WO2024070753A1 - Skin evaluation method, skin evaluation device, and program - Google Patents

Skin evaluation method, skin evaluation device, and program Download PDF

Info

Publication number
WO2024070753A1
WO2024070753A1 PCT/JP2023/033654 JP2023033654W WO2024070753A1 WO 2024070753 A1 WO2024070753 A1 WO 2024070753A1 JP 2023033654 W JP2023033654 W JP 2023033654W WO 2024070753 A1 WO2024070753 A1 WO 2024070753A1
Authority
WO
WIPO (PCT)
Prior art keywords
skin
light
image data
information
light emitted
Prior art date
Application number
PCT/JP2023/033654
Other languages
French (fr)
Japanese (ja)
Inventor
久美子 菊地
佳永 相津
友典 湯浅
Original Assignee
株式会社資生堂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社資生堂 filed Critical 株式会社資生堂
Publication of WO2024070753A1 publication Critical patent/WO2024070753A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration

Definitions

  • the present invention relates to a skin evaluation method, a skin evaluation device, and a program.
  • Patent Document 1 describes a method of evaluating skin condition using skin image data corresponding to an evaluation target area of the skin, which is obtained by projecting linear or dot-like light onto the skin of a subject and receiving light reflected on the surface and inside the skin, in which skin image data consisting of a collection of images of the skin area a predetermined distance away from the projection position of the light on the skin is obtained, and the skin condition of the evaluation target area is evaluated based on each spatial distribution of reflected light on the skin surface and inside the skin indicated by the distribution value of the reflected light intensity for each predetermined distance calculated from the skin image data.
  • the skin condition evaluated by the method described in Patent Document 1 is specifically the transparency of the skin, which is the external impression or the beauty of the skin as visually recognized by a person.
  • one aspect of the present invention aims to provide a simple method for evaluating skin condition in more detail.
  • a skin evaluation method involves acquiring information on light emitted from inside the skin irradiated with light, and evaluating the condition of the skin at a predetermined depth using information on light of a predetermined wavelength among the light emitted from inside the skin.
  • One aspect of the present invention provides a simple method for evaluating skin conditions in more detail.
  • FIG. 1 is a diagram for explaining skin structure (skin tissue). 1 is a flowchart of a skin evaluation method according to an embodiment. 11A and 11B are diagrams for explaining acquisition of image data of light emitted from inside the skin. 4 shows examples of acquired image data and spectroscopic image data.
  • 1 is an overall configuration diagram according to an embodiment of the present invention; 1 is a functional block diagram of a skin evaluation device according to an embodiment of the present invention. 1 is a block diagram showing an example of a hardware configuration of a skin evaluation device according to an embodiment of the present invention.
  • FIG. 11 is a diagram showing the relationship between the melanin index and the amount of melanin obtained in an application example of the first embodiment.
  • FIG. 11 is a diagram showing the relationship between the melanin index and the amount of melanin obtained in an application example of the first embodiment.
  • FIG. 13 is a diagram showing the relationship between the hemoglobin index and the hemoglobin amount obtained in an application example of the third embodiment.
  • FIG. 13 is a diagram showing the relationship between collagen volume density index and collagen volume density obtained in an application example of the third embodiment.
  • FIG. 13 is a diagram showing the relationship between age and stratum corneum level obtained in an application example of the fourth embodiment.
  • FIG. 11 is a diagram summarizing the results of an example of comprehensive skin evaluation using multiple skin evaluation methods according to the present embodiment.
  • a skin evaluation method obtains information on light emitted from inside the skin irradiated with light, and evaluates the condition of the skin at a predetermined depth by using information on light of a predetermined wavelength among the light emitted from inside the skin.
  • the evaluation obtained by this embodiment is an evaluation for cosmetic purposes.
  • the "light of a predetermined wavelength” may be light having a single wavelength, or light having a predetermined wavelength range (wavelength width). It may also be light obtained by synthesizing light having two or more different predetermined single wavelengths, or light obtained by synthesizing light having two or more different predetermined wavelength ranges.
  • the irradiated light When light is irradiated onto the skin, the irradiated light exhibits various behaviors due to the translucency of the skin.
  • the irradiated light can be light reflected from the skin surface in the direction opposite to the direction of irradiation (called “surface reflected light” or “specular reflected light”), light reflected from the skin surface in various directions other than the direction of irradiation due to the unevenness of the skin surface (also called “diffuse reflected light” or “surface diffuse reflected light”), light absorbed inside the skin (below the skin surface), or light scattered inside the skin (below the skin surface) and emitted to the outside from the skin surface.
  • light scattered inside the skin and emitted to the outside from the skin surface is called “subsurface scattered light”, “internal scattered light”, “internal reflected light”, “internal diffuse light”, “diffuse light”, “internal propagating light”, “intraskin light”, etc., but in this specification it is called “light emitted from inside the skin” or “light emitted from inside”. Note that even if light enters the skin and is scattered inside the skin, light that does not exit from the skin surface is considered to be light absorbed by the skin and is not included in "light emitted from inside the skin”.
  • surface reflected light and “diffusely reflected light” are collectively referred to as “light reflected from the skin surface,” and this "light reflected from the skin surface” and “light emitted from inside the skin” are collectively referred to as “total returned light.”
  • This embodiment is a method for evaluating skin that utilizes information about the light emitted from inside the skin.
  • the inventors have found that the penetration depth within skin tissue varies depending on the wavelength of light emitted from inside the skin, and further that the state of skin tissue at a given depth in the skin is reflected in information about light emitted from inside the skin at a given wavelength.
  • the present invention is based on this knowledge.
  • the state of skin at a given depth refers to the state at a given position in the skin tissue, or the state of a given layer in the skin tissue.
  • the light information includes image data.
  • Skin tissue has a structure consisting of multiple layers, each of which has a specific structure or composition, properties, and functions.
  • the condition of one or more of the layers that make up the skin tissue can be evaluated.
  • Figure 1 shows a schematic diagram of skin tissue (skin structure). As shown in Figure 1, the skin is roughly divided into the epidermis, dermis, and subcutaneous tissue, in order from the skin surface.
  • the epidermis includes the stratum corneum, which is the most superficial layer, the granular layer and spinous layer (granular layer and/or spinous layer) that follow below, and the basal layer (basement membrane).
  • the dermis includes, in order from the skin surface, the papillary layer, the subpapillary layer, the upper capillary plexus layer, the reticular layer, and the lower capillary plexus layer. Below the lower capillary plexus layer is the subcutaneous tissue. Therefore, in this embodiment, for example, the condition of one or more of the epidermis and dermis can be evaluated, or in more detail, the condition of one or more layers included in the epidermis and/or one or more layers included in the dermis can be evaluated.
  • An evaluation method includes evaluating the state of the epidermis using information on blue and/or green light from the light emitted from inside the skin.
  • a skin evaluation method includes evaluating the state of the granular layer and/or the spinous layer using information on blue light from the light emitted from inside the skin.
  • a skin evaluation method includes evaluating the state of the basal layer using information on green light from the light emitted from inside the skin.
  • information on the total return light from the skin irradiated with light can also be obtained, and the total return light information and information on light of a predetermined wavelength among the light emitted from within the skin can be used.
  • the state of the stratum corneum can be evaluated using information on blue light among the total return light and information on blue light among the light emitted from within the skin. In this case, the difference between the information on blue light among the total return light and the information on blue light among the light emitted from within the skin is used.
  • red light information from the light emitted from inside the skin irradiated with light is highly related to the state of the dermis in the skin tissue.
  • One form of evaluation method based on this finding involves evaluating the state of the dermis using red light information from the light emitted from inside the skin.
  • green light information from the light emitted from inside the skin can also be used. In this case, the difference between the red light information from the light emitted from inside the skin and the green light information from the light emitted from inside the skin can be used.
  • FIG. 2 shows a flow chart of a specific example of the evaluation method according to this embodiment.
  • the evaluation method according to this embodiment may include a step of irradiating light onto the subject's skin (S1), a step of separating image data of light emitted from inside the skin from image data of all returned light (S2), a step of generating spectral image data of a predetermined wavelength from the image data (S3), a step of calculating an index using the image data (S4), and a step of evaluating the state of a predetermined layer in the skin tissue based on the index (S5).
  • the light source used in the light irradiation step (S1) is preferably a light source capable of irradiating light including visible light, for example a white light source.
  • a white light source has a wide continuous wavelength range including the wavelength of visible light, so it is possible to obtain information for evaluating the state at various depth positions in the skin tissue or the state of various layers in the skin tissue. If the specific layer to be evaluated in the skin tissue (the depth position to be evaluated in the skin tissue) is predetermined, the light source only needs to include a specific wavelength that reflects the state of the specific layer to be evaluated in the skin tissue (the state at the depth position of the skin tissue).
  • the light irradiated from the light source is preferably light irradiated in a narrow range in the evaluation target area, for example light that is linear, point-like, or sinusoidal, and a linear or point-like light is particularly preferable in that the calculation is not complicated.
  • image data of the skin is acquired (imaged) by an imaging device.
  • the imaging device for acquiring image data can be an RGB camera, a light field camera, a spectral camera, a hyperspectral camera, or the like.
  • a pattern including an irradiated area and a non-irradiated area is projected onto the skin area to be evaluated (evaluation target area) (FIG. 3(a)).
  • a state in which a pattern including an irradiated area and a non-irradiated area is projected onto the subject's face can be formed, as shown in FIG. 3(a).
  • Figure 3(b) shows the behavior of light on the skin.
  • Arrow 1 in Figure 3(b) is the irradiated light (light irradiated from the light source to the skin).
  • Arrow 2 is light that is specularly reflected from the irradiated area, and
  • arrow 3 is light that is diffusely reflected from the surface of the irradiated area.
  • Arrow 4 is light that is emitted to the outside of the skin after scattering inside the skin (light that enters the skin, goes around inside the skin, and exits again), in other words, light that is emitted from inside the skin.
  • the light indicated by arrow 5 is light that is absorbed inside the skin and is not emitted to the outside.
  • the light emitted from the inside is emitted from both the irradiated and non-irradiated areas, but the light emitted from the non-irradiated area is only the light emitted from the inside. Therefore, by measuring the intensity of the light emitted from the non-irradiated area, information on the light emitted from the inside can be obtained locally from the evaluation target area. Then, the above pattern is slid (Fig. 3(c)) so that the non-irradiated area is projected onto the area that was the irradiated area of the evaluation target area, and the light intensity of the light emitted from the inside in the newly projected non-irradiated area is measured.
  • the intensity of the light emitted from the inside is measured over the entire evaluation target area, and two-dimensional image data of the light emitted from inside the skin can be obtained. Furthermore, by measuring the light intensity of the reflected light in the irradiated area of the evaluation target area, the light intensity of the total return light (i.e., the sum of the light reflected on the skin surface and the light emitted from inside the skin) is also measured over the entire evaluation target area, and two-dimensional image data of the total return light can be obtained.
  • the image size is preferably 20 pixels x 20 pixels or more.
  • the width of the non-irradiated area may be 0.1 mm or more and 10 mm or less, and the width of the irradiated area may be 0.1 mm or more and 3 mm or less. Furthermore, the pattern does not necessarily have to be striped, and may be a grid pattern or the like as long as the irradiated and non-irradiated areas are repeated on the surface.
  • image data of the emitted light from inside the skin when capturing an image, image data of the emitted light from inside the skin can be separated from image data of all returned light, i.e., image data including image data of the reflected light from the skin surface and image data of the emitted light from inside the skin.
  • image data of the reflected light from the skin surface and image data of the emitted light from inside the skin can be separated from the image data of all returned light. Therefore, in step S2 in this embodiment, one or more of image data of all returned light, image data of the reflected light from the skin surface, and image data of the emitted light from inside the skin can be obtained.
  • an example of image data of light emitted from inside the skin obtained in the separation step (S2) is shown as initial image data Img-0.
  • the initial image data Img-0 includes data on the light intensity of visible light (360-840 nm) in the area to be evaluated.
  • the initial image data Img-0 is an image represented by the intensity of light emitted from the inside, including visible light.
  • spectral image data of a predetermined wavelength is generated from the image data obtained in the image data separating step (S2).
  • spectral image data can be generated from any image data obtained in the image data separating step (S2). More specifically, the spectral image data can be generated from one or more of the image data of the total returned light, the image data of the reflected light on the skin surface, and the image data of the emitted light from inside the skin obtained in the image data separating step (S2).
  • the spectral image data is image data that includes information on light of a predetermined wavelength (information on light intensity).
  • the spectral image data of a predetermined wavelength obtained in the spectral image data generating step (S3) may be spectral image data of a single wavelength, or may be spectral image data of a predetermined wavelength range (wavelength width), or may be spectral image data of light obtained by combining two or more different predetermined single wavelengths of light, or may be spectral image data of light having two or more different predetermined wavelength ranges.
  • Figure 4 shows an example of generating spectral image data of a specified wavelength from image data of light emitted from inside the skin (initial image data Img-0).
  • Figure 4 is an example of generating spectral image data when an RGB camera is used.
  • image data Img-B of blue light (wavelength 380-500 nm)
  • image data Img-G of green light (wavelength 500-600 nm)
  • image data Img-R of red light can be generated from the initial image data Img-0.
  • spectral camera or hyperspectral camera it is possible to generate spectral image data of light in any wavelength range.
  • spectral image data of a specified wavelength can be generated from the image data of all returned light.
  • an index for skin evaluation is calculated based on at least one of the spectroscopic image data of the above-mentioned predetermined wavelengths.
  • This index may be an index related to the overall magnitude of light intensity, or an index related to distribution.
  • the index related to the overall magnitude or the index related to distribution may be calculated after converting the light intensity to absorbance by logarithmic transformation. For example, it may be one or more statistics of the average, maximum, minimum, median, integral, sum, standard deviation, variance, skewness, and kurtosis of the light intensity in the evaluation target area.
  • calculating the index based on the spectroscopic image data includes calculating the index using two or more spectroscopic image data.
  • the two or more spectroscopic image data may be, for example, two spectroscopic image data of light emitted from inside the skin having different predetermined wavelengths, or spectroscopic image data of all returned light having a predetermined wavelength, and spectroscopic image data of light emitted from inside the skin having a predetermined wavelength similar to the predetermined wavelength.
  • it may be spectroscopic image data of all returned light having a predetermined wavelength, and spectroscopic image data of light emitted from inside the skin having a predetermined wavelength different from the predetermined wavelength.
  • the index may be calculated after finding the difference, ratio, etc. between the two spectroscopic image data.
  • differential image data, ratio image data, etc. may be generated, and the index may be calculated based on the differential image data, ratio image data, etc.
  • calculating the index based on the spectroscopic image data may include calculating the index based on differential image data and ratio image data obtained from two or more spectroscopic image data.
  • An example of differential image data is differential image data obtained by subtracting the spectroscopic image data of light emitted from inside the skin having the same predetermined wavelength from the spectroscopic image data of all returned light having a predetermined wavelength.
  • the obtained index is used in the step (S5) of evaluating the condition of a specific layer of skin.
  • the relationship between the index calculated based on the spectroscopic image data of a specific wavelength and the condition of the specific layer in the skin tissue is obtained in advance and stored as a database.
  • the index calculated based on the spectroscopic image data of a specific wavelength obtained through steps S1 to S4 for the subject whose skin is to be evaluated is applied to such a previously obtained relationship, thereby determining and evaluating the condition of the specific layer in the skin tissue of the subject.
  • the relationship between the index calculated based on the spectroscopic image data corresponding to the light emitted from inside the skin of a specific wavelength and the condition of the specific layer in the skin tissue is obtained in advance, and the index calculated based on the spectroscopic image data of a specific wavelength obtained through steps S1 to S4 for the subject whose skin is to be evaluated is applied to the relationship, thereby determining and evaluating the condition of the specific layer in the skin tissue.
  • the spectroscopic image data may include spectroscopic image data generated from the image data of all returned light and spectroscopic image data generated from the image data of light emitted from inside the skin.
  • the relationship between the index calculated based on such difference image data or ratio image data and the state of a specific layer in the skin tissue is determined in advance, and the index calculated based on difference image data or ratio image data obtained from the spectral image data of a specific wavelength obtained through steps S1 to S4 for the subject whose skin is to be evaluated is applied to this relationship to determine and evaluate the state of the specific layer in the skin tissue.
  • the condition of a specific layer of the skin evaluated in the evaluation step (S5) may be, for example, the condition of the epidermis or the condition of the dermis.
  • the condition of the epidermis may include one or more of the condition of the stratum corneum, the condition of the granular layer and/or the spinous layer, and the condition of the basement membrane.
  • ⁇ Skin evaluation device> 5 shows a skin evaluation system 1 used in the skin evaluation method according to the present embodiment.
  • the skin evaluation system 1 includes a skin evaluation device 10, an imaging device 20, and a light source 30.
  • the skin evaluation device 10 may be a computer for evaluating the optical characteristics of the skin, and can execute the above-mentioned steps S2 to S5. That is, the skin evaluation device 10 can use the image captured by the imaging device 20 to obtain information on light (emission light from within) that is irradiated from the light source 30, enters the skin, circulates around the skin surface, and is then emitted from the skin surface again. It can also generate spectroscopic image data of a specified wavelength from the image data, and calculate an index for the emission light from within the specified wavelength in the evaluation target area.
  • the skin evaluation device 10 may be a personal computer, a tablet terminal, a smartphone, etc.
  • the imaging device 20 is a device for photographing skin, and may be an RGB camera, a spectral camera, a hyperspectral camera, a light field camera, etc., as described above.
  • the image captured by such an imaging device 20 is an image expressed by the intensity of internally reflected light, and includes images for each wavelength range obtained by dividing the light emitted from the inside into multiple wavelength ranges.
  • the skin evaluation device 10, the imaging device 20, and the light source 30 are described as separate devices, but at least two of the skin evaluation device 10, the imaging device 20, and the light source 30 may be implemented together as a single device.
  • the imaging device 20 and the skin evaluation device 10 are incorporated into a terminal such as a smartphone, the user can take an image of their own facial skin using the smartphone's built-in camera and evaluate it.
  • FIG. 6 shows a functional block diagram of the skin evaluation device 10.
  • the skin evaluation device 10 may include an image acquisition unit (information acquisition unit) 101, a calculation unit 102, and an evaluation unit 103.
  • the skin evaluation device 10 can function as the image acquisition unit 101, the calculation unit 102, and the evaluation unit 103 by executing a program.
  • the image acquisition unit 101 acquires from the imaging device 20 an image of the evaluation target area of the skin irradiated with light from the light source 30, which is represented by the intensity of light emitted from inside the skin. From the image acquired from the imaging device 20, the image acquisition unit 101 can acquire information on the light emitted from inside the evaluation target area, more specifically, information on the wavelength or intensity for each wavelength range of the light emitted from inside (for example, each RGB value at each pixel). The image acquisition unit 101 can also generate or extract spectral image data of a predetermined wavelength from the acquired image of light emitted from inside (information on light emitted from inside). Note that the image acquisition unit 101 can also perform some processing, such as noise reduction processing, sharpening processing, correction processing, etc., on the acquired image data or spectral image data.
  • some processing such as noise reduction processing, sharpening processing, correction processing, etc.
  • the calculation unit 102 can calculate an index related to the light emitted from within the specified wavelength or the light emitted from within the specified wavelength range based on the obtained spectroscopic image data of the specified wavelength.
  • the index may be an index related to the overall magnitude of the light intensity, or an index related to the distribution. After converting the light intensity to absorbance, the index related to the overall magnitude or the index related to the distribution may be calculated.
  • the evaluation unit 103 evaluates the skin based on the index calculated by the calculation unit 102. For example, the evaluation unit 103 can evaluate the state of a specific layer in the skin tissue based on the relationship between an index related to light emitted from within at a specific wavelength, which has been calculated in advance and stored in the skin evaluation device 10, and the state of a specific layer in the skin tissue.
  • FIG. 7 is a block diagram showing an example of a hardware configuration of the skin evaluation device 10 according to an embodiment of the present invention.
  • the skin evaluation device 10 has a CPU (Central Processing Unit) 1001, a ROM (Read Only Memory) 1002, and a RAM (Random Access Memory) 1003.
  • the CPU 1001, the ROM 1002, and the RAM 1003 form what is known as a computer.
  • the skin evaluation device 10 may also have an auxiliary storage device 1004, a display device 1005, an operation device 1006, an I/F (Interface) device 1007, and a drive device 1008. Each piece of hardware in the skin evaluation device 10 is connected to each other via a bus B.
  • the CPU 1001 is a computing device that executes various programs installed in the auxiliary storage device 1004.
  • ROM 1002 is a non-volatile memory. ROM 1002 functions as a primary storage device that stores various programs, data, etc. required for CPU 1001 to execute various programs installed in auxiliary storage device 1004. Specifically, ROM 1002 functions as a primary storage device that stores boot programs such as BIOS (Basic Input/Output System) and EFI (Extensible Firmware Interface).
  • BIOS Basic Input/Output System
  • EFI Extensible Firmware Interface
  • RAM 1003 is a volatile memory such as DRAM (Dynamic Random Access Memory) or SRAM (Static Random Access Memory). RAM 1003 functions as a primary storage device that provides a working area into which various programs installed in the auxiliary storage device 1004 are expanded when they are executed by the CPU 1001.
  • DRAM Dynamic Random Access Memory
  • SRAM Static Random Access Memory
  • the auxiliary storage device 1004 is an auxiliary storage device that stores various programs and information used when the various programs are executed.
  • the display device 1005 is a display device that displays the internal state of the skin evaluation device 10, etc.
  • the operation device 1006 is an input device through which the administrator of the skin evaluation device 10 inputs various instructions to the skin evaluation device 10.
  • the I/F device 1007 is a communication device that connects to a network and communicates with the skin evaluation device 10.
  • the drive unit 1008 is a device for setting the storage medium 1009.
  • the storage medium 1009 here includes media that record information optically, electrically, or magnetically, such as CD-ROMs, flexible disks, and magneto-optical disks.
  • the storage medium 1009 may also include semiconductor memory that records information electrically, such as EPROM (Erasable Programmable Read Only Memory) and flash memory.
  • the various programs to be installed in the auxiliary storage device 1004 are installed, for example, by setting the distributed storage medium 1009 in the drive device 1008 and reading the various programs recorded on the storage medium 1009 by the drive device 1008.
  • the various programs to be installed in the auxiliary storage device 1004 may be installed by downloading them from a network via the I/F device 1007.
  • the skin evaluation method according to the first embodiment is a skin evaluation method that acquires information on light emitted from inside skin irradiated with light, and evaluates the skin condition in the granular stratum and/or the spinous stratum by utilizing information on blue light from the light emitted from the inside.
  • Blue light (wavelength 380-500 nm) emitted from inside the skin is mainly reflected by the stratum granulosum and/or stratum spinosum (Figure 1) in the skin tissue and emitted from the skin surface, so the state of the stratum granulosum and/or stratum spinosum can be reflected in image data of the blue light emitted from inside the skin. Therefore, according to this embodiment, for example, the thickness of the epidermis layer, the amount of melanin, etc. can be easily evaluated. For example, by being able to evaluate the amount of melanin, dullness of the skin, uneven skin tone (including age spots, freckles, etc.), sunburn, etc. can be evaluated.
  • the skin evaluation method when explained according to the flow shown in Figure 2, may be a skin evaluation method including a step (S1) of irradiating light to the subject's skin, a step (S2) of separating image data of light emitted from inside the skin from image data of all returned light, a step (S3) of generating blue light spectral image data from image data of light emitted from inside the skin, a step (S4) of calculating an index using the blue light spectral image data, and a step (S5) of evaluating the state of the stratum granulosum and/or stratum spinosum based on the index.
  • FIG. 8 shows the relationship between the melanin index and the amount of melanin. As shown in FIG. 8, it was confirmed that there is a high correlation between the two.
  • the skin evaluation method according to the second embodiment is a skin evaluation method that acquires information on light emitted from within skin irradiated with light, and evaluates the skin condition at the basal layer (basement membrane) by utilizing information on green light from the light emitted from within.
  • the skin evaluation method when explained according to the flow shown in Figure 2, may be a skin evaluation method including a step (S1) of irradiating light to the subject's skin, a step (S2) of separating image data of light emitted from inside the skin from image data of all returned light, a step (S3) of generating green light spectral image data from image data of light emitted from inside the skin, a step (S4) of calculating an index using the green light spectral image data, and a step (S5) of evaluating the state of the basal layer (basement membrane) based on the index.
  • the skin evaluation method according to the third embodiment may be a skin evaluation method that acquires information on light emitted from within skin irradiated with light, and evaluates the skin condition in the dermis by utilizing information on red light from the light emitted from within.
  • Red light (wavelength 600-720 nm) emitted from within the skin is mainly reflected by the dermis in the skin tissue, particularly the papillary layer and/or subpapillary layer ( Figure 1), before exiting from the skin surface, so the state of the dermis, particularly the papillary layer and/or subpapillary layer, can be reflected in the image data of the red light emitted from within. Therefore, according to this embodiment, for example, collagen density, blood vessel density, number of capillaries, hemoglobin amount, etc. can be easily evaluated. By evaluating the dermis in this embodiment, it is possible to evaluate skin color (evaluation of skin color considered to be youthful), overall skin elasticity, inflammation, blood circulation state, etc.
  • red light spectral image data is generated, and in the index calculating step (S4), an index is calculated using the red light spectral image data. Therefore, the skin evaluation method according to this embodiment, when explained according to the flow shown in FIG.
  • a skin evaluation method including a step (S1) of irradiating light to the skin of a subject, a step (S2) of separating image data of light emitted from inside the skin from image data of all returned light, a step (S3) of generating red light spectral image data from image data of light emitted from inside the skin, a step (S4) of calculating an index using the red light spectral image data, and a step (S5) of evaluating the condition of the dermis, particularly the papillary layer and/or subpapillary layer, based on the index.
  • the index calculating step (S4) in addition to the spectral image data of red light out of the light emitted from inside the skin, the index can be calculated using the spectral image data of green light out of the light emitted from inside the skin. In that case, the index can be calculated using the differential image data between the spectral image data of red light out of the light emitted from inside the skin and the spectral image data of green light out of the light emitted from inside the skin. This makes it possible to subtract the influence of the information of green light that reaches the basal layer from the information of the light emitted from inside the skin, so that the state of the dermis can be evaluated with higher accuracy.
  • the light intensity in this differential image data was converted to absorbance, and multiplied by a coefficient obtained by multiple regression analysis, and this was used as hemoglobin (index). Meanwhile, the distribution of the amount of hemoglobin in the entire face of each subject was measured from a spectral spectrum obtained using a spectrophotometer, and the average value was used as the "amount of hemoglobin" of the subject.
  • FIG. 9 shows the relationship between the hemoglobin index and the amount of hemoglobin. As shown in FIG. 9, it was confirmed that there is a high correlation between the two.
  • the evaluation of collagen volume density was investigated.
  • spectral image data of red light (wavelength 600-720 nm) and spectral image data of green light (wavelength 500-600 nm) were generated, and differential image data of both spectral image data was obtained.
  • the light intensity in the spectral image was converted to absorbance, and multiplied by a coefficient obtained by multiple regression analysis to obtain a collagen volume density index (index).
  • index collagen volume density index
  • Figure 10 shows the relationship between collagen volume density index and collagen volume density. As shown in Figure 10, it was confirmed that there is a high correlation between the two.
  • the skin evaluation method according to the fourth embodiment is similar to the skin evaluation method according to the first embodiment in that it acquires information on emitted light from the inside of the skin irradiated with light and uses information on blue light from the emitted light from the inside, but may also acquire information on total returned light from the skin irradiated with light and evaluate the skin condition in the stratum corneum of the epidermis using the information on blue light from the total returned light and the information on blue light from the emitted light from the inside.
  • the difference between the information on blue light from the total returned light and the information on blue light from the emitted light from the inside is used.
  • blue light (wavelength 380-500 nm) emitted from inside the skin is mainly reflected by the granular layer and/or the spinous layer ( Figure 1) in the skin tissue and emitted from the skin surface, so the blue light of this emitted light from inside the skin can reflect the state of the granular layer and/or the spinous layer.
  • the image data of blue light of the total returned light obtained by irradiating light to the subject's skin reflects the state from the granular layer and/or the spinous layer to the stratum corneum, which is an upper layer.
  • the differential image data reflects the state of the stratum corneum. Therefore, according to this embodiment, for example, the thickness, transparency, etc. of the stratum corneum can be easily evaluated. For example, by being able to evaluate the transparency of the stratum corneum, dullness, cloudiness, metabolism, etc. of the skin can be evaluated.
  • spectral image data of blue light is generated from the image data of the total returned light and the image data of the light emitted from inside the skin
  • index calculating step (S4) an index is calculated using the spectral image data of blue light from the total returned light and the image data of blue light from the light emitted from inside the skin. Therefore, the skin evaluation method according to this embodiment, when explained according to the flow shown in FIG.
  • a skin evaluation method including a step of irradiating light to the subject's skin (S1), a step of separating image data of the light emitted from inside the skin from the image data of the total returned light (S2), a step of generating spectral image data of blue light from the image data of the light emitted from inside the skin and a step of generating spectral image data of blue light from the image data of the total returned light (S3), a step of calculating an index using differential image data between the spectral image data of blue light from the light emitted from inside the skin and the spectral image data of blue light from the image data of the total returned light, and a step of evaluating the state of the stratum corneum based on the index (S5).
  • the turbidity of the stratum corneum was evaluated. Specifically, facial skin images of 134 subjects aged 20 to 79 (22 to 23 subjects for each age group) were taken with an RGB camera. From the obtained image data (image data of all returned light), image data of light emitted from inside the skin was separated, and further, spectral image data of blue light (wavelength 380 to 500 nm) was generated from the image data of light emitted from inside the skin, and spectral image data of blue light was also generated from the image data of all returned light.
  • FIG. 11 shows a graph showing the stratum corneum index versus the age of the subjects. As shown in Figure 11, it was confirmed that the index (turbidity level) of each layer tends to become worse as the age increases.
  • the above embodiments can be implemented alone or in combination of two or more.
  • the first embodiment which uses blue light information to evaluate the amount of melanin
  • the third embodiment which uses red and green light information to evaluate the amount of hemoglobin
  • it is possible to perform a comprehensive evaluation of the skin such as determining and evaluating skin age and skin type.
  • FIG. 12 shows the results of an example of a comprehensive skin evaluation.
  • the melanin level of the subject's skin was evaluated using the first embodiment described above, the hemoglobin level and collagen level were evaluated using the third embodiment, and the stratum corneum level was evaluated using the fourth embodiment. Furthermore, the results can be compared with the average of each evaluation of people of the same age as the subject, which was obtained in advance.
  • Such a comprehensive skin evaluation can be performed by the relatively simple process of capturing an image of the skin.
  • the evaluation obtained can be helpful in determining a beauty policy for fundamentally caring for the skin. For example, based on the evaluation obtained by the above-mentioned skin evaluation method, it is possible to appropriately suggest beauty methods, makeup methods, improvements to lifestyle habits, cosmetics, care products, beauty foods, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Mathematical Physics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

This skin evaluation method includes acquiring information about emission light emitted from the interior of the skin irradiated with light, and evaluating the state of the skin at a prescribed depth using information about light having a prescribed wavelength from among the emission light emitted from the skin interior.

