WO2024070793A1 - Curable resin composition, resin sheet and cured product - Google Patents

Curable resin composition, resin sheet and cured product Download PDF

Info

Publication number
WO2024070793A1
WO2024070793A1 PCT/JP2023/033835 JP2023033835W WO2024070793A1 WO 2024070793 A1 WO2024070793 A1 WO 2024070793A1 JP 2023033835 W JP2023033835 W JP 2023033835W WO 2024070793 A1 WO2024070793 A1 WO 2024070793A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
compound
curable resin
bis
acid
Prior art date
Application number
PCT/JP2023/033835
Other languages
French (fr)
Japanese (ja)
Inventor
隆行 遠島
政隆 中西
昌典 橋本
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Publication of WO2024070793A1 publication Critical patent/WO2024070793A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/36Amides or imides
    • C08F222/40Imides, e.g. cyclic imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F234/00Copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain and having one or more carbon-to-carbon double bonds in a heterocyclic ring

Definitions

  • PKGs semiconductor packages
  • PCB motherboard
  • SiC semiconductors are beginning to be used in trains and air conditioners, and the encapsulation material for semiconductor elements is now required to have extremely high heat resistance, which is no longer possible with conventional epoxy resin encapsulation materials.
  • Patent Document 1 proposes a composition containing a maleimide resin and a propenyl group-containing phenolic resin.
  • Patent Document 2 discloses an allyl ether resin in which hydroxyl groups are replaced with allyl groups.
  • Claisen rearrangement occurs at 190°C, and at 200°C, which is the molding temperature for general substrates, phenolic hydroxyl groups that do not contribute to the curing reaction are generated, so the electrical properties are not satisfactory.
  • the water absorption properties will deteriorate due to the phenolic hydroxyl groups, which are polar groups, and improvements are desired.
  • the present invention was made in consideration of the above points, and aims to provide a curable resin composition that has high heat resistance and low water absorption properties.
  • a curable resin composition containing a maleimide compound and a compound having a Q value, which is an index of radical stability, and an e value, which is an index of radical polarity, falling within a specific range has excellent curing properties, and the cured product has excellent heat resistance and low water absorption properties, which led to the completion of the present invention.
  • the present invention relates to the following [1] to [7].
  • “(Numerical value 1) to (Numerical value 2)” indicates that the upper and lower limits are included.
  • [1] (A) a maleimide compound; (B) a compound having a Q value of 0 to 1.0 and an e value of ⁇ 2.0 to 0.7;
  • a curable resin composition comprising: [2] The curable resin composition according to the above item [1], wherein the component (B) is a compound having an aromatic ring in the molecule. [3] The curable resin composition according to the above item [1], wherein the component (B) is a compound represented by the following formula (4):
  • X's each independently represent any one of the structures represented by the following formulae (2-a) to (2-c).
  • R represents a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, or a halogenated alkyl group.
  • m represents an integer of 1 to 3
  • n represents the number of repetitions, and the average value n ave of n is 1 ⁇ n ave ⁇ 10.
  • the present invention makes it possible to provide a curable resin composition that has excellent curability, high heat resistance, and low water absorption properties, and a cured product thereof.
  • 1 shows a GPC chart of Synthesis Example 1.
  • 1 shows an HPLC chart of Synthesis Example 1.
  • the 1 H-NMR chart of Synthesis Example 1 is shown below.
  • DMA charts of Example 1 and Comparative Example 1 are shown.
  • the DSC charts of Examples 3 to 5 are shown.
  • the DSC charts of Comparative Examples 3 to 5 are shown.
  • the curable resin composition of the present invention contains (A) a maleimide compound (hereinafter also referred to as component (A)) and (B) a compound having a Q value of 0 to 1.0 and an e value of -2.0 to 0.7 (hereinafter also referred to as component (B)).
  • component (A) a maleimide compound
  • component (B) a compound having a Q value of 0 to 1.0 and an e value of -2.0 to 0.7
  • the maleimide compound which is component (A) of the present invention, refers to a compound having one or more maleimide groups in the molecule.
  • component (A) include 4,4'-diphenylmethane bismaleimide, polyphenylmethane maleimide, m-phenylene bismaleimide, 2,2'-bis[4-(4-maleimidophenoxy)phenyl]propane, 3,3'-dimethyl-5,5'-diethyl-4,4'-diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, 4,4'-diphenylether bismaleimide, 4,4'-diphenylsulfone bismaleimide, 1,3-bis(3-maleimidophenoxy)benzene, 1,3-bis(4-maleimidophenoxy)benzene), xylo arylalkyl-type maleimide compounds (Anilix Maleimide, manufactured by Mitsui Fine Chemical
  • the component (A) of the present invention is preferably a maleimide compound having a phenylmaleimide structure, and more preferably represented by the following formula (1).
  • X each independently represents any one of the structures represented by the following formulae (2-a) to (2-c).
  • R represents a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, or a halogenated alkyl group, and is particularly preferably a hydrogen atom.
  • n is the number of repetitions, and the average value n ave of n is 1 ⁇ n ave ⁇ 10. The value of n ave can be calculated from the weight average molecular weight (Mw) determined by measurement of the maleimide resin by gel permeation chromatography (GPC).
  • * represents a bond to a benzene ring.
  • R2 each independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and is particularly preferably a hydrogen atom.
  • q each independently represents an integer of 1 to 4.
  • X in the formula (1) is particularly preferably a structure represented by the formula (2-b) above, which can be represented by the following formula (3).
  • R represents a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, or a halogenated alkyl group, and is particularly preferably a hydrogen atom.
  • n represents the number of repetitions, and the average value n ave of n is 1 ⁇ n ave ⁇ 10.
  • the value of n ave can be calculated from the value of the weight average molecular weight (Mw) determined by measurement of the maleimide resin by gel permeation chromatography (GPC).
  • Component (B) of the present invention is a compound having a Q value of 0 to 1.0 and an e value of -2.0 to 0.7. It is more preferable that the Q value is 0.03 to 0.8, and it is even more preferable that the e value is -2.0 to 0.5.
  • the Q and e values of the present invention are based on the Q and e theory of Alfrey and Price, and are an empirical, but quantified, expression of the fact that the reactivity in the polymerization reaction of vinyl compounds is determined by the polarizability and resonance effect (and steric factors) of the substituents. These are described in general polymer textbooks such as "Polymer Chemistry” (Kyoritsu Shuppan, edited by Murahashi Shunsuke, pp. 75-77), where the Q and e values of various monomers are determined based on styrene as the standard.
  • the Q value is an index of radical stability; if the Q value is small, the radical becomes unstable and tends to have good reactivity.
  • the e value is an index of radical polarity (electrical bias), and copolymerization is likely to occur when the values of the monomers differ greatly, especially when they are a combination of positive and negative signs.
  • Component (B) preferably has an aromatic ring in the molecule.
  • aromatic rings include a benzene ring, a biphenyl ring, a naphthalene ring, an indene ring, a terphenyl ring, an acenaphthylene ring, a fluorene ring, a phenalene ring, a phenanthrene ring, and an anthracene ring.
  • compounds having a benzene ring, a naphthalene ring, or an acenaphthylene ring are particularly preferred because the combination with a maleimide compound improves the curing properties.
  • the e value of phenylmaleimide (a partial structure of aromatic maleimide) is 3.24, and the e value of acenaphthylene is -1.88, and the difference in electron density of the olefin in each functional group is very large, so a high curing promotion effect can be expected.
  • component (B) is represented by the following formula (4).
  • X represents a functional group having an ethylenically unsaturated double bond or an acetylenically unsaturated triple bond
  • Ar represents a benzene ring or a naphthalene ring
  • Y represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms
  • k represents an integer of 1 to 4.
  • X is preferably represented by the following formulas (a) to (e), and more preferably has a functional group represented by the following formulas (a) to (c).
  • Acenaphthylene is preferred as the compound represented by formula (4).
  • Acenaphthylene refined from coal tar may be used, or it may be synthesized by dehydrogenating acenaphthene or dehydrating 1-acenaphthenol.
  • Commercially available acenaphthylene includes, for example, acenaphthylene from JFE Chemical Corporation.
  • the content of component (A) is from 1 to 1,000 parts by mass, more preferably from 5 to 500 parts by mass, and even more preferably from 10 to 300 parts by mass, per 100 parts by mass of component (B).
  • component (B) is from 1 to 1,000 parts by mass, more preferably from 5 to 500 parts by mass, and even more preferably from 10 to 300 parts by mass, per 100 parts by mass of component (B).
  • the curable resin composition of the present invention can also have improved curability by adding a curing accelerator.
  • a curing accelerator an anionic curing accelerator that accelerates the curing reaction by generating anions upon irradiation with ultraviolet light or visible light or heating, or a cationic curing accelerator that accelerates the curing reaction by generating cations upon irradiation with ultraviolet light or visible light or heating, is preferred.
  • anionic curing accelerators examples include imidazoles such as 2-methylimidazole, 2-ethylimidazole, and 2-ethyl-4-methylimidazole; trialkylamines such as triethylamine and tributylamine; 4-dimethylaminopyridine, benzyldimethylamine, 2,4,6-tris(dimethylaminomethyl)phenol, and 1,8-diazabicyclo(5,4,0)-undecene; of which 4-dimethylaminopyridine and 1,8-diazabicyclo(5,4,0)-undecene are preferred.
  • imidazoles such as 2-methylimidazole, 2-ethylimidazole, and 2-ethyl-4-methylimidazole
  • trialkylamines such as triethylamine and tributylamine
  • 4-dimethylaminopyridine benzyldimethylamine, 2,4,6-tris(dimethylaminomethyl)
  • phosphines such as triphenylphosphine
  • quaternary ammonium salts such as tetrabutylammonium salts, triisopropylmethylammonium salts, trimethyldecanylammonium salts, cetyltrimethylammonium salts, and hexadecyltrimethylammonium hydroxide, but are not limited to these. These may be used alone or in combination.
  • cationic curing accelerators include quaternary phosphonium salts such as triphenylbenzylphosphonium salt, triphenylethylphosphonium salt, and tetrabutylphosphonium salt (the counter ion of the quaternary salt may be a halogen, an organic acid ion, a hydroxide ion, or the like, but is not limited to organic acid ions and hydroxide ions); transition metal compounds (transition metal salts) such as tin octylate, zinc carboxylate (zinc 2-ethylhexanoate, zinc stearate, zinc behenate, zinc myristate), and zinc phosphate ester (zinc octylphosphate, zinc stearylphosphate); but are not limited to these. These may be used alone or in combination.
  • quaternary phosphonium salts such as triphenylbenzylphosphonium salt, triphenylethylphosphonium salt, and t
  • the amount of the curing accelerator used is 0.01 to 5.0 parts by mass, if the total of components (A) and (B) is 100 parts by mass, as required.
  • the curable resin composition of the present invention may contain an inorganic filler.
  • inorganic fillers include powders such as fused silica, crystalline silica, porous silica, alumina, zircon, calcium silicate, calcium carbonate, quartz powder, silicon carbide, silicon nitride, boron nitride, zirconia, aluminum nitride, graphite, forsterite, steatite, spinel, mullite, titania, talc, clay, iron oxide, asbestos, and glass powder, and inorganic fillers obtained by making these into a spherical or crushed shape, but are not limited thereto. In addition, these may be used alone or in combination.
  • the inorganic filler When obtaining a curable resin composition for semiconductor encapsulation, the inorganic filler is used in an amount of preferably 80 to 92 parts by mass, and more preferably 83 to 90 parts by mass, per 100 parts by mass of the curable resin composition.
  • the inorganic filler When obtaining a curable resin composition for use as an interlayer insulating layer forming material, or as a substrate material such as a copper-clad laminate, prepreg, or RCC, the inorganic filler is used in an amount of preferably 5 to 80 parts by mass, and more preferably 10 to 60 parts by mass, per 100 parts by mass of the curable resin composition.
  • the curable resin composition of the present invention can also improve the curability by adding a polymerization initiator.
  • the polymerization initiator is a compound capable of polymerizing an olefin functional group such as an ethylenically unsaturated bond, and examples of the polymerization initiator include an olefin metathesis polymerization initiator, an anionic polymerization initiator, a cationic polymerization initiator, and a radical polymerization initiator. Among these, it is preferable to use a radical polymerization initiator having curability and moderate stability.
  • the radical polymerization initiator is a compound that generates radicals by irradiation with ultraviolet light or visible light or by heating, and starts a chain polymerization reaction.
  • radical polymerization initiators examples include organic peroxides, azo compounds, and benzopinacoles, and it is preferable to use an organic peroxide because it has little effect on curing temperature control, outgassing suppression, and electrical properties of decomposition products.
  • organic peroxides include, for example, ketone peroxides such as methyl ethyl ketone peroxide and acetylacetone peroxide, diacyl peroxides such as benzoyl peroxide, dialkyl peroxides such as dicumyl peroxide and 1,3-bis-(t-butylperoxyisopropyl)-benzene, peroxyketals such as t-butyl peroxybenzoate and 1,1-di-t-butylperoxycyclohexane, ⁇ -cumyl peroxyneodecanoate, t-butyl peroxyneodecanoate, t-butyl peroxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, t-amyl peroxy-2-ethylhexanoate, and t-butyl peroxypivalate.
  • ketone peroxides such as
  • peroxycarbonate examples include, but are not limited to, alkyl peresters such as peroxy-2-ethylhexanoate, t-amylperoxy-3,5,5-trimethylhexanoate, t-butylperoxy-3,5,5-trimethylhexanoate, and t-amylperoxybenzoate, peroxycarbonates such as di-2-ethylhexylperoxydicarbonate, bis(4-t-butylcyclohexyl)peroxydicarbonate, t-butylperoxyisopropylcarbonate, and 1,6-bis(t-butylperoxycarbonyloxy)hexane, t-butyl hydroperoxide, cumene hydroperoxide, t-butylperoxyoctoate, and lauroyl peroxide.
  • alkyl peresters such as peroxy-2-ethylhexanoate, t-amylperoxy-3,5,5-
  • ketone peroxides diacyl peroxides, hydroperoxides, dialkyl peroxides, peroxyketals, alkyl peresters, peroxycarbonates, etc. are preferred, with dialkyl peroxides being more preferred.
  • azo compounds examples include, but are not limited to, azobisisobutyronitrile, 4,4'-azobis(4-cyanovaleric acid), 2,2'-azobis(2,4-dimethylvaleronitrile), etc. Furthermore, these may be used alone or in combination.
  • the amount of polymerization initiator added is preferably 0.01 to 5 parts by mass, and particularly preferably 0.01 to 3 parts by mass, per 100 parts by mass of the curable resin composition. If the amount of polymerization initiator used is less than 0.01 parts by mass, there is a risk that the molecular weight will not be sufficiently extended during the polymerization reaction, and if it is more than 5 parts by mass, there is a risk that the dielectric properties such as the dielectric constant and dielectric loss tangent will be impaired.
  • the curable resin composition of the present invention may contain a polymerization inhibitor.
  • a polymerization inhibitor By containing a polymerization inhibitor, storage stability is improved and the reaction initiation temperature can be controlled. By controlling the reaction initiation temperature, it becomes easy to ensure fluidity, impregnation into glass cloth and the like is not impaired, and B-stage such as prepreg formation is facilitated. If the polymerization reaction proceeds too much during prepreg formation, problems such as difficulty in lamination during the lamination process are likely to occur.
  • the polymerization inhibitor may be added when component (A) is synthesized or after synthesis.
  • the amount of polymerization inhibitor used is 0.008 to 1 part by weight, preferably 0.01 to 0.5 parts by weight, per 100 parts by weight of component (A).
  • polymerization inhibitors examples include phenol-based, sulfur-based, phosphorus-based, hindered amine-based, nitroso-based, and nitroxyl radical-based. Furthermore, one type of polymerization inhibitor may be used, or multiple types may be used in combination. Of these, in the present invention, phenol-based, hindered amine-based, nitroso-based, and nitroxyl radical-based inhibitors are preferred.
  • phenol-based polymerization inhibitors include, for example, monophenols such as 2,6-di-t-butyl-p-cresol, butylated hydroxyanisole, 2,6-di-t-butyl-p-ethylphenol, stearyl- ⁇ -(3,5-di-t-butyl-4-hydroxyphenyl)propionate, isooctyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate, 2,4-bis-(n-octylthio)-6-(4-hydroxy-3,5-di-t-butylanilino)-1,3,5-triazine, and 2,4-bis[(octylthio)methyl]-o-cresol; -t-butylphenol), 2,2'-methylenebis(4-ethyl-6-t-butylphenol), 4,4'-thiobis(3-methyl-6-t-butyl
  • sulfur-based polymerization inhibitors examples include, but are not limited to, dilauryl-3,3'-thiodipropionate, dimyristyl-3,3'-thiodipropionate, and distearyl-3,3'-thiodipropionate.
  • Examples of the phosphorus-based polymerization inhibitors include triphenyl phosphite, diphenyl isodecyl phosphite, phenyl diisodecyl phosphite, tris(nonylphenyl) phosphite, diisodecyl pentaerythritol phosphite, tris(2,4-di-t-butylphenyl) phosphite, cyclic neopentane tetrayl bis(octadecyl) phosphite, cyclic neopentane tetrayl bi(2,4-di-t-butylphenyl) phosphite, cyclic neopentane tetrayl bi(2,4-di-t-butyl-4-methylphenyl) phosphite, bis[2-t -butyl-6-
  • Examples of the above hindered amine-based polymerization inhibitors include ADK STAB LA-40MP, ADK STAB LA-40Si, ADK STAB LA-402AF, ADK STAB LA-87, DEKA STAB LA-82, DEKA STAB LA-81, ADK STAB LA-77Y, ADK STAB LA-77G, ADK STAB LA-72, ADK STAB LA-68, ADK STAB LA-63P, ADK STAB LA-57, ADK STAB L A-52, Chimassorb 2020FDL, Chimassorb 944FDL, Chimassorb 944LD, Tinuvin 622SF, Tinuvin PA144, Tinuvin 765, Tinuvin 770DF, Tinuvin XT55FB, Tinuvin 111FDL, Tinuvin 783FDL, Tinuvin 791FB, etc., but are not limited to these.
  • nitroso-based polymerization inhibitor examples include, but are not limited to, p-nitrosophenol, N-nitrosodiphenylamine, ammonium salt of N-nitrosophenylhydroxyamine, (cupferron), etc. Among these, the ammonium salt of N-nitrosophenylhydroxyamine (cupferron) is preferred.
  • nitroxyl radical polymerization inhibitor examples include, but are not limited to, di-tert-butyl nitroxide, 2,2,6,6-tetramethylpiperidine-1-oxyl, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-oxo-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-acetoxy-2,2,6,6-tetramethylpiperidine-1-oxyl, and 4-benzoyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl.
  • the curable resin composition of the present invention may contain a flame retardant.
  • the flame retardant include halogen-based flame retardants, inorganic flame retardants (antimony compounds, metal hydroxides, nitrogen compounds, boron compounds, etc.), and phosphorus-based flame retardants. From the viewpoint of achieving halogen-free flame retardancy, phosphorus-based flame retardants are preferred.
  • the phosphorus-based flame retardant may be of a reactive type or an additive type.
  • phosphoric acid esters such as trimethyl phosphate, triethyl phosphate, tricresyl phosphate, trixylyleneyl phosphate, cresyl diphenyl phosphate, cresyl-2,6-dixylyleneyl phosphate, 1,3-phenylene bis(dixylyleneyl phosphate), 1,4-phenylene bis(dixylyleneyl phosphate), and 4,4'-biphenyl(dixylyleneyl phosphate), phosphanes such as 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and 10(2,5-dihydroxyphenyl)-10H-9-oxa-10-phosphaphenanthrene-10-oxide, phosphorus-containing epoxy compounds obtained by reacting epoxy resins with active hydrogen of the phosphanes, red phosphorus, and the like, but are not limited thereto.
  • phosphoric acid esters such as
  • phosphates, phosphanes, and phosphorus-containing epoxy compounds are preferred, with 1,3-phenylenebis(dixylilenyl phosphate), 1,4-phenylenebis(dixylilenyl phosphate), 4,4'-biphenyl(dixylilenyl phosphate) and phosphorus-containing epoxy compounds being particularly preferred.
  • the content of the flame retardant is preferably in the range of 0.1 to 0.6 parts by mass, assuming that the sum of components (A) and (B) is 100 parts by mass. If the content is less than 0.1 part by mass, the flame retardancy may be insufficient, and if the content is more than 0.6 part by mass, the moisture absorption and dielectric properties of the cured product may be adversely affected.
  • the curable resin composition of the present invention may contain a light stabilizer.
  • a light stabilizer a hindered amine light stabilizer, particularly HALS, etc.
  • HALS include a reaction product of dibutylamine, 1,3,5-triazine, N,N'-bis(2,2,6,6-tetramethyl-4-piperidyl-1,6-hexamethylenediamine and N-(2,2,6,6-tetramethyl-4-piperidyl)butylamine, a reaction product of dimethyl succinate-1-(2-hydroxyethyl)-4-hydroxy-2,2,6,6-tetramethylpiperidine, poly[ ⁇ 6-(1,1,3,3-tetramethylbutyl)amino-1,3,5-triazine-2,4-diyl ⁇ (2,2,6,6-tetramethyl-4-piperidyl)imino ⁇ hexamethylene ⁇ (2,2,6,6-tetramethyl-4-piperidyl)imin
  • the content of the light stabilizer is preferably in the range of 0.001 to 0.1 parts by mass, assuming that the sum of components (A) and (B) is 100 parts by mass. If it is less than 0.001 parts by mass, it may be insufficient to exert a light stabilizing effect, and if it is more than 0.1 parts by mass, it may have a negative effect on the moisture absorption and dielectric properties of the cured product.
  • the curable resin composition of the present invention may use a binder resin.
  • the binder resin include, but are not limited to, butyral resins, acetal resins, acrylic resins, epoxy-nylon resins, NBR-phenol resins, epoxy-NBR resins, and silicone resins. These may be used alone or in combination.
  • the amount of binder resin used is preferably within a range that does not impair the flame retardancy and heat resistance of the cured product, and is preferably 0.05 to 50 parts by mass, and more preferably 0.05 to 20 parts by mass, if the total of components (A) and (B) is 100 parts by mass, as needed.
  • the curable resin composition of the present invention may contain additives, such as modified acrylonitrile copolymers, polyethylene, fluororesins, silicone gels, silicone oils, surface treatment agents for fillers such as silane coupling agents, release agents, and colorants such as carbon black, phthalocyanine blue, and phthalocyanine green.
  • additives such as modified acrylonitrile copolymers, polyethylene, fluororesins, silicone gels, silicone oils, surface treatment agents for fillers such as silane coupling agents, release agents, and colorants such as carbon black, phthalocyanine blue, and phthalocyanine green.
  • the amount of additive is preferably 1,000 parts by mass or less, and more preferably 700 parts by mass or less, per 100 parts by mass of the curable resin composition.
  • the curable resin composition of the present invention may further contain epoxy resins, active ester compounds, phenolic resins, polyphenylene ether compounds, amine resins, compounds having ethylenically unsaturated bonds, isocyanate resins, polyamide resins, cyanate ester resins, polyimide resins, polybutadiene and modified products thereof, polystyrene and modified products thereof, etc., which may be used alone or in combination.
  • polyphenylene ether compounds compounds having ethylenically unsaturated bonds, cyanate ester resins, polybutadiene and modified products thereof, and polystyrene and modified products thereof, in view of the balance of heat resistance, adhesion, and dielectric properties.
  • polyphenylene ether compounds compounds having ethylenically unsaturated bonds, cyanate ester resins, polybutadiene and modified products thereof, and polystyrene and modified products thereof, in view of the balance of heat resistance, adhesion, and dielectric properties.
  • the amount of the above compounds used is preferably 10 times by mass or less, more preferably 5 times by mass or less, and particularly preferably 3 times by mass or less, relative to the amount of component (A).
  • the preferred lower limit is 0.1 times by mass or more, more preferably 0.25 times by mass or more, and even more preferably 0.5 times by mass or more.
  • epoxy resin Preferred examples of the epoxy resin are shown below, but the epoxy resin is not limited thereto.
  • the epoxy resin may be liquid or solid, and may be used alone or in combination.
  • liquid epoxy resins examples include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol AF type epoxy resins, naphthalene type epoxy resins, glycidyl ester type epoxy resins, glycidyl amine type epoxy resins, phenol novolac type epoxy resins, alicyclic epoxy resins having an ester skeleton, cyclohexane type epoxy resins, cyclohexane dimethanol type epoxy resins, glycidyl amine type epoxy resins, and epoxy resins having a butadiene structure.
  • solid epoxy resins include bixylenol type epoxy resins, naphthalene type epoxy resins, naphthalene type tetrafunctional epoxy resins, cresol novolac type epoxy resins, dicyclopentadiene type epoxy resins, trisphenol type epoxy resins, naphthol type epoxy resins, biphenyl type epoxy resins, naphthylene ether type epoxy resins, anthracene type epoxy resins, bisphenol A type epoxy resins, bisphenol AF type epoxy resins, and tetraphenylethane type epoxy resins, and examples of such solid epoxy resins include naphthol type epoxy resins, bisphenol AF type epoxy resins, naphthalene type epoxy resins, and biphenyl type epoxy resins.
  • HP4032H manufactured by DIC Corporation, naphthalene type epoxy resin
  • HP-4700 manufactured by DIC Corporation, naphthalene type tetrafunctional epoxy resin
  • HP-4710 all manufactured by DIC Corporation, naphthalene type tetrafunctional epoxy resin
  • N-690 manufactured by DIC Corporation, cresol novolac type epoxy resin
  • N-695" manufactured by DIC Corporation, cresol novolac type epoxy resin
  • HP-7200 manufactured by DIC Corporation, dicyclopentadiene type epoxy resin
  • HP-7200 manufactured by DIC Corporation, dicyclopentadiene type epoxy resin
  • HP-7200 manufactured by DIC Corporation, dicyclopentadiene type epoxy resin
  • HP-7200 manufactured by DIC Corporation, dicyclopentadiene type epoxy resin
  • HP-7200 manufactured by DIC Corporation, dicyclopentadiene type epoxy resin
  • HP-7200 manufactured by DIC Corporation, dicyclopentadiene type epoxy resin
  • HP-7200HH manufactured by DIC Corporation, dicyclopentad
  • epoxy resin "EXA-7311”, “EXA-7311-G3", “EXA-7311-G4", “EXA-7311-G4S”, "HP-6000” (all manufactured by DIC Corporation, naphthylene ether type epoxy resin), "EPPN-502H” (manufactured by Nippon Kayaku Co., Ltd., trisphenol type epoxy resin), "NC-7000L”, “NC-7300” (all manufactured by Nippon Kayaku Co., Ltd., naphthol-cresol novolac type epoxy resin), "NC-3000H”, “NC-3000”, “NC-3000L”, “NC-3100” (all manufactured by Nippon Kayaku Co., Ltd., biphenyl ether type epoxy resin).
  • the active ester compound refers to a compound that contains at least one ester bond in the structure and has an aliphatic chain, an aliphatic ring, or an aromatic ring bonded to both sides of the ester bond.
  • the active ester compound include compounds having two or more highly reactive ester groups in one molecule, such as phenol esters, thiophenol esters, N-hydroxyamine esters, and esters of heterocyclic hydroxy compounds, and are obtained by a condensation reaction between at least one compound of a carboxylic acid compound, an acid chloride, or a thiocarboxylic acid compound and at least one compound of a hydroxy compound or a thiol compound.
  • the hydroxy compound is preferably a phenol compound or a naphthol compound.
  • the active ester compound may be used alone or in combination of two or more types.
  • carboxylic acid compounds examples include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, and pyromellitic acid.
  • Examples of the acid chlorides include acetyl chloride, acrylic acid chloride, methacrylic acid chloride, malonyl chloride, succinic acid dichloride, diglycolyl chloride, glutaric acid dichloride, suberic acid dichloride, sebacic acid dichloride, adipic acid dichloride, dodecandioyl dichloride, azelaic acid chloride, 2,5-furandicarbonyl dichloride, phthaloyl chloride, isophthaloyl chloride, terephthaloyl chloride, trimesic acid chloride, bis(4-chlorocarbonylphenyl) ether, 4,4'-diphenyldicarbonyl chloride, and 4,4'-azodibenzoyl dichloride.
  • phenol compounds and naphthol compounds include, for example, hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol S, phenolphthaline, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m-cresol, p-cresol, catechol, ⁇ -naphthol, ⁇ -naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucin, benzenetriol, dicyclopentadiene-type diphenol compounds, phenol novolac, and phenol resins described below.
  • dicyclopentadiene-type diphenol compounds refers to diphenol compounds obtained by condensing one molecule of dicyclopentadiene with two molecules of
  • active ester compounds include active ester compounds containing a dicyclopentadiene-type diphenol structure, active ester compounds containing a naphthalene structure, active ester compounds containing an acetylated phenol novolac, active ester compounds containing a benzoylated phenol novolac, the compounds described in Example 2 of WO 2020/095829, and the compounds disclosed in WO 2020/059625.
  • active ester compounds containing a naphthalene structure and active ester compounds containing a dicyclopentadiene-type diphenol structure are more preferred.
  • the dicyclopentadiene-type diphenol structure refers to a divalent structural unit consisting of phenylene-dicyclopentylene-phenylene.
  • active ester compounds include, for example, "EXB9451”, “EXB9460”, “EXB9460S”, “HPC-8000-65T”, “HPC-8000H-65TM”, “EXB-8000L-65TM”, and “EXB-8150-65T” (manufactured by DIC Corporation) as active ester compounds containing a dicyclopentadiene-type diphenol structure, “EXB9416-70BK” (manufactured by DIC Corporation) as an active ester compound containing a naphthalene structure, and "phenolnoxamine” (manufactured by DIC Corporation).
  • active ester compounds containing acetylated volac examples include “DC808” (manufactured by Mitsubishi Chemical Corporation), active ester compounds containing benzoylated phenol novolac include “YLH1026", “YLH1030", and “YLH1048” (manufactured by Mitsubishi Chemical Corporation), active ester curing agent that is an acetylated phenol novolac, and "EXB-9050L-62M” (manufactured by DIC Corporation) as an active ester curing agent containing phosphorus atoms.
  • the ratio ( ⁇ / ⁇ ) of the active ester equivalent ( ⁇ ) to the epoxy equivalent ( ⁇ ) is preferably 0.5 to 1.5, more preferably 0.8 to 1.2, and even more preferably 0.90 to 1.10. Outside the above range, there is a risk that excess epoxy groups or active ester groups will remain in the system, which may cause deterioration of characteristics in high-temperature storage tests (e.g., 150°C, 1000 hours) or long-term reliability tests under high-temperature and high-humidity conditions (e.g., temperature: 85°C, humidity: 85%).
  • a phenolic resin is a compound having two or more phenolic hydroxyl groups in a molecule.
  • the phenolic resin include, but are not limited to, a reaction product of a phenol with an aldehyde, a reaction product of a phenol with a diene compound, a reaction product of a phenol with a ketone, a reaction product of a phenol with a substituted biphenyl, a reaction product of a phenol with a substituted phenyl, a reaction product of a bisphenol with an aldehyde, and the like. These may be used alone or in combination. Specific examples of the above-mentioned raw materials are given below, but the raw materials are not limited thereto.
