WO2024070840A1 - Alkyl silyl peroxide, heat-curable composition, resin film, prepreg, metal laminate, and printed wiring board - Google Patents

Alkyl silyl peroxide, heat-curable composition, resin film, prepreg, metal laminate, and printed wiring board Download PDF

Info

Publication number
WO2024070840A1
WO2024070840A1 PCT/JP2023/034058 JP2023034058W WO2024070840A1 WO 2024070840 A1 WO2024070840 A1 WO 2024070840A1 JP 2023034058 W JP2023034058 W JP 2023034058W WO 2024070840 A1 WO2024070840 A1 WO 2024070840A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
peroxide
compound
thermosetting composition
prepreg
Prior art date
Application number
PCT/JP2023/034058
Other languages
French (fr)
Japanese (ja)
Inventor
佳奈子 詫摩
昌樹 林
Original Assignee
日油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日油株式会社 filed Critical 日油株式会社
Publication of WO2024070840A1 publication Critical patent/WO2024070840A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/28Oxygen or compounds releasing free oxygen
    • C08F4/32Organic compounds
    • C08F4/34Per-compounds with one peroxy-radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/28Oxygen or compounds releasing free oxygen
    • C08F4/32Organic compounds
    • C08F4/36Per-compounds with more than one peroxy radical

