WO2024070909A1 - Optical device, optical member, and light guide member - Google Patents

Optical device, optical member, and light guide member Download PDF

Info

Publication number
WO2024070909A1
WO2024070909A1 PCT/JP2023/034395 JP2023034395W WO2024070909A1 WO 2024070909 A1 WO2024070909 A1 WO 2024070909A1 JP 2023034395 W JP2023034395 W JP 2023034395W WO 2024070909 A1 WO2024070909 A1 WO 2024070909A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light guide
guide block
receiving surface
optical
Prior art date
Application number
PCT/JP2023/034395
Other languages
French (fr)
Japanese (ja)
Inventor
真平 百足山
宇峰 翁
恒三 中村
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2024070909A1 publication Critical patent/WO2024070909A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings

Definitions

  • the present invention relates to an optical device, an optical member, and a light-guiding member.
  • optical devices that use LED elements as light sources.
  • optical devices that have a light source and multiple light-guiding layers.
  • Patent Document 1 discloses a backlight unit having multiple light guide layers.
  • Patent Document 2 discloses a display device having multiple light guide layers.
  • JP 2011-23353 A Japanese Patent Application Laid-Open No. 9-212116
  • the present invention aims to provide an optical device that can provide completely new usage patterns, for example by allowing the user to easily change the size, and optical members and light-guiding members used in such an optical device.
  • the following solutions are provided: [Item 1] at least one light guide block row in which a plurality of light guide blocks are arranged along a light guide direction, each of the plurality of light guide blocks having a light receiving surface, an emission surface opposite to the light receiving surface, and at least three side surfaces between the light receiving surface and the emission surface, the at least one light guide block row including a first light guide block having a light diffusion structure formed on the light receiving surface or a second light guide block having a light diffusion structure formed on the emission surface; a light extraction layer disposed on at least one of the at least three side surfaces of the first light guide block, or a light extraction layer disposed on at least one of the at least three side surfaces of a light guide block disposed on the exit surface side of the second light guide block.
  • the at least one row of light guide blocks includes a plurality of rows of light guide blocks arranged in parallel.
  • the at least one row of light guiding blocks further comprises an adhesive layer disposed on the light diffusing structure.
  • a light source arranged to emit light toward the plurality of light guide block rows.
  • a light guiding block having a light receiving surface, an emission surface opposite the light receiving surface, and at least three side surfaces between the light receiving surface and the emission surface; a light extraction layer disposed on at least one of the at least three sides; a light-diffusing adhesive layer disposed on at least one of the light-receiving surface and the light-emitting surface.
  • Embodiments of the present invention provide an optical device that allows the user to easily change the size, enabling completely new forms of use, as well as light-guiding members and optical members that are suitable for use with such optical devices.
  • FIG. 1 is a schematic perspective view of an optical member 100A according to an embodiment of the present invention.
  • 1 is a schematic perspective view of a light guide member 10M1 included in an optical member 100A.
  • FIG. 1 is a schematic partial cross-section of a portion including a light receiving surface RS of a light guide block 10A of an optical member 100A.
  • 1 is a schematic partial cross-sectional view of a portion including a light extraction layer 20 of a light guide member 10M1.
  • FIG. FIG. 11 is a schematic perspective view of an optical member 100B according to another embodiment of the present invention.
  • FIG. 11 is a schematic perspective view of an optical member 100C according to still another embodiment of the present invention.
  • FIG. 11 is a schematic perspective view of an optical member 100D according to still another embodiment of the present invention.
  • FIG. 1 is a schematic perspective view of an optical device 1000 according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a light extraction film 200 used in manufacturing an optical member according to an embodiment of the present invention.
  • FIG. 2 is a schematic plan view of a light extraction film 200.
  • 2 is a schematic cross-sectional view of an internal space 24.
  • FIG. FIG. 2 is a schematic plan view of the internal space 24.
  • FIG. 2 is a schematic perspective view of a light-guiding member 10M2 according to an embodiment of the present invention.
  • 1 is an optical image of a prototype optical component. 13 is an optical image of another prototype optical member. 13 is an optical image of yet another prototype optical member. 13 is an optical image of yet another prototype optical member.
  • optical devices, optical members, and light-guiding members according to embodiments of the present invention will be described with reference to the drawings.
  • the optical devices, optical members, and light-guiding members according to embodiments of the present invention are not limited to those exemplified below.
  • the optical member according to an embodiment of the present invention has at least one light guide block row in which a plurality of light guide blocks are arranged along the light guide direction, and each of the plurality of light guide blocks has a light receiving surface, an exit surface opposite to the light receiving surface, and at least three side surfaces between the light receiving surface and the exit surface.
  • the optical member has at least one light guide block row including a first light guide block (see light guide block 10A in FIG. 1) having a light diffusion structure formed on the light receiving surface, or a second light guide block (see light guide block 10B in FIG.
  • the optical device is obtained by arranging a light source so as to emit light toward the light guide block row.
  • the light guide block may have a light diffusion structure formed on both the exit surface and the light receiving surface.
  • the size of the optical device can be easily changed by changing the number of light guide blocks constituting a light guide block row and/or by changing the number of light guide block rows.
  • the optical device can be used, for example, as a lighting device or a display device. By changing the arrangement of the light guide block rows, lighting devices of various shapes can be obtained. Also, for example, a display device having multiple light guide block rows arranged in parallel can perform dot display, with each light guide block serving as one dot. Also, light guide blocks of various sizes or shapes can be combined.
  • an optical element 100A according to an embodiment of the present invention will be described with reference to Figures 1 to 4.
  • An example having a light guide block that is approximately rectangular parallelepiped will be described below, but the light guide block may be, for example, a triangular prism or a polygonal prism having pentagonal or higher sides.
  • the shape of the light guide block may also be, for example, a rectangular prism with chamfered edges.
  • Fig. 1 shows a schematic perspective view of an optical member 100A according to an embodiment of the present invention
  • Fig. 2 shows a schematic perspective view of a light guide block 10A having a light extraction layer 20.
  • the light guide block 10A having a light extraction layer 20 is sometimes referred to as a light guide member 10M1.
  • the optical member 100A illustrated here has one light guide block row 10R1 in which three light guide blocks 10A are arranged along the light guide direction (z direction).
  • the white arrow in FIG. 1 light emitted from below toward the light guide block row 10R1 is diffused by the light diffusion structure of the light guide block 10A and propagates in the z direction within the light guide block row 10R1.
  • a portion of the light that enters the light extraction layer 20 is emitted to the outside as shown by the black arrow.
  • the optical member 100A has one light guide block 10A that does not have a light extraction layer, and two light guide members 10M1 that have a light extraction layer 20 only on one side of the light guide block 10A.
  • the light guide block 10A in which the light extraction layer 20 is arranged can be changed arbitrarily, and the number of light extraction layers 20 can also be changed arbitrarily.
  • the light guide block 10A has a light receiving surface RS, an exit surface OS opposite the light receiving surface RS, and four side surfaces SSa, SSb, SSc, and SSd between the light receiving surface RS and the exit surface OS.
  • light is emitted from the bottom of the drawing toward the light receiving surface RS (in the z direction), so the light receiving surface RS is located on the bottom and the exit surface OS is located on the top.
  • a light diffusion structure DS is formed on the light receiving surface RS of the light guide block 10A.
  • the light diffusion structure DS broadly includes structures that diffuse (opposite to converging) light, and includes, for example, a diffusion lens array, a diffusion prism array, and a scattering structure (rough surface).
  • the light diffusion structure DS is preferably an uneven structure formed on the light receiving surface RS.
  • the uneven structure may be formed by processing the flat surface of the block, or a film having an uneven structure may be attached to the flat surface of the block.
  • the refractive indexes of the film, adhesive, and block are matched so that no optical interface is formed between the film, adhesive, and block, and the refractive index difference is preferably 0.1 or less.
  • the uneven structure constituting the light diffusion structure DS is small (for example, the height difference and pitch (average value of adjacent distances when there is no regularity) are about 1 ⁇ m or more and about 200 ⁇ m or less), so that the light guide block 10A including the light diffusion structure DS can be said to be approximately a rectangular parallelepiped (here, approximately a cube).
  • the light diffusion structure DS is not limited to a concave-convex structure, but may be a light diffusion layer in which fine particles having a refractive index different from that of the resin matrix are dispersed in the resin matrix (see FIG. 10).
  • the refractive index of the resin matrix (and the adhesive used if necessary) preferably matches the refractive index of the block, and the difference in refractive index is preferably 0.1 or less.
  • Light guide block 10B which will be described later with reference to Figure 6, has a light diffusion structure DS on the exit surface OS.
  • Light guide block 10B can be obtained by turning light guide block 10A upside down (opposite the light guiding direction), but for example, the structures of the diffusion lens array and diffusion prism array may be different when formed on the light receiving surface RS and when formed on the exit surface OS. Also, the scattering structure (rough surface) may be the same when formed on the light receiving surface RS and when formed on the exit surface OS.
  • the light-guiding block 10A has four side surfaces SSa, SSb, SSc, and SSd, of which the light-extraction layer 20 is disposed only on side surface SSb.
  • the light-extraction layer 20 may be disposed on two or more surfaces.
  • the light-extraction layer 20 may be a layer having a known light-extraction structure, but it is preferable to use a light-extraction layer having multiple internal spaces that extract light by total internal reflection, as described below with reference to FIG. 4.
  • the light guide block row 10R1 shown in FIG. 1 has three light guide blocks 10A arranged in the z direction.
  • the two upper light guide blocks 10A are stacked so that the light receiving surface RS faces the light emitting surface OS of the light guide block 10A below. That is, the upper light guide block 10A is placed on the light emitting surface OS of the lower light guide block 10A by gravity.
  • the light diffusion structure DS of the light receiving surface RS has an uneven structure
  • the light emitting surface OS flat surface: having enough flatness to prevent light scattering
  • the diffusion lens array and the diffusion prism array diffuse light by refraction.
  • the light exit surface OS and the light receiving surface RS do not necessarily need to be in contact with each other, it is preferable to place them as close as possible to each other so that light does not leak out of the light guide block row 10R1 from between the light exit surface OS and the light receiving surface RS.
  • An adhesive layer (including a pressure-sensitive adhesive layer) that does not fill the surface irregularities may be provided on the light diffusion structure DS of the light exit surface OS and/or the light receiving surface RS to bond two adjacent light guide blocks 10A together. If the pressure-sensitive adhesive layer is used, the user can easily peel off (separate) the two light guide blocks 10A.
  • the light guide block row 10R1 may also be fixed using a separately provided support. If the light guide block row 10R1 is fixed using an adhesive layer and/or a support, the light guide block row 10R1 can also be arranged in a direction that crosses the vertical direction, for example, in the horizontal direction.
  • the adhesive layer is preferably, for example, (meth)acrylic or polyester-based, and has a storage modulus G' of 1.2 x 105 Pa or more at 25°C. There is no particular upper limit to the storage modulus G' at 25°C, but it is, for example, 1.0 x 107. If the storage modulus G' at 25°C is less than 1.2 x 105 Pa, the unevenness of the surface of the light diffusion structure is easily filled, and the amount of light that can be extracted from the light extraction layer is reduced.
  • Figure 3 shows a schematic partial cross section of a portion of the light-guiding block 10A that includes the light-receiving surface RS.
  • the light-diffusing structure DS of the light-receiving surface RS is an uneven structure, a fine uneven structure formed by roughening the light-receiving surface RS, and scatters light.
  • the average roughness Ra of such a fine uneven structure is, for example, 1.6 ⁇ m or more and 100 ⁇ m or less.
  • the light guide block 10A is made of a colorless, transparent material that has a high transmittance of visible light (light with a wavelength of 380 nm or more and 780 nm or less).
  • the material that makes up the light guide block 10A preferably has a visible light transmittance of 70% or more, and a haze value of 5% or less.
  • the visible light transmittance and haze value can be measured, for example, using a haze meter (manufactured by Murakami Color Research Laboratory: product name HM-150).
  • Such colorless and transparent materials include acrylic resin (e.g. PMMA), optical plastics such as polycarbonate, and optical glass.
  • the surface of optical plastic can be roughened using sandpaper, for example.
  • the surface of optical glass can be roughened using a grindstone, for example.
  • the degree of fine irregularities in the roughened surface (surface roughness) can be evaluated, for example, by the average roughness Ra measured using a laser microscope (VK-X1000 manufactured by KEYENCE).
  • the average roughness Ra is, for example, 1.6 ⁇ m or more and 100 ⁇ m or less, and more preferably 1.7 ⁇ m or more and 80 ⁇ m or less.
  • the average roughness Ra is less than 1.6 ⁇ m, the amount of diffused (scattered) light is reduced, and the amount of light that can be extracted by the light extraction layer 20 is reduced. On the other hand, even if the average roughness Ra exceeds 100 ⁇ m, the amount of diffused (scattered) light does not increase, and the time required for roughening becomes unnecessarily long.
  • FIG. 4 shows a schematic partial cross-sectional view of a portion of the light guide member 10M1 including the light extraction layer 20.
  • the light extraction layer 20 has a plurality of internal spaces 24 in the transparent member 22 that extract light by total internal reflection (TIR).
  • TIR total internal reflection
  • Light extraction structures having internal spaces (air cavities) are described, for example, in WO 2019/182091, WO 2019/146628, WO 2011/124765, and WO 2019/087118.
  • the disclosures of these four international publications are all incorporated herein by reference. Specific examples of the light extraction layer 20 will be described later with reference to FIG. 9, etc.
  • FIG. 5 shows a schematic perspective view of an optical element 100B according to another embodiment of the present invention.
  • the optical element 100B has one light guide block row 10R1 in which three light guide blocks 10A are arranged along the light guide direction (z direction).
  • the optical element 100B differs from the optical element 100A in that the side of the central light guide block 10A on which the light extraction layer 20 is arranged is different from that of the optical element 100A. In this way, it is possible to provide different illumination by simply changing the position of the side on which the light extraction layer 20 is arranged.
  • the light guide block 10A on which the light extraction layer 20 is arranged can be changed as desired, and the number of light extraction layers 20 can also be changed as desired.
  • FIG. 6 shows a schematic perspective view of an optical element 100C according to yet another embodiment of the present invention.
  • the optical element 100C has one light guide block row 10R2 in which three light guide blocks 10B, 10B, and 10C are arranged along the light guide direction (z direction).
  • the light guide block 10B differs from the light guide block 10A shown in FIG. 1 in that it has a light diffusion structure DS on the exit surface OS.
  • the top light guide block 10C has no light diffusion structure on either the light receiving surface RS or the exit surface OS.
  • the optical element 100B has one light guide block 10B without a light extraction layer, one light guide member 10M2 having a light extraction layer 20 only on one side of the light guide block 10B, and one light guide member 10M3 having a light extraction layer 20 only on one side of the light guide block 10C.
