WO2024070672A1 - Resist composition and method for forming resist pattern - Google Patents

Resist composition and method for forming resist pattern Download PDF

Info

Publication number
WO2024070672A1
WO2024070672A1 PCT/JP2023/033241 JP2023033241W WO2024070672A1 WO 2024070672 A1 WO2024070672 A1 WO 2024070672A1 JP 2023033241 W JP2023033241 W JP 2023033241W WO 2024070672 A1 WO2024070672 A1 WO 2024070672A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
group
formula
resist
resist composition
Prior art date
Application number
PCT/JP2023/033241
Other languages
French (fr)
Japanese (ja)
Inventor
誠 藤村
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Publication of WO2024070672A1 publication Critical patent/WO2024070672A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • C08L33/16Homopolymers or copolymers of esters containing halogen atoms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • the present invention relates to a resist composition and a method for forming a resist pattern.
  • resist compositions containing polymers and solvents have been used to form fine patterns by irradiation with ionizing radiation such as electron beams and extreme ultraviolet (EUV) rays, or non-ionizing radiation including short-wavelength light such as ultraviolet rays.
  • ionizing radiation such as electron beams and extreme ultraviolet (EUV) rays
  • non-ionizing radiation including short-wavelength light such as ultraviolet rays.
  • resist compositions are required to have a wide tolerance for the amount of exposure in the exposure process, in other words, a wide exposure margin.
  • resist patterns formed using the resist compositions are required to suppress the occurrence of top loss, that is, the height of a line pattern consisting of a portion not exposed in the exposure process (unexposed portion) being significantly reduced after the development process.
  • resist residues residues
  • the conventional resist compositions described above have room for further improvement in terms of achieving all of the following: an increase in exposure margin, suppression of the occurrence of top loss, and reduction in the amount of resist residue.
  • the present invention aims to provide a resist composition and a method for forming a resist pattern that can effectively achieve all of the following: expanding the exposure margin, suppressing the occurrence of top loss, and reducing the amount of resist residue.
  • the present inventors conducted extensive research with the aim of solving the above problems. As a result, they discovered that the above problems could be solved by blending a crosslinking agent that reacts with ionizing radiation or non-ionizing radiation with a wavelength of 300 nm or less and two specific types of polymers into a resist composition, and thus completed the present invention.
  • an object of the present invention is to advantageously solve the above-mentioned problems, and the present invention provides: [1] a resist composition comprising a crosslinking agent that reacts with ionizing radiation or non-ionizing radiation having a wavelength of 300 nm or less, a solvent, a polymer A, and a polymer B, wherein the surface free energy of the polymer A is greater than the surface free energy of the polymer B, and the difference between the surface free energy of the polymer A and the surface free energy of the polymer B is 3 mJ/ m2 or more.
  • the above resist composition can effectively achieve all of the following: an increase in exposure margin, suppression of the occurrence of top loss, and a reduction in the amount of resist residue.
  • the "surface free energy" can be measured by the method described in the examples of this specification.
  • the resist composition according to the above [1]
  • the content of the polymer A in the resist composition is A (parts by mass)
  • the content of the polymer is B (parts by mass)
  • the content of the crosslinking agent is C (parts by mass)
  • the resist composition satisfies the following relational formula (x): A ⁇ (B + C) ... (x) It is preferable that the following conditions are satisfied: (In formula (x), B>0 and C>0.)
  • a resist composition that satisfies the above relational expression (x) can further reduce the amount of resist residue in the resist pattern.
  • At least one of the polymer A and the polymer B is preferably a main chain cleavage type. If at least one of the polymer A and the polymer B is of the main chain cleavage type, a better effect of expanding the exposure margin, an effect of suppressing the occurrence of top loss, and an effect of reducing the amount of resist residue can be obtained.
  • the polymer A is represented by the following formula (II):
  • L is a divalent linking group having a fluorine atom
  • Ar is an aromatic ring group which may have a substituent
  • R5 is a halogen atom, a cyano group, an alkylsulfonyl group, an alkoxy group, a nitro group, an acyl group, an alkyl ester group or a halogenated alkyl group
  • R6 and R7 are a hydrogen atom, a halogen atom, an unsubstituted alkyl group or an alkyl group substituted with a halogen atom, and may be the same or different from each other.
  • the polymer B is represented by the following formula (IV): [In formula (IV), R 13 is a halogen atom, a cyano group, an alkylsulfonyl group, an alkoxy group, a nitro group, an acyl group, an alkyl ester group, or a halogenated alkyl group, R 14 is an organic group having hydrogen atoms or 0 to 20 fluorine atoms, and R 15 and R 16 are hydrogen atoms, halogen atoms, unsubstituted alkyl groups, or alkyl groups substituted with halogen atoms, and may be the same or different from each other.] and the following formula (V): [In formula (V), R 17 , R 20 , and R 21 are hydrogen atoms, halogen atoms, unsubstituted alkyl groups, or alkyl groups substituted with halogen atoms, and may be the same or different from each other.] and the following formula (V): [In
  • the polymer B is a copolymer B having the monomer unit (IV) and the monomer unit (V)
  • a better effect of expanding the exposure margin, an effect of suppressing the occurrence of top loss, and an effect of reducing the amount of resist residue can be obtained.
  • the crosslinking agent has an unsaturated bond. If a crosslinking agent has an unsaturated bond, it is possible to obtain a better effect of expanding the exposure margin, suppressing the occurrence of top loss, and reducing the amount of resist residue.
  • the crosslinking agent has from 1 to 10 unsaturated bonds. If the crosslinking agent has 1 or more and 10 or less unsaturated bonds, it is possible to obtain a better effect of expanding the exposure margin, a better effect of suppressing the occurrence of top loss, and a better effect of reducing the amount of resist residue.
  • the unsaturated bond contained in the crosslinking agent is preferably an unsaturated bond contained in a vinyl group, a (meth)acrylate group, or an allyl group. If the crosslinking agent has a functional group containing the specific unsaturated bond, it is possible to obtain a better effect of expanding the exposure margin, a better effect of suppressing the occurrence of top loss, and a better effect of reducing the amount of resist residue.
  • the crosslinking agent is preferably contained in an amount of 1 part by mass or more and 50 parts by mass or less relative to a total of 100 parts by mass of the polymer A and the polymer B. If the resist composition contains a crosslinking agent within the above range, it is possible to obtain an even better effect of expanding the exposure margin, suppressing the occurrence of top loss, and reducing the amount of resist residue.
  • the present invention also relates to [11] a method for forming a resist pattern, comprising: a resist film forming step of coating a substrate with a resist composition comprising a crosslinking agent that reacts with ionizing radiation or non-ionizing radiation having a wavelength of 300 nm or less, a solvent, a polymer A, and a polymer B to obtain a coating layer, and removing the solvent from the coating layer to form a resist film; and an exposure step of exposing the resist film formed in the resist film forming step to ionizing radiation or non-ionizing radiation having a wavelength of 300 nm or less as exposure light, thereby forming a latent image pattern while progressing a crosslinking reaction by the crosslinking agent.
  • the exposure margin in the exposure step is wider, and in the obtained resist pattern, the occurrence of top loss is suppressed and the amount of resist residue can be reduced.
  • the method for forming a resist pattern according to [11] above further comprises a developing step of developing the exposed resist film, and the developing is preferably carried out using an alcohol. If the method further includes a step of developing the resist film with alcohol, the amount of resist residue can be further reduced.
  • the present invention provides a resist composition and a method for forming a resist pattern that can form a resist pattern with a wide exposure margin, suppressed top loss, and reduced amounts of resist residue.
  • the resist composition and method for forming a resist pattern of the present invention are not particularly limited and can be suitably used, for example, when forming a resist pattern in the manufacturing process of a printed circuit board such as a build-up board, a semiconductor, a photomask, a mold, etc.
  • the resist composition of the present invention can be suitably used in the method for forming a resist pattern of the present invention.
  • the resist composition of the present invention can be suitably used as a positive resist composition.
  • the resist composition of the present invention contains a crosslinking agent that reacts with ionizing radiation or non-ionizing radiation having a wavelength of 300 nm or less, a polymer A, a polymer B, and a solvent, and further contains known additives that can be blended into the resist composition.
  • the surface free energy of the polymer A is greater than the surface free energy of the polymer B, and the difference between the surface free energy of the polymer A and the surface free energy of the polymer B is 3 mJ/ m2 or more. According to such a resist composition, the exposure margin of the formed resist film is wide, and the occurrence of top loss is suppressed in the obtained resist pattern, and the amount of resist residue is reduced. The reason why these effects are obtained is not clear, but it is presumed to be as follows.
  • polymer B which has a smaller surface free energy, can be favorably unevenly distributed on the surface of the resist film.
  • a crosslinking agent having a property that can proceed with a crosslinking reaction triggered by ionizing radiation or non-ionizing radiation with a wavelength of 300 nm or less, i.e., radiation that can be used as exposure light in the exposure step, does not crosslink before the exposure step, but starts the crosslinking reaction by being given a trigger, i.e., exposure light, in the exposure step.
  • the formation of a latent image pattern proceeds by irradiating the resist film with exposure light. Specifically, when forming a latent image pattern, a difference in solubility in a solvent of the polymer constituting the resist film is formed between the exposed and non-exposed parts of the resist film. That is, as a result of the formation of a latent image pattern, a portion of the polymer that is relatively poorly soluble in a solvent (hereinafter, “poorly soluble portion A”) and a portion of the polymer that is relatively easily soluble in a solvent (hereinafter, “easy-to-dissolve portion B”) are generated.
  • poorly soluble portion A a portion of the polymer that is relatively poorly soluble in a solvent
  • easy-to-dissolve portion B a portion of the polymer that is relatively easily soluble in a solvent
  • the portion with a relatively small amount of exposure in the exposure step i.e., the boundary portion between the exposed and non-exposed parts of the resist film
  • the resist film contains the above-mentioned predetermined crosslinking agent in addition to the polymer
  • the poor solubility of the poorly soluble portion A can be increased by the reaction between the crosslinking agents themselves and the reaction between the crosslinking agent and the polymer constituting the poorly soluble portion A. This effectively promotes the formation of a difference in solubility between the poorly soluble portion A and the soluble portion B, even when the amount of exposure in the exposure step is relatively small.
  • the synergistic effect of the favorable uneven distribution of the polymer on the surface of the resist film and the favorable promotion of the formation of a difference in solubility between the poorly soluble portion A and the easily soluble portion B by the crosslinking agent can effectively achieve all of the following: an increase in exposure margin, suppression of the occurrence of top loss, and reduction in the amount of resist residue.
  • the difference between the surface free energy of polymer A and the surface free energy of polymer B (i.e., "surface free energy of polymer A” - “surface free energy of polymer B”) must be 3 mJ / m 2 or more as described above, preferably 4 mJ / m 2 or more, more preferably 5.5 mJ / m 2 or more, even more preferably 6 mJ / m 2 or more, particularly preferably 6.5 mJ / m 2 or more, preferably 12 mJ / m 2 or less, more preferably 11 mJ / m 2 or less, and even more preferably 10 mJ / m 2 or less. If the difference between the surface free energy of polymer A and the surface free energy of polymer B is within the above range, the occurrence of top loss can be further suppressed, and the amount of resist residue can be further reduced.
  • a crosslinking agent that reacts with ionizing radiation or non-ionizing radiation having a wavelength of 300 nm or less is used. More specifically, as the crosslinking agent, a crosslinking agent that can be used is one that, when a film made of the crosslinking agent is irradiated with a predetermined radiation to be crosslinked and then immersed for 1 minute in a solvent capable of dissolving the crosslinking agent, reduces the film thickness by less than 50% based on the film thickness before immersion.
  • the crosslinking agent has the property of not proceeding with a crosslinking reaction during a drying process (which usually involves heating) for removing the solvent when forming a resist film.
  • the number of unsaturated bonds contained in the molecular structure of the crosslinking agent is preferably 1 or more, more preferably 2 or more, and is preferably 10 or less, and more preferably 8 or less.
  • the unsaturated bond possessed by the crosslinking agent is an unsaturated bond contained in a vinyl group, a (meth)acrylate group, or an allyl group.
  • a crosslinking agent having a functional group containing such a specific unsaturated bond it is possible to obtain an even better effect of expanding the exposure margin, an effect of suppressing the occurrence of top loss, and an effect of reducing the amount of resist residue.
  • the crosslinking agent may have only one of a vinyl group, a (meth)acrylate group, and an allyl group, or may have a plurality of groups.
  • the number of these functional groups that the crosslinking agent may contain is preferably 1 or more, more preferably 2 or more, and is preferably 10 or less, and more preferably 8 or less.
  • Cross-linking agents that can be used include, but are not limited to, compounds having a vinyl group, compounds having an allyl group, acrylate compounds, methacrylate compounds, and isocyanurate compounds.
  • the above-mentioned compounds having a vinyl group and compounds having an allyl group include, for example, alkene compounds such as ethylene, propene, 1-butene, 2-butene, iso-butene, 1-pentene, 1-hexene, and 1-octene; cyano group-containing unsaturated hydrocarbon compounds such as acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, and ⁇ -cyanoethylacrylonitrile; monovinyl ether compounds such as vinyl ethyl ether, vinyl butyl ether, vinyl phenyl ether, vinyl 2-chloroethyl ether, 3,4-dihydro-2H-pyran, 2,3-dihydrofuran, 1,4-dioxene, ethylene glycol monovinyl ether, diethylene glycol monovinyl ether, and isopropenyl methyl ether; divinyl ether, ethylene glycol divinyl ether
  • divinyl ether compounds having an aliphatic skeleton such as propylene glycol divinyl ether, dipropylene glycol divinyl ether, tripropylene glycol divinyl ether, polypropylene glycol divinyl ether, butanediol divinyl ether, neopentyl glycol divinyl ether, hexanediol divinyl ether, nonanediol divinyl ether, trimethylolpropane divinyl ether, ethylene oxide-added trimethylolpropane divinyl ether, pentaerythritol divinyl ether, and ethylene oxide-added pentaerythritol divinyl ether; trivinyl ether compounds having an aliphatic skeleton such as trimethylolpropane trivinyl ether and ethylene oxide-added trimethylolpropane trivinyl ether; pentaerythritol tetra
  • polyfunctional vinyl ether compounds having an aliphatic skeleton such as tetravinyl ether compounds having an aliphatic skeleton such as dipentaerythritol hexavinyl ether; polyfunctional vinyl ether compounds having an alicyclic skeleton such as 1,4-cyclohexanediol divinyl ether and 1,4-cyclohexanedimethanol divinyl ether; polyfunctional vinyl ether compounds having an aromatic skeleton such as hydroquinone divinyl ether; vinyl ester compounds such as vinyl acetate, vinyl butyrate, isopropenyl acetate, vinyl caprate, and vinyl benzoate; unsaturated alcohols such as allyl alcohol and cinnamic alcohol; conjugated diene compounds such as 1,3-butadiene, isoprene, 1,3-pentadiene, 1,3-hexadiene, 1,3-cyclohexadiene, 1,3-cycloheptadiene, 1,
  • acrylate compound examples include monofunctional acrylate compounds, difunctional acrylate compounds, and trifunctional or higher polyfunctional acrylate compounds.
  • Examples of monofunctional acrylate compounds include alkyl acrylates such as acrylic acid, methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, tert-butyl acrylate, n-pentyl acrylate, isopentyl acrylate, tert-pentyl acrylate, neopentyl acrylate, hexyl acrylate, octyl acrylate, dodecyl acrylate, and stearyl acrylate, benzyl acrylate, and alkoxy acrylate.
  • alkyl acrylates such as acrylic acid, methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, tert-butyl
  • butylphenol (butylphenol, octylphenol, nonylphenol, dodecylphenol, etc.), acrylates of ethylene oxide adducts, isobornyl acrylate, cyclohexyl acrylate, tricyclodecane monomethylol acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 3-hydroxypropyl acrylate, 2-hydroxybutyl acrylate, 4-hydroxybutyl acrylate, hydroxypentyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate , 2-hydroxy-3-butoxypropyl acrylate, 2-hydroxy-3-methoxypropyl acrylate, diethylene glycol monoacrylate, diethylene glycol monoethyl ether acrylate, triethylene glycol monoacrylate, triethylene glycol monoethyl ether acrylate, tetraethylene glycol monoacrylate, tetraethylene glycol monoethyl ether acrylate, polyethylene
  • Bifunctional acrylate compounds include ethylene glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol diacrylate, propylene glycol diacrylate, dipropylene glycol diacrylate, tripropylene glycol diacrylate, polypropylene glycol diacrylate, butylene glycol diacrylate, pentyl glycol diacrylate, neopentyl glycol diacrylate, hydroxypivalyl hydroxypivalate diacrylate, hydroxypivalyl hydroxypivalate dicaprolactonate diacrylate, 1,6-hexanediol diacrylate, 1,2-hexanedi diacrylate, 1,5-hexanediol diacrylate, 2,5-hexanediol diacrylate, 1,7-heptanediol diacrylate, 1,8-octanediol diacrylate, 1,2-octanedi
  • polyfunctional acrylate compounds include glycerin triacrylate, trimethylolpropane triacrylate, ethoxylated trimethylolpropane triacrylate, trimethylolpropane tricaprolactonate triacrylate, trimethylolethane triacrylate, trimethylolhexane triacrylate, trimethyloloctane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, pentaerythritol tetracaprolactonate tetraacrylate, diglycerin tetraacrylate, and ditrimethylolpropane tetraacrylate.
  • acrylate ditrimethylolpropane tetracaprolactonate tetraacrylate, ditrimethylolethane tetraacrylate, ditrimethylolbutane tetraacrylate, ditrimethylolhexane tetraacrylate, ditrimethyloloctane tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, tripentaerythritol hexaacrylate, tripentaerythritol heptaacrylate, tripentaerythritol octaacrylate, and tripentaerythritol polyalkylene oxide heptaacrylate.
  • Other examples include polyfunctional acrylate compounds such as urethane acrylate and polyester acrylate.
  • Methacrylate compounds include, for example, monofunctional methacrylate compounds, difunctional methacrylate compounds, and trifunctional or higher polyfunctional methacrylate compounds.
  • Examples of monofunctional methacrylate compounds include methacrylic acid, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, tert-butyl methacrylate, n-pentyl methacrylate, isopentyl methacrylate, tert-pentyl methacrylate, neopentyl methacrylate, hexyl methacrylate, octyl methacrylate, dodecyl methacrylate, stearyl methacrylate and other alkyl methacrylates, benzyl methacrylate, and alkylphenols.
  • Bifunctional methacrylate compounds include ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, propylene glycol dimethacrylate, dipropylene glycol dimethacrylate, tripropylene glycol dimethacrylate, polypropylene glycol dimethacrylate, butylene glycol dimethacrylate, pentyl glycol dimethacrylate, neopentyl glycol dimethacrylate, hydroxypivalyl hydroxypivalate dimethacrylate, hydroxypivalyl hydroxypivalate dicaprolactonate dimethacrylate, 1,6-hexanediol dimethacrylate, 1,2-hexanediol dimethacrylate, acrylate, 1,5-hexanediol dimethacrylate, 2,5-hexanediol dimeth
  • Multifunctional methacrylate compounds include glycerin trimethacrylate, trimethylolpropane trimethacrylate, ethoxylated trimethylolpropane trimethacrylate, trimethylolpropane tricaprolactonate trimethacrylate, trimethylolethane trimethacrylate, trimethylolhexane trimethacrylate, trimethyloloctane trimethacrylate, pentaerythritol trimethacrylate, pentaerythritol tetramethacrylate, pentaerythritol tetracaprolactonate tetramethacrylate, diglycerin tetramethacrylate, ditrimethylolpropane tetramethacrylate, acrylate, ditrimethylolpropane tetracaprolactonate tetramethacrylate, ditrimethylolethane tetramethacrylate, ditrimethylolbutane
  • examples of isocyanurate compounds that can be used as crosslinking agents include polyfunctional (meth)acryloyl group-containing isocyanurates such as tri(acryloyloxyethyl)isocyanurate, tri(methacryloyloxyethyl)isocyanurate, alkylene oxide-added tri(acryloyloxyethyl)isocyanurate, and alkylene oxide-added tri(methacryloyloxyethyl)isocyanurate; and polyfunctional allyl group-containing isocyanurates such as triallyl isocyanurate.
  • polyfunctional (meth)acryloyl group-containing isocyanurates such as tri(acryloyloxyethyl)isocyanurate, tri(methacryloyloxyethyl)isocyanurate, alkylene oxide-added tri(acryloyloxyethyl)isocyanurate
  • polyfunctional allyl group-containing isocyanurates such
  • crosslinking agents that can be suitably used herein include the following: polyethylene glycol diacrylate (manufactured by Toagosei Co., Ltd., product name: "Aronix (registered trademark) M-240”), trimethylolpropane PO-modified triacrylate (manufactured by Toagosei Co., Ltd., product name: "Aronix (registered trademark) M-321”), ethoxylated trimethylolpropane triacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., product name: "NK Ester A-TMPT-3EO”), trimethylolpropane triacrylate (manufactured by Toagosei Co., Ltd., product name: "Aronix (registered trademark) M-309”), triethylene glycol divinyl
  • isocyanuric acid modified ethylene oxide diacrylate and isocyanuric acid modified ethylene oxide triacrylate include aryl ether
  • the content of the crosslinking agent is preferably 1 mass part or more, more preferably 2 mass parts or more, even more preferably 3 mass parts or more, particularly preferably 4 mass parts or more, preferably 50 mass parts or less, more preferably 35 mass parts or less, even more preferably 30 mass parts or less, particularly preferably 20 mass parts or less, relative to 100 mass parts of the total of polymer A and polymer B described below. If the content of the crosslinking agent is within the above range, a better effect of expanding the exposure margin, an effect of suppressing the occurrence of top loss, and an effect of reducing the amount of resist residue can be obtained. Furthermore, if the content of the crosslinking agent is within the above range, the obtained resist pattern can have a higher resolution.
  • the content of the crosslinking agent can be further optimized according to the functionality of the crosslinking agent.
  • the content of the crosslinking agent is preferably 5 parts by mass or more and 50 parts by mass or less, with the total of the polymer A and the polymer B being 100 parts by mass.
  • the content of the crosslinking agent is preferably 4 parts by mass or more and 40 parts by mass or less, with respect to the total of the polymer A and the polymer B being 100 parts by mass.
  • the content of the crosslinking agent is preferably 3 parts by mass or more and 30 parts by mass or less, with respect to the total of the polymer A and the polymer B being 100 parts by mass. If the content of the crosslinking agent with a predetermined functionality is within the above range, a better effect of expanding the exposure margin, an effect of suppressing the occurrence of top loss, and an effect of reducing the amount of resist residue can be obtained. Furthermore, if the content of the crosslinking agent with a predetermined functionality is within the above range, the obtained resist pattern can be made high-resolution.
  • the polymer A contained in the resist composition of the present invention is not particularly limited as long as the surface free energy is 3 mJ / m 2 or more higher than the surface energy of the polymer B. From the viewpoint of obtaining a good exposure margin expansion effect, a top loss occurrence suppression effect, and an effect of reducing the amount of resist residue, it is preferable that the polymer A is a main chain scission type polymer.
  • the term "main chain scission type" refers to a polymer in which the main chain is scissed and the molecular weight is reduced by irradiation of exposure light such as ionizing radiation such as an electron beam or non-ionizing radiation with a wavelength of 300 nm or less.
  • Such a polymer is not particularly limited, and for example, those described in JP-B-8-3636, JP-A-2020-134683, WO 2019/150966, and WO 2020/066806 can be used.
  • the polymer A is preferably a compound represented by the following formula (I):
  • R 1 is a halogen atom, a cyano group, an alkylsulfonyl group, an alkoxy group, a nitro group, an acyl group, an alkyl ester group, or a halogenated alkyl group
  • R 2 is an organic group having hydrogen atoms or 0 to 20 fluorine atoms
  • R 3 and R 4 are hydrogen atoms, halogen atoms, unsubstituted alkyl groups, or alkyl groups substituted with halogen atoms, and may be the same or different from each other.
  • the monomer unit (I) is represented by the following formula (a): (In the formula (a), R 1 to R 4 are the same as those in the formula (I)).
  • halogen atoms which may constitute R 1 , R 3 and R 4 in formula (I) and formula (a) include a chlorine atom, a fluorine atom, a bromine atom and an iodine atom.
  • alkylsulfonyl group which may constitute R 1 in formula (I) and formula (a) include a methylsulfonyl group, an ethylsulfonyl group, and the like.
  • alkoxy group which may constitute R 1 in formula (I) and formula (a) include a methoxy group, an ethoxy group, and a propoxy group.
  • Examples of the acyl group which may constitute R 1 in formula (I) and formula (a) include a formyl group, an acetyl group, and a propionyl group.
  • alkyl ester group which may constitute R 1 in formula (I) and formula (a) include a methyl ester group, an ethyl ester group, and the like.
  • halogenated alkyl groups which may constitute R 1 in formula (I) and formula (a) include halogenated methyl groups having 1 to 3 halogen atoms.
  • the organic group having 0 to 20 fluorine atoms that can constitute R2 in formula (I) and formula (a) may have an aromatic ring or may be chain-like.
  • chain-like includes straight chain and branched chain.
  • organic groups include fluoroalkyl groups, fluoroalkoxyalkyl groups, and fluoroalkoxyalkenyl groups such as fluoroethoxyvinyl groups.
  • Examples of the unsubstituted alkyl group which can constitute R 3 and R 4 in formula (I) and formula (a) include unsubstituted alkyl groups having 1 to 10 carbon atoms.
  • alkyl group substituted with a halogen atom which may constitute R3 and R4 in formula (I) and formula (a) include groups having a structure in which some or all of the hydrogen atoms in an alkyl group are substituted with the above-mentioned halogen atoms.
  • the monomer (a) is not particularly limited, and examples thereof include ⁇ -chloroacrylic acid fluoroesters such as 2,2,2-trifluoroethyl ⁇ -chloroacrylate, 2,2,3,3,3-pentafluoropropyl ⁇ -chloroacrylate, 3,3,4,4,4-pentafluorobutyl ⁇ -chloroacrylate, 1H-1-(trifluoromethyl)trifluoroethyl ⁇ -chloroacrylate, 1H,1H,3H-hexafluorobutyl ⁇ -chloroacrylate, 1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl ⁇ -chloroacrylate, and 2,2,3,3,4,4,4-heptafluorobutyl ⁇ -chloroacrylate.
  • ⁇ -chloroacrylic acid fluoroesters such as 2,2,2-trifluoroethyl ⁇ -chloroacrylate, 2,2,3,
  • alkyl esters ⁇ -chloroacrylic acid fluoroalkoxyalkyl esters such as ⁇ -chloroacrylic acid pentafluoroethoxymethyl ester and ⁇ -chloroacrylic acid pentafluoroethoxyethyl ester; ⁇ -chloroacrylic acid fluoroalkoxyalkenyl esters such as ⁇ -chloroacrylic acid pentafluoroethoxyvinyl ester; ⁇ -chloroacrylic acid-1-phenyl-1-trifluoromethyl-2,2,2-trifluoroethyl, ⁇ -chloroacrylic acid-1-phenyl-2,2,2-trifluoroethyl, ⁇ -chloroacrylic acid-1-phenyl-2,2,3,3,3-pentafluoropropyl, etc.
  • polymer A When polymer A has monomer unit (I), polymer A may have any monomer unit other than monomer unit (I).
  • the polymer A is a compound represented by the following formula (II):
  • L is a divalent linking group having a fluorine atom
  • Ar is an aromatic ring group which may have a substituent
  • R5 is a halogen atom, a cyano group, an alkylsulfonyl group, an alkoxy group, a nitro group, an acyl group, an alkyl ester group or a halogenated alkyl group
  • R6 and R7 are a hydrogen atom, a halogen atom, an unsubstituted alkyl group or an alkyl group substituted with a halogen atom, and may be the same or different from each other.
  • copolymer A may have any monomer unit other than monomer unit (II) and monomer unit (III), but the total proportion of monomer unit (II) and monomer unit (III) in all monomer units constituting copolymer A is preferably 90 mol% or more, and more preferably 100 mol% (i.e., copolymer A has only monomer unit (II) and monomer unit (III)).
  • the above-mentioned copolymer A may be, for example, a random copolymer, a block copolymer, an alternating copolymer, or the like, so long as it has the monomer unit (II) and the monomer unit (III), but is preferably an alternating copolymer.
  • an alternating copolymer is, for example, a copolymer in which the above-mentioned monomer unit (II) and monomer unit (III) are alternately bonded.
  • the individual monomer units are bonded as "(II)-(III)-(II)-(III)-".
  • copolymer A contains monomer units (II) and (III), when it is irradiated with exposure light, the main chain is cut and the molecular weight is reduced.
  • the monomer unit (II) is represented by the following formula (b): In the formula (b), L, Ar, and R 5 to R 7 are the same as those in the formula (II).
  • divalent linking groups having fluorine atoms that may constitute L in formula (II) and formula (b) include divalent chain alkyl groups having 1 to 5 carbon atoms and having fluorine atoms.
  • the aromatic ring group which may have a substituent and which may constitute Ar in formula (II) and formula (b) includes an aromatic hydrocarbon ring group which may have a substituent, and an aromatic heterocyclic group which may have a substituent.
  • Aromatic hydrocarbon ring groups include, but are not limited to, a benzene ring group, a biphenyl ring group, a naphthalene ring group, an azulene ring group, an anthracene ring group, a phenanthrene ring group, a pyrene ring group, a chrysene ring group, a naphthacene ring group, a triphenylene ring group, an o-terphenyl ring group, an m-terphenyl ring group, a p-terphenyl ring group, an acenaphthene ring group, a coronene ring group, a fluorene ring group, a fluoranthene ring group, a pentacene ring group, a perylene ring group, a pentaphene ring group, a picene ring group, a pyranthrene ring group,
  • Aromatic heterocyclic groups include, but are not limited to, a furan ring group, a thiophene ring group, a pyridine ring group, a pyridazine ring group, a pyrimidine ring group, a pyrazine ring group, a triazine ring group, an oxadiazole ring group, a triazole ring group, an imidazole ring group, a pyrazole ring group, a thiazole ring group, an indole ring group, a benzimidazole ring group, a benzothiazole ring group, a benzoxazole ring group, a quinoxaline ring group, a quinazoline ring group, a phthalazine ring group, a benzofuran ring group, a dibenzofuran ring group, a benzothiophene ring group, a dibenzothiophene ring group
  • the substituents that Ar may have include, but are not limited to, alkyl groups, fluorine atoms, and fluoroalkyl groups.
  • alkyl groups that Ar may have as substituents include linear alkyl groups having 1 to 6 carbon atoms, such as methyl groups, ethyl groups, propyl groups, n-butyl groups, and isobutyl groups.
  • fluoroalkyl groups that Ar may have as substituents include fluoroalkyl groups having 1 to 5 carbon atoms, such as trifluoromethyl groups, trifluoroethyl groups, and pentafluoropropyl groups.
  • Ar in formula (II) and formula (b) is preferably an aromatic hydrocarbon ring group which may have a substituent, more preferably an unsubstituted aromatic hydrocarbon ring group, and even more preferably a benzene ring group (phenyl group).
  • halogen atoms which may constitute R5 in formula (II) and formula (b) include the same atoms as the halogen atoms which may constitute R1 in formula (I) and formula (a).
  • Alkylsulfonyl groups which may constitute R5 in formula (II) and formula (b) include the same groups as the alkylsulfonyl groups which may constitute R1 in formula (I) and formula (a).
  • Alkoxy groups which may constitute R5 in formula (II) and formula (b) include the same groups as the alkoxy groups which may constitute R1 in formula (I) and formula (a).
  • acyl groups which may constitute R5 in formulae (II) and (b) include the same acyl groups as those which may constitute R1 in formulae (I) and (a).
  • Alkyl ester groups which may constitute R5 in formula (II) and formula (b) include the same groups as the alkyl ester groups which may constitute R1 in formula (I) and formula (a).
  • halogenated alkyl groups which may constitute R5 in formula (II) and formula (b) include the same groups as the halogenated alkyl groups which may constitute R1 in formula (I) and formula (a).
  • halogen atoms which may constitute R 6 and R 7 in formulae (II) and (b) include the same atoms as the halogen atoms which may constitute R 1 in formulae (I) and (a).
  • the unsubstituted alkyl groups which may constitute R6 and R7 in formula (II) and formula (b) include the same groups as the unsubstituted alkyl groups which may constitute R3 and R4 in formula (I) and formula (a).
  • alkyl groups substituted with halogen atoms which may constitute R6 and R7 in formula (II) and formula (b) include the same groups as the alkyl groups substituted with halogen atoms which may constitute R3 and R4 in formula (I) and formula (a).
  • the monomer (b) represented by formula (b) is preferably ⁇ -chloroacrylic acid-1-phenyl-1-trifluoromethyl-2,2,2-trifluoroethyl (ACAFPh) and ⁇ -chloroacrylic acid-1-(4-methoxyphenyl)-1-trifluoromethyl-2,2,2-trifluoroethyl (ACAFPhOMe), and more preferably ⁇ -chloroacrylic acid-1-phenyl-1-trifluoromethyl-2,2,2-trifluoroethyl.
  • ACAFPh ⁇ -chloroacrylic acid-1-phenyl-1-trifluoromethyl-2,2,2-trifluoroethyl
  • ACAFPhOMe ⁇ -chloroacrylic acid-1-(4-methoxyphenyl)-1-trifluoromethyl-2,2,2-trifluoroethyl
  • the copolymer A it is preferable for the copolymer A to have at least one of ⁇ -chloroacrylic acid-1-phenyl-1-trifluoromethyl-2,2,2-trifluoroethyl units and ⁇ -chloroacrylic acid-1-(4-methoxyphenyl)-1-trifluoromethyl-2,2,2-trifluoroethyl units, and more preferably ⁇ -chloroacrylic acid-1-phenyl-1-trifluoromethyl-2,2,2-trifluoroethyl units.
  • the proportion of monomer units (II) in copolymer A is not particularly limited, and can be, for example, 30 mol % or more and 70 mol % or less, assuming that the total monomer units in copolymer A are 100 mol %.
  • the monomer unit (III) is represented by the following formula (c): In the formula (c), R 8 to R 12 , p and q are the same as those in the formula (III).
  • halogen atoms that may constitute R 8 , R 11 and R 12 in formula (III) and formula (c) include the same atoms as the halogen atoms that may constitute R 1 in formula (I) and formula (a).
  • alkyl group that can constitute the unsubstituted alkyl group that can constitute R8 , R11 , and R12 in formula (III) and formula (c) include the same groups as the unsubstituted alkyl groups that can constitute R3 and R4 in formula (I) and formula (a).
  • the unsubstituted alkyl group that can constitute R8 is preferably a methyl group or an ethyl group.
  • alkyl group substituted with a halogen atom which may constitute R8 , R11 , and R12 in formula (III) and formula (c) include the same groups as the alkyl group substituted with a halogen atom which may constitute R3 and R4 in formula (I) and formula (a).
  • halogen atoms that may constitute R9 in formula (III) and formula (c) include the same atoms as the halogen atoms that may constitute R1 in formula (I) and formula (a). Among them, the halogen atom is preferably a fluorine atom.
  • Examples of the unsubstituted alkyl group that may constitute R9 in formula (III) and formula (c) include the same groups as the unsubstituted alkyl groups that may constitute R3 and R4 in formula (I) and formula (a).
  • alkyl group substituted with a halogen atom which may constitute R9 in formula (III) and formula (c) examples include the same groups as the alkyl groups substituted with a halogen atom which may constitute R3 and R4 in formula (I) and formula (a).
  • Examples of the unsubstituted alkyl group which may constitute R10 in formula (III) and formula (c) include the same groups as the unsubstituted alkyl groups which may constitute R3 and R4 in formula (I) and formula (a).
  • alkyl group substituted with a halogen atom which may constitute R10 in formula (III) and formula (c) examples include the same groups as the alkyl groups substituted with a halogen atom which may constitute R3 and R4 in formula (I) and formula (a).
  • each R 9 may be the same as or different from each other.
  • each R 10 may be the same as or different from each other.
  • R 8 in formula (III) and formula (c) is preferably an alkyl group having 1 to 5 carbon atoms, and more preferably a methyl group.
  • p in formula (III) and formula (c) is 0 or 1.
  • R 9 in formula (III) and formula (c) is preferably an alkyl group having 1 to 5 carbon atoms, and more preferably a methyl group.
  • the monomer (c) represented by formula (c) is not particularly limited, and examples thereof include ⁇ -methylstyrene (AMS) and its derivatives, such as the following monomers (c-1) to (c-12).
  • AMS ⁇ -methylstyrene
  • copolymer A preferably has ⁇ -methylstyrene units.
  • the proportion of monomer units (I) in copolymer A is not particularly limited, and can be 30 mol % or more and 70 mol % or less, assuming that the total monomer units in copolymer A are 100 mol %.
  • the surface free energy of polymer A is preferably 28 mJ/ m2 or more, more preferably 29 mJ/ m2 or more, and even more preferably 30 mJ/ m2 or more, and is preferably 35 mJ/ m2 or less, more preferably 34 mJ/ m2 or less, and even more preferably 33 mJ/ m2 or less.
  • the surface free energy of the polymer A can be adjusted by the types and ratio of the monomer units constituting the polymer A.
  • the weight average molecular weight (Mw) of the polymer A is preferably 100,000 or more, more preferably 125,000 or more, preferably 150,000 or more, more preferably 600,000 or less, and more preferably 500,000 or less. If the weight average molecular weight of the polymer A is the above lower limit or more, the occurrence of top loss can be further suppressed, and a resist pattern with further improved contrast can be formed. In addition, if the weight average molecular weight of the polymer A is the above upper limit or less, the resist composition can be easily prepared.
  • the number average molecular weight (Mn) of the polymer A is preferably 100,000 or more, more preferably 110,000 or more, and is preferably 300,000 or less, and more preferably 200,000 or less. If the number average molecular weight of the polymer A is equal to or more than the lower limit, the occurrence of top loss can be further suppressed, and a resist pattern with further improved contrast can be formed. If the number average molecular weight of the polymer A is equal to or less than the upper limit, the resist composition can be more easily prepared.
  • the molecular weight distribution of polymer A is preferably 1.20 or more, more preferably 1.25 or more, and even more preferably 1.30 or more, and is preferably 2.00 or less, more preferably 1.80 or less, and even more preferably 1.60 or less.
  • the "molecular weight distribution” can be determined by calculating the ratio of the weight average molecular weight to the number average molecular weight (Mw/Mn).
  • the "weight average molecular weight” and the "number average molecular weight” can be measured using gel permeation chromatography in terms of standard polystyrene.
  • Method for preparing polymer A There is no particular limitation on the method for preparing the polymer A.
  • a method for preparing the copolymer A having the above-mentioned monomer unit (II) and monomer unit (III) as the polymer A will be specifically described, but the polymer A used in the resist composition of the present invention and the method for preparing the same are not limited to those shown below.
  • the copolymer A having the monomer unit (II) and the monomer unit (III) can be prepared by polymerizing a monomer composition containing the above-mentioned monomer (b), monomer (c), and any monomer copolymerizable with these monomers, and then recovering the obtained copolymer A and optionally purifying it.
  • the weight average molecular weight, number average molecular weight and molecular weight distribution of the copolymer A can be adjusted by changing the polymerization conditions and purification conditions. Specifically, for example, the weight average molecular weight and number average molecular weight can be increased by shortening the polymerization time. Furthermore, the molecular weight distribution can be narrowed by performing purification.
  • the monomer composition used in the preparation of copolymer A may be a mixture of monomer components including monomer (b) and monomer (c), an optional polymerization initiator, and an optional additive.
  • the polymerization of the monomer composition may be carried out using a known method. Among them, it is preferable to use cyclopentanone, water, or the like as the solvent. It is also preferable to use, for example, azobisisobutyronitrile, or the like as the polymerization initiator.
  • the polymer obtained by polymerizing the monomer composition can be recovered by adding a good solvent such as tetrahydrofuran to a solution containing the polymer, without any particular limitations, and then dripping the solution with the good solvent into a poor solvent such as methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, or hexane to solidify the polymer.
  • a good solvent such as tetrahydrofuran
  • a poor solvent such as methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, or hexane
  • the purification method used for purifying the obtained polymer is not particularly limited, and examples thereof include known purification methods such as reprecipitation and column chromatography. Among them, the reprecipitation method is preferably used as the purification method. The purification of the polymer may be repeated several times.
  • the purification of the polymer by the reprecipitation method is preferably carried out, for example, by dissolving the obtained polymer in a good solvent such as tetrahydrofuran, and then dripping the obtained solution into a mixed solvent of a good solvent such as tetrahydrofuran and a poor solvent such as methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, hexane, etc., to precipitate a part of the polymer.
  • a good solvent such as tetrahydrofuran
  • a poor solvent such as methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, hexane, etc.
  • the molecular weight distribution, number average molecular weight, and weight average molecular weight of the obtained copolymer A can be easily adjusted by changing the type and mixing ratio of the good solvent and poor solvent.
  • the molecular weight of the copolymer A precipitated in the mixed solvent can be increased by increasing the proportion of the good solvent in the mixed solvent.
  • the polymer precipitated in a mixed solvent of a good solvent and a poor solvent may be used as copolymer A as long as it satisfies the desired properties, or the polymer that did not precipitate in the mixed solvent (i.e., the polymer that is dissolved in the mixed solvent) may be used.
  • the polymer that did not precipitate in the mixed solvent can be recovered from the mixed solvent using a known method such as concentration to dryness.
  • Polymer B there are no particular limitations on polymer B contained in the resist composition of the present invention, so long as its surface free energy is at least 3 mJ/ m2 lower than the surface free energy of polymer A. From the viewpoint of obtaining a favorable effect of expanding the exposure margin, an effect of suppressing the occurrence of top loss, and an effect of reducing the amount of resist residue, polymer B is preferably a main chain cleavage type polymer.
  • the polymer B is preferably a polymer represented by the following formula (I):
  • R 1 is a halogen atom, a cyano group, an alkylsulfonyl group, an alkoxy group, a nitro group, an acyl group, an alkyl ester group, or a halogenated alkyl group
  • R 2 is an organic group having hydrogen atoms or 0 to 20 fluorine atoms
  • R 3 and R 4 are hydrogen atoms, halogen atoms, unsubstituted alkyl groups, or alkyl groups substituted with halogen atoms, and may be the same or different from each other.
  • polymer B when polymer B has monomer unit (I), polymer B may have any monomer unit other than monomer unit (I).
  • the polymer B is a polymer represented by the following formula (IV):
  • R 13 is a halogen atom, a cyano group, an alkylsulfonyl group, an alkoxy group, a nitro group, an acyl group, an alkyl ester group, or a halogenated alkyl group
  • R 14 is an organic group having hydrogen atoms or 0 to 20 fluorine atoms
  • R 15 and R 16 are hydrogen atoms, halogen atoms, unsubstituted alkyl groups, or alkyl groups substituted with halogen atoms, and may be the same or different from each other.
  • R 17 , R 20 , and R 21 are hydrogen atoms, halogen atoms, unsubstituted
  • copolymer B may have any monomer unit other than monomer unit (IV) and monomer unit (V), but the proportion of monomer unit (IV) and monomer unit (V) in the total monomer units constituting copolymer B is preferably 70 mol% or more, and more preferably 100 mol% (i.e., copolymer B has only monomer unit (IV) and monomer unit (V)).
  • An example of an arbitrary monomer unit other than monomer unit (IV) and monomer unit (V) that copolymer B may have is the above-mentioned monomer unit (II).
  • the copolymer B may be, for example, a random copolymer, a block copolymer, an alternating copolymer, or a ternary alternating copolymer, as long as it has the monomer unit (IV) and the monomer unit (V), but is preferably an alternating copolymer or a ternary alternating copolymer.
  • a ternary alternating copolymer is, for example, an alternating copolymer having the above-mentioned monomer unit (II) in addition to the monomer unit (IV) and the monomer unit (V), in which the monomer unit (IV) or the monomer unit (V) is copolymerized between the monomer units (II).
  • the individual monomer units are bonded as "-(II)-(IV)-(V)-(IV)-(II)".
  • copolymer B contains monomer units (IV) and (V), when it is irradiated with exposure light, the main chain is cut and the molecular weight is reduced.
  • the monomer unit (IV) has the following formula (d): In the formula (d), R 13 to R 16 are the same as R 13 to R 16 in the formula (IV).
  • examples of halogen atoms that can constitute R 13 in formula (IV) and formula (d) include the same atoms as those that can constitute R 1 in formula (I) and formula (a).
  • the halogen atom that can constitute R 13 is preferably a chlorine atom.
  • alkylsulfonyl group which may constitute R 13 in formula (IV) and formula (d) include the same groups as the alkylsulfonyl groups which may constitute R 1 in formula (I) and formula (a).
  • alkoxy groups which may constitute R 13 in formulae (IV) and (d) include the same alkoxy groups as those which may constitute R 1 in formulae (I) and (a).
  • acyl groups which may constitute R 13 in formulae (IV) and (d) include the same acyl groups as those which may constitute R 1 in formulae (I) and (a).
  • alkyl ester groups which may constitute R 13 in formula (IV) and formula (d) include the same alkyl ester groups as may constitute R 1 in formula (I) and formula (a).
  • halogenated alkyl groups which may constitute R 13 in formula (IV) and formula (d) include the same groups as the halogenated alkyl groups which may constitute R 1 in formula (I) and formula (a).
  • the organic group having 0 to 20 fluorine atoms that can constitute R 14 in formula (IV) and formula (d) can be exemplified by the same groups as the organic group having 0 to 20 fluorine atoms that can constitute R 2 in formula (I) and formula (a), but preferably does not have an aromatic ring, and more preferably is chain-like.
  • the carbon number of R 14 is preferably 2 to 10, more preferably 5 or less. If the carbon number of R 14 is the above lower limit or more, the solubility in the developer can be sufficiently improved. In addition, if the carbon number of R 14 is the above upper limit or less, the clarity of the resist pattern can be sufficiently guaranteed.
  • R 14 in formula (IV) and formula (d) is preferably a fluoroalkyl group, a fluoroalkoxyalkyl group, or a fluoroalkoxyalkenyl group, and more preferably a fluoroalkyl group.
  • R 14 is the above-mentioned group, the scission property of the main chain of polymer B when irradiated with ionizing radiation or the like can be sufficiently improved.
  • fluoroalkyl group examples include a 2,2,3,3,3-pentafluoropropyl group (having 5 fluorine atoms and 3 carbon atoms), a 3,3,4,4,4-pentafluorobutyl group (having 5 fluorine atoms and 4 carbon atoms), a 1H-1-(trifluoromethyl)trifluoroethyl group (having 6 fluorine atoms and 3 carbon atoms), a 1H,1H,3H-hexafluorobutyl group (having 6 fluorine atoms and 4 carbon atoms), a 2,2,3,3,4,4,4-heptafluorobutyl group (having 7 fluorine atoms and 4 carbon atoms), and a 1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl group (having 7 fluorine atoms and 3 carbon atoms).
  • a 2,2,3,3,3-pentafluoropropyl group (having 5 fluorine atoms and 3 carbon atoms) or a 2,2,3,3,4,4,4-heptafluorobutyl group (having 7 fluorine atoms and 4 carbon atoms) is preferred, and a 2,2,3,3,3-pentafluoropropyl group (having 5 fluorine atoms and 3 carbon atoms) is more preferred.
  • the fluoroalkoxyalkyl group include a fluoroethoxymethyl group and a fluoroethoxyethyl group.
  • examples of the fluoroalkoxyalkenyl group include a fluoroethoxyvinyl group.
  • halogen atoms which may constitute R 15 and R 16 in formulae (IV) and (d) include the same atoms as the halogen atoms which may constitute R 1 in formulae (I) and (a).
  • Examples of the unsubstituted alkyl groups which may constitute R 15 and R 16 in formula (IV) and formula (d) include the same groups as the unsubstituted alkyl groups which may constitute R 3 and R 4 in formula (I) and formula (a).
  • alkyl group substituted with a halogen atom which may constitute R 15 and R 16 in formula (IV) and formula (d) include the same groups as the alkyl group substituted with a halogen atom which may constitute R 3 and R 4 in formula (I) and formula (a).
  • Examples of the monomer (d) include ⁇ -chloroacrylic acid fluoroalkyl esters such as ⁇ -chloroacrylic acid 2,2,3,3,3-pentafluoropropyl, ⁇ -chloroacrylic acid 3,3,4,4,4-pentafluorobutyl, ⁇ -chloroacrylic acid 1H-1-(trifluoromethyl)trifluoroethyl, ⁇ -chloroacrylic acid 1H,1H,3H-hexafluorobutyl, ⁇ -chloroacrylic acid 1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl, and ⁇ -chloroacrylic acid 2,2,3,3,4,4,4-heptafluorobutyl; ⁇ -chloroacrylic acid fluoroalkoxyalkyl esters such as ⁇ -chloroacrylic acid pentafluoroethoxymethyl ester and ⁇ -chloroacrylic acid pentafluor
  • ⁇ -chloroacrylic acid fluoroalkyl esters are preferred from the viewpoint of improving sensitivity to ionizing radiation, etc.
  • the proportion of monomer units (IV) in copolymer B is not particularly limited, and can be, for example, 30 mol % or more and 70 mol % or less, assuming that the total monomer units in copolymer B are 100 mol %.
  • the monomer unit (V) has the following formula (e): In the formula (e), R 17 to R 21 , r and s are the same as those in the formula (V).
  • halogen atoms which may constitute R 17 , R 20 and R 21 in formula (V) and formula (e) include the same atoms as the halogen atoms which may constitute R 1 in formula (I) and formula (a).
  • Examples of the unsubstituted alkyl group which may constitute R17 , R20 , and R21 in formula (V) and formula (e) include the same groups as the unsubstituted alkyl groups which may constitute R3 and R4 in formula (I) and formula (a). Among them, the unsubstituted alkyl group which may constitute R17 in formula (V) and formula (e) is preferably a methyl group or an ethyl group.
  • Examples of the alkyl group substituted with a halogen atom which may constitute R 17 , R 20 , and R 21 in formula (V) and formula (e) include the same groups as the alkyl group substituted with a halogen atom which may constitute R 3 and R 4 in formula (I) and formula (a).
  • halogen atoms which may constitute R 18 in formula (V) and formula (e) include the same atoms as the halogen atoms which may constitute R 1 in formula (I) and formula (a).
  • halogenated carboxyl groups which may constitute R 18 in formula (V) and formula (e) include the same groups as the halogenated carboxyl groups which may constitute R 9 in formula (III) and formula (c).
  • Examples of the unsubstituted alkyl group which may constitute R18 in formula (V) and formula (e) include the same groups as the unsubstituted alkyl groups which may constitute R3 and R4 in formula (I) and formula (a).
  • alkyl group substituted with a halogen atom which may constitute R18 in formula (V) and formula (e) include the same groups as the alkyl groups substituted with a halogen atom which may constitute R3 and R4 in formula (I) and formula (a).
  • Examples of the unsubstituted alkyl group which may constitute R19 in formula (V) and formula (e) include the same groups as the unsubstituted alkyl groups which may constitute R3 and R4 in formula (I) and formula (a).
  • alkyl group substituted with a halogen atom which may constitute R19 in formula (V) and formula (e) include the same groups as the alkyl groups substituted with a halogen atom which may constitute R3 and R4 in formula (I) and formula (a).
  • each R 18 when r is 2 or more, each R 18 may be the same as or different from each other. When s is 2 or more, each R 19 may be the same as or different from each other.
  • R 18 and/or R 19 are all preferably a hydrogen atom or an unsubstituted alkyl group, more preferably a hydrogen atom or an unsubstituted alkyl group having 1 to 5 carbon atoms, and further preferably a hydrogen atom.
  • the monomer (e) represented by formula (e) is not particularly limited, and examples thereof include the following monomers (e-1) to (e-11) such as ⁇ -methylstyrene (AMS) and its derivatives (e.g., 4-fluoro- ⁇ -methylstyrene: 4FAMS).
  • AMS ⁇ -methylstyrene
  • 4FAMS 4-fluoro- ⁇ -methylstyrene
  • polymer B preferably has ⁇ -methylstyrene units or 4-fluoro- ⁇ -methylstyrene units.
  • the proportion of monomer units (V) in copolymer B is not particularly limited, and can be, for example, 30 mol% to 70 mol% or less, assuming that the total monomer units in copolymer B are 100 mol%.
  • the surface free energy of polymer B is preferably 18 mJ/ m2 or more, more preferably 19 mJ/m2 or more , and even more preferably 20 mJ/m2 or more , and is preferably 27 mJ/ m2 or less, more preferably 26 mJ/ m2 or less, and even more preferably 25 mJ/ m2 or less.
  • the surface free energy of the polymer B can be adjusted by the types and ratio of the monomer units constituting the polymer B.
  • the weight average molecular weight (Mw) of the polymer B is preferably 10000 or more, more preferably 17000 or more, even more preferably 25000 or more, and preferably 250000 or less, more preferably 180000 or less, and even more preferably 50000 or less. If the weight average molecular weight of the copolymer B is the above lower limit or more, it is possible to suppress the solubility of the resist film in the developer from excessively increasing at a low irradiation dose. In addition, if the weight average molecular weight of the polymer B is the above upper limit or less, it is possible to easily prepare a resist composition.
  • the number average molecular weight (Mn) of polymer B is preferably 7000 or more, more preferably 10000 or more, and preferably 150000 or less.
  • Mn number average molecular weight
  • the number average molecular weight of polymer B is the above lower limit or more, it is possible to further suppress excessive increase in the solubility of the resist film in the developer at a low irradiation dose.
  • the number average molecular weight of polymer B is the above upper limit or less, it is possible to more easily prepare the resist composition.
  • the molecular weight distribution (Mw/Mn) of polymer B is preferably 1.10 or more, more preferably 1.20 or more, and preferably 1.70 or less, and more preferably 1.65 or less.
  • Mw/Mn molecular weight distribution
  • polymer B can be easily prepared.
  • the molecular weight distribution of polymer B is the above upper limit or less, the contrast of the obtained resist pattern can be further increased.
  • the content of polymer B in the resist composition is preferably 1% by mass or more, more preferably 5% by mass or more, even more preferably 10% by mass or more, and preferably 49% by mass or less, more preferably 40% by mass or less, and even more preferably 30% by mass or less, when the total of polymer A and polymer B contained in the resist composition is taken as 100% by mass. If the content of polymer B in the resist composition is the above lower limit or more, the sensitivity to ionizing radiation and the like can be improved. Furthermore, if the content of polymer B in the resist composition is the above upper limit or less, the effect of reducing the amount of resist residue is further enhanced.
  • Method for preparing polymer B There is no particular limitation on the method for preparing the polymer B.
  • a method for preparing the copolymer B having the above-mentioned monomer unit (IV) and monomer unit (V) as the polymer B will be specifically described, but the polymer B used in the resist composition of the present invention and the method for preparing the same are not limited to those shown below.
  • the copolymer B having the monomer unit (IV) and the monomer unit (V) can be prepared by polymerizing a monomer composition containing the above-mentioned monomer (d), monomer (e), and any monomer copolymerizable with these monomers, and then recovering the resulting copolymer and optionally purifying it.
  • the polymerization method and purification method are not particularly limited, and can be the same as the method described in the above section "Method of preparing polymer A.”
  • the solvent used in the resist composition of the present invention is not particularly limited as long as it is a solvent capable of dissolving the above-mentioned polymer A and polymer B, and any known solvent can be used. Among them, from the viewpoint of improving the coatability of the resist composition, it is preferable to use anisole, propylene glycol monomethyl ether acetate (PGMEA), cyclopentanone, cyclohexanone, or isoamyl acetate as the solvent.
  • the solvent may be used alone or in combination of two or more kinds.
  • the resist composition of the present invention may further contain any known additives that can be blended into resist compositions.
  • the amount of additives blended is not particularly limited, and an appropriate amount can be added depending on the application.
  • the resist composition can be prepared by mixing the above-mentioned predetermined crosslinking agent, polymer A, polymer B, a solvent, and additives that can be added optionally.
  • the mixing method is not particularly limited, and the components may be mixed by a known method.
  • the resist composition may also be prepared by mixing each component and then filtering the mixture.
  • the method of filtering the mixture is not particularly limited, and for example, the mixture can be filtered using a filter.
  • the filter is not particularly limited, and examples thereof include fluorocarbon, cellulose, nylon, polyester, and hydrocarbon filtration membranes.
  • the material constituting the filter is preferably polyfluorocarbon such as polyethylene, polypropylene, polytetrafluoroethylene, Teflon (registered trademark), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), nylon, and a composite membrane of polyethylene and nylon.
  • polyfluorocarbon such as polyethylene, polypropylene, polytetrafluoroethylene, Teflon (registered trademark), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), nylon, and a composite membrane of polyethylene and nylon.
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • nylon a composite membrane of polyethylene and nylon.
  • the filter disclosed in U.S. Pat. No. 6,103,122 may be used.
  • the filter may be commercially available as Zeta Plus (registered trademark) 40Q manufactured by CUNO Incorporated.
  • the filter may contain a strong cationic or weak cationic ion exchange resin.
  • the average particle size of the ion exchange resin is not particularly limited, but is preferably 2 ⁇ m or more and 10 ⁇ m or less.
  • the cation exchange resin include sulfonated phenol-formaldehyde condensates, sulfonated phenol-benzaldehyde condensates, sulfonated styrene-divinylbenzene copolymers, sulfonated methacrylic acid-divinylbenzene copolymers, and other types of sulfonic acid or carboxylic acid group-containing polymers.
  • the cation exchange resin is provided with H + counterions, NH 4 + counterions, or alkali metal counterions, such as K + and Na + counterions.
  • the cation exchange resin preferably has a hydrogen counterion.
  • Examples of such cation exchange resins include Microlite® PrCH from Purolite, which is a sulfonated styrene-divinylbenzene copolymer having an H + counterion.
  • Such cation exchange resins are commercially available as AMBERLYST® from Rohm and Haas.
  • the pore size of the filter is preferably 0.001 ⁇ m or more and 1 ⁇ m or less. If the pore size of the filter is within the above range, it is possible to sufficiently prevent impurities such as metals from being mixed into the resist composition.
  • the method for forming a resist pattern of the present invention includes a resist film forming step of coating a substrate with a resist composition containing a crosslinking agent that reacts with ionizing radiation or nonionizing radiation having a wavelength of 300 nm or less, a solvent, a polymer A, and a polymer B to obtain a coating layer, and removing the solvent from the coating layer to form a resist film, and an exposure step of exposing the resist film formed in the resist film forming step to ionizing radiation or nonionizing radiation having a wavelength of 300 nm or less as exposure light to form a latent image pattern while promoting a crosslinking reaction by the crosslinking agent.
  • the method for forming a resist pattern of the present invention may further include a step of developing the latent image pattern obtained in the exposure step (developing step), a step of heating the resist film between the exposure step and the development step (post-exposure bake step), and/or a step of washing and removing the developer after the development step (rinsing step).
  • developing step a step of developing the latent image pattern obtained in the exposure step
  • post-exposure bake step a step of heating the resist film between the exposure step and the development step
  • rinse and removing the developer after the development step resisting step
  • the resist film forming process includes a step (coating step) of applying a specific resist composition onto a workpiece, such as a substrate, to be processed using the resist pattern to obtain a coating layer, and then a step (drying step) of removing the solvent from the obtained coating layer to form a resist film.
  • the workpiece to which the predetermined resist composition is applied in the coating step is not particularly limited, and examples of the workpiece include a semiconductor substrate used in the manufacture of semiconductor devices, a substrate having an insulating layer and a copper foil provided on the insulating layer, and a mask blank having a light-shielding layer formed on a substrate, which are used in the manufacture of printed circuit boards, etc.
  • the method for applying the resist composition is not particularly limited, and any known method can be used.
  • the predetermined resist composition to be applied onto the workpiece the above-mentioned resist composition of the present invention can be suitably used.
  • the method for removing the solvent from the coating layer is not particularly limited, and any drying method commonly used in forming a resist film can be used. However, it is preferable to form a resist film by heating (pre-baking) the resist composition.
  • the temperature at which the coating layer is dried is preferably 100° C. or higher, more preferably 110° C. or higher, from the viewpoint of adhesion between the resist film formed through the drying process and the workpiece, and is preferably 250° C. or lower, more preferably 200° C. or lower, from the viewpoint of reducing the thermal influence on the workpiece and the resist film.
  • the time at which the coating layer is dried is preferably more than 10 seconds, more preferably 30 seconds or higher, and even more preferably 1 minute or higher, from the viewpoint of sufficiently improving the adhesion between the resist film formed by carrying out the drying process in a lower temperature range and the workpiece, and is preferably 60 minutes or lower, more preferably 30 minutes or lower, from the viewpoint of reducing the change in the molecular weight of the polymer A and the polymer B in the resist film before and after the drying process.
  • Exposure process In the exposure step, a desired pattern is drawn by irradiating predetermined locations of the resist film formed in the resist film formation step with exposure light, which is ionizing radiation or non-ionizing radiation with a wavelength of 300 nm or less. Irradiation with exposure light creates poorly soluble parts A and easily soluble parts B in the resist film to form a latent image pattern. In addition, in the exposure step, a latent image pattern is formed while a crosslinking reaction by a crosslinking agent is allowed to proceed.
  • exposure light which is ionizing radiation or non-ionizing radiation with a wavelength of 300 nm or less. Irradiation with exposure light creates poorly soluble parts A and easily soluble parts B in the resist film to form a latent image pattern.
  • a latent image pattern is formed while a crosslinking reaction by a crosslinking agent is allowed to proceed.
  • the crosslinking reaction and the main chain scission reaction of the polymer A and/or the polymer B proceed in parallel. In this case, it is more advantageous in terms of expanding the exposure margin.
  • ionizing radiation is radiation that has enough energy to ionize atoms or molecules.
  • non-ionizing radiation is radiation that does not have enough energy to ionize atoms or molecules.
  • ionizing radiation examples include electron beams, extreme ultraviolet rays, gamma rays, X-rays, alpha rays, heavy particle beams, proton beams, beta rays, and ion beams.
  • electron beams or extreme ultraviolet rays are preferred as ionizing radiation, and electron beams are more preferred.
  • the wavelength of extreme ultraviolet rays is not particularly limited and can be, for example, 1 nm or more and 30 nm or less, and is preferably 13.5 nm.
  • Non-ionizing radiation with a wavelength of 300 nm or less includes, for example, far ultraviolet rays excluding extreme ultraviolet rays (wavelength: 40 nm or more and 200 nm or less), near ultraviolet rays (wavelength: more than 200 nm and 300 nm or less).
  • far ultraviolet rays excluding extreme ultraviolet rays (wavelength: 40 nm or more and 200 nm or less)
  • near ultraviolet rays wavelength: more than 200 nm and 300 nm or less.
  • KrF excimer laser rays wavelength: 248 nm
  • ArF excimer laser rays wavelength: 193 nm
  • the amount of irradiation in the exposure step is not particularly limited, but is usually 10 mJ/cm 2 or more and 3000 mJ/cm 2 or less, and when an electron beam (EB) is used, it is usually 0.1 ⁇ C/cm 2 or more and 1000 ⁇ C/cm 2 or less.
  • a known exposure device such as an electron beam drawing device or a laser drawing device can be used.
  • a post-exposure bake step of heating the resist film after the exposure step can be optionally carried out.
  • the heating temperature is not particularly limited, but from the viewpoint of sufficiently suppressing the occurrence of unevenness in the resist pattern, it is preferably 80° C. or higher, and more preferably 100° C. or higher, and from the viewpoint of suppressing the generation of gas due to decomposition of the resist film by heat, it is preferably 160° C. or lower, and more preferably 140° C. or lower.
  • the time for which the resist film is heated in the post-exposure bake step is not particularly limited, but from the viewpoint of sufficiently suppressing the occurrence of unevenness in the resist pattern, it is preferably 30 seconds or more, and more preferably 1 minute or more, and from the viewpoint of production efficiency, it is preferably 20 minutes or less, and more preferably 10 minutes or less.
  • the method for heating the resist film in the post-exposure bake step is not particularly limited, and examples include a method of heating the resist film on a hot plate, a method of heating the resist film in an oven, and a method of blowing hot air onto the resist film.
  • the latent image pattern of the resist film that has been subjected to the exposure step or post-exposure bake step is developed to form a developed film on the workpiece.
  • the development of the resist film can be carried out, for example, by contacting the resist film with a developer.
  • the method of contacting the resist film with the developer is not particularly limited, and known methods such as immersing the resist film in the developer or applying the developer to the resist film can be used.
  • the developer can be appropriately selected depending on the properties of the above-mentioned polymer A and polymer B.
  • the developer it is preferable to select a developer that does not dissolve the resist film before the exposure step is performed, but can dissolve the easily soluble portion B of the resist film that has been subjected to the exposure step or the post-exposure bake step.
  • the developer is not particularly limited, and examples thereof include hydrofluorocarbons such as 1,1,1,2,3,4,4,5,5,5-decafluoropentane (CF 3 CFHCFHCF 2 CF 3 ), 1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluorohexane, 1,1,1,2,2,3,4,5,5,5-decafluoropentane, 1,1,1,3,3-pentafluorobutane, and 1,1,1,2,2,3,3,4,4-nonafluorohexane; 2,2-dichloro-1,1,1-trifluoroethane, 1,1-dichloro-1-fluoroethane, and 1,1-dichloro-2,2,3,3,3-pentafluoropropane
  • Fluorine-based solvents such as perfluorocarbons such as C 7 F 14 , C 7 F 16 , C 8 F 18 , and C 9 F 20 ; alcohols such as methanol, ethanol, 1-propanol, 2-propanol (isopropyl alcohol), 1-butanol, 2-butanol, 1-pentanol, 2-pentanol, and 3-pentanol; acetates having an alkyl group such as amyl acetate and hexyl acetate; mixtures of fluorine-based solvents and alcohols; mixtures of fluorine-based solvents and acetates having an alkyl group; mixtures of alcohols and acetates having an alkyl group; mixtures of fluorine-based solvents, alcohols, and acetates having an alkyl group; and the like can be used.
  • alcohols such as methanol, ethanol, 1-propanol, 2-propanol (isopropyl alcohol), 1-but
  • the developer since the contrast of the resist pattern can be further increased.
  • the developer may be used alone or in a mixture of two or more kinds at any ratio.
  • a step of removing the developer may be carried out after the development step.
  • the developer may be removed, for example, by using a rinse solution.
  • the rinse liquid is not particularly limited as long as it does not dissolve the resist pattern, and a solution containing water or a general organic solvent can be used.
  • a rinse liquid it is preferable to select a rinse liquid that is easily mixed with the developer.
  • this test piece After irradiating this test piece with 400 uC/ cm2 of a 50 keV electron beam, it was immersed in the same type of solvent as that used in preparing the crosslinking agent solution at room temperature (23°C) for 1 minute and dried. The thickness T2 of the dried test piece was measured, and if the value of T2 / T1 x 100% was 50% or more, the crosslinking agent was judged to "react with ionizing radiation or nonionizing radiation having a wavelength of 300 nm or less". The results of evaluation of the various crosslinking agents used in the examples are shown in Table 1.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) of copolymer A1 and copolymer B1 were determined in terms of standard polystyrene using a gel permeation chromatograph (HLC-8220, manufactured by Tosoh Corporation) and tetrahydrofuran as a developing solvent, and the molecular weight distribution (Mw/Mn) was calculated.
  • the surface free energy was measured using the copolymers A1, B1 and B2 prepared in Preparation Examples. Specifically, first, copolymer A1, copolymer B1, and copolymer B2 were each dissolved in isoamyl acetate as a solvent to prepare a positive resist composition with a concentration of 3% by mass. Next, using a spin coater (MS-A150, manufactured by Mikasa Co., Ltd.), the positive resist composition was applied to a silicon wafer with a diameter of 4 inches to a thickness of 50 nm. Next, the applied positive resist composition was heated on a hot plate at a temperature of 170° C. for 1 minute to form a film (resist film) on the silicon wafer.
  • MS-A150 spin coater
  • the contact angles of two types of solvents (water and diiodomethane) with known surface tension, polar term (p), and dispersion force term (d) were measured under the following conditions using a contact angle meter (Drop Master 700, manufactured by Kyowa Interface Science Co., Ltd.), and the surface free energy was evaluated by the Owens-Wendt (extended Fowkes equation) method, and the surface free energy of the film (resist film) was calculated.
  • an optical film thickness meter Libda Ace, manufactured by SCREEN Semiconductor Solutions
  • the sensitivity curve obtained (horizontal axis: common logarithm of the total dose of electron beam, vertical axis: residual film ratio of resist film (0 ⁇ remaining film ratio ⁇ 1.00)) was fitted to a quadratic function in the range of residual film ratio of 0.30 to 0.80, and a straight line (an approximation line of the slope of the sensitivity curve) connecting the point of residual film ratio 0 and the point of residual film ratio 0.50 on the obtained quadratic function (a function of residual film ratio and common logarithm of total dose) was created.
  • the total dose of electron beam E th ( ⁇ C/cm 2 ) when the residual film ratio of the obtained straight line (a function of residual film ratio and common logarithm of total dose) was 0 was determined.
  • E 0 is the logarithm of the total irradiation amount obtained when fitting the sensitivity curve to a quadratic function in the range of the residual film ratio of 0.30 to 0.80, and substituting the residual film ratio of 0 for the obtained quadratic function (a function of the residual film ratio and the common logarithm of the total irradiation amount).
  • E 1 is the logarithm of the total irradiation amount obtained when creating a straight line (an approximation line of the slope of the sensitivity curve) connecting the point of the residual film ratio of 0 and the point of the residual film ratio of 0.50 on the obtained quadratic function, and substituting the residual film ratio of 1.00 for the obtained straight line (a function of the residual film ratio and the common logarithm of the total irradiation amount).
  • the formula below represents the slope of the straight line between the residual film ratios of 0 and 1.00. The larger the ⁇ value, the larger the slope of the sensitivity curve, indicating that a pattern with high clarity can be formed well.
  • ELS-S50 electron beam lithography device
  • E op optimum exposure dose
  • the optimum exposure dose was appropriately set, with a value approximately twice that of E th as a guide.
  • the electron beam written wafer was immersed in isopropyl alcohol (IPA) as a resist developer at 23° C. for 1 minute to perform a development process. The developer was then removed by nitrogen blowing to form a line and space pattern (half pitch: 25 nm).
  • IPA isopropyl alcohol
  • the resist residue was evaluated using the positive resist compositions obtained in the examples and comparative examples. Specifically, the resist pattern formed in the evaluation of the above-mentioned ⁇ remaining film ratio> was observed at a magnification of 100,000 times using a scanning electron microscope (SEM), and the extent to which the residue remained in the resist pattern was evaluated according to the following criteria. The results are shown in Table 1. The residue remaining in the resist pattern can be confirmed in the SEM image as a high-luminance "dot" or the like compared to the line pattern area where no residue is attached. The smaller the residue in the resist pattern, the higher the contrast of the resist pattern. A: No residue was observed in the hp25 nm resist pattern. B: There is a very small amount of residue in the hp 25 nm resist pattern, but it is within the acceptable range. C: A large amount of residue was observed in the hp 25 nm resist pattern, which is outside the allowable range.
  • THF tetrahydrofuran
  • MeOH methanol
  • the obtained polymer was dissolved in 10 g of THF, and the obtained solution was dropped into 100 g of a mixed solvent of THF and MeOH (THF:MeOH (mass ratio) 34:66) to precipitate a white coagulant.
  • the obtained copolymer A1 contained 54 mol% of ⁇ -chloroacrylic acid-1-phenyl-1-trifluoromethyl-2,2,2-trifluoroethyl units and 46 mol% of ⁇ -methylstyrene units.
  • this copolymer A1 had a weight average molecular weight (Mw) of 382253, a number average molecular weight (Mn) of 259380, a molecular weight distribution (Mw/Mn) of 1.474, and a surface free energy of 31 mJ/ m2 .
  • the temperature was returned to room temperature, and the glass container was opened to the atmosphere, and then 10 g of THF was added to the obtained solution.
  • the solution to which THF was added was then dropped into 100 g of MeOH as a solvent to precipitate a polymer.
  • the solution containing the precipitated polymer was then filtered using a Kiriyama funnel to obtain a polymer.
  • the obtained polymer was dissolved in 100 g of THF, and the obtained solution was dropped into 100 g of a mixed solvent of THF and MeOH [THF:MeOH (mass ratio) 20:80] to precipitate a white coagulant.
  • the obtained copolymer B1 contained 50 mol% each of ⁇ -chloroacrylic acid 2,2,3,3,3-pentafluoropropyl units and ⁇ -methylstyrene units.
  • this copolymer B1 had a weight average molecular weight (Mw) of 49556, a number average molecular weight (Mn) of 35806, a molecular weight distribution (Mw/Mn) of 1.384, and a surface free energy of 24.2 mJ/m 2 .
  • the obtained copolymer B2 contained 10 mol% of ⁇ -chloroacrylic acid-1-phenyl-1-trifluoromethyl-2,2,2-trifluoroethyl units, 40 mol% of ⁇ -chloroacrylic acid-2,2,3,3,3-pentafluoropropyl units, and 50 mol% of ⁇ -methylstyrene units.
  • this copolymer B2 had a weight average molecular weight (Mw) of 53546, a number average molecular weight (Mn) of 30129, a molecular weight distribution (Mw/Mn) of 1.777, and a surface free energy of 26.1 mJ/m 2 .
  • Example 1 Preparation of Resist Composition>
  • the polymer A 80 parts of the copolymer A1 prepared as above, as the polymer B, 20 parts of the copolymer B1 prepared as above, 10 parts of polyethylene glycol diacrylate (manufactured by Toa Gosei Co., Ltd., product name "Anilox (registered trademark) M-240") as the crosslinking agent C1, and 5000 parts of isoamyl acetate as the solvent were mixed to obtain a mixed solution.
  • the obtained mixed solution was filtered through a membrane filter with a pore size of 20 nm to prepare a resist composition.
  • the difference in surface free energy between the polymer A and the polymer B was 3 mJ/ m2 or more.
  • Example 2 In preparing the resist composition, the mass ratio of polymer A, polymer B, and crosslinking agent in the resist composition (polymer A1:polymer B1:crosslinking agent C1) was changed to 80:20:20 (Example 2), 80:20:30 (Example 3), 90:10:20 (Example 4), 70:30:20 (Example 5), and 70:30:40 (Example 6). Otherwise, the resist composition was prepared in the same manner as in Example 1, a resist pattern was formed, and various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 7 In preparing the resist composition, trimethylolpropane PO modified triacrylate (manufactured by Toagosei Co., Ltd., product name: "Aronix (registered trademark) M-321") was used as crosslinking agent C2 instead of crosslinking agent C1.
  • the mass ratio of polymer A, polymer B, and crosslinking agent in the resist composition was changed to 80:20:10. Except for this, a resist composition was prepared in the same manner as in Example 1, a resist pattern was formed, and various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 8 In preparing the resist composition, a mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (manufactured by Toagosei Co., Ltd., product name: "Aronix (registered trademark) M-403" was used as crosslinking agent C3 instead of crosslinking agent C1.
  • the mass ratio of polymer A, polymer B, and crosslinking agent in the resist composition (polymer A:polymer B:crosslinking agent C3) was changed to 80:20:10.
  • a resist composition was prepared in the same manner as in Example 1, a resist pattern was formed, and various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 9 In preparing the resist composition, a mixture of isocyanuric acid ethylene oxide modified diacrylate and isocyanuric acid ethylene oxide modified triacrylate (manufactured by Toagosei Co., Ltd., product name: "Aronix (registered trademark) M-315") was used as crosslinking agent C4 instead of crosslinking agent C1.
  • the mass ratio of polymer A, polymer B, and crosslinking agent in the resist composition (polymer A:polymer B:crosslinking agent C4) was changed to 80:20:10.
  • a resist composition was prepared in the same manner as in Example 1, a resist pattern was formed, and various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 10 In preparing the resist composition, triallyl isocyanurate (Mitsubishi Chemical Corporation, product name: "TAIC”) was used as crosslinking agent C5 instead of crosslinking agent C1.
  • TAIC triallyl isocyanurate
  • the mass ratio of polymer A, polymer B, and crosslinking agent in the resist composition was changed to 80:20:10.
  • a resist composition was prepared in the same manner as in Example 1 except for this, a resist pattern was formed, and various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 11 In preparing the resist composition, copolymer B2 was used instead of copolymer B1 as polymer B. Except for this, a resist composition was prepared in the same manner as in Example 1, a resist pattern was formed, and various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 12 In preparing the resist composition, copolymer B2 was used instead of copolymer B1 as polymer B. Except for this, a resist composition was prepared in the same manner as in Example 10, a resist pattern was formed, and various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Comparative Example 1 In preparing the resist composition, polymer B and a crosslinking agent were not blended. Except for this, a resist composition was prepared in the same manner as in Example 1, a resist pattern was formed, and various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Comparative Example 2 In preparing the resist composition, Copolymer A and a crosslinking agent were not blended. Except for this, a resist composition was prepared in the same manner as in Example 1, a resist pattern was formed, and various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Comparative Example 3 In preparing the resist composition, copolymer A and a crosslinking agent were not blended. In addition, polymer B2 was used instead of polymer B1 as polymer B. Except for this, a resist composition was prepared in the same manner as in Example 1, a resist pattern was formed, and various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • A1 represents copolymer A1;
  • B1 indicates copolymer B1;
  • B2 indicates copolymer B2;
  • C1 represents polyethylene glycol diacrylate;
  • C2 represents trimethylolpropane PO modified triacrylate;
  • C3 represents a mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate;
  • C4 represents a mixture of isocyanuric acid ethylene oxide modified diacrylate and isocyanuric acid ethylene oxide modified triacrylate;
  • C5" represents triallyl isocyanurate;
  • PAB indicates a pre-bake step,
  • SFE(A) indicates the surface free energy of copolymer A,
  • SFE(B) indicates the surface free energy of copolymer B,
  • PEB refers to a post-exposure bake step;
  • IPA refers to isopropyl alcohol.
  • Table 1 show that in Examples 1 to 12, which used resist compositions containing a crosslinker that reacts with ionizing radiation or non-ionizing radiation with a wavelength of 300 nm or less, polymer A, and polymer B (the difference in surface free energy between polymer A and polymer B is 3 mJ/ m2 or more), the exposure margin of the resist film was wide, and the obtained resist patterns suppressed the occurrence of top loss and had a reduced amount of resist residue.
  • Comparative Example 1 in which polymer B and a crosslinking agent were not blended, and Comparative Examples 2 and 3 in which polymer A and a crosslinking agent were not blended, it was found that it was not possible to effectively achieve all of the effects of expanding the exposure margin of the resist film, suppressing the occurrence of top loss, and reducing the amount of resist residue.
  • the present invention provides a resist composition and a method for forming a resist pattern that can form a resist pattern with a wide exposure margin, suppressed top loss, and reduced amounts of resist residue.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

This resist composition contains a crosslinking agent that reacts with ionizing radiation or non-ionizing radiation having a wavelength of 300 nm or less, a solvent, a polymer A, and a polymer B, the surface free energy of the polymer A being greater than the surface energy of the polymer B, and the difference between the surface free energy of the polymer A and the surface free energy of the polymer B being 3 mJ/m2 or more.