  • Phenol alkyl-substituted phenol, aromatic-substituted phenol, hydroquinone, resorcin, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl-substituted dihydroxybenzene, dihydroxynaphthalene, etc.
  • ⁇ Aldehydes > Formaldehyde, acetaldehyde, alkyl aldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaraldehyde, phthalaldehyde, crotonaldehyde, cinnamaldehyde, furfural, and the like.
  • ⁇ Diene Compound Dicyclopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinylnorbornene, tetrahydroindene, divinylbenzene, divinylbiphenyl, diisopropenylbiphenyl, butadiene, isoprene, and the like.
  • ⁇ Ketones Acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, benzophenone, fluorenone, etc.
  • ⁇ Substituted biphenyls > 4,4'-bis(chloromethyl)-1,1'-biphenyl, 4,4'-bis(methoxymethyl)-1,1'-biphenyl, 4,4'-bis(hydroxymethyl)-1,1'-biphenyl, and the like.
  • ⁇ Substituted phenyls > 1,4-bis(chloromethyl)benzene, 1,4-bis(methoxymethyl)benzene, 1,4-bis(hydroxymethyl)benzene and the like.
  • the polyphenylene ether compound is preferably a polyphenylene ether compound having an ethylenically unsaturated bond, and more preferably a polyphenylene ether compound having an acrylic group, a methacrylic group, or a styrene structure.
  • Commercially available products include SA-9000 (manufactured by SABIC, a polyphenylene ether compound having a methacrylic group) and OPE-2St 1200 (manufactured by Mitsubishi Gas Chemical Company, a polyphenylene ether compound having a styrene structure).
  • the number average molecular weight (Mn) of the polyphenylene ether compound is preferably 500 to 5000, more preferably 2000 to 5000, and more preferably 2000 to 4000. If the molecular weight is less than 500, the heat resistance of the cured product tends to be insufficient. If the molecular weight is more than 5000, the melt viscosity increases and sufficient fluidity cannot be obtained, which tends to lead to molding defects. In addition, the reactivity decreases, the curing reaction takes a long time, and the amount of unreacted material that is not incorporated into the curing system increases, which decreases the glass transition temperature of the cured product and tends to decrease the heat resistance of the cured product.
  • the number average molecular weight of the polyphenylene ether compound is 500 to 5000, it is possible to exhibit excellent heat resistance, moldability, etc. while maintaining excellent dielectric properties.
  • the number average molecular weight here can be specifically measured using gel permeation chromatography, etc.
  • the polyphenylene ether compound may be one obtained by a polymerization reaction, or one obtained by a redistribution reaction of a high molecular weight polyphenylene ether compound having a number average molecular weight of about 10,000 to 30,000. These may also be used as raw materials and reacted with a compound having an ethylenically unsaturated bond, such as methacryl chloride, acrylic chloride, or chloromethylstyrene, to impart radical polymerizability.
  • a compound having an ethylenically unsaturated bond such as methacryl chloride, acrylic chloride, or chloromethylstyrene
  • the polyphenylene ether compound obtained by the redistribution reaction may be obtained, for example, by heating a high molecular weight polyphenylene ether compound in a solvent such as toluene in the presence of a phenolic compound and a radical initiator to cause a redistribution reaction.
  • the polyphenylene ether compound obtained by the redistribution reaction in this way has hydroxyl groups derived from phenolic compounds that contribute to hardening at both ends of the molecular chain, and is therefore preferable in that it can maintain even higher heat resistance, and that functional groups can be introduced at both ends of the molecular chain even after modification with a compound having an ethylenically unsaturated bond.
  • the polyphenylene ether compound obtained by the polymerization reaction is also preferable in that it exhibits excellent fluidity.
  • the molecular weight of the polyphenylene ether compound can be adjusted by adjusting the polymerization conditions.
  • the molecular weight of the obtained polyphenylene ether compound can be adjusted by adjusting the conditions of the redistribution reaction. More specifically, it is possible to adjust the amount of the phenolic compound used in the redistribution reaction. That is, the greater the amount of the phenolic compound, the lower the molecular weight of the obtained polyphenylene ether compound.
  • poly(2,6-dimethyl-1,4-phenylene ether) or the like can be used as a high molecular weight polyphenylene ether compound that undergoes the redistribution reaction.
  • the phenolic compound used in the redistribution reaction is not particularly limited, but for example, a multifunctional phenolic compound having two or more phenolic hydroxyl groups in the molecule, such as bisphenol A, phenol novolac, cresol novolac, etc., is preferably used. These may be used alone or in combination of two or more.
  • the content of the polyphenylene ether compound is not particularly limited, but is preferably 5 to 1000 parts by mass, and more preferably 10 to 750 parts by mass, assuming that the total mass of components (A) and (B) is 100 parts by mass. If the content of the polyphenylene ether compound is in the above range, it is preferable in that not only is the heat resistance excellent, but also a cured product that fully exhibits the excellent dielectric properties of the polyphenylene ether compound can be obtained.
  • the amine resin is a compound having two or more amino groups in the molecule.
  • the amine resin include diaminodiphenylmethane, diaminodiphenylsulfone, isophoronediamine, naphthalenediamine, aniline novolak (a reaction product of aniline and formalin), N-methylaniline novolak (a reaction product of N-methylaniline and formalin), orthoethylaniline novolak (a reaction product of orthoethylaniline and formalin), a reaction product of 2-methylaniline and formalin, a reaction product of 2,6-diisopropylaniline and formalin, a reaction product of 2,6-diethylaniline and formalin, a reaction product of 2-ethyl-6-ethylaniline and formalin, a reaction product of 2,6-dimethylaniline and formalin, and a reaction product obtained by reacting aniline and xylylene chloride.
  • aniline resin examples include, but are not limited to, the aniline resin disclosed in Japanese Patent No. 6429862, a reaction product of aniline and a substituted biphenyl (4,4'-bis(chloromethyl)-1,1'-biphenyl and 4,4'-bis(methoxymethyl)-1,1'-biphenyl, etc.), a reaction product of aniline and a substituted phenyl (1,4-bis(chloromethyl)benzene, 1,4-bis(methoxymethyl)benzene and 1,4-bis(hydroxymethyl)benzene, etc.), 4,4'-(1,3-phenylenediisopropylidene)bisaniline, 4,4'-(1,4-phenylenediisopropylidene)bisaniline, a reaction product of aniline and diisopropenylbenzene, dimer diamine, etc. Furthermore, these may be used alone or in combination.
  • the compound containing an ethylenically unsaturated bond is a compound having one or more ethylenically unsaturated bonds in the molecule that can be polymerized by heat or light, regardless of whether a polymerization initiator is used or not.
  • Examples of the compound containing an ethylenically unsaturated bond include, but are not limited to, a reaction product of the phenol resin with an ethylenically unsaturated bond-containing halogen-based compound (chloromethylstyrene, allyl chloride, methallyl chloride, acrylic acid chloride, methacrylic acid chloride, etc.), a reaction product of an ethylenically unsaturated bond-containing phenol (2-allylphenol, 2-propenylphenol, 4-allylphenol, 4-propenylphenol, eugenol, isoeugenol, etc.) with a halogen-based compound (1,4-bis(chloromethyl)benzene, 4,4'-bis(chloromethyl)biphenyl, 4,4'-difluorobenzophenone, 4,4'-dichlorobenzophenone, 4,4'-dibromobenzophenone, cyanuric chloride, etc.), a reaction
  • An isocyanate resin is a compound having two or more isocyanate groups in the molecule.
  • the isocyanate resin include aromatic diisocyanates such as p-phenylene diisocyanate, m-phenylene diisocyanate, p-xylylene diisocyanate, m-xylylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, and naphthalene diisocyanate; aliphatic or alicyclic diisocyanates such as isophorone diisocyanate, hexamethylene diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, hydrogenated xylene diisocyanate, norbornene diisocyanate, and lysine diisocyanate; polyisocyanates such as one or more biure
  • polyamide resin examples include reaction products of one or more of diamines, diisocyanates, and oxazolines with dicarboxylic acids, reaction products of diamines with acid chlorides, and ring-opening polymers of lactam compounds. These may be used alone or in combination. Specific examples of the above-mentioned raw materials are given below, but the raw materials are not limited thereto.
  • ⁇ Dicarboxylic acid> Oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, terephthalic acid, isophthalic acid, 5-hydroxyisophthalic acid, 2-chloroterephthalic acid, 2-methylterephthalic acid, 5-methylisophthalic acid, 5-sodium sulfoisophthalic acid, hexahydroterephthalic acid, hexahydroisophthalic acid, cyclohexanedicarboxylic acid, biphenyldicarboxylic acid, naphthalenedicarboxylic acid, benzophenonedicarboxylic acid, furandicarboxylic acid, 4,4'-dicarboxydiphenyl ether, and 4,4'-dicarboxydiphenyl sulfide.
  • ⁇ Acid chloride Acetyl chloride, acrylic acid chloride, methacrylic acid chloride, malonyl chloride, succinic acid dichloride, diglycolyl chloride, glutaric acid dichloride, suberic acid dichloride, sebacic acid dichloride, adipic acid dichloride, dodecandioyl dichloride, azelaic acid chloride, 2,5-furandicarbonyl dichloride, phthaloyl chloride, isophthaloyl chloride, terephthaloyl chloride, trimesic acid chloride, bis(4-chlorocarbonylphenyl) ether, 4,4'-diphenyldicarbonyl chloride, 4,4'-azodibenzoyl dichloride, and the like.
  • ⁇ Lactam > ⁇ -caprolactam, ⁇ -undecanelactam, ⁇ -laurolactam, and the like.
  • polyimide resin examples include, but are not limited to, reaction products of the diamines and the tetracarboxylic dianhydrides shown below. These may be used alone or in combination.
  • the cyanate ester resin is a cyanate ester compound obtained by reacting a phenol resin with a cyanogen halide, and specific examples thereof include dicyanatobenzene, tricyanatobenzene, dicyanatonaphthalene, dicyanatobiphenyl, 2,2'-bis(4-cyanatophenyl)propane, bis(4-cyanatophenyl)methane, bis(3,5-dimethyl-4-cyanatophenyl)methane, 2,2'-bis(3,5-dimethyl-4-cyanatophenyl)propane, 2,2'-bis(4-cyanatophenyl)ethane, 2,2'-bis(4-cyanatophenyl)hexafluoropropane, bis(4-cyanatophenyl)sulfone, bis(4-cyanatophenyl)thioether, phenol novolac cyanate, and phenol-dicyclopent
  • the cyanate ester compound is particularly preferred as the cyanate ester compound because it has low moisture absorption, excellent flame retardancy, and excellent dielectric properties.
  • the cyanate ester resin may contain a catalyst such as zinc naphthenate, cobalt naphthenate, copper naphthenate, lead naphthenate, zinc octoate, tin octoate, lead acetylacetonate, or dibutyltin maleate, if necessary, to trimerize the cyanate group to form a sym-triazine ring.
  • the catalyst is preferably used in an amount of 0.0001 to 0.10 parts by mass, and more preferably 0.00015 to 0.0015 parts by mass, per 100 parts by mass of the cyanate ester resin and the combined mass of components (A) and (B).
  • polybutadiene and its modified products are polybutadiene or compounds having a structure derived from polybutadiene in the molecule.
  • the unsaturated bonds in the polybutadiene-derived structure may be partially or entirely converted to single bonds by hydrogenation.
  • Examples of polybutadiene and modified products thereof include, but are not limited to, polybutadiene, hydroxyl-terminated polybutadiene, (meth)acrylated polybutadiene, carboxylic acid-terminated polybutadiene, amine-terminated polybutadiene, styrene butadiene rubber, and the like. These may be used alone or in combination.
  • polybutadiene or styrene butadiene rubber is preferred from the viewpoint of dielectric properties.
  • styrene butadiene rubber examples include RICON-100, RICON-181, RICON-184 (all manufactured by Cray Valley Corporation), 1,2-SBS (manufactured by Nippon Soda Co., Ltd.), and examples of polybutadiene include B-1000, B-2000, B-3000 (all manufactured by Nippon Soda Co., Ltd.).
  • the molecular weight of polybutadiene and styrene butadiene rubber is preferably a weight average molecular weight of 500 to 10,000, more preferably 750 to 7,500, and even more preferably 1,000 to 5,000.
  • component (A) of the present invention is excellent in compatibility with materials having low polarity and low dielectric properties and compounds composed only of hydrocarbons, due to the fact that it is not a skeleton design in which heteroatoms such as oxygen and nitrogen are actively introduced.
  • Polystyrene and its modified products are polystyrene or compounds having a structure derived from polystyrene in the molecule.
  • examples of polystyrene and modified products thereof include polystyrene, styrene-2-isopropenyl-2-oxazoline copolymers (Epocross RPS-1005, RP-61, both manufactured by Nippon Shokubai Co., Ltd.), SEP (styrene-ethylene-propylene copolymer: Septon 1020, manufactured by Kuraray Co., Ltd.), SEPS (styrene-ethylene-propylene-styrene copolymer: Septon 2002, Septon 2004F, Septon 2005, Septon 2006, Septon 2063, Septon 2104, all manufactured by Kuraray Co., Ltd.), SEEPS (styrene-ethylene/ethylene-propylene-styrene block copolymer: Septon 4003,
  • block copolymer examples include Septon 8004, Septon 8006, and Septon 8007L, all manufactured by Kuraray Co., Ltd.), SEEPS-OH (a compound having a hydroxyl group at the end of a styrene-ethylene/ethylene propylene-styrene block copolymer: Septon HG252, manufactured by Kuraray Co., Ltd.), SIS (styrene-isoprene-styrene block copolymer: Septon 5125 and Septon 5127, both manufactured by Kuraray Co., Ltd.), hydrogenated SIS (hydrogenated styrene-isoprene-styrene block copolymer: Hybler 7125F and Hybler 7311F, both manufactured by Kuraray Co., Ltd.), SIBS (styrene-isobutylene-styrene block copolymer: SIBSTAR073T, SIBSTAR102T, and SIBSTAR103T (all manufactured by Kan
  • Polystyrene and its modified products are preferably those that do not have unsaturated bonds, since they have higher heat resistance and are less susceptible to oxidation degradation.
  • the weight-average molecular weight of polystyrene and its modified products is not particularly limited as long as it is 10,000 or more, but if it is too large, the compatibility with not only polyphenylene ether compounds but also low molecular weight components with weight-average molecular weights of about 50 to 1,000 and oligomer components with weight-average molecular weights of about 1,000 to 5,000 deteriorates, making it difficult to ensure mixing and solvent stability, so it is preferably about 10,000 to 300,000.
  • the curable resin composition of the present invention can be obtained by preparing the above components in a prescribed ratio, pre-curing at 130-180°C for 30-500 seconds, and then post-curing at 150-200°C for 2-15 hours, allowing the curing reaction to proceed sufficiently to obtain the cured product of the present invention.
  • the components of the curable resin composition can also be uniformly dispersed or dissolved in a solvent, etc., and cured after removing the solvent.
  • each component may be mixed uniformly or may be prepolymerized.
  • a mixture of component (A) and component (B) is prepolymerized by heating in the presence or absence of a curing accelerator or polymerization initiator, and in the presence or absence of a solvent.
  • amine compounds, compounds having ethylenically unsaturated bonds, maleimide compounds, cyanate ester compounds, polybutadiene and its modified products, polystyrene and its modified products, inorganic fillers, and other additives may be added to form a prepolymer.
  • the components may be mixed or prepolymerized using, for example, an extruder, kneader, rolls, etc. in the absence of a solvent, and a reaction kettle with a stirrer, etc. in the presence of a solvent.
  • the mixture is kneaded at a temperature in the range of 50 to 100°C using a device such as a kneader, roll, or planetary mixer to obtain a uniform resin composition.
  • the obtained resin composition is crushed and then molded into a cylindrical tablet using a molding machine such as a tablet machine, or into a granular powder or powder molded body, or these compositions can be melted on a surface support and molded into a sheet having a thickness of 0.05 mm to 10 mm to obtain a molded curable resin composition.
  • the obtained molded body is a non-sticky molded body at 0 to 20°C, and even if stored at -25 to 0°C for one week or more, the flowability and curability are hardly reduced.
  • the obtained molded article can be molded into a cured product using a transfer molding machine or a compression molding machine.
  • the curable resin composition of the present invention can be made into a varnish-like composition (hereinafter, simply referred to as varnish) by adding an organic solvent.
  • the curable resin composition of the present invention can be dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc.
  • a varnish which can be impregnated into a substrate such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc., and dried by heating to obtain a prepreg, which can be hot-press molded to obtain a cured product of the curable resin composition of the present invention.
  • the solvent used in this case is in an amount that occupies 10 to 70% by weight, preferably 15 to 70% by weight, of the mixture of the curable resin composition of the present invention and the solvent. If the composition is in a liquid state, a curable resin composition containing carbon fiber can be obtained as it is, for example, by the RTM method.
  • the curable resin composition of the present invention can also be used as a modifier for film-type compositions. Specifically, it can be used to improve flexibility in the B-stage.
  • a film-type resin composition can be obtained as a sheet-like adhesive by applying the curable resin composition of the present invention as the curable resin composition varnish onto a release film, removing the solvent under heating, and then performing B-stage conversion.
  • This sheet-like adhesive can be used as an interlayer insulating layer in multilayer substrates, etc.
  • the curable resin composition of the present invention can be heated and melted to reduce the viscosity, and impregnated into reinforcing fibers such as glass fibers, carbon fibers, polyester fibers, polyamide fibers, and alumina fibers to obtain a prepreg.
  • reinforcing fibers such as glass fibers, carbon fibers, polyester fibers, polyamide fibers, and alumina fibers
  • Specific examples include glass fibers such as E glass cloth, D glass cloth, S glass cloth, Q glass cloth, spherical glass cloth, NE glass cloth, and T glass cloth, as well as inorganic fibers other than glass, and organic fibers such as polyparaphenylene terephthalamide (Kevlar (registered trademark), manufactured by DuPont), fully aromatic polyamide, polyester, polyparaphenylene benzoxazole, polyimide, and carbon fibers, but are not limited to these.
  • the shape of the substrate is not particularly limited, but examples include woven fabric, nonwoven fabric, roving, chopped strand mat, and the like.
  • plain weave, saddle weave, twill weave, and the like are known as ways of weaving woven fabric, and these known methods can be appropriately selected and used depending on the intended use and performance.
  • woven fabrics that have been subjected to fiber opening treatment and glass woven fabrics that have been surface-treated with a silane coupling agent or the like are preferably used.
  • the thickness of the substrate is not particularly limited, but is preferably about 0.01 to 0.4 mm. Prepregs can also be obtained by impregnating reinforcing fibers with the varnish and drying them by heating.
  • a laminate can be manufactured using the prepreg.
  • the laminate is not particularly limited as long as it has one or more prepregs, and may have any other layer.
  • the manufacturing method of the laminate can be appropriately applied by a generally known method, and is not particularly limited. For example, when molding a metal foil-clad laminate, a multi-stage press machine, a multi-stage vacuum press machine, a continuous molding machine, an autoclave molding machine, etc. can be used, and the prepregs are laminated together and heated and pressurized to obtain a laminate. At this time, the heating temperature is not particularly limited, but is preferably 65 to 300 ° C, and more preferably 120 to 270 ° C.
  • the pressure to be applied is not particularly limited, but if the pressure is too high, it is difficult to adjust the solid content of the resin of the laminate, and the quality is not stable, and if the pressure is too low, air bubbles and adhesion between the laminates are deteriorated, so that 2.0 to 5.0 MPa is preferable, and 2.5 to 4.0 MPa is more preferable.
  • the laminate of this embodiment can be suitably used as a metal foil-clad laminate described later by providing a layer made of metal foil. The prepreg is cut into a desired shape and laminated with copper foil or the like as necessary. The laminate is then heated and cured while applying pressure thereto by press molding, autoclave molding, sheet winding molding or the like, to obtain an electrical and electronic laminate (printed wiring board) or a carbon fiber reinforced material.
  • the curable resin composition of the present invention can also be made into a resin sheet.
  • a method for obtaining a resin sheet from the curable resin composition of the present invention includes, for example, applying the curable resin composition onto a support film (support), drying the composition, and forming a resin composition layer on the support film.
  • the curable resin composition of the present invention it is essential that the film softens under the lamination temperature conditions (70°C to 140°C) in the vacuum lamination method, and exhibits fluidity (resin flow) that allows resin to fill via holes or through holes in the circuit board at the same time as laminating the circuit board, and it is preferable to mix the above-mentioned components so as to exhibit such characteristics.
  • the obtained resin sheet or circuit board (copper-clad laminate, etc.) is required to have a uniform appearance in order to exhibit a certain performance at any part without causing a phenomenon in which different characteristic values are locally exhibited due to phase separation, etc.
  • the through holes in the circuit board have a diameter of 0.1 to 0.5 mm and a depth of 0.1 to 1.2 mm, and it is preferable to make it possible to fill them with resin within this range. If both sides of the circuit board are to be laminated, it is desirable to fill about half of the through holes.
  • a specific method for producing the resin sheet is to prepare a resin composition that has been varnished by blending an organic solvent, and then to apply the varnished resin composition to the surface of a support film (Y), and then to dry the organic solvent by heating or blowing hot air onto the resin composition to form a resin composition layer (X).
  • the organic solvents used here preferably include, for example, ketones such as acetone, methyl ethyl ketone, and cyclohexanone; acetate esters such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, and carbitol acetate; carbitols such as cellosolve and butyl carbitol; aromatic hydrocarbons such as toluene and xylene; dimethylformamide, dimethylacetamide, and N-methylpyrrolidone; and it is preferable to use them in a proportion that results in a non-volatile content of 30 to 60% by mass.
  • ketones such as acetone, methyl ethyl ketone, and cyclohexanone
  • acetate esters such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether
  • the thickness of the resin composition layer (X) formed must be equal to or greater than the thickness of the conductor layer. Since the thickness of the conductor layer of the circuit board is in the range of 5 to 70 ⁇ m, the thickness of the resin composition layer (X) is preferably 10 to 100 ⁇ m.
  • the resin composition layer (X) in the present invention may be protected with a protective film, which will be described later. By protecting the resin composition layer with a protective film, it is possible to prevent the adhesion of dirt and the like to the surface of the resin composition layer and prevent scratches.
  • the support film and protective film may be made of polyolefins such as polyethylene, polypropylene, and polyvinyl chloride; polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate; polycarbonate; polyimide; and even release paper and metal foils such as copper foil and aluminum foil.
  • the support film and protective film may be subjected to a mud treatment, corona treatment, or release treatment. There are no particular limitations on the thickness of the support film, but it is generally in the range of 10 to 150 ⁇ m, and preferably 25 to 50 ⁇ m.
  • the protective film is preferably made 1 to 40 ⁇ m thick.
  • the support film (Y) is peeled off after laminating it onto the circuit board, or after forming an insulating layer by heat curing. If the support film (Y) is peeled off after the resin composition layer constituting the resin sheet has been heat cured, the adhesion of dust and the like during the curing process can be prevented. If the support film is peeled off after curing, a release treatment is applied to the support film beforehand.
  • a multilayer printed circuit board can be manufactured from the resin sheet obtained as described above.
  • the protective film is peeled off, and then the resin composition layer (X) is laminated on one or both sides of the circuit board so as to be in direct contact with the circuit board, for example, by a vacuum lamination method.
  • the lamination method may be a batch method or a continuous method using a roll. If necessary, the resin sheet and the circuit board may be heated (preheated) before lamination.
  • the lamination conditions are preferably a pressure bonding temperature (lamination temperature) of 70 to 140°C, a pressure bonding pressure of 1 to 11 kgf/cm 2 (9.8 ⁇ 10 4 to 107.9 ⁇ 10 4 N/m 2 ), and lamination is preferably performed under reduced pressure of 20 mmHg (26.7 hPa) or less.
  • the curable resin composition of the present invention can be used to manufacture semiconductor devices.
  • semiconductor devices include DIP (dual in-line package), QFP (quad flat package), BGA (ball grid array), CSP (chip size package), SOP (small outline package), TSOP (thin small outline package), TQFP (thin quad flat package), etc.
  • the curable resin composition of the present invention and its cured product can be used in a wide range of fields. Specifically, they can be used in various applications such as molding materials, adhesives, composite materials, and paints.
  • the cured product of the curable resin composition of the present invention exhibits excellent heat resistance and dielectric properties, and is therefore suitable for use in electrical and electronic components such as encapsulants for semiconductor elements, encapsulants for liquid crystal display elements, encapsulants for organic EL elements, laminates (printed wiring boards, BGA substrates, build-up substrates, etc.), lightweight and high-strength structural composite materials such as carbon fiber reinforced plastics and glass fiber reinforced plastics, 3D printing, etc.
  • GPC Gal Permeation Chromatography
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • GPC DGU-20A3R, LC-20AD, SIL-20AHT, RID-20A, SPD-20A, CTO-20A, CBM-20A (all manufactured by Shimadzu Corporation)
  • the mixture was allowed to cool to room temperature, and the removed toluene and water were returned to the system, and 88 parts of 30% aqueous sodium hydroxide solution were added to perform neutralization. Thereafter, the organic layer was washed with water and concentrated until the waste liquid was neutral, and 458 parts of aromatic amine resin (A1) represented by the following formula (5) was obtained.
  • the amine equivalent of the aromatic amine resin (A1) was 185 g/eq, and the softening point was 58.7°C.
  • Example 1 Each material was dissolved in acetone in the proportions shown in Table 1 to a solid content of 70% by mass, mixed, and pre-dried in a vacuum oven at 60°C for 30 minutes, and then pre-dried at 120°C for 30 minutes. 5 g of the obtained powder was used, sandwiched between mirror-finished copper foil (T4X: manufactured by Fukuda Metal Copper Foil Co., Ltd.), vacuum press molded, and cured at 220°C for 2 hours. At this time, a spacer was used in which the center of a cushion paper with a thickness of 250 ⁇ m was cut out to 150 mm in length and width. For the evaluation, a test piece was cut to the desired size using a laser cutter as necessary, and the evaluation was performed. The evaluation results are shown in Table 1. DMA charts of Example 1 and Comparative Example 1 are also shown in FIG. 4.
  • Dynamic viscoelasticity measuring instrument TA-instruments, DMA-2980 Measurement temperature range: -30 to 280°C Heating rate: 2°C/min Frequency: 10Hz
  • Test piece size A piece cut to 5 mm x 50 mm was used (thickness: 0.2 mm)
  • the sample size was 5 mm wide x 50 mm long, and the thickness was 0.2 mm.
  • Example 1 has superior high heat resistance and low water absorption properties compared to the case where the maleimide compound is radically polymerized alone. Also, the results in Figure 4 confirm that Example 1 has superior curability compared to the case where the maleimide compound is cured alone, as no increase in elastic modulus was observed after 300°C due to uncured maleimide groups.
  • Example 2 Comparative Example 2
  • Each material was dissolved in acetone in the proportions shown in Table 2 to a solid content of 70% by mass, mixed, and pre-dried in a vacuum oven at 60°C for 30 minutes, and then pre-dried at 120°C for 30 minutes.
  • 5 g of the obtained powder was used and vacuum press molded while sandwiching it between mirror-finished copper foil (T4X: manufactured by Fukuda Metal Copper Foil Co., Ltd.), and cured at 220°C for 2 hours.
  • a spacer was used in which the center of a 250 ⁇ m-thick cushion paper was cut out to 150 mm in length and width.
  • a test piece was cut to the desired size using a laser cutter as necessary, and evaluation was performed. The evaluation results are shown in Table 1.
  • ⁇ Dielectric constant test/dielectric tangent test> The test was performed by a cavity resonator perturbation method using a 10 GHz cavity resonator manufactured by ATE Co., Ltd.
  • the sample size was 1.7 mm wide x 100 mm long, and the thickness was 0.1 mm.
  • Dynamic viscoelasticity measuring instrument TA-instruments, DMA-2980 Measurement temperature range: -30 to 280°C Heating rate: 2°C/min Frequency: 10Hz
  • Test piece size A piece cut to 5 mm x 50 mm was used (thickness: 0.1 mm)
  • Acenaphthylene JFE Chemical Corporation DCP: Dicumyl peroxide (Kayaku Akzo Co., Ltd.) NC-3000L: Biphenyl aralkyl type epoxy resin (manufactured by Nippon Kayaku Co., Ltd.) PN(H-1): Phenol novolac resin (manufactured by Meiwa Kasei Co., Ltd.) TPP: Triphenylphosphine (Tokyo Chemical Industry Co., Ltd.)
  • Example 2 has superior heat resistance and low dielectric properties compared to conventionally used epoxy resin compositions.
  • Examples 3 to 6, Comparative Examples 3 to 6 After mixing the materials in the ratios shown in Table 3, curability was evaluated by DSC. The evaluation results and the Q and e values of each compound are shown in Table 3.
  • the Q and e values of the maleimide compound (M-1) are the values of phenylmaleimide, which is a partial structure of the maleimide compound (M-1).
  • the DSC charts of Examples 3 to 5 are shown in FIG. 5, and the DSC charts of Comparative Examples 3 to 5 are shown in FIG.
  • DSC Differential scanning calorimeter: DSC6220 (manufactured by SII NanoTechnology, Inc.) Measurement temperature range: 30 to 330°C Heating rate: 10° C./min. Atmosphere: Nitrogen (30 mL/min) Sample amount: 5 mg
  • the curable resin composition, resin sheet and cured product thereof of the present invention are suitably used for electric and electronic parts such as semiconductor encapsulants, printed wiring boards and build-up laminates.