  • the light guide block 10B on which the light extraction layer 20 is arranged can be changed as desired, and the number of light extraction layers 20 can also be changed as desired.
  • Figure 7 shows a schematic perspective view of an optical element 100D according to yet another embodiment of the present invention.
  • the optical element 100D has one light guide block row 10R3 in which three light guide blocks 10C, 10A, 10A are arranged along the light guide direction (z direction).
  • the bottom light guide block 10C has no light diffusion structure on either the light receiving surface RS or the light exiting surface OS. In this way, a block row combining light guide blocks 10C that do not have a light diffusion structure can also be used.
  • a light guide block having a light diffusion structure DS on both the light receiving surface RS and the light exiting surface OS can also be used.
  • FIG. 8 shows a schematic perspective view of an optical device 1000 according to an embodiment of the present invention.
  • the optical member 100E of the optical device 1000 has six light guide block rows 110R1, 110R2, 110R3, 110R4, 110R5, and 110R6 arranged in parallel.
  • a gap (air layer) is provided between adjacent light guide block rows.
  • light extraction layers 20 are arranged on the side faces of 16 light guide blocks 10A facing the same direction.
  • the 16 light extraction layers 20 are arranged to form the letter N.
  • the optical device 1000 has a light source 30 arranged to emit light toward the six light guide block rows 110R1, 110R2, 110R3, 110R4, 110R5, and 110R6.
  • a light source 30 arranged to emit light toward the six light guide block rows 110R1, 110R2, 110R3, 110R4, 110R5, and 110R6.
  • one light source 30 is provided for each light guide block row, but light may be emitted from one light source to the six light guide block rows 110R1, 110R2, 110R3, 110R4, 110R5, and 110R6.
  • By providing one light source 30 for each light guide block row for example, it is possible to display different colors for each light guide block row.
  • the optical device 1000 can display the letter N by turning on the light source 30.
  • an optical device by using an optical member having a row of multiple light guide blocks arranged in parallel and changing the arrangement of the light guide blocks on which the light extraction layer 20 is arranged, an optical device can be obtained that can display various characters, pictures, and the like in dots.
  • FIG. 9 is a schematic cross-sectional view of a light extraction film 200 used in the manufacture of an optical component according to an embodiment of the present invention.
  • the light extraction film 200 has a shaping film 22 having a recess 24 (indicated by the same reference number as the internal space) on its surface, an adhesive layer 26, a base layer 42, a pressure-sensitive adhesive layer 28, and a release sheet 44.
  • a light extraction layer 20A having an internal space 24 is obtained.
  • the adhesive layer 26 is adhered to the shaping film 22 while being supported by the base layer 42.
  • the release sheet 44 is peeled off, and the exposed adhesive layer 28 is adhered to the side of the light guide block.
  • the orientation distribution of the light emitted from the light extraction layer 20A can be controlled, for example, by adjusting the cross-sectional shape, planar shape, size, arrangement density, and distribution of the internal space 24.
  • the inclination angle ⁇ a of the front inclined surface ISa is, for example, 10° or more and 70° or less.
  • the inclination angle ⁇ b of the rear inclined surface ISb is, for example, 50° or more and 100° or less.
  • the cross-sectional shape of the internal space 24 is triangular as exemplified here, but is not limited to this and may be trapezoidal or the like independently.
  • the ratio of the area of the multiple internal spaces 24 to the area of the light extraction layer 20A is preferably 1% or more and 80% or less, with the upper limit being more preferably 50% or less, and even more preferably 45% or less, and in order to obtain a high transmittance and/or a low haze value, it is preferably 30% or less, more preferably 10% or less, and even more preferably 5% or less.
  • occupancy rate of the internal spaces is 50%
  • a haze value of 30% can be obtained.
  • the occupancy rate of the internal spaces 24 is, for example, uniform.
  • FIG. 10 shows a schematic plan view of the light extraction film 200.
  • the shape of the internal space 24 will be described with reference to FIG. 11A and FIG. 11B.
  • FIG. 11A is a schematic cross-sectional view of the internal space 24, and
  • FIG. 11B is a schematic plan view of the internal space 24.
  • the multiple internal spaces 24 are discretely arranged, for example, in the light guiding direction (z direction) of the light guiding block and in a direction perpendicular to the light guiding direction (x direction).
  • the size of the internal spaces 24 (length L, width W: see FIG. 11A and FIG. 11B) is, for example, preferably such that the length L is 10 ⁇ m or more and 500 ⁇ m or less, and the width W is 1 ⁇ m or more and 100 ⁇ m or less.
  • the height H is preferably 1 ⁇ m or more and 100 ⁇ m or less.
  • multiple internal spaces 24 are discretely arranged in the light guide direction (z direction) and in a direction perpendicular to the light guide direction (x direction), but this is not limiting.
  • the multiple internal spaces 24 are arranged discretely, for example, in the light guide direction and in a direction intersecting the light guide direction.
  • the discrete arrangement may or may not have periodicity (regularity) in at least one direction.
  • it is preferable that the multiple internal spaces 24 are arranged uniformly.
  • multiple internal spaces 24 having substantially the same shape and a curved surface convex in the same direction are arranged discretely and periodically in the entire region of the light extraction layer 20A in the light guide direction (z direction) and the direction perpendicular to the light guide direction (x direction).
  • the pitch Px is preferably, for example, 10 ⁇ m or more and 500 ⁇ m or less
  • the pitch Pz is preferably, for example, 10 ⁇ m or more and 500 ⁇ m or less.
  • the forward inclined surface ISa forms a curved surface that is convex toward the light source LS.
  • an internal space such as a groove (e.g., a triangular prism) extending in the x direction may also be used.
  • the cross-sectional shape of the internal space 24 is, for example, a triangle.
  • the inclination angle ⁇ a of the front inclined surface ISa on the light source LS side is, for example, 10° or more and 70° or less. If the inclination angle ⁇ a is smaller than 10°, the controllability of the light distribution may decrease, and the light extraction efficiency may also decrease. On the other hand, if the inclination angle ⁇ a exceeds 70°, for example, manufacturing may become difficult.
  • the inclination angle ⁇ b of the rear inclined surface ISb is, for example, 50° or more and 100° or less. If the inclination angle ⁇ b is smaller than 50°, stray light may occur in an unintended direction.
  • the length L of the internal space 24 is preferably 10 ⁇ m or more and 500 ⁇ m or less, and the width W is preferably 1 ⁇ m or more and 100 ⁇ m or less.
  • the length L is, for example, at least twice the width W.
  • the height H is preferably 1 ⁇ m or more and 100 ⁇ m or less.
  • the shaped film for forming the internal space can be manufactured, for example, as follows.
  • a textured shaped film was manufactured according to the method described in JP-A 2013-524288. Specifically, the surface of a polymethylmethacrylate (PMMA) film was coated with lacquer (Finecure RM-64, manufactured by Sanyo Chemical Industries), an optical pattern was embossed on the film surface containing the lacquer, and the lacquer was then cured to manufacture the desired textured shaped film. The total thickness of the textured shaped film was 130 ⁇ m.
  • the thickness of the substrate layer is, for example, 1 ⁇ m or more and 1000 ⁇ m or less, preferably 10 ⁇ m or more and 100 ⁇ m or less, and more preferably 20 ⁇ m or more and 80 ⁇ m or less.
  • the refractive index of each substrate layer is preferably, independently, 1.40 or more and 1.70 or less, and more preferably 1.43 or more and 1.65 or less.
  • each adhesive layer is, for example, independently 0.1 ⁇ m or more and 100 ⁇ m or less, preferably 0.3 ⁇ m or more and 100 ⁇ m or less, and more preferably 0.5 ⁇ m or more and 50 ⁇ m or less.
  • the refractive index of each adhesive layer is, independently, preferably 1.42 or more and 1.60 or less, and more preferably 1.47 or more and 1.58 or less.
  • the refractive index of the adhesive layer is preferably close to the refractive index of the light-guiding layer, shaping film, or base layer to which it is in contact, and the absolute value of the difference in refractive index is preferably 0.2 or less.
  • the adhesive layer that contacts the recesses on the surface of the shaped film and forms the internal space can preferably be bonded without filling the recesses on the surface of the shaped film.
  • an adhesive suitable for forming such an adhesive layer the adhesives described in WO 2021/167090, WO 2021/167091 or WO 2022/176658 by the present applicant can be preferably used. All of the disclosures of these applications are incorporated herein by reference. In particular, the polyester-based adhesives described in WO 2022/176658 are preferred.
  • a low refractive index layer may be provided on, for example, the front surface of the optical component. These may be formed using known materials.
  • the refractive index n of the low refractive index layer is preferably, for example, 1.30 or less, more preferably 1.20 or less, and even more preferably 1.15 or less.
  • the low refractive index layer is preferably a solid, and the refractive index is, for example, 1.05 or more.
  • the difference between the refractive index of the light guiding block and the refractive index of the low refractive index layer is preferably 0.20 or more, more preferably 0.23 or more, and even more preferably 0.25 or more.
  • the low refractive index layer with a refractive index of 1.30 or less may be formed, for example, using a porous material.
  • the thickness of the low refractive index layer is, for example, 0.3 ⁇ m or more and 5 ⁇ m or less.
  • the porosity is preferably 35 volume % or more, more preferably 38 volume % or more, and particularly preferably 40 volume % or more. Within this range, a low refractive index layer with a particularly low refractive index can be formed.
  • the upper limit of the porosity of the low refractive index layer is, for example, 90 volume % or less, and preferably 75 volume % or less. Within this range, a low refractive index layer with excellent strength can be formed.
  • the porosity is a value calculated from the refractive index measured with an ellipsometer using Lorentz-Lorenz's formula.
  • the low refractive index layer having voids includes silica particles, silica particles having micropores, approximately spherical particles such as hollow silica nanoparticles, fibrous particles such as cellulose nanofibers, alumina nanofibers, and silica nanofibers, and flat particles such as nanoclay composed of bentonite.
  • the low refractive index layer having voids is a porous body formed by direct chemical bonding of particles (e.g., microporous particles).
  • at least a portion of the particles constituting the low refractive index layer having voids may be bonded to each other via a small amount (e.g., equal to or less than the mass of the particles) of a single binder component.
  • the porosity and refractive index of the low refractive index layer can be adjusted by the particle size, particle size distribution, etc. of the particles constituting the low refractive index layer.
  • Methods for obtaining a low refractive index layer having voids include, for example, the methods described in JP 2010-189212 A, JP 2008-040171 A, JP 2006-011175 A, WO 2004/113966 A, and references thereto.
  • the disclosures of JP 2010-189212 A, JP 2008-040171 A, JP 2006-011175 A, and WO 2004/113966 A are all incorporated herein by reference.
  • a porous silica body can be suitably used as a low refractive index layer having voids.
  • the porous silica body is manufactured, for example, by the following method. Silicon compounds; a method of hydrolyzing and polycondensing at least one of hydrolyzable silanes and/or silsesquioxanes, and their partial hydrolyzates and dehydration condensates, a method of using porous particles and/or hollow fine particles, a method of generating an aerogel layer by utilizing the springback phenomenon, a method of using a crushed gel in which a gel-like silicon compound obtained by a sol-gel method is crushed and the resulting crushed body, that is, microporous particles, are chemically bonded to each other with a catalyst or the like, and the like.
  • the low refractive index layer is not limited to a porous silica body, and the manufacturing method is not limited to the exemplified manufacturing method, and may be manufactured by any manufacturing method.
  • the porous layer is not limited to a porous silica body, and the manufacturing method is not limited to the exemplified manufacturing method, and may be manufactured by any manufacturing method.
  • Silsesquioxane is a silicon compound having ( RSiO1.5 , R is a hydrocarbon group) as a basic structural unit, and is strictly different from silica having SiO2 as a basic structural unit. However, it is common to silica in that it has a network structure cross-linked by siloxane bonds. Therefore, in this specification, a porous material containing silsesquioxane as a basic structural unit is also referred to as a silica porous material or a silica-based porous material.
  • the porous silica body may be composed of microporous particles of a gel-like silicon compound bonded together.
  • the microporous particles of the gel-like silicon compound include pulverized bodies of the gel-like silicon compound.
  • the porous silica body may be formed, for example, by applying a coating liquid containing the pulverized bodies of the gel-like silicon compound to a substrate.
  • the pulverized bodies of the gel-like silicon compound may be chemically bonded (e.g., siloxane bonds) by, for example, the action of a catalyst, exposure to light, heating, etc.
  • FIG. 12 shows a schematic perspective view of a light-guiding member 10M2 according to an embodiment of the present invention.
  • the light guide member 10M2 has a light guide block 10C having a light receiving surface RS, an exit surface OS opposite to the light receiving surface RS, and four side surfaces between the light receiving surface RS and the exit surface OS.
  • the light guide block 10C does not have a light diffusion structure.
  • the light guide member 10M2 has a light extraction layer 20 arranged on one side.
  • the light guide member 10M2 has an adhesive layer 18 having light diffusion properties arranged on the light receiving surface RS.
  • the adhesive layer 18 is an adhesive layer 18 having light diffusion properties in which fine particles having a refractive index different from that of the adhesive matrix are dispersed in an adhesive matrix.
  • the adhesive layer 18 may be provided on the exit surface OS. Even when this light guide member 10M2 is used, an optical member similar to the above embodiment can be obtained.
  • Figures 13A to 13D show optical images of the prototype optical components.
  • Figure 13A The optical component shown in Figure 13A was obtained by stacking two light-guiding blocks.
  • Figure 13A is an optical image of the optical component irradiated from below with light from an LED (Asic Al-1030).
  • the lower light guide block (referred to as BLa) has a roughly rectangular parallelepiped shape and is formed using an acrylic plate with dimensions of 100 mm width x 20 mm depth x 40 mm height. A fine uneven structure was formed by roughening the top surface (light output surface) of the acrylic plate. The average roughness Ra of the fine uneven structure was 2.0 ⁇ m. No light extraction layer was provided on the four side surfaces. Therefore, the lower light guide block is dark in Figure 13A.
  • the second upper light guide block (referred to as BLb) was a light guide block formed in the same manner as the lower light guide block.
  • the average roughness Ra of the fine uneven structure on the upper surface (exit surface) was 2.0 ⁇ m.
  • a light extraction layer was provided on one of the four side surfaces (the front surface in the figure). The parameters characterizing the light extraction layer (see Figures 10, 11A, and 11B) are shown below.
  • a low refractive index layer was formed on the surface of the light extraction layer, and a hard coat layer was formed on the low refractive index layer.
  • the low refractive index layer was formed using the above-mentioned porous silica body, had a refractive index of 1.20, and was approximately 0.9 ⁇ m thick.
  • the hard coat layer (surface hardness: 2H-3H) was formed using a hollow silica layer on the outermost surface and an organic conductive hard coat layer underneath. The thickness of the hollow silica layer was approximately 80-100 nm, and the thickness of the organic conductive hard coat layer was approximately 10 ⁇ m.
  • the optical member shown in FIG. 13B was obtained by stacking a light guiding block (third light guiding block) having the same configuration as the light guiding block BLb on top of the optical member shown in FIG. 13A.
  • the optical member shown in FIG. 13C was obtained by stacking a light guiding block (fourth light guiding block) having the same configuration as the light guiding block BLb on top of the optical member shown in FIG. 13B.
  • the first, third, and fifth light guiding blocks from the bottom are light guiding blocks having the same configuration as the light guiding block BLa
  • the second, fourth, and sixth light guiding blocks are light guiding blocks having the same configuration as the light guiding block BLb.
  • optical device, light-guiding block and optical member according to the embodiments of the present invention can provide a completely new form of use, allowing the user to easily change the size.
  • 10A Light guide block
  • 10R1 Light guide block row
  • 20 Light extraction layer
  • 100A Optical member