Definitions

  • the present invention relates to alkylsilyl peroxides, thermosetting compositions, resin films, prepregs, metal laminates, and printed wiring boards.
  • Organic peroxides generate radicals when decomposed by heat, and are used as polymerization initiators for plastics and cross-linking agents for rubber.
  • the decomposition temperature of organic peroxides can be adjusted depending on their chemical structure, and organic peroxides are used at various processing temperatures from room temperature to around 200°C.
  • dialkyl peroxides have a high decomposition temperature and are used, for example, as cross-linking agents for rubber. In this case, when the rubber is kneaded in a molten state at around 100°C, the decomposition of dialkyl peroxide is so slight that the rubber does not cross-link, but by heating to around 180°C, radicals are generated and the rubber can be cross-linked.
  • radical polymerizable compound of the thermosetting composition used in electronic circuit board materials polyphenylene ether or maleimide having a radical polymerizable double bond at the molecular end is preferably used because of its excellent dielectric properties.
  • Dialkyl peroxide is used as the curing agent (Patent Documents 1-3).
  • the alkylperoxy radicals generated by the decomposition of dialkyl peroxides generate carbon radicals through secondary decomposition. These carbon radicals add to the double bonds of radically polymerizable compounds, initiating the curing reaction. Furthermore, in dialkyl peroxides with long carbon chains such as t-amyl or t-hexyl groups, the decomposition temperature of the dialkyl peroxide is lower than in cases where the carbon chain is short such as t-butyl groups.
  • dialkyl peroxides with long carbon chains decompose too quickly in the curing process at high temperatures of, for example, 190°C or higher, and therefore the curing reaction cannot be carried out sufficiently, and the heat resistance of the cured product cannot be ensured sufficiently.
  • the present invention has been made in consideration of the above-mentioned circumstances, and aims to provide an alkylsilyl peroxide, which is a novel polymerization initiator that can be used in the curing process of a thermally polymerizable composition at high temperatures.
  • the present invention relates to a compound represented by the general formula (1):
  • R 1 and R 2 are independently an alkyl group or a phenyl group having 1 to 6 carbon atoms
  • R 3 is an alkyl group or a phenyl group having 3 to 6 carbon atoms
  • R 4 is an alkyl group having 2 to 5 carbon atoms
  • R 5 and R 6 are independently an alkyl group having 1 to 6 carbon atoms or a phenyl group
  • R 7 is an alkyl group having 2 to 6 carbon atoms
  • R 8 is an ethylene group or an acetylene group
  • the present invention also relates to a thermosetting composition containing the alkylsilyl peroxide and a radical polymerizable compound.
  • the present invention also relates to a resin film formed from the thermosetting composition.
  • the present invention also relates to a prepreg in which the thermosetting composition is impregnated or applied to a fibrous substrate.
  • the present invention also relates to a metal-clad laminate in which the resin film or the prepreg is laminated with a metal foil.
  • the present invention also relates to a printed wiring board in which a portion of the metal foil has been removed from the metal-clad laminate.
  • the present invention further relates to a method for producing the alkylsilyl peroxide, which includes a step of reacting a silyl chloride compound and a hydroperoxide compound as raw materials.
  • the alkylsilyl peroxide of the present invention has a trialkylsilyl group, and therefore has a higher decomposition temperature than dialkyl peroxide, allowing the curing process of the thermosetting composition to be carried out efficiently at high temperatures.
  • dialkyl peroxides such as di-t-hexyl peroxide
  • volatilization can be suppressed with alkylsilyl peroxides that have a trialkylsilyl group.
  • thermosetting composition is suitable for curing at high temperatures, which improves the heat resistance of the resulting cured product. Furthermore, when a resin such as polyphenylene ether or maleimide is used as the radical polymerizable compound contained in the thermosetting composition, low-polarity decomposition products such as ethyl radicals (carbon radicals) can be introduced to the resin terminals, improving the dielectric properties of the cured product.
  • a resin such as polyphenylene ether or maleimide
  • low-polarity decomposition products such as ethyl radicals (carbon radicals) can be introduced to the resin terminals, improving the dielectric properties of the cured product.
  • the alkylsilyl peroxide of the present invention is represented by the general formula (1): (In formula (1), R 1 and R 2 are independently an alkyl group or a phenyl group having 1 to 6 carbon atoms, R 3 is an alkyl group or a phenyl group having 3 to 6 carbon atoms, and R 4 is an alkyl group having 2 to 5 carbon atoms), and a compound represented by general formula (2): (In formula (2), R 5 and R 6 are independently an alkyl group having 1 to 6 carbon atoms or a phenyl group, R 7 is an alkyl group having 2 to 6 carbon atoms, and R 8 is an ethylene group or an acetylene group).
  • examples of R 1 and R 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a t-butyl group, an n-pentyl group, a neopentyl group, an n-hexyl group, and a phenyl group.
  • examples of R 3 include an n-propyl group, an isopropyl group, an n-butyl group, a t-butyl group, an n-pentyl group, a neopentyl group, an n-hexyl group, and a phenyl group.
  • examples of R 4 include an ethyl group, an n-propyl group, an n-butyl group, a t-butyl group, an n-pentyl group, and a neopentyl group.
  • examples of R5 and R6 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a t-butyl group, an n-pentyl group, a neopentyl group, an n-hexyl group, and a phenyl group.
  • examples of R 7 include an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a t-butyl group, an n-pentyl group, a neopentyl group, and an n-hexyl group.
  • alkylsilyl peroxide of the present invention are shown below, but the present invention is not limited to these.
  • the dialkyl peroxide includes compounds 1 to 18, and more preferably compounds 4, 5, 6, 12, 13, 14, 16, and 19. More preferably, the dialkyl peroxide includes a silyl group in which one of the substituents is a t-butyl group and the remaining two are methyl groups, all of the silyl group's substituents are phenyl groups, one of the silyl group's substituents is a phenyl group and the remaining two are methyl groups, or two of the silyl group's substituents are phenyl groups and the remaining one is a methyl group.
  • the method for producing the alkylsilyl peroxide represented by the general formula (1) is not limited in any way.
  • the method for producing the alkylsilyl peroxide represented by the general formula (3): and a hydroperoxide compound represented by general formula (4): (hereinafter also referred to as step (X))
  • the method for producing the alkylsilyl peroxide represented by the general formula (2) is not limited in any way.
  • the method for producing the alkylsilyl peroxide represented by the general formula (5): and a silyl chloride compound represented by the general formula (4) (hereinafter also referred to as step (Y)).
  • the hydroperoxide compound represented by the general formula (3) or the general formula (5) and the silyl chloride compound represented by the general formula (4) can be commercially available products.
  • the hydroperoxide compound represented by the general formula (3) is preferably used in an amount of 0.8 to 5.0 moles, more preferably 1.0 to 3.0 moles, per 1.0 mole of the silyl chloride compound represented by the general formula (4), from the viewpoint of increasing the yield of the target product.
  • the hydroperoxide compound represented by the general formula (5) is preferably used in an amount of 0.4 to 10.0 moles, more preferably 0.5 to 6.0 moles, per 1.0 mole of the silyl chloride compound represented by the general formula (4), from the viewpoint of increasing the yield of the target product.
  • a base catalyst In the step (X) or the step (Y), it is preferable to use a base catalyst.
  • the base catalyst is not particularly limited, but examples thereof include pyridine, dimethylaminopyridine, triethylamine, sodium hydroxide, potassium hydroxide, sodium carbonate, and the like.
  • the base catalyst may be used alone or in combination of two or more kinds.
  • the amount of the base catalyst used is not particularly limited, but from the viewpoint of increasing the yield of the target product, it is preferable to use 0.1 to 5.0 moles, and more preferably 1.0 to 3.0 moles, per 1.0 mole of the silyl chloride compound represented by the general formula (4).
  • an organic solvent is not particularly limited, but is preferably an organic solvent that is inactive in the reaction system.
  • the organic solvent include non-polar compounds such as pentane, hexane, and toluene; and polar compounds such as acetone, acetonitrile, tetrahydrofuran, and ethyl acetate.
  • the organic solvent may be used alone or in combination of two or more kinds.
  • the amount of the organic solvent used is not particularly limited, but is usually about 0.1 to 100 parts by mass per part by mass of the chloride compound represented by the general formula (4) or the general formula (6).
  • the reaction temperature in step (X) or step (Y) is preferably -10°C or higher, more preferably 0°C or higher, from the viewpoint of increasing the yield of the target product, and is preferably 60°C or lower, more preferably 50°C or lower, from the viewpoint of safety.
  • reaction time of step (X) or step (Y) cannot be determined in general because it varies depending on the raw materials and reaction temperature, but from the viewpoint of increasing the yield of the target product, it is usually preferably 0.1 hours or more, more preferably 0.5 hours or more, and preferably 5 hours or less.
  • the step (X) or the step (Y) can be carried out under an air atmosphere at normal pressure, but can also be carried out under a nitrogen atmosphere or nitrogen gas flow.
  • the alkylsilyl peroxide can be purified by washing with an aqueous electrolyte solution such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium sulfite, hydrogen chloride, sulfuric acid, or sodium chloride, or ion-exchanged water to remove excess raw materials and by-products.
  • an aqueous electrolyte solution such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium sulfite, hydrogen chloride, sulfuric acid, or sodium chloride, or ion-exchanged water to remove excess raw materials and by-products.
  • the resulting alkylsilyl peroxide can be identified using gas chromatography (GC), liquid chromatography (LC), nuclear magnetic resonance spectroscopy (NMR), infrared spectroscopy (IR), mass spectrometry (MS), etc.
  • GC gas chromatography
  • LC liquid chromatography
  • NMR nuclear magnetic resonance spectroscopy
  • IR infrared spectroscopy
  • MS mass spectrometry
  • thermosetting composition of the present invention contains an alkylsilyl peroxide and a radical polymerizable compound.
  • the thermosetting composition may further contain other components in appropriate combination.
  • the radical polymerizable compound is not particularly limited as long as it can be polymerized by a thermal radical polymerization reaction, and examples thereof include compounds having an ethylenically unsaturated group such as a vinyl group, an allyl group, a methacryl group, a styryl group, a meth(acryl) group, or a maleimide group. From the viewpoint of being able to improve the dielectric properties and heat resistance of a cured product using the above-mentioned alkylsilyl peroxide, examples thereof include polyphenylene ether and maleimide.
  • the polyphenylene ether is not particularly limited as long as it is a polyphenylene ether having a radically polymerizable double bond at the molecular end.
  • the polyphenylene ether having the radically polymerizable double bond can be used alone or in combination of two or more kinds.
  • the structural unit of the polyphenylene ether examples include, for example, a copolymer of 2,6-dimethylphenol and other phenols (for example, 2,3,6-trimethylphenol, 2-methyl-6-butylphenol, 2-allylphenol, etc.); a polyphenylene ether copolymer obtained by coupling 2,6-dimethylphenol with biphenols or bisphenols; and a polyphenylene ether having a linear or branched structure obtained by heating poly(2,6-dimethyl-1,4-phenylene ether) or the like with a phenolic compound such as a bisphenol or trisphenol in a toluene solvent in the presence of an organic peroxide to cause a redistribution reaction.
  • the phenylene group in the phenylene ether unit may have a substituent, and the polyphenylene ether may contain other structural units other than the phenylene ether unit within a range that does not impair the effects of the present invention.
  • Examples of the radically polymerizable double bond at the molecular end include (meth)acryloyl groups, styryl groups, vinylbenzyl groups, vinyl groups, allyl groups, and 1,3-butadienyl groups.
  • (meth)acryloyl groups and vinylbenzyl groups are preferred from the viewpoints of high reactivity during heat curing and excellent dielectric constant and dielectric dissipation factor of the cured product.
  • the number of radically polymerizable double bonds in one molecule of the polyphenylene ether having radically polymerizable double bonds at the molecular terminal is preferably 1.5 to 6 on average, more preferably 1.6 to 4 on average, and even more preferably 1.7 to 3 on average.
  • the number of ethylenically unsaturated double bonds in one molecule of the polyphenylene ether having a radically polymerizable double bond at the molecular end can be measured, for example, by measuring the number of hydroxyl groups remaining in the polyphenylene ether and calculating the reduction from the number of hydroxyl groups in the polyphenylene ether before modification with a compound having an ethylenically unsaturated double bond.
  • the method for measuring the number of hydroxyl groups remaining in the polyphenylene ether conforms to the method described in Polymer Research Papers, vol. 51, No. 7, p. 480 (1994), in which tetraethylammonium hydroxide is added to a methylene chloride solution of the polyphenylene ether and the absorbance of the mixed solution at a wavelength of 318 nm is measured.
  • the polyphenylene ether having a radically polymerizable double bond at the molecular end preferably has a structure represented by the following general formula (6).
  • X is any linking group having a valence of a
  • Y is a radically polymerizable double bond at the molecular end
  • a is an integer from 1 to 6.
  • X in the formula (6) include divalent phenols such as bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4'-dihydroxybiphenyl, 2,2'-dihydroxybiphenyl, 4,4'-dihydroxy-3,3'5,5'-tetramethylbiphenyl, 4,4'-dihydroxy-2,2',3,3'5,5'-hexamethylbiphenyl, hydroquinone, and resorcin, and trivalent or higher phenols such as tris-(4-hydroxyphenyl)methane, 1,1,2,2-tetrakis(4-hydroxyphenyl)ethane, phenol novolac, o-cresol novolac, and naphthol novolac.
  • divalent phenols such as bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4'-dihydroxybiphenyl, 2,2'-dihydroxybiphenyl, 4,4'
  • the polyphenylene ether having a radically polymerizable double bond at the molecular end preferably has a number average molecular weight of 800 or more and 5000 or less, more preferably 900 or more and 4500 or less, and even more preferably 1000 or more and 3000 or less, from the viewpoint of dielectric properties and impregnation into fibrous substrates.
  • the number average molecular weight may be measured by a general molecular weight measurement method, such as a polystyrene equivalent value measured using gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the measurement can be performed using a measurement device HLC-8220GPC (manufactured by Tosoh Corporation), column: ShodexGPC KF-405L HQ x 3 (manufactured by Showa Denko K.K.), eluent: chloroform, injection amount: 20 ⁇ L, flow rate: 0.3 mL/min, column temperature: 40°C, detector: RI.
  • the method for synthesizing the polyphenylene ether having a radically polymerizable double bond at the molecular end is not particularly limited, as long as it is possible to synthesize a modified polyphenylene ether modified with a radically polymerizable double bond.
  • a method of reacting a compound having an ethylenically unsaturated double bond and a chlorine atom with the polyphenylene ether before modification can be mentioned.
  • Examples of the compound having an ethylenically unsaturated double bond and a chlorine atom include (meth)acryloyl chloride and vinylbenzyl chloride.
  • polyphenylene ether having a radically polymerizable double bond at the molecular end may be a commercially available product, such as "OPE-2St” (manufactured by Mitsubishi Gas Chemical Co., Ltd.) or "Noryl SA9000” (manufactured by SABIC Innovative Plastics).
  • the maleimide is not particularly limited as long as it is a compound having a maleimide group in the molecule.
  • Examples of the maleimide include monofunctional maleimides having one maleimide group in the molecule, and polyfunctional maleimides having two or more maleimide groups in the molecule.
  • the maleimides can be used alone or in combination of two or more kinds.
  • the maleimides include, for example, the monofunctional maleimides, such as phenylmaleimide, cyclohexylmaleimide, chlorophenylmaleimide such as o-chlorophenylmaleimide, methylphenylmaleimide such as o-methylphenylmaleimide, hydroxyphenylmaleimide such as p-hydroxyphenylmaleimide, carboxyphenylmaleimide such as p-carboxyphenylmaleimide, N-dodecylmaleimide, and phenylmethanemaleimide.
  • the monofunctional maleimides such as phenylmaleimide, cyclohexylmaleimide, chlorophenylmaleimide such as o-chlorophenylmaleimide, methylphenylmaleimide such as o-methylphenylmaleimide, hydroxyphenylmaleimide such as p-hydroxyphenylmaleimide, carboxyphenylmaleimide such as
  • polyfunctional maleimide examples include phenylene bismaleimides such as 4,4'-diphenylmethane bismaleimide, polyphenylmethane maleimide, and m-phenylene bismaleimide, bisphenol A diphenyl ether bismaleimide, 3,3'-dimethyl-5,5'-diethyl-4,4'-diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, 1,6'-bismaleimide-(2,2,4-trimethyl)hexane, 4,4'-diphenyl ether bismaleimide, 4,4'-diphenylsulfone bismaleimide, 1,3-bis(3-maleimidophenoxy)benzene, and 1,3-bis(4-maleimidophenoxy)benzene.
  • phenylene bismaleimides such as 4,4'-diphenylmethane bismaleimide, polyphenylmethane maleimide, and m-phenylene
  • polyfunctional maleimides are preferred from the viewpoint of the glass transition temperature of the cured product, with 4,4'-diphenylmethane bismaleimide and 3,3'-dimethyl-5,5'-diethyl-4,4'-diphenylmethane bismaleimide being more preferred.
  • the maleimide may be a commercially available product, such as those manufactured by Daiwa Kasei Kogyo Co., Ltd. under the product names "BMI-1000", “BMI-4000”, and “BMI-5100", those manufactured by Designer Molecules Inc. under the product names "BMI-689”, “BMI-2560”, “BMI-3000”, and “BMI-5000P”, and those manufactured by Nippon Kayaku Co., Ltd. under the product name "MIR-3000-70MT".
  • the dialkyl peroxide may be used in any amount relative to the radical polymerizable compound, and is usually preferably used in an amount of 0.05 to 10 parts by mass, and more preferably 0.1 to 5 parts by mass, relative to 100 parts by mass of the radical polymerizable compound.
  • thermosetting composition of the present invention may further contain other components in appropriate combination.
  • other components include elastomers such as polyfunctional monomers, solvents, organic peroxides, azo compounds, polyisoprene, polybutadiene, styrene-butadiene rubber, butyl rubber, ethylene-propylene rubber, ethylene-propylene-diene rubber, styrene-butadiene-styrene block copolymers, styrene-ethylene-butylene-styrene block copolymers, ethylene-styrene-divinylbenzene copolymers, ethylene-hexene-styrene-divinylbenzene copolymers, fluororubbers, and silicone rubbers, inorganic fillers such as natural silica, fused silica, synthetic silica, amorphous silica, hollow silica, alumina, boron nit
  • the polyfunctional monomer can be blended from the viewpoint of adjusting the viscosity of the thermosetting composition and improving the heat resistance of the cured product.
  • the polyfunctional monomer include polyfunctional (meth)acrylates such as ethylene glycol di(meth)acrylate, hexanediol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, and dipentaerythritol hexa(meth)acrylate, vinylbenzene derivatives such as 1,4-divinylbenzene and 4-vinylbenzoic acid-2-acryloylethyl ester, alkenyl isocyanurate derivatives such as triallyl isocyanurate (TAIC), and alkenyl cyanurate derivatives such as triallyl cyanurate (TAC).
  • triallyl isocyanurate and triallyl cyanurate are preferred because of their excellent heat resistance.
  • the amount of the polyfunctional monomer is preferably 5 to 50 parts by mass, more preferably 7 to 40 parts by mass, and even more preferably 10 to 30 parts by mass, per 100 parts by mass of the radical polymerizable compound.
  • the solvent may be added from the viewpoint of improving the viscosity of the thermosetting composition, the impregnation of the glass cloth, the smoothness of the cured film, etc.
  • the solvent is not particularly limited as long as it can dissolve or disperse the above components and is a solvent that volatilizes when dried.
  • the solvent is preferably an aromatic solvent such as toluene or xylene; a ketone solvent such as acetone, methyl ethyl ketone, cyclopentanone or cyclohexanone; or an amide solvent such as dimethylformamide, dimethylacetamide or N-methylpyrrolidone.
  • aromatic solvent such as toluene or xylene
  • ketone solvent such as acetone, methyl ethyl ketone, cyclopentanone or cyclohexanone
  • an amide solvent such as dimethylformamide, dimethylacetamide or N-methylpyrrolidone.
  • the amount of the solvent used is preferably 10 to 1000 parts by mass, and more preferably 20 to 500 parts by mass, per 100 parts by mass of the solid content of the thermosetting composition.
  • thermosetting composition ⁇ Method of preparing thermosetting composition>
  • the alkylsilyl peroxide, the radical polymerizable compound, and other components as necessary are charged into a container, and dissolved or dispersed according to a conventional method using a ball mill, a bead mill, a planetary mixer, a roll mill, or the like. At this time, heating may be performed as necessary.
  • the radical polymerizable compound or the like is dissolved in a solvent by heating, unnecessary gelation can be suppressed by cooling the solution to 50° C. or less after dissolution and then blending the alkylsilyl peroxide.
  • filtration through a mesh or membrane filter or the like may be performed as necessary.
  • the resin film of the present invention is formed from the thermosetting composition.
  • the resin film contains the thermosetting composition before curing, but the thermosetting composition may be partially cured.
  • the resin film can be obtained, for example, by drying a resin varnish, which is a mixture of the thermosetting composition and the solvent, alone, or by applying the resin varnish onto a support such as a support film and then drying it.
  • the solvent is dried and removed using a hot air dryer or the like, for example, at 20°C to 180°C.
  • the drying temperature is preferably 20 to 150°C, more preferably 50 to 130°C.
  • the support for the resin film examples include polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyolefins such as polyethylene, polypropylene and polyvinyl chloride, polycarbonate, polyimide, ethylene tetrafluoroethylene copolymer, metal foils such as copper foil and aluminum foil, and release paper.
  • the resin-coated metal foil obtained by applying the thermosetting composition to a metal foil and then drying and removing the solvent with a hot air dryer or the like is also called the resin-coated metal foil.
  • the support may have been subjected to a chemical or physical treatment such as a mud treatment, a corona treatment or a release treatment.
  • the resin film is suitable as an interlayer insulating sheet, adhesive film, etc. for laminates such as multilayer printed wiring boards.
  • the prepreg of the present invention is a composite of a fibrous substrate and the thermosetting composition.
  • the prepreg contains a thermosetting composition before curing, but a part of the thermosetting composition may be cured.
  • the prepreg is preferably a composite of a fibrous substrate and a thermosetting composition impregnated or applied to the fibrous substrate. Even when the thermosetting composition is applied to the surface of the fibrous substrate to form a layer, a structure in which the cured product of the thermosetting composition is impregnated into the substrate can be obtained by press molding for curing the prepreg.
  • the prepreg can be obtained, for example, by impregnating or applying a substrate such as glass cloth with a resin varnish which is a mixture of the thermosetting composition of the present invention and a solvent, and then drying and removing the solvent. It is also possible to repeat the impregnation or application multiple times. Furthermore, the amount of impregnation can be adjusted to the desired amount by repeating the impregnation or application using multiple thermosetting compositions with different concentrations and compositions.
  • the solvent is dried and removed using a hot air dryer or the like, for example, at 20 ° C. to 180 ° C.
  • the drying temperature is preferably from 20 to 150°C, and more preferably from 50 to 130°C.
  • the fibrous substrate examples include glass cloth, aramid cloth, polyester cloth, glass nonwoven fabric, aramid nonwoven fabric, pulp paper, and linter paper.
  • glass cloth is preferred because it provides excellent mechanical strength to the printed wiring board, and flattened glass cloth is even more preferred.
  • These fibrous substrates can be used alone or in combination of two or more types.
  • the thickness of the fibrous substrate can be, for example, 1 to 300 ⁇ m.
  • the proportion of the solid content of the thermosetting composition in the solid content of the prepreg is preferably 30 to 80 mass%, and more preferably 40 to 70 mass%. If the above proportion is less than 30 mass%, the insulation reliability tends to be poor when the prepreg is used for electronic boards, etc. If the above proportion is more than 80 mass%, the mechanical properties such as flexural modulus tend to be poor when used for electronic boards, etc.
  • the metal-clad laminate of the present invention is a laminate in which the resin film or the prepreg is laminated with a metal foil.
  • the laminate can be produced by stacking one or more of the resin films and/or prepregs on a substrate such as a metal foil, and then curing the thermosetting composition by press molding to form an insulating layer. It is also possible to use the resin-coated metal foil instead of the metal foil.
  • the hot molding can be carried out, for example, at a temperature of 180°C to 240°C, a heating time of 30 minutes to 300 minutes, and a surface pressure of 20 kgf/ cm2 to 40 kgf/ cm2 .
  • the metal foil is not particularly limited, but examples include aluminum and copper foil, and among these, copper foil is preferred because of its low electrical resistance.
  • the thickness of the metal foil that can be used is, for example, 1 to 50 ⁇ m.
  • the resin film and prepreg to be combined with the metal foil may be one or more sheets, and depending on the application, the metal foil is laminated on one or both sides to be processed into a laminate.
  • Metal-clad laminates are particularly suitable for use as printed wiring boards.
  • the printed wiring board of the present invention is obtained by forming a circuit on the surface of the resin film or prepreg by partially removing the metal foil on the surface of the metal-clad laminate by etching or the like and forming wiring.
  • the printed wiring board contains the thermosetting composition, and is therefore excellent in dielectric properties such as dielectric constant and dielectric loss tangent, moldability, and heat resistance.
  • thermosetting composition is used for molding, lamination, adhesives, composite materials such as copper-clad laminates, etc.
  • an isocyanate or epoxy body when used alone or in combination, typical applications include prepregs made from semi-cured resins and laminates made from cured prepregs.
  • an epoxy body when used, typical applications include semiconductor encapsulation materials.
  • the structure of the alkylsilyl peroxide was identified by 1 H-NMR measurement and 13 C-NMR measurement using an AVANCEN NMR spectrometer (manufactured by BRUCKER) and by TOFMS (manufactured by JEOL Ltd.). The purity was calculated by the simple area method using GC (Shimadzu Corporation GC-2014 series). The analytical results of the obtained compound 5 by EI-MS and 1 H-NMR are shown in Table 1.
  • the alkylsilyl peroxide in the manufacturing example has a high decomposition temperature, so the curing process of the thermosetting composition can be carried out efficiently at high temperatures.
  • Examples 1 to 13 and Comparative Examples 1 to 6> ⁇ Production of Cured Product and Evaluation of Dielectric Properties>
  • Each component (parts by mass) shown in Tables 3 and 4 was diluted with toluene to a concentration of 50% by mass, and 6 g of the solvent-dissolved composition was placed in an aluminum dish and dried at 400 Pa and 60°C for 2 hours using a vacuum dryer (EYELA VACUUM OVEN VOS-3LSD), and then further dried in the solvent at 80°C for 2 hours.
  • the obtained powder was molded at 130°C using a hand press (manufactured by Toyo Seiki Co., Ltd.) and cured at 200°C to obtain a cured product (film, 16 cm circular, 60 ⁇ m thick).
  • the dielectric constant and dielectric loss tangent at 1 GHz of the obtained cured product were measured according to a method conforming to IPC-TM-650-2.5.5.9, and are shown in Tables 3 and 4.
  • the glass transition temperature of the cured product was measured using a DSC (differential scanning calorimeter) "DSC-7000X” manufactured by Hitachi High-Tech Science Corporation.
  • DSC differential scanning calorimeter
  • the temperature was raised from 50°C to 350°C at a heating rate of 10°C per minute under a nitrogen atmosphere.
  • the temperature was determined as the point where a straight line equidistant in the vertical direction from the straight line extending the low-temperature side and high-temperature side baselines intersects with the curve of the stepwise change in the glass transition.
  • Tables 3 and 4 The results are shown in Tables 3 and 4.
  • OPE-2St 2200 is polyphenylene ether having an average of two ethylenically unsaturated double bonds at the molecular terminals (number average molecular weight: 2200, manufactured by Mitsubishi Gas Chemical Company, Inc.);
  • OPE-2St 1200 is a polyphenylene ether having an average of two ethylenically unsaturated double bonds at the molecular terminals (number average molecular weight: 1200, manufactured by Mitsubishi Gas Chemical Company, Inc.);
  • SA9000 is a polyphenylene ether having an average of two ethylenically unsaturated double bonds at the molecular terminals (number average molecular weight is 2756, manufactured by SABIC Innovative Plastics);
  • BMI-1000 is maleimide, manufactured by Tokyo Chemical Industry Co., Ltd.;
  • BMI-5100 is maleimide, manufactured by Tokyo Chemical Industry Co., Ltd.;
  • Compound 5 is t-butyldimethyl(t-hexylperoxy)si

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)

Abstract

An alkyl silyl peroxide which is at least one compound selected from the group consisting of compounds represented by general formula (1) and compounds represented by general formula (2). The alkyl silyl peroxide is a novel polymerization initiator usable in steps for curing heat-polymerizable compositions at high temperatures.