Abstract

The present invention provides a curable resin composition which exhibits good curability, while having high heat resistance and low water absorption characteristics. This curable resin composition contains (A) a maleimide compound and (B) a compound which has, as a partial structure, a functional group that has a Q value within a specific range and an e value within a specific range, the Q value being the index of the stability of radicals and the e value being the index of the polarity of radicals.

Description

硬化性樹脂組成物、樹脂シート、および硬化物CURABLE RESIN COMPOSITION, RESIN SHEET, AND CURED PRODUCT
 近年、電気・電子部品を搭載する積層板はその利用分野の拡大により、要求特性が広範かつ高度化している。従来の半導体チップは金属製のリードフレームに搭載することが主流であったが、中央処理装置(以下、CPUと表す。)などの処理能力の高い半導体チップは高分子材料で作られる積層板に搭載されることが多くなってきている。 In recent years, the required characteristics of laminates that mount electrical and electronic components have become more widespread and sophisticated due to the expansion of fields of use. Conventional semiconductor chips were mainly mounted on metal lead frames, but semiconductor chips with high processing power, such as central processing units (hereafter referred to as CPUs), are increasingly being mounted on laminates made of polymer materials.
 特にスマートフォンなどに使用されている半導体パッケージ(以下、PKGと表す。)では小型化、薄型化および高密度化の要求に応えるために、PKG基板の薄型化が求められているが、PKG基板が薄くなると剛性が低下するため、PKGをマザーボード(PCB)に半田実装する際の加熱によって、大きな反りが発生するなど不具合が発生する。これを低減するために半田実装温度以上の高TgのPKG基板材料が求められている。 In particular, semiconductor packages (hereafter referred to as PKGs) used in smartphones and other devices require thinner PKG substrates to meet the demand for smaller size, thinner thickness, and higher density. However, as the PKG substrate becomes thinner, its rigidity decreases, and defects such as large warping can occur when the PKG is heated during solder mounting to the motherboard (PCB). To reduce this, there is a demand for PKG substrate materials with a high Tg above the solder mounting temperature.
 加えて、現在開発が加速している第5世代通信システム「5G」では、さらなる大容量化と高速通信が進むことが予想されている。低誘電正接材料のニーズがますます高まってきており、少なくとも10GHzで0.005以下の誘電正接が求められている。 In addition, the development of the fifth-generation communication system "5G" is currently accelerating, and it is expected that even greater capacity and faster communication will be achieved. This will lead to an increasing need for low dielectric tangent materials, with a dielectric tangent of at least 0.005 or less at 10 GHz.
 更に、自動車分野においては電子化が進み、エンジン駆動部付近に精密電子機器が配置されることもあるため、より高水準での耐熱・耐湿性が求められる。電車やエアコン等にはSiC半導体が使用され始めており、半導体素子の封止材には極めて高い耐熱性が要求されるため、従来のエポキシ樹脂封止材では対応できなくなっている。 Furthermore, as computerization advances in the automotive field, precision electronic devices are sometimes placed near the engine drive, requiring higher levels of heat and moisture resistance. SiC semiconductors are beginning to be used in trains and air conditioners, and the encapsulation material for semiconductor elements is now required to have extremely high heat resistance, which is no longer possible with conventional epoxy resin encapsulation materials.
 このような背景を受けて、高耐熱性と低誘電特性を両立できる高分子材料が検討されている。例えば、特許文献1ではマレイミド樹脂とプロペニル基含有フェノール樹脂を含む組成物が提案されている。しかしながら、一方で硬化反応時に反応に関与しないフェノール性水酸基が残存するため、電気特性が十分とは言えない。また特許文献2では水酸基をアリル基で置換したアリルエーテル樹脂が開示されている。しかしながら、190℃においてクライゼン転位が起こることが示されており、一般的な基板の成型温度である200℃においては、硬化反応に寄与しないフェノール性水酸基が生成することから電気特性を満足できるものではない。また、これらいずれの場合も極性基であるフェノール性水酸基に由来し、吸水特性が悪化する懸念があり改善が望まれている。 In light of this background, polymeric materials that can achieve both high heat resistance and low dielectric properties are being studied. For example, Patent Document 1 proposes a composition containing a maleimide resin and a propenyl group-containing phenolic resin. However, on the other hand, since phenolic hydroxyl groups that do not participate in the reaction remain during the curing reaction, the electrical properties are not sufficient. Patent Document 2 discloses an allyl ether resin in which hydroxyl groups are replaced with allyl groups. However, it has been shown that Claisen rearrangement occurs at 190°C, and at 200°C, which is the molding temperature for general substrates, phenolic hydroxyl groups that do not contribute to the curing reaction are generated, so the electrical properties are not satisfactory. In addition, in both cases, there is a concern that the water absorption properties will deteriorate due to the phenolic hydroxyl groups, which are polar groups, and improvements are desired.
特開平04-359911号公報Japanese Patent Application Laid-Open No. 04-359911 国際公開第2016/002704号International Publication No. 2016/002704
 本発明は、上記の点に鑑みてなされたものであり、高耐熱性かつ低吸水特性を有する硬化性樹脂組成物を提供することを目的とするものである。 The present invention was made in consideration of the above points, and aims to provide a curable resin composition that has high heat resistance and low water absorption properties.
 本発明者らは上記課題を解決するために鋭意研究した結果、マレイミド化合物と、ラジカルの安定性の指標であるQ値、及びラジカルの極性の指標であるe値が特定の範囲にある化合物と、を含有する硬化性樹脂組成物が硬化性に優れ、その硬化物が高耐熱性と低吸水特性に優れることを見出し、本発明を完成させるに至った。 As a result of intensive research conducted by the inventors to solve the above problems, they discovered that a curable resin composition containing a maleimide compound and a compound having a Q value, which is an index of radical stability, and an e value, which is an index of radical polarity, falling within a specific range has excellent curing properties, and the cured product has excellent heat resistance and low water absorption properties, which led to the completion of the present invention.
 すなわち本発明は、下記[1]~[7]に関する。なお、本発明において「(数値1)~(数値2)」は上下限値を含むことを示す。
[1]
 (A)マレイミド化合物と、
 (B)Q値が0~1.0であり、e値が-2.0~0.7である化合物と、
 を含有する硬化性樹脂組成物。
[2]
 前記成分(B)が分子内に芳香環を有する化合物である、前項[1]に記載の硬化性樹脂組成物。
[3]
 前記成分(B)が、下記式(4)で表される化合物である、前項[1]に記載の硬化性樹脂組成物。
That is, the present invention relates to the following [1] to [7]. Note that in the present invention, "(Numerical value 1) to (Numerical value 2)" indicates that the upper and lower limits are included.
[1]
(A) a maleimide compound;
(B) a compound having a Q value of 0 to 1.0 and an e value of −2.0 to 0.7;
A curable resin composition comprising:
[2]
The curable resin composition according to the above item [1], wherein the component (B) is a compound having an aromatic ring in the molecule.
[3]
The curable resin composition according to the above item [1], wherein the component (B) is a compound represented by the following formula (4):
(式(4)中、Xはエチレン性不飽和2重結合、もしくはアセチレン性不飽和3重結合を有する官能基を表し、Arはベンゼン環又はナフタレン環を表す。Yは水素原子又は炭素数1~20の炭化水素基である。kは1~4の整数を表す。)
[4]
 前記成分(A)が下記式(1)で表される化合物である、前項[1]に記載の硬化性樹脂組成物。
(In formula (4), X represents a functional group having an ethylenically unsaturated double bond or an acetylenically unsaturated triple bond, Ar represents a benzene ring or a naphthalene ring, Y represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and k represents an integer of 1 to 4.)
[4]
The curable resin composition according to the above item [1], wherein the component (A) is a compound represented by the following formula (1):
(式(1)中、Xはそれぞれ独立して下記式(2-a)~(2-c)で表される構造で表されるいずれか1種を表す。Rは水素原子、炭素数1~10の炭化水素基、またはハロゲン化アルキル基を表す。mは1~3の整数を表し、nは繰り返し数であり、nの平均値naveは1<nave<10である。) (In formula (1), X's each independently represent any one of the structures represented by the following formulae (2-a) to (2-c). R represents a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, or a halogenated alkyl group. m represents an integer of 1 to 3, n represents the number of repetitions, and the average value n ave of n is 1<n ave <10.)
(式(2-a)~式(2-c)中、*はベンゼン環への結合を表す。Rはそれぞれ独立して水素原子、炭素数1~20のアルキル基を表し、qはそれぞれ独立して1~4の整数を表す。)
[5]
 さらに、重合開始剤を含む前項[1]から[4]のいずれか一項に記載の硬化性樹脂組成物。
[6]
 前項[1]から[5]のいずれか一項に記載の硬化性樹脂組成物と支持体を含む樹脂シート。
[7]
 前項[1]から[5]のいずれか一項に記載の硬化性樹脂組成物の硬化物。
(In formulas (2-a) to (2-c), * represents a bond to a benzene ring. Each R2 independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and each q independently represents an integer of 1 to 4.)
[5]
The curable resin composition according to any one of the above items [1] to [4], further comprising a polymerization initiator.
[6]
A resin sheet comprising the curable resin composition according to any one of items [1] to [5] above and a support.
[7]
A cured product of the curable resin composition according to any one of the above items [1] to [5].
 本発明によれば、硬化性、高耐熱性、低吸水特性に優れる硬化性樹脂組成物及びその硬化物を提供することが可能である。 The present invention makes it possible to provide a curable resin composition that has excellent curability, high heat resistance, and low water absorption properties, and a cured product thereof.
合成例1のGPCチャートを示す。1 shows a GPC chart of Synthesis Example 1. 合成例1のHPLCチャートを示す。1 shows an HPLC chart of Synthesis Example 1. 合成例1のH-NMRチャートを示す。The 1 H-NMR chart of Synthesis Example 1 is shown below. 実施例1および比較例1のDMAチャートを示す。DMA charts of Example 1 and Comparative Example 1 are shown. 実施例3~5のDSCチャートを示す。The DSC charts of Examples 3 to 5 are shown. 比較例3~5のDSCチャートを示す。The DSC charts of Comparative Examples 3 to 5 are shown.
 本発明の硬化性樹脂組成物は、(A)マレイミド化合物(以下、成分(A)ともいう。)と、(B)Q値が0~1.0、e値が-2.0~0.7である化合物(以下、成分(B)ともいう。)と、を含有する。 The curable resin composition of the present invention contains (A) a maleimide compound (hereinafter also referred to as component (A)) and (B) a compound having a Q value of 0 to 1.0 and an e value of -2.0 to 0.7 (hereinafter also referred to as component (B)).
 本発明の成分(A)であるマレイミド化合物とは、分子内に1つ以上マレイミド基を有する化合物のことを言う。成分(A)としては、例えば、4,4’-ジフェニルメタンビスマレイミド、ポリフェニルメタンマレイミド、m-フェニレンビスマレイミド、2,2’-ビス〔4-(4-マレイミドフェノキシ)フェニル〕プロパン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、4,4’-ジフェニルエーテルビスマレイミド、4,4’-ジフェニルスルフォンビスマレイミド、1,3-ビス(3-マレイミドフェノキシ)ベンゼン、1,3-ビス(4-マレイミドフェノキシ)ベンゼン)、ザイロック型マレイミド化合物(アニリックス マレイミド、三井化学ファイン社製)、ビフェニルアラルキル型マレイミド化合物(特開2009-001783号公報の実施例4に記載のマレイミド化合物(M2)を含む樹脂溶液を減圧下溶剤留去することにより固形化したもの)、ビスアミノクミルベンゼン型マレイミド(国際公開第2020/054601号記載のマレイミド化合物および下記式(3)で示される化合物)、特許6629692号または国際公開第2020/217679号記載のインダン構造を有するマレイミド化合物、MATERIAL STAGE Vоl.18,Nо.12 2019 『~続・エポキシ樹脂CAS番号物語~硬化剤CAS番号備忘録 第31回 ビスマレイミド(1)』やMATERIAL STAGE Vоl.19,Nо.2 2019 『~続・エポキシ樹脂CAS番号物語~硬化剤CAS番号備忘録 第32回 ビスマレイミド(2)』に記載されているマレイミド化合物等が挙げられるが、これらに限定されるものではない。また、これらは1種類で用いても、複数併用してもよい。 The maleimide compound, which is component (A) of the present invention, refers to a compound having one or more maleimide groups in the molecule. Examples of component (A) include 4,4'-diphenylmethane bismaleimide, polyphenylmethane maleimide, m-phenylene bismaleimide, 2,2'-bis[4-(4-maleimidophenoxy)phenyl]propane, 3,3'-dimethyl-5,5'-diethyl-4,4'-diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, 4,4'-diphenylether bismaleimide, 4,4'-diphenylsulfone bismaleimide, 1,3-bis(3-maleimidophenoxy)benzene, 1,3-bis(4-maleimidophenoxy)benzene), xylo arylalkyl-type maleimide compounds (Anilix Maleimide, manufactured by Mitsui Fine Chemicals Co., Ltd.), biphenylaralkyl-type maleimide compounds (solidified by distilling off the solvent under reduced pressure from a resin solution containing the maleimide compound (M2) described in Example 4 of JP 2009-001783 A), bisaminocumylbenzene-type maleimides (maleimide compounds described in WO 2020/054601 A and compounds represented by the following formula (3)), maleimide compounds having an indane structure described in Japanese Patent No. 6629692 or WO 2020/217679, MATERIAL STAGE Vol. 18, No. 12, 2019 ``Continued Epoxy Resin CAS Number Story - Hardener CAS Number Memorandum No. 31 Bismaleimide (1)'' and MATERIAL STAGE Vol. 19, No. 2 2019 "Continued Epoxy Resin CAS Number Story - Hardener CAS Number Memorandum No. 32 Bismaleimide (2)" includes maleimide compounds, but is not limited to these. These may be used alone or in combination.
 本発明の成分(A)は、溶剤溶解性・誘電特性・耐熱性の観点からフェニルマレイミド構造を有するマレイミド化合物であることが好ましく、下記式(1)で表されることが更に好ましい。
From the viewpoints of solvent solubility, dielectric properties, and heat resistance, the component (A) of the present invention is preferably a maleimide compound having a phenylmaleimide structure, and more preferably represented by the following formula (1).
 式(1)中、Xはそれぞれ独立して下記式(2-a)~(2-c)で表される構造で表されるいずれか1種を表す。Rは水素原子、炭素数1~10の炭化水素基、またはハロゲン化アルキル基を表し、水素原子であるときが特に好ましい。nは繰り返し数であり、nの平均値naveは1<nave<10である。naveの値はマレイミド樹脂のゲルパーミエーションクロマトグラフィー(GPC)の測定により求められた重量平均分子量(Mw)の値から算出することができる。 In formula (1), X each independently represents any one of the structures represented by the following formulae (2-a) to (2-c). R represents a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, or a halogenated alkyl group, and is particularly preferably a hydrogen atom. n is the number of repetitions, and the average value n ave of n is 1<n ave <10. The value of n ave can be calculated from the weight average molecular weight (Mw) determined by measurement of the maleimide resin by gel permeation chromatography (GPC).
 式(2-a)~式(2-c)中、*はベンゼン環への結合を表す。Rはそれぞれ独立して水素原子、炭素数1~20のアルキル基を表し、水素原子であるときが特に好ましい。qはそれぞれ独立して1~4の整数を表す。 In formulae (2-a) to (2-c), * represents a bond to a benzene ring. R2 each independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and is particularly preferably a hydrogen atom. q each independently represents an integer of 1 to 4.
 前記式(1)中のXは、前記式(2-b)で表される構造であるときが特に好ましく、下記式(3)として表すことができる。
X in the formula (1) is particularly preferably a structure represented by the formula (2-b) above, which can be represented by the following formula (3).
 式(3)中、Rは水素原子、炭素数1~10の炭化水素基、またはハロゲン化アルキル基を表し、水素原子であるときが特に好ましい。nは繰り返し数であり、nの平均値naveは1<nave<10である。naveの値はマレイミド樹脂のゲルパーミエーションクロマトグラフィー(GPC)の測定により求められた重量平均分子量(Mw)の値から算出することができる。 In formula (3), R represents a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, or a halogenated alkyl group, and is particularly preferably a hydrogen atom. n represents the number of repetitions, and the average value n ave of n is 1<n ave <10. The value of n ave can be calculated from the value of the weight average molecular weight (Mw) determined by measurement of the maleimide resin by gel permeation chromatography (GPC).
 本発明の成分(B)はQ値が0~1.0、e値が-2.0~0.7である化合物である。Q値は0.03~0.8である場合がさらに好ましく、e値は-2.0~0.5である場合がさらに好ましい。 Component (B) of the present invention is a compound having a Q value of 0 to 1.0 and an e value of -2.0 to 0.7. It is more preferable that the Q value is 0.03 to 0.8, and it is even more preferable that the e value is -2.0 to 0.5.
 本発明のQ値、e値とは、Alfrey,PriceによるQ,e論に基づくものであり、ビニル化合物の重合反応における反応性を置換基による分極性、共鳴効果(および立体因子)により決定されることを、経験的にではあるが定量化して表したものであり、「高分子化学」(共立出版、村橋俊介編、75~77頁)等の一般的な高分子の教科書記載があり、スチレンを基準に様々なモノマーのQ値およびe値が求められている。Q値はラジカルの安定性を示す指標であり、Q値が小さいとラジカルが不安定となるため反応性が良好となりやすい。e値はラジカルの極性(電気的偏り)を示す指標であり、モノマー同士の値が大きく離れた場合、特に正負の符号の組み合わせである場合に共重合しやすい。 The Q and e values of the present invention are based on the Q and e theory of Alfrey and Price, and are an empirical, but quantified, expression of the fact that the reactivity in the polymerization reaction of vinyl compounds is determined by the polarizability and resonance effect (and steric factors) of the substituents. These are described in general polymer textbooks such as "Polymer Chemistry" (Kyoritsu Shuppan, edited by Murahashi Shunsuke, pp. 75-77), where the Q and e values of various monomers are determined based on styrene as the standard. The Q value is an index of radical stability; if the Q value is small, the radical becomes unstable and tends to have good reactivity. The e value is an index of radical polarity (electrical bias), and copolymerization is likely to occur when the values of the monomers differ greatly, especially when they are a combination of positive and negative signs.
 成分(B)は分子内に芳香環を有することが好ましい。芳香環としては、例えば、ベンゼン環、ビフェニル環、ナフタレン環、インデン環、テルフェニル環、アセナフチレン環、フルオレン環、フェナレン環、フェナントレン環、アントラセン環などを挙げることができ、Q値およびe値の観点から、ベンゼン環、ナフタレン環、アセナフチレン環を有する化合物である場合、マレイミド化合物を組み合わせることで硬化性が向上するため特に好ましい。例えば、フェニルマレイミド(芳香族マレイミドの部分構造)のe値は3.24、アセナフチレンのe値は-1.88であり、各官能基におけるオレフィンの電子密度の差が非常に大きいため高い硬化促進効果が見込める。 Component (B) preferably has an aromatic ring in the molecule. Examples of aromatic rings include a benzene ring, a biphenyl ring, a naphthalene ring, an indene ring, a terphenyl ring, an acenaphthylene ring, a fluorene ring, a phenalene ring, a phenanthrene ring, and an anthracene ring. From the viewpoint of Q value and e value, compounds having a benzene ring, a naphthalene ring, or an acenaphthylene ring are particularly preferred because the combination with a maleimide compound improves the curing properties. For example, the e value of phenylmaleimide (a partial structure of aromatic maleimide) is 3.24, and the e value of acenaphthylene is -1.88, and the difference in electron density of the olefin in each functional group is very large, so a high curing promotion effect can be expected.
 また、成分(B)は下記式(4)で表されるときが好ましい。 Furthermore, it is preferable that component (B) is represented by the following formula (4).
(式(4)中、Xはエチレン性不飽和2重結合、もしくはアセチレン性不飽和3重結合を有する官能基を表し、Arはベンゼン環又はナフタレン環を表す。Yは水素原子又は炭素数1~20の炭化水素基である。kは1~4の整数を表す。) (In formula (4), X represents a functional group having an ethylenically unsaturated double bond or an acetylenically unsaturated triple bond, Ar represents a benzene ring or a naphthalene ring, Y represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and k represents an integer of 1 to 4.)
 前記式(4)中のXは、下記式(a)~(e)で表されることが好ましく、下記式(a)~(c)で表される官能基を有することがさらに好ましい。 In the formula (4), X is preferably represented by the following formulas (a) to (e), and more preferably has a functional group represented by the following formulas (a) to (c).
(式(a)~(e)中、*は前記式(4)中のArとの結合位置を表す。*が2つある場合、ベンゼン環又はナフタレン環上の2つの炭素との結合を表す。) (In formulas (a) to (e), * indicates the bonding position with Ar in formula (4). When there are two *, it indicates bonds with two carbons on the benzene ring or naphthalene ring.)
 式(4)で表される化合物としてはアセナフチレンが好ましい。アセナフチレンとしてはコールタールから精製したものを用いてもよく、アセナフテンの脱水素や、1-アセナフテノールの脱水によって合成したものを用いてもよい。市販のアセナフチレンとしては、例えばJFEケミカル株式会社のアセナフチレン等が挙げられる。 Acenaphthylene is preferred as the compound represented by formula (4). Acenaphthylene refined from coal tar may be used, or it may be synthesized by dehydrogenating acenaphthene or dehydrating 1-acenaphthenol. Commercially available acenaphthylene includes, for example, acenaphthylene from JFE Chemical Corporation.
 成分(A)の含有量は成分(B)100質量部に対し、1質量部以上1000質量部以下であり、より好ましくは5質量部以上500質量部以下であり、さらに好ましくは10質量部以上300質量部以下である。上記範囲の場合、マレイミドの電子不足なオレフィンと成分(B)の電子豊富なオレフィンの交互共重合が進行しやすく、硬化性が改善されるため、耐熱性向上の観点からも好ましい。 The content of component (A) is from 1 to 1,000 parts by mass, more preferably from 5 to 500 parts by mass, and even more preferably from 10 to 300 parts by mass, per 100 parts by mass of component (B). Within the above range, alternating copolymerization of the electron-deficient olefin of the maleimide and the electron-rich olefin of component (B) is facilitated, improving curability, and is also preferred from the standpoint of improving heat resistance.
[硬化促進剤]
 本発明の硬化性樹脂組成物は、硬化促進剤を添加することにより硬化性を向上させることもできる。硬化促進剤としては、紫外線や可視光の照射または加熱によりアニオンを発生することで硬化反応を促すアニオン系硬化促進剤、もしくは紫外線や可視光の照射または加熱によりカチオンを発生することで硬化反応を促すカチオン系硬化促進剤が好ましい。
[Cure accelerator]
The curable resin composition of the present invention can also have improved curability by adding a curing accelerator. As the curing accelerator, an anionic curing accelerator that accelerates the curing reaction by generating anions upon irradiation with ultraviolet light or visible light or heating, or a cationic curing accelerator that accelerates the curing reaction by generating cations upon irradiation with ultraviolet light or visible light or heating, is preferred.
 アニオン系硬化促進剤としては、例えば、2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール等のイミダゾール類、トリエチルアミン、トリブチルアミン等のトリアルキルアミン、4-ジメチルアミノピリジン、ベンジルジメチルアミン、2,4,6,-トリス(ジメチルアミノメチル)フェノール、1,8-ジアザビシクロ(5,4,0)-ウンデセン等が挙げられ、4-ジメチルアミノピリジン、1,8-ジアザビシクロ(5,4,0)-ウンデセンが好ましい。その他、トリフェニルホスフィン等のホスフィン類、テトラブチルアンモニウム塩、トリイソプロピルメチルアンモニウム塩、トリメチルデカニルアンモニウム塩、セチルトリメチルアンモニウム塩、ヘキサデシルトリメチルアンモニウムヒドロキシドなどの4級アンモニウム塩等が挙げられるが、これらに限定されるものではない。また、これらは1種類で用いても、複数併用してもよい。 Examples of anionic curing accelerators include imidazoles such as 2-methylimidazole, 2-ethylimidazole, and 2-ethyl-4-methylimidazole; trialkylamines such as triethylamine and tributylamine; 4-dimethylaminopyridine, benzyldimethylamine, 2,4,6-tris(dimethylaminomethyl)phenol, and 1,8-diazabicyclo(5,4,0)-undecene; of which 4-dimethylaminopyridine and 1,8-diazabicyclo(5,4,0)-undecene are preferred. Other examples include phosphines such as triphenylphosphine; and quaternary ammonium salts such as tetrabutylammonium salts, triisopropylmethylammonium salts, trimethyldecanylammonium salts, cetyltrimethylammonium salts, and hexadecyltrimethylammonium hydroxide, but are not limited to these. These may be used alone or in combination.
 カチオン系硬化促進剤としては例えば、トリフェニルベンジルフォスフォニウム塩、トリフェニルエチルフォスフォニウム塩、テトラブチルフォスフォニウム塩などの4級フォスフォニウム塩(4級塩のカウンターイオンはハロゲン、有機酸イオン、水酸化物イオンなど、特に指定は無いが、特に有機酸イオン、水酸化物イオンが好ましい。)、オクチル酸スズ、カルボン酸亜鉛(2-エチルヘキサン酸亜鉛、ステアリン酸亜鉛、ベヘン酸亜鉛、ミリスチン酸亜鉛)、リン酸エステル亜鉛(オクチルリン酸亜鉛、ステアリルリン酸亜鉛)等の遷移金属化合物(遷移金属塩)等を挙げることができるが、これらに限定されるものではない。また、これらは1種類で用いても、複数併用してもよい。 Examples of cationic curing accelerators include quaternary phosphonium salts such as triphenylbenzylphosphonium salt, triphenylethylphosphonium salt, and tetrabutylphosphonium salt (the counter ion of the quaternary salt may be a halogen, an organic acid ion, a hydroxide ion, or the like, but is not limited to organic acid ions and hydroxide ions); transition metal compounds (transition metal salts) such as tin octylate, zinc carboxylate (zinc 2-ethylhexanoate, zinc stearate, zinc behenate, zinc myristate), and zinc phosphate ester (zinc octylphosphate, zinc stearylphosphate); but are not limited to these. These may be used alone or in combination.
 硬化促進剤の配合量は、成分(A)および(B)の合計を100質量とした場合、0.01~5.0質量部が必要に応じて用いられる。 The amount of the curing accelerator used is 0.01 to 5.0 parts by mass, if the total of components (A) and (B) is 100 parts by mass, as required.
[無機充填剤]
 本発明の硬化性樹脂組成物は、無機充填剤を含有しても良い。無機充填剤としては、例えば、溶融シリカ、結晶シリカ、多孔質シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、石英粉、炭化珪素、窒化珪素、窒化ホウ素、ジルコニア、窒化アルミニウム、グラファイト、フォルステライト、ステアタイト、スピネル、ムライト、チタニア、タルク、クレー、酸化鉄、アスベスト、ガラス粉末等の粉体、またはこれらを球形状あるいは破砕状にした無機充填材等を挙げることができるが、これらに限定されるものではない。また、これらは1種類で用いても、複数併用してもよい。
[Inorganic filler]
The curable resin composition of the present invention may contain an inorganic filler. Examples of inorganic fillers include powders such as fused silica, crystalline silica, porous silica, alumina, zircon, calcium silicate, calcium carbonate, quartz powder, silicon carbide, silicon nitride, boron nitride, zirconia, aluminum nitride, graphite, forsterite, steatite, spinel, mullite, titania, talc, clay, iron oxide, asbestos, and glass powder, and inorganic fillers obtained by making these into a spherical or crushed shape, but are not limited thereto. In addition, these may be used alone or in combination.
 無機充填材を半導体封止用の硬化性樹脂組成物を得る場合の使用量は硬化性樹脂組成物100質量部中、好ましくは80~92質量部であり、さらに好ましくは83~90質量部である。また、層間絶縁層形成材料、銅張積層板やプリプレグ、RCC等の基板材料用の硬化性樹脂組成物を得る場合、上記の無機充填材の使用量は硬化性樹脂組成物100質量部中、好ましくは5~80質量部、さらに好ましくは10~60質量部である。 When obtaining a curable resin composition for semiconductor encapsulation, the inorganic filler is used in an amount of preferably 80 to 92 parts by mass, and more preferably 83 to 90 parts by mass, per 100 parts by mass of the curable resin composition. When obtaining a curable resin composition for use as an interlayer insulating layer forming material, or as a substrate material such as a copper-clad laminate, prepreg, or RCC, the inorganic filler is used in an amount of preferably 5 to 80 parts by mass, and more preferably 10 to 60 parts by mass, per 100 parts by mass of the curable resin composition.
[重合開始剤]
 本発明の硬化性樹脂組成物は、重合開始剤を添加することにより硬化性を向上させることもできる。重合開始剤とは、エチレン性不飽和結合等のオレフィン官能基を重合させることが可能な化合物であり、オレフィンメタセシス重合開始剤、アニオン重合開始剤、カチオン重合開始剤、ラジカル重合開始剤等が挙げられる。このなかでも硬化性および適度な安定性を有するラジカル重合開始剤を使用することが好ましい。ラジカル重合開始剤とは紫外線や可視光の照射または加熱によりラジカルを生じ、連鎖重合反応を開始させる化合物をいう。用い得るラジカル重合開始剤としては、有機過酸化物、アゾ系化合物、ベンゾピナコール類等が挙げられ、硬化温度制御やアウトガス抑制、分解物の電気特性への影響が少ないことから有機過酸化物を使用することが好ましい。
[Polymerization initiator]
The curable resin composition of the present invention can also improve the curability by adding a polymerization initiator. The polymerization initiator is a compound capable of polymerizing an olefin functional group such as an ethylenically unsaturated bond, and examples of the polymerization initiator include an olefin metathesis polymerization initiator, an anionic polymerization initiator, a cationic polymerization initiator, and a radical polymerization initiator. Among these, it is preferable to use a radical polymerization initiator having curability and moderate stability. The radical polymerization initiator is a compound that generates radicals by irradiation with ultraviolet light or visible light or by heating, and starts a chain polymerization reaction. Examples of radical polymerization initiators that can be used include organic peroxides, azo compounds, and benzopinacoles, and it is preferable to use an organic peroxide because it has little effect on curing temperature control, outgassing suppression, and electrical properties of decomposition products.