Abstract

An optical member (100) comprises: a light guide block column in which a plurality of light guide blocks (10A) are arranged along a light guide direction, each light guide block including a first light guide block having a light receiving surface, an emission surface on the reverse side from the light receiving surface, and at least three side surfaces between the light receiving surface and the emission surface, and having a light diffusing structure formed on the light receiving surface or a second light guide block having the light diffusing structure formed on the emission surface; and a light extraction layer disposed on a side surface of the first light guide block or a light extraction layer disposed on a side surface of a light guide block disposed on the emission surface side of the second light guide block.

Description

光学装置、光学部材および導光部材Optical device, optical member, and light-guiding member
 本発明は、光学装置、光学部材および導光部材に関する。 The present invention relates to an optical device, an optical member, and a light-guiding member.
 近年、光源としてLED素子を用いた多様な光学装置が開発されている。その中に、光源と複数の導光層とを有する光学装置がある。 In recent years, a variety of optical devices have been developed that use LED elements as light sources. Among these are optical devices that have a light source and multiple light-guiding layers.
 例えば、特許文献1には、複数の導光層を有するバックライトユニットが開示されている。また、特許文献2には、複数の導光層を有する標示装置が開示されている。 For example, Patent Document 1 discloses a backlight unit having multiple light guide layers. Patent Document 2 discloses a display device having multiple light guide layers.
特開2011ー23353号公報JP 2011-23353 A 特開平9-212116号公報Japanese Patent Application Laid-Open No. 9-212116
 特許文献1、2に記載されているような従来の光学装置は、予め決められたサイズの光学装置であり、ユーザーがサイズを変更することは想定されていない。  Conventional optical devices such as those described in Patent Documents 1 and 2 are optical devices of a predetermined size, and it is not assumed that the user will be able to change the size.
 本発明は、例えば、ユーザーが容易にサイズを変更することができるなど、全く新しい利用形態を提供することが可能な光学装置、そのような光学装置に用いられる光学部材および導光部材を提供することを目的とする。 The present invention aims to provide an optical device that can provide completely new usage patterns, for example by allowing the user to easily change the size, and optical members and light-guiding members used in such an optical device.
 本発明の実施形態によると、以下の項目に記載の解決手段が提供される。
[項目1]
 複数の導光ブロックが導光方向に沿って配列された少なくとも1つの導光ブロック列であって、前記複数の導光ブロックのそれぞれは、受光面と、前記受光面と反対側の出射面と、前記受光面と前記出射面との間の少なくとも3つの側面とを有し、前記受光面に形成された光拡散構造を有する第1導光ブロック、または、前記出射面に形成された光拡散構造を有する第2導光ブロックを含む、少なくとも1つの導光ブロック列と、
 前記第1導光ブロックが有する前記少なくとも3つの側面の少なくとも1つの側面の上に配置された光取り出し層、または、前記第2導光ブロックの前記出射面側に配置された導光ブロックが有する前記少なくとも3つの側面の少なくとも1つの側面の上に配置された光取り出し層と
 を有する、光学部材。
[項目2]
 前記光拡散構造は、前記受光面または前記出射面に形成された凹凸構造である、項目1に記載の光学部材。
[項目3]
 前記凹凸構造は、前記受光面または前記出射面を粗面化することによって形成された微細な凹凸構造である、項目2に記載の光学部材。
[項目4]
 前記微細な凹凸構造の平均粗さRaは1.6μm以上100μm以下である、項目3に記載の光学部材。
[項目5]
 前記少なくとも1つの導光ブロック列が有する前記複数の導光ブロックは、前記少なくとも3つの側面の上に光取り出し層を有しない、導光ブロックを含む、項目1から4のいずれかに記載の光学部材。
[項目6]
 前記光取り出し層は、内部全反射によって光を取り出す複数の内部空間を有する、項目1から5のいずれかに記載の光学部材。
[項目7]
 前記導光ブロックの形状は、略直方体である、項目1から6のいずれかに記載の光学部材。
[項目8]
 前記少なくとも1つの導光ブロック列は、平行に配列された複数の導光ブロック列を含む、項目1から7のいずれかに記載の光学部材。
[項目9]
 前記少なくとも1つの導光ブロック列は、前記光拡散構造上に配置された接着剤層をさらに有する、請求項1から8のいずれかに記載の光学部材。
[項目10]
 項目1から9のいずれかに記載の光学部材と、
 前記複数の導光ブロック列に向けて光を出射するように配置された光源と
を有する、光学装置。
[項目11]
 受光面と、前記受光面と反対側の出射面と、前記受光面と前記出射面との間の少なくとも3つの側面とを有する導光ブロックと、
 前記少なくとも3つの側面の少なくとも1つの側面の上に配置された光取り出し層と、
 前記受光面および前記出射面の少なくとも一方の上に配置された、光拡散性を有する粘着剤層と
 を有する、導光部材。
According to an embodiment of the present invention, the following solutions are provided:
[Item 1]
at least one light guide block row in which a plurality of light guide blocks are arranged along a light guide direction, each of the plurality of light guide blocks having a light receiving surface, an emission surface opposite to the light receiving surface, and at least three side surfaces between the light receiving surface and the emission surface, the at least one light guide block row including a first light guide block having a light diffusion structure formed on the light receiving surface or a second light guide block having a light diffusion structure formed on the emission surface;
a light extraction layer disposed on at least one of the at least three side surfaces of the first light guide block, or a light extraction layer disposed on at least one of the at least three side surfaces of a light guide block disposed on the exit surface side of the second light guide block.
[Item 2]
2. The optical member according to claim 1, wherein the light diffusion structure is a concave-convex structure formed on the light receiving surface or the light emitting surface.
[Item 3]
3. The optical member according to claim 2, wherein the uneven structure is a fine uneven structure formed by roughening the light receiving surface or the light emitting surface.
[Item 4]
Item 4. The optical member according to item 3, wherein the fine uneven structure has an average roughness Ra of 1.6 μm or more and 100 μm or less.
[Item 5]
5. The optical member according to any one of items 1 to 4, wherein the plurality of light guide blocks in the at least one row of light guide blocks include a light guide block that does not have a light extraction layer on the at least three side surfaces.
[Item 6]
6. The optical element according to any one of items 1 to 5, wherein the light extraction layer has a plurality of internal spaces that extract light by total internal reflection.
[Item 7]
7. The optical member according to any one of claims 1 to 6, wherein the light guiding block has a substantially rectangular parallelepiped shape.
[Item 8]
8. The optical member according to any one of items 1 to 7, wherein the at least one row of light guide blocks includes a plurality of rows of light guide blocks arranged in parallel.
[Item 9]
The optical member according to claim 1 , wherein the at least one row of light guiding blocks further comprises an adhesive layer disposed on the light diffusing structure.
[Item 10]
10. The optical member according to any one of items 1 to 9,
a light source arranged to emit light toward the plurality of light guide block rows.
[Item 11]
a light guiding block having a light receiving surface, an emission surface opposite the light receiving surface, and at least three side surfaces between the light receiving surface and the emission surface;
a light extraction layer disposed on at least one of the at least three sides;
a light-diffusing adhesive layer disposed on at least one of the light-receiving surface and the light-emitting surface.
 本発明の実施形態によると、ユーザーが容易にサイズを変更することができる、全く新しい利用形態を提供することが可能な光学装置、そのような光学装置に好適に用いられる導光部材および光学部材が提供される。 Embodiments of the present invention provide an optical device that allows the user to easily change the size, enabling completely new forms of use, as well as light-guiding members and optical members that are suitable for use with such optical devices.
本発明の実施形態による光学部材100Aの模式的な斜視図である。FIG. 1 is a schematic perspective view of an optical member 100A according to an embodiment of the present invention. 光学部材100Aが有する導光部材10M1の模式的な斜視図である。1 is a schematic perspective view of a light guide member 10M1 included in an optical member 100A. FIG. 光学部材100Aが有する導光ブロック10Aの受光面RSを含む部分の模式的な部分断面である。1 is a schematic partial cross-section of a portion including a light receiving surface RS of a light guide block 10A of an optical member 100A. 導光部材10M1の光取り出し層20を含む部分の模式的な部分断面図である。1 is a schematic partial cross-sectional view of a portion including a light extraction layer 20 of a light guide member 10M1. FIG. 本発明の他の実施形態による光学部材100Bの模式的な斜視図である。FIG. 11 is a schematic perspective view of an optical member 100B according to another embodiment of the present invention. 本発明のさらに他の実施形態による光学部材100Cの模式的な斜視図である。FIG. 11 is a schematic perspective view of an optical member 100C according to still another embodiment of the present invention. 本発明のさらに他の実施形態による光学部材100Dの模式的な斜視図である。FIG. 11 is a schematic perspective view of an optical member 100D according to still another embodiment of the present invention. 本発明の実施形態による光学装置1000の模式的な斜視図である。FIG. 1 is a schematic perspective view of an optical device 1000 according to an embodiment of the present invention. 本発明の実施形態による光学部材の製造に用いられる光取り出しフィルム200の模式的な断面図である。FIG. 2 is a schematic cross-sectional view of a light extraction film 200 used in manufacturing an optical member according to an embodiment of the present invention. 光取り出しフィルム200の模式的な平面図である。FIG. 2 is a schematic plan view of a light extraction film 200. 内部空間24の模式的な断面図である。2 is a schematic cross-sectional view of an internal space 24. FIG. 内部空間24の模式的な平面図である。FIG. 2 is a schematic plan view of the internal space 24. 本発明の実施形態による導光部材10M2の模式的な斜視図である。FIG. 2 is a schematic perspective view of a light-guiding member 10M2 according to an embodiment of the present invention. 試作した光学部材の光学像である。1 is an optical image of a prototype optical component. 試作した他の光学部材の光学像である。13 is an optical image of another prototype optical member. 試作したさらに他の光学部材の光学像である。13 is an optical image of yet another prototype optical member. 試作したさらに他の光学部材の光学像である。13 is an optical image of yet another prototype optical member.
 以下、図面を参照して、本発明の実施形態による光学装置、光学部材および導光部材を説明する。本発明の実施形態による光学装置、光学部材および導光部材は、以下で例示するものに限定されない。 Below, optical devices, optical members, and light-guiding members according to embodiments of the present invention will be described with reference to the drawings. The optical devices, optical members, and light-guiding members according to embodiments of the present invention are not limited to those exemplified below.
 本発明の実施形態による光学部材は、複数の導光ブロックが導光方向に沿って配列された少なくとも1つの導光ブロック列であって、複数の導光ブロックのそれぞれは、受光面と、受光面と反対側の出射面と、受光面と前記出射面との間の少なくとも3つの側面とを有し、受光面に形成された光拡散構造を有する第1導光ブロック(図1の導光ブロック10A参照)、または、出射面に形成された光拡散構造を有する第2導光ブロック(図6の導光ブロック10B参照)を含む、少なくとも1つの導光ブロック列と、第1導光ブロックが有する少なくとも3つの側面の少なくとも1つの側面の上に配置された光取り出し層、または、第2導光ブロックの出射面側に配置された導光ブロックが有する少なくとも3つの側面の少なくとも1つの側面の上に配置された光取り出し層とを有する。導光ブロック列に向けて光を出射するように光源を配置することよって本発明の実施形態による光学装置が得られる。もちろん、導光ブロックは、出射面および受光面の両方に形成された光拡散構造を有してもよい。 The optical member according to an embodiment of the present invention has at least one light guide block row in which a plurality of light guide blocks are arranged along the light guide direction, and each of the plurality of light guide blocks has a light receiving surface, an exit surface opposite to the light receiving surface, and at least three side surfaces between the light receiving surface and the exit surface. The optical member has at least one light guide block row including a first light guide block (see light guide block 10A in FIG. 1) having a light diffusion structure formed on the light receiving surface, or a second light guide block (see light guide block 10B in FIG. 6) having a light diffusion structure formed on the exit surface, and a light extraction layer disposed on at least one of the at least three side surfaces of the first light guide block, or a light extraction layer disposed on at least one of the at least three side surfaces of the light guide block disposed on the exit surface side of the second light guide block. The optical device according to the embodiment of the present invention is obtained by arranging a light source so as to emit light toward the light guide block row. Of course, the light guide block may have a light diffusion structure formed on both the exit surface and the light receiving surface.
 例えば、導光ブロック列を構成する複数の導光ブロックの数を変更すること、および/または、導光ブロック列の数を変更することによって、光学装置のサイズを容易に変更することができる。光学装置は、例えば、照明装置または表示装置として利用され得る。導光ブロック列の配列を変更することよって、種々の形状の照明装置を得ることができる。また、例えば、平行に配列された複数の導光ブロック列を有する表示装置は、1つの導光ブロックを1つのドットとして、ドット表示を行うことができる。また、種々の大きさまたは形状を有する導光ブロックを組み合わせることもできる。 For example, the size of the optical device can be easily changed by changing the number of light guide blocks constituting a light guide block row and/or by changing the number of light guide block rows. The optical device can be used, for example, as a lighting device or a display device. By changing the arrangement of the light guide block rows, lighting devices of various shapes can be obtained. Also, for example, a display device having multiple light guide block rows arranged in parallel can perform dot display, with each light guide block serving as one dot. Also, light guide blocks of various sizes or shapes can be combined.
 図1~図4を参照して、本発明の実施形態による光学部材100Aの構造および動作を説明する。以下では、略直方体の導光ブロックを有する例を説明するが、導光ブロックは例えば、三角柱、あるいは五角柱以上の多角柱であってもよい。また、導光ブロックの形状は、例えば角柱のエッジが面取りされる等されてもよい。 The structure and operation of an optical element 100A according to an embodiment of the present invention will be described with reference to Figures 1 to 4. An example having a light guide block that is approximately rectangular parallelepiped will be described below, but the light guide block may be, for example, a triangular prism or a polygonal prism having pentagonal or higher sides. The shape of the light guide block may also be, for example, a rectangular prism with chamfered edges.
 まず、図1および図2を参照する。図1に本発明の実施形態による光学部材100Aの模式的な斜視図を示し、図2に、光取り出し層20を有する導光ブロック10Aの模式的な斜視図を示す。光取り出し層20を有する導光ブロック10Aを導光部材10M1ということがある。 First, let us refer to Fig. 1 and Fig. 2. Fig. 1 shows a schematic perspective view of an optical member 100A according to an embodiment of the present invention, and Fig. 2 shows a schematic perspective view of a light guide block 10A having a light extraction layer 20. The light guide block 10A having a light extraction layer 20 is sometimes referred to as a light guide member 10M1.
 図1に示すように、ここで例示する光学部材100Aは、3つの導光ブロック10Aが導光方向(z方向)に沿って配列された1つの導光ブロック列10R1を有している。図1中に白抜き矢印で示すように、導光ブロック列10R1に向けて下から出射された光は、導光ブロック10Aの光拡散構造によって拡散され、導光ブロック列10R1内をz方向に伝搬する。導光ブロック列10R1内を伝搬する光の内、光取り出し層20に入射した光の一部は、黒矢印で示すように外部に出射される。光学部材100Aは、光取り出し層を有しない1つの導光ブロック10Aと、導光ブロック10Aの1つの側面にのみ光取り出し層20を有する2つの導光部材10M1を有している。もちろん、光取り出し層20を配置する導光ブロック10Aは任意に変更され得るし、光取り出し層20の数も任意に変更され得る。 As shown in FIG. 1, the optical member 100A illustrated here has one light guide block row 10R1 in which three light guide blocks 10A are arranged along the light guide direction (z direction). As shown by the white arrow in FIG. 1, light emitted from below toward the light guide block row 10R1 is diffused by the light diffusion structure of the light guide block 10A and propagates in the z direction within the light guide block row 10R1. Of the light propagating within the light guide block row 10R1, a portion of the light that enters the light extraction layer 20 is emitted to the outside as shown by the black arrow. The optical member 100A has one light guide block 10A that does not have a light extraction layer, and two light guide members 10M1 that have a light extraction layer 20 only on one side of the light guide block 10A. Of course, the light guide block 10A in which the light extraction layer 20 is arranged can be changed arbitrarily, and the number of light extraction layers 20 can also be changed arbitrarily.
