WO2024070614A1 - Test container, nucleic acid amplification device, and nucleic acid amplification test method - Google Patents

Test container, nucleic acid amplification device, and nucleic acid amplification test method Download PDF

Info

Publication number
WO2024070614A1
WO2024070614A1 PCT/JP2023/032960 JP2023032960W WO2024070614A1 WO 2024070614 A1 WO2024070614 A1 WO 2024070614A1 JP 2023032960 W JP2023032960 W JP 2023032960W WO 2024070614 A1 WO2024070614 A1 WO 2024070614A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
sample
nucleic acid
acid amplification
temperature side
Prior art date
Application number
PCT/JP2023/032960
Other languages
French (fr)
Japanese (ja)
Inventor
隆次 清水
薫 重松
誠司 大西
薫 上之園
Original Assignee
Phcホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phcホールディングス株式会社 filed Critical Phcホールディングス株式会社
Publication of WO2024070614A1 publication Critical patent/WO2024070614A1/en

Links

Images

Definitions

  • the present invention relates to a test container, a nucleic acid amplification device, and a nucleic acid amplification test method.
  • a nucleic acid amplification device that performs a so-called thermal cycle to cause a polymerase chain reaction (PCR) in nucleic acids (genes) such as DNA (Deoxyribonucleic Acid) through a thermal denaturation step, an annealing step, and an extension reaction step, thereby amplifying the nucleic acid.
  • PCR polymerase chain reaction
  • nucleic acid amplification device that is equipped with a mechanism for amplifying nucleic acids as well as a detection unit for detecting nucleic acids, and is capable of detecting amplified nucleic acids in real time (see, for example, Patent Document 1).
  • a nucleic acid amplification device is called a real-time PCR device.
  • the real-time PCR device amplifies the nucleic acid by controlling the temperature of the reaction sample, which contains the nucleic acid to be tested as well as test reagents such as primers and fluorescent probes.
  • the real-time PCR device then irradiates the reaction sample with excitation light that excites a fluorescent dye, and quantitatively measures the amplified nucleic acid based on the fluorescence generated by the fluorescent dye.
  • a thermal cycle including a thermal denaturation step, an annealing step, and an extension reaction step is repeated multiple times to amplify nucleic acids.
  • the present invention was made in consideration of these circumstances, and aims to provide a test container, a nucleic acid amplification device, and a nucleic acid amplification test method that can shorten the time required for testing.
  • test container used in a nucleic acid amplification test performed in a nucleic acid amplification device, A substrate;
  • a flow channel is provided on the substrate and accommodates a sample containing nucleic acid;
  • the flow path is a thermal flow path having a circulation flow path through which the sample circulates; and a pump provided in the circulation flow path for moving the sample.
  • a nucleic acid amplification device that performs a nucleic acid amplification test in a state in which a test container having a circulation flow path through which a sample circulates is incorporated, a pump driving unit that drives a pump provided in the circulation flow path; a low-temperature heater section that heats a low-temperature side heat section of the circulation flow path to a first predetermined temperature; a high-temperature heater section that heats a high-temperature side heat section of the circulation flow path to a second predetermined temperature that is higher than the first predetermined temperature; and a fluorescence detection unit that detects the fluorescence of a fluorescent dye contained in the sample.
  • the nucleic acid amplification test method is to A nucleic acid amplification test method performed in a nucleic acid amplification device that performs a nucleic acid amplification test in a state in which a test container having a flow path in which a sample is contained is attached, comprising:
  • the flow path is a thermal flow path including a circulation flow path through which a sample circulates during a nucleic acid amplification test; a dispensing channel connected to the thermal channel; a pump provided in the circulation flow path for moving the sample; a first valve provided in the thermal flow path between the circulation flow path and the dispensing flow path; A second valve provided in the circulation flow path,
  • the nucleic acid amplification test method is performing a dispensing process in which the pump is driven while the first valve is open and the second valve is closed to move the sample from the dispensing flow path to the circulation flow path; and performing a thermal cycle process of heating the sample while circulating it in the circulation channel by driving the pump with the first
  • the present invention provides a test container, a nucleic acid amplification device, and a nucleic acid amplification test method that can reduce the time required for testing.
  • FIG. 1 is a plan view of a container for inspection according to a first embodiment.
  • FIG. 2 is a bottom view of the container for inspection.
  • FIG. 3 is a schematic cross-sectional view of the first high temperature side valve, the first low temperature side valve, and the second valve.
  • FIG. 4 is a cross-sectional perspective view showing an example of a pump.
  • FIG. 5 is an exploded perspective view showing a first modified example of the pump.
  • FIG. 6 is a cross-sectional perspective view showing a first modified example of the pump.
  • FIG. 7 is a cross-sectional perspective view showing a second modified example of the pump.
  • FIG. 8 is a schematic cross-sectional view of the nucleic acid amplification device according to the first embodiment.
  • FIG. 1 is a plan view of a container for inspection according to a first embodiment.
  • FIG. 2 is a bottom view of the container for inspection.
  • FIG. 3 is a schematic cross-sectional view of the first high temperature side valve, the
  • FIG. 9 is a perspective view for explaining the configuration of the pump drive unit.
  • FIG. 10 is a perspective view for explaining the configuration of a rotating member of the pump drive unit.
  • FIG. 11 is a schematic diagram for explaining the operation of the pump driving unit.
  • FIG. 12 is a schematic diagram showing the configuration of a fluorescence detection device.
  • FIG. 13 is a time chart showing the temperature cycle in a nucleic acid amplification test.
  • FIG. 14A is a diagram for explaining the state of the cartridge in a nucleic acid amplification test.
  • FIG. 14B is a diagram for explaining the state of the cartridge in a nucleic acid amplification test.
  • FIG. 14C is a diagram for explaining the state of the cartridge in a nucleic acid amplification test.
  • FIG. 14A is a diagram for explaining the state of the cartridge in a nucleic acid amplification test.
  • FIG. 14B is a diagram for explaining the state of the cartridge in a nucleic acid amplification
  • FIG. 14D is a diagram for explaining the state of the cartridge in a nucleic acid amplification test.
  • FIG. 15 is a schematic cross-sectional view of the nucleic acid amplification device according to the second embodiment.
  • FIG. 16 is a perspective view of a pump driver of the nucleic acid amplification apparatus according to the third embodiment.
  • FIG. 17 is a cross-sectional perspective view of the pump drive unit.
  • FIG. 18 is a schematic diagram for explaining the operation of the pump driving unit.
  • test container The test container, nucleic acid amplification device, and nucleic acid amplification test method according to the present invention will be described below with reference to the drawings. Note that the same components are given the same reference numerals.
  • FIGS. 1 to 14D A container for testing, a nucleic acid amplification device, and a nucleic acid amplification testing method according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 14D.
  • FIG. 1 is a plan view of a cartridge C according to a first embodiment of the present invention.
  • FIG. 2 is a bottom view of the cartridge C.
  • the cartridge C is an example of a test container.
  • Cartridge C is used in a nucleic acid amplification test carried out in a nucleic acid amplification device such as a PCR device or a real-time PCR device.
  • a nucleic acid amplification device such as a PCR device or a real-time PCR device.
  • Cartridge C is set in the nucleic acid amplifier 6 while containing a reaction sample (hereinafter simply referred to as "sample”).
  • sample includes, for example, the nucleic acid (hereinafter also referred to as "target nucleic acid”) of the test subject (e.g., a virus) and test reagents such as primers and fluorescent probes.
  • target nucleic acid the nucleic acid
  • a thermal cycle process is performed, thereby carrying out processes such as a thermal denaturation process, an annealing process, and an extension reaction process.
  • the target nucleic acid is amplified in cartridge C.
  • the cartridge C has a base portion 1 and a flow path 2.
  • the base part 1 is made of a colorless and transparent synthetic resin and has a rectangular plate shape.
  • the synthetic resin that constitutes the base part 1 is, for example, polypropylene, polycarbonate, or cycloolefin polymer.
  • elements such as a first low-temperature side valve 30, a first high-temperature side valve 31, a pump 34, and a second valve 37 that constitute the flow path 2 described below are fixed to the base part 1.
  • the base part 1 and each of these elements are made by a molding method such as two-color molding.
  • the upper surface (front surface) of the base part 1 (cartridge C) is the first main surface.
  • the lower surface (rear surface) of the base part 1 (cartridge C) is the second main surface.
  • the first and second main surfaces of the base part 1 (cartridge C) are a pair of opposing surfaces.
  • the base portion 1 has a high temperature region R1, a low temperature region R2, and an intermediate region R3.
  • the high-temperature region R1 is a region that is heated by a high-temperature heater unit 641 of the nucleic acid amplifier 6 described below during a nucleic acid amplification test (hereinafter also simply referred to as "during the test"). Specifically, the high-temperature region R1 is a region that includes the right end portion of the base portion 1.
  • the directions indicated by the arrows labeled with up and down characters in each figure are described as up or down for convenience.
  • the directions indicated by the arrows labeled with left and right characters in each figure are described as right or left for convenience.
  • the left and right direction of the base part 1 is also the longitudinal direction of the base part 1.
  • the directions indicated by the arrows labeled with front and back characters in each figure are described as front or back for convenience.
  • the front and back direction of the base part 1 is also the lateral direction of the base part 1.
  • the directions indicated by the arrows labeled with up and down characters in each figure may or may not match the vertical direction when the cartridge C is set in the nucleic acid amplification device.
  • the position of the high temperature region is not limited to the position of the high temperature region R1 in this embodiment.
  • the position of the high temperature region may be set appropriately in relation to the position of the high temperature heater unit 641 of the nucleic acid amplification device 6.
  • the high temperature region R1 has a first high temperature region R11 and a second high temperature region R12.
  • the first high temperature region R11 is a portion including the right end portion of the base portion 1.
  • the second high temperature region R12 is a region to the left of the second high temperature region R12 (the side closer to the low temperature region R2).
  • the first high temperature region R11 is an area that is heated by the first high temperature heater 641a of the high temperature heater section 641 during inspection.
  • the second high temperature region R12 is an area that is heated by the second high temperature heater 641b of the high temperature heater section 641 during inspection. During inspection, the temperature of the second high temperature region R12 becomes higher than the temperature of the first high temperature region R11.
  • the low-temperature region R2 is an area that is heated by the low-temperature heater 642a of the nucleic acid amplifier 6 during testing. Specifically, the low-temperature region R2 is an area that includes the left end of the base portion 1.
  • the position of the low temperature region is not limited to the position of the low temperature region R2 in this embodiment.
  • the position of the low temperature region may be set appropriately depending on its relationship with the position of the low temperature heater 642a of the nucleic acid amplification device 6.
  • the intermediate region R3 is a region provided between the high-temperature region R1 and the low-temperature region R2 in the left-right direction of the base portion 1.
  • the intermediate region R3 may be considered as a portion that does not face the high-temperature heater portion 641 and the low-temperature heater portion 642 of the nucleic acid amplifier 6 during testing.
  • the flow path 2 is composed of a groove formed on the lower surface (second main surface) of the base part 1, and a number of elements fixed to the base part 1.
  • the groove constituting the flow path 2 opens downward.
  • the lower opening of the groove is blocked by a film-like sealing member 50 (see Figure 4) fixed to the lower surface of the base part 1.
  • the flow path 2 has a dispensing flow path 2a and thermal flow paths 3a, 3b, 3c, 3d, and 3e.
  • the dispensing flow path 2a is a flow path through which the sample moves during the dispensing process in the test.
  • the dispensing flow path 2a has a sample storage section 20 and multiple (five in this embodiment) individual reagent holding sections 21.
  • the sample storage section 20 is provided in the high temperature region R1 (specifically, the first high temperature region R11) of the base section 1.
  • the sample storage section 20 has a sample storage space 20a, a sample dropping port 20b, and an air hole 20c.
  • the sample storage space 20a is a space surrounded by a long groove in the front-rear direction formed on the underside of the base part 1.
  • the sample storage space 20a is a space in which the sample dropped into the sample dropping port 20b by the operator is temporarily stored.
  • the sample storage space 20a is connected to the thermal channels 3a to 3e via channel elements L1 and L2.
  • the channel elements are elements that make up the channel 2, and are spaces defined by grooves formed on the underside of the base 1.
  • the first end (rear end in this embodiment) of the sample storage space 20a is connected to the low temperature ends of the thermal channels 3a to 3e via channel element L1.
  • the second end (front end in this embodiment) of the sample storage space 20a is connected to the high temperature ends of the thermal channels 3a to 3e via channel element L2.
  • the sample inlet 20b and the air hole 20c are each formed by a through hole provided in the base portion 1.
  • the sample inlet 20b and the air hole 20c each communicate between the sample storage space 20a and the external space.
  • the openings of the sample inlet 20b and the air hole 20c on the external space side are blocked by film-like sealing members 51, 52 (see Figure 1) during testing.
  • the individual reagent carrying section 21 is an example of a reagent carrying section, and is provided at the left end of the base section 1 shown in FIG. 2. In other words, the individual reagent carrying section 21 is provided between the left end of the base section 1 and the low-temperature side heat section 33 of the thermal flow paths 3a to 3e described below.
  • the individual reagent carrying section 21 is provided in an area that is not heated by the heater section 64 of the nucleic acid amplification device 6 (is not easily affected by the heat of the heater section 64).
  • the individual reagent holding section 21 is connected to the sample storage section 20 via the flow path element L1.
  • the individual reagent holding section 21 holds a reagent (hereinafter referred to as an "individual reagent") in advance.
  • the individual reagents are reagents that correspond to the target nucleic acid.
  • the individual reagents include, for example, a dried enzyme (e.g., DNA polymerase), a primer, and a probe having a fluorescent dye and a quencher.
  • the type of the individual reagent may be appropriately determined depending on the target nucleic acid.
  • the individual reagent may also be a liquid.
  • the flow path 2 may have one common reagent carrying section 22 between the sample storage section 20 and the individual reagent carrying section 21.
  • a reagent (hereinafter referred to as a "common reagent") is carried in advance in the common reagent carrying section 22.
  • the common reagent is a reagent common to all the target nucleic acids targeted by the thermal flow paths 3a to 3e.
  • the common reagent may be carried in the individual reagent carrying section 21. In this case, the common reagent carrying section 22 may be omitted.
  • the thermal flow paths 3a to 3e are arranged in parallel to one another and are flow paths through which the sample moves during thermal cycle processing in testing.
  • the thermal flow paths 3a to 3e are arranged in a line in a predetermined direction (in this embodiment, the front-to-back direction) in the base portion 1. All of the thermal flow paths 3a to 3e can be considered collectively as the thermal flow path.
  • the thermal flow paths 3a to 3e are parallel flow paths having the same configuration.
  • the flow path 2 has five thermal flow paths 3a to 3e.
  • the number of thermal flow paths may be considered as the number of test items.
  • thermal flow path 3a The configuration of thermal flow path 3a will be described below.
  • the configuration of thermal flow paths 3b to 3e can be understood by appropriately interpreting the description of the configuration of thermal flow path 3a. Note that the same reference numerals are used for the configurations common to thermal flow paths 3a to 3e.
  • Thermal flow path 3a is a flow path provided in correspondence with individual reagent holder 21. Specifically, thermal flow path 3a has a first low-temperature side valve 30, a first high-temperature side valve 31, and a circulation flow path 32.
  • the circulation flow path 32 is sandwiched between the first low-temperature side valve 30 and the first high-temperature side valve 31. When the first low-temperature side valve 30 and the first high-temperature side valve 31 are closed, the circulation flow path 32 becomes a closed flow path.
  • the specific configurations of the first low-temperature side valve 30, the first high-temperature side valve 31, and the circulation flow path 32 are described below.
  • the first low-temperature side valve 30 is an example of a first valve, and is a valve fixed to the base portion 1.
  • the first low-temperature side valve 30 is provided between the dispensing flow path 2a and the thermal flow path 3a.
  • the first low-temperature side valve 30 is provided between the individual reagent holding section 21 and the circulation flow path 32. Specifically, the first low-temperature side valve 30 is provided in the flow path element L3 that connects the individual reagent holding section 21 and the circulation flow path 32.
  • the flow path element L3 corresponds to an example of a first connecting flow path.
  • the first low-temperature side valve 30 is provided in the low-temperature region R2 of the base part 1.
  • the portion of the base part 1 to which the first low-temperature side valve 30 is fixed is a through-hole that passes through the base part 1 in the vertical direction.
  • the state of the first low-temperature side valve 30 is controlled by the nucleic acid amplifier 6 during testing. Specifically, the first low-temperature side valve 30 is switched between an open state and a closed state by the first low-temperature side valve drive unit 651 (see FIG. 8) of the nucleic acid amplifier 6.
  • the sample and air are permitted to pass through the first low-temperature side valve 30.
  • the first low-temperature side valve 30 is closed, the sample and air are prohibited from passing through the first low-temperature side valve 30.
  • FIG. 3 is a schematic cross-sectional view of the first cold side valve 30.
  • the first cold side valve 30 is made of an elastic material that is elastic and heat resistant.
  • the elastic material is, for example, a thermoplastic elastomer (TPE).
  • TPE thermoplastic elastomer
  • the first cold side valve 30 has a main body portion 30a, a valve flow path 30b, and a pressed portion 30c.
  • the main body 30a is substantially rectangular and is fixed to the base 1.
  • the valve flow path 30b is a tunnel-shaped space defined by a groove formed on the underside of the main body 30a.
  • the pressed portion 30c is a portion that is pressed downward by the first low-temperature side valve driving unit 651 (see FIG. 8) of the nucleic acid amplification device 6 during testing.
  • the pressed portion 30c is configured as a convex portion provided on the upper surface of the main body portion 30a.
  • the structure of the pressed portion 30c is not limited to a convex portion.
  • the configuration of the pressed portion 30c may be a concave shape.
  • the valve flow path 30b is open.
  • the first low-temperature side valve 30 is in the open state.
  • the sample and air are allowed to pass through the valve flow path 30b.
  • the pressed portion 30c When the pressed portion 30c is pressed downward by the first low-temperature side valve drive portion 651 (hereinafter referred to as the "pressed state of the pressed portion 30c"), the groove that defines the valve flow path 30b elastically deforms, and the valve flow path 30b is closed.
  • the first low-temperature side valve 30 When the pressed portion 30c is in the pressed state, the first low-temperature side valve 30 is in the closed state.
  • the sample and air are prohibited from passing through the valve flow path 30b.
  • the first low-temperature side valve 30 is in a closed state when pressed by the first low-temperature side valve drive unit 651.
  • the first low-temperature side valve 30 opens due to its own restoring force.
  • the first low-temperature side valves 30 of the thermal channels 3a to 3e are connected to each other by the connection parts 30d on the upper surface of the base part 1, as shown in FIG. 1. This configuration contributes to improving the manufacturing work efficiency of the cartridge C.
  • the first high temperature side valve 31 is a valve fixed to the base portion 1, and is provided between the sample storage portion 20 and the circulation flow path 32. Specifically, the first high temperature side valve 31 is provided in the flow path element L4 that connects the sample storage portion 20 and the circulation flow path 32.
  • the flow path element L4 corresponds to an example of a second connection flow path.
  • the flow path element L4 is connected to the flow path element L2.
  • the first high temperature side valve 31 is provided in the high temperature region R1 of the base part 1.
  • the portion of the base part 1 where the first high temperature side valve 31 is fixed is a through hole that passes through the base part 1 in the vertical direction.
  • the state of the first high temperature side valve 31 is controlled by the nucleic acid amplifier 6 during testing. Specifically, the first high temperature side valve 31 is switched between an open state and a closed state by the first high temperature side valve drive unit 652 (see FIG. 8) of the nucleic acid amplifier 6.
  • the sample and air are permitted to pass through the first high temperature side valve 31.
  • the first high temperature side valve 31 is closed, the sample and air are prohibited from passing through the first high temperature side valve 31.
  • FIG. 3 is also a schematic cross-sectional view of the first high temperature side valve 31.
  • the first high temperature side valve 31 is made of an elastic material that is elastic and heat resistant.
  • the elastic material is, for example, a thermoplastic elastomer (TPE).
  • TPE thermoplastic elastomer
  • the first high temperature side valve 31 has a main body portion 31a, a valve flow path 31b, and a pressed portion 31c.
  • the configurations of the main body 31a, the valve flow path 31b, and the pressed portion 31c are similar to the configurations of the main body 30a, the valve flow path 30b, and the pressed portion 30c of the first low-temperature side valve 30.
  • the pressed portion 31c is the portion that is pressed downward by the first high temperature side valve driving portion 652 (see FIG. 8) of the nucleic acid amplifier 6 during testing.
  • valve flow path 31b is open.
  • the first high temperature side valve 31 When the pressed portion 31c is not pressed, the first high temperature side valve 31 is open. When the first high temperature side valve 31 is open, the sample and air are allowed to pass through the valve flow path 31b.
  • the groove that defines the valve flow path 31b elastically deforms and the valve flow path 31b closes.
  • the first high-temperature side valve 31 is in the closed state.
  • the sample and air are prohibited from passing through the valve flow path 31b.
  • the first high temperature side valve 31 is in a closed state when it is pressed by the first high temperature side valve drive unit 652. Then, when the pressure from the first high temperature side valve drive unit 652 is released, the first high temperature side valve 31 opens due to its own restoring force.
  • the first high temperature side valves 31 of the thermal flow paths 3a to 3e are connected to each other by the connection part 31d on the upper surface of the base part 1, as shown in FIG. 1. This configuration contributes to improving the manufacturing work efficiency of the cartridge C.
  • the circulation flow path 32 is a flow path through which the sample circulates during the thermal cycle process in the test.
  • the circulation flow path 32 is a flow path provided between the first low-temperature side valve 30 and the first high-temperature side valve 31. Such a circulation flow path 32 becomes a closed flow path when the first low-temperature side valve 30 is closed and the first high-temperature side valve 31 is closed.
  • the circulation flow path 32 is composed of a first parallel flow path 32a and a second parallel flow path 32b whose ends are connected to each other.
  • a flow path element L3 is also connected to the position where the first end (the left end in this embodiment) of the first parallel flow path 32a and the first end (the left end in this embodiment) of the second parallel flow path 32b are connected.
  • a flow path element L4 is connected to the position where the second end (the right end in this embodiment) of the first parallel flow path 32a and the second end (the right end in this embodiment) of the second parallel flow path 32b are connected.
  • the circulation flow path 32 has a low-temperature side heating section 33, a pump 34, a preheating section 35, a high-temperature side heating section 36, and a second valve 37.
  • the sample moves cyclically through the circulation flow path 32 in a predetermined direction (the direction indicated by the arrow Y1 in FIG. 2).
  • This predetermined direction is also referred to as the circulation direction.
  • upstream and downstream refer to the upstream and downstream sides in the circulation direction.
  • the pump 34, preheat section 35, high-temperature side heat section 36, and second valve 37 are arranged in this order from the upstream side in the circulation direction.
  • the specific configurations of the low-temperature side heat section 33, pump 34, preheat section 35, high-temperature side heat section 36, and second valve 37 will be described below.
  • the low-temperature side heat section 33 is provided in the low-temperature region R2 of the base section 1. In other words, the low-temperature side heat section 33 is provided at the first end (the left end in this embodiment) of the first parallel flow path 32a.
  • the low-temperature side heat section 33 is a space defined by a groove formed on the underside of the base section 1.
  • the low-temperature side heat section 33 is a serpentine space that is folded back at least once (twice in this embodiment).
  • the folding angle of the low-temperature side heat section 33 is 180 degrees. Note that the folding angle and number of folding times of the low-temperature side heat section 33 are not limited to those of this embodiment.
  • the low-temperature side heat section 33 is heated by the low-temperature heater section 642 (specifically, the low-temperature heater 642a) of the nucleic acid amplifier 6 during testing.
  • the heating temperature of the low-temperature heater section 642 is the first predetermined temperature T1.
  • the predetermined area including the low-temperature side heat section 33 in the cartridge C is the area to be detected (hereinafter referred to as the "detection area") when the amplification results of the nucleic acid are determined by the fluorescence detection device 7 described below.
  • a detection area is set for each of the thermal flow paths 3a to 3e. Therefore, the cartridge C has five detection areas.
  • the pump 34 is a member for moving the sample in the flow path 2.
  • the pump 34 is provided downstream of the low-temperature side heat section 33 in the sample circulation direction. In other words, the pump 34 is provided in the intermediate region R3 of the base section 1. In further other words, the pump 34 is provided downstream of the low-temperature side heat section 33 in the first parallel flow path 32a.
  • the portion of the base 1 where the pump 34 is fixed is a through hole that passes through the base 1 in the vertical direction.
  • the pump 34 and the low-temperature side heat section 33 are connected by a flow path element L5.
  • FIG. 4 is a cross-sectional perspective view of the pump 34.
  • the pump 34 is made of an elastic material that is elastic and heat-resistant.
  • the elastic material is, for example, a thermoplastic elastomer (TPE).
  • TPE thermoplastic elastomer
  • the pump 34 has a main body portion 34a and a pump space forming portion 34b.
  • the main body 34a is a generally rectangular plate and is fixed to the base 1.
  • the pump space forming portion 34b is provided on the main body 34a.
  • the pump space forming portion 34b extends in a predetermined direction (left-right direction in this embodiment) and is configured with a protrusion that is concave on the lower surface and convex on the upper surface.
  • the tunnel-shaped space defined by the lower surface of the pump space forming portion 34b is the pump space 34c.
  • the lower opening of the pump space forming portion 34b is blocked by a sealing member 50.
  • the first end (upstream end) of the pump space 34c is connected to the flow path element L5.
  • the second end (downstream end) of the pump space 34c is connected to the flow path element L6.
  • the pump space 34c, the flow path element L5, and the flow path element L6 are located at the same height.
  • the pump space 34c, the flow path element L5, and the flow path element L6 are connected in a straight line.
  • the pumps 34 of the thermal flow paths 3a to 3e are connected to each other by the connection part 34d on the upper surface of the base part 1, as shown in FIG. 1. This configuration contributes to improving the manufacturing work efficiency of the cartridge C.
  • the pump 34 as described above is driven by the pump drive unit 661 of the nucleic acid amplification device 6.
  • the operation of the pump 34 will be described later together with an explanation of the pump drive unit 661.
  • the pump 34 is made of a single, integrally molded material.
  • the pump may be made of a combination of multiple components, as shown in Figures 5 and 6.
  • FIGS. 5 and 6 are diagrams showing a pump 34A according to the first modified example.
  • the pump 34A has an upper pump space forming member 34e and a lower pump space forming member 34f.
  • the upper pump space forming member 34e and the lower pump space forming member 34f are each fixed to the base portion 1.
  • the upper pump space forming member 34e is fixed to the upper surface of the base part 1.
  • the lower pump space forming member 34f is fixed to the lower surface of the base part 1, facing the upper pump space forming member 34e in the vertical direction.
  • the upper pump space forming member 34e is a protruding member that extends in a predetermined direction (left-right direction in this embodiment) and has a concave lower surface and a convex upper surface.
  • the upper pump space forming member 34e is made of an elastic material that is elastic and heat resistant.
  • the elastic material is, for example, a thermoplastic elastomer (TPE).
  • the lower pump space forming member 34f has a base 34g and a protrusion 34h.
  • the base 34g is a plate-shaped member that extends in a predetermined direction (in this embodiment, the left-right direction).
  • the base 34g is fixed to the base portion 1.
  • the protrusion 34h extends in a predetermined direction (left and right in this embodiment) and is located at the center in the width direction of the upper surface of the base 34g.
  • the cross-sectional shape of the protrusion 34h is approximately rectangular. Note that the cross-section refers to the cross section of the protrusion 34h cut by a plane perpendicular to the extension direction of the protrusion 34h.
  • the lower pump space forming member 34f is made of the same synthetic resin as the base portion 1.
  • the synthetic resin constituting the lower pump space forming member 34f is, for example, polypropylene, polycarbonate, or cycloolefin polymer.
  • the lower pump space forming member 34f does not have to be colorless and transparent, and may be colored.
  • pump space 34i the space defined by the lower surface of upper pump space forming member 34e and the upper surface of protrusion portion 34h of lower pump space forming member 34f is pump space 34i.
  • the first end (upstream end) of the pump space 34i is connected to the flow path element L5 (see FIG. 2).
  • the second end (downstream end) of the pump space 34i is connected to the flow path element L6 (see FIG. 2).
  • the pump space 34i is located at a higher position than the flow path elements L5 and L6. Therefore, the pump space 34i is connected to the flow path elements L5 and L6 in a stepped manner.
  • FIG. 7 is a cross-sectional perspective view of pump 34B according to variant example 2.
  • Pump 34B is a tubular member made of an elastic material having elasticity and heat resistance.
  • the elastic material may be, for example, a thermoplastic elastomer (TPE) or a silicone resin.
  • Both ends of the pump 34B are fixed to a pair of pump fixing parts 11a provided on the base part 1. Note that in FIG. 7, only the pump fixing part 11a on one side (left side) is shown, and the pump fixing part 11a on the other side (right side) is omitted.
  • pump space 34j In the case of pump 34B, the space defined by the inner circumferential surface of pump 34B is pump space 34j. A first end (upstream end) of pump space 34j is connected to flow path element L5 (see FIG. 2). A second end (downstream end) of pump space 34j is connected to flow path element L6 (see FIG. 2).
  • the pump space 34j is located at a higher position than the flow path elements L5 and L6. Therefore, the pump space 34j, the flow path elements L5 and L6 are connected in a stepped manner via a pair of pump fixing parts 11a.
  • All of the pumps 34, 34A, and 34B described above are driven by the pump drive unit 661 of the nucleic acid amplifier 6.
  • the configuration of the pump drive unit 661 of the nucleic acid amplifier 6 is determined appropriately depending on the configuration of the pumps 34, 34A, and 34B.
  • the preheat section 35 raises the temperature of the sample circulating through the circulation flow path 32 to a predetermined temperature before the sample flows into the high-temperature side heat section 36.
  • the preheating section 35 is provided downstream of the pump 34 in the direction of sample circulation. In other words, the preheating section 35 is provided in the high-temperature region R1 (specifically, the second high-temperature region R12) of the base section 1.
  • the preheat section 35 is provided downstream of the pump 34 in the first parallel flow path 32a.
  • the preheat section 35 is connected to the pump 34 via the flow path element L6.
  • the preheat section 35 is also provided upstream of the high-temperature side heat section 36, which will be described later.
  • the preheat section 35 is a space defined by a groove formed on the underside of the base section 1.
  • the preheat section 35 is a serpentine space that is folded back at least once (once in this embodiment).
  • the folding angle of the preheat section 35 is 180 degrees. Note that the folding angle and number of folding times of the preheat section 35 are not limited to those of this embodiment.
  • the preheat section 35 is heated by the second high-temperature heater 641b of the nucleic acid amplifier 6 during testing.