 上記有機過酸化物としては、例えば、メチルエチルケトンパーオキサイド、アセチルアセトンパーオキサイド等のケトンパーオキサイド類、過酸化ベンゾイル等のジアシルパーオキサイド類、ジクミルパーオキサイド、1,3-ビス-(t-ブチルパーオキシイソプロピル)-ベンゼン等のジアルキルパーオキサイド類、t-ブチルパーオキシベンゾエート、1,1-ジ-t-ブチルパーオキシシクロヘキサン等のパーオキシケタール類、α-クミルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート、t-ブチルペルオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、t-アミルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-アミルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-アミルパーオキシベンゾエート等のアルキルパーエステル類、ジ-2-エチルヘキシルパーオキシジカーボネート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、t-ブチルパーオキシイソプロピルカーボネート、1,6-ビス(t-ブチルパーオキシカルボニルオキシ)ヘキサン等のパーオキシカーボネート類、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ブチルパーオキシオクトエート、ラウロイルパーオキサイド等が挙げられるが、これらに限定されるものではない。また、これらは1種類で用いても、複数併用してもよい。上記有機過酸化物の中でも、ケトンパーオキサイド類、ジアシルパーオキサイド類、ハイドロパーオキサイド類、ジアルキルパーオキサイド類、パーオキシケタール類、アルキルパーエステル類、パーオキシカーボネート類等が好ましく、ジアルキルパーオキサイド類がより好ましい。 The above organic peroxides include, for example, ketone peroxides such as methyl ethyl ketone peroxide and acetylacetone peroxide, diacyl peroxides such as benzoyl peroxide, dialkyl peroxides such as dicumyl peroxide and 1,3-bis-(t-butylperoxyisopropyl)-benzene, peroxyketals such as t-butyl peroxybenzoate and 1,1-di-t-butylperoxycyclohexane, α-cumyl peroxyneodecanoate, t-butyl peroxyneodecanoate, t-butyl peroxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, t-amyl peroxy-2-ethylhexanoate, and t-butyl peroxypivalate. Examples of the peroxycarbonate include, but are not limited to, alkyl peresters such as peroxy-2-ethylhexanoate, t-amylperoxy-3,5,5-trimethylhexanoate, t-butylperoxy-3,5,5-trimethylhexanoate, and t-amylperoxybenzoate, peroxycarbonates such as di-2-ethylhexylperoxydicarbonate, bis(4-t-butylcyclohexyl)peroxydicarbonate, t-butylperoxyisopropylcarbonate, and 1,6-bis(t-butylperoxycarbonyloxy)hexane, t-butyl hydroperoxide, cumene hydroperoxide, t-butylperoxyoctoate, and lauroyl peroxide. These may be used alone or in combination. Among the above organic peroxides, ketone peroxides, diacyl peroxides, hydroperoxides, dialkyl peroxides, peroxyketals, alkyl peresters, peroxycarbonates, etc. are preferred, with dialkyl peroxides being more preferred.
 上記アゾ系化合物としては、例えば、アゾビスイソブチロニトリル、4,4’-アゾビス(4-シアノ吉草酸)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、等が挙げられるが、これらに限定されるものではない。また、これらは1種類で用いても、複数併用してもよい。 Examples of the azo compounds include, but are not limited to, azobisisobutyronitrile, 4,4'-azobis(4-cyanovaleric acid), 2,2'-azobis(2,4-dimethylvaleronitrile), etc. Furthermore, these may be used alone or in combination.
 重合開始剤の添加量としては、硬化性樹脂組成物100質量部に対して0.01~5質量部が好ましく、0.01~3質量部が特に好ましい。用いる重合開始剤の量が0.01質量部未満であると重合反応時に分子量が十分に伸長しない恐れがあり、5質量部より多いと誘電率、誘電正接等の誘電特性を損なう恐れがある。 The amount of polymerization initiator added is preferably 0.01 to 5 parts by mass, and particularly preferably 0.01 to 3 parts by mass, per 100 parts by mass of the curable resin composition. If the amount of polymerization initiator used is less than 0.01 parts by mass, there is a risk that the molecular weight will not be sufficiently extended during the polymerization reaction, and if it is more than 5 parts by mass, there is a risk that the dielectric properties such as the dielectric constant and dielectric loss tangent will be impaired.
[重合禁止剤]
 本発明の硬化性樹脂組成物は、重合禁止剤を含有しても良い。重合禁止剤を含有することで保管安定性が向上するとともに、反応開始温度を制御することができる。反応開始温度を制御することで、流動性の確保が容易となり、ガラスクロスなどへの含侵性が損なわれない上に、プリプレグ化などBステージ化が容易となる。プリプレグ化時に重合反応が進行しすぎると積層工程で積層が困難となるなどの不具合が発生しやすい。
[Polymerization inhibitor]
The curable resin composition of the present invention may contain a polymerization inhibitor. By containing a polymerization inhibitor, storage stability is improved and the reaction initiation temperature can be controlled. By controlling the reaction initiation temperature, it becomes easy to ensure fluidity, impregnation into glass cloth and the like is not impaired, and B-stage such as prepreg formation is facilitated. If the polymerization reaction proceeds too much during prepreg formation, problems such as difficulty in lamination during the lamination process are likely to occur.
 重合禁止剤は、成分(A)を合成するときに添加しても、合成後に添加してもよい。重合禁止剤の使用量は、成分(A)100重量部に対して、0.008~1重量部、好ましくは0.01~0.5重量部である。 The polymerization inhibitor may be added when component (A) is synthesized or after synthesis. The amount of polymerization inhibitor used is 0.008 to 1 part by weight, preferably 0.01 to 0.5 parts by weight, per 100 parts by weight of component (A).
 重合禁止剤としては、例えば、フェノール系、イオウ系、リン系、ヒンダートアミン系、ニトロソ系、ニトロキシルラジカル系等が挙げられる。また、重合禁止剤は1種類で用いても、複数併用してもよい。これらのうち本発明では、フェノール系、ヒンダートアミン系、ニトロソ系、ニトロキシルラジカル系が好ましい。 Examples of polymerization inhibitors include phenol-based, sulfur-based, phosphorus-based, hindered amine-based, nitroso-based, and nitroxyl radical-based. Furthermore, one type of polymerization inhibitor may be used, or multiple types may be used in combination. Of these, in the present invention, phenol-based, hindered amine-based, nitroso-based, and nitroxyl radical-based inhibitors are preferred.
 上記フェノール系重合禁止剤としては、例えば、2,6-ジ-t-ブチル-p-クレゾール、ブチル化ヒドロキシアニソール、2,6-ジ-t-ブチル-p-エチルフェノール、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、イソオクチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、2,4-ビス[(オクチルチオ)メチル]-o-クレゾール等のモノフェノール類、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、3,5-ジ-t-ブチル-4-ヒドロキシベンジルフォスフォネート-ジエチルエステル、3,9-ビス[1,1-ジメチル-2-{β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル]2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジルスルホン酸エチル)カルシウム等のビスフェノール類、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、テトラキス-[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン、ビス[3,3’-ビス-(4’-ヒドロキシ-3’-t-ブチルフェニル)ブチリックアシッド]グリコールエステル、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレイト、1,3,5-トリス(3’,5’-ジ-t-ブチル-4’-ヒドロキシベンジル)-S-トリアジン-2,4,6-(1H,3H,5H)トリオン、トコフェノール等の高分子型フェノール類等が挙げられるが、これらに限定されるものではない。 The above-mentioned phenol-based polymerization inhibitors include, for example, monophenols such as 2,6-di-t-butyl-p-cresol, butylated hydroxyanisole, 2,6-di-t-butyl-p-ethylphenol, stearyl-β-(3,5-di-t-butyl-4-hydroxyphenyl)propionate, isooctyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate, 2,4-bis-(n-octylthio)-6-(4-hydroxy-3,5-di-t-butylanilino)-1,3,5-triazine, and 2,4-bis[(octylthio)methyl]-o-cresol; -t-butylphenol), 2,2'-methylenebis(4-ethyl-6-t-butylphenol), 4,4'-thiobis(3-methyl-6-t-butylphenol), 4,4'-butylidenebis(3-methyl-6-t-butylphenol), triethylene glycol-bis[3-(3-t-butyl-5-methyl-4-hydroxyphenyl)propionate], 1,6-hexanediol-bis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], N,N'-hexamethylenebis(3,5-di-t-butyl-4-hydroxy-hydrocinnamamide), 2,2-thio-diethylenebis[3-(3,5- di-t-butyl-4-hydroxyphenyl)propionate], 3,5-di-t-butyl-4-hydroxybenzylphosphonate-diethyl ester, 3,9-bis[1,1-dimethyl-2-{β-(3-t-butyl-4-hydroxy-5-methylphenyl)propionyloxy}ethyl]2,4,8,10-tetraoxaspiro[5,5]undecane, bis(3,5-di-t-butyl-4-hydroxybenzylsulfonate ethyl)calcium and other bisphenols, 1,1,3-tris(2-methyl-4-hydroxy-5-t-butylphenyl)butane, 1,3,5-trimethyl-2,4,6-tris(3,5-di-t -butyl-4-hydroxybenzyl)benzene, tetrakis-[methylene-3-(3',5'-di-t-butyl-4'-hydroxyphenyl)propionate]methane, bis[3,3'-bis-(4'-hydroxy-3'-t-butylphenyl)butyric acid]glycol ester, tris-(3,5-di-t-butyl-4-hydroxybenzyl)-isocyanurate, 1,3,5-tris(3',5'-di-t-butyl-4'-hydroxybenzyl)-S-triazine-2,4,6-(1H,3H,5H)trione, tocopherol and other polymeric phenols are included, but are not limited to these.
 上記イオウ系重合禁止剤としては、例えば、ジラウリル-3,3’-チオジプロピオネート、ジミリスチル-3,3’-チオジプロピオネート、ジステアリルル-3,3’-チオジプロピオネート等が挙げられるが、これらに限定されるものではない。 Examples of the sulfur-based polymerization inhibitors include, but are not limited to, dilauryl-3,3'-thiodipropionate, dimyristyl-3,3'-thiodipropionate, and distearyl-3,3'-thiodipropionate.
 上記リン系重合禁止剤としては、例えば、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、ジイソデシルペンタエリスリトールホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(オクタデシル)ホスファイト、サイクリックネオペンタンテトライルビ(2,4-ジ-t-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビ(2,4-ジ-t-ブチル-4-メチルフェニル)ホスファイト、ビス[2-t-ブチル-6-メチル-4-{2-(オクタデシルオキシカルボニル)エチル}フェニル]ヒドロゲンホスファイト等のホスファイト類、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10-デシロキシ-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド等のオキサホスファフェナントレンオキサイド類等が挙げられるが、これらに限定されるものではない。 Examples of the phosphorus-based polymerization inhibitors include triphenyl phosphite, diphenyl isodecyl phosphite, phenyl diisodecyl phosphite, tris(nonylphenyl) phosphite, diisodecyl pentaerythritol phosphite, tris(2,4-di-t-butylphenyl) phosphite, cyclic neopentane tetrayl bis(octadecyl) phosphite, cyclic neopentane tetrayl bi(2,4-di-t-butylphenyl) phosphite, cyclic neopentane tetrayl bi(2,4-di-t-butyl-4-methylphenyl) phosphite, bis[2-t -butyl-6-methyl-4-{2-(octadecyloxycarbonyl)ethyl}phenyl]hydrogen phosphite and other phosphites, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10-(3,5-di-t-butyl-4-hydroxybenzyl)-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10-decyloxy-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and other oxaphosphaphenanthrene oxides, but are not limited to these.
 上記ヒンダートアミン系重合禁止剤としては、例えば、アデカスタブLA-40MP、アデカスタブLA-40Si、アデカスタブLA-402AF、アデカスタブLA-87、デカスタブLA-82、デカスタブLA-81、アデカスタブLA-77Y、アデカスタブLA-77G、アデカスタブLA-72、アデカスタブLA-68、アデカスタブLA-63P、アデカスタブLA-57、アデカスタブLA-52、Chimassorb2020FDL、Chimassorb944FDL、Chimassorb944LD、Tinuvin622SF、TinuvinPA144、Tinuvin765、Tinuvin770DF、TinuvinXT55FB、Tinuvin111FDL、Tinuvin783FDL、Tinuvin791FB等が挙げられるが、これらに限定されるものではない。 Examples of the above hindered amine-based polymerization inhibitors include ADK STAB LA-40MP, ADK STAB LA-40Si, ADK STAB LA-402AF, ADK STAB LA-87, DEKA STAB LA-82, DEKA STAB LA-81, ADK STAB LA-77Y, ADK STAB LA-77G, ADK STAB LA-72, ADK STAB LA-68, ADK STAB LA-63P, ADK STAB LA-57, ADK STAB L A-52, Chimassorb 2020FDL, Chimassorb 944FDL, Chimassorb 944LD, Tinuvin 622SF, Tinuvin PA144, Tinuvin 765, Tinuvin 770DF, Tinuvin XT55FB, Tinuvin 111FDL, Tinuvin 783FDL, Tinuvin 791FB, etc., but are not limited to these.
 上記ニトロソ系重合禁止剤としては、例えば、p-ニトロソフェノール、N-ニトロソジフェニルアミン、N-ニトロソフェニルヒドロキシアミンのアンモニウム塩、(クペロン)等が挙げられるが、これらに限定されるものではない。これらのうち、好ましくは、N-ニトロソフェニルヒドロキシアミンのアンモニウム塩(クペロン)である。 Examples of the nitroso-based polymerization inhibitor include, but are not limited to, p-nitrosophenol, N-nitrosodiphenylamine, ammonium salt of N-nitrosophenylhydroxyamine, (cupferron), etc. Among these, the ammonium salt of N-nitrosophenylhydroxyamine (cupferron) is preferred.
 上記ニトロキシルラジカル系重合禁止剤としては、例えば、ジ-tert-ブチルニトロキサイド、2,2,6,6-テトラメチルピペリジン-1-オキシル、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル、4-オキソ-2,2,6,6-テトラメチルピペリジン-1-オキシル、4-アミノ-2,2,6,6-テトラメチルピペリジン-1-オキシル、4-メトキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル、4-アセトキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル等が挙げられるが、これらに限定されるものではない。 Examples of the nitroxyl radical polymerization inhibitor include, but are not limited to, di-tert-butyl nitroxide, 2,2,6,6-tetramethylpiperidine-1-oxyl, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-oxo-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-acetoxy-2,2,6,6-tetramethylpiperidine-1-oxyl, and 4-benzoyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl.
[難燃剤]
 本発明の硬化性樹脂組成物は、難燃剤を用いてもよい。難燃剤としては、例えば、ハロゲン系難燃剤、無機系難燃剤(アンチモン化合物、金属水酸化物、窒素化合物、ホウ素化合物等)、リン系難燃剤等が挙げられるが、ハロゲンフリー難燃性を達成する観点からリン系難燃剤が好ましい。
 上記リン系難燃剤としては反応型のものでも添加型のものでもよい。具体例としては、トリメチルホスフェート、トリエチルホスフェート、トリクレジルホスフェート、トリキシリレニルホスフェート、クレジルジフェニルホスフェート、クレジル-2,6-ジキシリレニルホスフェート、1,3-フェニレンビス(ジキシリレニルホスフェート)、1,4-フェニレンビス(ジキシリレニルホスフェート)、4,4’-ビフェニル(ジキシリレニルホスフェート)等のリン酸エステル類、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10(2,5-ジヒドロキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキサイド等のホスファン類のほか、エポキシ樹脂と前記ホスファン類の活性水素とを反応させて得られるリン含有エポキシ化合物、赤リン等が挙げられるが、これらに限定されるものではない。また、これらは1種類で用いても、複数併用してもよい。上記例示物質のうち、リン酸エステル類、ホスファン類またはリン含有エポキシ化合物が好ましく、1,3-フェニレンビス(ジキシリレニルホスフェート)、1,4-フェニレンビス(ジキシリレニルホスフェート)、4,4’-ビフェニル(ジキシリレニルホスフェート)またはリン含有エポキシ化合物が特に好ましい。
[難燃剤]
 難燃剤の含有量は成分(A)と成分(B)の総和を100質量部とした場合、0.1~0.6質量部の範囲であることが好ましい。0.1質量部未満では難燃性が不十分となる恐れがあり、0.6質量部より多いと硬化物の吸湿性、誘電特性に悪影響を及ぼす恐れがある。
[Flame retardants]
The curable resin composition of the present invention may contain a flame retardant. Examples of the flame retardant include halogen-based flame retardants, inorganic flame retardants (antimony compounds, metal hydroxides, nitrogen compounds, boron compounds, etc.), and phosphorus-based flame retardants. From the viewpoint of achieving halogen-free flame retardancy, phosphorus-based flame retardants are preferred.
The phosphorus-based flame retardant may be of a reactive type or an additive type. Specific examples include phosphoric acid esters such as trimethyl phosphate, triethyl phosphate, tricresyl phosphate, trixylyleneyl phosphate, cresyl diphenyl phosphate, cresyl-2,6-dixylyleneyl phosphate, 1,3-phenylene bis(dixylyleneyl phosphate), 1,4-phenylene bis(dixylyleneyl phosphate), and 4,4'-biphenyl(dixylyleneyl phosphate), phosphanes such as 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and 10(2,5-dihydroxyphenyl)-10H-9-oxa-10-phosphaphenanthrene-10-oxide, phosphorus-containing epoxy compounds obtained by reacting epoxy resins with active hydrogen of the phosphanes, red phosphorus, and the like, but are not limited thereto. In addition, these may be used alone or in combination. Of the above-listed substances, phosphates, phosphanes, and phosphorus-containing epoxy compounds are preferred, with 1,3-phenylenebis(dixylilenyl phosphate), 1,4-phenylenebis(dixylilenyl phosphate), 4,4'-biphenyl(dixylilenyl phosphate) and phosphorus-containing epoxy compounds being particularly preferred.
[Flame retardants]
The content of the flame retardant is preferably in the range of 0.1 to 0.6 parts by mass, assuming that the sum of components (A) and (B) is 100 parts by mass. If the content is less than 0.1 part by mass, the flame retardancy may be insufficient, and if the content is more than 0.6 part by mass, the moisture absorption and dielectric properties of the cured product may be adversely affected.
[光安定剤]
 本発明の硬化性樹脂組成物は、光安定剤を用いてもよい。光安定剤としては、ヒンダートアミン系の光安定剤、特にHALS等が好適である。HALSとしては、例えば、ジブチルアミン・1,3,5-トリアジン・N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル-1,6-ヘキサメチレンジアミンとN-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンの反応物、コハク酸ジメチル-1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン反応物、ポリ〔{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}〕、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)〔〔3,5-ビス(1,1-ジメチルエチル)-4-ヒドリキシフェニル〕メチル〕ブチルマロネート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(1-オクチロキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)等が挙げられるが、これらに限定されるものではない。また、これらは1種類で用いても、複数併用してもよい。
[Light stabilizer]
The curable resin composition of the present invention may contain a light stabilizer. As the light stabilizer, a hindered amine light stabilizer, particularly HALS, etc., is preferable. Examples of HALS include a reaction product of dibutylamine, 1,3,5-triazine, N,N'-bis(2,2,6,6-tetramethyl-4-piperidyl-1,6-hexamethylenediamine and N-(2,2,6,6-tetramethyl-4-piperidyl)butylamine, a reaction product of dimethyl succinate-1-(2-hydroxyethyl)-4-hydroxy-2,2,6,6-tetramethylpiperidine, poly[{6-(1,1,3,3-tetramethylbutyl)amino-1,3,5-triazine-2,4-diyl}{(2,2,6,6-tetramethyl-4-piperidyl)imino}hexamethylene{(2,2,6,6-tetramethyl-4-piperidyl)imino}], bis(1,2 ,2,6,6-pentamethyl-4-piperidyl)[[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]methyl]butyl malonate, bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate, bis(1,2,2,6,6-pentamethyl-4-piperidyl)sebacate, bis(1-octyloxy-2,2,6,6-tetramethyl-4-piperidyl)sebacate, 2-(3,5-di-t-butyl-4-hydroxybenzyl)-2-n-butylmalonate bis(1,2,2,6,6-pentamethyl-4-piperidyl) and the like, but are not limited thereto. These may be used alone or in combination.
 光安定剤の含有量は成分(A)と成分(B)の総和を100質量部とした場合、0.001~0.1質量部の範囲であることが好ましい。0.001質量部未満では光安定効果を発現するのに不十分となる恐れがあり、0.1質量部より多いと硬化物の吸湿性、誘電特性に悪影響を及ぼす恐れがある。 The content of the light stabilizer is preferably in the range of 0.001 to 0.1 parts by mass, assuming that the sum of components (A) and (B) is 100 parts by mass. If it is less than 0.001 parts by mass, it may be insufficient to exert a light stabilizing effect, and if it is more than 0.1 parts by mass, it may have a negative effect on the moisture absorption and dielectric properties of the cured product.
[バインダー樹脂]
 本発明の硬化性樹脂組成物は、バインダー樹脂を用いてもよい。バインダー樹脂としては、例えば、ブチラール系樹脂、アセタール系樹脂、アクリル系樹脂、エポキシ-ナイロン系樹脂、NBR-フェノール系樹脂、エポキシ-NBR系樹脂、シリコーン系樹脂等が挙げられるが、これらに限定されるものではない。また、これらは1種類で用いても、複数併用してもよい。
[Binder resin]
The curable resin composition of the present invention may use a binder resin. Examples of the binder resin include, but are not limited to, butyral resins, acetal resins, acrylic resins, epoxy-nylon resins, NBR-phenol resins, epoxy-NBR resins, and silicone resins. These may be used alone or in combination.
 バインダー樹脂の配合量は、硬化物の難燃性、耐熱性を損なわない範囲であることが好ましく、成分(A)と成分(B)の総和を100質量部とした場合、0.05~50質量部であることが好ましく、さらに好ましくは0.05~20質量部が必要に応じて用いられる。 The amount of binder resin used is preferably within a range that does not impair the flame retardancy and heat resistance of the cured product, and is preferably 0.05 to 50 parts by mass, and more preferably 0.05 to 20 parts by mass, if the total of components (A) and (B) is 100 parts by mass, as needed.
[添加剤]
 本発明の硬化性樹脂組成物は、添加剤を用いてもよい。添加剤としては、例えば、アクリロニトリル共重合体の変性物、ポリエチレン、フッ素樹脂、シリコーンゲル、シリコーンオイル、シランカップリング剤のような充填材の表面処理剤、離型剤、カーボンブラック、フタロシアニンブルー、フタロシアニングリーン等の着色剤が挙げられる。
[Additive]
The curable resin composition of the present invention may contain additives, such as modified acrylonitrile copolymers, polyethylene, fluororesins, silicone gels, silicone oils, surface treatment agents for fillers such as silane coupling agents, release agents, and colorants such as carbon black, phthalocyanine blue, and phthalocyanine green.
 添加剤の配合量は、硬化性樹脂組成物100質量部に対して好ましくは1,000質量部以下、より好ましくは700質量部以下の範囲である。 The amount of additive is preferably 1,000 parts by mass or less, and more preferably 700 parts by mass or less, per 100 parts by mass of the curable resin composition.
 本発明の硬化性樹脂組成物は、さらに、エポキシ樹脂、活性エステル化合物、フェノール樹脂、ポリフェニレンエーテル化合物、アミン樹脂、エチレン性不飽和結合を有する化合物、イソシアネート樹脂、ポリアミド樹脂、シアネートエステル樹脂、ポリイミド樹脂、ポリブタジエンおよびこの変性物、ポリスチレンおよびこの変性物等を用いてもよく、これらは1種類で用いても、複数併用してもよい。これらの化合物のうち、耐熱性、密着性、誘電特性のバランスから、ポリフェニレンエーテル化合物、エチレン性不飽和結合を有する化合物、シアネートエステル樹脂、ポリブタジエンおよびこの変性物、ポリスチレンおよびこの変性物を含有することが好ましい。これらの化合物を含有することによって、硬化物の脆さの改善および金属への密着性を向上でき、はんだリフロー時や冷熱サイクルなどの信頼性試験におけるパッケージのクラックを抑制できる。 The curable resin composition of the present invention may further contain epoxy resins, active ester compounds, phenolic resins, polyphenylene ether compounds, amine resins, compounds having ethylenically unsaturated bonds, isocyanate resins, polyamide resins, cyanate ester resins, polyimide resins, polybutadiene and modified products thereof, polystyrene and modified products thereof, etc., which may be used alone or in combination. Of these compounds, it is preferable to contain polyphenylene ether compounds, compounds having ethylenically unsaturated bonds, cyanate ester resins, polybutadiene and modified products thereof, and polystyrene and modified products thereof, in view of the balance of heat resistance, adhesion, and dielectric properties. By containing these compounds, the brittleness of the cured product can be improved and adhesion to metals can be improved, and package cracks can be suppressed during reliability tests such as solder reflow and thermal cycles.
 上記化合物の使用量は、特に断りがない場合、前記成分(A)に対して、好ましくは10質量倍以下、さらに好ましくは5質量倍以下、特に好ましくは3質量倍以下の質量範囲である。また、好ましい下限値は0.1質量倍以上、より好ましくは0.25質量倍以上、更に好ましくは0.5質量倍以上である。上記範囲内であることにより、前記成分(A)の耐熱性や誘電特性の効果を活かしつつ、添加する各化合物の効果を付加することができる。これらの成分については、以下に例示するものを使用することができる。 Unless otherwise specified, the amount of the above compounds used is preferably 10 times by mass or less, more preferably 5 times by mass or less, and particularly preferably 3 times by mass or less, relative to the amount of component (A). The preferred lower limit is 0.1 times by mass or more, more preferably 0.25 times by mass or more, and even more preferably 0.5 times by mass or more. By being within the above range, it is possible to take advantage of the effects of the heat resistance and dielectric properties of component (A) while adding the effects of each compound added. The following examples of these components can be used.
[エポキシ樹脂]
 エポキシ樹脂として好ましいものを以下に例示するがこれらに限定されるものではない。なお、エポキシ樹脂の性状は液状であっても固形であってもよく、1種類で用いても、複数併用してもよい。
[Epoxy resin]
Preferred examples of the epoxy resin are shown below, but the epoxy resin is not limited thereto. The epoxy resin may be liquid or solid, and may be used alone or in combination.
 液状エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ナフタレン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、エステル骨格を有する脂環式エポキシ樹脂、シクロヘキサン型エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、及びブタジエン構造を有するエポキシ樹脂等を挙げることができる。具体例としては、「RE310S」、「RE410S」(以上、日本化薬社製、ビスフェノールA型エポキシ樹脂)、「RE303S」、「RE304S」、「RE403S」、「RE404S」(以上、日本化薬社製、ビスフェノールF型エポキシ樹脂)、「HP4032」、「HP4032D」、「HP4032SS」(以上、DIC社製、ナフタレン型エポキシ樹脂)、「828US」、「jER828EL」、「825」、「828EL」(以上、三菱ケミカル社製、ビスフェノールA型エポキシ樹脂)、「jE807」、「1750」(以上、三菱ケミカル社製、ビスフェノールF型エポキシ樹脂)、「jER152」(三菱ケミカル社製、フェノールノボラック型エポキシ樹脂)、「630」、「630LSD」(以上、三菱ケミカル社製、グリシジルアミン型エポキシ樹脂)、「ZX1059」(新日鉄住金化学社製、ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合品)、「EX-721」(ナガセケムテックス社製、グリシジルエステル型エポキシ樹脂)、「セロキサイド2021P」(ダイセル社製、エステル骨格を有する脂環式エポキシ樹脂)、「PB-3600」(ダイセル社製、ブタジエン構造を有するエポキシ樹脂)、「ZX1658」、「ZX1658GS」(以上、新日鉄住金化学社製、液状1,4-グリシジルシクロヘキサン型エポキシ樹脂)等が挙げられる。これらは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of liquid epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol AF type epoxy resins, naphthalene type epoxy resins, glycidyl ester type epoxy resins, glycidyl amine type epoxy resins, phenol novolac type epoxy resins, alicyclic epoxy resins having an ester skeleton, cyclohexane type epoxy resins, cyclohexane dimethanol type epoxy resins, glycidyl amine type epoxy resins, and epoxy resins having a butadiene structure. Specific examples include "RE310S", "RE410S" (all manufactured by Nippon Kayaku Co., Ltd., bisphenol A type epoxy resin), "RE303S", "RE304S", "RE403S", "RE404S" (all manufactured by Nippon Kayaku Co., Ltd., bisphenol F type epoxy resin), "HP4032", "HP4032D", "HP4032SS" (all manufactured by DIC Corporation, naphthalene type epoxy resin), "828US", "jER828EL", "825", "828EL" (all manufactured by Mitsubishi Chemical Corporation, bisphenol A type epoxy resin), "jE807", "1750" (all manufactured by Mitsubishi Chemical Corporation, bisphenol F type epoxy resin), "jER152" (manufactured by Mitsubishi Chemical Corporation, phenol Novolac type epoxy resin), "630", "630LSD" (all manufactured by Mitsubishi Chemical Corporation, glycidylamine type epoxy resin), "ZX1059" (manufactured by Nippon Steel & Sumitomo Metal Chemical Co., Ltd., a mixture of bisphenol A type epoxy resin and bisphenol F type epoxy resin), "EX-721" (manufactured by Nagase ChemteX Corporation, glycidyl ester type epoxy resin), "Celloxide 2021P" (manufactured by Daicel Corporation, alicyclic epoxy resin having an ester skeleton), "PB-3600" (manufactured by Daicel Corporation, epoxy resin having a butadiene structure), "ZX1658", "ZX1658GS" (all manufactured by Nippon Steel & Sumitomo Metal Chemical Co., Ltd., liquid 1,4-glycidylcyclohexane type epoxy resin), etc. may be used. These may be used alone or in combination of two or more.