 図2に示すように、導光ブロック10Aは、受光面RSと、受光面RSと反対側の出射面OSと、受光面RSと出射面OSとの間の4つの側面SSa、SSb、SSc、SSdとを有している。ここでは、図面の下方から受光面RSに向けて(z方向に)光が出射されるので、受光面RSが下側、出射面OSが上側に配置されている。 As shown in FIG. 2, the light guide block 10A has a light receiving surface RS, an exit surface OS opposite the light receiving surface RS, and four side surfaces SSa, SSb, SSc, and SSd between the light receiving surface RS and the exit surface OS. Here, light is emitted from the bottom of the drawing toward the light receiving surface RS (in the z direction), so the light receiving surface RS is located on the bottom and the exit surface OS is located on the top.
 導光ブロック10Aの受光面RSには、光拡散構造DSが形成されている。光拡散構造DSは、光を拡散(収束の反対)させる構造を広く含み、例えば、拡散レンズアレイ、拡散プリズムアレイ、および散乱構造(粗面)を含む。光拡散構造DSは、このような、受光面RSに形成された凹凸構造であることが好ましい。凹凸構造は、ブロックの平坦な面を加工をすることによって形成してもよいし、別途凹凸構造を有するフィルムをブロックの平坦な面に貼り付けてもよい。このとき、フィルム、接着剤およびブロックの間に光学的な界面が形成されないように、フィルム、接着剤およびブロックの屈折率は一致させることが好ましく、屈折率差は0.1以下であることが好ましい。なお、光拡散構造DSを構成する凹凸構造は小さい(例えば、高さの差、ピッチ(規則性を有しない場合は隣接間距離の平均値)は、約1μm以上約200μm以下)ので、光拡散構造DSを含む導光ブロック10Aは、略直方体(ここで略立方体)であると言える。また、光拡散構造DSは、凹凸構造に限られず、樹脂マトリクス中に、樹脂マトリクスと屈折率が異なる微粒子を分散させた光拡散層であってもよい(図10参照)。樹脂マトリクス(および必要に応じて用いられる接着剤)の屈折率は、ブロックの屈折率と一致することが好ましく、屈折率差は0.1以下であることが好ましい。 A light diffusion structure DS is formed on the light receiving surface RS of the light guide block 10A. The light diffusion structure DS broadly includes structures that diffuse (opposite to converging) light, and includes, for example, a diffusion lens array, a diffusion prism array, and a scattering structure (rough surface). The light diffusion structure DS is preferably an uneven structure formed on the light receiving surface RS. The uneven structure may be formed by processing the flat surface of the block, or a film having an uneven structure may be attached to the flat surface of the block. In this case, it is preferable that the refractive indexes of the film, adhesive, and block are matched so that no optical interface is formed between the film, adhesive, and block, and the refractive index difference is preferably 0.1 or less. Note that the uneven structure constituting the light diffusion structure DS is small (for example, the height difference and pitch (average value of adjacent distances when there is no regularity) are about 1 μm or more and about 200 μm or less), so that the light guide block 10A including the light diffusion structure DS can be said to be approximately a rectangular parallelepiped (here, approximately a cube). Furthermore, the light diffusion structure DS is not limited to a concave-convex structure, but may be a light diffusion layer in which fine particles having a refractive index different from that of the resin matrix are dispersed in the resin matrix (see FIG. 10). The refractive index of the resin matrix (and the adhesive used if necessary) preferably matches the refractive index of the block, and the difference in refractive index is preferably 0.1 or less.
 なお、図6を参照して後述する導光ブロック10Bは、出射面OSに光拡散構造DSを有している。導光ブロック10Bは、導光ブロック10Aを上下反対(導光方向に対して逆)にすれば得られるが、例えば、拡散レンズアレイ、拡散プリズムアレイの構造は、受光面RSに形成される場合と、出射面OSに形成される場合で異なり得る。また、散乱構造(粗面)は、受光面RSに形成される場合と、出射面OSに形成される場合とで同じであってよい。 Light guide block 10B, which will be described later with reference to Figure 6, has a light diffusion structure DS on the exit surface OS. Light guide block 10B can be obtained by turning light guide block 10A upside down (opposite the light guiding direction), but for example, the structures of the diffusion lens array and diffusion prism array may be different when formed on the light receiving surface RS and when formed on the exit surface OS. Also, the scattering structure (rough surface) may be the same when formed on the light receiving surface RS and when formed on the exit surface OS.
 導光ブロック10Aが有する4つの側面SSa、SSb、SSc、SSdの内の側面SSb上にのみ光取り出し層20が配置されている。光取り出し層20は、2以上の面に配置されてもよい。光取り出し層20は、公知の光取り出し構造を有する層であってよいが、図4を参照して後述するように、内部全反射によって光を取り出す複数の内部空間を有する光取り出し層を用いることが好ましい。 The light-guiding block 10A has four side surfaces SSa, SSb, SSc, and SSd, of which the light-extraction layer 20 is disposed only on side surface SSb. The light-extraction layer 20 may be disposed on two or more surfaces. The light-extraction layer 20 may be a layer having a known light-extraction structure, but it is preferable to use a light-extraction layer having multiple internal spaces that extract light by total internal reflection, as described below with reference to FIG. 4.
 図1に示した導光ブロック列10R1は、z方向に3つの導光ブロック10Aが配列されている。例えば、z方向が鉛直方向の逆方向の場合、上の2つの導光ブロック10Aはその下の導光ブロック10Aの出射面OS上に受光面RSが対向するように積まれている。すなわち、上の導光ブロック10Aは、重力によって、下の導光ブロック10Aの出射面OS上に配置されている。受光面RSの光拡散構造DSが凹凸構造の場合、上の導光ブロック10Aの受光面RSを下の導光ブロック10Aの出射面OS(平坦面:光散乱が生じない程度の平坦性を有する)上に接触させても、出射面OSの平坦面と受光面RSの光拡散構造DSの凹凸構造との間に空気が介在することになる。空気が介在することにより、拡散レンズアレイおよび拡散プリズムアレイは、屈折作用によって、光を拡散させる。なお、出射面OSと受光面RSとは必ずしも接触させる必要はないが、出射面OSと受光面RSとの間から光が導光ブロック列10R1の外に漏れないように、なるべく近接させることが好ましい。出射面OSおよび/または受光面RSの光拡散構造DS上に表面の凹凸を埋めない接着剤層(粘着剤層を含む。)を設けて、互いに隣接する2つの導光ブロック10Aを貼り合わせてもよい。粘着剤層を用いると、利用者が容易に2つの導光ブロック10Aを剥がす(分離する)ことができる。また、導光ブロック列10R1は、別途設けた支持体を用いて固定してもよい。接着剤層および/または支持体を用いて導光ブロック列10R1を固定すれば、導光ブロック列10R1は鉛直方向に交差する方向、例えば、水平方向に配置することもできる。 The light guide block row 10R1 shown in FIG. 1 has three light guide blocks 10A arranged in the z direction. For example, when the z direction is the opposite vertical direction, the two upper light guide blocks 10A are stacked so that the light receiving surface RS faces the light emitting surface OS of the light guide block 10A below. That is, the upper light guide block 10A is placed on the light emitting surface OS of the lower light guide block 10A by gravity. When the light diffusion structure DS of the light receiving surface RS has an uneven structure, even if the light receiving surface RS of the upper light guide block 10A is brought into contact with the light emitting surface OS (flat surface: having enough flatness to prevent light scattering) of the lower light guide block 10A, air will be interposed between the flat surface of the light emitting surface OS and the uneven structure of the light diffusion structure DS of the light receiving surface RS. By interposing air, the diffusion lens array and the diffusion prism array diffuse light by refraction. Although the light exit surface OS and the light receiving surface RS do not necessarily need to be in contact with each other, it is preferable to place them as close as possible to each other so that light does not leak out of the light guide block row 10R1 from between the light exit surface OS and the light receiving surface RS. An adhesive layer (including a pressure-sensitive adhesive layer) that does not fill the surface irregularities may be provided on the light diffusion structure DS of the light exit surface OS and/or the light receiving surface RS to bond two adjacent light guide blocks 10A together. If the pressure-sensitive adhesive layer is used, the user can easily peel off (separate) the two light guide blocks 10A. The light guide block row 10R1 may also be fixed using a separately provided support. If the light guide block row 10R1 is fixed using an adhesive layer and/or a support, the light guide block row 10R1 can also be arranged in a direction that crosses the vertical direction, for example, in the horizontal direction.
 粘着剤層としては、例えば(メタ)アクリル系、ポリエステル系で、25℃における貯蔵弾性率G’が1.2×10Pa以上である粘着剤層を用いることが好ましい。25℃における貯蔵弾性率G’に特に上限はないが、例えば1.0×10である。25℃における貯蔵弾性率G’が1.2×10Pa未満であると、光拡散構造の表面の凹凸が埋まりやすくなり、光取り出し層から取り出せる光量が減少する。 The adhesive layer is preferably, for example, (meth)acrylic or polyester-based, and has a storage modulus G' of 1.2 x 105 Pa or more at 25°C. There is no particular upper limit to the storage modulus G' at 25°C, but it is, for example, 1.0 x 107. If the storage modulus G' at 25°C is less than 1.2 x 105 Pa, the unevenness of the surface of the light diffusion structure is easily filled, and the amount of light that can be extracted from the light extraction layer is reduced.
 図3に導光ブロック10Aの受光面RSを含む部分の模式的な部分断面を示す。受光面RSが有する光拡散構造DSは、凹凸構造であり、受光面RSを粗面化することによって形成された微細な凹凸構造であり、光を散乱させる。このような微細な凹凸構造の平均粗さRaは、例えば、1.6μm以上100μm以下である。 Figure 3 shows a schematic partial cross section of a portion of the light-guiding block 10A that includes the light-receiving surface RS. The light-diffusing structure DS of the light-receiving surface RS is an uneven structure, a fine uneven structure formed by roughening the light-receiving surface RS, and scatters light. The average roughness Ra of such a fine uneven structure is, for example, 1.6 μm or more and 100 μm or less.
 導光ブロック10Aは、可視光(波長が380nm以上780nm以下の光)の透過率が高い無色透明な材料で形成されている。例えば、導光ブロック10Aを構成する材料の可視光透過率は70%以上であることが好ましく、ヘイズ値は5%以下であることが好ましい。可視光透過率およびヘイズ値は、例えば、ヘイズメータ(村上色彩技術研究所製:商品名HM-150)を用いて測定することができる。 The light guide block 10A is made of a colorless, transparent material that has a high transmittance of visible light (light with a wavelength of 380 nm or more and 780 nm or less). For example, the material that makes up the light guide block 10A preferably has a visible light transmittance of 70% or more, and a haze value of 5% or less. The visible light transmittance and haze value can be measured, for example, using a haze meter (manufactured by Murakami Color Research Laboratory: product name HM-150).
 このような無色透明な材料としては、アクリル樹脂(例えばPMMA)、ポリカーボネートに代表される光学用プラスチックおよび光学ガラスを挙げることができる。光学プラスチックの表面の粗面化は、例えばサンドペーパーを用いて行うことができる。また、光学ガラスの表面の粗面化は、例えば砥石を用いて行うことができる。粗面の微細な凹凸の程度(表面粗さ)は、例えば、レーザー顕微鏡(KEYENCE製 VK-X1000)によって測定される平均粗さRaで評価することができる。平均粗さRaは、例えば、1.6μm以上100μm以下であり、1.7μm以上80μm以下であることがさらに好ましい。平均粗さRaが1.6μm未満であると、拡散(散乱)光が少なくなり、光取り出し層20によって取り出せる光の量が減少する。一方、平均粗さRaが100μmを超えても、拡散(散乱)光は増えず、粗面化に要する時間が不必要に長くなる。 Such colorless and transparent materials include acrylic resin (e.g. PMMA), optical plastics such as polycarbonate, and optical glass. The surface of optical plastic can be roughened using sandpaper, for example. The surface of optical glass can be roughened using a grindstone, for example. The degree of fine irregularities in the roughened surface (surface roughness) can be evaluated, for example, by the average roughness Ra measured using a laser microscope (VK-X1000 manufactured by KEYENCE). The average roughness Ra is, for example, 1.6 μm or more and 100 μm or less, and more preferably 1.7 μm or more and 80 μm or less. If the average roughness Ra is less than 1.6 μm, the amount of diffused (scattered) light is reduced, and the amount of light that can be extracted by the light extraction layer 20 is reduced. On the other hand, even if the average roughness Ra exceeds 100 μm, the amount of diffused (scattered) light does not increase, and the time required for roughening becomes unnecessarily long.
 図4に、導光部材10M1の光取り出し層20を含む部分の模式的な部分断面図を示す。光取り出し層20は、内部全反射(TIR)によって光を取り出す複数の内部空間24を透明部材22中に有している。内部空間(エアキャビティ)を有する光取り出し構造は、例えば、国際公開第2019/182091号、国際公開第2019/146628号、国際公開第2011/124765号および国際公開第2019/087118号に記載されている。これら4件の国際公開公報の開示内容のすべてを参照により本明細書に援用する。光取り出し層20の具体例は、図9等を参照して後述する。 FIG. 4 shows a schematic partial cross-sectional view of a portion of the light guide member 10M1 including the light extraction layer 20. The light extraction layer 20 has a plurality of internal spaces 24 in the transparent member 22 that extract light by total internal reflection (TIR). Light extraction structures having internal spaces (air cavities) are described, for example, in WO 2019/182091, WO 2019/146628, WO 2011/124765, and WO 2019/087118. The disclosures of these four international publications are all incorporated herein by reference. Specific examples of the light extraction layer 20 will be described later with reference to FIG. 9, etc.
 図5に、本発明の他の実施形態による光学部材100Bの模式的な斜視図を示す。光学部材100Bは、図1に示した光学部材100Aと同様に、3つの導光ブロック10Aが導光方向(z方向)に沿って配列された1つの導光ブロック列10R1を有している。光学部材100Bは、中央の導光ブロック10Aの、光取り出し層20が配置されている側面が、光学部材100Aと異なっている。このように、光取り出し層20が配置されている側面の位置を変えるだけで、異なる照明を提供することが可能になる。もちろん、光取り出し層20を配置する導光ブロック10Aは任意に変更され得るし、光取り出し層20の数も任意に変更され得る。 FIG. 5 shows a schematic perspective view of an optical element 100B according to another embodiment of the present invention. As with the optical element 100A shown in FIG. 1, the optical element 100B has one light guide block row 10R1 in which three light guide blocks 10A are arranged along the light guide direction (z direction). The optical element 100B differs from the optical element 100A in that the side of the central light guide block 10A on which the light extraction layer 20 is arranged is different from that of the optical element 100A. In this way, it is possible to provide different illumination by simply changing the position of the side on which the light extraction layer 20 is arranged. Of course, the light guide block 10A on which the light extraction layer 20 is arranged can be changed as desired, and the number of light extraction layers 20 can also be changed as desired.
 図6に、本発明のさらに他の実施形態による光学部材100Cの模式的な斜視図を示す。光学部材100Cは、3つの導光ブロック10B、10B、10Cが導光方向(z方向)に沿って配列された1つの導光ブロック列10R2を有している。導光ブロック10Bは、出射面OSに光拡散構造DSを有している点で、図1に示した導光ブロック10Aと異なっている。一番上の導光ブロック10Cは、受光面RSにも出射面OSにも光拡散構造を有していない。光学部材100Bは、光取り出し層を有しない1つの導光ブロック10Bと、導光ブロック10Bの1つの側面にのみ光取り出し層20を有する1つの導光部材10M2と、導光ブロック10Cの1つの側面にのみ光取り出し層20を有する1つの導光部材10M3とを有している。もちろん、光取り出し層20を配置する導光ブロック10Bは任意に変更され得るし、光取り出し層20の数も任意に変更され得る。 FIG. 6 shows a schematic perspective view of an optical element 100C according to yet another embodiment of the present invention. The optical element 100C has one light guide block row 10R2 in which three light guide blocks 10B, 10B, and 10C are arranged along the light guide direction (z direction). The light guide block 10B differs from the light guide block 10A shown in FIG. 1 in that it has a light diffusion structure DS on the exit surface OS. The top light guide block 10C has no light diffusion structure on either the light receiving surface RS or the exit surface OS. The optical element 100B has one light guide block 10B without a light extraction layer, one light guide member 10M2 having a light extraction layer 20 only on one side of the light guide block 10B, and one light guide member 10M3 having a light extraction layer 20 only on one side of the light guide block 10C. Of course, the light guide block 10B on which the light extraction layer 20 is arranged can be changed as desired, and the number of light extraction layers 20 can also be changed as desired.