Description

肌評価方法、肌評価装置、及びプログラムSKIN EVALUATION METHOD, SKIN EVALUATION DEVICE, AND PROGRAM
 本発明は、肌評価方法、肌評価装置、及びプログラムに関する。 The present invention relates to a skin evaluation method, a skin evaluation device, and a program.
 肌の評価方法として、肌に光を当てて戻ってきた光の情報を利用する方法が知られている。例えば、特許文献1には、被験者の肌に投射された線状又は点状の光が該肌の表面及び内部で反射された反射光を受光することにより得られる、該肌の評価対象領域に対応する肌画像データを用いた肌状態評価方法であって、光の肌上での投射位置から所定距離離れた肌領域の画像の集合からなる肌画像データを取得し、当該肌画像データから算出された各所定距離に関する反射光強度の分布値が示す肌表面及び肌内部での反射光の各空間分布に基づいて、評価対象領域の肌の状態を評価する方法が記載されている。特許文献1に記載の方法で評価される肌の状態は、具体的には肌の透明感であって、外観的印象若しくは人により視認される肌の美しさである。 A method of evaluating skin that uses information on light reflected from shining light on the skin is known. For example, Patent Document 1 describes a method of evaluating skin condition using skin image data corresponding to an evaluation target area of the skin, which is obtained by projecting linear or dot-like light onto the skin of a subject and receiving light reflected on the surface and inside the skin, in which skin image data consisting of a collection of images of the skin area a predetermined distance away from the projection position of the light on the skin is obtained, and the skin condition of the evaluation target area is evaluated based on each spatial distribution of reflected light on the skin surface and inside the skin indicated by the distribution value of the reflected light intensity for each predetermined distance calculated from the skin image data. The skin condition evaluated by the method described in Patent Document 1 is specifically the transparency of the skin, which is the external impression or the beauty of the skin as visually recognized by a person.
特許第6029379号公報Patent No. 6029379
 近年、肌の状態をより一層詳細に評価することが求められている。そのために、例えば、肌組織の状態を分析、評価することも重要視されている。しかしながら、そのような肌組織の状態の分析には、精密機器を利用した大がかりな装置が必要とされることが多く、被験者の負担となり得る。 In recent years, there has been a demand for more detailed evaluation of skin conditions. For this reason, for example, it is important to analyze and evaluate the condition of skin tissue. However, such analysis of skin tissue condition often requires large-scale equipment using precision instruments, which can be a burden for subjects.
 上記に鑑み、本発明の一態様は、肌の状態をより詳細に評価できる簡便な方法を提供することを課題とする。 In view of the above, one aspect of the present invention aims to provide a simple method for evaluating skin condition in more detail.
 上記課題を解決するため、本発明の一態様による肌評価方法は、光が照射された肌の内部からの出射光の情報を取得し、前記肌内部からの出射光のうち所定波長の光の情報を利用して、前記肌の所定深さにおける状態を評価することを含む。 In order to solve the above problems, a skin evaluation method according to one aspect of the present invention involves acquiring information on light emitted from inside the skin irradiated with light, and evaluating the condition of the skin at a predetermined depth using information on light of a predetermined wavelength among the light emitted from inside the skin.
 本発明の一態様によれば、肌の状態をより詳細に評価できる簡便な方法を提供できる。 One aspect of the present invention provides a simple method for evaluating skin conditions in more detail.
肌構造(皮膚組織)を説明するための図である。FIG. 1 is a diagram for explaining skin structure (skin tissue). 一実施形態による肌評価方法のフローチャートである。1 is a flowchart of a skin evaluation method according to an embodiment. 肌内部からの出射光の画像データの取得について説明するための図である。11A and 11B are diagrams for explaining acquisition of image data of light emitted from inside the skin. 取得される画像データ、及び分光画像データの例を示す。4 shows examples of acquired image data and spectroscopic image data. 本発明の一実施形態に係る全体の構成図である。1 is an overall configuration diagram according to an embodiment of the present invention; 本発明の一実施形態に係る肌評価装置の機能ブロック図である。1 is a functional block diagram of a skin evaluation device according to an embodiment of the present invention. 本発明の一実施形態に係る肌評価装置のハードウェア構成の一例を示すブロック図である。1 is a block diagram showing an example of a hardware configuration of a skin evaluation device according to an embodiment of the present invention. 第1実施形態の応用例で得られるメラニン指数とメラニン量との関係を示す図である。FIG. 11 is a diagram showing the relationship between the melanin index and the amount of melanin obtained in an application example of the first embodiment. 第3実施形態の応用例で得られるヘモグロビン指数とヘモグロビン量との関係を示す図である。FIG. 13 is a diagram showing the relationship between the hemoglobin index and the hemoglobin amount obtained in an application example of the third embodiment. 第3実施形態の応用例で得られるコラーゲン体積密度指数とコラーゲン体積密度との関係を示す図である。FIG. 13 is a diagram showing the relationship between collagen volume density index and collagen volume density obtained in an application example of the third embodiment. 第4実施形態の応用例で得られる年齢と角層レベルとの関係を示す図である。FIG. 13 is a diagram showing the relationship between age and stratum corneum level obtained in an application example of the fourth embodiment. 本形態による複数の肌評価方法を利用した総合的な肌評価の例の結果をまとめた図である。FIG. 11 is a diagram summarizing the results of an example of comprehensive skin evaluation using multiple skin evaluation methods according to the present embodiment.
 <肌評価方法>
 本発明の一実施形態による肌評価方法は、光が照射された肌の内部からの出射光の情報を取得し、前記肌内部からの出射光のうち所定波長の光の情報を利用して、前記肌の所定深さにおける状態を評価するものである。本形態により得られる評価は、美容目的の評価である。また、本明細書において、「所定波長の光」とは、単一波長を有する光であってもよいし、所定の波長範囲(波長幅)を有する光であってもよい。また、2以上の異なる所定の単一波長を有する光が合成されてなる光であってもよいし、2以上の異なる所定の波長範囲を有する光が合成されてなる光であってもよい。
<Skin evaluation method>
A skin evaluation method according to an embodiment of the present invention obtains information on light emitted from inside the skin irradiated with light, and evaluates the condition of the skin at a predetermined depth by using information on light of a predetermined wavelength among the light emitted from inside the skin. The evaluation obtained by this embodiment is an evaluation for cosmetic purposes. In addition, in this specification, the "light of a predetermined wavelength" may be light having a single wavelength, or light having a predetermined wavelength range (wavelength width). It may also be light obtained by synthesizing light having two or more different predetermined single wavelengths, or light obtained by synthesizing light having two or more different predetermined wavelength ranges.
 肌に光を照射した場合、その照射された光は、肌の半透明性に起因して様々な挙動を示す。例えば、照射された光は、肌表面で照射方向と反対方向へ反射してする光(「表面反射光」、「鏡面反射光」と呼ばれる)、肌表面の凹凸により肌表面で、照射方向以外の様々な方向へ反射する光(「乱反射光」、「表面拡散反射光」とも呼ばれる)、或いは肌の内部で(肌表面より下の部分で)吸収される光、肌内部で(肌表面より下の部分で)散乱して肌表面から外へと出射する光となり得る。これらの光のうち、肌の内部で散乱して肌表面から外へと出射する光は、「表面下散乱光」、「内部散乱光」、「内部反射光」、「内部拡散光」、「拡散光」、「内部伝搬光」、「肌内光」等と呼ばれるが、本明細書では「肌内部からの出射光」若しくは「内部からの出射光」と呼ぶ。なお、肌内に入射して肌の内部で散乱した光であったとしても、肌の表面から外部に出てこなかった光は、肌に吸収された光とし、「肌内部からの出射光」には含めていない。また、本明細書では「表面反射光」と「乱反射光」とを合わせて「肌表面での反射光」と呼び、この「肌表面での反射光」と「肌内部からの出射光」とを合わせて「全戻り光」と呼ぶ場合がある。 When light is irradiated onto the skin, the irradiated light exhibits various behaviors due to the translucency of the skin. For example, the irradiated light can be light reflected from the skin surface in the direction opposite to the direction of irradiation (called "surface reflected light" or "specular reflected light"), light reflected from the skin surface in various directions other than the direction of irradiation due to the unevenness of the skin surface (also called "diffuse reflected light" or "surface diffuse reflected light"), light absorbed inside the skin (below the skin surface), or light scattered inside the skin (below the skin surface) and emitted to the outside from the skin surface. Of these types of light, light scattered inside the skin and emitted to the outside from the skin surface is called "subsurface scattered light", "internal scattered light", "internal reflected light", "internal diffuse light", "diffuse light", "internal propagating light", "intraskin light", etc., but in this specification it is called "light emitted from inside the skin" or "light emitted from inside". Note that even if light enters the skin and is scattered inside the skin, light that does not exit from the skin surface is considered to be light absorbed by the skin and is not included in "light emitted from inside the skin". In addition, in this specification, "surface reflected light" and "diffusely reflected light" are collectively referred to as "light reflected from the skin surface," and this "light reflected from the skin surface" and "light emitted from inside the skin" are collectively referred to as "total returned light."
 本形態は、上記の肌内部からの出射光の情報を利用した肌の評価方法である。本発明者らは、肌内部からの出射光の波長によって肌組織内での侵達深さが異なること、さらに肌の所定深さにおける肌組織の状態が、所定波長の肌内部からの出射光の情報に反映されることを見い出した。本発明は、このような知見に基づきなされたものである。ここで、肌の所定深さにおける状態とは、肌組織に含まれる所定の位置での状態、若しくは肌組織に含まれる所定層の状態を指す。また、光の情報には、画像データが含まれる。 This embodiment is a method for evaluating skin that utilizes information about the light emitted from inside the skin. The inventors have found that the penetration depth within skin tissue varies depending on the wavelength of light emitted from inside the skin, and further that the state of skin tissue at a given depth in the skin is reflected in information about light emitted from inside the skin at a given wavelength. The present invention is based on this knowledge. Here, the state of skin at a given depth refers to the state at a given position in the skin tissue, or the state of a given layer in the skin tissue. Furthermore, the light information includes image data.
 肌組織は、複数の層からなる構造を有し、これらの層がそれぞれ、所定の組織若しくは組成、性質を有し、所定の機能を有する。本形態においては、肌組織を構成する層の1つ又は2以上の状態を評価することができる。図1に、肌組織(皮膚構造)の模式図を示す。図1に示すように、肌は、大きく分けて、肌表面に近い方から順に、表皮、真皮、及び皮下組織を有する。本モデルでは、表皮は、再表層である角層、その下に続く顆粒層・有棘層(顆粒層及び/又は有棘層)、及び基底層(基底膜)を含むものとする。真皮は、肌表面に近い方から順に、乳頭層、乳頭下層、上部毛細血管網層、網状層、及び下部毛細血管網層を含む。下部毛細血管網層の下は皮下組織となっている。よって、本形態では、例えば、表皮、真皮の1以上を評価する、或いはより詳細に、表皮に含まれる層の1以上及び/又は真皮に含まれる層の1以上の状態を評価することができる。 Skin tissue has a structure consisting of multiple layers, each of which has a specific structure or composition, properties, and functions. In this embodiment, the condition of one or more of the layers that make up the skin tissue can be evaluated. Figure 1 shows a schematic diagram of skin tissue (skin structure). As shown in Figure 1, the skin is roughly divided into the epidermis, dermis, and subcutaneous tissue, in order from the skin surface. In this model, the epidermis includes the stratum corneum, which is the most superficial layer, the granular layer and spinous layer (granular layer and/or spinous layer) that follow below, and the basal layer (basement membrane). The dermis includes, in order from the skin surface, the papillary layer, the subpapillary layer, the upper capillary plexus layer, the reticular layer, and the lower capillary plexus layer. Below the lower capillary plexus layer is the subcutaneous tissue. Therefore, in this embodiment, for example, the condition of one or more of the epidermis and dermis can be evaluated, or in more detail, the condition of one or more layers included in the epidermis and/or one or more layers included in the dermis can be evaluated.
 本発明者らは、光が照射された肌の内部からの出射光のうち青色光及び/又は緑色光の情報が、肌組織内の表皮の状態と関連が高いことを見出した。この知見に基づく一形態による評価方法は、肌の内部からの出射光のうち青色光及び/又は緑色光の情報を利用して、表皮の状態を評価することを含む。特に、光が照射された肌の内部からの出射光のうち青色光の情報が、表皮のうちの顆粒層及び/又は有棘層の状態と関連が高いことから、本発明の一形態による肌評価方法は、肌の内部からの出射光のうち青色光の情報を利用して、顆粒層及び/又は有棘層の状態を評価することを含む。また、光が照射された肌の内部からの出射光のうち緑色光の情報が、表皮のうちの基底層の状態と関連が高いことから、本発明の一形態による肌評価方法は、肌の内部からの出射光のうち緑色光の情報を利用して、基底層の状態を評価することを含む。 The inventors have found that information on blue and/or green light from the light emitted from inside the skin irradiated with light is highly related to the state of the epidermis in the skin tissue. An evaluation method according to one embodiment based on this finding includes evaluating the state of the epidermis using information on blue and/or green light from the light emitted from inside the skin. In particular, since information on blue light from the light emitted from inside the skin irradiated with light is highly related to the state of the granular layer and/or the spinous layer of the epidermis, a skin evaluation method according to one embodiment of the present invention includes evaluating the state of the granular layer and/or the spinous layer using information on blue light from the light emitted from inside the skin. In addition, since information on green light from the light emitted from inside the skin irradiated with light is highly related to the state of the basal layer of the epidermis, a skin evaluation method according to one embodiment of the present invention includes evaluating the state of the basal layer using information on green light from the light emitted from inside the skin.
 また、一形態による肌評価方法は、光が照射された肌からの全戻り光の情報(肌表面での反射光の情報と肌の内部からの出射光の情報が含まれる光情報)もさらに取得し、当該全戻り光の情報と、肌の内部からの出射光のうち所定波長の光の情報とを利用することもできる。例えば、当該全戻り光のうち青色光の情報と、肌の内部からの出射光のうち青色光の情報とを利用して、角層の状態を評価してもよい。この場合、全戻り光のうちの青色光の情報と、肌の内部からの出射光のうち青色光の情報との差分を利用する。 In one embodiment of the skin evaluation method, information on the total return light from the skin irradiated with light (light information including information on reflected light from the skin surface and information on light emitted from within the skin) can also be obtained, and the total return light information and information on light of a predetermined wavelength among the light emitted from within the skin can be used. For example, the state of the stratum corneum can be evaluated using information on blue light among the total return light and information on blue light among the light emitted from within the skin. In this case, the difference between the information on blue light among the total return light and the information on blue light among the light emitted from within the skin is used.
 さらに、本発明者らは、光が照射された肌の内部からの出射光のうち赤色の情報が、肌組織内の真皮の状態と関連が高いことを見出した。この知見に基づく一形態による評価方法は、肌の内部からの出射光のうち赤色光の情報を利用して、真皮の状態を評価することを含む。また、この真皮の状態の評価においては、肌の内部からの出射光のうち赤色光の情報に加え、肌の内部からの出射光のうち緑色光の情報を利用することもできる。この場合、肌の内部からの出射光のうち赤色光の情報と、肌の内部からの出射光のうち緑色光の情報との差分を利用することができる。 Furthermore, the inventors have found that red light information from the light emitted from inside the skin irradiated with light is highly related to the state of the dermis in the skin tissue. One form of evaluation method based on this finding involves evaluating the state of the dermis using red light information from the light emitted from inside the skin. Furthermore, in evaluating the state of the dermis, in addition to the red light information from the light emitted from inside the skin, green light information from the light emitted from inside the skin can also be used. In this case, the difference between the red light information from the light emitted from inside the skin and the green light information from the light emitted from inside the skin can be used.