Description

アルキルシリルペルオキシド、熱硬化性組成物、樹脂フィルム、プリプレグ、金属積層板、及びプリント配線板Alkylsilyl peroxide, thermosetting composition, resin film, prepreg, metal laminate, and printed wiring board
 本発明は、アルキルシリルペルオキシド、熱硬化性組成物、樹脂フィルム、プリプレグ、金属積層板、及びプリント配線板に関する。 The present invention relates to alkylsilyl peroxides, thermosetting compositions, resin films, prepregs, metal laminates, and printed wiring boards.
 有機過酸化物は熱により分解することでラジカルを発生し、プラスチックの重合開始剤やゴムの架橋剤等として使用されている。有機過酸化物はその化学構造により分解温度を調整することができ、室温から200℃程度の様々な加工温度で有機過酸化物が使用されている。その有機過酸化物の中で、ジアルキルペルオキシドは分解温度が高く、例えばゴムの架橋剤として使用される。この場合、100℃程度でのゴムの溶融状態での混練時にはジアルキルペルオキシドの分解は微量のためゴムが架橋することはなく、180℃程度での加熱によりラジカルを発生させ、ゴムを架橋することができる。 Organic peroxides generate radicals when decomposed by heat, and are used as polymerization initiators for plastics and cross-linking agents for rubber. The decomposition temperature of organic peroxides can be adjusted depending on their chemical structure, and organic peroxides are used at various processing temperatures from room temperature to around 200°C. Among these organic peroxides, dialkyl peroxides have a high decomposition temperature and are used, for example, as cross-linking agents for rubber. In this case, when the rubber is kneaded in a molten state at around 100°C, the decomposition of dialkyl peroxide is so slight that the rubber does not cross-link, but by heating to around 180°C, radicals are generated and the rubber can be cross-linked.
 一方、情報ネットワーク技術の著しい進歩や情報ネットワークを活用したサービスの拡大に伴い、情報量の大容量化及び処理速度の高速化が可能な電子機器が求められるようになり、第5世代移動通信システムの普及等によりその動向はさらに加速している。このため、電子機器に用いられるプリント配線板等の電子回路基板材料において、低誘電率及び低誘電正接などの優れた誘電特性とともに、高い耐熱性も要望されている。この材料の高い耐熱性に伴い、硬化工程等のプロセス温度の高温化が進みつつある。 On the other hand, with the remarkable progress in information network technology and the expansion of services that utilize information networks, there is a demand for electronic devices that can handle larger amounts of information and faster processing speeds, and this trend is accelerating with the spread of fifth-generation mobile communication systems. For this reason, electronic circuit board materials such as printed wiring boards used in electronic devices are required to have excellent dielectric properties such as low dielectric constant and low dielectric dissipation factor, as well as high heat resistance. Due to the high heat resistance of these materials, process temperatures for curing processes and the like are becoming higher.
 電子回路基板材料に使用される熱硬化性組成物のラジカル重合性化合物としては、分子末端にラジカル重合性二重結合を有するポリフェニレンエーテル、又はマレイミド等が、優れた誘電特性を有するため、好適に使用されている。そして、その硬化剤にはジアルキルペルオキシドが使用されている(特許文献1-3)。 As the radical polymerizable compound of the thermosetting composition used in electronic circuit board materials, polyphenylene ether or maleimide having a radical polymerizable double bond at the molecular end is preferably used because of its excellent dielectric properties. Dialkyl peroxide is used as the curing agent (Patent Documents 1-3).
国際公開第2008/033612号International Publication No. 2008/033612 特開2021-61409号公報JP 2021-61409 A 国際公開第2020/158849号International Publication No. 2020/158849
 ジアルキルペルオキシドの分解により生じるアルキルペルオキシラジカルは、二次分解により炭素ラジカルを生成する。この炭素ラジカルがラジカル重合性化合物の二重結合に付加することで硬化反応を開始している。また、ジアルキルペルオキシドにおいて、t-アミル基やt-ヘキシル基のように炭素鎖が長い場合、t-ブチル基のように炭素鎖が短い場合よりもジアルキルペルオキシドの分解温度が低い。よって、上記のような炭素鎖が長いジアルキルペルオキシドは、例えば、190℃以上の高温下における硬化工程において分解が速すぎるため、硬化反応を十分に行うことができずに、硬化物の耐熱性を十分に確保することができない。 The alkylperoxy radicals generated by the decomposition of dialkyl peroxides generate carbon radicals through secondary decomposition. These carbon radicals add to the double bonds of radically polymerizable compounds, initiating the curing reaction. Furthermore, in dialkyl peroxides with long carbon chains such as t-amyl or t-hexyl groups, the decomposition temperature of the dialkyl peroxide is lower than in cases where the carbon chain is short such as t-butyl groups. Therefore, dialkyl peroxides with long carbon chains such as those described above decompose too quickly in the curing process at high temperatures of, for example, 190°C or higher, and therefore the curing reaction cannot be carried out sufficiently, and the heat resistance of the cured product cannot be ensured sufficiently.
 したがって、本発明は、上記の実情に鑑みてなされたものであり、高温下における熱重合性組成物の硬化工程に使用できる新規な重合開始剤であるアルキルシリルペルオキシドを提供することを目的とする。 The present invention has been made in consideration of the above-mentioned circumstances, and aims to provide an alkylsilyl peroxide, which is a novel polymerization initiator that can be used in the curing process of a thermally polymerizable composition at high temperatures.
 すなわち、本発明は、一般式(1):
Figure JPOXMLDOC01-appb-C000003
(式(1)中、R、及びRは独立して炭素数が1から6のアルキル基またはフェニル基であり、Rは炭素数が3から6のアルキル基またはフェニル基であり、Rは炭素数が2から5のアルキル基である。)で表される化合物、及び一般式(2):
Figure JPOXMLDOC01-appb-C000004
(式(2)中、R、及びRは独立して炭素数が1から6のアルキル基またはフェニル基であり、Rは炭素数が2から6のアルキル基であり、Rはエチレン基またはアセチレン基である。)で表される化合物からなる群より選ばれる1種以上であるアルキルシリルペルオキシドに関する。
That is, the present invention relates to a compound represented by the general formula (1):
Figure JPOXMLDOC01-appb-C000003
(In formula (1), R 1 and R 2 are independently an alkyl group or a phenyl group having 1 to 6 carbon atoms, R 3 is an alkyl group or a phenyl group having 3 to 6 carbon atoms, and R 4 is an alkyl group having 2 to 5 carbon atoms), and a compound represented by general formula (2):
Figure JPOXMLDOC01-appb-C000004
(in formula (2), R 5 and R 6 are independently an alkyl group having 1 to 6 carbon atoms or a phenyl group, R 7 is an alkyl group having 2 to 6 carbon atoms, and R 8 is an ethylene group or an acetylene group).
 また、本発明は、前記アルキルシリルペルオキシド、及びラジカル重合性化合物を含有する熱硬化性組成物に関する。 The present invention also relates to a thermosetting composition containing the alkylsilyl peroxide and a radical polymerizable compound.
 また、本発明は、前記熱硬化性組成物から形成される樹脂フィルムに関する。 The present invention also relates to a resin film formed from the thermosetting composition.
 また、本発明は、前記熱硬化性組成物を、繊維質基材に含浸又は塗布されたプリプレグに関する。 The present invention also relates to a prepreg in which the thermosetting composition is impregnated or applied to a fibrous substrate.
 また、本発明は、前記樹脂フィルム又は前記プリプレグと、金属箔とが積層された金属張積層板に関する。 The present invention also relates to a metal-clad laminate in which the resin film or the prepreg is laminated with a metal foil.
 また、本発明は、前記金属張積層板から、前記金属箔の一部が除去されているプリント配線板に関する。 The present invention also relates to a printed wiring board in which a portion of the metal foil has been removed from the metal-clad laminate.
 さらに、本発明は、前記アルキルシリルペルオキシドの製造方法であって、シリルクロライド化合物と、ヒドロペルオキシド化合物とを原料として反応させる工程を含むアルキルシリルペルオキシドの製造方法に関する。 The present invention further relates to a method for producing the alkylsilyl peroxide, which includes a step of reacting a silyl chloride compound and a hydroperoxide compound as raw materials.
 本発明のアルキルシリルペルオキシドは、トリアルキルシリル基を有するので、ジアルキルペルオキシドと比較して、分解温度が高く、高温下における熱硬化性組成物の硬化工程を効率よく実施できる。 The alkylsilyl peroxide of the present invention has a trialkylsilyl group, and therefore has a higher decomposition temperature than dialkyl peroxide, allowing the curing process of the thermosetting composition to be carried out efficiently at high temperatures.
 また、ジ-t-ヘキシルペルオキシド等のジアルキルペルオキシドの場合、熱硬化性組成物の硬化工程の前処理工程となる溶剤の乾燥工程において、その一部が揮発してしまう問題があるが、トリアルキルシリル基を有するアルキルシリルペルオキシドは、このような揮発が抑制できることが期待できる。 In addition, in the case of dialkyl peroxides such as di-t-hexyl peroxide, there is a problem that some of the dialkyl peroxide volatilizes during the solvent drying process, which is a pretreatment process for the curing process of the thermosetting composition. However, it is expected that such volatilization can be suppressed with alkylsilyl peroxides that have a trialkylsilyl group.
 また、上記の熱硬化性組成物は、高温下の硬化に適しているため、得られる硬化物の耐熱性を向上することができる。更に、熱硬化性組成物に含まれるラジカル重合性化合物として、ポリフェニレンエーテルやマレイミド等の樹脂を用いた場合、エチルラジカル(炭素ラジカル)のような低極性の分解生成物が樹脂の末端に導入できるため、硬化物の誘電特性を向上できる。 The above-mentioned thermosetting composition is suitable for curing at high temperatures, which improves the heat resistance of the resulting cured product. Furthermore, when a resin such as polyphenylene ether or maleimide is used as the radical polymerizable compound contained in the thermosetting composition, low-polarity decomposition products such as ethyl radicals (carbon radicals) can be introduced to the resin terminals, improving the dielectric properties of the cured product.
<アルキルシリルペルオキシド>
 本発明のアルキルシリルペルオキシドは、一般式(1):
Figure JPOXMLDOC01-appb-C000005
(式(1)中、R、及びRは独立して炭素数が1から6のアルキル基またはフェニル基であり、Rは炭素数が3から6のアルキル基またはフェニル基であり、Rは炭素数が2から5のアルキル基である。)で表される化合物、及び一般式(2):
Figure JPOXMLDOC01-appb-C000006
(式(2)中、R、及びRは独立して炭素数が1から6のアルキル基またはフェニル基であり、Rは炭素数が2から6のアルキル基であり、Rはエチレン基またはアセチレン基である。)で表される化合物からなる群より選ばれる1種以上である。
<Alkylsilyl peroxide>
The alkylsilyl peroxide of the present invention is represented by the general formula (1):
Figure JPOXMLDOC01-appb-C000005
(In formula (1), R 1 and R 2 are independently an alkyl group or a phenyl group having 1 to 6 carbon atoms, R 3 is an alkyl group or a phenyl group having 3 to 6 carbon atoms, and R 4 is an alkyl group having 2 to 5 carbon atoms), and a compound represented by general formula (2):
Figure JPOXMLDOC01-appb-C000006
(In formula (2), R 5 and R 6 are independently an alkyl group having 1 to 6 carbon atoms or a phenyl group, R 7 is an alkyl group having 2 to 6 carbon atoms, and R 8 is an ethylene group or an acetylene group).
 前記式(1)中、R及びRは、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、n-ペンチル基、ネオペンチル基、n-ヘキシル基、フェニル基等が挙げられる。 In the formula (1), examples of R 1 and R 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a t-butyl group, an n-pentyl group, a neopentyl group, an n-hexyl group, and a phenyl group.
 前記式(1)中、Rは、例えば、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、n-ペンチル基、ネオペンチル基、n-ヘキシル基、フェニル基等が挙げられる。 In the formula (1), examples of R 3 include an n-propyl group, an isopropyl group, an n-butyl group, a t-butyl group, an n-pentyl group, a neopentyl group, an n-hexyl group, and a phenyl group.
 前記式(1)中、Rは、例えば、エチル基、n-プロピル基、n-ブチル基、t-ブチル基、n-ペンチル基、ネオペンチル基等が挙げられる。 In the formula (1), examples of R 4 include an ethyl group, an n-propyl group, an n-butyl group, a t-butyl group, an n-pentyl group, and a neopentyl group.
 前記式(2)中、R及びRは、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、n-ペンチル基、ネオペンチル基、n-ヘキシル基、フェニル基等が挙げられる。 In the formula (2), examples of R5 and R6 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a t-butyl group, an n-pentyl group, a neopentyl group, an n-hexyl group, and a phenyl group.
 前記式(2)中、Rは、例えば、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、n-ペンチル基、ネオペンチル基、n-ヘキシル基等が挙げられる。 In the formula (2), examples of R 7 include an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a t-butyl group, an n-pentyl group, a neopentyl group, and an n-hexyl group.
 以下に本発明のアルキルシリルペルオキシドの具体例を以下に示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000007
Specific examples of the alkylsilyl peroxide of the present invention are shown below, but the present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000007
 前記ジアルキルペルオキシドとしては、好ましくは化合物1から化合物18が挙げられ、より好ましくは化合物4、化合物5、化合物6、化合物12、化合物13、化合物14、化合物16、化合物19が挙げられる。前記ジアルキルペルオキシドとしては、より好ましくはシリル基の置換基のうち1つがt-ブチル基かつ残り2つの置換基がメチル基、シリル基の置換基のすべてがフェニル基、シリル基の置換基のうち1つがフェニル基かつ残り2つの置換基がメチル基、またはシリル基の置換基のうち2つがフェニル基かつ残り1つの置換基がメチル基である。 Preferably, the dialkyl peroxide includes compounds 1 to 18, and more preferably compounds 4, 5, 6, 12, 13, 14, 16, and 19. More preferably, the dialkyl peroxide includes a silyl group in which one of the substituents is a t-butyl group and the remaining two are methyl groups, all of the silyl group's substituents are phenyl groups, one of the silyl group's substituents is a phenyl group and the remaining two are methyl groups, or two of the silyl group's substituents are phenyl groups and the remaining one is a methyl group.
<アルキルシリルペルオキシドの製造方法>
 前記一般式(1)で表されるアルキルシリルペルオキシドの製造方法は、何ら限定されるものではないが、例えば、一般式(3):
Figure JPOXMLDOC01-appb-C000008
で表されるヒドロペルオキシド化合物と、一般式(4):
Figure JPOXMLDOC01-appb-C000009
で表されるシリルクロライド化合物を反応させる工程(以下、工程(X)とも称す)を含む製造方法が挙げられる。
<Method for producing alkylsilyl peroxide>
The method for producing the alkylsilyl peroxide represented by the general formula (1) is not limited in any way. For example, the method for producing the alkylsilyl peroxide represented by the general formula (3):
Figure JPOXMLDOC01-appb-C000008
and a hydroperoxide compound represented by general formula (4):
Figure JPOXMLDOC01-appb-C000009
(hereinafter also referred to as step (X))
 前記一般式(2)で表されるアルキルシリルペルオキシドの製造方法は、何ら限定されるものではないが、例えば、一般式(5):
Figure JPOXMLDOC01-appb-C000010
で表されるヒドロペルオキシド化合物と、一般式(4)で表されるシリルクロライド化合物を反応させる工程(以下、工程(Y)とも称す)を含む製造方法が挙げられる。
The method for producing the alkylsilyl peroxide represented by the general formula (2) is not limited in any way. For example, the method for producing the alkylsilyl peroxide represented by the general formula (5):
Figure JPOXMLDOC01-appb-C000010
and a silyl chloride compound represented by the general formula (4) (hereinafter also referred to as step (Y)).
 前記工程(X)または前記工程(Y)において、前記一般式(3)または一般式(5)で表されるヒドロペルオキシド化合物、前記一般式(4)で表されるシリルクロライド化合物は、市販品を使用することができる。 In the step (X) or the step (Y), the hydroperoxide compound represented by the general formula (3) or the general formula (5) and the silyl chloride compound represented by the general formula (4) can be commercially available products.
 前記工程(X)において、前記一般式(3)で表されるヒドロペルオキシド化合物は、前記一般式(4)で表されるシリルクロライド化合物1.0モルに対して、目的物の収率性を高める観点から、0.8モルから5.0モル用いることが好ましく、1.0モルから3.0モル用いることが更に好ましい。また前記工程(Y)において、前記一般式(5)で表されるヒドロペルオキシド化合物は、前記一般式(4)で表されるシリルクロライド化合物1.0モルに対して、目的物の収率性を高める観点から、0.4モルから10.0モル用いることが好ましく、0.5モルから6.0モル用いることが更に好ましい。 In the step (X), the hydroperoxide compound represented by the general formula (3) is preferably used in an amount of 0.8 to 5.0 moles, more preferably 1.0 to 3.0 moles, per 1.0 mole of the silyl chloride compound represented by the general formula (4), from the viewpoint of increasing the yield of the target product. In the step (Y), the hydroperoxide compound represented by the general formula (5) is preferably used in an amount of 0.4 to 10.0 moles, more preferably 0.5 to 6.0 moles, per 1.0 mole of the silyl chloride compound represented by the general formula (4), from the viewpoint of increasing the yield of the target product.
 前記工程(X)または前記工程(Y)において、塩基触媒を用いることが好ましい。前記塩基触媒は特に制限されないが、例えば、ピリジン、ジメチルアミノピリジン、トリエチルアミン、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム等が挙げられる。前記塩基触媒は、単独で用いてもよく2種類以上を併用してもよい。 In the step (X) or the step (Y), it is preferable to use a base catalyst. The base catalyst is not particularly limited, but examples thereof include pyridine, dimethylaminopyridine, triethylamine, sodium hydroxide, potassium hydroxide, sodium carbonate, and the like. The base catalyst may be used alone or in combination of two or more kinds.
 前記工程(X)または前記工程(Y)において、前記塩基触媒の使用量は特に制限されないが、前記一般式(4)で表されるシリルクロライド化合物1.0モルに対して、目的物の収率性を高める観点から、0.1モルから5.0モル用いることが好ましく、1.0モルから3.0モル用いることが更に好ましい。 In the step (X) or the step (Y), the amount of the base catalyst used is not particularly limited, but from the viewpoint of increasing the yield of the target product, it is preferable to use 0.1 to 5.0 moles, and more preferably 1.0 to 3.0 moles, per 1.0 mole of the silyl chloride compound represented by the general formula (4).