Description

レジスト組成物及びレジストパターン形成方法Resist composition and method for forming resist pattern
 本発明は、レジスト組成物及びレジストパターン形成方法に関する。 The present invention relates to a resist composition and a method for forming a resist pattern.
 従来、半導体製造等の分野において、電子線及び極端紫外線(Extreme Ultraviolet:EUV)などの電離放射線や、紫外線などの短波長の光を含む非電離放射線の照射により微細パターンを形成するため、重合体及び溶剤を含むレジスト組成物が使用されている。 Traditionally, in fields such as semiconductor manufacturing, resist compositions containing polymers and solvents have been used to form fine patterns by irradiation with ionizing radiation such as electron beams and extreme ultraviolet (EUV) rays, or non-ionizing radiation including short-wavelength light such as ultraviolet rays.
 得られるレジストの高感度化、得られるレジストパターンの高強度化等の観点から、レジスト組成物に対して架橋剤を配合することが従来から試みられてきた(例えば、特許文献1~4参照)。 In order to increase the sensitivity of the resulting resist and to increase the strength of the resulting resist pattern, attempts have been made to incorporate a crosslinking agent into the resist composition (see, for example, Patent Documents 1 to 4).
特開昭56-019044号公報Japanese Patent Application Laid-Open No. 56-019044 特開昭56-088134号公報Japanese Patent Application Laid-Open No. 56-088134 特開2000-321791号公報JP 2000-321791 A 特開2004-279694号公報JP 2004-279694 A
 ここで近年、レジスト組成物には、露光工程における露光量の多寡に対する許容幅が広いこと、言い換えると、露光マージンが広いことが求められている。また、レジスト組成物を用いて形成されたレジストパターンは、露光工程で露光されなかった部分(未露光部分)からなるラインパターンの高さが、現像工程後に大きく減じてしまうこと、すなわちトップロスの発生が抑制されることが求められている。さらに、レジストパターンの形成に際しては、レジストパターンのスペース部分に意図せず残留する残渣(以下、「レジスト残渣」ともいう。)の発生を抑制することが求められている。
 しかしながら、上記従来のレジスト組成物は、露光マージンの拡大、トップロスの発生の抑制、及びレジスト残渣の量の低減の全てを実現するという点において、更なる改善の余地があった。
Here, in recent years, resist compositions are required to have a wide tolerance for the amount of exposure in the exposure process, in other words, a wide exposure margin. In addition, resist patterns formed using the resist compositions are required to suppress the occurrence of top loss, that is, the height of a line pattern consisting of a portion not exposed in the exposure process (unexposed portion) being significantly reduced after the development process. Furthermore, when forming a resist pattern, it is required to suppress the occurrence of residues (hereinafter also referred to as "resist residues") that are unintentionally left in the space portion of the resist pattern.
However, the conventional resist compositions described above have room for further improvement in terms of achieving all of the following: an increase in exposure margin, suppression of the occurrence of top loss, and reduction in the amount of resist residue.
 そこで、本発明は、露光マージンの拡大、トップロスの発生の抑制、及びレジスト残渣の量の低減の全てを効果的に実現し得る、レジスト組成物及びレジストパターン形成方法を提供することを目的とする。 The present invention aims to provide a resist composition and a method for forming a resist pattern that can effectively achieve all of the following: expanding the exposure margin, suppressing the occurrence of top loss, and reducing the amount of resist residue.
 本発明者は、上記課題を解決することを目的として鋭意検討を行った。その結果、レジスト組成物に、電離放射線、又は、波長300nm以下の非電離放射線により反応する架橋剤と、所定の2種類の重合体とを配合することにより、上記課題を解決できることを新たに見出し、本発明を完成させた。 The present inventors conducted extensive research with the aim of solving the above problems. As a result, they discovered that the above problems could be solved by blending a crosslinking agent that reacts with ionizing radiation or non-ionizing radiation with a wavelength of 300 nm or less and two specific types of polymers into a resist composition, and thus completed the present invention.
 すなわち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明は、[1]電離放射線、又は、波長300nm以下の非電離放射線により反応する架橋剤と、溶剤と、重合体Aと、重合体Bとを含み、前記重合体Aの表面自由エネルギーが、前記重合体Bの表面自由エネルギーよりも大きく、前記重合体Aの表面自由エネルギーと、前記重合体Bの表面自由エネルギーの差が3mJ/m2以上であるレジスト組成物である。
 上記レジスト組成物であれば、露光マージンの拡大、トップロスの発生の抑制、及びレジスト残渣の量の低減の全てを効果的に実現することができる。
 なお、本明細書において、「表面自由エネルギー」は、本明細書の実施例に記載の方法を用いて測定できる。
That is, an object of the present invention is to advantageously solve the above-mentioned problems, and the present invention provides: [1] a resist composition comprising a crosslinking agent that reacts with ionizing radiation or non-ionizing radiation having a wavelength of 300 nm or less, a solvent, a polymer A, and a polymer B, wherein the surface free energy of the polymer A is greater than the surface free energy of the polymer B, and the difference between the surface free energy of the polymer A and the surface free energy of the polymer B is 3 mJ/ m2 or more.
The above resist composition can effectively achieve all of the following: an increase in exposure margin, suppression of the occurrence of top loss, and a reduction in the amount of resist residue.
In this specification, the "surface free energy" can be measured by the method described in the examples of this specification.
 [2]上記[1]のレジスト組成物において、前記レジスト組成物中の前記重合体Aの含有量をA(質量部)、前記重合体の含有量をB(質量部)、前記架橋剤の含有量をC(質量部)としたときに、下記関係式(x):
A≧(B+C)   ・・・(x)
〔但し、式(x)中、B>0、C>0である。〕を満たすことが好ましい。
 上記関係式(x)を満たすレジスト組成物であれば、レジストパターンにおいて、レジスト残渣の量を更に低減することができる。
[2] In the resist composition according to the above [1], when the content of the polymer A in the resist composition is A (parts by mass), the content of the polymer is B (parts by mass), and the content of the crosslinking agent is C (parts by mass), the resist composition satisfies the following relational formula (x):
A ≧ (B + C) ... (x)
It is preferable that the following conditions are satisfied: (In formula (x), B>0 and C>0.)
A resist composition that satisfies the above relational expression (x) can further reduce the amount of resist residue in the resist pattern.
 [3]上記[1]又は[2]のレジスト組成物において、前記重合体A及び前記重合体Bの少なくとも一方が主鎖切断型であることが好ましい。
 重合体A及び重合体Bの少なくとも一方が主鎖切断型であれば、一層良好な露光マージン拡大効果、トップロスの発生の抑制効果、及びレジスト残渣の量の低減効果が得られる。
[3] In the resist composition according to the above [1] or [2], at least one of the polymer A and the polymer B is preferably a main chain cleavage type.
If at least one of the polymer A and the polymer B is of the main chain cleavage type, a better effect of expanding the exposure margin, an effect of suppressing the occurrence of top loss, and an effect of reducing the amount of resist residue can be obtained.
 [4]上記[1]~[3]のいずれかのレジスト組成物において、前記重合体A及び前記重合体Bの少なくとも一方が、下記式(I):
Figure JPOXMLDOC01-appb-C000006
〔式(I)中、R1は、ハロゲン原子、シアノ基、アルキルスルホニル基、アルコキシ基、ニトロ基、アシル基、アルキルエステル基又はハロゲン化アルキル基であり、R2は、水素原子又はフッ素原子の数が0以上20以下の有機基であり、R3及びR4は、水素原子、ハロゲン原子、非置換のアルキル基又はハロゲン原子で置換されたアルキル基であり、互いに同一でも異なっていてもよい。〕で表される単量体単位(I)を有することが好ましい。
 このように、レジスト組成物が、単量体単位(I)を有する重合体A、又は、単量体単位(I)を有する重合体Bの少なくとも一方を有していれば、一層良好な露光マージン拡大効果、トップロスの発生の抑制効果、及びレジスト残渣の量の低減効果が得られる。
[4] In the resist composition according to any one of the above [1] to [3], at least one of the polymer A and the polymer B is represented by the following formula (I):
Figure JPOXMLDOC01-appb-C000006
[In formula (I), R 1 is a halogen atom, a cyano group, an alkylsulfonyl group, an alkoxy group, a nitro group, an acyl group, an alkyl ester group, or a halogenated alkyl group, R 2 is an organic group having hydrogen atoms or 0 to 20 fluorine atoms, and R 3 and R 4 are hydrogen atoms, halogen atoms, unsubstituted alkyl groups, or alkyl groups substituted with halogen atoms, and may be the same or different from each other.]
In this way, when the resist composition contains at least one of the polymer A having the monomer unit (I) or the polymer B having the monomer unit (I), a more favorable effect of expanding the exposure margin, an effect of suppressing the occurrence of top loss, and an effect of reducing the amount of resist residue can be obtained.
 [5]上記[1]~[4]のいずれかのレジスト組成物において、前記重合体Aが、下記式(II):
Figure JPOXMLDOC01-appb-C000007
〔式(II)中、Lは、フッ素原子を有する2価の連結基であり、Arは、置換基を有していてもよい芳香環基であり、R5は、ハロゲン原子、シアノ基、アルキルスルホニル基、アルコキシ基、ニトロ基、アシル基、アルキルエステル基又はハロゲン化アルキル基であり、R6及びR7は、水素原子、ハロゲン原子、非置換のアルキル基又はハロゲン原子で置換されたアルキル基であり、互いに同一でも異なっていてもよい。〕で表わされる単量体単位(II)と、下記式(III):
Figure JPOXMLDOC01-appb-C000008
〔式(III)中、R8、R11、及びR12は、水素原子、ハロゲン原子、非置換のアルキル基又はハロゲン原子で置換されたアルキル基であり、互いに同一でも異なっていてもよく、R9は、水素原子、ハロゲン原子、カルボキシル基、ハロゲン化カルボキシル基、非置換のアルキル基又はハロゲン原子で置換されたアルキル基であり、R10は、水素原子、非置換のアルキル基又はハロゲン原子で置換されたアルキル基であり、p及びqは、0以上5以下の整数であり、p+q=5である。〕で表される単量体単位(III)と、を有する共重合体Aであることが好ましい。
 このように、重合体Aが、単量体単位(II)と単量体単位(III)とを有する重合体Aであれば、一層良好な露光マージン拡大効果、トップロスの発生の抑制効果、及びレジスト残渣の量の低減効果が得られる。
[5] In the resist composition according to any one of the above [1] to [4], the polymer A is represented by the following formula (II):
Figure JPOXMLDOC01-appb-C000007
[In formula (II), L is a divalent linking group having a fluorine atom, Ar is an aromatic ring group which may have a substituent, R5 is a halogen atom, a cyano group, an alkylsulfonyl group, an alkoxy group, a nitro group, an acyl group, an alkyl ester group or a halogenated alkyl group, and R6 and R7 are a hydrogen atom, a halogen atom, an unsubstituted alkyl group or an alkyl group substituted with a halogen atom, and may be the same or different from each other.] and a monomer unit (II) represented by the following formula (III):
Figure JPOXMLDOC01-appb-C000008
and a monomer unit (III) represented by the following formula (III): (wherein R 8 , R 11 , and R 12 are hydrogen atoms, halogen atoms, unsubstituted alkyl groups, or alkyl groups substituted with halogen atoms, and may be the same or different from each other; R 9 is hydrogen atoms, halogen atoms, carboxyl groups, halogenated carboxyl groups, unsubstituted alkyl groups, or alkyl groups substituted with halogen atoms; R 10 is hydrogen atoms, unsubstituted alkyl groups, or alkyl groups substituted with halogen atoms; p and q are integers of 0 to 5, and p+q=5).
In this way, when the polymer A has the monomer unit (II) and the monomer unit (III), a better effect of expanding the exposure margin, an effect of suppressing the occurrence of top loss, and an effect of reducing the amount of resist residue can be obtained.
 [6]上記[1]~[5]のいずれかのレジスト組成物において、前記重合体Bが、下記式(IV):
Figure JPOXMLDOC01-appb-C000009
〔式(IV)中、R13は、ハロゲン原子、シアノ基、アルキルスルホニル基、アルコキシ基、ニトロ基、アシル基、アルキルエステル基又はハロゲン化アルキル基であり、R14は、水素原子又はフッ素原子の数が0以上20以下の有機基であり、R15及びR16は、水素原子、ハロゲン原子、非置換のアルキル基又はハロゲン原子で置換されたアルキル基であり、互いに同一でも異なっていてもよい。〕で表される単量体単位(IV)と、下記式(V):
Figure JPOXMLDOC01-appb-C000010
〔式(V)中、R17、R20、及びR21は、水素原子、ハロゲン原子、非置換のアルキル基又はハロゲン原子で置換されたアルキル基であり、互いに同一でも異なっていてもよく、R18は、水素原子、ハロゲン原子、カルボキシル基、ハロゲン化カルボキシル基、非置換のアルキル基又はハロゲン原子で置換されたアルキル基であり、R19は、水素原子、非置換のアルキル基又はハロゲン原子で置換されたアルキル基であり、r及びsは、0以上5以下の整数であり、r+s=5である。〕で表される単量体単位(V)と、を有する共重合体Bであることが好ましい。
 このように、重合体Bが、単量体単位(IV)と単量体単位(V)とを有する共重合体Bであれば、一層良好な露光マージン拡大効果、トップロスの発生の抑制効果、及びレジスト残渣の量の低減効果が得られる。
[6] In the resist composition according to any one of the above [1] to [5], the polymer B is represented by the following formula (IV):
Figure JPOXMLDOC01-appb-C000009
[In formula (IV), R 13 is a halogen atom, a cyano group, an alkylsulfonyl group, an alkoxy group, a nitro group, an acyl group, an alkyl ester group, or a halogenated alkyl group, R 14 is an organic group having hydrogen atoms or 0 to 20 fluorine atoms, and R 15 and R 16 are hydrogen atoms, halogen atoms, unsubstituted alkyl groups, or alkyl groups substituted with halogen atoms, and may be the same or different from each other.] and the following formula (V):
Figure JPOXMLDOC01-appb-C000010
[In formula (V), R 17 , R 20 , and R 21 are hydrogen atoms, halogen atoms, unsubstituted alkyl groups, or alkyl groups substituted with halogen atoms, and may be the same or different from each other, R 18 is hydrogen atoms, halogen atoms, carboxyl groups, halogenated carboxyl groups, unsubstituted alkyl groups, or alkyl groups substituted with halogen atoms, R 19 is hydrogen atoms, unsubstituted alkyl groups, or alkyl groups substituted with halogen atoms, r and s are integers of 0 to 5, and r+s=5.], and copolymer B is preferably a copolymer having the monomer unit (V) represented by the following formula (V).
In this way, when the polymer B is a copolymer B having the monomer unit (IV) and the monomer unit (V), a better effect of expanding the exposure margin, an effect of suppressing the occurrence of top loss, and an effect of reducing the amount of resist residue can be obtained.
 [7]上記[1]~[6]のいずれかのレジスト組成物において、前記架橋剤が不飽和結合を有することが好ましい。
 不飽和結合を有する架橋剤であれば、一層良好な露光マージン拡大効果、トップロスの発生の抑制効果、及びレジスト残渣の量の低減効果が得られる。
[7] In the resist composition according to any one of the above [1] to [6], it is preferable that the crosslinking agent has an unsaturated bond.
If a crosslinking agent has an unsaturated bond, it is possible to obtain a better effect of expanding the exposure margin, suppressing the occurrence of top loss, and reducing the amount of resist residue.
 [8]上記[7]のレジスト組成物において、前記架橋剤が前記不飽和結合を1以上10以下有することが好ましい。
 不飽和結合の数が1以上10以下である架橋剤であれば、一層良好な露光マージン拡大効果、トップロスの発生の抑制効果、及びレジスト残渣の量の低減効果が得られる。
[8] In the resist composition according to the above [7], it is preferable that the crosslinking agent has from 1 to 10 unsaturated bonds.
If the crosslinking agent has 1 or more and 10 or less unsaturated bonds, it is possible to obtain a better effect of expanding the exposure margin, a better effect of suppressing the occurrence of top loss, and a better effect of reducing the amount of resist residue.
 [9]上記[7]又は[8]のレジスト組成物において、前記架橋剤が有する前記不飽和結合が、ビニル基、(メタ)アクリレート基、又はアリル基に含有される不飽和結合であることが好ましい。
 上記特定の不飽和結合を含む官能基を有する架橋剤であれば、一層良好な露光マージン拡大効果、トップロスの発生の抑制効果、及びレジスト残渣の量の低減効果が得られる。
[9] In the resist composition according to the above [7] or [8], the unsaturated bond contained in the crosslinking agent is preferably an unsaturated bond contained in a vinyl group, a (meth)acrylate group, or an allyl group.
If the crosslinking agent has a functional group containing the specific unsaturated bond, it is possible to obtain a better effect of expanding the exposure margin, a better effect of suppressing the occurrence of top loss, and a better effect of reducing the amount of resist residue.
 [10]上記[1]~[9]のいずれかのレジスト組成物において、前記重合体A及び前記重合体Bの合計100質量部に対して、前記架橋剤を1質量部以上50質量部以下の割合で含有することが好ましい。
 架橋剤を上記範囲内で含むレジスト組成物であれば、一層良好な露光マージン拡大効果、トップロスの発生の抑制効果、及びレジスト残渣の量の低減効果が得られる。
[10] In the resist composition according to any one of the above [1] to [9], the crosslinking agent is preferably contained in an amount of 1 part by mass or more and 50 parts by mass or less relative to a total of 100 parts by mass of the polymer A and the polymer B.
If the resist composition contains a crosslinking agent within the above range, it is possible to obtain an even better effect of expanding the exposure margin, suppressing the occurrence of top loss, and reducing the amount of resist residue.
 また、本発明は、[11]電離放射線、又は、波長300nm以下の非電離放射線により反応する架橋剤と、溶剤と、重合体Aと、重合体Bと、を含むレジスト組成物を基材上に塗工して塗工層を得て、前記塗工層から前記溶剤を除去してレジスト膜を形成するレジスト膜形成工程と、前記レジスト膜形成工程で形成した前記レジスト膜に対して、電離放射線、又は、波長300nm以下の非電離放射線を露光光として用いて露光して、前記架橋剤による架橋反応を進行させつつ潜像パターンを形成する露光工程と、を含む、レジストパターン形成方法である。
 露光工程において架橋剤による架橋反応及び潜像パターンの形成を並行して進行させるレジストパターン形成方法によれば、露光工程における露光マージンが一層広く、かつ、得られるレジストパターンにおいて、トップロスの発生を抑制し、レジスト残渣の量を低減することができる。
The present invention also relates to [11] a method for forming a resist pattern, comprising: a resist film forming step of coating a substrate with a resist composition comprising a crosslinking agent that reacts with ionizing radiation or non-ionizing radiation having a wavelength of 300 nm or less, a solvent, a polymer A, and a polymer B to obtain a coating layer, and removing the solvent from the coating layer to form a resist film; and an exposure step of exposing the resist film formed in the resist film forming step to ionizing radiation or non-ionizing radiation having a wavelength of 300 nm or less as exposure light, thereby forming a latent image pattern while progressing a crosslinking reaction by the crosslinking agent.
According to the method for forming a resist pattern in which the crosslinking reaction by a crosslinking agent and the formation of a latent image pattern proceed in parallel in the exposure step, the exposure margin in the exposure step is wider, and in the obtained resist pattern, the occurrence of top loss is suppressed and the amount of resist residue can be reduced.
 [12]上記[11]のレジストパターン形成方法は、露光された前記レジスト膜を現像する現像工程を更に含み、前記現像を、アルコールを用いて行うことが好ましい。
 アルコールを用いてレジスト膜を現像する工程を更に含んでいれば、レジスト残渣の量を更に低減することができる。
[12] The method for forming a resist pattern according to [11] above further comprises a developing step of developing the exposed resist film, and the developing is preferably carried out using an alcohol.
If the method further includes a step of developing the resist film with alcohol, the amount of resist residue can be further reduced.
 本発明によれば、露光マージンが広く、かつ、トップロスの発生が抑制されており、レジスト残渣の量が低減されたレジストパターンを形成することができるレジスト組成物及びレジストパターン形成方法を提供することができる。 The present invention provides a resist composition and a method for forming a resist pattern that can form a resist pattern with a wide exposure margin, suppressed top loss, and reduced amounts of resist residue.
 以下、本発明の実施形態について詳細に説明する。
 本発明のレジスト組成物及びレジストパターン形成方法は、特に限定されることなく、例えば、ビルドアップ基板などのプリント基板、半導体、フォトマスク、モールドなどの製造プロセスにおいてレジストパターンを形成する際に好適に用いることができる。なお、本発明のレジスト組成物は、本発明のレジストパターン形成方法に好適に用いることができる。そして、本発明のレジスト組成物は、ポジ型レジスト組成物として好適に用いることができる。
Hereinafter, an embodiment of the present invention will be described in detail.
The resist composition and method for forming a resist pattern of the present invention are not particularly limited and can be suitably used, for example, when forming a resist pattern in the manufacturing process of a printed circuit board such as a build-up board, a semiconductor, a photomask, a mold, etc. The resist composition of the present invention can be suitably used in the method for forming a resist pattern of the present invention. Furthermore, the resist composition of the present invention can be suitably used as a positive resist composition.
(レジスト組成物)
 本発明のレジスト組成物は、電離放射線、又は、波長300nm以下の非電離放射線により反応する架橋剤と、重合体Aと、重合体Bと、溶剤とを含み、任意に、レジスト組成物に配合され得る既知の添加剤を更に含有する。そして、本発明のレジスト組成物は、重合体Aの表面自由エネルギーが、重合体Bの表面自由エネルギーよりも大きく、重合体Aの表面自由エネルギーと、重合体Bの表面自由エネルギーの差が3mJ/m2以上である。このようなレジスト組成物によれば、形成したレジスト膜の露光マージンが広く、かつ、得られるレジストパターンにおいて、トップロスの発生が抑制され、レジスト残渣の量が低減される。これらの効果が得られる理由は明らかではないが、以下のとおりであると推察される。
(Resist Composition)
The resist composition of the present invention contains a crosslinking agent that reacts with ionizing radiation or non-ionizing radiation having a wavelength of 300 nm or less, a polymer A, a polymer B, and a solvent, and further contains known additives that can be blended into the resist composition. In the resist composition of the present invention, the surface free energy of the polymer A is greater than the surface free energy of the polymer B, and the difference between the surface free energy of the polymer A and the surface free energy of the polymer B is 3 mJ/ m2 or more. According to such a resist composition, the exposure margin of the formed resist film is wide, and the occurrence of top loss is suppressed in the obtained resist pattern, and the amount of resist residue is reduced. The reason why these effects are obtained is not clear, but it is presumed to be as follows.
 重合体Aの表面自由エネルギーが、重合体Bの表面自由エネルギーよりも大きく、重合体Aの表面自由エネルギーと、重合体Bの表面自由エネルギーBとの差が3mJ/m2以上であるレジスト組成物を用いると、表面自由エネルギーが小さい重合体Bが、レジスト膜の表面に良好に偏在し得る。
 また、電離放射線、又は、波長300nm以下の非電離放射線、すなわち、露光工程において露光光として用いられ得る放射線をトリガとして架橋反応を進行し得る性質を有する架橋剤は、露光工程以前には架橋反応せず、露光工程において露光光というトリガを与えられることにより、架橋反応を開始する。その一方で、露光工程では、レジスト膜に対して露光光を照射することにより、潜像パターンの形成が進行する。具体的には、潜像パターンの形成に際しては、レジスト膜における露光部と非露光部との間で、レジスト膜を構成する重合体の溶剤に対する溶解性に差異が形成される。すなわち、潜像パターンの形成の結果、溶剤に対し比較的難溶性な重合体の存在部分(以下、「難溶部分A」)と、溶剤に対し比較的易溶性となった重合体の存在部分(以下、「易溶部分B」)とが生じる。露光工程における露光量が比較的少ない部分(すなわち、レジスト膜における露光部と非露光部との境界部分)には、難溶部分Aと易溶部分Bとの間で溶解性に十分な差が生じにくくなりうる。このとき、レジスト膜が、重合体に加えて上記所定の架橋剤を含有していれば、架橋剤同士の反応、及び、架橋剤と難溶部分Aを構成する重合体との反応により難溶部分Aの難溶性が高まりうる。これにより、露光工程における露光量が比較的少ない場合にも、難溶部分Aと易溶部分Bとの間で溶解性に差異が形成されることが良好に促進される。
 そして、上述したように重合体がレジスト膜の表面に良好に偏在することと、架橋剤により難溶部分Aと易溶部分Bとの間で溶解性に差異が形成されることが良好に促進されることとの相乗効果によって、露光マージンの拡大、トップロスの発生の抑制、及びレジスト残渣の量の低減の全てを効果的に実現し得ると考えられる。
By using a resist composition in which the surface free energy of polymer A is greater than the surface free energy of polymer B and the difference between the surface free energy of polymer A and the surface free energy of polymer B is 3 mJ/m or greater, polymer B, which has a smaller surface free energy, can be favorably unevenly distributed on the surface of the resist film.
In addition, a crosslinking agent having a property that can proceed with a crosslinking reaction triggered by ionizing radiation or non-ionizing radiation with a wavelength of 300 nm or less, i.e., radiation that can be used as exposure light in the exposure step, does not crosslink before the exposure step, but starts the crosslinking reaction by being given a trigger, i.e., exposure light, in the exposure step. On the other hand, in the exposure step, the formation of a latent image pattern proceeds by irradiating the resist film with exposure light. Specifically, when forming a latent image pattern, a difference in solubility in a solvent of the polymer constituting the resist film is formed between the exposed and non-exposed parts of the resist film. That is, as a result of the formation of a latent image pattern, a portion of the polymer that is relatively poorly soluble in a solvent (hereinafter, "poorly soluble portion A") and a portion of the polymer that is relatively easily soluble in a solvent (hereinafter, "easy-to-dissolve portion B") are generated. In the portion with a relatively small amount of exposure in the exposure step (i.e., the boundary portion between the exposed and non-exposed parts of the resist film), it may be difficult to generate a sufficient difference in solubility between the poorly soluble portion A and the easy-to-dissolve portion B. In this case, if the resist film contains the above-mentioned predetermined crosslinking agent in addition to the polymer, the poor solubility of the poorly soluble portion A can be increased by the reaction between the crosslinking agents themselves and the reaction between the crosslinking agent and the polymer constituting the poorly soluble portion A. This effectively promotes the formation of a difference in solubility between the poorly soluble portion A and the soluble portion B, even when the amount of exposure in the exposure step is relatively small.
Furthermore, as described above, it is believed that the synergistic effect of the favorable uneven distribution of the polymer on the surface of the resist film and the favorable promotion of the formation of a difference in solubility between the poorly soluble portion A and the easily soluble portion B by the crosslinking agent can effectively achieve all of the following: an increase in exposure margin, suppression of the occurrence of top loss, and reduction in the amount of resist residue.
 ここで、重合体Aの表面自由エネルギーと、重合体Bの表面自由エネルギーとの差(すなわち、「重合体Aの表面自由エネルギー」-「重合体Bの表面自由エネルギー」)は、上述したように3mJ/m2以上である必要があり、4mJ/m2以上であることが好ましく、5.5mJ/m2以上であることがより好ましく、6mJ/m2以上であることが更に好ましく、6.5mJ/m2以上であることが特に好ましく、12mJ/m2以下であることが好ましく、11mJ/m2以下であることがより好ましく、10mJ/m2以下であることが更に好ましい。重合体Aの表面自由エネルギーと重合体Bの表面自由エネルギーの差が上記範囲内であれば、トップロスの発生を更に抑制して、レジスト残渣の量を更に低減することができる。 Here, the difference between the surface free energy of polymer A and the surface free energy of polymer B (i.e., "surface free energy of polymer A" - "surface free energy of polymer B") must be 3 mJ / m 2 or more as described above, preferably 4 mJ / m 2 or more, more preferably 5.5 mJ / m 2 or more, even more preferably 6 mJ / m 2 or more, particularly preferably 6.5 mJ / m 2 or more, preferably 12 mJ / m 2 or less, more preferably 11 mJ / m 2 or less, and even more preferably 10 mJ / m 2 or less. If the difference between the surface free energy of polymer A and the surface free energy of polymer B is within the above range, the occurrence of top loss can be further suppressed, and the amount of resist residue can be further reduced.
<架橋剤>
 架橋剤としては、電離放射線、又は、波長300nm以下の非電離放射線により反応する架橋剤を用いる。より具体的には、架橋剤としては、架橋剤よりなる膜に対して、所定の放射線を照射して架橋状態とした後に、架橋剤を溶解可能な溶剤に対して1分間浸漬した場合に、浸漬前の膜の厚みを基準とした膜の厚み減少率が50%未満となるものを用いることができる。
<Crosslinking Agent>
As the crosslinking agent, a crosslinking agent that reacts with ionizing radiation or non-ionizing radiation having a wavelength of 300 nm or less is used. More specifically, as the crosslinking agent, a crosslinking agent that can be used is one that, when a film made of the crosslinking agent is irradiated with a predetermined radiation to be crosslinked and then immersed for 1 minute in a solvent capable of dissolving the crosslinking agent, reduces the film thickness by less than 50% based on the film thickness before immersion.
 また、架橋剤は、電離放射線、又は、波長300nm以下の非電離放射線の照射をトリガとして架橋反応を進行するという必須の属性を満たすことに加えて、レジスト膜を形成する際の溶剤除去のための乾燥工程(通常、加熱を伴うことが多い)等において架橋反応を進行しない性質を有することが好ましい。 In addition to satisfying the essential attribute of proceeding with a crosslinking reaction triggered by irradiation with ionizing radiation or non-ionizing radiation with a wavelength of 300 nm or less, it is preferable that the crosslinking agent has the property of not proceeding with a crosslinking reaction during a drying process (which usually involves heating) for removing the solvent when forming a resist film.
 そして、一層良好な露光マージン拡大効果、トップロスの発生抑制効果、及びレジスト残渣の量の低減効果を得る観点から、架橋剤としては、分子構造内に不飽和結合、より具体的には炭素-炭素不飽和結合を有する化合物を用いることが好ましい。さらに、上記各効果を一層高める観点から、架橋剤の分子構造内に含有される不飽和結合の数は1以上であることが好ましく、2以上であることがより好ましく、10以下であることが好ましく、8以下であることがより好ましい。 In order to obtain a better effect of expanding the exposure margin, suppressing the occurrence of top loss, and reducing the amount of resist residue, it is preferable to use a compound having an unsaturated bond, more specifically a carbon-carbon unsaturated bond, in its molecular structure as the crosslinking agent. Furthermore, in order to further enhance each of the above effects, the number of unsaturated bonds contained in the molecular structure of the crosslinking agent is preferably 1 or more, more preferably 2 or more, and is preferably 10 or less, and more preferably 8 or less.
 さらに、架橋剤が有する不飽和結合が、ビニル基、(メタ)アクリレート基、又はアリル基に含有される不飽和結合であることが好ましい。かかる特定の不飽和結合を含む官能基を有する架橋剤を配合することで、一層良好な露光マージン拡大効果、トップロスの発生抑制効果、及びレジスト残渣の量の低減効果が得られる。なお、架橋剤は、ビニル基、(メタ)アクリレート基、及びアリル基の何れか一つのみを有していてもよいし、複数を有していてもよい。そして、架橋剤が含有し得るこれらの官能基の数は、1以上であることが好ましく、2以上であることがより好ましく、10以下であることが好ましく、8以下であることがより好ましい。 Furthermore, it is preferable that the unsaturated bond possessed by the crosslinking agent is an unsaturated bond contained in a vinyl group, a (meth)acrylate group, or an allyl group. By blending a crosslinking agent having a functional group containing such a specific unsaturated bond, it is possible to obtain an even better effect of expanding the exposure margin, an effect of suppressing the occurrence of top loss, and an effect of reducing the amount of resist residue. The crosslinking agent may have only one of a vinyl group, a (meth)acrylate group, and an allyl group, or may have a plurality of groups. The number of these functional groups that the crosslinking agent may contain is preferably 1 or more, more preferably 2 or more, and is preferably 10 or less, and more preferably 8 or less.
 使用し得る架橋剤としては、特に限定されることなく、例えば、ビニル基を有する化合物、アリル基を有する化合物、アクリレート化合物、メタクリレート化合物、及びイソシアヌレート化合物が挙げられる。 Cross-linking agents that can be used include, but are not limited to, compounds having a vinyl group, compounds having an allyl group, acrylate compounds, methacrylate compounds, and isocyanurate compounds.
 上記ビニル基を有する化合物及びアリル基を有する化合物としては、例えば、エチレン、プロペン、1-ブテン、2-ブテン、iso-ブテン、1-ペンテン、1-ヘキセン及び1-オクテン等のアルケン化合物;アクリロニトリル、メタクリロニトリル、α-クロロアクリロニトリル、α-シアノエチルアクリロニトリル等のシアノ基含有不飽和炭化水素化合物;ビニルエチルエーテル、ビニルブチルエーテル、ビニルフェニルエーテル、ビニル2-クロロエチルエーテル、3,4-ジヒドロ-2H-ピラン、2,3-ジヒドロフラン、1,4-ジオキセン、エチレングリコールモノビニルエーテル、ジエチレングリコールモノビニルエーテル、イソプロペニルメチルエーテル等のモノビニルエーテル化合物;ジビニルエーテル、エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、テトラエチレングリコールジビニルエーテル、ポリエチレングリコールジビニルエーテル、プロピレングリコールジビニルエーテル、ジプロピレングリコールジビニルエーテル、トリプロピレングリコールジビニルエーテル、ポリプロピレングリコールジビニルエーテル、ブタンジオールジビニルエーテル、ネオペンチルグリコールジビニルエーテル、ヘキサンジオールジビニルエーテル、ノナンジオールジビニルエーテル、トリメチロールプロパンジビニルエーテル、エチレンオキサイド付加トリメチロールプロパンジビニルエーテル、ペンタエリスリトールジビニルエーテル、エチレンオキサイド付加ペンタエリスリトールジビニルエーテル等の脂肪族骨格を有するジビニルエーテル化合物;トリメチロールプロパントリビニルエーテル、エチレンオキサイド付加トリメチロールプロパントリビニルエーテル等の脂肪族骨格を有するトリビニルエーテル化合物;ペンタエリスリトールテトラビニルエーテル、エチレンオキサイド付加ペンタエリスリトールテトラビニルエーテル、ジトリメチロールプロパンテトラビニルエーテル等の脂肪族骨格を有するテトラビニルエーテル化合物やジペンタエリスリトールヘキサビニルエーテル等の脂肪族骨格を有する多官能ビニルエーテル化合物;1,4-シクロヘキサンジオールジビニルエーテル、1,4-シクロヘキサンジメタノールジビニルエーテル等の脂環骨格を有する多官能ビニルエーテル化合物;ハイドロキノンジビニルエーテル等の芳香環骨格を有する多官能ビニルエーテル化合物;酢酸ビニル、酪酸ビニル、酢酸イソプロペニル、カプリン酸ビニル、安息香酸ビニル等のビニルエステル化合物;アリルアルコール、桂皮アルコール等の不飽和アルコール;1,3-ブタジエン、イソプレン、1,3-ペンタジエン、1,3-ヘキサジエン、1,3-シクロヘキサジエン、1,3-シクロヘプタジエン、1,3-シクロオクタジエン、2,5-ジメチル-2,4-ヘキサジエン及びクロロプレン等の共役ジエン化合物;スチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2,4,6-トリメチルスチレン、4-ブチルスチレン、4-フェニルスチレン、4-フルオロスチレン、2,3,4,5,6-ペンタフルオロスチレン、4-クロロスチレン、4-ブロモスチレン、4-ヨードスチレン、4-ヒドロキシスチレン、4-アミノスチレン、4-カルボキシスチレン、4-アセトキシスチレン、4-シアノメチルスチレン、4-クロロメチルスチレン、4-メトキシスチレン、4-ニトロスチレン、4-スチレンスルホン酸ナトリウム、4-スチレンスルホン酸クロリド、4-ビニルフェニルボロン酸、α-メチルスチレン、トランス-β-メチルスチレン、2-メチル-1-フェニルプロペン、1-フェニル-1-シクロヘキセン、β-ブロモスチレン、β-スチレンスルホン酸ナトリウム、2-ビニルピリジン、4-ビニルピリジン、2-iso-プロペニルナフタレン、1-ビニルイミダゾール等の芳香族ビニル化合物;アリルベンゼン、トリアリルシアヌレート、ジアリルフタレート、トリアリルイソシアヌレート等が挙げられる。 The above-mentioned compounds having a vinyl group and compounds having an allyl group include, for example, alkene compounds such as ethylene, propene, 1-butene, 2-butene, iso-butene, 1-pentene, 1-hexene, and 1-octene; cyano group-containing unsaturated hydrocarbon compounds such as acrylonitrile, methacrylonitrile, α-chloroacrylonitrile, and α-cyanoethylacrylonitrile; monovinyl ether compounds such as vinyl ethyl ether, vinyl butyl ether, vinyl phenyl ether, vinyl 2-chloroethyl ether, 3,4-dihydro-2H-pyran, 2,3-dihydrofuran, 1,4-dioxene, ethylene glycol monovinyl ether, diethylene glycol monovinyl ether, and isopropenyl methyl ether; divinyl ether, ethylene glycol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, tetraethylene glycol divinyl ether, and polyethylene glycol divinyl ether. divinyl ether compounds having an aliphatic skeleton such as propylene glycol divinyl ether, dipropylene glycol divinyl ether, tripropylene glycol divinyl ether, polypropylene glycol divinyl ether, butanediol divinyl ether, neopentyl glycol divinyl ether, hexanediol divinyl ether, nonanediol divinyl ether, trimethylolpropane divinyl ether, ethylene oxide-added trimethylolpropane divinyl ether, pentaerythritol divinyl ether, and ethylene oxide-added pentaerythritol divinyl ether; trivinyl ether compounds having an aliphatic skeleton such as trimethylolpropane trivinyl ether and ethylene oxide-added trimethylolpropane trivinyl ether; pentaerythritol tetravinyl ether, ethylene oxide-added pentaerythritol tetravinyl ether, and ditrimethylolpropane tetravinyl ether. polyfunctional vinyl ether compounds having an aliphatic skeleton such as tetravinyl ether compounds having an aliphatic skeleton such as dipentaerythritol hexavinyl ether; polyfunctional vinyl ether compounds having an alicyclic skeleton such as 1,4-cyclohexanediol divinyl ether and 1,4-cyclohexanedimethanol divinyl ether; polyfunctional vinyl ether compounds having an aromatic skeleton such as hydroquinone divinyl ether; vinyl ester compounds such as vinyl acetate, vinyl butyrate, isopropenyl acetate, vinyl caprate, and vinyl benzoate; unsaturated alcohols such as allyl alcohol and cinnamic alcohol; conjugated diene compounds such as 1,3-butadiene, isoprene, 1,3-pentadiene, 1,3-hexadiene, 1,3-cyclohexadiene, 1,3-cycloheptadiene, 1,3-cyclooctadiene, 2,5-dimethyl-2,4-hexadiene, and chloroprene; styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2,4,6-trimethylstyrene, 2,5-dimethyl-2,4-hexadiene, and 2,5-dimethyl-2,4-hexadiene; Aromatic vinyl compounds such as styrene, 4-butylstyrene, 4-phenylstyrene, 4-fluorostyrene, 2,3,4,5,6-pentafluorostyrene, 4-chlorostyrene, 4-bromostyrene, 4-iodostyrene, 4-hydroxystyrene, 4-aminostyrene, 4-carboxystyrene, 4-acetoxystyrene, 4-cyanomethylstyrene, 4-chloromethylstyrene, 4-methoxystyrene, 4-nitrostyrene, sodium 4-styrenesulfonate, 4-styrenesulfonic acid chloride, 4-vinylphenylboronic acid, α-methylstyrene, trans-β-methylstyrene, 2-methyl-1-phenylpropene, 1-phenyl-1-cyclohexene, β-bromostyrene, sodium β-styrenesulfonate, 2-vinylpyridine, 4-vinylpyridine, 2-iso-propenylnaphthalene, and 1-vinylimidazole; allylbenzene, triallyl cyanurate, diallyl phthalate, and triallyl isocyanurate.
 上記アクリレート化合物としては、例えば、単官能アクリレート化合物、二官能アクリレート化合物、三官能以上の多官能アクリレート化合物が挙げられる。 Examples of the acrylate compound include monofunctional acrylate compounds, difunctional acrylate compounds, and trifunctional or higher polyfunctional acrylate compounds.