 従来、肌組織の状態を分析、評価するための方法としては、光音響顕微鏡(Photo-acoustic microscopy)、共焦点顕微鏡(Confocal microscopy)、多光子顕微鏡(Multiphoton microscopy)、光干渉断層撮影(Optical Coherence Tomography;OCT)等があるが、このような方法は大がかりな装置が必要であったり、測定に時間及び手間がかかったりすることから、気軽に利用できるものではない。これに対し、本形態は、光が照射された肌からの内部からの出射光の情報を利用するものであり、評価に必要な内部からの出射光の情報は撮像機器等によって取得できるので、従来の技術に比して簡便に肌の詳細な評価を行うことができる。 Conventional methods for analyzing and evaluating the condition of skin tissue include photoacoustic microscopy, confocal microscopy, multiphoton microscopy, and optical coherence tomography (OCT), but these methods require large-scale equipment and are not easily accessible because the measurements are time-consuming and laborious. In contrast, this method uses information on the light emitted from within the skin when light is irradiated, and the information on the light emitted from within, which is necessary for evaluation, can be obtained using imaging equipment, etc., making it easier to perform detailed evaluation of the skin compared to conventional technologies.
 図2に、本形態による評価方法の具体例のフローチャートを示す。図2に示すように、本形態による評価方法は、より具体的には、光を被験者の肌に照射するステップ(S1)、全戻り光の画像データから、肌の内部からの出射光の画像データを分離するステップ(S2)、画像データから、所定波長の分光画像データを生成するステップ(S3)、画像データを用いて指標を算出するステップ(S4)、指標に基づき肌組織内の所定層の状態を評価するステップ(S5)を含んでいてよい。 FIG. 2 shows a flow chart of a specific example of the evaluation method according to this embodiment. As shown in FIG. 2, more specifically, the evaluation method according to this embodiment may include a step of irradiating light onto the subject's skin (S1), a step of separating image data of light emitted from inside the skin from image data of all returned light (S2), a step of generating spectral image data of a predetermined wavelength from the image data (S3), a step of calculating an index using the image data (S4), and a step of evaluating the state of a predetermined layer in the skin tissue based on the index (S5).
 光照射ステップ(S1)にて使用される光源は、可視光を含む光を照射できる光源が好ましく、例えば白色光光源が好ましい。白色光源は、可視光の波長を含む広範な波長範囲を連続的に有するので、肌組織内の様々な深さ位置での状態、若しくは肌組織内の様々な層の状態の評価のための情報取得が可能である。なお、肌組織内の評価すべき所定層(肌組織内での評価すべき深さ位置)が予め決まっていれば、光源は、肌組織の評価すべき所定層の状態(肌組織の深さ位置での状態)を反映する所定波長を含んでいればよい。また、光源から照射される光は、評価対象領域において狭い範囲で照射される光、例えば線状、点状、又は正弦波状となる光であると好ましく、線状又は点状の場合には計算が複雑にならない点で特に好ましい。 The light source used in the light irradiation step (S1) is preferably a light source capable of irradiating light including visible light, for example a white light source. A white light source has a wide continuous wavelength range including the wavelength of visible light, so it is possible to obtain information for evaluating the state at various depth positions in the skin tissue or the state of various layers in the skin tissue. If the specific layer to be evaluated in the skin tissue (the depth position to be evaluated in the skin tissue) is predetermined, the light source only needs to include a specific wavelength that reflects the state of the specific layer to be evaluated in the skin tissue (the state at the depth position of the skin tissue). In addition, the light irradiated from the light source is preferably light irradiated in a narrow range in the evaluation target area, for example light that is linear, point-like, or sinusoidal, and a linear or point-like light is particularly preferable in that the calculation is not complicated.
 肌表面からの全戻り光の画像データから、肌内部からの出射光の画像データを分離するステップ(S2)については、図3も参照して説明する。分離に際しては撮像機器によって肌の画像データを取得する(撮像する)が、画像データの取得のための撮像機器としてはは、RGBカメラ、ライトフィールドカメラ、スペクトルカメラ、ハイパースペクトルカメラ等を用いることができる。撮像の際には、評価対象となる肌領域(評価対象領域)に、照射領域と非照射領域とを含むパターンを投影させた上で(図3(a))行う。このような照射領域と非照射領域とを含むパターンは、例えば、白(=照射領域)と黒(=非照射領域)が交互に配列した画像をプロジェクタから投影したり、光を透過させない領域と光を透過させる領域とがストライプ状に交互に並ぶステンシルを、プロジェクタの照射口に配置したりすることによって形成できる。これにより、図3(a)に示すように、照射領域と非照射領域とを含むパターンが被験者の顔に投影された状態を形成できる。 The step (S2) of separating image data of light emitted from inside the skin from image data of all light returned from the skin surface will be described with reference to FIG. 3. In the separation, image data of the skin is acquired (imaged) by an imaging device. The imaging device for acquiring image data can be an RGB camera, a light field camera, a spectral camera, a hyperspectral camera, or the like. When imaging, a pattern including an irradiated area and a non-irradiated area is projected onto the skin area to be evaluated (evaluation target area) (FIG. 3(a)). Such a pattern including an irradiated area and a non-irradiated area can be formed, for example, by projecting an image in which white (= irradiated area) and black (= non-irradiated area) are alternately arranged from a projector, or by placing a stencil in which light-opaque areas and light-transmitting areas are alternately arranged in stripes at the projection port of the projector. As a result, a state in which a pattern including an irradiated area and a non-irradiated area is projected onto the subject's face can be formed, as shown in FIG. 3(a).
 一般に、評価対象領域に照射された光は、肌の表面で反射する、或いは肌の表面を透過して肌の内部で散乱した後に肌の表面から外部に出る。図3(b)に、光の肌に対する挙動を示す。図3(b)の矢印1は、照射光(光源から肌へ照射された光)である。矢印2は、照射領域において鏡面反射された光であり、矢印3は、照射領域の表面で拡散反射された光である。矢印4は、肌の内部での散乱の後に肌の外部に放出された光(肌内に入射した後に肌内を回り込んで再び出射した光)、つまり肌の内部からの出射光である。矢印5で示される光は、肌の内部において吸収された光であって、外部に放出されない光である。 Generally, light irradiated onto the area to be evaluated is reflected from the surface of the skin, or passes through the surface of the skin and is scattered inside the skin before exiting from the surface of the skin. Figure 3(b) shows the behavior of light on the skin. Arrow 1 in Figure 3(b) is the irradiated light (light irradiated from the light source to the skin). Arrow 2 is light that is specularly reflected from the irradiated area, and arrow 3 is light that is diffusely reflected from the surface of the irradiated area. Arrow 4 is light that is emitted to the outside of the skin after scattering inside the skin (light that enters the skin, goes around inside the skin, and exits again), in other words, light that is emitted from inside the skin. The light indicated by arrow 5 is light that is absorbed inside the skin and is not emitted to the outside.
 内部からの出射光は、照射領域からも非照射領域からも出射するが、非照射領域から出射される光は、内部からの出射光のみとなるので、非照射領域から出射される光の強度を測定することで、評価対象領域から局所的に内部からの出射光の情報を取得できる。そして、上記パターンをスライドさせ(図3(c))、評価対象領域のうち照射領域となっていた領域に非照射領域が投影されるようにして、新たに投影された非照射領域における内部からの出射光の光強度を測定する。これにより、評価対象領域全体にわたって内部からの出射光の強度が測定され、肌内部からの出射光の二次元画像データを取得できる。さらに、評価対象領域のうち照射領域における反射光の光強度を測定することで、評価対象領域全体にわたって全戻り光(すなわち、肌表面での反射光と、肌内部からの出射光の総和)の光強度も測定され、全戻り光の二次元画像データを取得できる。画像サイズは20画素×20画素以上であることが好ましい。 The light emitted from the inside is emitted from both the irradiated and non-irradiated areas, but the light emitted from the non-irradiated area is only the light emitted from the inside. Therefore, by measuring the intensity of the light emitted from the non-irradiated area, information on the light emitted from the inside can be obtained locally from the evaluation target area. Then, the above pattern is slid (Fig. 3(c)) so that the non-irradiated area is projected onto the area that was the irradiated area of the evaluation target area, and the light intensity of the light emitted from the inside in the newly projected non-irradiated area is measured. In this way, the intensity of the light emitted from the inside is measured over the entire evaluation target area, and two-dimensional image data of the light emitted from inside the skin can be obtained. Furthermore, by measuring the light intensity of the reflected light in the irradiated area of the evaluation target area, the light intensity of the total return light (i.e., the sum of the light reflected on the skin surface and the light emitted from inside the skin) is also measured over the entire evaluation target area, and two-dimensional image data of the total return light can be obtained. The image size is preferably 20 pixels x 20 pixels or more.
 なお、上記パターンが、図示のようなストライプ状パターンである場合、非照射領域の幅は0.1mm以上10mm以下、照射領域の幅は0.1mm以上3mm以下であってよい。また、パターンは必ずしもストライプ状である必要はなく、照射領域及び非照射領域が面上で繰り返されたパターンであれば、格子状パターン等であってもよい。 If the above pattern is a striped pattern as shown in the figure, the width of the non-irradiated area may be 0.1 mm or more and 10 mm or less, and the width of the irradiated area may be 0.1 mm or more and 3 mm or less. Furthermore, the pattern does not necessarily have to be striped, and may be a grid pattern or the like as long as the irradiated and non-irradiated areas are repeated on the surface.
 このようにして、画像データ分離ステップ(S2)では、撮像の際に、全戻り光の画像データ、すなわち、肌表面での反射光の画像データと、肌内部からの出射光の画像データとが含まれた画像データから、肌内部からの出射光の画像データを分離できる。別の言い方をすると、全戻り光の画像データから、肌表面での反射光の画像データと、肌内部からの出射光の画像データとを分離できる。よって、本形態におけるステップS2では、全戻り光の画像データ、肌表面での反射光の画像データ、及び肌内部からの出射光の画像データの1以上を取得することができる。 In this way, in the image data separation step (S2), when capturing an image, image data of the emitted light from inside the skin can be separated from image data of all returned light, i.e., image data including image data of the reflected light from the skin surface and image data of the emitted light from inside the skin. In other words, image data of the reflected light from the skin surface and image data of the emitted light from inside the skin can be separated from the image data of all returned light. Therefore, in step S2 in this embodiment, one or more of image data of all returned light, image data of the reflected light from the skin surface, and image data of the emitted light from inside the skin can be obtained.
 ここで、図4に、分離ステップ(S2)で得られる、肌内部からの出射光の画像データの例を、初期画像データImg-0として示す。初期画像データImg-0には、評価対象領域における可視光(360~840nm)の光強度のデータが含まれている。別の言い方をすると、初期画像データImg-0は、可視光を含む内部からの出射光の強度により現わされた画像である。 In FIG. 4, an example of image data of light emitted from inside the skin obtained in the separation step (S2) is shown as initial image data Img-0. The initial image data Img-0 includes data on the light intensity of visible light (360-840 nm) in the area to be evaluated. In other words, the initial image data Img-0 is an image represented by the intensity of light emitted from the inside, including visible light.
 分光画像データ生成ステップ(S3)では、画像データ分離ステップ(S2)で得られた画像データから、所定波長の分光画像データを生成する。この分光画像データ生成ステップ(S3)では、画像データ分離ステップ(S2)で得られた任意の画像データから、分光画像データを生成できる。より具体的には、画像データ分離ステップ(S2)で得られた、全戻り光の画像データ、肌表面での反射光の画像データ、及び肌内部からの出射光の画像データの1以上から、分光画像データを生成できる。分光画像データは、所定波長の光の情報(光強度の情報)を含む画像データである。なお、分光画像データ生成ステップ(S3)において得られる所定波長の分光画像データは、単一波長の分光画像データであってもよいし、所定の波長範囲(波長幅)の分光画像データであってもよいし、2以上の異なる所定の単一波長の光が合成されてなる光の分光画像データであってもよいし、2以上の異なる所定の波長範囲を有する光の分光画像データであってもよい。 In the spectral image data generating step (S3), spectral image data of a predetermined wavelength is generated from the image data obtained in the image data separating step (S2). In this spectral image data generating step (S3), spectral image data can be generated from any image data obtained in the image data separating step (S2). More specifically, the spectral image data can be generated from one or more of the image data of the total returned light, the image data of the reflected light on the skin surface, and the image data of the emitted light from inside the skin obtained in the image data separating step (S2). The spectral image data is image data that includes information on light of a predetermined wavelength (information on light intensity). Note that the spectral image data of a predetermined wavelength obtained in the spectral image data generating step (S3) may be spectral image data of a single wavelength, or may be spectral image data of a predetermined wavelength range (wavelength width), or may be spectral image data of light obtained by combining two or more different predetermined single wavelengths of light, or may be spectral image data of light having two or more different predetermined wavelength ranges.
 図4に、肌内部からの出射光の画像データ(初期画像データImg-0)から、所定波長の分光画像データを生成される例を示す。図4は、RGBカメラを用いた場合の分光画像データの生成例である。図4に示すように、初期画像データImg-0から、青色光(波長380~500nm)の画像データImg-B、緑色光(波長500~600nm)の画像データImg-G、赤色光(波長600~720nm)の画像データImg-Rを生成することができる。さらに、スペクトルカメラ、ハイパースペクトルカメラを用いることで、任意の波長範囲の光の分光画像データを生成することができる。全戻り光の画像データからも同様に、所定波長の分光画像データを生成できる。 Figure 4 shows an example of generating spectral image data of a specified wavelength from image data of light emitted from inside the skin (initial image data Img-0). Figure 4 is an example of generating spectral image data when an RGB camera is used. As shown in Figure 4, image data Img-B of blue light (wavelength 380-500 nm), image data Img-G of green light (wavelength 500-600 nm), and image data Img-R of red light (wavelength 600-720 nm) can be generated from the initial image data Img-0. Furthermore, by using a spectral camera or hyperspectral camera, it is possible to generate spectral image data of light in any wavelength range. Similarly, spectral image data of a specified wavelength can be generated from the image data of all returned light.
 さらに、指標算出ステップ(S4)において、上記の所定波長の分光画像データの少なくとも1つに基づき、肌評価のための指標を算出する。この指標は、光強度の全体的な大きさに関する指標であってもよいし、分布に関する指標であってもよい。また、対数変換により光強度を吸光度に変換した後に、全体的な大きさに関する指標、又は分布に関する指標を計算してもよい。例えば、評価対象領域における光強度の平均値、最大値、最小値、中央値、積分値、合計値、標準偏差、分散、歪度、尖度の1以上の統計量であってよい。 Furthermore, in the index calculation step (S4), an index for skin evaluation is calculated based on at least one of the spectroscopic image data of the above-mentioned predetermined wavelengths. This index may be an index related to the overall magnitude of light intensity, or an index related to distribution. In addition, the index related to the overall magnitude or the index related to distribution may be calculated after converting the light intensity to absorbance by logarithmic transformation. For example, it may be one or more statistics of the average, maximum, minimum, median, integral, sum, standard deviation, variance, skewness, and kurtosis of the light intensity in the evaluation target area.