 前記工程(X)または前記工程(Y)において、有機溶媒を用いることが好ましい。前記有機溶媒は特に制限されないが、反応系内で不活性な有機溶媒であることが好ましい。前記有機溶媒としては、例えば、ペンタン、ヘキサン、トルエンなどの非極性化合物;アセトン、アセトニトリル、テトラヒドロフラン、酢酸エチル等の極性化合物などが挙げられる。前記有機溶媒は、単独で用いてもよく2種類以上を併用してもよい。 In the step (X) or the step (Y), it is preferable to use an organic solvent. The organic solvent is not particularly limited, but is preferably an organic solvent that is inactive in the reaction system. Examples of the organic solvent include non-polar compounds such as pentane, hexane, and toluene; and polar compounds such as acetone, acetonitrile, tetrahydrofuran, and ethyl acetate. The organic solvent may be used alone or in combination of two or more kinds.
 前記工程(X)または前記工程(Y)において、前記有機溶媒の使用量は特に制限されないが、通常、前記一般式(4)または前記一般式(6)で表されるクロライド化合物1質量部に対して、0.1~100質量部程度である。 In the step (X) or the step (Y), the amount of the organic solvent used is not particularly limited, but is usually about 0.1 to 100 parts by mass per part by mass of the chloride compound represented by the general formula (4) or the general formula (6).
 前記工程(X)または前記工程(Y)の反応温度は、目的物の収率性を高める観点から、-10℃以上であることが好ましく、0℃以上であることがより好ましく、そして、安全性の観点から60℃以下であることが好ましく、50℃以下であることがより好ましい。 The reaction temperature in step (X) or step (Y) is preferably -10°C or higher, more preferably 0°C or higher, from the viewpoint of increasing the yield of the target product, and is preferably 60°C or lower, more preferably 50°C or lower, from the viewpoint of safety.
 前記工程(X)または前記工程(Y)の反応時間は、原料や反応温度などによって異なるので一概には決定できないが、通常、目的物の収率性を高める観点から、0.1時間以上であることが好ましく、0.5時間以上であることがより好ましく、そして、5時間以下であることが好ましい。 The reaction time of step (X) or step (Y) cannot be determined in general because it varies depending on the raw materials and reaction temperature, but from the viewpoint of increasing the yield of the target product, it is usually preferably 0.1 hours or more, more preferably 0.5 hours or more, and preferably 5 hours or less.
 前記工程(X)または前記工程(Y)は、常圧の空気雰囲気下で行うことができるが、窒素雰囲気下や窒素気流下で行うこともできる。 The step (X) or the step (Y) can be carried out under an air atmosphere at normal pressure, but can also be carried out under a nitrogen atmosphere or nitrogen gas flow.
 前記工程(X)または前記工程(Y)の後に、余剰の原料や副生物を除去するために、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、亜硫酸ナトリウム、塩化水素、硫酸、塩化ナトリウム等の電解質水溶液や、イオン交換水を用いて洗浄し、アルキルシリルペルオキシドを精製することができる。 After step (X) or step (Y), the alkylsilyl peroxide can be purified by washing with an aqueous electrolyte solution such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium sulfite, hydrogen chloride, sulfuric acid, or sodium chloride, or ion-exchanged water to remove excess raw materials and by-products.
 得られたアルキルシリルペルオキシドの同定は、ガスクロマトグラフィー(GC)、液体クロマトグラフィー(LC)、核磁気共鳴分光法(NMR)、赤外分光法(IR)、質量分析法(MS)などを用いて行うことができる。 The resulting alkylsilyl peroxide can be identified using gas chromatography (GC), liquid chromatography (LC), nuclear magnetic resonance spectroscopy (NMR), infrared spectroscopy (IR), mass spectrometry (MS), etc.
<熱硬化性組成物>
 本発明の熱硬化性組成物は、アルキルシリルペルオキシド、及びラジカル重合性化合物を含有する。また、熱硬化性組成物は、その他の成分を適宜組み合わせて含有させることができる。
<Thermosetting Composition>
The thermosetting composition of the present invention contains an alkylsilyl peroxide and a radical polymerizable compound. The thermosetting composition may further contain other components in appropriate combination.
<ラジカル重合性化合物>
 ラジカル重合性化合物は、熱ラジカル重合反応により重合可能であれば、特に制限はなく、例えば、ビニル基、アリル基、メタクリル基、スチリル基、メタ(アクリル)基、マレイミド基等のエチレン性不飽和基を有する化合物が挙げられ、上記のアルキルシリルペルオキシドを用いて硬化物の誘電特性や耐熱性を向上できる観点では、例えば、ポリフェニレンエーテル、マレイミド等が挙げられる。
<Radical Polymerizable Compound>
The radical polymerizable compound is not particularly limited as long as it can be polymerized by a thermal radical polymerization reaction, and examples thereof include compounds having an ethylenically unsaturated group such as a vinyl group, an allyl group, a methacryl group, a styryl group, a meth(acryl) group, or a maleimide group. From the viewpoint of being able to improve the dielectric properties and heat resistance of a cured product using the above-mentioned alkylsilyl peroxide, examples thereof include polyphenylene ether and maleimide.
 前記ポリフェニレンエーテルは、分子末端にラジカル重合性二重結合を有するポリフェニレンエーテルであれば特に限定されない。前記ラジカル重合性二重結合を有するポリフェニレンエーテルは単独で、又は2種以上を組み合わせて使用することができる。 The polyphenylene ether is not particularly limited as long as it is a polyphenylene ether having a radically polymerizable double bond at the molecular end. The polyphenylene ether having the radically polymerizable double bond can be used alone or in combination of two or more kinds.
 前記ポリフェニレンエーテルの構造単位の具体例としては、例えば、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-エチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-フェニル-1,4-フェニレンエーテル)、ポリ(2,6-ジクロロ-1,4-フェニレンエーテル)等が挙げられ、誘電特性及び耐熱性に優れる観点から、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)であることが好ましい。更に、前記ポリフェニレンエーテルの構造単位の具体例としては、例えば、2,6-ジメチルフェノールと、他のフェノール類(例えば、2,3,6-トリメチルフェノール、2-メチル-6-ブチルフェノール、2-アリルフェノール等)との共重合体;2,6-ジメチルフェノールと、ビフェノール類又はビスフェノール類とをカップリングさせて得られるポリフェニレンエーテル共重合体;及び、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)等を、ビスフェノール類やトリスフェノール類のようなフェノール化合物と、トルエン溶剤中、有機過酸化物の存在下で加熱し、再分配反応させて得られる、直鎖構造もしくは分岐構造を有するポリフェニレンエーテルが挙げられる。前記フェニレンエーテル単位中のフェニレン基は、置換基を有してもよく、また、前記ポリフェニレンエーテルは、本発明の作用効果を阻害しない範囲において、フェニレンエーテル単位以外のその他の構成単位を含んでもよい。 Specific examples of the structural unit of the polyphenylene ether include poly(2,6-dimethyl-1,4-phenylene ether), poly(2-methyl-6-ethyl-1,4-phenylene ether), poly(2-methyl-6-phenyl-1,4-phenylene ether), poly(2,6-dichloro-1,4-phenylene ether), etc., and poly(2,6-dimethyl-1,4-phenylene ether) is preferred from the viewpoint of excellent dielectric properties and heat resistance. Further, specific examples of the structural unit of the polyphenylene ether include, for example, a copolymer of 2,6-dimethylphenol and other phenols (for example, 2,3,6-trimethylphenol, 2-methyl-6-butylphenol, 2-allylphenol, etc.); a polyphenylene ether copolymer obtained by coupling 2,6-dimethylphenol with biphenols or bisphenols; and a polyphenylene ether having a linear or branched structure obtained by heating poly(2,6-dimethyl-1,4-phenylene ether) or the like with a phenolic compound such as a bisphenol or trisphenol in a toluene solvent in the presence of an organic peroxide to cause a redistribution reaction. The phenylene group in the phenylene ether unit may have a substituent, and the polyphenylene ether may contain other structural units other than the phenylene ether unit within a range that does not impair the effects of the present invention.
 前記分子末端のラジカル重合性二重結合としては、例えば、(メタ)アクリロイル基、スチリル基、ビニルベンジル基、ビニル基、アリル基、1,3-ブタジエニル基等が挙げられる。これらの中でも、熱硬化時の反応性が高く、硬化物の誘電率や誘電正接が優れる観点から、(メタ)アクリロイル基、ビニルベンジル基であることが好ましい。 Examples of the radically polymerizable double bond at the molecular end include (meth)acryloyl groups, styryl groups, vinylbenzyl groups, vinyl groups, allyl groups, and 1,3-butadienyl groups. Among these, (meth)acryloyl groups and vinylbenzyl groups are preferred from the viewpoints of high reactivity during heat curing and excellent dielectric constant and dielectric dissipation factor of the cured product.
 前記分子末端にラジカル重合性二重結合を有するポリフェニレンエーテル中の1分子中のラジカル重合性二重結合の数は、平均1.5~6個であることが好ましく、平均1.6から4個であることがより好ましく、平均1.7から3個であることがさらに好ましい。 The number of radically polymerizable double bonds in one molecule of the polyphenylene ether having radically polymerizable double bonds at the molecular terminal is preferably 1.5 to 6 on average, more preferably 1.6 to 4 on average, and even more preferably 1.7 to 3 on average.
 前記分子末端にラジカル重合性二重結合を有するポリフェニレンエーテル中の1分子中のエチレン性不飽和二重結合の数は、例えば、ポリフェニレンエーテルに残存する水酸基数を測定して、エチレン性不飽和二重結合を有する化合物で変性する前のポリフェニレンエーテルの水酸基数からの減少分を算出することにより測定することができる。そして、ポリフェニレンエーテルに残存する水酸基数の測定方法は、高分子論文集,vol.51,No.7,480頁(1994)に記載の方法に準拠し、ポリフェニレンエーテルの塩化メチレン溶液に、テトラエチルアンモニウムヒドロキシドを添加し、その混合溶液は波長318nmにおける吸光度を測定することにより求めることができる。 The number of ethylenically unsaturated double bonds in one molecule of the polyphenylene ether having a radically polymerizable double bond at the molecular end can be measured, for example, by measuring the number of hydroxyl groups remaining in the polyphenylene ether and calculating the reduction from the number of hydroxyl groups in the polyphenylene ether before modification with a compound having an ethylenically unsaturated double bond. The method for measuring the number of hydroxyl groups remaining in the polyphenylene ether conforms to the method described in Polymer Research Papers, vol. 51, No. 7, p. 480 (1994), in which tetraethylammonium hydroxide is added to a methylene chloride solution of the polyphenylene ether and the absorbance of the mixed solution at a wavelength of 318 nm is measured.
 また、前記分子末端にラジカル重合性二重結合を有するポリフェニレンエーテルは、下記一般式(6)の構造を有することが好ましい。
Figure JPOXMLDOC01-appb-C000011
(式(6)中、Xはa価の任意の連結基であり、Yは分子末端のラジカル重合性二重結合であり、aは1から6である。)
The polyphenylene ether having a radically polymerizable double bond at the molecular end preferably has a structure represented by the following general formula (6).
Figure JPOXMLDOC01-appb-C000011
(In formula (6), X is any linking group having a valence of a, Y is a radically polymerizable double bond at the molecular end, and a is an integer from 1 to 6.)
 前記式(6)中、Xの具体例としては、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、4,4’-ジヒドロキシビフェニル、2,2’-ジヒドロキシビフェニル、4,4’-ジヒドロキシ-3,3’5,5’-テトラメチルビフェニル、4,4’-ジヒドロキシ-2,2’,3,3’5,5’-ヘキサメチルビフェニル、ヒドロキノン、レゾルシン等の2価のフェノール類、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノールノボラック、o-クレゾールノボラック、ナフトールノボラック等に代表される3価以上のフェノール類が挙げられる。 Specific examples of X in the formula (6) include divalent phenols such as bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4'-dihydroxybiphenyl, 2,2'-dihydroxybiphenyl, 4,4'-dihydroxy-3,3'5,5'-tetramethylbiphenyl, 4,4'-dihydroxy-2,2',3,3'5,5'-hexamethylbiphenyl, hydroquinone, and resorcin, and trivalent or higher phenols such as tris-(4-hydroxyphenyl)methane, 1,1,2,2-tetrakis(4-hydroxyphenyl)ethane, phenol novolac, o-cresol novolac, and naphthol novolac.
 前記分子末端にラジカル重合性二重結合を有するポリフェニレンエーテルは、誘電特性と繊維質基材への含浸性の観点から、数平均分子量が800以上5000以下であることが好ましく、900以上4500以下であることがより好ましく、1000以上3000以下であることがさらに好ましい。 The polyphenylene ether having a radically polymerizable double bond at the molecular end preferably has a number average molecular weight of 800 or more and 5000 or less, more preferably 900 or more and 4500 or less, and even more preferably 1000 or more and 3000 or less, from the viewpoint of dielectric properties and impregnation into fibrous substrates.
 数平均分子量は、一般的な分子量測定方法で測定したものであればよく、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定したポリスチレン換算値等が挙げられる。具体的には、試料濃度0.2w/vol%(溶剤:クロロホルム)の測定試料を調製後、測定装置にはHLC-8220GPC(東ソー株式会社製)を用い、カラム:ShodexGPC KF-405L HQ×3(昭和電工株式会社製)、溶離液:クロロホルム、注入量:20μL、流量:0.3mL/min、カラム温度:40℃、検出器:RI、の条件下にて測定することができる。 The number average molecular weight may be measured by a general molecular weight measurement method, such as a polystyrene equivalent value measured using gel permeation chromatography (GPC). Specifically, after preparing a measurement sample with a sample concentration of 0.2 w/vol% (solvent: chloroform), the measurement can be performed using a measurement device HLC-8220GPC (manufactured by Tosoh Corporation), column: ShodexGPC KF-405L HQ x 3 (manufactured by Showa Denko K.K.), eluent: chloroform, injection amount: 20 μL, flow rate: 0.3 mL/min, column temperature: 40°C, detector: RI.
 前記分子末端にラジカル重合性二重結合を有するポリフェニレンエーテルの合成方法は、ラジカル重合性二重結合で変性された変性ポリフェニレンエーテルを合成できれば、特に限定されない。具体的には、変性前のポリフェニレンエーテルに、エチレン性不飽和二重結合と塩素原子を有する化合物を反応させる方法等が挙げられる。エチレン性不飽和二重結合と塩素原子を有する化合物としては、例えば、(メタ)アクリロイルクロリドやビニルベンジルクロリド等が挙げられる。また、前記分子末端にラジカル重合性二重結合を有するポリフェニレンエーテルは市販品を使用してもよく、例えば、製品名「OPE-2St」(三菱瓦斯化学株式会社製)、「Noryl SA9000」(SABICイノベーティブプラスチック社製)等が挙げられる。 The method for synthesizing the polyphenylene ether having a radically polymerizable double bond at the molecular end is not particularly limited, as long as it is possible to synthesize a modified polyphenylene ether modified with a radically polymerizable double bond. Specifically, a method of reacting a compound having an ethylenically unsaturated double bond and a chlorine atom with the polyphenylene ether before modification can be mentioned. Examples of the compound having an ethylenically unsaturated double bond and a chlorine atom include (meth)acryloyl chloride and vinylbenzyl chloride. In addition, the polyphenylene ether having a radically polymerizable double bond at the molecular end may be a commercially available product, such as "OPE-2St" (manufactured by Mitsubishi Gas Chemical Co., Ltd.) or "Noryl SA9000" (manufactured by SABIC Innovative Plastics).
 前記マレイミドは、分子中にマレイミド基を有する化合物であれば、特に限定されない。前記マレイミドとしては、分子中にマレイミド基を1個有する単官能マレイミド、及び分子中にマレイミド基を2個以上有する多官能マレイミドが挙げられる。前記マレイミドは単独で、又は2種以上を組み合わせて使用することができる。 The maleimide is not particularly limited as long as it is a compound having a maleimide group in the molecule. Examples of the maleimide include monofunctional maleimides having one maleimide group in the molecule, and polyfunctional maleimides having two or more maleimide groups in the molecule. The maleimides can be used alone or in combination of two or more kinds.
 前記マレイミドの具体例としては、例えば、前記単官能マレイミドとしては、例えば、フェニルマレイミド、シクロヘキシルマレイミド、o-クロロフェニルマレイミド等のクロロフェニルマレイミド、o-メチルフェニルマレイミド等のメチルフェニルマレイミド、p-ヒドロキシフェニルマレイミド等のヒドロキシフェニルマレイミド、p-カルボキシフェニルマレイミド等のカルボキシフェニルマレイミド、N-ドデシルマレイミド、及びフェニルメタンマレイミド等が挙げられる。前記多官能マレイミドとしては、4,4´-ジフェニルメタンビスマレイミド、ポリフェニルメタンマレイミド、m-フェニレンビスマレイミド等のフェニレンビスマレイミド、ビスフェノールAジフェニルエーテルビスマレイミド、3,3´-ジメチル-5,5´-ジエチル-4,4´-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、1,6´-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、4,4´-ジフェニルエーテルビスマレイミド、4,4´-ジフェニルスルフォンビスマレイミド、1,3-ビス(3-マレイミドフェノキシ)ベンゼン、1,3-ビス(4-マレイミドフェノキシ)ベンゼンなどが挙げられる。これらの中でも、硬化物のガラス転移温度の観点から多官能マレイミドが好ましく、4,4´-ジフェニルメタンビスマレイミド、3,3´-ジメチル-5,5´-ジエチル-4,4´-ジフェニルメタンビスマレイミドがより好ましい。 Specific examples of the maleimides include, for example, the monofunctional maleimides, such as phenylmaleimide, cyclohexylmaleimide, chlorophenylmaleimide such as o-chlorophenylmaleimide, methylphenylmaleimide such as o-methylphenylmaleimide, hydroxyphenylmaleimide such as p-hydroxyphenylmaleimide, carboxyphenylmaleimide such as p-carboxyphenylmaleimide, N-dodecylmaleimide, and phenylmethanemaleimide. Examples of the polyfunctional maleimide include phenylene bismaleimides such as 4,4'-diphenylmethane bismaleimide, polyphenylmethane maleimide, and m-phenylene bismaleimide, bisphenol A diphenyl ether bismaleimide, 3,3'-dimethyl-5,5'-diethyl-4,4'-diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, 1,6'-bismaleimide-(2,2,4-trimethyl)hexane, 4,4'-diphenyl ether bismaleimide, 4,4'-diphenylsulfone bismaleimide, 1,3-bis(3-maleimidophenoxy)benzene, and 1,3-bis(4-maleimidophenoxy)benzene. Among these, polyfunctional maleimides are preferred from the viewpoint of the glass transition temperature of the cured product, with 4,4'-diphenylmethane bismaleimide and 3,3'-dimethyl-5,5'-diethyl-4,4'-diphenylmethane bismaleimide being more preferred.