 単官能アクリレート化合物としては、例えば、アクリル酸、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、iso-プロピルアクリレート、n-ブチルアクリレート、iso-ブチルアクリレート、tert-ブチルアクリレート、n-ペンチルアクリレート、iso-ペンチルアクリレート、tert-ペンチルアクリレート、ネオペンチルアクリレート、ヘキシルアクリレート、オクチルアクリレート、ドデシルアクリレート、ステアリルアクリレート等のアルキルアクリレート、ベンジルアクリレート、アルキルフェノール(ブチルフェノール、オクチルフェノール、ノニルフェノール又はドデシルフェノール等)、エチレンオキサイド付加物のアクリレート、イソボルニルアクリレート、シクロヘキシルアクリレート、トリシクロデカンモノメチロールアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、3-ヒドロキシプロピルアクリレート、2-ヒドロキシブチルアクリレート、4-ヒドロキシブチルアクリレート、ヒドロキシペンチルアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、2-ヒドロキシ-3-ブトキシプロピルアクリレート、2-ヒドロキシ-3-メトキシプロピルアクリレート、ジエチレングリコールモノアクリレート、ジエチレングリコールモノエチルエーテルアクリレート、トリエチレングリコールモノアクリレート、トリエチレングリコールモノエチルエーテルアクリレート、テトラエチレングリコールモノアクリレート、テトラエチレングリコールモノエチルエーテルアクリレート、ポリエチレングリコールモノアクリレート、ポリエチレングリコールモノエチルエーテルアクリレート、ジプロピレングリコールモノアクリレート、ポリプロピレングリコールモノアクリレート、グリセリンモノアクリレート、アクリロキシエチルフタレート、2-アクリロイロキシエチル-2-ヒドロキシエチルフタレート、2-アクリロイロキシプロピルフタレート、β-カルボキシエチルアクリレート、アクリル酸ダイマー、ω-カルボキシ-ポリカプロラクトンモノアクリレート、ジメチルアミノエチルアクリレート、ジエチルアミノエチルアクリレート、N-ビニルピロリドン、N-ビニルホルムアミド、アクリロイルモルフォリン等が挙げられる。 Examples of monofunctional acrylate compounds include alkyl acrylates such as acrylic acid, methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, tert-butyl acrylate, n-pentyl acrylate, isopentyl acrylate, tert-pentyl acrylate, neopentyl acrylate, hexyl acrylate, octyl acrylate, dodecyl acrylate, and stearyl acrylate, benzyl acrylate, and alkoxy acrylate. butylphenol (butylphenol, octylphenol, nonylphenol, dodecylphenol, etc.), acrylates of ethylene oxide adducts, isobornyl acrylate, cyclohexyl acrylate, tricyclodecane monomethylol acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 3-hydroxypropyl acrylate, 2-hydroxybutyl acrylate, 4-hydroxybutyl acrylate, hydroxypentyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate , 2-hydroxy-3-butoxypropyl acrylate, 2-hydroxy-3-methoxypropyl acrylate, diethylene glycol monoacrylate, diethylene glycol monoethyl ether acrylate, triethylene glycol monoacrylate, triethylene glycol monoethyl ether acrylate, tetraethylene glycol monoacrylate, tetraethylene glycol monoethyl ether acrylate, polyethylene glycol monoacrylate, polyethylene glycol monoethyl ether acrylate, dipropylene glycol monoacrylate, polypropylene glycol monoacrylate, glycerin monoacrylate, acryloxyethyl phthalate, 2-acryloyloxyethyl-2-hydroxyethyl phthalate, 2-acryloyloxypropyl phthalate, β-carboxyethyl acrylate, acrylic acid dimer, ω-carboxy-polycaprolactone monoacrylate, dimethylaminoethyl acrylate, diethylaminoethyl acrylate, N-vinylpyrrolidone, N-vinylformamide, acryloylmorpholine, and the like.
 二官能アクリレート化合物としては、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、プロピレングリコールジアクリレート、ジプロピレングリコールジアクリレート、トリプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、ブチレングリコールジアクリレート、ペンチルグリコールジアクリレート、ネオペンチルグリコールジアクリレート、ヒドロキシピバリルヒドロキシピバレートジアクリレート、ヒドロキシピバリルヒドロキシピバレートジカプロラクトネートジアクリレート、1,6-ヘキサンジオールジアクリレート、1,2-ヘキサンジオールジアクリレート、1,5-ヘキサンジオールジアクリレート、2,5-ヘキサンジオールジアクリレート、1,7-ヘプタンジオールジアクリレート、1,8-オクタンジオールジアクリレート、1,2-オクタンジオールジアクリレート、1,9-ノナンジオールジアクリレート、1,2-デカンジオールジアクリレート、1,10-デカンジオールジアクリレート、1,12-ドデカンジオールジアクリレート、1,2-ドデカンジオールジアクリレート、1,14-テトラデカンジオールジアクリレート、1,2-テトラデカンジオールジアクリレート、1,16-ヘキサデカンジオールジアクリレート、1,2-ヘキサデカンジオールジアクリレート、2-メチル-2,4-ペンタンジオールジアクリレート、3-メチル-1,5-ペンタンジオールジアクリレート、2-メチル-2-プロピル-1,3-プロパンジオールジアクリレート、2,4-ジメチル-2,4-ペンタンジオールジアクリレート、2,2-ジエチル-1,3-プロパンジオールジアクリレート、2,2,4-トリメチル-1,3-ペンタンジオールジアクリレート、ジメチロールオクタンジアクリレート、2-エチル-1,3-ヘキサンジオールジアクリレート、2,5-ジメチル-2,5-ヘキサンジオールジアクリレート、2-メチル-1,8-オクタンジオールジアクリレート、2-ブチル-2-エチル-1,3-プロパンジオールジアクリレート、2,4-ジエチル-1,5-ペンタンジオールジアクリレート、2,4-ジエチル-1,5-ペンタンジオールジアクリレートトリシクロデカンジメチロールジアクリレート、トリシクロデカンジメチロールジカプロラクトネートジアクリレート、ビスフェノールAテトラエチレンオキサイド付加体ジアクリレート、ビスフェノールFテトラエチレンオキサイド付加体ジアクリレート、ビスフェノールSテトラエチレンオキサイド付加体ジアクリレート、水添加ビスフェノールAテトラエチレンオキサイド付加体ジアクリレート、水添加ビスフェノールFテトラエチレンオキサイド付加体ジアクリレート、水添加ビスフェノールAジアクリレート、水添加ビスフェノールFジアクリレート、ビスフェノールAテトラエチレンオキサイド付加体ジカプロラクトネートジアクリレート、ビスフェノールFテトラエチレンオキサイド付加体ジカプロラクトネートジアクリレート等が挙げられる。 Bifunctional acrylate compounds include ethylene glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol diacrylate, propylene glycol diacrylate, dipropylene glycol diacrylate, tripropylene glycol diacrylate, polypropylene glycol diacrylate, butylene glycol diacrylate, pentyl glycol diacrylate, neopentyl glycol diacrylate, hydroxypivalyl hydroxypivalate diacrylate, hydroxypivalyl hydroxypivalate dicaprolactonate diacrylate, 1,6-hexanediol diacrylate, 1,2-hexanedi diacrylate, 1,5-hexanediol diacrylate, 2,5-hexanediol diacrylate, 1,7-heptanediol diacrylate, 1,8-octanediol diacrylate, 1,2-octanediol diacrylate, 1,9-nonanediol diacrylate, 1,2-decanediol diacrylate, 1,10-decanediol diacrylate, 1,12-dodecanediol diacrylate, 1,2-dodecanediol diacrylate, 1,14-tetradecanediol diacrylate, 1,2-tetradecanediol diacrylate, 1,16-hexadecanediol diacrylate, 1,2-hexadecanediol diacrylate, 2-methyl-2,4-pentanediol diacrylate, 3-methyl-1,5 -pentanediol diacrylate, 2-methyl-2-propyl-1,3-propanediol diacrylate, 2,4-dimethyl-2,4-pentanediol diacrylate, 2,2-diethyl-1,3-propanediol diacrylate, 2,2,4-trimethyl-1,3-pentanediol diacrylate, dimethylol octane diacrylate, 2-ethyl-1,3-hexanediol diacrylate, 2,5-dimethyl-2,5-hexanediol diacrylate, 2-methyl-1,8-octanediol diacrylate, 2-butyl-2-ethyl-1,3-propanediol diacrylate, 2,4-diethyl-1,5-pentanediol diacrylate, 2,4-diethyl-1,5-pentanediol diacrylate tricyclodeca Examples of the dialkyl dimethylol diacrylate include tricyclodecane dimethylol dicaprolactonate diacrylate, bisphenol A tetraethylene oxide adduct diacrylate, bisphenol F tetraethylene oxide adduct diacrylate, bisphenol S tetraethylene oxide adduct diacrylate, water-added bisphenol A tetraethylene oxide adduct diacrylate, water-added bisphenol F tetraethylene oxide adduct diacrylate, water-added bisphenol A diacrylate, water-added bisphenol F diacrylate, bisphenol A tetraethylene oxide adduct dicaprolactonate diacrylate, and bisphenol F tetraethylene oxide adduct dicaprolactonate diacrylate.
 多官能アクリレート化合物としては、グリセリントリアクリレート、トリメチロールプロパントリアクリレート、エトキシ化トリメチロールプロパントリアクリレート、トリメチロールプロパントリカプロラクトネートトリアクリレート、トリメチロールエタントリアクリレート、トリメチロールヘキサントリアクリレート、トリメチロールオクタントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールテトラカプロラクトネートテトラアクリレート、ジグリセリンテトラアクリレート、ジトリメチロールプロパンテトラアクリレート、ジトリメチロールプロパンテトラカプロラクトネートテトラアクリレート、ジトリメチロールエタンテトラアクリレート、ジトリメチロールブタンテトラアクリレート、ジトリメチロールヘキサンテトラアクリレート、ジトリメチロールオクタンテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、トリペンタエリスリトールヘキサアクリレート、トリペンタエリスリトールヘプタアクリレート、トリペンタエリスリトールオクタアクリレート、トリペンタエリスリトールポリアルキレンオキサイドヘプタアクリレート等が挙げられる。
 その他、ウレタンアクリレート、ポリエステルアクリレート等の多官能アクリレート化合物も挙げられる。
Examples of polyfunctional acrylate compounds include glycerin triacrylate, trimethylolpropane triacrylate, ethoxylated trimethylolpropane triacrylate, trimethylolpropane tricaprolactonate triacrylate, trimethylolethane triacrylate, trimethylolhexane triacrylate, trimethyloloctane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, pentaerythritol tetracaprolactonate tetraacrylate, diglycerin tetraacrylate, and ditrimethylolpropane tetraacrylate. acrylate, ditrimethylolpropane tetracaprolactonate tetraacrylate, ditrimethylolethane tetraacrylate, ditrimethylolbutane tetraacrylate, ditrimethylolhexane tetraacrylate, ditrimethyloloctane tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, tripentaerythritol hexaacrylate, tripentaerythritol heptaacrylate, tripentaerythritol octaacrylate, and tripentaerythritol polyalkylene oxide heptaacrylate.
Other examples include polyfunctional acrylate compounds such as urethane acrylate and polyester acrylate.
 メタクリレート化合物としては、例えば、単官能メタクリレート化合物、二官能メタクリレート化合物、三官能以上の多官能メタクリレート化合物が挙げられる。 Methacrylate compounds include, for example, monofunctional methacrylate compounds, difunctional methacrylate compounds, and trifunctional or higher polyfunctional methacrylate compounds.
 単官能メタクリレート化合物としては、例えば、メタクリル酸、メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、iso-プロピルメタクリレート、n-ブチルメタクリレート、iso-ブチルメタクリレート、tert-ブチルメタクリレート、n-ペンチルメタクリレート、iso-ペンチルメタクリレート、tert-ペンチルメタクリレート、ネオペンチルメタクリレート、ヘキシルメタクリレート、オクチルメタクリレート、ドデシルメタクリレート、ステアリルメタクリレート等のアルキルメタクリレート、ベンジルメタクリレート、アルキルフェノール(ブチルフェノール、オクチルフェノール、ノニルフェノール又はドデシルフェノール等)、エチレンオキサイド付加物のメタクリレート、イソボルニルメタクリレート、シクロヘキシルメタクリレート、トリシクロデカンモノメチロールメタクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、3-ヒドロキシプロピルメタクリレート、2-ヒドロキシブチルメタクリレート、4-ヒドロキシブチルメタクリレート、ヒドロキシペンチルメタクリレート、2-ヒドロキシ-3-フェノキシプロピルメタクリレート、2-ヒドロキシ-3-ブトキシプロピルメタクリレート、2-ヒドロキシ-3-メトキシプロピルメタクリレート、ジエチレングリコールモノメタクリレート、ジエチレングリコールモノエチルエーテルメタクリレート、トリエチレングリコールモノメタクリレート、トリエチレングリコールモノエチルエーテルアメタクリレート、テトラエチレングリコールモノメタクリレート、テトラエチレングリコールモノエチルエーテルメタクリレート、ポリエチレングリコールモノメタクリレート、ポリエチレングリコールモノエチルエーテルメタクリレート、ジプロピレングリコールモノメタクリレート、ジプロピレングリコールモノエチルエーテルメタクリレート、ポリプロピレングリコールモノメタクリレート、ポリプロピレングリコールモノエチルエーテルメタクリレート、グリセリンモノメタクリレート、アクリロキシエチルフタレート、2-アクリロイロキシエチル-2-ヒドロキシエチルフタレート、2-アクリロイロキシプロピルフタレート、β-カルボキシエチルメタクリレート、アクリル酸ダイマー、ω-カルボキシ-ポリカプロラクトンモノメタクリレート、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルメタクリレート、N-ビニルピロリドン、N-ビニルホルムアミド、アクリロイルモルフォリン等が挙げられる。 Examples of monofunctional methacrylate compounds include methacrylic acid, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, tert-butyl methacrylate, n-pentyl methacrylate, isopentyl methacrylate, tert-pentyl methacrylate, neopentyl methacrylate, hexyl methacrylate, octyl methacrylate, dodecyl methacrylate, stearyl methacrylate and other alkyl methacrylates, benzyl methacrylate, and alkylphenols. (butylphenol, octylphenol, nonylphenol, dodecylphenol, etc.), methacrylates of ethylene oxide adducts, isobornyl methacrylate, cyclohexyl methacrylate, tricyclodecane monomethylol methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 3-hydroxypropyl methacrylate, 2-hydroxybutyl methacrylate, 4-hydroxybutyl methacrylate, hydroxypentyl methacrylate, 2-hydroxy-3-phenoxypropyl methacrylate, 2-hydroxy-3-butoxypropyl methacrylate, acrylate, 2-hydroxy-3-methoxypropyl methacrylate, diethylene glycol monomethacrylate, diethylene glycol monoethyl ether methacrylate, triethylene glycol monomethacrylate, triethylene glycol monoethyl ether amethacrylate, tetraethylene glycol monomethacrylate, tetraethylene glycol monoethyl ether methacrylate, polyethylene glycol monomethacrylate, polyethylene glycol monoethyl ether methacrylate, dipropylene glycol monomethacrylate, dipropylene glycol monoethyl ether methacrylate, polypropylene glycol monomethacrylate, polypropylene glycol monoethyl ether methacrylate, glycerin monomethacrylate, acryloxyethyl phthalate, 2-acryloyloxyethyl-2-hydroxyethyl phthalate, 2-acryloyloxypropyl phthalate, β-carboxyethyl methacrylate, acrylic acid dimer, ω-carboxy-polycaprolactone monomethacrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, N-vinylpyrrolidone, N-vinylformamide, acryloylmorpholine, etc.
 二官能メタクリレート化合物としては、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、プロピレングリコールジメタクリレート、ジプロピレングリコールジメタクリレート、トリプロピレングリコールジメタクリレート、ポリプロピレングリコールジメタクリレート、ブチレングリコールジメタクリレート、ペンチルグリコールジメタクリレート、ネオペンチルグリコールジメタクリレート、ヒドロキシピバリルヒドロキシピバレートジメタクリレート、ヒドロキシピバリルヒドロキシピバレートジカプロラクトネートジメタクリレート、1,6ヘキサンジオールジメタクリレート、1,2-ヘキサンジオールジメタクリレート、1,5-ヘキサンジオールジメタクリレート、2,5-ヘキサンジオールジメタクリレート、1,7-ヘプタンジオールジメタクリレート、1,8-オクタンジオールジメタクリレート、1,2-オクタンジオールジメタクリレート、1,9-ノナンジオールジメタクリレート、1,2-デカンジオールジメタクリレート、1,10-デカンジオールジメタクリレート、1,12-ドデカンジオールジメタクリレート、1,2-ドデカンジオールジメタクリレート、1,14-テトラデカンジオールジメタクリレート、1,2-テトラデカンジオールジメタクリレート、1,16-ヘキサデカンジオールジメタクリレート、1,2-ヘキサデカンジオールジメタクリレート、2-メチル-2,4-ペンタンジオールジメタクリレート、3-メチル-1,5-ペンタンジオールジメタクリレート、2-メチル-2-プロピル-1,3-プロパンジオールジメタクリレート、2,4-ジメチル-2,4-ペンタンジオールジメタクリレート、2,2-ジエチル-1,3-プロパンジオールジメタクリレート、2,2,4-トリメチル-1,3-ペンタンジオールジメタクリレート、ジメチロールオクタンジメタクリレート、2-エチル-1,3-ヘキサンジオールジメタクリレート、2,5-ジメチル-2,5-ヘキサンジオールジメタクリレート、2-メチル-1,8-オクタンジオールジメタクリレート、2-ブチル-2-エチル-1,3-プロパンジオールジメタクリレート、2,4-ジエチル-1,5-ペンタンジオールジメタクリレート、1,2-デカンジオールジメタクリレート、2-メチル-2,4-ペンタンジメタクリレート、2,4-ジエチル-1,5-ペンタンジオールジメタクリレートトリシクロデカンジメチロールジメタクリレート、トリシクロデカンジメチロールジカプロラクトネートジメタクリレート、ビスフェノールAテトラエチレンオキサイド付加体ジメタクリレート、ビスフェノールFテトラエチレンオキサイド付加体ジメタクリレート、ビスフェノールSテトラエチレンオキサイド付加体ジメタクリレート、水添加ビスフェノールAテトラエチレンオキサイド付加体ジメタクリレート、水添加ビスフェノールFテトラエチレンオキサイド付加体ジメタクリレート、水添加ビスフェノールAジメタクリレート、水添加ビスフェノールFジメタクリレート、ビスフェノールAテトラエチレンオキサイド付加体ジカプロラクトネートジメタクリレート、ビスフェノールFテトラエチレンオキサイド付加体ジカプロラクトネートジメタクリレート等が挙げられる。 Bifunctional methacrylate compounds include ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, propylene glycol dimethacrylate, dipropylene glycol dimethacrylate, tripropylene glycol dimethacrylate, polypropylene glycol dimethacrylate, butylene glycol dimethacrylate, pentyl glycol dimethacrylate, neopentyl glycol dimethacrylate, hydroxypivalyl hydroxypivalate dimethacrylate, hydroxypivalyl hydroxypivalate dicaprolactonate dimethacrylate, 1,6-hexanediol dimethacrylate, 1,2-hexanediol dimethacrylate, acrylate, 1,5-hexanediol dimethacrylate, 2,5-hexanediol dimethacrylate, 1,7-heptanediol dimethacrylate, 1,8-octanediol dimethacrylate, 1,2-octanediol dimethacrylate, 1,9-nonanediol dimethacrylate, 1,2-decanediol dimethacrylate, 1,10-decanediol dimethacrylate, 1,12-dodecanediol dimethacrylate, 1,2-dodecanediol dimethacrylate, 1,14-tetradecanediol dimethacrylate, 1,2-tetradecanediol dimethacrylate, 1,16-hexadecanediol dimethacrylate, 1,2-hexadecanediol dimethacrylate, 2-methyl-2,4-pentanediol dimethacrylate, 3-methyl-1,5-pentanediol dimethacrylate, 2-Methyl-2-propyl-1,3-propanediol dimethacrylate, 2,4-dimethyl-2,4-pentanediol dimethacrylate, 2,2-diethyl-1,3-propanediol dimethacrylate, 2,2,4-trimethyl-1,3-pentanediol dimethacrylate, dimethylol octane dimethacrylate, 2-ethyl-1,3-hexanediol dimethacrylate, 2,5-dimethyl-2,5-hexanediol dimethacrylate, 2-methyl-1,8-octanediol dimethacrylate, 2-butyl-2-ethyl-1,3-propanediol dimethacrylate, 2,4-diethyl-1,5-pentanediol dimethacrylate, 1,2-decanediol dimethacrylate, 2-methyl-2,4-pentane dimethacrylate, 2,4-diethyl-1,5-pentanediol dimethacrylate Examples of the acrylate include tricyclodecane dimethylol dimethacrylate, tricyclodecane dimethylol dicaprolactonate dimethacrylate, bisphenol A tetraethylene oxide adduct dimethacrylate, bisphenol F tetraethylene oxide adduct dimethacrylate, bisphenol S tetraethylene oxide adduct dimethacrylate, water-added bisphenol A tetraethylene oxide adduct dimethacrylate, water-added bisphenol F tetraethylene oxide adduct dimethacrylate, water-added bisphenol A dimethacrylate, water-added bisphenol F dimethacrylate, bisphenol A tetraethylene oxide adduct dicaprolactonate dimethacrylate, and bisphenol F tetraethylene oxide adduct dicaprolactonate dimethacrylate.
 多官能メタクリレート化合物としては、グリセリントリメタクリレート、トリメチロールプロパントリメタクリレート、エトキシ化トリメチロールプロパントリメタクリレート、トリメチロールプロパントリカプロラクトネートトリメタクリレート、トリメチロールエタントリメタクリレート、トリメチロールヘキサントリメタクリレート、トリメチロールオクタントリメタクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、ペンタエリスリトールテトラカプロラクトネートテトラメタクリレート、ジグリセリンテトラメタクリレート、ジトリメチロールプロパンテトラメタクリレート、ジトリメチロールプロパンテトラカプロラクトネートテトラメタクリレート、ジトリメチロールエタンテトラメタクリレート、ジトリメチロールブタンテトラメタクリレート、ジトリメチロールヘキサンテトラメタクリレート、ジトリメチロールオクタンテトラメタクリレート、ジペンタエリスリトールペンタメタクリレート、ジペンタエリスリトールヘキサメタクリレート、トリペンタエリスリトールヘキサメタクリレート、トリペンタエリスリトールヘプタメタクリレート、トリペンタエリスリトールオクタメタクリレート、トリペンタエリスリトールポリアルキレンオキサイドヘプタメタクリレート等が挙げられる。その他、ウレタンメタクリレート、ポリエステルメタクリレート等のメタクリレートも用いることができる。 Multifunctional methacrylate compounds include glycerin trimethacrylate, trimethylolpropane trimethacrylate, ethoxylated trimethylolpropane trimethacrylate, trimethylolpropane tricaprolactonate trimethacrylate, trimethylolethane trimethacrylate, trimethylolhexane trimethacrylate, trimethyloloctane trimethacrylate, pentaerythritol trimethacrylate, pentaerythritol tetramethacrylate, pentaerythritol tetracaprolactonate tetramethacrylate, diglycerin tetramethacrylate, ditrimethylolpropane tetramethacrylate, acrylate, ditrimethylolpropane tetracaprolactonate tetramethacrylate, ditrimethylolethane tetramethacrylate, ditrimethylolbutane tetramethacrylate, ditrimethylolhexane tetramethacrylate, ditrimethyloloctane tetramethacrylate, dipentaerythritol pentamethacrylate, dipentaerythritol hexamethacrylate, tripentaerythritol hexamethacrylate, tripentaerythritol heptamethacrylate, tripentaerythritol octamethacrylate, tripentaerythritol polyalkylene oxide heptamethacrylate, etc. Other methacrylates such as urethane methacrylate and polyester methacrylate can also be used.
 さらに、架橋剤として使用し得るイソシアヌレート化合物としては、トリ(アクリロイルオキシエチル)イソシアヌレート、トリ(メタクリロイルオキシエチル)イソシアヌレート、アルキレンオキシド付加トリ(アクリロイルオキシエチル)イソシアヌレート、アルキレンオキシド付加トリ(メタクリロイルオキシエチル)イソシアヌレート等の、多官能(メタ)アクリロイル基含有イソシアヌレート類;及び、トリアリルイソシアヌレート等の、多官能アリル基含有イソシアヌレート類が挙げられる。 Furthermore, examples of isocyanurate compounds that can be used as crosslinking agents include polyfunctional (meth)acryloyl group-containing isocyanurates such as tri(acryloyloxyethyl)isocyanurate, tri(methacryloyloxyethyl)isocyanurate, alkylene oxide-added tri(acryloyloxyethyl)isocyanurate, and alkylene oxide-added tri(methacryloyloxyethyl)isocyanurate; and polyfunctional allyl group-containing isocyanurates such as triallyl isocyanurate.
 ここで、好適に使用し得る架橋剤の具体例としては、下記のものを挙げることができる。それらは、ポリエチレングリコールジアクリレート(東亜合成株式会社製、製品名:「アロニックス(登録商標)M-240」)、トリメチロールプロパンPO変性トリアクリレート(東亜合成株式会社製、製品名:「アロニックス(登録商標)M-321」)、エトキシ化トリメチロールプロパントリアクリレート(新中村化学工業株式会社製、製品名:「NKエステルA-TMPT-3EO」)、トリメチロールプロパントリアクリレート(東亜合成株式会社製、製品名:「アロニックス(登録商標)M-309」)、トリエチレングリコールジビニルエーテル(日本カーバイド工業株式会社製、製品名「TEGDVE」)、ジペンタエリスリトールペンタアクリレート及びジペンタエリスリトールヘキサアクリレートの混合物(東亜合成株式会社製、製品名:「アロニックス(登録商標)M-403」)、イソシアヌル酸エチレンオキサイド変性ジアクリレート及びイソシアヌル酸エチレンオキサイド変性トリアクリレートの混合物(東亜合成株式会社製、製品名:「アロニックス(登録商標)M-315」)、トリアリルイソシアヌレート(三菱ケミカル株式会社製、製品名:「TAIC」)である。
 なお、架橋剤は、一種単独で、或いは複数種類を組み合わせて用いることができる。
Specific examples of crosslinking agents that can be suitably used herein include the following: polyethylene glycol diacrylate (manufactured by Toagosei Co., Ltd., product name: "Aronix (registered trademark) M-240"), trimethylolpropane PO-modified triacrylate (manufactured by Toagosei Co., Ltd., product name: "Aronix (registered trademark) M-321"), ethoxylated trimethylolpropane triacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., product name: "NK Ester A-TMPT-3EO"), trimethylolpropane triacrylate (manufactured by Toagosei Co., Ltd., product name: "Aronix (registered trademark) M-309"), triethylene glycol divinyl Examples of the isocyanuric acid modified ethylene oxide diacrylate and isocyanuric acid modified ethylene oxide triacrylate include aryl ether (manufactured by Nippon Carbide Industries Co., Ltd., product name "TEGDVE"), a mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (manufactured by Toagosei Co., Ltd., product name "ARONIX (registered trademark) M-403"), a mixture of isocyanuric acid ethylene oxide modified diacrylate and isocyanuric acid ethylene oxide modified triacrylate (manufactured by Toagosei Co., Ltd., product name "ARONIX (registered trademark) M-315"), and triallyl isocyanurate (manufactured by Mitsubishi Chemical Corporation, product name "TAIC").
The crosslinking agent may be used alone or in combination of two or more kinds.
 架橋剤の含有量は、後述する重合体Aと重合体Bとの合計100質量部に対して、1質量以上であることが好ましく、2質量部以上であることがより好ましく、3質量部以上であることが更に好ましく、4質量部以上であることが特に好ましく、50質量部以下であることが好ましく、35質量部以下であることがより好ましく、30質量部以下であることが更に好ましく、20質量部以下であることが特に好ましい。架橋剤の含有量が上記範囲内であれば、一層良好な露光マージン拡大効果、トップロスの発生抑制効果、及びレジスト残渣の量の低減効果が得られる。さらに、架橋剤の含有量が上記範囲内であれば、得られるレジストパターンを高解像度化することができる。 The content of the crosslinking agent is preferably 1 mass part or more, more preferably 2 mass parts or more, even more preferably 3 mass parts or more, particularly preferably 4 mass parts or more, preferably 50 mass parts or less, more preferably 35 mass parts or less, even more preferably 30 mass parts or less, particularly preferably 20 mass parts or less, relative to 100 mass parts of the total of polymer A and polymer B described below. If the content of the crosslinking agent is within the above range, a better effect of expanding the exposure margin, an effect of suppressing the occurrence of top loss, and an effect of reducing the amount of resist residue can be obtained. Furthermore, if the content of the crosslinking agent is within the above range, the obtained resist pattern can have a higher resolution.
 なお、架橋剤の含有量は、架橋剤の官能数に応じて更に最適化することができる。例えば、架橋剤が2官能である場合には、架橋剤の含有量は、重合体Aと重合体Bとの合計を100質量部として、5質量部以上50質量部以下であることが好ましい。架橋剤が3官能である場合には、架橋剤の含有量は、重合体Aと重合体Bとの合計100質量部に対して、4質量部以上40質量部以下であることが好ましい。また、例えば架橋剤が5官能である場合には、架橋剤の含有量は、重合体Aと重合体Bとの合計100質量部に対して、3質量部以上30質量部以下であることが好ましい。所定の官能数の架橋剤の含有量が上記範囲内であれば、一層良好な露光マージン拡大効果、トップロスの発生抑制効果、及びレジスト残渣の量の低減効果が得られる。さらに、所定の官能数の架橋剤の含有量が上記範囲内であれば、得られるレジストパターンを高解像度化することができる。 The content of the crosslinking agent can be further optimized according to the functionality of the crosslinking agent. For example, when the crosslinking agent is bifunctional, the content of the crosslinking agent is preferably 5 parts by mass or more and 50 parts by mass or less, with the total of the polymer A and the polymer B being 100 parts by mass. When the crosslinking agent is trifunctional, the content of the crosslinking agent is preferably 4 parts by mass or more and 40 parts by mass or less, with respect to the total of the polymer A and the polymer B being 100 parts by mass. Furthermore, when the crosslinking agent is pentafunctional, the content of the crosslinking agent is preferably 3 parts by mass or more and 30 parts by mass or less, with respect to the total of the polymer A and the polymer B being 100 parts by mass. If the content of the crosslinking agent with a predetermined functionality is within the above range, a better effect of expanding the exposure margin, an effect of suppressing the occurrence of top loss, and an effect of reducing the amount of resist residue can be obtained. Furthermore, if the content of the crosslinking agent with a predetermined functionality is within the above range, the obtained resist pattern can be made high-resolution.
<重合体A>
 本発明のレジスト組成物に含まれる重合体Aは、表面自由エネルギーが重合体Bの表面エネルギーよりも3mJ/m2以上高いものであれば、特に限定されない。そして、良好な露光マージン拡大効果、トップロスの発生抑制効果、及びレジスト残渣の量の低減効果が得られる観点から、重合体Aは、主鎖切断型の重合体であることが好ましい。なお、本明細書において、「主鎖切断型」とは、電子線などの電離放射線や波長300nm以下の非電離放射線などの露光光の照射により主鎖が切断されて低分子量化する重合体である。このような重合体としては、特に限定されず、例えば、特公平8-3636号公報、特開2020-134683号公報、国際公開第2019/150966号、及び国際公開第2020/066806号に記載されているものを用いることができる。
<Polymer A>
The polymer A contained in the resist composition of the present invention is not particularly limited as long as the surface free energy is 3 mJ / m 2 or more higher than the surface energy of the polymer B. From the viewpoint of obtaining a good exposure margin expansion effect, a top loss occurrence suppression effect, and an effect of reducing the amount of resist residue, it is preferable that the polymer A is a main chain scission type polymer. In this specification, the term "main chain scission type" refers to a polymer in which the main chain is scissed and the molecular weight is reduced by irradiation of exposure light such as ionizing radiation such as an electron beam or non-ionizing radiation with a wavelength of 300 nm or less. Such a polymer is not particularly limited, and for example, those described in JP-B-8-3636, JP-A-2020-134683, WO 2019/150966, and WO 2020/066806 can be used.
 そして、一層良好な露光マージン拡大効果、トップロス発生の抑制効果、及びレジスト残渣の量の低減効果が得られる観点からは、重合体Aは、下記式(I):
Figure JPOXMLDOC01-appb-C000011
〔式(I)中、R1は、ハロゲン原子、シアノ基、アルキルスルホニル基、アルコキシ基、ニトロ基、アシル基、アルキルエステル基又はハロゲン化アルキル基であり、R2は、水素原子又はフッ素原子の数が0以上20以下の有機基であり、R3及びR4は、水素原子、ハロゲン原子、非置換のアルキル基又はハロゲン原子で置換されたアルキル基であり、互いに同一でも異なっていてもよい。〕で表される単量体単位(I)を有することが好ましい。
From the viewpoint of obtaining a better effect of expanding the exposure margin, an effect of suppressing the occurrence of top loss, and an effect of reducing the amount of resist residue, the polymer A is preferably a compound represented by the following formula (I):
Figure JPOXMLDOC01-appb-C000011
[In formula (I), R 1 is a halogen atom, a cyano group, an alkylsulfonyl group, an alkoxy group, a nitro group, an acyl group, an alkyl ester group, or a halogenated alkyl group, R 2 is an organic group having hydrogen atoms or 0 to 20 fluorine atoms, and R 3 and R 4 are hydrogen atoms, halogen atoms, unsubstituted alkyl groups, or alkyl groups substituted with halogen atoms, and may be the same or different from each other.]
[単量体単位(I)]
 ここで、単量体単位(I)は、下記式(a):
Figure JPOXMLDOC01-appb-C000012
〔式(a)中、R1~R4は、式(I)と同様である。〕で表される単量体(a)に由来する構造単位である。
[Monomer unit (I)]
Here, the monomer unit (I) is represented by the following formula (a):
Figure JPOXMLDOC01-appb-C000012
(In the formula (a), R 1 to R 4 are the same as those in the formula (I)).
 式(I)及び式(a)中のR1、R3、R4を構成し得るハロゲン原子としては、例えば、塩素原子、フッ素原子、臭素原子、ヨウ素原子等が挙げられる。 Examples of halogen atoms which may constitute R 1 , R 3 and R 4 in formula (I) and formula (a) include a chlorine atom, a fluorine atom, a bromine atom and an iodine atom.
 式(I)及び式(a)中のR1を構成し得るアルキルスルホニル基としては、例えば、メチルスルホニル基、エチルスルホニル基等が挙げられる。 Examples of the alkylsulfonyl group which may constitute R 1 in formula (I) and formula (a) include a methylsulfonyl group, an ethylsulfonyl group, and the like.
 式(I)及び式(a)中のR1を構成し得るアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基等が挙げられる。 Examples of the alkoxy group which may constitute R 1 in formula (I) and formula (a) include a methoxy group, an ethoxy group, and a propoxy group.
 式(I)及び式(a)中のR1を構成し得るアシル基としては、例えば、ホルミル基、アセチル基、プロピオニル基等が挙げられる。 Examples of the acyl group which may constitute R 1 in formula (I) and formula (a) include a formyl group, an acetyl group, and a propionyl group.
 式(I)及び式(a)中のR1を構成し得るアルキルエステル基としては、例えば、メチルエステル基、エチルエステル基等が挙げられる。 Examples of the alkyl ester group which may constitute R 1 in formula (I) and formula (a) include a methyl ester group, an ethyl ester group, and the like.
 式(I)及び式(a)中のR1を構成し得るハロゲン化アルキル基としては、例えば、ハロゲン原子の数が1以上3以下のハロゲン化メチル等が挙げられる。 Examples of halogenated alkyl groups which may constitute R 1 in formula (I) and formula (a) include halogenated methyl groups having 1 to 3 halogen atoms.
 式(I)及び式(a)中のR2を構成し得るフッ素原子の数が0以上20以下の有機基は、芳香環を有していていもよいし、鎖状であってもよい。ここで、鎖状とは、直鎖及び分岐鎖を含む。このような有機基としては、例えば、フルオロアルキル基、フルオロアルコキシアルキル基、フルオロエトキシビニル基等のフルオロアルコキシアルケニル基等が挙げられる。 The organic group having 0 to 20 fluorine atoms that can constitute R2 in formula (I) and formula (a) may have an aromatic ring or may be chain-like. Here, chain-like includes straight chain and branched chain. Examples of such organic groups include fluoroalkyl groups, fluoroalkoxyalkyl groups, and fluoroalkoxyalkenyl groups such as fluoroethoxyvinyl groups.
 式(I)及び式(a)中のR3、R4を構成し得る非置換のアルキル基としては、例えば、非置換の炭素数1以上10以下のアルキル基が挙げられる。 Examples of the unsubstituted alkyl group which can constitute R 3 and R 4 in formula (I) and formula (a) include unsubstituted alkyl groups having 1 to 10 carbon atoms.
 式(I)及び式(a)中のR3及びR4を構成し得る、ハロゲン原子で置換されたアルキル基としては、例えば、アルキル基中の水素原子の一部又は全部を上述したハロゲン原子で置換した構造を有する基が挙げられる。 Examples of the alkyl group substituted with a halogen atom which may constitute R3 and R4 in formula (I) and formula (a) include groups having a structure in which some or all of the hydrogen atoms in an alkyl group are substituted with the above-mentioned halogen atoms.
 ここで、単量体(a)としては、特に限定されることなく、例えば、α-クロロアクリル酸2,2,2-トリフルオロエチル、α-クロロアクリル酸2,2,3,3,3-ペンタフルオロプロピル、α-クロロアクリル酸3,3,4,4,4-ペンタフルオロブチル、α-クロロアクリル酸1H-1-(トリフルオロメチル)トリフルオロエチル、α-クロロアクリル酸1H,1H,3H-ヘキサフルオロブチル、α-クロロアクリル酸1,2,2,2-テトラフルオロ-1-(トリフルオロメチル)エチル、α-クロロアクリル酸2,2,3,3,4,4,4-へプタフルオロブチル等のα-クロロアクリル酸フルオロアルキルエステル;α-クロロアクリル酸ペンタフルオロエトキシメチルエステル、α-クロロアクリル酸ペンタフルオロエトキシエチルエステル等のα-クロロアクリル酸フルオロアルコキシアルキルエステル;α-クロロアクリル酸ペンタフルオロエトキシビニルエステル等のα-クロロアクリル酸フルオロアルコキシアルケニルエステル;α-クロロアクリル酸-1-フェニル-1-トリフルオロメチル-2,2,2-トリフルオロエチル、α-クロロアクリル酸-1-フェニル-2,2,2-トリフルオロエチル、α-クロロアクリル酸-1-フェニル-2,2,3,3,3-ペンタフルオロプロピルなどが挙げられる。 Here, the monomer (a) is not particularly limited, and examples thereof include α-chloroacrylic acid fluoroesters such as 2,2,2-trifluoroethyl α-chloroacrylate, 2,2,3,3,3-pentafluoropropyl α-chloroacrylate, 3,3,4,4,4-pentafluorobutyl α-chloroacrylate, 1H-1-(trifluoromethyl)trifluoroethyl α-chloroacrylate, 1H,1H,3H-hexafluorobutyl α-chloroacrylate, 1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl α-chloroacrylate, and 2,2,3,3,4,4,4-heptafluorobutyl α-chloroacrylate. alkyl esters; α-chloroacrylic acid fluoroalkoxyalkyl esters such as α-chloroacrylic acid pentafluoroethoxymethyl ester and α-chloroacrylic acid pentafluoroethoxyethyl ester; α-chloroacrylic acid fluoroalkoxyalkenyl esters such as α-chloroacrylic acid pentafluoroethoxyvinyl ester; α-chloroacrylic acid-1-phenyl-1-trifluoromethyl-2,2,2-trifluoroethyl, α-chloroacrylic acid-1-phenyl-2,2,2-trifluoroethyl, α-chloroacrylic acid-1-phenyl-2,2,3,3,3-pentafluoropropyl, etc.
 なお、重合体Aが単量体単位(I)を有する場合、重合体Aは、単量体単位(I)以外の任意の単量体単位を有していてもよい。 When polymer A has monomer unit (I), polymer A may have any monomer unit other than monomer unit (I).
 そして、一層良好な露光マージン拡大効果、トップロス発生抑制効果、及びレジスト残渣の量の低減効果が得られる観点から、重合体Aとして、下記式(II):
Figure JPOXMLDOC01-appb-C000013
〔式(II)中、Lは、フッ素原子を有する2価の連結基であり、Arは、置換基を有していてもよい芳香環基であり、R5は、ハロゲン原子、シアノ基、アルキルスルホニル基、アルコキシ基、ニトロ基、アシル基、アルキルエステル基又はハロゲン化アルキル基であり、R6及びR7は、水素原子、ハロゲン原子、非置換のアルキル基又はハロゲン原子で置換されたアルキル基であり、互いに同一でも異なっていてもよい。〕で表わされる単量体単位(II)と、下記式(III):
Figure JPOXMLDOC01-appb-C000014
〔式(III)中、R8、R11、及びR12は、水素原子、ハロゲン原子、非置換のアルキル基又はハロゲン原子で置換されたアルキル基であり、互いに同一でも異なっていてもよく、R9は、水素原子、ハロゲン原子、カルボキシル基、ハロゲン化カルボキシル基、非置換のアルキル基又はハロゲン原子で置換されたアルキル基であり、R10は、水素原子、非置換のアルキル基又はハロゲン原子で置換されたアルキル基であり、p及びqは、0以上5以下の整数であり、p+q=5である。〕で表される単量体単位(III)とを有する共重合体Aを用いることが好ましい。
From the viewpoint of obtaining a better effect of expanding the exposure margin, suppressing the occurrence of top loss, and reducing the amount of resist residue, it is preferable that the polymer A is a compound represented by the following formula (II):
Figure JPOXMLDOC01-appb-C000013
[In formula (II), L is a divalent linking group having a fluorine atom, Ar is an aromatic ring group which may have a substituent, R5 is a halogen atom, a cyano group, an alkylsulfonyl group, an alkoxy group, a nitro group, an acyl group, an alkyl ester group or a halogenated alkyl group, and R6 and R7 are a hydrogen atom, a halogen atom, an unsubstituted alkyl group or an alkyl group substituted with a halogen atom, and may be the same or different from each other.] and a monomer unit (II) represented by the following formula (III):
Figure JPOXMLDOC01-appb-C000014
[In formula (III), R 8 , R 11 , and R 12 are hydrogen atoms, halogen atoms, unsubstituted alkyl groups, or alkyl groups substituted with halogen atoms, and may be the same or different from each other, R 9 is hydrogen atoms, halogen atoms, carboxyl groups, halogenated carboxyl groups, unsubstituted alkyl groups, or alkyl groups substituted with halogen atoms, R 10 is hydrogen atoms, unsubstituted alkyl groups, or alkyl groups substituted with halogen atoms, and p and q are integers of 0 to 5, and p+q=5.]
 なお、共重合体Aが単量体単位(II)と単量体単位(III)とを有する場合、共重合体Aは、単量体単位(II)及び単量体単位(III)以外の任意の単量体単位を有していてもよいが、共重合体Aを構成する全単量体単位中で単量体単位(II)及び単量体単位(III)が占める割合は、合計で90mоl%以上であることが好ましく、100mоl%である(すなわち、共重合体Aは、単量体単位(II)及び単量体単位(III)のみを有する)ことがより好ましい。 When copolymer A has monomer unit (II) and monomer unit (III), copolymer A may have any monomer unit other than monomer unit (II) and monomer unit (III), but the total proportion of monomer unit (II) and monomer unit (III) in all monomer units constituting copolymer A is preferably 90 mol% or more, and more preferably 100 mol% (i.e., copolymer A has only monomer unit (II) and monomer unit (III)).
 また、上述した共重合体Aは、単量体単位(II)及び単量体単位(III)を有する限り、例えば、ランダム共重合体、ブロック共重合体、交互共重合体などのいずれであってもよいが、交互共重合体であることが好ましい。なお、本明細書において、交互共重合体は、例えば、上述した単量体単位(II)及び単量体単位(III)が交互に結合した共重合体である。すなわち、模式的に示すと、各単量体単位は、「(II)-(III)-(II)-(III)-」のように結合している。 The above-mentioned copolymer A may be, for example, a random copolymer, a block copolymer, an alternating copolymer, or the like, so long as it has the monomer unit (II) and the monomer unit (III), but is preferably an alternating copolymer. In this specification, an alternating copolymer is, for example, a copolymer in which the above-mentioned monomer unit (II) and monomer unit (III) are alternately bonded. In other words, when shown diagrammatically, the individual monomer units are bonded as "(II)-(III)-(II)-(III)-".
 そして、共重合体Aは、単量体単位(II)及び単量体単位(III)を含んでいるので、露光光が照射されると、主鎖が切断されて低分子量化する。 Since copolymer A contains monomer units (II) and (III), when it is irradiated with exposure light, the main chain is cut and the molecular weight is reduced.
[単量体単位(II)]
 ここで、単量体単位(II)は、下記式(b):
Figure JPOXMLDOC01-appb-C000015
〔式(b)中、L、Ar、及びR5~R7は、式(II)と同様である。〕で表される単量体(b)に由来する構造単位である。
[Monomer unit (II)]
Here, the monomer unit (II) is represented by the following formula (b):
Figure JPOXMLDOC01-appb-C000015
In the formula (b), L, Ar, and R 5 to R 7 are the same as those in the formula (II).
 式(II)及び式(b)中のLを構成し得る、フッ素原子を有する2価の連結基としては、例えば、フッ素原子を有する炭素数1~5の2価の鎖状アルキル基等が挙げられる。 Examples of divalent linking groups having fluorine atoms that may constitute L in formula (II) and formula (b) include divalent chain alkyl groups having 1 to 5 carbon atoms and having fluorine atoms.
 式(II)及び式(b)中のArを構成し得る、置換基を有していてもよい芳香環基としては、置換基を有していてもよい芳香族炭化水素環基、及び、置換基を有していてもよい芳香族複素環基が挙げられる。 The aromatic ring group which may have a substituent and which may constitute Ar in formula (II) and formula (b) includes an aromatic hydrocarbon ring group which may have a substituent, and an aromatic heterocyclic group which may have a substituent.
 芳香族炭化水素環基としては、特に限定されることなく、例えば、ベンゼン環基、ビフェニル環基、ナフタレン環基、アズレン環基、アントラセン環基、フェナントレン環基、ピレン環基、クリセン環基、ナフタセン環基、トリフェニレン環基、o-テルフェニル環基、m-テルフェニル環基、p-テルフェニル環基、アセナフテン環基、コロネン環基、フルオレン環基、フルオランテン環基、ペンタセン環基、ペリレン環基、ペンタフェン環基、ピセン環基、ピラントレン環基等が挙げられる。 Aromatic hydrocarbon ring groups include, but are not limited to, a benzene ring group, a biphenyl ring group, a naphthalene ring group, an azulene ring group, an anthracene ring group, a phenanthrene ring group, a pyrene ring group, a chrysene ring group, a naphthacene ring group, a triphenylene ring group, an o-terphenyl ring group, an m-terphenyl ring group, a p-terphenyl ring group, an acenaphthene ring group, a coronene ring group, a fluorene ring group, a fluoranthene ring group, a pentacene ring group, a perylene ring group, a pentaphene ring group, a picene ring group, a pyranthrene ring group, and the like.
 芳香族複素環基としては、特に限定されることなく、例えば、フラン環基、チオフェン環基、ピリジン環基、ピリダジン環基、ピリミジン環基、ピラジン環基、トリアジン環基、オキサジアゾール環基、トリアゾール環基、イミダゾール環基、ピラゾール環基、チアゾール環基、インドール環基、ベンゾイミダゾール環基、ベンゾチアゾール環基、ベンゾオキサゾール環基、キノキサリン環基、キナゾリン環基、フタラジン環基、ベンゾフラン環基、ジベンゾフラン環基、ベンゾチオフェン環基、ジベンゾチオフェン環基、カルバゾール環基等が挙げられる。 Aromatic heterocyclic groups include, but are not limited to, a furan ring group, a thiophene ring group, a pyridine ring group, a pyridazine ring group, a pyrimidine ring group, a pyrazine ring group, a triazine ring group, an oxadiazole ring group, a triazole ring group, an imidazole ring group, a pyrazole ring group, a thiazole ring group, an indole ring group, a benzimidazole ring group, a benzothiazole ring group, a benzoxazole ring group, a quinoxaline ring group, a quinazoline ring group, a phthalazine ring group, a benzofuran ring group, a dibenzofuran ring group, a benzothiophene ring group, a dibenzothiophene ring group, a carbazole ring group, and the like.