 また、指標算出ステップ(S4)における、分光画像データに基づき指標を算出することには、2以上の分光画像データを利用して指標を算出することも含む。この2以上の分光画像データは、例えば、異なる所定波長を有する肌内部からの出射光の分光画像データ2つであってもよいし、所定波長を有する全戻り光の分光画像データ、及び当該所定波長と同様の所定波長を有する肌内部からの出射光の分光画像データであってもよい。或いは、所定波長を有する全戻り光の分光画像データと、当該所定波長と異なる所定波長を有する肌内部からの出射光の分光画像データであってもよい。このような2以上の分光画像データを利用して指標を算出する場合、例えば、2つの分光画像データの差分、比率等を求めた上で、指標を算出してもよい。その場合、差分画像データ、比率画像データ等を生成し、差分画像データ、比率画像データ等に基づき指標を算出してもよい。すなわち、分光画像データに基づき指標を算出することには、2以上の分光画像データから得られた差分画像データ、比率画像データに基づき指標が算出されることが含まれていてよい。差分画像データの例としては、所定波長の全戻り光の分光画像データから、同じ所定波長の肌内部からの出射光の分光画像データを差し引いた差分画像データが挙げられる。 In addition, in the index calculation step (S4), calculating the index based on the spectroscopic image data includes calculating the index using two or more spectroscopic image data. The two or more spectroscopic image data may be, for example, two spectroscopic image data of light emitted from inside the skin having different predetermined wavelengths, or spectroscopic image data of all returned light having a predetermined wavelength, and spectroscopic image data of light emitted from inside the skin having a predetermined wavelength similar to the predetermined wavelength. Alternatively, it may be spectroscopic image data of all returned light having a predetermined wavelength, and spectroscopic image data of light emitted from inside the skin having a predetermined wavelength different from the predetermined wavelength. When calculating the index using such two or more spectroscopic image data, for example, the index may be calculated after finding the difference, ratio, etc. between the two spectroscopic image data. In that case, differential image data, ratio image data, etc. may be generated, and the index may be calculated based on the differential image data, ratio image data, etc. In other words, calculating the index based on the spectroscopic image data may include calculating the index based on differential image data and ratio image data obtained from two or more spectroscopic image data. An example of differential image data is differential image data obtained by subtracting the spectroscopic image data of light emitted from inside the skin having the same predetermined wavelength from the spectroscopic image data of all returned light having a predetermined wavelength.
 得られた指標は、肌の所定層の状態評価ステップ(S5)で利用される。肌の所定層の状態を評価するためには、所定波長の分光画像データに基づき算出される指標と、肌組織内の所定層の状態との関係を予め求めておき、データベースとして保存しておく。このような予め求めておいた関係に、肌を評価したい被験者に対してステップS1~S4を経て取得された、所定波長の分光画像データに基づき算出された指標を当てはめ、これにより上記被験者の肌組織内の所定層の状態を判定、評価することができる。よって、例えば、評価ステップ(S5)においては、所定波長の肌内部からの出射光に対応する分光画像データに基づき算出される指標と、肌組織内の所定層の状態との関係を予め求めておき、当該関係に、肌を評価したい被験者に対してステップS1~S4を経て取得された、所定波長の分光画像データに基づき算出された指標当てはめ、肌組織内の所定層の状態を判定、評価することができる。なお、上述のように、上記分光画像データには、全戻り光の画像データから生成された分光画像データ、肌内部からの出射光の画像データから生成された分光画像データが含まれていてよい。また、上述のように、2以上の分光画像データから得られた差分画像データ又は比率画像データに基づき指標を求める場合には、そのような差分画像データ又は比率画像データに基づき算出される指標と、肌組織内の所定層の状態との関係を予め求めておき、当該関係に、肌を評価したい被験者に対してステップS1~S4を経て取得された、所定波長の分光画像データから得られた差分画像データ又は比率画像データに基づき算出された指標当てはめ、肌組織内の所定層の状態を判定、評価することができる。 The obtained index is used in the step (S5) of evaluating the condition of a specific layer of skin. In order to evaluate the condition of a specific layer of skin, the relationship between the index calculated based on the spectroscopic image data of a specific wavelength and the condition of the specific layer in the skin tissue is obtained in advance and stored as a database. The index calculated based on the spectroscopic image data of a specific wavelength obtained through steps S1 to S4 for the subject whose skin is to be evaluated is applied to such a previously obtained relationship, thereby determining and evaluating the condition of the specific layer in the skin tissue of the subject. Therefore, for example, in the evaluation step (S5), the relationship between the index calculated based on the spectroscopic image data corresponding to the light emitted from inside the skin of a specific wavelength and the condition of the specific layer in the skin tissue is obtained in advance, and the index calculated based on the spectroscopic image data of a specific wavelength obtained through steps S1 to S4 for the subject whose skin is to be evaluated is applied to the relationship, thereby determining and evaluating the condition of the specific layer in the skin tissue. As described above, the spectroscopic image data may include spectroscopic image data generated from the image data of all returned light and spectroscopic image data generated from the image data of light emitted from inside the skin. Furthermore, as described above, when an index is calculated based on difference image data or ratio image data obtained from two or more pieces of spectral image data, the relationship between the index calculated based on such difference image data or ratio image data and the state of a specific layer in the skin tissue is determined in advance, and the index calculated based on difference image data or ratio image data obtained from the spectral image data of a specific wavelength obtained through steps S1 to S4 for the subject whose skin is to be evaluated is applied to this relationship to determine and evaluate the state of the specific layer in the skin tissue.
 評価ステップ(S5)において評価される肌の所定層の状態は、例えば、表皮の状態であってよいし、真皮の状態であってよい。表皮の状態には、角層の状態、並びに顆粒層及び/又は有棘層の状態、並びに基底膜の状態の1以上が含まれていてよい。 The condition of a specific layer of the skin evaluated in the evaluation step (S5) may be, for example, the condition of the epidermis or the condition of the dermis. The condition of the epidermis may include one or more of the condition of the stratum corneum, the condition of the granular layer and/or the spinous layer, and the condition of the basement membrane.
 <肌評価装置>
 図5に、本形態による肌評価方法で使用される肌評価システム1を示す。図5に示すように、肌評価システム1は、肌評価装置10と、撮像機器20と、光源30とを含む。
<Skin evaluation device>
5 shows a skin evaluation system 1 used in the skin evaluation method according to the present embodiment. As shown in FIG. 5, the skin evaluation system 1 includes a skin evaluation device 10, an imaging device 20, and a light source 30.
 肌評価装置10は、肌の光学特性を評価するためのコンピュータであってよく、上述のステップS2~S5を実行することができる。すなわち、肌評価装置10は、撮像機器20が撮影した画像を用いて、光源30から光が照射され肌内に入射し、肌表面で出回り込んで再び肌表面から出射してきた光(内部からの出射光)の情報を取得できる。また、画像データから所定波長の分光画像データを生成し、評価対象領域における所定波長の内部からの出射光に関する指標を算出できる。さらに、算出された指標に基づき、予め求めておいた、所定波長の内部からの出射光に関する指標と肌組織内の所定層の状態との関係を利用して、評価対象領域の肌組織内の所定層の状態を判定、評価できる。肌評価装置10は、パーソナルコンピュータ、タブレット端末、スマートフォン等であってよい。 The skin evaluation device 10 may be a computer for evaluating the optical characteristics of the skin, and can execute the above-mentioned steps S2 to S5. That is, the skin evaluation device 10 can use the image captured by the imaging device 20 to obtain information on light (emission light from within) that is irradiated from the light source 30, enters the skin, circulates around the skin surface, and is then emitted from the skin surface again. It can also generate spectroscopic image data of a specified wavelength from the image data, and calculate an index for the emission light from within the specified wavelength in the evaluation target area. Furthermore, based on the calculated index, it can use the relationship between the index for the emission light from within the specified wavelength and the state of a specified layer in the skin tissue, which has been previously obtained, to determine and evaluate the state of a specified layer in the skin tissue in the evaluation target area. The skin evaluation device 10 may be a personal computer, a tablet terminal, a smartphone, etc.
 撮像機器20は、肌を撮影するための機器であって、上述のようにRGBカメラ、スペクトルカメラ、ハイパースペクトルカメラ、ライトフィールドカメラ等であってよい。このような撮像機器20が撮影した画像は、内部反射光の強度により現わされた画像であって、内部からの出射光を複数の波長範囲に分けて当該波長範囲ごとの画像を含むものである。 The imaging device 20 is a device for photographing skin, and may be an RGB camera, a spectral camera, a hyperspectral camera, a light field camera, etc., as described above. The image captured by such an imaging device 20 is an image expressed by the intensity of internally reflected light, and includes images for each wavelength range obtained by dividing the light emitted from the inside into multiple wavelength ranges.
 図5に示す例では、肌評価装置10と撮像機器20と光源30とを別々の機器として説明したが、肌評価装置10と撮像機器20と光源30とのうちの少なくとも2つが、1つの装置となるよう共に実装されていてもよい。例えば、撮像機器20と肌評価装置10とが、スマートフォン等の端末に組み込まれている場合、ユーザが、スマートフォン内蔵カメラで自らの顔の肌画像を撮影し、その評価をすることも可能である。 In the example shown in FIG. 5, the skin evaluation device 10, the imaging device 20, and the light source 30 are described as separate devices, but at least two of the skin evaluation device 10, the imaging device 20, and the light source 30 may be implemented together as a single device. For example, if the imaging device 20 and the skin evaluation device 10 are incorporated into a terminal such as a smartphone, the user can take an image of their own facial skin using the smartphone's built-in camera and evaluate it.
 図6に、肌評価装置10の機能ブロック図を示す。図6に示すように、肌評価装置10は、画像取得部(情報取得部)101と、算出部102と、評価部103とを備えていてよい。肌評価装置10は、プログラムを実行することで、画像取得部101、算出部102、及び評価部103として機能することができる。 FIG. 6 shows a functional block diagram of the skin evaluation device 10. As shown in FIG. 6, the skin evaluation device 10 may include an image acquisition unit (information acquisition unit) 101, a calculation unit 102, and an evaluation unit 103. The skin evaluation device 10 can function as the image acquisition unit 101, the calculation unit 102, and the evaluation unit 103 by executing a program.
 画像取得部101は、光源30からの光が照射された肌の評価対象領域の、肌内部からの出射光の強度等により現わされた画像を、撮像機器20から取得する。画像取得部101は、撮像機器20から取得した上記画像から、評価対象領域における内部からの出射光の情報、より具体的には内部からの出射光の波長若しくは波長範囲毎の強度の情報(例えば、各画素でのRGBの各値)を取得できる。画像取得部101では、さらに、取得された内部からの出射光の画像(内部からの出射光の情報)から、所定波長の分光画像データを生成若しくは抽出することもできる。なお、画像取得部101において、取得された画像データ若しくは分光画像データに何等かの処理、例えばノイズカット処理、鮮明化処理、補正処理等を施すこともできる。 The image acquisition unit 101 acquires from the imaging device 20 an image of the evaluation target area of the skin irradiated with light from the light source 30, which is represented by the intensity of light emitted from inside the skin. From the image acquired from the imaging device 20, the image acquisition unit 101 can acquire information on the light emitted from inside the evaluation target area, more specifically, information on the wavelength or intensity for each wavelength range of the light emitted from inside (for example, each RGB value at each pixel). The image acquisition unit 101 can also generate or extract spectral image data of a predetermined wavelength from the acquired image of light emitted from inside (information on light emitted from inside). Note that the image acquisition unit 101 can also perform some processing, such as noise reduction processing, sharpening processing, correction processing, etc., on the acquired image data or spectral image data.
 算出部102は、得られた所定波長の分光画像データに基づき、当該所定波長の内部からの出射光または所定波長範囲の内部からの出射光に関する指標を算出することができる。指標は、光強度の全体的な大きさに関する指標であってもよいし、分布に関する指標であってもよい。光強度を吸光度に変換した後に、全体的な大きさに関する指標または、分布に関する指標を計算してもよい。 The calculation unit 102 can calculate an index related to the light emitted from within the specified wavelength or the light emitted from within the specified wavelength range based on the obtained spectroscopic image data of the specified wavelength. The index may be an index related to the overall magnitude of the light intensity, or an index related to the distribution. After converting the light intensity to absorbance, the index related to the overall magnitude or the index related to the distribution may be calculated.
 評価部103は、算出部102が算出した指標を利用に基づいて、肌を評価する。例えば、評価部103は、予め求めておき且つ肌評価装置10に保存しておいた、所定波長の内部からの出射光に関する指標と肌組織内の所定層の状態との関係に基づき、肌組織内の所定層の状態を評価することができる。 The evaluation unit 103 evaluates the skin based on the index calculated by the calculation unit 102. For example, the evaluation unit 103 can evaluate the state of a specific layer in the skin tissue based on the relationship between an index related to light emitted from within at a specific wavelength, which has been calculated in advance and stored in the skin evaluation device 10, and the state of a specific layer in the skin tissue.
<ハードウェア構成>
 図7は、本発明の一実施形態に係る肌評価装置10のハードウェア構成の一例を示すブロック図である。
<Hardware Configuration>
FIG. 7 is a block diagram showing an example of a hardware configuration of the skin evaluation device 10 according to an embodiment of the present invention.
 肌評価装置10は、CPU(Central Processing Unit)1001、ROM(Read Only Memory)1002、RAM(Random Access Memory)1003を有する。CPU1001、ROM1002、RAM1003は、いわゆるコンピュータを形成する。 The skin evaluation device 10 has a CPU (Central Processing Unit) 1001, a ROM (Read Only Memory) 1002, and a RAM (Random Access Memory) 1003. The CPU 1001, the ROM 1002, and the RAM 1003 form what is known as a computer.
 また、肌評価装置10は、補助記憶装置1004、表示装置1005、操作装置1006、I/F(Interface)装置1007、ドライブ装置1008を有することができる。なお、肌評価装置10の各ハードウェアは、バスBを介して相互に接続されている。 The skin evaluation device 10 may also have an auxiliary storage device 1004, a display device 1005, an operation device 1006, an I/F (Interface) device 1007, and a drive device 1008. Each piece of hardware in the skin evaluation device 10 is connected to each other via a bus B.
 CPU1001は、補助記憶装置1004にインストールされている各種プログラムを実行する演算デバイスである。 The CPU 1001 is a computing device that executes various programs installed in the auxiliary storage device 1004.
 ROM1002は、不揮発性メモリである。ROM1002は、補助記憶装置1004にインストールされている各種プログラムをCPU1001が実行するために必要な各種プログラム、データ等を格納する主記憶デバイスとして機能する。具体的には、ROM1002はBIOS(Basic Input/Output System)やEFI(Extensible Firmware Interface)等のブートプログラム等を格納する、主記憶デバイスとして機能する。 ROM 1002 is a non-volatile memory. ROM 1002 functions as a primary storage device that stores various programs, data, etc. required for CPU 1001 to execute various programs installed in auxiliary storage device 1004. Specifically, ROM 1002 functions as a primary storage device that stores boot programs such as BIOS (Basic Input/Output System) and EFI (Extensible Firmware Interface).
 RAM1003は、DRAM(Dynamic Random Access Memory)やSRAM(Static Random Access Memory)等の揮発性メモリである。RAM1003は、補助記憶装置1004にインストールされている各種プログラムがCPU1001によって実行される際に展開される作業領域を提供する、主記憶デバイスとして機能する。 RAM 1003 is a volatile memory such as DRAM (Dynamic Random Access Memory) or SRAM (Static Random Access Memory). RAM 1003 functions as a primary storage device that provides a working area into which various programs installed in the auxiliary storage device 1004 are expanded when they are executed by the CPU 1001.