 固形エポキシ樹脂としては、例えば、ビキシレノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフタレン型4官能エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ナフトール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、アントラセン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂が好ましく、ナフトール型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ナフタレン型エポキシ樹脂、及びビフェニル型エポキシ樹脂を挙げることができる。具体例としては、「HP4032H」(DIC社製、ナフタレン型エポキシ樹脂)、「HP-4700」、「HP-4710」(以上、DIC社製、ナフタレン型4官能エポキシ樹脂)、「N-690」(DIC社製、クレゾールノボラック型エポキシ樹脂)、「N-695」(DIC社製、クレゾールノボラック型エポキシ樹脂)、「HP-7200」(DIC社製、ジシクロペンタジエン型エポキシ樹脂)、「HP-7200」、「HP-7200HH」、「HP-7200H」(以上、DIC社製、ジシクロペンタジエン型エポキシ樹脂)、「EXA-7311」、「EXA-7311-G3」、「EXA-7311-G4」、「EXA-7311-G4S」、「HP-6000」(以上、DIC社製、ナフチレンエーテル型エポキシ樹脂)、「EPPN-502H」(日本化薬社製、トリスフェノール型エポキシ樹脂)、「NC-7000L」、「NC-7300」(以上、日本化薬社製、ナフトール-クレゾールノボラック型エポキシ樹脂)、「NC-3000H」、「NC-3000」、「NC-3000L」、「NC-3100」(以上、日本化薬社製、ビフェニルアラルキル型エポキシ樹脂)、「XD-1000-2L」、「XD-1000-L」、「XD-1000-H」、「XD-1000-H」(以上、日本化薬社製、ジシクロペンタジエン型エポキシ樹脂)、「ESN475V」(新日鉄住金化学社製、ナフトール型エポキシ樹脂)、「ESN485」(新日鉄住金化学社製、ナフトールノボラック型エポキシ樹脂)、「YX-4000H」、「YX-4000」、「YL6121」(以上、三菱ケミカル社製、ビフェニル型エポキシ樹脂)、「YX-4000HK」(三菱ケミカル社製、ビキシレノール型エポキシ樹脂)、「YX-8800」(三菱ケミカル社製、アントラセン型エポキシ樹脂)、「PG-100」、「CG-500」(大阪ガスケミカル社製、フルオレン系エポキシ樹脂)、「YL-7760」(三菱ケミカル社製、ビスフェノールAF型エポキシ樹脂)、「YL-7800」(三菱ケミカル社製、フルオレン型エポキシ樹脂)「jER1010」(三菱ケミカル社製、固体状ビスフェノールA型エポキシ樹脂)、「jER1031S」(三菱ケミカル社製、テトラフェニルエタン型エポキシ樹脂)等が挙げられる。これらは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Preferred examples of solid epoxy resins include bixylenol type epoxy resins, naphthalene type epoxy resins, naphthalene type tetrafunctional epoxy resins, cresol novolac type epoxy resins, dicyclopentadiene type epoxy resins, trisphenol type epoxy resins, naphthol type epoxy resins, biphenyl type epoxy resins, naphthylene ether type epoxy resins, anthracene type epoxy resins, bisphenol A type epoxy resins, bisphenol AF type epoxy resins, and tetraphenylethane type epoxy resins, and examples of such solid epoxy resins include naphthol type epoxy resins, bisphenol AF type epoxy resins, naphthalene type epoxy resins, and biphenyl type epoxy resins. Specific examples include "HP4032H" (manufactured by DIC Corporation, naphthalene type epoxy resin), "HP-4700", and "HP-4710" (all manufactured by DIC Corporation, naphthalene type tetrafunctional epoxy resin), "N-690" (manufactured by DIC Corporation, cresol novolac type epoxy resin), "N-695" (manufactured by DIC Corporation, cresol novolac type epoxy resin), "HP-7200" (manufactured by DIC Corporation, dicyclopentadiene type epoxy resin), "HP-7200", "HP-7200HH", and "HP-7200H" (all manufactured by DIC Corporation, dicyclopentadiene type epoxy resin). epoxy resin), "EXA-7311", "EXA-7311-G3", "EXA-7311-G4", "EXA-7311-G4S", "HP-6000" (all manufactured by DIC Corporation, naphthylene ether type epoxy resin), "EPPN-502H" (manufactured by Nippon Kayaku Co., Ltd., trisphenol type epoxy resin), "NC-7000L", "NC-7300" (all manufactured by Nippon Kayaku Co., Ltd., naphthol-cresol novolac type epoxy resin), "NC-3000H", "NC-3000", "NC-3000L", "NC-3100" (all manufactured by Nippon Kayaku Co., Ltd., biphenyl ether type epoxy resin). arylalkyl type epoxy resin), "XD-1000-2L", "XD-1000-L", "XD-1000-H", "XD-1000-H" (all manufactured by Nippon Kayaku Co., Ltd., dicyclopentadiene type epoxy resin), "ESN475V" (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., naphthol type epoxy resin), "ESN485" (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., naphthol novolac type epoxy resin), "YX-4000H", "YX-4000", "YL6121" (all manufactured by Mitsubishi Chemical Corporation, biphenyl type epoxy resin), "YX-4000HK" (manufactured by Mitsubishi Chemical Corporation, bixyl lenol type epoxy resin), "YX-8800" (manufactured by Mitsubishi Chemical Corporation, anthracene type epoxy resin), "PG-100", "CG-500" (manufactured by Osaka Gas Chemicals Co., Ltd., fluorene type epoxy resin), "YL-7760" (manufactured by Mitsubishi Chemical Corporation, bisphenol AF type epoxy resin), "YL-7800" (manufactured by Mitsubishi Chemical Corporation, fluorene type epoxy resin), "jER1010" (manufactured by Mitsubishi Chemical Corporation, solid bisphenol A type epoxy resin), "jER1031S" (manufactured by Mitsubishi Chemical Corporation, tetraphenylethane type epoxy resin), etc. These may be used alone or in combination of two or more.
[活性エステル化合物]
 活性エステル化合物とは、構造体中にエステル結合を少なくとも1つ含み、かつ、エステル結合の両側に脂肪族鎖、脂肪族環又は芳香族環が結合している化合物をいう。活性エステル化合物としては、例えば、フェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の反応活性の高いエステル基を1分子中に2個以上有する化合物を挙げることができ、カルボン酸化合物、酸塩化物、またはチオカルボン酸化合物の少なくともいずれかの化合物と、ヒドロキシ化合物またはチオール化合物の少なくともいずれかの化合物との縮合反応によって得られる。特に、耐熱性向上の観点から、カルボン酸化合物または酸塩化物とヒドロキシ化合物から得られるときが好ましく、ヒドロキシ化合物としてはフェノール化合物またはナフトール化合物が好ましい。活性エステル化合物は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
[Active ester compound]
The active ester compound refers to a compound that contains at least one ester bond in the structure and has an aliphatic chain, an aliphatic ring, or an aromatic ring bonded to both sides of the ester bond. Examples of the active ester compound include compounds having two or more highly reactive ester groups in one molecule, such as phenol esters, thiophenol esters, N-hydroxyamine esters, and esters of heterocyclic hydroxy compounds, and are obtained by a condensation reaction between at least one compound of a carboxylic acid compound, an acid chloride, or a thiocarboxylic acid compound and at least one compound of a hydroxy compound or a thiol compound. In particular, from the viewpoint of improving heat resistance, it is preferable to obtain it from a carboxylic acid compound or an acid chloride and a hydroxy compound, and the hydroxy compound is preferably a phenol compound or a naphthol compound. The active ester compound may be used alone or in combination of two or more types.
 上記カルボン酸化合物としては、例えば、安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等が挙げられる。 Examples of the carboxylic acid compounds include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, and pyromellitic acid.
 上記酸塩化物としては、例えば、アセチルクロリド、アクリル酸クロリド、メタクリル酸クロリド、マロニルクロリド、こはく酸ジクロリド、ジグリコリルクロリド、グルタル酸ジクロリド、スベリン酸ジクロリド、セバシン酸ジクロリド、アジピン酸ジクロリド、ドデカンジオイルジクロリド、アゼラオイルクロリド、2,5-フランジカルボニルジクロリド、フタロイルクロリド、イソフタロイルクロリド、テレフタロイルクロリド、トリメシン酸クロリド、ビス(4-クロロカルボニルフェニル)エーテル、4,4’-ジフェニルジカルボニルクロリド、4,4’-アゾジベンゾイルジクロリド等が挙げられる。 Examples of the acid chlorides include acetyl chloride, acrylic acid chloride, methacrylic acid chloride, malonyl chloride, succinic acid dichloride, diglycolyl chloride, glutaric acid dichloride, suberic acid dichloride, sebacic acid dichloride, adipic acid dichloride, dodecandioyl dichloride, azelaic acid chloride, 2,5-furandicarbonyl dichloride, phthaloyl chloride, isophthaloyl chloride, terephthaloyl chloride, trimesic acid chloride, bis(4-chlorocarbonylphenyl) ether, 4,4'-diphenyldicarbonyl chloride, and 4,4'-azodibenzoyl dichloride.
 上記フェノール化合物及び上記ナフトール化合物としては、例えば、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールフタリン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、カテコール、α-ナフトール、β-ナフトール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエン型ジフェノール化合物、フェノールノボラック、後述するフェノール樹脂等が挙げられる。ここで、「ジシクロペンタジエン型ジフェノール化合物」とは、ジシクロペンタジエン1分子にフェノール2分子が縮合して得られるジフェノール化合物をいう。 The above phenol compounds and naphthol compounds include, for example, hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol S, phenolphthaline, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m-cresol, p-cresol, catechol, α-naphthol, β-naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucin, benzenetriol, dicyclopentadiene-type diphenol compounds, phenol novolac, and phenol resins described below. Here, "dicyclopentadiene-type diphenol compounds" refers to diphenol compounds obtained by condensing one molecule of dicyclopentadiene with two molecules of phenol.
 活性エステル化合物の好ましい具体例としては、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物、ナフタレン構造を含む活性エステル化合物、フェノールノボラックのアセチル化物を含む活性エステル化合物、フェノールノボラックのベンゾイル化物を含む活性エステル化合物、国際公開第2020/095829号実施例2に記載の化合物、国際公開第2020/059625号にて開示されている化合物等が挙げられる。中でも、ナフタレン構造を含む活性エステル化合物、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物がより好ましい。ジシクロペンタジエン型ジフェノール構造とは、フェニレン-ジシクロペンチレン-フェニレンからなる2価の構造単位を表す。 Preferred specific examples of active ester compounds include active ester compounds containing a dicyclopentadiene-type diphenol structure, active ester compounds containing a naphthalene structure, active ester compounds containing an acetylated phenol novolac, active ester compounds containing a benzoylated phenol novolac, the compounds described in Example 2 of WO 2020/095829, and the compounds disclosed in WO 2020/059625. Among these, active ester compounds containing a naphthalene structure and active ester compounds containing a dicyclopentadiene-type diphenol structure are more preferred. The dicyclopentadiene-type diphenol structure refers to a divalent structural unit consisting of phenylene-dicyclopentylene-phenylene.
 活性エステル化合物の市販品としては、例えば、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物として、「EXB9451」、「EXB9460」、「EXB9460S」、「HPC-8000-65T」、「HPC-8000H-65TM」、「EXB-8000L-65TM」、「EXB-8150-65T」(DIC社製)、ナフタレン構造を含む活性エステル化合物として「EXB9416-70BK」(DIC社製)、フェノールノボラックのアセチル化物を含む活性エステル化合物として「DC808」(三菱化学社製)、フェノールノボラックのベンゾイル化物を含む活性エステル化合物として「YLH1026」、「YLH1030」、「YLH1048」(三菱化学社製)、フェノールノボラックのアセチル化物である活性エステル系硬化剤として「DC808」(三菱化学社製)、リン原子含有活性エステル系硬化剤としてDIC社製の「EXB-9050L-62M」等が挙げられる。 Commercially available active ester compounds include, for example, "EXB9451", "EXB9460", "EXB9460S", "HPC-8000-65T", "HPC-8000H-65TM", "EXB-8000L-65TM", and "EXB-8150-65T" (manufactured by DIC Corporation) as active ester compounds containing a dicyclopentadiene-type diphenol structure, "EXB9416-70BK" (manufactured by DIC Corporation) as an active ester compound containing a naphthalene structure, and "phenolnoxamine" (manufactured by DIC Corporation). Examples of active ester compounds containing acetylated volac include "DC808" (manufactured by Mitsubishi Chemical Corporation), active ester compounds containing benzoylated phenol novolac include "YLH1026", "YLH1030", and "YLH1048" (manufactured by Mitsubishi Chemical Corporation), active ester curing agent that is an acetylated phenol novolac, and "EXB-9050L-62M" (manufactured by DIC Corporation) as an active ester curing agent containing phosphorus atoms.
 活性エステル化合物およびエポキシ樹脂の配合比に関しては、活性エステル当量(α)とエポキシ当量(β)の比率(α/β)が0.5~1.5であることが好ましく、より好ましくは0.8~1.2、さらに好ましくは、0.90~1.10である。上記範囲を外れる場合、過剰となったエポキシ基もしくは活性エステル基が系中に残存するおそれがあり、高温放置試験(150℃、1000時間など)や高温高湿条件下(温度:85℃、湿度:85%など)での長期信頼性試験等で特性が悪化するおそれがある。 Regarding the compounding ratio of the active ester compound and the epoxy resin, the ratio (α/β) of the active ester equivalent (α) to the epoxy equivalent (β) is preferably 0.5 to 1.5, more preferably 0.8 to 1.2, and even more preferably 0.90 to 1.10. Outside the above range, there is a risk that excess epoxy groups or active ester groups will remain in the system, which may cause deterioration of characteristics in high-temperature storage tests (e.g., 150°C, 1000 hours) or long-term reliability tests under high-temperature and high-humidity conditions (e.g., temperature: 85°C, humidity: 85%).
[フェノール樹脂]
 フェノール樹脂とは、分子内に2つ以上フェノール性水酸基を有する化合物である。フェノール樹脂としては、例えば、フェノール類とアルデヒド類との反応物、フェノール類とジエン化合物との反応物、フェノール類とケトン類との反応物、フェノール類と置換ビフェニル類との反応物、フェノール類と置換フェニル類との反応物、ビスフェノール類とアルデヒド類との反応物等が挙げられるが、これらに限定されるものではない。また、これらは1種類で用いても、複数併用してもよい。
 上記各原料の具体例を以下に例示するが、これらに限定されるものではない。
<フェノール類>
 フェノール、アルキル置換フェノール、芳香族置換フェノール、ハイドロキノン、レゾルシン、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、アルキル置換ジヒドロキシベンゼン、ジヒドロキシナフタレン等。
<アルデヒド類>
 ホルムアルデヒド、アセトアルデヒド、アルキルアルデヒド、ベンズアルデヒド、アルキル置換ベンズアルデヒド、ヒドロキシベンズアルデヒド、ナフトアルデヒド、グルタルアルデヒド、フタルアルデヒド、クロトンアルデヒド、シンナムアルデヒド、フルフラール等。
<ジエン化合物>
 ジシクロペンタジエン、テルペン類、ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルネン、テトラヒドロインデン、ジビニルベンゼン、ジビニルビフェニル、ジイソプロペニルビフェニル、ブタジエン、イソプレン等。
<ケトン類>
 アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、ベンゾフェノン、フルオレノン等。
<置換ビフェニル類>
 4,4’-ビス(クロルメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、4,4’-ビス(ヒドロキシメチル)-1,1’-ビフェニル等。
<置換フェニル類>
 1,4-ビス(クロロメチル)ベンゼン、1,4-ビス(メトキシメチル)ベンゼン、1,4-ビス(ヒドロキシメチル)ベンゼン等。
[Phenol resin]
A phenolic resin is a compound having two or more phenolic hydroxyl groups in a molecule. Examples of the phenolic resin include, but are not limited to, a reaction product of a phenol with an aldehyde, a reaction product of a phenol with a diene compound, a reaction product of a phenol with a ketone, a reaction product of a phenol with a substituted biphenyl, a reaction product of a phenol with a substituted phenyl, a reaction product of a bisphenol with an aldehyde, and the like. These may be used alone or in combination.
Specific examples of the above-mentioned raw materials are given below, but the raw materials are not limited thereto.
<Phenols>
Phenol, alkyl-substituted phenol, aromatic-substituted phenol, hydroquinone, resorcin, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl-substituted dihydroxybenzene, dihydroxynaphthalene, etc.
<Aldehydes>
Formaldehyde, acetaldehyde, alkyl aldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaraldehyde, phthalaldehyde, crotonaldehyde, cinnamaldehyde, furfural, and the like.
<Diene Compound>
Dicyclopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinylnorbornene, tetrahydroindene, divinylbenzene, divinylbiphenyl, diisopropenylbiphenyl, butadiene, isoprene, and the like.
<Ketones>
Acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, benzophenone, fluorenone, etc.
<Substituted biphenyls>
4,4'-bis(chloromethyl)-1,1'-biphenyl, 4,4'-bis(methoxymethyl)-1,1'-biphenyl, 4,4'-bis(hydroxymethyl)-1,1'-biphenyl, and the like.
<Substituted phenyls>
1,4-bis(chloromethyl)benzene, 1,4-bis(methoxymethyl)benzene, 1,4-bis(hydroxymethyl)benzene and the like.
[ポリフェニレンエーテル化合物]
 ポリフェニレンエーテル化合物としては、耐熱性と電気特性の観点から、エチレン性不飽和結合を有するポリフェニレンエーテル化合物であることが好ましく、アクリル基、メタクリル基、又はスチレン構造を有するポリフェニレンエーテル化合物であることがさらに好ましい。市販品としては、SA-9000(SABIC社製、メタクリル基を有するポリフェニレンエーテル化合物)やOPE-2St 1200(三菱瓦斯化学社製、スチレン構造を有するポリフェニレンエーテル化合物)などが挙げられる。
 ポリフェニレンエーテル化合物の数平均分子量(Mn)は、500~5000であることが好ましく、2000~5000であることがより好ましく、2000~4000であることがより好ましい。分子量が500未満であると、硬化物の耐熱性としては充分なものが得られない傾向がある。また、分子量が5000より大きいと、溶融粘度が高くなり、充分な流動性が得られないため、成形不良となりやすくなる傾向がある。また、反応性も低下して、硬化反応に長い時間を要し、硬化系に取り込まれずに未反応のものが増加して、硬化物のガラス転移温度が低下し、硬化物の耐熱性が低下する傾向がある。
 ポリフェニレンエーテル化合物の数平均分子量が500~5000であれば、優れた誘電特性を維持したまま、優れた耐熱性及び成形性等を発現させることができる。なお、ここでの数平均分子量は、具体的には、ゲルパーミエーションクロマトグラフィー等を用いて測定することができる。
[Polyphenylene ether compound]
From the viewpoints of heat resistance and electrical properties, the polyphenylene ether compound is preferably a polyphenylene ether compound having an ethylenically unsaturated bond, and more preferably a polyphenylene ether compound having an acrylic group, a methacrylic group, or a styrene structure. Commercially available products include SA-9000 (manufactured by SABIC, a polyphenylene ether compound having a methacrylic group) and OPE-2St 1200 (manufactured by Mitsubishi Gas Chemical Company, a polyphenylene ether compound having a styrene structure).
The number average molecular weight (Mn) of the polyphenylene ether compound is preferably 500 to 5000, more preferably 2000 to 5000, and more preferably 2000 to 4000. If the molecular weight is less than 500, the heat resistance of the cured product tends to be insufficient. If the molecular weight is more than 5000, the melt viscosity increases and sufficient fluidity cannot be obtained, which tends to lead to molding defects. In addition, the reactivity decreases, the curing reaction takes a long time, and the amount of unreacted material that is not incorporated into the curing system increases, which decreases the glass transition temperature of the cured product and tends to decrease the heat resistance of the cured product.
If the number average molecular weight of the polyphenylene ether compound is 500 to 5000, it is possible to exhibit excellent heat resistance, moldability, etc. while maintaining excellent dielectric properties. The number average molecular weight here can be specifically measured using gel permeation chromatography, etc.
 ポリフェニレンエーテル化合物は、重合反応により得られたものであっても、数平均分子量10000~30000程度の高分子量のポリフェニレンエーテル化合物を再分配反応させて得られたものであってもよい。また、これらを原料として、メタクリルクロリド、アクリルクロリド、クロロメチルスチレン等、エチレン性不飽和結合を有する化合物と反応させることでラジカル重合性を付与してもよい。再分配反応によって得られたポリフェニレンエーテル化合物は、例えば、高分子量のポリフェニレンエーテル化合部をトルエン等の溶媒中で、フェノール化合物とラジカル開始剤との存在下で加熱し再分配反応させて得られる。このように再分配反応により得られるポリフェニレンエーテル化合物は、分子鎖の両末端に硬化に寄与するフェノール系化合物に由来する水酸基を有するために、さらに高い耐熱性を維持することができることに加え、エチレン性不飽和結合を有する化合物で変性した後も分子鎖の両末端に官能基を導入できる点から好ましい。また、重合反応により得られたポリフェニレンエーテル化合物は、優れた流動性を示す点から好ましい。 The polyphenylene ether compound may be one obtained by a polymerization reaction, or one obtained by a redistribution reaction of a high molecular weight polyphenylene ether compound having a number average molecular weight of about 10,000 to 30,000. These may also be used as raw materials and reacted with a compound having an ethylenically unsaturated bond, such as methacryl chloride, acrylic chloride, or chloromethylstyrene, to impart radical polymerizability. The polyphenylene ether compound obtained by the redistribution reaction may be obtained, for example, by heating a high molecular weight polyphenylene ether compound in a solvent such as toluene in the presence of a phenolic compound and a radical initiator to cause a redistribution reaction. The polyphenylene ether compound obtained by the redistribution reaction in this way has hydroxyl groups derived from phenolic compounds that contribute to hardening at both ends of the molecular chain, and is therefore preferable in that it can maintain even higher heat resistance, and that functional groups can be introduced at both ends of the molecular chain even after modification with a compound having an ethylenically unsaturated bond. The polyphenylene ether compound obtained by the polymerization reaction is also preferable in that it exhibits excellent fluidity.
 ポリフェニレンエーテル化合物の分子量の調整は、重合反応により得られたポリフェニレンエーテル化合物の場合、重合条件等を調整することにより行うことができる。また、再分配反応によって得られたポリフェニレンエーテル化合物の場合は、再分配反応の条件等を調整することにより、得られるポリフェニレンエーテル化合物の分子量を調整することができる。より具体的には、再分配反応において用いるフェノール系化合物の配合量を調整すること等が考えられる。すなわち、フェノール系化合物の配合量が多いほど、得られるポリフェニレンエーテル化合物の分子量が低くなる。この際、再分配反応を受ける高分子量のポリフェニレンエーテル化合物としては、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)等を用いることができる。また、前記再分配反応に用いられるフェノール系化合物としては、特に限定されないが、例えば、ビスフェノールA、フェノールノボラック、クレゾールノボラック等のように、フェノール性水酸基を分子中に2個以上有する多官能のフェノール系化合物が好ましく用いられる。これらは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 In the case of a polyphenylene ether compound obtained by a polymerization reaction, the molecular weight of the polyphenylene ether compound can be adjusted by adjusting the polymerization conditions. In the case of a polyphenylene ether compound obtained by a redistribution reaction, the molecular weight of the obtained polyphenylene ether compound can be adjusted by adjusting the conditions of the redistribution reaction. More specifically, it is possible to adjust the amount of the phenolic compound used in the redistribution reaction. That is, the greater the amount of the phenolic compound, the lower the molecular weight of the obtained polyphenylene ether compound. In this case, poly(2,6-dimethyl-1,4-phenylene ether) or the like can be used as a high molecular weight polyphenylene ether compound that undergoes the redistribution reaction. In addition, the phenolic compound used in the redistribution reaction is not particularly limited, but for example, a multifunctional phenolic compound having two or more phenolic hydroxyl groups in the molecule, such as bisphenol A, phenol novolac, cresol novolac, etc., is preferably used. These may be used alone or in combination of two or more.
 ポリフェニレンエーテル化合物の含有量は、特に限定されないが、成分(A)と成分(B)合計質量を100質量部とした場合、5~1000質量部であることが好ましく、10~750質量部であることがより好ましい。ポリフェニレンエーテル化合物の含有量が上記範囲であると、耐熱性等に優れるだけではなく、ポリフェニレンエーテル化合物の有する優れた誘電特性を充分に発揮された硬化物が得られる点で好ましい。 The content of the polyphenylene ether compound is not particularly limited, but is preferably 5 to 1000 parts by mass, and more preferably 10 to 750 parts by mass, assuming that the total mass of components (A) and (B) is 100 parts by mass. If the content of the polyphenylene ether compound is in the above range, it is preferable in that not only is the heat resistance excellent, but also a cured product that fully exhibits the excellent dielectric properties of the polyphenylene ether compound can be obtained.
[アミン樹脂]
 アミン樹脂とは、分子内に2つ以上アミノ基を有する化合物である。アミン樹脂としては、例えば、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、イソホロンジアミン、ナフタレンジアミン、アニリンノボラック(アニリンとホルマリンの反応物)、N-メチルアニリンノボラック(N-メチルアニリンとホルマリンの反応物)、オルソエチルアニリンノボラック(オルソエチルアニリンとホルマリンの反応物)、2-メチルアニリンとホルマリンの反応物、2,6-ジイソプロピルアニリンとホルマリンの反応物、2,6-ジエチルアニリンとホルマリンの反応物、2-エチル-6-エチルアニリンとホルマリンの反応物、2,6-ジメチルアニリンとホルマリンの反応物、アニリンとキシリレンクロライドとの反応により得られるアニリン樹脂、日本国特許第6429862号公報に記載のアニリンと置換ビフェニル類(4,4’-ビス(クロルメチル)-1,1’-ビフェニル及び4,4’-ビス(メトキシメチル)-1,1’-ビフェニル等)の反応物、アニリンと置換フェニル類(1,4-ビス(クロロメチル)ベンゼン、1,4-ビス(メトキシメチル)ベンゼン及び1,4-ビス(ヒドロキシメチル)ベンゼン等)の反応物、4,4’-(1,3-フェニレンジイソプロピリデン)ビスアニリン、4,4’-(1,4-フェニレンジイソプロピリデン)ビスアニリン、アニリンとジイソプロペニルベンゼンの反応物、ダイマージアミン等が挙げられるが、これらに限定されるものではない。また、これらは1種類で用いても、複数併用してもよい。
[Amine resin]
The amine resin is a compound having two or more amino groups in the molecule. Examples of the amine resin include diaminodiphenylmethane, diaminodiphenylsulfone, isophoronediamine, naphthalenediamine, aniline novolak (a reaction product of aniline and formalin), N-methylaniline novolak (a reaction product of N-methylaniline and formalin), orthoethylaniline novolak (a reaction product of orthoethylaniline and formalin), a reaction product of 2-methylaniline and formalin, a reaction product of 2,6-diisopropylaniline and formalin, a reaction product of 2,6-diethylaniline and formalin, a reaction product of 2-ethyl-6-ethylaniline and formalin, a reaction product of 2,6-dimethylaniline and formalin, and a reaction product obtained by reacting aniline and xylylene chloride. Examples of the aniline resin include, but are not limited to, the aniline resin disclosed in Japanese Patent No. 6429862, a reaction product of aniline and a substituted biphenyl (4,4'-bis(chloromethyl)-1,1'-biphenyl and 4,4'-bis(methoxymethyl)-1,1'-biphenyl, etc.), a reaction product of aniline and a substituted phenyl (1,4-bis(chloromethyl)benzene, 1,4-bis(methoxymethyl)benzene and 1,4-bis(hydroxymethyl)benzene, etc.), 4,4'-(1,3-phenylenediisopropylidene)bisaniline, 4,4'-(1,4-phenylenediisopropylidene)bisaniline, a reaction product of aniline and diisopropenylbenzene, dimer diamine, etc. Furthermore, these may be used alone or in combination.
[エチレン性不飽和結合を含有する化合物]
 エチレン性不飽和結合を含有する化合物とは、重合開始剤の使用・不使用を問わず、熱もしくは光により重合可能なエチレン性不飽和結合を分子内に1つ以上有する化合物である。
 エチレン性不飽和結合を含有する化合物としては、例えば、前記のフェノール樹脂とエチレン性不飽和結合含有のハロゲン系化合物(クロロメチルスチレン、アリルクロライド、メタリルクロライド、アクリル酸クロリド、メタクリル酸クロリド等)の反応物、エチレン性不飽和結合含有フェノール類(2-アリルフェノール、2-プロペニルフェノール、4-アリルフェノール、4-プロペニルフェノール、オイゲノール、イソオイゲノール等)とハロゲン系化合物(1,4-ビス(クロロメチル)ベンゼン、4,4’-ビス(クロロメチル)ビフェニル、4,4’-ジフルオロベンゾフェノン、4,4’-ジクロロベンゾフェノン、4,4’-ジブロモベンゾフェノン、塩化シアヌル等)の反応物、エポキシ樹脂若しくはアルコール類と(メタ)アクリル酸類(アクリル酸、メタクリル酸等)の反応物及びこれらの酸変性化物等が挙げられるが、これらに限定されるものではない。また、これらは1種類で用いても、複数併用してもよい。
[Compound containing an ethylenically unsaturated bond]
The compound containing an ethylenically unsaturated bond is a compound having one or more ethylenically unsaturated bonds in the molecule that can be polymerized by heat or light, regardless of whether a polymerization initiator is used or not.
Examples of the compound containing an ethylenically unsaturated bond include, but are not limited to, a reaction product of the phenol resin with an ethylenically unsaturated bond-containing halogen-based compound (chloromethylstyrene, allyl chloride, methallyl chloride, acrylic acid chloride, methacrylic acid chloride, etc.), a reaction product of an ethylenically unsaturated bond-containing phenol (2-allylphenol, 2-propenylphenol, 4-allylphenol, 4-propenylphenol, eugenol, isoeugenol, etc.) with a halogen-based compound (1,4-bis(chloromethyl)benzene, 4,4'-bis(chloromethyl)biphenyl, 4,4'-difluorobenzophenone, 4,4'-dichlorobenzophenone, 4,4'-dibromobenzophenone, cyanuric chloride, etc.), a reaction product of an epoxy resin or alcohol with a (meth)acrylic acid (acrylic acid, methacrylic acid, etc.), and an acid-modified product thereof. In addition, these may be used alone or in combination.
[イソシアネート樹脂]
 イソシアネート樹脂とは、分子内に2つ以上イソシアネート基を有する化合物である。イソシアネート樹脂としては、例えば、p-フェニレンジイソシアネート、m-フェニレンジイソシアネート、p-キシレンジイソシアネート、m-キシレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート等の芳香族ジイソシアネート類、イソホロンジイソシアネート、ヘキサメチレンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、水添キシレンジイソシアネート、ノルボルネンジイソシアネート、リジンジイソシアネート等の脂肪族又は脂環構造のジイソシアネート類、イソシアネートモノマーの一種類以上のビュレット体、又は上記ジイソシアネート化合物を3量化したイソシアネート体等のポリイソシアネート、上記イソシアネート化合物とポリオール化合物とのウレタン化反応によって得られるポリイソシアネート等が挙げられるが、これらに限定されるものではない。また、これらは1種類で用いても、複数併用してもよい。
[Isocyanate resin]
An isocyanate resin is a compound having two or more isocyanate groups in the molecule. Examples of the isocyanate resin include aromatic diisocyanates such as p-phenylene diisocyanate, m-phenylene diisocyanate, p-xylylene diisocyanate, m-xylylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, and naphthalene diisocyanate; aliphatic or alicyclic diisocyanates such as isophorone diisocyanate, hexamethylene diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, hydrogenated xylene diisocyanate, norbornene diisocyanate, and lysine diisocyanate; polyisocyanates such as one or more biuret forms of isocyanate monomers or isocyanate forms obtained by trimerizing the diisocyanate compounds; and polyisocyanates obtained by a urethanization reaction between the isocyanate compounds and polyol compounds, but are not limited thereto. These may be used alone or in combination.
[ポリアミド樹脂]
 ポリアミド樹脂としては、例えば、ジアミン、ジイソシアネート、オキサゾリンのいずれか1種以上とジカルボン酸の反応物、ジアミンと酸塩化物の反応物、ラクタム化合物の開環重合物が挙げられる。また、これらは1種類で用いても、複数併用してもよい。
 上記各原料の具体例を以下に例示するが、これらに限定されるものではない。
<ジアミン>
 エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカンジアミン、ウンデカンジアミン、ドデカンジアミン、トリデカンジアミン、テトラデカンジアミン、ペンタデカンジアミン、ヘキサデカンジアミン、ヘプタデカンジアミン、オクタデカンジアミン、ノナデカンジアミン、エイコサンジアミン、2-メチル-1,5-ジアミノペンタン、2-メチル-1,8-ジアミノオクタン、ダイマージアミン、シクロヘキサンジアミン、ビス-(4-アミノシクロヘキシル)メタン、ビス(3-メチル-4-アミノシクロヘキシル)メタン、キシリレンジアミン、ノルボルナンジアミン、イソホロンジアミン、ビスアミノメチルトリシクロデカン、フェニレンジアミン、ジエチルトルエンジアミン、ナフタレンジアミン、ジアミノジフェニルメタン、ビス(4-アミノ-3,5-ジメチルフェニル)メタンビス(4-アミノ-3,5-ジエチルフェニル)メタン、4,4'-メチレンビス-о-トルイジン、4,4'-メチレンビス-о-エチルアニリン、4,4'-メチレンビス-2-エチル-6-メチルアニリン、4,4'-メチレンビス-2,6-ジイソプロピルアニリン、4,4-エチレンジアニリン、ジアミノジフェニルスルホン、ジアミノジフェニルエーテル、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4-ビス(4-アミノフェノキシ)ビフェニル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、4,4'-(1,3-フェニレンジイソプロピリデン)ビスアニリン、4,4'-(1,4-フェニレンジイソプロピリデン)ビスアニリン、9,9-ビス(4-アミノフェニル)フルオレン、2,7-ジアミノフルオレン、アミノベンジルアミン、ジアミノベンゾフェノン等。
