WO2024070902A1 - Compound, method for producing said compound, curable material, curable composition, method for producing cured article, and cured article - Google Patents

Compound, method for producing said compound, curable material, curable composition, method for producing cured article, and cured article Download PDF

Info

Publication number
WO2024070902A1
WO2024070902A1 PCT/JP2023/034362 JP2023034362W WO2024070902A1 WO 2024070902 A1 WO2024070902 A1 WO 2024070902A1 JP 2023034362 W JP2023034362 W JP 2023034362W WO 2024070902 A1 WO2024070902 A1 WO 2024070902A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
compound
methyl
alkyl group
Prior art date
Application number
PCT/JP2023/034362
Other languages
French (fr)
Japanese (ja)
Inventor
由依 長谷川
将太 小林
健一 玉祖
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Publication of WO2024070902A1 publication Critical patent/WO2024070902A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/12Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F20/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used

Definitions

  • the present invention relates to a compound, more specifically, to a compound having a reactive unsaturated bond and an epoxy group, and further to a curable composition containing at least one of the compounds and at least one selected from a curing agent and a polymerization initiator.
  • adhesives used in the assembly of camera modules and the like are required to have low-temperature curing properties to avoid thermal damage to image sensors and the like caused by high-temperature processing, and at the same time, they are also required to have short-time curing properties from the viewpoint of improving production efficiency.
  • ultraviolet-curing adhesives and thermosetting epoxy resin adhesives are often used as low-temperature, short-time curing adhesives.
  • ultraviolet-curing adhesives can cure quickly, they have the disadvantage that they cannot be used to bond areas that are not exposed to light.
  • thermosetting epoxy resin adhesives are low-temperature, short-time curing adhesives, they are not necessarily satisfactory because they require the members (components) to be bonded to be fixed with a jig or device in order to maintain the bonding position during bonding, and the viscosity decreases due to the temperature rise caused by heating, causing problems such as dripping just before curing or flowing to areas other than the desired area.
  • Patent Document 1 proposes a photo- and heat-curable composition containing a curable component consisting of a compound having a glycidyl group and a (meth)acryloyl group, a polythiol compound, and an epoxy curing accelerator.
  • Patent Document 2 proposes a curable composition containing a compound having a (meth)acryloyl group, a polythiol compound, a photoradical generator, and a latent curing agent, and also describes a compound having a (meth)acryloyl group and an epoxy group.
  • the epoxy (meth)acrylates described in Patent Documents 1 and 2 are merely compounds obtained by reacting an epoxy resin having two or more epoxy groups with (meth)acrylic acid to esterify a portion of the epoxy groups, and the structure of the compounds is limited.
  • Patent Document 3 proposes a compound having a (meth)acryloyl group and a glycidyl group, but this compound does not have sufficient curability to be used as a material in a light and heat curing system.
  • the object of the present invention is therefore to provide a compound that can be used in a curable composition that can be cured by light and heat, and to provide a curable composition that has excellent curing properties by light and heat.
  • the present invention provides a compound represented by the following general formula (1):
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 each independently represents an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 5 to 10 carbon atoms which may have a halogen atom as a substituent, or a halogen atom
  • R 3 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxymethyl group, a glycidyl ether group, a methyl glycidyl ether group, an acryloyloxymethyl group, or a methacryloyloxymethyl group
  • R 4 represents a hydrogen atom or a methyl group
  • n represents a number from 0 to 4.
  • the present invention also provides a compound represented by the following general formula (2):
  • R1 represents a hydrogen atom or a methyl group
  • R2 each independently represents an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 5 to 10 carbon atoms which may have a halogen atom as a substituent, or a halogen atom
  • R5 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxymethyl group, a glycidyl ether group, or a methylglycidyl ether group
  • n represents a number from 0 to 4.
  • the present invention also provides a method for producing a compound represented by formula (1), which comprises reacting a compound represented by the following formula (3) with epihalohydrin to produce a compound represented by formula (2), and then esterifying the compound with an acrylic acid ester and/or a methacrylic acid ester.
  • R2 's each independently represent an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 5 to 10 carbon atoms which may have a halogen atom as a substituent, or a halogen atom.
  • R6 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a hydroxymethyl group.
  • n represents a number from 0 to 4.
  • the present invention also relates to a compound represented by formula (1),
  • the present invention provides a curable material containing at least one of a compound represented by formula (2) and a compound represented by the following general formula (4):
  • R 7 independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkyl group having 1 to 10 carbon atoms as a substituent, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 5 to 10 carbon atoms which may have a hydroxyl group or a halogen atom, a hydroxyl group, or a halogen atom
  • R 8 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxyalkyl group, a glycidyl ether group, a methyl glycidyl ether group, a glycidyloxyalkyl group, a ⁇ -methyl gly
  • the present invention also provides a curable composition containing (A) at least one compound represented by the general formula (1) and (B) at least one curing agent, a cured product of the composition, and a method for producing the cured product, which includes a curing step of curing the composition.
  • the compound provided by the present invention is suitable as a material to be cured by light and heat.
  • the curable composition provided by the present invention has sufficient photocurability and excellent thermosetting properties, and therefore can be suitably used for dual curing in which temporary curing is performed by light and then main curing is performed by heat. Furthermore, according to the production method of the present invention, a compound suitable for a material cured by light and heat can be produced in an industrially advantageous manner.
  • FIG. 1 shows the results of DMA measurement of the resin composition obtained in Example 3.
  • FIG. 2 shows the results of DMA measurement of the resin composition obtained in Example 6.
  • the compound of the present invention represented by the general formula (1) (hereinafter also referred to as “compound (1)” or “component (A)”) has a glycidyl ether group and a reactive unsaturated bond, as described above, and therefore can provide a cured product by applying light and/or heat when used in combination with various curing agents and various polymerization initiators.
  • the reactive unsaturated bond is sometimes called an "ethylenically unsaturated bond.”
  • examples of the alkyl group having 1 to 20 carbon atoms represented by R2 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an amyl group, an isoamyl group, a tert-amyl group, a hexyl group, a heptyl group, an octyl group, a 2-ethylhexyl group, a nonyl group, an isononyl group, a decyl group, an isodecyl group, an undecyl group, a dodecyl group, a tridecyl group, a tetradecyl group, a pentadecyl group, a hexadecyl group, a heptadecy
  • examples of the alkoxy group having 1 to 20 carbon atoms represented by R2 include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, an amyloxy group, a hexyloxy group, a pentyloxy group, an octyloxy group, a nonyloxy group, and a decyloxy group.
  • examples of the halogen atom represented by R2 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • examples of unsubstituted aryl groups among the aryl groups represented by R 2 that may have a substituent include a phenyl group, a naphthyl group, etc.
  • substituent include an alkyl group having 1 to 10 carbon atoms, such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a secondary butyl group, a tertiary butyl group, an amyl group, an isoamyl group, a tertiary amyl group, a hexyl group, a heptyl group, an octyl group, a 2-ethylhexyl group, a nonyl group, an isononyl group, or a decyl group; an alkoxy group having 1 to 10 carbon atoms, such as a methoxy group, an
  • n is preferably an integer of 0 to 2, and in particular, n is 0 or 1, which is preferred because of excellent light- and heat-curing properties and easy availability of raw materials. Also, n is 0, or n is 1 or more, and R 2 is an alkyl group or methoxy group having 1 to 4 carbon atoms, which is preferred because of excellent light- and heat-curing properties and easy availability of raw materials. Among these, in the general formula (1), n is 0 or 1, and R 2 is an alkyl group or methoxy group having 1 to 4 carbon atoms, which is preferred, and in particular, n is 0.
  • examples of the alkyl group having 1 to 10 carbon atoms represented by R3 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an amyl group, an isoamyl group, a tert-amyl group, a hexyl group, a heptyl group, an octyl group, a 2-ethylhexyl group, a nonyl group, an isononyl group, and a decyl group.
  • R 3 is preferably an alkyl group having 1 to 10 carbon atoms, a hydroxymethyl group, a glycidyl ether group, or a methyl glycidyl ether group. Of these, an alkyl group having 1 to 10 carbon atoms is preferred, an alkyl group having 1 to 5 carbon atoms is particularly preferred, and a methyl group or an ethyl group is particularly preferred, with an ethyl group being the most preferred.
  • R 3 is the above group, the raw materials are easily available, and curing by light and heat at low cost becomes easier.
  • R4 is preferably a hydrogen atom in terms of excellent photocurability, and is preferably a methyl group in terms of excellent stability and cured product physical properties.
  • R 1 is preferably a hydrogen atom in terms of excellent thermosetting properties, and R 1 is preferably a methyl group in terms of excellent stability and physical properties of the cured product.
  • Compound (1) is a compound represented by any one of the following general formulas (1a), (1b) and (1c), and may exist as a mixture of these.
  • the compound represented by formula (1a) is preferred in that it has good photocurability
  • the compound represented by formula (1b) or (1c), especially (1c) is preferred in that the photo- and thermosetting product has high heat resistance and is less likely to crystallize.
  • R 1 , R 2 , R 3 , R 4 and n in the compounds represented by the general formulae (1a), (1b) and (1c) are those represented by the formula (1).
  • the compound (1) of the present invention and mixtures thereof preferably have a total chlorine content of 3000 ppm or less by mass. If the total chlorine content exceeds 3000 ppm, the concentration of chloride ions will be high, making the material prone to ion migration, and there is a risk of reduced reliability when used, for example, as an adhesive or sealant for electric and electronic components.
  • the titanium atom content is preferably 7000 ppm or less by mass. If the titanium atom content exceeds 7000 ppm, there is a risk of reduced radical polymerizability.
  • the total chlorine content is measured in accordance with ASTM D5808.
  • the titanium atom content can be measured in accordance with JIS K0116:2014.
  • R 1 , R 2 and n in the compound represented by the general formula (2) include those exemplified as R 1 , R 2 and n in the general formula (1) and those preferred examples thereof.
  • Examples of the alkyl group having 1 to 20 carbon atoms represented by R 5 include those exemplified as R 3 in the general formula (1).
  • the group represented by R 5 is preferably an alkyl group having 1 to 10 carbon atoms, a hydroxymethyl group, a glycidyl ether group or a methyl glycidyl ether group.
  • R 5 is the above group, raw materials are easily available, and a compound suitable for a photo- and heat-curable composition is easily provided.
  • R5 of compound (2) used as a raw material for compound (1) is preferably the same as R3 of the target compound (1).
  • R3 of compound (1) and R5 of compound (2) may be the same or different.
  • the compound represented by the general formula (2) has both an alcoholic hydroxyl group and a glycidyl group, and therefore can be used in a variety of applications.
  • the compound represented by the general formula (2) is useful in the present invention as a raw material for the compound represented by the general formula (1).
  • the compound represented by the general formula (2) is a compound represented by any one of the following general formulas (2a), (2b) or (2c), but may exist as a mixture.
  • the compounds represented by the formulas (2a), (2b) or (2c) are raw materials for the compounds represented by the formulas (1a), (1b) or (1c), respectively.
  • the compound represented by the formula (1a), (1b) or (1c) and the raw material compound (2) coexist, but this is not limited to this embodiment.
  • R 1 , R 2 , R 5 and n are the same as those in the formula (2).
  • the compound (2) of the present invention and mixtures thereof preferably have a total chlorine content of 3000 ppm or less by mass. If the total chlorine content exceeds 3000 ppm, the concentration of chloride ions will be high, making the material prone to ion migration, and there is a risk of reduced reliability when used, for example, as an adhesive or sealant for electric/electronic components.
  • the titanium atom content is 7000 ppm or less by mass. If the titanium atom content exceeds 7000 ppm, there is a risk of reduced radical polymerizability.
  • the method for producing the compound (1) of the present invention is not particularly limited, but it can be produced by utilizing the difference in reactivity between the phenolic hydroxyl group and the alcoholic hydroxyl group in a compound containing at least two hydroxyl groups represented by the following general formula (3), glycidyl etherifying only the phenolic hydroxyl group to produce compound (2), and acrylic esterifying or methacrylic esterifying the alcoholic hydroxyl group of compound (2).
  • Conventional techniques such as Patent Documents 1 and 2 esterify a part of the epoxy groups in an epoxy resin containing two or more epoxy groups with acrylic acid.
  • the present production method can utilize the above-mentioned difference in reactivity, making it easy to control the composition of the reaction product, and can provide a curable material suitable for a light and heat curing system at low cost while reducing purification costs. More specifically, in the present invention, for example, compound (1) can be produced by the production method described below.
  • the method for producing compound (2) of the present invention utilizes the difference in reactivity between a phenolic hydroxyl group and an alcoholic hydroxyl group in a compound represented by the following general formula (3) (hereinafter also referred to as "compound (3)”) to glycidyl etherify only the phenolic hydroxyl group:
  • R2 's each independently represent an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group which may have a substituent, or a halogen atom.
  • the substituent is a group selected from an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or a halogen atom.
  • R6 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a hydroxymethyl group.
  • n represents a number from 0 to 4.
  • R 2 and n in compound (3) examples include those exemplified and preferred for R 2 and n in the general formula (1).
  • Examples of the alkyl group having 1 to 20 carbon atoms represented by R 6 in compound (3) include those exemplified as R 3 in the general formula (1).
  • the group represented by R 6 is preferably an alkyl group having 1 to 10 carbon atoms or a hydroxymethyl group. Among them, for the same reasons as those described for R 5 , an alkyl group having 1 to 10 carbon atoms is preferred, an alkyl group having 1 to 5 carbon atoms is more preferred, a methyl group or an ethyl group is even more preferred, and an ethyl group is particularly preferred. It is preferable that R 6 of compound (3) used as a raw material for compound (2) is the same as R 5 of the target compound (2).
  • an alkali is added to a mixture of the compound represented by the general formula (3) and epihalohydrin to cause a reaction.
  • the method for adding the alkali include a method of adding an aqueous alkali solution dropwise and a method of adding a solid alkali, preferably in multiple batches.
  • Examples of the epihalohydrin include epichlorohydrin, epibromohydrin, and ⁇ -methylepichlorohydrin.
  • Examples of the alkali include metal hydroxides such as sodium hydroxide, potassium hydroxide, and calcium hydroxide.
  • the amount of epihalohydrin used when reacting the compound represented by the general formula (3) with epihalohydrin is preferably 3 to 50 times, more preferably 4 to 30 times, in terms of molar ratio, relative to the compound represented by the general formula (3).
  • the amount of the alkali used is preferably in the range of 0.8 to 1.5 moles, more preferably 0.9 to 1.2 moles, per mole of the compound represented by the general formula (3).
  • phase transfer catalyst such as tetrabutylammonium bromide.
  • no phase transfer catalyst is used in the reaction between the compound represented by the formula (3) and epihalohydrin means that the mass of the phase transfer catalyst is less than 1/100 of the mass of the compound represented by the formula (3).
  • the reaction of the compound represented by the general formula (3) with epihalohydrin is carried out under heating and increased or reduced pressure as necessary.
  • the reaction temperature is not particularly limited, but is preferably from 40° C. to 120° C., more preferably from 60° C. to 100° C., from the viewpoints of shortening the production time and improving the reaction efficiency.
  • the method for producing the compound represented by the general formula (1) by converting the compound represented by the general formula (2) into an acrylic acid ester or a methacrylic acid ester includes a method of esterification using an acrylic acid derivative and/or a methacrylic acid derivative.
  • examples of such a method include an esterification method using an acrylic ester such as methyl acrylate and/or a methacrylic ester such as methyl methacrylate in the presence of a catalyst such as dialkyltin oxide, tetraalkyl titanate, etc., and an esterification method using acryloyl chloride and/or methacryloyl chloride in the presence of a neutralizing agent such as triethylamine, etc.
  • the reaction temperature in the case where the former acrylic ester and/or methacrylic ester is used for esterification in the presence of a catalyst is preferably, for example, 50 to 100° C., and more preferably 70 to 90° C.
  • the reaction temperature in the case where the latter acryloyl chloride and/or methacryloyl chloride is used for esterification in the presence of a neutralizing agent is preferably, for example, 0 to 30° C.
  • the use of an acrylic acid ester and/or a methacrylic acid ester is preferred from the viewpoints of safety and reaction efficiency, particularly in terms of suppressing side reactions.
  • the amount of the acrylic acid derivative and/or methacrylic acid derivative used is preferably 2 times or more, more preferably 3 times or more, in terms of molar ratio, relative to the compound represented by the general formula (2).
  • the amount of the acrylic acid derivative and/or methacrylic acid derivative used is preferably 10 times or less, more preferably 7 times or less, in terms of molar ratio, relative to the compound represented by the general formula (2), in terms of production efficiency, etc.
  • the compound (1) and Examples of the curable material include a curable material containing at least one of compound (2) and a compound represented by the general formula (4) (hereinafter, also referred to as "compound (4)").
  • compound (4) a compound represented by the general formula (4)
  • compounds (2) and (4) are impurities when compound (1) is produced by the above-mentioned preferred production method, in that the above-mentioned effects can be obtained while reducing production costs.
  • Examples of the alkyl group having 1 to 20 carbon atoms, the alkoxy group having 1 to 20 carbon atoms, the aryl group having 5 to 10 carbon atoms which may have a substituent, and the halogen atom represented by R7 include the same groups as the alkyl group having 1 to 20 carbon atoms, the alkoxy group having 1 to 20 carbon atoms, the aryl group having 5 to 10 carbon atoms which may have a substituent, and the halogen atom represented by R2 in formula (1).
  • alkyl group having 1 to 10 carbon atoms, the alkoxy group having 1 to 10 carbon atoms, and the halogen atom as the substituent of the aryl group having 5 to 10 carbon atoms which is represented by R7 and which may be substituted examples thereof include the same groups as those exemplified above as the substituent of the aryl group having 5 to 10 carbon atoms which may be substituted and which is represented by R2 in formula (1).
  • Preferable examples of the group represented by R7 include the same groups as those preferred for R2 .
  • the preferred range of m is the same as that of n.
  • the preferred range of R9 is the same as that of R1 .
  • Examples of the hydroxyalkyl group in R8 include a hydroxymethyl group, a hydroxyethyl group, and a hydroxypropyl group.
  • Examples of the glycidyloxyalkyl group include a glycidyloxymethyl group and a glycidyloxyethyl group.
  • Examples of the acryloyloxyalkyl group include an acryloyloxymethyl group and an acryloyloxyethyl group.
  • Examples of the methacryloyloxyalkyl group include a methacryloyloxymethyl group and a methacryloyloxyethyl group.
  • R8 is preferably an alkyl group having 1 to 10 carbon atoms, a hydroxymethyl group, a glycidyl ether group, or a methyl glycidyl ether group, of which an alkyl group having 1 to 10 carbon atoms is preferred, an alkyl group having 1 to 5 carbon atoms is more preferred, a methyl group or an ethyl group is particularly preferred, and an ethyl group is most preferred.
  • R 7 , m, R 8 and R 9 of compound (4) generated as an impurity are the same as R 2 , n, R 3 and R 1 of the target compound (1), respectively.
  • R 7 , m, R 8 and R 9 of compound (4) and R 2 , n, R 3 and R 1 of compound (1), respectively may be the same or different.
  • the compound represented by the general formula (4) is a compound represented by any one of the following general formulas (4a), (4b) and (4c), and may exist as a mixture thereof.
  • the compounds represented by formula (4a), (4b) or (4c) are impurities of the compounds represented by formula (1a), (1b) or (1c), respectively.
  • the compound represented by formula (1a), (1b) or (1c) and the corresponding compound (4) coexist, but this is not limited thereto.
  • R 1 , R 2 , R 5 and n are the same as those in the formula (4).
  • the curable material of the present disclosure preferably contains compound (4) out of compounds (2) and (4) in terms of the heat resistance of the cured product obtained after curing.
  • the proportion of compound (1) in the total of compound (1), compound (2) and compound (4) is preferably 80 mass% or more, more preferably 90 mass% or more, and particularly preferably 95 mass% or more. This is because the lower limit provides an excellent effect of good photo- and thermosetting properties due to the compound of formula (1).
  • the upper limit of the proportion of compound (1) is preferably 100 mass% in the total of compound (1), compound (2) and compound (4), but when compound (2) and/or compound (4) are contained, it is preferably 99.5 mass% or less, more preferably 98 mass% or less, from the viewpoint of reducing production costs, etc.
  • the proportion of compound (2) in the total of compound (1), compound (2) and compound (4) is preferably 15% by mass or less, more preferably 10% by mass or less, and particularly preferably 6% by mass or less. This is because the content of the compound of formula (1) is ensured, and the effect of good photo- and heat-curing properties is excellent.
  • the amount is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, in the total of compound (1), compound (2) and compound (4), in view of production costs, heat resistance, etc.
  • the proportion of compound (4) in the total of compound (1), compound (2) and compound (4) is preferably 15% by mass or less, more preferably 10% by mass or less, and particularly preferably 5% by mass or less.
  • the proportion of compound (4) be less than this value, the content of the compound of formula (1) is ensured, and the effect of good photo- and heat-curing properties is excellent.
  • the amount is preferably 0.1% by mass or more, and more preferably 0.5% by mass or more, in view of production costs, heat resistance, etc.
  • curable composition Next, the curable composition of the present invention will be described in detail.
  • the curable composition of the present invention contains (A) at least one compound represented by the general formula (1) (hereinafter also referred to as “component (A)”) and (B) a curing agent (hereinafter also referred to as “component (B)”).
  • component (A) only compound (1) may be used, or, for example, the above-mentioned curable material may be used.
  • the curable composition of the present invention may contain a compound having at least one reactive unsaturated bond and at least one epoxy group other than the component (A).
  • examples of such compounds include glycidyl methacrylate, glycidyl ether of allylphenol, diglycidyl monoallyl ether, and epoxy acrylates.
  • R8 is an acryloyloxyalkyl group or a methallyloyloxyalkyl group
  • the compound (4) may also be used.
  • the curable composition of the present invention may also contain a compound having only an epoxy group or a compound having only a reactive unsaturated bond, among those having reactive unsaturated bonds and epoxy groups.
  • Examples of the compound having only an epoxy group include compound (2) and compound (4) (wherein R 8 is other than an acryloyloxyalkyl group or a methallyloyloxyalkyl group). Further, examples of the epoxy resin include known epoxy resins.
  • epoxy resin examples include polyglycidyl ether compounds of mononuclear polyhydric phenol compounds such as hydroquinone, resorcin, pyrocatechol, and phloroglucinol; dihydroxynaphthalene, biphenol, methylene bisphenol (bisphenol F), methylene bis(ortho-cresol), ethylidene bisphenol, isopropylidene bisphenol (bisphenol A), isopropylidene bis(ortho-cresol), tetrabromobisphenol A, 1,3-bis(4-hydroxycumylbenzene), 1,4-bis(4-hydroxycumylbenzene), 1,1,3-tris(4-hydroxycumylbenzene), and 1,1,3-tris(4-hydroxy- polyglycidyl ether compounds of polynuclear polyhydric phenol compounds such as 1,1,2,2-tetra(4-hydroxyphenyl)butane, 1,1,2,2-tetra(4-hydroxyphenyl
  • Polyglycidyl ethers of polyhydric alcohols such as rhythritol, sorbitol, bisphenol A-alkylene oxide adducts, and dicyclopentadiene dimethanol diglycidyl ether; glycidyl esters of aliphatic, aromatic, or alicyclic polybasic acids such as maleic acid, fumaric acid, itaconic acid, succinic acid, glutaric acid, suberic acid, adipic acid, azelaic acid, sebacic acid, dimer acid, trimer acid, phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid, trimesic acid, pyromellitic acid, tetrahydrophthalic acid, hexahydrophthalic acid, and endomethylenetetrahydrophthalic acid; glycidyl methacrylates; epoxidized products of cyclic olefin compounds such as vinylcyclohexen
  • epoxy resins may be internally crosslinked with a prepolymer of a terminal isocyanate, or may be polymerized using a polyvalent active hydrogen compound (polyhydric phenol, polyamine, carbonyl group-containing compound, polyphosphate, etc.).
  • a polyvalent active hydrogen compound polyhydric phenol, polyamine, carbonyl group-containing compound, polyphosphate, etc.
  • epoxy resins include, for example, Denacol EX-313, Denacol EX-314, Denacol EX-321, Denacol EX-411, Denacol EX-421, Denacol EX-512, Denacol EX-521, Denacol EX-611, Denacol EX-612, Denacol EX-614, Denacol EX-622, Denacol EX-830, Denacol EX-832, and Denacol EX- 841, Denacol EX-861, Denacol EX-920, Denacol EX-931, Denacol EX-201, Denacol EX-711, Denacol EX-721, (manufactured by Nagase ChemteX Corporation); Epolight 200E, Epolight 400E, Epolight 70P, Epolight 200P, Epolight 400P (manufactured by Kyoeisha Chemical Co., Ltd.), Adeka Resin EP-4088S, EP-4088L, EP
  • Examples of compounds having only reactive unsaturated bonds include N-alkyl group-containing (meth)acrylamide derivatives such as N-methyl(meth)acrylamide, N,N-dimethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, N-isopropyl(meth)acrylamide, N-butyl(meth)acrylamide, and N-hexyl(meth)acrylamide; N-alkoxy group-containing (meth)acrylamide derivatives such as N-methylol(meth)acrylamide, N-hydroxyethyl(meth)acrylamide, N-methylol-N-propane(meth)acrylamide, N-methoxymethylacrylamide, and N-ethoxymethylacrylamide; and N-acryloylmorphoacrylamide derivatives such as N-methylol(meth)acrylamide, N-hydroxyethyl(meth)acrylamide, N-methylol-N-propane(meth)acrylamide, N-methoxymethyl
  • (meth)acrylamide derivatives such as phosphorus, N-acryloylpiperidine, N-methacryloylpiperidine, and N-acryloylpyrrolidine; unsaturated aliphatic hydrocarbons such as ethylene, propylene, butylene, isobutylene, vinyl chloride, vinylidene chloride, vinylidene fluoride, and tetrafluoroethylene; (meth)acrylic acid, ⁇ -chloroacrylic acid, itaconic acid, maleic acid, citraconic acid, fumaric acid, hymic acid, crotonic acid, isocrotonic acid, vinylacetic acid, allylacetic acid, cinnamic acid, sorbic acid, mesaconic acid, mono[2-(meth)acryloyloxyethyl] succinate, mono[2-(meth)acryloyloxyethyl] phthalate, and ⁇ -carboxypolycaprolactone mono(meth)acrylate
  • Mono(meth)acrylates of polymers having a carboxy group and a hydroxyl group at both ends such as acrylates; unsaturated polybasic acids such as hydroxyethyl (meth)acrylate maleate, hydroxypropyl (meth)acrylate maleate, dicyclopentadiene maleate, or polyfunctional (meth)acrylates having one carboxy group and two or more (meth)acryloyl groups; 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, methyl (meth)acrylate, butyl (meth)acrylate, isobutyl (meth)acrylate, t-butyl (meth)acrylate, cyclohexyl (meth)acrylate, n-octyl (meth)acrylate, isopropyl (meth)acrylate, Octyl, isononyl (meth)acrylate, stearyl (meth)acrylate, lauryl (meth)acrylate
  • unsaturated aromatic compounds such as vinyl ether, 4-vinylbenzenesulfonic acid, vinylbenzyl methyl ether, and vinylbenzyl glycidyl ether; unsaturated ketones such as methyl vinyl ketone; unsaturated amine compounds such as vinylamine, allylamine, N-vinylpyrrolidone, and vinylpiperidine; vinyl alcohols such as allyl alcohol and crotyl alcohol; vinyl ethers such as vinyl methyl ether, vinyl ethyl ether, n-butyl vinyl ether, isobutyl vinyl ether, and allyl glycidyl ether; unsaturated imides such as maleimide, N-phenylmaleimide, and N-cyclohexylmaleimide; indenes such as indene and 1-methylindene; 1,3-butadiene, isoprene, chloro Aliphatic conjugated dienes such as propylene; macromonomers having a mono(meth)
  • the amount of component (A) (compound (1)) in the curable composition of the present invention is preferably 30% by mass or more and 99% by mass or less, and more preferably 50% by mass or more and 97% by mass or less.
  • the total amount of compounds having an epoxy group and/or a reactive unsaturated bond, including component (A) and compounds other than component (A) may also be 30% by mass or more and 99% by mass or less, or 50% by mass or more and 97% by mass or less, in the curable composition.
  • the amount of the other compounds is preferably 100 parts by mass or less, and more preferably 70 parts by mass or less, per 100 parts by mass of component (A).
  • Preferred examples of the curing agent (B) used in the curable resin composition of the present invention include amine-based curing agents, phenol-based curing agents, acid anhydride-based curing agents, polythiol-based curing agents, and polymerization initiators.
  • the amine-based curing agent may, for example, be alkylenediamines such as ethylenediamine, 1,2-diaminopropane, 1,3-diaminopropane, 1,3-diaminobutane, 1,4-diaminobutane, or hexamethylenediamine; polyalkylpolyamines such as diethylenetriamine, triethylenetriamine, or tetraethylenepentamine; 1,4-diaminocyclohexane, 1,3-diaminocyclohexane, 1,3-diaminomethylcyclohexane, 1,2-diaminocyclohexane, 1,4-diamino-3,6-diethylcyclohexane, or 4,4' alicyclic polyamines such as 1,3-diaminodicyclohexylmethane, 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(a
  • benzylmethylaminoethylamine N,N-dibenzylaminoethylamine, N,N-cyclohexylmethylaminoethylamine, N,N-dicyclohexylaminoethylamine, N-(2-aminoethyl)pyrrolidine, N-(2-aminoethyl)piperidine, N-(2-aminoethyl)morpholine, N-(2-aminoethyl)piperazine, N-(2-aminoethyl)-N'-methylpiperazine, N,N-dimethylaminopropylamine, N,N-diethylaminopropylamine, N,N-diisopropylaminopropylamine, N,N-diallylaminopropylamine Propylamine, N,N-benzylmethylaminopropylamine, N,N-dibenzylaminopropylamine, N,
  • the amine-based curing agent may be an amine-based latent curing agent obtained by various modifications.
  • modified amines include dehydration condensation products of the amine compound and a carboxylic acid, adducts of the amine compound and an epoxy compound (a compound exemplified as the epoxy resin), adducts of the amine compound and an isocyanate compound (an isocyanate compound exemplified below), Michael adducts of amine compounds, Mannich reaction products of amine compounds, condensates of amine compounds and urea, and condensates of amine compounds and ketones.
  • dibasic acid dihydrazides such as oxalic acid dihydrazide, malonic acid dihydrazide, succinic acid dihydrazide, glutaric acid dihydrazide, adipic acid dihydrazide, suberic acid dihydrazide, azelaic acid dihydrazide, sebacic acid dihydrazide, and phthalic acid dihydrazide
  • guanamines such as benzoguanamine and acetoguanamine
  • dicyandiamide melamine
  • melamine-based latent curing agents can also be used as amine-based latent curing agents.
  • isocyanate compound examples include aromatic diisocyanates such as 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, diphenylmethane-4,4'-diisocyanate, phenylene diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, 1,5-naphthylene diisocyanate, 1,5-tetrahydronaphthalene diisocyanate, 3,3'-dimethyldiphenyl-4,4'-diisocyanate, dianisidine diisocyanate, and tetramethylxylylene diisocyanate; isophorone diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, Examples of the diisocyanates include alicyclic diisocyanates such as trans-1,4-cyclohexyl diisocyanate and norbornene diisocyanate
  • phenol-based hardener examples include polyhydric phenol compounds such as phenol novolac resin, cresol novolac resin, aromatic hydrocarbon formaldehyde resin modified phenol resin, dicyclopentadiene phenol addition type resin, phenol aralkyl resin (Zylok resin), naphthol aralkyl resin, trisphenylol methane resin, tetraphenylol ethane resin, naphthol novolac resin, naphthol-phenol co-condensed novolac resin, naphthol-cresol co-condensed novolac resin, biphenyl modified phenol resin (a polyhydric phenol compound in which the phenol nucleus is linked by a bismethylene group), biphenyl modified naphthol resin (a polyhydric naphthol compound in which the phenol nucleus is linked by a bismethylene group), aminotriazine modified phenol resin (a compound having a phenol skeleton, a triazine modified
  • acid anhydride curing agents examples include himic anhydride, phthalic anhydride, maleic anhydride, methyl himic anhydride, succinic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, trialkyltetrahydrophthalic anhydride-maleic anhydride adduct, benzophenonetetracarboxylic anhydride, trimellitic anhydride, pyromellitic anhydride, and hydrogenated methylnadic anhydride.
  • polythiol-based curing agent examples include pentaerythritol tetrakis(3-mercaptopropionate), pentaerythritol tetrakis(thioglycolate), dipentaerythritol hexakis(3-mercaptopropionate), dipentaerythritol hexakis(3-mercaptobutyrate), 1,3,4,6-tetrakis(2-mercaptoethyl)-1,3,4,6-tetraazaochydropentalene-2,5-dione, 1,3,5 ...
  • the amine-based curing agents, phenol-based curing agents, acid anhydride-based curing agents, and polythiol-based curing agents are known as curing agents for epoxy resins, and examples of commercially available products thereof include ADEKA HARDENER EH-3636S (manufactured by ADEKA Corporation; dicyandiamide-type latent curing agent), ADEKA HARDENER EH-4351S (manufactured by ADEKA Corporation; dicyandiamide-type latent curing agent), ADEKA HARDENER EH-5011S (manufactured by ADEKA Corporation; imidazole-type latent curing agent), ADEKA HARDENER EH-5046S (manufactured by ADEKA Corporation; imidazole-type latent curing agent), ADEKA HARDENER EH-4357S (manufactured by ADEKA Corporation; polyamine-type latent curing agent), Examples include ADEKA HARDNER EH-5057
  • the amount of the epoxy resin curing agent (a curing agent selected from the amine-based curing agents, phenol-based curing agents, acid anhydride-based curing agents, and polythiol-based curing agents) used is not particularly limited, but is preferably 100 parts by mass or less, and more preferably 2 to 50 parts by mass, per 100 parts by mass of component (A).
  • the amount is preferably 100 parts by mass or less, and more preferably 2 to 50 parts by mass, per 100 parts by mass of the total of the other compounds and component (A).
  • the curable composition of the present invention can also use a curing catalyst in combination with the epoxy resin curing agent.
  • the curing catalyst include phosphine compounds such as triphenylphosphine; phosphonium salts such as tetraphenylphosphonium bromide; amines such as benzyldimethylamine and 2,4,6-tris(dimethylaminomethyl)phenol; quaternary ammonium salts such as trimethylammonium chloride; ureas such as 3-(p-chlorophenyl)-1,1-dimethylurea, 3-(3,4-dichlorophenyl)-1,1-dimethylurea, 3-phenyl-1,1-dimethylurea, isophorone diisocyanate-dimethylurea, and tolylene diisocyanate-dimethylurea; and complexes of boron trifluoride with tertiary amines, ether compounds, and the like.
  • the amount of the curing catalyst used in the curable composition of the present invention is preferably 0.01 to 20 parts by mass per 100 parts by mass of component (A).
  • the amount is preferably 0.01 to 20 parts by mass per 100 parts by mass of the total of the other compounds and component (A).
  • the polymerization initiator may be a thermal radical polymerization initiator, a photoradical polymerization initiator, or a cationic polymerization initiator.
  • the polymerization initiator may be a thermal radical polymerization initiator, a photoradical polymerization initiator, or a cationic polymerization initiator.
  • the thermal radical polymerization initiator is not particularly limited as long as it generates radicals when heated, and any conventionally known compound can be used.
  • preferred examples include azo compounds, peroxides, and persulfates.
  • azo compounds examples include 2,2'-azobisisobutyronitrile, 2,2'-azobis(methyl isobutyrate), 2,2'-azobis-2,4-dimethylvaleronitrile, 1,1'-azobis(1-acetoxy-1-phenylethane), etc.
  • peroxide examples include benzoyl peroxide, di-t-butylbenzoyl peroxide, t-butyl peroxypivalate, and di(4-t-butylcyclohexyl) peroxydicarbonate.
  • persulfate examples include ammonium persulfate, sodium persulfate, potassium persulfate, and other persulfates.
  • the photoradical polymerization initiator is not particularly limited as long as it generates radicals upon irradiation with light, and any conventionally known compound can be used.
  • Preferred examples include acetophenone-based compounds, benzyl-based compounds, benzophenone-based compounds, thioxanthone-based compounds, and oxime ester-based compounds.
  • the acetophenone compounds include, for example, diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 4'-isopropyl-2-hydroxy-2-methylpropiophenone, 2-hydroxymethyl-2-methylpropiophenone, 2,2-dimethoxy-1,2-diphenylethan-1-one, p-dimethylaminoacetophenone, p-tert-butyldichloroacetophenone, p-tert-butyltrichloroacetophenone, p-azidobenzalacetophenone, 1-hydroacetophenone, Examples include cyclohexyl phenyl ketone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropanone-1, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1, benzoin, benzoin methyl ether, benzoin ethyl ether,
  • benzyl compounds examples include benzyl.
  • benzophenone-based compounds examples include benzophenone, o-benzoylmethylbenzoate, Michler's ketone, 4,4'-bisdiethylaminobenzophenone, 4,4'-dichlorobenzophenone, and 4-benzoyl-4'-methyldiphenyl sulfide.
  • thioxanthone compounds examples include thioxanthone, 2-methylthioxanthone, 2-ethylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, and 2,4-diethylthioxanthone.
  • the oxime ester compound refers to a compound having an oxime ester group, and since it has good sensitivity among the photoradical polymerization initiators, it can be preferably used in the curable composition of the present invention.
  • oxime ester compounds compounds having a carbazole skeleton, a diphenyl sulfide skeleton, or a fluorene skeleton have particularly high sensitivity and can therefore be preferably used in the curable composition of the present invention.
  • radical polymerization initiators include phosphine oxide compounds such as 2,4,6-trimethylbenzoyldiphenylphosphine oxide and titanocene compounds such as bis(cyclopentadienyl)-bis[2,6-difluoro-3-(pyr-1-yl)]titanium.
  • radical polymerization initiators include ADEKA OPTOMER N-1414, N-1717, N-1919, ADEKA ARCLES NCI-831, NCI-930 (all manufactured by ADEKA); IRGACURE 184, IRGACURE 369, IRGACURE 651, IRGACURE 907, IRGACURE OXE 01, IRGACURE OXE 02, IRGACURE 784 (all manufactured by BASF); TR-PBG-304, TR-PBG-305, TR-PBG-309, and TR-PBG-314 (all manufactured by Tronly); and the like.
  • the cationic polymerization initiator may be any compound capable of releasing a substance that initiates cationic polymerization by irradiation with energy rays or heating, but is preferably a double salt, which is an onium salt that releases a Lewis acid by irradiation with energy rays, or a derivative thereof.
  • Representative examples of such compounds include those represented by the following general formula: [A] r+ [B] r- Examples of the salt include salts of cations and anions represented by the following formula:
  • the cation [A] r+ is preferably an onium, and its structure is, for example, represented by the following general formula: [( R12 ) aQ ] r+ It can be expressed as:
  • R 12 is an organic group having 1 to 60 carbon atoms and may contain any number of atoms other than carbon atoms.
  • a is an integer from 1 to 5.
  • a R 12 are each independent and may be the same or different. At least one is preferably an organic group having an aromatic ring as described above.
  • the anion [B] r- is preferably a halide complex, the structure of which is, for example, represented by the following general formula: It can be represented by [LY b ] r- .
  • L is a metal or semimetal (Metalloid) that is the central atom of the halide complex, and is B, P, As, Sb, Fe, Sn, Bi, Al, Ca, In, Ti, Zn, Sc, V, Cr, Mn, Co, etc.
  • Y is a halogen atom.
  • b is an integer of 3 to 7.
  • anion [LY b ] r- in the above general formula examples include tetrakis(pentafluorophenyl)borate, tetra(3,5-difluoro-4-methoxyphenyl)borate, tetrafluoroborate (BF 4 ) - , hexafluorophosphate (PF 6 ) - , hexafluoroantimonate (SbF 6 ) - , hexafluoroarsenate (AsF 6 ) - , hexachloroantimonate (SbCl 6 ) - , and the like.
  • the anion [B] r- is represented by the following general formula: [LY b-1 (OH)] r It is also preferable to use a structure represented by the following formula: L, Y and b are the same as above.
  • Other usable anions include perchlorate ion ( ClO4 ) - , trifluoromethylsulfite ion ( CF3SO3 ) - , fluorosulfonate ion ( FSO3 ) - , toluenesulfonate anion, trinitrobenzenesulfonate anion, camphorsulfonate, nonafluorobutanesulfonate, hexadecafluorooctane sulfonate, tetraarylborate, and tetrakis(pentafluorophenyl)borate.
  • aromatic onium salts (a) to (c) below it is particularly effective to use the aromatic onium salts (a) to (c) below.
  • one type may be used alone, or two or more types may be used in combination.
  • Aryl diazonium salts such as phenyl diazonium hexafluorophosphate, 4-methoxyphenyl diazonium hexafluoroantimonate, and 4-methylphenyl diazonium hexafluorophosphate.
  • the amount of the polymerization initiator used in the hardener composition of the present invention is preferably 0.001 to 20 parts by mass per 100 parts by mass of component (A).
  • the amount of the polymerization initiator used can be 0.001 to 20 parts by mass per 100 parts by mass of the total of the other compounds and component (A). By keeping the amount to 20 parts by mass or less, the effect on various physical properties such as the water absorption rate and strength of the cured product can be suppressed.
  • a sensitizer and a sensitizer assistant can be used.
  • the sensitizer and the sensitizer assistant include anthracene-based compounds and naphthalene-based compounds.
  • anthracene-based compounds include 9,10-dimethoxyanthracene, 9,10-diethoxyanthracene, 9,10-dipropoxyanthracene, 9,10-diisopropoxyanthracene, 9,10-dibutoxyanthracene, 9,10-dipentyloxyanthracene, 9,10-dihexyloxyanthracene, 9,10-bis(2-methoxyethoxy)anthracene, 9,10-bis(2-ethoxyethoxy)anthracene, 9,10-bis(2-butoxyethoxy)anthracene, 9,10-bis(3-butoxypropoxy)anthracene, 2-methyl- or 2-ethyl-9,10-dimethoxyanthracene, 2-methyl- or 2-ethyl-9,10-diethoxyanthracene, 2-methyl- or 2-ethyl-9,10-dipropoxyanthracene, 2-methyl- or 2-
  • naphthalene compounds examples include 4-methoxy-1-naphthol, 4-ethoxy-1-naphthol, 4-propoxy-1-naphthol, 4-butoxy-1-naphthol, 4-hexyloxy-1-naphthol, 1,4-dimethoxynaphthalene, 1-ethoxy-4-methoxynaphthalene, 1,4-diethoxynaphthalene, 1,4-dipropoxynaphthalene, 1,4-dibutoxynaphthalene, etc.
  • the curable composition of the present invention may contain, as necessary, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, N-(2-aminoethyl)-3-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldiethoxysilane, N-(2-aminoethyl)-8-aminooctyltrimethoxysilane.
  • aminosilane compounds such as 3-mercaptopropyltrimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropylmethyldimethoxy ...
  • Silane coupling agents such as epoxy silane compounds such as propyltriethoxysilane; reactive or non-reactive diluents (plasticizers) such as monoglycidyl ethers, dioctyl phthalate, dibutyl phthalate, benzyl alcohol, and coal tar; fillers or pigments such as glass fiber, carbon fiber, cellulose, silica sand, cement, kaolin, clay, aluminum hydroxide, bentonite, talc, silica, finely powdered silica, titanium dioxide, carbon black, graphite, iron oxide, and bituminous substances; lubricants such as candelilla wax, carnauba wax, Japan wax, Japanese ibote wax, beeswax, lanolin, spermaceti, montan wax, petroleum wax, fatty acid wax, fatty acid esters, fatty acid ethers, aromatic esters, and aromatic ethers; thickeners; thixotropic agents; antioxidants
  • the curable composition of the present invention can be cured by light and/or heat by changing the type of curing agent, which is the component (B), or by using a combination of multiple curing agents.
  • the curable composition of the present invention can be suitably adopted in a method of using a photopolymerization initiator and an amine-based curing agent as the component (B) in combination, provisionally curing by light irradiation, and then thermally curing. In that case, if a large amount of a compound having only an epoxy group and/or a compound having only a reactive unsaturated bond is contained, the curing may be insufficient or the physical properties of the cured product may be deteriorated.
  • the total amount of the compound having only an epoxy group and/or the compound having only a reactive unsaturated bond is preferably 100 parts by mass or less, more preferably 70 parts by mass or less, relative to 100 parts by mass of the compound (A) component of the present invention.
  • the photopolymerization initiator is preferably a photoradical polymerization initiator.
  • the method for producing the cured product of the present disclosure includes a curing step of curing the curable composition.
  • the curing method in the curing step is at least one of heating and light irradiation, and preferably both.
  • the light to be irradiated may include light having a wavelength of 300 nm to 450 nm.
  • Examples of light sources used in photocuring include low pressure mercury lamps, medium pressure mercury lamps, high pressure mercury lamps, ultra-high pressure mercury lamps, xenon lamps, metal halogen lamps, electron beam irradiation devices, X-ray irradiation devices, and lasers (argon lasers, dye lasers, nitrogen lasers, LEDs, helium cadmium lasers, etc.).
  • the heating temperature for thermal curing may be any temperature that can stably cure the cured product, and is set appropriately depending on the type of curing agent, etc., but is preferably from 10°C to 250°C, and more preferably from 60°C to 200°C.
  • the cured product of the curable composition of the present invention is preferably a cured product obtained by photocuring followed by thermal curing, as this has excellent properties such as heat resistance.
  • the applicant believes that this description describes a state. Even if this description were to specify an object by a manufacturing method, there are circumstances in which it would be impossible or impractical to specify a structure or properties other than those described in this specification for a cured product obtained by curing a curable compound under specified conditions, as this would require a significant amount of experimental time.
  • the curable composition of the present invention can be used in a wide range of applications, such as paints, adhesives, pressure sensitive adhesives, coating agents, fiber bundling agents, building materials, and electronic components. In particular, because it has excellent light and heat curing properties, it can be used in applications where dual curing is possible. Due to these properties, the curable composition of the present invention can be suitably used in applications such as liquid sealants, liquid adhesives, liquid crystal sealants, and adhesives for camera modules.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 each independently represents an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 5 to 10 carbon atoms which may have a halogen atom as a substituent, or a halogen atom
  • R 3 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxymethyl group, a glycidyl ether group, a methyl glycidyl ether group, an acryloyloxymethyl group, or a methacryloyloxymethyl group
  • R 4 represents a hydrogen atom or a methyl group
  • n represents a number from 0 to 4.
  • R1 represents a hydrogen atom or a methyl group
  • R2 each independently represents an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 5 to 10 carbon atoms which may have a halogen atom as a substituent, or a halogen atom
  • R5 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxymethyl group, a glycidyl ether group, or a methylglycidyl ether group
  • n represents a number from 0 to 4.
  • a method for producing a compound represented by the general formula (1) comprising reacting a compound represented by the following general formula (3) with epihalohydrin to produce a compound represented by the general formula (2), and then esterifying the compound with an acrylic acid derivative and/or a methacrylic acid derivative:
  • R2 's each independently represent an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 5 to 10 carbon atoms which may have a halogen atom as a substituent, or a halogen atom.
  • R6 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a hydroxymethyl group.
  • n represents a number from 0 to 4.
  • R 7 independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkyl group having 1 to 10 carbon atoms as a substituent, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 5 to 10 carbon atoms which may have a hydroxyl group or a halogen atom, a hydroxyl group, or a halogen atom,
  • R 8 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxyalkyl group, a glycidyl ether group, a
  • R 9 represents a hydrogen atom or a methyl group.
  • m represents a number from 0 to 4.
  • a curable composition comprising (A) at least one compound according to the above item [1] and (B) at least one curing agent.
  • a method for producing a cured product comprising a curing step of curing the curable composition according to [6] or [7].
  • Example 1 Production of DOP-EP (compound represented by the following formula) 238g (1.0 mol) of DOP (compound represented by the following formula) and 463g (5.0 mol, 5.0 equivalents) of epichlorohydrin were charged into a flask equipped with a reflux device, a stirrer and a dropping device. 79g (0.95 mol) of 48% by mass aqueous sodium hydroxide solution was dropped at 65-70°C and 21.0 kPa over 2 hours and 30 minutes. After the reaction was completed, the excess epichlorohydrin was distilled off under reduced pressure.
  • Example 2 Production of DOP-EP-AC (compound represented by the following formula)
  • 236 g (0.80 mol) of the compound DOP-EP obtained above and 310 g (3.6 mol, 4.5 equivalents) of methyl acrylate were charged.
  • 6.8 g (2.5 mol%) of tetrabutoxytitanium and 353 g (150 mass%) of toluene were charged, and the mixture was stirred at 81°C to 87°C for 11 hours to remove methanol and carry out an esterification reaction.
  • Example 3 100 parts by mass of DOP-EP-AC obtained in Example 2, 3 parts by mass of Irgacure 184 (manufactured by BASF; 1-hydroxycyclohexan-1-yl phenyl ketone), and 3 parts by mass of 2-ethyl-4-methylimidazole were kneaded with a planetary stirrer to prepare a curable composition.
  • the curable composition prepared above was applied to a glass plate with a thickness of 300 ⁇ m with a bar coater to obtain a coating film.
  • the obtained curable composition was photocured under the following conditions, or photocured and heat cured in this order, and the dynamic viscoelasticity test of the cured product was performed under the following conditions. The results are shown in FIG. 1.
  • Example 4 Production of DOP2-EP (compound represented by the following formula) 160g (0.67 mol) of DOP2 (compound represented by the following formula) and 496g (5.4 mol, 8.0 equivalents) of epichlorohydrin were charged into a flask equipped with a reflux device, a stirrer and a dropping device. 53.3g (0.64 mol) of 48% by mass aqueous sodium hydroxide solution was dropped thereto at 65-70°C and 18.0 kPa over 2 hours and 30 minutes. After the reaction was completed, the excess epichlorohydrin was distilled off under reduced pressure.
  • Example 5 Production of DOP2-EP-AC (compound represented by the following formula)
  • 130 g (0.44 mol) of the compound DOP2-EP obtained above and 148 g (1.7 mol, 3.9 equivalents) of methyl acrylate were charged.
  • 3.8 g (2.5 mol%) of tetrabutoxytitanium and 195 g (150 mass%) of toluene were charged, and a methanol removal reaction was carried out while stirring at 81°C to 87°C for 21 hours.
  • Example 6 100 parts by mass of DOP2-EP-AC obtained in Example 5, 3 parts by mass of Irgacure 184 (manufactured by BASF; 1-hydroxycyclohexan-1-yl phenyl ketone), and 3 parts by mass of 2-ethyl-4-methylimidazole were kneaded with a planetary stirrer to prepare a curable composition.
  • the curable composition prepared above was applied to a glass plate with a thickness of 300 ⁇ m using a bar coater to obtain a coating film.
  • the obtained curable composition was photocured and heat cured in this order under the following conditions, and the dynamic viscoelasticity test of the cured product was performed under the following conditions. The results are shown in FIG.
  • UV light was applied for 2.0 seconds at 0.5 W using a HOYA LED-UV irradiator LS series.
  • Heat curing heated in a heat circulation oven at 150° C. for 2 hours.
  • DMA dynamic viscoelasticity measurement: The glass transition point (Tg) was measured using an RSA manufactured by TA Instruments Co., Ltd. A rectangular test piece having a width of 5 mm, a length of 60 mm, and a thickness of 300 ⁇ m was prepared.
  • the compound obtained in Example 2 had sufficient photocurability and also excellent thermosetting properties.
  • the compound obtained in Example 5 also had sufficient photocurability.
  • the photo- and thermosetting product using the compound obtained in Example 5 showed a certain degree of curability with no significant decrease in storage modulus E' up to the thermosetting temperature of over 150°C. It can also be seen that the photo- and thermosetting product using the compound of Example 5 has a glass transition point of 183°C and is therefore highly heat resistant.
  • the compound provided by the present invention can provide a curable composition with excellent photo- and thermal curability.
  • Example 7 Production of DOP2-EP/DOP2-EP-AC mixture
  • 130 g (0.44 mol) of the compound DOP2-EP obtained above and 148 g (1.7 mol, 3.9 equivalents) of methyl acrylate were charged.
  • 3.8 g (2.5 mol%) of tetrabutoxytitanium and 195 g (150 mass%) of toluene were charged, and a methanol removal reaction was carried out while stirring at 81°C to 87°C for 12 hours.
  • Example 8 Production of a mixture of DOP2-EP/DOP2-EP2 (compounds represented by the following formula) 160g (0.67 mol) of DOP2 and 496g (5.4 mol, 8.0 equivalents) of epichlorohydrin were charged into a flask equipped with a reflux device, a stirrer, and a dropping device. 53.3g (0.70 mol) of 48% by mass aqueous sodium hydroxide solution was dropped at 65-70°C and 18.0 kPa over 2 hours and 30 minutes. After the reaction was completed, the excess epichlorohydrin was distilled off under reduced pressure.
  • a curable composition was prepared by kneading 100 parts by mass of the curable material 1 obtained in Example 7 or the curable material 3 obtained in Example 9, 3 parts by mass of Irgacure 184 (manufactured by BASF; 1-hydroxycyclohexan-1-yl phenyl ketone) and 3 parts by mass of 2-ethyl-4-methylimidazole with a planetary stirrer.
  • the curable composition prepared above was applied to a glass plate with a thickness of 300 ⁇ m with a bar coater to obtain a coating film.
  • the obtained curable composition was subjected to photocuring and heat curing in this order under the following conditions, and the presence or absence of curing (A, B) was confirmed according to the following evaluation criteria.
  • Photocuring UV light was applied for 2.0 seconds at 0.5 W using a HOYA LED-UV irradiator LS series.
  • evaluation Criteria for Photocurability A: After photocuring and before thermal curing, it was confirmed that curing had progressed sufficiently and a releasable coating film had been formed.
  • Heat curing heated in a heat circulation oven at 150° C. for 2 hours.
  • the curable composition containing a mixture of the compound of formula (1) and the compound of formula (2) and/or the compound of formula (4) also has sufficient photocurability and thermosetting properties.
  • the compound of the present invention can be cured by light and heat, and the curable composition obtained by containing it has excellent curing properties by light and heat, so it can be used for applications such as liquid sealants, liquid adhesives, adhesives for camera modules, and liquid crystal sealants.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Epoxy Compounds (AREA)