 補助記憶装置1004は、各種プログラムや、各種プログラムが実行される際に用いられる情報を格納する補助記憶デバイスである。 The auxiliary storage device 1004 is an auxiliary storage device that stores various programs and information used when the various programs are executed.
 表示装置1005は、肌評価装置10の内部状態等を表示する表示デバイスである。 The display device 1005 is a display device that displays the internal state of the skin evaluation device 10, etc.
 操作装置1006は、肌評価装置10の管理者が肌評価装置10に対して各種指示を入力する入力デバイスである。 The operation device 1006 is an input device through which the administrator of the skin evaluation device 10 inputs various instructions to the skin evaluation device 10.
 I/F装置1007は、ネットワークに接続し、肌評価装置10と通信を行うための通信デバイスである。 The I/F device 1007 is a communication device that connects to a network and communicates with the skin evaluation device 10.
 ドライブ装置1008は記憶媒体1009をセットするためのデバイスである。ここでいう記憶媒体1009には、CD-ROM、フレキシブルディスク、光磁気ディスク等のように情報を光学的、電気的あるいは磁気的に記録する媒体が含まれる。また、記憶媒体1009には、EPROM (Erasable Programmable Read Only Memory)、フラッシュメモリ等のように情報を電気的に記録する半導体メモリ等が含まれていてもよい。 The drive unit 1008 is a device for setting the storage medium 1009. The storage medium 1009 here includes media that record information optically, electrically, or magnetically, such as CD-ROMs, flexible disks, and magneto-optical disks. The storage medium 1009 may also include semiconductor memory that records information electrically, such as EPROM (Erasable Programmable Read Only Memory) and flash memory.
 なお、補助記憶装置1004にインストールされる各種プログラムは、例えば、配布された記憶媒体1009がドライブ装置1008にセットされ、該記憶媒体1009に記録された各種プログラムがドライブ装置1008により読み出されることでインストールされる。あるいは、補助記憶装置1004にインストールされる各種プログラムは、I/F装置1007を介して、ネットワークよりダウンロードされることでインストールされてもよい。 The various programs to be installed in the auxiliary storage device 1004 are installed, for example, by setting the distributed storage medium 1009 in the drive device 1008 and reading the various programs recorded on the storage medium 1009 by the drive device 1008. Alternatively, the various programs to be installed in the auxiliary storage device 1004 may be installed by downloading them from a network via the I/F device 1007.
 以下、本発明の実施形態をさらに具体的に説明する。 The following describes the embodiments of the present invention in more detail.
 <第1実施形態>
 第1実施形態による肌評価方法は、光が照射された肌の内部からの出射光の情報を取得し、前記内部からの出射光のうち青色光の情報を利用して、顆粒層及び/又は有棘層における肌状態を評価する肌評価方法である。
First Embodiment
The skin evaluation method according to the first embodiment is a skin evaluation method that acquires information on light emitted from inside skin irradiated with light, and evaluates the skin condition in the granular stratum and/or the spinous stratum by utilizing information on blue light from the light emitted from the inside.
 青色(波長380~500nm)の肌内部からの出射光は、主として、肌組織内の顆粒層及び/又は有棘層(図1)にて反射して肌表面から出射することから、顆粒層及び/又は有棘層の状態を、肌の内部からの出射光のうち青色光の画像データに反映できる。そのため、本実施形態によれば、例えば、表皮層の厚み、メラニン量等を簡便に評価することができる。例えばメラニン量の評価ができることで、肌のくすみ、色ムラ(シミ、そばかす等を含む)、日焼け等が評価され得る。 Blue light (wavelength 380-500 nm) emitted from inside the skin is mainly reflected by the stratum granulosum and/or stratum spinosum (Figure 1) in the skin tissue and emitted from the skin surface, so the state of the stratum granulosum and/or stratum spinosum can be reflected in image data of the blue light emitted from inside the skin. Therefore, according to this embodiment, for example, the thickness of the epidermis layer, the amount of melanin, etc. can be easily evaluated. For example, by being able to evaluate the amount of melanin, dullness of the skin, uneven skin tone (including age spots, freckles, etc.), sunburn, etc. can be evaluated.
 本形態では、図2を参照して説明した上述の分光画像データ生成ステップ(S3)において、青色光の分光画像データを生成し、指標算出ステップ(S4)では、青色光の分光画像データを用いて指標を算出する。よって、本形態による肌評価方法は、図2に示すフローに沿って説明すれば、光を被験者の肌に照射するステップ(S1)、全戻り光の画像データから、肌の内部からの出射光の画像データを分離するステップ(S2)、肌の内部からの出射光の画像データから、青色光の分光画像データを生成するステップ(S3)、当該青色光の分光画像データを用いて指標を算出するステップ(S4)、及び当該指標に基づき顆粒層及び/又は有棘層の状態を評価するステップ(S5)を含む肌評価方法であってよい。 In this embodiment, in the above-mentioned spectral image data generating step (S3) described with reference to Figure 2, blue light spectral image data is generated, and in the index calculation step (S4), an index is calculated using the blue light spectral image data. Therefore, the skin evaluation method according to this embodiment, when explained according to the flow shown in Figure 2, may be a skin evaluation method including a step (S1) of irradiating light to the subject's skin, a step (S2) of separating image data of light emitted from inside the skin from image data of all returned light, a step (S3) of generating blue light spectral image data from image data of light emitted from inside the skin, a step (S4) of calculating an index using the blue light spectral image data, and a step (S5) of evaluating the state of the stratum granulosum and/or stratum spinosum based on the index.
 =第1実施形態の応用例(実施例)=
 第1実施形態の応用例として、メラニン量の評価を検討した。具体的には、30~39歳の被験者24名の顔の肌画像をRGBカメラにて撮影した。得られた画像データ(全戻り光の画像データ)から、肌内部からの出射光の画像データを分離し、さらにこの肌内部からの出射光の画像データから、青色光(波長380~500nm)の分光画像データを生成し、その分光画像における光強度を吸光度に変換し、重回帰分析によって決定された係数を掛け合わせ、これをメラニン指数(指標)とした。一方で、各被験者の顔全体におけるメラニン量の分布を、分光測色計を用いてその分光スペクトルから測定し、その平均値を被験者の「メラニン量」とした。図8に、メラニン指数とメラニン量との関係を示す。図8に示すように、両者に、高い相関関係があることが確認できた。
=Application Example (Example) of the First Embodiment=
As an application example of the first embodiment, evaluation of the amount of melanin was studied. Specifically, facial skin images of 24 subjects aged 30 to 39 were taken with an RGB camera. From the obtained image data (image data of all return light), image data of light emitted from inside the skin was separated, and further, spectral image data of blue light (wavelength 380 to 500 nm) was generated from the image data of light emitted from inside the skin, and the light intensity in the spectral image was converted to absorbance, and multiplied by a coefficient determined by multiple regression analysis, which was used as a melanin index (index). Meanwhile, the distribution of the amount of melanin on the entire face of each subject was measured from the spectral spectrum using a spectrophotometer, and the average value was used as the "amount of melanin" of the subject. FIG. 8 shows the relationship between the melanin index and the amount of melanin. As shown in FIG. 8, it was confirmed that there is a high correlation between the two.
 よって、図8に示すような関係を予め求めておけば、肌のメラニン量の評価をしたい被験者から肌画像データを得て、さらに肌内部からの出射光のうち青色光の画像データを生成し、指標(メラニン指数)を求め、その指標を、予め求めておいた上記関係に当てはめることで、上記被験者のメラニン量を評価、推定できる。 Therefore, if the relationship shown in Figure 8 is determined in advance, skin image data is obtained from a subject whose skin melanin amount is to be evaluated, and image data of blue light emitted from inside the skin is generated, an index (melanin index) is obtained, and the index is applied to the previously determined relationship, thereby making it possible to evaluate and estimate the subject's melanin amount.
 <第2実施形態>
 第2実施形態による肌評価方法は、光が照射された肌からの内部からの出射光の情報を取得し、前記内部からの出射光のうち緑色光の情報を利用して、基底層(基底膜)における肌状態を評価する肌評価方法である。
Second Embodiment
The skin evaluation method according to the second embodiment is a skin evaluation method that acquires information on light emitted from within skin irradiated with light, and evaluates the skin condition at the basal layer (basement membrane) by utilizing information on green light from the light emitted from within.
 緑色(波長500~600nm)の肌内部からの出射光は、主として、肌組織内の基底層(図1)にて反射して肌表面から出射することから、基底層の状態を、肌内部からの出射光のうち緑色光の画像データに反映できる。そのため、本実施形態によれば、例えば、基底層からの反射、弾力性等を簡便に評価することができる。本形態による基底層の評価により、肌の将来的な劣化の可能性、肌の健常性等が評価され得る。 Since green light (wavelength 500-600 nm) emitted from inside the skin is mainly reflected by the basal layer (Figure 1) in the skin tissue and emitted from the skin surface, the state of the basal layer can be reflected in image data of the green light emitted from inside the skin. Therefore, according to this embodiment, for example, reflection from the basal layer, elasticity, etc. can be easily evaluated. By evaluating the basal layer according to this embodiment, the possibility of future deterioration of the skin, the healthiness of the skin, etc. can be evaluated.
 本形態では、図2を参照して説明した上述の分光画像データ生成ステップ(S3)において、緑色光の分光画像データを生成し、指標算出ステップ(S4)では、緑色光の分光画像データを用いて指標を算出する。よって、本形態による肌評価方法は、図2に示すフローに沿って説明すれば、光を被験者の肌に照射するステップ(S1)、全戻り光の画像データから、肌の内部からの出射光の画像データを分離するステップ(S2)、肌の内部からの出射光の画像データから、緑色光の分光画像データを生成するステップ(S3)、当該緑色光の分光画像データを用いて指標を算出するステップ(S4)、及び当該指標に基づき基底層(基底膜)の状態を評価するステップ(S5)を含む肌評価方法であってよい。 In this embodiment, in the above-mentioned spectral image data generating step (S3) described with reference to Figure 2, green light spectral image data is generated, and in the index calculation step (S4), an index is calculated using the green light spectral image data. Therefore, the skin evaluation method according to this embodiment, when explained according to the flow shown in Figure 2, may be a skin evaluation method including a step (S1) of irradiating light to the subject's skin, a step (S2) of separating image data of light emitted from inside the skin from image data of all returned light, a step (S3) of generating green light spectral image data from image data of light emitted from inside the skin, a step (S4) of calculating an index using the green light spectral image data, and a step (S5) of evaluating the state of the basal layer (basement membrane) based on the index.
 <第3実施形態>
 第3実施形態による肌評価方法は、光が照射された肌からの内部からの出射光の情報を取得し、前記内部からの出射光のうち赤色光の情報を利用して、真皮における肌状態を評価する肌評価方法であってよい。
Third Embodiment
The skin evaluation method according to the third embodiment may be a skin evaluation method that acquires information on light emitted from within skin irradiated with light, and evaluates the skin condition in the dermis by utilizing information on red light from the light emitted from within.
 赤色(波長600~720nm)の肌内部からの出射光は、主として、肌組織内の真皮、特に乳頭層及び/又は乳頭下層(図1)にて反射して肌表面から出射することから、真皮、特に乳頭層及び/又は乳頭下層の状態を、赤色の内部からの出射光の画像データに反映できる。そのため、本実施形態によれば、例えば、コラーゲン密度、血管密度、毛細血管の数、ヘモグロビン量等を簡便に評価することができる。本形態による真皮の評価により、肌色の評価(若々しいとされる肌色の評価)、肌全体の弾力評価、炎症、血行状態等が評価され得る。 Red light (wavelength 600-720 nm) emitted from within the skin is mainly reflected by the dermis in the skin tissue, particularly the papillary layer and/or subpapillary layer (Figure 1), before exiting from the skin surface, so the state of the dermis, particularly the papillary layer and/or subpapillary layer, can be reflected in the image data of the red light emitted from within. Therefore, according to this embodiment, for example, collagen density, blood vessel density, number of capillaries, hemoglobin amount, etc. can be easily evaluated. By evaluating the dermis in this embodiment, it is possible to evaluate skin color (evaluation of skin color considered to be youthful), overall skin elasticity, inflammation, blood circulation state, etc.
 本形態では、図2を参照して説明した上述の分光画像データ生成ステップ(S3)において、赤色光の分光画像データを生成し、指標算出ステップ(S4)では、赤色光の分光画像データを用いて指標を算出する。よって、本形態による肌評価方法は、図2に示すフローに沿って説明すれば、光を被験者の肌に照射するステップ(S1)、全戻り光の画像データから、肌内部からの出射光の画像データを分離するステップ(S2)、肌の内部からの出射光の画像データから、赤色光の分光画像データを生成するステップ(S3)、当該赤色光の分光画像データを用いて指標を算出するステップ(S4)、及び当該指標に基づき真皮、特に乳頭層及び/又は乳頭下層の状態を評価するステップ(S5)を含む肌評価方法であってよい。 In this embodiment, in the above-mentioned spectral image data generating step (S3) described with reference to FIG. 2, red light spectral image data is generated, and in the index calculating step (S4), an index is calculated using the red light spectral image data. Therefore, the skin evaluation method according to this embodiment, when explained according to the flow shown in FIG. 2, may be a skin evaluation method including a step (S1) of irradiating light to the skin of a subject, a step (S2) of separating image data of light emitted from inside the skin from image data of all returned light, a step (S3) of generating red light spectral image data from image data of light emitted from inside the skin, a step (S4) of calculating an index using the red light spectral image data, and a step (S5) of evaluating the condition of the dermis, particularly the papillary layer and/or subpapillary layer, based on the index.
 なお、分光画像データ生成ステップ(S3)において、肌内部からの出射光のうち赤色光の分光画像データに加え、肌内部からの出射光のうち緑色光の分光画像データを生成してもよい。また、指標を算出するステップ(S4)において、肌内部からの出射光のうち赤色光の分光画像データに加え、肌内部からの出射光のうち緑色光の分光画像データも利用して指標を算出することができる。その場合、肌内部からの出射光のうち赤色光の分光画像データと、肌内部からの出射光のうち緑色光の分光画像データとの差分画像データを利用して指標を算出できる。これにより、肌内部からの射出光の情報から、基底層まで到達する緑色光の情報の影響を差し引くことができるので、真皮の状態を、より高い精度で評価することができる。 In addition, in the spectral image data generating step (S3), in addition to the spectral image data of red light out of the light emitted from inside the skin, spectral image data of green light out of the light emitted from inside the skin may be generated. Also, in the index calculating step (S4), in addition to the spectral image data of red light out of the light emitted from inside the skin, the index can be calculated using the spectral image data of green light out of the light emitted from inside the skin. In that case, the index can be calculated using the differential image data between the spectral image data of red light out of the light emitted from inside the skin and the spectral image data of green light out of the light emitted from inside the skin. This makes it possible to subtract the influence of the information of green light that reaches the basal layer from the information of the light emitted from inside the skin, so that the state of the dermis can be evaluated with higher accuracy.
 =第3実施形態の応用例(実施例)=
 第3実施形態の応用例として、ヘモグロビン量の評価を検討した。第1実施形態の応用例における撮像と同様に、被験者の肌画像を撮影した。得られた画像データ(全戻り光の画像データ)から、肌内部からの出射光の画像データを分離し、さらにこの肌内部からの出射光の画像データから、赤色光(波長600~720nm)の分光画像データと、緑色光(波長500~600nm)の分光画像データとを生成し、両分光画像データの差分画像データを求めた。この差分画像データにおける光強度を吸光度に変換し、重回帰分析によって得られた係数を掛け合わせ、これをヘモグロビン(指標)とした。一方で、各被験者の顔全体におけるヘモグロビン量の分布を、分光測色計を用いて得られる分光スペクトルから測定し、その平均値を被験者の「ヘモグロビン量」とした。図9に、ヘモグロビン指数とヘモグロビン量との関係を示す。図9に示すように、両者に、高い相関関係があることが確認できた。
=Application Example (Example) of the Third Embodiment=