 Arが有し得る置換基としては、特に限定されることなく、例えば、アルキル基、フッ素原子及びフルオロアルキル基が挙げられる。そして、Arが有し得る置換基としてのアルキル基としては、例えば、メチル基、エチル基、プロピル基、n-ブチル基、イソブチル基などの炭素数1~6の鎖状アルキル基が挙げられる。また、Arが有し得る置換基としてのフルオロアルキル基としては、例えば、トリフルオロメチル基、トリフルオロエチル基、ペンタフルオロプロピル基などの炭素数1~5のフルオロアルキル基が挙げられる。 The substituents that Ar may have include, but are not limited to, alkyl groups, fluorine atoms, and fluoroalkyl groups. Examples of the alkyl groups that Ar may have as substituents include linear alkyl groups having 1 to 6 carbon atoms, such as methyl groups, ethyl groups, propyl groups, n-butyl groups, and isobutyl groups. Examples of the fluoroalkyl groups that Ar may have as substituents include fluoroalkyl groups having 1 to 5 carbon atoms, such as trifluoromethyl groups, trifluoroethyl groups, and pentafluoropropyl groups.
 中でも、電離放射線等に対する感度を十分に向上させる観点からは、式(II)及び式(b)中のArとしては、置換基を有していてもよい芳香族炭化水素環基が好ましく、非置換の芳香族炭化水素環基がより好ましく、ベンゼン環基(フェニル基)が更に好ましい。 From the viewpoint of sufficiently improving the sensitivity to ionizing radiation, etc., Ar in formula (II) and formula (b) is preferably an aromatic hydrocarbon ring group which may have a substituent, more preferably an unsubstituted aromatic hydrocarbon ring group, and even more preferably a benzene ring group (phenyl group).
 式(II)及び式(b)中のR5を構成し得るハロゲン原子としては、式(I)及び式(a)中のR1を構成し得るハロゲン原子と同様の原子が挙げられる。 Examples of halogen atoms which may constitute R5 in formula (II) and formula (b) include the same atoms as the halogen atoms which may constitute R1 in formula (I) and formula (a).
 式(II)及び式(b)中のR5を構成し得るアルキルスルホニル基としては、式(I)及び式(a)中のR1を構成し得るアルキルスルホニル基と同様の基が挙げられる。 Alkylsulfonyl groups which may constitute R5 in formula (II) and formula (b) include the same groups as the alkylsulfonyl groups which may constitute R1 in formula (I) and formula (a).
 式(II)及び式(b)中のR5を構成し得るアルコキシ基としては、式(I)及び式(a)中のR1を構成し得るアルコキシ基と同様の基が挙げられる。 Alkoxy groups which may constitute R5 in formula (II) and formula (b) include the same groups as the alkoxy groups which may constitute R1 in formula (I) and formula (a).
 式(II)及び式(b)中のR5を構成し得るアシル基としては、式(I)及び式(a)中のR1を構成し得るアシル基と同様の基が挙げられる。 Examples of acyl groups which may constitute R5 in formulae (II) and (b) include the same acyl groups as those which may constitute R1 in formulae (I) and (a).
 式(II)及び式(b)中のR5を構成し得るアルキルエステル基としては、式(I)及び式(a)中のR1を構成し得るアルキルエステル基と同様の基が挙げられる。 Alkyl ester groups which may constitute R5 in formula (II) and formula (b) include the same groups as the alkyl ester groups which may constitute R1 in formula (I) and formula (a).
 式(II)及び式(b)中のR5を構成し得るハロゲン化アルキル基としては、式(I)及び式(a)中のR1を構成し得るハロゲン化アルキル基と同様の基が挙げられる。 Examples of halogenated alkyl groups which may constitute R5 in formula (II) and formula (b) include the same groups as the halogenated alkyl groups which may constitute R1 in formula (I) and formula (a).
 式(II)及び式(b)中のR6、R7を構成し得るハロゲン原子としては、式(I)及び式(a)中のR1を構成し得るハロゲン原子と同様の原子が挙げられる。 Examples of halogen atoms which may constitute R 6 and R 7 in formulae (II) and (b) include the same atoms as the halogen atoms which may constitute R 1 in formulae (I) and (a).
 式(II)及び式(b)中のR6、R7を構成し得る非置換のアルキル基としては、式(I)及び式(a)中のR3、R4を構成し得る非置換のアルキル基と同様の基が挙げられる。 The unsubstituted alkyl groups which may constitute R6 and R7 in formula (II) and formula (b) include the same groups as the unsubstituted alkyl groups which may constitute R3 and R4 in formula (I) and formula (a).
式(II)及び式(b)中のR6、R7を構成し得るハロゲン原子で置換されたアルキル基としては、式(I)及び式(a)中のR3、R4を構成し得るハロゲン原子で置換されたアルキル基と同様の基が挙げられる。 Examples of alkyl groups substituted with halogen atoms which may constitute R6 and R7 in formula (II) and formula (b) include the same groups as the alkyl groups substituted with halogen atoms which may constitute R3 and R4 in formula (I) and formula (a).
 そして、電離放射線等に対する感度を十分に向上させる観点からは、式(b)で表される単量体(b)としては、α-クロロアクリル酸-1-フェニル-1-トリフルオロメチル-2,2,2-トリフルオロエチル(ACAFPh)及びα-クロロアクリル酸-1-(4-メトキシフェニル)-1-トリフルオロメチル-2,2,2-トリフルオロエチル(ACAFPhOMe)が好ましく、α-クロロアクリル酸-1-フェニル-1-トリフルオロメチル-2,2,2-トリフルオロエチルがより好ましい。すなわち、共重合体Aは、α-クロロアクリル酸-1-フェニル-1-トリフルオロメチル-2,2,2-トリフルオロエチル単位及びα-クロロアクリル酸-1-(4-メトキシフェニル)-1-トリフルオロメチル-2,2,2-トリフルオロエチル単位の少なくとも一方を有することが好ましく、α-クロロアクリル酸-1-フェニル-1-トリフルオロメチル-2,2,2-トリフルオロエチル単位を有することがより好ましい。 In order to sufficiently improve the sensitivity to ionizing radiation, etc., the monomer (b) represented by formula (b) is preferably α-chloroacrylic acid-1-phenyl-1-trifluoromethyl-2,2,2-trifluoroethyl (ACAFPh) and α-chloroacrylic acid-1-(4-methoxyphenyl)-1-trifluoromethyl-2,2,2-trifluoroethyl (ACAFPhOMe), and more preferably α-chloroacrylic acid-1-phenyl-1-trifluoromethyl-2,2,2-trifluoroethyl. In other words, it is preferable for the copolymer A to have at least one of α-chloroacrylic acid-1-phenyl-1-trifluoromethyl-2,2,2-trifluoroethyl units and α-chloroacrylic acid-1-(4-methoxyphenyl)-1-trifluoromethyl-2,2,2-trifluoroethyl units, and more preferably α-chloroacrylic acid-1-phenyl-1-trifluoromethyl-2,2,2-trifluoroethyl units.
 共重合体A中の単量体単位(II)の割合は、特に限定されず、例えば、共重合体A中の全単量体単位を100mоl%とした場合に、30mоl%以上70mоl%以下とすることができる。 The proportion of monomer units (II) in copolymer A is not particularly limited, and can be, for example, 30 mol % or more and 70 mol % or less, assuming that the total monomer units in copolymer A are 100 mol %.
[単量体単位(III)]
 単量体単位(III)は、下記式(c):
Figure JPOXMLDOC01-appb-C000016
〔式(c)中、R8~R12、p及びqは、式(III)と同様である。〕で表される単量体(c)に由来する構造単位である。
[Monomer unit (III)]
The monomer unit (III) is represented by the following formula (c):
Figure JPOXMLDOC01-appb-C000016
In the formula (c), R 8 to R 12 , p and q are the same as those in the formula (III).
 式(III)及び式(c)中のR8、R11及びR12のハロゲン原子を構成し得るハロゲン原子としては、例えば、式(I)及び式(a)中のR1を構成し得るハロゲン原子と同様の原子が挙げられる。 Examples of halogen atoms that may constitute R 8 , R 11 and R 12 in formula (III) and formula (c) include the same atoms as the halogen atoms that may constitute R 1 in formula (I) and formula (a).
 式(III)及び式(c)中のR8、R11及びR12を構成し得る非置換のアルキル基を構成し得るアルキル基としては、例えば、式(I)及び式(a)中のR3、R4を構成し得る非置換のアルキル基と同様の基が挙げられる。中でも、R8を構成し得る非置換のアルキル基としては、メチル基又はエチル基が好ましい。 Examples of the alkyl group that can constitute the unsubstituted alkyl group that can constitute R8 , R11 , and R12 in formula (III) and formula (c) include the same groups as the unsubstituted alkyl groups that can constitute R3 and R4 in formula (I) and formula (a). Among them, the unsubstituted alkyl group that can constitute R8 is preferably a methyl group or an ethyl group.
 式(III)及び式(c)中のR8、R11及びR12を構成し得るハロゲン原子で置換されたアルキル基としては、例えば、式(I)及び式(a)中のR3、R4を構成し得るハロゲン原子で置換されたアルキル基と同様の基が挙げられる。 Examples of the alkyl group substituted with a halogen atom which may constitute R8 , R11 , and R12 in formula (III) and formula (c) include the same groups as the alkyl group substituted with a halogen atom which may constitute R3 and R4 in formula (I) and formula (a).
 式(III)及び式(c)中のR9を構成し得るハロゲン原子としては、例えば、式(I)及び式(a)中のR1を構成し得るハロゲン原子と同様の原子が挙げられる。中でも、ハロゲン原子としては、フッ素原子が好ましい。 Examples of halogen atoms that may constitute R9 in formula (III) and formula (c) include the same atoms as the halogen atoms that may constitute R1 in formula (I) and formula (a). Among them, the halogen atom is preferably a fluorine atom.
 式(III)及び式(c)中のR9を構成し得るハロゲン化カルボキシル基としては、例えば、塩化カルボキシル基(-C(=O)-Cl)、フッ化カルボキシル基(-C(=O)-F)、臭化カルボキシル基(-C(=O)-Br)等が挙げられる。 Examples of halogenated carboxyl groups which may constitute R 9 in formula (III) and formula (c) include a chlorocarboxyl group (-C(=O)-Cl), a fluorinated carboxyl group (-C(=O)-F), a brominated carboxyl group (-C(=O)-Br), and the like.
 式(III)及び式(c)中のR9を構成し得る非置換のアルキル基としては、例えば、式(I)及び式(a)中のR3、R4を構成し得る非置換のアルキル基と同様の基が挙げられる。 Examples of the unsubstituted alkyl group that may constitute R9 in formula (III) and formula (c) include the same groups as the unsubstituted alkyl groups that may constitute R3 and R4 in formula (I) and formula (a).
 式(III)及び式(c)中のR9を構成し得るハロゲン原子で置換されたアルキル基としては、例えば、式(I)及び式(a)中のR3、R4を構成し得るハロゲン原子で置換されたアルキル基と同様の基が挙げられる。 Examples of the alkyl group substituted with a halogen atom which may constitute R9 in formula (III) and formula (c) include the same groups as the alkyl groups substituted with a halogen atom which may constitute R3 and R4 in formula (I) and formula (a).
 式(III)及び式(c)中のR10を構成し得る非置換のアルキル基としては、例えば、式(I)及び式(a)中のR3、R4を構成し得る非置換のアルキル基と同様の基が挙げられる。 Examples of the unsubstituted alkyl group which may constitute R10 in formula (III) and formula (c) include the same groups as the unsubstituted alkyl groups which may constitute R3 and R4 in formula (I) and formula (a).
 式(III)及び式(c)中のR10を構成し得るハロゲン原子で置換されたアルキル基としては、例えば、式(I)及び式(a)中のR3、R4を構成し得るハロゲン原子で置換されたアルキル基と同様の基が挙げられる。 Examples of the alkyl group substituted with a halogen atom which may constitute R10 in formula (III) and formula (c) include the same groups as the alkyl groups substituted with a halogen atom which may constitute R3 and R4 in formula (I) and formula (a).
 式(III)及び式(c)において、pが2以上である場合、各R9は、互いに、同一であっても、異なっていてもよい。また、qが2以上である場合、各R10は、互いに、同一であっても、異なっていてもよい。 In formula (III) and formula (c), when p is 2 or more, each R 9 may be the same as or different from each other. When q is 2 or more, each R 10 may be the same as or different from each other.
 そして、共重合体Aの調製の容易性及び電離放射線等を照射した際の主鎖の切断性を向上させる観点からは、式(III)及び式(c)中のR8は、炭素数1~5のアルキル基であることが好ましく、メチル基であることが好ましい。 From the viewpoints of easiness in preparation of Copolymer A and improvement in severability of the main chain upon irradiation with ionizing radiation or the like, R 8 in formula (III) and formula (c) is preferably an alkyl group having 1 to 5 carbon atoms, and more preferably a methyl group.
 また、共重合体Aの調製の容易性及び電離放射線等を照射した際の主鎖の切断性を向上させる観点からは、式(III)及び式(c)中のpは、0又は1であることが好ましい。 In addition, from the viewpoint of facilitating the preparation of copolymer A and improving the severability of the main chain when irradiated with ionizing radiation or the like, it is preferable that p in formula (III) and formula (c) is 0 or 1.
 さらに、式(III)及び式(c)中のpが1~5のいずれかである場合、式(III)及び式(c)中のR9は、炭素数1~5のアルキル基であることが好ましく、メチル基であることがより好ましい。 Furthermore, when p in formula (III) and formula (c) is any one of 1 to 5, R 9 in formula (III) and formula (c) is preferably an alkyl group having 1 to 5 carbon atoms, and more preferably a methyl group.
 式(c)で表される単量体(c)としては、特に限定されることなく、例えば、以下の単量体(c-1)~(c-12)等のα-メチルスチレン(AMS)及びその誘導体が挙げられる。 The monomer (c) represented by formula (c) is not particularly limited, and examples thereof include α-methylstyrene (AMS) and its derivatives, such as the following monomers (c-1) to (c-12).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 なお、共重合体Aの調製の容易性、及び電離放射線等を照射した際の主鎖の切断性を向上させる観点からは、単量体(c)としては、α-メチルスチレン(c-1)が好ましい。すなわち、共重合体Aは、α-メチルスチレン単位を有することが好ましい。 In addition, from the viewpoint of ease of preparation of copolymer A and improving the severability of the main chain when irradiated with ionizing radiation, etc., α-methylstyrene (c-1) is preferred as monomer (c). In other words, copolymer A preferably has α-methylstyrene units.
 共重合体A中の単量体単位(I)の割合は、特に限定されず、共重合体A中の全単量体単位を100mоl%とした場合に、30mоl%以上70mоl%以下とすることができる。 The proportion of monomer units (I) in copolymer A is not particularly limited, and can be 30 mol % or more and 70 mol % or less, assuming that the total monomer units in copolymer A are 100 mol %.
<重合体Aの性状>
[表面自由エネルギー]
 重合体Aの表面自由エネルギーは、28mJ/m2以上であることが好ましく、29mJ/m2以上であることがより好ましく、30mJ/m2以上であることが更に好ましく、35mJ/m2以下であることが好ましく、34mJ/m2以下であることがより好ましく、33mJ/m2以下であることが更に好ましい。
 なお、重合体Aの表面自由エネルギーは、重合体Aを構成する単量体単位の種類や割合によって調整することができる。
<Properties of Polymer A>
[Surface free energy]
The surface free energy of polymer A is preferably 28 mJ/ m2 or more, more preferably 29 mJ/ m2 or more, and even more preferably 30 mJ/ m2 or more, and is preferably 35 mJ/ m2 or less, more preferably 34 mJ/ m2 or less, and even more preferably 33 mJ/ m2 or less.
The surface free energy of the polymer A can be adjusted by the types and ratio of the monomer units constituting the polymer A.
[重量平均分子量]
 重合体Aの重量平均分子量(Mw)は、100000以上であることが好ましく、125000以上であることがより好ましく、150000以上であることが好ましく、600000以下であることがより好ましく、500000以下であることがより好ましい。重合体Aの重量平均分子量が上記下限値以上であれば、トップロスの発生を更に抑制して、コントラストが更に向上したレジストパターンを形成することができる。また、重合体Aの重量平均分子量が上記上限値以下であれば、レジスト組成物を容易に調製することができる。
[Weight average molecular weight]
The weight average molecular weight (Mw) of the polymer A is preferably 100,000 or more, more preferably 125,000 or more, preferably 150,000 or more, more preferably 600,000 or less, and more preferably 500,000 or less. If the weight average molecular weight of the polymer A is the above lower limit or more, the occurrence of top loss can be further suppressed, and a resist pattern with further improved contrast can be formed. In addition, if the weight average molecular weight of the polymer A is the above upper limit or less, the resist composition can be easily prepared.
[数平均分子量]
 重合体Aの数平均分子量(Mn)は、100000以上であることが好ましく、110000以上であることがより好ましく、300000以下であることが好ましく、200000以下であることがより好ましい。重合体Aの数平均分子量が上記下限値以上であれば、トップロスの発生を更に抑制して、コントラストが更に向上したレジストパターンを形成することができる。また、重合体Aの数平均分子量が上記上限値以下であれば、レジスト組成物を更に容易に調製することができる。
[Number average molecular weight]
The number average molecular weight (Mn) of the polymer A is preferably 100,000 or more, more preferably 110,000 or more, and is preferably 300,000 or less, and more preferably 200,000 or less. If the number average molecular weight of the polymer A is equal to or more than the lower limit, the occurrence of top loss can be further suppressed, and a resist pattern with further improved contrast can be formed. If the number average molecular weight of the polymer A is equal to or less than the upper limit, the resist composition can be more easily prepared.
[分子量分布]
 重合体Aの分子量分布は、1.20以上であることが好ましく、1.25以上であることがより好ましく、1.30以上であることが更に好ましく、2.00以下であることが好ましく、1.80以下であることがより好ましく、1.60以下であることが更に好ましい。
 なお、本明細書において、「分子量分布」は、数平均分子量に対する重量平均分子量の比(Mw/Mn)を算出して求めることができる。そして、「重量平均分子量」、「数平均分子量」は、ゲル浸透クロマトグラフィーを使用し、標準ポリスチレン換算値として測定することができる。
[Molecular weight distribution]
The molecular weight distribution of polymer A is preferably 1.20 or more, more preferably 1.25 or more, and even more preferably 1.30 or more, and is preferably 2.00 or less, more preferably 1.80 or less, and even more preferably 1.60 or less.
In this specification, the "molecular weight distribution" can be determined by calculating the ratio of the weight average molecular weight to the number average molecular weight (Mw/Mn). The "weight average molecular weight" and the "number average molecular weight" can be measured using gel permeation chromatography in terms of standard polystyrene.
[重合体Aの調製方法]
 重合体Aの調製方法は、特に限定されない。以下、重合体Aとして、上述した単量体単位(II)と単量体単位(III)とを有する共重合体Aの調製方法について具体的に説明するが、本発明のレジスト組成物で用いられる重合体A及びその調製方法は、以下に示すものに限定されない。
[Method for preparing polymer A]
There is no particular limitation on the method for preparing the polymer A. Hereinafter, a method for preparing the copolymer A having the above-mentioned monomer unit (II) and monomer unit (III) as the polymer A will be specifically described, but the polymer A used in the resist composition of the present invention and the method for preparing the same are not limited to those shown below.
 単量体単位(II)と単量体単位(III)とを有する共重合体Aは、上述した単量体(b)と、単量体(c)と、これらの単量体と共重合可能な任意の単量体と含む単量体組成物を重合させた後、得られた共重合体Aを回収し、任意に精製することにより調製することができる。
 なお、共重合体Aの重量平均分子量、数平均分子量及び分子量分布は、重合条件及び精製条件を変更することにより調整することができる。具体的には、例えば、重量平均分子量及び数平均分子量は、重合時間を短くすれば、大きくすることができる。また、精製を行えば、分子量分布を小さくすることができる。
The copolymer A having the monomer unit (II) and the monomer unit (III) can be prepared by polymerizing a monomer composition containing the above-mentioned monomer (b), monomer (c), and any monomer copolymerizable with these monomers, and then recovering the obtained copolymer A and optionally purifying it.
The weight average molecular weight, number average molecular weight and molecular weight distribution of the copolymer A can be adjusted by changing the polymerization conditions and purification conditions. Specifically, for example, the weight average molecular weight and number average molecular weight can be increased by shortening the polymerization time. Furthermore, the molecular weight distribution can be narrowed by performing purification.
-単量体組成物の重合-
 共重合体Aの調製に用いる単量体組成物としては、単量体(b)及び単量体(c)を含む単量体成分と、任意で使用可能な重合開始剤と、任意に添加される添加剤との混合物を用いることができる。そして、単量体組成物の重合は、既知の方法を用いて行うことができる。中でも、溶媒としては、シクロペンタノン、水等を用いることが好ましい。また、重合開始剤としては、例えば、アゾビスイソブチロニトリル等を用いることが好ましい。
- Polymerization of monomer composition -
The monomer composition used in the preparation of copolymer A may be a mixture of monomer components including monomer (b) and monomer (c), an optional polymerization initiator, and an optional additive. The polymerization of the monomer composition may be carried out using a known method. Among them, it is preferable to use cyclopentanone, water, or the like as the solvent. It is also preferable to use, for example, azobisisobutyronitrile, or the like as the polymerization initiator.
 単量体組成物を重合して得られた重合物は、特に限定されることなく、重合物を含む溶液にテトラヒドロフラン等の良溶媒を添加した後、良溶媒を添加した溶液をメタノール、エタノール、1-プロパノール、1-ブタノール、1-ペンタノール、ヘキサン等の貧溶媒中に滴下して重合物を凝固させることにより回収することができる。 The polymer obtained by polymerizing the monomer composition can be recovered by adding a good solvent such as tetrahydrofuran to a solution containing the polymer, without any particular limitations, and then dripping the solution with the good solvent into a poor solvent such as methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, or hexane to solidify the polymer.
-重合物の精製-
 得られた重合物を精製する場合に用いる精製方法としては、特に限定されることなく、再沈殿法やカラムクロマトグラフィー法等の既知の精製方法が挙げられる。中でも、精製方法としては、再沈殿法を用いることが好ましい。
 なお、重合物の精製は、複数回繰り返して実施してもよい。
- Purification of polymer -
The purification method used for purifying the obtained polymer is not particularly limited, and examples thereof include known purification methods such as reprecipitation and column chromatography. Among them, the reprecipitation method is preferably used as the purification method.
The purification of the polymer may be repeated several times.
 再沈殿法による重合物の精製は、例えば、得られた重合物をテトラヒドロフラン等の良溶媒に溶解した後、得られた溶液を、テトラヒドロフラン等の良溶媒とメタノール、エタノール、1-プロパノール、1-ブタノール、1-ペンタノール、ヘキサン等の貧溶媒との混合溶媒に滴下し、重合物の一部を析出させることにより行うことが好ましい。このように、良溶媒と貧溶媒との混合溶媒中に重合物の溶液を滴下して精製を行えば、良溶媒及び貧溶媒の種類や混合比率を変更することにより、得られる共重合体Aの分子量分布、数平均分子量及び重量平均分子量を容易に調整することができる。具体的には、例えば、混合溶媒中の良溶媒の割合を高めるほど、混合溶媒中で析出する共重合体Aの分子量を大きくすることができる。 The purification of the polymer by the reprecipitation method is preferably carried out, for example, by dissolving the obtained polymer in a good solvent such as tetrahydrofuran, and then dripping the obtained solution into a mixed solvent of a good solvent such as tetrahydrofuran and a poor solvent such as methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, hexane, etc., to precipitate a part of the polymer. In this way, by purifying by dripping a solution of the polymer into a mixed solvent of a good solvent and a poor solvent, the molecular weight distribution, number average molecular weight, and weight average molecular weight of the obtained copolymer A can be easily adjusted by changing the type and mixing ratio of the good solvent and poor solvent. Specifically, for example, the molecular weight of the copolymer A precipitated in the mixed solvent can be increased by increasing the proportion of the good solvent in the mixed solvent.
 再沈殿法により重合物を精製する場合、共重合体Aとしては、所望の性状を満たせば、良溶媒と貧溶媒との混合溶媒中で析出した重合物を用いてもよいし、混合溶媒中で析出しなかった重合物(すなわち、混合溶媒中に溶解している重合物)を用いてもよい。ここで、混合溶媒中で析出しなかった重合物は、濃縮乾固等の既知の手法を用いて混合溶媒中から回収することができる。 When purifying a polymer by the reprecipitation method, the polymer precipitated in a mixed solvent of a good solvent and a poor solvent may be used as copolymer A as long as it satisfies the desired properties, or the polymer that did not precipitate in the mixed solvent (i.e., the polymer that is dissolved in the mixed solvent) may be used. Here, the polymer that did not precipitate in the mixed solvent can be recovered from the mixed solvent using a known method such as concentration to dryness.
<重合体B>
 本発明のレジスト組成物に含まれる重合体Bは、表面自由エネルギーが重合体Aの表面自由エネルギーよりも3mJ/m2以上低いものであれば、特に限定されない。そして、良好な露光マージン拡大効果、トップロスの発生抑制効果、及びレジスト残渣の量の低減効果が得られる観点から、重合体Bは、主鎖切断型の重合体であることが好ましい。
<Polymer B>
There are no particular limitations on polymer B contained in the resist composition of the present invention, so long as its surface free energy is at least 3 mJ/ m2 lower than the surface free energy of polymer A. From the viewpoint of obtaining a favorable effect of expanding the exposure margin, an effect of suppressing the occurrence of top loss, and an effect of reducing the amount of resist residue, polymer B is preferably a main chain cleavage type polymer.
 そして、一層良好な露光マージン拡大効果、トップロス発生の抑制効果、及びレジスト残渣の量の低減効果が得られる観点からは、重合体Bは、下記式(I):
Figure JPOXMLDOC01-appb-C000018
〔式(I)中、R1は、ハロゲン原子、シアノ基、アルキルスルホニル基、アルコキシ基、ニトロ基、アシル基、アルキルエステル基又はハロゲン化アルキル基であり、R2は、水素原子又はフッ素原子の数が0以上20以下の有機基であり、R3及びR4は、水素原子、ハロゲン原子、非置換のアルキル基又はハロゲン原子で置換されたアルキル基であり、互いに同一でも異なっていてもよい。〕で表される単量体単位(I)を有することが好ましい。
 なお、重合体Bが有し得る単量体単位(I)は、上述した重合体Aが有し得る単量体単位(I)と同様である。また、重合体Bが有し得る単量体単位(I)を形成し得る単量体は、上述した単量体(a)と同様のため、ここでの説明は省略する。
From the viewpoint of obtaining a better effect of expanding the exposure margin, an effect of suppressing the occurrence of top loss, and an effect of reducing the amount of resist residue, the polymer B is preferably a polymer represented by the following formula (I):
Figure JPOXMLDOC01-appb-C000018
[In formula (I), R 1 is a halogen atom, a cyano group, an alkylsulfonyl group, an alkoxy group, a nitro group, an acyl group, an alkyl ester group, or a halogenated alkyl group, R 2 is an organic group having hydrogen atoms or 0 to 20 fluorine atoms, and R 3 and R 4 are hydrogen atoms, halogen atoms, unsubstituted alkyl groups, or alkyl groups substituted with halogen atoms, and may be the same or different from each other.]
The monomer unit (I) that the polymer B may have is the same as the monomer unit (I) that the polymer A may have. In addition, the monomer that may form the monomer unit (I) that the polymer B may have is the same as the monomer (a) that is described above, and therefore the description thereof will be omitted here.
 また、重合体Bが単量体単位(I)を有する場合、重合体Bは、単量体単位(I)以外の任意の単量体単位を有していてもよい。 In addition, when polymer B has monomer unit (I), polymer B may have any monomer unit other than monomer unit (I).
 そして、一層良好な露光マージン拡大効果、トップロス発生抑制効果、及びレジスト残渣の量の低減効果が得られる観点から、重合体Bとして、下記式(IV):
Figure JPOXMLDOC01-appb-C000019
〔式(IV)中、R13は、ハロゲン原子、シアノ基、アルキルスルホニル基、アルコキシ基、ニトロ基、アシル基、アルキルエステル基又はハロゲン化アルキル基であり、R14は、水素原子又はフッ素原子の数が0以上20以下の有機基であり、R15及びR16は、水素原子、ハロゲン原子、非置換のアルキル基又はハロゲン原子で置換されたアルキル基であり、互いに同一でも異なっていてもよい。〕で表される単量体単位(IV)と、下記式(V):
Figure JPOXMLDOC01-appb-C000020
〔式(V)中、R17、R20、及びR21は、水素原子、ハロゲン原子、非置換のアルキル基又はハロゲン原子で置換されたアルキル基であり、互いに同一でも異なっていてもよく、R18は、水素原子、ハロゲン原子、カルボキシル基、ハロゲン化カルボキシル基、非置換のアルキル基又はハロゲン原子で置換されたアルキル基であり、R19は、水素原子、非置換のアルキル基又はハロゲン原子で置換されたアルキル基であり、r及びsは、0以上5以下の整数であり、r+s=5である。〕で表される単量体単位(V)とを有する共重合体Bを用いることが好ましい。
 なお、本明細書において、単量体単位(IV)は、上述した単量体単位(II)とは異なるものである。すなわち、単量体単位(IV)は、単量体単位(II)を含まないものである。
From the viewpoint of obtaining a better effect of expanding the exposure margin, suppressing the occurrence of top loss, and reducing the amount of resist residue, it is preferable that the polymer B is a polymer represented by the following formula (IV):
Figure JPOXMLDOC01-appb-C000019
[In formula (IV), R 13 is a halogen atom, a cyano group, an alkylsulfonyl group, an alkoxy group, a nitro group, an acyl group, an alkyl ester group, or a halogenated alkyl group, R 14 is an organic group having hydrogen atoms or 0 to 20 fluorine atoms, and R 15 and R 16 are hydrogen atoms, halogen atoms, unsubstituted alkyl groups, or alkyl groups substituted with halogen atoms, and may be the same or different from each other.] and the following formula (V):
Figure JPOXMLDOC01-appb-C000020
[In formula (V), R 17 , R 20 , and R 21 are hydrogen atoms, halogen atoms, unsubstituted alkyl groups, or alkyl groups substituted with halogen atoms, and may be the same or different from each other, R 18 is hydrogen atoms, halogen atoms, carboxyl groups, halogenated carboxyl groups, unsubstituted alkyl groups, or alkyl groups substituted with halogen atoms, R 19 is hydrogen atoms, unsubstituted alkyl groups, or alkyl groups substituted with halogen atoms, r and s are integers of 0 to 5, and r+s=5.].
In this specification, the monomer unit (IV) is different from the above-mentioned monomer unit (II), that is, the monomer unit (IV) does not include the monomer unit (II).
 そして、共重合体Bが単量体単位(IV)と単量体単位(V)とを有する場合、共重合体Bは、単量体単位(IV)及び単量体単位(V)以外の任意の単量体単位を有していてもよいが、共重合体Bを構成する全単量体単位中で単量体単位(IV)及び単量体単位(V)が占める割合は、合計で70mоl%以上であることが好ましく、100mоl%である(すなわち、共重合体Bは、単量体単位(IV)及び単量体単位(V)のみを有する)ことが好ましい。共重合体Bが任意に有し得る単量体単位(IV)及び単量体単位(V)以外の任意の単量体単位としては、例えば、上述した単量体単位(II)が挙げられる。 When copolymer B has monomer unit (IV) and monomer unit (V), copolymer B may have any monomer unit other than monomer unit (IV) and monomer unit (V), but the proportion of monomer unit (IV) and monomer unit (V) in the total monomer units constituting copolymer B is preferably 70 mol% or more, and more preferably 100 mol% (i.e., copolymer B has only monomer unit (IV) and monomer unit (V)). An example of an arbitrary monomer unit other than monomer unit (IV) and monomer unit (V) that copolymer B may have is the above-mentioned monomer unit (II).
 また、上述した共重合体Bは、単量体単位(IV)及び単量体単位(V)を有する限り、例えば、ランダム共重合体、ブロック共重合体、交互共重合体、三元交互共重合体などのいずれであってもよいが、交互共重合体、若しくは三元交互共重合体であることが好ましい。なお、本明細書において、三元交互共重合体とは、例えば、単量体単位(IV)及び単量体単位(V)に加えて上述した単量体単位(II)を有し、単量体単位(II)の間に単量体単位(IV)又は単量体単位(V)が共重合されている交互共重合体である。すなわち、模式的に示すと、各単量体単位は、「-(II)-(IV)-(V)-(IV)-(II)」のように結合している。 The copolymer B may be, for example, a random copolymer, a block copolymer, an alternating copolymer, or a ternary alternating copolymer, as long as it has the monomer unit (IV) and the monomer unit (V), but is preferably an alternating copolymer or a ternary alternating copolymer. In this specification, a ternary alternating copolymer is, for example, an alternating copolymer having the above-mentioned monomer unit (II) in addition to the monomer unit (IV) and the monomer unit (V), in which the monomer unit (IV) or the monomer unit (V) is copolymerized between the monomer units (II). In other words, when shown diagrammatically, the individual monomer units are bonded as "-(II)-(IV)-(V)-(IV)-(II)".
 そして、共重合体Bは、単量体単位(IV)及び単量体単位(V)を含んでいるので、露光光が照射されると、主鎖が切断されて低分子量化する。 Since copolymer B contains monomer units (IV) and (V), when it is irradiated with exposure light, the main chain is cut and the molecular weight is reduced.
[単量体単位(IV)]
 単量単位(IV)は、下記式(d):
Figure JPOXMLDOC01-appb-C000021
〔式(d)中、R13~R16は、式(IV)中のR13~R16と同様である。〕で表される単量体(d)に由来する構造単位である。
[Monomer unit (IV)]
The monomer unit (IV) has the following formula (d):
Figure JPOXMLDOC01-appb-C000021
In the formula (d), R 13 to R 16 are the same as R 13 to R 16 in the formula (IV).
 ここで、式(IV)及び式(d)中のR13を構成し得るハロゲン原子とは、例えば、式(I)及び式(a)中のR1を構成し得るハロゲン原子と同様の原子が挙げられる。中でも、R13を構成し得るハロゲン原子は、塩素原子であることが好ましい。 Here, examples of halogen atoms that can constitute R 13 in formula (IV) and formula (d) include the same atoms as those that can constitute R 1 in formula (I) and formula (a). Among them, the halogen atom that can constitute R 13 is preferably a chlorine atom.
 式(IV)及び式(d)中のR13を構成し得るアルキルスルホニル基としては、例えば、式(I)及び式(a)中のR1を構成し得るアルキルスルホニル基と同様の基が挙げられる。 Examples of the alkylsulfonyl group which may constitute R 13 in formula (IV) and formula (d) include the same groups as the alkylsulfonyl groups which may constitute R 1 in formula (I) and formula (a).
 式(IV)及び式(d)中のR13を構成し得るアルコキシ基としては、例えば、式(I)及び式(a)中のR1を構成し得るアルコキシ基と同様の基が挙げられる。 Examples of alkoxy groups which may constitute R 13 in formulae (IV) and (d) include the same alkoxy groups as those which may constitute R 1 in formulae (I) and (a).
 式(IV)及び式(d)中のR13を構成し得るアシル基としては、例えば、式(I)及び式(a)中のR1を構成し得るアシル基と同様の基が挙げられる。 Examples of acyl groups which may constitute R 13 in formulae (IV) and (d) include the same acyl groups as those which may constitute R 1 in formulae (I) and (a).
 式(IV)及び式(d)中のR13を構成し得るアルキルエステル基としては、例えば、式(I)及び式(a)中のR1を構成し得るアルキルエステル基と同様の基が挙げられる。 Examples of alkyl ester groups which may constitute R 13 in formula (IV) and formula (d) include the same alkyl ester groups as may constitute R 1 in formula (I) and formula (a).
 式(IV)及び式(d)中のR13を構成し得るハロゲン化アルキル基としては、例えば、式(I)及び式(a)中のR1を構成し得るハロゲン化アルキル基と同様の基が挙げられる。 Examples of halogenated alkyl groups which may constitute R 13 in formula (IV) and formula (d) include the same groups as the halogenated alkyl groups which may constitute R 1 in formula (I) and formula (a).
 式(IV)及び式(d)中のR14を構成し得るフッ素原子の数が0以上20以下の有機基としては、例えば、式(I)及び式(a)中のR2を構成し得るフッ素原子の数が0以上20以下の有機基と同様の基が挙げられるが、芳香環を有さないことが好ましく、鎖状であることがより好ましい。R14の炭素数は、2以上10以下であることが好ましく、5以下であることがより好ましい。R14の炭素数が上記下限値以上であれば、現像液に対する溶解度を十分に向上させることができる。また、R14の炭素数が上記上限値以下であれば、レジストパターンの明瞭性を十分に担保することができる。 The organic group having 0 to 20 fluorine atoms that can constitute R 14 in formula (IV) and formula (d) can be exemplified by the same groups as the organic group having 0 to 20 fluorine atoms that can constitute R 2 in formula (I) and formula (a), but preferably does not have an aromatic ring, and more preferably is chain-like. The carbon number of R 14 is preferably 2 to 10, more preferably 5 or less. If the carbon number of R 14 is the above lower limit or more, the solubility in the developer can be sufficiently improved. In addition, if the carbon number of R 14 is the above upper limit or less, the clarity of the resist pattern can be sufficiently guaranteed.
 具体的には、式(IV)及び式(d)中のR14は、フルオロアルキル基、フルオロアルコキシアルキル基、又はフルオロアルコキシアルケニル基であることが好ましく、フルオロアルキル基であることがより好ましい。R14が上述した基であれば、電離放射線等を照射した際の重合体Bの主鎖の切断性を十分に向上させることができる。 Specifically, R 14 in formula (IV) and formula (d) is preferably a fluoroalkyl group, a fluoroalkoxyalkyl group, or a fluoroalkoxyalkenyl group, and more preferably a fluoroalkyl group. When R 14 is the above-mentioned group, the scission property of the main chain of polymer B when irradiated with ionizing radiation or the like can be sufficiently improved.
 ここで、フルオロアルキル基としては、例えば、2,2,3,3,3-ペンタフルオロプロピル基(フッ素原子の数が5、炭素数が3)、3,3,4,4,4-ペンタフルオロブチル基(フッ素原子の数が5、炭素数が4)、1H-1-(トリフルオロメチル)トリフルオロエチル基(フッ素原子の数が6、炭素数が3)、1H,1H,3H-ヘキサフルオロブチル基(フッ素原子の数が6、炭素数が4)、2,2,3,3,4,4,4-へプタフルオロブチル基(フッ素原子の数が7、炭素数が4)、及び、1,2,2,2-テトラフルオロ-1-(トリフルオロメチル)エチル基(フッ素原子の数が7、炭素数が3)などが挙げられる。中でも、2,2,3,3,3-ペンタフルオロプロピル基(フッ素原子の数が5、炭素数が3)、又は、2,2,3,3,4,4,4-へプタフルオロブチル基(フッ素原子の数が7、炭素数が4)が好ましく、2,2,3,3,3-ペンタフルオロプロピル基(フッ素原子の数が5、炭素数が3)がより好ましい。
 また、フルオロアルコキシアルキル基としては、例えば、フルオロエトキシメチル基及びフルオロエトキシエチル基などが挙げられる。
 さらに、フルオロアルコキシアルケニル基としては、例えば、フルオロエトキシビニル基などが挙げられる。
Examples of the fluoroalkyl group include a 2,2,3,3,3-pentafluoropropyl group (having 5 fluorine atoms and 3 carbon atoms), a 3,3,4,4,4-pentafluorobutyl group (having 5 fluorine atoms and 4 carbon atoms), a 1H-1-(trifluoromethyl)trifluoroethyl group (having 6 fluorine atoms and 3 carbon atoms), a 1H,1H,3H-hexafluorobutyl group (having 6 fluorine atoms and 4 carbon atoms), a 2,2,3,3,4,4,4-heptafluorobutyl group (having 7 fluorine atoms and 4 carbon atoms), and a 1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl group (having 7 fluorine atoms and 3 carbon atoms). Among these, a 2,2,3,3,3-pentafluoropropyl group (having 5 fluorine atoms and 3 carbon atoms) or a 2,2,3,3,4,4,4-heptafluorobutyl group (having 7 fluorine atoms and 4 carbon atoms) is preferred, and a 2,2,3,3,3-pentafluoropropyl group (having 5 fluorine atoms and 3 carbon atoms) is more preferred.
Examples of the fluoroalkoxyalkyl group include a fluoroethoxymethyl group and a fluoroethoxyethyl group.
Furthermore, examples of the fluoroalkoxyalkenyl group include a fluoroethoxyvinyl group.
 式(IV)及び式(d)中のR15、R16を構成し得るハロゲン原子としては、例えば、式(I)及び式(a)中のR1を構成し得るハロゲン原子と同様の原子が挙げられる。 Examples of halogen atoms which may constitute R 15 and R 16 in formulae (IV) and (d) include the same atoms as the halogen atoms which may constitute R 1 in formulae (I) and (a).
 式(IV)及び式(d)中のR15、R16を構成し得る非置換のアルキル基としては、例えば、式(I)及び式(a)中のR3、R4を構成し得る非置換のアルキル基と同様の基が挙げられる。 Examples of the unsubstituted alkyl groups which may constitute R 15 and R 16 in formula (IV) and formula (d) include the same groups as the unsubstituted alkyl groups which may constitute R 3 and R 4 in formula (I) and formula (a).
 式(IV)及び式(d)中のR15、R16を構成し得るハロゲン原子で置換されたアルキル基としては、例えば、式(I)及び式(a)中のR3、R4を構成し得るハロゲン原子で置換されたアルキル基と同様の基が挙げられる。 Examples of the alkyl group substituted with a halogen atom which may constitute R 15 and R 16 in formula (IV) and formula (d) include the same groups as the alkyl group substituted with a halogen atom which may constitute R 3 and R 4 in formula (I) and formula (a).
 そして、単量体(d)としては、例えば、例えば、α-クロロアクリル酸2,2,3,3,3-ペンタフルオロプロピル、α-クロロアクリル酸3,3,4,4,4-ペンタフルオロブチル、α-クロロアクリル酸1H-1-(トリフルオロメチル)トリフルオロエチル、α-クロロアクリル酸1H,1H,3H-ヘキサフルオロブチル、α-クロロアクリル酸1,2,2,2-テトラフルオロ-1-(トリフルオロメチル)エチル、α-クロロアクリル酸2,2,3,3,4,4,4-へプタフルオロブチル等のα-クロロアクリル酸フルオロアルキルエステル;α-クロロアクリル酸ペンタフルオロエトキシメチルエステル、α-クロロアクリル酸ペンタフルオロエトキシエチルエステル等のα-クロロアクリル酸フルオロアルコキシアルキルエステル;α-クロロアクリル酸ペンタフルオロエトキシビニルエステル等のα-クロロアクリル酸フルオロアルコキシアルケニルエステル;などが挙げられる。 Examples of the monomer (d) include α-chloroacrylic acid fluoroalkyl esters such as α-chloroacrylic acid 2,2,3,3,3-pentafluoropropyl, α-chloroacrylic acid 3,3,4,4,4-pentafluorobutyl, α-chloroacrylic acid 1H-1-(trifluoromethyl)trifluoroethyl, α-chloroacrylic acid 1H,1H,3H-hexafluorobutyl, α-chloroacrylic acid 1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl, and α-chloroacrylic acid 2,2,3,3,4,4,4-heptafluorobutyl; α-chloroacrylic acid fluoroalkoxyalkyl esters such as α-chloroacrylic acid pentafluoroethoxymethyl ester and α-chloroacrylic acid pentafluoroethoxyethyl ester; and α-chloroacrylic acid fluoroalkoxyalkenyl esters such as α-chloroacrylic acid pentafluoroethoxyvinyl ester.
 これらの中でも、電離放射線等に対する感度を向上できる観点から、α-クロロアクリル酸フルオロアルキルエステルが好ましい。 Among these, α-chloroacrylic acid fluoroalkyl esters are preferred from the viewpoint of improving sensitivity to ionizing radiation, etc.
 共重合体B中の単量体単位(IV)の割合は、特に限定されず、例えば、共重合体B中の全単量体単位を100mоl%とした場合に、30mоl%以上70mоl%以下とすることができる。 The proportion of monomer units (IV) in copolymer B is not particularly limited, and can be, for example, 30 mol % or more and 70 mol % or less, assuming that the total monomer units in copolymer B are 100 mol %.