 前記マレイミドは市販品を使用してもよく、例えば、大和化成工業株式会社製の製品名「BMI-1000」、「BMI-4000」、「BMI-5100」、DESIGNER MOLECULES Inc.製の製品名「BMI-689」、「BMI-2560」、「BMI-3000」、「BMI-5000P」、日本化薬株式会社製の製品名「MIR-3000-70MT」等が挙げられる。 The maleimide may be a commercially available product, such as those manufactured by Daiwa Kasei Kogyo Co., Ltd. under the product names "BMI-1000", "BMI-4000", and "BMI-5100", those manufactured by Designer Molecules Inc. under the product names "BMI-689", "BMI-2560", "BMI-3000", and "BMI-5000P", and those manufactured by Nippon Kayaku Co., Ltd. under the product name "MIR-3000-70MT".
 前記ジアルキルペルオキシドは、前記ラジカル重合性化合物に対して任意の量で使用すればよく、通常、前記ラジカル重合性化合物100質量部に対して0.05質量部から10質量部であることが好ましく、0.1質量部から5質量部であることがより好ましい。 The dialkyl peroxide may be used in any amount relative to the radical polymerizable compound, and is usually preferably used in an amount of 0.05 to 10 parts by mass, and more preferably 0.1 to 5 parts by mass, relative to 100 parts by mass of the radical polymerizable compound.
<その他の成分>
 本発明の熱硬化性組成物は、更にその他の成分を適宜組み合わせて含有させることができる。その他の成分としては、多官能モノマー、溶剤、有機過酸化物、アゾ化合物、ポリイソプレン、ポリブタジエン、スチレンブタジエンゴム、ブチルゴム、エチレンプロピレンゴム、エチレンプロピレンジエゴム、スチレンブタジエンスチレンブロック共重合体、スチレンエチレンブチレンスチレンブロック共重合体、エチレンスチレンジビニルベンゼン共重合体、エチレンヘキセンスチレンジビニルベンゼン共重合体、フッ素ゴム、シリコーンゴム等のエラストマー、天然シリカ、溶融シリカ、合成シリカ、アモルファスシリカ、中空シリカ、アルミナ、窒化ホウ素、窒化アルミニウム、クレー、タルク及びガラス短繊維等の無機充填剤、γ-アミノプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-(メタ)アクリロキシプロピルトリメトキシシラン等のシランカップリング剤、難燃剤、重合禁止剤、紫外線吸収剤、光安定剤、金属不活性化剤、界面活性剤、滑剤、増粘剤、消泡剤、帯電防止剤、顔料、染料等が挙げられる。
<Other ingredients>
The thermosetting composition of the present invention may further contain other components in appropriate combination. Examples of other components include elastomers such as polyfunctional monomers, solvents, organic peroxides, azo compounds, polyisoprene, polybutadiene, styrene-butadiene rubber, butyl rubber, ethylene-propylene rubber, ethylene-propylene-diene rubber, styrene-butadiene-styrene block copolymers, styrene-ethylene-butylene-styrene block copolymers, ethylene-styrene-divinylbenzene copolymers, ethylene-hexene-styrene-divinylbenzene copolymers, fluororubbers, and silicone rubbers, inorganic fillers such as natural silica, fused silica, synthetic silica, amorphous silica, hollow silica, alumina, boron nitride, aluminum nitride, clay, talc, and short glass fibers, silane coupling agents such as γ-aminopropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, and γ-(meth)acryloxypropyltrimethoxysilane, flame retardants, polymerization inhibitors, ultraviolet absorbers, light stabilizers, metal deactivators, surfactants, lubricants, thickeners, defoamers, antistatic agents, pigments, and dyes.
 前記多官能モノマーは、熱硬化性組成物の粘度の調整や硬化物の耐熱性を向上等の観点から、配合することができる。前記多官能モノマーとしては、例えば、エチレングリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の多官能(メタ)アクリレート、1,4-ジビニルベンゼン、4-ビニル安息香酸-2-アクリロイルエチルエステル等のビニルベンゼン誘導体、トリアリルイソシアヌレート(TAIC)等のアルケニルイソシアヌレート誘導体、トリアリルシアヌレート(TAC)等のアルケニルシアヌレート誘導体が挙げられ、これらの中でも、耐熱性が優れるためトリアリルイソシアヌレート、トリアリルシアヌレートであることが好ましい。前記多官能モノマーは単独で、又は2種以上を組み合わせて使用することができる。 The polyfunctional monomer can be blended from the viewpoint of adjusting the viscosity of the thermosetting composition and improving the heat resistance of the cured product. Examples of the polyfunctional monomer include polyfunctional (meth)acrylates such as ethylene glycol di(meth)acrylate, hexanediol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, and dipentaerythritol hexa(meth)acrylate, vinylbenzene derivatives such as 1,4-divinylbenzene and 4-vinylbenzoic acid-2-acryloylethyl ester, alkenyl isocyanurate derivatives such as triallyl isocyanurate (TAIC), and alkenyl cyanurate derivatives such as triallyl cyanurate (TAC). Among these, triallyl isocyanurate and triallyl cyanurate are preferred because of their excellent heat resistance. The polyfunctional monomers can be used alone or in combination of two or more.
 前記多官能性モノマーは、前記ラジカル重合性化合物100質量部に対して、好ましくは5質量部から50質量部であり、より好ましくは7質量部から40質量部であり、さらに好ましくは10質量部から30質量部である。 The amount of the polyfunctional monomer is preferably 5 to 50 parts by mass, more preferably 7 to 40 parts by mass, and even more preferably 10 to 30 parts by mass, per 100 parts by mass of the radical polymerizable compound.
 前記溶剤は、熱硬化性組成物の粘度やガラスクロスへの含浸性、硬化膜の平滑性の改良等の観点から、配合することができる。前記溶剤は、上記の成分を、溶解又は分散することができるものであり、乾燥時に揮発する溶剤であれば、特に制限されるものではない。 The solvent may be added from the viewpoint of improving the viscosity of the thermosetting composition, the impregnation of the glass cloth, the smoothness of the cured film, etc. The solvent is not particularly limited as long as it can dissolve or disperse the above components and is a solvent that volatilizes when dried.
 前記溶剤としては、溶解性の観点から、トルエン、キシレン等の芳香族系溶剤;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン等のケトン系溶剤;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド系溶剤であることが好ましい。これらの溶剤は1種を単独で、又は2種以上を組み合わせて使用することができる。前記溶剤の使用量は、熱硬化性組成物の溶剤への可溶性と揮発工程の容易さの面から、熱硬化性組成物の固形分100質量部に対して、10から1000質量部であることが好ましく、20から500質量部であることがより好ましい。 From the viewpoint of solubility, the solvent is preferably an aromatic solvent such as toluene or xylene; a ketone solvent such as acetone, methyl ethyl ketone, cyclopentanone or cyclohexanone; or an amide solvent such as dimethylformamide, dimethylacetamide or N-methylpyrrolidone. These solvents may be used alone or in combination of two or more. From the viewpoint of the solubility of the thermosetting composition in the solvent and the ease of the evaporation process, the amount of the solvent used is preferably 10 to 1000 parts by mass, and more preferably 20 to 500 parts by mass, per 100 parts by mass of the solid content of the thermosetting composition.
<熱硬化性組成物の調製方法>
 前記熱硬化性組成物を調製する場合には、収納容器内に前記アルキルシリルペルオキシド、及びラジカル重合性化合物、必要に応じてその他の成分を投入し、ボールミル、ビーズミル、プラネタリーミキサー、ロールミル等を用いて、常法に従って溶解または分散させればよい。この際に必要に応じて加熱してもよい。加熱によりラジカル重合性化合物等を溶剤に溶解させる場合には、溶解後に50℃以下に冷却した後にアルキルシリルペルオキシドを配合することで、不要なゲル化を抑制することができる。また、必要に応じて、メッシュまたはメンブレンフィルター等通してろ過してもよい。
<Method of preparing thermosetting composition>
When preparing the thermosetting composition, the alkylsilyl peroxide, the radical polymerizable compound, and other components as necessary are charged into a container, and dissolved or dispersed according to a conventional method using a ball mill, a bead mill, a planetary mixer, a roll mill, or the like. At this time, heating may be performed as necessary. When the radical polymerizable compound or the like is dissolved in a solvent by heating, unnecessary gelation can be suppressed by cooling the solution to 50° C. or less after dissolution and then blending the alkylsilyl peroxide. In addition, filtration through a mesh or membrane filter or the like may be performed as necessary.
<樹脂フィルム>
 本発明の樹脂フィルムは、前記熱硬化性組成物から形成される。前記樹脂フィルムは、硬化前の熱硬化性組成物を含むが、熱硬化性組成物の一部が硬化していてもよい。前記樹脂フィルムは、例えば、前記熱硬化性組成物と前記溶剤との混合物である樹脂ワニスを単独で乾燥させること、又は、前記樹脂ワニスを支持フィルム等の支持体の上に塗布した後乾燥させることで得ることができる。溶剤の乾燥除去は熱風乾燥機等で、例えば、20℃から180℃で行われる。乾燥温度は20から150℃であることが好ましく、50から130℃であることがより好ましい。
<Resin film>
The resin film of the present invention is formed from the thermosetting composition. The resin film contains the thermosetting composition before curing, but the thermosetting composition may be partially cured. The resin film can be obtained, for example, by drying a resin varnish, which is a mixture of the thermosetting composition and the solvent, alone, or by applying the resin varnish onto a support such as a support film and then drying it. The solvent is dried and removed using a hot air dryer or the like, for example, at 20°C to 180°C. The drying temperature is preferably 20 to 150°C, more preferably 50 to 130°C.
 前記樹脂フィルムの支持体としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリカーボネート、ポリイミド、エチレンテトラフルオロエチレン共重合体、銅箔、アルミ箔等の金属箔、離型紙等が挙げられる。前記熱硬化性組成物を金属箔に塗布した後、熱風乾燥機等で溶剤を乾燥除去して得たものを樹脂付金属箔ともいう。なお、前記支持体はマッド処理、コロナ処理、離形処理等の化学的、又は物理的な処理を施してあってもよい。 Examples of the support for the resin film include polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyolefins such as polyethylene, polypropylene and polyvinyl chloride, polycarbonate, polyimide, ethylene tetrafluoroethylene copolymer, metal foils such as copper foil and aluminum foil, and release paper. The resin-coated metal foil obtained by applying the thermosetting composition to a metal foil and then drying and removing the solvent with a hot air dryer or the like is also called the resin-coated metal foil. The support may have been subjected to a chemical or physical treatment such as a mud treatment, a corona treatment or a release treatment.
 前記樹脂フィルムは、多層プリント配線板等の積層体の層間絶縁シート、接着フィルム等として好適である。 The resin film is suitable as an interlayer insulating sheet, adhesive film, etc. for laminates such as multilayer printed wiring boards.
<プリプレグ>
 本発明のプリプレグは、繊維質基材と、前記熱硬化性組成物との複合体である。前記プリプレグは、硬化前の熱硬化性組成物を含むが、熱硬化性組成物の一部が硬化していてもよい。前記プリプレグは、繊維質基材と、この繊維質基材に含浸又は塗布された熱硬化性組成物との複合体であることが好ましい。熱硬化性組成物が繊維質基材表面に塗布され層を形成している場合であっても、プリプレグを硬化させるためのプレス成型によって、熱硬化性組成物の硬化物が基材中に含浸された構造を得ることができる。前記プリプレグは、例えば、ガラスクロス等の基材に、本発明の熱硬化性組成物と溶剤との混合物である樹脂ワニスに含浸又は塗布した後、溶剤を乾燥除去することにより得ることができる。また、含浸又は塗布を複数回繰り返すことも可能である。更に、濃度や組成の異なる複数の熱硬化性組成物を用いて含浸又は塗布を繰り返すことにより、採取的に希望する含浸量に調整することもできる。溶剤の乾燥除去は熱風乾燥機等で、例えば、20℃から180℃で行われる。乾燥温度は20から150℃であることが好ましく、50から130℃であることがより好ましい。
<Prepreg>
The prepreg of the present invention is a composite of a fibrous substrate and the thermosetting composition. The prepreg contains a thermosetting composition before curing, but a part of the thermosetting composition may be cured. The prepreg is preferably a composite of a fibrous substrate and a thermosetting composition impregnated or applied to the fibrous substrate. Even when the thermosetting composition is applied to the surface of the fibrous substrate to form a layer, a structure in which the cured product of the thermosetting composition is impregnated into the substrate can be obtained by press molding for curing the prepreg. The prepreg can be obtained, for example, by impregnating or applying a substrate such as glass cloth with a resin varnish which is a mixture of the thermosetting composition of the present invention and a solvent, and then drying and removing the solvent. It is also possible to repeat the impregnation or application multiple times. Furthermore, the amount of impregnation can be adjusted to the desired amount by repeating the impregnation or application using multiple thermosetting compositions with different concentrations and compositions. The solvent is dried and removed using a hot air dryer or the like, for example, at 20 ° C. to 180 ° C. The drying temperature is preferably from 20 to 150°C, and more preferably from 50 to 130°C.
 前記繊維質基材としては、例えば、ガラスクロス、アラミドクロス、ポリエステルクロス、ガラス不織布、アラミド不織布、パルプ紙、及びリンター紙等が挙げられる。これらの中で、プリント配線板の機械強度が優れるため、ガラスクロスが好ましく、偏平処理加工されたガラスクロスが更に好ましい。これらの繊維質基材は1種を単独で、又は2種以上を組み合わせて使用することができる。なお、繊維質基材の厚さとしては、例えば1から300μmのものを使用することができる。 Examples of the fibrous substrate include glass cloth, aramid cloth, polyester cloth, glass nonwoven fabric, aramid nonwoven fabric, pulp paper, and linter paper. Among these, glass cloth is preferred because it provides excellent mechanical strength to the printed wiring board, and flattened glass cloth is even more preferred. These fibrous substrates can be used alone or in combination of two or more types. The thickness of the fibrous substrate can be, for example, 1 to 300 μm.
 前記プリプレグの固形分中、前記熱硬化性組成物の固形分の割合は、30~80質量%であることが好ましく、40~70質量%であることがより好ましい。上記の割合が30質量%よりも少ない場合、プリプレグを電子基板用等に用いた場合に絶縁信頼性が劣る傾向にある。また、上記の割合が80質量%よりも多い場合、電子基板用等に用いた場合に曲げ弾性率等の機械特性が劣る傾向にある。 The proportion of the solid content of the thermosetting composition in the solid content of the prepreg is preferably 30 to 80 mass%, and more preferably 40 to 70 mass%. If the above proportion is less than 30 mass%, the insulation reliability tends to be poor when the prepreg is used for electronic boards, etc. If the above proportion is more than 80 mass%, the mechanical properties such as flexural modulus tend to be poor when used for electronic boards, etc.
<金属張積層板>
 本発明の金属張積層板は、前記樹脂フィルム又は前記プリプレグと、金属箔とが積層された積層体である。前記積層体は、1枚又は複数枚の前記樹脂フィルム及び/又はプリプレグを、金属箔等の基板と重ねた後、プレス成型により前記熱硬化性組成物を硬化させ、絶縁層を形成することにより製造することができる。金属箔の替わりに前記樹脂付金属箔を用いることも可能である。加熱成形は、例えば、温度180℃から240℃、加熱時間30分から300分、面圧20kgf/cmから40kgf/cmで行うことができる。
<Metal-clad laminate>
The metal-clad laminate of the present invention is a laminate in which the resin film or the prepreg is laminated with a metal foil. The laminate can be produced by stacking one or more of the resin films and/or prepregs on a substrate such as a metal foil, and then curing the thermosetting composition by press molding to form an insulating layer. It is also possible to use the resin-coated metal foil instead of the metal foil. The hot molding can be carried out, for example, at a temperature of 180°C to 240°C, a heating time of 30 minutes to 300 minutes, and a surface pressure of 20 kgf/ cm2 to 40 kgf/ cm2 .
 前記金属箔は特に限定はないが、例えば、アルミや銅箔等が挙げられ、中でも銅箔は電気抵抗が低いため好ましい。金属箔の厚さとしては、例えば1から50μmのものを使用することができる。 The metal foil is not particularly limited, but examples include aluminum and copper foil, and among these, copper foil is preferred because of its low electrical resistance. The thickness of the metal foil that can be used is, for example, 1 to 50 μm.
 前記金属箔と組み合わせる樹脂フィルム及びプリプレグは1枚でも複数枚でもよく、用途に応じて片面又は両面に金属箔を重ねて積層板に加工する。金属張積層板は、特にプリント配線板として好適である。 The resin film and prepreg to be combined with the metal foil may be one or more sheets, and depending on the application, the metal foil is laminated on one or both sides to be processed into a laminate. Metal-clad laminates are particularly suitable for use as printed wiring boards.
<プリント配線板>
 本発明のプリント配線板は、前記金属張積層板の表面の金属箔をエッチング加工等により部分的に除去し、配線を形成することにより、樹脂フィルム、またはプリプレグの表面に回路を形成させることにより得られる。前記プリント配線板は、前記熱硬化性組成物を含むことにより、誘電率や誘電正接等の誘電特性、成形性、耐熱性に優れる。
<Printed Wiring Board>
The printed wiring board of the present invention is obtained by forming a circuit on the surface of the resin film or prepreg by partially removing the metal foil on the surface of the metal-clad laminate by etching or the like and forming wiring. The printed wiring board contains the thermosetting composition, and is therefore excellent in dielectric properties such as dielectric constant and dielectric loss tangent, moldability, and heat resistance.
 上記のほか、前記熱硬化性組成物は、成形、積層、接着剤、銅張積層板等の複合材料等の用途に用いられる。特に、イソシアネート体あるいはエポキシ体を単独もしくは組み合わせ用いた場合、樹脂を半硬化させたプリプレグ、このプリプレグを硬化させた積層板の利用例が代表的に挙げられる。また、エポキシ体を用いた場合、半導体封止材への利用例が代表的に挙げられる。 In addition to the above, the thermosetting composition is used for molding, lamination, adhesives, composite materials such as copper-clad laminates, etc. In particular, when an isocyanate or epoxy body is used alone or in combination, typical applications include prepregs made from semi-cured resins and laminates made from cured prepregs. Also, when an epoxy body is used, typical applications include semiconductor encapsulation materials.
 以下、実施例により、本発明を具体的に説明するが、本発明は以下の実施例により何ら限定されるものではない。 The present invention will be explained in detail below with reference to examples, but the present invention is not limited to the following examples in any way.