Abstract

Provided is a compound represented by formula (1). (In the formula, R1 represents a hydrogen atom or a methyl group; R2 represents an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group which may have a substituent, or a halogen atom; R3 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxymethyl group, a glycidyl ether group, a methyl glycidyl ether group, an acryloyloxymethyl group or a methacryloyloxymethyl group; R4 represents a hydrogen atom or a methyl group; the substituent is a group selected from an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms and a halogen atom; and n represents a numerical value of 0 to 4.)

Description

化合物、該化合物の製造方法、硬化性材料、硬化性組成物、硬化物の製造方法及び硬化物Compound, method for producing said compound, curable material, curable composition, method for producing cured product, and cured product
 本発明は化合物に関し、詳しくは、反応性不飽和結合とエポキシ基とを有する化合物に関するものであり、更に該化合物の少なくとも一種と、硬化剤及び重合開始剤の中から選ばれる少なくとも一種とを含有してなる硬化性組成物に関する。 The present invention relates to a compound, more specifically, to a compound having a reactive unsaturated bond and an epoxy group, and further to a curable composition containing at least one of the compounds and at least one selected from a curing agent and a polymerization initiator.
 近年、スマートフォン等の携帯機器の薄型化に伴い、スマートフォン等の携帯機器に搭載されるカメラモジュールは小型化されてきている。カメラモジュールの小型化により、カメラモジュールの構成部材同士を接合する部位も微細になってきているため、これらを接合する接着剤から形成される接着層には高い接着強度が要求される。 In recent years, as mobile devices such as smartphones have become thinner, the camera modules installed in such devices have become smaller. As camera modules become smaller, the areas where the components of the camera module are bonded together have also become finer, so the adhesive layer formed from the adhesive that bonds them together must have high adhesive strength.
 また、カメラモジュール等の組み立てに用いられる接着剤は、高温処理によるイメージセンサー等への熱的ダメージを避けるために低温硬化性が要求され、また、生産効率向上の観点から、短時間硬化性も同時に要求される。このような観点から、低温短時間硬化型接着剤として、紫外線硬化型接着剤や熱硬化エポキシ樹脂系接着剤が多く利用されている。しかし、紫外線硬化型接着剤は、速硬化が可能な反面、光が当たらない部分の接着には使用できない等のデメリットがある。一方、熱硬化エポキシ樹脂系接着剤は、低温短時間硬化型接着剤といえども、接着する間は接着姿勢を保つために接着する部材(部品)を治具や装置で固定しなければならず、また、加熱による温度上昇により粘度が低下して、硬化直前にタレが生じたり、所望部以外に流れてしまったり等の問題を生じ、必ずしも満足できるものではなかった。 In addition, adhesives used in the assembly of camera modules and the like are required to have low-temperature curing properties to avoid thermal damage to image sensors and the like caused by high-temperature processing, and at the same time, they are also required to have short-time curing properties from the viewpoint of improving production efficiency. From this viewpoint, ultraviolet-curing adhesives and thermosetting epoxy resin adhesives are often used as low-temperature, short-time curing adhesives. However, while ultraviolet-curing adhesives can cure quickly, they have the disadvantage that they cannot be used to bond areas that are not exposed to light. On the other hand, even though thermosetting epoxy resin adhesives are low-temperature, short-time curing adhesives, they are not necessarily satisfactory because they require the members (components) to be bonded to be fixed with a jig or device in order to maintain the bonding position during bonding, and the viscosity decreases due to the temperature rise caused by heating, causing problems such as dripping just before curing or flowing to areas other than the desired area.
 前記のような問題を解決するために、光照射による硬化(予備硬化)により仮固定し、熱によって更に硬化(本硬化)させて接着するタイプの接着剤が提案されている。例えば、特許文献1には、グリシジル基と(メタ)アクリロイル基とを有する化合物からなる硬化性成分、ポリチオール化合物及びエポキシ硬化促進剤を含有する光及び加熱硬化性組成物が提案されている。特許文献2には、(メタ)アクリロイル基を有する化合物、ポリチオール化合物、光ラジカル発生剤、潜在性硬化剤を含む硬化性組成物が提案されており、(メタ)アクリロイル基及びエポキシ基を有する化合物も記載されている。
 しかしながら、特許文献1及び2に記載されているエポキシ(メタ)アクリレートは、2つ以上のエポキシ基を有するエポキシ樹脂と(メタ)アクリル酸との反応によりエポキシ基の一部をエステル化して得られる化合物が記載されているにすぎず、その構造は限定されたものであった。
In order to solve the above problems, a type of adhesive has been proposed that is temporarily fixed by curing (pre-curing) by light irradiation, and then further cured (main curing) by heat to bond. For example, Patent Document 1 proposes a photo- and heat-curable composition containing a curable component consisting of a compound having a glycidyl group and a (meth)acryloyl group, a polythiol compound, and an epoxy curing accelerator. Patent Document 2 proposes a curable composition containing a compound having a (meth)acryloyl group, a polythiol compound, a photoradical generator, and a latent curing agent, and also describes a compound having a (meth)acryloyl group and an epoxy group.
However, the epoxy (meth)acrylates described in Patent Documents 1 and 2 are merely compounds obtained by reacting an epoxy resin having two or more epoxy groups with (meth)acrylic acid to esterify a portion of the epoxy groups, and the structure of the compounds is limited.
 また、特許文献3には、(メタ)アクリロイル基とグリシジル基を有する化合物が提案されているが、光と熱による硬化システムに使用する材料としては十分な硬化性を有したものではなかった。 In addition, Patent Document 3 proposes a compound having a (meth)acryloyl group and a glycidyl group, but this compound does not have sufficient curability to be used as a material in a light and heat curing system.
特開2009-51954号公報JP 2009-51954 A WO2018/181421A1WO2018/181421A1 US20200048301A1US20200048301A1
 したがって本発明の目的は、光及び熱による硬化が可能な硬化性組成物に用いることのできる化合物を提供すること、また、光及び熱による硬化性に優れた硬化性組成物を提供することである。 The object of the present invention is therefore to provide a compound that can be used in a curable composition that can be cured by light and heat, and to provide a curable composition that has excellent curing properties by light and heat.
 即ち、本発明は、下記一般式(1)で表される化合物を提供するものである。 That is, the present invention provides a compound represented by the following general formula (1):
Figure JPOXMLDOC01-appb-C000011
 式中、Rは水素原子又はメチル基を表し、Rは、それぞれ独立に、炭素原子数1~20のアルキル基、炭素原子数1~20のアルコキシ基、置換基として炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基若しくはハロゲン原子を有してもよい炭素原子数5~10のアリール基又はハロゲン原子を表し、Rは、水素原子、炭素原子数1~10のアルキル基、ヒドロキシメチル基、グリシジルエーテル基、メチルグリシジルエーテル基、アクリロイルオキシメチル基又はメタクリロイルオキシメチル基を表わし、Rは水素原子又はメチル基を表わす。nは0~4の数を表わす。
Figure JPOXMLDOC01-appb-C000011
In the formula, R 1 represents a hydrogen atom or a methyl group, R 2 each independently represents an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 5 to 10 carbon atoms which may have a halogen atom as a substituent, or a halogen atom, R 3 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxymethyl group, a glycidyl ether group, a methyl glycidyl ether group, an acryloyloxymethyl group, or a methacryloyloxymethyl group, R 4 represents a hydrogen atom or a methyl group, and n represents a number from 0 to 4.
 また、本発明は、下記一般式(2)で表される化合物を提供するものである。 The present invention also provides a compound represented by the following general formula (2):
Figure JPOXMLDOC01-appb-C000012
 式中、Rは水素原子又はメチル基を表し、Rは、それぞれ独立に、炭素原子数1~20のアルキル基、炭素原子数1~20のアルコキシ基、置換基として炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基若しくはハロゲン原子を有してもよい炭素原子数5~10のアリール基又はハロゲン原子を表わし、Rは水素原子、炭素原子数1~10のアルキル基、ヒドロキシメチル基、グリシジルエーテル基又はメチルグリシジルエーテル基を表す。nは0~4の数を表わす。
Figure JPOXMLDOC01-appb-C000012
In the formula, R1 represents a hydrogen atom or a methyl group, R2 each independently represents an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 5 to 10 carbon atoms which may have a halogen atom as a substituent, or a halogen atom, R5 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxymethyl group, a glycidyl ether group, or a methylglycidyl ether group, and n represents a number from 0 to 4.
 また、下記式(3)で表される化合物とエピハロヒドリンとを反応させて式(2)で表される化合物を製造し、これにアクリル酸エステル及び/又はメタクリル酸エステルを用いてエステル化することを特徴とする式(1)で表される化合物の製造方法を提供するものである。
Figure JPOXMLDOC01-appb-C000013
 式中、Rは、それぞれ独立に、炭素原子数1~20のアルキル基、炭素原子数1~20のアルコキシ基、置換基として炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基若しくはハロゲン原子を有してもよい炭素原子数5~10のアリール基又はハロゲン原子を表す。Rは水素原子、炭素原子数1~10のアルキル基又はヒドロキシメチル基を表わす。nは0~4の数を表わす。
The present invention also provides a method for producing a compound represented by formula (1), which comprises reacting a compound represented by the following formula (3) with epihalohydrin to produce a compound represented by formula (2), and then esterifying the compound with an acrylic acid ester and/or a methacrylic acid ester.
Figure JPOXMLDOC01-appb-C000013
In the formula, R2 's each independently represent an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 5 to 10 carbon atoms which may have a halogen atom as a substituent, or a halogen atom. R6 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a hydroxymethyl group. n represents a number from 0 to 4.
 また本発明は、式(1)で表される化合物と、
 式(2)で表される化合物及び下記一般式(4)で表される化合物の少なくとも一方と、を含有する硬化性材料を提供するものである。
Figure JPOXMLDOC01-appb-C000014
 式中、Rは、それぞれ独立に、水素原子、炭素原子数1~20のアルキル基、炭素原子数1~20のアルコキシ基、置換基として炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基、水酸基若しくはハロゲン原子を有してもよい炭素原子数5~10のアリール基、水酸基又はハロゲン原子を表し、Rは、水素原子、炭素原子数1~10のアルキル基、ヒドロキシアルキル基、グリシジルエーテル基、メチルグリシジルエーテル基、グリシジルオキシアルキル基、β-メチルグリシジルオキシアルキル基、アクリロイルオキシアルキル基又はメタクリロイルオキシアルキル基を表わす。Rは水素原子又はメチル基を表す。mは0~4の数を表わす。
The present invention also relates to a compound represented by formula (1),
The present invention provides a curable material containing at least one of a compound represented by formula (2) and a compound represented by the following general formula (4):
Figure JPOXMLDOC01-appb-C000014
In the formula, R 7 independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkyl group having 1 to 10 carbon atoms as a substituent, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 5 to 10 carbon atoms which may have a hydroxyl group or a halogen atom, a hydroxyl group, or a halogen atom, R 8 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxyalkyl group, a glycidyl ether group, a methyl glycidyl ether group, a glycidyloxyalkyl group, a β-methyl glycidyloxyalkyl group, an acryloyloxyalkyl group, or a methacryloyloxyalkyl group. R 9 represents a hydrogen atom or a methyl group. m represents a number from 0 to 4.
 また、本発明は、(A)前記一般式(1)で表される化合物の少なくとも一種と、(B)硬化剤の中から選ばれる少なくとも一種とを含有する硬化性組成物、及び、当該組成物の硬化物並びに当該組成物を硬化させる硬化工程を有する硬化物の製造方法、を提供するものである。 The present invention also provides a curable composition containing (A) at least one compound represented by the general formula (1) and (B) at least one curing agent, a cured product of the composition, and a method for producing the cured product, which includes a curing step of curing the composition.
 本発明によって提供される化合物は、光及び熱により硬化させる材料として好適なものである。本発明により提供される硬化性組成物は、十分な光硬化性を有し、熱硬化性に優れることから、光によって仮硬化し、その後熱によって本硬化を行うデュアル硬化に好適に用いることができる。
 また、本発明の製造方法によれば、光及び熱による硬化材料に適した化合物を工業的に有利な方法にて製造できる。
The compound provided by the present invention is suitable as a material to be cured by light and heat. The curable composition provided by the present invention has sufficient photocurability and excellent thermosetting properties, and therefore can be suitably used for dual curing in which temporary curing is performed by light and then main curing is performed by heat.
Furthermore, according to the production method of the present invention, a compound suitable for a material cured by light and heat can be produced in an industrially advantageous manner.
図1は、実施例3で得られた樹脂組成物のDMAの測定結果である。FIG. 1 shows the results of DMA measurement of the resin composition obtained in Example 3. 図2は、実施例6で得られた樹脂組成物のDMAの測定結果である。FIG. 2 shows the results of DMA measurement of the resin composition obtained in Example 6.
A.化合物
 以下、本発明の化合物について詳細に説明する。
A. Compounds The compounds of the present invention are described in detail below.
 本発明の前記一般式(1)で表される化合物(以下、「化合物(1)」又は「(A)成分」ともいう。)は、前記に示した通り、グリシジルエーテル基と反応性不飽和結合とを有するものであるため、各種硬化剤、各種重合開始剤と併用することによって光及び/又は熱により硬化物を提供することが可能である。なお、反応性不飽和結合は「エチレン性不飽和結合」と呼ばれることもある。 The compound of the present invention represented by the general formula (1) (hereinafter also referred to as "compound (1)" or "component (A)") has a glycidyl ether group and a reactive unsaturated bond, as described above, and therefore can provide a cured product by applying light and/or heat when used in combination with various curing agents and various polymerization initiators. The reactive unsaturated bond is sometimes called an "ethylenically unsaturated bond."
 前記一般式(1)中、Rで表される炭素原子数1~20のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、第二ブチル基、第三ブチル基、アミル基、イソアミル基、第三アミル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、イソノニル基、デシル基、イソデシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基、ベンジル基、フェネチル基等があげられる。 In the general formula (1), examples of the alkyl group having 1 to 20 carbon atoms represented by R2 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an amyl group, an isoamyl group, a tert-amyl group, a hexyl group, a heptyl group, an octyl group, a 2-ethylhexyl group, a nonyl group, an isononyl group, a decyl group, an isodecyl group, an undecyl group, a dodecyl group, a tridecyl group, a tetradecyl group, a pentadecyl group, a hexadecyl group, a heptadecyl group, an octadecyl group, a nonadecyl group, an eicosyl group, a benzyl group, and a phenethyl group.
 前記一般式(1)中、Rで表される炭素原子数1~20のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、アミロキシ基、ヘキシロキシ基、ペンチロキシ基、オクチロキシ基、ノニルオキシ基、デシルオキシ基等があげられる。 In the general formula (1), examples of the alkoxy group having 1 to 20 carbon atoms represented by R2 include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, an amyloxy group, a hexyloxy group, a pentyloxy group, an octyloxy group, a nonyloxy group, and a decyloxy group.
 前記一般式(1)中、Rで表されるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等があげられる。 In the general formula (1), examples of the halogen atom represented by R2 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 前記一般式(1)中、Rで表される置換基を有しても良いアリール基のうち無置換のアリール基としては、例えば、フェニル基、ナフチル基などがあげられる。前記置換基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、第二ブチル基、第三ブチル基、アミル基、イソアミル基、第三アミル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、イソノニル基、デシル基等の炭素原子数1~10のアルキル基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、アミロキシ基、ヘキシロキシ基、ペンチロキシ基、オクチロキシ基、ノニルオキシ基、デシルオキシ基などの炭素原子数1~10のアルコキシ基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子などがあげられる。 In the general formula (1), examples of unsubstituted aryl groups among the aryl groups represented by R 2 that may have a substituent include a phenyl group, a naphthyl group, etc. Examples of the substituent include an alkyl group having 1 to 10 carbon atoms, such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a secondary butyl group, a tertiary butyl group, an amyl group, an isoamyl group, a tertiary amyl group, a hexyl group, a heptyl group, an octyl group, a 2-ethylhexyl group, a nonyl group, an isononyl group, or a decyl group; an alkoxy group having 1 to 10 carbon atoms, such as a methoxy group, an ethoxy group, a propoxy group, a butoxy group, an amyloxy group, a hexyloxy group, a pentyloxy group, an octyloxy group, a nonyloxy group, or a decyloxy group; and a halogen atom, such as a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
 前記一般式(1)中、nは0~2の整数であることが好ましく、特に、nが0又は1であるものが、光及び熱による硬化性に優れ、原料の入手が容易であるなどの理由により好ましい。また、nが0であるか、nが1以上であってRが炭素原子数1~4のアルキル基又はメトキシ基であるものが、光及び熱による硬化性に優れ、原料の入手が容易であるなどの理由により好ましい。なかでも、一般式(1)中、nが0又は1であり、且つ、Rが炭素原子数1~4のアルキル基又はメトキシ基であるものが好ましく、特に、nが0であることが好ましい。 In the general formula (1), n is preferably an integer of 0 to 2, and in particular, n is 0 or 1, which is preferred because of excellent light- and heat-curing properties and easy availability of raw materials. Also, n is 0, or n is 1 or more, and R 2 is an alkyl group or methoxy group having 1 to 4 carbon atoms, which is preferred because of excellent light- and heat-curing properties and easy availability of raw materials. Among these, in the general formula (1), n is 0 or 1, and R 2 is an alkyl group or methoxy group having 1 to 4 carbon atoms, which is preferred, and in particular, n is 0.
 前記一般式(1)中、Rで表される炭素原子数1~10のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、第二ブチル基、第三ブチル基、アミル基、イソアミル基、第三アミル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、イソノニル基、デシル基等があげられる。 
 Rは、炭素原子数1~10のアルキル基、ヒドロキシメチル基、グリシジルエーテル基又はメチルグリシジルエーテル基であることが好ましい。なかでも、炭素原子数1~10のアルキル基であることが好ましく、炭素原子数1~5のアルキル基であることが特に好ましく、メチル基又はエチル基であるものが、中でも特に好ましく、エチル基が最も好ましい。Rが前記の基であることで。原料の入手が容易で、低コストでの光及び熱による硬化が一層容易となるためである。
In the general formula (1), examples of the alkyl group having 1 to 10 carbon atoms represented by R3 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an amyl group, an isoamyl group, a tert-amyl group, a hexyl group, a heptyl group, an octyl group, a 2-ethylhexyl group, a nonyl group, an isononyl group, and a decyl group.
R 3 is preferably an alkyl group having 1 to 10 carbon atoms, a hydroxymethyl group, a glycidyl ether group, or a methyl glycidyl ether group. Of these, an alkyl group having 1 to 10 carbon atoms is preferred, an alkyl group having 1 to 5 carbon atoms is particularly preferred, and a methyl group or an ethyl group is particularly preferred, with an ethyl group being the most preferred. When R 3 is the above group, the raw materials are easily available, and curing by light and heat at low cost becomes easier.
 Rとしては、水素原子であることが光硬化性に優れるという点で好ましい。Rがメチル基であることは安定性と硬化物物性に優れるという点で好ましい。
 Rとしては、水素原子であることが熱硬化性に優れるという点で好ましい。Rがメチル基であることは安定性と硬化物物性に優れるという点で好ましい。
R4 is preferably a hydrogen atom in terms of excellent photocurability, and is preferably a methyl group in terms of excellent stability and cured product physical properties.
R 1 is preferably a hydrogen atom in terms of excellent thermosetting properties, and R 1 is preferably a methyl group in terms of excellent stability and physical properties of the cured product.
 化合物(1)は、下記一般式(1a)、(1b)又は(1c)の何れかで表される化合物であるが、これらが混合物として存在するものであってもよい。
 例えば、式(1a)で表される化合物は、光硬化性が良好となる点で好ましい。また、(1b)又は(1c)、特に(1c)で表される化合物は、光及び熱硬化物の耐熱性が高い点や結晶化しにくいという点で好ましい。
Compound (1) is a compound represented by any one of the following general formulas (1a), (1b) and (1c), and may exist as a mixture of these.
For example, the compound represented by formula (1a) is preferred in that it has good photocurability, and the compound represented by formula (1b) or (1c), especially (1c), is preferred in that the photo- and thermosetting product has high heat resistance and is less likely to crystallize.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 尚、前記一般式(1a)、(1b)及び(1c)で表される化合物におけるR、R、R、R並びにnは、前記式(1)で表されるものがあげられる。 In addition, R 1 , R 2 , R 3 , R 4 and n in the compounds represented by the general formulae (1a), (1b) and (1c) are those represented by the formula (1).
 下記に前記一般式(1a)、(1b)及び(1c)で表される化合物の中から、具体例をあげる。 Specific examples of compounds represented by the general formulas (1a), (1b), and (1c) are given below.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 本発明の化合物(1)並びにこれらの混合物は、全塩素量が質量基準にて3000ppm以下であることが好ましく、全塩素量が3000ppmを超えた場合には、塩化物イオンの濃度が高く、イオンマイグレーションが起こりやすい材料となり、例えば、電気・電子部品用接着剤、封止剤として使用した場合に信頼性が低下するおそれがある。また、チタン原子含有量が質量基準にて7000ppm以下であることが好ましい。チタン原子含有量が7000ppmを超えるとラジカル重合性が低下するおそれがある。全塩素量はASTM D5808に基づき測定する。またチタン原子含有量はJIS K0116:2014に基づき測定できる。 The compound (1) of the present invention and mixtures thereof preferably have a total chlorine content of 3000 ppm or less by mass. If the total chlorine content exceeds 3000 ppm, the concentration of chloride ions will be high, making the material prone to ion migration, and there is a risk of reduced reliability when used, for example, as an adhesive or sealant for electric and electronic components. In addition, the titanium atom content is preferably 7000 ppm or less by mass. If the titanium atom content exceeds 7000 ppm, there is a risk of reduced radical polymerizability. The total chlorine content is measured in accordance with ASTM D5808. The titanium atom content can be measured in accordance with JIS K0116:2014.
 前記一般式(2)で表される化合物(以下、「化合物(2)」ともいう。)におけるR、R及びnの例示及びその好ましいものとしては、前記一般式(1)においてR、R及びnとして前記で例示したもの及びその好ましいものがそれぞれあげられる。また、Rで表される炭素原子数1~20のアルキル基としては、例えば、前記一般式(1)においてRとして例示したものがあげられる。Rで表される基としては炭素原子数1~10のアルキル基、ヒドロキシメチル基、グリシジルエーテル基又はメチルグリシジルエーテル基が好ましい。なかでも、炭素原子数1~10のアルキル基が好ましく、炭素原子数1~5のアルキル基がより好ましく、メチル基又はエチル基が更に好ましく、エチル基が特に好ましい。Rが前記の基であることで原料の入手が容易で、光及び熱による硬化性組成物に適した化合物が提供しやすいためである。
 化合物(1)の原料として用いられる化合物(2)のRは、目的物の化合物(1)のRと同一であることが好ましい。また、後述する硬化性材料や硬化性組成物において、化合物(1)と化合物(2)が併存する場合、化合物(1)のRと化合物(2)のRとは同一であっても異なっていてもよい。
Examples and preferred examples of R 1 , R 2 and n in the compound represented by the general formula (2) (hereinafter also referred to as "compound (2)") include those exemplified as R 1 , R 2 and n in the general formula (1) and those preferred examples thereof. Examples of the alkyl group having 1 to 20 carbon atoms represented by R 5 include those exemplified as R 3 in the general formula (1). The group represented by R 5 is preferably an alkyl group having 1 to 10 carbon atoms, a hydroxymethyl group, a glycidyl ether group or a methyl glycidyl ether group. Among these, an alkyl group having 1 to 10 carbon atoms is preferred, an alkyl group having 1 to 5 carbon atoms is more preferred, a methyl group or an ethyl group is even more preferred, and an ethyl group is particularly preferred. When R 5 is the above group, raw materials are easily available, and a compound suitable for a photo- and heat-curable composition is easily provided.
R5 of compound (2) used as a raw material for compound (1) is preferably the same as R3 of the target compound (1). In addition, when compound (1) and compound (2) coexist in the curable material or curable composition described below, R3 of compound (1) and R5 of compound (2) may be the same or different.
 前記一般式(2)で表される化合物は、アルコール性ヒドロキシ基とグリシジル基を併せ持つことから、種々の用途に適用しうる。また、前記一般式(2)で表される化合物は、本発明においては前記一般式(1)で表される化合物の原料として有用なものである。 The compound represented by the general formula (2) has both an alcoholic hydroxyl group and a glycidyl group, and therefore can be used in a variety of applications. In addition, the compound represented by the general formula (2) is useful in the present invention as a raw material for the compound represented by the general formula (1).
 前記一般式(2)で表される化合物は、下記一般式(2a)、(2b)又は(2c)の何れかで表される化合物であるが、これらが混合物として存在するものであってもよい。式(2a)、(2b)又は(2c)で表される化合物はそれぞれ式(1a)、(1b)又は(1c)で表される化合物の原料となる。後述する硬化性材料及び硬化性組成物においては化合物(1)と化合物(2)が併存する場合、式(1a)、(1b)又は(1c)で表される化合物と、その原料である化合物(2)(それぞれ式(2a)、(2b)又は(2c)で表される化合物)とが併存することが好ましいが、この態様に限定されない。 The compound represented by the general formula (2) is a compound represented by any one of the following general formulas (2a), (2b) or (2c), but may exist as a mixture. The compounds represented by the formulas (2a), (2b) or (2c) are raw materials for the compounds represented by the formulas (1a), (1b) or (1c), respectively. In the curable material and curable composition described below, when the compound (1) and the compound (2) coexist, it is preferable that the compound represented by the formula (1a), (1b) or (1c) and the raw material compound (2) (the compound represented by the formula (2a), (2b) or (2c), respectively) coexist, but this is not limited to this embodiment.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 尚、前記一般式(2a)、(2b)及び(2c)で表される化合物におけるR、R、R並びにnは、前記式(2)と同様である。 In the compounds represented by the general formulae (2a), (2b) and (2c), R 1 , R 2 , R 5 and n are the same as those in the formula (2).
 下記に前記一般式(2a)、(2b)及び(2c)で表される化合物の中で具体例をあげる。 Specific examples of the compounds represented by the general formulas (2a), (2b), and (2c) are given below.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 本発明の化合物(2)並びにこれらの混合物は、全塩素量が質量基準にて3000ppm以下であることが好ましく、全塩素量が3000ppmを超えた場合には、塩化物イオンの濃度が高く、イオンマイグレーションが起こりやすい材料となり、例えば、電気・電子部品用接着剤、封止剤として使用した場合に信頼性が低下するおそれがある。また、チタン原子含有量が質量基準にて7000ppm以下であることが好ましい。チタン原子含有量が7000ppmを超えるとラジカル重合性を低下するおそれがある。 The compound (2) of the present invention and mixtures thereof preferably have a total chlorine content of 3000 ppm or less by mass. If the total chlorine content exceeds 3000 ppm, the concentration of chloride ions will be high, making the material prone to ion migration, and there is a risk of reduced reliability when used, for example, as an adhesive or sealant for electric/electronic components. In addition, it is preferable that the titanium atom content is 7000 ppm or less by mass. If the titanium atom content exceeds 7000 ppm, there is a risk of reduced radical polymerizability.
 本発明の化合物(1)の製造方法は特に制限されるものではないが、下記一般式(3)で表される水酸基を少なくとも2個含有する化合物におけるフェノール性水酸基とアルコール性水酸基との反応性の違いを利用して、フェノール性水酸基のみをグリシジルエーテル化して化合物(2)を製造し、化合物(2)のアルコール性水酸基をアクリル酸エステル化あるいはメタクリル酸エステル化することによって製造することができる。特許文献1及び2といった従来技術は、エポキシ基を2つ以上含有するエポキシ樹脂におけるエポキシ基の一部をアクリル酸でエステル化するものである。この方法は、反応生成物の組成が制御しづらく、製造時に未反応のエポキシ樹脂が比較的多く残存しやすく粘度が高くなりやすい傾向があるなど、精製コストを考慮した光及び熱による硬化システムに適用するには満足できるものではなかった。これに対し、本製法では、上記の反応性の違いを利用できるため反応生成物の組成が制御しやすく、精製コストを低減しつつ、低コストに光及び熱による硬化システムに適した硬化性材料を提供できる。
 より具体的には、本発明では、例えば、以下に述べる製造方法により化合物(1)を製造することができる。
 また、本発明の化合物(2)の製造方法は、下記一般式(3)で表される化合物(以下、「化合物(3)」ともいう。)におけるフェノール性水酸基とアルコール性水酸基との反応性の違いを利用して、フェノール性水酸基のみをグリシジルエーテル化することにより行われるものである。
The method for producing the compound (1) of the present invention is not particularly limited, but it can be produced by utilizing the difference in reactivity between the phenolic hydroxyl group and the alcoholic hydroxyl group in a compound containing at least two hydroxyl groups represented by the following general formula (3), glycidyl etherifying only the phenolic hydroxyl group to produce compound (2), and acrylic esterifying or methacrylic esterifying the alcoholic hydroxyl group of compound (2). Conventional techniques such as Patent Documents 1 and 2 esterify a part of the epoxy groups in an epoxy resin containing two or more epoxy groups with acrylic acid. This method is not satisfactory for application to a light and heat curing system taking into consideration the purification cost, because it is difficult to control the composition of the reaction product, a relatively large amount of unreacted epoxy resin tends to remain during production, and the viscosity tends to be high. In contrast, the present production method can utilize the above-mentioned difference in reactivity, making it easy to control the composition of the reaction product, and can provide a curable material suitable for a light and heat curing system at low cost while reducing purification costs.