[単量体単位(V)]
 単量体単位(V)は、下記式(e):
Figure JPOXMLDOC01-appb-C000022
〔式(e)中、R17~R21、r、sは式(V)と同様である。〕で表される単量体(e)に由来する構造単位である。
[Monomer unit (V)]
The monomer unit (V) has the following formula (e):
Figure JPOXMLDOC01-appb-C000022
In the formula (e), R 17 to R 21 , r and s are the same as those in the formula (V).
 式(V)及び式(e)中のR17、R20及びR21を構成し得るハロゲン原子としては、例えば、式(I)及び式(a)中のR1を構成し得るハロゲン原子と同様の原子が挙げられる。 Examples of halogen atoms which may constitute R 17 , R 20 and R 21 in formula (V) and formula (e) include the same atoms as the halogen atoms which may constitute R 1 in formula (I) and formula (a).
 式(V)及び式(e)中のR17、R20及びR21を構成し得る非置換のアルキル基としては、例えば、式(I)及び式(a)中のR3、R4ヲ構成し得る非置換のアルキル基と同様の基が挙げられる。中でも、式(V)及び式(e)中のR17を構成し得る非置換のアルキル基としては、メチル基又はエチル基が好ましい。 Examples of the unsubstituted alkyl group which may constitute R17 , R20 , and R21 in formula (V) and formula (e) include the same groups as the unsubstituted alkyl groups which may constitute R3 and R4 in formula (I) and formula (a). Among them, the unsubstituted alkyl group which may constitute R17 in formula (V) and formula (e) is preferably a methyl group or an ethyl group.
 式(V)及び式(e)中のR17、R20及びR21を構成し得るハロゲン原子で置換されたアルキル基としては、例えば、式(I)及び式(a)中のR3、R4を構成し得るハロゲン原子で置換されたアルキル基と同様の基が挙げられる。 Examples of the alkyl group substituted with a halogen atom which may constitute R 17 , R 20 , and R 21 in formula (V) and formula (e) include the same groups as the alkyl group substituted with a halogen atom which may constitute R 3 and R 4 in formula (I) and formula (a).
 式(V)及び式(e)中のR18を構成し得るハロゲン原子としては、例えば、式(I)及び式(a)中のR1を構成し得るハロゲン原子と同様の原子が挙げられる。 Examples of halogen atoms which may constitute R 18 in formula (V) and formula (e) include the same atoms as the halogen atoms which may constitute R 1 in formula (I) and formula (a).
 式(V)及び式(e)中のR18を構成し得るハロゲン化カルボキシル基としては、例えば、式(III)及び式(c)中のR9を構成し得るハロゲン化カルボキシル基と同様の基が挙げられる。 Examples of halogenated carboxyl groups which may constitute R 18 in formula (V) and formula (e) include the same groups as the halogenated carboxyl groups which may constitute R 9 in formula (III) and formula (c).
 式(V)及び式(e)中のR18を構成し得る非置換のアルキル基としては、例えば、式(I)及び式(a)中のR3、R4を構成し得る非置換のアルキル基と同様の基が挙げられる。 Examples of the unsubstituted alkyl group which may constitute R18 in formula (V) and formula (e) include the same groups as the unsubstituted alkyl groups which may constitute R3 and R4 in formula (I) and formula (a).
 式(V)及び式(e)中のR18を構成し得るハロゲン原子で置換されたアルキル基としては、例えば、式(I)及び式(a)中のR3、R4を構成し得るハロゲン原子で置換されたアルキル基と同様の基が挙げられる。 Examples of the alkyl group substituted with a halogen atom which may constitute R18 in formula (V) and formula (e) include the same groups as the alkyl groups substituted with a halogen atom which may constitute R3 and R4 in formula (I) and formula (a).
 式(V)及び式(e)中のR19を構成し得る非置換のアルキル基としては、例えば、式(I)及び式(a)中のR3、R4を構成し得る非置換のアルキルル基と同様の基が挙げられる。 Examples of the unsubstituted alkyl group which may constitute R19 in formula (V) and formula (e) include the same groups as the unsubstituted alkyl groups which may constitute R3 and R4 in formula (I) and formula (a).
 式(V)及び式(e)中のR19を構成し得るハロゲン原子で置換されたアルキル基としては、例えば、式(I)及び式(a)中のR3、R4を構成し得るハロゲン原子で置換されたアルキル基と同様の基が挙げられる。 Examples of the alkyl group substituted with a halogen atom which may constitute R19 in formula (V) and formula (e) include the same groups as the alkyl groups substituted with a halogen atom which may constitute R3 and R4 in formula (I) and formula (a).
 式(V)及び式(e)において、rが2以上である場合、各R18は、互いに、同一であっても、異なっていてもよい。また、sが2以上である場合、各R19は、互いに、同一であっても、異なっていてもよい。 In formula (V) and formula (e), when r is 2 or more, each R 18 may be the same as or different from each other. When s is 2 or more, each R 19 may be the same as or different from each other.
 そして、共重合体Bの調製の容易性を向上させる観点から、式(V)及び式(e)において、R18及び/又はR19は、全て、水素原子又は非置換のアルキル基であることが好ましく、水素原子又は非置換の炭素数1以上5以下のアルキル基であることがより好ましく、水素原子であることが更に好ましい。 From the viewpoint of improving the ease of preparation of copolymer B, in formula (V) and formula (e), R 18 and/or R 19 are all preferably a hydrogen atom or an unsubstituted alkyl group, more preferably a hydrogen atom or an unsubstituted alkyl group having 1 to 5 carbon atoms, and further preferably a hydrogen atom.
 式(e)で表される単量体(e)としては、特に限定されることなく、例えば、以下の単量体(e-1)~(e-11)等のα-メチルスチレン(AMS)及びその誘導体(例えば、4-フルオロ-α-メチルスチレン:4FAMS)が挙げられる。 The monomer (e) represented by formula (e) is not particularly limited, and examples thereof include the following monomers (e-1) to (e-11) such as α-methylstyrene (AMS) and its derivatives (e.g., 4-fluoro-α-methylstyrene: 4FAMS).
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 なお、共重合体Bの調整の容易性、及び電離放射線線等を照射した際の主鎖の切断性を向上させる観点から、単量体(e)としては、α-メチルスチレン(e-1)又は4-フルオロ-α-メチルスチレン(e-2)が好ましく、α-メチルスチレンがより好ましい。すなわち、重合体Bは、α-メチルスチレン単位又は4-フルオロ-α-メチルスチレン単位を有することが好ましい。 In addition, from the viewpoint of ease of preparation of copolymer B and improving the severability of the main chain when irradiated with ionizing radiation or the like, α-methylstyrene (e-1) or 4-fluoro-α-methylstyrene (e-2) is preferred as monomer (e), and α-methylstyrene is more preferred. In other words, polymer B preferably has α-methylstyrene units or 4-fluoro-α-methylstyrene units.
 共重合体B中の単量体単位(V)の割合は、特に限定されず、例えば、共重合体Bの全単量体単位を100mоl%とした場合に、30mоl%70mоl%以下とすることができる。 The proportion of monomer units (V) in copolymer B is not particularly limited, and can be, for example, 30 mol% to 70 mol% or less, assuming that the total monomer units in copolymer B are 100 mol%.
<重合体Bの性状>
[表面自由エネルギー]
 重合体Bの表面自由エネルギーは、18mJ/m2以上であることが好ましく、19mJ/m2以上であることがより好ましく、20mJ/m2以上であることが更に好ましく、27mJ/m2以下であることが好ましく、26mJ/m2以下であることがより好ましく、25mJ/m2以下であることが更に好ましい。
 なお、重合体Bの表面自由エネルギーは、重合体Bを構成する単量体単位の種類や割合によって調整することができる。
<Properties of Polymer B>
[Surface free energy]
The surface free energy of polymer B is preferably 18 mJ/ m2 or more, more preferably 19 mJ/m2 or more , and even more preferably 20 mJ/m2 or more , and is preferably 27 mJ/ m2 or less, more preferably 26 mJ/ m2 or less, and even more preferably 25 mJ/ m2 or less.
The surface free energy of the polymer B can be adjusted by the types and ratio of the monomer units constituting the polymer B.
[重量平均分子量]
 重合体Bの重量平均分子量(Mw)は、10000以上であることが好ましく、17000以上であることがより好ましく、25000以上であることが更に好ましく、250000以下であることが好ましく、180000以下であることがより好ましく、50000以下であることが更に好ましい。共重合体Bの重量平均分子量が上記下限値以上であれば、低い照射量でレジスト膜の現像液に対する溶解性が過剰に高まることを抑制することができる。また、重合体Bの重量平均分子量が上記上限値以下であれば、レジスト組成物を容易に調製することができる。
[Weight average molecular weight]
The weight average molecular weight (Mw) of the polymer B is preferably 10000 or more, more preferably 17000 or more, even more preferably 25000 or more, and preferably 250000 or less, more preferably 180000 or less, and even more preferably 50000 or less. If the weight average molecular weight of the copolymer B is the above lower limit or more, it is possible to suppress the solubility of the resist film in the developer from excessively increasing at a low irradiation dose. In addition, if the weight average molecular weight of the polymer B is the above upper limit or less, it is possible to easily prepare a resist composition.
[数平均分子量]
 重合体Bの数平均分子量(Mn)は、7000以上であることが好ましく、10000以上であることがより好ましく、150000以下であることが好ましい。重合体Bの数平均分子量が上記下限値以上であれば、低い照射量でレジスト膜の現像液に対する溶解性が過剰に高まることを更に抑制することができる。また、重合体Bの数平均分子量が上記上限値以下であれば、レジスト組成物を更に容易に調製することができる。
[Number average molecular weight]
The number average molecular weight (Mn) of polymer B is preferably 7000 or more, more preferably 10000 or more, and preferably 150000 or less. When the number average molecular weight of polymer B is the above lower limit or more, it is possible to further suppress excessive increase in the solubility of the resist film in the developer at a low irradiation dose. In addition, when the number average molecular weight of polymer B is the above upper limit or less, it is possible to more easily prepare the resist composition.
[分子量分布]
 重合体Bの分子量分布(Mw/Mn)は、1.10以上であることが好ましく、1.20以上であることがより好ましく、1.70以下であることが好ましく、1.65以下であることがより好ましい。重合体Bの分子量分布が上記下限値以上であれば、重合体Bを容易に調製することができる。また、重合体Bの分子量分布が上記上限値以下であれば、得られるレジストパターンのコントラストを更に高めることができる。
[Molecular weight distribution]
The molecular weight distribution (Mw/Mn) of polymer B is preferably 1.10 or more, more preferably 1.20 or more, and preferably 1.70 or less, and more preferably 1.65 or less. When the molecular weight distribution of polymer B is the above lower limit or more, polymer B can be easily prepared. When the molecular weight distribution of polymer B is the above upper limit or less, the contrast of the obtained resist pattern can be further increased.
[重合体Bの割合]
 レジスト組成物中の重合体Bの含有割合は、レジスト組成物中に含まれる重合体A及び重合体Bの合計を100質量%とした場合に、1質量%以上であることが好ましく、5質量%以上であることがより好ましく、10質量%以上であることが更に好ましく、49質量%以下であることが好ましく、40質量%以下であることがより好ましく、30質量%以下であることが更に好ましい。レジスト組成物中の重合体Bの割合が上記下限値以上であれば、電離放射線等に対する感度を向上させることができる。また、レジスト組成物中の重合体Bの割合が上記上限値以下であれば、レジスト残渣の量の低減効果が更に高まる。
[Proportion of Polymer B]
The content of polymer B in the resist composition is preferably 1% by mass or more, more preferably 5% by mass or more, even more preferably 10% by mass or more, and preferably 49% by mass or less, more preferably 40% by mass or less, and even more preferably 30% by mass or less, when the total of polymer A and polymer B contained in the resist composition is taken as 100% by mass. If the content of polymer B in the resist composition is the above lower limit or more, the sensitivity to ionizing radiation and the like can be improved. Furthermore, if the content of polymer B in the resist composition is the above upper limit or less, the effect of reducing the amount of resist residue is further enhanced.
[重合体Bの調製方法]
 重合体Bの調製方法は、特に限定されない。以下、重合体Bとして、上述した単量体単位(IV)と単量体単位(V)とを有する共重合体Bの調製方法について具体的に説明するが、本発明のレジスト組成物で用いられる重合体B及びその調製方法は、以下に示すものに限定されない。
[Method for preparing polymer B]
There is no particular limitation on the method for preparing the polymer B. Hereinafter, a method for preparing the copolymer B having the above-mentioned monomer unit (IV) and monomer unit (V) as the polymer B will be specifically described, but the polymer B used in the resist composition of the present invention and the method for preparing the same are not limited to those shown below.
 単量体単位(IV)と単量体単位(V)とを有する共重合体Bは、上述した単量体(d)と、単量体(e)と、これらの単量体と共重合可能な任意の単量体とを含む単量体組成物を重合させた後、得られた共重合体を回収し、任意に精製することにより調製することができる。ここで、重合方法及び精製方法は、特に限定されず、上述の「重合体Aの調製方法」の項で説明した方法と同様とすることができる。 The copolymer B having the monomer unit (IV) and the monomer unit (V) can be prepared by polymerizing a monomer composition containing the above-mentioned monomer (d), monomer (e), and any monomer copolymerizable with these monomers, and then recovering the resulting copolymer and optionally purifying it. Here, the polymerization method and purification method are not particularly limited, and can be the same as the method described in the above section "Method of preparing polymer A."
<溶剤>
 本発明のレジスト組成物で用いる溶剤としては、上述した重合体A及び重合体Bを溶解可能な溶剤であれば特に限定されることはなく、既知の溶剤を用いることができる。中でも、レジスト組成物の塗工性を向上させる観点からは、溶剤としては、アニソール、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、シクロペンタノン、シクロヘキサノン、又は酢酸イソアミルを用いることが好ましい。なお、溶剤は、1種を単独で使用してもよく、複数種を混合して使用してもよい。
<Solvent>
The solvent used in the resist composition of the present invention is not particularly limited as long as it is a solvent capable of dissolving the above-mentioned polymer A and polymer B, and any known solvent can be used. Among them, from the viewpoint of improving the coatability of the resist composition, it is preferable to use anisole, propylene glycol monomethyl ether acetate (PGMEA), cyclopentanone, cyclohexanone, or isoamyl acetate as the solvent. The solvent may be used alone or in combination of two or more kinds.
<その他の成分>
 本発明のレジスト組成物は、上述した必須の成分に加えて、任意に、レジスト組成物に配合され得る既知の添加剤を更に含有してもよい。添加剤の配合量は特に限定されず、用途に応じて適量添加することができる。
<Other ingredients>
In addition to the above-mentioned essential components, the resist composition of the present invention may further contain any known additives that can be blended into resist compositions. The amount of additives blended is not particularly limited, and an appropriate amount can be added depending on the application.
[重合体A、重合体B及び架橋剤の割合]
 レジスト組成物中の重合体A及び重合体Bの合計割合は、特に限定されないが、レジスト組成物は、レジスト組成物中の重合体Aの含有量をA(質量部)、重合体Bの含有量をB(質量部)、架橋剤の含有量をC(質量部)としたときに、下記関係式(x):
A≧(B+C)   ・・・(x)
(但し、式(x)中、B>0、C>0である。)
を満たすことが好ましい。上記関係式(x)を満たすレジスト組成物によれば、一層良好な露光マージン拡大効果、トップロス発生抑制効果、及びレジスト残渣の量の低減効果が得られる。
[Ratio of Polymer A, Polymer B and Crosslinking Agent]
There are no particular limitations on the total proportion of polymer A and polymer B in the resist composition. However, when the content of polymer A in the resist composition is A (parts by mass), the content of polymer B is B (parts by mass), and the content of crosslinking agent is C (parts by mass), the resist composition can satisfy the following relationship (x):
A ≧ (B + C) ... (x)
(However, in formula (x), B>0 and C>0.)
A resist composition that satisfies the above relational expression (x) can achieve an even better effect of expanding the exposure margin, suppressing the occurrence of top loss, and reducing the amount of resist residue.
<レジスト組成物の調製>
 レジスト組成物は、上記所定の架橋剤と、重合体Aと、重合体Bと、溶剤と、任意で配合されうる添加剤とを混合することにより調製することができる。混合方法としては特に限定されず、公知の方法により混合すればよい。また、各成分を混合後、混合物をろ過して調製してもよい。
<Preparation of Resist Composition>
The resist composition can be prepared by mixing the above-mentioned predetermined crosslinking agent, polymer A, polymer B, a solvent, and additives that can be added optionally. The mixing method is not particularly limited, and the components may be mixed by a known method. The resist composition may also be prepared by mixing each component and then filtering the mixture.
[ろ過]
 ここで、混合物のろ過方法としては、特に限定されず、例えばフィルターを用いてろ過することができる。フィルターとしては特に限定されず、例えば、フルオロカーボン系、セルロース系、ナイロン系、ポリエステル系、炭化水素系等のろ過膜が挙げられる。中でも、重合体A及び重合体Bの調製時に使用することのある金属配管等から金属等の不純物がレジスト組成物中に混入するのを効果的に防ぐ観点からは、フィルターを構成する材料として、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、テフロン(登録商標)等のポリフルオロカーボン、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、ナイロン及びポリエチレンとナイロンとの複合膜等が好ましい。フィルターとして、例えば、米国特許第6103122号に開示されているものを使用してもよい。また、フィルターとして、CUNO Incorporated製のZeta Plus(登録商標)40Q等として市販されているものを使用してもよい。さらに、フィルターは、強カチオン性もしくは弱カチオン性のイオン交換樹脂を含むものであってもよい。
 ここで、イオン交換樹脂の平均粒度は、特に限定されないが、好ましくは2μm以上10μm以下である。カチオン交換樹脂としては、例えば、スルホン化されたフェノール-ホルムアルデヒド縮合物、スルホン化されたフェノール-ベンズアルデヒド縮合物、スルホン化されたスチレン-ジビニルベンゼンコポリマー、スルホン化されたメタクリル酸-ジビニルベンゼンコポリマー、及び他のタイプのスルホン酸もしくはカルボン酸基含有ポリマー等が挙げられる。カチオン交換樹脂には、H+対イオン、NH4 +対イオン又はアルカリ金属対イオン、例えばK+及びNa+対イオンが供される。そして、カチオン交換樹脂は、水素対イオンを有することが好ましい。このようなカチオン交換樹脂としては、H+対イオンを有するスルホン化されたスチレン-ジビニルベンゼンコポリマーであって、Purolite社のMicrolite(登録商標)PrCHが挙げられる。このようなカチオン交換樹脂は、Rohm and Haas社のAMBERLYST(登録商標)として市販されている。
[Filtration]
Here, the method of filtering the mixture is not particularly limited, and for example, the mixture can be filtered using a filter. The filter is not particularly limited, and examples thereof include fluorocarbon, cellulose, nylon, polyester, and hydrocarbon filtration membranes. Among them, from the viewpoint of effectively preventing impurities such as metals from metal piping, etc., which may be used when preparing the polymer A and the polymer B, from being mixed into the resist composition, the material constituting the filter is preferably polyfluorocarbon such as polyethylene, polypropylene, polytetrafluoroethylene, Teflon (registered trademark), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), nylon, and a composite membrane of polyethylene and nylon. For example, the filter disclosed in U.S. Pat. No. 6,103,122 may be used. In addition, the filter may be commercially available as Zeta Plus (registered trademark) 40Q manufactured by CUNO Incorporated. Furthermore, the filter may contain a strong cationic or weak cationic ion exchange resin.
Here, the average particle size of the ion exchange resin is not particularly limited, but is preferably 2 μm or more and 10 μm or less. Examples of the cation exchange resin include sulfonated phenol-formaldehyde condensates, sulfonated phenol-benzaldehyde condensates, sulfonated styrene-divinylbenzene copolymers, sulfonated methacrylic acid-divinylbenzene copolymers, and other types of sulfonic acid or carboxylic acid group-containing polymers. The cation exchange resin is provided with H + counterions, NH 4 + counterions, or alkali metal counterions, such as K + and Na + counterions. The cation exchange resin preferably has a hydrogen counterion. Examples of such cation exchange resins include Microlite® PrCH from Purolite, which is a sulfonated styrene-divinylbenzene copolymer having an H + counterion. Such cation exchange resins are commercially available as AMBERLYST® from Rohm and Haas.
 フィルターの孔径は、0.001μm以上1μm以下であることが好ましい。フィルターの孔径が上記範囲内であれば、レジスト組成物中に金属等の不純物が混入するのを十分に防ぐことができる。 The pore size of the filter is preferably 0.001 μm or more and 1 μm or less. If the pore size of the filter is within the above range, it is possible to sufficiently prevent impurities such as metals from being mixed into the resist composition.
(レジストパターン形成方法)
 本発明のレジストパターン形成方法は、電離放射線、又は、波長300nm以下の非電離放射線により反応する架橋剤と、溶剤と、重合体Aと、重合体Bとを含むレジスト組成物を基材上に塗工して塗工層を得て、塗工層から溶剤を除去してレジスト膜を形成するレジスト膜形成工程と、レジスト膜形成工程で形成したレジスト膜に対して、電離放射線、又は、波長300nm以下の非電離放射線を露光光として用いて露光して、架橋剤による架橋反応を進行させつつ潜像パターンを形成する露光工程とを含む。さらに、本発明のレジストパターン形成方法は、露光工程にて得られた潜像パターンを現像する工程(現像工程)、露光工程と現像工程との間にレジスト膜を加熱する工程(ポスト露光ベーク工程)、及び/又は、現像工程の後に現像液を洗浄除去する工程(リンス工程)を更に含んでいてもよい。以下、各工程について説明する。
(Method of forming a resist pattern)
The method for forming a resist pattern of the present invention includes a resist film forming step of coating a substrate with a resist composition containing a crosslinking agent that reacts with ionizing radiation or nonionizing radiation having a wavelength of 300 nm or less, a solvent, a polymer A, and a polymer B to obtain a coating layer, and removing the solvent from the coating layer to form a resist film, and an exposure step of exposing the resist film formed in the resist film forming step to ionizing radiation or nonionizing radiation having a wavelength of 300 nm or less as exposure light to form a latent image pattern while promoting a crosslinking reaction by the crosslinking agent. Furthermore, the method for forming a resist pattern of the present invention may further include a step of developing the latent image pattern obtained in the exposure step (developing step), a step of heating the resist film between the exposure step and the development step (post-exposure bake step), and/or a step of washing and removing the developer after the development step (rinsing step). Each step will be described below.
(レジスト膜形成工程)
 レジスト膜形成工程では、レジストパターンを利用して加工される基板などの被加工物の上に所定のレジスト組成物を塗工して塗工層を得る工程(塗工工程)と、次いで、得られた塗工層から溶剤を除去してレジスト膜を形成する工程(乾燥工程)とを含む。
(Resist film forming process)
The resist film forming process includes a step (coating step) of applying a specific resist composition onto a workpiece, such as a substrate, to be processed using the resist pattern to obtain a coating layer, and then a step (drying step) of removing the solvent from the obtained coating layer to form a resist film.
<塗工工程>
 塗工工程において所定のレジスト組成物を塗工する被加工物としては、特に限定されることなく、半導体デバイスの製造等に用いられる半導体基板;プリント基板の製造等に用いられる、絶縁層と、絶縁層上に設けられた銅箔とを有する基板;及び、基板上に遮光層が形成されてなるマスクブランクスなどを用いることができる。また、レジスト組成物の塗工方法としては、特に限定されず、既知の方法を採用することができる。
 そして、被加工物上に塗工される所定のレジスト組成物としては、上述した本発明のレジスト組成物を好適に使用し得る。
<Coating process>
The workpiece to which the predetermined resist composition is applied in the coating step is not particularly limited, and examples of the workpiece include a semiconductor substrate used in the manufacture of semiconductor devices, a substrate having an insulating layer and a copper foil provided on the insulating layer, and a mask blank having a light-shielding layer formed on a substrate, which are used in the manufacture of printed circuit boards, etc. The method for applying the resist composition is not particularly limited, and any known method can be used.
As the predetermined resist composition to be applied onto the workpiece, the above-mentioned resist composition of the present invention can be suitably used.
<乾燥工程>
 塗工層から溶剤を除去する方法は、特に限定されることなく、レジスト膜の形成に一般的に用いられている乾燥方法を用いることができるが、レジスト組成物を加熱(プリベーク)してレジスト膜を形成することが好ましい。
 ここで、塗工層を乾燥する温度(乾燥温度)は、乾燥工程を経て形成されたレジスト膜と被加工物との密着性の観点から、100℃以上であることが好ましく、110℃以上であることがより好ましい、また、被加工物及びレジスト膜に与える熱影響を低減する観点から、250℃以下であることが好ましく、200℃以下であることがより好ましい。そして、塗工層を乾燥する時間(乾燥時間)は、より低温側の温度範囲で乾燥工程を実施して形成されたレジスト膜と被加工物との密着性を十分に向上させる観点から、10秒間超であることが好ましく、30秒間以上であることがより好ましく、1分間以上であることがさらに好ましく、乾燥工程前後のレジスト膜における重合体A及び重合体Bの分子量の変化の低減の観点から、60分間以下であることが好ましく、30分間以下であることがより好ましい。
<Drying process>
The method for removing the solvent from the coating layer is not particularly limited, and any drying method commonly used in forming a resist film can be used. However, it is preferable to form a resist film by heating (pre-baking) the resist composition.
Here, the temperature at which the coating layer is dried (drying temperature) is preferably 100° C. or higher, more preferably 110° C. or higher, from the viewpoint of adhesion between the resist film formed through the drying process and the workpiece, and is preferably 250° C. or lower, more preferably 200° C. or lower, from the viewpoint of reducing the thermal influence on the workpiece and the resist film. The time at which the coating layer is dried (drying time) is preferably more than 10 seconds, more preferably 30 seconds or higher, and even more preferably 1 minute or higher, from the viewpoint of sufficiently improving the adhesion between the resist film formed by carrying out the drying process in a lower temperature range and the workpiece, and is preferably 60 minutes or lower, more preferably 30 minutes or lower, from the viewpoint of reducing the change in the molecular weight of the polymer A and the polymer B in the resist film before and after the drying process.
(露光工程)
 露光工程では、レジスト膜形成工程で形成されたレジスト膜の所定の箇所に、電離放射線、又は、波長300nm以下の非電離放射線である露光光を照射して、所望のパターンを描画する。露光光の照射により、レジスト膜に難溶部分A及び易溶部分Bを創出して、潜像パターンを形成する。また、露光工程では、架橋剤による架橋反応を進行させつつ潜像パターンを形成する。特に、レジスト膜を構成する重合体A及び重合体Bの少なくとも一方が主鎖切断型である場合には、露光工程において、架橋反応と重合体A及び/又は重合体Bの主鎖切断反応とが並行して進行する。この場合、露光マージンの拡大の点で一層有利である。
(Exposure process)
In the exposure step, a desired pattern is drawn by irradiating predetermined locations of the resist film formed in the resist film formation step with exposure light, which is ionizing radiation or non-ionizing radiation with a wavelength of 300 nm or less. Irradiation with exposure light creates poorly soluble parts A and easily soluble parts B in the resist film to form a latent image pattern. In addition, in the exposure step, a latent image pattern is formed while a crosslinking reaction by a crosslinking agent is allowed to proceed. In particular, when at least one of the polymer A and the polymer B constituting the resist film is a main chain scission type, in the exposure step, the crosslinking reaction and the main chain scission reaction of the polymer A and/or the polymer B proceed in parallel. In this case, it is more advantageous in terms of expanding the exposure margin.
 ここで、電離放射線は、原子又は分子を電離させるのに十分なエネルギーを有する放射線である。これに対し、非電離放射線は、原子又は分子を電離させるのに十分なエネルギーを有しない放射線である。 Here, ionizing radiation is radiation that has enough energy to ionize atoms or molecules. In contrast, non-ionizing radiation is radiation that does not have enough energy to ionize atoms or molecules.
 電離放射線としては、例えば、電子線、極端紫外線、ガンマ線、エックス線、アルファ線、重粒子線、陽子線、ベータ線、イオンビームなどが挙げられる。中でも、電離放射線としては電子線又は極端紫外線が好ましく、電子線がより好ましい。なお、極端紫外線の波長は、特に限定されることなく、例えば、1nm以上30nm以下とすることができ、好ましくは13.5nmとすることができる。 Examples of ionizing radiation include electron beams, extreme ultraviolet rays, gamma rays, X-rays, alpha rays, heavy particle beams, proton beams, beta rays, and ion beams. Among these, electron beams or extreme ultraviolet rays are preferred as ionizing radiation, and electron beams are more preferred. The wavelength of extreme ultraviolet rays is not particularly limited and can be, for example, 1 nm or more and 30 nm or less, and is preferably 13.5 nm.
 波長300nm以下の非電離放射線としては、例えば、遠紫外線のうち極端紫外線を除いたもの(波長=40nm以上200nm以下)、近紫外線(波長=200nm超300nm以下)などが挙げられる。中でも、KrFエキシマレーザー線(波長=248nm)、ArFエキシマレーザー線(波長=193nm)が好ましい。 Non-ionizing radiation with a wavelength of 300 nm or less includes, for example, far ultraviolet rays excluding extreme ultraviolet rays (wavelength: 40 nm or more and 200 nm or less), near ultraviolet rays (wavelength: more than 200 nm and 300 nm or less). Among these, KrF excimer laser rays (wavelength: 248 nm) and ArF excimer laser rays (wavelength: 193 nm) are preferred.
 露光工程における照射量は、特に限定されないが、通常、10mJ/cm2以上3000mJ/cm2以下であり、電子線(EB)を用いる場合は、通常、0.1μC/cm2以上1000μC/cm2以下である。また、例えば露光工程を実施する露光装置としては、電子線描画装置、レーザー描画装置などの既知の露光装置を用いることができる。 The amount of irradiation in the exposure step is not particularly limited, but is usually 10 mJ/cm 2 or more and 3000 mJ/cm 2 or less, and when an electron beam (EB) is used, it is usually 0.1 μC/cm 2 or more and 1000 μC/cm 2 or less. In addition, for example, as an exposure device for carrying out the exposure step, a known exposure device such as an electron beam drawing device or a laser drawing device can be used.
(ポスト露光ベーク工程)
 本発明のレジストパターン形成方法においては、露光による定常波の影響を緩和してレジストパターンにおける凹凸の発生を抑制する観点から、任意で、露光工程の後にレジスト膜を加熱するポスト露光ベーク工程を実施することができる。
 加熱温度は特に限定されないが、レジストパターンにおける凹凸の発生を十分に抑制する観点からは、80℃以上であることが好ましく、100℃以上であることがより好ましく、また、熱でレジスト膜が分解することに起因するガスの発生を抑制する観点からは、160℃以下であることが好ましく、140℃以下であることがより好ましい。
 また、ポスト露光ベーク工程においてレジスト膜を加熱する時間(加熱時間)は、特に限定されないが、レジストパターンにおける凹凸の発生を十分に抑制する観点からは、30秒間以上であることが好ましく、1分間以上であることがより好ましく、また、生産効率の観点からは、20分間以下であることが好ましく、10分間以下であることがより好ましい。
(Post-exposure bake process)
In the method for forming a resist pattern of the present invention, from the viewpoint of mitigating the effects of standing waves due to exposure and suppressing the occurrence of unevenness in the resist pattern, a post-exposure bake step of heating the resist film after the exposure step can be optionally carried out.
The heating temperature is not particularly limited, but from the viewpoint of sufficiently suppressing the occurrence of unevenness in the resist pattern, it is preferably 80° C. or higher, and more preferably 100° C. or higher, and from the viewpoint of suppressing the generation of gas due to decomposition of the resist film by heat, it is preferably 160° C. or lower, and more preferably 140° C. or lower.
Furthermore, the time for which the resist film is heated in the post-exposure bake step (heating time) is not particularly limited, but from the viewpoint of sufficiently suppressing the occurrence of unevenness in the resist pattern, it is preferably 30 seconds or more, and more preferably 1 minute or more, and from the viewpoint of production efficiency, it is preferably 20 minutes or less, and more preferably 10 minutes or less.
 ポスト露光ベーク工程においてレジスト膜を加熱する方法は、特に限定されず、例えば、レジスト膜をホットプレートで加熱する方法、レジスト膜をオーブン中で加熱する方法、レジスト膜に熱風を吹き付ける方法が挙げられる。 The method for heating the resist film in the post-exposure bake step is not particularly limited, and examples include a method of heating the resist film on a hot plate, a method of heating the resist film in an oven, and a method of blowing hot air onto the resist film.
(現像工程)
 現像工程では、露光工程又はポスト露光ベーク工程を経たレジスト膜の潜像パターンを現像し、被加工物上に現像膜を形成する。
 ここで、レジスト膜の現像は、例えば、レジスト膜を現像液に接触させることで行うことができる。レジスト膜と現像液とを接触させる方法は、特に限定されることなく、現像液中へのレジスト膜の浸漬やレジスト膜への現像液の塗布等の既知の手法を用いることができる。
 現像液は、上述した重合体Aや重合体Bの性質等に応じて適宜選択することができる。現像液としては、露光工程を実施する前のレジスト膜を溶解しない一方で、露光工程又はポスト露光ベーク工程を経たレジスト膜の易溶部分Bを溶解しうる現像液を選択することが好ましい。現像液としては、特に限定されず、例えば、1,1,1,2,3,4,4,5,5,5-デカフルオロペンタン(CF3CFHCFHCF2CF3)、1,1,1,2,2,3,3,4,4,5,5,6,6-トリデカフルオロヘキサン、1,1,1,2,2,3,4,5,5,5-デカフルオロペンタン、1,1,1,3,3-ペンタフルオロブタン、1,1,1,2,2,3,3,4,4-ノナフルオロヘキサン等のハイドロフルオロカーボン、2,2-ジクロロ-1,1,1-トリフルオロエタン、1,1-ジクロロ-1-フルオロエタン、1,1-ジクロロ-2,2,3,3,3-ペンタフルオロプロパン(CF3CF2CHCl2)、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン(CClF2CF2CHClF)等のハイドロクロロフルオロカーボン、メチルノナフルオロブチルエーテル(CF3CF2CF2CF2OCH3)、メチルノナフルオロイソブチルエーテル、エチルノナフルオロブチルエーテル(CF3CF2CF2CF2OC25)、エチルノナフルオロイソブチルエーテル、パーフルオロヘキシルメチルエーテル(CF3CF2CF(OCH3)C37)等のハイドロフルオロエーテル、及び、CF4、C26、C38、C48、C410、C512、C612、C614、C714、C716、C818、C920等のパーフルオロカーボンなどのフッ素系溶剤;メタノール、エタノール、1-プロパノール、2-プロパノール(イソプロピルアルコール)、1-ブタノール、2-ブタノール、1-ペンタノール、2-ペンタノール、3-ペンタノール等のアルコール;酢酸アミル、酢酸ヘキシルなどのアルキル基を有する酢酸エステル;フッ素系溶剤とアルコールとの混合物;フッ素系溶剤とアルキル基を有する酢酸エステルとの混合物;アルコールとアルキル基を有する酢酸エステルとの混合物;フッ素系溶剤とアルコールとアルキル基を有する酢酸エステルとの混合物;等を用いることができる。これらの中でも、レジストパターンのコントラストを更に高められることから、現像液として、2-ブタノール、イソプロピルアルコールなどのアルコールを用いることが好ましい。また、現像液は1種を単独で用いてもよく、2種以上を任意の比率で混合して用いてもよい。
(Developing process)
In the developing step, the latent image pattern of the resist film that has been subjected to the exposure step or post-exposure bake step is developed to form a developed film on the workpiece.
Here, the development of the resist film can be carried out, for example, by contacting the resist film with a developer. The method of contacting the resist film with the developer is not particularly limited, and known methods such as immersing the resist film in the developer or applying the developer to the resist film can be used.
The developer can be appropriately selected depending on the properties of the above-mentioned polymer A and polymer B. As the developer, it is preferable to select a developer that does not dissolve the resist film before the exposure step is performed, but can dissolve the easily soluble portion B of the resist film that has been subjected to the exposure step or the post-exposure bake step. The developer is not particularly limited, and examples thereof include hydrofluorocarbons such as 1,1,1,2,3,4,4,5,5,5-decafluoropentane (CF 3 CFHCFHCF 2 CF 3 ), 1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluorohexane, 1,1,1,2,2,3,4,5,5,5-decafluoropentane, 1,1,1,3,3-pentafluorobutane, and 1,1,1,2,2,3,3,4,4-nonafluorohexane; 2,2-dichloro-1,1,1-trifluoroethane, 1,1-dichloro-1-fluoroethane, and 1,1-dichloro-2,2,3,3,3-pentafluoropropane (CF 3 CF 2 CHCl 2 hydrochlorofluorocarbons such as 1,3-dichloro-1,1,2,2,3-pentafluoropropane (CCIF 2 CF 2 CHClF) and the like; hydrofluoroethers such as methyl nonafluorobutyl ether (CF 3 CF 2 CF 2 CF 2 OCH 3) , methyl nonafluoroisobutyl ether, ethyl nonafluorobutyl ether (CF 3 CF 2 CF 2 CF 2 OC 2 H 5 ), ethyl nonafluoroisobutyl ether, perfluorohexyl methyl ether (CF 3 CF 2 CF(OCH 3 )C 3 F 7 ) and the like; and CF 4 , C 2 F 6 , C 3 F 8 , C 4 F 8 , C 4 F 10 , C 5 F 12 , C 6 F 12 , C 6 F 14 . Fluorine-based solvents such as perfluorocarbons such as C 7 F 14 , C 7 F 16 , C 8 F 18 , and C 9 F 20 ; alcohols such as methanol, ethanol, 1-propanol, 2-propanol (isopropyl alcohol), 1-butanol, 2-butanol, 1-pentanol, 2-pentanol, and 3-pentanol; acetates having an alkyl group such as amyl acetate and hexyl acetate; mixtures of fluorine-based solvents and alcohols; mixtures of fluorine-based solvents and acetates having an alkyl group; mixtures of alcohols and acetates having an alkyl group; mixtures of fluorine-based solvents, alcohols, and acetates having an alkyl group; and the like can be used. Among these, it is preferable to use alcohols such as 2-butanol and isopropyl alcohol as the developer, since the contrast of the resist pattern can be further increased. In addition, the developer may be used alone or in a mixture of two or more kinds at any ratio.
(リンス工程)
 本発明のレジストパターン形成方法においては、現像工程の後に現像液を除去する工程を実施することができる。現像液の除去は、例えば、リンス液を用いて行うことができる。
 リンス液としては、レジストパターンを溶解しないものであれば特に制限はなく、水や、一般的な有機溶剤を含む溶液を使用することができる。リンス液の選定に際しては、現像液と混ざり易いリンス液を選択することが好ましい。
(Rinse process)
In the method for forming a resist pattern of the present invention, a step of removing the developer may be carried out after the development step. The developer may be removed, for example, by using a rinse solution.
The rinse liquid is not particularly limited as long as it does not dissolve the resist pattern, and a solution containing water or a general organic solvent can be used. When selecting a rinse liquid, it is preferable to select a rinse liquid that is easily mixed with the developer.
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 実施例及び比較例における各種の測定及び評価については、以下の方法に従って行なった。
The present invention will be specifically described below based on examples, but the present invention is not limited to these examples.
Various measurements and evaluations in the examples and comparative examples were carried out according to the following methods.
<架橋剤の属性>
 架橋剤が、「電離放射線、又は、波長300nm以下の非電離放射線により反応する」という属性を満たすか否かの判断は、以下の方法に従って実施した。シリコンウェハ上に架橋剤溶液(濃度:10質量%、溶剤:酢酸イソアミル)を塗布し、溶剤を蒸発させ、静置しても流動しないような状態の試験片を作製した。この試験片の厚みを測定し、T1とした。この試験片に対して50keVの電子線を400uC/cm2を照射した後、架橋剤溶液を調製した際に用いた溶剤と同じ種類の溶剤に、室温(23℃)で1分間浸漬し乾燥した。乾燥した試験片の厚みT2を測定し、T2/T1×100%の値が50%以上である場合に、架橋剤が、「電離放射線、又は、波長300nm以下の非電離放射線に反応する」と判定した。
 実施例にて用いた各種の架橋剤について判定した結果を表1に示す。
<Attributes of crosslinking agent>
The judgment of whether the crosslinking agent satisfies the attribute of "reacting with ionizing radiation or nonionizing radiation having a wavelength of 300 nm or less" was carried out according to the following method. A crosslinking agent solution (concentration: 10% by mass, solvent: isoamyl acetate) was applied onto a silicon wafer, the solvent was evaporated, and a test piece in a state in which it would not flow even when left standing was prepared. The thickness of this test piece was measured and designated as T1 . After irradiating this test piece with 400 uC/ cm2 of a 50 keV electron beam, it was immersed in the same type of solvent as that used in preparing the crosslinking agent solution at room temperature (23°C) for 1 minute and dried. The thickness T2 of the dried test piece was measured, and if the value of T2 / T1 x 100% was 50% or more, the crosslinking agent was judged to "react with ionizing radiation or nonionizing radiation having a wavelength of 300 nm or less".
