース
11C1 磁極部
11C2 保持部
11C3 保持部
11C4 保持部
11C5 保持部
11C6 保持部
12 コイル
20 ロータ
30 軸
100 空気調和機
110 室外機
111 四方切換弁
112 圧縮機
113 室外熱交換器
114 室外膨張弁
115 ファン
115A 羽根車
120 室内機
121 室内膨張弁
122 室内熱交換器
123 ファン
123A 羽根車
130 冷媒経路
140 冷媒経路
AX 回転軸心
C6 保持部
L1 冷媒経路
L2 冷媒経路
L3 冷媒経路
L4 冷媒経路
L5 冷媒経路
L6 冷媒経路
1 Motor 10 Stator 11 Stator core 11A Yoke 11Aa Convex portion 11B Main teeth 11B1 Teeth body portion 11B2 Magnetic pole portion 11B3 Flange portion 11B4 Hole portion 11Ba Concave portion 11C Additional teeth 11C1 Magnetic pole portion 11C2 Holding portion 11C3 Holding portion 11C4 Holding portion 11C5 Holding portion 11C6 Holding portion 12 Coil 20 Rotor 30 Shaft 100 Air conditioner 110 Outdoor unit 111 Four-way switching valve 112 Compressor 113 Outdoor heat exchanger 114 Outdoor expansion valve 115 Fan 115A Impeller 120 Indoor unit 121 Indoor expansion valve 122 Indoor heat exchanger 123 Fan 123A Impeller 130 Refrigerant path 140 Refrigerant path AX Rotation axis C6 Holding portion L1 Coolant path L2 Coolant path L3 Coolant path L4 Coolant path L5 Coolant path L6 Coolant path

Claims (15)