More specifically, in the present invention, for example, compound (1) can be produced by the production method described below.
The method for producing compound (2) of the present invention utilizes the difference in reactivity between a phenolic hydroxyl group and an alcoholic hydroxyl group in a compound represented by the following general formula (3) (hereinafter also referred to as "compound (3)") to glycidyl etherify only the phenolic hydroxyl group:
Figure JPOXMLDOC01-appb-C000039
(式中、Rは、それぞれ独立に、炭素原子数1~20のアルキル基、炭素原子数1~20のアルコキシ基、置換基を有してよいアリール基又はハロゲン原子を表す。前記置換基は、炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基又はハロゲン原子の中から選ばれる基である。Rは水素原子、炭素原子数1~10のアルキル基又はヒドロキシメチル基を表わす。nは0~4の数を表わす。)
Figure JPOXMLDOC01-appb-C000039
(In the formula, R2 's each independently represent an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group which may have a substituent, or a halogen atom. The substituent is a group selected from an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or a halogen atom. R6 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a hydroxymethyl group. n represents a number from 0 to 4.)
 化合物(3)におけるR及びnの例示及びその好ましいものとしては、前記一般式(1)においてR及びnについて例示したもの及び好ましいものがそれぞれあげられる。また、化合物(3)におけるRで表される炭素原子数1~20のアルキル基としては、例えば、前記一般式(1)においてRとして例示したものがあげられる。Rで表される基としては、炭素原子数1~10のアルキル基又はヒドロキシメチル基が好ましい。なかでも、Rで述べた理由と同様の理由で、炭素原子数1~10のアルキル基が好ましく、炭素原子数1~5のアルキル基であることがより好ましく、メチル基又はエチル基が更に好ましく、エチル基が特に好ましい。化合物(2)の原料として用いられる化合物(3)のRは、目的物の化合物(2)のRと同一であることが好ましい。 Examples and preferred examples of R 2 and n in compound (3) include those exemplified and preferred for R 2 and n in the general formula (1). Examples of the alkyl group having 1 to 20 carbon atoms represented by R 6 in compound (3) include those exemplified as R 3 in the general formula (1). The group represented by R 6 is preferably an alkyl group having 1 to 10 carbon atoms or a hydroxymethyl group. Among them, for the same reasons as those described for R 5 , an alkyl group having 1 to 10 carbon atoms is preferred, an alkyl group having 1 to 5 carbon atoms is more preferred, a methyl group or an ethyl group is even more preferred, and an ethyl group is particularly preferred. It is preferable that R 6 of compound (3) used as a raw material for compound (2) is the same as R 5 of the target compound (2).
 前記一般式(3)で表される化合物におけるフェノール性水酸基をグリシジルエーテル化する方法としては、一般式(3)で表される化合物とエピハロヒドリンとの混合物に対してアルカリを添加して反応させる方法があげられる。アルカリの添加方法としては、アルカリ水溶液を滴下する方法及び固体のアルカリを好ましくは複数回に分けて添加する方法があげられる。 As a method for converting the phenolic hydroxyl group in the compound represented by the general formula (3) into a glycidyl ether, an alkali is added to a mixture of the compound represented by the general formula (3) and epihalohydrin to cause a reaction. Examples of the method for adding the alkali include a method of adding an aqueous alkali solution dropwise and a method of adding a solid alkali, preferably in multiple batches.
 前記エピハロヒドリンとしては、エピクロロヒドリン、エピブロモヒドリン、β-メチルエピクロルヒドリン等があげられる。
 前記アルカリとしては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等の金属水酸化物があげられる。
Examples of the epihalohydrin include epichlorohydrin, epibromohydrin, and β-methylepichlorohydrin.
Examples of the alkali include metal hydroxides such as sodium hydroxide, potassium hydroxide, and calcium hydroxide.
 前記一般式(3)で表される化合物とエピハロヒドリンとを反応させる際のエピハロヒドリンの使用量は前記一般式(3)で表される化合物に対し、好ましくはモル比で3~50倍、より好ましくは、4~30倍である。
 また、アルカリの使用量は、前記一般式(3)で表される化合物1モルに対し、好ましくは0.8~1.5モル、より好ましくは0.9~1.2モルの範囲である。
The amount of epihalohydrin used when reacting the compound represented by the general formula (3) with epihalohydrin is preferably 3 to 50 times, more preferably 4 to 30 times, in terms of molar ratio, relative to the compound represented by the general formula (3).
The amount of the alkali used is preferably in the range of 0.8 to 1.5 moles, more preferably 0.9 to 1.2 moles, per mole of the compound represented by the general formula (3).
 前記一般式(3)で表される化合物とエピハロヒドリンとの反応は、臭化テトラブチルアンモニウム等の相間移動触媒を用いる必要はない。本明細書において、式(3)で表される化合物とエピハロヒドリンとの反応に相間移動触媒を用いないとは、式(3)で表される化合物の質量に対し、相間移動触媒の質量が100分の1未満であることを指す。 The reaction between the compound represented by the general formula (3) and epihalohydrin does not require the use of a phase transfer catalyst such as tetrabutylammonium bromide. In this specification, "no phase transfer catalyst is used in the reaction between the compound represented by the formula (3) and epihalohydrin" means that the mass of the phase transfer catalyst is less than 1/100 of the mass of the compound represented by the formula (3).
 前記一般式(3)で表される化合物とエピハロヒドリンとの反応は、必要に応じて加熱下、加圧又は減圧下で行われる。
 また、反応温度は、特に制限されるものではないが、製造時間の短縮や反応効率の点から、40℃以上120℃以下であることが好ましく、60℃以上100℃以下であることがより好ましい。
The reaction of the compound represented by the general formula (3) with epihalohydrin is carried out under heating and increased or reduced pressure as necessary.
The reaction temperature is not particularly limited, but is preferably from 40° C. to 120° C., more preferably from 60° C. to 100° C., from the viewpoints of shortening the production time and improving the reaction efficiency.
 前記一般式(2)で表される化合物をアクリル酸エステル化又はメタアクリル酸エステル化して前記一般式(1)で表される化合物を製造する方法としては、アクリル酸誘導体及び/又はメタクリル酸誘導体を用いてエステル化する方法があげられる。
 具体的には、アクリル酸メチル等のアクリル酸エステル及び/又はメタクリル酸メチル等のメタクリルエステルを用いて、ジアルキル錫オキサイド、テトラアルキルチタネート等の触媒の存在下でエステル化する方法、塩化アクリロイル及び/又は塩化メタクリロイルを用いてトリエチルアミン等の中和剤の存在下でエステル化する方法があげられる。
 製造時間の短縮や反応効率の点から前者のアクリル酸エステル及び/又はメタクリルエステルを用いて触媒の存在下でエステル化する場合の反応温度は例えば50~100℃であることが好ましく、70~90℃であることがより好ましい。また製造時間の短縮や反応効率の点から後者の塩化アクリロイル及び/又は塩化メタクリロイルを用いて中和剤の存在下でエステル化する場合の反応温度は、例えば0~30℃であることが好ましい。
 特に、アクリル酸エステル及び/又はメタアクリル酸エステルを用いる方法を採用することが安全性と反応効率、特に副反応を抑制できるという点から好ましい。
 アクリル酸誘導体及び/又はメタクリル酸誘導体の使用量は、前記一般式(2)で表される化合物に対し、モル比にて、2倍以上であることが好ましく、3倍以上であることがより好ましい。またアクリル酸誘導体及び/又はメタクリル酸誘導体の使用量は、前記一般式(2)で表される化合物に対し、モル比にて、10倍以下であることが製造効率等の点で好ましく、7倍以下がより好ましい。
The method for producing the compound represented by the general formula (1) by converting the compound represented by the general formula (2) into an acrylic acid ester or a methacrylic acid ester includes a method of esterification using an acrylic acid derivative and/or a methacrylic acid derivative.
Specifically, examples of such a method include an esterification method using an acrylic ester such as methyl acrylate and/or a methacrylic ester such as methyl methacrylate in the presence of a catalyst such as dialkyltin oxide, tetraalkyl titanate, etc., and an esterification method using acryloyl chloride and/or methacryloyl chloride in the presence of a neutralizing agent such as triethylamine, etc.
From the viewpoints of shortening the production time and reaction efficiency, the reaction temperature in the case where the former acrylic ester and/or methacrylic ester is used for esterification in the presence of a catalyst is preferably, for example, 50 to 100° C., and more preferably 70 to 90° C. From the viewpoints of shortening the production time and reaction efficiency, the reaction temperature in the case where the latter acryloyl chloride and/or methacryloyl chloride is used for esterification in the presence of a neutralizing agent is preferably, for example, 0 to 30° C.
In particular, the use of an acrylic acid ester and/or a methacrylic acid ester is preferred from the viewpoints of safety and reaction efficiency, particularly in terms of suppressing side reactions.
The amount of the acrylic acid derivative and/or methacrylic acid derivative used is preferably 2 times or more, more preferably 3 times or more, in terms of molar ratio, relative to the compound represented by the general formula (2). The amount of the acrylic acid derivative and/or methacrylic acid derivative used is preferably 10 times or less, more preferably 7 times or less, in terms of molar ratio, relative to the compound represented by the general formula (2), in terms of production efficiency, etc.
B.硬化性材料
 次に、本開示の硬化性材料について説明する。
 本開示の硬化性材料は、上述の式(1)で表される化合物(以下、「化合物(1)」ともいう。)を含有することを特徴の一つとするものである。
B. Curable Material Next, the curable material of the present disclosure will be described.
One of the features of the curable material of the present disclosure is that it contains a compound represented by the above formula (1) (hereinafter also referred to as "compound (1)").
 本開示の好適な一形態として、前記化合物(1)と、
 化合物(2)及び前記一般式(4)で表される化合物(以下、「化合物(4)」ともいう。)の少なくとも一方と、を含有する硬化性材料が挙げられる。特に、化合物(2)及び(4)が、化合物(1)を上記の好適な製造方法で製造した際の不純物であることが、製造コストを低減しながら上述した効果が得られる点で好ましい。
As a preferred embodiment of the present disclosure, the compound (1) and
Examples of the curable material include a curable material containing at least one of compound (2) and a compound represented by the general formula (4) (hereinafter, also referred to as "compound (4)"). In particular, it is preferable that compounds (2) and (4) are impurities when compound (1) is produced by the above-mentioned preferred production method, in that the above-mentioned effects can be obtained while reducing production costs.
 Rで表される炭素原子数1~20のアルキル基、炭素原子数1~20のアルコキシ基、置換基を有してもよい炭素原子数5~10のアリール基並びにハロゲン原子としては、それぞれ式(1)におけるRで表される炭素原子数1~20のアルキル基、炭素原子数1~20のアルコキシ基、置換基を有してもよい炭素原子数5~10のアリール基並びにハロゲン原子と同様の基が挙げられる。
 Rで表される置換されていてもよい炭素原子数5~10のアリール基の置換基としての炭素原子数1~10のアルキル基及び炭素原子数1~10のアルコキシ基、ハロゲン原子についても、式(1)におけるRで表される置換されていてもよい炭素原子数5~10のアリール基の置換基として前記で挙げた基と同様の基が挙げられる。
 また、Rで表される基として好ましいものとしても、Rの好ましいものと同様の基が挙げられる。
 mについてもその好ましい数値範囲はnと同様である。Rの好ましいものとしては、上記Rと同様である。
Examples of the alkyl group having 1 to 20 carbon atoms, the alkoxy group having 1 to 20 carbon atoms, the aryl group having 5 to 10 carbon atoms which may have a substituent, and the halogen atom represented by R7 include the same groups as the alkyl group having 1 to 20 carbon atoms, the alkoxy group having 1 to 20 carbon atoms, the aryl group having 5 to 10 carbon atoms which may have a substituent, and the halogen atom represented by R2 in formula (1).
With regard to the alkyl group having 1 to 10 carbon atoms, the alkoxy group having 1 to 10 carbon atoms, and the halogen atom as the substituent of the aryl group having 5 to 10 carbon atoms which is represented by R7 and which may be substituted, examples thereof include the same groups as those exemplified above as the substituent of the aryl group having 5 to 10 carbon atoms which may be substituted and which is represented by R2 in formula (1).
Preferable examples of the group represented by R7 include the same groups as those preferred for R2 .
The preferred range of m is the same as that of n. The preferred range of R9 is the same as that of R1 .
 Rにおける前記ヒドロキシアルキル基としては、ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシプロピル基などがあげられる。
 前記グリシジルオキシアルキル基としては、グリシジルオキシメチル基、グリシジルオキシエチル基などがあげられる。
 前記アクリロイルオキシアルキル基としては、アクリロイルオキシメチル基、アクリロイルオキシエチル基などがあげられる。
 前記メタクリロイルオキシアルキル基としては、メタクリロイルオキシメチル基、メタクリロイルオキシエチル基などがあげられる。 
Examples of the hydroxyalkyl group in R8 include a hydroxymethyl group, a hydroxyethyl group, and a hydroxypropyl group.
Examples of the glycidyloxyalkyl group include a glycidyloxymethyl group and a glycidyloxyethyl group.
Examples of the acryloyloxyalkyl group include an acryloyloxymethyl group and an acryloyloxyethyl group.
Examples of the methacryloyloxyalkyl group include a methacryloyloxymethyl group and a methacryloyloxyethyl group.
 Rとしては、炭素原子数1~10のアルキル基、ヒドロキシメチル基、グリシジルエーテル基又はメチルグリシジルエーテル基が好ましく、なかでも、炭素原子数1~10のアルキル基が好ましく、炭素原子数1~5のアルキル基がより好ましく、メチル基又はエチル基が特に好ましく、エチル基が最も好ましい。 R8 is preferably an alkyl group having 1 to 10 carbon atoms, a hydroxymethyl group, a glycidyl ether group, or a methyl glycidyl ether group, of which an alkyl group having 1 to 10 carbon atoms is preferred, an alkyl group having 1 to 5 carbon atoms is more preferred, a methyl group or an ethyl group is particularly preferred, and an ethyl group is most preferred.
 不純物として生成する化合物(4)のR、m、R及びRは、目的物の化合物(1)のR、n、R及びRとそれぞれ同一であることが好ましい。後述する硬化性材料や硬化性組成物において、化合物(1)と化合物(4)が併存する場合、化合物(4)のR、m、R及びRと化合物(1)のR、n、R及びRとはそれぞれ同一であってもよく、いずれかが異なっていてもよい。 It is preferable that R 7 , m, R 8 and R 9 of compound (4) generated as an impurity are the same as R 2 , n, R 3 and R 1 of the target compound (1), respectively. When compound (1) and compound (4) coexist in the curable material or curable composition described later, R 7 , m, R 8 and R 9 of compound (4) and R 2 , n, R 3 and R 1 of compound (1), respectively, may be the same or different.
 前記一般式(4)で表される化合物は、下記一般式(4a)、(4b)又は(4c)の何れかで表される化合物であるが、これらが混合物として存在するものであってもよい。
式(4a)、(4b)又は(4c)で表される化合物はそれぞれ式(1a)、(1b)又は(1c)で表される化合物の不純物となる。後述する硬化性材料及び硬化性組成物においては化合物(1)と化合物(4)が併存する場合、式(1a)、(1b)又は(1c)で表される化合物と、対応する化合物(4)(それぞれ式(4a)、(4b)又は(4c)で表される化合物)とが併存することが好ましいが、これに限定されない。
The compound represented by the general formula (4) is a compound represented by any one of the following general formulas (4a), (4b) and (4c), and may exist as a mixture thereof.
The compounds represented by formula (4a), (4b) or (4c) are impurities of the compounds represented by formula (1a), (1b) or (1c), respectively. In the curable material and curable composition described later, when compound (1) and compound (4) coexist, it is preferable that the compound represented by formula (1a), (1b) or (1c) and the corresponding compound (4) (the compound represented by formula (4a), (4b) or (4c), respectively) coexist, but this is not limited thereto.
 尚、前記一般式(4a)、(4b)及び(4c)で表される化合物におけるR、R、R並びにnは、前記式(4)と同様である。 In the compounds represented by the general formulae (4a), (4b) and (4c), R 1 , R 2 , R 5 and n are the same as those in the formula (4).
 下記に前記一般式(4a)、(4b)及び(4c)で表される化合物の中から、具体例をあげる。 Specific examples of compounds represented by the general formulas (4a), (4b), and (4c) are given below.
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
 本開示の硬化性材料は、化合物(2)及び化合物(4)のうち化合物(4)を含有することが硬化後に得られる硬化物の耐熱性の点で好ましい。 The curable material of the present disclosure preferably contains compound (4) out of compounds (2) and (4) in terms of the heat resistance of the cured product obtained after curing.
 本開示においては、化合物(1)と、化合物(2)及び化合物(4)のうち少なくとも一方を含有する硬化性材料において、化合物(1)、化合物(2)及び化合物(4)の合計中、化合物(1)の割合は、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることが特に好ましい。当該下限であることで、式(1)の化合物による光及び熱硬化性が良好であるという効果に優れるためである。化合物(1)の割合の上限としては、化合物(1)、化合物(2)及び化合物(4)の合計中、100質量%であることが好ましいが、化合物(2)及び/又は化合物(4)を含有する場合は、製造コストの低減などの点から、99.5質量%以下であることが好ましく、98質量%以下がより好ましい。 In the present disclosure, in a curable material containing compound (1) and at least one of compound (2) and compound (4), the proportion of compound (1) in the total of compound (1), compound (2) and compound (4) is preferably 80 mass% or more, more preferably 90 mass% or more, and particularly preferably 95 mass% or more. This is because the lower limit provides an excellent effect of good photo- and thermosetting properties due to the compound of formula (1). The upper limit of the proportion of compound (1) is preferably 100 mass% in the total of compound (1), compound (2) and compound (4), but when compound (2) and/or compound (4) are contained, it is preferably 99.5 mass% or less, more preferably 98 mass% or less, from the viewpoint of reducing production costs, etc.
 また前記の硬化性材料において、化合物(1)、化合物(2)及び化合物(4)の合計中、化合物(2)の割合は、15質量%以下が好ましく、10質量%以下がより好ましく、6質量%以下が特に好ましい。式(1)の化合物の含有量を確保して、光及び熱硬化性が良好であるという効果に優れるためである。化合物(2)を含有する場合、製造コスト、耐熱性等から、その量は、化合物(1)、化合物(2)及び化合物(4)の合計中、0.1質量%以上が好ましく、0.5質量%以上が更に好ましい。 In addition, in the curable material, the proportion of compound (2) in the total of compound (1), compound (2) and compound (4) is preferably 15% by mass or less, more preferably 10% by mass or less, and particularly preferably 6% by mass or less. This is because the content of the compound of formula (1) is ensured, and the effect of good photo- and heat-curing properties is excellent. When compound (2) is contained, the amount is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, in the total of compound (1), compound (2) and compound (4), in view of production costs, heat resistance, etc.
 更に、前記の硬化性材料において、化合物(1)、化合物(2)及び化合物(4)の合計中、化合物(4)の割合は、15質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下が特に好ましい。化合物(4)の割合が当該値以下であることで式(1)の化合物の含有量を確保して、光及び熱硬化性が良好であるという効果に優れるためである。化合物(4)を含有する場合、その量は、製造コスト、耐熱性等から、0.1質量%以上が、好ましく、0.5質量%以上が更に好ましい。 Furthermore, in the curable material, the proportion of compound (4) in the total of compound (1), compound (2) and compound (4) is preferably 15% by mass or less, more preferably 10% by mass or less, and particularly preferably 5% by mass or less. By having the proportion of compound (4) be less than this value, the content of the compound of formula (1) is ensured, and the effect of good photo- and heat-curing properties is excellent. When compound (4) is contained, the amount is preferably 0.1% by mass or more, and more preferably 0.5% by mass or more, in view of production costs, heat resistance, etc.
C.硬化性組成物
 次に、本発明の硬化性組成物について詳述する。
C. Curable Composition Next, the curable composition of the present invention will be described in detail.
 本発明の硬化性組成物には、(A)前記一般式(1)で表される化合物(以下、「(A)成分」ともいう。)の少なくとも一種と、(B)硬化剤(以下、「(B)成分」ともいう。)とを含有してなるものである。(A)成分としては、化合物(1)のみを用いてもよく、例えば上記硬化性材料を用いてもよい。 The curable composition of the present invention contains (A) at least one compound represented by the general formula (1) (hereinafter also referred to as "component (A)") and (B) a curing agent (hereinafter also referred to as "component (B)"). As component (A), only compound (1) may be used, or, for example, the above-mentioned curable material may be used.
 本発明の硬化性組成物には、反応性不飽和結合及びエポキシ基をそれぞれ1個以上有する前記(A)成分以外の化合物を含有させることができる。該化合物としては、例えば、グリシジルメタクリレート、アリルフェノールのグリシジルエーテル、ジグリシジルモノアリルエーテル、エポキシアクリレート類等があげられる。またRがアクリロイルオキシアルキル基又はメタリロイルオキシアルキル基である場合、化合物(4)も挙げられる。 The curable composition of the present invention may contain a compound having at least one reactive unsaturated bond and at least one epoxy group other than the component (A). Examples of such compounds include glycidyl methacrylate, glycidyl ether of allylphenol, diglycidyl monoallyl ether, and epoxy acrylates. In addition, when R8 is an acryloyloxyalkyl group or a methallyloyloxyalkyl group, the compound (4) may also be used.
 また、本発明の硬化性組成物には、反応性不飽和結合及びエポキシ基のうち、エポキシ基のみを有する化合物又は反応性不飽和結合のみを有する化合物を含有することもできる。 The curable composition of the present invention may also contain a compound having only an epoxy group or a compound having only a reactive unsaturated bond, among those having reactive unsaturated bonds and epoxy groups.
 前記のエポキシ基のみを有する化合物としては、化合物(2)及び化合物(4)(Rがアクリロイルオキシアルキル基又はメタリロイルオキシアルキル基以外である場合)が挙げられる。
 また例えば、公知のエポキシ樹脂があげられる。前記エポキシ樹脂としては、例えば、ハイドロキノン、レゾルシン、ピロカテコール、フロログルシノール等の単核多価フェノール化合物のポリグリシジルエーテル化合物;ジヒドロキシナフタレン、ビフェノール、メチレンビスフェノール(ビスフェノールF)、メチレンビス(オルトクレゾール)、エチリデンビスフェノール、イソプロピリデンビスフェノール(ビスフェノールA)、イソプロピリデンビス(オルトクレゾール)、テトラブロモビスフェノールA、1,3-ビス(4-ヒドロキシクミルベンゼン)、1,4-ビス(4-ヒドロキシクミルベンゼン)、1,1,3-トリス(4-ヒドロキシフェニル)ブタン、1,1,2,2-テトラ(4-ヒドロキシフェニル)エタン、チオビスフェノール、スルホニルビスフェノール、オキシビスフェノール、フェノールノボラック、オルソクレゾールノボラック、エチルフェノールノボラック、ブチルフェノールノボラック、オクチルフェノールノボラック、レゾルシンノボラック、テルペンフェノール等の多核多価フェノール化合物のポリグリシジルエーテル化合物;エチレングリコール、プロピレングリコール、ブチレングリコール、ヘキサンジオール、ポリグリコール、チオジグリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、ビスフェノールA-アルキレンオキシド付加物、ジシクロペンタジエンジメタノールジグリシジルエーテル等の多価アルコール類のポリグリシジルエーテル;マレイン酸、フマル酸、イタコン酸、コハク酸、グルタル酸、スベリン酸、アジピン酸、アゼライン酸、セバシン酸、ダイマー酸、トリマー酸、フタル酸、イソフタル酸、テレフタル酸、トリメリット酸、トリメシン酸、ピロメリット酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、エンドメチレンテトラヒドロフタル酸等の脂肪族、芳香族又は脂環族多塩基酸のグリシジルエステル類;グリシジルメタクリレートの単独重合体又は共重合体;ビニルシクロヘキセンジエポキシド、ジシクロペンタンジエンジエポキサイド、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、3,4-エポキシ-6-メチルシクロヘキシルメチル-6-メチルシクロヘキサンカルボキシレート、ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)アジペート等の環状オレフィン化合物のエポキシ化物;エポキシ化ポリブタジエン、エポキシ化スチレン-ブタジエン共重合物等のエポキシ化共役ジエン重合体、トリグリシジルイソシアヌレート等の複素環化合物があげられる。また、これらのエポキシ樹脂は末端イソシアネートのプレポリマーによって内部架橋されたもの、あるいは多価の活性水素化合物(多価フェノール、ポリアミン、カルボニル基含有化合物、ポリリン酸エステル等)を用いて高分子量化したものでもよい。
Examples of the compound having only an epoxy group include compound (2) and compound (4) (wherein R 8 is other than an acryloyloxyalkyl group or a methallyloyloxyalkyl group).
Further, examples of the epoxy resin include known epoxy resins. Examples of the epoxy resin include polyglycidyl ether compounds of mononuclear polyhydric phenol compounds such as hydroquinone, resorcin, pyrocatechol, and phloroglucinol; dihydroxynaphthalene, biphenol, methylene bisphenol (bisphenol F), methylene bis(ortho-cresol), ethylidene bisphenol, isopropylidene bisphenol (bisphenol A), isopropylidene bis(ortho-cresol), tetrabromobisphenol A, 1,3-bis(4-hydroxycumylbenzene), 1,4-bis(4-hydroxycumylbenzene), 1,1,3-tris(4-hydroxycumylbenzene), and 1,1,3-tris(4-hydroxy- polyglycidyl ether compounds of polynuclear polyhydric phenol compounds such as 1,1,2,2-tetra(4-hydroxyphenyl)butane, 1,1,2,2-tetra(4-hydroxyphenyl)ethane, thiobisphenol, sulfonylbisphenol, oxybisphenol, phenol novolac, orthocresol novolac, ethylphenol novolac, butylphenol novolac, octylphenol novolac, resorcin novolac, and terpene phenol; polyglycidyl ether compounds of polynuclear polyhydric phenol compounds such as ethylene glycol, propylene glycol, butylene glycol, hexanediol, polyglycol, thiodiglycol, glycerin, trimethylolpropane, pentaerythritol, tetramethylolpropane ... Polyglycidyl ethers of polyhydric alcohols such as rhythritol, sorbitol, bisphenol A-alkylene oxide adducts, and dicyclopentadiene dimethanol diglycidyl ether; glycidyl esters of aliphatic, aromatic, or alicyclic polybasic acids such as maleic acid, fumaric acid, itaconic acid, succinic acid, glutaric acid, suberic acid, adipic acid, azelaic acid, sebacic acid, dimer acid, trimer acid, phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid, trimesic acid, pyromellitic acid, tetrahydrophthalic acid, hexahydrophthalic acid, and endomethylenetetrahydrophthalic acid; glycidyl methacrylates; epoxidized products of cyclic olefin compounds such as vinylcyclohexene diepoxide, dicyclopentadiene diepoxide, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexane carboxylate, 3,4-epoxy-6-methylcyclohexylmethyl-6-methylcyclohexane carboxylate, and bis(3,4-epoxy-6-methylcyclohexylmethyl)adipate; epoxidized conjugated diene polymers such as epoxidized polybutadiene and epoxidized styrene-butadiene copolymers; and heterocyclic compounds such as triglycidyl isocyanurate. These epoxy resins may be internally crosslinked with a prepolymer of a terminal isocyanate, or may be polymerized using a polyvalent active hydrogen compound (polyhydric phenol, polyamine, carbonyl group-containing compound, polyphosphate, etc.).
 前記エポキシ樹脂の市販品としては、例えば、デナコールEX-313、デナコールEX-314、デナコールEX-321、デナコールEX-411、デナコールEX-421、デナコールEX-512、デナコールEX-521、デナコールEX-611、デナコールEX-612、デナコールEX-614、デナコールEX-622、デナコールEX-830、デナコールEX-832、デナコールEX-841、デナコールEX-861デナコールEX-920、デナコールEX-931、デナコールEX-201、デナコールEX-711、デナコールEX-721、(ナガセケムテックス社製);エポライト200E、エポライト400E、エポライト70P、エポライト200P、エポライト400P(共栄社化学社製)、アデカレジンEP-4088S、EP-4088L、EP-4080E、アデカレジンEP-4000、アデカレジンEP-4005、アデカレジンEP-4100、アデカレジンEP-4901(ADEKA社製);オグソールPG-100、オグソールEG-200、オグソールEG-210、オグソールEG-250(大阪ガスケミカル社製);YDシリーズ、YDFシリーズ、YDPNシリーズ、TDCNシリーズ(新日鉄住金化学);セロキサイド2021P、セロキサイド2081(ダイセル社製);TECHMORE VG-3101L(プリンテック社製);EOCN-1020、EOCN-102S、EOCN-103S、EOCN-104S、XD-1000、NC-3000、EPPN-501H、EPPN-501HY、EPPN-502H、NC-7000L(日本化薬社製);YX8800(三菱ケミカル製);HP4032、HP4032D、HP4700(DIC社製)等が挙げられる。 Commercially available epoxy resins include, for example, Denacol EX-313, Denacol EX-314, Denacol EX-321, Denacol EX-411, Denacol EX-421, Denacol EX-512, Denacol EX-521, Denacol EX-611, Denacol EX-612, Denacol EX-614, Denacol EX-622, Denacol EX-830, Denacol EX-832, and Denacol EX- 841, Denacol EX-861, Denacol EX-920, Denacol EX-931, Denacol EX-201, Denacol EX-711, Denacol EX-721, (manufactured by Nagase ChemteX Corporation); Epolight 200E, Epolight 400E, Epolight 70P, Epolight 200P, Epolight 400P (manufactured by Kyoeisha Chemical Co., Ltd.), Adeka Resin EP-4088S, EP-4088L, EP-4080E, Adeka Resin EP -4000, ADEKA RESIN EP-4005, ADEKA RESIN EP-4100, ADEKA RESIN EP-4901 (manufactured by ADEKA CORPORATION); OGSOL PG-100, OGSOL EG-200, OGSOL EG-210, OGSOL EG-250 (manufactured by Osaka Gas Chemicals Co., Ltd.); YD series, YDF series, YDPN series, TDCN series (Nippon Steel & Sumikin Chemical Co., Ltd.); CELLOXIDE 2021P, CELLOXIDE 2081 (Daicel Corporation) Examples include TECHMORE VG-3101L (manufactured by Printec); EOCN-1020, EOCN-102S, EOCN-103S, EOCN-104S, XD-1000, NC-3000, EPPN-501H, EPPN-501HY, EPPN-502H, NC-7000L (manufactured by Nippon Kayaku); YX8800 (manufactured by Mitsubishi Chemical); HP4032, HP4032D, HP4700 (manufactured by DIC Corporation), etc.