As an application example of the third embodiment, evaluation of the amount of hemoglobin was studied. Similar to the imaging in the application example of the first embodiment, a skin image of a subject was captured. From the obtained image data (image data of all return light), image data of light emitted from inside the skin was separated, and further, from the image data of light emitted from inside the skin, spectral image data of red light (wavelength 600 to 720 nm) and spectral image data of green light (wavelength 500 to 600 nm) were generated, and differential image data of both spectral image data was obtained. The light intensity in this differential image data was converted to absorbance, and multiplied by a coefficient obtained by multiple regression analysis, and this was used as hemoglobin (index). Meanwhile, the distribution of the amount of hemoglobin in the entire face of each subject was measured from a spectral spectrum obtained using a spectrophotometer, and the average value was used as the "amount of hemoglobin" of the subject. FIG. 9 shows the relationship between the hemoglobin index and the amount of hemoglobin. As shown in FIG. 9, it was confirmed that there is a high correlation between the two.
 よって、図9に示すような関係を予め求めておけば、肌のメラニン量の評価をしたい被験者から肌画像データを得て、さらに肌内部からの出射光のうち赤色光の画像データを生成し、指標(ヘモグロビン指数)を求め、その指標を、予め求めておいた上記関係に当てはめることで、上記被験者のヘモグロビン量を評価、推定できる。 Therefore, if the relationship shown in Figure 9 is determined in advance, skin image data is obtained from a subject whose skin melanin level is to be evaluated, and image data of red light emitted from within the skin is generated, an index (hemoglobin index) is obtained, and the index is applied to the previously determined relationship, thereby enabling the hemoglobin level of the subject to be evaluated and estimated.
 また、第3実施形態のさらなる応用例として、コラーゲン体積密度の評価を検討した。上記のヘモグロビン量の評価と同様にして、赤色(波長600~720nm)の光の分光画像データと、緑色光(波長500~600nm)の分光画像データとを生成し、両分光画像データの差分画像データを求めた。その分光画像における光強度を吸光度に変換し、重回帰分析によって得られた係数を掛け合わせ、これをコラーゲン体積密度指数(指標)とした。一方で、各被験者の顔全体におけるコラーゲン体積密度指数の分布を音響顕微鏡によって測定し、その領域平均値を、被験者の「コラーゲン体積密度」とした。図10に、コラーゲン体積密度指数とコラーゲン体積密度との関係を示す。図10に示すように、両者に、高い相関関係があることが確認できた。 As a further application example of the third embodiment, the evaluation of collagen volume density was investigated. In the same manner as in the evaluation of hemoglobin amount described above, spectral image data of red light (wavelength 600-720 nm) and spectral image data of green light (wavelength 500-600 nm) were generated, and differential image data of both spectral image data was obtained. The light intensity in the spectral image was converted to absorbance, and multiplied by a coefficient obtained by multiple regression analysis to obtain a collagen volume density index (index). Meanwhile, the distribution of collagen volume density index over the entire face of each subject was measured using an acoustic microscope, and the average value of the area was used as the "collagen volume density" of the subject. Figure 10 shows the relationship between collagen volume density index and collagen volume density. As shown in Figure 10, it was confirmed that there is a high correlation between the two.
 よって、図10に示すような関係を予め求めておけば、肌のコラーゲン体積密度の評価をしたい被験者から肌画像データを得て、さらに肌内部からの出射光のうち赤色光の画像データを生成し、場合によっては、赤色光の画像データ及び緑色光の画像データを生成して、指標(コラーゲン体積密度指数)を求め、その指標を、予め求めておいた上記関係に当てはめることで、上記被験者のコラーゲン体積密度を評価、推定できる。 Therefore, if the relationship shown in Figure 10 is determined in advance, skin image data is obtained from a subject whose skin collagen volume density is to be evaluated, and image data of red light emitted from inside the skin is generated, and in some cases, image data of red light and image data of green light are generated to determine an index (collagen volume density index), which can then be applied to the previously determined relationship to evaluate and estimate the collagen volume density of the subject.
 <第4実施形態>
 第4実施形態による肌評価方法は、光が照射された肌の内部からの出射光の情報を取得し、内部からの出射光のうち青色光の情報を利用する点では、第1実施形態による肌評価方法と同様であるが、光が照射された肌からの全戻り光の情報もさらに取得し、当該全戻り光のうち青色光の情報と、上記の内部からの出射光のうち青色光の情報とを利用して、表皮のうちの角層における肌状態を評価する肌評価方法であってよい。本形態では、全戻り光のうち青色光の情報と、内部からの出射光のうち青色光の情報との差分を利用する。
Fourth Embodiment
The skin evaluation method according to the fourth embodiment is similar to the skin evaluation method according to the first embodiment in that it acquires information on emitted light from the inside of the skin irradiated with light and uses information on blue light from the emitted light from the inside, but may also acquire information on total returned light from the skin irradiated with light and evaluate the skin condition in the stratum corneum of the epidermis using the information on blue light from the total returned light and the information on blue light from the emitted light from the inside. In this embodiment, the difference between the information on blue light from the total returned light and the information on blue light from the emitted light from the inside is used.
 上述のように、青色(波長380~500nm)の肌内部からの出射光は、主として、肌組織内の顆粒層及び/又は有棘層(図1)にて反射して肌表面から出射することから、この肌内部からの出射光のうち青色光には、顆粒層及び/又は有棘層の状態が反映され得る。一方、光を被験者の肌に照射して得られる全戻り光のうち青色光の画像データには、顆粒層及び/又は有棘層からさらに上層の角層までの状態が反映されている。よって、全戻り光の画像データからも、青色光の分光画像データを生成し、全戻り光のうちの青色光の画像データから、内部からの反射光のうちの青色光の画像データを差し引いた差分画像データを生成した場合、この差分画像データには、角層の状態が反映されることになる。そのため、本形態によれば、例えば、角層の厚み、透明度等を簡便に評価することができる。例えば角層の透明度の評価ができることで、肌のくすみ、にごり、代謝等が評価され得る。 As described above, blue light (wavelength 380-500 nm) emitted from inside the skin is mainly reflected by the granular layer and/or the spinous layer (Figure 1) in the skin tissue and emitted from the skin surface, so the blue light of this emitted light from inside the skin can reflect the state of the granular layer and/or the spinous layer. On the other hand, the image data of blue light of the total returned light obtained by irradiating light to the subject's skin reflects the state from the granular layer and/or the spinous layer to the stratum corneum, which is an upper layer. Therefore, when blue light spectral image data is generated from the image data of the total returned light, and differential image data is generated by subtracting the image data of blue light of the reflected light from the inside from the image data of the blue light of the total returned light, the differential image data reflects the state of the stratum corneum. Therefore, according to this embodiment, for example, the thickness, transparency, etc. of the stratum corneum can be easily evaluated. For example, by being able to evaluate the transparency of the stratum corneum, dullness, cloudiness, metabolism, etc. of the skin can be evaluated.
 本形態では、図2を参照して説明した上述の分光画像データ生成ステップ(S3)において、全戻り光の画像データ、及び肌内部からの出射光の画像データからそれぞれ青色光の分光画像データを生成し、指標算出ステップ(S4)では、全戻り光のうちの青色光の分光画像データと、肌内部からの出射光のうちの青色光の画像データを用いて指標を算出する。よって、本形態による肌評価方法は、図2に示すフローに沿って説明すれば、光を被験者の肌に照射するステップ(S1)、全戻り光の画像データから、肌の内部からの出射光の画像データを分離するステップ(S2)、肌内部からの出射光の画像データから青色光の分光画像データを、且つ全戻り光の画像データから青色光の分光画像データをそれぞれ生成するステップ(S3)、肌内部からの出射光のうちの青色光の分光画像データと、全戻り光のうちの青色光の分光画像データとの差分画像データを用いて指標を算出するステップ(S4)、及び当該指標に基づき角層の状態を評価するステップ(S5)を含む肌評価方法であってよい。 In this embodiment, in the above-mentioned spectral image data generating step (S3) described with reference to FIG. 2, spectral image data of blue light is generated from the image data of the total returned light and the image data of the light emitted from inside the skin, and in the index calculating step (S4), an index is calculated using the spectral image data of blue light from the total returned light and the image data of blue light from the light emitted from inside the skin. Therefore, the skin evaluation method according to this embodiment, when explained according to the flow shown in FIG. 2, may be a skin evaluation method including a step of irradiating light to the subject's skin (S1), a step of separating image data of the light emitted from inside the skin from the image data of the total returned light (S2), a step of generating spectral image data of blue light from the image data of the light emitted from inside the skin and a step of generating spectral image data of blue light from the image data of the total returned light (S3), a step of calculating an index using differential image data between the spectral image data of blue light from the light emitted from inside the skin and the spectral image data of blue light from the image data of the total returned light, and a step of evaluating the state of the stratum corneum based on the index (S5).
 =第4実施形態の応用例(実施例)=
 第4実施形態の応用例として、角層のにごりを評価した。具体的には、20~79歳の被験者134名(各年代につき22~23名)の顔の肌画像をRGBカメラにて撮影した。得られた画像データ(全戻り光の画像データ)から、肌内部からの出射光の画像データを分離し、さらにこの肌内部からの出射光の画像データから青色光(波長380~500nm)の分光画像データを生成すると共に、全戻り光の画像データからも青色光の分光画像データを生成した。さらに、全戻り光のうち青色光の分光画像データと、肌内部からの出射光のうち青色光の分光画像データとの差分画像データを求め、当該差分画像データにおける光強度の領域平均値を角層指数若しくは濁りレベル指数(指標)とした。図11に、被験者の年齢に対する角層指数を表すグラフを示す。図11に示すように、各層指数(濁りレベル)は、年齢が上がるにつれ不調となる傾向が確認された。そして、図11に示すような関係を予め求めておくことで、画像データに基づき求められる角層指数(指標)に基づき、凡その年齢(肌年齢若しくは角層年齢)を推定できる。
=Application Example (Example) of the Fourth Embodiment=
As an application example of the fourth embodiment, the turbidity of the stratum corneum was evaluated. Specifically, facial skin images of 134 subjects aged 20 to 79 (22 to 23 subjects for each age group) were taken with an RGB camera. From the obtained image data (image data of all returned light), image data of light emitted from inside the skin was separated, and further, spectral image data of blue light (wavelength 380 to 500 nm) was generated from the image data of light emitted from inside the skin, and spectral image data of blue light was also generated from the image data of all returned light. Furthermore, differential image data between the spectral image data of blue light in the total returned light and the spectral image data of blue light in the light emitted from inside the skin was obtained, and the area average value of the light intensity in the differential image data was taken as the stratum corneum index or turbidity level index (index). Figure 11 shows a graph showing the stratum corneum index versus the age of the subjects. As shown in Figure 11, it was confirmed that the index (turbidity level) of each layer tends to become worse as the age increases. By determining in advance the relationship as shown in FIG. 11, it is possible to estimate an approximate age (skin age or stratum corneum age) based on the stratum corneum index (index) determined based on image data.
 上記の実施形態は単独で実施することもできるし、2以上を組み合わせて実施することもできる。例えば、青色光の情報を利用してメラニン量を評価する第1実施形態と、赤色光および緑色光の情報を利用して、ヘモグロビン量を評価する第3実施形態とを組み合わせることで、紫外線による炎症とメラニン生成に関する評価を行うことができる。また、第1実施形態から第4実施形態までを組み合わせて、肌の総合的な評価、例えば肌年齢、肌タイプ等の判定、評価等を行うこともできる。 The above embodiments can be implemented alone or in combination of two or more. For example, by combining the first embodiment, which uses blue light information to evaluate the amount of melanin, with the third embodiment, which uses red and green light information to evaluate the amount of hemoglobin, it is possible to perform an evaluation of inflammation and melanin production caused by ultraviolet rays. Furthermore, by combining the first to fourth embodiments, it is possible to perform a comprehensive evaluation of the skin, such as determining and evaluating skin age and skin type.
 図12に、総合的な肌評価の例の結果を示す。図12に示す例では、被験者の肌について、上記の第1実施形態によってメラニンレベルを評価し、第3実施形態によってヘモグロビンレベル及びコラーゲンレベルを評価し、第4実施形態によって角層レベルを評価した。さらに、予め求めておいた、上記被験者と同世代の人の各評価の平均と比較することができる。このような総合的な肌評価を、肌の撮像という比較的簡便なプロセスによって行うことができる。 FIG. 12 shows the results of an example of a comprehensive skin evaluation. In the example shown in FIG. 12, the melanin level of the subject's skin was evaluated using the first embodiment described above, the hemoglobin level and collagen level were evaluated using the third embodiment, and the stratum corneum level was evaluated using the fourth embodiment. Furthermore, the results can be compared with the average of each evaluation of people of the same age as the subject, which was obtained in advance. Such a comprehensive skin evaluation can be performed by the relatively simple process of capturing an image of the skin.
 このように、本形態によれば、肌組織内の所定深さの状態を評価できるので、外観に現れない潜在的な肌の美容状態も評価できる。そのため、得られる評価は、肌を根本的にケアするための美容方針を決定する助けになり得る。例えば、上述の肌評価方法によって得られた評価に基づき、美容方法、化粧方法、生活習慣改善等の提案、化粧品、ケア製品、美容食品等の提案を適切に行うことができる。 In this way, according to this embodiment, since it is possible to evaluate the condition at a specified depth within the skin tissue, it is also possible to evaluate the potential beauty condition of the skin that is not visible to the naked eye. Therefore, the evaluation obtained can be helpful in determining a beauty policy for fundamentally caring for the skin. For example, based on the evaluation obtained by the above-mentioned skin evaluation method, it is possible to appropriately suggest beauty methods, makeup methods, improvements to lifestyle habits, cosmetics, care products, beauty foods, etc.
 以上、本発明を具体的な実施形態に基づいて説明したが、上記実施形態は例として提示したものにすぎず、本発明は上記実施形態によって限定されるものではない。本発明の開示の範囲内において、様々な変更、修正、置換、削除、付加、及び組合せ等が可能である。 The present invention has been described above based on specific embodiments, but the above embodiments are presented merely as examples, and the present invention is not limited to the above embodiments. Various changes, modifications, substitutions, deletions, additions, combinations, etc. are possible within the scope of the disclosure of the present invention.
 本出願は、2022年9月30日に出願された日本国特許出願2022-158733号に基づく優先権を主張するものであり、その全内容をここに援用する。 This application claims priority to Japanese Patent Application No. 2022-158733, filed on September 30, 2022, the entire contents of which are incorporated herein by reference.
1 肌評価システム
10 肌評価装置
20 撮像機器
30 光源
101 画像取得部
102 算出部
103 評価部
1001 CPU
1002 ROM
1003 RAM
1004 補助記憶装置
1005 表示装置
1006 操作装置
1007 I/F装置
1008 ドライブ装置
1009 記憶媒体
REFERENCE SIGNS LIST 1 Skin evaluation system 10 Skin evaluation device 20 Imaging device 30 Light source 101 Image acquisition unit 102 Calculation unit 103 Evaluation unit 1001 CPU
1002 ROM
1003 RAM
1004 Auxiliary storage device 1005 Display device 1006 Operation device 1007 I/F device 1008 Drive device 1009 Storage medium