  • the heating temperature of the second high-temperature heater 641b is a third predetermined temperature T3.
  • the third predetermined temperature T3 is higher than the first predetermined temperature T1, which is the heating temperature of the low-temperature heater 642a, and the second predetermined temperature T2, which is the heating temperature of the first high-temperature heater 641a.
  • the third predetermined temperature T3 is 1 to 3 degrees higher than the second predetermined temperature T2 (T2+1 degree ⁇ T3 ⁇ T2+3 degrees).
  • the preheat section 35 described above can increase the temperature of the sample as it flows into the high-temperature side heat section 36. This can shorten the time it takes for the sample to reach the second predetermined temperature T2 in the high-temperature side heat section 36 during testing. As a result, the time required for the thermal cycle process during testing can be shortened, and therefore the time required for testing can be shortened.
  • the high-temperature side heat section 36 is provided in the high-temperature region R1 (specifically, the first high-temperature region R11) of the base section 1. In other words, the high-temperature side heat section 36 is provided at the second end (the right end in this embodiment) of the second parallel flow path 32b.
  • the high-temperature side heat section 36 is connected to the preheat section 35 via the flow path element L7.
  • the high-temperature side heat section 36 is a space defined by a groove formed on the underside of the base section 1.
  • the high-temperature side heat section 36 is a serpentine space that is folded back at least once (twice in this embodiment).
  • the fold angle of the high-temperature side heat section 36 is 180 degrees. Note that the fold angle and number of folds of the high-temperature side heat section 36 are not limited to those of this embodiment.
  • the high-temperature side heating section 36 is heated by the first high-temperature heater 641a of the nucleic acid amplification device 6 during testing.
  • the heating temperature of the first high-temperature heater 641a is a second predetermined temperature T2.
  • the second predetermined temperature T2 is higher than the first predetermined temperature T1, which is the heating temperature of the low-temperature heater section 642, and lower than the third predetermined temperature T3, which is the heating temperature of the second high-temperature heater 641b.
  • the second predetermined temperature T2 is, for example, 90 degrees or higher and 97 degrees or lower.
  • the second valve 37 is a valve fixed to the base portion 1 and is provided in the flow path element L8 that connects the low-temperature side heat portion 33 and the high-temperature side heat portion 36.
  • the second valve 37 is provided in the intermediate region R3 of the base portion 1.
  • the second valve 37 is provided downstream of the high-temperature side heat portion 36 in the second parallel flow path 32b.
  • the portion of the base portion 1 where the second valve 37 is fixed is a through hole that passes through the base portion 1 in the vertical direction.
  • the operation of the second valve 37 is controlled by the nucleic acid amplifier 6 during testing. Specifically, the second valve 37 is switched between an open state and a closed state by a second valve drive unit 653 (see FIG. 8) of the nucleic acid amplifier 6.
  • FIG. 3 is also a schematic cross-sectional view of the second valve 37.
  • the second valve 37 is made of an elastic material that is elastic and heat-resistant.
  • the elastic material is, for example, a thermoplastic elastomer (TPE).
  • TPE thermoplastic elastomer
  • the second valve 37 has a main body portion 37a, a valve flow path 37b, and a pressed portion 37c.
  • the configurations of the main body 37a, the valve flow path 37b, and the pressed portion 37c are similar to the configurations of the main body 30a, the valve flow path 30b, and the pressed portion 30c of the first low-temperature side valve 30.
  • the pressed portion 37c is the portion that is pressed downward by the second valve driving portion 653 (see FIG. 8) of the nucleic acid amplification device 6 during testing.
  • valve flow path 37b is open.
  • the second valve 37 When the pressed portion 37c is not pressed, the second valve 37 is open. When the second valve 37 is open, the sample and air are allowed to pass through the valve flow path 37b.
  • the pressed portion 37c When the pressed portion 37c is pressed downward by the second valve drive portion 653 (hereinafter referred to as the "pressed state of the pressed portion 37c"), the groove that defines the valve flow path 37b elastically deforms, and the valve flow path 37b is closed.
  • the second valve 37 When the pressed portion 37c is pressed, the second valve 37 is closed. When the second valve 37 is closed, the sample and air are prohibited from passing through the valve flow path 37b.
  • the second valve 37 is in a closed state when pressed by the second valve drive unit 653.
  • the second valve 37 opens due to its own restoring force.
  • the second valves 37 of the thermal channels 3a to 3e are connected to each other by the connection portion 37d on the upper surface of the base portion 1, as shown in FIG. 1. This configuration contributes to improving the efficiency of the manufacturing process of the cartridge C.
  • thermal flow path 3a has been described above, but flow path 2 has thermal flow paths 3b to 3e that have a configuration similar to that of thermal flow path 3a.
  • Thermal flow paths 3a to 3e are arranged side by side in the front-to-rear direction as shown in FIG. 2.
  • Each of the thermal channels 3a to 3e has an individual reagent carrying portion 21. And, each of the individual reagent carrying portions 21 of the thermal channels 3a to 3e is pre-loaded with an individual reagent corresponding to the target nucleic acid.
  • nucleic acid amplification tests for multiple types of target nucleic acids can be performed simultaneously with a single cartridge C.
  • the pre-processing step of mixing the sample and the individual reagent outside the cartridge can be omitted.
  • the time required for one test can be shortened while reducing the workload of the operator.
  • the nucleic acid amplification test is carried out with the cartridge C set in the nucleic acid amplifier 6.
  • the configuration of the nucleic acid amplifier 6 is described below.
  • the nucleic acid amplification device 6 has a housing 60, a control unit 61, a cartridge support unit 62, a vibration unit 63, a heater unit 64, a valve drive unit 65, a liquid delivery unit 66, a sample position detection unit 67, and a fluorescence detection device 7.
  • FIG. 8 also shows a schematic diagram of cartridge C.
  • the arrangement of each element of cartridge C shown in FIG. 8 is slightly different from the arrangement of each element of cartridge C shown in FIG. 2.
  • the housing 60 is box-shaped and has a storage space 601.
  • the storage space 601 contains the elements 61 to 67 and 7 that make up the nucleic acid amplification device 6.
  • the control unit 61 is supported by the housing 60 and controls the overall operation of the nucleic acid amplification device 6.
  • the control unit 61 may be configured in such a way that a CPU, ROM, RAM, and HDD are connected via a bus, or may be configured as a one-chip LSI, etc.
  • the control unit 61 has a first control unit 611 and a second control unit 612.
  • the first control unit 611 controls the operation of the vibration unit 63, the valve drive unit 65, the liquid delivery unit 66, the sample position detection unit 67, and the fluorescence detection device 7.
  • the second control unit 612 controls the operation of the heater unit 64. Specifically, the second control unit 612 controls the operation of the first high-temperature heater 641a, the second high-temperature heater 641b, and the low-temperature heater 642a of the heater unit 64.
  • the first control unit 611 and the second control unit 612 may be configured as a common control unit.
  • the function of the control unit 61 will be described later together with the operation of the nucleic acid amplification device 6 and the nucleic acid amplification test method.
  • the cartridge support portion 62 is an example of a container support portion, is supported by the housing 60, and is a member that supports the cartridge C.
  • the cartridge support portion 62 may include, for example, a table on which the cartridge C is placed, and a locking mechanism that secures the cartridge C to the table.
  • the cartridge support portion 62 supports the cartridge C vertically. In other words, when the cartridge C is supported by the cartridge support portion 62, the first main surface and the second main surface of the cartridge C face horizontally.
  • the cartridge C is attached to the cartridge support portion 62.
  • the cartridge support portion 62 may also be configured to support the cartridge C horizontally. In this case, when the cartridge C is supported by the cartridge support portion 62, the first main surface and the second main surface of the cartridge C face vertically.
  • the vibration unit 63 is supported by the housing 60. During the inspection, the vibration unit 63 applies vibration to the cartridge C supported by the cartridge support unit 62 under the control of the control unit 61.
  • the vibration unit 63 applies vibrations to the individual reagent holding portion 21 of the cartridge C during testing.
  • the vibration unit 63 is provided at a position where it can impart vibrations to the individual reagent holding portion 21 of the cartridge C during testing. Specifically, the vibration unit 63 is provided at a position facing the individual reagent holding portion 21 of the cartridge C in a predetermined direction (horizontal direction in this embodiment) during testing.
  • the vibration portion 63 applies vibration to the individual reagent holding portion 21, thereby promoting mixing of the sample and the individual reagent in the individual reagent holding portion 21.
  • the fact that the sample has been contained in the individual reagent holding portion 21 is detected by the sample position detection portion 67, which will be described later.
  • the vibration unit 63 has multiple (five in this embodiment) transducers 63a.
  • Each of the transducers 63a is composed of, for example, an ultrasonic transducer.
  • Each of the transducers 63a applies vibration to the individual reagent carriers 21 of the thermal channels 3a to 3e.
  • the vibration portion 63 may be omitted.
  • Another means is a means for moving the sample back and forth around the individual reagent holding portion 21 with the pump 34 centered on the individual reagent holding portion 21. The sample can be moved back and forth by reversing the driving direction of the pump 34. The fact that the sample has been contained in the individual reagent holding portion 21 is detected by the sample position detection portion 67 described below.
  • the heater unit 64 is supported by the housing 60. During inspection, the heater unit 64 heats the cartridge C under the control of the control unit 61. Specifically, the heater unit 64 has a low-temperature heater unit 642 and a high-temperature heater unit 641.
  • the low-temperature heater section 642 has a low-temperature heater 642a.
  • the low-temperature heater 642a heats the low-temperature region R2 of the cartridge C under the control of the control unit 61 (specifically, the second control unit 612). In other words, the low-temperature heater 642a heats the low-temperature side heat unit 33 of the flow path 2 in the cartridge C under the control of the control unit 61.
  • the low-temperature heater 642a constantly heats the low-temperature region R2 (specifically, the low-temperature side heat section 33) of the cartridge C during inspection.
  • the heating temperature of the low-temperature heater 642a is the first predetermined temperature T1.
  • the low-temperature heater 642a may be composed of multiple (five in this embodiment) low-temperature heaters provided for each low-temperature side heat section 33 of the thermal flow paths 3a to 3e, or may be composed of a single low-temperature heater.
  • the low-temperature heater 642a is provided at a position where it can heat the low-temperature region R2 (specifically, the low-temperature side heat section 33) of the cartridge C during inspection. Specifically, the low-temperature heater 642a is provided at a position facing the low-temperature region R2 (specifically, the low-temperature side heat section 33) of the cartridge C in a predetermined direction (horizontal direction in this embodiment) during inspection.
  • the high-temperature heater unit 641 heats the high-temperature region R1 of the cartridge C under the control of the control unit 61 (specifically, the second control unit 612).
  • the high-temperature heater unit 641 has a first high-temperature heater 641a and a second high-temperature heater 641b.
  • the first high-temperature heater 641a heats the first high-temperature region R11 of the cartridge C under the control of the control unit 61. In other words, the first high-temperature heater 641a heats the high-temperature side heat section 36 of the cartridge C under the control of the control unit 61. The first high-temperature heater 641a also heats the sample storage section 20 under the control of the control unit 61.
  • the first high-temperature heater 641a constantly heats the first high-temperature region R11 of the cartridge C during inspection.
  • the heating temperature of the first high-temperature heater 641a is a second predetermined temperature T2.
  • the second predetermined temperature T2 is higher than the first predetermined temperature, which is the heating temperature of the low-temperature heater 642a.
  • the first high-temperature heater 641a is supported at a position where it can heat the first high-temperature region R11 (specifically, the high-temperature side heat section 36 and the sample storage section 20) of the cartridge C during inspection. Specifically, the first high-temperature heater 641a is supported at a position facing the first high-temperature region R11 (specifically, the high-temperature side heat section 36 and the sample storage section 20) of the cartridge C in a predetermined direction (horizontal direction in this embodiment) during inspection.
  • the second high-temperature heater 641b is an example of a preheater, and heats the second high-temperature region R12 of the cartridge C under the control of the control unit 61. In other words, the second high-temperature heater 641b heats the preheat section 35 of the cartridge C under the control of the control unit 61.
  • the second high-temperature heater 641b constantly heats the second high-temperature region R12 (specifically, the preheat section 35) of the cartridge C during inspection.
  • the heating temperature of the second high-temperature heater 641b is a third predetermined temperature T3.
  • the third predetermined temperature T3 is higher than the first predetermined temperature T1, which is the heating temperature of the low-temperature heater 642a, and the second predetermined temperature T2, which is the heating temperature of the first high-temperature heater 641a.
  • the third predetermined temperature T3 is 1 to 3 degrees higher than the second predetermined temperature T2 (T2 + 1 degree ⁇ T3 ⁇ T2 + 3 degrees).
  • the third predetermined temperature T3 may be, for example, greater than or equal to 98 degrees and less than 100 degrees.
  • the second high-temperature heater 641b is supported at a position where it can heat the second high-temperature region R12 (specifically, the preheat section 35) of the cartridge C during inspection. Specifically, the second high-temperature heater 641b is supported at a position facing the second high-temperature region R12 (specifically, the preheat section 35) of the cartridge C in a predetermined direction (horizontal direction in this embodiment) during inspection.
  • the valve drive unit 65 is supported by the housing 60. During inspection, the valve drive unit 65 controls the open/close states of the first low-temperature side valve 30, the first high-temperature side valve 31, and the second valve 37 of the cartridge C under the control of the control unit 61 (specifically, the first control unit 611).
  • valve drive unit 65 has a first low-temperature side valve drive unit 651, a first high-temperature side valve drive unit 652, and a second valve drive unit 653.
  • the first low-temperature side valve drive unit 651 switches the first low-temperature side valve 30 of cartridge C between an open state and a closed state under the control of the control unit 61.
  • the first low-temperature side valve drive unit 651 is supported by the housing 60 and has a pressing unit 651a. During inspection, the pressing unit 651a moves toward and away from the first low-temperature side valve 30 based on the power of an actuator (not shown) such as an electric motor. The distance that the pressing unit 651a can move is called the movement stroke of the pressing unit 651a.
  • the pressing portion 651a is provided at a position where it can press the pressed portion 30c of the first low-temperature side valve 30 in the cartridge C during inspection. Specifically, the pressing portion 651a is supported at a position facing the pressed portion 30c of the first low-temperature side valve 30 in the cartridge C in a predetermined direction (horizontal direction in this embodiment) during inspection.
  • the pressing portion 651a When the pressing portion 651a has moved to the position closest to the first low-temperature side valve 30 (in other words, one end of the movement stroke), the pressing portion 651a presses the pressed portion 30c of the first low-temperature side valve 30.
  • the state in which the pressing portion 651a presses the pressed portion 30c is referred to as the pressing state of the first low-temperature side valve drive portion 651.
  • the valve flow path 30b of the first low-temperature side valve 30 is closed.
  • the first low-temperature side valve 30 is in a closed state.
  • the state in which the pressing portion 651a is not pressing the pressed portion 30c is referred to as the non-pressed state of the first low-temperature side valve drive portion 651.
  • the valve flow path 30b of the first low-temperature side valve 30 opens.
  • the first low-temperature side valve 30 is in an open state.
  • the first low-temperature side valve driving unit 651 may be composed of multiple valve driving units (five in this embodiment) provided for each of the first low-temperature side valves 30 of the thermal flow paths 3a to 3e, or may be composed of a single valve driving unit.
  • the control unit 61 controls the operation of each of the multiple valve driving units independently.
  • the first high temperature side valve drive unit 652 switches the first high temperature side valve 31 of cartridge C between an open state and a closed state under the control of the control unit 61 (specifically, the first control unit 611).
  • the first high temperature side valve drive unit 652 is supported by the housing 60 and has a pressing unit 652a.
  • the pressing unit 652a moves toward and away from the first high temperature side valve 31 based on the power of an actuator (not shown) such as an electric motor.
  • the distance that the pressing unit 652a can move is called the movement stroke of the pressing unit 652a.
  • the pressing portion 652a is provided at a position where it can press the pressed portion 31c of the first high temperature side valve 31 in the cartridge C during inspection.
  • the pressing portion 652a is provided at a position facing the pressed portion 31c of the first high temperature side valve 31 in the cartridge C in a predetermined direction (horizontal direction in this embodiment) during inspection.
  • the pressing portion 652a presses the pressed portion 31c of the first high-temperature side valve 31.
  • the state in which the pressing portion 652a presses the pressed portion 31c is referred to as the pressing state of the first high-temperature side valve drive portion 652.
  • the valve flow path 31b of the first high-temperature side valve 31 is closed.
  • the first high-temperature side valve 31 is in a closed state.
  • the state in which the pressing portion 652a is not pressing the pressed portion 31c is referred to as the non-pressed state of the first high-temperature side valve drive portion 652.
  • the valve flow path 31b of the first high-temperature side valve 31 opens.
  • the first high-temperature side valve 31 is in an open state.
  • the first high temperature side valve drive unit 652 may be composed of multiple valve drive units (five in this embodiment) provided for each of the first high temperature side valves 31 of the thermal flow paths 3a to 3e, or may be composed of a single valve drive unit.
  • the control unit 61 controls the operation of each of the multiple valve drive units independently.
  • the second valve drive unit 653 switches the second valve 37 of the cartridge C between an open state and a closed state under the control of the control unit 61 (specifically, the first control unit 611).
  • the second valve drive unit 653 is supported by the housing 60 and has a pressing unit 653a.
  • the pressing unit 653a moves toward and away from the second valve 37 based on the power of an actuator (not shown) such as an electric motor.
  • the distance that the pressing unit 653a can move is referred to as the movement stroke of the pressing unit 653a.
  • the pressing portion 653a is provided at a position where it can press the pressed portion 37c of the second valve 37 in the cartridge C during inspection. Specifically, the pressing portion 653a is provided at a position facing the pressed portion 37c of the second valve 37 in the cartridge C in a predetermined direction (horizontal direction in this embodiment) during inspection.
  • the pressing portion 653a presses the pressed portion 37c of the second valve 37.
  • the state in which the pressing portion 653a presses the pressed portion 37c is referred to as the pressing state of the second valve drive portion 653.
  • the valve flow path 37b of the second valve 37 is closed.
  • the second valve 37 is in the closed state.
  • the state in which the pressing portion 653a is not pressing the pressed portion 37c is referred to as the non-pressed state of the second valve drive portion 653.
  • the valve flow path 37b of the second valve 37 is open.
  • the second valve 37 is in an open state.
  • the second valve driving unit 653 may be composed of multiple valve driving units (five in this embodiment) provided for each second valve 37 of the thermal flow paths 3a to 3e, or may be composed of a single valve driving unit.
  • the control unit 61 controls the operation of each of the multiple valve driving units independently.
  • the liquid delivery unit 66 is supported by the housing 60.
  • the liquid delivery unit 66 moves the sample in the cartridge C during testing.
  • the liquid delivery unit 66 has a pump drive unit 661.
  • the pump drive unit 661 drives the pump 34 of the cartridge C under the control of the control unit 61 (specifically, the first control unit 611).
  • a pump drive unit 661 is provided for each pump 34 in the thermal flow paths 3a to 3e.
  • the pump drive unit 661 is made up of five pump drive units. The configuration of one pump drive unit 661 will be described below.
  • Figure 9 is a perspective view of the pump drive unit 661.
  • the pump drive unit 661 has a base 661a and a rotating member 661b.
  • Figure 10 is a perspective view of the pump drive unit 661 as viewed from below the base 661a.
  • FIG. 11 is a diagram for explaining the operation of the pump drive unit 661.
  • Thermal flow path 3f is shown in FIGS. 9 to 11.
  • the configuration of thermal flow path 3f differs from the configuration of thermal flow paths 3a to 3e.
  • the base 661a is fixed to the housing 60 via a fastening part (not shown) such as a bolt.
  • the base 661a also serves as a member that rotatably supports the rotating member 661b.
  • the base 661a has an upper base 661f and a lower base 661g. Only the upper base 661f of the base 661a is shown in FIG. 9. Only the lower base 661g of the base 661a is shown in FIG. 10.
  • the upper base 661f is fixed to the housing 60 via fastening parts such as bolts (not shown).
  • the lower base 661g is fixed to the underside of the upper base 661f.
  • the lower base 661g has a pair of rotational support parts 661c, 661d.
  • the rotational support parts 661c, 661d rotatably support both ends of the rotating member 661b.
  • the lower base 661g has a generally rectangular through hole 661h in the center.
  • the through hole 661h is positioned so as to face the pump 34 in the vertical direction.
  • the rotating member 661b is a member that drives the pump 34.
  • the rotating member 661b is a shaft member. Both ends of the rotating member 661b in the axial direction are supported by the rotation support parts 661c and 661d of the base part 661a.
  • the rotating member 661b is rotatable with respect to the base part 661a.
  • the rotating member 661b has a pressing portion 661e on its outer circumferential surface.
  • the pressing portion 661e is configured with a spiral ridge.
  • the pressing portion 661e is disposed in a through hole 661h in the lower base portion 661g. In this state, the pressing portion 661e faces the pump space forming portion 34b (see FIG. 4) of the pump 34 via the through hole 661h.
  • the rotating member 661b rotates based on the power of an actuator (not shown) such as an electric motor.
  • the pump drive unit 661 having the above-mentioned configuration is arranged so as to cover the pump space forming portion 34b (see FIG. 4) of the pump 34 from a predetermined direction (horizontal direction in this embodiment).
  • the pressing portion 661e abuts against the pump space forming portion 34b of the pump 34.
  • the pressing portion 661e crushes the pump space forming portion 34b at the position where the pressing portion 661e abuts against the pump space forming portion 34b.
  • Figure 11 is a schematic diagram showing a contact position D between the pressing portion 661e of the pump drive unit 661 and the pump space forming portion 34b of the pump 34.
  • the pressing portion 661e is omitted in Figure 11, at the position indicated by the contact position D, the pressing portion 661e presses against the pump space forming portion 34b of the pump 34.
  • the contact position D between the spiral pressing portion 661e and the pump space forming portion 34b moves in a predetermined direction (the direction indicated by the arrow Y2 in FIG. 11, which is the direction in which the sample circulates).
  • the pressing portion 661e applies a frictional force to the pump space forming portion 34b in the rotational direction of the rotating member 661b at the contact position D, thereby crushing the pump space forming portion 34b.
  • the direction of the frictional force is parallel to the main surface of the cartridge C and perpendicular to the extension direction of the pump space forming portion 34b.
  • the movement distance of the contact position D is referred to as the contact stroke of the pump drive portion 661.
  • the contact position D between the pressing portion 661e and the pump space forming portion 34b moves from one end of the contact stroke (the upstream end in the direction of circulation of the sample) to the other end of the contact stroke (the downstream end in the direction of circulation of the sample).
  • the contact position D between the pressing portion 661e and the pump space forming portion 34b repeatedly moves from one end of the contact stroke to the other end, so that the sample or air in the pump space 34c of the pump 34 is pumped in the circulation direction.
  • the sample or air in the pump space 34c moves, the sample and air in the flow path 2 move in conjunction with each other.
  • the direction of movement of the contact position D between the pressing portion 661e and the pump space forming portion 34b varies depending on the direction of rotation of the rotating member 661b. Therefore, by changing the direction of rotation of the rotating member 661b, the direction of movement of the sample and air in the flow channel 2 can be changed.
  • the pump drive unit 661 according to this embodiment is applicable to a pump having a pump space forming portion 34b that extends linearly, such as the pump 34 described above.
  • the configuration of the pump drive unit is not limited to the pump drive unit 661 according to this embodiment.
  • the configuration of the pump drive unit may be determined appropriately depending on the structure of the pump.
  • a pump driver 661 is provided for each pump 34 in the thermal flow paths 3a to 3e.
  • one pump driver 661 may be configured to drive pumps 34 in multiple (at least two) inspection flow paths among the thermal flow paths 3a to 3e.
  • the thermal flow channel 3b may be configured to be inverted in the front-rear direction.
  • the thermal flow channels 3a and 3b are in a line-symmetrical relationship with respect to a straight line parallel to the left-right direction.
  • the pump 34 of the thermal flow channel 3a and the pump 34 of the thermal flow channel 3b are arranged adjacent to each other in the front-rear direction, so that the pump 34 of the thermal flow channel 3a and the pump 34 of the thermal flow channel 3b can be easily driven by one pump driver 661.
  • the configuration of each of the thermal flow channels 3a to 3e may be set so that the function of each thermal flow channel is equivalent to that of the above-mentioned thermal flow channels 3a to 3e.
  • the number of pump drivers can be made smaller than the number of test flow channels, thereby reducing the number of parts constituting the nucleic acid amplification device.
  • the sample position detection unit 67 is supported by the housing 60.
  • the sample position detection unit 67 detects information regarding the position of the sample in the cartridge C during testing.
  • the information detected by the sample position detection unit 67 includes information indicating that the sample is contained in the low-temperature side heat unit 33 and information indicating that the sample is contained in the high-temperature side heat unit 36.
  • the information detected by the sample position detection unit 67 may also include information indicating that the sample is contained in the sample storage unit 20 and/or information indicating that the sample is contained in the individual reagent holder 21.
  • the sample position detection unit 67 has a low temperature side detection unit 671 and a high temperature side detection unit 672.
  • the low temperature side detection unit 671 and the high temperature side detection unit 672 are configured by separate detectors.
  • the low-temperature side detection section 671 is located at a position facing the low-temperature side heating section 33 of the cartridge C in a predetermined direction (horizontal in this embodiment) during inspection.
  • the low-temperature side detection unit 671 detects information indicating that a sample has been accommodated in the low-temperature side heat unit 33 (hereinafter referred to as "low-temperature side accommodation information").
  • the low-temperature side detection unit 671 is, for example, a detector that detects the low-temperature side accommodation information by optical processing (hereinafter referred to as “optical processing detector”).
  • the low-temperature side detection unit 671 may also be a detector that detects low-temperature side storage information by image processing (hereinafter referred to as an "image processing detector”).
  • image processing detector a detector that detects low-temperature side storage information by image processing
  • electrical processing detector a detector that detects low-temperature side storage information by electrical processing
  • the low-temperature side detection unit 671 detects the low-temperature side storage information based on the light transmittance and/or reflectance in the low-temperature side heat unit 33.
  • the low-temperature side detection unit 671 when the low-temperature side detection unit 671 is an optical processing detector, the low-temperature side detection unit 671 has a light source and a light receiving element.
  • the light source irradiates the low-temperature side heat unit 33.
  • the light receiving element receives light that has passed through the low-temperature side heat unit 33 and/or light that has been reflected by the low-temperature side heat unit 33.
  • the low-temperature side detection section 671 can detect low-temperature side containment information based on a change in the output of the light receiving element.
  • the low-temperature side detection unit 671 is an image detector, the low-temperature side detection unit 671 captures an image of the low-temperature side heat unit 33 using a camera, and acquires an image of the low-temperature side heat unit 33. The low-temperature side detection unit 671 then performs image analysis on the acquired image of the low-temperature side heat unit 33 to detect low-temperature side storage information.
  • the low-temperature side detection section 671 is an electrical detector, a pair of electrodes (not shown) is provided on the sealing member 50 of the cartridge C in a portion that covers the low-temperature side heat section 33.
  • the pair of electrodes is formed on the sealing member 50 by printing or the like.
  • the low-temperature side detection unit 671 also has a pair of terminals that are connected to a pair of electrodes of the sealing member 50 during testing. A voltage is applied to the pair of terminals. When no sample has flowed into the low-temperature side heat unit 33, no current flows between the pair of electrodes.
  • the low-temperature side detection section 671 can detect low-temperature side storage information based on the current flow state between the pair of electrodes.
  • the high-temperature side detection unit 672 detects information indicating that a sample has been contained in the high-temperature side heat unit 36 (hereinafter referred to as "high-temperature side containment information").
  • the high-temperature side detection unit 672 is provided at a position facing the high-temperature side heat unit 36 in the cartridge C in a predetermined direction (horizontal direction in this embodiment) during testing.
  • the rest of the configuration of the high-temperature side detection unit 672 is the same as the configuration of the low-temperature side detection unit 671.
  • the fluorescence detection device 7 is a device for detecting the fluorescence emitted from a fluorescent dye contained in a sample under the control of the control unit 61.
  • the fluorescent dye is bound to a probe in the sample together with a quencher that absorbs the fluorescence of the fluorescent dye.
  • the probe binds to the target nucleic acid together with the primer during the annealing step in the nucleic acid amplification test. Then, when the probe is decomposed during the extension reaction step in the nucleic acid amplification test, the fluorescent dye and quencher are separated.
  • the fluorescence detection device 7 detects the fluorescence of the fluorescent dye in the sample after the extension reaction step.
  • the control unit 61 determines the results of the amplification of the nucleic acid based on the detection results of the fluorescence detection device 7. The process in which the control unit 61 determines the results of the amplification of the nucleic acid is referred to as the amplification determination process.
  • the fluorescence detection device 7 is supported by a housing 60 and has a fluorescence detection unit 8 and a drive unit 9.
  • the fluorescence detection unit 8 is configured with an optical system including multiple optical elements. Specifically, the fluorescence detection unit 8 has a light-emitting optical system 80 and a light-receiving optical system 81.
  • the light-emitting optical system 80 is an optical system for irradiating the detection area of the cartridge C.
  • the detection area of the cartridge C is, for example, an area including the low-temperature side heat section 33.
  • the light emission optical system 80 has a light source unit 801, a filter unit 802, an object-side opening 820, and an objective lens 821.
  • light emitted from the light source unit 801 passes through the filter unit 802, the object-side opening 820, and the objective lens 821 and is irradiated onto the detection area of the cartridge C.
  • the light source unit 801 has at least one (two in this embodiment) light source 801a, 801b.
  • the light sources 801a, 801b are each fixed to a substrate 83 such as a printed circuit board.
  • the light sources 801a, 801b are each disposed at the front focal position of an objective lens 821, which will be described later.
  • Each of the light sources 801a and 801b is, for example, an LED light source, and emits white light or monochromatic light at least a part of which or the entirety of which is included in the excitation wavelength spectrum of the fluorescent dye.
  • the number of light sources is not limited to the number of light sources 801a and 801b in this embodiment. The number of light sources may be determined according to the number of types of fluorescent dyes contained in the sample.
  • the side closer to the cartridge C during inspection is referred to as the object side.
  • the side farther from the cartridge C during inspection is referred to as the image side.
  • the filter section 802 is provided on the object side of the light source section 801.
  • the filter section 802 has excitation filters 802a and 802b in a number corresponding to the number of light sources 801a and 801b.
  • the excitation filter 802a faces the light source 801a.
  • the excitation filter 802b faces the light source 801b.
  • Each of the excitation filters 802a and 802b is a bandpass filter that selectively passes light of a specific wavelength.
  • Each of the excitation filters 802a and 802b passes light of a wavelength that can excite the fluorescent dye contained in the sample and blocks light of other wavelengths.