 前記反応性不飽和結合のみを有する化合物としては、例えば、N-メチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N-ヘキシル(メタ)アクリルアミド等のN-アルキル基含有(メタ)アクリルアミド誘導体;N-メチロール(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、N-メチロール-N-プロパン(メタ)アクリルアミド、N-メトキシメチルアクリルアミド、N-エトキシメチルアクリルアミド等のN-アルコキシ基含有(メタ)アクリルアミド誘導体、N-アクリロイルモルホリン、N-アクリロイルピペリジン、N-メタクリロイルピペリジン、N-アクリロイルピロリジン等の(メタ)アクリルアミド誘導体;エチレン、プロピレン、ブチレン、イソブチレン、塩化ビニル、塩化ビニリデン、フッ化ビニリデン、テトラフルオロエチレン等の不飽和脂肪族炭化水素;(メタ)アクリル酸、α―クロルアクリル酸、イタコン酸、マレイン酸、シトラコン酸、フマル酸、ハイミック酸、クロトン酸、イソクロトン酸、ビニル酢酸、アリル酢酸、桂皮酸、ソルビン酸、メサコン酸、コハク酸モノ[2-(メタ)アクリロイロキシエチル]、フタル酸モノ[2-(メタ)アクリロイロキシエチル]、ω-カルボキシポリカプロラクトンモノ(メタ)アクリレート等の両末端にカルボキシ基と水酸基とを有するポリマーのモノ(メタ)アクリレート;ヒドロキシエチル(メタ)アクリレート・マレート、ヒドロキシプロピル(メタ)アクリレート・マレート、ジシクロペンタジエン・マレート或いは1個のカルボキシ基と2個以上の(メタ)アクリロイル基とを有する多官能(メタ)アクリレート等の不飽和多塩基酸;(メタ)アクリル酸-2-ヒドロキシエチル、(メタ)アクリル酸-2-ヒドロキシプロピル、(メタ)アクリル酸メチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸-t-ブチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸ジメチルアミノメチル、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸アミノプロピル、(メタ)アクリル酸ジメチルアミノプロピル、(メタ)アクリル酸エトキシエチル、(メタ)アクリル酸ポリ(エトキシ)エチル、(メタ)アクリル酸ブトキシエトキシエチル、(メタ)アクリル酸エチルヘキシル、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸テトラヒドロフリル、(メタ)アクリル酸ビニル、(メタ)アクリル酸アリル、(メタ)アクリル酸ベンジル、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリシクロデカンジメチロールジ(メタ)アクリレート、トリ[(メタ)アクリロイルエチル]イソシアヌレート、ポリエステル(メタ)アクリレートオリゴマー等の不飽和一塩基酸及び多価アルコール又は多価フェノールのエステル;(メタ)アクリル酸亜鉛、(メタ)アクリル酸マグネシウム等の不飽和多塩基酸の金属塩;アクロレイン等の不飽和アルデヒド;(メタ)アクリロニトリル、α-クロロアクリロニトリル、シアン化ビニリデン、シアン化アリル等の不飽和ニトリル;スチレン、4-メチルスチレン、4-エチルスチレン、4-メトキシスチレン、4-ヒドロキシスチレン、4-クロロスチレン、ジビニルベンゼン、ビニルトルエン、ビニル安息香酸、ビニルフェノール、ビニルスルホン酸、4-ビニルベンゼンスルホン酸、ビニルベンジルメチルエーテル、ビニルベンジルグリシジルエーテル等の不飽和芳香族化合物;メチルビニルケトン等の不飽和ケトン;ビニルアミン、アリルアミン、N-ビニルピロリドン、ビニルピペリジン等の不飽和アミン化合物;アリルアルコール、クロチルアルコール等のビニルアルコール;ビニルメチルエーテル、ビニルエチルエーテル、n-ブチルビニルエーテル、イソブチルビニルエーテル、アリルグリシジルエーテル等のビニルエーテル;マレイミド、N-フェニルマレイミド、N-シクロヘキシルマレイミド等の不飽和イミド類;インデン、1-メチルインデン等のインデン類;1,3-ブタジエン、イソプレン、クロロプレン等の脂肪族共役ジエン類;ポリスチレン、ポリメチル(メタ)アクリレート、ポリ-n-ブチル(メタ)アクリレート、ポリシロキサン等の重合体分子鎖の末端にモノ(メタ)アクリロイル基を有するマクロモノマー類;ビニルクロリド、ビニリデンクロリド、ジビニルスクシナート、ジアリルフタラート、トリアリルホスファート、トリアリルイソシアヌラート、ビニルチオエーテル、ビニルイミダゾール、ビニルオキサゾリン、ビニルカルバゾール、ビニルピロリドン、ビニルピリジン、水酸基含有ビニルモノマー及びポリイソシアネート化合物のビニルウレタン化合物、水酸基含有ビニルモノマー及びポリエポキシ化合物のビニルエポキシ化合物が挙げられる。 Examples of compounds having only reactive unsaturated bonds include N-alkyl group-containing (meth)acrylamide derivatives such as N-methyl(meth)acrylamide, N,N-dimethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, N-isopropyl(meth)acrylamide, N-butyl(meth)acrylamide, and N-hexyl(meth)acrylamide; N-alkoxy group-containing (meth)acrylamide derivatives such as N-methylol(meth)acrylamide, N-hydroxyethyl(meth)acrylamide, N-methylol-N-propane(meth)acrylamide, N-methoxymethylacrylamide, and N-ethoxymethylacrylamide; and N-acryloylmorphoacrylamide derivatives such as N-methylol(meth)acrylamide, N-hydroxyethyl(meth)acrylamide, N-methylol-N-propane(meth)acrylamide, N-methoxymethylacrylamide, and N-ethoxymethylacrylamide. (meth)acrylamide derivatives such as phosphorus, N-acryloylpiperidine, N-methacryloylpiperidine, and N-acryloylpyrrolidine; unsaturated aliphatic hydrocarbons such as ethylene, propylene, butylene, isobutylene, vinyl chloride, vinylidene chloride, vinylidene fluoride, and tetrafluoroethylene; (meth)acrylic acid, α-chloroacrylic acid, itaconic acid, maleic acid, citraconic acid, fumaric acid, hymic acid, crotonic acid, isocrotonic acid, vinylacetic acid, allylacetic acid, cinnamic acid, sorbic acid, mesaconic acid, mono[2-(meth)acryloyloxyethyl] succinate, mono[2-(meth)acryloyloxyethyl] phthalate, and ω-carboxypolycaprolactone mono(meth)acrylate. Mono(meth)acrylates of polymers having a carboxy group and a hydroxyl group at both ends, such as acrylates; unsaturated polybasic acids such as hydroxyethyl (meth)acrylate maleate, hydroxypropyl (meth)acrylate maleate, dicyclopentadiene maleate, or polyfunctional (meth)acrylates having one carboxy group and two or more (meth)acryloyl groups; 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, methyl (meth)acrylate, butyl (meth)acrylate, isobutyl (meth)acrylate, t-butyl (meth)acrylate, cyclohexyl (meth)acrylate, n-octyl (meth)acrylate, isopropyl (meth)acrylate, Octyl, isononyl (meth)acrylate, stearyl (meth)acrylate, lauryl (meth)acrylate, methoxyethyl (meth)acrylate, dimethylaminomethyl (meth)acrylate, dimethylaminoethyl (meth)acrylate, aminopropyl (meth)acrylate, dimethylaminopropyl (meth)acrylate, ethoxyethyl (meth)acrylate, poly(ethoxy)ethyl (meth)acrylate, butoxyethoxyethyl (meth)acrylate, ethylhexyl (meth)acrylate, phenoxyethyl (meth)acrylate, tetrahydrofuryl (meth)acrylate, vinyl (meth)acrylate, allyl (meth)acrylate, benzyl (meth)acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, trimethylolethane tri(meth)acrylate, trimethylolpropane tri(meth)acrylate, dipentaerythritol hexa(meth)acrylate, dipentaerythritol penta(meth)acrylate, pentaerythritol tetra(meth)acrylate, pentaerythritol tri(meth)acrylate, tricyclodecane dimethyl Esters of unsaturated monobasic acids and polyhydric alcohols or polyhydric phenols, such as roll di(meth)acrylate, tri[(meth)acryloylethyl]isocyanurate, and polyester (meth)acrylate oligomers; metal salts of unsaturated polybasic acids, such as zinc (meth)acrylate and magnesium (meth)acrylate; unsaturated aldehydes, such as acrolein; unsaturated nitriles, such as (meth)acrylonitrile, α-chloroacrylonitrile, vinylidene cyanide, and allyl cyanide; styrene, 4-methylstyrene, 4-ethylstyrene, 4-methoxystyrene, 4-hydroxystyrene, 4-chlorostyrene, divinylbenzene, vinyltoluene, vinylbenzoic acid, vinylphenol, and vinyl sulfonate. unsaturated aromatic compounds such as vinyl ether, 4-vinylbenzenesulfonic acid, vinylbenzyl methyl ether, and vinylbenzyl glycidyl ether; unsaturated ketones such as methyl vinyl ketone; unsaturated amine compounds such as vinylamine, allylamine, N-vinylpyrrolidone, and vinylpiperidine; vinyl alcohols such as allyl alcohol and crotyl alcohol; vinyl ethers such as vinyl methyl ether, vinyl ethyl ether, n-butyl vinyl ether, isobutyl vinyl ether, and allyl glycidyl ether; unsaturated imides such as maleimide, N-phenylmaleimide, and N-cyclohexylmaleimide; indenes such as indene and 1-methylindene; 1,3-butadiene, isoprene, chloro Aliphatic conjugated dienes such as propylene; macromonomers having a mono(meth)acryloyl group at the end of the polymer molecular chain such as polystyrene, polymethyl(meth)acrylate, poly-n-butyl(meth)acrylate, and polysiloxane; vinyl chloride, vinylidene chloride, divinyl succinate, diallyl phthalate, triallyl phosphate, triallyl isocyanurate, vinyl thioether, vinyl imidazole, vinyl oxazoline, vinyl carbazole, vinyl pyrrolidone, vinyl pyridine, vinyl urethane compounds of hydroxyl group-containing vinyl monomers and polyisocyanate compounds, and vinyl epoxy compounds of hydroxyl group-containing vinyl monomers and polyepoxy compounds.
 本発明の硬化性組成物における(A)成分(化合物(1))の量は30質量%以上99質量%以下であることが硬化性組成物における硬化性等の点で好ましく、50質量%以上97質量%以下であることがより好ましい。また(A)成分及び(A)成分以外の化合物を含め、エポキシ基及び/又は反応性不飽和結合を有する化合物の合計量も、硬化性組成物中、30質量%以上99質量%以下であってもよく、50質量%以上97質量%以下であってもよい。硬化性組成物が、(A)成分に加えてエポキシ基及び/又は反応性不飽和結合を有するその他の化合物を含有する場合には、硬化性等の点で該その他の化合物の量は(A)成分100質量部に対し、100質量部以下であることが好ましく、70質量部以下であることがより好ましい。 In terms of curability, etc., the amount of component (A) (compound (1)) in the curable composition of the present invention is preferably 30% by mass or more and 99% by mass or less, and more preferably 50% by mass or more and 97% by mass or less. The total amount of compounds having an epoxy group and/or a reactive unsaturated bond, including component (A) and compounds other than component (A), may also be 30% by mass or more and 99% by mass or less, or 50% by mass or more and 97% by mass or less, in the curable composition. When the curable composition contains other compounds having an epoxy group and/or a reactive unsaturated bond in addition to component (A), in terms of curability, etc., the amount of the other compounds is preferably 100 parts by mass or less, and more preferably 70 parts by mass or less, per 100 parts by mass of component (A).
 本発明の硬化性樹脂組成物に使用される(B)成分である硬化剤としては、例えば、アミン系硬化剤、フェノール系硬化剤、酸無水物系硬化剤、ポリチオール系硬化剤、重合開始剤等が好ましいものとしてあげられる。 Preferred examples of the curing agent (B) used in the curable resin composition of the present invention include amine-based curing agents, phenol-based curing agents, acid anhydride-based curing agents, polythiol-based curing agents, and polymerization initiators.
 前記アミン系硬化剤としては、例えば、エチレンジアミン、1,2-ジアミノプロパン、1,3-ジアミノプロパン、1,3-ジアミノブタン、1,4-ジアミノブタン、ヘキサメチレンジアミン等のアルキレンジアミン類;ジエチレントリアミン、トリエチレントリアミン、テトラエチレンペンタミン等のポリアルキルポリアミン類;1,4-ジアミノシクロヘキサン、1,3-ジアミノシクロヘキサン、1,3-ジアミノメチルシクロヘキサン、1,2-ジアミノシクロヘキサン、1,4-ジアミノ-3,6-ジエチルシクロヘキサン、4,4’-ジアミノジシクロヘキシルメタン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、4,4’-ジアミノジシクロヘキシルプロパン、ビス(4-アミノシクロヘキシル)スルホン、4,4’-ジアミノジシクロヘキシルエーテル、2,2’-ジメチル-4,4‘-ジアミノジシクロヘキシルメタン、イソホロンジアミン、ノルボルネンジアミン等の脂環式ポリアミン類;m-キシリレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ジエチルトルエンジアミン、1-メチル-3,5-ジエチル-2,4-ジアミンベンゼン、1-メチル-3,5-ジエチル-2,6-ジアミノベンゼン、1,3,5-トリエチル-2,6-ジアミノベンゼン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、3,5,3’、5’-テトラメチル-4,4‘-ジアミノジフェニルメタン等の芳香族ポリアミン類;ベンゾグアナミン、アセトグアナミン等のグアナミン類;2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-イソプロピルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-アミノプロピルイミダゾール等のイミダゾール類;シュウ酸ジヒドラジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、グルタル酸ジヒドラジド、アジピン酸ジヒドラジド、スベリン酸ジヒドラジド、アゼライン酸ジヒドラジド、セバシン酸ジヒドラジド、フタル酸ジヒドラジド等のジヒドラジド類;N,N-ジメチルアミノエチルアミン、N,N-ジエチルアミノエチルアミン、N,N-ジイソプロピルアミノエチルアミン、N,N-ジアリルアミノエチルアミン、N,N-ベンジルメチルアミノエチルアミン、N,N-ジベンジルアミノエチルアミン、N,N-シクロヘキシルメチルアミノエチルアミン、N,N-ジシクロヘキシルアミノエチルアミン、N-(2-アミノエチル)ピロリジン、N-(2-アミノエチル)ピペリジン、N-(2-アミノエチル)モルホリン、N-(2-アミノエチル)ピペラジン、N-(2-アミノエチル)-N’-メチルピペラジン、N,N-ジメチルアミノプロピルアミン、N,N-ジエチルアミノプロピルアミン、N,N-ジイソプロピルアミノプロピルアミン、N,N-ジアリルアミノプロピルアミン、N,N-ベンジルメチルアミノプロピルアミン、N,N-ジベンジルアミノプロピルアミン、N,N-シクロヘキシルメチルアミノプロピルアミン、N,N-ジシクロヘキシルアミノプロピルアミン、N-(3-アミノプロピル)ピロリジン、N-(3-アミノプロピル)ピペリジン、N-(3-アミノプロピル)モルホリン、N-(3-アミノプロピル)ピペラジン、N-(3-アミノプロピル)-N’-メチルピペリジン、4-(N,N-ジメチルアミノ)ベンジルアミン、4-(N,N-ジエチルアミノ)ベンジルアミン、4-(N,N-ジイソプロピルアミノ)ベンジルアミン、N,N,-ジメチルイソホロンジアミン、N,N-ジメチルビスアミノシクロヘキサン、N,N,N’-トリメチルエチレンジアミン、N’-エチル-N,N-ジメチルエチレンジアミン、N’-エチル-N,N-ジメチルプロパンジアミン、N’-エチル-N,N-ジベンジルアミノプロピルアミン;N,N-(ビスアミノプロピル)-N-メチルアミン、N,N-ビスアミノプロピルエチルアミン、N,N-ビスアミノプロピルプロピルアミン、N,N-ビスアミノプロピルブチルアミン、N,N-ビスアミノプロピルペンチルアミン、N,N-ビスアミノプロピルヘキシルアミン、N,N-ビスアミノプロピル-2-エチルヘキシルアミン、N,N-ビスアミノプロピルシクロヘキシルアミン、N,N-ビスアミノプロピルベンジルアミン、N,N-ビスアミノプロピルアリルアミン、ビス〔3-(N,N-ジメチルアミノプロピル)〕アミン、ビス〔3-(N,N-ジエチルアミノプロピル)〕アミン、ビス〔3-(N,N-ジイソプロピルアミノプロピル)〕アミン、ビス〔3-(N,N-ジブチルアミノプロピル)〕アミン等があげられる。 The amine-based curing agent may, for example, be alkylenediamines such as ethylenediamine, 1,2-diaminopropane, 1,3-diaminopropane, 1,3-diaminobutane, 1,4-diaminobutane, or hexamethylenediamine; polyalkylpolyamines such as diethylenetriamine, triethylenetriamine, or tetraethylenepentamine; 1,4-diaminocyclohexane, 1,3-diaminocyclohexane, 1,3-diaminomethylcyclohexane, 1,2-diaminocyclohexane, 1,4-diamino-3,6-diethylcyclohexane, or 4,4' alicyclic polyamines such as 1,3-diaminodicyclohexylmethane, 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, 4,4'-diaminodicyclohexylpropane, bis(4-aminocyclohexyl)sulfone, 4,4'-diaminodicyclohexyl ether, 2,2'-dimethyl-4,4'-diaminodicyclohexylmethane, isophoronediamine, and norbornenediamine; m-xylylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, diethyltoluenediamine, 1-methyl-3, Aromatic polyamines such as 5-diethyl-2,4-diaminebenzene, 1-methyl-3,5-diethyl-2,6-diaminobenzene, 1,3,5-triethyl-2,6-diaminobenzene, 3,3'-diethyl-4,4'-diaminodiphenylmethane, and 3,5,3',5'-tetramethyl-4,4'-diaminodiphenylmethane; guanamines such as benzoguanamine and acetoguanamine; 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-isopropylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2- Imidazoles such as phenylimidazole, 2-phenyl-4-methylimidazole, and 2-aminopropylimidazole; dihydrazides such as oxalic acid dihydrazide, malonic acid dihydrazide, succinic acid dihydrazide, glutaric acid dihydrazide, adipic acid dihydrazide, suberic acid dihydrazide, azelaic acid dihydrazide, sebacic acid dihydrazide, and phthalic acid dihydrazide; N,N-dimethylaminoethylamine, N,N-diethylaminoethylamine, N,N-diisopropylaminoethylamine, N,N-diallylaminoethylamine, N,N-phenyl ... benzylmethylaminoethylamine, N,N-dibenzylaminoethylamine, N,N-cyclohexylmethylaminoethylamine, N,N-dicyclohexylaminoethylamine, N-(2-aminoethyl)pyrrolidine, N-(2-aminoethyl)piperidine, N-(2-aminoethyl)morpholine, N-(2-aminoethyl)piperazine, N-(2-aminoethyl)-N'-methylpiperazine, N,N-dimethylaminopropylamine, N,N-diethylaminopropylamine, N,N-diisopropylaminopropylamine, N,N-diallylaminopropylamine Propylamine, N,N-benzylmethylaminopropylamine, N,N-dibenzylaminopropylamine, N,N-cyclohexylmethylaminopropylamine, N,N-dicyclohexylaminopropylamine, N-(3-aminopropyl)pyrrolidine, N-(3-aminopropyl)piperidine, N-(3-aminopropyl)morpholine, N-(3-aminopropyl)piperazine, N-(3-aminopropyl)-N'-methylpiperidine, 4-(N,N-dimethylamino)benzylamine, 4-(N,N-diethylamino)benzylamine, 4-( N,N-diisopropylamino)benzylamine, N,N,-dimethylisophoronediamine, N,N-dimethylbisaminocyclohexane, N,N,N'-trimethylethylenediamine, N'-ethyl-N,N-dimethylethylenediamine, N'-ethyl-N,N-dimethylpropanediamine, N'-ethyl-N,N-dibenzylaminopropylamine; N,N-(bisaminopropyl)-N-methylamine, N,N-bisaminopropylethylamine, N,N-bisaminopropylpropylamine, N,N-bisaminopropylbutylamine, N,N- Examples include bisaminopropylpentylamine, N,N-bisaminopropylhexylamine, N,N-bisaminopropyl-2-ethylhexylamine, N,N-bisaminopropylcyclohexylamine, N,N-bisaminopropylbenzylamine, N,N-bisaminopropylallylamine, bis[3-(N,N-dimethylaminopropyl)]amine, bis[3-(N,N-diethylaminopropyl)]amine, bis[3-(N,N-diisopropylaminopropyl)]amine, and bis[3-(N,N-dibutylaminopropyl)]amine.
 また、前記アミン系硬化剤は、各種変性して得られるアミン系潜在性硬化剤としたものでもよい。変性アミンとしては、例えば、前記アミン化合物とカルボン酸との脱水縮合物、前記アミン化合物とエポキシ化合物(前記エポキシ樹脂として例示した化合物)との付加物、前記アミン化合物とイソシアネート化合物(下記に例示のイソシアネート化合物)との付加物、アミン化合物のマイケル付加物、アミン化合物のマンニッヒ反応物、アミン化合物と尿素との縮合物、アミン化合物とケトンとの縮合物等の変性アミン等があげられる。また、例えば、シュウ酸ジヒドラジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、グルタル酸ジヒドラジド、アジピン酸ジヒドラジド、スベリン酸ジヒドラジド、アゼライン酸ジヒドラジド、セバシン酸ジヒドラジド、フタル酸ジヒドラジド等の二塩基酸ジヒドラジド;ベンゾグアナミン、アセトグアナミン等のグアナミン;ジシアンジアミド;メラミンなどもアミン系潜在性硬化剤として用いることができる。 The amine-based curing agent may be an amine-based latent curing agent obtained by various modifications. Examples of modified amines include dehydration condensation products of the amine compound and a carboxylic acid, adducts of the amine compound and an epoxy compound (a compound exemplified as the epoxy resin), adducts of the amine compound and an isocyanate compound (an isocyanate compound exemplified below), Michael adducts of amine compounds, Mannich reaction products of amine compounds, condensates of amine compounds and urea, and condensates of amine compounds and ketones. In addition, for example, dibasic acid dihydrazides such as oxalic acid dihydrazide, malonic acid dihydrazide, succinic acid dihydrazide, glutaric acid dihydrazide, adipic acid dihydrazide, suberic acid dihydrazide, azelaic acid dihydrazide, sebacic acid dihydrazide, and phthalic acid dihydrazide; guanamines such as benzoguanamine and acetoguanamine; dicyandiamide; and melamine can also be used as amine-based latent curing agents.
 前記イソシアネート化合物としては、例えば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ジフェニルメタン-4,4‘-ジイソシアネート、フェニレンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、1,5-ナフチレンジイソシアネート、1,5-テトラヒドロナフタレンジイソシアネート、3,3’-ジメチルジフェニル-4,4‘-ジイソシアネート、ジアニシジンジイソシアネート、テトラメチルキシリレンジイソシアネート等の芳香族ジイソシアネート;イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、トランス-1,4-シクロヘキシルジイソシアネート、ノルボルネンジイソシアネート等の脂環式ジイソシアネート;テトラメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、2,2,4及び/又は(2,4,4)-トリメチルヘキサメチレンジイソシアネート、リシンジイソシアネート等の脂肪族ジイソシアネート;前記例示のジイソシアネートのイソシアヌレート三量化物、ビウレット三量化物、トリメチロールプロパンアダクト化物等;トリフェニルメタントリイソシアネート、1-メチルベンゾール-2,4,6-トリイソシアネート、ジメチルトリフェニルメタンテトライソシアネート等があげられる。
 更にこれらのイソシアネート化合物はカルボジイミド変性、イソシアヌレート変性、ビウレット変性等の形で用いてもよく、各種のブロッキング剤によってブロックされたブロックイソシアネートの形で用いてもよい。
Examples of the isocyanate compound include aromatic diisocyanates such as 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, diphenylmethane-4,4'-diisocyanate, phenylene diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, 1,5-naphthylene diisocyanate, 1,5-tetrahydronaphthalene diisocyanate, 3,3'-dimethyldiphenyl-4,4'-diisocyanate, dianisidine diisocyanate, and tetramethylxylylene diisocyanate; isophorone diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, Examples of the diisocyanates include alicyclic diisocyanates such as trans-1,4-cyclohexyl diisocyanate and norbornene diisocyanate; aliphatic diisocyanates such as tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, 2,2,4 and/or (2,4,4)-trimethylhexamethylene diisocyanate and lysine diisocyanate; isocyanurate trimer, biuret trimer, trimethylolpropane adduct of the above-listed diisocyanates; triphenylmethane triisocyanate, 1-methylbenzene-2,4,6-triisocyanate, dimethyltriphenylmethane tetraisocyanate, and the like.
Furthermore, these isocyanate compounds may be used in a form modified by carbodiimide, isocyanurate, biuret, or the like, or may be used in a form of blocked isocyanate blocked with various blocking agents.
 前記フェノール系硬化剤としては、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂(ザイロック樹脂)、ナフトールアラルキル樹脂、トリスフェニロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮合ノボラック樹脂、ナフトール-クレゾール共縮合ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(フェノール骨格、トリアジン環及び1級アミノ基を分子構造中に有する化合物)、及び、アルコキシ基含有芳香環変性ノボラック樹脂(ホルムアルデヒドでフェノール核及びアルコキシ基含有芳香環が連結された多価フェノール化合物)等の多価フェノール化合物があげられる。 Examples of the phenol-based hardener include polyhydric phenol compounds such as phenol novolac resin, cresol novolac resin, aromatic hydrocarbon formaldehyde resin modified phenol resin, dicyclopentadiene phenol addition type resin, phenol aralkyl resin (Zylok resin), naphthol aralkyl resin, trisphenylol methane resin, tetraphenylol ethane resin, naphthol novolac resin, naphthol-phenol co-condensed novolac resin, naphthol-cresol co-condensed novolac resin, biphenyl modified phenol resin (a polyhydric phenol compound in which the phenol nucleus is linked by a bismethylene group), biphenyl modified naphthol resin (a polyhydric naphthol compound in which the phenol nucleus is linked by a bismethylene group), aminotriazine modified phenol resin (a compound having a phenol skeleton, a triazine ring, and a primary amino group in the molecular structure), and alkoxy group-containing aromatic ring modified novolac resin (a polyhydric phenol compound in which the phenol nucleus and the alkoxy group-containing aromatic ring are linked by formaldehyde).
 酸無水物系硬化剤としては、例えば、無水ハイミック酸、無水フタル酸、無水マレイン酸、無水メチルハイミック酸、無水コハク酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、トリアルキルテトラヒドロ無水フタル酸-無水マレイン酸付加物、ベンゾフェノンテトラカルボン酸無水物、無水トリメリット酸、無水ピロメリット酸、及び水素化メチルナジック酸無水物等があげられる。 Examples of acid anhydride curing agents include himic anhydride, phthalic anhydride, maleic anhydride, methyl himic anhydride, succinic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, trialkyltetrahydrophthalic anhydride-maleic anhydride adduct, benzophenonetetracarboxylic anhydride, trimellitic anhydride, pyromellitic anhydride, and hydrogenated methylnadic anhydride.
 前記ポリチオール系硬化剤としては、例えば、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(チオグリコレート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプトブチレート)、1,3,4,6-テトラキス(2-メルカプトエチル)-1,3,4,6-テトラアザオクヒドロペンタレン-2,5-ジオン、1,3,5-トリス(3-メルカブトプロピル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、4,8-、4,7-若しくは5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、1,3,4,6-テトラキス(2-メルカプトエチル)グリコールウリル、1,2,3-トリス(メルカプトメチルチオ)プロパン、1,2,3-トリス(2-メルカプトエチルチオ)プロパン、1,2,3-トリス(3-メルカプトプロピルチオ)プロパン、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、テトラキス(メルカプトメチルチオメチル)メタン、テトラキス(2-メルカプトエチルチオメチル)メタン、テトラキス(3-メルカプトプロピルチオメチル)メタン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、1,1,2,2-テトラキス(メルカプトメチルチオ)エタン、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、1,1,5,5-テトラキス(メルカプトメチルチオ)-3-チアペンタン、1,1,6,6-テトラキス(メルカプトメチルチオ)-3,4-ジチアヘキサン、2,2-ビス(メルカプトメチルチオ)エタンチオール、3-メルカプトメチルチオ-1,7-ジメルカプト-2,6-ジチアヘプタン、3,6-ビス(メルカプトメチルチオ)-1,9-ジメルカプト-2,5,8-トリチアノナン、3-メルカプトメチルチオ-1,6-ジメルカプト-2,5-ジチアヘキサン、1,1,9,9-テトラキス(メルカプトメチルチオ)-5-(3,3-ビス(メルカプトメチルチオ)-1-チアプロピル)3,7-ジチアノナン、トリス(2,2-ビス(メルカプトメチルチオ)エチル)メタン、トリス(4,4-ビス(メルカプトメチルチオ)-2-チアブチル)メタン、テトラキス(2,2-ビス(メルカプトメチルチオ)エチル)メタン、テトラキス(4,4-ビス(メルカプトメチルチオ)-2-チアブチル)メタン、3,5,9,11-テトラキス(メルカプトメチルチオ)-1,13-ジメルカプト-2,6,8,12-テトラチアトリデカン、3,5,9,11,15,17-ヘキサキス(メルカプトメチルチオ)-1,19-ジメルカプト-2,6,8,12,14,18-ヘキサチアノナデカン、9-(2,2-ビス(メルカプトメチルチオ)エチル)-3,5,13,15-テトラキス(メルカプトメチルチオ)-1,17-ジメルカプト-2,6,8,10,12,16-ヘキサチアヘプタデカン、3,4,8,9-テトラキス(メルカプトメチルチオ)-1,11-ジメルカプト-2,5,7,10-テトラチアウンデカン、3,4,8,9,13,14-ヘキサキス(メルカプトメチルチオ)-1,16-ジメルカプト-2,5,7,10,12,15-ヘキサチアヘキサデカン、8-[ビス(メルカプトメチルチオ)メチル]-3,4,12,13-テトラキス(メルカプトメチルチオ)-1,15-ジメルカプト-2,5,7,9,11,14-ヘキサチアペンタデカン、4,6-ビス[3,5-ビス(メルカプトメチルチオ)-7-メルカプト-2,6-ジチアヘプチルチオ]-1,3-ジチアン、4-[3,5-ビス(メルカプトメチルチオ)-7‐メルカプト-2,6-ジチアヘプチルチオ]-6-メルカプトメチルチオ-1,3-ジチアン、1,1-ビス[4-(6-メルカプトメチルチオ)-1,3-ジチアニルチオ]-1,3-ビス(メルカプトメチルチオ)プロパン、1-[4-(6-メルカプトメチルチオ)-1,3-ジチアニルチオ]-3-[2,2-ビス(メルカプトメチルチオ)エチル]-7,9-ビス(メルカプトメチルチオ)-2,4,6,10-テトラチアウンデカン、1,5-ビス[4-(6-メルカプトメチルチオ)-1,3-ジチアニルチオ]-3-[2-(1,3-ジチエタニル)]メチル-2,4-ジチアペンタン、3-[2-(1,3-ジチエタニル)]メチル-7,9-ビス(メルカプトメチルチオ)-1,11-ジメルカプト-2,4,6,10-テトラチアウンデカン、9-[2-(1,3-ジチエタニル)]メチル-3,5,13,15-テトラキス(メルカプトメチルチオ)-1,17-ジメルカプト-2,6,8,10,12,16-ヘキサチアヘプタデカン、3-[2-(1,3-ジチエタニル)]メチル-7,9,13,15-テトラキス(メルカプトメチルチオ)-1,17-ジメルカプト-2,4,6,10,12,16-ヘキサチアヘプタデカン、3,7-ビス[2-(1,3-ジチエタニル)]メチル-1,9-ジメルカプト-2,4,6,8-テトラチアノナン、4,6-ビス{3-[2-(1,3-ジチエタニル)]メチル-5-メルカプト-2,4-ジチアペンチルチオ}-1,3-ジチアン、4,6-ビス[4-(6-メルカプトメチルチオ)-1,3-ジチアニルチオ]-6-[4-(6‐メルカプトメチルチオ)-1,3-ジチアニルチオ]-1,3-ジチアン、4-[3,4,8,9‐テトラキス(メルカプトメチルチオ)-11-メルカプト-2,5,7,10-テトラチアウンデシル]-5-メルカプトメチルチオ-1,3-ジチオラン、4,5-ビス[3,4-ビス(メルカプトメチルチオ)-6-メルカプト-2,5-ジチアヘキシルチオ]-1,3-ジチオラン、4-[3,4-ビス(メルカプトメチルチオ)-6-メルカプト-2,5-ジチアヘキシルチオ]-5-メルカプトメチルチオ-1,3-ジチオラン、4-[3-ビス(メルカプトメチルチオ)メチル-5,6-ビス(メルカプトメチルチオ)-8-メルカプト-2,4,7-トリチアオクチル]-5-メルカプトメチルチオ-1,3-ジチオラン、2-{ビス[3,4-ビス(メルカプトメチルチオ)-6-メルカプト-2,5-ジチアヘキシルチオ]メチル}-1,3-ジチエタン、2-[3,4-ビス(メルカプトメチルチオ)-6-メルカプト-2,5-ジチアヘキシルチオ]メルカプトメチルチオメチル-1,3-ジチエタン、2-[3,4,8,9-テトラキス(メルカプトメチルチオ)-11-メルカプト-2,5,7,10-テトラチアウンデシルチオ]メルカプトメチルチオメチル-1,3-ジチエタン、2-[3-ビス(メルカプトメチルチオ)メチル-5,6-ビス(メルカプトメチルチオ)-8-メルカプト-2,4,7-トリチアオクチル]メルカプトメチルチオメチル-1,3-ジチエタン、4,5-ビス{1-[2-(1,3-ジチエタニル)]-3-メルカプト-2-チアプロピルチオ}-1,3-ジチオラン、4-{1-[2-(1,3-ジチエタニル)]-3-メルカプト-2-チアプロピルチオ}-5-[1,2-ビス(メルカプトメチルチオ)-4-メルカプト-3-チアブチルチオ]-1,3-ジチオラン、2-{ビス[4-(5-メルカプトメチルチオ-1,3-ジチオラニル)チオ]メチル}-1,3-ジチエタン、4-[4-(5-メルカプトメチルチオ-1,3-ジチオラニル)チオ]-5-{1-[2-(1,3-ジチエタニル)]-3-メルカプト-2-チアプロピルチオ}-1,3-ジチオラン等があげられる。
 特に、4価以上のポリチオール化合物を使用することによって硬化性に優れる硬化性組成物がえられるため好ましい。
Examples of the polythiol-based curing agent include pentaerythritol tetrakis(3-mercaptopropionate), pentaerythritol tetrakis(thioglycolate), dipentaerythritol hexakis(3-mercaptopropionate), dipentaerythritol hexakis(3-mercaptobutyrate), 1,3,4,6-tetrakis(2-mercaptoethyl)-1,3,4,6-tetraazaochydropentalene-2,5-dione, 1,3,5 ... 1,3,4,6-Tri(3-mercaptopropyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione, 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, 4,8-, 4,7- or 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 1,3,4,6-tetrakis(2-mercaptoethyl)glycoluril, 1,2,3-tris(mercaptomethylthio)propane, 1,2,3-tris(2 -mercaptoethylthio)propane, 1,2,3-tris(3-mercaptopropylthio)propane, 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, tetramercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, tetrakis(mercaptomethylthiomethyl)methane, tetrakis(2-mercaptoethylthiomethyl)methane, tetrakis(3-mercaptopropylthiomethyl)methane, 1,1,3,3-tetrakis(mercaptomethylthio)propane, 1,1,2,2-tetrakis(mercaptomethylthio)ethane, 4,6-bis(mercaptomethylthio)-1,3-dithiane, 1,1,5,5-tetrakis(mercaptomethylthio)-3-thiapentane, 1,1,6,6-tetrakis(mercaptomethylthio)-2,3-dithiane, 1,1,5,5-tetrakis(mercaptomethylthio)-3-thiapentane, bis(mercaptomethylthio)-3,4-dithiahexane, 2,2-bis(mercaptomethylthio)ethanethiol, 3-mercaptomethylthio-1,7-dimercapto-2,6-dithiaheptane, 3,6-bis(mercaptomethylthio)-1,9-dimercapto-2,5,8-trithianonane, 3-mercaptomethylthio-1,6-dimercapto-2,5-dithiahexane, 1,1,9,9-tetrakis(mercaptomethylthio)-5-(3,3-bis(mercaptomethylthio)ethanethiol, tris(2,2-bis(mercaptomethylthio)ethyl)methane, tris(4,4-bis(mercaptomethylthio)-2-thiabutyl)methane, tetrakis(2,2-bis(mercaptomethylthio)ethyl)methane, tetrakis(4,4-bis(mercaptomethylthio)-2-thiabutyl)methane, 3,5,9,11-tetrakis(mercaptomethylthio)-1,13-dimercapto-2,6,8,12 -Tetrathiatridecane, 3,5,9,11,15,17-hexakis(mercaptomethylthio)-1,19-dimercapto-2,6,8,12,14,18-hexathianonadecane, 9-(2,2-bis(mercaptomethylthio)ethyl)-3,5,13,15-tetrakis(mercaptomethylthio)-1,17-dimercapto-2,6,8,10,12,16-hexathiaheptadecane, 3,4,8,9-tetrakis(mercaptomethylthio)-1,11-di Mercapto-2,5,7,10-tetrathiaundecane, 3,4,8,9,13,14-hexakis(mercaptomethylthio)-1,16-dimercapto-2,5,7,10,12,15-hexathiahexadecane, 8-[bis(mercaptomethylthio)methyl]-3,4,12,13-tetrakis(mercaptomethylthio)-1,15-dimercapto-2,5,7,9,11,14-hexathiapentadecane, 4,6-bis[3,5-bis(mercaptomethylthio) )-7-mercapto-2,6-dithiaheptylthio]-1,3-dithiane, 4-[3,5-bis(mercaptomethylthio)-7-mercapto-2,6-dithiaheptylthio]-6-mercaptomethylthio-1,3-dithiane, 1,1-bis[4-(6-mercaptomethylthio)-1,3-dithianylthio]-1,3-bis(mercaptomethylthio)propane, 1-[4-(6-mercaptomethylthio)-1,3-dithianylthio]-3-[2,2-bis(mercaptomethylthio) 1,5-bis[4-(6-mercaptomethylthio)ethyl]-7,9-bis(mercaptomethylthio)-2,4,6,10-tetrathiaundecane, 1,5-bis[4-(6-mercaptomethylthio)-1,3-dithianylthio]-3-[2-(1,3-dithietanyl)]methyl-2,4-dithiapentane, 3-[2-(1,3-dithietanyl)]methyl-7,9-bis(mercaptomethylthio)-1,11-dimercapto-2,4,6,10-tetrathiaundecane, 9-[2-(1,3-dithietanyl)]methyl-2,4-dithiapentane, 3-[2-(1,3-dithietanyl)]methyl-7,9,13,15-tetrakis(mercaptomethylthio)-1,17-dimercapto-2,4,6,10,12,16-hexathiaheptadecane, 3,7-bis[2-(1,3-dithietanyl)]methyl-1,9-dimercapto-2,4,6,8 -Tetrathianonane, 4,6-bis{3-[2-(1,3-dithietanyl)]methyl-5-mercapto-2,4-dithiapentylthio}-1,3-dithiane, 4,6-bis[4-(6-mercaptomethylthio)-1,3-dithianylthio]-6-[4-(6-mercaptomethylthio)-1,3-dithianylthio]-1,3-dithiane, 4-[3,4,8,9-tetrakis(mercaptomethylthio)-11-mercapto-2,5,7,10-tetrathiaundecyl]- 5-mercaptomethylthio-1,3-dithiolane, 4,5-bis[3,4-bis(mercaptomethylthio)-6-mercapto-2,5-dithiahexylthio]-1,3-dithiolane, 4-[3,4-bis(mercaptomethylthio)-6-mercapto-2,5-dithiahexylthio]-5-mercaptomethylthio-1,3-dithiolane, 4-[3-bis(mercaptomethylthio)methyl-5,6-bis(mercaptomethylthio)-8-mercapto-2,4,7-tri thiooctyl]-5-mercaptomethylthio-1,3-dithiolane, 2-{bis[3,4-bis(mercaptomethylthio)-6-mercapto-2,5-dithiahexylthio]methyl}-1,3-dithietane, 2-[3,4-bis(mercaptomethylthio)-6-mercapto-2,5-dithiahexylthio]mercaptomethylthiomethyl-1,3-dithietane, 2-[3,4,8,9-tetrakis(mercaptomethylthio)-11-mercapto-2,5,7,10-tetrakis(mercaptomethylthio) 2-[3-bis(mercaptomethylthio)methyl-5,6-bis(mercaptomethylthio)-8-mercapto-2,4,7-trithiaoctyl]mercaptomethylthiomethyl-1,3-dithietane, 4,5-bis{1-[2-(1,3-dithietanyl)]-3-mercapto-2-thiapropylthio}-1,3-dithiolane, 4-{1-[2-(1,3-dithietanyl)]-3-mercapto mercapto-2-thiapropylthio}-5-[1,2-bis(mercaptomethylthio)-4-mercapto-3-thiabutylthio]-1,3-dithiolane, 2-{bis[4-(5-mercaptomethylthio-1,3-dithiolanyl)thio]methyl}-1,3-dithietane, 4-[4-(5-mercaptomethylthio-1,3-dithiolanyl)thio]-5-{1-[2-(1,3-dithietanyl)]-3-mercapto-2-thiapropylthio}-1,3-dithiolane, and the like.