<ジイソシアネート>
 ベンゼンジイソシアネート、トルエンジイソシアネート、1,3-ビス(イソシアナトメチル)ベンゼン、1,3-ビス(イソシアナトメチル)シクロヘキサン、ビス(4-イソシアナトフェニル)メタン、イソホロンジイソシアネート、1,3-ビス(2-イソシアナト-2-プロピル)ベンゼン、2,2-ビス(4-イソシアナトフェニル)ヘキサフルオロプロパン、ジシクロヘキシルメタン-4,4'-ジイソシアナート等。
<ジカルボン酸>
 シュウ酸、マロン酸、スクシン酸、グルタル酸、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、テレフタル酸、イソフタル酸、5-ヒドロキシイソフタル酸、2-クロロテレフタル酸、2-メチルテレフタル酸、5-メチルイソフタル酸、5-ナトリウムスルホイソフタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸、シクロヘキサンジカルボン酸、ビフェニルジカルボン酸、ナフタレンジカルボン酸、ベンゾフェノンジカルボン酸、フランジカルボン酸、4,4'-ジカルボキシジフェニルエーテル、4,4'-ジカルボキシジフェニルスルフィド等。
<酸塩化物>
 アセチルクロリド、アクリル酸クロリド、メタクリル酸クロリド、マロニルクロリド、こはく酸ジクロリド、ジグリコリルクロリド、グルタル酸ジクロリド、スベリン酸ジクロリド、セバシン酸ジクロリド、アジピン酸ジクロリド、ドデカンジオイルジクロリド、アゼラオイルクロリド、2,5-フランジカルボニルジクロリド、フタロイルクロリド、イソフタロイルクロリド、テレフタロイルクロリド、トリメシン酸クロリド、ビス(4-クロロカルボニルフェニル)エーテル、4,4’-ジフェニルジカルボニルクロリド、4,4’-アゾジベンゾイルジクロリド等。
<ラクタム>
 ε-カプロラクタム、ω-ウンデカンラクタム、ω-ラウロラクタム等。
[Polyamide resin]
Examples of polyamide resins include reaction products of one or more of diamines, diisocyanates, and oxazolines with dicarboxylic acids, reaction products of diamines with acid chlorides, and ring-opening polymers of lactam compounds. These may be used alone or in combination.
Specific examples of the above-mentioned raw materials are given below, but the raw materials are not limited thereto.
<Diamine>
Ethylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decanediamine, undecanediamine, dodecanediamine, tridecanediamine, tetradecanediamine, pentadecanediamine, hexadecanediamine, heptadecanediamine, octadecanediamine, nonadecanediamine, eicosanediamine, 2-methyl-1,5-diaminopentane, 2-methyl diamino-1,8-diaminooctane, dimer diamine, cyclohexane diamine, bis-(4-aminocyclohexyl)methane, bis(3-methyl-4-aminocyclohexyl)methane, xylylene diamine, norbornane diamine, isophorone diamine, bisaminomethyltricyclodecane, phenylenediamine, diethyltoluenediamine, naphthalenediamine, diaminodiphenylmethane, bis(4-amino-3,5-dimethylphenyl)methane, bis(4-amino-3,5-diethylphenyl)methane , 4,4'-methylenebis-o-toluidine, 4,4'-methylenebis-o-ethylaniline, 4,4'-methylenebis-2-ethyl-6-methylaniline, 4,4'-methylenebis-2,6-diisopropylaniline, 4,4-ethylenedianiline, diaminodiphenyl sulfone, diaminodiphenyl ether, 1,3-bis(3-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene, 4,4-bis(4-aminophenoxy)biphenyl, 2,2-bis[4-(4-amino 4,4'-(1,3-phenylenediisopropylidene)bisaniline, 4,4'-(1,4-phenylenediisopropylidene)bisaniline, 9,9-bis(4-aminophenyl)fluorene, 2,7-diaminofluorene, aminobenzylamine, diaminobenzophenone, and the like.
<Diisocyanate>
Benzene diisocyanate, toluene diisocyanate, 1,3-bis(isocyanatomethyl)benzene, 1,3-bis(isocyanatomethyl)cyclohexane, bis(4-isocyanatophenyl)methane, isophorone diisocyanate, 1,3-bis(2-isocyanato-2-propyl)benzene, 2,2-bis(4-isocyanatophenyl)hexafluoropropane, dicyclohexylmethane-4,4'-diisocyanate, and the like.
<Dicarboxylic acid>
Oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, terephthalic acid, isophthalic acid, 5-hydroxyisophthalic acid, 2-chloroterephthalic acid, 2-methylterephthalic acid, 5-methylisophthalic acid, 5-sodium sulfoisophthalic acid, hexahydroterephthalic acid, hexahydroisophthalic acid, cyclohexanedicarboxylic acid, biphenyldicarboxylic acid, naphthalenedicarboxylic acid, benzophenonedicarboxylic acid, furandicarboxylic acid, 4,4'-dicarboxydiphenyl ether, and 4,4'-dicarboxydiphenyl sulfide.
<Acid chloride>
Acetyl chloride, acrylic acid chloride, methacrylic acid chloride, malonyl chloride, succinic acid dichloride, diglycolyl chloride, glutaric acid dichloride, suberic acid dichloride, sebacic acid dichloride, adipic acid dichloride, dodecandioyl dichloride, azelaic acid chloride, 2,5-furandicarbonyl dichloride, phthaloyl chloride, isophthaloyl chloride, terephthaloyl chloride, trimesic acid chloride, bis(4-chlorocarbonylphenyl) ether, 4,4'-diphenyldicarbonyl chloride, 4,4'-azodibenzoyl dichloride, and the like.
<Lactam>
ε-caprolactam, ω-undecanelactam, ω-laurolactam, and the like.
[ポリイミド樹脂]
 ポリイミド樹脂としては、例えば、前記ジアミンと以下に例示するテトラカルボン酸二無水物の反応物が挙げられるが、これらに限定されるものではない。また、これらは1種類で用いても、複数併用してもよい。
<テトラカルボン酸二無水物>
 4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-シクロヘキセン-1,2ジカルボン酸無水物、ピロメリット酸二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、メチレン-4,4’-ジフタル酸二無水物、1,1-エチリデン-4,4’-ジフタル酸二無水物、2,2’-プロピリデン-4,4’-ジフタル酸二無水物、1,2-エチレン-4,4’-ジフタル酸二無水物、1,3-トリメチレン-4,4’-ジフタル酸二無水物、1,4-テトラメチレン-4,4’-ジフタル酸二無水物、1,5-ペンタメチレン-4,4’-ジフタル酸二無水物、4,4’-オキシジフタル酸二無水物、チオ-4,4’-ジフタル酸二無水物、スルホニル-4,4’-ジフタル酸二無水物、1,3-ビス(3,4-ジカルボキシフェニル)ベンゼン二無水物、1,3-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,3-ビス[2-(3,4-ジカルボキシフェニル)-2-プロピル]ベンゼン二無水物、1,4-ビス[2-(3,4-ジカルボキシフェニル)-2-プロピル]ベンゼン二無水物、ビス[3-(3,4-ジカルボキシフェノキシ)フェニル]メタン二無水物、ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]メタン二無水物、2,2-ビス[3-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、ビス(3,4-ジカルボキシフェノキシ)ジメチルシラン二無水物、1,3-ビス(3,4-ジカルボキシフェニル)-1,1,3,3-テトラメチルジシロキサン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,7,8-フェナントレンテトラカルボン酸二無水物、エチレンテトラカルボン酸二無水物、1,2,3,4-ブタンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物)、シクロペンタンテトラカルボン酸二無水物、シクロヘキサン-1,2,3,4-テトラカルボン酸二無水物、シクロヘキサン-1,2,4,5-テトラカルボン酸二無水物、3,3’,4,4’-ビシクロヘキシルテトラカルボン酸二無水物、カルボニル-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、メチレン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、1,2-エチレン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、1,1-エチリデン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、2,2-プロピリデン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、オキシ-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、チオ-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、スルホニル-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、rel-[1S,5R,6R]-3-オキサビシクロ[3,2,1]オクタン-2,4-ジオン-6-スピロ-3’-(テトラヒドロフラン-2’,5’-ジオン)、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物、エチレングリコール-ビス-(3,4-ジカルボン酸無水物フェニル)エーテル、4,4’-ビフェニルビス(トリメリット酸モノエステル酸無水物)、9,9’-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物等。
[Polyimide resin]
Examples of polyimide resins include, but are not limited to, reaction products of the diamines and the tetracarboxylic dianhydrides shown below. These may be used alone or in combination.
<Tetracarboxylic acid dianhydride>
4,4'-(hexafluoroisopropylidene)diphthalic anhydride, 5-(2,5-dioxotetrahydro-3-furanyl)-3-methyl-cyclohexene-1,2 dicarboxylic anhydride, pyromellitic dianhydride, 1,2,3,4-benzenetetracarboxylic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 2,2',3,3'-benzophenonetetracarboxylic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 3,3',4,4'-diphenylsulfonate tetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride, methylene-4,4'-diphthalic dianhydride, 1,1-ethylidene-4,4'-diphthalic dianhydride, 2,2'-propylidene-4,4'-diphthalic dianhydride, 1,2-ethylene-4,4'-diphthalic dianhydride, 1,3-trimethylene-4,4'-diphthalic dianhydride, 1,4-tetramethylene-4,4'-diphthalic dianhydride, 1,5-pentamethylene-4,4'-diphthalic dianhydride, 4,4'-oxydiphthalic dianhydride Anhydride, thio-4,4'-diphthalic dianhydride, sulfonyl-4,4'-diphthalic dianhydride, 1,3-bis(3,4-dicarboxyphenyl)benzene dianhydride, 1,3-bis(3,4-dicarboxyphenoxy)benzene dianhydride, 1,4-bis(3,4-dicarboxyphenoxy)benzene dianhydride, 1,3-bis[2-(3,4-dicarboxyphenyl)-2-propyl]benzene dianhydride, 1,4-bis[2-(3,4-dicarboxyphenyl)-2-propyl]benzene dianhydride, bis[3-(3 ,4-dicarboxyphenoxy)phenyl]methane dianhydride, bis[4-(3,4-dicarboxyphenoxy)phenyl]methane dianhydride, 2,2-bis[3-(3,4-dicarboxyphenoxy)phenyl]propane dianhydride, 2,2-bis[4-(3,4-dicarboxyphenoxy)phenyl]propane dianhydride, bis(3,4-dicarboxyphenoxy)dimethylsilane dianhydride, 1,3-bis(3,4-dicarboxyphenyl)-1,1,3,3-tetramethyldisiloxane dianhydride, 2,3,6,7- Naphthalene tetracarboxylic dianhydride, 1,4,5,8-naphthalene tetracarboxylic dianhydride, 1,2,5,6-naphthalene tetracarboxylic dianhydride, 3,4,9,10-perylene tetracarboxylic dianhydride, 2,3,6,7-anthracene tetracarboxylic dianhydride, 1,2,7,8-phenanthrene tetracarboxylic dianhydride, ethylene tetracarboxylic dianhydride, 1,2,3,4-butane tetracarboxylic dianhydride, 1,2,3,4-cyclobutane tetracarboxylic dianhydride), cyclopentane tetracarboxylic dianhydride tetracarboxylic dianhydride, cyclohexane-1,2,3,4-tetracarboxylic dianhydride, cyclohexane-1,2,4,5-tetracarboxylic dianhydride, 3,3',4,4'-bicyclohexyltetracarboxylic dianhydride, carbonyl-4,4'-bis(cyclohexane-1,2-dicarboxylic acid) dianhydride, methylene-4,4'-bis(cyclohexane-1,2-dicarboxylic acid) dianhydride, 1,2-ethylene-4,4'-bis(cyclohexane-1,2-dicarboxylic acid) dianhydride, 1,1-ethylidene-4,4' -bis(cyclohexane-1,2-dicarboxylic acid) dianhydride, 2,2-propylidene-4,4'-bis(cyclohexane-1,2-dicarboxylic acid) dianhydride, oxy-4,4'-bis(cyclohexane-1,2-dicarboxylic acid) dianhydride, thio-4,4'-bis(cyclohexane-1,2-dicarboxylic acid) dianhydride, sulfonyl-4,4'-bis(cyclohexane-1,2-dicarboxylic acid) dianhydride, bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetracarboxylic acid dianhydride, rel-[1S,5 R,6R]-3-oxabicyclo[3,2,1]octane-2,4-dione-6-spiro-3'-(tetrahydrofuran-2',5'-dione), 4-(2,5-dioxotetrahydrofuran-3-yl)-1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic anhydride, ethylene glycol-bis-(3,4-dicarboxylic anhydride phenyl)ether, 4,4'-biphenyl bis(trimellitic acid monoester acid anhydride), 9,9'-bis(3,4-dicarboxyphenyl)fluorene dianhydride, and the like.
[シアネートエステル樹脂]
 シアネートエステル樹脂は、フェノール樹脂をハロゲン化シアンと反応させることにより得られるシアネートエステル化合物であり、具体例としては、ジシアナートベンゼン、トリシアナートベンゼン、ジシアナートナフタレン、ジシアンートビフェニル、2、2’-ビス(4-シアナートフェニル)プロパン、ビス(4-シアナートフェニル)メタン、ビス(3,5-ジメチル-4-シアナートフェニル)メタン、2,2’-ビス(3,5-ジメチル-4-シアナートフェニル)プロパン、2,2’-ビス(4-シアナートフェニル)エタン、2,2’-ビス(4-シアナートフェニル)ヘキサフロロプロパン、ビス(4-シアナートフェニル)スルホン、ビス(4-シアナートフェニル)チオエーテル、フェノールノボラックシアナート、フェノール・ジシクロペンタジエン共縮合物の水酸基をシアネート基に変換したもの等が挙げられるが、これらに限定されるものではない。また、これらは1種類で用いても、複数併用してもよい。
 また、特開2005-264154号公報に合成方法が記載されているシアネートエステル化合物は、低吸湿性、難燃性、誘電特性に優れているためシアネートエステル化合物として特に好ましい。
 シアネートエステル樹脂は、必要に応じてシアネート基を三量化させてsym-トリアジン環を形成するために、ナフテン酸亜鉛、ナフテン酸コバルト、ナフテン酸銅、ナフテン酸鉛、オクチル酸亜鉛、オクチル酸錫、鉛アセチルアセトナート、ジブチル錫マレエート等の触媒を含有させることもできる。
[Cyanate ester resin]
The cyanate ester resin is a cyanate ester compound obtained by reacting a phenol resin with a cyanogen halide, and specific examples thereof include dicyanatobenzene, tricyanatobenzene, dicyanatonaphthalene, dicyanatobiphenyl, 2,2'-bis(4-cyanatophenyl)propane, bis(4-cyanatophenyl)methane, bis(3,5-dimethyl-4-cyanatophenyl)methane, 2,2'-bis(3,5-dimethyl-4-cyanatophenyl)propane, 2,2'-bis(4-cyanatophenyl)ethane, 2,2'-bis(4-cyanatophenyl)hexafluoropropane, bis(4-cyanatophenyl)sulfone, bis(4-cyanatophenyl)thioether, phenol novolac cyanate, and phenol-dicyclopentadiene co-condensates in which the hydroxyl groups have been converted to cyanate groups, but are not limited thereto. These may be used alone or in combination.
Furthermore, the cyanate ester compound, the synthesis method of which is described in JP-A-2005-264154, is particularly preferred as the cyanate ester compound because it has low moisture absorption, excellent flame retardancy, and excellent dielectric properties.
The cyanate ester resin may contain a catalyst such as zinc naphthenate, cobalt naphthenate, copper naphthenate, lead naphthenate, zinc octoate, tin octoate, lead acetylacetonate, or dibutyltin maleate, if necessary, to trimerize the cyanate group to form a sym-triazine ring.
 触媒は、シアネートエステル樹脂および成分(A)と成分(B)の合計質量100質量部に対して0.0001~0.10質量部、好ましくは0.00015~0.0015質量部使用することが好ましい。 The catalyst is preferably used in an amount of 0.0001 to 0.10 parts by mass, and more preferably 0.00015 to 0.0015 parts by mass, per 100 parts by mass of the cyanate ester resin and the combined mass of components (A) and (B).
[ポリブタジエンおよびこの変性物]
 ポリブタジエンおよびこの変性物とは、ポリブタジエン、もしくはポリブタジエンに由来する構造を分子内に有する化合物である。ポリブタジエンに由来する構造は水素添加により、不飽和結合を一部、もしくは全て単結合に変換されていても良い。
 ポリブタジエンおよびこの変性物としては、例えば、ポリブタジエン、水酸基末端ポリブタジエン、末端(メタ)アクリレート化ポリブタジエン、カルボン酸末端ポリブタジエン、アミン末端ポリブタジエン、スチレンブタジエンゴム等が挙げられるが、これらに限定されるものではない。また、これらは1種類で用いても、複数併用してもよい。これらのうち、誘電特性の観点からポリブタジエンもしくはスチレンブタジエンゴムが好ましい。スチレンブタジエンゴム(SBR)としては例えば、RICON-100、RICON-181、RICON-184(いずれもクレイバレー社製)、1,2-SBS(日本曹達社製)などが挙げられ、ポリブタジエンとしては、B-1000、B-2000、B-3000(いずれも日本曹達社製)等が挙げられる。ポリブタジエンおよびスチレンブタジエンゴムの分子量としては重量平均分子量500~10000が好ましく、より好ましくは750~7500、さらに好ましくは1000~5000である。上記範囲の下限以下では揮発量が多く、プリプレグ作成時の固形分調整が困難となり、上記範囲の上限以上では、他の硬化性樹脂との相溶性が悪化する。一般に、ビスマレイミドやポリマレイミドのような酸素や窒素などのヘテロ原子を含む化合物の場合、その極性に起因し、主に炭化水素から構成される化合物もしくは炭化水素のみからなる化合物のような低極性化合物との相溶性の担保が困難である。一方、本発明の成分(A)は、それ自体が酸素や窒素などのヘテロ原子を積極的に導入した骨格設計ではないことに起因し、低極性かつ低誘電特性を有する材料や、炭化水素のみで構成される化合物との相溶性にも優れる。
[Polybutadiene and its modified products]
The polybutadiene and its modified products are polybutadiene or compounds having a structure derived from polybutadiene in the molecule. The unsaturated bonds in the polybutadiene-derived structure may be partially or entirely converted to single bonds by hydrogenation.
Examples of polybutadiene and modified products thereof include, but are not limited to, polybutadiene, hydroxyl-terminated polybutadiene, (meth)acrylated polybutadiene, carboxylic acid-terminated polybutadiene, amine-terminated polybutadiene, styrene butadiene rubber, and the like. These may be used alone or in combination. Of these, polybutadiene or styrene butadiene rubber is preferred from the viewpoint of dielectric properties. Examples of styrene butadiene rubber (SBR) include RICON-100, RICON-181, RICON-184 (all manufactured by Cray Valley Corporation), 1,2-SBS (manufactured by Nippon Soda Co., Ltd.), and examples of polybutadiene include B-1000, B-2000, B-3000 (all manufactured by Nippon Soda Co., Ltd.). The molecular weight of polybutadiene and styrene butadiene rubber is preferably a weight average molecular weight of 500 to 10,000, more preferably 750 to 7,500, and even more preferably 1,000 to 5,000. Below the lower limit of the above range, the amount of volatilization is large, making it difficult to adjust the solid content during prepreg preparation, and above the upper limit of the above range, the compatibility with other curable resins is deteriorated. In general, in the case of compounds containing heteroatoms such as oxygen and nitrogen, such as bismaleimide and polymaleimide, it is difficult to ensure compatibility with low-polarity compounds such as compounds mainly composed of hydrocarbons or compounds composed only of hydrocarbons due to their polarity. On the other hand, component (A) of the present invention is excellent in compatibility with materials having low polarity and low dielectric properties and compounds composed only of hydrocarbons, due to the fact that it is not a skeleton design in which heteroatoms such as oxygen and nitrogen are actively introduced.
[ポリスチレンおよびこの変性物]
 ポリスチレンおよびこの変性物とは、ポリスチレン、もしくはポリスチレンに由来する構造を分子内に有する化合物である。
 ポリスチレンおよびこの変性物としては、例えば、ポリスチレン、スチレン・2-イソプロペニル-2-オキサゾリン共重合体(エポクロス RPS-1005、RP-61 いずれも日本触媒社製)、SEP(スチレン-エチレン・プロピレン共重合体:セプトン1020 クラレ社製)、SEPS(スチレン-エチレン・プロピレン-スチレン共重合体:セプトン2002、セプトン2004F、セプトン2005、セプトン2006、セプトン2063、セプトン2104 いずれもクラレ社製)、SEEPS(スチレン-エチレン/エチレン・プロピレン-スチレンブロック共重合体:セプトン4003、セプトン4044、セプトン4055、セプトン4077、セプトン4099 いずれもクラレ社製)、SEBS(スチレン-エチレン・ブチレン-スチレン ブロック共重合体:セプトン8004、セプトン8006、セプトン8007L いずれもクラレ社製)、SEEPS-ОH(スチレン-エチレン/エチレン・プロピレン-スチレンブロック共重合体の末端に水酸基を有する化合物:セプトンHG252 クラレ社製)、SIS(スチレン-イソプレン-スチレン ブロック共重合体:セプトン5125、セプトン5127 いずれもクラレ社製)、水添SIS(水添スチレン-イソプレン-スチレン ブロック共重合体:ハイブラー7125F、ハイブラー7311F いずれもクラレ社製)、SIBS(スチレン-イソブチレン-スチレンブロック共重合体:SIBSTAR073T、SIBSTAR102T、SIBSTAR103T(いずれもカネカ社製)、セプトンV9827(クラレ社製))等が挙げられるが、これらに限定されるものではない。また、これらは1種類で用いても、複数併用してもよい。ポリスチレンおよびこの変性物は、より高い耐熱性を有し、かつ酸化劣化しにくいため、不飽和結合を有さないものが好ましい。また、ポリスチレンおよびこの変性物の重量平均分子量は10000以上であれば特に制限はないが、大きすぎるとポリフェニレンエーテル化合物のほか、重量平均分子量50~1000程度の低分子量成分および、重量平均分子量1000~5000程度のオリゴマー成分との相溶性が悪化し、混合および溶剤安定性の担保が困難になることから、10000~300000程度であることが好ましい。
[Polystyrene and its modified products]
Polystyrene and modified products thereof are polystyrene or compounds having a structure derived from polystyrene in the molecule.
Examples of polystyrene and modified products thereof include polystyrene, styrene-2-isopropenyl-2-oxazoline copolymers (Epocross RPS-1005, RP-61, both manufactured by Nippon Shokubai Co., Ltd.), SEP (styrene-ethylene-propylene copolymer: Septon 1020, manufactured by Kuraray Co., Ltd.), SEPS (styrene-ethylene-propylene-styrene copolymer: Septon 2002, Septon 2004F, Septon 2005, Septon 2006, Septon 2063, Septon 2104, all manufactured by Kuraray Co., Ltd.), SEEPS (styrene-ethylene/ethylene-propylene-styrene block copolymer: Septon 4003, Septon 4044, Septon 4055, Septon 4077, Septon 4099, all manufactured by Kuraray Co., Ltd.), and SEBS (styrene-ethylene-butylene-styrene block copolymer: Septon 4003, Septon 4044, Septon 4055, Septon 4077, Septon 4099, all manufactured by Kuraray Co., Ltd.). Examples of the block copolymer include Septon 8004, Septon 8006, and Septon 8007L, all manufactured by Kuraray Co., Ltd.), SEEPS-OH (a compound having a hydroxyl group at the end of a styrene-ethylene/ethylene propylene-styrene block copolymer: Septon HG252, manufactured by Kuraray Co., Ltd.), SIS (styrene-isoprene-styrene block copolymer: Septon 5125 and Septon 5127, both manufactured by Kuraray Co., Ltd.), hydrogenated SIS (hydrogenated styrene-isoprene-styrene block copolymer: Hybler 7125F and Hybler 7311F, both manufactured by Kuraray Co., Ltd.), SIBS (styrene-isobutylene-styrene block copolymer: SIBSTAR073T, SIBSTAR102T, and SIBSTAR103T (all manufactured by Kaneka Corporation), and Septon V9827 (manufactured by Kuraray Co., Ltd.)), but are not limited thereto. These may be used alone or in combination. Polystyrene and its modified products are preferably those that do not have unsaturated bonds, since they have higher heat resistance and are less susceptible to oxidation degradation. The weight-average molecular weight of polystyrene and its modified products is not particularly limited as long as it is 10,000 or more, but if it is too large, the compatibility with not only polyphenylene ether compounds but also low molecular weight components with weight-average molecular weights of about 50 to 1,000 and oligomer components with weight-average molecular weights of about 1,000 to 5,000 deteriorates, making it difficult to ensure mixing and solvent stability, so it is preferably about 10,000 to 300,000.
 本発明の硬化性樹脂組成物は、上記各成分を所定の割合で調製することにより得られ、130~180℃で30~500秒の範囲で予備硬化し、更に、150~200℃で2~15時間、後硬化することにより充分な硬化反応が進行し、本発明の硬化物が得られる。また、硬化性樹脂組成物の成分を溶剤等に均一に分散または溶解させ、溶媒を除去した後硬化させることもできる。 The curable resin composition of the present invention can be obtained by preparing the above components in a prescribed ratio, pre-curing at 130-180°C for 30-500 seconds, and then post-curing at 150-200°C for 2-15 hours, allowing the curing reaction to proceed sufficiently to obtain the cured product of the present invention. The components of the curable resin composition can also be uniformly dispersed or dissolved in a solvent, etc., and cured after removing the solvent.
 本発明の硬化性樹脂組成物の調製方法は特に限定されないが、各成分を均一に混合するだけでも、あるいはプレポリマー化してもよい。例えば成分(A)と成分(B)を配合した混合物に対し硬化促進剤や重合開始剤の存在下または非存在下、溶剤の存在下または非存在下において加熱することによりプレポリマー化する。同様に、アミン化合物、エチレン性不飽和結合を有する化合物、マレイミド化合物、シアネートエステル化合物、ポリブタジエンおよびこの変性物、ポリスチレンおよびこの変性物などの化合物、無機充填剤、及びその他添加剤を追加してプレポリマー化してもよい。各成分の混合またはプレポリマー化は溶剤の非存在下では例えば押出機、ニーダ、ロールなどを用い、溶剤の存在下では攪拌装置つきの反応釜などを使用する。 The method for preparing the curable resin composition of the present invention is not particularly limited, but each component may be mixed uniformly or may be prepolymerized. For example, a mixture of component (A) and component (B) is prepolymerized by heating in the presence or absence of a curing accelerator or polymerization initiator, and in the presence or absence of a solvent. Similarly, amine compounds, compounds having ethylenically unsaturated bonds, maleimide compounds, cyanate ester compounds, polybutadiene and its modified products, polystyrene and its modified products, inorganic fillers, and other additives may be added to form a prepolymer. The components may be mixed or prepolymerized using, for example, an extruder, kneader, rolls, etc. in the absence of a solvent, and a reaction kettle with a stirrer, etc. in the presence of a solvent.
 均一に混合する手法としては50~100℃の範囲内の温度でニーダ、ロール、プラネタリーミキサー等の装置を用いて練りこむように混合し、均一な樹脂組成物とする。得られた樹脂組成物は粉砕後、タブレットマシーン等の成型機で円柱のタブレット状に成型、もしくは顆粒状の粉体、もしくは粉状の成型体とする、もしくはこれら組成物を表面支持体の上で溶融し0.05mm~10mmの厚みのシート状に成型し、硬化性樹脂組成物成型体とすることもできる。得られた成型体は0~20℃でべたつきのない成型体となり、-25~0℃で1週間以上保管しても流動性、硬化性をほとんど低下させない。
 得られた成型体についてトランスファー成型機、コンプレッション成型機にて硬化物に成型することができる。
As a method of uniform mixing, the mixture is kneaded at a temperature in the range of 50 to 100°C using a device such as a kneader, roll, or planetary mixer to obtain a uniform resin composition. The obtained resin composition is crushed and then molded into a cylindrical tablet using a molding machine such as a tablet machine, or into a granular powder or powder molded body, or these compositions can be melted on a surface support and molded into a sheet having a thickness of 0.05 mm to 10 mm to obtain a molded curable resin composition. The obtained molded body is a non-sticky molded body at 0 to 20°C, and even if stored at -25 to 0°C for one week or more, the flowability and curability are hardly reduced.
The obtained molded article can be molded into a cured product using a transfer molding machine or a compression molding machine.
 本発明の硬化性樹脂組成物は、有機溶剤を添加してワニス状の組成物(以下、単にワニスという。)とすることもできる。本発明の硬化性樹脂組成物を必要に応じてトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等の溶剤に溶解させてワニスとし、ガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させて加熱乾燥して得たプリプレグを熱プレス成形することにより、本発明の硬化性樹脂組成物の硬化物とすることができる。この際の溶剤は、本発明の硬化性樹脂組成物と該溶剤の混合物中で10~70重量%、好ましくは15~70重量%を占める量を用いる。また液状組成物であれば、そのまま例えば、RTM方式でカーボン繊維を含有する硬化性樹脂組成物を得ることもできる。 The curable resin composition of the present invention can be made into a varnish-like composition (hereinafter, simply referred to as varnish) by adding an organic solvent. The curable resin composition of the present invention can be dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc. as necessary to make a varnish, which can be impregnated into a substrate such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc., and dried by heating to obtain a prepreg, which can be hot-press molded to obtain a cured product of the curable resin composition of the present invention. The solvent used in this case is in an amount that occupies 10 to 70% by weight, preferably 15 to 70% by weight, of the mixture of the curable resin composition of the present invention and the solvent. If the composition is in a liquid state, a curable resin composition containing carbon fiber can be obtained as it is, for example, by the RTM method.
 また、本発明の硬化性樹脂組成物をフィルム型組成物の改質剤としても使用できる。具体的にはB-ステージにおけるフレキ性等を向上させる場合に用いることができる。このようなフィルム型の樹脂組成物は、本発明の硬化性樹脂組成物を前記硬化性樹脂組成物ワニスとして剥離フィルム上に塗布し、加熱下で溶剤を除去した後、Bステージ化を行うことによりシート状の接着剤として得られる。このシート状接着剤は多層基板などにおける層間絶縁層として使用することができる。 The curable resin composition of the present invention can also be used as a modifier for film-type compositions. Specifically, it can be used to improve flexibility in the B-stage. Such a film-type resin composition can be obtained as a sheet-like adhesive by applying the curable resin composition of the present invention as the curable resin composition varnish onto a release film, removing the solvent under heating, and then performing B-stage conversion. This sheet-like adhesive can be used as an interlayer insulating layer in multilayer substrates, etc.
 本発明の硬化性樹脂組成物は、加熱溶融し、低粘度化してガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維などの強化繊維に含浸させることによりプリプレグを得ることもできる。その具体例としては、例えば、Eガラスクロス、Dガラスクロス、Sガラスクロス、Qガラスクロス、球状ガラスクロス、NEガラスクロス、及びTガラスクロス等のガラス繊維、更にガラス以外の無機物の繊維やポリパラフェニレンテレフタラミド(ケブラー(登録商標)、デュポン社製)、全芳香族ポリアミド、ポリエステル、ポリパラフェニレンベンズオキサゾール、ポリイミド及び炭素繊維などの有機繊維が挙げられるが、これらに特に限定されない。基材の形状としては、特に限定されないが、例えば、織布、不織布、ロービング、チョップドストランドマットなどが挙げられる。また、織布の織り方としては、平織り、ななこ織り、綾織り等が知られており、これら公知のものから目的とする用途や性能により適宜選択して使用することができる。また、織布を開繊処理したものやシランカップリング剤などで表面処理したガラス織布が好適に使用される。基材の厚さは、特に限定されないが、好ましくは0.01~0.4mm程度である。また、前記ワニスを、強化繊維に含浸させて加熱乾燥させることによりプリプレグを得ることもできる。 The curable resin composition of the present invention can be heated and melted to reduce the viscosity, and impregnated into reinforcing fibers such as glass fibers, carbon fibers, polyester fibers, polyamide fibers, and alumina fibers to obtain a prepreg. Specific examples include glass fibers such as E glass cloth, D glass cloth, S glass cloth, Q glass cloth, spherical glass cloth, NE glass cloth, and T glass cloth, as well as inorganic fibers other than glass, and organic fibers such as polyparaphenylene terephthalamide (Kevlar (registered trademark), manufactured by DuPont), fully aromatic polyamide, polyester, polyparaphenylene benzoxazole, polyimide, and carbon fibers, but are not limited to these. The shape of the substrate is not particularly limited, but examples include woven fabric, nonwoven fabric, roving, chopped strand mat, and the like. In addition, plain weave, saddle weave, twill weave, and the like are known as ways of weaving woven fabric, and these known methods can be appropriately selected and used depending on the intended use and performance. In addition, woven fabrics that have been subjected to fiber opening treatment and glass woven fabrics that have been surface-treated with a silane coupling agent or the like are preferably used. The thickness of the substrate is not particularly limited, but is preferably about 0.01 to 0.4 mm. Prepregs can also be obtained by impregnating reinforcing fibers with the varnish and drying them by heating.