  • excitation filter 802a passes light with a wavelength capable of exciting a first fluorescent dye contained in the sample.
  • excitation filter 802b passes light with a wavelength capable of exciting a second fluorescent dye contained in the sample. Therefore, the wavelength of light passing through excitation filter 802a is different from the wavelength of light passing through excitation filter 802b.
  • the light emitted by the light source 801a is incident on the excitation filter 802a. Then, light of a specific wavelength among the light incident on the excitation filter 802a passes through the excitation filter 802a.
  • the light emitted by the light source 801b is incident on the excitation filter 802b. Then, light of a specific wavelength among the light incident on the excitation filter 802b passes through the excitation filter 802b.
  • the object-side opening 820 is configured as a through hole provided in a plate-like member, and is provided on the object side of the filter section 802.
  • the object-side opening 820 adjusts the amount of light that passes through. Specifically, the object-side opening 820 passes a portion of the light that has passed through the filter section 802.
  • the object-side opening 820 is also an optical element that constitutes the light-receiving optical system 81.
  • the objective lens 821 is provided on the object side of the object-side opening 820.
  • the diameter of the objective lens 821 is larger than the inner diameter of the object-side opening 820. Therefore, all light that passes through the object-side opening 820 is incident on the objective lens 821.
  • the light sources 801a and 801b are positioned at the front focal position of the objective lens 821, so that the light that passes through the objective lens 821 is in the form of a parallel beam and is illuminated on the detection area of the cartridge C from any angle. As a result, the detection area of the cartridge C is illuminated with little unevenness in illumination.
  • the objective lens 821 is also an optical element that constitutes the light receiving optical system 81.
  • the light receiving optical system 81 is an optical system for detecting the fluorescence emitted by the fluorescent dye in the sample when determining the results of nucleic acid amplification.
  • the light receiving optical system 81 has, in order from the object side, an objective lens 821, an object side opening 820, a multi-fluorescence filter 810, an imaging lens 811, an image side opening 812, and a light receiving element 813.
  • the objective lens 821 is a lens shared with the light emission optical system 80. Fluorescence emitted by the fluorescent dye excited by the irradiation light from the light source unit 801 enters the objective lens 821 from the object side.
  • the light receiving optical system 81 is a so-called object-side telecentric optical system in which the chief ray ⁇ of the fluorescence incident on the objective lens 821 is parallel to the optical axis X of the objective lens 821.
  • the object-side opening 820 is an optical element shared with the light-emitting optical system 80, and is provided on the image side of the objective lens 821.
  • the fluorescence emitted from the objective lens 821 passes through the object-side opening 820.
  • the multi-fluorescence filter 810 is provided on the image side of the object-side opening 820.
  • the multi-fluorescence filter 810 is a so-called multi-bandpass filter that selectively passes light of multiple specific wavelengths.
  • the multi-fluorescence filter 810 passes light of the same wavelength as the fluorescence emitted by multiple types of fluorescent dyes contained in the sample, and blocks light of other wavelengths. In other words, the multi-fluorescence filter 810 selectively passes the fluorescence emitted by the fluorescent dyes contained in the sample.
  • the imaging lens 811 is provided on the image side of the multi-fluorescence filter 810.
  • the position and focal length of the imaging lens 811 are set so that the angle of incidence of the light entering the image-side opening 812, which is located on the image side of the imaging lens 811, is equal.
  • the light receiving element 813 which will be described later, can be placed on a common substrate 83 together with the light sources 801a and 801b of the light source section 801.
  • the image-side opening 812 is composed of a through hole provided in a plate-like member, and is provided on the image side of the imaging lens 811.
  • the image-side opening 812 adjusts the amount of light that passes through. Specifically, the image-side opening 812 passes a portion of the light that has passed through the imaging lens 811.
  • the light receiving element 813 is, for example, a photodiode, and is fixed to the substrate 83.
  • the light receiving element 813 converts the incident fluorescence into an electrical signal.
  • the light receiving optical system 81 is designed so that the light receiving element 813 can receive the fluorescence at a desired magnification.
  • the control unit 61 determines the amplification result of the nucleic acid based on the output of the light receiving element 813.
  • the driving unit 9 moves the fluorescence detection unit 8 under the control of the control unit 61.
  • the driving unit 9 has, for example, a motor 91 and a conversion mechanism 92 that converts the rotation of the motor 91 into linear motion.
  • the driving unit 9 moves the fluorescence detection unit 8 so that it faces one of the detection areas (areas including the low-temperature heater unit 642) of the thermal flow paths 3a to 3e in the cartridge C.
  • the driving unit 9 moves the fluorescence detection unit 8 to a position facing a detection region in a state where the nucleic acid amplification determination can be performed.
  • the order in which the driving unit 9 moves the fluorescence detection unit 8 may be predetermined or may be random.
  • the fluorescence detection process is performed when the fluorescence detection section 8 faces the detection area of the cartridge C.
  • the fluorescence detection process by the fluorescence detection device 7 is performed at a predetermined timing under the control of the control section 61.
  • the predetermined timing is, for example, immediately after the extension reaction step in the test.
  • the light source unit 801 (specifically, light sources 801a and 801b) emits a given light toward the detection area of the cartridge C under the control of the control unit 61.
  • Light emitted from the light source unit 801 (specifically, light sources 801a and 801b) enters the filter unit 802 (specifically, excitation filters 802a and 802b).
  • the light that passes through the filter section 802 passes through the object-side opening 820 and the objective lens 821, and is irradiated onto the detection area of the cartridge C.
  • the light irradiated to the detection area of the cartridge C is a parallel beam of light and is illuminated on the detection area of the cartridge C from any angle. Therefore, the detection area of the cartridge C is irradiated with little unevenness.
  • the fluorescent dye in cartridge C When the fluorescent dye in cartridge C is excited, the fluorescent dye emits fluorescence. Then, the light containing the fluorescence of the fluorescent dye is incident on objective lens 821.
  • the chief ray ⁇ of the light incident on objective lens 821 is parallel to the optical axis X of objective lens 821.
  • the light that passes through the objective lens 821 passes through the object-side opening 820 and enters the multi-fluorescence filter 810.
  • the fluorescence emitted by the fluorescent dye contained in the sample passes through the multi-fluorescence filter 810.
  • the light (fluorescence) that passes through the multi-fluorescence filter 810 passes through the imaging lens 811 and the image-side opening 812, and is imaged at a predetermined magnification on the light-receiving surface of the light-receiving element 813.
  • the light-receiving element 813 converts the received light (fluorescence) into an electrical signal and outputs it to the control unit 61.
  • the control unit 61 performs an amplification determination of the nucleic acid based on the electrical signal received from the light-receiving element 813.
  • the nucleic acid amplification test method includes an RNA extraction step, a reagent mixing step, and a thermal cycle step.
  • the thermal cycle step also includes an enzyme activation step, a reverse transcription step, a thermal denaturation step, an annealing step, and an extension reaction step.
  • the operator mixes the specimen collected from the patient with the sample in a container (not shown).
  • the specimen contains the target nucleic acid.
  • the sample in the container is then dripped from the sample drip port 20b of the cartridge C into the sample storage space 20a.
  • the sample drip port 20b and the air hole 20c are blocked by sealing members 51 and 52 (see Figure 1). Up to this point, this is a pre-processing step that is carried out outside the nucleic acid amplification device 6.
  • the operator sets the cartridge C containing the sample in the cartridge support part 62 of the nucleic acid amplification device 6.
  • the cartridge C is supported vertically by the cartridge support part 62 (see FIG. 8).
  • the cartridge C is supported by the cartridge support part 62 so that the low-temperature side heat part 33 is located on the lower side and the high-temperature side heat part 36 is located on the upper side.
  • Figure 13 is a time chart showing the temperature cycle in a nucleic acid amplification test.
  • the horizontal axis shows time
  • the vertical axis shows the temperature of the sample.
  • Step S1 in FIG. 13 is an RNA extraction step.
  • Step S2 in FIG. 13 is a reagent mixing step.
  • Step S3 in FIG. 13 is a thermal cycle step.
  • Step S31 in step S3 in FIG. 13 is an enzyme activation step.
  • Step S32 in step S3 in FIG. 13 is a reverse transcription step.
  • step S33 of step S3 in FIG. 13 the thermal denaturation step, annealing step, and extension reaction step are repeated a predetermined number of cycles.
  • the thermal denaturation step, annealing step, and extension reaction step are repeated a predetermined number of cycles.
  • the sample is contained in the sample storage space 20a, as shown by the diagonal grid in Figure 14A.
  • the control unit 61 controls the first low-temperature side valve drive unit 651 and the first high-temperature side valve drive unit 652 of the valve drive unit 65 to close the first low-temperature side valve 30 and the first high-temperature side valve 31.
  • the second valve 37 is in an open state.
  • the states of the first low temperature side valve 30, the first high temperature side valve 31, and the second valve 37 of the cartridge C and the position of the sample shown in Fig. 14A are as follows:
  • the state of the cartridge C shown in Fig. 14A is the state of the cartridge C when the RNA extraction step S1 is performed.
  • control unit 61 controls the low-temperature heater 642a to heat the low-temperature region R2 of the base unit 1 (specifically, the low-temperature side heat unit 33) to the first predetermined temperature T1.
  • the control unit 61 also controls the first high-temperature heater 641a to heat the first high-temperature region R11 of the base unit 1 (specifically, the high-temperature side heat unit 36 and the sample storage space 20a) to a second predetermined temperature T2.
  • control unit 61 may control the second high-temperature heater 641b to heat the second high-temperature region R12 (specifically, the preheat section 35) of the base section 1 to a third predetermined temperature T3. Note that the heating of the second high-temperature region R12 (preheat section 35) of the base section 1 by the preheat section 35 may be omitted.
  • the control unit 61 performs the RNA extraction step S1 in the time chart of FIG. 13.
  • the sample storage space 20a provided in the first high temperature area R11 is also heated to a second predetermined temperature T2 (e.g., 95°).
  • T2 e.g. 95°
  • the sample contained in the sample storage space 20a is also heated to the second predetermined temperature T2.
  • the envelope of the target nucleic acid is destroyed and the RNA of the target nucleic acid is extracted.
  • the heating time of the sample in the RNA extraction step S1 is, for example, 60 seconds.
  • the RNA extraction step S1 is a step that is performed when the target nucleic acid is RNA.
  • control unit 61 controls the first low-temperature side valve drive unit 651 and the first high-temperature side valve drive unit 652 of the valve drive unit 65 to open the first low-temperature side valve 30 and the first high-temperature side valve 31.
  • the control unit 61 also controls the second valve drive unit 653 to close the second valve 37.
  • first low temperature side valve 30 open state
  • First high-temperature side valve 31 open state
  • Second valve 37 closed state
  • Position of sample sample storage space 20a
  • a circulation flow path is formed in the cartridge C, connecting the sample storage section 20, the individual reagent support section 21, the first low-temperature side valve 30, the first parallel flow path 32a (specifically, the low-temperature side heat section 33, the pump 34, and the preheat section 35), and the first high-temperature side valve 31.
  • This circulation flow path corresponds to an example of a second circulation flow path.
  • the control unit 61 performs a first sample transfer process.
  • the first sample transfer process is a process for transferring the sample from the sample storage unit 20 to the individual reagent holding units 21.
  • the sample stored in the sample storage unit 20 is distributed to the multiple individual reagent holding units 21 by the pump 34.
  • the first sample transfer process is a process carried out between the RNA extraction process S1 and the reagent mixing process S2.
  • the control unit 61 drives the pump 34 to move the sample from the sample storage unit 20 to the individual reagent holding unit 21.
  • the direction in which the sample moves is opposite to the clockwise direction in FIG. 14A. Specifically, the sample moves from the sample storage unit 20 to the individual reagent holding unit 21 through the flow path element L1.
  • control unit 61 controls all pump drive units 661 corresponding to the thermal flow paths 3a to 3e to drive all pumps 34 corresponding to the thermal flow paths 3a to 3e.
  • the air and sample in the second circulation flow path move in conjunction with the movement of the air pushed out from the pump space 34c.
  • the sample in the sample storage section 20 moves toward the individual reagent carrier 21.
  • the sample is then sequentially stored in the individual reagent carrier 21 of each of the thermal flow paths 3a to 3e.
  • control unit 61 When the control unit 61 detects that the individual reagent carriers 21 of the thermal channels 3a to 3e are filled with sample, it stops driving the pump 34.
  • control unit 61 stops the pump drive unit 661 in the order of the thermal flow paths 3a to 3e in which the individual reagent holding units 21 are filled with sample.
  • a sample position detection unit (not shown) is provided to detect that a sample has been contained in the flow path between the individual reagent holding unit 21 and the first low-temperature side valve 30 in the flow path 2. Then, when this sample position detection unit detects a sample, the control unit 61 determines that the individual reagent holding unit 21 is filled with sample.
  • the configuration of the sample position detection unit may be the same as the configuration of the low-temperature side detection unit 671 of the sample position detection unit 67 described above.
  • the control unit 61 determines that the individual reagent holding unit 21 is filled with sample when the low temperature side detection unit 671 of the sample position detection unit 67 detects a sample. In the case of the second detection method, when the low temperature side detection unit 671 detects a sample, a portion of the sample is present downstream of the individual reagent holding unit 21. Therefore, the control unit 61 drives the pump 34 in the reverse direction to move a predetermined amount of sample upstream.
  • the sample in the first sample movement process, is not heated by the heater unit 64. In other words, in the first sample movement process, the sample is mainly affected by the temperature inside the device.
  • the time for the first sample movement process is approximately 10 to 30 seconds.
  • the cartridge C When the first sample transfer step is completed, the cartridge C is in the state shown in Fig. 14B.
  • the states of the first low temperature side valve 30, the first high temperature side valve 31, and the second valve 37 of the cartridge C and the position of the sample shown in Fig. 14B are as follows.
  • the state of the cartridge C shown in Fig. 14B is also the state of the cartridge C in the reagent mixing step S2 and the second sample transfer step performed after the first sample transfer step.
  • First low-temperature side valve 30 open state
  • First high-temperature side valve 31 open state
  • Second valve 37 closed state
  • Position of sample individual reagent support portion 21
  • the reagent mixing step S2 in the time chart of FIG. 13 is performed.
  • the control unit 61 drives the vibration unit 63.
  • the vibration unit 63 applies vibration to the individual reagent holder 21.
  • the temperature of the sample in the reagent mixing process S2 is, for example, a first predetermined temperature T1, which is the heating temperature of the low-temperature heater 642a.
  • the temperature of the sample in the reagent mixing process is not limited to the first predetermined temperature T1.
  • the second sample transfer process is a process for transferring the sample from the individual reagent support unit 21 to the low-temperature side heat unit 33.
  • the second sample transfer process is a process carried out between the reagent mixing process S2 and the thermal cycle process S3 (specifically, the enzyme activation process S31).
  • the control unit 61 drives the pump 34 to move the sample from the individual reagent holder 21 to the low-temperature side heat unit 33.
  • the direction in which the sample moves is opposite to the clockwise direction in FIG. 14B. Specifically, the sample moves from the individual reagent holder 21 to the low-temperature side heat unit 33 through the flow path element L3 (see FIG. 2).
  • control unit 61 controls all pump drive units 661 corresponding to the thermal flow paths 3a to 3e to drive all pumps 34 corresponding to the thermal flow paths 3a to 3e.
  • the sample is sequentially accommodated in the low-temperature side heat units 33 of each of the thermal flow paths 3a to 3e.
  • control unit 61 When the control unit 61 detects that a sample has been placed in the low-temperature side heat unit 33 of each of the thermal flow paths 3a to 3e, it stops driving the pump 34.
  • control unit 61 acquires information indicating that the sample has been accommodated in the low-temperature side heat unit 33 (low-temperature side accommodation information) based on the detection value of the low-temperature side detection unit 671 of the sample position detection unit 67.
  • control unit 61 determines whether or not a sample has been accommodated in the low-temperature side heat unit 33 based on the acquired low-temperature side accommodation information.
  • the control unit 61 stops the pump drive unit 661 in the order of thermal flow paths 3a to 3e in which a sample has been accommodated in the low-temperature side heat unit 33.
  • control unit 61 controls the first low-temperature side valve drive unit 651 and the first high-temperature side valve drive unit 652 to close the first low-temperature side valve 30 and the first high-temperature side valve 31.
  • the control unit 61 also controls the second valve drive unit 653 to open the second valve 37.
  • the circulation flow paths 32 of the thermal flow paths 3a to 3e in the flow path 2 become closed flow paths.
  • the circulation flow paths 32 in this state correspond to an example of the first circulation flow path.
  • the first circulation flow path is a flow path formed in the thermal cycle process S3 in the nucleic acid amplification test.
  • flow path 2 can alternatively be in a state where the first circulation flow path is formed (also referred to as the first state of flow path 2) or a state where the second circulation flow path is formed (also referred to as the second state of flow path 2), depending on the states of first low-temperature side valve 30, first high-temperature side valve 31, and second valve 37.
  • first low temperature side valve 30 closed state
  • First high-temperature side valve 31 closed state
  • Second valve 37 open state
  • Position of sample low-temperature side heat unit 33
  • the third sample transfer process is a process for transferring the sample from the low-temperature side heat unit 33 to the high-temperature side heat unit 36.
  • the control unit 61 drives the pump 34 to move the sample from the low-temperature side heat unit 33 to the high-temperature side heat unit 36.
  • the direction in which the sample moves is opposite to the clockwise direction in FIG. 14C.
  • the sample moves from the low-temperature side heat section 33 to the high-temperature side heat section 36 through flow path element L5 (see FIG. 2), pump 34, flow path element L6 (see FIG. 2), preheat section 35, and flow path element L7 (see FIG. 2).
  • control unit 61 controls all pump drive units 661 corresponding to the thermal flow paths 3a to 3e to drive all pumps 34 corresponding to the thermal flow paths 3a to 3e.
  • the sample is sequentially accommodated in the high-temperature side heat units 36 of each of the thermal flow paths 3a to 3e.
  • control unit 61 When the control unit 61 detects that a sample has been placed in the high-temperature side heat unit 36 of each of the thermal flow paths 3a to 3e, it stops driving the pump 34.
  • control unit 61 acquires information indicating that the sample has been accommodated in the high-temperature side heat unit 36 (high-temperature side accommodation information) based on the detection value of the high-temperature side detection unit 672 of the sample position detection unit 67.
  • control unit 61 determines whether or not a sample has been accommodated in the high-temperature side heat unit 36 based on the acquired high-temperature side accommodation information.
  • the control unit 61 stops the pump drive unit 661 in the order of thermal flow paths 3a to 3e in which a sample has been accommodated in the high-temperature side heat unit 36.
  • the cartridge C When the third sample movement step is completed, the cartridge C is in the state shown in Fig. 14D.
  • the states of the first low temperature side valve 30, the first high temperature side valve 31, and the second valve 37 of the cartridge C shown in Fig. 14D, and the position of the sample are as follows.
  • First low-temperature side valve 30 closed state
  • First high-temperature side valve 31 closed state
  • Second valve 37 open state
  • Position of sample high-temperature side heat unit 36
  • the enzyme activation step S31 is a step for increasing the activity of the enzyme in the sample.
  • the control unit 61 heats the sample in the high-temperature side heat unit 36 to a second predetermined temperature T2 (e.g., 95 degrees) by the first high-temperature heater 641a for a predetermined time (e.g., 60 seconds).
  • the control section 61 keeps the sample at the high-temperature side heat section 36 for a predetermined time.
  • the fourth sample transfer process is a process for transferring the sample from the high-temperature side heat unit 36 to the low-temperature side heat unit 33.
  • the fourth sample transfer process is a process carried out between the enzyme activation process S31 and the reverse transcription process S32.
  • the control unit 61 drives the pump 34 to move the sample from the high-temperature side heat unit 36 to the low-temperature side heat unit 33.
  • the direction in which the sample moves is opposite to the clockwise direction in FIG. 14D. Specifically, the sample moves from the high-temperature side heat unit 36 to the low-temperature side heat unit 33 through the flow path element L8 (see FIG. 2).
  • control unit 61 controls all pump drive units 661 corresponding to the thermal flow paths 3a to 3e to drive all pumps 34 corresponding to the thermal flow paths 3a to 3e.
  • the sample is sequentially accommodated in the low-temperature side heat units 33 of each of the thermal flow paths 3a to 3e.
  • control unit 61 When the control unit 61 detects that a sample has been placed in the low-temperature side heat unit 33 of each of the thermal flow paths 3a to 3e, it stops driving the pump 34.
  • control unit 61 acquires information indicating that the sample has been accommodated in the low-temperature side heat unit 33 (low-temperature side accommodation information) based on the detection value of the low-temperature side detection unit 671 of the sample position detection unit 67.
  • control unit 61 determines whether or not a sample has been accommodated in the low-temperature side heat unit 33 based on the acquired low-temperature side accommodation information.
  • the control unit 61 stops the pump drive unit 661 in the order of thermal flow paths 3a to 3e in which a sample has been accommodated in the low-temperature side heat unit 33.
  • first low temperature side valve 30 closed state
  • First high-temperature side valve 31 closed state
  • Second valve 37 open state
  • Position of sample low-temperature side heat unit 33
  • the control unit 61 performs the reverse transcription step S32 in the time chart of FIG. 13 in the state shown in FIG. 14C.
  • the reverse transcription step S32 is a step for starting the so-called reverse transcription reaction between the RNA in the sample and an enzyme (reverse transcriptase).
  • control unit 61 heats the sample in the low-temperature side heating unit 33 to a first predetermined temperature T1 (e.g., 60 degrees) using the low-temperature heater 642a for a predetermined time (e.g., 60 seconds).
  • a first predetermined temperature T1 e.g. 60 degrees
  • a predetermined time e.g. 60 seconds
  • the control section 61 keeps the sample in the low-temperature side heat section 33 for a specified time.
  • control unit 61 drives the pump 34 to move the sample from the low-temperature side heat unit 33 to the high-temperature side heat unit 36, as in the third sample movement process.
  • the sample passes through the preheat unit 35, it is heated by the preheat unit 35 and the temperature of the sample increases.
  • the heating temperature of the second high-temperature heater 641b that heats the preheat section 35 is the third predetermined temperature T3, so when the sample passes through the preheat section 35, the temperature of the sample rises to a maximum of the third predetermined temperature T3.
  • first low-temperature side valve 30 closed state
  • First high-temperature side valve 31 closed state
  • Second valve 37 open state
  • Position of sample high-temperature side heat unit 36
  • the control unit 61 performs the thermal denaturation step at step S33 in the time chart of FIG. 13.
  • the control unit 61 heats the sample in the high-temperature side heat unit 36 to a second predetermined temperature T2 (e.g., 95°C) by the first high-temperature heater 641a for a predetermined time (e.g., 2 seconds).
  • the control section 61 keeps the sample at the high-temperature side heat section 36 for a predetermined time.
  • the sample is heated to the third predetermined temperature T3 in the preheat section 35, so it is already at a high temperature when it flows into the high-temperature side heat section 36. This makes it possible to shorten the time it takes to heat the sample in the high-temperature side heat section 36.
  • control unit 61 drives the pump 34 to move the sample from the high-temperature side heat unit 36 to the low-temperature side heat unit 33, similar to the fourth sample movement process.
  • first low-temperature side valve 30 closed state
  • First high-temperature side valve 31 closed state
  • Second valve 37 open state
  • Position of sample low-temperature side heat unit 33
  • the control unit 61 performs an annealing step and an extension reaction step at step S33 in the time chart of FIG. 13.
  • the control unit 61 heats the sample in the low-temperature side heat unit 33 to a first predetermined temperature T1 (e.g., 60 degrees) by the low-temperature heater 642a for a predetermined time (e.g., 5 seconds).
  • the control section 61 keeps the sample in the low-temperature side heat section 33 for a specified time.
  • control unit 61 performs an amplification determination process based on the detection value of the fluorescence detection device 7 at a predetermined timing, along with the annealing process and the extension reaction process.
  • the amplification determination process is as described above.
  • the predetermined timing is, for example, immediately after the extension reaction process.
  • the thermal denaturation step, annealing step, and extension reaction step are repeatedly performed for a predetermined number of cycles (e.g., 40 cycles).
  • the control unit 61 performs an amplification determination process along with the annealing step and extension reaction step in each cycle.
  • the control unit 61 counts the number of cycles of the thermal cycle process, for example, based on the number of detections by the low-temperature side detection unit 671. Alternatively, the control unit 61 may count the number of cycles of the thermal cycle process, for example, based on the number of detections by the fluorescence detection device 7.
  • one test is completed in approximately 900 seconds (15 minutes).
  • the sample circulates in a predetermined direction through the circulation flow path 32 of the cartridge C. This eliminates the need for cumbersome controls such as switching the sample movement direction, and shortens the time required for testing.
  • the sample moves cyclically in a predetermined direction through the circulation flow path 32 of the cartridge C. Therefore, it is relatively easy to detect the position of the sample, control the position of the sample, and control the drive of the nucleic acid amplifier 6.
  • the configuration of the nucleic acid amplifier 6 can be made relatively simple. Therefore, the manufacturing cost of the nucleic acid amplifier 6 can be reduced.
  • the cartridge C of this embodiment has an individual reagent carrying section 21 that carries in advance an individual reagent corresponding to the target nucleic acid. This makes it possible to omit the pre-treatment step of mixing the sample and the individual reagent outside the cartridge, which has been conventionally performed. As a result, it is possible to reduce the testing time while reducing the burden on the operator.
  • the flow path 2 of the cartridge C is completely blocked from the outside air by the sealing members 50, 51, and 52. This ensures that the test can be performed reliably while reliably preventing the leakage of viruses during testing.
  • the cartridge C of this embodiment has multiple thermal flow paths 3a to 3e. This allows multiple items to be tested in one test. As a result, it is possible to improve the efficiency of testing while reducing the workload of the operator and the burden on the subject.
  • the nucleic acid amplification device 6 of this embodiment supports the cartridge C vertically so that the low-temperature side heat section 33 is positioned at the bottom. This makes it easier to collect the sample at the low-temperature side heat section 33, which is the starting position for the thermal cycle process. In addition, the effect of gravity acting on the sample makes it easier to maintain the sample in the flow channel 2 as a single mass.
  • the low-temperature side heat section 33 is positioned lower than the high-temperature side heat section 36, the low-temperature side heat section 33 is less susceptible to the heat of the high-temperature heater section 641 during testing. As a result, stable test results can be obtained.
  • the sample circulates through the circulation flow path 32 in a path that passes through the pump 34.
  • the sample may circulate through the circulation flow path 32 in a path that does not pass through the pump 34.
  • the sample may circulate through the circulation flow path 32 in a path that does not pass through the pump 34 during the thermal cycle processing in the nucleic acid amplification testing.
  • Variant 1 of the nucleic acid amplification testing method will be described.
  • the drawings used in the above-mentioned embodiment 1 will be appropriately cited.
  • the configuration of the cartridge C used in the modified example 1 of the nucleic acid amplification testing method is the same as the configuration of the cartridge C in the above-mentioned embodiment 1.
  • the configuration of the cartridge may be different from the configuration of the cartridge C in embodiment 1.
  • the configuration of the nucleic acid amplifier 6 used in the modified example 1 of the nucleic acid amplification testing method is also substantially the same as the configuration of the nucleic acid amplifier 6 in the above-mentioned embodiment 1.
  • the configuration of the nucleic acid amplifier may be different from the configuration of the nucleic acid amplifier 6 in embodiment 1.
  • the operation of the nucleic acid amplification device 6 that performs the nucleic acid amplification testing method differs from the operation of the nucleic acid amplification device 6 in the above-mentioned embodiment 1.
  • modified example 1 of the nucleic acid amplification testing method will be described, focusing on the configuration that differs from the nucleic acid amplification testing method according to the above-mentioned embodiment 1.
  • nucleic acid amplification testing method variant 1 the explanation of the configuration that is the same as that of the nucleic acid amplification testing method of embodiment 1 described above may be appropriately cited from the explanation of the nucleic acid amplification testing method of embodiment 1.
  • the sample repeatedly moves back and forth between the first position and the second position in the circulation flow path 32.
  • the pump 34 of the cartridge C repeatedly moves the sample back and forth between the first position and the second position in the circulation flow path 32.
  • the control unit 61 of the nucleic acid amplification device 6 drives the pump 34 to repeatedly move the sample back and forth between the first position and the second position in the circulation flow path 32.
  • the repeated movement between the first position and the second position in the circulation flow channel 32 is also included in the concept of the sample circulating.
  • the concept of the sample circulating is not limited to the sample moving circularly in one direction in the circulation flow channel 32, but also includes the sample moving back and forth in the circulation flow channel 32.
  • the processing of each step of the nucleic acid amplification testing method performed in the nucleic acid amplifier 6 is controlled by the control unit 61 (see FIG. 8).
  • control unit 61 also performs the RNA extraction step S1 and the reagent mixing step S2 in the time chart of FIG. 13, as in the nucleic acid amplification testing method of embodiment 1.
  • the explanation of the RNA extraction step S1 and the reagent mixing step S2 in embodiment 1 may be appropriately used for the explanation of the RNA extraction step S1 and the reagent mixing step S2 in this modified example.
  • control unit 61 performs the thermal cycle step S3 in the time chart of FIG. 13 after the reagent mixing step S2.
  • the thermal cycle step S3 in this modified example is described below.
  • the second sample transfer process is a process for transferring the sample from the individual reagent holder 21 to the low-temperature side heat unit 33.
  • the explanation of the second sample transfer process may be appropriately applied to the explanation of the second sample transfer process in the first embodiment.
  • the cartridge C is in the state shown in FIG. 14C.
  • the third sample transfer process is a process for transferring the sample from the low-temperature side heat unit 33 to the high-temperature side heat unit 36.
  • the sample travels from the low-temperature side heat unit 33 through the second parallel flow path 32b toward the high-temperature side heat unit 36. In other words, the sample does not pass through the pump 34.
  • the control unit 61 drives the pump 34 to move the sample from the low-temperature side heat unit 33 to the high-temperature side heat unit 36.
  • the movement direction of the sample in the circulation flow path 32 is the clockwise direction in FIG. 14C (the direction indicated by the arrow Y8 in FIG. 14C).
  • the driving direction of pump 34 in the third sample movement process is also referred to as the first driving direction of pump 34.
  • control unit 61 performs the enzyme activation step S31 in the time chart of FIG. 13 in the state shown in FIG. 14D.
  • the explanation of the enzyme activation step S31 may be appropriately cited from the explanation of the enzyme activation step S31 in the first embodiment.
  • the fourth sample transfer process is a process for transferring the sample from the high-temperature side heat unit 36 to the low-temperature side heat unit 33.
  • the sample travels from the high-temperature side heat unit 36 through the second parallel flow path 32b toward the low-temperature side heat unit 33. In other words, the sample does not pass through the pump 34.