In particular, the use of a polythiol compound having a valence of 4 or more is preferred because it gives a curable composition having excellent curability.
 前記アミン系硬化剤、フェノール系硬化剤、酸無水物系硬化剤、ポリチオール系硬化剤は、エポキシ樹脂用硬化剤として知られており、これらの市販品としては、例えば、アデカハードナー EH-3636S(株式会社ADEKA製;ジシアンジアミド型潜在性硬化剤)、アデカハードナー EH-4351S(株式会社ADEKA製;ジシアンジアミド型潜在性硬化剤)、アデカハードナー EH-5011S(株式会社ADEKA製;イミダゾール型潜在性硬化剤)、アデカハードナー EH-5046S(株式会社ADEKA製;イミダゾール型潜在性硬化剤)、アデカハードナー EH-4357S(株式会社ADEKA製;ポリアミン型潜在性硬化剤)、アデカハードナー EH-5057P(株式会社ADEKA製;ポリアミン型潜在性硬化剤)、アデカハードナー EH-5057PK(株式会社ADEKA製;ポリアミン型潜在性硬化剤)、アミキュアPN-23(味の素ファインテクノ株式会社製;アミンアダクト系潜在性硬化剤)、アミキュアPN-40(味の素ファインテクノ株式会社製;アミンアダクト系潜在性硬化剤)、アミキュアVDH(味の素ファインテクノ株式会社製;ヒドラジド系潜在性硬化剤)、フジキュアFXR-1020(株式会社T&K TOKA製;潜在性硬化剤)、四国化成工業(株)製TS-G、SC有機化学(株)製DPMP、PEMP、淀化学(株)製PETG等があげられる。 The amine-based curing agents, phenol-based curing agents, acid anhydride-based curing agents, and polythiol-based curing agents are known as curing agents for epoxy resins, and examples of commercially available products thereof include ADEKA HARDENER EH-3636S (manufactured by ADEKA Corporation; dicyandiamide-type latent curing agent), ADEKA HARDENER EH-4351S (manufactured by ADEKA Corporation; dicyandiamide-type latent curing agent), ADEKA HARDENER EH-5011S (manufactured by ADEKA Corporation; imidazole-type latent curing agent), ADEKA HARDENER EH-5046S (manufactured by ADEKA Corporation; imidazole-type latent curing agent), ADEKA HARDENER EH-4357S (manufactured by ADEKA Corporation; polyamine-type latent curing agent), Examples include ADEKA HARDNER EH-5057P (manufactured by ADEKA Corporation; polyamine-type latent hardener), ADEKA HARDNER EH-5057PK (manufactured by ADEKA Corporation; polyamine-type latent hardener), AMICURE PN-23 (manufactured by Ajinomoto Fine-Techno Co., Ltd.; amine adduct-type latent hardener), AMICURE PN-40 (manufactured by Ajinomoto Fine-Techno Co., Ltd.; amine adduct-type latent hardener), AMICURE VDH (manufactured by Ajinomoto Fine-Techno Co., Ltd.; hydrazide-type latent hardener), FUJICURE FXR-1020 (manufactured by T&K Toka Corporation; latent hardener), TS-G manufactured by Shikoku Kasei Corporation, DPMP and PEMP manufactured by SC Organic Chemical Co., Ltd., and PETG manufactured by Yodo Chemical Co., Ltd.
 前記エポキシ樹脂硬化剤(前記アミン系硬化剤、フェノール系硬化剤、酸無水物系硬化剤及びポリチオール系硬化剤から選択される硬化剤)の使用量は、特に限定されるものではないが、(A)成分100質量部に対し、100質量部以下であることが好ましく、2~50質量部であることがより好ましい。(A)成分とエポキシ基及び/又は反応性不飽和結合を有するその他の化合物を含有する場合には該その他の化合物と(A)成分との合計100質量部に対し、100質量部以下であることが好ましく、2~50質量部であることがより好ましい。 The amount of the epoxy resin curing agent (a curing agent selected from the amine-based curing agents, phenol-based curing agents, acid anhydride-based curing agents, and polythiol-based curing agents) used is not particularly limited, but is preferably 100 parts by mass or less, and more preferably 2 to 50 parts by mass, per 100 parts by mass of component (A). When component (A) and other compounds having epoxy groups and/or reactive unsaturated bonds are contained, the amount is preferably 100 parts by mass or less, and more preferably 2 to 50 parts by mass, per 100 parts by mass of the total of the other compounds and component (A).
 また、本発明の硬化性組成物には、前記エポキシ樹脂用硬化剤とともに硬化触媒を併用することができ、該硬化触媒としては、例えば、トリフェニルホスフィン等のホスフィン化合物;テトラフェニルホスフォニウムブロマイド等のホスホニウム塩;ベンジルジメチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール等のアミン類;トリメチルアンモニウムクロライド等の4級アンモニウム塩類;3-(p-クロロフェニル)-1,1-ジメチルウレア、3-(3,4-ジクロロフェニル)-1,1-ジメチルウレア、3-フェニル-1,1-ジメチルウレア、イソホロンジイソシアネート-ジメチルウレア、トリレンジイソシアネート-ジメチルウレア等のウレア類;及び、三フッ化硼素と、3級アミン類やエーテル化合物等との錯化合物等を例示することができる。これらの硬化触媒は、単独で使用してもよいし、2種類以上を併用してもよい。 The curable composition of the present invention can also use a curing catalyst in combination with the epoxy resin curing agent. Examples of the curing catalyst include phosphine compounds such as triphenylphosphine; phosphonium salts such as tetraphenylphosphonium bromide; amines such as benzyldimethylamine and 2,4,6-tris(dimethylaminomethyl)phenol; quaternary ammonium salts such as trimethylammonium chloride; ureas such as 3-(p-chlorophenyl)-1,1-dimethylurea, 3-(3,4-dichlorophenyl)-1,1-dimethylurea, 3-phenyl-1,1-dimethylurea, isophorone diisocyanate-dimethylurea, and tolylene diisocyanate-dimethylurea; and complexes of boron trifluoride with tertiary amines, ether compounds, and the like. These curing catalysts may be used alone or in combination of two or more.
 本発明の硬化性組成物における硬化触媒の使用量は、(A)成分100質量部に対し、0.01~20質量部であることが好ましい。(A)成分と、エポキシ基及び/又は反応性不飽和結合を有するその他の化合物を含有する場合には、該その他の化合物と(A)成分との合計100質量部に対し、0.01~20質量部であることが好ましい。 The amount of the curing catalyst used in the curable composition of the present invention is preferably 0.01 to 20 parts by mass per 100 parts by mass of component (A). When component (A) and other compounds having an epoxy group and/or a reactive unsaturated bond are contained, the amount is preferably 0.01 to 20 parts by mass per 100 parts by mass of the total of the other compounds and component (A).
 前記重合開始剤としては、熱ラジカル重合開始剤、光ラジカル重合開始剤、カチオン重合開始剤があげられる。 The polymerization initiator may be a thermal radical polymerization initiator, a photoradical polymerization initiator, or a cationic polymerization initiator.
 前記重合開始剤としては、熱ラジカル重合開始剤、光ラジカル重合開始剤、カチオン重合開始剤があげられる。 The polymerization initiator may be a thermal radical polymerization initiator, a photoradical polymerization initiator, or a cationic polymerization initiator.
 熱ラジカル重合開始剤としては、加熱によりラジカルを発生するものであれば特に制限されず従来既知の化合物を用いることが可能であり、例えば、アゾ系化合物、過酸化物及び過硫酸塩等を好ましいものとして例示することができる。 The thermal radical polymerization initiator is not particularly limited as long as it generates radicals when heated, and any conventionally known compound can be used. For example, preferred examples include azo compounds, peroxides, and persulfates.
 前記アゾ系化合物としては、例えば、2,2′-アゾビスイソブチロニトリル、2,2′-アゾビス(メチルイソブチレ-ト)、2,2’-アゾビス-2,4-ジメチルバレロニトリル、1,1’-アゾビス(1-アセトキシ-1-フェニルエタン)等が挙げられる。 Examples of the azo compounds include 2,2'-azobisisobutyronitrile, 2,2'-azobis(methyl isobutyrate), 2,2'-azobis-2,4-dimethylvaleronitrile, 1,1'-azobis(1-acetoxy-1-phenylethane), etc.
 前記過酸化物としては、例えば、ベンゾイルパーオキサイド、ジ-t-ブチルベンゾイルパーオキサイド、t-ブチルパーオキシピバレート及びジ(4-t-ブチルシクロヘキシル)パーオキシジカーボネート等が挙げられる。 Examples of the peroxide include benzoyl peroxide, di-t-butylbenzoyl peroxide, t-butyl peroxypivalate, and di(4-t-butylcyclohexyl) peroxydicarbonate.
 前記過硫酸塩としては、例えば、過硫酸アンモニウム、過硫酸ナトリウム及び過硫酸カリウム等の過硫酸塩等が挙げられる。 Examples of the persulfate include ammonium persulfate, sodium persulfate, potassium persulfate, and other persulfates.
 前記光ラジカル重合開始剤としては、光照射によりラジカルを発生するものであれば特に制限されず従来既知の化合物を用いることが可能であり、例えば、アセトフェノン系化合物、ベンジル系化合物、ベンゾフェノン系化合物、チオキサントン系化合物及びオキシムエステル系化合物等を好ましいものとして例示することができる。 The photoradical polymerization initiator is not particularly limited as long as it generates radicals upon irradiation with light, and any conventionally known compound can be used. Preferred examples include acetophenone-based compounds, benzyl-based compounds, benzophenone-based compounds, thioxanthone-based compounds, and oxime ester-based compounds.
 前記アセトフェノン系化合物としては、例えば、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、4’-イソプロピル-2-ヒドロキシ-2-メチルプロピオフェノン、2-ヒドロキシメチル-2-メチルプロピオフェノン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、p-ジメチルアミノアセトフェノン、p-ターシャリブチルジクロロアセトフェノン、p-ターシャリブチルトリクロロアセトフェノン、p-アジドベンザルアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパノン-1、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾイン-n-ブチルエーテル、ベンゾインイソブチルエーテル及び1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン等が挙げられる。 The acetophenone compounds include, for example, diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 4'-isopropyl-2-hydroxy-2-methylpropiophenone, 2-hydroxymethyl-2-methylpropiophenone, 2,2-dimethoxy-1,2-diphenylethan-1-one, p-dimethylaminoacetophenone, p-tert-butyldichloroacetophenone, p-tert-butyltrichloroacetophenone, p-azidobenzalacetophenone, 1-hydroacetophenone, Examples include cyclohexyl phenyl ketone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropanone-1, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin-n-butyl ether, benzoin isobutyl ether, and 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propan-1-one.
 前記ベンジル系化合物としては、例えば、ベンジル等が挙げられる。 Examples of the benzyl compounds include benzyl.
 前記ベンゾフェノン系化合物としては、例えば、ベンゾフェノン、o-ベンゾイル安息香酸メチル、ミヒラーケトン、4,4’-ビスジエチルアミノベンゾフェノン、4,4’-ジクロロベンゾフェノン及び4-ベンゾイル-4’-メチルジフェニルスルフィド等が挙げられる。 Examples of the benzophenone-based compounds include benzophenone, o-benzoylmethylbenzoate, Michler's ketone, 4,4'-bisdiethylaminobenzophenone, 4,4'-dichlorobenzophenone, and 4-benzoyl-4'-methyldiphenyl sulfide.
 前記チオキサントン系化合物としては、例えば、チオキサントン、2-メチルチオキサントン、2-エチルチオキサントン、2-クロロチオキサントン、2-イソプロピルチオキサントン、2,4-ジエチルチオキサントン等が挙げられる。 Examples of the thioxanthone compounds include thioxanthone, 2-methylthioxanthone, 2-ethylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, and 2,4-diethylthioxanthone.
 前記オキシムエステル系化合物とは、オキシムエステル基を有する化合物を意味し、前記光ラジカル重合開始剤の中でも感度が良好であることから、本発明の硬化性組成物に好ましく使用することができる。 The oxime ester compound refers to a compound having an oxime ester group, and since it has good sensitivity among the photoradical polymerization initiators, it can be preferably used in the curable composition of the present invention.
 前記オキシムエステル系化合物の中でもカルバゾール骨格、ジフェニルスルフィド骨格又はフルオレン骨格を有する化合物は、特に感度が高いことから本発明の硬化性組成物により好ましく使用することができる。 Among the above oxime ester compounds, compounds having a carbazole skeleton, a diphenyl sulfide skeleton, or a fluorene skeleton have particularly high sensitivity and can therefore be preferably used in the curable composition of the present invention.
 その他のラジカル重合開始剤としては、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド等のホスフィンオキサイド系化合物及びビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-(ピル-1-イル)]チタニウム等のチタノセン系化合物等が挙げられる。 Other radical polymerization initiators include phosphine oxide compounds such as 2,4,6-trimethylbenzoyldiphenylphosphine oxide and titanocene compounds such as bis(cyclopentadienyl)-bis[2,6-difluoro-3-(pyr-1-yl)]titanium.
 市販のラジカル重合開始剤としては、アデカオプトマーN-1414、N-1717、N-1919、アデカアークルズNCI-831、NCI-930(以上、ADEKA製);IRGACURE184、IRGACURE369、IRGACURE651、IRGACURE907、IRGACURE OXE 01、IRGACURE OXE 02、IRGACURE784(以上、BASF製);TR-PBG-304、TR-PBG-305、TR-PBG-309及びTR-PBG-314(以上、Tronly製);等が挙げられる。 Commercially available radical polymerization initiators include ADEKA OPTOMER N-1414, N-1717, N-1919, ADEKA ARCLES NCI-831, NCI-930 (all manufactured by ADEKA); IRGACURE 184, IRGACURE 369, IRGACURE 651, IRGACURE 907, IRGACURE OXE 01, IRGACURE OXE 02, IRGACURE 784 (all manufactured by BASF); TR-PBG-304, TR-PBG-305, TR-PBG-309, and TR-PBG-314 (all manufactured by Tronly); and the like.
 前記カチオン重合開始剤とは、エネルギー線照射又は加熱によりカチオン重合を開始させる物質を放出させることが可能な化合物であればどのようなものでも差し支えないが、好ましくは、エネルギー線の照射によってルイス酸を放出するオニウム塩である複塩、又はその誘導体である。かかる化合物の代表的なものとしては、下記一般式、
[A]r+[B]r-
で表される陽イオンと陰イオンの塩をあげることができる。
The cationic polymerization initiator may be any compound capable of releasing a substance that initiates cationic polymerization by irradiation with energy rays or heating, but is preferably a double salt, which is an onium salt that releases a Lewis acid by irradiation with energy rays, or a derivative thereof. Representative examples of such compounds include those represented by the following general formula:
[A] r+ [B] r-
Examples of the salt include salts of cations and anions represented by the following formula:
 ここで陽イオン[A]r+はオニウムであることが好ましく、その構造は、例えば、下記一般式、
[(R12Q]r+
で表すことができる。
Here, the cation [A] r+ is preferably an onium, and its structure is, for example, represented by the following general formula:
[( R12 ) aQ ] r+
It can be expressed as:
 更にここで、R12は炭素原子数が1~60であり、炭素原子以外の原子をいくつ含んでいてもよい有機の基である。aは1~5なる整数である。a個のR12は各々独立で、同一でも異なっていてもよい。また、少なくとも1つは、芳香環を有する上記の如き有機の基であることが好ましい。QはS,N,Se,Te,P,As,Sb,Bi,O,I,Br,Cl,F,N=Nからなる群から選ばれる原子あるいは原子団である。また、陽イオン[A]r+中のQの原子価をqとしたとき、r=a-qなる関係が成り立つことが必要である(但し、N=Nは原子価0として扱う)。 Furthermore, R 12 is an organic group having 1 to 60 carbon atoms and may contain any number of atoms other than carbon atoms. a is an integer from 1 to 5. a R 12 are each independent and may be the same or different. At least one is preferably an organic group having an aromatic ring as described above. Q is an atom or atomic group selected from the group consisting of S, N, Se, Te, P, As, Sb, Bi, O, I, Br, Cl, F, and N=N. In addition, when the valence of Q in the cation [A] r+ is q, it is necessary that the relationship r=a-q holds (however, N=N is treated as having a valence of 0).
 また、陰イオン[B]r-は、ハロゲン化物錯体であることが好ましく、その構造は、例えば、下記一般式、
[LYr-で表すことができる。
The anion [B] r- is preferably a halide complex, the structure of which is, for example, represented by the following general formula:
It can be represented by [LY b ] r- .
 更にここで、Lはハロゲン化物錯体の中心原子である金属又は半金属(Metalloid)であり、B,P,As,Sb,Fe,Sn,Bi,Al,Ca,In,Ti,Zn,Sc,V,Cr,Mn,Co等である。Yはハロゲン原子である。bは3~7なる整数である。また、陰イオン[B]r-中のLの原子価をpとしたとき、r=b-pなる関係が成り立つことが必要である。 Furthermore, here, L is a metal or semimetal (Metalloid) that is the central atom of the halide complex, and is B, P, As, Sb, Fe, Sn, Bi, Al, Ca, In, Ti, Zn, Sc, V, Cr, Mn, Co, etc. Y is a halogen atom. b is an integer of 3 to 7. In addition, when the valence of L in the anion [B] r- is p, it is necessary that the relationship r=b-p is established.
 上記一般式の陰イオン[LYr-の具体例としては、テトラキス(ペンタフルオロフェニル)ボレート、テトラ(3,5-ジフルオロ-4-メトキシフェニル)ボレート、テトラフルオロボレート(BF、ヘキサフルオロフォスフェート(PF、ヘキサフルオロアンチモネート(SbF、ヘキサフルオロアルセネート(AsF、ヘキサクロロアンチモネート(SbCl等を挙げることができる。 Specific examples of the anion [LY b ] r- in the above general formula include tetrakis(pentafluorophenyl)borate, tetra(3,5-difluoro-4-methoxyphenyl)borate, tetrafluoroborate (BF 4 ) - , hexafluorophosphate (PF 6 ) - , hexafluoroantimonate (SbF 6 ) - , hexafluoroarsenate (AsF 6 ) - , hexachloroantimonate (SbCl 6 ) - , and the like.
 また、陰イオン[B]r-は、下記一般式、
[LYb-1(OH)]
で表される構造のものも好ましく用いることができる。L,Y,bは上記と同様である。
 また、その他用いることのできる陰イオンとしては、過塩素酸イオン(ClO、トリフルオロメチル亜硫酸イオン(CFSO、フルオロスルホン酸イオン(FSO、トルエンスルホン酸陰イオン、トリニトロベンゼンスルホン酸陰イオン、カンファースルフォネート、ノナフロロブタンスルフォネート、ヘキサデカフロロオクタンスルフォネート、テトラアリールボレート、テトラキス(ペンタフルオロフェニル)ボレート等を挙げることができる。
The anion [B] r- is represented by the following general formula:
[LY b-1 (OH)] r
It is also preferable to use a structure represented by the following formula: L, Y and b are the same as above.
Other usable anions include perchlorate ion ( ClO4 ) - , trifluoromethylsulfite ion ( CF3SO3 ) - , fluorosulfonate ion ( FSO3 ) - , toluenesulfonate anion, trinitrobenzenesulfonate anion, camphorsulfonate, nonafluorobutanesulfonate, hexadecafluorooctane sulfonate, tetraarylborate, and tetrakis(pentafluorophenyl)borate.
 本発明では、このようなオニウム塩の中でも、下記の(イ)~(ハ)の芳香族オニウム塩を使用することが特に有効である。これらの中から、その1種を単独で、又は2種以上を混合して使用することができる。 In the present invention, among these onium salts, it is particularly effective to use the aromatic onium salts (a) to (c) below. Of these, one type may be used alone, or two or more types may be used in combination.
(イ)フェニルジアゾニウムヘキサフルオロホスフェート、4-メトキシフェニルジアゾニウムヘキサフルオロアンチモネート、4-メチルフェニルジアゾニウムヘキサフルオロホスフェート等のアリールジアゾニウム塩 (a) Aryl diazonium salts such as phenyl diazonium hexafluorophosphate, 4-methoxyphenyl diazonium hexafluoroantimonate, and 4-methylphenyl diazonium hexafluorophosphate.
(ロ)ジフェニルヨードニウムヘキサフルオロアンチモネート、ジ(4-メチルフェニル)ヨードニウムヘキサフルオロホスフェート、ジ(4-tert-ブチルフェニル)ヨードニウムヘキサフルオロホスフェート、トリルクミルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート等のジアリールヨードニウム塩 (b) Diphenyliodonium hexafluoroantimonate, di(4-methylphenyl)iodonium hexafluorophosphate, di(4-tert-butylphenyl)iodonium hexafluorophosphate, triaryliodonium tetrakis(pentafluorophenyl)borate, and other diaryliodonium salts
(ハ)下記群I又は群IIで表されるスルホニウムカチオンとヘキサフルオロアンチモンイオン、ヘキサフルオロフォスフェートイオン、テトラキス(ペンタフルオロフェニル)ボレートイオン等のスルホニウム塩 (c) Sulfonium cations represented by the following Group I or Group II and sulfonium salts such as hexafluoroantimony ion, hexafluorophosphate ion, and tetrakis(pentafluorophenyl)borate ion.
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
 本発明の硬化剤組成物における前記重合開始剤の使用量は、(A)成分100質量部に対し、0.001~20質量部であることが好ましい。(A)成分とエポキシ基及び/又は反応性不飽和結合を有するその他の化合物を含有する場合には、該その他の化合物と(A)成分との合計100質量部に対し、前記重合開始剤の使用量を0.001~20質量部とすることができ、20質量部以下とすることで硬化物の吸水率や硬化物強度等の諸物性への影響を抑制することができる。 The amount of the polymerization initiator used in the hardener composition of the present invention is preferably 0.001 to 20 parts by mass per 100 parts by mass of component (A). When component (A) and other compounds having epoxy groups and/or reactive unsaturated bonds are contained, the amount of the polymerization initiator used can be 0.001 to 20 parts by mass per 100 parts by mass of the total of the other compounds and component (A). By keeping the amount to 20 parts by mass or less, the effect on various physical properties such as the water absorption rate and strength of the cured product can be suppressed.
 本発明の硬化性組成物を、重合開始剤を用いて光硬化する際には、増感剤及び増感助剤を使用することができる。増感剤及び増感助剤としては、アントラセン系化合物、ナフタレン系化合物等が挙げられる。 When the curable composition of the present invention is photocured using a polymerization initiator, a sensitizer and a sensitizer assistant can be used. Examples of the sensitizer and the sensitizer assistant include anthracene-based compounds and naphthalene-based compounds.
 前記アントラセン系化合物としては、例えば、9,10-ジメトキシアントラセン、9,10-ジエトキシアントラセン、9,10-ジプロポキシアントラセン、9,10-ジイソプロポキシアントラセン、9,10-ジブトキシアントラセン、9,10-ジペンチルオキシアントラセン、9,10-ジヘキシルオキシアントラセン、9,10-ビス(2-メトキシエトキシ)アントラセン、9,10-ビス(2-エトキシエトキシ)アントラセン、 9,10-ビス(2-ブトキシエトキシ)アントラセン、9,10-ビス(3-ブトキシプロポキシ)アントラセン、2-メチル-又は2-エチル-9,10-ジメトキシアントラセン、2-メチル-又は2-エチル-9,10-ジエトキシアントラセン、2-メチル-又は2-エチル-9,10-ジプロポキシアントラセン、2-メチル-又は2-エチル-9,10-ジイソプロポキシアントラセン、2-メチル-又は2-エチル-9,10-ジブトキシアントラセン、2-メチル-又は2-エチル-9,10-ジペンチルオキシアントラセン、2-メチル-又は2-エチル-9,10-ジヘキシルオキシアントラセン等があげられる。 Examples of the anthracene-based compounds include 9,10-dimethoxyanthracene, 9,10-diethoxyanthracene, 9,10-dipropoxyanthracene, 9,10-diisopropoxyanthracene, 9,10-dibutoxyanthracene, 9,10-dipentyloxyanthracene, 9,10-dihexyloxyanthracene, 9,10-bis(2-methoxyethoxy)anthracene, 9,10-bis(2-ethoxyethoxy)anthracene, 9,10-bis(2-butoxyethoxy)anthracene, 9,10-bis(3-butoxypropoxy)anthracene, 2-methyl- or 2-ethyl-9,10-dimethoxyanthracene, 2-methyl- or 2-ethyl-9,10-diethoxyanthracene, 2-methyl- or 2-ethyl-9,10-dipropoxyanthracene, 2-methyl- or 2-ethyl-9,10-diisopropoxyanthracene, 2-methyl- or 2-ethyl-9,10-dibutoxyanthracene, 2-methyl- or 2-ethyl-9,10-dipentyloxyanthracene, 2-methyl- or 2-ethyl-9,10-dihexyloxyanthracene, etc.
 前記ナフタレン系化合物としては、例えば、4-メトキシ-1-ナフトール、4-エトキシ-1-ナフトール、4-プロポキシ-1-ナフトール、4-ブトキシ-1-ナフトール、4-ヘキシルオキシ-1-ナフトール、1,4-ジメトキシナフタレン、1-エトキシ-4-メトキシナフタレン、1,4-ジエトキシナフタレン、1,4-ジプロポキシナフタレン、1,4-ジブトキシナフタレン等があげられる。 Examples of the naphthalene compounds include 4-methoxy-1-naphthol, 4-ethoxy-1-naphthol, 4-propoxy-1-naphthol, 4-butoxy-1-naphthol, 4-hexyloxy-1-naphthol, 1,4-dimethoxynaphthalene, 1-ethoxy-4-methoxynaphthalene, 1,4-diethoxynaphthalene, 1,4-dipropoxynaphthalene, 1,4-dibutoxynaphthalene, etc.
 本発明の硬化性組成物は、必要に応じて、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジエトキシシラン、N-(2-アミノエチル)-8-アミノオクチルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチルブチリデン)プロピルアミン等のアミノシラン化合物;3-メルカプトプロピルトリメトキシシラン等のメルカプトシラン化合物;2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等のエポキシシラン化合物等のシランカップリング剤、モノグリシジルエーテル類、ジオクチルフタレート、ジブチルフタレート、ベンジルアルコール、コールタール等の反応性又は非反応性の希釈剤(可塑剤);ガラス繊維、炭素繊維、セルロース、ケイ砂、セメント、カオリン、クレー、水酸化アルミニウム、ベントナイト、タルク、シリカ、微粉末シリカ、二酸化チタン、カーボンブラック、グラファイト、酸化鉄、瀝青物質等の充填剤又は顔料;キャンデリラワックス、カルナウバワックス、木ろう、イボタロウ、みつろう、ラノリン、鯨ろう、モンタンワックス、石油ワックス、脂肪酸ワックス、脂肪酸エステル、脂肪酸エーテル、芳香族エステル、芳香族エーテル等の潤滑剤;増粘剤;チキソトロピック剤;酸化防止剤;光安定剤;紫外線吸収剤;難燃剤;消泡剤;防錆剤;コロイダルシリカ、コロイダルアルミナ等の公知の添加物を含有してもよく、更に、キシレン樹脂や石油樹脂等の、粘着性の樹脂類を併用することもできる。 The curable composition of the present invention may contain, as necessary, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, N-(2-aminoethyl)-3-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldiethoxysilane, N-(2-aminoethyl)-8-aminooctyltrimethoxysilane. aminosilane compounds such as 3-mercaptopropyltrimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropylmethyldimethoxy ... Silane coupling agents such as epoxy silane compounds such as propyltriethoxysilane; reactive or non-reactive diluents (plasticizers) such as monoglycidyl ethers, dioctyl phthalate, dibutyl phthalate, benzyl alcohol, and coal tar; fillers or pigments such as glass fiber, carbon fiber, cellulose, silica sand, cement, kaolin, clay, aluminum hydroxide, bentonite, talc, silica, finely powdered silica, titanium dioxide, carbon black, graphite, iron oxide, and bituminous substances; lubricants such as candelilla wax, carnauba wax, Japan wax, Japanese ibote wax, beeswax, lanolin, spermaceti, montan wax, petroleum wax, fatty acid wax, fatty acid esters, fatty acid ethers, aromatic esters, and aromatic ethers; thickeners; thixotropic agents; antioxidants; light stabilizers; ultraviolet absorbers; flame retardants; defoamers; rust inhibitors; colloidal silica, colloidal alumina, and other known additives may be contained, and adhesive resins such as xylene resins and petroleum resins may also be used in combination.
 本発明の硬化性組成物は、(B)成分である硬化剤の種類を変えたり、複数組み合わせて使用したりすることによって、光及び/又は熱により硬化することが可能なものである。
 その中でも、本発明の硬化性組成物は、(B)成分として光重合開始剤とアミン系硬化剤とを併用し、光照射によって仮硬化をした後で熱硬化する方法を好適に採用することができる。その場合には、エポキシ基のみを有する化合物及び/又は反応性不飽和結合のみを有する化合物を多く含有すると、硬化が不十分な場合があったり、硬化物の物性が低下したりするおそれがある。このため、エポキシ基のみを有する化合物及び/又は反応性不飽和結合のみを有する化合物の量が合計で、本発明の化合物(A)成分100質量部に対して100質量部以下であることが好ましく、70質量部以下であることが更に好ましい。また光重合開始剤は光ラジカル重合開始剤であることが好ましい。
The curable composition of the present invention can be cured by light and/or heat by changing the type of curing agent, which is the component (B), or by using a combination of multiple curing agents.
Among them, the curable composition of the present invention can be suitably adopted in a method of using a photopolymerization initiator and an amine-based curing agent as the component (B) in combination, provisionally curing by light irradiation, and then thermally curing. In that case, if a large amount of a compound having only an epoxy group and/or a compound having only a reactive unsaturated bond is contained, the curing may be insufficient or the physical properties of the cured product may be deteriorated. For this reason, the total amount of the compound having only an epoxy group and/or the compound having only a reactive unsaturated bond is preferably 100 parts by mass or less, more preferably 70 parts by mass or less, relative to 100 parts by mass of the compound (A) component of the present invention. In addition, the photopolymerization initiator is preferably a photoradical polymerization initiator.
D.硬化物及び硬化物の製造方法
 本開示の硬化物の製造方法は、前記硬化性組成物を硬化させる硬化工程を有する。前記硬化工程の硬化方法は、加熱又は光照射の少なくともいずれか一方であり、両方であることが好ましい。
 光硬化において、照射される光としては、波長300nm~450nmの光を含むものとすることができる。光硬化に用いる光源としては、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノンランプ、メタルハロゲンランプ、電子線照射装置、X線照射装置、レーザー(アルゴンレーザー、色素レーザー、窒素レーザー、LED、ヘリウムカドミウムレーザー等)が挙げられる。
D. Cured product and method for producing the cured product The method for producing the cured product of the present disclosure includes a curing step of curing the curable composition. The curing method in the curing step is at least one of heating and light irradiation, and preferably both.
In photocuring, the light to be irradiated may include light having a wavelength of 300 nm to 450 nm. Examples of light sources used in photocuring include low pressure mercury lamps, medium pressure mercury lamps, high pressure mercury lamps, ultra-high pressure mercury lamps, xenon lamps, metal halogen lamps, electron beam irradiation devices, X-ray irradiation devices, and lasers (argon lasers, dye lasers, nitrogen lasers, LEDs, helium cadmium lasers, etc.).
 熱硬化における加熱温度としては、上記硬化物を安定的に硬化できるものであればよく、上記硬化剤の種類等に応じて適宜設定されるものであるが、例えば、10℃以上250℃以下とすることが好ましく、なかでも、60℃以上200℃以下であることがより好ましい。 The heating temperature for thermal curing may be any temperature that can stably cure the cured product, and is set appropriately depending on the type of curing agent, etc., but is preferably from 10°C to 250°C, and more preferably from 60°C to 200°C.
 本発明の硬化性組成物の硬化物は、光硬化の後に熱硬化がなされて得られた硬化物であることが、耐熱性等の性能に優れる点で好ましい。本記載は状態を表すものであると出願人は考えている。本記載が仮に製造方法により物を特定するものだとしても、硬化性化合物を所定条件で硬化した硬化物について本明細書に記載された以外の構造・特性を特定することには多大な実験時間を要するため不可能・非実際的な事情がある。 The cured product of the curable composition of the present invention is preferably a cured product obtained by photocuring followed by thermal curing, as this has excellent properties such as heat resistance. The applicant believes that this description describes a state. Even if this description were to specify an object by a manufacturing method, there are circumstances in which it would be impossible or impractical to specify a structure or properties other than those described in this specification for a cured product obtained by curing a curable compound under specified conditions, as this would require a significant amount of experimental time.