The results of evaluation of the various crosslinking agents used in the examples are shown in Table 1.
<共重合体中の単量体単位の割合>
 調製例で調製した共重合体A1、共重合体B1及び共重合体B2について、1H-NMR法を用いて共重合体中の単量体単位の割合を算出した。
 具体的には、調製例で得られた共重合体をクロロホルム-d,99.8%(富士フィルム和光純薬社製)に10質量%となるように溶解させ、得られた溶液を、核磁気共鳴装置(日本電子社製、400mHz)を用いて測定し、測定結果から共重合体中の単量体単位の割合を算出した。
<Proportion of Monomer Units in Copolymer>
For the copolymers A1, B1 and B2 prepared in the Preparation Examples, the proportions of monomer units in the copolymers were calculated by 1 H-NMR.
Specifically, the copolymer obtained in each Preparation Example was dissolved in chloroform-d, 99.8% (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) to a concentration of 10% by mass, and the resulting solution was measured using a nuclear magnetic resonance apparatus (manufactured by JEOL, 400 mHz), and the proportion of monomer units in the copolymer was calculated from the measurement results.
<重量平均分子量、数平均分子量及び分子量分布>
 調整例で調製した共重合体A1、共重合体B1及び共重合体B2について、ゲル浸透クロマトグラフィーを用いて重量平均分子量(Mw)、数平均分子量(Mn)を測定し、分子量分布(Mw/Mn)を測定した。
 具体的には、ゲル浸透クロマトグラフ(東ソー製、HLC-8220)を使用し、展開溶媒としてテトラヒドロフランを用いて、共重合体A1、共重合体B1の重量平均分子量(Mw)、数平均分子量(Mn)を標準ポリスチレン換算値として求めた。そして、分子量分布(Mw/Mn)を算出した。
<Weight average molecular weight, number average molecular weight and molecular weight distribution>
For the copolymers A1, B1 and B2 prepared in Preparation Examples, the weight average molecular weight (Mw) and number average molecular weight (Mn) were measured by gel permeation chromatography, and the molecular weight distribution (Mw/Mn) was measured.
Specifically, the weight average molecular weight (Mw) and number average molecular weight (Mn) of copolymer A1 and copolymer B1 were determined in terms of standard polystyrene using a gel permeation chromatograph (HLC-8220, manufactured by Tosoh Corporation) and tetrahydrofuran as a developing solvent, and the molecular weight distribution (Mw/Mn) was calculated.
<表面自由エネルギー>
 調製例で調製した共重合体A1、共重合体B1及び共重合体B2を用いて表面自由エネルギーを測定した。
 具体的には、まず、共重合体A1、共重合体B1及び共重合体B2を、それぞれ溶剤としての酢酸イソアミルに溶解させて、濃度3質量%のポジ型レジスト組成物を調製した。次いで、スピンコーター(ミカサ社製、MS-A150)を使用し、ポジ型レジスト組成物を直径4インチのシリコンウェハ上に厚さ50nmになるように塗布した。次いで、塗布したポジ型レジスト組成物を温度170℃のホットプレートで1分間加熱して、シリコンウェハ上にフィルム(レジスト膜)を形成した。得られたフィルム(レジスト膜)について、接触角計(協和界面科学製、Drop Master700)を使用して、表面張力、極性項(p)及び分散力項(d)が既知の2種類の溶媒(水とジヨードメタン)の接触角を以下の条件で測定し、Owens-Wendt(拡張Fowkes式)の方法による表面自由エネルギーの評価を行い、フィルム(レジスト膜)の表面自由エネルギーを算出した。
<<接触角の測定条件>>
 針:金属針22G(水)、テフロン(登録商標)コーティング22G(ジヨードメタン)
 待機時間:1000ms
 液量:1.8μL
 着液認識:水50dat、ジヨードメタン100dat
 温度:23℃
<Surface free energy>
The surface free energy was measured using the copolymers A1, B1 and B2 prepared in Preparation Examples.
Specifically, first, copolymer A1, copolymer B1, and copolymer B2 were each dissolved in isoamyl acetate as a solvent to prepare a positive resist composition with a concentration of 3% by mass. Next, using a spin coater (MS-A150, manufactured by Mikasa Co., Ltd.), the positive resist composition was applied to a silicon wafer with a diameter of 4 inches to a thickness of 50 nm. Next, the applied positive resist composition was heated on a hot plate at a temperature of 170° C. for 1 minute to form a film (resist film) on the silicon wafer. For the obtained film (resist film), the contact angles of two types of solvents (water and diiodomethane) with known surface tension, polar term (p), and dispersion force term (d) were measured under the following conditions using a contact angle meter (Drop Master 700, manufactured by Kyowa Interface Science Co., Ltd.), and the surface free energy was evaluated by the Owens-Wendt (extended Fowkes equation) method, and the surface free energy of the film (resist film) was calculated.
<Conditions for measuring contact angle>
Needle: Metal needle 22G (water), Teflon (registered trademark) coated 22G (diiodomethane)
Waiting time: 1000ms
Volume: 1.8 μL
Liquid recognition: water 50dat, diiodomethane 100dat
Temperature: 23°C
<γ値>
 実施例及び比較例で得られたポジ型レジスト組成物を用いてγ値を測定した。
 具体的には、スピンコーター(ミカサ製、MS-A150)を使用し、ポジ型レジスト組成物を直径4インチのシリコンウェハ上に厚さ50nmになるように塗布した。そして、塗布したポジレジスト組成物を温度140℃のホットプレートで1分間加熱して、シリコンウェハ上にレジスト膜を形成した(レジスト膜形成工程)。そして、電子線描画装置(エリオニクス社製、ELS-S50)を用いて、電子線の照射量が互いに異なるパターン(寸法500μm×500μm)をレジスト膜上に複数描画し、さらに、露光後のレジスト膜を、100℃のホットプレートで1分間加熱した。加熱後のレジスト膜について、現像液としてイソプロピルアルコールを用いて温度23℃で1分間の現像処理を行った。その後、窒素ブローにより現像液を除去した。
 なお、電子線の照射量は、4μC/cm2から200μC/cm2の範囲内で4μC/cm2ずつ異ならせた。次に、描画した部分のレジスト膜の厚みを光学式膜厚計(SCREENセミコンダクタソリューション社製、ラムダエース)で測定し、電子線の総照射量の常用対数と、現像後のレジスト膜の残膜率(=現像後のレジスト膜の膜厚/シリコンウェハ上に形成したレジスト膜の膜厚)との関係を示す感度曲線を作成した。
 そして、得られた感度曲線(横軸:電子線の総照射量の常用対数、縦軸:レジスト膜の残膜率(0≦残膜率≦1.00))について、残膜率0.30~0.80の範囲において感度曲線を二次関数にフィッティングし、得られた二次関数(残膜率と総照射量の常用対数との関数)上の残膜率0の点と残膜率0.50の点とを結ぶ直線(感度曲線の傾きの近似線)を作成した。また、得られた直線(残膜率と総照射量の常用対数との関数)の残膜率が0となる際の、電子線の総照射量Eth(μC/cm2)を求めた。なお、Ethの値が小さいほど、感度が高く、ポジ型レジストとしての重合体A及び重合体Bが少ない照射量で良好に切断され得ることを示す。
 また、下記の式を用いてγ値を求めた。なお、下記の式中、E0は、残膜率0.30~0.80の範囲において感度曲線を二次関数にフィッティングし、得られた二次関数(残膜率と総照射量の常用対数との関数)に対して残膜率0を代入した際に得られる総照射量の対数である。また、E1は、得られた二次関数上の残膜率0の点と残膜率0.50の点とを結ぶ直線(感度曲線の傾きの近似線)を作成し、得られた直線(残膜率と総照射量の常用対数との関数)に対して残膜率1.00を代入した際に得られる総照射量の対数である。そして、下記式は、残膜率0と1.00との間での上記直線の傾きを表している。γ値の値が大きいほど、感度曲線の傾きが大きく、明瞭性の高いパターンを良好に形成し得ることを示す。
<γ value>
The γ value was measured using the positive resist compositions obtained in the examples and comparative examples.
Specifically, a positive resist composition was applied to a silicon wafer having a diameter of 4 inches to a thickness of 50 nm using a spin coater (MS-A150, manufactured by Mikasa). The applied positive resist composition was heated on a hot plate at a temperature of 140° C. for 1 minute to form a resist film on the silicon wafer (resist film forming process). Then, using an electron beam lithography device (ELS-S50, manufactured by Elionix), a plurality of patterns (dimensions 500 μm×500 μm) with different amounts of electron beam irradiation were drawn on the resist film, and the exposed resist film was heated on a hot plate at 100° C. for 1 minute. The heated resist film was subjected to a development process at a temperature of 23° C. for 1 minute using isopropyl alcohol as a developer. The developer was then removed by nitrogen blowing.
The dose of the electron beam was varied in increments of 4 μC/cm 2 within a range of 4 μC/cm 2 to 200 μC/cm 2. Next, the thickness of the resist film in the written portion was measured with an optical film thickness meter (Lambda Ace, manufactured by SCREEN Semiconductor Solutions), and a sensitivity curve was created showing the relationship between the common logarithm of the total dose of the electron beam and the remaining film ratio of the resist film after development (= film thickness of the resist film after development/film thickness of the resist film formed on the silicon wafer).
The sensitivity curve obtained (horizontal axis: common logarithm of the total dose of electron beam, vertical axis: residual film ratio of resist film (0≦remaining film ratio≦1.00)) was fitted to a quadratic function in the range of residual film ratio of 0.30 to 0.80, and a straight line (an approximation line of the slope of the sensitivity curve) connecting the point of residual film ratio 0 and the point of residual film ratio 0.50 on the obtained quadratic function (a function of residual film ratio and common logarithm of total dose) was created. In addition, the total dose of electron beam E th (μC/cm 2 ) when the residual film ratio of the obtained straight line (a function of residual film ratio and common logarithm of total dose) was 0 was determined. Note that the smaller the value of E th , the higher the sensitivity, indicating that polymer A and polymer B as positive resists can be cut well with a smaller dose.
The γ value was calculated using the following formula. In the formula, E 0 is the logarithm of the total irradiation amount obtained when fitting the sensitivity curve to a quadratic function in the range of the residual film ratio of 0.30 to 0.80, and substituting the residual film ratio of 0 for the obtained quadratic function (a function of the residual film ratio and the common logarithm of the total irradiation amount). In addition, E 1 is the logarithm of the total irradiation amount obtained when creating a straight line (an approximation line of the slope of the sensitivity curve) connecting the point of the residual film ratio of 0 and the point of the residual film ratio of 0.50 on the obtained quadratic function, and substituting the residual film ratio of 1.00 for the obtained straight line (a function of the residual film ratio and the common logarithm of the total irradiation amount). The formula below represents the slope of the straight line between the residual film ratios of 0 and 1.00. The larger the γ value, the larger the slope of the sensitivity curve, indicating that a pattern with high clarity can be formed well.
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
<残膜率(ハーフピッチ(hp):25nm>
 スピンコーター(ミカサ社製、MS-A150)を使用し、実施例及び比較例で得たポジ型レジスト組成物を4インチのシリコンウェハ上に厚み50nmとなるように塗布した。そして、塗布したレジスト組成物を温度140℃のホットプレートで1分間加熱して、シリコンウェハ上にポジ型レジスト膜を形成した。そして、電子線描画装置(エリオニクス社製、ELS-S50)を用いて、線幅25nmのラインアンドスペース1:1(すなわち、ハーフピッチ25nm)のパターンを、最適露光量(Eop)で、それぞれ電子線描画し、電子線描画済ウエハを得た。なお、最適露光量は、それぞれEthの約2倍の値を目安として、適宜設定した。
 電子線描画済ウエハを、23℃において、レジスト用現像液としてのイソプロピルアルコール(IPA)に1分間浸漬することで、現像処理を行った。その後、窒素ブローにより現像液を除去して、ラインアンドスペースパターン(ハーフピッチ:25nm)を形成した。その後、パターン部分を劈開し、走査型電子顕微鏡(日本電子社製、JMS-7800F PRIME)にて倍率10万倍で観察を行い、現像後のレジストパターンの最大高さ(Tmax)及びレジスト膜の初期厚みT0を測定した。そして、下記式により、「残膜率(ハーフピッチ(hp):25nm)」を求め、下記の基準に基づいて評価した。結果を表1に示す。この残膜率(ハーフピッチ(hp):25nm)が高いほど、レジストパターントップの減りが少なく、トップロスの発生が抑制されていることを意味する。
   残膜率(%)=(Tmax/T0)×100
 AA  98.5%超
 A   97.5%超98.5%以下
 B   96%超97.5%以下
 C   96%以下
<Residual film ratio (half pitch (hp): 25 nm)>
Using a spin coater (MS-A150, manufactured by Mikasa), the positive resist compositions obtained in the examples and comparative examples were applied onto a 4-inch silicon wafer to a thickness of 50 nm. The applied resist composition was then heated on a hot plate at a temperature of 140° C. for 1 minute to form a positive resist film on the silicon wafer. Then, using an electron beam lithography device (ELS-S50, manufactured by Elionix), a line and space 1:1 pattern (i.e., half pitch 25 nm) with a line width of 25 nm was electron-beam lithography at the optimum exposure dose (E op ) to obtain an electron-beam lithography-processed wafer. The optimum exposure dose was appropriately set, with a value approximately twice that of E th as a guide.
The electron beam written wafer was immersed in isopropyl alcohol (IPA) as a resist developer at 23° C. for 1 minute to perform a development process. The developer was then removed by nitrogen blowing to form a line and space pattern (half pitch: 25 nm). The pattern portion was then cleaved and observed at a magnification of 100,000 times using a scanning electron microscope (manufactured by JEOL Ltd., JMS-7800F PRIME), and the maximum height (Tmax) of the resist pattern after development and the initial thickness T 0 of the resist film were measured. Then, the "residual film ratio (half pitch (hp): 25 nm)" was calculated using the following formula and evaluated based on the following criteria. The results are shown in Table 1. The higher this residual film ratio (half pitch (hp): 25 nm), the less the resist pattern top is reduced, which means that the occurrence of top loss is suppressed.
Residual film rate (%)=(Tmax/T 0 )×100
AA: Over 98.5% A: Over 97.5% and up to 98.5% B: Over 96% and up to 97.5% C: Up to 96%
<露光マージン>
 実施例及び比較例において形成したハーフピッチ(hp)25nmのラインアンドスペースパターンについて、パターンの品質は不問とし、ハーフピッチ(hp)25nmのレジストパターンが形成可能であった電子線照射量の範囲を以下の基準に従って評価した。結果を表1に示す。
 AA::電子線照射量の範囲が80μC/cm2以上
 A:電子線照射量の範囲が50μC/cm2以上80μC/cm2未満
 B:電子線照射量の範囲が30μC/cm2以上50μC/cm2未満
<Exposure Margin>
The line and space patterns with a half pitch (hp) of 25 nm formed in the examples and comparative examples were evaluated according to the following criteria for the range of electron beam irradiation dose that allowed the formation of a resist pattern with a half pitch (hp) of 25 nm, without taking into account the quality of the pattern. The results are shown in Table 1.
AA: The range of electron beam irradiation amount is 80 μC/ cm2 or more. A: The range of electron beam irradiation amount is 50 μC/ cm2 or more and less than 80 μC/ cm2. B: The range of electron beam irradiation amount is 30 μC/ cm2 or more and less than 50 μC/ cm2.
<レジスト残渣>
 実施例及び比較例で得られたポジ型レジスト組成物を用いてレジスト残渣を評価した。具体的には、上述した<残膜率>の評価の際に形成したレジストパターンについて、走査型電子顕微鏡(Scanning Electron Microscope:SEM)を用いて倍率100,000倍で観察し、以下の基準に従って、レジストパターンに残渣がどの程度残留しているかを評価した。結果を表1に示す。なお、レジストパターン内に残留した残渣は、SEM像にて、残渣の付着のないラインパターン領域と比較して高輝度の「ドット」等として確認することができる。レジストパターン内の残渣が少ないほど、レジストパターンのコントラストが高いことを意味する。
 A:hp25nmのレジストパターン内に残渣が確認されない。
 B:hp25nmのレジストパターン内に残渣がごくわずかにあるが、許容範囲内である。
 C:hp25nmのレジストパターン内に残渣が多く確認され、許容範囲外である。
<Resist Residue>
The resist residue was evaluated using the positive resist compositions obtained in the examples and comparative examples. Specifically, the resist pattern formed in the evaluation of the above-mentioned <remaining film ratio> was observed at a magnification of 100,000 times using a scanning electron microscope (SEM), and the extent to which the residue remained in the resist pattern was evaluated according to the following criteria. The results are shown in Table 1. The residue remaining in the resist pattern can be confirmed in the SEM image as a high-luminance "dot" or the like compared to the line pattern area where no residue is attached. The smaller the residue in the resist pattern, the higher the contrast of the resist pattern.
A: No residue was observed in the hp25 nm resist pattern.
B: There is a very small amount of residue in the hp 25 nm resist pattern, but it is within the acceptable range.
C: A large amount of residue was observed in the hp 25 nm resist pattern, which is outside the allowable range.
(調製例1)
<共重合体A1の調製>
[半硬化牛脂脂肪酸カリ石鹸の固形分18%の水溶液の調製]
 イオン交換水100gを用意し、攪拌しながら70℃まで昇温して、水酸化カリウム(49%水溶液)を8.40g添加した。次に、牛脂45°硬化脂肪酸HFA(日油社製)19.6gを1.28g/分の添加速度で添加して、その後、ケイ酸カリウムを0.126g添加した。そして80℃で2時間以上撹拌して、半硬化牛脂脂肪酸カリ石鹸の固形分18%の水溶液を得た。
[重合物の合成]
 撹拌子を入れたガラス製のアンプルに、単量体(b)としてのα-クロロアクリル酸-1-フェニル-1-トリフルオロメチル-2,2,2-トリフルオロエチル(ACAFPh)3gと、単量体(c)としてのα-メチルスチレン1.066gとを加えた。さらに、同じアンプルに、上記のようにして調製した半硬化牛脂脂肪酸カリ石鹸の固形分18%の水溶液0.5463gに対して、イオン交換水6.771gを添加して、単量体組成物としてからアンプルを密封し、窒素ガスで加圧及び脱圧を10回繰り返して系内の酸素を除去した。
 そして、系内を75℃に加温し、1時間重合反応を行った。次に、系内にテトラヒドロフラン(THF)10gを加え、得られた溶液をTHFとメタノール(MeOH)との混合溶媒100g〔THF:MeOH(質量比)30:70〕中に滴下して重合物を析出させた。その後、析出した重合物をろ過で回収し、重合物を得た。
[重合物の精製]
 次いで、得られた重合物を10gのTHFに溶解させ、得られた溶液をTHFとMeOH)との混合溶媒100g〔THF:MeOH(質量比)34:66〕に滴下し、白色の凝固物を析出させた。その後、析出した凝固物を含む溶液をキリヤマ漏斗によりろ過し、重合体Aとして、白色の共重合体A1を得た。得られた共重合体A1は、α-クロロアクリル酸-1-フェニル-1-トリフルオロメチル-2,2,2-トリフルオロエチル単位54モル%と、α-メチルスチレン単位46モル%とを含んでいた。また、この共重合体A1は、重量平均分子量(Mw)が382253、数平均分子量(Mn)が259380、分子量分布(Mw/Mn)が1.474、表面自由エネルギーが31mJ/m2であった。
(Preparation Example 1)
<Preparation of Copolymer A1>
[Preparation of an aqueous solution of semi-hardened beef tallow fatty acid potassium soap with a solid content of 18%]
100g of ion-exchanged water was prepared, heated to 70°C while stirring, and 8.40g of potassium hydroxide (49% aqueous solution) was added. Next, 19.6g of beef tallow 45° hydrogenated fatty acid HFA (NOF Corp.) was added at a rate of 1.28g/min, and then 0.126g of potassium silicate was added. The mixture was stirred at 80°C for 2 hours or more to obtain an aqueous solution of semi-hydrogenated beef tallow fatty acid potassium soap with a solid content of 18%.
[Synthesis of Polymer]
Into a glass ampoule containing a stirrer, 3 g of α-chloroacrylic acid-1-phenyl-1-trifluoromethyl-2,2,2-trifluoroethyl (ACAFPh) as monomer (b) and 1.066 g of α-methylstyrene as monomer (c) were added. In addition, to the same ampoule, 6.771 g of ion-exchanged water was added to 0.5463 g of the aqueous solution of the semi-hardened beef tallow fatty acid potassium soap with a solid content of 18% prepared as described above to prepare a monomer composition, and the ampoule was sealed and pressurized and depressurized with nitrogen gas 10 times to remove oxygen from the system.
The system was then heated to 75° C. and polymerization reaction was carried out for 1 hour. Next, 10 g of tetrahydrofuran (THF) was added to the system, and the resulting solution was dropped into 100 g of a mixed solvent of THF and methanol (MeOH) [THF:MeOH (mass ratio) 30:70] to precipitate a polymer. Thereafter, the precipitated polymer was collected by filtration to obtain a polymer.
[Purification of Polymer]
Next, the obtained polymer was dissolved in 10 g of THF, and the obtained solution was dropped into 100 g of a mixed solvent of THF and MeOH (THF:MeOH (mass ratio) 34:66) to precipitate a white coagulant. Thereafter, the solution containing the precipitated coagulant was filtered with a Kiriyama funnel to obtain a white copolymer A1 as polymer A. The obtained copolymer A1 contained 54 mol% of α-chloroacrylic acid-1-phenyl-1-trifluoromethyl-2,2,2-trifluoroethyl units and 46 mol% of α-methylstyrene units. In addition, this copolymer A1 had a weight average molecular weight (Mw) of 382253, a number average molecular weight (Mn) of 259380, a molecular weight distribution (Mw/Mn) of 1.474, and a surface free energy of 31 mJ/ m2 .
(調製例2)
<共重合体B1の調製>
[重合物の合成]
 単量体(d)としてのα-クロロアクリル酸2,2,3,3,3-ペンタフルオロプロピル(ACAPFP)3g及び単量体(e)としてのα-メチルスチレン3.476gと、重合開始剤としてのアゾビスイソブチロニトリル0.0005gと、溶媒としてのシクロペンタノン1.6205gとを含む単量体組成物をガラス容器に入れ、ガラス容器を密閉及び窒素置換して、窒素雰囲気下、78℃の恒温槽内で2時間撹拌した。
 その後、室温に戻し、ガラス容器内を大気解放した後、得られた溶液にTHF10gを加えた。そして、THFを加えた溶液を、溶媒としてのMeOH100g中に滴下し、重合物を析出させた。その後、析出した重合物を含む溶液をキリヤマ漏斗によりろ過し、重合物を得た。
[重合物の精製]
 次いで、得られた重合物を100gのTHFに溶解させ、得られた溶液をTHFとMeOHとの混合溶媒100g〔THF:MeOH(質量比)20:80〕に滴下して白色の凝固物を析出させた。その後、析出した凝固物を含む溶液をキリヤマ漏斗によりろ過し、重合体Bとして、白色の共重合体B1を得た。得られた共重合体B1は、α-クロロアクリル酸2,2,3,3,3-ペンタフルオロプロピル単位及びα-メチルスチレン単位50モル%ずつ含んでいた。また、この共重合体B1は、重量平均分子量(Mw)が49556、数平均分子量(Mn)が35806、分子量分布(Mw/Mn)が1.384、表面自由エネルギーが24.2mJ/m2であった。
(Preparation Example 2)
<Preparation of Copolymer B1>
[Synthesis of Polymer]
A monomer composition containing 3 g of 2,2,3,3,3-pentafluoropropyl α-chloroacrylate (ACAPFP) as monomer (d), 3.476 g of α-methylstyrene as monomer (e), 0.0005 g of azobisisobutyronitrile as a polymerization initiator, and 1.6205 g of cyclopentanone as a solvent was placed in a glass container, the glass container was sealed and substituted with nitrogen, and the mixture was stirred in a constant temperature bath at 78° C. for 2 hours under a nitrogen atmosphere.
After that, the temperature was returned to room temperature, and the glass container was opened to the atmosphere, and then 10 g of THF was added to the obtained solution. The solution to which THF was added was then dropped into 100 g of MeOH as a solvent to precipitate a polymer. The solution containing the precipitated polymer was then filtered using a Kiriyama funnel to obtain a polymer.
[Purification of Polymer]
Next, the obtained polymer was dissolved in 100 g of THF, and the obtained solution was dropped into 100 g of a mixed solvent of THF and MeOH [THF:MeOH (mass ratio) 20:80] to precipitate a white coagulant. Thereafter, the solution containing the precipitated coagulant was filtered with a Kiriyama funnel to obtain a white copolymer B1 as polymer B. The obtained copolymer B1 contained 50 mol% each of α-chloroacrylic acid 2,2,3,3,3-pentafluoropropyl units and α-methylstyrene units. In addition, this copolymer B1 had a weight average molecular weight (Mw) of 49556, a number average molecular weight (Mn) of 35806, a molecular weight distribution (Mw/Mn) of 1.384, and a surface free energy of 24.2 mJ/m 2 .
(調製例3)
<共重合体B2の調製>
 単量体(b)としてのα-クロロアクリル酸-1-フェニル-1-トリフルオロメチル-2,2,2-トリフルオロエチル(ACAFPh)0.7207gと、単量体(d)としてのα-クロロアクリル酸2,2,3,3,3-ペンタフルオロプロピル(ACAPFP)2.0711gと、単量体(e)としてのα-メチルスチレン3.0000g(ACAFPh及びACAPFPの合計を1当量とした場合に約2.34当量に相当)と、重合開始剤としてのアゾビスイソブチロニトリル0.0048gと、溶媒としてのシクロペンタノン1.4491gとを含む単量体組成物X1をガラス容器に入れ、ガラス容器を密閉及び窒素置換して、窒素雰囲気下、78℃の恒温槽内で6時間撹拌した。
 その後、室温に戻し、ガラス容器内を大気解放した後、得られた溶液にTHF10gを加えた。そして、THFを加えた溶液を、溶媒としてのMeOH100g中に滴下し、重合物を析出させた。その後、析出した重合物を含む溶液をキリヤマ漏斗によりろ過し、白色の凝固物(共重合体B2)を得た。得られた共重合体B2は、α-クロロアクリル酸-1-フェニル-1-トリフルオロメチル-2,2,2-トリフルオロエチル単位を10mol%、α-クロロアクリル酸2,2,3,3,3-ペンタフルオロプロピル単位を40mol%、α-メチルスチレン単位を50mol%含んでいた。また、この共重合体B2は、重量平均分子量(Mw)が53546、数平均分子量(Mn)が30129、分子量分布(Mw/Mn)が1.777、表面自由エネルギーが26.1mJ/m2であった。
(Preparation Example 3)
<Preparation of Copolymer B2>
Monomer composition X1 containing 0.7207 g of α-chloroacrylic acid-1-phenyl-1-trifluoromethyl-2,2,2-trifluoroethyl (ACAFPh) as monomer (b), 2.0711 g of α-chloroacrylic acid 2,2,3,3,3-pentafluoropropyl (ACAPFP) as monomer (d), 3.0000 g of α-methylstyrene as monomer (e) (corresponding to about 2.34 equivalents when the total of ACAFPh and ACAPFP is taken as 1 equivalent), 0.0048 g of azobisisobutyronitrile as a polymerization initiator, and 1.4491 g of cyclopentanone as a solvent was placed in a glass container, the glass container was sealed and replaced with nitrogen, and the mixture was stirred in a constant temperature bath at 78° C. under a nitrogen atmosphere for 6 hours.
Then, the temperature was returned to room temperature, and the glass container was opened to the atmosphere, and 10 g of THF was added to the obtained solution. The solution to which THF had been added was then dropped into 100 g of MeOH as a solvent to precipitate a polymer. The solution containing the precipitated polymer was then filtered through a Kiriyama funnel to obtain a white coagulated product (copolymer B2). The obtained copolymer B2 contained 10 mol% of α-chloroacrylic acid-1-phenyl-1-trifluoromethyl-2,2,2-trifluoroethyl units, 40 mol% of α-chloroacrylic acid-2,2,3,3,3-pentafluoropropyl units, and 50 mol% of α-methylstyrene units. In addition, this copolymer B2 had a weight average molecular weight (Mw) of 53546, a number average molecular weight (Mn) of 30129, a molecular weight distribution (Mw/Mn) of 1.777, and a surface free energy of 26.1 mJ/m 2 .
(実施例1)
<レジスト組成物の調製>
 重合体Aとして、上記のようにして調製した共重合体A1を80部と、重合体Bとして、上記のようにして調製した共重合体B1を20部と、架橋剤C1としてのポリエチレングリコールジアクリレート(東亜合成株式会社製、製品名「アニロックス(登録商標)M-240」)を10部と、溶剤としての酢酸イソアミルを5000部とを混合し、混合溶液を得た。得られた混合溶液を孔径20nmのメンブレンフィルターで濾過して、レジスト組成物を調製した。なお、重合体A表面自由エネルギーと、重合体Bの表面自由エネルギーの差は、3mJ/m2以上であった。
<レジストパターンの形成>
-レジスト膜形成工程-
 スピンコーター(ミカサ社製、MS-A150)を使用し、上記のようにして調製したレジスト組成物を4インチのシリコンウェハ上に厚み30nmとなるように塗工し、塗工5000層を形成した(塗工工程)。形成した塗工層から溶剤を除去するために、塗工層を温度140℃のホットプレートで1分間加熱乾燥(プリベーク工程)して、シリコンウェハ上にポジ型レジスト膜を形成した(乾燥工程)。
-露光工程-
 次いで、電子線描画装置(エリオニクス社製、ELS-S50)を用いて、レジスト膜を、加速電圧:50kV、電子線照射量10~600μC/cm2で露光して、ハーフピッチ(hp)25nmのラインアンドスペースパターンを描画した。
-現像工程-
 その後、現像液としてイソプロピルアルコール用いて温度23℃で1分間の現像処理を行った後、窒素ブローにより現像液を除去してレジストパターンを形成した。
-評価-
 そして、形成したレジストパターンを走査型電子顕微鏡(SEM)で観察(倍率:100000倍)し、残膜率、露光マージン及びレジスト残渣を評価した。結果を表1に示す。
Example 1
<Preparation of Resist Composition>
As the polymer A, 80 parts of the copolymer A1 prepared as above, as the polymer B, 20 parts of the copolymer B1 prepared as above, 10 parts of polyethylene glycol diacrylate (manufactured by Toa Gosei Co., Ltd., product name "Anilox (registered trademark) M-240") as the crosslinking agent C1, and 5000 parts of isoamyl acetate as the solvent were mixed to obtain a mixed solution. The obtained mixed solution was filtered through a membrane filter with a pore size of 20 nm to prepare a resist composition. The difference in surface free energy between the polymer A and the polymer B was 3 mJ/ m2 or more.
<Formation of Resist Pattern>
-Resist film formation process-
Using a spin coater (MS-A150, manufactured by Mikasa Co., Ltd.), the resist composition prepared as described above was applied to a 4-inch silicon wafer to a thickness of 30 nm to form 5000 coating layers (coating step). In order to remove the solvent from the formed coating layer, the coating layer was heated and dried on a hot plate at a temperature of 140° C. for 1 minute (pre-baking step) to form a positive resist film on the silicon wafer (drying step).
-Exposure process-
Next, the resist film was exposed to an electron beam lithography system (ELS-S50, manufactured by Elionix) at an acceleration voltage of 50 kV and an electron beam dose of 10 to 600 μC/cm 2 to write a line and space pattern with a half pitch (hp) of 25 nm.
-Development process-
Thereafter, a development process was carried out at 23° C. for 1 minute using isopropyl alcohol as a developer, and then the developer was removed by nitrogen blowing to form a resist pattern.
-evaluation-
The resist pattern thus formed was then observed under a scanning electron microscope (SEM) (magnification: 100,000 times) to evaluate the remaining film ratio, exposure margin, and resist residue. The results are shown in Table 1.
(実施例2~6)
 レジスト組成物の調製において、レジスト組成物中の重合体Aと、重合体Bと、架橋剤との質量比(重合体A1:重合体B1:架橋剤C1)が80:20:20(実施例2)、80:20:30(実施例3)、90:10:20(実施例4)、70:30:20(実施例5)、70:30:40(実施例6)に変更した。それ以外は実施例1と同様にしてレジスト組成物を調製し、レジストパターンを形成して、実施例1と同様の各種評価を実施した。結果を表1に示す。
(Examples 2 to 6)
In preparing the resist composition, the mass ratio of polymer A, polymer B, and crosslinking agent in the resist composition (polymer A1:polymer B1:crosslinking agent C1) was changed to 80:20:20 (Example 2), 80:20:30 (Example 3), 90:10:20 (Example 4), 70:30:20 (Example 5), and 70:30:40 (Example 6). Otherwise, the resist composition was prepared in the same manner as in Example 1, a resist pattern was formed, and various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
(実施例7)
 レジスト組成物の調製において、架橋剤として、架橋剤C1に替えて、架橋剤C2としてのトリメチロールプロパンPO変性トリアクリレート(東亜合成株式会社製、製品名:「アロニックス(登録商標)M-321」)を使用した。また、レジスト組成物中の重合体Aと、重合体Bと、架橋剤との質量比(重合体A1:重合体B1:架橋剤C2)を80:20:10に変更した。それ以外は実施例1と同様にしてレジスト組成物を調製し、レジストパターンを形成して、実施例1と同様の各種評価を実施した。結果を表1に示す。
(Example 7)
In preparing the resist composition, trimethylolpropane PO modified triacrylate (manufactured by Toagosei Co., Ltd., product name: "Aronix (registered trademark) M-321") was used as crosslinking agent C2 instead of crosslinking agent C1. In addition, the mass ratio of polymer A, polymer B, and crosslinking agent in the resist composition (polymer A1:polymer B1:crosslinking agent C2) was changed to 80:20:10. Except for this, a resist composition was prepared in the same manner as in Example 1, a resist pattern was formed, and various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
(実施例8)
 レジスト組成物の調製において、架橋剤として、架橋剤C1に替えて、架橋剤C3としてのジペンタエリスリトールペンタアクリレート及びジペンタエリスリトールヘキサアクリレートの混合物(東亜合成株式会社製、製品名:「アロニックス(登録商標)M-403」)を使用した。また、レジスト組成物中の重合体Aと、重合体Bと、架橋剤との質量比(重合体A:重合体B:架橋剤C3)を80:20:10に変更した。それ以外は実施例1と同様にしてレジスト組成物を調製し、レジストパターンを形成して、実施例1と同様の各種評価を実施した。結果を表1に示す。
(Example 8)
In preparing the resist composition, a mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (manufactured by Toagosei Co., Ltd., product name: "Aronix (registered trademark) M-403") was used as crosslinking agent C3 instead of crosslinking agent C1. In addition, the mass ratio of polymer A, polymer B, and crosslinking agent in the resist composition (polymer A:polymer B:crosslinking agent C3) was changed to 80:20:10. A resist composition was prepared in the same manner as in Example 1, a resist pattern was formed, and various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
(実施例9)
 レジスト組成物の調製において、架橋剤として、架橋剤C1に替えて、架橋剤C4としてのイソシアヌル酸エチレンオキサイド変性ジアクリレート及びイソシアヌル酸エチレンオキサイド変性トリアクリレートの混合物(東亜合成株式会社製、製品名:「アロニックス(登録商標)M-315」)を使用した。また、レジスト組成物中の重合体Aと、重合体Bと、架橋剤との質量比(重合体A:重合体B:架橋剤C4)を80:20:10に変更した。それ以外は実施例1と同様にしてレジスト組成物を調製し、レジストパターンを形成して、実施例1と同様の各種評価を実施した。結果を表1に示す。
Example 9
In preparing the resist composition, a mixture of isocyanuric acid ethylene oxide modified diacrylate and isocyanuric acid ethylene oxide modified triacrylate (manufactured by Toagosei Co., Ltd., product name: "Aronix (registered trademark) M-315") was used as crosslinking agent C4 instead of crosslinking agent C1. In addition, the mass ratio of polymer A, polymer B, and crosslinking agent in the resist composition (polymer A:polymer B:crosslinking agent C4) was changed to 80:20:10. A resist composition was prepared in the same manner as in Example 1, a resist pattern was formed, and various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
(実施例10)
 レジスト組成物の調製において、架橋剤として、架橋剤C1に替えて、架橋剤C5としてのトリアリルイソシアヌレート(三菱ケミカル株式会社、製品名:「TAIC」)を使用した。また、レジスト組成物中の重合体Aと、重合体Bと、架橋剤との質量比(重合体A:重合体B:架橋剤C5)を80:20:10に変更した。それ以外は実施例1と同様にしてレジスト組成物を調製し、レジストパターンを形成して、実施例1と同様の各種評価を実施した。結果を表1に示す。
Example 10
In preparing the resist composition, triallyl isocyanurate (Mitsubishi Chemical Corporation, product name: "TAIC") was used as crosslinking agent C5 instead of crosslinking agent C1. In addition, the mass ratio of polymer A, polymer B, and crosslinking agent in the resist composition (polymer A:polymer B:crosslinking agent C5) was changed to 80:20:10. A resist composition was prepared in the same manner as in Example 1 except for this, a resist pattern was formed, and various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
(実施例11)
 レジスト組成物の調製において、重合体Bとして、共重合体B1に替えて、共重合体B2を使用した。それ以外は実施例1と同様にしてレジスト組成物を調製し、レジストパターンを形成して、実施例1と同様の各種評価を実施した。結果を表1に示す。
(Example 11)
In preparing the resist composition, copolymer B2 was used instead of copolymer B1 as polymer B. Except for this, a resist composition was prepared in the same manner as in Example 1, a resist pattern was formed, and various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
(実施例12)
 レジスト組成物の調製において、重合体Bとして、共重合体B1に替えて、共重合体B2を使用した。それ以外は実施例10と同様にしてレジスト組成物を調製し、レジストパターンを形成して、実施例1と同様の各種評価を実施した。結果を表1に示す。
Example 12
In preparing the resist composition, copolymer B2 was used instead of copolymer B1 as polymer B. Except for this, a resist composition was prepared in the same manner as in Example 10, a resist pattern was formed, and various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
(比較例1)
 レジスト組成物の調製において、重合体B及び架橋剤を配合しなかった。それ以外は、実施例1と同様にしてレジスト組成物を調製し、レジストパターンを形成して、実施例1と同様の各種評価を実施した。結果を表1に示す。
(Comparative Example 1)
In preparing the resist composition, polymer B and a crosslinking agent were not blended. Except for this, a resist composition was prepared in the same manner as in Example 1, a resist pattern was formed, and various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
(比較例2)
 レジスト組成物の調製において、共重合体A及び架橋剤を配合しなかった。それ以外は、実施例1と同様にしてレジスト組成物を調製し、レジストパターンを形成して、実施例1と同様の各種評価を実施した。結果を表1に示す。
(Comparative Example 2)
In preparing the resist composition, Copolymer A and a crosslinking agent were not blended. Except for this, a resist composition was prepared in the same manner as in Example 1, a resist pattern was formed, and various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
(比較例3)
 レジスト組成物の調製において、共重合体A及び架橋剤を配合しなかった。また、重合体Bとして、重合体B1に替えて重合体B2を使用した。それ以外は、実施例1と同様にしてレジスト組成物を調製し、レジストパターンを形成して、実施例1と同様の各種評価を実施した。結果を表1に示す。
(Comparative Example 3)
In preparing the resist composition, copolymer A and a crosslinking agent were not blended. In addition, polymer B2 was used instead of polymer B1 as polymer B. Except for this, a resist composition was prepared in the same manner as in Example 1, a resist pattern was formed, and various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 なお、表1中、
「A1」は、共重合体A1を示し、
「B1」は、共重合体B1を示し、
「B2」は、共重合体B2を示し、
「C1」は、ポリエチレングリコールジアクリレートを示し、
「C2」は、トリメチロールプロパンPO変性トリアクリレートを示し、
「C3」は、ジペンタエリスリトールペンタアクリレート及びジペンタエリスリトールヘキサアクリレートの混合物を示し、
「C4」は、イソシアヌル酸エチレンオキサイド変性ジアクリレート及びイソリアヌル酸エチレンオキサイド変性トリアクリレートの混合物を示し、
「C5」は、トリアリルイソシアヌレートを示し、
「PAB」は、プリベーク工程を示し、
「SFE(A)」は、共重合体Aの表面自由エネルギーを示し、
「SFE(B)」は、共重合体Bの表面自由エネルギーを示し、
「PEB」は、ポスト露光ベーク工程を示し、
「IPA」は、イソプロピルアルコールを示す。
In Table 1,
"A1" represents copolymer A1;
"B1" indicates copolymer B1;
"B2" indicates copolymer B2;
"C1" represents polyethylene glycol diacrylate;
"C2" represents trimethylolpropane PO modified triacrylate;
"C3" represents a mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate;
"C4" represents a mixture of isocyanuric acid ethylene oxide modified diacrylate and isocyanuric acid ethylene oxide modified triacrylate;
"C5" represents triallyl isocyanurate;
"PAB" indicates a pre-bake step,
"SFE(A)" indicates the surface free energy of copolymer A,
"SFE(B)" indicates the surface free energy of copolymer B,
"PEB" refers to a post-exposure bake step;
"IPA" refers to isopropyl alcohol.
 表1に示す結果から、電離放射線、又は、波長300nm以下の非電離放射線により反応する架橋剤と、重合体Aと、重合体B(重合体Aと重合体Bの表面自由エネルギーの差は3mJ/m2以上)とを配合したレジスト組成物を用いた実施例1~12では、レジスト膜の露光マージンが広く、得られたレジストパターンは、トップロスの発生が抑制されており、レジスト残渣の量が低減されていることが分かる。
 一方、重合体B及び架橋剤を配合しない比較例1、重合体A及び架橋剤を配合しない比較例2及び3では、レジスト膜の露光マージン拡大効果、トップロス発生の抑制効果、レジスト残渣の量の低減効果のすべてを効果的に実現することができなかったことが分かる。
The results shown in Table 1 show that in Examples 1 to 12, which used resist compositions containing a crosslinker that reacts with ionizing radiation or non-ionizing radiation with a wavelength of 300 nm or less, polymer A, and polymer B (the difference in surface free energy between polymer A and polymer B is 3 mJ/ m2 or more), the exposure margin of the resist film was wide, and the obtained resist patterns suppressed the occurrence of top loss and had a reduced amount of resist residue.
On the other hand, in Comparative Example 1 in which polymer B and a crosslinking agent were not blended, and Comparative Examples 2 and 3 in which polymer A and a crosslinking agent were not blended, it was found that it was not possible to effectively achieve all of the effects of expanding the exposure margin of the resist film, suppressing the occurrence of top loss, and reducing the amount of resist residue.
 本発明によれば、露光マージンが広く、かつ、トップロスの発生が抑制されており、レジスト残渣の量が低減されたレジストパターンを形成することができるレジスト組成物及びレジストパターン形成方法を提供することができる。 The present invention provides a resist composition and a method for forming a resist pattern that can form a resist pattern with a wide exposure margin, suppressed top loss, and reduced amounts of resist residue.