  • the control unit 61 drives the pump 34 to move the sample from the high-temperature side heat unit 36 to the low-temperature side heat unit 33.
  • the movement direction of the sample in the circulation flow path 32 is the opposite direction to the clockwise direction in FIG. 14C (the direction indicated by the arrow Y1 in FIG. 14C).
  • the driving direction of pump 34 in the fourth sample movement process is also referred to as the second driving direction of pump 34.
  • the second driving direction of pump 34 is opposite to the first driving direction of pump 34.
  • the direction of sample movement in the third sample movement process (in other words, the driving direction of pump 34) is opposite to the direction of sample movement in the fourth sample movement process (in other words, the driving direction of pump 34).
  • control unit 61 also performs the reverse transcription step S32 in the time chart of FIG. 13 in the state shown in FIG. 14C.
  • the description of the reverse transcription step S32 in the first embodiment may be used as appropriate for the description of the reverse transcription step S32.
  • control unit 61 drives the pump 34 in the first driving direction to move the sample from the low-temperature side heat unit 33 to the high-temperature side heat unit 36, similar to the third sample movement process.
  • the sample travels from the low-temperature side heat section 33 through the second parallel flow path 32b toward the high-temperature side heat section 36. In other words, the sample does not pass through the pump 34. In the case of this modified example, the sample passes through the high-temperature side heat section 36 and moves to the preheat section 35.
  • the control section 61 drives the pump 34 in the direction opposite to the first driving direction (i.e., the second driving direction) to move the sample from the preheat section 35 to the high-temperature side heating section 36.
  • the sample moves from the low-temperature side heat section 33 to the preheat section 35.
  • the sample is then heated in the preheat section 35.
  • the sample then moves from the preheat section 35 to the high-temperature side heat section 36. Therefore, the state (specifically, the temperature) of the sample accommodated in the high-temperature side heat section 36 is substantially the same as the state (specifically, the temperature) of the sample accommodated in the high-temperature side heat section 36 in the above-described first embodiment.
  • the preheat section 35 may be provided in the second parallel flow path 32b.
  • the control section 61 can drive the pump 34 only in the first driving direction to move the sample from the low-temperature side heat section 33 to the high-temperature side heat section 36.
  • control unit 61 performs a thermal denaturation process at step S33 in the time chart of FIG. 13.
  • the description of the thermal denaturation process may be appropriately referenced from the description of the thermal denaturation process in embodiment 1.
  • control unit 61 drives the pump 34 in the second driving direction to move the sample from the high-temperature side heat unit 36 to the low-temperature side heat unit 33, similar to the fourth sample movement process.
  • the sample moves from the high-temperature side heat section 36 through the second parallel flow path 32b to the low-temperature side heat section 33. In other words, the sample does not pass through the pump 34.
  • the cartridge C is in the state shown in Figure 14C.
  • control unit 61 performs an annealing step and an extension reaction step in step S33 in the time chart of FIG. 13.
  • the explanation of the annealing step and the extension reaction step may be appropriately cited from the explanation of the annealing step and the extension reaction step in embodiment 1.
  • control unit 61 also performs an amplification determination process based on the detection value of the fluorescence detection device 7 at a predetermined timing in addition to the annealing process and the extension reaction process.
  • the amplification determination process is as described above.
  • the predetermined timing is, for example, immediately after the extension reaction process.
  • the thermal denaturation step, annealing step, and extension reaction step are repeatedly performed for a predetermined number of cycles (e.g., 40 cycles).
  • the control unit 61 performs an amplification determination process along with the annealing step and extension reaction step in each cycle.
  • the sample does not pass through the pump 34 during thermal cycling.
  • thermal cycling can be performed without the sample passing directly below the pump section 34.
  • the sample does not pass directly below the pump section 34, so the sample is not directly compressed by the pump section 34. This makes it possible to prevent air bubbles from being generated in the sample. As a result, highly accurate detection is possible. Furthermore, in this modified example, the sample also passes through the preheat section 35. This makes it possible to shorten the inspection time.
  • Fig. 15 is a schematic cross-sectional view of a nucleic acid amplifier 6A according to embodiment 2 of the present invention.
  • the nucleic acid amplifier 6A differs from the nucleic acid amplifier 6 shown in Fig. 8 in the manner in which the cartridge C is supported. Due to this difference, a portion of the configuration of the nucleic acid amplifier 6A differs from the configuration of the nucleic acid amplifier 6 shown in Fig. 8.
  • the configuration of the nucleic acid amplifier 6A will be described below, focusing on the parts that differ from the nucleic acid amplifier 6 shown in Fig. 8.
  • the nucleic acid amplification device 6A has a housing 60A, a control unit 61A, a cartridge support unit 62A, a vibration unit 63A, a heater unit 64A, a valve drive unit 65A, a liquid delivery unit 66A, a sample position detection unit 67A, and a fluorescence detection device 7A.
  • the housing 60A is box-shaped and has a storage space 601A.
  • the storage space 601A contains the elements 61A to 67A and 7A that make up the nucleic acid amplification device 6A.
  • the control unit 61A has a first control unit 611A and a second control unit 612A.
  • the configurations of the first control unit 611A and the second control unit 612A are similar to the configurations of the first control unit 611 and the second control unit 612 of the nucleic acid amplification device 6 shown in FIG. 8.
  • the cartridge support portion 62A is supported by the housing 60A and is a member that supports the cartridge C.
  • the configuration of the cartridge support portion 62A is substantially the same as the configuration of the cartridge support portion 62 in the nucleic acid amplification device 6 shown in FIG. 8.
  • the cartridge support portion 62A supports the cartridge C horizontally.
  • the first and second main surfaces of the cartridge C face vertically.
  • the vibration unit 63A is supported by the housing 60A.
  • the configuration of the vibration unit 63A is almost the same as the configuration of the vibration unit 63 in the nucleic acid amplification device 6 shown in FIG. 8.
  • the vibration unit 63A is provided at a position facing the individual reagent holding unit 21 of the cartridge C in a predetermined direction (vertical direction in this embodiment) during testing.
  • the heater unit 64A is supported by the housing 60A.
  • the configuration of the heater unit 64A is substantially the same as the configuration of the heater unit 64 in the nucleic acid amplification device 6 shown in FIG. 8.
  • the low-temperature heater 642b is provided at a position facing the low-temperature region R2 (specifically, the low-temperature side heat section 33) of the cartridge C in a predetermined direction (vertical direction in this embodiment) during testing.
  • the first high temperature heater 641c is supported at a position facing the first high temperature region R11 (specifically, the high temperature side heat section 36) of the cartridge C in a predetermined direction (vertical direction in this embodiment) during testing.
  • the second high-temperature heater 641d is supported at a position facing the second high-temperature region R12 (specifically, the preheat section 35) of the cartridge C in a predetermined direction (vertical direction in this embodiment) during testing.
  • the valve drive unit 65A is supported by the housing 60A.
  • the configuration of the valve drive unit 65A is substantially the same as the configuration of the valve drive unit 65 in the nucleic acid amplification device 6 shown in FIG. 8.
  • the pressing portion 651b of the first low-temperature side valve driving portion 651A is supported at a position facing the pressed portion 30c of the first low-temperature side valve 30 in the cartridge C in a predetermined direction (vertical direction in this embodiment) during testing.
  • the pressing portion 652b of the first high temperature side valve driving portion 652A is provided at a position facing the pressed portion 31c of the first high temperature side valve 31 in the cartridge C in a predetermined direction (vertical direction in this embodiment) during testing.
  • the pressing portion 653b of the second valve driving portion 653A is provided at a position facing the pressed portion 37c of the second valve 37 in the cartridge C in a predetermined direction (vertical direction in this embodiment) during testing.
  • the liquid delivery unit 66A is supported by the housing 60A.
  • the configuration of the liquid delivery unit 66A is substantially the same as the configuration of the liquid delivery unit 66 in the nucleic acid amplification device 6 shown in FIG. 8.
  • the pump drive unit 661A of the liquid delivery unit 66A is provided at a position facing the pump 34 in a predetermined direction (the vertical direction in this embodiment).
  • the sample position detection unit 67A is supported by the housing 60A.
  • the configuration of the sample position detection unit 67 is substantially the same as the configuration of the sample position detection unit 67 in the nucleic acid amplification device 6 shown in FIG. 8.
  • the low-temperature side detection section 671A of the sample position detection section 67A is provided at a position facing the low-temperature side heating section 33 of the cartridge C in a predetermined direction (vertical direction in this embodiment) during testing.
  • the high temperature side detection section 672A of the sample position detection section 67A is provided at a position facing the high temperature side heating section 36 of the cartridge C in a predetermined direction (vertical direction in this embodiment) during testing.
  • the fluorescence detection device 7A is supported by the housing 60A.
  • the configuration of the fluorescence detection device 7A is almost the same as the configuration of the fluorescence detection device 7 in the nucleic acid amplification device 6 shown in FIG. 8.
  • the fluorescence detection unit 8 of the fluorescence detection device 7A is provided at a position facing the detection area (low-temperature side heat unit 33) in the cartridge C in a predetermined direction (vertical direction in this embodiment) during testing.
  • the nucleic acid amplifier 6A of this embodiment which has the above-described configuration, can also shorten the time required for testing.
  • the rest of the configuration and the actions and effects of the nucleic acid amplifier 6A are the same as those of the nucleic acid amplifier 6 of embodiment 1.
  • a nucleic acid amplifier 6B according to embodiment 3 will be described with reference to Figures 16 to 18.
  • the configuration of a pump driver 661B is different from the pump driver 661 of the nucleic acid amplifier 6 according to embodiment 1.
  • the configuration other than the pump driver 661B is the same as that of the nucleic acid amplifier 6 according to embodiment 1.
  • Thermal flow path 3g is shown in Figures 16 to 18.
  • the circulation flow path 32A of thermal flow path 3g has a pair of pumps 34C, 34D.
  • the configuration of thermal flow path 3g is slightly different from the configuration of thermal flow path 3a in embodiment 1.
  • the configurations of the flow paths other than thermal flow path 3g are almost the same as the configuration of flow path 2 in embodiment 1.
  • Pumps 34C and 34D are arranged in parallel in circulation flow path 32A.
  • the configuration of pumps 34C and 34D is substantially the same as the configuration of pump 34A of modification 1 shown in Figures 5 and 6.
  • pumps 34C and 34D each have curved upper pump space forming members 34k and 34m. Therefore, pump spaces 34n and 34p defined by upper pump space forming members 34k and 34m are also curved.
  • the upper pump space forming members 34k, 34m are each arranged along an arc centered on a common center point.
  • the pump drive unit 661B has a base 662a and multiple (in this embodiment, three) roller members 662b.
  • the base 662a is a part that is fixed to the housing 60 (see FIG. 8).
  • the base 662a is also rotatable about a central axis A1.
  • the central axis A1 is perpendicular to the main surface of the cartridge C1 during inspection.
  • the base 662a is also a member that rotatably supports the roller member 662b.
  • roller members 662b are arranged at equal intervals (120 degree intervals in this embodiment) in the rotation direction of the base 662a.
  • Each roller member 662b has a shaft portion 662c and a pressure roller 662d.
  • the shaft portion 662c and the pressure roller 662d are integrally formed.
  • the shaft portion 662c is supported by the base portion 662a in a state in which it can rotate around the central axis A2 of the shaft portion 662c.
  • the pressure roller 662d is frustum-shaped and is integrally formed at the tip of the shaft portion 662c.
  • the pressure roller 662d has a pressure surface 662e on its outer circumferential surface.
  • the pressure surface 662e is the part that presses the upper pump space forming members 34k, 34m of the pumps 34C, 34D when the pumps 34C, 34D are driven.
  • the pump drive unit 661A is arranged to cover the upper pump space forming members 34k, 34m of the pumps 34C, 34D from a predetermined direction. In this state, the pressing surface 662e of the pressing roller 662d can abut against the upper pump space forming members 34k, 34m of the pumps 34C, 34D.
  • the pump drive unit 661A and the cartridge C1 are positioned farther apart than they were during testing.
  • Figure 18 is a schematic diagram showing the contact positions D1 and D2 between the pressure roller 662d of the pump drive unit 661A and the upper pump space forming members 34k and 34m of the pumps 34C and 34D.
  • One of the three pressure rollers 662d (the upper pressure roller 662d in FIG. 18) abuts against the upper pump space forming member 34k of the pump 34C at abutment position D1.
  • the upper pressure roller 662d in FIG. 18 presses against the upper pump space forming member 34k of the pump 34C at abutment position D1.
  • one of the three pressure rollers 662d (the lower left pressure roller 662d in FIG. 18) abuts against the upper pump space forming member 34m of the pump 34D at abutment position D2.
  • the lower left pressure roller 662d in FIG. 18 presses against the upper pump space forming member 34m of the pump 34D at abutment position D2.
  • the three pressure rollers 662d each move in the direction of the arrow Y3 while rolling.
  • the contact positions D1 and D2 also move in the direction of the arrow Y3.
  • the upper pump space forming member 34k of the pump 34C and the upper pump space forming member 34m of the pump 34D are crushed by the pressure rollers 662d.
  • the air and/or sample in the pump spaces 34n and 34p of the pumps 34C and 34D move in the sample circulation direction (the direction indicated by the arrow Y7 in FIG. 16).
  • the air and sample in the thermal flow path 3g move in the circulation direction in conjunction with the movement of the air and/or sample in the pump spaces 34n and 34p.
  • the three pressure rollers 662d sequentially drive pumps 34C and 34D in response to the rotation of base 662a.
  • the direction of the frictional force that the three pressure rollers 662d apply to pumps 34C and 34D is along the extension direction of pumps 34C and 34D.
  • the pump drive unit 661A can sequentially drive pumps 34C and 34D using the three pressure rollers 662d. This allows the sample to move efficiently through the flow path.
  • the pump drive unit 661A of this embodiment can be applied to a cartridge having a curved pump.
  • the number of pumps is not limited to two, and may be one. Other configurations and actions/effects are substantially the same as those of the first embodiment.
  • the present invention contributes to improving the efficiency of testing in nucleic acid amplification devices such as real-time PCR devices, and has great industrial applicability.

Abstract

This test container is used for a nucleic acid amplification test executed in a nucleic acid amplification device. The test container comprises: a substrate; and a flowpath which is provided to the substrate and in which a sample containing nucleic acid is accommodated. The flowpath comprises: a thermal flowpath which includes a circulation flowpath in which the sample flows in a circulating manner; and a pump that is provided to the circulation flowpath and that moves the sample.

Description

検査用容器、核酸増幅装置、及び核酸増幅検査方法Test container, nucleic acid amplification device, and nucleic acid amplification test method
 本発明は、検査用容器、核酸増幅装置、及び核酸増幅検査方法に関する。 The present invention relates to a test container, a nucleic acid amplification device, and a nucleic acid amplification test method.
 従来、所謂サーマルサイクルを実施することにより、熱変性工程、アニーリング工程、及び伸長反応工程を経て、DNA(Deoxyribonucleic Acid:デオキシリボ核酸)等の核酸(遺伝子)にポリメラーゼ連鎖反応(PCR:Polymerase Chain Reaction)を起こさせて、核酸を増幅させる核酸増幅装置が知られている。このような核酸増幅装置は、PCR装置と呼ばれている。 Conventionally, a nucleic acid amplification device has been known that performs a so-called thermal cycle to cause a polymerase chain reaction (PCR) in nucleic acids (genes) such as DNA (Deoxyribonucleic Acid) through a thermal denaturation step, an annealing step, and an extension reaction step, thereby amplifying the nucleic acid. Such a nucleic acid amplification device is called a PCR device.
 又、核酸を増幅させる機構とともに、核酸を検出する検出部を備え、増幅した核酸をリアルタイムに検出できる核酸増幅装置が知られている(例えば、特許文献1参照)。このような核酸増幅装置は、リアルタイムPCR装置と呼ばれている。 Also known is a nucleic acid amplification device that is equipped with a mechanism for amplifying nucleic acids as well as a detection unit for detecting nucleic acids, and is capable of detecting amplified nucleic acids in real time (see, for example, Patent Document 1). Such a nucleic acid amplification device is called a real-time PCR device.
 リアルタイムPCR装置は、検査対象の核酸、並びに、プライマー及び蛍光プローブ等の検査試薬を含む反応試料の温度を制御して核酸を増幅させる。そして、リアルタイムPCR装置は、反応試料内の蛍光色素を励起させる励起光を照射し、その際に蛍光色素から発生する蛍光に基づいて増幅された核酸を定量的に測定する。 The real-time PCR device amplifies the nucleic acid by controlling the temperature of the reaction sample, which contains the nucleic acid to be tested as well as test reagents such as primers and fluorescent probes. The real-time PCR device then irradiates the reaction sample with excitation light that excites a fluorescent dye, and quantitatively measures the amplified nucleic acid based on the fluorescence generated by the fluorescent dye.
国際公開第2018/105404号International Publication No. 2018/105404
 ところで、上述のような核酸増幅装置において、熱変性工程、アニーリング工程、及び伸長反応工程を含むサーマルサイクルが複数回繰り返されることによって、核酸の増幅が行われる。このような核酸増幅装置において、1回の検査に要する時間の短縮が望まれている。 In the nucleic acid amplification device described above, a thermal cycle including a thermal denaturation step, an annealing step, and an extension reaction step is repeated multiple times to amplify nucleic acids. In such a nucleic acid amplification device, it is desirable to reduce the time required for one test.
 本発明は、このような状況に鑑みてなされたものであり、検査に要する時間を短縮できる、検査用容器、核酸増幅装置、及び核酸増幅検査方法を提供することを目的としている。 The present invention was made in consideration of these circumstances, and aims to provide a test container, a nucleic acid amplification device, and a nucleic acid amplification test method that can shorten the time required for testing.
 本発明に係る検査用容器の一態様は、
 核酸増幅装置において実施される核酸増幅検査に使用される検査用容器であって、
 基板と、
 基板に設けられ、核酸を含む試料が収容される流路と、を備え、
 流路は、
  試料が循環的に流通する循環流路を有するサーマル流路と、
  循環流路に設けられ、試料を移動させるポンプと、を備える。
One aspect of the container for inspection according to the present invention is
A test container used in a nucleic acid amplification test performed in a nucleic acid amplification device,
A substrate;
A flow channel is provided on the substrate and accommodates a sample containing nucleic acid;
The flow path is
a thermal flow path having a circulation flow path through which the sample circulates;
and a pump provided in the circulation flow path for moving the sample.
 本発明に係る核酸増幅装置の一態様は、
 試料が循環的に移動する循環流路を有する検査用容器が組み込まれた状態で、核酸増幅検査を実施する核酸増幅装置であって、
 循環流路に設けられたポンプを駆動するポンプ駆動部と、
 循環流路の低温側ヒート部を、第一所定温度で加熱する低温ヒータ部と、
 循環流路の高温側ヒート部を、第一所定温度よりも高い第二所定温度で加熱する高温ヒータ部と、
 試料に含まれる蛍光色素の蛍光を検出する蛍光検出部と、を備える。
One aspect of the nucleic acid amplification device according to the present invention is
A nucleic acid amplification device that performs a nucleic acid amplification test in a state in which a test container having a circulation flow path through which a sample circulates is incorporated,
a pump driving unit that drives a pump provided in the circulation flow path;
a low-temperature heater section that heats a low-temperature side heat section of the circulation flow path to a first predetermined temperature;
a high-temperature heater section that heats a high-temperature side heat section of the circulation flow path to a second predetermined temperature that is higher than the first predetermined temperature;
and a fluorescence detection unit that detects the fluorescence of a fluorescent dye contained in the sample.
 本発明に係る核酸増幅検査方法の一態様は、
 試料が収容される流路を有する検査用容器が装着された状態で、核酸増幅検査を実施する核酸増幅装置において実施される核酸増幅検査方法であって、
 流路は、
  核酸増幅検査時に、試料が循環的に流通する循環流路を含むサーマル流路と、
  サーマル流路に接続された分注流路と、
  循環流路に設けられ、試料を移動させるポンプと、
  サーマル流路において、循環流路と分注流路との間に設けられた第一バルブと、
  循環流路に設けられた第二バルブと、を備え、
 核酸増幅検査方法は、
  第一バルブの開状態且つ第二バルブの閉状態において、ポンプを駆動して、試料を分注流路から循環流路に移動させる分注処理を実施するステップと、
  第一バルブの閉状態且つ第二バルブの開状態において、ポンプを駆動して、循環流路において試料を循環させつつ加熱するサーマルサイクル処理を実施するステップと、を含む。
One aspect of the nucleic acid amplification test method according to the present invention is to
A nucleic acid amplification test method performed in a nucleic acid amplification device that performs a nucleic acid amplification test in a state in which a test container having a flow path in which a sample is contained is attached, comprising:
The flow path is
a thermal flow path including a circulation flow path through which a sample circulates during a nucleic acid amplification test;
a dispensing channel connected to the thermal channel;
a pump provided in the circulation flow path for moving the sample;
a first valve provided in the thermal flow path between the circulation flow path and the dispensing flow path;
A second valve provided in the circulation flow path,
The nucleic acid amplification test method is
performing a dispensing process in which the pump is driven while the first valve is open and the second valve is closed to move the sample from the dispensing flow path to the circulation flow path;
and performing a thermal cycle process of heating the sample while circulating it in the circulation channel by driving the pump with the first valve in a closed state and the second valve in an open state.
 本発明によれば、検査に要する時間を短縮できる、検査用容器、核酸増幅装置、及び核酸増幅検査方法を提供できる。 The present invention provides a test container, a nucleic acid amplification device, and a nucleic acid amplification test method that can reduce the time required for testing.
図1は、実施形態1に係る検査用容器の平面図である。FIG. 1 is a plan view of a container for inspection according to a first embodiment. 図2は、検査用容器の底面図である。FIG. 2 is a bottom view of the container for inspection. 図3は、第一高温側バルブ、第一低温側バルブ、及び第二バルブの断面模式図である。FIG. 3 is a schematic cross-sectional view of the first high temperature side valve, the first low temperature side valve, and the second valve. 図4は、ポンプの一例を示す断面斜視図である。FIG. 4 is a cross-sectional perspective view showing an example of a pump. 図5は、ポンプの変形例1を示す分解斜視図である。FIG. 5 is an exploded perspective view showing a first modified example of the pump. 図6は、ポンプの変形例1を示す断面斜視図である。FIG. 6 is a cross-sectional perspective view showing a first modified example of the pump. 図7は、ポンプの変形例2を示す断面斜視図である。FIG. 7 is a cross-sectional perspective view showing a second modified example of the pump. 図8は、実施形態1に係る核酸増幅装置の断面模式図である。FIG. 8 is a schematic cross-sectional view of the nucleic acid amplification device according to the first embodiment. 図9は、ポンプ駆動部の構成を説明するための斜視図である。FIG. 9 is a perspective view for explaining the configuration of the pump drive unit. 図10は、ポンプ駆動部の回転部材の構成を説明するための斜視図である。FIG. 10 is a perspective view for explaining the configuration of a rotating member of the pump drive unit. 図11は、ポンプ駆動部の動作を説明するための模式図である。FIG. 11 is a schematic diagram for explaining the operation of the pump driving unit. 図12は、蛍光検出装置の構成を示す模式図である。FIG. 12 is a schematic diagram showing the configuration of a fluorescence detection device. 図13は、核酸増幅検査における温度サイクルを示すタイムチャートである。FIG. 13 is a time chart showing the temperature cycle in a nucleic acid amplification test. 図14Aは、核酸増幅検査におけるカートリッジの状態を説明するための図である。FIG. 14A is a diagram for explaining the state of the cartridge in a nucleic acid amplification test. 図14Bは、核酸増幅検査におけるカートリッジの状態を説明するための図である。FIG. 14B is a diagram for explaining the state of the cartridge in a nucleic acid amplification test. 図14Cは、核酸増幅検査におけるカートリッジの状態を説明するための図である。FIG. 14C is a diagram for explaining the state of the cartridge in a nucleic acid amplification test. 図14Dは、核酸増幅検査におけるカートリッジの状態を説明するための図である。FIG. 14D is a diagram for explaining the state of the cartridge in a nucleic acid amplification test. 図15は、実施形態2に係る核酸増幅装置の断面模式図である。FIG. 15 is a schematic cross-sectional view of the nucleic acid amplification device according to the second embodiment. 図16は、実施形態3に係る核酸増幅装置のポンプ駆動部の斜視図である。FIG. 16 is a perspective view of a pump driver of the nucleic acid amplification apparatus according to the third embodiment. 図17は、ポンプ駆動部の断面斜視図である。FIG. 17 is a cross-sectional perspective view of the pump drive unit. 図18は、ポンプ駆動部の動作を説明するための模式図である。FIG. 18 is a schematic diagram for explaining the operation of the pump driving unit.
 以下、図面を参照しながら、本発明に係る検査用容器、核酸増幅装置、及び核酸増幅検査方法について説明する。尚、同じ構成要素には同じ符号を付している。 The test container, nucleic acid amplification device, and nucleic acid amplification test method according to the present invention will be described below with reference to the drawings. Note that the same components are given the same reference numerals.
 [実施形態1]
 図1~図14Dを参照して、本発明の実施形態1に係る検査用容器、核酸増幅装置、及び核酸増幅検査方法について説明する。
[Embodiment 1]
A container for testing, a nucleic acid amplification device, and a nucleic acid amplification testing method according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 14D.
 図1は、本発明の実施形態1に係るカートリッジCの平面図である。図2は、カートリッジCの底面図である。カートリッジCは、検査用容器の一例に該当する。 FIG. 1 is a plan view of a cartridge C according to a first embodiment of the present invention. FIG. 2 is a bottom view of the cartridge C. The cartridge C is an example of a test container.
 カートリッジCは、PCR装置又はリアルタイムPCR装置等の核酸増幅装置において実施される核酸増幅検査に使用される。 Cartridge C is used in a nucleic acid amplification test carried out in a nucleic acid amplification device such as a PCR device or a real-time PCR device.
 先ず、カートリッジCの使用態様の概要について説明する。カートリッジCは、反応試料(以下、単に「試料」とも称する。)を収容した状態で、核酸増幅装置6にセットされる。試料は、例えば、検査対象(例えば、ウイルス)の核酸(以下、「対象核酸」とも称する。)、並びに、プライマー及び蛍光プローブ等の検査試薬を含む。そして、カートリッジCがセットされた核酸増幅装置6において、サーマルサイクル処理が実施されることにより、熱変性工程、アニーリング工程、及び伸長反応工程等の処理が実施される。この結果、カートリッジCにおいて、対象核酸が増幅される。 First, an overview of how cartridge C is used will be described. Cartridge C is set in the nucleic acid amplifier 6 while containing a reaction sample (hereinafter simply referred to as "sample"). The sample includes, for example, the nucleic acid (hereinafter also referred to as "target nucleic acid") of the test subject (e.g., a virus) and test reagents such as primers and fluorescent probes. Then, in the nucleic acid amplifier 6 in which cartridge C is set, a thermal cycle process is performed, thereby carrying out processes such as a thermal denaturation process, an annealing process, and an extension reaction process. As a result, the target nucleic acid is amplified in cartridge C.
 以下、カートリッジCの具体的な構成について説明する。その後、本実施形態に係る核酸増幅装置6の構成、及び核酸増幅装置6において実施される核酸増幅検査方法について説明する。 The specific configuration of the cartridge C will be described below. After that, the configuration of the nucleic acid amplifier 6 according to this embodiment and the nucleic acid amplification test method performed in the nucleic acid amplifier 6 will be described.
 カートリッジCは、ベース部1及び流路2を有する。 The cartridge C has a base portion 1 and a flow path 2.
 ベース部1は、無色透明の合成樹脂製であり、矩形板状である。ベース部1を構成する合成樹脂は、例えば、ポリプロピレン、ポリカーボネイト、又はシクロオレフィンポリマーである。尚、ベース部1には、後述の流路2を構成する第一低温側バルブ30、第一高温側バルブ31、ポンプ34、及び第二バルブ37等のエレメントが固定されている。ベース部1とこれら各エレメントとは、二色成形等の成形方法により作られる。 The base part 1 is made of a colorless and transparent synthetic resin and has a rectangular plate shape. The synthetic resin that constitutes the base part 1 is, for example, polypropylene, polycarbonate, or cycloolefin polymer. In addition, elements such as a first low-temperature side valve 30, a first high-temperature side valve 31, a pump 34, and a second valve 37 that constitute the flow path 2 described below are fixed to the base part 1. The base part 1 and each of these elements are made by a molding method such as two-color molding.
 ベース部1(カートリッジC)の上面(表面)は、第一主面である。又、ベース部1(カートリッジC)の下面(裏面)は、第二主面である。ベース部1(カートリッジC)の第一主面と第二主面とは、対向する一対の面である。 The upper surface (front surface) of the base part 1 (cartridge C) is the first main surface. The lower surface (rear surface) of the base part 1 (cartridge C) is the second main surface. The first and second main surfaces of the base part 1 (cartridge C) are a pair of opposing surfaces.
 ベース部1は、図2に示すように、高温領域R1、低温領域R2、及び中間領域R3を有する。 As shown in FIG. 2, the base portion 1 has a high temperature region R1, a low temperature region R2, and an intermediate region R3.
 高温領域R1は、核酸増幅検査時(以下、単に「検査時」とも称する。)に、後述の核酸増幅装置6の高温ヒータ部641により加熱される領域である。具体的には、高温領域R1は、ベース部1における右端部を含む領域である。 The high-temperature region R1 is a region that is heated by a high-temperature heater unit 641 of the nucleic acid amplifier 6 described below during a nucleic acid amplification test (hereinafter also simply referred to as "during the test"). Specifically, the high-temperature region R1 is a region that includes the right end portion of the base portion 1.
 尚、本明細書では、各図において、上下の文字が付された矢印で示される方向を便宜的に上又は下として説明する。又、本明細書では、各図において左右の文字が付された矢印で示される方向を便宜的に右又は左として説明する。ベース部1の左右方向は、ベース部1の長手方向でもある。又、本明細書では、各図において前後の文字が付された矢印で示される方向を便宜的に前又は後として説明する。ベース部1の前後方向は、ベース部1の短手方向でもある。各図において上下の文字が付された矢印が示す方向は、カートリッジCが核酸増幅装置にセットされた状態における、上下方向に一致する場合もあるし、一致しない場合もある。 In this specification, the directions indicated by the arrows labeled with up and down characters in each figure are described as up or down for convenience. In addition, in this specification, the directions indicated by the arrows labeled with left and right characters in each figure are described as right or left for convenience. The left and right direction of the base part 1 is also the longitudinal direction of the base part 1. In addition, in this specification, the directions indicated by the arrows labeled with front and back characters in each figure are described as front or back for convenience. The front and back direction of the base part 1 is also the lateral direction of the base part 1. The directions indicated by the arrows labeled with up and down characters in each figure may or may not match the vertical direction when the cartridge C is set in the nucleic acid amplification device.