 図7に、本発明のさらに他の実施形態による光学部材100Dの模式的な斜視図を示す。光学部材100Dは、3つの導光ブロック10C、10A、10Aが導光方向(z方向)に沿って配列された1つの導光ブロック列10R3を有している。一番下の導光ブロック10Cは、受光面RSにも出射面OSにも光拡散構造を有していない。このように、光拡散構造を有しない導光ブロック10Cを組み合わせたブロック列を用いることもできる。受光面RSおよび出射面OSの両方に光拡散構造DSを有する導光ブロックを用いることもできる。 Figure 7 shows a schematic perspective view of an optical element 100D according to yet another embodiment of the present invention. The optical element 100D has one light guide block row 10R3 in which three light guide blocks 10C, 10A, 10A are arranged along the light guide direction (z direction). The bottom light guide block 10C has no light diffusion structure on either the light receiving surface RS or the light exiting surface OS. In this way, a block row combining light guide blocks 10C that do not have a light diffusion structure can also be used. A light guide block having a light diffusion structure DS on both the light receiving surface RS and the light exiting surface OS can also be used.
 次に、図8に、本発明の実施形態による光学装置1000の模式的な斜視図を示す。光学装置1000が有する光学部材100Eは、平行に配列された6つの導光ブロック列110R1、110R2、110R3、110R4、110R5、110R6を有している。隣接する導光ブロック列の間には間隙(空気層)が設けられている。各ブロック列は、6つの導光ブロック10Aを有している。したがって、光学部材100Eは、6×6=36個の導光ブロック10Aを有している。36個の導光ブロック10Aの内、16個の導光ブロック10Aの同じ方向を向いている側面に光取り出し層20が配置されている。16個の光取り出し層20は、Nの字を構成するように配置されている。 Next, FIG. 8 shows a schematic perspective view of an optical device 1000 according to an embodiment of the present invention. The optical member 100E of the optical device 1000 has six light guide block rows 110R1, 110R2, 110R3, 110R4, 110R5, and 110R6 arranged in parallel. A gap (air layer) is provided between adjacent light guide block rows. Each block row has six light guide blocks 10A. Therefore, the optical member 100E has 6 x 6 = 36 light guide blocks 10A. Of the 36 light guide blocks 10A, light extraction layers 20 are arranged on the side faces of 16 light guide blocks 10A facing the same direction. The 16 light extraction layers 20 are arranged to form the letter N.
 光学装置1000は、6つの導光ブロック列110R1、110R2、110R3、110R4、110R5、110R6に向けて光を出射するように配置された光源30を有している。ここでは、各導光ブロック列に1つの光源30を有する例を示しいてるが、6つの導光ブロック列110R1、110R2、110R3、110R4、110R5、110R6に1つの光源から光を出射するようにしてもよい。各導光ブロック列に1つの光源30を配置すると、例えば、各導光ブロック列で異なる色を表示することができる。 The optical device 1000 has a light source 30 arranged to emit light toward the six light guide block rows 110R1, 110R2, 110R3, 110R4, 110R5, and 110R6. Here, an example is shown in which one light source 30 is provided for each light guide block row, but light may be emitted from one light source to the six light guide block rows 110R1, 110R2, 110R3, 110R4, 110R5, and 110R6. By providing one light source 30 for each light guide block row, for example, it is possible to display different colors for each light guide block row.
 光学装置1000は、光源30を点灯することによって、Nの字を表示することができる。すなわち、平行に配列された複数の導光ブロック列を有する光学部材を用い、光取り出し層20を配置した導光ブロックの配置を変更することによって、種々の文字、絵などをドット表示することができる光学装置を得ることができる。 The optical device 1000 can display the letter N by turning on the light source 30. In other words, by using an optical member having a row of multiple light guide blocks arranged in parallel and changing the arrangement of the light guide blocks on which the light extraction layer 20 is arranged, an optical device can be obtained that can display various characters, pictures, and the like in dots.
 次に、図9、図10、図11A、図11Bを参照して、光取り出し層20Aの好ましい例を説明する。 Next, a preferred example of the light extraction layer 20A will be described with reference to Figures 9, 10, 11A, and 11B.
 図9は、本発明の実施形態による光学部材の製造に用いられる光取り出しフィルム200の模式的な断面図である。光取り出しフィルム200は、表面に凹部24(内部空間と同じ参照符号で示す。)を有する賦形フィルム22と、接着剤層26、基材層42と、粘着剤層28と、剥離シート44とを有している。 FIG. 9 is a schematic cross-sectional view of a light extraction film 200 used in the manufacture of an optical component according to an embodiment of the present invention. The light extraction film 200 has a shaping film 22 having a recess 24 (indicated by the same reference number as the internal space) on its surface, an adhesive layer 26, a base layer 42, a pressure-sensitive adhesive layer 28, and a release sheet 44.
 賦形フィルム22の表面の凹部24を覆うように接着剤層26を設けることよって、内部空間24を有する光取り出し層20Aが得られる。接着剤層26は、基材層42に支持された状態で、賦形フィルム22に接着させる。剥離シート44を剥離し、露出された粘着剤層28を導光ブロックの側面に接着させる。 By providing an adhesive layer 26 so as to cover the recesses 24 on the surface of the shaping film 22, a light extraction layer 20A having an internal space 24 is obtained. The adhesive layer 26 is adhered to the shaping film 22 while being supported by the base layer 42. The release sheet 44 is peeled off, and the exposed adhesive layer 28 is adhered to the side of the light guide block.
 光取り出し層20Aから出射される光の配向分布は、例えば、内部空間24の断面形状、平面形状、大きさ、配置密度、分布を調整することによって制御することができる。図11Aを参照して後述するように、前方傾斜面ISaの傾斜角θaは、例えば、10°以上70°以下である。また、後方傾斜面ISbの傾斜角θbは、例えば、50°以上100°以下である。内部空間24の断面形状は、ここで例示したように、三角形であるが、これに限られず、それぞれ独立に台形等であってもよい。 The orientation distribution of the light emitted from the light extraction layer 20A can be controlled, for example, by adjusting the cross-sectional shape, planar shape, size, arrangement density, and distribution of the internal space 24. As described later with reference to FIG. 11A, the inclination angle θa of the front inclined surface ISa is, for example, 10° or more and 70° or less. Also, the inclination angle θb of the rear inclined surface ISb is, for example, 50° or more and 100° or less. The cross-sectional shape of the internal space 24 is triangular as exemplified here, but is not limited to this and may be trapezoidal or the like independently.
 内部空間24は、光取り出し層20Aの主面の法線方向から見たときに、光取り出し層20Aの面積に占める複数の内部空間24の面積の割合(占有面積率)は、1%以上80%以下が好ましく、上限値は、50%以下がより好ましく、45%以下がさらに好ましく、高い透過率および/または低いヘイズ値を得るためには、30%以下が好ましく、10%以下がさらに好ましく、5%以下がさらに好ましい。例えば、内部空間の占有面積率が50%のとき、ヘイズ値30%を得ることができる。内部空間24の占有面積率は、例えば、均一である。 When viewed from the normal direction of the main surface of the light extraction layer 20A, the ratio of the area of the multiple internal spaces 24 to the area of the light extraction layer 20A (occupancy rate) is preferably 1% or more and 80% or less, with the upper limit being more preferably 50% or less, and even more preferably 45% or less, and in order to obtain a high transmittance and/or a low haze value, it is preferably 30% or less, more preferably 10% or less, and even more preferably 5% or less. For example, when the occupancy rate of the internal spaces is 50%, a haze value of 30% can be obtained. The occupancy rate of the internal spaces 24 is, for example, uniform.
 図10を参照して、内部空間24の平面形状および配置の例を説明する。図10は、光取り出しフィルム200の模式的な平面図を示す。また、図11A、図11Bを参照して、内部空間24の形状を説明する。図11Aは、内部空間24の模式的な断面図であり、図11Bは、内部空間24の模式的な平面図である。 An example of the planar shape and arrangement of the internal space 24 will be described with reference to FIG. 10. FIG. 10 shows a schematic plan view of the light extraction film 200. The shape of the internal space 24 will be described with reference to FIG. 11A and FIG. 11B. FIG. 11A is a schematic cross-sectional view of the internal space 24, and FIG. 11B is a schematic plan view of the internal space 24.
 図10に示したように、複数の内部空間24は、例えば、導光ブロックの導光方向(z方向)および導光方向に直交する方向(x方向)に離散的に配置されている。内部空間24の大きさ(長さL、幅W:図11A、図11B参照)は、例えば、長さLは10μm以上500μm以下であることが好ましく、幅Wは1μm以上100μm以下であることが好ましい。また、光取り出し効率の観点から、高さH(図11A参照)は、1μm以上100μm以下であることが好ましい。 As shown in FIG. 10, the multiple internal spaces 24 are discretely arranged, for example, in the light guiding direction (z direction) of the light guiding block and in a direction perpendicular to the light guiding direction (x direction). The size of the internal spaces 24 (length L, width W: see FIG. 11A and FIG. 11B) is, for example, preferably such that the length L is 10 μm or more and 500 μm or less, and the width W is 1 μm or more and 100 μm or less. From the viewpoint of light extraction efficiency, the height H (see FIG. 11A) is preferably 1 μm or more and 100 μm or less.
 ここでは、複数の内部空間24が、導光方向(z方向)および導光方向に直交する方向(x方向)に離散的に配置されている例を示したが、これに限られない。 In this example, multiple internal spaces 24 are discretely arranged in the light guide direction (z direction) and in a direction perpendicular to the light guide direction (x direction), but this is not limiting.
 複数の内部空間24は、例えば、導光方向および導光方向に交差する方向に離散的に配置される。離散的な配置は、少なくとも1つの方向において周期性(規則性)を有してもよいし、規則性を有しなくてもよい。ただし、量産性の観点からは、複数の内部空間24が一様に配置されることが好ましい。例えば、図10に示した例では、実質的に同一の形状で同一の方向に凸な曲面を有する複数の内部空間24が、光取り出し層20Aの導光方向(z方向)および導光方向に直交する方向(x方向)に離散的に、周期的に全領域に配置されている。このとき、ピッチPxは、例えば、10μm以上500μm以下であることが好ましく、ピッチPzは、例えば、10μm以上500μm以下であることが好ましい。図10に示した例では、z方向およびx方向のそれぞれに2分の1ピッチずれて配置された内部空間をさらに有している。 The multiple internal spaces 24 are arranged discretely, for example, in the light guide direction and in a direction intersecting the light guide direction. The discrete arrangement may or may not have periodicity (regularity) in at least one direction. However, from the viewpoint of mass production, it is preferable that the multiple internal spaces 24 are arranged uniformly. For example, in the example shown in FIG. 10, multiple internal spaces 24 having substantially the same shape and a curved surface convex in the same direction are arranged discretely and periodically in the entire region of the light extraction layer 20A in the light guide direction (z direction) and the direction perpendicular to the light guide direction (x direction). In this case, the pitch Px is preferably, for example, 10 μm or more and 500 μm or less, and the pitch Pz is preferably, for example, 10 μm or more and 500 μm or less. In the example shown in FIG. 10, there are further internal spaces arranged at a half pitch in each of the z direction and the x direction.
 図10に示したように、光取り出し層20Aの主面に対する法線方向から見たとき、前方傾斜面ISaは光源LS側に凸な曲面を形成している。離散的な内部空間24に代えて、例えば、x方向に延びる溝(例えば三角柱)のような内部空間であってもよい。 As shown in FIG. 10, when viewed from the normal direction to the main surface of the light extraction layer 20A, the forward inclined surface ISa forms a curved surface that is convex toward the light source LS. Instead of the discrete internal spaces 24, for example, an internal space such as a groove (e.g., a triangular prism) extending in the x direction may also be used.
 図11Aに示すように、内部空間24の断面形状は、例えば、三角形である。光源LS側の前方傾斜面ISaの傾斜角θaは、例えば、10°以上70°以下である。傾斜角θaが10°よりも小さいと配光の制御性が低下し、光取り出し効率も低下することがある。一方、傾斜角θaが70°を超えると、例えば製造が困難になることがある。また、後方傾斜面ISbの傾斜角θbは、例えば、50°以上100°以下である。傾斜角θbが50°より小さいと、意図しない方向に迷光が発生することがある。一方、傾斜角θbが100°を超えると、例えば製造が困難になることがある。図11Bに示すように、内部空間24の長さLは10μm以上500μm以下であることが好ましく、幅Wは1μm以上100μm以下であることが好ましい。長さLは、例えば、幅Wの2倍以上である。高さH(図11A参照)は、1μm以上100μm以下であることが好ましい。 11A, the cross-sectional shape of the internal space 24 is, for example, a triangle. The inclination angle θa of the front inclined surface ISa on the light source LS side is, for example, 10° or more and 70° or less. If the inclination angle θa is smaller than 10°, the controllability of the light distribution may decrease, and the light extraction efficiency may also decrease. On the other hand, if the inclination angle θa exceeds 70°, for example, manufacturing may become difficult. In addition, the inclination angle θb of the rear inclined surface ISb is, for example, 50° or more and 100° or less. If the inclination angle θb is smaller than 50°, stray light may occur in an unintended direction. On the other hand, if the inclination angle θb exceeds 100°, for example, manufacturing may become difficult. As shown in FIG. 11B, the length L of the internal space 24 is preferably 10 μm or more and 500 μm or less, and the width W is preferably 1 μm or more and 100 μm or less. The length L is, for example, at least twice the width W. The height H (see FIG. 11A) is preferably 1 μm or more and 100 μm or less.
 本発明の実施形態による照明装置の各構成要素の好ましい例を説明する。 Preferred examples of each component of a lighting device according to an embodiment of the present invention are described below.
 内部空間を形成するための賦形フィルムは、例えば、以下のようにして製造され得る。特表2013-524288号公報に記載の方法にしたがって凹凸賦形フィルムを製造した。具体的には、ポリメタクリル酸メチル(PMMA)フィルムの表面をラッカー(三洋化成工業社製ファインキュアー RM-64)でコーティングし、当該ラッカーを含むフィルム表面上に光学パターンをエンボス加工し、その後ラッカーを硬化させることによって目的の凹凸賦形フィルムを製造した。凹凸賦形フィルムの総厚さは130μmである。 The shaped film for forming the internal space can be manufactured, for example, as follows. A textured shaped film was manufactured according to the method described in JP-A 2013-524288. Specifically, the surface of a polymethylmethacrylate (PMMA) film was coated with lacquer (Finecure RM-64, manufactured by Sanyo Chemical Industries), an optical pattern was embossed on the film surface containing the lacquer, and the lacquer was then cured to manufacture the desired textured shaped film. The total thickness of the textured shaped film was 130 μm.
 基材層の厚さは、例えば1μm以上1000μm以下であり、10μm以上100μm以下が好ましく、20μm以上80μm以下がさらに好ましい。基材層の屈折率は、それぞれ独立に、1.40以上1.70以下が好ましく、1.43以上1.65以下がさらに好ましい。 The thickness of the substrate layer is, for example, 1 μm or more and 1000 μm or less, preferably 10 μm or more and 100 μm or less, and more preferably 20 μm or more and 80 μm or less. The refractive index of each substrate layer is preferably, independently, 1.40 or more and 1.70 or less, and more preferably 1.43 or more and 1.65 or less.
 接着剤層の厚さは、それぞれ独立に、例えば0.1μm以上100μm以下であり、0.3μm以上100μm以下が好ましく、0.5μm以上50μm以下がさらに好ましい。接着剤層の屈折率は、それぞれ独立に、好ましくは1.42以上1.60以下であり、より好ましくは1.47以上1.58以下である。また、接着剤層の屈折率は、それが接する導光層、賦形フィルムまたは基材層の屈折率と近いことが好ましく、屈折率の差の絶対値が0.2以下であることが好ましい。 The thickness of each adhesive layer is, for example, independently 0.1 μm or more and 100 μm or less, preferably 0.3 μm or more and 100 μm or less, and more preferably 0.5 μm or more and 50 μm or less. The refractive index of each adhesive layer is, independently, preferably 1.42 or more and 1.60 or less, and more preferably 1.47 or more and 1.58 or less. In addition, the refractive index of the adhesive layer is preferably close to the refractive index of the light-guiding layer, shaping film, or base layer to which it is in contact, and the absolute value of the difference in refractive index is preferably 0.2 or less.