 本発明の硬化性組成物は、例えば、塗料、接着剤、粘着剤、コーティング剤、繊維集束剤、建築材料、電子部品等の広範な用途に使用できるものである。とりわけ、光及び熱による硬化性に優れたものであるため、デュアル硬化が可能な用途に使用することができる。これらの特性から、本発明の硬化性組成物は、液状封止剤、液状接着剤、液晶シール剤、カメラモジュール用接着剤等の用途に好適に用いることができる。 The curable composition of the present invention can be used in a wide range of applications, such as paints, adhesives, pressure sensitive adhesives, coating agents, fiber bundling agents, building materials, and electronic components. In particular, because it has excellent light and heat curing properties, it can be used in applications where dual curing is possible. Due to these properties, the curable composition of the present invention can be suitably used in applications such as liquid sealants, liquid adhesives, liquid crystal sealants, and adhesives for camera modules.
E.その他
[1]
 下記一般式(1)で表される化合物。
Figure JPOXMLDOC01-appb-C000054
 式中、Rは水素原子又はメチル基を表し、Rは、それぞれ独立に、炭素原子数1~20のアルキル基、炭素原子数1~20のアルコキシ基、置換基として炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基若しくはハロゲン原子を有してもよい炭素原子数5~10のアリール基又はハロゲン原子を表し、Rは、水素原子、炭素原子数1~10のアルキル基、ヒドロキシメチル基、グリシジルエーテル基、メチルグリシジルエーテル基、アクリロイルオキシメチル基又はメタクリロイルオキシメチル基を表わし、Rは水素原子又はメチル基を表わす。nは0~4の数を表わす。
[2]
 下記一般式(2)で表される化合物。
Figure JPOXMLDOC01-appb-C000055
 式中、Rは水素原子又はメチル基を表し、Rは、それぞれ独立に、炭素原子数1~20のアルキル基、炭素原子数1~20のアルコキシ基、置換基として炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基若しくはハロゲン原子を有してもよい炭素原子数5~10のアリール基又はハロゲン原子を表わし、Rは水素原子、炭素原子数1~10のアルキル基、ヒドロキシメチル基、グリシジルエーテル基又はメチルグリシジルエーテル基を表す。nは0~4の数を表わす。
[3]
 下記一般式(3)で表される化合物とエピハロヒドリンとを反応させて前記一般式(2)で表される化合物を製造し、これにアクリル酸誘導体及び/又はメタクリル酸誘導体を用いてエステル化することを特徴とする前記一般式(1)で表される化合物の製造方法。
Figure JPOXMLDOC01-appb-C000056
 式中、Rは、それぞれ独立に、炭素原子数1~20のアルキル基、炭素原子数1~20のアルコキシ基、置換基として炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基若しくはハロゲン原子を有してもよい炭素原子数5~10のアリール基又はハロゲン原子を表す。Rは水素原子、炭素原子数1~10のアルキル基又はヒドロキシメチル基を表わす。nは0~4の数を表わす。
[4]
 前記一般式(1)で表される化合物と、
 前記一般式(2)で表される化合物及び下記一般式(4)で表される化合物の少なくとも一方と、を含有する硬化性材料。
 式中、Rは、それぞれ独立に、水素原子、炭素原子数1~20のアルキル基、炭素原子数1~20のアルコキシ基、置換基として炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基、水酸基若しくはハロゲン原子を有してもよい炭素原子数5~10のアリール基、水酸基又はハロゲン原子を表し、Rは、水素原子、炭素原子数1~10のアルキル基、ヒドロキシアルキル基、グリシジルエーテル基、メチルグリシジルエーテル基、グリシジルオキシアルキル基、β-メチルグリシジルオキシアルキル基、アクリロイルオキシアルキル基又はメタクリロイルオキシアルキル基を表わす。Rは水素原子又はメチル基を表す。mは0~4の数を表わす。
[5]
 前記一般式(4)で表される化合物を含有する[4]に記載の硬化性材料。
[6]
 (A)[1]に記載の化合物の少なくとも一種と、(B)硬化剤の中から選ばれる少なくとも一種とを含有する硬化性組成物。
[7]
 さらに、前記一般式(2)で表される化合物および前記一般式(4)で表される化合物の少なくとも一方を含有する[6]に記載の硬化性組成物。
[8]
 [6]又は[7]に記載の硬化性組成物を硬化させる硬化工程を有する硬化物の製造方法。
[9]
 前記硬化工程の硬化方法が、加熱又は光照射の少なくともいずれか一方である、[8]に記載の硬化物の製造方法。
[10]
 [6]又は[7]に記載の硬化性組成物の硬化物。
E. Other [1]
A compound represented by the following general formula (1):
Figure JPOXMLDOC01-appb-C000054
In the formula, R 1 represents a hydrogen atom or a methyl group, R 2 each independently represents an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 5 to 10 carbon atoms which may have a halogen atom as a substituent, or a halogen atom, R 3 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxymethyl group, a glycidyl ether group, a methyl glycidyl ether group, an acryloyloxymethyl group, or a methacryloyloxymethyl group, R 4 represents a hydrogen atom or a methyl group, and n represents a number from 0 to 4.
[2]
A compound represented by the following general formula (2):
Figure JPOXMLDOC01-appb-C000055
In the formula, R1 represents a hydrogen atom or a methyl group, R2 each independently represents an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 5 to 10 carbon atoms which may have a halogen atom as a substituent, or a halogen atom, R5 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxymethyl group, a glycidyl ether group, or a methylglycidyl ether group, and n represents a number from 0 to 4.
[3]
A method for producing a compound represented by the general formula (1), comprising reacting a compound represented by the following general formula (3) with epihalohydrin to produce a compound represented by the general formula (2), and then esterifying the compound with an acrylic acid derivative and/or a methacrylic acid derivative:
Figure JPOXMLDOC01-appb-C000056
In the formula, R2 's each independently represent an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 5 to 10 carbon atoms which may have a halogen atom as a substituent, or a halogen atom. R6 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a hydroxymethyl group. n represents a number from 0 to 4.
[4]
A compound represented by the general formula (1),
A curable material comprising at least one of a compound represented by the above general formula (2) and a compound represented by the following general formula (4):
In the formula, R 7 independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkyl group having 1 to 10 carbon atoms as a substituent, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 5 to 10 carbon atoms which may have a hydroxyl group or a halogen atom, a hydroxyl group, or a halogen atom, R 8 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxyalkyl group, a glycidyl ether group, a methyl glycidyl ether group, a glycidyloxyalkyl group, a β-methyl glycidyloxyalkyl group, an acryloyloxyalkyl group, or a methacryloyloxyalkyl group. R 9 represents a hydrogen atom or a methyl group. m represents a number from 0 to 4.
[5]
The curable material according to [4], which contains a compound represented by the general formula (4).
[6]
A curable composition comprising (A) at least one compound according to the above item [1] and (B) at least one curing agent.
[7]
The curable composition according to [6], further comprising at least one of a compound represented by the general formula (2) and a compound represented by the general formula (4).
[8]
A method for producing a cured product, comprising a curing step of curing the curable composition according to [6] or [7].
[9]
The method for producing a cured product according to [8], wherein the curing method in the curing step is at least one of heating and light irradiation.
[10]
A cured product of the curable composition according to [6] or [7].
 次に、実施例により、本発明を更に詳細に説明するが、本発明はこれら実施例により制限されるものではない。 Next, the present invention will be described in more detail using examples, but the present invention is not limited to these examples.
〔実施例1〕DOP-EP(下記式で表される化合物)の製造
 還流装置、攪拌装置および滴下装置を備えたフラスコ中に、DOP(下記式で表される化合物)238g(1.0モル)、エピクロロヒドリン463g(5.0モル、5.0当量)を仕込んだ。ここに、48質量%水酸化ナトリウム水溶液79g(0.95モル)を65~70℃、21.0kPaで2時間30分かけて滴下した。反応終了後、余剰のエピクロロヒドリンを減圧留去した。その後、そこにトルエン450g(150質量%)を加え、3回水洗した後トルエンを除去し、粗生物を得た。
 粗収量277.35g、粗収率93.7%、エポキシ当量314g/eq.(理論エポキシ当量294g/eq.)、可鹸化塩素4600ppm
 前記粗生物266gをトルエン450g(150質量%)に溶解し、48質量%水酸化ナトリウム水溶液4.7g(50ミリモル)を滴下して60℃で2時間反応させた。得られた反応生成物を3回水洗した後にトルエンを除去し、目的物を得た。
 収量277.35g、収率93.7%、エポキシ当量298g/eq.(理論エポキシ当量294g/eq.)、全塩素1500質量ppm
 得られた化合物(DOP-EP)のH-NMR測定結果を下記に示した。NMRは日本電子製ECX-400を用いて測定した。測定溶媒として重ジメチルスルホキシド(重DMSO)を用いた。
[Example 1] Production of DOP-EP (compound represented by the following formula) 238g (1.0 mol) of DOP (compound represented by the following formula) and 463g (5.0 mol, 5.0 equivalents) of epichlorohydrin were charged into a flask equipped with a reflux device, a stirrer and a dropping device. 79g (0.95 mol) of 48% by mass aqueous sodium hydroxide solution was dropped at 65-70°C and 21.0 kPa over 2 hours and 30 minutes. After the reaction was completed, the excess epichlorohydrin was distilled off under reduced pressure. Thereafter, 450g (150% by mass) of toluene was added thereto, and the mixture was washed with water three times, after which the toluene was removed to obtain a crude product.
Crude yield: 277.35 g, crude yield: 93.7%, epoxy equivalent: 314 g/eq. (theoretical epoxy equivalent: 294 g/eq.), saponifiable chlorine: 4600 ppm
266 g of the crude product was dissolved in 450 g (150% by mass) of toluene, and 4.7 g (50 mmol) of a 48% by mass aqueous sodium hydroxide solution was added dropwise to the solution and reacted for 2 hours at 60° C. The reaction product was washed three times with water, and then the toluene was removed to obtain the target product.
Yield: 277.35 g, yield: 93.7%, epoxy equivalent: 298 g/eq. (theoretical epoxy equivalent: 294 g/eq.), total chlorine: 1500 ppm by mass
The results of H 1 -NMR measurement of the obtained compound (DOP-EP) are shown below. NMR was measured using an ECX-400 manufactured by JEOL Ltd. Deuterated dimethyl sulfoxide (deuterated DMSO) was used as the measurement solvent.
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
(実施例1で得られた化合物のH-NMRの測定結果)
Figure JPOXMLDOC01-appb-C000060
( 1H -NMR Measurement Results of the Compound Obtained in Example 1)
Figure JPOXMLDOC01-appb-C000060
〔実施例2〕DOP-EP-AC(下記式で表される化合物)の製造
 還流装置および攪拌装置を備えたフラスコ中に、前記により得られた化合物DOP-EP236g(0.80モル)、およびアクリル酸メチル310g(3.6モル、4.5当量)を仕込んだ。更に、テトラブトキシチタン6.8g(2.5モル%)およびトルエン353g(150質量%)を仕込み、81℃~87℃で11時間攪拌しながら脱メタノールしてエステル化反応を行った。反応生成物に水を加えて60℃で1時間攪拌後、60℃、20Paで還流脱水を行い、ろ過後トルエンを除去し目的物(下記DOP-EP-AC)を得た。
 収量238.5g、収率93.7%、エポキシ当量369g/eq.(理論エポキシ当量348g/eq.)、全塩素770質量ppm、Ti原子含有量1.3質量ppm
 得られた化合物DOP-EP-ACのH-NMR測定結果を下記に示した。NMRは日本電子製ECX-NMRは日本電子製ECX-400を用いて測定した。測定溶媒として重ジメチルスルホキシド(重DMSO)を用いた。
[Example 2] Production of DOP-EP-AC (compound represented by the following formula) In a flask equipped with a reflux device and a stirrer, 236 g (0.80 mol) of the compound DOP-EP obtained above and 310 g (3.6 mol, 4.5 equivalents) of methyl acrylate were charged. Furthermore, 6.8 g (2.5 mol%) of tetrabutoxytitanium and 353 g (150 mass%) of toluene were charged, and the mixture was stirred at 81°C to 87°C for 11 hours to remove methanol and carry out an esterification reaction. Water was added to the reaction product and the mixture was stirred at 60°C for 1 hour, followed by reflux dehydration at 60°C and 20 Pa, and the toluene was removed after filtration to obtain the target product (DOP-EP-AC below).
Yield: 238.5 g, yield: 93.7%, epoxy equivalent: 369 g/eq. (theoretical epoxy equivalent: 348 g/eq.), total chlorine: 770 ppm by mass, Ti atom content: 1.3 ppm by mass
The results of H 1 -NMR measurement of the obtained compound DOP-EP-AC are shown below. NMR was measured using an ECX-NMR spectrometer manufactured by JEOL Ltd., ECX-400 manufactured by JEOL Ltd. Deuterated dimethyl sulfoxide (deuterated DMSO) was used as the measurement solvent.
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
(実施例2で得られた化合物のH-NMRの測定結果)
Figure JPOXMLDOC01-appb-C000062
( 1H -NMR Measurement Results of the Compound Obtained in Example 2)
Figure JPOXMLDOC01-appb-C000062
〔実施例3〕
 前記実施例2により得られたDOP-EP-AC100質量部、イルガキュア184(ビーエーエスエフ社製;1-ヒドロキシシクロヘキサン-1-イルフェニルケトン)3質量部及び2-エチル-4-メチルイミダゾール3質量部を遊星撹拌装置で混練し、硬化性組成物を調製した。ガラス板上に、前記で調製した硬化性組成物をバーコーターで300μm厚で塗布して塗膜を得た。得られた硬化性組成物について下記条件にて、光硬化を実施するか、又は光硬化及び熱硬化をこの順で実施し、その硬化物の動的粘弾性試験を下記条件にて実施した。結果を図1に示す。なお光照射後、熱硬化前の段階で硬化が十分に進行し、離型可能な塗膜が出来ていることを確認した。
光硬化:HOYA製LED-UV照射器LSシリーズで0.5Wにて2.0秒紫外線を照射した。
熱硬化:熱循環式オーブンにて150℃で2時間加熱した。
動的粘弾性試験:TAインスツルメント製RSAを用いて、ガラス転移点(Tg)を測定した。試験片としては幅4mm×長さ60mm×厚さ300μmの短冊状の試験片を作成した。
Example 3
100 parts by mass of DOP-EP-AC obtained in Example 2, 3 parts by mass of Irgacure 184 (manufactured by BASF; 1-hydroxycyclohexan-1-yl phenyl ketone), and 3 parts by mass of 2-ethyl-4-methylimidazole were kneaded with a planetary stirrer to prepare a curable composition. The curable composition prepared above was applied to a glass plate with a thickness of 300 μm with a bar coater to obtain a coating film. The obtained curable composition was photocured under the following conditions, or photocured and heat cured in this order, and the dynamic viscoelasticity test of the cured product was performed under the following conditions. The results are shown in FIG. 1. It was confirmed that after light irradiation, curing had progressed sufficiently before heat curing, and a releasable coating film was formed.
Photocuring: UV light was applied for 2.0 seconds at 0.5 W using a HOYA LED-UV irradiator LS series.
Heat curing: heated in a heat circulation oven at 150° C. for 2 hours.
Dynamic viscoelasticity test: The glass transition temperature (Tg) was measured using an RSA manufactured by TA Instruments Co., Ltd. A rectangular test piece having a width of 4 mm, a length of 60 mm, and a thickness of 300 μm was prepared.
〔実施例4〕DOP2-EP(下記式で表される化合物)の製造
 還流装置、攪拌装置および滴下装置を備えたフラスコ中に、DOP2(下記式で表される化合物)160g(0.67モル)、エピクロロヒドリン496g(5.4モル、8.0当量)を仕込んだ。ここに48質量%水酸化ナトリウム水溶液53.3g(0.64モル)を65~70℃、18.0kPaで2時間30分かけて滴下した。反応終了後、余剰のエピクロロヒドリンを減圧留去した。その後、そこにトルエン298g(150質量%)を加え、3回水洗した後トルエンを除去し、粗生物を得た。
 粗収量181.2g、粗収率91.7%、エポキシ当量316g/eq.(理論エポキシ当量294g/eq.)、可鹸化塩素3400ppm
 前記粗生物166gをトルエン332g(200質量%)に溶解し、48質量%水酸化ナトリウム水溶液2.0g(24ミリモル)を滴下して60℃で2時間反応させた。反応生成物を3回水洗した後にトルエンを除去し、目的物を得た。
 収量159.9g、収率96.3%、エポキシ当量324g/eq.(理論エポキシ当量294g/eq.)、全塩素736ppm
 得られた化合物(DOP2-EP)のH-NMR測定結果を下記に示した。NMRは日本電子製ECX-400を用いて測定した。測定溶媒として重ジメチルスルホキシド(重DMSO)を用いた。
[Example 4] Production of DOP2-EP (compound represented by the following formula) 160g (0.67 mol) of DOP2 (compound represented by the following formula) and 496g (5.4 mol, 8.0 equivalents) of epichlorohydrin were charged into a flask equipped with a reflux device, a stirrer and a dropping device. 53.3g (0.64 mol) of 48% by mass aqueous sodium hydroxide solution was dropped thereto at 65-70°C and 18.0 kPa over 2 hours and 30 minutes. After the reaction was completed, the excess epichlorohydrin was distilled off under reduced pressure. Thereafter, 298g (150% by mass) of toluene was added thereto, and the mixture was washed with water three times, after which the toluene was removed to obtain a crude product.
Crude yield: 181.2 g, crude yield: 91.7%, epoxy equivalent: 316 g/eq. (theoretical epoxy equivalent: 294 g/eq.), saponifiable chlorine: 3,400 ppm
166 g of the crude product was dissolved in 332 g (200% by mass) of toluene, and 2.0 g (24 mmol) of a 48% by mass aqueous sodium hydroxide solution was added dropwise to the solution and reacted for 2 hours at 60° C. The reaction product was washed three times with water, and then the toluene was removed to obtain the target product.
Yield: 159.9 g, yield: 96.3%, epoxy equivalent: 324 g/eq. (theoretical epoxy equivalent: 294 g/eq.), total chlorine: 736 ppm
The results of H 1 -NMR measurement of the obtained compound (DOP2-EP) are shown below. NMR was measured using an ECX-400 manufactured by JEOL Ltd. Deuterated dimethyl sulfoxide (deuterated DMSO) was used as the measurement solvent.
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
(実施例4で得られた化合物のH-NMRの測定結果)
Figure JPOXMLDOC01-appb-C000065
( 1H -NMR Measurement Results of the Compound Obtained in Example 4)
Figure JPOXMLDOC01-appb-C000065
〔実施例5〕DOP2-EP-AC(下記式で表される化合物)の製造
 還流装置および攪拌装置を備えたフラスコ中に、前記により得られた化合物DOP2-EP130g(0.44モル)、およびアクリル酸メチル148g(1.7モル、3.9当量)を仕込んだ。更に、テトラブトキシチタン3.8g(2.5モル%)およびトルエン195g(150質量%)を仕込み、81℃~87℃で21時間攪拌しながら脱メタノール反応を行った。得られた反応生成物に水を加えて60℃で1時間攪拌後、60℃、20Paで還流脱水を行い、ろ過後トルエンを除去し目的物(下記DOP2-EP-AC)を得た。
 収量133.3g、収率86.6%、エポキシ当量395g/eq.(理論エポキシ当量348g/eq.)、全塩素604質量ppm、Ti原子含有量22.0質量ppm
 得られた化合物DOP2-EP-ACのH-NMR測定結果を下記に示した。NMRは日本電子製ECX-400を用いて測定した。測定溶媒として重ジメチルスルホキシド(DMSO)を用いた。
[Example 5] Production of DOP2-EP-AC (compound represented by the following formula) In a flask equipped with a reflux device and a stirrer, 130 g (0.44 mol) of the compound DOP2-EP obtained above and 148 g (1.7 mol, 3.9 equivalents) of methyl acrylate were charged. Furthermore, 3.8 g (2.5 mol%) of tetrabutoxytitanium and 195 g (150 mass%) of toluene were charged, and a methanol removal reaction was carried out while stirring at 81°C to 87°C for 21 hours. Water was added to the obtained reaction product, and the mixture was stirred at 60°C for 1 hour, followed by reflux dehydration at 60°C and 20 Pa, and the toluene was removed after filtration to obtain the target product (DOP2-EP-AC below).
Yield: 133.3 g, yield: 86.6%, epoxy equivalent: 395 g/eq. (theoretical epoxy equivalent: 348 g/eq.), total chlorine: 604 ppm by mass, Ti atom content: 22.0 ppm by mass
The results of H 1 -NMR measurement of the obtained compound DOP2-EP-AC are shown below. NMR was measured using ECX-400 manufactured by JEOL Ltd. Deuterated dimethyl sulfoxide (DMSO) was used as the measurement solvent.
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
(実施例5で得られた化合物のH-NMRの測定結果)
Figure JPOXMLDOC01-appb-C000067
( 1H -NMR Measurement Results of the Compound Obtained in Example 5)
Figure JPOXMLDOC01-appb-C000067
〔実施例6〕
 前記実施例5により得られたDOP2-EP-AC100質量部、イルガキュア184(ビーエーエスエフ社製;1-ヒドロキシシクロヘキサン-1-イルフェニルケトン)3質量部及び2-エチル-4-メチルイミダゾール3質量部を遊星撹拌装置で混練し、硬化性組成物を調製した。ガラス板上に、前記で調製した硬化性組成物をバーコーターで300μm厚で塗布して塗膜を得た。得られた硬化性組成物について下記条件にて、光硬化及び熱硬化をこの順で実施し、その硬化物の動的粘弾性試験を下記条件にて実施した。結果を図2に示した(UV curing の結果は未測定)。なお光照射後、熱硬化前の段階で硬化が十分に進行し、離型可能な塗膜が出来ていることを確認した。
光硬化:HOYA製LED-UV照射器LSシリーズで0.5Wにて2.0秒紫外線を照射した。
熱硬化:熱循環式オーブンにて150℃×2時間加熱した。
DMA(動的粘弾性測定):TAインスツルメント製RSAを用いて、ガラス転移点(Tg)を測定した。試験片としては幅5mm×長さ60mm×厚さ300μmの短冊状の試験片を作成した。
Example 6
100 parts by mass of DOP2-EP-AC obtained in Example 5, 3 parts by mass of Irgacure 184 (manufactured by BASF; 1-hydroxycyclohexan-1-yl phenyl ketone), and 3 parts by mass of 2-ethyl-4-methylimidazole were kneaded with a planetary stirrer to prepare a curable composition. The curable composition prepared above was applied to a glass plate with a thickness of 300 μm using a bar coater to obtain a coating film. The obtained curable composition was photocured and heat cured in this order under the following conditions, and the dynamic viscoelasticity test of the cured product was performed under the following conditions. The results are shown in FIG. 2 (results of UV curing were not measured). It was confirmed that after light irradiation, curing had progressed sufficiently before heat curing, and a releasable coating film was formed.
Photocuring: UV light was applied for 2.0 seconds at 0.5 W using a HOYA LED-UV irradiator LS series.
Heat curing: heated in a heat circulation oven at 150° C. for 2 hours.
DMA (dynamic viscoelasticity measurement): The glass transition point (Tg) was measured using an RSA manufactured by TA Instruments Co., Ltd. A rectangular test piece having a width of 5 mm, a length of 60 mm, and a thickness of 300 μm was prepared.
 前記の通り、実施例2で得られた化合物が十分な光硬化性を有し、且つ熱硬化性にも優れていることを図1の通り確認した。また、前記の通り、実施例5で得られた化合物も十分な光硬化性を有していた。また実施例5で得られた化合物を用いた光及び熱硬化物は図2の通り、熱硬化温度である150℃すぎまで貯蔵弾性率E’の大幅な低下がなく、一定の硬化性を示した。また実施例5の化合物を用いた光及び熱硬化物はガラス転移点が183℃と高い耐熱性を有することも判る。このように、本発明により提供される化合物は、光及び熱による硬化性に優れた硬化性組成物を提供できる。 As mentioned above, it was confirmed from Figure 1 that the compound obtained in Example 2 had sufficient photocurability and also excellent thermosetting properties. As mentioned above, the compound obtained in Example 5 also had sufficient photocurability. As shown in Figure 2, the photo- and thermosetting product using the compound obtained in Example 5 showed a certain degree of curability with no significant decrease in storage modulus E' up to the thermosetting temperature of over 150°C. It can also be seen that the photo- and thermosetting product using the compound of Example 5 has a glass transition point of 183°C and is therefore highly heat resistant. Thus, the compound provided by the present invention can provide a curable composition with excellent photo- and thermal curability.
〔実施例7〕DOP2-EP/DOP2-EP-AC混合物の製造
 還流装置および攪拌装置を備えたフラスコ中に、前記により得られた化合物DOP2-EP130g(0.44モル)、およびアクリル酸メチル148g(1.7モル、3.9当量)を仕込んだ。更に、テトラブトキシチタン3.8g(2.5モル%)、トルエン195g(150質量%)を仕込み、81℃~87℃で12時間攪拌しながら脱メタノール反応を行った。得られた反応生成物に水を加えて60℃で1時間攪拌後、60℃、20Paで還流脱水を行い、ろ過後トルエンを除去し、硬化性材料1を得た。ガスクロマトグラフィーにより分析したところ、上記硬化性材料1は、DOP2-EP及びDOP2-EP-ACの混合物であり、質量比(DOP2-EP:DOP2-EP-AC)が5:95であることが確認できた。
[Example 7] Production of DOP2-EP/DOP2-EP-AC mixture In a flask equipped with a reflux device and a stirrer, 130 g (0.44 mol) of the compound DOP2-EP obtained above and 148 g (1.7 mol, 3.9 equivalents) of methyl acrylate were charged. Furthermore, 3.8 g (2.5 mol%) of tetrabutoxytitanium and 195 g (150 mass%) of toluene were charged, and a methanol removal reaction was carried out while stirring at 81°C to 87°C for 12 hours. Water was added to the obtained reaction product, and the mixture was stirred at 60°C for 1 hour, and then reflux dehydration was carried out at 60°C and 20 Pa, and the toluene was removed after filtration to obtain a curable material 1. When analyzed by gas chromatography, it was confirmed that the curable material 1 was a mixture of DOP2-EP and DOP2-EP-AC, and the mass ratio (DOP2-EP:DOP2-EP-AC) was 5:95.
〔実施例8〕DOP2-EP/DOP2-EP2(下記式で表される化合物)の混合物の製造
 還流装置、攪拌装置および滴下装置を備えたフラスコ中に、DOP2を160g(0.67モル)、エピクロロヒドリン496g(5.4モル、8.0当量)を仕込んだ。ここに、48質量%水酸化ナトリウム水溶液53.3g(0.70モル)を65~70℃、18.0kPaで2時間30分かけて滴下した。反応終了後、余剰のエピクロロヒドリンを減圧留去した。その後、そこにトルエン298g(150質量%)を加え、3回水洗した後トルエンを除去し、硬化性材料2を得た。ガスクロマトグラフィーにより分析したところ、上記硬化性材料2は、DOP2-EP及びDOP2-EP2の混合物であり、質量比(DOP2-EP:DOP2-EP2)が97:3であることが確認できた。
[Example 8] Production of a mixture of DOP2-EP/DOP2-EP2 (compounds represented by the following formula) 160g (0.67 mol) of DOP2 and 496g (5.4 mol, 8.0 equivalents) of epichlorohydrin were charged into a flask equipped with a reflux device, a stirrer, and a dropping device. 53.3g (0.70 mol) of 48% by mass aqueous sodium hydroxide solution was dropped at 65-70°C and 18.0 kPa over 2 hours and 30 minutes. After the reaction was completed, the excess epichlorohydrin was distilled off under reduced pressure. Then, 298g (150% by mass) of toluene was added thereto, and the mixture was washed with water three times, after which the toluene was removed, and a curable material 2 was obtained. When analyzed by gas chromatography, it was confirmed that the curable material 2 was a mixture of DOP2-EP and DOP2-EP2, and the mass ratio (DOP2-EP:DOP2-EP2) was 97:3.
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
〔実施例9〕DOP2-EP/DOP2-EP2/DOP2-EP-AC混合物の製造
 還流装置および攪拌装置を備えたフラスコ中に、前記により得られた硬化性材料2を130g(0.44モル)、およびアクリル酸メチル148g(1.7モル、3.9当量)を仕込んだ。更に、テトラブトキシチタン3.8g(2.5モル%)およびトルエン195g(150質量%)を仕込み、81℃~87℃で12時間攪拌しながら脱メタノール反応を行った。得られた反応生成物に水を加えて60℃で1時間攪拌後、60℃、20Paで還流脱水を行い、ろ過後トルエンを除去し、硬化性材料3を得た。ガスクロマトグラフィーにより分析したところ、上記硬化性材料3は、DOP2-EP、DOP2-EP-AC、DOP2-EP-ACの混合物であり、質量比(DOP2-EP:DOP2-EP2:DOP2-EP-AC)が5:3:92であることが確認できた。
[Example 9] Production of DOP2-EP / DOP2-EP2 / DOP2-EP-AC mixture In a flask equipped with a reflux device and a stirrer, 130g (0.44 mol) of the curable material 2 obtained above and 148g (1.7 mol, 3.9 equivalents) of methyl acrylate were charged. Furthermore, 3.8g (2.5 mol%) of tetrabutoxytitanium and 195g (150 mass%) of toluene were charged, and a methanol removal reaction was carried out while stirring at 81 ° C to 87 ° C for 12 hours. Water was added to the obtained reaction product, and the mixture was stirred at 60 ° C for 1 hour, and then reflux dehydration was carried out at 60 ° C and 20 Pa, and the toluene was removed after filtration to obtain a curable material 3. Analysis by gas chromatography confirmed that the curable material 3 was a mixture of DOP2-EP, DOP2-EP-AC, and DOP2-EP-AC, with a mass ratio (DOP2-EP:DOP2-EP2:DOP2-EP-AC) of 5:3:92.
 前記実施例7で得られた硬化性材料1、あるいは実施例9により得られた硬化性材料3 100質量部、イルガキュア184(ビーエーエスエフ社製;1-ヒドロキシシクロヘキサン-1-イルフェニルケトン)3質量部及び2-エチル-4-メチルイミダゾール3質量部を遊星撹拌装置で混練し、硬化性組成物を調製した。ガラス板上に、前記で調製した硬化性組成物をバーコーターで300μm厚で塗布して塗膜を得た。得られた硬化性組成物について下記条件にて、光硬化及び熱硬化をこの順で実施し、硬化の有無(A、B)を以下の評価基準にて確認した。
光硬化:HOYA製LED-UV照射器LSシリーズで0.5Wにて2.0秒紫外線を照射した。
(光硬化性の評価基準)
A:光硬化後、熱硬化前において、硬化が十分に進行し、離型可能な塗膜が形成されていることを確認した。
B:光硬化後、熱硬化前において、硬化が不十分で離型可能な塗膜が形成されていないことを確認した。
熱硬化:熱循環式オーブンにて150℃×2時間加熱した。
(熱硬化性の評価基準)
A:熱硬化後において、硬化が十分に進行し、離型可能な塗膜が形成されていることを確認した。
B:熱硬化後において、硬化が不十分であり、硬化が不十分で離型可能な塗膜が形成されていないことを確認した。
A curable composition was prepared by kneading 100 parts by mass of the curable material 1 obtained in Example 7 or the curable material 3 obtained in Example 9, 3 parts by mass of Irgacure 184 (manufactured by BASF; 1-hydroxycyclohexan-1-yl phenyl ketone) and 3 parts by mass of 2-ethyl-4-methylimidazole with a planetary stirrer. The curable composition prepared above was applied to a glass plate with a thickness of 300 μm with a bar coater to obtain a coating film. The obtained curable composition was subjected to photocuring and heat curing in this order under the following conditions, and the presence or absence of curing (A, B) was confirmed according to the following evaluation criteria.
Photocuring: UV light was applied for 2.0 seconds at 0.5 W using a HOYA LED-UV irradiator LS series.
(Evaluation Criteria for Photocurability)
A: After photocuring and before thermal curing, it was confirmed that curing had progressed sufficiently and a releasable coating film had been formed.
B: After photocuring and before thermal curing, it was confirmed that curing was insufficient and a releasable coating film was not formed.
Heat curing: heated in a heat circulation oven at 150° C. for 2 hours.
(Evaluation Criteria for Thermosetting)
A: After heat curing, it was confirmed that the curing had progressed sufficiently and a releasable coating film had been formed.
B: After heat curing, it was confirmed that the curing was insufficient and that a releasable coating film was not formed due to insufficient curing.
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000069
 以上の通り、式(1)の化合物と、式(2)の化合物及び/又は式(4)の化合物とを含む混合物を含む硬化性組成物についても、十分な光硬化性及び熱硬化性を有することを確認した。 As described above, it was confirmed that the curable composition containing a mixture of the compound of formula (1) and the compound of formula (2) and/or the compound of formula (4) also has sufficient photocurability and thermosetting properties.
 本発明の化合物は、光及び熱による硬化が可能であり、また、それを含有して得られる硬化性組成物は、光及び熱による硬化性に優れることから、液状封止剤、液状接着剤、カメラモジュール用接着剤、液晶シール剤等の用途に使用することができるものである。 The compound of the present invention can be cured by light and heat, and the curable composition obtained by containing it has excellent curing properties by light and heat, so it can be used for applications such as liquid sealants, liquid adhesives, adhesives for camera modules, and liquid crystal sealants.