 高温領域の位置は、本実施形態における高温領域R1の位置に限定されない。高温領域の位置は、核酸増幅装置6の高温ヒータ部641の位置との関係により、適宜設定されてよい。 The position of the high temperature region is not limited to the position of the high temperature region R1 in this embodiment. The position of the high temperature region may be set appropriately in relation to the position of the high temperature heater unit 641 of the nucleic acid amplification device 6.
 高温領域R1は、第一高温領域R11及び第二高温領域R12を有する。第一高温領域R11は、ベース部1における右端部を含む部分である。第二高温領域R12は、第二高温領域R12よりも左側(低温領域R2に近い側)の領域である。 The high temperature region R1 has a first high temperature region R11 and a second high temperature region R12. The first high temperature region R11 is a portion including the right end portion of the base portion 1. The second high temperature region R12 is a region to the left of the second high temperature region R12 (the side closer to the low temperature region R2).
 第一高温領域R11は、検査時に、高温ヒータ部641の第一高温ヒータ641aにより加熱される領域である。第二高温領域R12は、検査時に、高温ヒータ部641の第二高温ヒータ641bにより加熱される領域である。検査時に、第二高温領域R12の温度は、第一高温領域R11の温度よりも高温になる。 The first high temperature region R11 is an area that is heated by the first high temperature heater 641a of the high temperature heater section 641 during inspection. The second high temperature region R12 is an area that is heated by the second high temperature heater 641b of the high temperature heater section 641 during inspection. During inspection, the temperature of the second high temperature region R12 becomes higher than the temperature of the first high temperature region R11.
 低温領域R2は、検査時に、核酸増幅装置6の低温ヒータ642aにより加熱される領域である。具体的には、低温領域R2は、ベース部1における左端部を含む領域である。 The low-temperature region R2 is an area that is heated by the low-temperature heater 642a of the nucleic acid amplifier 6 during testing. Specifically, the low-temperature region R2 is an area that includes the left end of the base portion 1.
 但し、低温領域の位置は、本実施形態における低温領域R2の位置に限定されない。低温領域の位置は、核酸増幅装置6の低温ヒータ642aの位置との関係により、適宜設定されてよい。 However, the position of the low temperature region is not limited to the position of the low temperature region R2 in this embodiment. The position of the low temperature region may be set appropriately depending on its relationship with the position of the low temperature heater 642a of the nucleic acid amplification device 6.
 中間領域R3は、ベース部1の左右方向における高温領域R1と低温領域R2との間に設けられた領域である。中間領域R3は、検査時に、核酸増幅装置6の高温ヒータ部641及び低温ヒータ部642と対向しない部分と捉えてもよい。 The intermediate region R3 is a region provided between the high-temperature region R1 and the low-temperature region R2 in the left-right direction of the base portion 1. The intermediate region R3 may be considered as a portion that does not face the high-temperature heater portion 641 and the low-temperature heater portion 642 of the nucleic acid amplifier 6 during testing.
 流路2は、ベース部1の下面(第二主面)に形成された溝、及び、ベース部1に固定された複数のエレメントにより構成されている。流路2を構成する溝は、下方に開口している。溝の下方側開口部は、ベース部1の下面に固定されたフィルム状の封止部材50(図4参照)により塞がれている。 The flow path 2 is composed of a groove formed on the lower surface (second main surface) of the base part 1, and a number of elements fixed to the base part 1. The groove constituting the flow path 2 opens downward. The lower opening of the groove is blocked by a film-like sealing member 50 (see Figure 4) fixed to the lower surface of the base part 1.
 以下、流路2の具体的な構成について説明する。流路2は、分注流路2a及びサーマル流路3a、3b、3c、3d、3eを有する。 The specific configuration of the flow path 2 is described below. The flow path 2 has a dispensing flow path 2a and thermal flow paths 3a, 3b, 3c, 3d, and 3e.
 分注流路2aは、検査における分注処理時に、試料が移動する流路である。分注流路2aは、試料貯留部20、及び、複数(本実施形態の場合、5個)の個別試薬担持部21を有する。 The dispensing flow path 2a is a flow path through which the sample moves during the dispensing process in the test. The dispensing flow path 2a has a sample storage section 20 and multiple (five in this embodiment) individual reagent holding sections 21.
 試料貯留部20は、ベース部1の高温領域R1(具体的には、第一高温領域R11)に設けられている。試料貯留部20は、試料貯留空間20a、試料滴下口20b、及び空気孔20cを有する。 The sample storage section 20 is provided in the high temperature region R1 (specifically, the first high temperature region R11) of the base section 1. The sample storage section 20 has a sample storage space 20a, a sample dropping port 20b, and an air hole 20c.
 試料貯留空間20aは、ベース部1の下面に形成された前後方向に長い溝により囲まれる空間である。試料貯留空間20aは、作業者により試料滴下口20bに滴下された試料が、一時的に貯留される空間である。 The sample storage space 20a is a space surrounded by a long groove in the front-rear direction formed on the underside of the base part 1. The sample storage space 20a is a space in which the sample dropped into the sample dropping port 20b by the operator is temporarily stored.
 試料貯留空間20aは、流路要素L1、L2を介して、サーマル流路3a~3eに接続されている。尚、流路要素は、流路2を構成する要素であり、ベース部1の下面に形成された溝により画定される空間である。 The sample storage space 20a is connected to the thermal channels 3a to 3e via channel elements L1 and L2. The channel elements are elements that make up the channel 2, and are spaces defined by grooves formed on the underside of the base 1.
 具体的には、試料貯留空間20aの第一端部(本実施形態の場合、後端部)は、流路要素L1を介して、サーマル流路3a~3eの低温側端部に接続されている。一方、試料貯留空間20aの第二端部(本実施形態の場合、前端部)は、流路要素L2を介して、サーマル流路3a~3eの高温側端部に接続されている。 Specifically, the first end (rear end in this embodiment) of the sample storage space 20a is connected to the low temperature ends of the thermal channels 3a to 3e via channel element L1. On the other hand, the second end (front end in this embodiment) of the sample storage space 20a is connected to the high temperature ends of the thermal channels 3a to 3e via channel element L2.
 試料滴下口20b及び空気孔20cはそれぞれ、ベース部1に設けられた貫通孔により構成されている。試料滴下口20b及び空気孔20cはそれぞれ、試料貯留空間20aと外部空間とを連通する。試料滴下口20b及び空気孔20cの外部空間側の開口部(換言すれば、ベース部1の上面側の開口部)は、検査時に、フィルム状の封止部材51、52(図1参照)により塞がれる。 The sample inlet 20b and the air hole 20c are each formed by a through hole provided in the base portion 1. The sample inlet 20b and the air hole 20c each communicate between the sample storage space 20a and the external space. The openings of the sample inlet 20b and the air hole 20c on the external space side (in other words, the openings on the top surface side of the base portion 1) are blocked by film-like sealing members 51, 52 (see Figure 1) during testing.
 個別試薬担持部21は、試薬担持部の一例に該当し、図2に示すベース部1における左端部に設けられている。換言すれば、個別試薬担持部21は、ベース部1の左端部と後述のサーマル流路3a~3eの低温側ヒート部33との間に設けられている。個別試薬担持部21は、核酸増幅装置6のヒータ部64により加熱されない(ヒータ部64の熱の影響を受けにくい)領域に設けられている。 The individual reagent carrying section 21 is an example of a reagent carrying section, and is provided at the left end of the base section 1 shown in FIG. 2. In other words, the individual reagent carrying section 21 is provided between the left end of the base section 1 and the low-temperature side heat section 33 of the thermal flow paths 3a to 3e described below. The individual reagent carrying section 21 is provided in an area that is not heated by the heater section 64 of the nucleic acid amplification device 6 (is not easily affected by the heat of the heater section 64).
 個別試薬担持部21は、流路要素L1を介して、試料貯留部20に接続されている。個別試薬担持部21には、試薬(以下、「個別試薬」と称する。)が、予め担持されている。 The individual reagent holding section 21 is connected to the sample storage section 20 via the flow path element L1. The individual reagent holding section 21 holds a reagent (hereinafter referred to as an "individual reagent") in advance.
 個別試薬は、対象核酸に対応する試薬である。個別試薬は、例えば、乾燥した酵素(例えば、DNAポリメラーゼ)、プライマー、並びに、蛍光色素及びクエンチャーを有するプローブを含む。尚、個別試薬の種類は、対象核酸に応じて適宜決定されてよい。又、個別試薬は、液体であってもよい。 The individual reagents are reagents that correspond to the target nucleic acid. The individual reagents include, for example, a dried enzyme (e.g., DNA polymerase), a primer, and a probe having a fluorescent dye and a quencher. The type of the individual reagent may be appropriately determined depending on the target nucleic acid. The individual reagent may also be a liquid.
 尚、図2に二点鎖線で示すように、流路2は、試料貯留部20と個別試薬担持部21との間に、1個の共通試薬担持部22を有してもよい。共通試薬担持部22には、試薬(以下、「共通試薬」と称する。)が、予め担持されている。共通試薬は、サーマル流路3a~3eが対象とする総ての対象核酸に共通する試薬である。共通試薬は、個別試薬担持部21に担持されてもよい。この場合、共通試薬担持部22は省略されてよい。 In addition, as shown by the two-dot chain line in FIG. 2, the flow path 2 may have one common reagent carrying section 22 between the sample storage section 20 and the individual reagent carrying section 21. A reagent (hereinafter referred to as a "common reagent") is carried in advance in the common reagent carrying section 22. The common reagent is a reagent common to all the target nucleic acids targeted by the thermal flow paths 3a to 3e. The common reagent may be carried in the individual reagent carrying section 21. In this case, the common reagent carrying section 22 may be omitted.
 サーマル流路3a~3eは、互いに並列配置されており、検査におけるサーマルサイクル処理時に試料が移動する流路である。サーマル流路3a~3eは、ベース部1において所定方向(本実施形態の場合、前後方向)に並んだ状態で設けられている。サーマル流路3a~3eの総てをまとめて、サーマル流路と捉えることもできる。 The thermal flow paths 3a to 3e are arranged in parallel to one another and are flow paths through which the sample moves during thermal cycle processing in testing. The thermal flow paths 3a to 3e are arranged in a line in a predetermined direction (in this embodiment, the front-to-back direction) in the base portion 1. All of the thermal flow paths 3a to 3e can be considered collectively as the thermal flow path.
 サーマル流路3a~3eは、互いに同様の構成を有する並列流路である。本実施形態の場合、流路2は、5個のサーマル流路3a~3eを有する。但し、流路は、少なくとも1個のサーマル流路を有していればよい。サーマル流路の数は、検査項目の数と捉えてよい。 The thermal flow paths 3a to 3e are parallel flow paths having the same configuration. In this embodiment, the flow path 2 has five thermal flow paths 3a to 3e. However, it is sufficient for a flow path to have at least one thermal flow path. The number of thermal flow paths may be considered as the number of test items.
 以下、サーマル流路3aの構成について説明する。サーマル流路3b~3eの構成については、サーマル流路3aの構成についての説明を適宜読み替えればよい。尚、サーマル流路3a~3eにおいて共通する構成については、同一の符号を付す。 The configuration of thermal flow path 3a will be described below. The configuration of thermal flow paths 3b to 3e can be understood by appropriately interpreting the description of the configuration of thermal flow path 3a. Note that the same reference numerals are used for the configurations common to thermal flow paths 3a to 3e.
 サーマル流路3aは、個別試薬担持部21に対応して設けられた流路である。具体的には、サーマル流路3aは、第一低温側バルブ30、第一高温側バルブ31、及び循環流路32を有する。 Thermal flow path 3a is a flow path provided in correspondence with individual reagent holder 21. Specifically, thermal flow path 3a has a first low-temperature side valve 30, a first high-temperature side valve 31, and a circulation flow path 32.
 循環流路32は、第一低温側バルブ30と第一高温側バルブ31とに挟まれるように設けられている。第一低温側バルブ30及び第一高温側バルブ31が閉じた状態で、循環流路32は、閉流路となる。以下、第一低温側バルブ30、第一高温側バルブ31、及び循環流路32の具体的な構成について説明する。 The circulation flow path 32 is sandwiched between the first low-temperature side valve 30 and the first high-temperature side valve 31. When the first low-temperature side valve 30 and the first high-temperature side valve 31 are closed, the circulation flow path 32 becomes a closed flow path. The specific configurations of the first low-temperature side valve 30, the first high-temperature side valve 31, and the circulation flow path 32 are described below.
 第一低温側バルブ30は、第一バルブの一例に該当し、ベース部1に固定されたバルブである。第一低温側バルブ30は、分注流路2aとサーマル流路3aとの間に設けられている。 The first low-temperature side valve 30 is an example of a first valve, and is a valve fixed to the base portion 1. The first low-temperature side valve 30 is provided between the dispensing flow path 2a and the thermal flow path 3a.
 具体的には、第一低温側バルブ30は、個別試薬担持部21と循環流路32との間に設けられている。具体的には、第一低温側バルブ30は、個別試薬担持部21と循環流路32とを接続する流路要素L3に設けられている。流路要素L3は、第一接続流路の一例に該当する。 Specifically, the first low-temperature side valve 30 is provided between the individual reagent holding section 21 and the circulation flow path 32. Specifically, the first low-temperature side valve 30 is provided in the flow path element L3 that connects the individual reagent holding section 21 and the circulation flow path 32. The flow path element L3 corresponds to an example of a first connecting flow path.
 換言すれば、第一低温側バルブ30は、ベース部1の低温領域R2に設けられている。ベース部1において第一低温側バルブ30が固定された部分は、ベース部1を上下方向に貫通する貫通孔である。 In other words, the first low-temperature side valve 30 is provided in the low-temperature region R2 of the base part 1. The portion of the base part 1 to which the first low-temperature side valve 30 is fixed is a through-hole that passes through the base part 1 in the vertical direction.
 第一低温側バルブ30の状態は、検査時に、核酸増幅装置6により制御される。具体的には、第一低温側バルブ30は、核酸増幅装置6の第一低温側バルブ駆動部651(図8参照)により、開状態と閉状態とを切り換えられる。 The state of the first low-temperature side valve 30 is controlled by the nucleic acid amplifier 6 during testing. Specifically, the first low-temperature side valve 30 is switched between an open state and a closed state by the first low-temperature side valve drive unit 651 (see FIG. 8) of the nucleic acid amplifier 6.
 第一低温側バルブ30の開状態において、試料及び空気は、第一低温側バルブ30の通過を許可される。一方、第一低温側バルブ30の閉状態において、試料及び空気は、第一低温側バルブ30の通過を禁止される。 When the first low-temperature side valve 30 is open, the sample and air are permitted to pass through the first low-temperature side valve 30. On the other hand, when the first low-temperature side valve 30 is closed, the sample and air are prohibited from passing through the first low-temperature side valve 30.
 図3は、第一低温側バルブ30の断面模式図である。第一低温側バルブ30は、弾性及び耐熱性を有する弾性材料により構成されている。弾性材料は、例えば、熱可塑性エラストマー(TPE)である。第一低温側バルブ30は、本体部30a、バルブ流路30b、及び被押圧部30cを有する。 FIG. 3 is a schematic cross-sectional view of the first cold side valve 30. The first cold side valve 30 is made of an elastic material that is elastic and heat resistant. The elastic material is, for example, a thermoplastic elastomer (TPE). The first cold side valve 30 has a main body portion 30a, a valve flow path 30b, and a pressed portion 30c.
 本体部30aは、略直方体状であって、ベース部1に固定されている。バルブ流路30bは、本体部30aの下面に形成された溝により画定されたトンネル状の空間である。 The main body 30a is substantially rectangular and is fixed to the base 1. The valve flow path 30b is a tunnel-shaped space defined by a groove formed on the underside of the main body 30a.
 被押圧部30cは、検査時に、核酸増幅装置6の第一低温側バルブ駆動部651(図8参照)により下方に押圧される部分である。本実施形態の場合、被押圧部30cは、本体部30aの上面に設けられた凸部により構成されている。尚、被押圧部30cの構造は、凸部に限定されない。例えば、被押圧部30cの構成は凹形状であってもよい。 The pressed portion 30c is a portion that is pressed downward by the first low-temperature side valve driving unit 651 (see FIG. 8) of the nucleic acid amplification device 6 during testing. In this embodiment, the pressed portion 30c is configured as a convex portion provided on the upper surface of the main body portion 30a. The structure of the pressed portion 30c is not limited to a convex portion. For example, the configuration of the pressed portion 30c may be a concave shape.
 被押圧部30cが第一低温側バルブ駆動部651により下方に押圧されていない状態(図3に示す状態であって、以下、「被押圧部30cの非押圧状態」と称する。)において、バルブ流路30bは開いている。被押圧部30cの非押圧状態において、第一低温側バルブ30は開状態である。第一低温側バルブ30の開状態において、試料及び空気は、バルブ流路30bの通過を許可される。 When the pressed portion 30c is not pressed downward by the first low-temperature side valve drive portion 651 (the state shown in FIG. 3, hereinafter referred to as the "unpressed state of the pressed portion 30c"), the valve flow path 30b is open. When the pressed portion 30c is in the unpressed state, the first low-temperature side valve 30 is in the open state. When the first low-temperature side valve 30 is in the open state, the sample and air are allowed to pass through the valve flow path 30b.
 被押圧部30cが第一低温側バルブ駆動部651により下方に押圧された状態(以下、「被押圧部30cの押圧状態」と称する。)において、バルブ流路30bを画定する溝が弾性変形して、バルブ流路30bが閉じられる。被押圧部30cの押圧状態において、第一低温側バルブ30は閉状態である。第一低温側バルブ30の閉状態において、試料及び空気は、バルブ流路30bの通過を禁止される。 When the pressed portion 30c is pressed downward by the first low-temperature side valve drive portion 651 (hereinafter referred to as the "pressed state of the pressed portion 30c"), the groove that defines the valve flow path 30b elastically deforms, and the valve flow path 30b is closed. When the pressed portion 30c is in the pressed state, the first low-temperature side valve 30 is in the closed state. When the first low-temperature side valve 30 is in the closed state, the sample and air are prohibited from passing through the valve flow path 30b.
 上述のように、第一低温側バルブ30は、第一低温側バルブ駆動部651に押圧されている状態において、閉状態となる。そして、第一低温側バルブ駆動部651による押圧が解除されると、第一低温側バルブ30は、自身の復元力により、開状態となる。 As described above, the first low-temperature side valve 30 is in a closed state when pressed by the first low-temperature side valve drive unit 651. When the pressure from the first low-temperature side valve drive unit 651 is released, the first low-temperature side valve 30 opens due to its own restoring force.
 尚、本実施形態の場合、サーマル流路3a~3eの第一低温側バルブ30は、図1に示すように、ベース部1の上面上で接続部30dにより、互いに連結されている。このような構成は、カートリッジCの製造作業効率の向上に寄与する。 In this embodiment, the first low-temperature side valves 30 of the thermal channels 3a to 3e are connected to each other by the connection parts 30d on the upper surface of the base part 1, as shown in FIG. 1. This configuration contributes to improving the manufacturing work efficiency of the cartridge C.
 第一高温側バルブ31は、ベース部1に固定されたバルブであって、試料貯留部20と循環流路32との間に設けられている。具体的には、第一高温側バルブ31は、試料貯留部20と循環流路32とを接続する流路要素L4に設けられている。流路要素L4は、第二接続流路の一例に該当する。尚、流路要素L4は、流路要素L2に接続されている。 The first high temperature side valve 31 is a valve fixed to the base portion 1, and is provided between the sample storage portion 20 and the circulation flow path 32. Specifically, the first high temperature side valve 31 is provided in the flow path element L4 that connects the sample storage portion 20 and the circulation flow path 32. The flow path element L4 corresponds to an example of a second connection flow path. The flow path element L4 is connected to the flow path element L2.
 換言すれば、第一高温側バルブ31は、ベース部1の高温領域R1に設けられている。ベース部1において第一高温側バルブ31が固定された部分は、ベース部1を上下方向に貫通する貫通孔である。 In other words, the first high temperature side valve 31 is provided in the high temperature region R1 of the base part 1. The portion of the base part 1 where the first high temperature side valve 31 is fixed is a through hole that passes through the base part 1 in the vertical direction.
 第一高温側バルブ31の状態は、検査時に、核酸増幅装置6により制御される。具体的には、第一高温側バルブ31は、核酸増幅装置6の第一高温側バルブ駆動部652(図8参照)により、開状態と閉状態とを切り換えられる。 The state of the first high temperature side valve 31 is controlled by the nucleic acid amplifier 6 during testing. Specifically, the first high temperature side valve 31 is switched between an open state and a closed state by the first high temperature side valve drive unit 652 (see FIG. 8) of the nucleic acid amplifier 6.
 第一高温側バルブ31の開状態において、試料及び空気は、第一高温側バルブ31の通過を許可される。一方、第一高温側バルブ31の閉状態において、試料及び空気は、第一高温側バルブ31の通過を禁止される。 When the first high temperature side valve 31 is open, the sample and air are permitted to pass through the first high temperature side valve 31. On the other hand, when the first high temperature side valve 31 is closed, the sample and air are prohibited from passing through the first high temperature side valve 31.
 図3は、第一高温側バルブ31の断面模式図でもある。第一高温側バルブ31は、第一低温側バルブ30と同様に、弾性及び耐熱性を有する弾性材料により構成されている。弾性材料は、例えば、熱可塑性エラストマー(TPE)である。第一高温側バルブ31は、本体部31a、バルブ流路31b、及び被押圧部31cを有する。 FIG. 3 is also a schematic cross-sectional view of the first high temperature side valve 31. Like the first low temperature side valve 30, the first high temperature side valve 31 is made of an elastic material that is elastic and heat resistant. The elastic material is, for example, a thermoplastic elastomer (TPE). The first high temperature side valve 31 has a main body portion 31a, a valve flow path 31b, and a pressed portion 31c.
 本体部31a、バルブ流路31b、及び被押圧部31cの構成は、第一低温側バルブ30の本体部30a、バルブ流路30b、及び被押圧部30cの構成と同様である。 The configurations of the main body 31a, the valve flow path 31b, and the pressed portion 31c are similar to the configurations of the main body 30a, the valve flow path 30b, and the pressed portion 30c of the first low-temperature side valve 30.
 被押圧部31cは、検査時に、核酸増幅装置6の第一高温側バルブ駆動部652(図8参照)により下方に押圧される部分である。 The pressed portion 31c is the portion that is pressed downward by the first high temperature side valve driving portion 652 (see FIG. 8) of the nucleic acid amplifier 6 during testing.
 被押圧部31cが第一高温側バルブ駆動部652により下方に押圧されていない状態(図3に示す状態であって、以下、「被押圧部31cの非押圧状態」と称する。)において、バルブ流路31bは開いている。 When the pressed portion 31c is not pressed downward by the first high temperature side valve drive portion 652 (the state shown in FIG. 3, hereinafter referred to as the "unpressed state of the pressed portion 31c"), the valve flow path 31b is open.
 被押圧部31cの非押圧状態において、第一高温側バルブ31は開状態である。第一高温側バルブ31の開状態において、試料及び空気は、バルブ流路31bの通過を許可される。 When the pressed portion 31c is not pressed, the first high temperature side valve 31 is open. When the first high temperature side valve 31 is open, the sample and air are allowed to pass through the valve flow path 31b.
 被押圧部31cが第一高温側バルブ駆動部652により下方に押圧された状態(以下、「被押圧部31cの押圧状態」と称する。)において、バルブ流路31bを画定する溝が弾性変形して、バルブ流路31bが閉じる。被押圧部31cの押圧状態において、第一高温側バルブ31は閉状態である。第一高温側バルブ31の閉状態において、試料及び空気は、バルブ流路31bの通過を禁止される。 When the pressed portion 31c is pressed downward by the first high-temperature side valve drive portion 652 (hereinafter referred to as the "pressed state of the pressed portion 31c"), the groove that defines the valve flow path 31b elastically deforms and the valve flow path 31b closes. When the pressed portion 31c is in the pressed state, the first high-temperature side valve 31 is in the closed state. When the first high-temperature side valve 31 is in the closed state, the sample and air are prohibited from passing through the valve flow path 31b.
 上述のように、第一高温側バルブ31は、第一高温側バルブ駆動部652に押圧されている状態において、閉状態となる。そして、第一高温側バルブ駆動部652による押圧が解除されると、第一高温側バルブ31は、自身の復元力により、開状態となる。 As described above, the first high temperature side valve 31 is in a closed state when it is pressed by the first high temperature side valve drive unit 652. Then, when the pressure from the first high temperature side valve drive unit 652 is released, the first high temperature side valve 31 opens due to its own restoring force.
 尚、本実施形態の場合、サーマル流路3a~3eの第一高温側バルブ31は、図1に示すように、ベース部1の上面上で接続部31dにより、互いに連結されている。このような構成は、カートリッジCの製造作業効率の向上に寄与する。 In this embodiment, the first high temperature side valves 31 of the thermal flow paths 3a to 3e are connected to each other by the connection part 31d on the upper surface of the base part 1, as shown in FIG. 1. This configuration contributes to improving the manufacturing work efficiency of the cartridge C.
 循環流路32は、検査におけるサーマルサイクル処理時に、試料が循環的に流通する流路である。循環流路32は、第一低温側バルブ30と第一高温側バルブ31との間に設けられた流路である。このような循環流路32は、第一低温側バルブ30の閉状態、且つ、第一高温側バルブ31の閉状態において、閉流路となる。 The circulation flow path 32 is a flow path through which the sample circulates during the thermal cycle process in the test. The circulation flow path 32 is a flow path provided between the first low-temperature side valve 30 and the first high-temperature side valve 31. Such a circulation flow path 32 becomes a closed flow path when the first low-temperature side valve 30 is closed and the first high-temperature side valve 31 is closed.
 循環流路32は、両端部同士が接続された第一並列流路32a及び第二並列流路32bにより構成されている。第一並列流路32aの第一端部(本実施形態の場合、左端部)と第二並列流路32bの第一端部(本実施形態の場合、左端部)とが接続する位置に、流路要素L3も接続されている。 The circulation flow path 32 is composed of a first parallel flow path 32a and a second parallel flow path 32b whose ends are connected to each other. A flow path element L3 is also connected to the position where the first end (the left end in this embodiment) of the first parallel flow path 32a and the first end (the left end in this embodiment) of the second parallel flow path 32b are connected.
 又、第一並列流路32aの第二端部(本実施形態の場合、右端部)と第二並列流路32bの第二端部(本実施形態の場合、右端部)とが接続する位置に、流路要素L4が接続されている。 Furthermore, a flow path element L4 is connected to the position where the second end (the right end in this embodiment) of the first parallel flow path 32a and the second end (the right end in this embodiment) of the second parallel flow path 32b are connected.
 循環流路32は、低温側ヒート部33、ポンプ34、プレヒート部35、高温側ヒート部36、及び第二バルブ37を有する。尚、試料は、検査時に、循環流路32内を、所定方向(図2に矢印Y1で示す方向)に循環的に移動する。当該所定方向を、循環方向とも称する。以下、特に断ることなく、上流側及び下流側といった記載は、循環方向における上流側及び下流側を意味する。 The circulation flow path 32 has a low-temperature side heating section 33, a pump 34, a preheating section 35, a high-temperature side heating section 36, and a second valve 37. During testing, the sample moves cyclically through the circulation flow path 32 in a predetermined direction (the direction indicated by the arrow Y1 in FIG. 2). This predetermined direction is also referred to as the circulation direction. Hereinafter, unless otherwise specified, the terms upstream and downstream refer to the upstream and downstream sides in the circulation direction.
 低温側ヒート部33を起点にすると、循環方向の上流側から、ポンプ34、プレヒート部35、高温側ヒート部36、及び第二バルブ37の順に配置されている。以下、低温側ヒート部33、ポンプ34、プレヒート部35、高温側ヒート部36、及び第二バルブ37の具体的な構成について説明する。 If the low-temperature side heat section 33 is taken as the starting point, the pump 34, preheat section 35, high-temperature side heat section 36, and second valve 37 are arranged in this order from the upstream side in the circulation direction. The specific configurations of the low-temperature side heat section 33, pump 34, preheat section 35, high-temperature side heat section 36, and second valve 37 will be described below.
 低温側ヒート部33は、ベース部1の低温領域R2に設けられている。換言すれば、低温側ヒート部33は、第一並列流路32aの第一端部(本実施形態の場合、左端部)に設けられている。 The low-temperature side heat section 33 is provided in the low-temperature region R2 of the base section 1. In other words, the low-temperature side heat section 33 is provided at the first end (the left end in this embodiment) of the first parallel flow path 32a.
 低温側ヒート部33は、ベース部1の下面に形成された溝により画定される空間である。低温側ヒート部33は、少なくとも1回(本実施形態の場合2回)折り返された蛇行状の空間である。 The low-temperature side heat section 33 is a space defined by a groove formed on the underside of the base section 1. The low-temperature side heat section 33 is a serpentine space that is folded back at least once (twice in this embodiment).
 本実施形態の場合、低温側ヒート部33の折り返し角度は180度である。尚、低温側ヒート部33の折り返し角度及び折り返し回数は、本実施形態の折り返し角度及び折り返し回数に限定されない。 In this embodiment, the folding angle of the low-temperature side heat section 33 is 180 degrees. Note that the folding angle and number of folding times of the low-temperature side heat section 33 are not limited to those of this embodiment.
 低温側ヒート部33は、検査時に、核酸増幅装置6の低温ヒータ部642(具体的には、低温ヒータ642a)により加熱される。低温ヒータ部642の加熱温度は、第一所定温度T1である。 The low-temperature side heat section 33 is heated by the low-temperature heater section 642 (specifically, the low-temperature heater 642a) of the nucleic acid amplifier 6 during testing. The heating temperature of the low-temperature heater section 642 is the first predetermined temperature T1.
 尚、カートリッジCにおいて低温側ヒート部33を含む所定領域は、後述の蛍光検出装置7により核酸の増幅結果を判定する際、検出対象となる領域(以下、「被検出領域」と称する。)である。被検出領域は、サーマル流路3a~3e毎に設定される。よって、カートリッジCは、5個の被検出領域を有する。 In addition, the predetermined area including the low-temperature side heat section 33 in the cartridge C is the area to be detected (hereinafter referred to as the "detection area") when the amplification results of the nucleic acid are determined by the fluorescence detection device 7 described below. A detection area is set for each of the thermal flow paths 3a to 3e. Therefore, the cartridge C has five detection areas.