 賦形フィルムの表面の凹部に接し、内部空間を構成する接着剤層は、賦形フィルムの表面の凹部を埋めることなく接着できることが好ましい。このような接着剤層の形成に好適な接着剤としては、本出願人による国際公開第2021/167090号、国際公開第2021/167091号または国際公開第2022/176658号に記載の接着剤を好適に用いることができる。これらの出願の開示内容のすべてを本明細書に援用する。特に、国際公開第2022/176658号に記載のポリエステル系接着剤が好ましい。 The adhesive layer that contacts the recesses on the surface of the shaped film and forms the internal space can preferably be bonded without filling the recesses on the surface of the shaped film. As an adhesive suitable for forming such an adhesive layer, the adhesives described in WO 2021/167090, WO 2021/167091 or WO 2022/176658 by the present applicant can be preferably used. All of the disclosures of these applications are incorporated herein by reference. In particular, the polyester-based adhesives described in WO 2022/176658 are preferred.
 さらに、光学部材の例えば前面に、低屈折率層、ハードコート層、反射防止層、防汚層などを設けてもよい。これらは、公知の材料を用いて形成され得る。 Furthermore, a low refractive index layer, a hard coat layer, an anti-reflection layer, an anti-fouling layer, etc. may be provided on, for example, the front surface of the optical component. These may be formed using known materials.
 低屈折率層の屈折率nは、例えば1.30以下であることが好ましく、1.20以下であることがより好ましく、1.15以下がさらに好ましい。低屈折率層は固体であることが好ましく、屈折率は、例えば1.05以上であることが好ましい。導光ブロックの屈折率と低屈折率層の屈折率層との差は、好ましくは0.20以上であり、より好ましくは0.23以上であり、さらに好ましくは0.25以上である。屈折率が1.30以下の低屈折率層は、例えば多孔質材料を用いて形成され得る。低屈折率層の厚さは、例えば、0.3μm以上5μm以下である。 The refractive index n of the low refractive index layer is preferably, for example, 1.30 or less, more preferably 1.20 or less, and even more preferably 1.15 or less. The low refractive index layer is preferably a solid, and the refractive index is, for example, 1.05 or more. The difference between the refractive index of the light guiding block and the refractive index of the low refractive index layer is preferably 0.20 or more, more preferably 0.23 or more, and even more preferably 0.25 or more. The low refractive index layer with a refractive index of 1.30 or less may be formed, for example, using a porous material. The thickness of the low refractive index layer is, for example, 0.3 μm or more and 5 μm or less.
 低屈折率層が内部に空隙を有する多孔質材料である場合、その空隙率は、好ましくは35体積%以上であり、より好ましくは38体積%以上であり、特に好ましくは40体積%以上である。このような範囲であれば、屈折率が特に低い低屈折率層を形成することができる。低屈折率層の空隙率の上限は、例えば、90体積%以下であり、好ましくは75体積%以下である。このような範囲であれば、強度に優れる低屈折率層を形成することができる。空隙率は、エリプソメーターで測定した屈折率の値から、Lorentz‐Lorenz’s formula(ローレンツ-ローレンツの式)より算出された値である。 When the low refractive index layer is a porous material having internal voids, the porosity is preferably 35 volume % or more, more preferably 38 volume % or more, and particularly preferably 40 volume % or more. Within this range, a low refractive index layer with a particularly low refractive index can be formed. The upper limit of the porosity of the low refractive index layer is, for example, 90 volume % or less, and preferably 75 volume % or less. Within this range, a low refractive index layer with excellent strength can be formed. The porosity is a value calculated from the refractive index measured with an ellipsometer using Lorentz-Lorenz's formula.
 空隙を有する低屈折率層は、シリカ粒子、微細孔を有するシリカ粒子、シリカ中空ナノ粒子等の略球状粒子、セルロースナノファイバー、アルミナナノファイバー、シリカナノファイバー等の繊維状粒子、ベントナイトから構成されるナノクレイ等の平板状粒子等を含む。1つの実施形態において、空隙を有する低屈折率層は、粒子(例えば微細孔粒子)同士が直接的に化学的に結合して構成される多孔体である。また、空隙を有する低屈折率層を構成する粒子同士は、その少なくとも一部が、少量(例えば、粒子の質量以下)のバインダ一成分を介して結合していてもよい。低屈折率層の空隙率および屈折率は、当該低屈折率層を構成する粒子の粒径、粒径分布等により調整することができる。 The low refractive index layer having voids includes silica particles, silica particles having micropores, approximately spherical particles such as hollow silica nanoparticles, fibrous particles such as cellulose nanofibers, alumina nanofibers, and silica nanofibers, and flat particles such as nanoclay composed of bentonite. In one embodiment, the low refractive index layer having voids is a porous body formed by direct chemical bonding of particles (e.g., microporous particles). In addition, at least a portion of the particles constituting the low refractive index layer having voids may be bonded to each other via a small amount (e.g., equal to or less than the mass of the particles) of a single binder component. The porosity and refractive index of the low refractive index layer can be adjusted by the particle size, particle size distribution, etc. of the particles constituting the low refractive index layer.
 空隙を有する低屈折率層を得る方法としては、例えば、特開2010-189212号公報、特開2008-040171号公報、特開2006-011175号公報、国際公開第2004/113966号、およびそれらの参考文献に記載された方法が挙げられる。特開2010-189212号公報、特開2008-040171号公報、特開2006-011175号公報、国際公開第2004/113966号の開示内容のすべてを参照により本明細書に援用する。 Methods for obtaining a low refractive index layer having voids include, for example, the methods described in JP 2010-189212 A, JP 2008-040171 A, JP 2006-011175 A, WO 2004/113966 A, and references thereto. The disclosures of JP 2010-189212 A, JP 2008-040171 A, JP 2006-011175 A, and WO 2004/113966 A are all incorporated herein by reference.
 空隙を有する低屈折率層として、シリカ多孔体を好適に用いることができる。シリカ多孔体は、例えば、以下の方法で製造される。ケイ素化合物;加水分解性シラン類および/またはシルセスキオキサン、ならびにその部分加水分解物および脱水縮合物の少なくともいずれか1つを加水分解および重縮合させる方法、多孔質粒子および/または中空微粒子を用いる方法、ならびにスプリングバック現象を利用してエアロゲル層を生成する方法、ゾルゲル法により得られたゲル状ケイ素化合物を粉砕し、得られた粉砕体である微細孔粒子同士を触媒等で化学的に結合させた粉砕ゲルを用いる方法、等が挙げられる。ただし、低屈折率層は、シリカ多孔体に限定されず、製造方法も例示した製造方法に限定されず、どのような製造方法により製造しても良い。ただし、多孔質層は、シリカ多孔体に限定されず、製造方法も例示した製造方法に限定されず、どのような製造方法により製造しても良い。なお、シルセスキオキサンは、(RSiO1.5、Rは炭化水素基)を基本構成単位とするケイ素化合物であり、SiOを基本構成単位とするシリカとは厳密には異なるが、シロキサン結合で架橋されたネットワーク構造を有する点でシリカと共通しているので、ここではシルセスキオキサンを基本構成単位として含む多孔体もシリカ多孔体またはシリカ系多孔体という。 A porous silica body can be suitably used as a low refractive index layer having voids. The porous silica body is manufactured, for example, by the following method. Silicon compounds; a method of hydrolyzing and polycondensing at least one of hydrolyzable silanes and/or silsesquioxanes, and their partial hydrolyzates and dehydration condensates, a method of using porous particles and/or hollow fine particles, a method of generating an aerogel layer by utilizing the springback phenomenon, a method of using a crushed gel in which a gel-like silicon compound obtained by a sol-gel method is crushed and the resulting crushed body, that is, microporous particles, are chemically bonded to each other with a catalyst or the like, and the like. However, the low refractive index layer is not limited to a porous silica body, and the manufacturing method is not limited to the exemplified manufacturing method, and may be manufactured by any manufacturing method. However, the porous layer is not limited to a porous silica body, and the manufacturing method is not limited to the exemplified manufacturing method, and may be manufactured by any manufacturing method. Silsesquioxane is a silicon compound having ( RSiO1.5 , R is a hydrocarbon group) as a basic structural unit, and is strictly different from silica having SiO2 as a basic structural unit. However, it is common to silica in that it has a network structure cross-linked by siloxane bonds. Therefore, in this specification, a porous material containing silsesquioxane as a basic structural unit is also referred to as a silica porous material or a silica-based porous material.
 シリカ多孔体は、互いに結合したゲル状ケイ素化合物の微細孔粒子から構成され得る。ゲル状ケイ素化合物の微細孔粒子としては、ゲル状ケイ素化合物の粉砕体が挙げられる。シリカ多孔体は、例えば、ゲル状ケイ素化合物の粉砕体を含む塗工液を、基材に塗工して形成され得る。ゲル状ケイ素化合物の粉砕体は、例えば、触媒の作用、光照射、加熱等により化学的に結合(例えば、シロキサン結合)し得る。 The porous silica body may be composed of microporous particles of a gel-like silicon compound bonded together. Examples of the microporous particles of the gel-like silicon compound include pulverized bodies of the gel-like silicon compound. The porous silica body may be formed, for example, by applying a coating liquid containing the pulverized bodies of the gel-like silicon compound to a substrate. The pulverized bodies of the gel-like silicon compound may be chemically bonded (e.g., siloxane bonds) by, for example, the action of a catalyst, exposure to light, heating, etc.
 図12に、本発明の実施形態による導光部材10M2の模式的な斜視図を示す。 FIG. 12 shows a schematic perspective view of a light-guiding member 10M2 according to an embodiment of the present invention.
 導光部材10M2は、受光面RSと、受光面RSと反対側の出射面OSと、受光面RSと出射面OSとの間の4つの側面とを有する導光ブロック10Cを有している。導光ブロック10Cは、光拡散構造を有していない。導光部材10M2は、1つの側面の上に配置された光取り出し層20を有している。導光部材10M2は、光拡散構造の代わりに、受光面RS上に配置された、光拡散性を有する粘着剤層18を有している。粘着剤層18は、粘着剤マトリクス中に、粘着剤マトリクスと屈折率が異なる微粒子を分散させた光拡散性を有する粘着剤層18である。粘着剤層18は、出射面OSに設けてもよい。この導光部材10M2を用いても、上記の実施形態と同様の光学部材を得ることができる。 The light guide member 10M2 has a light guide block 10C having a light receiving surface RS, an exit surface OS opposite to the light receiving surface RS, and four side surfaces between the light receiving surface RS and the exit surface OS. The light guide block 10C does not have a light diffusion structure. The light guide member 10M2 has a light extraction layer 20 arranged on one side. Instead of a light diffusion structure, the light guide member 10M2 has an adhesive layer 18 having light diffusion properties arranged on the light receiving surface RS. The adhesive layer 18 is an adhesive layer 18 having light diffusion properties in which fine particles having a refractive index different from that of the adhesive matrix are dispersed in an adhesive matrix. The adhesive layer 18 may be provided on the exit surface OS. Even when this light guide member 10M2 is used, an optical member similar to the above embodiment can be obtained.
 図13A~図13Dに試作した光学部材の光学像を示す。 Figures 13A to 13D show optical images of the prototype optical components.
 図13Aに示す光学部材は、2つの導光ブロックを積み重ねることによって得た。図13Aは、光学部材に下側からLED(エーシック製 Al-1030)で光を照射した状態の光学像である。 The optical component shown in Figure 13A was obtained by stacking two light-guiding blocks. Figure 13A is an optical image of the optical component irradiated from below with light from an LED (Asic Al-1030).
 下側の導光ブロック(BLaという。)は、略直方体形状を有し、横幅100mm×奥行20mm×高さ40mmのアクリル板を用いて形成した。アクリル板の上面(出射面)を粗面化することによって微細な凹凸構造を形成した。微細な凹凸構造の平均粗さRaは2.0μmであった。4つの側面には光取り出し層を設けていない。したがって図13Aにおいて下側の導光ブロックは暗い。 The lower light guide block (referred to as BLa) has a roughly rectangular parallelepiped shape and is formed using an acrylic plate with dimensions of 100 mm width x 20 mm depth x 40 mm height. A fine uneven structure was formed by roughening the top surface (light output surface) of the acrylic plate. The average roughness Ra of the fine uneven structure was 2.0 μm. No light extraction layer was provided on the four side surfaces. Therefore, the lower light guide block is dark in Figure 13A.
 上側の2つ目の導光ブロック(BLbという。)は、下側の導光ブロックと同様に形成した導光ブロックを用いた。上面(出射面)に微細な凹凸構造の平均粗さRaは2.0μmであった。4つの側面のうち1つ(図中の正面)に光取り出し層を設けた。光取り出し層を特徴づけるパラメータ(図10、図11A、図11B参照)を以下に示す。
   厚さ:100μm
   凹部:L=80μm、W=20μm、H=10μm
   第1傾斜面:曲面(4次曲線)、傾斜角θa=30°
   第2傾斜面:平面(直線)、傾斜角θb=70°
   ピッチPx=200μm、ピッチPz=100μm、占有面積率5%
The second upper light guide block (referred to as BLb) was a light guide block formed in the same manner as the lower light guide block. The average roughness Ra of the fine uneven structure on the upper surface (exit surface) was 2.0 μm. A light extraction layer was provided on one of the four side surfaces (the front surface in the figure). The parameters characterizing the light extraction layer (see Figures 10, 11A, and 11B) are shown below.
Thickness: 100μm
Recess: L = 80 μm, W = 20 μm, H = 10 μm
First inclined surface: curved surface (fourth order curve), inclination angle θa = 30°
Second inclined surface: flat surface (straight line), inclination angle θb = 70°
Pitch Px = 200 μm, pitch Pz = 100 μm, occupied area ratio 5%
 また、光取り出し層の表面には、低屈折率層を形成し、低屈折率層の上にハードコート層を形成した。低屈折率層は、上述のシリカ多孔体を用いて形成し、屈折率は1.20で、厚さは約0.9μmであった。ハードコート層(表面硬度:2H~3H)は、最表面の中空シリカ層とその下の有機系導電性ハードコート層を用いて形成した。中空シリカ層の厚さは約80~100nmで、有機系導電性ハードコート層の厚さは約10μmであった。 In addition, a low refractive index layer was formed on the surface of the light extraction layer, and a hard coat layer was formed on the low refractive index layer. The low refractive index layer was formed using the above-mentioned porous silica body, had a refractive index of 1.20, and was approximately 0.9 μm thick. The hard coat layer (surface hardness: 2H-3H) was formed using a hollow silica layer on the outermost surface and an organic conductive hard coat layer underneath. The thickness of the hollow silica layer was approximately 80-100 nm, and the thickness of the organic conductive hard coat layer was approximately 10 μm.
 図13Bに示す光学部材は、図13Aに示した光学部材の上に、上記導光ブロックBLbと同じ構成の導光ブロック(3つ目の導光ブロック)を積み重ねることによって得た。図13Cに示す光学部材は、図13Bに示した光学部材の上に、さらに導光ブロックBLbと同じ構成の導光ブロック(4つ目の導光ブロック)を積み重ねることによって得た。図13Dに示す光学部材は、下から1つ目、3つ目、および5つ目の導光ブロックを上記導光ブロックBLaと同じ構成の導光ブロックとし、2つ目、4つ目および6つ目の導光ブロックを上記導光ブロックBLbと同じ構成の導光ブロックとした。 The optical member shown in FIG. 13B was obtained by stacking a light guiding block (third light guiding block) having the same configuration as the light guiding block BLb on top of the optical member shown in FIG. 13A. The optical member shown in FIG. 13C was obtained by stacking a light guiding block (fourth light guiding block) having the same configuration as the light guiding block BLb on top of the optical member shown in FIG. 13B. In the optical member shown in FIG. 13D, the first, third, and fifth light guiding blocks from the bottom are light guiding blocks having the same configuration as the light guiding block BLa, and the second, fourth, and sixth light guiding blocks are light guiding blocks having the same configuration as the light guiding block BLb.
 このように、光取り出し層を設けた導光ブロックから効率よく光を取り出せることが分かる。種々の導光ブロックを組み合わせた導光ブロック列を用いて、多様な照明や表示を行うことができる。また、導光ブロックの数、導光ブロックの種類、導光ブロック列の配置、およびこれらの組み合わせを利用者が容易に変更できる。 In this way, it can be seen that light can be extracted efficiently from a light guide block provided with a light extraction layer. A variety of illumination and display can be achieved by using a light guide block row that combines various light guide blocks. Furthermore, users can easily change the number of light guide blocks, the type of light guide block, the arrangement of the light guide block row, and the combinations of these.
 本発明の実施形態による光学装置、導光ブロックおよび光学部材は、ユーザーが容易にサイズを変更することができる、全く新しい利用形態を提供することができる。 The optical device, light-guiding block and optical member according to the embodiments of the present invention can provide a completely new form of use, allowing the user to easily change the size.
 10A:導光ブロック、10R1:導光ブロック列、20:光取り出し層、100A:光学部材 10A: Light guide block, 10R1: Light guide block row, 20: Light extraction layer, 100A: Optical member