Claims (15)

  1.  光が照射された肌の内部からの出射光の情報を取得し、
     前記内部からの出射光のうち所定波長の光の情報を利用して、前記肌の所定深さにおける状態を評価する、肌評価方法。
    Obtaining information on the light emitted from inside the irradiated skin,
    The skin evaluation method uses information on light of a predetermined wavelength among the light emitted from the inside to evaluate the condition of the skin at a predetermined depth.
  2.  前記内部からの出射光が可視光を含む、請求項1に記載の肌評価方法。 The skin evaluation method according to claim 1, wherein the light emitted from the inside includes visible light.
  3.  前記所定波長の光の情報が、評価対象領域における光強度、又は光強度から算出される吸光度の統計量を含む、請求項1又は2に記載の肌評価方法。 The skin evaluation method according to claim 1 or 2, wherein the information on the light of the specified wavelength includes a statistic of the light intensity in the evaluation target area or the absorbance calculated from the light intensity.
  4.  前記内部からの出射光のうち青色光及び/若しくは緑色光の情報を利用して、表皮の状態を評価すること、並びに/又は
     前記内部からの出射光のうち赤色光の情報を利用して、真皮の状態を評価することを含む、請求項2に記載の肌評価方法。
    The skin evaluation method according to claim 2, further comprising: evaluating a state of the epidermis by utilizing information of blue light and/or green light among the light emitted from the inside; and/or evaluating a state of the dermis by utilizing information of red light among the light emitted from the inside.
  5.  前記表皮の状態を評価することが、
     前記内部からの出射光のうち青色光の情報を利用して、顆粒層及び/又は有棘層の状態を評価し、
     前記顆粒層及び/又は有棘層の状態に基づき、メラニン量、及び表皮の厚さから選択される1以上を評価する、請求項4に記載の肌評価方法。
    assessing the condition of the epidermis,
    Using information on blue light from the light emitted from the inside, a state of the granular layer and/or the spinous layer is evaluated;
    The skin evaluation method according to claim 4 , further comprising evaluating one or more of a melanin amount and an epidermal thickness based on the state of the granular layer and/or the spinous layer.
  6.  前記表皮の状態を評価することが、
     前記内部からの出射光のうち緑色光の情報を利用して、基底層の状態を評価し、
     前記基底層の状態に基づき、基底膜からの反射光、及び基底膜の弾力から選択される1以上を評価する、請求項4に記載の肌評価方法。
    assessing the condition of the epidermis,
    evaluating the state of the basal layer using information on green light from the light emitted from the inside;
    The skin evaluation method according to claim 4 , further comprising evaluating one or more selected from the group consisting of reflected light from a basement membrane and elasticity of the basement membrane based on the state of the basal layer.
  7.  前記真皮の状態を評価することが、
     前記内部からの出射光のうち赤色光の情報を利用して、真皮の状態を評価し、
     前記真皮の状態に基づき、コラーゲンの状態、血管の状態、及びヘモグロビン量から選択される1以上を評価する、請求項4に記載の肌評価方法。
    assessing the condition of the dermis
    evaluating a state of the dermis using information on red light from the light emitted from the inside;
    The skin evaluation method according to claim 4 , further comprising evaluating one or more selected from a collagen state, a blood vessel state, and a hemoglobin amount based on the state of the dermis.
  8.  前記表皮の状態を評価することが、
     さらに、前記光が照射された肌からの全戻り光の情報を取得し、
     前記全戻り光の情報と、前記内部からの出射光のうち緑色光の情報との差分を利用して、角層の状態を評価することを含む、請求項4に記載の肌評価方法。
    assessing the condition of the epidermis,
    Furthermore, information on the total return light from the skin irradiated with the light is obtained;
    The skin evaluation method according to claim 4 , further comprising evaluating a state of the stratum corneum by utilizing a difference between information on the total returned light and information on green light among the light emitted from the inside.
  9.  前記角層の状態に基づき、角層透明度、及び角層厚さから選択される1以上を評価する、請求項8に記載の肌評価方法。 The skin evaluation method according to claim 8, wherein one or more selected from stratum corneum transparency and stratum corneum thickness are evaluated based on the state of the stratum corneum.
  10.  前記真皮の状態を評価することが、
     前記内部からの出射光のうち赤色光の情報と、前記内部からの出射光のうち緑色光との情報との差分を利用して、真皮の状態を評価することを含む、請求項7に記載の肌評価方法。
    assessing the condition of the dermis
    The skin evaluation method according to claim 7 , further comprising evaluating a state of the dermis by utilizing a difference between information on red light among the light emitted from the interior and information on green light among the light emitted from the interior.
  11.  前記肌の所定深さにおける状態の評価に基づき、肌年齢、及び肌タイプから選択される1以上を判定する、請求項1又は2に記載の肌評価方法。 The skin evaluation method according to claim 1 or 2, which determines one or more selected from skin age and skin type based on the evaluation of the skin condition at a predetermined depth.
  12.  前記内部からの出射光の情報を取得することが、
     評価対象の肌領域に、光が照射される照射領域と光が照射されない非照射領域とを形成するパターンを投影し、前記非照射領域からの光の情報を取得することを含む、請求項1又は2に記載の肌評価方法。
    Obtaining information about the light emitted from the inside
    3. The skin evaluation method according to claim 1, further comprising projecting a pattern onto a skin region to be evaluated, the pattern forming an irradiated region where light is irradiated and a non-irradiated region where light is not irradiated, and acquiring information on light from the non-irradiated region.
  13.  前記肌の所定深さにおける状態を評価することが、前記評価対象領域における光強度、又は光強度から算出される吸光度の、平均値、最大値、最小値、中央値、積分値、合計値、標準偏差、分散、歪度、及び尖度から選択される1以上を含む指標を算出し、
     前記指標に基づき前記肌の所定深さにおける状態を評価することを含む、請求項3に記載の肌評価方法。
    evaluating the condition of the skin at a predetermined depth includes calculating an index including one or more selected from an average value, a maximum value, a minimum value, a median value, an integral value, a sum value, a standard deviation, a variance, a skewness, and a kurtosis of the light intensity in the evaluation target area or the absorbance calculated from the light intensity;
    The skin evaluation method according to claim 3 , further comprising evaluating a condition of the skin at a predetermined depth based on the index.
  14.  光が照射された肌の内部からの出射光の情報を取得する情報取得部、及び
     前記内部からの出射光のうち所定波長の光の情報を利用して、前記肌の所定深さにおける状態を評価する評価部を有する、肌評価装置。
    A skin evaluation device comprising: an information acquisition unit that acquires information on light emitted from inside skin irradiated with light; and an evaluation unit that evaluates a condition of the skin at a predetermined depth using information on light of a predetermined wavelength among the light emitted from the inside.
  15.  コンピュータを
     光が照射された肌の内部からの出射光の情報を取得する情報取得部、及び
     前記内部からの出射光のうち所定波長の光の情報を利用して、前記肌の所定深さにおける状態を評価する評価部として機能させるためのプログラム。
    A program for causing a computer to function as an information acquisition unit that acquires information on light emitted from inside the skin irradiated with light, and an evaluation unit that evaluates the condition of the skin at a predetermined depth using information on light of a predetermined wavelength among the light emitted from the inside.
PCT/JP2023/033654 2022-09-30 2023-09-15 Skin evaluation method, skin evaluation device, and program WO2024070753A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022158733 2022-09-30
JP2022-158733 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024070753A1 true WO2024070753A1 (en) 2024-04-04