 ポンプ34は、流路2内の試料を移動させるための部材である。ポンプ34は、試料の循環方向において、低温側ヒート部33の下流側に設けられている。換言すれば、ポンプ34は、ベース部1の中間領域R3に設けられている。更に換言すれば、ポンプ34は、第一並列流路32aにおいて低温側ヒート部33の下流側に設けられている。 The pump 34 is a member for moving the sample in the flow path 2. The pump 34 is provided downstream of the low-temperature side heat section 33 in the sample circulation direction. In other words, the pump 34 is provided in the intermediate region R3 of the base section 1. In further other words, the pump 34 is provided downstream of the low-temperature side heat section 33 in the first parallel flow path 32a.
 ベース部1においてポンプ34が固定された部分は、ベース部1を上下方向に貫通する貫通孔である。ポンプ34と低温側ヒート部33とは、流路要素L5により接続されている。 The portion of the base 1 where the pump 34 is fixed is a through hole that passes through the base 1 in the vertical direction. The pump 34 and the low-temperature side heat section 33 are connected by a flow path element L5.
 図4は、ポンプ34の断面斜視図である。ポンプ34は、弾性及び耐熱性を有する弾性材料により構成されている。弾性材料は、例えば、熱可塑性エラストマー(TPE)である。具体的には、ポンプ34は、本体部34a、及び、ポンプ空間形成部34bを有する。 FIG. 4 is a cross-sectional perspective view of the pump 34. The pump 34 is made of an elastic material that is elastic and heat-resistant. The elastic material is, for example, a thermoplastic elastomer (TPE). Specifically, the pump 34 has a main body portion 34a and a pump space forming portion 34b.
 本体部34aは、略矩形板状であって、ベース部1に固定されている。ポンプ空間形成部34bは、本体部34aに設けられている。ポンプ空間形成部34bは、所定方向(本実施形態の場合、左右方向)に延在し、下面側が凹状且つ上面側が凸状の突条により構成されている。ポンプ空間形成部34bの下面により画定されるトンネル状の空間が、ポンプ空間34cである。尚、ポンプ空間形成部34bの下側の開口部は、封止部材50により塞がれている。 The main body 34a is a generally rectangular plate and is fixed to the base 1. The pump space forming portion 34b is provided on the main body 34a. The pump space forming portion 34b extends in a predetermined direction (left-right direction in this embodiment) and is configured with a protrusion that is concave on the lower surface and convex on the upper surface. The tunnel-shaped space defined by the lower surface of the pump space forming portion 34b is the pump space 34c. The lower opening of the pump space forming portion 34b is blocked by a sealing member 50.
 ポンプ空間34cの第一端部(上流側端部)は、流路要素L5に接続されている。ポンプ空間34cの第二端部(下流側端部)は、流路要素L6に接続されている。ポンプ空間34cと、流路要素L5及び流路要素L6とは、同じ高さに位置している。ポンプ空間34cと、流路要素L5及び流路要素L6とは、直線的に接続されている。 The first end (upstream end) of the pump space 34c is connected to the flow path element L5. The second end (downstream end) of the pump space 34c is connected to the flow path element L6. The pump space 34c, the flow path element L5, and the flow path element L6 are located at the same height. The pump space 34c, the flow path element L5, and the flow path element L6 are connected in a straight line.
 本実施形態の場合、サーマル流路3a~3eのポンプ34は、図1に示すように、ベース部1の上面上で接続部34dにより、互いに連結されている。このような構成は、カートリッジCの製造作業効率の向上に寄与する。 In this embodiment, the pumps 34 of the thermal flow paths 3a to 3e are connected to each other by the connection part 34d on the upper surface of the base part 1, as shown in FIG. 1. This configuration contributes to improving the manufacturing work efficiency of the cartridge C.
 以上のようなポンプ34は、核酸増幅装置6のポンプ駆動部661により、駆動される。ポンプ34の動作については、ポンプ駆動部661の説明とともに後述する。 The pump 34 as described above is driven by the pump drive unit 661 of the nucleic acid amplification device 6. The operation of the pump 34 will be described later together with an explanation of the pump drive unit 661.
 尚、本実施形態の場合、ポンプ34は、一体成形品の一部材により構成されている。但し、ポンプは、図5及び図6に示すように、複数の部材が組み合わされて構成されてもよい。 In this embodiment, the pump 34 is made of a single, integrally molded material. However, the pump may be made of a combination of multiple components, as shown in Figures 5 and 6.
 図5及び図6は、変形例1に係るポンプ34Aを示す図である。ポンプ34Aは、上側ポンプ空間形成部材34e及び下側ポンプ空間形成部材34fを有する。上側ポンプ空間形成部材34e及び下側ポンプ空間形成部材34fはそれぞれ、ベース部1に固定されている。 FIGS. 5 and 6 are diagrams showing a pump 34A according to the first modified example. The pump 34A has an upper pump space forming member 34e and a lower pump space forming member 34f. The upper pump space forming member 34e and the lower pump space forming member 34f are each fixed to the base portion 1.
 上側ポンプ空間形成部材34eは、ベース部1の上面に固定されている。又、下側ポンプ空間形成部材34fは、上側ポンプ空間形成部材34eと上下方向に対向する状態で、ベース部1の下面に固定されている。 The upper pump space forming member 34e is fixed to the upper surface of the base part 1. The lower pump space forming member 34f is fixed to the lower surface of the base part 1, facing the upper pump space forming member 34e in the vertical direction.
 上側ポンプ空間形成部材34eは、所定方向(本実施形態の場合、左右方向)に延在し、下面側が凹状且つ上面側が凸状の突条部材である。上側ポンプ空間形成部材34eは、弾性及び耐熱性を有する弾性材料により構成されている。弾性材料は、例えば、熱可塑性エラストマー(TPE)である。 The upper pump space forming member 34e is a protruding member that extends in a predetermined direction (left-right direction in this embodiment) and has a concave lower surface and a convex upper surface. The upper pump space forming member 34e is made of an elastic material that is elastic and heat resistant. The elastic material is, for example, a thermoplastic elastomer (TPE).
 下側ポンプ空間形成部材34fは、基部34g、及び、突条部34hを有する。基部34gは、所定方向(本実施形態の場合、左右方向)に延在する板状部材である。基部34gは、ベース部1に固定されている。 The lower pump space forming member 34f has a base 34g and a protrusion 34h. The base 34g is a plate-shaped member that extends in a predetermined direction (in this embodiment, the left-right direction). The base 34g is fixed to the base portion 1.
 突条部34hは、所定方向(本実施形態の場合、左右方向)に延在し、基部34gの上面の幅方向における中央部に設けられている。突条部34hの横断面形状は、略矩形である。尚、横断面とは、突条部34hを、突条部34hの延在方向に垂直な平面で切断した場合の断面を意味する。 The protrusion 34h extends in a predetermined direction (left and right in this embodiment) and is located at the center in the width direction of the upper surface of the base 34g. The cross-sectional shape of the protrusion 34h is approximately rectangular. Note that the cross-section refers to the cross section of the protrusion 34h cut by a plane perpendicular to the extension direction of the protrusion 34h.
 下側ポンプ空間形成部材34fは、ベース部1と同様の合成樹脂製である。下側ポンプ空間形成部材34fを構成する合成樹脂は、例えば、ポリプロピレン、ポリカーボネイト、又はシクロオレフィンポリマーである。尚、下側ポンプ空間形成部材34fは、無色透明ではなく、有色であってもよい。 The lower pump space forming member 34f is made of the same synthetic resin as the base portion 1. The synthetic resin constituting the lower pump space forming member 34f is, for example, polypropylene, polycarbonate, or cycloolefin polymer. The lower pump space forming member 34f does not have to be colorless and transparent, and may be colored.
 ポンプ34Aの場合、上側ポンプ空間形成部材34eの下面と、下側ポンプ空間形成部材34fにおける突条部34hの上面と、により画定される空間が、ポンプ空間34iである。 In the case of pump 34A, the space defined by the lower surface of upper pump space forming member 34e and the upper surface of protrusion portion 34h of lower pump space forming member 34f is pump space 34i.
 ポンプ空間34iの第一端部(上流側端部)は、流路要素L5(図2参照)に接続されている。ポンプ空間34iの第二端部(下流側端部)は、流路要素L6(図2参照)に接続されている。 The first end (upstream end) of the pump space 34i is connected to the flow path element L5 (see FIG. 2). The second end (downstream end) of the pump space 34i is connected to the flow path element L6 (see FIG. 2).
 本例の場合、ポンプ空間34iは、流路要素L5及び流路要素L6よりも高い位置に設けられている。よって、ポンプ空間34iと、流路要素L5及び流路要素L6とは、段状に接続されている。 In this example, the pump space 34i is located at a higher position than the flow path elements L5 and L6. Therefore, the pump space 34i is connected to the flow path elements L5 and L6 in a stepped manner.
 又、図7は、変形例2に係るポンプ34Bの断面斜視図である。ポンプ34Bは、弾性及び耐熱性を有する弾性材料により構成されたチューブ状部材である。弾性材料は、例えば、熱可塑性エラストマー(TPE)、又は、シリコーン樹脂であってよい。 FIG. 7 is a cross-sectional perspective view of pump 34B according to variant example 2. Pump 34B is a tubular member made of an elastic material having elasticity and heat resistance. The elastic material may be, for example, a thermoplastic elastomer (TPE) or a silicone resin.
 ポンプ34Bの両端部は、ベース部1に設けられた一対のポンプ固定部11aに固定されている。尚、図7において、一方側(左側)のポンプ固定部11aのみが示されており、他方側(右側)のポンプ固定部11aは省略されている。 Both ends of the pump 34B are fixed to a pair of pump fixing parts 11a provided on the base part 1. Note that in FIG. 7, only the pump fixing part 11a on one side (left side) is shown, and the pump fixing part 11a on the other side (right side) is omitted.
 ポンプ34Bの場合、ポンプ34Bの内周面により画定される空間が、ポンプ空間34jである。ポンプ空間34jの第一端部(上流側端部)は、流路要素L5(図2参照)に接続されている。ポンプ空間34jの第二端部(下流側端部)は、流路要素L6(図2参照)に接続されている。 In the case of pump 34B, the space defined by the inner circumferential surface of pump 34B is pump space 34j. A first end (upstream end) of pump space 34j is connected to flow path element L5 (see FIG. 2). A second end (downstream end) of pump space 34j is connected to flow path element L6 (see FIG. 2).
 ポンプ空間34jは、流路要素L5及び流路要素L6よりも高い位置に設けられている。よって、ポンプ空間34jと、流路要素L5及び流路要素L6とは、一対のポンプ固定部11aを介して、段状に接続されている。 The pump space 34j is located at a higher position than the flow path elements L5 and L6. Therefore, the pump space 34j, the flow path elements L5 and L6 are connected in a stepped manner via a pair of pump fixing parts 11a.
 上述のポンプ34、34A、34Bは何れも、核酸増幅装置6のポンプ駆動部661により駆動される。核酸増幅装置6のポンプ駆動部661の構成は、ポンプ34、34A、34Bの構成に応じて、適宜決定される。 All of the pumps 34, 34A, and 34B described above are driven by the pump drive unit 661 of the nucleic acid amplifier 6. The configuration of the pump drive unit 661 of the nucleic acid amplifier 6 is determined appropriately depending on the configuration of the pumps 34, 34A, and 34B.
 プレヒート部35は、循環流路32を循環する試料が高温側ヒート部36に流入する前に、試料の温度を所定温度に上昇させる。 The preheat section 35 raises the temperature of the sample circulating through the circulation flow path 32 to a predetermined temperature before the sample flows into the high-temperature side heat section 36.
 プレヒート部35は、試料の循環方向において、ポンプ34の下流側に設けられている。換言すれば、プレヒート部35は、ベース部1の高温領域R1(具体的には、第二高温領域R12)に設けられている。 The preheating section 35 is provided downstream of the pump 34 in the direction of sample circulation. In other words, the preheating section 35 is provided in the high-temperature region R1 (specifically, the second high-temperature region R12) of the base section 1.
 更に換言すれば、プレヒート部35は、第一並列流路32aにおいてポンプ34の下流側に設けられている。プレヒート部35は、流路要素L6を介して、ポンプ34に接続されている。又、プレヒート部35は、後述の高温側ヒート部36の上流側近傍に設けられている。 In other words, the preheat section 35 is provided downstream of the pump 34 in the first parallel flow path 32a. The preheat section 35 is connected to the pump 34 via the flow path element L6. The preheat section 35 is also provided upstream of the high-temperature side heat section 36, which will be described later.
 プレヒート部35は、ベース部1の下面に形成された溝により画定される空間である。プレヒート部35は、少なくとも1回(本実施形態の場合1回)折り返された蛇行状の空間である。 The preheat section 35 is a space defined by a groove formed on the underside of the base section 1. The preheat section 35 is a serpentine space that is folded back at least once (once in this embodiment).
 本実施形態の場合、プレヒート部35の折り返し角度は180度である。尚、プレヒート部35の折り返し角度及び折り返し回数は、本実施形態の折り返し角度及び折り返し回数に限定されない。 In this embodiment, the folding angle of the preheat section 35 is 180 degrees. Note that the folding angle and number of folding times of the preheat section 35 are not limited to those of this embodiment.
 プレヒート部35は、検査時に、核酸増幅装置6の第二高温ヒータ641bにより加熱される。尚、第二高温ヒータ641bの加熱温度は、第三所定温度T3である。第三所定温度T3は、低温ヒータ642aの加熱温度である第一所定温度T1及び第一高温ヒータ641aの加熱温度である第二所定温度T2よりも高い。例えば、第三所定温度T3は、第二所定温度T2よりも1度~3度高い(T2+1度<T3<T2+3度)。 The preheat section 35 is heated by the second high-temperature heater 641b of the nucleic acid amplifier 6 during testing. The heating temperature of the second high-temperature heater 641b is a third predetermined temperature T3. The third predetermined temperature T3 is higher than the first predetermined temperature T1, which is the heating temperature of the low-temperature heater 642a, and the second predetermined temperature T2, which is the heating temperature of the first high-temperature heater 641a. For example, the third predetermined temperature T3 is 1 to 3 degrees higher than the second predetermined temperature T2 (T2+1 degree < T3 < T2+3 degrees).
 以上のようなプレヒート部35は、高温側ヒート部36に流入する際の試料の温度を高くできる。このため、検査時に、高温側ヒート部36において試料が第二所定温度T2に達するまでの時間を短縮できる。この結果、検査におけるサーマルサイクル処理の時間を短縮できるため、検査に要する時間を短縮できる。 The preheat section 35 described above can increase the temperature of the sample as it flows into the high-temperature side heat section 36. This can shorten the time it takes for the sample to reach the second predetermined temperature T2 in the high-temperature side heat section 36 during testing. As a result, the time required for the thermal cycle process during testing can be shortened, and therefore the time required for testing can be shortened.
 高温側ヒート部36は、ベース部1の高温領域R1(具体的には、第一高温領域R11)に設けられている。換言すれば、高温側ヒート部36は、第二並列流路32bの第二端部(本実施形態の場合、右端部)に設けられている。高温側ヒート部36は、流路要素L7を介して、プレヒート部35に接続されている。 The high-temperature side heat section 36 is provided in the high-temperature region R1 (specifically, the first high-temperature region R11) of the base section 1. In other words, the high-temperature side heat section 36 is provided at the second end (the right end in this embodiment) of the second parallel flow path 32b. The high-temperature side heat section 36 is connected to the preheat section 35 via the flow path element L7.
 高温側ヒート部36は、ベース部1の下面に形成された溝により画定される空間である。高温側ヒート部36は、少なくとも1回(本実施形態の場合2回)折り返された蛇行状の空間である。 The high-temperature side heat section 36 is a space defined by a groove formed on the underside of the base section 1. The high-temperature side heat section 36 is a serpentine space that is folded back at least once (twice in this embodiment).
 本実施形態の場合、高温側ヒート部36の折り返し角度は180度である。尚、高温側ヒート部36の折り返し角度及び折り返し回数は、本実施形態の折り返し角度及び折り返し回数に限定されない。 In this embodiment, the fold angle of the high-temperature side heat section 36 is 180 degrees. Note that the fold angle and number of folds of the high-temperature side heat section 36 are not limited to those of this embodiment.
 高温側ヒート部36は、検査時に、核酸増幅装置6の第一高温ヒータ641aにより加熱される。尚、第一高温ヒータ641aの加熱温度は、第二所定温度T2である。第二所定温度T2は、低温ヒータ部642の加熱温度である第一所定温度T1よりも高く、第二高温ヒータ641bの加熱温度である第三所定温度T3よりも低い。第二所定温度T2は、例えば、90度以上97度以下である。 The high-temperature side heating section 36 is heated by the first high-temperature heater 641a of the nucleic acid amplification device 6 during testing. The heating temperature of the first high-temperature heater 641a is a second predetermined temperature T2. The second predetermined temperature T2 is higher than the first predetermined temperature T1, which is the heating temperature of the low-temperature heater section 642, and lower than the third predetermined temperature T3, which is the heating temperature of the second high-temperature heater 641b. The second predetermined temperature T2 is, for example, 90 degrees or higher and 97 degrees or lower.
 第二バルブ37は、ベース部1に固定されたバルブであって、低温側ヒート部33と高温側ヒート部36とを接続する流路要素L8に設けられている。 The second valve 37 is a valve fixed to the base portion 1 and is provided in the flow path element L8 that connects the low-temperature side heat portion 33 and the high-temperature side heat portion 36.
 換言すれば、第二バルブ37は、ベース部1の中間領域R3に設けられている。更に換言すれば、第二バルブ37は、第二並列流路32bにおいて高温側ヒート部36よりも下流側に設けられている。ベース部1において第二バルブ37が固定された部分は、ベース部1を上下方向に貫通する貫通孔である。 In other words, the second valve 37 is provided in the intermediate region R3 of the base portion 1. In further other words, the second valve 37 is provided downstream of the high-temperature side heat portion 36 in the second parallel flow path 32b. The portion of the base portion 1 where the second valve 37 is fixed is a through hole that passes through the base portion 1 in the vertical direction.
 第二バルブ37の動作は、検査時に、核酸増幅装置6により制御される。具体的には、第二バルブ37は、核酸増幅装置6の第二バルブ駆動部653(図8参照)により、開状態と閉状態とを切り換えられる。 The operation of the second valve 37 is controlled by the nucleic acid amplifier 6 during testing. Specifically, the second valve 37 is switched between an open state and a closed state by a second valve drive unit 653 (see FIG. 8) of the nucleic acid amplifier 6.
 第二バルブ37の開状態において、試料及び空気は、第二バルブ37の通過を許可される。一方、第二バルブ37の閉状態において、試料及び空気は、第二バルブ37の通過を禁止される。 When the second valve 37 is open, the sample and air are permitted to pass through the second valve 37. On the other hand, when the second valve 37 is closed, the sample and air are prohibited from passing through the second valve 37.
 図3は、第二バルブ37の断面模式図でもある。第二バルブ37は、弾性及び耐熱性を有する弾性材料により構成されている。弾性材料は、例えば、熱可塑性エラストマー(TPE)である。具体的には、第二バルブ37は、本体部37a、バルブ流路37b、及び被押圧部37cを有する。 FIG. 3 is also a schematic cross-sectional view of the second valve 37. The second valve 37 is made of an elastic material that is elastic and heat-resistant. The elastic material is, for example, a thermoplastic elastomer (TPE). Specifically, the second valve 37 has a main body portion 37a, a valve flow path 37b, and a pressed portion 37c.
 本体部37a、バルブ流路37b、及び被押圧部37cの構成は、第一低温側バルブ30の本体部30a、バルブ流路30b、及び被押圧部30cの構成と同様である。 The configurations of the main body 37a, the valve flow path 37b, and the pressed portion 37c are similar to the configurations of the main body 30a, the valve flow path 30b, and the pressed portion 30c of the first low-temperature side valve 30.
 被押圧部37cは、検査時に、核酸増幅装置6の第二バルブ駆動部653(図8参照)により下方に押圧される部分である。 The pressed portion 37c is the portion that is pressed downward by the second valve driving portion 653 (see FIG. 8) of the nucleic acid amplification device 6 during testing.
 被押圧部37cが第二バルブ駆動部653により下方に押圧されていない状態(図3に示す状態であって、以下、「被押圧部37cの非押圧状態」と称する。)において、バルブ流路37bは開いている。 When the pressed portion 37c is not pressed downward by the second valve drive portion 653 (the state shown in FIG. 3, hereinafter referred to as the "unpressed state of the pressed portion 37c"), the valve flow path 37b is open.
 被押圧部37cの非押圧状態において、第二バルブ37は開状態である。第二バルブ37の開状態において、試料及び空気は、バルブ流路37bの通過を許可される。 When the pressed portion 37c is not pressed, the second valve 37 is open. When the second valve 37 is open, the sample and air are allowed to pass through the valve flow path 37b.
 被押圧部37cが第二バルブ駆動部653により下方に押圧された状態(以下、「被押圧部37cの押圧状態」と称する。)において、バルブ流路37bを画定する溝が弾性変形して、バルブ流路37bが閉じられる。 When the pressed portion 37c is pressed downward by the second valve drive portion 653 (hereinafter referred to as the "pressed state of the pressed portion 37c"), the groove that defines the valve flow path 37b elastically deforms, and the valve flow path 37b is closed.
 被押圧部37cの押圧状態において、第二バルブ37は閉状態である。第二バルブ37の閉状態において、試料及び空気は、バルブ流路37bの通過を禁止される。 When the pressed portion 37c is pressed, the second valve 37 is closed. When the second valve 37 is closed, the sample and air are prohibited from passing through the valve flow path 37b.
 上述のように、第二バルブ37は、第二バルブ駆動部653に押圧されている状態において、閉状態となる。そして、第二バルブ駆動部653による押圧が解除されると、第二バルブ37は、自身の復元力により、開状態となる。 As described above, the second valve 37 is in a closed state when pressed by the second valve drive unit 653. When the pressure from the second valve drive unit 653 is released, the second valve 37 opens due to its own restoring force.
 尚、本実施形態の場合、サーマル流路3a~3eの第二バルブ37は、図1に示すように、ベース部1の上面上で接続部37dにより、互いに連結されている。このような構成は、カートリッジCの製造作業効率の向上に寄与する。 In this embodiment, the second valves 37 of the thermal channels 3a to 3e are connected to each other by the connection portion 37d on the upper surface of the base portion 1, as shown in FIG. 1. This configuration contributes to improving the efficiency of the manufacturing process of the cartridge C.
 以上、サーマル流路3aの構成について説明したが、流路2は、サーマル流路3aとほぼ同様の構成を有するサーマル流路3b~3eを有する。サーマル流路3a~3eは、図2に示すように、前後方向に並んで設けられている。 The configuration of thermal flow path 3a has been described above, but flow path 2 has thermal flow paths 3b to 3e that have a configuration similar to that of thermal flow path 3a. Thermal flow paths 3a to 3e are arranged side by side in the front-to-rear direction as shown in FIG. 2.
 サーマル流路3a~3eはそれぞれ、個別試薬担持部21を有している。そして、サーマル流路3a~3eの個別試薬担持部21のそれぞれには、対象核酸に対応する個別試薬が、予め担持されている。 Each of the thermal channels 3a to 3e has an individual reagent carrying portion 21. And, each of the individual reagent carrying portions 21 of the thermal channels 3a to 3e is pre-loaded with an individual reagent corresponding to the target nucleic acid.
 このように、本実施形態のカートリッジCの場合、複数種類(本実施形態の場合、最大で5種類)の対象核酸に関する核酸増幅検査を、1つのカートリッジCで同時に実施することができる。 In this way, with the cartridge C of this embodiment, nucleic acid amplification tests for multiple types of target nucleic acids (up to five types in this embodiment) can be performed simultaneously with a single cartridge C.
 又、個別試薬担持部21に予め個別試薬を担持しておくことができるため、カートリッジ外で検体と個別試薬とを混合する前処理工程を省略できる。この結果、作業者の手間を減らしつつ、1回の検査に要する時間を短縮できる。 In addition, because the individual reagents can be loaded in advance on the individual reagent support section 21, the pre-processing step of mixing the sample and the individual reagent outside the cartridge can be omitted. As a result, the time required for one test can be shortened while reducing the workload of the operator.
 核酸増幅検査は、カートリッジCが核酸増幅装置6にセットされた状態で、実施される。以下、核酸増幅装置6の構成について説明する。 The nucleic acid amplification test is carried out with the cartridge C set in the nucleic acid amplifier 6. The configuration of the nucleic acid amplifier 6 is described below.
 核酸増幅装置6は、図8に示すように、ハウジング60、制御部61、カートリッジ支持部62、振動部63、ヒータ部64、バルブ駆動部65、送液部66、試料位置検出部67、及び蛍光検出装置7を有する。 As shown in FIG. 8, the nucleic acid amplification device 6 has a housing 60, a control unit 61, a cartridge support unit 62, a vibration unit 63, a heater unit 64, a valve drive unit 65, a liquid delivery unit 66, a sample position detection unit 67, and a fluorescence detection device 7.
 尚、図8には模式的にカートリッジCも示されている。図8に示すカートリッジCの各エレメントの配置は、説明の便宜のために、図2に示すカートリッジCの各エレメントの配置と若干異なる。 In addition, FIG. 8 also shows a schematic diagram of cartridge C. For ease of explanation, the arrangement of each element of cartridge C shown in FIG. 8 is slightly different from the arrangement of each element of cartridge C shown in FIG. 2.
 ハウジング60は、箱状であって、収容空間601を有する。収容空間601には、核酸増幅装置6を構成する各エレメント61~67、7が収容されている。 The housing 60 is box-shaped and has a storage space 601. The storage space 601 contains the elements 61 to 67 and 7 that make up the nucleic acid amplification device 6.
 制御部61は、ハウジング60に支持されており、核酸増幅装置6の動作を統括制御する。制御部61は、実体的には、CPU、ROM、RAM、及びHDD等がバスで接続される構成、又は、ワンチップのLSI等からなる構成であってよい。 The control unit 61 is supported by the housing 60 and controls the overall operation of the nucleic acid amplification device 6. The control unit 61 may be configured in such a way that a CPU, ROM, RAM, and HDD are connected via a bus, or may be configured as a one-chip LSI, etc.
 制御部61は、第一制御部611、及び、第二制御部612を有する。第一制御部611は、振動部63、バルブ駆動部65、送液部66、試料位置検出部67、及び蛍光検出装置7の動作を制御する。 The control unit 61 has a first control unit 611 and a second control unit 612. The first control unit 611 controls the operation of the vibration unit 63, the valve drive unit 65, the liquid delivery unit 66, the sample position detection unit 67, and the fluorescence detection device 7.
 第二制御部612は、ヒータ部64の動作を制御する。具体的には、第二制御部612は、ヒータ部64の第一高温ヒータ641a、第二高温ヒータ641b、及び低温ヒータ642aの動作を制御する。 The second control unit 612 controls the operation of the heater unit 64. Specifically, the second control unit 612 controls the operation of the first high-temperature heater 641a, the second high-temperature heater 641b, and the low-temperature heater 642a of the heater unit 64.
 尚、第一制御部611及び第二制御部612は、共通の制御部により構成されてもよい。制御部61の機能については、核酸増幅装置6の動作の説明及び核酸増幅検査方法の説明とともに、後述する。 The first control unit 611 and the second control unit 612 may be configured as a common control unit. The function of the control unit 61 will be described later together with the operation of the nucleic acid amplification device 6 and the nucleic acid amplification test method.
 カートリッジ支持部62は、容器支持部の一例に該当し、ハウジング60に支持されており、カートリッジCを支持する部材である。カートリッジ支持部62は、例えば、カートリッジCが載置されるテーブル、及び、カートリッジCをテーブルに固定するロック機構を含んでよい。 The cartridge support portion 62 is an example of a container support portion, is supported by the housing 60, and is a member that supports the cartridge C. The cartridge support portion 62 may include, for example, a table on which the cartridge C is placed, and a locking mechanism that secures the cartridge C to the table.
 本実施形態の核酸増幅装置6の場合、カートリッジ支持部62は、カートリッジCを鉛直に支持する。つまり、カートリッジCがカートリッジ支持部62に支持された状態で、カートリッジCの第一主面及び第二主面が、水平方向を向く。 In the case of the nucleic acid amplification device 6 of this embodiment, the cartridge support portion 62 supports the cartridge C vertically. In other words, when the cartridge C is supported by the cartridge support portion 62, the first main surface and the second main surface of the cartridge C face horizontally.
 尚、本明細書において、検査時といった場合には、カートリッジCは、カートリッジ支持部62に装着されている。 In this specification, during inspection, the cartridge C is attached to the cartridge support portion 62.
 又、カートリッジ支持部62は、カートリッジCを水平に支持する構成であってもよい。この場合、カートリッジCがカートリッジ支持部62に支持された状態で、カートリッジCの第一主面及び第二主面が、鉛直方向を向く。 The cartridge support portion 62 may also be configured to support the cartridge C horizontally. In this case, when the cartridge C is supported by the cartridge support portion 62, the first main surface and the second main surface of the cartridge C face vertically.
 振動部63は、ハウジング60に支持されている。振動部63は、検査時に、制御部61の制御下で、カートリッジ支持部62に支持されたカートリッジCに、振動を付与する。 The vibration unit 63 is supported by the housing 60. During the inspection, the vibration unit 63 applies vibration to the cartridge C supported by the cartridge support unit 62 under the control of the control unit 61.
 具体的には、振動部63は、検査時に、カートリッジCの個別試薬担持部21に振動を付与する。 Specifically, the vibration unit 63 applies vibrations to the individual reagent holding portion 21 of the cartridge C during testing.
 振動部63は、検査時に、カートリッジCの個別試薬担持部21に振動を付与可能な位置に設けられている。具体的には、振動部63は、検査時に、カートリッジCの個別試薬担持部21と所定方向(本実施形態の場合、水平方向)に対向する位置に設けられている。 The vibration unit 63 is provided at a position where it can impart vibrations to the individual reagent holding portion 21 of the cartridge C during testing. Specifically, the vibration unit 63 is provided at a position facing the individual reagent holding portion 21 of the cartridge C in a predetermined direction (horizontal direction in this embodiment) during testing.
 カートリッジCの流路2内の試料が個別試薬担持部21に収容された状態で、振動部63が個別試薬担持部21に振動を付与することにより、個別試薬担持部21内の試料と個別試薬との混合を促進できる。尚、試料が個別試薬担持部21に収容されたことは、後述の試料位置検出部67により検出される。 When the sample in the flow path 2 of the cartridge C is contained in the individual reagent holding portion 21, the vibration portion 63 applies vibration to the individual reagent holding portion 21, thereby promoting mixing of the sample and the individual reagent in the individual reagent holding portion 21. The fact that the sample has been contained in the individual reagent holding portion 21 is detected by the sample position detection portion 67, which will be described later.