 また、上記プリプレグを用いて積層板を製造することもできる。積層板はプリプレグを1枚以上備えるものであれば特に限定されず、他のいかなる層を有していてもよい。積層板の製造方法としては、一般に公知の方法を適宜適用でき、特に限定されない。例えば、金属箔張積層板の成形時には多段プレス機、多段真空プレス機、連続成形機、オートクレーブ成形機などを用いることができ、上記プリプレグ同士を積層し、加熱加圧成形することで積層板を得ることができる。このとき、加熱する温度は、特に限定されないが、65~300℃が好ましく、120~270℃がより好ましい。また、加圧する圧力は、特に限定されないが、加圧が大きすぎると積層板の樹脂の固形分調整が難しく品質が安定せず、また、圧力が小さすぎると、気泡や積層間の密着性が悪くなってしまうため2.0~5.0MPaが好ましく、2.5~4.0MPaがより好ましい。本実施形態の積層板は、金属箔からなる層を備えることにより、後述する金属箔張積層板として好適に用いることができる。
 上記プリプレグを所望の形に裁断、必要により銅箔などと積層後、積層物にプレス成形法やオートクレーブ成形法、シートワインディング成形法などで圧力をかけながら硬化性樹脂組成物を加熱硬化させることにより電気電子用積層板(プリント配線板)や、炭素繊維強化材を得ることができる。
Moreover, a laminate can be manufactured using the prepreg. The laminate is not particularly limited as long as it has one or more prepregs, and may have any other layer. The manufacturing method of the laminate can be appropriately applied by a generally known method, and is not particularly limited. For example, when molding a metal foil-clad laminate, a multi-stage press machine, a multi-stage vacuum press machine, a continuous molding machine, an autoclave molding machine, etc. can be used, and the prepregs are laminated together and heated and pressurized to obtain a laminate. At this time, the heating temperature is not particularly limited, but is preferably 65 to 300 ° C, and more preferably 120 to 270 ° C. In addition, the pressure to be applied is not particularly limited, but if the pressure is too high, it is difficult to adjust the solid content of the resin of the laminate, and the quality is not stable, and if the pressure is too low, air bubbles and adhesion between the laminates are deteriorated, so that 2.0 to 5.0 MPa is preferable, and 2.5 to 4.0 MPa is more preferable. The laminate of this embodiment can be suitably used as a metal foil-clad laminate described later by providing a layer made of metal foil.
The prepreg is cut into a desired shape and laminated with copper foil or the like as necessary. The laminate is then heated and cured while applying pressure thereto by press molding, autoclave molding, sheet winding molding or the like, to obtain an electrical and electronic laminate (printed wiring board) or a carbon fiber reinforced material.
 本発明の硬化性樹脂組成物は、樹脂シートにすることもできる。本発明の硬化性樹脂組成物から樹脂シートを得る方法としては、例えば、支持フィルム(支持体)上に硬化性樹脂組成物を塗布したのち、乾燥させて、支持フィルムの上に樹脂組成物層を形成する方法が挙げられる。本発明の硬化性樹脂組成物を樹脂シートに用いる場合、該フィルムは、真空ラミネート法におけるラミネートの温度条件(70℃~140℃)で軟化し、回路基板のラミネートと同時に、回路基板に存在するビアホール或いはスルーホール内の樹脂充填が可能な流動性(樹脂流れ)を示すことが肝要であり、このような特性を発現するよう前記各成分を配合することが好ましい。なお、得られる樹脂シートや回路基板(銅張積層板等)においては、相分離などに起因する、局所的に異なる特性値を示すといった現象を生じさせず、任意の部位において、一定の性能を発現させるため、外観均一性が要求される。 The curable resin composition of the present invention can also be made into a resin sheet. A method for obtaining a resin sheet from the curable resin composition of the present invention includes, for example, applying the curable resin composition onto a support film (support), drying the composition, and forming a resin composition layer on the support film. When the curable resin composition of the present invention is used for a resin sheet, it is essential that the film softens under the lamination temperature conditions (70°C to 140°C) in the vacuum lamination method, and exhibits fluidity (resin flow) that allows resin to fill via holes or through holes in the circuit board at the same time as laminating the circuit board, and it is preferable to mix the above-mentioned components so as to exhibit such characteristics. In addition, the obtained resin sheet or circuit board (copper-clad laminate, etc.) is required to have a uniform appearance in order to exhibit a certain performance at any part without causing a phenomenon in which different characteristic values are locally exhibited due to phase separation, etc.
 ここで、回路基板のスルーホールの直径は0.1~0.5mm、深さは0.1~1.2mmであり、この範囲で樹脂充填を可能とするのが好ましい。なお回路基板の両面をラミネートする場合はスルーホールの1/2程度充填されることが望ましい。 The through holes in the circuit board have a diameter of 0.1 to 0.5 mm and a depth of 0.1 to 1.2 mm, and it is preferable to make it possible to fill them with resin within this range. If both sides of the circuit board are to be laminated, it is desirable to fill about half of the through holes.
 前記樹脂シートを製造する具体的な方法としては、有機溶剤を配合してワニス化した樹脂組成物を調製した後、支持フィルム(Y)の表面に、前記ワニス化した樹脂組成物を塗布し、更に加熱、あるいは熱風吹きつけ等により有機溶剤を乾燥して、樹脂組成物層(X)を形成する方法が挙げられる。 A specific method for producing the resin sheet is to prepare a resin composition that has been varnished by blending an organic solvent, and then to apply the varnished resin composition to the surface of a support film (Y), and then to dry the organic solvent by heating or blowing hot air onto the resin composition to form a resin composition layer (X).
 ここで用いる有機溶剤としては、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等を用いることが好ましく、また、不揮発分30~60質量%となる割合で使用することが好ましい。 The organic solvents used here preferably include, for example, ketones such as acetone, methyl ethyl ketone, and cyclohexanone; acetate esters such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, and carbitol acetate; carbitols such as cellosolve and butyl carbitol; aromatic hydrocarbons such as toluene and xylene; dimethylformamide, dimethylacetamide, and N-methylpyrrolidone; and it is preferable to use them in a proportion that results in a non-volatile content of 30 to 60% by mass.
 なお、形成される前記樹脂組成物層(X)の厚さは、導体層の厚さ以上とする必要がある。回路基板が有する導体層の厚さは5~70μmの範囲であるので、前記樹脂組成物層(X)の厚さは10~100μmの厚みを有するのが好ましい。なお、本発明における前記樹脂組成物層(X)は、後述する保護フィルムで保護されていてもよい。保護フィルムで保護することにより、樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。 The thickness of the resin composition layer (X) formed must be equal to or greater than the thickness of the conductor layer. Since the thickness of the conductor layer of the circuit board is in the range of 5 to 70 μm, the thickness of the resin composition layer (X) is preferably 10 to 100 μm. The resin composition layer (X) in the present invention may be protected with a protective film, which will be described later. By protecting the resin composition layer with a protective film, it is possible to prevent the adhesion of dirt and the like to the surface of the resin composition layer and prevent scratches.
 前記支持フィルム及び保護フィルムは、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、更には離型紙や銅箔、アルミニウム箔等の金属箔などを挙げることができる。なお、支持フィルム及び保護フィルムはマッド処理、コロナ処理の他、離型処理を施してあってもよい。支持フィルムの厚さは特に限定されないが、10~150μmであり、好ましくは25~50μmの範囲で用いられる。また保護フィルムの厚さは1~40μmとするのが好ましい。 The support film and protective film may be made of polyolefins such as polyethylene, polypropylene, and polyvinyl chloride; polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate; polycarbonate; polyimide; and even release paper and metal foils such as copper foil and aluminum foil. The support film and protective film may be subjected to a mud treatment, corona treatment, or release treatment. There are no particular limitations on the thickness of the support film, but it is generally in the range of 10 to 150 μm, and preferably 25 to 50 μm. The protective film is preferably made 1 to 40 μm thick.
 前記支持フィルム(Y)は、回路基板にラミネートした後に、あるいは、加熱硬化することにより、絶縁層を形成した後に、剥離される。樹脂シートを構成する樹脂組成物層が加熱硬化した後に支持フィルム(Y)を剥離すれば、硬化工程でのゴミ等の付着を防ぐことができる。硬化後に剥離する場合、支持フィルムには予め離型処理が施される。 The support film (Y) is peeled off after laminating it onto the circuit board, or after forming an insulating layer by heat curing. If the support film (Y) is peeled off after the resin composition layer constituting the resin sheet has been heat cured, the adhesion of dust and the like during the curing process can be prevented. If the support film is peeled off after curing, a release treatment is applied to the support film beforehand.
 なお、前記のようにして得られた樹脂シートから多層プリント回路基板を製造することができる。例えば、前記樹脂組成物層(X)が保護フィルムで保護されている場合はこれらを剥離した後、前記樹脂組成物の層(X)を回路基板に直接接するように回路基板の片面又は両面に、例えば真空ラミネート法によりラミネートする。ラミネートの方法はバッチ式であってもロールでの連続式であってもよい。また必要により、ラミネートを行う前に樹脂シート及び回路基板を必要により加熱(プレヒート)しておいてもよい。ラミネートの条件は、圧着温度(ラミネート温度)を70~140℃とすることが好ましく、圧着圧力を1~11kgf/cm(9.8×10~107.9×10N/m)とすることが好ましく、空気圧を20mmHg(26.7hPa)以下の減圧下でラミネートすることが好ましい。 A multilayer printed circuit board can be manufactured from the resin sheet obtained as described above. For example, when the resin composition layer (X) is protected by a protective film, the protective film is peeled off, and then the resin composition layer (X) is laminated on one or both sides of the circuit board so as to be in direct contact with the circuit board, for example, by a vacuum lamination method. The lamination method may be a batch method or a continuous method using a roll. If necessary, the resin sheet and the circuit board may be heated (preheated) before lamination. The lamination conditions are preferably a pressure bonding temperature (lamination temperature) of 70 to 140°C, a pressure bonding pressure of 1 to 11 kgf/cm 2 (9.8×10 4 to 107.9×10 4 N/m 2 ), and lamination is preferably performed under reduced pressure of 20 mmHg (26.7 hPa) or less.
 また、本発明の硬化性樹脂組成物を用いて半導体装置は製造することができる。半導体装置としては、例えばDIP(デュアルインラインパッケージ)、QFP(クワッドフラットパッケージ)、BGA(ボールグリッドアレイ)、CSP(チップサイズパッケージ)、SOP(スモールアウトラインパッケージ)、TSOP(シンスモールアウトラインパッケージ)、TQFP(シンクワッドフラットパッケージ)等が挙げられる。 The curable resin composition of the present invention can be used to manufacture semiconductor devices. Examples of semiconductor devices include DIP (dual in-line package), QFP (quad flat package), BGA (ball grid array), CSP (chip size package), SOP (small outline package), TSOP (thin small outline package), TQFP (thin quad flat package), etc.
 本発明の硬化性樹脂組成物およびその硬化物は、広範な分野で用いることができる。具体的には、成型材料、接着剤、複合材料、塗料など各種用途に使用できる。本発明記載の硬化性樹脂組成物の硬化物は優れた耐熱性と誘電特性を示すため、半導体素子用封止材、液晶表示素子用封止材、有機EL素子用封止材、積層板(プリント配線板、BGA用基板、ビルドアップ基板など)等の電気・電子部品や炭素繊維強化プラスチック、ガラス繊維強化プラスチック等の軽量高強度構造材用複合材料、3Dプリンティング等に好適に使用される。 The curable resin composition of the present invention and its cured product can be used in a wide range of fields. Specifically, they can be used in various applications such as molding materials, adhesives, composite materials, and paints. The cured product of the curable resin composition of the present invention exhibits excellent heat resistance and dielectric properties, and is therefore suitable for use in electrical and electronic components such as encapsulants for semiconductor elements, encapsulants for liquid crystal display elements, encapsulants for organic EL elements, laminates (printed wiring boards, BGA substrates, build-up substrates, etc.), lightweight and high-strength structural composite materials such as carbon fiber reinforced plastics and glass fiber reinforced plastics, 3D printing, etc.
 次に本発明を実施例により更に具体的に説明する。以下、特に断わりのない限り、部は質量部である。尚、本発明はこれら実施例に限定されるものではない。 The present invention will now be described in more detail with reference to examples. Unless otherwise specified, all parts are by weight. Note that the present invention is not limited to these examples.
 以下に実施例で用いた各種分析方法について記載する。
<ゲルパーミエーションクロマトグラフィー(GPC)>
 ポリスチレン標準液を用いてポリスチレン換算により重量平均分子量(Mw)、数平均分子量(Mn)を算出した。
 GPC:DGU-20A3R,LC-20AD,SIL-20AHT,RID-20A,SPD-20A,CTO-20A,CBM-20A(いずれも島津製作所製)
 カラム:Shodex KF-603、KF-602x2、KF-601x2)
 連結溶離液:テトラヒドロフラン
 流速:0.5ml/min.
 カラム温度:40℃
 検出:RI(示差屈折検出器)
Various analytical methods used in the examples are described below.
<Gel Permeation Chromatography (GPC)>
The weight average molecular weight (Mw) and number average molecular weight (Mn) were calculated in terms of polystyrene using a polystyrene standard solution.
GPC: DGU-20A3R, LC-20AD, SIL-20AHT, RID-20A, SPD-20A, CTO-20A, CBM-20A (all manufactured by Shimadzu Corporation)
Column: Shodex KF-603, KF-602x2, KF-601x2)
Eluent for coupling: tetrahydrofuran Flow rate: 0.5 ml/min.
Column temperature: 40°C
Detection: RI (Differential Refraction Detector)
<高速液体クロマトグラフィー(HPLC)>
  カラム        :Inertsil  ODS-2(ジーエルサイエンス)
  検出器        :UV  274nm               
  温度          :40℃
  溶離液        :アセトニトリル/水
  流量          :1.0ml/min
  注入量        :5μl(濃度: 約10mg/6ml)
  グラジエントプログラム
                アセトニトリル/水
  スタート      30/70  グラジエント  →28分後  100/0  そのまま保持
<High Performance Liquid Chromatography (HPLC)>
Column: Inertsil ODS-2 (GL Sciences)
Detector: UV 274 nm
Temperature: 40℃
Eluent: acetonitrile/water Flow rate: 1.0 ml/min
Injection volume: 5 μl (concentration: approx. 10 mg/6 ml)
Gradient program: Acetonitrile/water Start 30/70 Gradient → 100/0 after 28 minutes Hold as is
[合成例1]
 温度計、冷却管、分留管、撹拌機を取り付けたフラスコに窒素パージを施しながら、アニリン559部、α,α,α’,α’-テトラメチルベンゼンジメタノール291部(富士フィルム和光純薬株式会社製)、トルエン360部を加え、35%塩酸水溶液63部を加え、攪拌を開始した。脱水により生成する水をトルエンとともに抜き出しながら内温を160℃まで昇温し、15時間反応させた。室温まで放冷し、抜き出したトルエンおよび水を系内へ戻し、30%水酸化ナトリウム水溶液88部添加し、中和を施した。その後、廃液が中性になるまで有機層を水洗後濃縮し、下記式(5)で表される芳香族アミン樹脂(A1)を458部得た。芳香族アミン樹脂(A1)のアミン当量は185g/eq、軟化点は58.7℃であった。GPC分析(RI)により、n=1体は61%であり、HPLC分析によるn=1体中の4,4’-(1,3-フェニレンジイソプロピリデン)ビスアニリンは16.7%であるため、芳香族アミン樹脂中の4,4’-(1,3-フェニレンジイソプロピリデン)ビスアニリンは、10.2%であった。得られたアミン樹脂(A1)のGPCチャートを図1に示し、HPLCチャートを図2に示す。また、H-NMRチャート(重クロロホルム)を図3に示す。H-NMRチャートの3.05-3.65ppmにアミノ基由来のシグナルが観測された。
[Synthesis Example 1]
While purging with nitrogen into a flask equipped with a thermometer, a cooling tube, a fractionating tube, and a stirrer, 559 parts of aniline, 291 parts of α,α,α',α'-tetramethylbenzenedimethanol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 360 parts of toluene, 63 parts of 35% aqueous hydrochloric acid, and stirring were started. The internal temperature was raised to 160°C while removing water generated by dehydration together with toluene, and the reaction was carried out for 15 hours. The mixture was allowed to cool to room temperature, and the removed toluene and water were returned to the system, and 88 parts of 30% aqueous sodium hydroxide solution were added to perform neutralization. Thereafter, the organic layer was washed with water and concentrated until the waste liquid was neutral, and 458 parts of aromatic amine resin (A1) represented by the following formula (5) was obtained. The amine equivalent of the aromatic amine resin (A1) was 185 g/eq, and the softening point was 58.7°C. GPC analysis (RI) showed that n=1 isomers were 61%, and HPLC analysis showed that 4,4'-(1,3-phenylenediisopropylidene)bisaniline in n=1 isomers was 16.7%, so that 4,4'-(1,3-phenylenediisopropylidene)bisaniline in the aromatic amine resin was 10.2%. The GPC chart of the obtained amine resin (A1) is shown in Figure 1, and the HPLC chart is shown in Figure 2. The 1 H-NMR chart (deuterated chloroform) is shown in Figure 3. A signal derived from an amino group was observed at 3.05-3.65 ppm in the 1 H-NMR chart.
[合成例2]
 温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコに無水マレイン酸147部とトルエン300部、メタンスルホン酸4部を仕込み、加熱還流状態とした。次に、芳香族アミン樹脂(A1)197部をN-メチル-2-ピロリドン95部とトルエン100部に溶解した樹脂溶液を、還流状態を保ちながら3時間かけて滴下した。この間、還流条件で共沸してくる縮合水とトルエンをディーンスターク共沸蒸留トラップ内で冷却・分液した後、有機層であるトルエンは系内に戻し、水は系外へ排出した。樹脂溶液の滴下終了後、還流状態を保ち、脱水操作をしながら6時間反応を行った。
 反応終了後、水洗を4回繰り返してメタンスルホン酸及び過剰の無水マレイン酸を除去し、70℃以下の加熱減圧下においてトルエンと水の共沸により、水を系内から除去した。次いで、メタンスルホン酸2部を加え、加熱還流状態で2時間反応を行った。反応終了後、水洗水が中性になるまで4回水洗を繰り返したのち、70℃以下の加熱減圧下においてルエンと水の共沸により、水を系内から除去したのち、トルエンを加熱減圧下において完全に留去することによりマレイミド樹脂(M-1)を得た。得られたマレイミド樹脂(M-1)の軟化点は100℃、酸価は9mgKOH/gであった。
[Synthesis Example 2]
A flask equipped with a thermometer, a cooling tube, a Dean-Stark azeotropic distillation trap, and a stirrer was charged with 147 parts of maleic anhydride, 300 parts of toluene, and 4 parts of methanesulfonic acid, and heated to reflux. Next, a resin solution obtained by dissolving 197 parts of aromatic amine resin (A1) in 95 parts of N-methyl-2-pyrrolidone and 100 parts of toluene was added dropwise over 3 hours while maintaining the reflux state. During this time, the condensed water and toluene that were azeotropically formed under reflux conditions were cooled and separated in the Dean-Stark azeotropic distillation trap, and then the toluene, which was the organic layer, was returned to the system, and the water was discharged outside the system. After the dripping of the resin solution was completed, the reaction was carried out for 6 hours while maintaining the reflux state and performing a dehydration operation.
After the reaction was completed, the mixture was washed with water four times to remove methanesulfonic acid and excess maleic anhydride, and water was removed from the system by azeotropic distillation of toluene and water under reduced pressure at 70°C or less. Then, 2 parts of methanesulfonic acid was added, and the reaction was carried out for 2 hours under heated reflux. After the reaction was completed, the mixture was washed with water four times until the washing water became neutral, and water was removed from the system by azeotropic distillation of toluene and water under reduced pressure at 70°C or less, and toluene was completely distilled off under reduced pressure at 70°C or less to obtain a maleimide resin (M-1). The softening point of the obtained maleimide resin (M-1) was 100°C, and the acid value was 9 mgKOH/g.
[実施例1、比較例1]
 表1に示す割合で各材料をアセトンに固形分70質量%となるよう溶解させ配合し、真空オーブン内で60℃30分予備乾燥後、120℃30分予備乾燥させた。得られた粉末を5g用いて、鏡面銅箔(T4X:福田金属銅箔社製)で挟み込みながら真空プレス成型し、220℃で2時間硬化させた。この際、スペーサとして厚さ250μmのクッション紙の中央を縦横150mmにくり抜いたものを用いた。評価にあたっては、必要に応じてレーザーカッターを用いて所望のサイズに試験片を切り出し、評価を実施した。評価結果を表1に示す。また、実施例1および比較例1のDMAチャートを図4に示す。
[Example 1, Comparative Example 1]
Each material was dissolved in acetone in the proportions shown in Table 1 to a solid content of 70% by mass, mixed, and pre-dried in a vacuum oven at 60°C for 30 minutes, and then pre-dried at 120°C for 30 minutes. 5 g of the obtained powder was used, sandwiched between mirror-finished copper foil (T4X: manufactured by Fukuda Metal Copper Foil Co., Ltd.), vacuum press molded, and cured at 220°C for 2 hours. At this time, a spacer was used in which the center of a cushion paper with a thickness of 250 μm was cut out to 150 mm in length and width. For the evaluation, a test piece was cut to the desired size using a laser cutter as necessary, and the evaluation was performed. The evaluation results are shown in Table 1. DMA charts of Example 1 and Comparative Example 1 are also shown in FIG. 4.
<耐熱性(DMA)>
 動的粘弾性測定器:TA-instruments、DMA-2980
 測定温度範囲:-30~280℃
 昇温速度:2℃/分
 周波数:10Hz
 試験片サイズ:5mm×50mmに切り出した物を使用した(厚さは0.2mm)
 Tg:tanδ(=損失弾性率/貯蔵弾性率)のピーク点をTgとした
<吸水率試験>
 サンプルを25℃、24時間水中に浸し、吸水試験前後の重量差より吸水率を求めた。サンプルサイズは幅5mm×長さ50mmとし、厚さは0.2mmで試験を行った。
<Heat resistance (DMA)>
Dynamic viscoelasticity measuring instrument: TA-instruments, DMA-2980
Measurement temperature range: -30 to 280°C
Heating rate: 2°C/min Frequency: 10Hz
Test piece size: A piece cut to 5 mm x 50 mm was used (thickness: 0.2 mm)
Tg: The peak point of tan δ (= loss modulus/storage modulus) was defined as Tg. <Water absorption test>
The sample was immersed in water at 25° C. for 24 hours, and the water absorption rate was calculated from the weight difference before and after the water absorption test. The sample size was 5 mm wide x 50 mm long, and the thickness was 0.2 mm.
・アセナフチレン:JFEケミカル社製
・DCP:ジクミルパーオキサイド(化薬アクゾ社製)
Acenaphthylene: JFE Chemical Corporation DCP: Dicumyl peroxide (Kayaku Akzo Co., Ltd.)
 表1の結果より、実施例1はマレイミド化合物単独をラジカル重合させた場合と比較して高耐熱特性、低吸水特性に優れることが確認された。また、図4の結果より、実施例1はマレイミド化合物の単独硬化と比較して未硬化のマレイミド基に由来する300℃以降の弾性率上昇が観測されず硬化性に優れることが確認された。 The results in Table 1 confirm that Example 1 has superior high heat resistance and low water absorption properties compared to the case where the maleimide compound is radically polymerized alone. Also, the results in Figure 4 confirm that Example 1 has superior curability compared to the case where the maleimide compound is cured alone, as no increase in elastic modulus was observed after 300°C due to uncured maleimide groups.
[実施例2、比較例2]
 表2に示す割合で各材料をアセトンに固形分70質量%となるよう溶解させ配合し、真空オーブン内で60℃30分予備乾燥後、120℃30分予備乾燥させた。得られた粉末を5g用いて、鏡面銅箔(T4X:福田金属銅箔社製)で挟み込みながら真空プレス成型し、220℃で2時間硬化させた。この際、スペーサとして厚さ250μmのクッション紙の中央を縦横150mmにくり抜いたものを用いた。評価にあたっては、必要に応じてレーザーカッターを用いて所望のサイズに試験片を切り出し、評価を実施した。評価結果を表1に示す。
[Example 2, Comparative Example 2]
Each material was dissolved in acetone in the proportions shown in Table 2 to a solid content of 70% by mass, mixed, and pre-dried in a vacuum oven at 60°C for 30 minutes, and then pre-dried at 120°C for 30 minutes. 5 g of the obtained powder was used and vacuum press molded while sandwiching it between mirror-finished copper foil (T4X: manufactured by Fukuda Metal Copper Foil Co., Ltd.), and cured at 220°C for 2 hours. At this time, a spacer was used in which the center of a 250 μm-thick cushion paper was cut out to 150 mm in length and width. For evaluation, a test piece was cut to the desired size using a laser cutter as necessary, and evaluation was performed. The evaluation results are shown in Table 1.
<誘電率試験・誘電正接試験>
 (株)ATE社製の10GHz空洞共振器を用いて、空洞共振器摂動法にてテストを行った。サンプルサイズは幅1.7mm×長さ100mmとし、厚さは0.1mmで試験を行った。
<Dielectric constant test/dielectric tangent test>
The test was performed by a cavity resonator perturbation method using a 10 GHz cavity resonator manufactured by ATE Co., Ltd. The sample size was 1.7 mm wide x 100 mm long, and the thickness was 0.1 mm.
<耐熱性(DMA)>
 動的粘弾性測定器:TA-instruments、DMA-2980
 測定温度範囲:-30~280℃
 昇温速度:2℃/分
 周波数:10Hz
 試験片サイズ:5mm×50mmに切り出した物を使用した(厚さは0.1mm)
 Tg:tanδ(=損失弾性率/貯蔵弾性率)のピーク点をTgとした
<Heat resistance (DMA)>
Dynamic viscoelasticity measuring instrument: TA-instruments, DMA-2980
Measurement temperature range: -30 to 280°C
Heating rate: 2°C/min Frequency: 10Hz
Test piece size: A piece cut to 5 mm x 50 mm was used (thickness: 0.1 mm)
Tg: The peak point of tan δ (= loss modulus/storage modulus) was defined as Tg.
・アセナフチレン:JFEケミカル社製
・DCP:ジクミルパーオキサイド(化薬アクゾ社製)
・NC-3000L:ビフェニルアラルキル型エポキシ樹脂(日本化薬株式会社製)
・PN(H-1):フェノールノボラック樹脂(明和化成社製)
・TPP:トリフェニルホスフィン(東京化成社製)
Acenaphthylene: JFE Chemical Corporation DCP: Dicumyl peroxide (Kayaku Akzo Co., Ltd.)
NC-3000L: Biphenyl aralkyl type epoxy resin (manufactured by Nippon Kayaku Co., Ltd.)
PN(H-1): Phenol novolac resin (manufactured by Meiwa Kasei Co., Ltd.)
TPP: Triphenylphosphine (Tokyo Chemical Industry Co., Ltd.)
 表2の結果より、実施例2は従来使用されているエポキシ樹脂組成物と比較して高耐熱特性、低誘電特性に優れることが確認された。 The results in Table 2 confirm that Example 2 has superior heat resistance and low dielectric properties compared to conventionally used epoxy resin compositions.
[実施例3~6、比較例3~6]
 表3に示す割合で各材料を混合後、DSCにて硬化性評価を実施した。評価結果と各化合物のQ値、e値は表3に示す。マレイミド化合物(M-1)のQ値、e値はマレイミド化合物(M-1)の部分構造であるフェニルマレイミドの値である。
 実施例3~5のDSCチャートは図5に示し、比較例3~5のDSCチャートは図6に示す。
[Examples 3 to 6, Comparative Examples 3 to 6]
After mixing the materials in the ratios shown in Table 3, curability was evaluated by DSC. The evaluation results and the Q and e values of each compound are shown in Table 3. The Q and e values of the maleimide compound (M-1) are the values of phenylmaleimide, which is a partial structure of the maleimide compound (M-1).
The DSC charts of Examples 3 to 5 are shown in FIG. 5, and the DSC charts of Comparative Examples 3 to 5 are shown in FIG.
<硬化性(DSC)>
  示差走査熱量計:DSC6220(エスアイアイ・ナノテクノロジー社製)
  測定温度範囲:30~330℃
  昇温速度:10℃/分
 雰囲気:窒素(30mL/min)
 試料量:5mg
<Curability (DSC)>
Differential scanning calorimeter: DSC6220 (manufactured by SII NanoTechnology, Inc.)
Measurement temperature range: 30 to 330°C
Heating rate: 10° C./min. Atmosphere: Nitrogen (30 mL/min)
Sample amount: 5 mg
・アセナフチレン:JFEケミカル社製
・アリルベンゼン:東京化成社製
・エチニルベンゼン:東京化成社製
・ブチルアクリレート:東京化成社製
・ベンジルアクリレート:東京化成社製
Acenaphthylene: JFE Chemical Corporation Allylbenzene: Tokyo Chemical Industry Co., Ltd. Ethynylbenzene: Tokyo Chemical Industry Co., Ltd. Butyl acrylate: Tokyo Chemical Industry Co., Ltd. Benzyl acrylate: Tokyo Chemical Industry Co., Ltd.
 表3の結果より、実施例3~5は、比較例3のマレイミド単独硬化系と比較して発熱量が増加しており、硬化性が良好になっていることが確認された。比較例4~5はピークが2山となってしまい、成分(A)および(B)間での交互共重合がうまくいっていないことが確認された。 The results in Table 3 confirm that Examples 3 to 5 have an increased heat release and better curing properties compared to Comparative Example 3, which is a maleimide-only curing system. Comparative Examples 4 and 5 have two peaks, confirming that the alternating copolymerization between components (A) and (B) is not going well.
 本発明の硬化性樹脂組成物、樹脂シートおよびその硬化物は、半導体封止材、プリント配線基板、ビルドアップ積層板などの電気・電子部品に好適に使用される。