Claims (10)

  1.  下記一般式(1)で表される化合物。
     式中、Rは水素原子又はメチル基を表し、Rは、それぞれ独立に、炭素原子数1~20のアルキル基、炭素原子数1~20のアルコキシ基、置換基として炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基若しくはハロゲン原子を有してもよい炭素原子数5~10のアリール基又はハロゲン原子を表し、Rは、水素原子、炭素原子数1~10のアルキル基、ヒドロキシメチル基、グリシジルエーテル基、メチルグリシジルエーテル基、アクリロイルオキシメチル基又はメタクリロイルオキシメチル基を表わし、Rは水素原子又はメチル基を表わす。nは0~4の数を表わす。
    A compound represented by the following general formula (1):
    In the formula, R 1 represents a hydrogen atom or a methyl group, R 2 each independently represents an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 5 to 10 carbon atoms which may have a halogen atom as a substituent, or a halogen atom, R 3 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxymethyl group, a glycidyl ether group, a methyl glycidyl ether group, an acryloyloxymethyl group, or a methacryloyloxymethyl group, R 4 represents a hydrogen atom or a methyl group, and n represents a number from 0 to 4.
  2.  下記一般式(2)で表される化合物。
    Figure JPOXMLDOC01-appb-C000002
     式中、Rは水素原子又はメチル基を表し、Rは、それぞれ独立に、炭素原子数1~20のアルキル基、炭素原子数1~20のアルコキシ基、置換基として炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基若しくはハロゲン原子を有してもよい炭素原子数5~10のアリール基又はハロゲン原子を表わし、Rは水素原子、炭素原子数1~10のアルキル基、ヒドロキシメチル基、グリシジルエーテル基又はメチルグリシジルエーテル基を表す。nは0~4の数を表わす。
    A compound represented by the following general formula (2):
    Figure JPOXMLDOC01-appb-C000002
    In the formula, R1 represents a hydrogen atom or a methyl group, R2 each independently represents an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 5 to 10 carbon atoms which may have a halogen atom as a substituent, or a halogen atom, R5 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxymethyl group, a glycidyl ether group, or a methylglycidyl ether group, and n represents a number from 0 to 4.
  3.  下記一般式(3)で表される化合物とエピハロヒドリンとを反応させて下記一般式(2)で表される化合物を製造し、これにアクリル酸誘導体及び/又はメタクリル酸誘導体を用いてエステル化することを特徴とする下記一般式(1)で表される化合物の製造方法。  
    Figure JPOXMLDOC01-appb-C000003
     式中、Rは、それぞれ独立に、炭素原子数1~20のアルキル基、炭素原子数1~20のアルコキシ基、置換基として炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基若しくはハロゲン原子を有してもよい炭素原子数5~10のアリール基又はハロゲン原子を表す。Rは水素原子、炭素原子数1~10のアルキル基又はヒドロキシメチル基を表わす。nは0~4の数を表わす。
    Figure JPOXMLDOC01-appb-C000004
     式中、Rは水素原子又はメチル基を表し、Rは、それぞれ独立に、炭素原子数1~20のアルキル基、炭素原子数1~20のアルコキシ基、置換基として炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基若しくはハロゲン原子を有してもよい炭素原子数5~10のアリール基又はハロゲン原子を表わし、Rは水素原子、炭素原子数1~10のアルキル基、ヒドロキシメチル基、グリシジルエーテル基又はメチルグリシジルエーテル基を表す。nは0~4の数を表わす。
     式中、Rは水素原子又はメチル基を表し、Rは、それぞれ独立に、炭素原子数1~20のアルキル基、炭素原子数1~20のアルコキシ基、置換基として炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基若しくはハロゲン原子を有してもよい炭素原子数5~10のアリール基又はハロゲン原子を表し、Rは、水素原子、炭素原子数1~10のアルキル基、ヒドロキシメチル基、グリシジルエーテル基、メチルグリシジルエーテル基、アクリロイルオキシメチル基又はメタクリロイルオキシメチル基を表わし、Rは水素原子又はメチル基を表わす。nは0~4の数を表わす。
    A method for producing a compound represented by the following general formula (1), comprising reacting a compound represented by the following general formula (3) with epihalohydrin to produce a compound represented by the following general formula (2), and esterifying the compound with an acrylic acid derivative and/or a methacrylic acid derivative.
    Figure JPOXMLDOC01-appb-C000003
    In the formula, R2 's each independently represent an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 5 to 10 carbon atoms which may have a halogen atom as a substituent, or a halogen atom. R6 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a hydroxymethyl group. n represents a number from 0 to 4.
    Figure JPOXMLDOC01-appb-C000004
    In the formula, R1 represents a hydrogen atom or a methyl group, R2 each independently represents an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 5 to 10 carbon atoms which may have a halogen atom as a substituent, or a halogen atom, R5 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxymethyl group, a glycidyl ether group, or a methylglycidyl ether group, and n represents a number from 0 to 4.
    In the formula, R 1 represents a hydrogen atom or a methyl group, R 2 each independently represents an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 5 to 10 carbon atoms which may have a halogen atom as a substituent, or a halogen atom, R 3 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxymethyl group, a glycidyl ether group, a methyl glycidyl ether group, an acryloyloxymethyl group, or a methacryloyloxymethyl group, R 4 represents a hydrogen atom or a methyl group, and n represents a number from 0 to 4.
  4.  下記一般式(1)で表される化合物と、
     下記一般式(2)で表される化合物及び下記一般式(4)で表される化合物の少なくとも一方と、を含有する硬化性材料。
     式中、Rは水素原子又はメチル基を表し、Rは、それぞれ独立に、炭素原子数1~20のアルキル基、炭素原子数1~20のアルコキシ基、置換基として炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基若しくはハロゲン原子を有してもよい炭素原子数5~10のアリール基又はハロゲン原子を表し、Rは、水素原子、炭素原子数1~10のアルキル基、ヒドロキシメチル基、グリシジルエーテル基、メチルグリシジルエーテル基、アクリロイルオキシメチル基又はメタクリロイルオキシメチル基を表わし、Rは水素原子又はメチル基を表わす。nは0~4の数を表わす。
    Figure JPOXMLDOC01-appb-C000007
     式中、Rは水素原子又はメチル基を表し、Rは、それぞれ独立に、炭素原子数1~20のアルキル基、炭素原子数1~20のアルコキシ基、置換基として炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基若しくはハロゲン原子を有してもよい炭素原子数5~10のアリール基又はハロゲン原子を表わし、Rは水素原子、炭素原子数1~10のアルキル基、ヒドロキシメチル基、グリシジルエーテル基又はメチルグリシジルエーテル基を表す。nは0~4の数を表わす。
     式中、Rは、それぞれ独立に、水素原子、炭素原子数1~20のアルキル基、炭素原子数1~20のアルコキシ基、置換基として炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基、水酸基若しくはハロゲン原子を有してもよい炭素原子数5~10のアリール基、水酸基又はハロゲン原子を表し、Rは、水素原子、炭素原子数1~10のアルキル基、ヒドロキシアルキル基、グリシジルエーテル基、メチルグリシジルエーテル基、グリシジルオキシアルキル基、β-メチルグリシジルオキシアルキル基、アクリロイルオキシアルキル基又はメタクリロイルオキシアルキル基を表わす。Rは水素原子又はメチル基を表す。mは0~4の数を表わす。
    A compound represented by the following general formula (1),
    A curable material comprising at least one of a compound represented by the following general formula (2) and a compound represented by the following general formula (4):
    In the formula, R 1 represents a hydrogen atom or a methyl group, R 2 each independently represents an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 5 to 10 carbon atoms which may have a halogen atom as a substituent, or a halogen atom, R 3 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxymethyl group, a glycidyl ether group, a methyl glycidyl ether group, an acryloyloxymethyl group, or a methacryloyloxymethyl group, R 4 represents a hydrogen atom or a methyl group, and n represents a number from 0 to 4.
    Figure JPOXMLDOC01-appb-C000007
    In the formula, R1 represents a hydrogen atom or a methyl group, R2 each independently represents an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 5 to 10 carbon atoms which may have a halogen atom as a substituent, or a halogen atom, R5 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxymethyl group, a glycidyl ether group, or a methylglycidyl ether group, and n represents a number from 0 to 4.
    In the formula, R 7 independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkyl group having 1 to 10 carbon atoms as a substituent, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 5 to 10 carbon atoms which may have a hydroxyl group or a halogen atom, a hydroxyl group, or a halogen atom, R 8 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxyalkyl group, a glycidyl ether group, a methyl glycidyl ether group, a glycidyloxyalkyl group, a β-methyl glycidyloxyalkyl group, an acryloyloxyalkyl group, or a methacryloyloxyalkyl group. R 9 represents a hydrogen atom or a methyl group. m represents a number from 0 to 4.
  5.  前記一般式(4)で表される化合物を含有する請求項4に記載の硬化性材料。 The curable material according to claim 4, which contains a compound represented by the general formula (4).
  6.  (A)請求項1に記載の化合物の少なくとも一種と、(B)硬化剤の中から選ばれる少なくとも一種とを含有する硬化性組成物。 A curable composition containing at least one compound according to claim 1 and at least one curing agent selected from (A) and (B).
  7.  さらに、下記一般式(2)で表される化合物および下記一般式(4)で表される化合物の少なくとも一方を含有する請求項6に記載の硬化性組成物。
    Figure JPOXMLDOC01-appb-C000009
     式中、Rは水素原子又はメチル基を表し、Rは、それぞれ独立に、水素原子、炭素原子数1~20のアルキル基、炭素原子数1~20のアルコキシ基、置換基として炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基若しくはハロゲン原子を有してもよい炭素原子数5~10のアリール基又はハロゲン原子を表わし、Rは炭素原子数1~10のアルキル基、ヒドロキシメチル基、グリシジルエーテル基又はメチルグリシジルエーテル基を表す。nは0~4の数を表わす。
     式中、Rは、それぞれ独立に、水素原子、炭素原子数1~20のアルキル基、炭素原子数1~20のアルコキシ基、置換基として炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基、水酸基若しくはハロゲン原子を有してもよい炭素原子数5~10のアリール基、水酸基又はハロゲン原子を表し、Rは、水素原子、炭素原子数1~10のアルキル基、ヒドロキシアルキル基、グリシジルエーテル基、メチルグリシジルエーテル基、グリシジルオキシアルキル基、β-メチルグリシジルオキシアルキル基、アクリロイルオキシアルキル基又はメタクリロイルオキシアルキル基を表わす。Rは水素原子又はメチル基を表す。mは0~4の数を表わす。
    The curable composition according to claim 6, further comprising at least one of a compound represented by the following general formula (2) and a compound represented by the following general formula (4):
    Figure JPOXMLDOC01-appb-C000009
    In the formula, R1 represents a hydrogen atom or a methyl group, R2 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 5 to 10 carbon atoms which may have a halogen atom as a substituent, or a halogen atom, R5 represents an alkyl group having 1 to 10 carbon atoms, a hydroxymethyl group, a glycidyl ether group, or a methyl glycidyl ether group, and n represents a number from 0 to 4.
    In the formula, R 7 independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkyl group having 1 to 10 carbon atoms as a substituent, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 5 to 10 carbon atoms which may have a hydroxyl group or a halogen atom, a hydroxyl group, or a halogen atom, R 8 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxyalkyl group, a glycidyl ether group, a methyl glycidyl ether group, a glycidyloxyalkyl group, a β-methyl glycidyloxyalkyl group, an acryloyloxyalkyl group, or a methacryloyloxyalkyl group. R 9 represents a hydrogen atom or a methyl group. m represents a number from 0 to 4.
  8.  請求項6又は請求項7に記載の硬化性組成物を硬化させる硬化工程を有する硬化物の製造方法。 A method for producing a cured product comprising a curing step of curing the curable composition according to claim 6 or 7.
  9.  前記硬化工程の硬化方法が、加熱又は光照射の少なくともいずれか一方である、請求項8に記載の硬化物の製造方法。 The method for producing a cured product according to claim 8, wherein the curing method in the curing step is at least one of heating and light irradiation.
  10.  請求項6又は請求項7に記載の硬化性組成物の硬化物。 A cured product of the curable composition according to claim 6 or claim 7.
PCT/JP2023/034362 2022-09-27 2023-09-21 Compound, method for producing said compound, curable material, curable composition, method for producing cured article, and cured article WO2024070902A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022153856 2022-09-27
JP2022-153856 2022-09-27