 振動部63は、複数(本実施形態の場合、5個)の振動子63aを有する。振動子63aはそれぞれ、例えば、超音波振動子により構成されている。振動子63aはそれぞれ、サーマル流路3a~3eの個別試薬担持部21に振動を付与する。 The vibration unit 63 has multiple (five in this embodiment) transducers 63a. Each of the transducers 63a is composed of, for example, an ultrasonic transducer. Each of the transducers 63a applies vibration to the individual reagent carriers 21 of the thermal channels 3a to 3e.
 尚、核酸増幅装置6が個別試薬担持部21内の試料と個別試薬との混合を促進する別の手段を備えている場合には、振動部63は省略されてもよい。別の手段の一例として、例えば、試料を、ポンプ34により、個別試薬担持部21を中心として個別試薬担持部21の周囲で往復移動させる手段が挙げられる。ポンプ34の駆動方向を反転させることにより、試料を往復移動させることができる。試料が個別試薬担持部21に収容されたことは、後述の試料位置検出部67により検出される。 If the nucleic acid amplification device 6 is provided with another means for promoting mixing of the sample and the individual reagent in the individual reagent holding portion 21, the vibration portion 63 may be omitted. One example of such another means is a means for moving the sample back and forth around the individual reagent holding portion 21 with the pump 34 centered on the individual reagent holding portion 21. The sample can be moved back and forth by reversing the driving direction of the pump 34. The fact that the sample has been contained in the individual reagent holding portion 21 is detected by the sample position detection portion 67 described below.
 ヒータ部64は、ハウジング60に支持されている。ヒータ部64は、検査時に、制御部61の制御下で、カートリッジCを加熱する。具体的には、ヒータ部64は、低温ヒータ部642、及び、高温ヒータ部641を有する。 The heater unit 64 is supported by the housing 60. During inspection, the heater unit 64 heats the cartridge C under the control of the control unit 61. Specifically, the heater unit 64 has a low-temperature heater unit 642 and a high-temperature heater unit 641.
 低温ヒータ部642は、低温ヒータ642aを有する。 The low-temperature heater section 642 has a low-temperature heater 642a.
 低温ヒータ642aは、制御部61(具体的には、第二制御部612)の制御下で、カートリッジCの低温領域R2を加熱する。換言すれば、低温ヒータ642aは、制御部61の制御下で、カートリッジCにおける流路2の低温側ヒート部33を加熱する。 The low-temperature heater 642a heats the low-temperature region R2 of the cartridge C under the control of the control unit 61 (specifically, the second control unit 612). In other words, the low-temperature heater 642a heats the low-temperature side heat unit 33 of the flow path 2 in the cartridge C under the control of the control unit 61.
 本実施形態の場合、低温ヒータ642aは、検査時に、カートリッジCの低温領域R2(具体的には、低温側ヒート部33)を、常時加熱する。低温ヒータ642aの加熱温度は、第一所定温度T1である。 In this embodiment, the low-temperature heater 642a constantly heats the low-temperature region R2 (specifically, the low-temperature side heat section 33) of the cartridge C during inspection. The heating temperature of the low-temperature heater 642a is the first predetermined temperature T1.
 低温ヒータ642aは、サーマル流路3a~3eの低温側ヒート部33毎に設けられた複数(本実施形態の場合、5個)の低温ヒータにより構成されてもよいし、1個の低温ヒータにより構成されてもよい。 The low-temperature heater 642a may be composed of multiple (five in this embodiment) low-temperature heaters provided for each low-temperature side heat section 33 of the thermal flow paths 3a to 3e, or may be composed of a single low-temperature heater.
 低温ヒータ642aは、検査時に、カートリッジCの低温領域R2(具体的には、低温側ヒート部33)を加熱可能な位置に設けられている。具体的には、低温ヒータ642aは、検査時に、カートリッジCの低温領域R2(具体的には、低温側ヒート部33)と、所定方向(本実施形態の場合、水平方向)に対向する位置に設けられている。 The low-temperature heater 642a is provided at a position where it can heat the low-temperature region R2 (specifically, the low-temperature side heat section 33) of the cartridge C during inspection. Specifically, the low-temperature heater 642a is provided at a position facing the low-temperature region R2 (specifically, the low-temperature side heat section 33) of the cartridge C in a predetermined direction (horizontal direction in this embodiment) during inspection.
 高温ヒータ部641は、制御部61(具体的には、第二制御部612)の制御下で、カートリッジCの高温領域R1を加熱する。高温ヒータ部641は、第一高温ヒータ641a、及び、第二高温ヒータ641bを有する。 The high-temperature heater unit 641 heats the high-temperature region R1 of the cartridge C under the control of the control unit 61 (specifically, the second control unit 612). The high-temperature heater unit 641 has a first high-temperature heater 641a and a second high-temperature heater 641b.
 第一高温ヒータ641aは、制御部61の制御下で、カートリッジCの第一高温領域R11を加熱する。換言すれば、第一高温ヒータ641aは、制御部61の制御下で、カートリッジCの高温側ヒート部36を加熱する。又、第一高温ヒータ641aは、制御部61の制御下で、試料貯留部20を加熱する。 The first high-temperature heater 641a heats the first high-temperature region R11 of the cartridge C under the control of the control unit 61. In other words, the first high-temperature heater 641a heats the high-temperature side heat section 36 of the cartridge C under the control of the control unit 61. The first high-temperature heater 641a also heats the sample storage section 20 under the control of the control unit 61.
 本実施形態の場合、第一高温ヒータ641aは、検査時に、カートリッジCの第一高温領域R11を、常時加熱する。第一高温ヒータ641aの加熱温度は、第二所定温度T2である。第二所定温度T2は、低温ヒータ642aの加熱温度である第一所定温度よりも高い。 In this embodiment, the first high-temperature heater 641a constantly heats the first high-temperature region R11 of the cartridge C during inspection. The heating temperature of the first high-temperature heater 641a is a second predetermined temperature T2. The second predetermined temperature T2 is higher than the first predetermined temperature, which is the heating temperature of the low-temperature heater 642a.
 第一高温ヒータ641aは、検査時に、カートリッジCの第一高温領域R11(具体的には、高温側ヒート部36及び試料貯留部20)を加熱可能な位置に支持されている。具体的には、第一高温ヒータ641aは、検査時に、カートリッジCの第一高温領域R11(具体的には、高温側ヒート部36及び試料貯留部20)と、所定方向(本実施形態の場合、水平方向)に対向する位置に支持されている。 The first high-temperature heater 641a is supported at a position where it can heat the first high-temperature region R11 (specifically, the high-temperature side heat section 36 and the sample storage section 20) of the cartridge C during inspection. Specifically, the first high-temperature heater 641a is supported at a position facing the first high-temperature region R11 (specifically, the high-temperature side heat section 36 and the sample storage section 20) of the cartridge C in a predetermined direction (horizontal direction in this embodiment) during inspection.
 第二高温ヒータ641bは、プレヒータの一例に該当し、制御部61の制御下で、カートリッジCの第二高温領域R12を加熱する。換言すれば、第二高温ヒータ641bは、制御部61の制御下で、カートリッジCのプレヒート部35を加熱する。 The second high-temperature heater 641b is an example of a preheater, and heats the second high-temperature region R12 of the cartridge C under the control of the control unit 61. In other words, the second high-temperature heater 641b heats the preheat section 35 of the cartridge C under the control of the control unit 61.
 本実施形態の場合、第二高温ヒータ641bは、検査時に、カートリッジCの第二高温領域R12(具体的には、プレヒート部35)を、常時加熱する。第二高温ヒータ641bの加熱温度は、第三所定温度T3である。第三所定温度T3は、低温ヒータ642aの加熱温度である第一所定温度T1、及び、第一高温ヒータ641aの加熱温度である第二所定温度T2よりも高い。例えば、第三所定温度T3は、第二所定温度T2よりも1度~3度高い(T2+1度<T3<T2+3度)。具体的には、第三所定温度T3は、例えば、98度以上100度未満であってよい。 In this embodiment, the second high-temperature heater 641b constantly heats the second high-temperature region R12 (specifically, the preheat section 35) of the cartridge C during inspection. The heating temperature of the second high-temperature heater 641b is a third predetermined temperature T3. The third predetermined temperature T3 is higher than the first predetermined temperature T1, which is the heating temperature of the low-temperature heater 642a, and the second predetermined temperature T2, which is the heating temperature of the first high-temperature heater 641a. For example, the third predetermined temperature T3 is 1 to 3 degrees higher than the second predetermined temperature T2 (T2 + 1 degree < T3 < T2 + 3 degrees). Specifically, the third predetermined temperature T3 may be, for example, greater than or equal to 98 degrees and less than 100 degrees.
 第二高温ヒータ641bは、検査時に、カートリッジCの第二高温領域R12(具体的には、プレヒート部35)を加熱可能な位置に支持されている。具体的には、第二高温ヒータ641bは、検査時に、カートリッジCの第二高温領域R12(具体的には、プレヒート部35)と、所定方向(本実施形態の場合、水平方向)に対向する位置に支持されている。 The second high-temperature heater 641b is supported at a position where it can heat the second high-temperature region R12 (specifically, the preheat section 35) of the cartridge C during inspection. Specifically, the second high-temperature heater 641b is supported at a position facing the second high-temperature region R12 (specifically, the preheat section 35) of the cartridge C in a predetermined direction (horizontal direction in this embodiment) during inspection.
 バルブ駆動部65は、ハウジング60に支持されている。バルブ駆動部65は、検査時に、制御部61(具体的には、第一制御部611)の制御下で、カートリッジCの第一低温側バルブ30、第一高温側バルブ31、及び第二バルブ37の開閉状態を制御する。 The valve drive unit 65 is supported by the housing 60. During inspection, the valve drive unit 65 controls the open/close states of the first low-temperature side valve 30, the first high-temperature side valve 31, and the second valve 37 of the cartridge C under the control of the control unit 61 (specifically, the first control unit 611).
 具体的には、バルブ駆動部65は、第一低温側バルブ駆動部651、第一高温側バルブ駆動部652、及び第二バルブ駆動部653を有する。 Specifically, the valve drive unit 65 has a first low-temperature side valve drive unit 651, a first high-temperature side valve drive unit 652, and a second valve drive unit 653.
 第一低温側バルブ駆動部651は、制御部61の制御下で、カートリッジCの第一低温側バルブ30の開状態と閉状態とを切り換える。 The first low-temperature side valve drive unit 651 switches the first low-temperature side valve 30 of cartridge C between an open state and a closed state under the control of the control unit 61.
 第一低温側バルブ駆動部651は、ハウジング60に支持されており、押圧部651aを有する。押圧部651aは、検査時に、電動モータ等のアクチュエータ(不図示)の動力に基づいて、第一低温側バルブ30に近づく方向及び離れる方向に移動する。押圧部651aが移動可能な距離を、押圧部651aの移動ストロークと称する。 The first low-temperature side valve drive unit 651 is supported by the housing 60 and has a pressing unit 651a. During inspection, the pressing unit 651a moves toward and away from the first low-temperature side valve 30 based on the power of an actuator (not shown) such as an electric motor. The distance that the pressing unit 651a can move is called the movement stroke of the pressing unit 651a.
 押圧部651aは、検査時に、カートリッジCにおける第一低温側バルブ30の被押圧部30cを押圧可能な位置に設けられている。具体的には、押圧部651aは、検査時に、カートリッジCにおける第一低温側バルブ30の被押圧部30cと所定方向(本実施形態の場合、水平方向)に対向する位置に支持されている。 The pressing portion 651a is provided at a position where it can press the pressed portion 30c of the first low-temperature side valve 30 in the cartridge C during inspection. Specifically, the pressing portion 651a is supported at a position facing the pressed portion 30c of the first low-temperature side valve 30 in the cartridge C in a predetermined direction (horizontal direction in this embodiment) during inspection.
 押圧部651aが第一低温側バルブ30に最も近い位置(換言すれば、移動ストロークの一端)に移動した状態において、押圧部651aが第一低温側バルブ30の被押圧部30cを押圧する。押圧部651aが被押圧部30cを押圧した状態を、第一低温側バルブ駆動部651の押圧状態と称する。 When the pressing portion 651a has moved to the position closest to the first low-temperature side valve 30 (in other words, one end of the movement stroke), the pressing portion 651a presses the pressed portion 30c of the first low-temperature side valve 30. The state in which the pressing portion 651a presses the pressed portion 30c is referred to as the pressing state of the first low-temperature side valve drive portion 651.
 第一低温側バルブ駆動部651の押圧状態において、第一低温側バルブ30のバルブ流路30bが閉じられる。その結果、第一低温側バルブ30は閉状態となる。 When the first low-temperature side valve drive unit 651 is pressed, the valve flow path 30b of the first low-temperature side valve 30 is closed. As a result, the first low-temperature side valve 30 is in a closed state.
 押圧部651aが第一低温側バルブ30から最も離れた位置(換言すれば、移動ストロークの他端)に移動した状態において、押圧部651aによる第一低温側バルブ30の被押圧部30cの押圧が解除される。 When the pressing portion 651a has moved to the position farthest from the first low-temperature side valve 30 (in other words, the other end of the movement stroke), the pressing of the pressed portion 30c of the first low-temperature side valve 30 by the pressing portion 651a is released.
 押圧部651aが被押圧部30cを押圧していない状態を、第一低温側バルブ駆動部651の非押圧状態と称する。第一低温側バルブ駆動部651の非押圧状態において、第一低温側バルブ30のバルブ流路30bが開く。その結果、第一低温側バルブ30は開状態となる。 The state in which the pressing portion 651a is not pressing the pressed portion 30c is referred to as the non-pressed state of the first low-temperature side valve drive portion 651. When the first low-temperature side valve drive portion 651 is in the non-pressed state, the valve flow path 30b of the first low-temperature side valve 30 opens. As a result, the first low-temperature side valve 30 is in an open state.
 尚、第一低温側バルブ駆動部651は、サーマル流路3a~3eの第一低温側バルブ30毎に設けられた複数(本実施形態の場合、5個)のバルブ駆動部により構成されてもよいし、1個のバルブ駆動部により構成されてもよい。 The first low-temperature side valve driving unit 651 may be composed of multiple valve driving units (five in this embodiment) provided for each of the first low-temperature side valves 30 of the thermal flow paths 3a to 3e, or may be composed of a single valve driving unit.
 第一低温側バルブ駆動部651が、サーマル流路3a~3eの第一低温側バルブ30毎に設けられた複数のバルブ駆動部により構成されている場合には、制御部61は、複数のバルブ駆動部それぞれの動作を独立して制御する。 If the first low-temperature side valve driving unit 651 is composed of multiple valve driving units provided for each of the first low-temperature side valves 30 of the thermal flow paths 3a to 3e, the control unit 61 controls the operation of each of the multiple valve driving units independently.
 第一高温側バルブ駆動部652は、制御部61(具体的には、第一制御部611)の制御下で、カートリッジCの第一高温側バルブ31の開状態と閉状態とを切り換える。 The first high temperature side valve drive unit 652 switches the first high temperature side valve 31 of cartridge C between an open state and a closed state under the control of the control unit 61 (specifically, the first control unit 611).
 第一高温側バルブ駆動部652は、ハウジング60に支持されており、押圧部652aを有する。押圧部652aは、電動モータ等のアクチュエータ(不図示)の動力に基づいて、第一高温側バルブ31に近づく方向及び離れる方向に移動する。押圧部652aが移動可能な距離を、押圧部652aの移動ストロークと称する。 The first high temperature side valve drive unit 652 is supported by the housing 60 and has a pressing unit 652a. The pressing unit 652a moves toward and away from the first high temperature side valve 31 based on the power of an actuator (not shown) such as an electric motor. The distance that the pressing unit 652a can move is called the movement stroke of the pressing unit 652a.
 押圧部652aは、検査時に、カートリッジCにおける第一高温側バルブ31の被押圧部31cを押圧可能な位置に設けられている。換言すれば、押圧部652aは、検査時に、カートリッジCにおける第一高温側バルブ31の被押圧部31cと所定方向(本実施形態の場合、水平方向)に対向する位置に設けられている。 The pressing portion 652a is provided at a position where it can press the pressed portion 31c of the first high temperature side valve 31 in the cartridge C during inspection. In other words, the pressing portion 652a is provided at a position facing the pressed portion 31c of the first high temperature side valve 31 in the cartridge C in a predetermined direction (horizontal direction in this embodiment) during inspection.
 押圧部652aが第一高温側バルブ31に最も近い位置(換言すれば、移動ストロークの一端)に移動した状態において、押圧部652aが第一高温側バルブ31の被押圧部31cを押圧する。 When the pressing portion 652a has moved to the position closest to the first high-temperature side valve 31 (in other words, one end of the movement stroke), the pressing portion 652a presses the pressed portion 31c of the first high-temperature side valve 31.
 押圧部652aが被押圧部31cを押圧している状態を、第一高温側バルブ駆動部652の押圧状態と称する。第一高温側バルブ駆動部652の押圧状態において、第一高温側バルブ31のバルブ流路31bが閉じられる。その結果、第一高温側バルブ31は閉状態となる。 The state in which the pressing portion 652a presses the pressed portion 31c is referred to as the pressing state of the first high-temperature side valve drive portion 652. When the first high-temperature side valve drive portion 652 is in the pressing state, the valve flow path 31b of the first high-temperature side valve 31 is closed. As a result, the first high-temperature side valve 31 is in a closed state.
 押圧部652aが第一高温側バルブ31から最も離れた位置(換言すれば、移動ストロークの他端)に移動した状態において、押圧部652aによる第一高温側バルブ31の被押圧部31cの押圧が解除される。 When the pressing portion 652a has moved to the position farthest from the first high-temperature side valve 31 (in other words, the other end of the movement stroke), the pressing of the pressed portion 31c of the first high-temperature side valve 31 by the pressing portion 652a is released.
 押圧部652aが被押圧部31cを押圧していない状態を、第一高温側バルブ駆動部652の非押圧状態と称する。第一高温側バルブ駆動部652の非押圧状態において、第一高温側バルブ31のバルブ流路31bが開く。その結果、第一高温側バルブ31は開状態となる。 The state in which the pressing portion 652a is not pressing the pressed portion 31c is referred to as the non-pressed state of the first high-temperature side valve drive portion 652. When the first high-temperature side valve drive portion 652 is in the non-pressed state, the valve flow path 31b of the first high-temperature side valve 31 opens. As a result, the first high-temperature side valve 31 is in an open state.
 尚、第一高温側バルブ駆動部652は、サーマル流路3a~3eの第一高温側バルブ31毎に設けられた複数(本実施形態の場合、5個)のバルブ駆動部により構成されてもよいし、1個のバルブ駆動部により構成されてもよい。第一高温側バルブ駆動部652が、複数のバルブ駆動部により構成されている場合には、制御部61は、複数のバルブ駆動部それぞれの動作を独立して制御する。 The first high temperature side valve drive unit 652 may be composed of multiple valve drive units (five in this embodiment) provided for each of the first high temperature side valves 31 of the thermal flow paths 3a to 3e, or may be composed of a single valve drive unit. When the first high temperature side valve drive unit 652 is composed of multiple valve drive units, the control unit 61 controls the operation of each of the multiple valve drive units independently.
 第二バルブ駆動部653は、制御部61(具体的には、第一制御部611)の制御下で、カートリッジCの第二バルブ37の開状態と閉状態とを切り換える。 The second valve drive unit 653 switches the second valve 37 of the cartridge C between an open state and a closed state under the control of the control unit 61 (specifically, the first control unit 611).
 第二バルブ駆動部653は、ハウジング60に支持されており、押圧部653aを有する。押圧部653aは、電動モータ等のアクチュエータ(不図示)の動力に基づいて、第二バルブ37に近づく方向及び離れる方向に移動する。押圧部653aが移動可能な距離を、押圧部653aの移動ストロークと称する。 The second valve drive unit 653 is supported by the housing 60 and has a pressing unit 653a. The pressing unit 653a moves toward and away from the second valve 37 based on the power of an actuator (not shown) such as an electric motor. The distance that the pressing unit 653a can move is referred to as the movement stroke of the pressing unit 653a.
 押圧部653aは、検査時に、カートリッジCにおける第二バルブ37の被押圧部37cを押圧可能な位置に設けられている。具体的には、押圧部653aは、検査時に、カートリッジCにおける第二バルブ37の被押圧部37cと所定方向(本実施形態の場合、水平方向)に対向する位置に設けられている。 The pressing portion 653a is provided at a position where it can press the pressed portion 37c of the second valve 37 in the cartridge C during inspection. Specifically, the pressing portion 653a is provided at a position facing the pressed portion 37c of the second valve 37 in the cartridge C in a predetermined direction (horizontal direction in this embodiment) during inspection.
 押圧部653aが第二バルブ37に最も近い位置(換言すれば、移動ストロークの一端)に移動した状態において、押圧部653aが第二バルブ37の被押圧部37cを押圧する。 When the pressing portion 653a has moved to the position closest to the second valve 37 (in other words, one end of the movement stroke), the pressing portion 653a presses the pressed portion 37c of the second valve 37.
 押圧部653aが被押圧部37cを押圧している状態を、第二バルブ駆動部653の押圧状態と称する。第二バルブ駆動部653の押圧状態において、第二バルブ37のバルブ流路37bが閉じられる。その結果、第二バルブ37は閉状態となる。 The state in which the pressing portion 653a presses the pressed portion 37c is referred to as the pressing state of the second valve drive portion 653. When the second valve drive portion 653 is in the pressing state, the valve flow path 37b of the second valve 37 is closed. As a result, the second valve 37 is in the closed state.
 押圧部653aが第二バルブ37から最も離れた位置(換言すれば、移動ストロークの他端)に移動した状態において、押圧部653aによる第二バルブ37の被押圧部37cの押圧が解除される。 When the pressing portion 653a has moved to the position farthest from the second valve 37 (in other words, the other end of the movement stroke), the pressing of the pressed portion 37c of the second valve 37 by the pressing portion 653a is released.
 押圧部653aが被押圧部37cを押圧していない状態を、第二バルブ駆動部653の非押圧状態と称する。第二バルブ駆動部653の非押圧状態において、第二バルブ37のバルブ流路37bが開く。その結果、第二バルブ37は開状態となる。 The state in which the pressing portion 653a is not pressing the pressed portion 37c is referred to as the non-pressed state of the second valve drive portion 653. When the second valve drive portion 653 is in the non-pressed state, the valve flow path 37b of the second valve 37 is open. As a result, the second valve 37 is in an open state.
 尚、第二バルブ駆動部653は、サーマル流路3a~3eの第二バルブ37毎に設けられた複数(本実施形態の場合、5個)のバルブ駆動部により構成されてもよいし、1個のバルブ駆動部により構成されてもよい。第二バルブ駆動部653が、複数のバルブ駆動部により構成されている場合には、制御部61は、複数のバルブ駆動部それぞれの動作を独立して制御する。 The second valve driving unit 653 may be composed of multiple valve driving units (five in this embodiment) provided for each second valve 37 of the thermal flow paths 3a to 3e, or may be composed of a single valve driving unit. When the second valve driving unit 653 is composed of multiple valve driving units, the control unit 61 controls the operation of each of the multiple valve driving units independently.
 送液部66は、ハウジング60に支持されている。送液部66は、検査時に、カートリッジC内の試料を移動させる。具体的には、送液部66は、ポンプ駆動部661を有する。 The liquid delivery unit 66 is supported by the housing 60. The liquid delivery unit 66 moves the sample in the cartridge C during testing. Specifically, the liquid delivery unit 66 has a pump drive unit 661.
 ポンプ駆動部661は、検査時に、制御部61(具体的には、第一制御部611)の制御下で、カートリッジCのポンプ34を駆動する。本実施形態の場合、ポンプ駆動部661は、サーマル流路3a~3eにおけるポンプ34毎に設けられている。つまり、本実施形態の場合、ポンプ駆動部661は、5個のポンプ駆動部により構成されている。以下、1つのポンプ駆動部661の構成について説明する。 During inspection, the pump drive unit 661 drives the pump 34 of the cartridge C under the control of the control unit 61 (specifically, the first control unit 611). In this embodiment, a pump drive unit 661 is provided for each pump 34 in the thermal flow paths 3a to 3e. In other words, in this embodiment, the pump drive unit 661 is made up of five pump drive units. The configuration of one pump drive unit 661 will be described below.
 図9はポンプ駆動部661の斜視図である。ポンプ駆動部661は、基部661a、及び、回転部材661bを有する。又、図10は、ポンプ駆動部661を基部661aの下方から見た状態を示す斜視図である。 Figure 9 is a perspective view of the pump drive unit 661. The pump drive unit 661 has a base 661a and a rotating member 661b. Figure 10 is a perspective view of the pump drive unit 661 as viewed from below the base 661a.
 又、図11は、ポンプ駆動部661の動作を説明するための図である。図9~図11には、サーマル流路3fが示されている。サーマル流路3fの構成は、説明の便宜上、サーマル流路3a~3eの構成と異なる。 FIG. 11 is a diagram for explaining the operation of the pump drive unit 661. Thermal flow path 3f is shown in FIGS. 9 to 11. For ease of explanation, the configuration of thermal flow path 3f differs from the configuration of thermal flow paths 3a to 3e.
 基部661aは、ボルト等の締結部品(不図示)を介して、ハウジング60に固定される部分である。又、基部661aは、回転部材661bを回転可能に支持する部材でもある。 The base 661a is fixed to the housing 60 via a fastening part (not shown) such as a bolt. The base 661a also serves as a member that rotatably supports the rotating member 661b.
 具体的には、基部661aは、上側基部661f、及び、下側基部661gを有する。図9には、基部661aのうちの上側基部661fのみが示されている。図10には、基部661aのうちの下側基部661gのみが示されている。 Specifically, the base 661a has an upper base 661f and a lower base 661g. Only the upper base 661f of the base 661a is shown in FIG. 9. Only the lower base 661g of the base 661a is shown in FIG. 10.
 上側基部661fは、ボルト等の締結部品(不図示)を介して、ハウジング60に固定される部分である。 The upper base 661f is fixed to the housing 60 via fastening parts such as bolts (not shown).
 下側基部661gは、上側基部661fの下面に固定されている。下側基部661gは、一対の回転支持部661c、661dを有する。回転支持部661c、661dは、回転部材661bの両端部を回転可能に支持する。 The lower base 661g is fixed to the underside of the upper base 661f. The lower base 661g has a pair of rotational support parts 661c, 661d. The rotational support parts 661c, 661d rotatably support both ends of the rotating member 661b.
 下側基部661gは、中央部に、略矩形状の貫通孔661hを有する。貫通孔661hは、上下方向において、ポンプ34と対向するように配置されている。 The lower base 661g has a generally rectangular through hole 661h in the center. The through hole 661h is positioned so as to face the pump 34 in the vertical direction.
 回転部材661bは、ポンプ34を駆動する部材である。回転部材661bは、軸部材である。回転部材661bの軸方向における両端部はそれぞれ、基部661aの回転支持部661c、661dに支持されている。回転部材661bは、基部661aに対して回転可能である。 The rotating member 661b is a member that drives the pump 34. The rotating member 661b is a shaft member. Both ends of the rotating member 661b in the axial direction are supported by the rotation support parts 661c and 661d of the base part 661a. The rotating member 661b is rotatable with respect to the base part 661a.
 回転部材661bは、外周面に、押圧部661eを有する。押圧部661eは、螺旋状の突条により構成されている。押圧部661eは、下側基部661gの貫通孔661hに配置されている。この状態で、押圧部661eは、貫通孔661hを介して、ポンプ34のポンプ空間形成部34b(図4参照)と対向している。回転部材661bは、電動モータ等のアクチュエータ(不図示)の動力に基づいて回転する。 The rotating member 661b has a pressing portion 661e on its outer circumferential surface. The pressing portion 661e is configured with a spiral ridge. The pressing portion 661e is disposed in a through hole 661h in the lower base portion 661g. In this state, the pressing portion 661e faces the pump space forming portion 34b (see FIG. 4) of the pump 34 via the through hole 661h. The rotating member 661b rotates based on the power of an actuator (not shown) such as an electric motor.
 以上のような構成を有するポンプ駆動部661は、ポンプ34のポンプ空間形成部34b(図4参照)を所定方向(本実施形態の場合、水平方向)から覆うように配置されている。この状態で、押圧部661eは、ポンプ34のポンプ空間形成部34bと当接している。押圧部661eは、押圧部661eとポンプ空間形成部34bとの当接位置において、ポンプ空間形成部34bを押し潰している。 The pump drive unit 661 having the above-mentioned configuration is arranged so as to cover the pump space forming portion 34b (see FIG. 4) of the pump 34 from a predetermined direction (horizontal direction in this embodiment). In this state, the pressing portion 661e abuts against the pump space forming portion 34b of the pump 34. The pressing portion 661e crushes the pump space forming portion 34b at the position where the pressing portion 661e abuts against the pump space forming portion 34b.
 ここで、図11を参照して、ポンプ駆動部661の動作について説明する。図11は、ポンプ駆動部661の押圧部661eとポンプ34のポンプ空間形成部34bとの当接位置Dを模式的に示す図である。図11において押圧部661eは省略されているが、当接位置Dが示す位置において、押圧部661eは、ポンプ34のポンプ空間形成部34bを押し潰している。 The operation of the pump drive unit 661 will now be described with reference to Figure 11. Figure 11 is a schematic diagram showing a contact position D between the pressing portion 661e of the pump drive unit 661 and the pump space forming portion 34b of the pump 34. Although the pressing portion 661e is omitted in Figure 11, at the position indicated by the contact position D, the pressing portion 661e presses against the pump space forming portion 34b of the pump 34.
 回転部材661bが回転すると、螺旋状の押圧部661eとポンプ空間形成部34bとの当接位置Dが、所定方向(図11において矢印Y2が示す方向であって、試料の循環方向)に移動する。 When the rotating member 661b rotates, the contact position D between the spiral pressing portion 661e and the pump space forming portion 34b moves in a predetermined direction (the direction indicated by the arrow Y2 in FIG. 11, which is the direction in which the sample circulates).
 この際、押圧部661eは、当接位置Dにおいて、回転部材661bの回転方向を向く摩擦力を、ポンプ空間形成部34bに加えつつ、ポンプ空間形成部34bを押し潰している。摩擦力の方向は、カートリッジCの主面に平行、且つ、ポンプ空間形成部34bの延在方向に直交する方向でもある。尚、当接位置Dの移動距離を、ポンプ駆動部661の当接ストロークと称する。 At this time, the pressing portion 661e applies a frictional force to the pump space forming portion 34b in the rotational direction of the rotating member 661b at the contact position D, thereby crushing the pump space forming portion 34b. The direction of the frictional force is parallel to the main surface of the cartridge C and perpendicular to the extension direction of the pump space forming portion 34b. The movement distance of the contact position D is referred to as the contact stroke of the pump drive portion 661.