  1.  回転軸心回りに回転自在に構成される回転子と、
     前記回転子と径方向で対向する固定子と、を備え、
     前記固定子は、軟磁性材料で構成される鉄心と、巻線と、を含み、
     前記鉄心は、径方向に延び、前記巻線が巻き回される本体部、及び前記本体部の先端に設けられ、前記回転子と径方向で対向する第1の磁極部を有する第1の鉄心と、前記第1の鉄心の軸方向に隣接して配置され、前記回転子と径方向で対向する第2の磁極部、及び前記第2の磁極部と接続又は一体に形成され、径方向又は周方向で前記第1の鉄心と前記巻線との間に配置される周辺部を有する第2の鉄心と、を含む、
     回転電機。
    A rotor configured to be freely rotatable about a rotation axis;
    a stator radially opposed to the rotor,
    The stator includes an iron core made of a soft magnetic material and a winding,
    The core includes a main body portion extending in a radial direction and around which the winding is wound, a first core having a first magnetic pole portion provided at a tip of the main body portion and facing the rotor in the radial direction, a second magnetic pole portion disposed adjacent to the first core in the axial direction and facing the rotor in the radial direction, and a second core having a peripheral portion connected to or formed integrally with the second magnetic pole portion and disposed between the first core and the winding in the radial or circumferential direction.
    Rotating electric motor.
  2.  前記第1の磁極部は、前記本体部の周方向の端面よりも周方向に突出した鍔部を備え、
     前記周辺部は、前記鍔部と前記巻線との間に配置される、
     請求項1に記載の回転電機。
    the first magnetic pole portion includes a flange portion that protrudes in a circumferential direction from a circumferential end surface of the main body portion,
    The peripheral portion is disposed between the flange portion and the winding.
    The rotating electric machine according to claim 1 .
  3.  前記周辺部は、前記本体部と前記巻線との間に配置される、
     請求項1又は2に記載の回転電機。
    The peripheral portion is disposed between the main body portion and the winding.
    3. A rotating electric machine according to claim 1 or 2.
  4.  回転軸心回りに回転自在に構成される回転子と、
     前記回転子と径方向で対向する固定子と、を備え、
     前記固定子は、軟磁性材料で構成される鉄心と、巻線とを含み、
     前記鉄心は、径方向に延び、前記巻線が巻き回される本体部、及び前記本体部の先端に設けられ、前記回転子と径方向で対向する第1の磁極部を有する第1の鉄心と、前記第1の鉄心の軸方向に隣接して配置され、前記回転子と径方向で対向する第2の磁極部、及び前記第2の磁極部と接続又は一体に形成される周辺部を有する第2の鉄心と、を含み、
     前記周辺部は、前記第1の鉄心と径方向又は周方向で対向する対向面を有し、
     前記第1の鉄心及び前記第2の鉄心は、前記第2の磁極部と前記第1の鉄心との間で前記対向面を通じた磁路を有する、
     回転電機。
    A rotor configured to be rotatable about a rotation axis;
    a stator facing the rotor in a radial direction,
    The stator includes an iron core made of a soft magnetic material and a winding.
    The iron core includes a main body portion extending in a radial direction and around which the winding is wound, a first iron core provided at a tip of the main body portion and having a first magnetic pole portion radially facing the rotor, and a second iron core arranged adjacent to the first iron core in the axial direction and having a second magnetic pole portion radially facing the rotor, and a peripheral portion connected to or formed integrally with the second magnetic pole portion,
    the peripheral portion has an opposing surface that faces the first iron core in a radial direction or a circumferential direction,
    the first iron core and the second iron core have a magnetic path between the second magnetic pole portion and the first iron core through the opposing surfaces;
    Rotating electric motor.
  5.  前記第1の磁極部は、前記本体部の周方向の端面よりも周方向に突出した鍔部を備え、
     前記対向面は、前記周辺部と前記鍔部が径方向で対向する面を含む、
     請求項4に記載の回転電機。
    the first magnetic pole portion includes a flange portion that protrudes in a circumferential direction from a circumferential end surface of the main body portion,
    The opposing surface includes a surface where the peripheral portion and the flange portion face each other in a radial direction.
    The rotating electric machine according to claim 4.
  6.  前記対向面は、前記周辺部と前記本体部が周方向で対向する面を含む、
     請求項4又は5に記載の回転電機。
    The opposing surface includes a surface where the peripheral portion and the main body portion oppose each other in the circumferential direction.
    6. A rotating electric machine according to claim 4 or 5.
  7.  前記第2の磁極部は、前記第1の鉄心の軸方向の両端のうちの一端のみに隣接して配置される、
     請求項1乃至6の何れか一項に記載の回転電機。
    the second magnetic pole portion is disposed adjacent to only one of both axial ends of the first iron core;
    The rotating electric machine according to any one of claims 1 to 6.
  8.  前記第2の磁極部は、前記第1の鉄心の軸方向の両端のそれぞれに隣接して配置される、
     請求項1乃至6の何れか一項に記載の回転電機。
    the second magnetic pole portions are disposed adjacent to both ends of the first iron core in the axial direction,
    The rotating electric machine according to any one of claims 1 to 6.
  9.  前記周辺部の軸方向の寸法は、前記第2の磁極部の軸方向の寸法よりも長い、
     請求項1乃至8の何れか一項に記載の回転電機。
    The axial dimension of the peripheral portion is longer than the axial dimension of the second magnetic pole portion.
    The rotating electric machine according to any one of claims 1 to 8.
  10.  前記周辺部における前記第1の鉄心と周方向又は径方向で隣接している部分の軸方向の寸法は、前記第1の鉄心の軸方向の寸法と同じである、
     請求項1乃至9の何れか一項に記載の回転電機。
    The axial dimension of the peripheral portion adjacent to the first iron core in the circumferential direction or the radial direction is the same as the axial dimension of the first iron core.
    The rotating electric machine according to any one of claims 1 to 9.
  11.  前記第1の鉄心及び前記第2の鉄心が周方向又は径方向で対向する面の面積は、前記第1の鉄心及び前記第2の鉄心が軸方向で対向する面の面積よりも大きい、
     請求項1乃至10の何れか一項に記載の回転電機。
    an area of a surface where the first iron core and the second iron core face each other in a circumferential or radial direction is larger than an area of a surface where the first iron core and the second iron core face each other in an axial direction;
    The rotating electric machine according to any one of claims 1 to 10.
  12.  前記第1の鉄心及び前記第2の鉄心が周方向又は径方向で対向する面の間の磁気抵抗は、前記第1の鉄心及び前記第2の鉄心が軸方向で対向する面の間の磁気抵抗よりも小さい、
     請求項1乃至11の何れか一項に記載の回転電機。
    a magnetic resistance between surfaces of the first iron core and the second iron core facing each other in a circumferential or radial direction is smaller than a magnetic resistance between surfaces of the first iron core and the second iron core facing each other in an axial direction;
    A rotating electric machine according to any one of claims 1 to 11.
  13.  請求項1乃至12の何れか一項に記載の回転電機を搭載する、
     圧縮機。
    A rotating electric machine according to any one of claims 1 to 12 is mounted on the rotating electric machine.
    Compressor.
  14.  請求項1乃至12の何れか一項に記載の回転電機を搭載する、
     送風機。
    A rotating electric machine according to any one of claims 1 to 12 is mounted on the rotating electric machine.
    Blower.
  15.  請求項1乃至12の何れか一項に記載の回転電機を搭載する、
     冷凍装置。
    A rotating electric machine according to any one of claims 1 to 12 is mounted on the rotating electric machine.
    Refrigeration equipment.
PCT/JP2023/034516 2022-09-30 2023-09-22 Rotating electrical machine, blower, compressor, and refrigeration device WO2024070951A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-158317 2022-09-30
JP2022158317A JP2024051921A (en) 2022-09-30 2022-09-30 Rotating electric machines, blowers, compressors, refrigeration equipment