Claims (12)

  1.  電離放射線、又は、波長300nm以下の非電離放射線により反応する架橋剤と、
     溶剤と、
     重合体Aと、
     重合体Bとを含み、
     前記重合体Aの表面自由エネルギーが、前記重合体Bの表面自由エネルギーよりも大きく、前記重合体Aの表面自由エネルギーと、前記重合体Bの表面自由エネルギーの差が3mJ/m2以上である、レジスト組成物。
    a crosslinking agent that reacts with ionizing radiation or non-ionizing radiation having a wavelength of 300 nm or less;
    A solvent;
    Polymer A,
    and a polymer B,
    A resist composition, wherein the surface free energy of the polymer A is larger than the surface free energy of the polymer B, and the difference between the surface free energy of the polymer A and the surface free energy of the polymer B is 3 mJ/ m2 or more.
  2.  前記レジスト組成物中の前記重合体Aの含有量をA(質量部)、前記重合体の含有量をB(質量部)、前記架橋剤の含有量をC(質量部)としたときに、下記関係式(x):
    A≧(B+C)   ・・・(x)
    〔但し、式(x)中、B>0、C>0である。〕
    を満たす、請求項1に記載のレジスト組成物。
    When the content of the polymer A in the resist composition is A (parts by mass), the content of the polymer is B (parts by mass), and the content of the crosslinking agent is C (parts by mass), the following relationship (x):
    A ≧ (B + C) ... (x)
    (In the formula (x), B>0 and C>0.)
    The resist composition according to claim 1 , which satisfies the above formula (1).
  3.  前記重合体A及び前記重合体Bの少なくとも一方が主鎖切断型である、請求項1に記載のレジスト組成物。 The resist composition according to claim 1, wherein at least one of the polymer A and the polymer B is a main chain cleavage type.
  4.  前記重合体A及び前記重合体Bの少なくとも一方が、下記式(I):
    Figure JPOXMLDOC01-appb-C000001
    〔式(I)中、R1は、ハロゲン原子、シアノ基、アルキルスルホニル基、アルコキシ基、ニトロ基、アシル基、アルキルエステル基又はハロゲン化アルキル基であり、R2は、水素原子又はフッ素原子の数が0以上20以下の有機基であり、R3及びR4は、水素原子、ハロゲン原子、非置換のアルキル基又はハロゲン原子で置換されたアルキル基であり、互いに同一でも異なっていてもよい。〕
    で表される単量体単位(I)を有する、請求項1に記載のレジスト組成物。
    At least one of the polymer A and the polymer B is represented by the following formula (I):
    Figure JPOXMLDOC01-appb-C000001
    [In formula (I), R 1 is a halogen atom, a cyano group, an alkylsulfonyl group, an alkoxy group, a nitro group, an acyl group, an alkyl ester group, or a halogenated alkyl group; R 2 is a hydrogen atom or an organic group having 0 to 20 fluorine atoms; R 3 and R 4 are a hydrogen atom, a halogen atom, an unsubstituted alkyl group, or an alkyl group substituted with a halogen atom, and may be the same or different from each other.]
    2. The resist composition according to claim 1, which has a monomer unit (I) represented by the following formula:
  5.  前記重合体Aが、下記式(II):
    Figure JPOXMLDOC01-appb-C000002
    〔式(II)中、Lは、フッ素原子を有する2価の連結基であり、Arは、置換基を有していてもよい芳香環基であり、R5は、ハロゲン原子、シアノ基、アルキルスルホニル基、アルコキシ基、ニトロ基、アシル基、アルキルエステル基又はハロゲン化アルキル基であり、R6及びR7は、水素原子、ハロゲン原子、非置換のアルキル基又はハロゲン原子で置換されたアルキル基であり、互いに同一でも異なっていてもよい。〕
    で表わされる単量体単位(II)と、
    下記式(III):
    Figure JPOXMLDOC01-appb-C000003
    〔式(III)中、R8、R11、及びR12は、水素原子、ハロゲン原子、非置換のアルキル基又はハロゲン原子で置換されたアルキル基であり、互いに同一でも異なっていてもよく、R9は、水素原子、ハロゲン原子、カルボキシル基、ハロゲン化カルボキシル基、非置換のアルキル基又はハロゲン原子で置換されたアルキル基であり、R10は、水素原子、非置換のアルキル基又はハロゲン原子で置換されたアルキル基であり、p及びqは、0以上5以下の整数であり、p+q=5である。〕
    で表される単量体単位(III)と、を有する共重合体Aである、請求項1に記載のレジスト組成物。
    The polymer A is represented by the following formula (II):
    Figure JPOXMLDOC01-appb-C000002
    [In formula (II), L is a divalent linking group having a fluorine atom, Ar is an aromatic ring group which may have a substituent, R5 is a halogen atom, a cyano group, an alkylsulfonyl group, an alkoxy group, a nitro group, an acyl group, an alkyl ester group or a halogenated alkyl group, and R6 and R7 are a hydrogen atom, a halogen atom, an unsubstituted alkyl group or an alkyl group substituted with a halogen atom, and may be the same or different from each other.]
    A monomer unit (II) represented by
    The following formula (III):
    Figure JPOXMLDOC01-appb-C000003
    [In formula (III), R 8 , R 11 , and R 12 are hydrogen atoms, halogen atoms, unsubstituted alkyl groups, or alkyl groups substituted with halogen atoms, and may be the same or different from one another; R 9 is hydrogen atoms, halogen atoms, carboxyl groups, halogenated carboxyl groups, unsubstituted alkyl groups, or alkyl groups substituted with halogen atoms; R 10 is hydrogen atoms, unsubstituted alkyl groups, or alkyl groups substituted with halogen atoms; p and q are integers of 0 to 5, and p+q=5.]
    2. The resist composition according to claim 1, wherein the monomer unit (III) is a copolymer A having the monomer unit (III) represented by the following formula:
  6.  前記重合体Bが、下記式(IV):
    Figure JPOXMLDOC01-appb-C000004
    〔式(IV)中、R13は、ハロゲン原子、シアノ基、アルキルスルホニル基、アルコキシ基、ニトロ基、アシル基、アルキルエステル基又はハロゲン化アルキル基であり、R14は、水素原子又はフッ素原子の数が0以上20以下の有機基であり、R15及びR16は、水素原子、ハロゲン原子、非置換のアルキル基又はハロゲン原子で置換されたアルキル基であり、互いに同一でも異なっていてもよい。〕
    で表される単量体単位(IV)と、
    下記式(V):
    Figure JPOXMLDOC01-appb-C000005
    〔式(V)中、R17、R20、及びR21は、水素原子、ハロゲン原子、非置換のアルキル基又はハロゲン原子で置換されたアルキル基であり、互いに同一でも異なっていてもよく、R18は、水素原子、ハロゲン原子、カルボキシル基、ハロゲン化カルボキシル基、非置換のアルキル基又はハロゲン原子で置換されたアルキル基であり、R19は、水素原子、非置換のアルキル基又はハロゲン原子で置換されたアルキル基であり、r及びsは、0以上5以下の整数であり、r+s=5である。〕
    で表される単量体単位(V)と、を有する共重合体Bである、請求項1に記載のレジスト組成物。
    The polymer B is represented by the following formula (IV):
    Figure JPOXMLDOC01-appb-C000004
    [In formula (IV), R 13 is a halogen atom, a cyano group, an alkylsulfonyl group, an alkoxy group, a nitro group, an acyl group, an alkyl ester group, or a halogenated alkyl group; R 14 is a hydrogen atom or an organic group having 0 to 20 fluorine atoms; R 15 and R 16 are a hydrogen atom, a halogen atom, an unsubstituted alkyl group, or an alkyl group substituted with a halogen atom, and may be the same or different from each other.]
    A monomer unit (IV) represented by
    The following formula (V):
    Figure JPOXMLDOC01-appb-C000005
    [In formula (V), R 17 , R 20 , and R 21 are hydrogen atoms, halogen atoms, unsubstituted alkyl groups, or alkyl groups substituted with halogen atoms, and may be the same or different from each other; R 18 is hydrogen atoms, halogen atoms, carboxyl groups, halogenated carboxyl groups, unsubstituted alkyl groups, or alkyl groups substituted with halogen atoms; R 19 is hydrogen atoms, unsubstituted alkyl groups, or alkyl groups substituted with halogen atoms; r and s are integers of 0 to 5, and r+s=5.]
    and a monomer unit (V) represented by the following formula (1):
  7.  前記架橋剤が不飽和結合を有する、請求項1に記載のレジスト組成物。 The resist composition according to claim 1, wherein the crosslinking agent has an unsaturated bond.
  8.  前記架橋剤が前記不飽和結合を1以上10以下有する、請求項7に記載のレジスト組成物。 The resist composition according to claim 7, wherein the crosslinking agent has 1 to 10 unsaturated bonds.
  9.  前記架橋剤が有する前記不飽和結合が、ビニル基、(メタ)アクリレート基、又はアリル基に含有される不飽和結合である、請求項7又は8に記載のレジスト組成物。 The resist composition according to claim 7 or 8, wherein the unsaturated bond possessed by the crosslinking agent is an unsaturated bond contained in a vinyl group, a (meth)acrylate group, or an allyl group.
  10.  前記重合体Aと前記重合体Bとの合計100質量部に対して、前記架橋剤を1質量部以上50質量部以下の割合で含有する、請求項1に記載のレジスト組成物。 The resist composition according to claim 1, comprising the crosslinking agent in an amount of 1 part by mass or more and 50 parts by mass or less per 100 parts by mass of the total of the polymer A and the polymer B.
  11.  電離放射線、又は、波長300nm以下の非電離放射線により反応する架橋剤と、溶剤と、重合体Aと、重合体Bと、を含むレジスト組成物を基材上に塗工して塗工層を得て、前記塗工層から前記溶剤を除去してレジスト膜を形成するレジスト膜形成工程と、
     前記レジスト膜形成工程で形成した前記レジスト膜に対して、電離放射線、又は、波長300nm以下の非電離放射線を露光光として用いて露光して、前記架橋剤による架橋反応を進行させつつ潜像パターンを形成する露光工程と、を含む、レジストパターン形成方法。
    a resist film forming step of coating a resist composition containing a crosslinking agent that reacts with ionizing radiation or non-ionizing radiation having a wavelength of 300 nm or less, a solvent, a polymer A, and a polymer B onto a substrate to obtain a coating layer, and removing the solvent from the coating layer to form a resist film;
    an exposure step of exposing the resist film formed in the resist film forming step to ionizing radiation or non-ionizing radiation having a wavelength of 300 nm or less as exposure light, thereby forming a latent image pattern while progressing a crosslinking reaction by the crosslinking agent.
  12.  露光された前記レジスト膜を現像する現像工程を更に含み、前記現像を、アルコールを用いて行う、請求項11に記載のレジストパターン形成方法。 The method for forming a resist pattern according to claim 11, further comprising a developing step of developing the exposed resist film, the developing being carried out using alcohol.
PCT/JP2023/033241 2022-09-30 2023-09-12 Resist composition and method for forming resist pattern WO2024070672A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-158911 2022-09-30
JP2022158911 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024070672A1 true WO2024070672A1 (en) 2024-04-04