<アルキルシリルペルオキシドの合成>
<製造例1、化合物5の合成>
 500mL丸底フラスコに、t-ブチルジメチルシリルクロライド(純度99%、90.43g、0.6mol)、トルエン(74.50g)、t-ヘキシルハイドロパーオキサイド(純度85.0%、74.45g、0.63mol)を添加・攪拌させた。上記溶液を15℃まで冷却し、ピリジン(純度99%、94.42g、1.20mol)を滴下した。滴下終了後1時間攪拌し、得られた溶液を亜硫酸ナトリウム水溶液で還元洗浄したのちに水で洗浄した。その後、硫酸ナトリウムと硫酸マグネシウムを用いて脱水し、上記一般式(1)R及びRがメチル基、Rがt-ブチル基、Rがプロピル基で表されるt-ブチルジメチル(t-ヘキシルペルオキシ)シランのトルエン溶液(203.4g、濃度24.2質量%、収率35.3質量%)を得た。
<Synthesis of alkylsilyl peroxide>
<Production Example 1, Synthesis of Compound 5>
In a 500 mL round-bottom flask, t-butyldimethylsilyl chloride (purity 99%, 90.43 g, 0.6 mol), toluene (74.50 g), and t-hexyl hydroperoxide (purity 85.0%, 74.45 g, 0.63 mol) were added and stirred. The solution was cooled to 15° C., and pyridine (purity 99%, 94.42 g, 1.20 mol) was added dropwise. After the dropwise addition, the solution was stirred for 1 hour, and the resulting solution was reduced and washed with an aqueous sodium sulfite solution and then washed with water. Thereafter, the solution was dehydrated using sodium sulfate and magnesium sulfate to obtain a toluene solution of t-butyldimethyl(t-hexylperoxy)silane (203.4 g, concentration 24.2% by mass, yield 35.3% by mass) represented by the above general formula (1) in which R 1 and R 2 are methyl groups, R 3 is a t-butyl group, and R 4 is a propyl group.
 なお、上記のアルキルシリルペルオキシドの構造は、AVANCEN NMRスペクトルメーター(BRUCKER社製)を用いたH-NMR測定、13C-NMR測定及びTOFMS(日本電子株式会社製)にて同定した。また純度はGC(島津製作所製GC-2014シリーズ)において単純面積法から算出した。得られた化合物5のEI-MSおよびH-NMRによる分析結果を表1に示す。 The structure of the alkylsilyl peroxide was identified by 1 H-NMR measurement and 13 C-NMR measurement using an AVANCEN NMR spectrometer (manufactured by BRUCKER) and by TOFMS (manufactured by JEOL Ltd.). The purity was calculated by the simple area method using GC (Shimadzu Corporation GC-2014 series). The analytical results of the obtained compound 5 by EI-MS and 1 H-NMR are shown in Table 1.
<製造例2、化合物6の合成>
 製造例1のt-ヘキシルハイドロパーオキサイドを1,1,3,3-テトラメチルブチルヒドロペルオキシドに変更した以外同様である。t-ブチルジメチル(1,3,3-テトラメチルブチルペルオキシ)シランのトルエン溶液(186.46g、濃度31.3質量%、収率37.3質量%)を得た。得られた化合物6のEI-MSおよびH-NMRによる分析結果を表1に示す。
<Production Example 2, Synthesis of Compound 6>
The procedure was the same as in Production Example 1, except that t-hexyl hydroperoxide was changed to 1,1,3,3-tetramethylbutyl hydroperoxide. A toluene solution of t-butyldimethyl(1,3,3-tetramethylbutylperoxy)silane (186.46 g, concentration 31.3% by mass, yield 37.3% by mass) was obtained. The analytical results of the obtained compound 6 by EI-MS and 1 H-NMR are shown in Table 1.
<製造例3、化合物4の合成>
 製造例1のt-ヘキシルハイドロパーオキサイドをt-アミルヒドロペルオキシドに変更した以外同様である。t-ブチルジメチル(t-アミルペルオキシ)シランのトルエン溶液(185.35g、濃度25.2質量%、収率35.7質量%)を得た。得られた化合物4のEI-MSおよびH-NMRによる分析結果を表1に示す。
<Production Example 3, Synthesis of Compound 4>
The procedure was the same as in Production Example 1, except that t-hexyl hydroperoxide was changed to t-amyl hydroperoxide. A toluene solution of t-butyldimethyl(t-amylperoxy)silane (185.35 g, concentration 25.2% by mass, yield 35.7% by mass) was obtained. The analytical results of the obtained compound 4 by EI-MS and 1 H-NMR are shown in Table 1.
<製造例4、化合物13の合成>
 製造例1のt-ブチルジメチルシリルクロライドをトリフェニルシリルクロライドに変更した以外同様である。トリフェニル(t-ヘキシルペルオキシ)シランのトルエン溶液(328.1g、濃度24.3質量%、収率70.5質量%)を得た。得られた化合物13のEI-MSおよびH-NMRによる分析結果を表1に示す。
<Production Example 4, Synthesis of Compound 13>
The procedure was the same as in Production Example 1, except that t-butyldimethylsilyl chloride was changed to triphenylsilyl chloride. A toluene solution of triphenyl(t-hexylperoxy)silane (328.1 g, concentration 24.3% by mass, yield 70.5% by mass) was obtained. The analytical results of the obtained compound 13 by EI-MS and 1 H-NMR are shown in Table 1.
<製造例5、化合物14の合成>
 製造例1のt-ブチルジメチルシリルクロライドをトリフェニルシリルクロライドに変更し、t-ヘキシルハイドロパーオキサイドを1,1,3,3-テトラメチルブチルヒドロペルオキシドに変更した以外同様である。トリフェニル(1,3,3-テトラメチルブチルペルオキシ)シランのトルエン溶液(386.3g、濃度24.0質量%、収率76.3質量%)を得た。得られた化合物14のEI-MSおよびH-NMRによる分析結果を表1に示す。
<Production Example 5, Synthesis of Compound 14>
The procedure was the same as in Production Example 1, except that t-butyldimethylsilyl chloride was changed to triphenylsilyl chloride and t-hexyl hydroperoxide was changed to 1,1,3,3-tetramethylbutyl hydroperoxide. A toluene solution of triphenyl(1,3,3-tetramethylbutylperoxy)silane (386.3 g, concentration 24.0% by mass, yield 76.3% by mass) was obtained. The analytical results of the obtained compound 14 by EI-MS and 1 H-NMR are shown in Table 1.
<製造例6、化合物12の合成>
 製造例1のt-ブチルジメチルシリルクロライドをトリフェニルシリルクロライドに変更し、t-ヘキシルハイドロパーオキサイドをt-アミルヒドロペルオキシドに変更した以外同様である。トリフェニル(t-アミルペルオキシ)シランのトルエン溶液(316.1g、濃度23.6質量%、収率68.5質量%)を得た。得られた化合物12のEI-MSおよびH-NMRによる分析結果を表1に示す。
<Production Example 6, Synthesis of Compound 12>
The procedure was the same as in Production Example 1, except that t-butyldimethylsilyl chloride was changed to triphenylsilyl chloride and t-hexyl hydroperoxide was changed to t-amyl hydroperoxide. A toluene solution of triphenyl(t-amylperoxy)silane (316.1 g, concentration 23.6% by mass, yield 68.5% by mass) was obtained. The analytical results of the obtained compound 12 by EI-MS and 1 H-NMR are shown in Table 1.
<製造例7、化合物16の合成>
 500mL丸底フラスコに、ジメチルアミノピリジン(純度99%、122.17g、1.0mol)、テトラヒドロフラン(201.35g)、2,5-ジメチル-2,5-ジ-t-ブチルハイドロパーオキサイド(純度75.5%、62.56g、0.27mol)を添加・攪拌させた。上記溶液を15℃まで冷却し、t-ブチルジメチルシリルクロライド(純度99%、90.43g、0.6mol)のテトラヒドロフラン(30.0g)溶液を滴下した。滴下終了後3時間攪拌し、得られた溶液を亜硫酸ナトリウム水溶液で還元洗浄したのちに水で洗浄した。その後、硫酸ナトリウムと硫酸マグネシウムを用いて脱水し、上記一般式(2)R及びRがメチル基、Rがt-ブチル基、Rがエチレン基で表される2,2,3,3,6,6,9,9,12,12,13,13-ドデカメチル-4,5,10,11-テトラオキサ-3,12-ジシラテトラデカンのトルエン溶液を得た。その後、シリカゲルカラムクロマトグラフィーにより単離し2,2,3,3,6,6,9,9,12,12,13,13-ドデカメチル-4,5,10,11-テトラオキサ-3,12-ジシラテトラデカン(44.5g、純度99.9%、収率21.9質量%)を得た。得られた化合物16のEI-MSおよびH-NMRによる分析結果を表1に示す。
<Production Example 7, Synthesis of Compound 16>
Dimethylaminopyridine (purity 99%, 122.17 g, 1.0 mol), tetrahydrofuran (201.35 g), and 2,5-dimethyl-2,5-di-t-butyl hydroperoxide (purity 75.5%, 62.56 g, 0.27 mol) were added to a 500 mL round-bottom flask and stirred. The solution was cooled to 15° C., and a solution of t-butyldimethylsilyl chloride (purity 99%, 90.43 g, 0.6 mol) in tetrahydrofuran (30.0 g) was added dropwise. After the end of the dropwise addition, the solution was stirred for 3 hours, and the resulting solution was reduced and washed with an aqueous sodium sulfite solution and then washed with water. Thereafter, the mixture was dehydrated using sodium sulfate and magnesium sulfate to obtain a toluene solution of 2,2,3,3,6,6,9,9,12,12,13,13-dodecamethyl-4,5,10,11-tetraoxa-3,12-disilatetradecane represented by the above general formula (2) in which R 5 and R 6 are methyl groups, R 7 is a t-butyl group, and R 8 is an ethylene group. The mixture was then isolated by silica gel column chromatography to obtain 2,2,3,3,6,6,9,9,12,12,13,13-dodecamethyl-4,5,10,11-tetraoxa-3,12-disilatetradecane (44.5 g, purity 99.9%, yield 21.9% by mass). The analytical results of the obtained compound 16 by EI-MS and 1 H-NMR are shown in Table 1.
<製造例8、化合物19の合成>
 製造例1のt-ブチルジメチルシリルクロライドをフェニルジメチルシリルクロライドに変更した以外同様である。フェニルジメチル(t-ヘキシルペルオキシ)シランのトルエン溶液(220.4g、濃度58.8質量%、収率70.2質量%)を得た。得られた化合物19のEI-MSおよびH-NMRによる分析結果を表1に示す。
<Production Example 8, Synthesis of Compound 19>
The procedure was the same as in Production Example 1, except that t-butyldimethylsilyl chloride was changed to phenyldimethylsilyl chloride. A toluene solution of phenyldimethyl(t-hexylperoxy)silane (220.4 g, concentration 58.8% by mass, yield 70.2% by mass) was obtained. The analytical results of the obtained compound 19 by EI-MS and 1 H-NMR are shown in Table 1.
<分解開始温度の評価>
 DSC(示差走査熱量分析計)として、株式会社日立ハイテクサイエンス社製の「DSC-7000X」を使用した。測定は、約8mgの合成サンプルをSUSセルに入れ、窒素雰囲気下で、昇温速度毎分10℃として50℃から300℃まで昇温した。なお、分解開始温度は、DSCの元のベースラインと変曲点での接線の交点とした。製造例1~7で合成したジアルキルペルオキシドの分解開始温度(℃)の測定結果を表1に示す。また、製造例1~7の比較対象の参考例として、ジ-t-ブチルペルオキシド、ジ-t-ヘキシルペルオキシド、2,5-ジメチル‐2,5-(ジ-t-ブチルペルオキシ)ヘキサンの結果を示す。
<Evaluation of decomposition starting temperature>
As a DSC (differential scanning calorimeter), a "DSC-7000X" manufactured by Hitachi High-Tech Science Corporation was used. For the measurement, about 8 mg of the synthesis sample was placed in a SUS cell, and the temperature was raised from 50°C to 300°C at a heating rate of 10°C per minute under a nitrogen atmosphere. The decomposition onset temperature was taken as the intersection point of the original baseline of the DSC and the tangent at the inflection point. The measurement results of the decomposition onset temperatures (°C) of the dialkyl peroxides synthesized in Production Examples 1 to 7 are shown in Table 1. In addition, the results of di-t-butyl peroxide, di-t-hexyl peroxide, and 2,5-dimethyl-2,5-(di-t-butylperoxy)hexane are shown as reference examples for comparison with Production Examples 1 to 7.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 製造例のアルキルシリルペルオキシドは、分解温度が高いため、高温下における熱硬化性組成物の硬化工程を効率よく実施できる。 The alkylsilyl peroxide in the manufacturing example has a high decomposition temperature, so the curing process of the thermosetting composition can be carried out efficiently at high temperatures.
<揮発性の評価>
 分析には、エスアイアイ・ナノテクノロジー(株)製、TG-DTA6200(測定条件:Alセル、大気雰囲気下、昇温30℃(90℃/分)→80(30分)、サンプル量15mg)を用いて、製造例5,7で合成したジアルキルペルオキシドの重量減少率(%)を測定した。結果を表2に示す。
<Evaluation of Volatility>
For the analysis, a TG-DTA6200 manufactured by SII NanoTechnology, Inc. (measurement conditions: Al cell, air atmosphere, temperature rise 30° C. (90° C./min)→80 (30 min), sample amount 15 mg) was used to measure the weight loss rate (%) of the dialkyl peroxides synthesized in Production Examples 5 and 7. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
<実施例1~13、比較例1~6>
<硬化物の製造および誘電特性の評価>
 表3、4に示す各成分(質量部)をトルエンで希釈して濃度が50質量%になるように配合した組成物の溶媒溶解物6gをアルミ皿に入れ、真空乾燥機(EYELA VACUUM OVEN VOS-3LSD)を用いて400Pa、60℃にて2時間乾燥後、さらに80℃にて2時間溶剤乾燥を行った。得られた粉体をハンドプレス(東洋精機社製)を用いて130℃で成形、200℃で硬化し、硬化物(フィルム、16cmの円形、厚み60μm)を得た。得られた硬化物の1GHzでの誘電率及び誘電正接を、IPC-TM-650-2.5.5.9に準拠の方法で測定し、表3、表4に示した。
<Examples 1 to 13 and Comparative Examples 1 to 6>
<Production of Cured Product and Evaluation of Dielectric Properties>
Each component (parts by mass) shown in Tables 3 and 4 was diluted with toluene to a concentration of 50% by mass, and 6 g of the solvent-dissolved composition was placed in an aluminum dish and dried at 400 Pa and 60°C for 2 hours using a vacuum dryer (EYELA VACUUM OVEN VOS-3LSD), and then further dried in the solvent at 80°C for 2 hours. The obtained powder was molded at 130°C using a hand press (manufactured by Toyo Seiki Co., Ltd.) and cured at 200°C to obtain a cured product (film, 16 cm circular, 60 μm thick). The dielectric constant and dielectric loss tangent at 1 GHz of the obtained cured product were measured according to a method conforming to IPC-TM-650-2.5.5.9, and are shown in Tables 3 and 4.
<耐熱性の評価>
 上記硬化物のガラス転移温度を、DSC(示差走査熱量分析計)として、株式会社日立ハイテクサイエンス社製の「DSC-7000X」を使用し測定した。測定は、約2mgの合成サンプルをAlセルに入れ、窒素雰囲気下で、昇温速度毎分10℃として50℃から350℃まで昇温した。なお、低温側及び高温側のベースラインの延長した直線から縦軸方向に等距離にある直線と、ガラス転移の階段状変化部分の曲線とが交わる点の温度とする。結果を表3、表4に示した。
<Evaluation of heat resistance>
The glass transition temperature of the cured product was measured using a DSC (differential scanning calorimeter) "DSC-7000X" manufactured by Hitachi High-Tech Science Corporation. For the measurement, about 2 mg of the synthetic sample was placed in an Al cell, and the temperature was raised from 50°C to 350°C at a heating rate of 10°C per minute under a nitrogen atmosphere. The temperature was determined as the point where a straight line equidistant in the vertical direction from the straight line extending the low-temperature side and high-temperature side baselines intersects with the curve of the stepwise change in the glass transition. The results are shown in Tables 3 and 4.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 表3、表4中、OPE-2St 2200は、分子末端に平均2個のエチレン性不飽和二重結合を有するポリフェニレンエーテル(数平均分子量が2200)、三菱ガス化学株式会社製);
 OPE-2St 1200は、分子末端に平均2個のエチレン性不飽和二重結合を有するポリフェニレンエーテル(数平均分子量が1200)、三菱ガス化学株式会社製);
 SA9000は、分子末端に平均2個のエチレン性不飽和二重結合を有するポリフェニレンエーテル(数平均分子量が2756)、SABICイノベーティブプラスチック社製);
 BMI-1000はマレイミド、東京化成工業株式会社製;
 BMI-5100はマレイミド、東京化成工業株式会社製;
 化合物5は、製造例1のt-ブチルジメチル(t-ヘキシルペルオキシ)シラン(濃度24.2質量%);
 化合物6は、製造例2のt-ブチルジメチル(1,3,3-テトラメチルブチルペルオキシ)シラン(濃度31.3質量%);
 化合物4は、製造例3のt-ブチルジメチル(t-アミルペルオキシ)シラン(濃度25.2質量%);
 化合物13は、製造例4のトリフェニル(t-ヘキシルペルオキシ)シラン(濃度24.3質量%);
 化合物14は、製造例5のトリフェニル(1,3,3-テトラメチルブチルペルオキシ)シラン(濃度24.0質量%);
 化合物12は、製造例6のトリフェニル(t-アミルペルオキシ)シラン(濃度23.6質量%);
 化合物16は、製造例7の2,2,3,3,6,6,9,9,12,12,13,13-ドデカメチル-4,5,10,11-テトラオキサ-3,12-ジシラテトラデカン;
 化合物19は、製造例8のフェニルジメチル(t-ヘキシルペルオキシ)シラン(濃度58.8質量%);
 ジ-t-ブチルペルオキシドは、日油株式会社製(純度98%);
 ジ-t-ヘキシルペルオキシドは、日油株式会社製(純度90%);
 2,5-ジメチル-2,5-(ジ-t-ブチルペルオキシ)ヘキサンは、日油株式会社製(純度94%);
 TAIC(Triallyl Isocyanurate)は、東京化成工業株式会社製(純度96.0%);を示す。
In Tables 3 and 4, OPE-2St 2200 is polyphenylene ether having an average of two ethylenically unsaturated double bonds at the molecular terminals (number average molecular weight: 2200, manufactured by Mitsubishi Gas Chemical Company, Inc.);
OPE-2St 1200 is a polyphenylene ether having an average of two ethylenically unsaturated double bonds at the molecular terminals (number average molecular weight: 1200, manufactured by Mitsubishi Gas Chemical Company, Inc.);
SA9000 is a polyphenylene ether having an average of two ethylenically unsaturated double bonds at the molecular terminals (number average molecular weight is 2756, manufactured by SABIC Innovative Plastics);
BMI-1000 is maleimide, manufactured by Tokyo Chemical Industry Co., Ltd.;
BMI-5100 is maleimide, manufactured by Tokyo Chemical Industry Co., Ltd.;
Compound 5 is t-butyldimethyl(t-hexylperoxy)silane (concentration 24.2% by mass) of Production Example 1;
Compound 6 is t-butyldimethyl(1,3,3-tetramethylbutylperoxy)silane (concentration 31.3% by mass) of Production Example 2;
Compound 4 is t-butyldimethyl(t-amylperoxy)silane (concentration 25.2% by mass) of Production Example 3;
Compound 13 is triphenyl(t-hexylperoxy)silane (concentration 24.3% by mass) of Production Example 4;
Compound 14 is triphenyl(1,3,3-tetramethylbutylperoxy)silane (concentration 24.0% by mass) of Production Example 5;
Compound 12 is triphenyl(t-amylperoxy)silane (concentration 23.6% by mass) of Production Example 6;
Compound 16 is 2,2,3,3,6,6,9,9,12,12,13,13-dodecamethyl-4,5,10,11-tetraoxa-3,12-disilatetradecane of Production Example 7;
Compound 19 is phenyldimethyl(t-hexylperoxy)silane (concentration: 58.8% by mass) of Production Example 8;
Di-t-butyl peroxide was manufactured by NOF Corporation (purity 98%);
Di-t-hexyl peroxide was manufactured by NOF Corporation (purity 90%);
2,5-Dimethyl-2,5-(di-t-butylperoxy)hexane was manufactured by NOF Corporation (purity 94%);
TAIC (Triallyl Isocyanurate) is a product of Tokyo Chemical Industry Co., Ltd. (purity 96.0%).
 実施例1~11比較例1~5と比較して、実施例12~13は比較例6~7と比較して、優れた物性を示す硬化物を得ることができた。 Compared to Examples 1-11 and Comparative Examples 1-5, and to Examples 12-13 and Comparative Examples 6-7, cured products exhibiting superior physical properties were obtained.