 
The curable resin composition, resin sheet and cured product thereof of the present invention are suitably used for electric and electronic parts such as semiconductor encapsulants, printed wiring boards and build-up laminates.

Claims (7)

  1.  (A)マレイミド化合物と、
     (B)Q値が0~1.0であり、e値が-2.0~0.7である化合物と、
     を含有する硬化性樹脂組成物。
    (A) a maleimide compound;
    (B) a compound having a Q value of 0 to 1.0 and an e value of −2.0 to 0.7;
    A curable resin composition comprising:
  2.  前記成分(B)が分子内に芳香環を有する化合物である、請求項1に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, wherein component (B) is a compound having an aromatic ring in the molecule.
  3.  前記成分(B)が、下記式(4)で表される化合物である、請求項1に記載の硬化性樹脂組成物。
    (式(4)中、Xはエチレン性不飽和2重結合、もしくはアセチレン性不飽和3重結合を有する官能基を表し、Arはベンゼン環又はナフタレン環を表す。Yは水素原子又は炭素数1~20の炭化水素基である。kは1~4の整数を表す。)
    The curable resin composition according to claim 1 , wherein the component (B) is a compound represented by the following formula (4):
    (In formula (4), X represents a functional group having an ethylenically unsaturated double bond or an acetylenically unsaturated triple bond, Ar represents a benzene ring or a naphthalene ring, Y represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and k represents an integer of 1 to 4.)
  4.  前記成分(A)が下記式(1)で表される化合物である、請求項1に記載の硬化性樹脂組成物。
    (式(1)中、Xはそれぞれ独立して下記式(2-a)~(2-c)で表される構造で表されるいずれか1種を表す。Rは水素原子、炭素数1~10の炭化水素基、またはハロゲン化アルキル基を表す。mは1~3の整数を表し、nは繰り返し数であり、nの平均値naveは1<nave<10である。)
    (式(2-a)~式(2-c)中、*はベンゼン環への結合を表す。Rはそれぞれ独立して水素原子、炭素数1~20のアルキル基を表し、qはそれぞれ独立して1~4の整数を表す。)
    The curable resin composition according to claim 1 , wherein the component (A) is a compound represented by the following formula (1):
    (In formula (1), X's each independently represent any one of the structures represented by the following formulae (2-a) to (2-c). R represents a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, or a halogenated alkyl group. m represents an integer of 1 to 3, n represents the number of repetitions, and the average value n ave of n is 1<n ave <10.)
    (In formulas (2-a) to (2-c), * represents a bond to a benzene ring. Each R2 independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and each q independently represents an integer of 1 to 4.)
  5.  さらに、重合開始剤を含む請求項1から4のいずれか一項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 4, further comprising a polymerization initiator.
  6.  請求項5に記載の硬化性樹脂組成物と支持体を含む樹脂シート。 A resin sheet comprising the curable resin composition according to claim 5 and a support.
  7.  請求項5に記載の硬化性樹脂組成物の硬化物。

     
    A cured product of the curable resin composition according to claim 5.

PCT/JP2023/033835 2022-09-30 2023-09-19 Curable resin composition, resin sheet and cured product WO2024070793A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-157768 2022-09-30
JP2022157768A JP2024051547A (en) 2022-09-30 2022-09-30 CURABLE RESIN COMPOSITION, RESIN SHEET, AND CURED PRODUCT

Publications (1)

Publication Number Publication Date
WO2024070793A1 true WO2024070793A1 (en) 2024-04-04

Family

ID=90477677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033835 WO2024070793A1 (en) 2022-09-30 2023-09-19 Curable resin composition, resin sheet and cured product

Country Status (2)

Country Link
JP (1) JP2024051547A (en)
WO (1) WO2024070793A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59131608A (en) * 1982-11-06 1984-07-28 デ−・エス・エム・レジンス・ベスロ−テム・ベンノツトシヤツプ Hardenable homogeneous blend and bis-malein imide copolymer
JPS61285208A (en) * 1985-06-08 1986-12-16 デ−・エス・エム・レジンス・ベスロ−テン・ベンノ−トシヤツプ Bismaleimide composition
JPS62246910A (en) * 1985-08-12 1987-10-28 アライド コ−ポレイシヨン Thermosetting terpolymer and its production
JPH05186535A (en) * 1991-06-18 1993-07-27 Toray Ind Inc Optical platy material
JP2012208136A (en) * 2009-08-12 2012-10-25 Denki Kagaku Kogyo Kk Resin composition for optical molded article and optical molded article thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59131608A (en) * 1982-11-06 1984-07-28 デ−・エス・エム・レジンス・ベスロ−テム・ベンノツトシヤツプ Hardenable homogeneous blend and bis-malein imide copolymer
JPS61285208A (en) * 1985-06-08 1986-12-16 デ−・エス・エム・レジンス・ベスロ−テン・ベンノ−トシヤツプ Bismaleimide composition
JPS62246910A (en) * 1985-08-12 1987-10-28 アライド コ−ポレイシヨン Thermosetting terpolymer and its production
JPH05186535A (en) * 1991-06-18 1993-07-27 Toray Ind Inc Optical platy material
JP2012208136A (en) * 2009-08-12 2012-10-25 Denki Kagaku Kogyo Kk Resin composition for optical molded article and optical molded article thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DUMONT F; VISSEAUX M; BARBIER-BAUDRY D; DORMOND A: "New aromatic diamines containing a multiring flexible skeleton for the synthesis of thermally stable polyimides", POLYMER, ELSEVIER, AMSTERDAM, NL, vol. 41, no. 16, 11 May 2017 (2017-05-11), AMSTERDAM, NL, pages 6043 - 6047, XP085003597, ISSN: 0032-3861, DOI: 10.1016/S0032-3861(99)00874-5 *

Also Published As

Publication number Publication date
JP2024051547A (en) 2024-04-11

Similar Documents

Publication Publication Date Title
CN114650979A (en) Compound, mixture, curable resin composition, cured product thereof, and method for producing compound
JP7208705B1 (en) Maleimide resin, curable resin composition and cured product thereof
WO2020213640A1 (en) Aromatic-amine resin, maleimide resin, curable resin composition, and cured object obtained therefrom
JP7241246B2 (en) Compound, mixture, curable resin composition and cured product thereof
JP6804819B2 (en) Curable resin mixture, curable resin composition and its cured product
WO2024070793A1 (en) Curable resin composition, resin sheet and cured product
JP7418644B2 (en) Maleimide compounds, curable resin compositions and cured products thereof, and amine compounds
JP7353538B1 (en) Compound, curable resin composition, cured product thereof, and method for producing the compound
JP7340904B1 (en) Curable resin composition, resin sheet, and cured product thereof
WO2023189424A1 (en) Compound, curable resin composition and cured product therefrom, and method for producing compound
JP2024051546A (en) CURABLE RESIN COMPOSITION, RESIN SHEET, AND CURED PRODUCT
TW202415698A (en) Curable resin composition, resin sheet and cured product
JP7236794B1 (en) Amine compound, maleimide compound, curable resin composition and cured product thereof
JP7182343B1 (en) Maleimide resin, amine resin, curable resin composition and cured product thereof
JP2023130776A (en) Curable resin composition, resin sheet, and cured product of the same
JP7305290B2 (en) Copolymer, curable resin composition and cured product thereof
JP2023130778A (en) Curable resin composition, and cured product of the same
WO2023063122A1 (en) Curable resin composition, prepreg, and cured product of same
JP2022189547A (en) Curable resin composition containing maleimide resin and cured product thereof
JP2023138435A (en) Epoxy resin, curable resin composition and cured product thereof, and polyhydric hydroxy resin
JP2022176111A (en) Maleimide resin, curable resin composition, and cured product of the same
JP2023015005A (en) Curable resin composition, prepreg, and cured product thereof