Claims (11)

  1.  複数の導光ブロックが導光方向に沿って配列された少なくとも1つの導光ブロック列であって、前記複数の導光ブロックのそれぞれは、受光面と、前記受光面と反対側の出射面と、前記受光面と前記出射面との間の少なくとも3つの側面とを有し、前記受光面に形成された光拡散構造を有する第1導光ブロック、または、前記出射面に形成された光拡散構造を有する第2導光ブロックを含む、少なくとも1つの導光ブロック列と、
     前記第1導光ブロックが有する前記少なくとも3つの側面の少なくとも1つの側面の上に配置された光取り出し層、または、前記第2導光ブロックの前記出射面側に配置された導光ブロックが有する前記少なくとも3つの側面の少なくとも1つの側面の上に配置された光取り出し層と
     を有する、光学部材。
    at least one light guide block row in which a plurality of light guide blocks are arranged along a light guide direction, each of the plurality of light guide blocks having a light receiving surface, an emission surface opposite to the light receiving surface, and at least three side surfaces between the light receiving surface and the emission surface, the at least one light guide block row including a first light guide block having a light diffusion structure formed on the light receiving surface or a second light guide block having a light diffusion structure formed on the emission surface;
    a light extraction layer disposed on at least one of the at least three side surfaces of the first light guide block, or a light extraction layer disposed on at least one of the at least three side surfaces of a light guide block disposed on the exit surface side of the second light guide block.
  2.  前記光拡散構造は、前記受光面または前記出射面に形成された凹凸構造である、請求項1に記載の光学部材。 The optical element according to claim 1, wherein the light diffusion structure is a concave-convex structure formed on the light receiving surface or the light emitting surface.
  3.  前記凹凸構造は、前記受光面または前記出射面を粗面化することによって形成された微細な凹凸構造である、請求項2に記載の光学部材。 The optical element according to claim 2, wherein the uneven structure is a fine uneven structure formed by roughening the light receiving surface or the light emitting surface.
  4.  前記微細な凹凸構造の平均粗さRaは1.6μm以上100μm以下である、請求項3に記載の光学部材。 The optical member according to claim 3, wherein the average roughness Ra of the fine uneven structure is 1.6 μm or more and 100 μm or less.
  5.  前記少なくとも1つの導光ブロック列が有する前記複数の導光ブロックは、前記少なくとも3つの側面の上に光取り出し層を有しない、導光ブロックを含む、請求項1に記載の光学部材。 The optical member according to claim 1, wherein the plurality of light guide blocks in the at least one light guide block row includes a light guide block that does not have a light extraction layer on the at least three side surfaces.
  6.  前記光取り出し層は、内部全反射によって光を取り出す複数の内部空間を有する、請求項1に記載の光学部材。 The optical element according to claim 1, wherein the light extraction layer has a plurality of internal spaces that extract light by total internal reflection.
  7.  前記導光ブロックの形状は、略直方体である、請求項1に記載の光学部材。 The optical member according to claim 1, wherein the light guide block has a substantially rectangular parallelepiped shape.
  8.  前記少なくとも1つの導光ブロック列は、平行に配列された複数の導光ブロック列を含む、請求項1から7のいずれか1項に記載の光学部材。 The optical member according to any one of claims 1 to 7, wherein the at least one light guide block row includes a plurality of light guide block rows arranged in parallel.
  9.  前記少なくとも1つの導光ブロック列は、前記光拡散構造上に配置された接着剤層をさらに有する、請求項1から8のいずれか1項に記載の光学部材。 The optical member according to any one of claims 1 to 8, wherein the at least one light guide block row further includes an adhesive layer disposed on the light diffusion structure.
  10.  請求項1に記載の光学部材と、
     前記複数の導光ブロック列に向けて光を出射するように配置された光源と
    を有する、光学装置。
    The optical member according to claim 1 ;
    a light source arranged to emit light toward the plurality of light guide block rows.
  11.  受光面と、前記受光面と反対側の出射面と、前記受光面と前記出射面との間の少なくとも3つの側面とを有する導光ブロックと、
     前記少なくとも3つの側面の少なくとも1つの側面の上に配置された光取り出し層と、
     前記受光面および前記出射面の少なくとも一方の上に配置された、光拡散性を有する粘着剤層と
     を有する、導光部材。
    a light guiding block having a light receiving surface, an emission surface opposite the light receiving surface, and at least three side surfaces between the light receiving surface and the emission surface;
    a light extraction layer disposed on at least one of the at least three sides;
    a light-diffusing adhesive layer disposed on at least one of the light-receiving surface and the light-emitting surface.
PCT/JP2023/034395 2022-09-27 2023-09-22 Optical device, optical member, and light guide member WO2024070909A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022154038A JP2024048153A (en) 2022-09-27 2022-09-27 Optical device, optical member, and light-guiding member
JP2022-154038 2022-09-27