Family

ID=90477561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033241 WO2024070672A1 (en) 2022-09-30 2023-09-12 Resist composition and method for forming resist pattern

Country Status (1)

Country Link
WO (1) WO2024070672A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035633A1 (en) * 2014-09-01 2016-03-10 富士フイルム株式会社 Infrared-light shielding composition, infrared-light cutoff filter, and solid-state imaging element
JP2018025687A (en) * 2016-08-10 2018-02-15 東洋インキScホールディングス株式会社 Photosensitive colored composition and color filter
WO2022190714A1 (en) * 2021-03-09 2022-09-15 日本ゼオン株式会社 Positive resist composition and resist pattern formation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035633A1 (en) * 2014-09-01 2016-03-10 富士フイルム株式会社 Infrared-light shielding composition, infrared-light cutoff filter, and solid-state imaging element
JP2018025687A (en) * 2016-08-10 2018-02-15 東洋インキScホールディングス株式会社 Photosensitive colored composition and color filter
WO2022190714A1 (en) * 2021-03-09 2022-09-15 日本ゼオン株式会社 Positive resist composition and resist pattern formation method

Similar Documents

Publication Publication Date Title
CN110050005B (en) Polymer, positive resist composition, and resist pattern formation method
JP6801679B2 (en) Polymers, positive resist compositions, and resist pattern forming methods
JP4742685B2 (en) Polymer for liquid immersion upper layer film and composition for forming upper layer film for liquid immersion
JP2020183975A (en) Resist patterning method
CN108369378B (en) Method of forming resist pattern
WO2024070672A1 (en) Resist composition and method for forming resist pattern
JP4600112B2 (en) Immersion upper film forming composition and photoresist pattern forming method
KR20230154820A (en) Positive resist composition and resist pattern formation method
JP7327387B2 (en) Positive resist composition for EUV lithography and resist pattern forming method
JP2018106066A (en) Resist pattern forming method
KR20230029619A (en) Copolymer, positive resist composition, and resist pattern forming method
WO2021145343A1 (en) Copolymer, positive resist composition, and method for forming resist pattern
WO2019151021A1 (en) Method for forming resist pattern
WO2023026842A1 (en) Positive resist composition
WO2023189969A1 (en) Resist composition and method for forming resist pattern
JP2020086455A (en) Method for forming resist pattern
WO2023228692A1 (en) Copolymer, copolymer mixture, and positive resist composition
WO2023228691A1 (en) Positive-type resist composition
WO2022270511A1 (en) Positive resist composition and method for forming resist pattern
WO2022070928A1 (en) Positive resist composition for extreme ultraviolet lithography, and kit for forming resist pattern for extreme ultraviolet lithography
JPWO2019151019A1 (en) Positive resist composition, resist film forming method, and method for producing a laminate
JP2022100129A (en) Formation method of resist pattern
JP2023003342A (en) Resist pattern forming method
JP2021033293A (en) Positive resist composition and resist pattern forming kit
WO2023042806A1 (en) Copolymer and method for producing same, and positive resist composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871905

Country of ref document: EP

Kind code of ref document: A1