Publications (1)

Publication Number Publication Date
WO2024070902A1 true WO2024070902A1 (en) 2024-04-04

Family

ID=90477694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034362 WO2024070902A1 (en) 2022-09-27 2023-09-21 Compound, method for producing said compound, curable material, curable composition, method for producing cured article, and cured article

Country Status (1)

Country Link
WO (1) WO2024070902A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6099181A (en) * 1983-11-02 1985-06-03 Toagosei Chem Ind Co Ltd Curable composition
JP2009149649A (en) * 2007-12-24 2009-07-09 Industry-Academic Cooperation Foundation Yonsei Univ Photopolymerizable monomer having epoxy group and unsaturated double bond, and photopolymerizable composition containing the monomer
JP2010013507A (en) * 2008-07-01 2010-01-21 Three Bond Co Ltd Epoxy resin composition
US20200048301A1 (en) * 2018-08-13 2020-02-13 Rowan University Epoxy-(meth)acrylate monomers and polymers and methods of making and using the same
CN111704711A (en) * 2019-03-18 2020-09-25 中国科学院宁波材料技术与工程研究所 Epoxy monomer based on acetal structure and preparation method and application thereof
JP2023110567A (en) * 2022-01-28 2023-08-09 株式会社Adeka Compound, curable composition, and compound production method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6099181A (en) * 1983-11-02 1985-06-03 Toagosei Chem Ind Co Ltd Curable composition
JP2009149649A (en) * 2007-12-24 2009-07-09 Industry-Academic Cooperation Foundation Yonsei Univ Photopolymerizable monomer having epoxy group and unsaturated double bond, and photopolymerizable composition containing the monomer
JP2010013507A (en) * 2008-07-01 2010-01-21 Three Bond Co Ltd Epoxy resin composition
US20200048301A1 (en) * 2018-08-13 2020-02-13 Rowan University Epoxy-(meth)acrylate monomers and polymers and methods of making and using the same
CN111704711A (en) * 2019-03-18 2020-09-25 中国科学院宁波材料技术与工程研究所 Epoxy monomer based on acetal structure and preparation method and application thereof
JP2023110567A (en) * 2022-01-28 2023-08-09 株式会社Adeka Compound, curable composition, and compound production method

Similar Documents

Publication Publication Date Title
CN111315719B (en) Thiol compound, method for synthesizing same, and use of thiol compound
JP5778038B2 (en) Curable resin composition
EP3950761B1 (en) Curable resin composition
KR101158316B1 (en) Curable composition
TW201900796A (en) Curing composition, method for producing cured product, cured product thereof, and adhesive using the same
JP6058890B2 (en) Curable resin composition
WO2024070902A1 (en) Compound, method for producing said compound, curable material, curable composition, method for producing cured article, and cured article
JP2013018810A (en) Curable resin composition
TWI423998B (en) Redox-induced cationically polymerizable compositions with low cure temperature
CN113631537A (en) Carbamoyloxime compound, and polymerization initiator and polymerizable composition each containing same
JP2018165329A (en) Curable composition
CN115003709B (en) Compound, method for producing compound, and curable composition
JP2023110567A (en) Compound, curable composition, and compound production method
JP2023146684A (en) Compound, method for producing the same, and curable composition containing the same
JP2006106385A (en) Curable composition for liquid crystal display device
JP7325207B2 (en) resin composition
JP6491490B2 (en) Sealant for liquid crystal dropping method
JP7282595B2 (en) Composition, adhesive containing same, cured product thereof and method for producing same
JP2018165330A (en) Curable composition
KR20120097458A (en) Novel episulfide compounds curable resin compositions containing the episulfide compounds and cured products thereof
CN113302180A (en) Carbamoyloxime compound, and polymerization initiator and polymerizable composition each containing same
JP2019172925A (en) Radical-polymerizable composition
JP7236041B2 (en) Curing agent and its use
WO2018012383A1 (en) Curable composition, cured product and method for producing cured product
WO2022270536A1 (en) Epoxy resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872128

Country of ref document: EP

Kind code of ref document: A1