Publications (1)

Publication Number Publication Date
WO2024070909A1 true WO2024070909A1 (en) 2024-04-04

Family

ID=90477711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034395 WO2024070909A1 (en) 2022-09-27 2023-09-22 Optical device, optical member, and light guide member

Country Status (2)

Country Link
JP (1) JP2024048153A (en)
WO (1) WO2024070909A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000306411A (en) * 1999-04-23 2000-11-02 Enplas Corp Light guide plate, sidelight surface light source device and liquid-crystal display device
JP2001343599A (en) * 2000-03-27 2001-12-14 Ngk Insulators Ltd Display device and method of manufacturing the same
JP2006294256A (en) * 2005-04-05 2006-10-26 Mitsubishi Rayon Co Ltd Surface light source device and light guide body therefor
JP2011023353A (en) * 2009-07-14 2011-02-03 Lg Innotek Co Ltd Backlight unit
US9111493B2 (en) * 2010-09-14 2015-08-18 Sharp Kabushiki Kaisha Display device
WO2019182091A1 (en) * 2018-03-22 2019-09-26 日東電工株式会社 Optical device
JP2021501458A (en) * 2017-11-01 2021-01-14 日東電工株式会社 Light distribution structures and devices, related methods and applications

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000306411A (en) * 1999-04-23 2000-11-02 Enplas Corp Light guide plate, sidelight surface light source device and liquid-crystal display device
JP2001343599A (en) * 2000-03-27 2001-12-14 Ngk Insulators Ltd Display device and method of manufacturing the same
JP2006294256A (en) * 2005-04-05 2006-10-26 Mitsubishi Rayon Co Ltd Surface light source device and light guide body therefor
JP2011023353A (en) * 2009-07-14 2011-02-03 Lg Innotek Co Ltd Backlight unit
US9111493B2 (en) * 2010-09-14 2015-08-18 Sharp Kabushiki Kaisha Display device
JP2021501458A (en) * 2017-11-01 2021-01-14 日東電工株式会社 Light distribution structures and devices, related methods and applications
WO2019182091A1 (en) * 2018-03-22 2019-09-26 日東電工株式会社 Optical device

Also Published As

Publication number Publication date
JP2024048153A (en) 2024-04-08

Similar Documents

Publication Publication Date Title
KR100856459B1 (en) Brightness Enhancement Film Having Curved Prism Units and Matte
JP2742880B2 (en) Surface light source, display device using the same, and light diffusion sheet used for them
JP2007501443A5 (en)
WO2005085914A1 (en) Light control film and backlight device using it
JPWO2009054446A1 (en) Diffusion sheet
JP3860298B2 (en) Optical sheet, surface light source device, and transmissive display device
TWI639871B (en) Optical sheet for liquid crystal display device, backlight unit for liquid crystal display device and production method of optical sheet for liquid crystal display device
JP5330457B2 (en) Surface light source device and liquid crystal display device
JP5820609B2 (en) Surface light source device and liquid crystal display device
WO2022025067A1 (en) Lighting-device light guide member, lighting device, and building material
JP4551611B2 (en) Optical unit and backlight unit using the same
JP2010113037A (en) Light ray control unit
JP2019194690A (en) Optical plate with protrusions, optical structure, backlight module, and display device
JP2007041431A (en) Prism array sheet, edge light type surface illuminant, and transmission type image display device
JP5724527B2 (en) Light guide plate laminate and manufacturing method thereof
WO2024070909A1 (en) Optical device, optical member, and light guide member
TWI809126B (en) Optical member, optical sheet and method for fabricating optical sheet
CN110389475B (en) Optical plate with protruding part, optical structure, backlight module and display device
WO2005085915A1 (en) Light control film and backlight device using it
WO2024070908A1 (en) Lighting device
JP7462840B2 (en) Light guide member for lighting device and lighting device
JP2012103290A (en) Optical sheet, backlight unit and liquid crystal display device
TWI653472B (en) Prism lens for backlight unit and backlight unit for liquid crystal display device
JP2009244846A (en) Diffusion sheet
JPH117261A (en) Both-side surface light source element and both-side display device using the same