Publications (1)

Publication Number Publication Date
WO2024070951A1 true WO2024070951A1 (en) 2024-04-04

Family

ID=90477714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034516 WO2024070951A1 (en) 2022-09-30 2023-09-22 Rotating electrical machine, blower, compressor, and refrigeration device

Country Status (2)

Country Link
JP (1) JP2024051921A (en)
WO (1) WO2024070951A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06189480A (en) * 1992-12-16 1994-07-08 Kiyokazu Hayashi Method of utilizing more efficiently magnetic force generated by core magnet employed in ac and dc motor
JPH09285044A (en) * 1996-04-08 1997-10-31 Shibaura Eng Works Co Ltd Stator of brushless dc motor
JP2008042972A (en) * 2006-08-02 2008-02-21 Mitsubishi Electric Corp Core applied with windings
JP2010148217A (en) * 2008-12-18 2010-07-01 Toyota Auto Body Co Ltd Motor stator structure
JP2011193573A (en) * 2010-03-12 2011-09-29 Panasonic Electric Works Co Ltd Motor, pump having the motor as drive source, and water heater, dishwasher and washing machine each equipped with the pump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06189480A (en) * 1992-12-16 1994-07-08 Kiyokazu Hayashi Method of utilizing more efficiently magnetic force generated by core magnet employed in ac and dc motor
JPH09285044A (en) * 1996-04-08 1997-10-31 Shibaura Eng Works Co Ltd Stator of brushless dc motor
JP2008042972A (en) * 2006-08-02 2008-02-21 Mitsubishi Electric Corp Core applied with windings
JP2010148217A (en) * 2008-12-18 2010-07-01 Toyota Auto Body Co Ltd Motor stator structure
JP2011193573A (en) * 2010-03-12 2011-09-29 Panasonic Electric Works Co Ltd Motor, pump having the motor as drive source, and water heater, dishwasher and washing machine each equipped with the pump

Also Published As

Publication number Publication date
JP2024051921A (en) 2024-04-11

Similar Documents

Publication Publication Date Title
US11496005B2 (en) Stator, electric motor, compressor, refrigerating and air conditioning apparatus, and method for manufacturing stator
US11101709B2 (en) Electric motor, air blower, and air conditioner
US11309772B2 (en) Electric motor, air conditioner, vacuum cleaner, and method for producing electric motor
WO2024070951A1 (en) Rotating electrical machine, blower, compressor, and refrigeration device
JP7150181B2 (en) motors, compressors, and air conditioners
US20230116012A1 (en) Rotor, motor, compressor, air conditioner, and manufacturing method of rotor
US11394258B2 (en) Electric motor, compressor, fan, and refrigerating and air conditioning apparatus
JP7094369B2 (en) Stator, motor, compressor, and refrigeration air conditioner
WO2020089991A1 (en) Rotor, motor, compressor, and refrigeration and air-conditioning device
JP7471493B2 (en) Stators, motors, compressors, refrigeration cycle devices, and air conditioners
JP7403685B2 (en) Rotor, electric motor, blower, air conditioner, and rotor manufacturing method
WO2023189561A1 (en) Rotating electrical machine, manufacturing method therefor, compressor, blower, and refrigeration device equipped with rotating electrical machine
JP7239738B2 (en) Rotors, electric motors, fans, and air conditioners
JP7063916B2 (en) How to manufacture rotors, motors, compressors, air conditioners, and rotors
US11462956B2 (en) Electric motor, compressor, air conditioner, and manufacturing method of electric motor
WO2021192231A1 (en) Rotor, electric motor, compressor, refrigeration cycle device, and air conditioning device
WO2021171474A1 (en) Consequent-pole-type rotor, electric motor, fan, and air conditioner
JP7130051B2 (en) Rotors, electric motors, compressors, and refrigeration and air conditioning equipment
JP2023149000A (en) Rotary electric machine, method of manufacturing rotary electric machine, air blower, compressor, refrigeration device and vehicle