Family

ID=90477466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033654 WO2024070753A1 (en) 2022-09-30 2023-09-15 Skin evaluation method, skin evaluation device, and program

Country Status (1)

Country Link
WO (1) WO2024070753A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040111031A1 (en) * 1999-07-22 2004-06-10 Alfano Robert R. Spectral polarizing tomographic dermatoscope
JP2016112024A (en) * 2013-08-08 2016-06-23 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Method for controlling information processing device and image processing method
JP2018089369A (en) * 2016-12-01 2018-06-14 パナソニックIpマネジメント株式会社 Biological information detecting device
US20190350513A1 (en) * 2016-12-30 2019-11-21 Barco Nv System and method for 3d reconstruction
WO2021083923A1 (en) * 2019-11-01 2021-05-06 Koninklijke Philips N.V. Evaluating skin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040111031A1 (en) * 1999-07-22 2004-06-10 Alfano Robert R. Spectral polarizing tomographic dermatoscope
JP2016112024A (en) * 2013-08-08 2016-06-23 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Method for controlling information processing device and image processing method
JP2018089369A (en) * 2016-12-01 2018-06-14 パナソニックIpマネジメント株式会社 Biological information detecting device
US20190350513A1 (en) * 2016-12-30 2019-11-21 Barco Nv System and method for 3d reconstruction
WO2021083923A1 (en) * 2019-11-01 2021-05-06 Koninklijke Philips N.V. Evaluating skin

Similar Documents

Publication Publication Date Title
Linming et al. Comparison of two skin imaging analysis instruments: The VISIA® from Canfield vs the ANTERA 3D® CS from Miravex
US8260010B2 (en) Systems and methods for analyzing skin conditions of people using digital images
Claridge et al. From colour to tissue histology: physics-based interpretation of images of pigmented skin lesions
US9986913B2 (en) Method and system for analyzing physical conditions using digital images
US9619883B2 (en) Systems and methods for evaluating hyperspectral imaging data using a two layer media model of human tissue
JP3877959B2 (en) Skin color measuring device and skin image processing device
US11751769B2 (en) Systems and methods for assessing diabetic circulatory complications
RU2657377C2 (en) Intellectual head for smartphone for determination of cleanliness, moisture and photo-age of skin
US20080080755A1 (en) Apparatus and Method for Measuring Photodamage to Skin
US9480424B2 (en) Systems and methods for measuring tissue oxygenation
US8861863B2 (en) Method and system for analyzing lip conditions using digital images
US11166652B2 (en) Method and apparatus for assessing tissue vascular health
JP6755831B2 (en) How to evaluate skin condition
US10470694B2 (en) Systems and methods for measuring tissue oxygenation
Phan et al. Quantifying the confounding effect of pigmentation on measured skin tissue optical properties: a comparison of colorimetry with spatial frequency domain imaging
Attia et al. Clinical noninvasive imaging and spectroscopic tools for dermatological applications: Review of recent progress
WO2024070753A1 (en) Skin evaluation method, skin evaluation device, and program
US20230255544A1 (en) Method and electronic device for determining skin information using hyper spectral reconstruction
Saknite et al. Hyperspectral imaging to accurately segment skin erythema and hyperpigmentation in cutaneous chronic graft‐versus‐host disease
Seroul et al. Model-based skin pigment cartography by high-resolution hyperspectral imaging
EP3351162A1 (en) A computer implemented method, a system and computer program products to characterize a skin lesion
Kikuchi et al. Age‐related changes in surface reflection, diffuse reflection, and subsurface scattering light of facial skin: luminance value measured by the system for the optical properties of facial skin
Nilsson Tissue viability imaging for assessment of skin erythema and blanching
Claridge et al. Spectrophotometric intracutaneous imaging (SIAscopy): method and clinical applications
Jung et al. Generation of skin tone and pigmented region‐modified images using a pigment discrimination model trained with an optical approach

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871985

Country of ref document: EP

Kind code of ref document: A1