Claims (8)

  1.  一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R、及びRは独立して炭素数が1から6のアルキル基またはフェニル基であり、Rは炭素数が3から6のアルキル基またはフェニル基であり、Rは炭素数が2から5のアルキル基である。)で表される化合物、及び一般式(2):
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、R、及びRは独立して炭素数が1から6のアルキル基またはフェニル基であり、Rは炭素数が2から6のアルキル基であり、Rはエチレン基またはアセチレン基である。)で表される化合物からなる群より選ばれる1種以上であることを特徴とするアルキルシリルペルオキシド。
    General formula (1):
    Figure JPOXMLDOC01-appb-C000001
    (In formula (1), R 1 and R 2 are independently an alkyl group or a phenyl group having 1 to 6 carbon atoms, R 3 is an alkyl group or a phenyl group having 3 to 6 carbon atoms, and R 4 is an alkyl group having 2 to 5 carbon atoms), and a compound represented by general formula (2):
    Figure JPOXMLDOC01-appb-C000002
    (in formula (2), R 5 and R 6 are independently an alkyl group having 1 to 6 carbon atoms or a phenyl group, R 7 is an alkyl group having 2 to 6 carbon atoms, and R 8 is an ethylene group or an acetylene group).
  2.  請求項1に記載のアルキルシリルペルオキシド、及びラジカル重合性化合物を含有することを特徴とする熱硬化性組成物。 A thermosetting composition comprising the alkylsilyl peroxide according to claim 1 and a radical polymerizable compound.
  3.  前記ラジカル重合性化合物が、ポリフェニレンエーテル、又はマレイミドであることを特徴とする請求項2に記載の熱硬化性組成物。 The thermosetting composition according to claim 2, characterized in that the radical polymerizable compound is polyphenylene ether or maleimide.
  4.  請求項3に記載の熱硬化性組成物から形成されることを特徴とする樹脂フィルム。 A resin film formed from the thermosetting composition according to claim 3.
  5.  請求項3に記載の熱硬化性組成物を、繊維質基材に含浸又は塗布されたことを特徴とするプリプレグ。 A prepreg in which the thermosetting composition according to claim 3 is impregnated or coated on a fibrous substrate.
  6.  請求項4に記載の樹脂フィルム又は請求項5に記載のプリプレグと、金属箔とが積層されたことを特徴とする金属張積層板。 A metal-clad laminate comprising the resin film according to claim 4 or the prepreg according to claim 5 laminated with a metal foil.
  7.  請求項6に記載の金属張積層板から、前記金属箔の一部が除去されていることを特徴とするプリント配線板。 A printed wiring board characterized in that a portion of the metal foil is removed from the metal-clad laminate described in claim 6.
  8.  請求項1に記載のアルキルシリルペルオキシドの製造方法であって、
     シリルクロライド化合物と、ヒドロペルオキシド化合物とを原料として反応させる工程を含むことを特徴とするアルキルシリルペルオキシドの製造方法。
    A method for producing the alkylsilyl peroxide according to claim 1, comprising the steps of:
    A method for producing an alkylsilyl peroxide, comprising a step of reacting a silyl chloride compound with a hydroperoxide compound as raw materials.
PCT/JP2023/034058 2022-09-27 2023-09-20 Alkyl silyl peroxide, heat-curable composition, resin film, prepreg, metal laminate, and printed wiring board WO2024070840A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-153431 2022-09-27
JP2022153431 2022-09-27

Publications (1)

Publication Number Publication Date
WO2024070840A1 true WO2024070840A1 (en) 2024-04-04

Family

ID=90477655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034058 WO2024070840A1 (en) 2022-09-27 2023-09-20 Alkyl silyl peroxide, heat-curable composition, resin film, prepreg, metal laminate, and printed wiring board

Country Status (1)

Country Link
WO (1) WO2024070840A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07330874A (en) * 1994-06-01 1995-12-19 Toshiba Corp Resin composition and resin-encapsulated semiconductor device
JPH09255688A (en) * 1996-03-26 1997-09-30 Shin Etsu Chem Co Ltd Silicon-containing peroxyester
JPH11302311A (en) * 1998-04-23 1999-11-02 Nof Corp Manufacture of resin for toner
JP2001310941A (en) * 2000-04-28 2001-11-06 Nof Corp Polydimethylsiloxane compound with peroxyester group and its application
JP2003221409A (en) * 2002-01-30 2003-08-05 Kayaku Akzo Corp Production method for acrylic resin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07330874A (en) * 1994-06-01 1995-12-19 Toshiba Corp Resin composition and resin-encapsulated semiconductor device
JPH09255688A (en) * 1996-03-26 1997-09-30 Shin Etsu Chem Co Ltd Silicon-containing peroxyester
JPH11302311A (en) * 1998-04-23 1999-11-02 Nof Corp Manufacture of resin for toner
JP2001310941A (en) * 2000-04-28 2001-11-06 Nof Corp Polydimethylsiloxane compound with peroxyester group and its application
JP2003221409A (en) * 2002-01-30 2003-08-05 Kayaku Akzo Corp Production method for acrylic resin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOMASZ KRAWCZYK: "Determination of silyl peroxides by ultra‐performance liquid chromatography/electrospray ionisation mass spectrometry", RAPID COMMUNICATIONS IN MASS SPECTROMETRY, JOHN WILEY & SONS, GB, vol. 32, no. 23, 15 December 2018 (2018-12-15), GB , pages 2040 - 2046, XP093157010, ISSN: 0951-4198, DOI: 10.1002/rcm.8282 *

Similar Documents

Publication Publication Date Title
EP2133384B1 (en) Bismaleamic acid, bismaleimide and cured product thereof
US9199434B2 (en) Resin composition, prepreg and their uses
US9062145B2 (en) Curable resin composition, curable film and their cured products
CN112313265B (en) Resin composition and use thereof
JP6981007B2 (en) Resin composition, resin sheet and printed wiring board
WO2019188189A1 (en) Resin composition, and prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board each obtained using said resin composition
TW202206470A (en) Polyfunctional vinyl resin and method for producing same
TW202248328A (en) Low dielectric resin composition and an article of manufacture prepared therefrom
CN112236464A (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
US20040137251A1 (en) Poly(phenylene ether)-polyvinyl thermosetting adhesives films, and substrates made therefrom
TW202323434A (en) Thermosetting composition, resin film, prepreg, metal-clad laminate, and printed wiring board
WO2023032534A1 (en) Allyl ether compound, resin composition, and cured product thereof
WO2024070840A1 (en) Alkyl silyl peroxide, heat-curable composition, resin film, prepreg, metal laminate, and printed wiring board
WO2024101271A1 (en) Thermosetting composition, resin film, prepreg, metal-clad laminate, and printed wiring board
TW202413532A (en) Alkyl silyl peroxide, thermosetting composition, resin film, prepreg, metal laminate and printed wiring board
JP5812468B2 (en) Oligo (phenyleneoxy) group-containing cyclic phosphazene compound modified with cyanato group and production method thereof
WO2019188185A1 (en) Resin composition, and prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board each obtained using said resin composition
TW202419551A (en) Thermosetting composition, resin film, prepreg, metal-clad laminate and printed circuit board
WO2024106209A1 (en) Polyfunctional vinyl resin, manufacturing method therefor, polyfunctional vinyl resin composition, and cured product thereof
WO2024101056A1 (en) Resin composition, and prepreg, resin-equipped film, resin-equipped metal foil, metal-clad laminated plate, and wiring board using said resin composition
JP7511163B2 (en) Resin composition, prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board
WO2024018918A1 (en) Polyfunctional vinyl resin, production method therefor, composition of polyfunctional vinyl resin, and cured object therefrom
WO2023276760A1 (en) Allyl ether compound, resin composition thereof, cured product thereof, and method for producing allyl ether compound
JPH03166256A (en) Resin composition and laminated board thereof
WO2024111380A1 (en) Resin composition, resin film, prepreg, laminate, printed wiring board, and semiconductor package

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872068

Country of ref document: EP

Kind code of ref document: A1