 押圧部661eとポンプ空間形成部34bとの当接位置Dは、当接ストロークの一端(試料の循環方向における上流側の端部)から当接ストロークの他端(試料の循環方向における下流側の端部)まで移動する。 The contact position D between the pressing portion 661e and the pump space forming portion 34b moves from one end of the contact stroke (the upstream end in the direction of circulation of the sample) to the other end of the contact stroke (the downstream end in the direction of circulation of the sample).
 押圧部661eとポンプ空間形成部34bとの当接位置Dが、当接ストロークの他端まで移動した状態で、回転部材661bが更に回転すると、当接位置Dは、当接ストロークの一端に戻る。 When the rotating member 661b rotates further with the contact position D between the pressing portion 661e and the pump space forming portion 34b having moved to the other end of the contact stroke, the contact position D returns to one end of the contact stroke.
 このように押圧部661eとポンプ空間形成部34bとの当接位置Dが、当接ストロークの一端から他端に向かって繰り返し移動することで、ポンプ34のポンプ空間34c内の試料又は空気が、循環方向に圧送される。ポンプ空間34c内の試料又は空気が移動すると、流路2内の試料及び空気が連動して移動する。 In this way, the contact position D between the pressing portion 661e and the pump space forming portion 34b repeatedly moves from one end of the contact stroke to the other end, so that the sample or air in the pump space 34c of the pump 34 is pumped in the circulation direction. When the sample or air in the pump space 34c moves, the sample and air in the flow path 2 move in conjunction with each other.
 尚、回転部材661bの回転方向に応じて、押圧部661eとポンプ空間形成部34bとの当接位置Dの移動方向が異なる。よって、回転部材661bの回転方向を変えることにより、流路2内の試料及び空気の移動方向を変えることができる。 The direction of movement of the contact position D between the pressing portion 661e and the pump space forming portion 34b varies depending on the direction of rotation of the rotating member 661b. Therefore, by changing the direction of rotation of the rotating member 661b, the direction of movement of the sample and air in the flow channel 2 can be changed.
 尚、本実施形態に係るポンプ駆動部661は、上述のポンプ34のように直線的に延在するポンプ空間形成部34bを有するポンプに適用可能である。但し、ポンプ駆動部の構成は、本実施形態のポンプ駆動部661に限定されない。ポンプ駆動部の構成は、ポンプの構造に応じて適宜決定されてよい。 The pump drive unit 661 according to this embodiment is applicable to a pump having a pump space forming portion 34b that extends linearly, such as the pump 34 described above. However, the configuration of the pump drive unit is not limited to the pump drive unit 661 according to this embodiment. The configuration of the pump drive unit may be determined appropriately depending on the structure of the pump.
 又、本実施形態の場合、ポンプ駆動部661は、サーマル流路3a~3eにおけるポンプ34毎に設けられている。但し、図示は省略するが、1個のポンプ駆動部661が、サーマル流路3a~3eのうちの複数(少なくとも2個)の検査流路におけるポンプ34を駆動する構成であってもよい。 In addition, in this embodiment, a pump driver 661 is provided for each pump 34 in the thermal flow paths 3a to 3e. However, although not shown in the figure, one pump driver 661 may be configured to drive pumps 34 in multiple (at least two) inspection flow paths among the thermal flow paths 3a to 3e.
 例えば、図2に示すサーマル流路3aのポンプ34とサーマル流路3bのポンプ34とを、1個のポンプ駆動部661により駆動する場合、サーマル流路3bを前後方向において反転させたような構成とすればよい。つまり、この場合、サーマル流路3aとサーマル流路3bとが、左右方向に平行な直線に関して線対称の関係となる。この結果、サーマル流路3aのポンプ34とサーマル流路3bのポンプ34とが、前後方向において隣り合うように配置されるため、1個のポンプ駆動部661により、サーマル流路3aのポンプ34とサーマル流路3bのポンプ34とを駆動し易くなる。このような構成を採用する場合には、各サーマル流路の機能が上述のサーマル流路3a~3eと同等機能となるように、各サーマル流路3a~3eの構成を設定すればよい。このような構成を採用すれば、ポンプ駆動部の数を検査流路の数よりも少なくできるため、核酸増幅装置を構成する部品点数を減らすことができる。 For example, when the pump 34 of the thermal flow channel 3a and the pump 34 of the thermal flow channel 3b shown in FIG. 2 are driven by one pump driver 661, the thermal flow channel 3b may be configured to be inverted in the front-rear direction. In other words, in this case, the thermal flow channels 3a and 3b are in a line-symmetrical relationship with respect to a straight line parallel to the left-right direction. As a result, the pump 34 of the thermal flow channel 3a and the pump 34 of the thermal flow channel 3b are arranged adjacent to each other in the front-rear direction, so that the pump 34 of the thermal flow channel 3a and the pump 34 of the thermal flow channel 3b can be easily driven by one pump driver 661. When such a configuration is adopted, the configuration of each of the thermal flow channels 3a to 3e may be set so that the function of each thermal flow channel is equivalent to that of the above-mentioned thermal flow channels 3a to 3e. By adopting such a configuration, the number of pump drivers can be made smaller than the number of test flow channels, thereby reducing the number of parts constituting the nucleic acid amplification device.
 試料位置検出部67は、ハウジング60に支持されている。試料位置検出部67は、検査時に、カートリッジC内の試料の位置に関する情報を検出する。 The sample position detection unit 67 is supported by the housing 60. The sample position detection unit 67 detects information regarding the position of the sample in the cartridge C during testing.
 試料位置検出部67が検出する情報は、試料が低温側ヒート部33に収容されたことを示す情報、及び、試料が高温側ヒート部36に収容されたことを示す情報を含む。又、試料位置検出部67が検出する情報は、試料が試料貯留部20に収容されたことを示す情報、及び/又は、試料が個別試薬担持部21に収容されたことを示す情報を含んでもよい。 The information detected by the sample position detection unit 67 includes information indicating that the sample is contained in the low-temperature side heat unit 33 and information indicating that the sample is contained in the high-temperature side heat unit 36. The information detected by the sample position detection unit 67 may also include information indicating that the sample is contained in the sample storage unit 20 and/or information indicating that the sample is contained in the individual reagent holder 21.
 具体的には、試料位置検出部67は、低温側検出部671、及び、高温側検出部672を有する。低温側検出部671と高温側検出部672とは、別々の検出器により構成されている。 Specifically, the sample position detection unit 67 has a low temperature side detection unit 671 and a high temperature side detection unit 672. The low temperature side detection unit 671 and the high temperature side detection unit 672 are configured by separate detectors.
 低温側検出部671は、検査時に、カートリッジCにおける低温側ヒート部33と所定方向(本実施形態の場合、水平方向)に対向する位置に設けられている。 The low-temperature side detection section 671 is located at a position facing the low-temperature side heating section 33 of the cartridge C in a predetermined direction (horizontal in this embodiment) during inspection.
 低温側検出部671は、試料が低温側ヒート部33に収容されたことを示す情報(以下、「低温側収容情報」と称する。)を検出する。低温側検出部671は、例えば、低温側収容情報を光学処理により検出する検出器(以下、「光学処理検出器」と称する。)である。 The low-temperature side detection unit 671 detects information indicating that a sample has been accommodated in the low-temperature side heat unit 33 (hereinafter referred to as "low-temperature side accommodation information"). The low-temperature side detection unit 671 is, for example, a detector that detects the low-temperature side accommodation information by optical processing (hereinafter referred to as "optical processing detector").
 又、低温側検出部671は、低温側収容情報を画像処理により検出する検出器(以下、「画像処理検出器」と称する。)であってもよい。又、低温側検出部671は、低温側収容情報を電気処理により検出する検出器(以下、「電気処理検出器」と称する。)であってもよい。 The low-temperature side detection unit 671 may also be a detector that detects low-temperature side storage information by image processing (hereinafter referred to as an "image processing detector").The low-temperature side detection unit 671 may also be a detector that detects low-temperature side storage information by electrical processing (hereinafter referred to as an "electrical processing detector").
 低温側検出部671が光学処理検出器の場合、低温側検出部671は、低温側ヒート部33における光の透過率及び/又は反射率に基づいて、低温側収容情報を検出する。 If the low-temperature side detection unit 671 is an optical processing detector, the low-temperature side detection unit 671 detects the low-temperature side storage information based on the light transmittance and/or reflectance in the low-temperature side heat unit 33.
 具体的には、低温側検出部671が光学処理検出器の場合、低温側検出部671は、光源及び受光素子を有する。光源は、低温側ヒート部33を照射する。又、受光素子は、低温側ヒート部33を透過した光及び/又は低温側ヒート部33において反射した光を受光する。 Specifically, when the low-temperature side detection unit 671 is an optical processing detector, the low-temperature side detection unit 671 has a light source and a light receiving element. The light source irradiates the low-temperature side heat unit 33. Furthermore, the light receiving element receives light that has passed through the low-temperature side heat unit 33 and/or light that has been reflected by the low-temperature side heat unit 33.
 そして、受光素子の出力に基づいて、低温側ヒート部33の透過率又は反射率の変化を検出する。試料が低温側ヒート部33に収容された状態と、収容されていない状態とでは、低温側ヒート部33における光の透過率及び反射率が異なるため、受光素子の出力も異なる。このため、低温側検出部671は、受光素子の出力の変化に基づいて、低温側収容情報を検出できる。 Then, based on the output of the light receiving element, a change in the transmittance or reflectance of the low-temperature side heat section 33 is detected. Because the light transmittance and reflectance of the low-temperature side heat section 33 differ when a sample is contained in the low-temperature side heat section 33 and when a sample is not contained therein, the output of the light receiving element also differs. For this reason, the low-temperature side detection section 671 can detect low-temperature side containment information based on a change in the output of the light receiving element.
 低温側検出部671が画像検出器の場合、低温側検出部671はカメラにより低温側ヒート部33を撮像し、低温側ヒート部33の画像を取得する。そして、低温側検出部671は、取得した低温側ヒート部33の画像を画像解析することにより、低温側収容情報を検出する。 If the low-temperature side detection unit 671 is an image detector, the low-temperature side detection unit 671 captures an image of the low-temperature side heat unit 33 using a camera, and acquires an image of the low-temperature side heat unit 33. The low-temperature side detection unit 671 then performs image analysis on the acquired image of the low-temperature side heat unit 33 to detect low-temperature side storage information.
 低温側検出部671が電気式検出器の場合、カートリッジCの封止部材50において低温側ヒート部33を覆う部分に一対の電極(不図示)を設ける。一対の電極は、印刷等により封止部材50に形成される。 If the low-temperature side detection section 671 is an electrical detector, a pair of electrodes (not shown) is provided on the sealing member 50 of the cartridge C in a portion that covers the low-temperature side heat section 33. The pair of electrodes is formed on the sealing member 50 by printing or the like.
 又、低温側検出部671は、検査時に、封止部材50の一対の電極に接続される一対の端子を有する。一対の端子には電圧が印加されている。低温側ヒート部33に試料が流入していない状態において、一対の電極の間には、電流が流れない。 The low-temperature side detection unit 671 also has a pair of terminals that are connected to a pair of electrodes of the sealing member 50 during testing. A voltage is applied to the pair of terminals. When no sample has flowed into the low-temperature side heat unit 33, no current flows between the pair of electrodes.
 一方、低温側ヒート部33に試料が流入すると、一対の電極の間に、試料を介して電流が流れる。このため、低温側検出部671は、一対の電極間の通電状態に基づいて、低温側収容情報を検出できる。 On the other hand, when a sample flows into the low-temperature side heat section 33, a current flows between the pair of electrodes through the sample. Therefore, the low-temperature side detection section 671 can detect low-temperature side storage information based on the current flow state between the pair of electrodes.
 高温側検出部672は、試料が高温側ヒート部36に収容されたことを示す情報(以下、「高温側収容情報」と称する。)を検出する。高温側検出部672は、検査時に、カートリッジCにおける高温側ヒート部36と所定方向(本実施形態の場合、水平方向)に対向する位置に設けられている。その他の高温側検出部672の構成は、低温側検出部671の構成と同様である。 The high-temperature side detection unit 672 detects information indicating that a sample has been contained in the high-temperature side heat unit 36 (hereinafter referred to as "high-temperature side containment information"). The high-temperature side detection unit 672 is provided at a position facing the high-temperature side heat unit 36 in the cartridge C in a predetermined direction (horizontal direction in this embodiment) during testing. The rest of the configuration of the high-temperature side detection unit 672 is the same as the configuration of the low-temperature side detection unit 671.
 蛍光検出装置7は、制御部61の制御下で、試料に含まれる蛍光色素から発せられる蛍光を検出するための装置である。蛍光色素は、試料内で、蛍光色素の蛍光を吸収するクエンチャーとともにプローブに結合している。 The fluorescence detection device 7 is a device for detecting the fluorescence emitted from a fluorescent dye contained in a sample under the control of the control unit 61. The fluorescent dye is bound to a probe in the sample together with a quencher that absorbs the fluorescence of the fluorescent dye.
 プローブは、核酸増幅検査におけるアニーリング工程において、プライマーとともに対象核酸に結合する。そして、核酸増幅検査における伸長反応工程において、プローブが分解されると、蛍光色素とクエンチャーとが分離する。 The probe binds to the target nucleic acid together with the primer during the annealing step in the nucleic acid amplification test. Then, when the probe is decomposed during the extension reaction step in the nucleic acid amplification test, the fluorescent dye and quencher are separated.
 その結果、蛍光色素の蛍光がクエンチャーにより吸収されなくなる。蛍光検出装置7は、伸長反応工程後の試料内の蛍光色素の蛍光を検出する。制御部61は、蛍光検出装置7の検出結果に基づいて、核酸の増幅結果を判定する。制御部61が、核酸の増幅結果を判定する処理を、増幅判定処理と称する。 As a result, the fluorescence of the fluorescent dye is no longer absorbed by the quencher. The fluorescence detection device 7 detects the fluorescence of the fluorescent dye in the sample after the extension reaction step. The control unit 61 determines the results of the amplification of the nucleic acid based on the detection results of the fluorescence detection device 7. The process in which the control unit 61 determines the results of the amplification of the nucleic acid is referred to as the amplification determination process.
 具体的には、蛍光検出装置7は、ハウジング60に支持されており、蛍光検出部8、及び、駆動部9を有する。 Specifically, the fluorescence detection device 7 is supported by a housing 60 and has a fluorescence detection unit 8 and a drive unit 9.
 蛍光検出部8は、図12に示すように、複数の光学素子を含む光学系により構成されている。具体的には、蛍光検出部8は、発光光学系80、及び、受光光学系81を有する。 As shown in FIG. 12, the fluorescence detection unit 8 is configured with an optical system including multiple optical elements. Specifically, the fluorescence detection unit 8 has a light-emitting optical system 80 and a light-receiving optical system 81.
 発光光学系80は、カートリッジCの被検出領域を照射するための光学系である。尚、カートリッジCの被検出領域は、例えば、低温側ヒート部33を含む領域である。 The light-emitting optical system 80 is an optical system for irradiating the detection area of the cartridge C. The detection area of the cartridge C is, for example, an area including the low-temperature side heat section 33.
 発光光学系80は、光源部801、フィルタ部802、物体側開口部820、及び対物レンズ821を有する。核酸増幅検査において核酸の増幅結果を確認する際、光源部801から発せられた光は、フィルタ部802、物体側開口部820、及び対物レンズ821を通過してカートリッジCの被検出領域に照射される。 The light emission optical system 80 has a light source unit 801, a filter unit 802, an object-side opening 820, and an objective lens 821. When checking the results of nucleic acid amplification in a nucleic acid amplification test, light emitted from the light source unit 801 passes through the filter unit 802, the object-side opening 820, and the objective lens 821 and is irradiated onto the detection area of the cartridge C.
 光源部801は、少なくとも1個(本実施形態の場合、2個)の光源801a、801bを有する。光源801a、801bはそれぞれ、プリント基板等の基板83に固定されている。光源801a、801bはそれぞれ、後述の対物レンズ821の前側焦点位置に配置されている。 The light source unit 801 has at least one (two in this embodiment) light source 801a, 801b. The light sources 801a, 801b are each fixed to a substrate 83 such as a printed circuit board. The light sources 801a, 801b are each disposed at the front focal position of an objective lens 821, which will be described later.
 光源801a、801bはそれぞれ、例えば、LED光源であって、白色光又は、少なくともその一部又は全体が蛍光色素の励起波長スペクトルに含まれる単色光を発する。尚、光源の数は、本実施形態の光源801a、801bの数に限定されない。光源の数は、試料に含まれる蛍光色素の種類の数に応じて決定されてよい。 Each of the light sources 801a and 801b is, for example, an LED light source, and emits white light or monochromatic light at least a part of which or the entirety of which is included in the excitation wavelength spectrum of the fluorescent dye. Note that the number of light sources is not limited to the number of light sources 801a and 801b in this embodiment. The number of light sources may be determined according to the number of types of fluorescent dyes contained in the sample.
 以下の蛍光検出部8の説明において、検査時にカートリッジCに近い側を、物体側と称する。一方、検査時にカートリッジCから遠い側(換言すれば、後述の受光素子813に近い側)を像側と称する。 In the following description of the fluorescence detection unit 8, the side closer to the cartridge C during inspection is referred to as the object side. On the other hand, the side farther from the cartridge C during inspection (in other words, the side closer to the light receiving element 813 described below) is referred to as the image side.
 フィルタ部802は、光源部801の物体側に設けられている。フィルタ部802は、光源801a、801bの数に対応する数の励起フィルタ802a、802bを有する。励起フィルタ802aは、光源801aと対向している。励起フィルタ802bは、光源801bと対向している。 The filter section 802 is provided on the object side of the light source section 801. The filter section 802 has excitation filters 802a and 802b in a number corresponding to the number of light sources 801a and 801b. The excitation filter 802a faces the light source 801a. The excitation filter 802b faces the light source 801b.
 励起フィルタ802a、802bはそれぞれ、特定の波長の光を選択的に通過させる所謂バンドパスフィルターである。励起フィルタ802a、802bはそれぞれ、試料に含まれる蛍光色素を励起できる波長の光を通過させ、それ以外の波長の光を遮断する。 Each of the excitation filters 802a and 802b is a bandpass filter that selectively passes light of a specific wavelength. Each of the excitation filters 802a and 802b passes light of a wavelength that can excite the fluorescent dye contained in the sample and blocks light of other wavelengths.
 本実施形態の場合、励起フィルタ802aは、試料に含まれる第一蛍光色素を励起できる波長の光を通過させる。一方、励起フィルタ802bは、試料に含まれる第二蛍光色素を励起できる波長の光を通過させる。よって、励起フィルタ802aを通過する光の波長と、励起フィルタ802bを通過する光の波長とは、異なる。 In this embodiment, excitation filter 802a passes light with a wavelength capable of exciting a first fluorescent dye contained in the sample. On the other hand, excitation filter 802b passes light with a wavelength capable of exciting a second fluorescent dye contained in the sample. Therefore, the wavelength of light passing through excitation filter 802a is different from the wavelength of light passing through excitation filter 802b.
 光源801aにより発せられた光は、励起フィルタ802aに入射する。そして、励起フィルタ802aに入射した光のうち特定の波長の光が、励起フィルタ802aを通過する。 The light emitted by the light source 801a is incident on the excitation filter 802a. Then, light of a specific wavelength among the light incident on the excitation filter 802a passes through the excitation filter 802a.
 光源801bにより発せられた光は、励起フィルタ802bに入射する。そして、励起フィルタ802bに入射した光のうち特定の波長の光が、励起フィルタ802bを通過する。 The light emitted by the light source 801b is incident on the excitation filter 802b. Then, light of a specific wavelength among the light incident on the excitation filter 802b passes through the excitation filter 802b.
 物体側開口部820は、板状の部材に設けられた貫通孔により構成されており、フィルタ部802の物体側に設けられている。物体側開口部820は、通過する光の量を調整する。具体的には、物体側開口部820は、フィルタ部802を通過した光の一部を通過させる。尚、物体側開口部820は、受光光学系81を構成する光学素子でもある。 The object-side opening 820 is configured as a through hole provided in a plate-like member, and is provided on the object side of the filter section 802. The object-side opening 820 adjusts the amount of light that passes through. Specifically, the object-side opening 820 passes a portion of the light that has passed through the filter section 802. The object-side opening 820 is also an optical element that constitutes the light-receiving optical system 81.
 対物レンズ821は、物体側開口部820の物体側に設けられている。対物レンズ821の直径は、物体側開口部820の内径よりも大きい。よって、物体側開口部820を通過した光は、総て対物レンズ821に入射する。 The objective lens 821 is provided on the object side of the object-side opening 820. The diameter of the objective lens 821 is larger than the inner diameter of the object-side opening 820. Therefore, all light that passes through the object-side opening 820 is incident on the objective lens 821.
 本実施形態の場合、光源801a、801bが対物レンズ821の前側焦点位置に配置されているため、対物レンズ821を通過した光は、平行光束の状態で、任意の角度からカートリッジCの被検出領域に照明される。この結果、カートリッジCの被検出領域は、照射ムラが少ない状態で照射される。尚、対物レンズ821は、受光光学系81を構成する光学素子でもある。 In this embodiment, the light sources 801a and 801b are positioned at the front focal position of the objective lens 821, so that the light that passes through the objective lens 821 is in the form of a parallel beam and is illuminated on the detection area of the cartridge C from any angle. As a result, the detection area of the cartridge C is illuminated with little unevenness in illumination. The objective lens 821 is also an optical element that constitutes the light receiving optical system 81.
 受光光学系81は、核酸の増幅結果を判定する際、試料内の蛍光色素が発する蛍光を検出するための光学系である。 The light receiving optical system 81 is an optical system for detecting the fluorescence emitted by the fluorescent dye in the sample when determining the results of nucleic acid amplification.
 受光光学系81は、物体側から順に、対物レンズ821、物体側開口部820、マルチ蛍光フィルタ810、結像レンズ811、像側開口部812、及び受光素子813を有する。 The light receiving optical system 81 has, in order from the object side, an objective lens 821, an object side opening 820, a multi-fluorescence filter 810, an imaging lens 811, an image side opening 812, and a light receiving element 813.
 対物レンズ821は、発光光学系80と共通のレンズである。光源部801の照射光により励起された蛍光色素が発する蛍光は、物体側から対物レンズ821に入射する。 The objective lens 821 is a lens shared with the light emission optical system 80. Fluorescence emitted by the fluorescent dye excited by the irradiation light from the light source unit 801 enters the objective lens 821 from the object side.
 尚、本実施形態の場合、受光光学系81は、対物レンズ821に入射する蛍光の主光線αが、対物レンズ821の光軸Xと平行となる、所謂物体側テレセントリック光学系である。 In this embodiment, the light receiving optical system 81 is a so-called object-side telecentric optical system in which the chief ray α of the fluorescence incident on the objective lens 821 is parallel to the optical axis X of the objective lens 821.
 物体側開口部820は、発光光学系80と共通の光学素子であり、対物レンズ821の像側に設けられている。対物レンズ821から出射された蛍光は、物体側開口部820を通過する。 The object-side opening 820 is an optical element shared with the light-emitting optical system 80, and is provided on the image side of the objective lens 821. The fluorescence emitted from the objective lens 821 passes through the object-side opening 820.
 マルチ蛍光フィルタ810は、物体側開口部820の像側に設けられている。マルチ蛍光フィルタ810は、特定の複数の波長の光を選択的に通過させる所謂マルチバンドパスフィルターである。 The multi-fluorescence filter 810 is provided on the image side of the object-side opening 820. The multi-fluorescence filter 810 is a so-called multi-bandpass filter that selectively passes light of multiple specific wavelengths.
 マルチ蛍光フィルタ810は、試料に含まれる複数種類の蛍光色素が発する蛍光と同じ波長の光を通過させ、それ以外の波長の光を遮断する。つまり、マルチ蛍光フィルタ810は、試料に含まれる蛍光色素が発する蛍光を選択的に通過させる。 The multi-fluorescence filter 810 passes light of the same wavelength as the fluorescence emitted by multiple types of fluorescent dyes contained in the sample, and blocks light of other wavelengths. In other words, the multi-fluorescence filter 810 selectively passes the fluorescence emitted by the fluorescent dyes contained in the sample.
 結像レンズ811は、マルチ蛍光フィルタ810の像側に設けられている。結像レンズ811の位置及び焦点距離は、結像レンズ811よりも像側に配置された像側開口部812の入射光の取り込み角が等しくなるように、設定されている。この結果、後述の受光素子813を、光源部801の光源801a、801bと共通の基板83に配置することができる。 The imaging lens 811 is provided on the image side of the multi-fluorescence filter 810. The position and focal length of the imaging lens 811 are set so that the angle of incidence of the light entering the image-side opening 812, which is located on the image side of the imaging lens 811, is equal. As a result, the light receiving element 813, which will be described later, can be placed on a common substrate 83 together with the light sources 801a and 801b of the light source section 801.
 像側開口部812は、板状の部材に設けられた貫通孔により構成されており、結像レンズ811の像側に設けられている。像側開口部812は、通過する光の量を調整する。具体的には、像側開口部812は、結像レンズ811を通過した光の一部を通過させる。 The image-side opening 812 is composed of a through hole provided in a plate-like member, and is provided on the image side of the imaging lens 811. The image-side opening 812 adjusts the amount of light that passes through. Specifically, the image-side opening 812 passes a portion of the light that has passed through the imaging lens 811.
 受光素子813は、例えば、フォトダイオードであって、基板83に固定されている。受光素子813は、入射した蛍光を電気信号に変換する。本実施形態の場合、受光素子813は、所望の倍率で蛍光を受光できるように、受光光学系81が設計されている。制御部61は、受光素子813の出力に基づいて、核酸の増幅結果を判定する。 The light receiving element 813 is, for example, a photodiode, and is fixed to the substrate 83. The light receiving element 813 converts the incident fluorescence into an electrical signal. In this embodiment, the light receiving optical system 81 is designed so that the light receiving element 813 can receive the fluorescence at a desired magnification. The control unit 61 determines the amplification result of the nucleic acid based on the output of the light receiving element 813.
 駆動部9(図8参照)は、制御部61の制御下で、蛍光検出部8を移動させる。駆動部9は、例えば、モータ91と、モータ91の回転を直線運動に変換する変換機構92と、を有する。 The driving unit 9 (see FIG. 8) moves the fluorescence detection unit 8 under the control of the control unit 61. The driving unit 9 has, for example, a motor 91 and a conversion mechanism 92 that converts the rotation of the motor 91 into linear motion.
 駆動部9は、カートリッジCにおけるサーマル流路3a~3eの被検出領域(低温ヒータ部642を含む領域)の何れかの領域と対向するように、蛍光検出部8を移動させる。 The driving unit 9 moves the fluorescence detection unit 8 so that it faces one of the detection areas (areas including the low-temperature heater unit 642) of the thermal flow paths 3a to 3e in the cartridge C.
 駆動部9は、核酸の増幅判定を実施可能な状況にある被検出領域と対向する位置に、蛍光検出部8を移動させる。駆動部9が蛍光検出部8を移動させる順番は、予め決められていてもよいし、ランダムでもよい。 The driving unit 9 moves the fluorescence detection unit 8 to a position facing a detection region in a state where the nucleic acid amplification determination can be performed. The order in which the driving unit 9 moves the fluorescence detection unit 8 may be predetermined or may be random.
 以下、蛍光検出装置7による蛍光検出処理について、簡単に説明する。蛍光検出処理は、蛍光検出部8が、カートリッジCの被検出領域と対向した状態で実施される。蛍光検出装置7の蛍光検出処理は、制御部61の制御下で、所定のタイミングで実施される。所定のタイミングは、例えば、検査における伸長反応工程の直後である。 The following is a brief explanation of the fluorescence detection process performed by the fluorescence detection device 7. The fluorescence detection process is performed when the fluorescence detection section 8 faces the detection area of the cartridge C. The fluorescence detection process by the fluorescence detection device 7 is performed at a predetermined timing under the control of the control section 61. The predetermined timing is, for example, immediately after the extension reaction step in the test.
 先ず、光源部801(具体的には、光源801a、801b)は、制御部61の制御下で、任意の光を、カートリッジCの被検出領域に向けて出射する。 First, the light source unit 801 (specifically, light sources 801a and 801b) emits a given light toward the detection area of the cartridge C under the control of the control unit 61.
 光源部801(具体的には、光源801a、801b)から出射された光は、フィルタ部802(具体的には、励起フィルタ802a、802b)に入射する。 Light emitted from the light source unit 801 (specifically, light sources 801a and 801b) enters the filter unit 802 (specifically, excitation filters 802a and 802b).
 そして、フィルタ部802(具体的には、励起フィルタ802a、802b)に入射した光のうち、カートリッジC内の蛍光色素を励起できる波長の光が、フィルタ部802(具体的には、励起フィルタ802a、802b)を通過する。 Then, of the light that enters the filter section 802 (specifically, excitation filters 802a, 802b), light with a wavelength that can excite the fluorescent dye in cartridge C passes through the filter section 802 (specifically, excitation filters 802a, 802b).
 フィルタ部802(具体的には、励起フィルタ802a、802b)を通過した光は、物体側開口部820及び対物レンズ821を通過して、カートリッジCの被検出領域に照射される。 The light that passes through the filter section 802 (specifically, the excitation filters 802a and 802b) passes through the object-side opening 820 and the objective lens 821, and is irradiated onto the detection area of the cartridge C.
 カートリッジCの被検出領域に照射される光は、平行光束の状態で、任意の角度からカートリッジCの被検出領域に照明される。このため、カートリッジCの被検出領域は、照射ムラが少ない状態で照射される。 The light irradiated to the detection area of the cartridge C is a parallel beam of light and is illuminated on the detection area of the cartridge C from any angle. Therefore, the detection area of the cartridge C is irradiated with little unevenness.
 カートリッジC内の蛍光色素が励起されると、蛍光色素は蛍光を出射する。そして、蛍光色素の蛍光を含む光は、対物レンズ821に入射する。本実施形態の場合、対物レンズ821に入射する光の主光線αは、対物レンズ821の光軸Xと平行である。 When the fluorescent dye in cartridge C is excited, the fluorescent dye emits fluorescence. Then, the light containing the fluorescence of the fluorescent dye is incident on objective lens 821. In this embodiment, the chief ray α of the light incident on objective lens 821 is parallel to the optical axis X of objective lens 821.
 対物レンズ821を通過した光は、物体側開口部820を通り、マルチ蛍光フィルタ810に入射する。マルチ蛍光フィルタ810に入射した光のうち、試料に含まれる蛍光色素が発する蛍光が、マルチ蛍光フィルタ810を通過する。 The light that passes through the objective lens 821 passes through the object-side opening 820 and enters the multi-fluorescence filter 810. Of the light that enters the multi-fluorescence filter 810, the fluorescence emitted by the fluorescent dye contained in the sample passes through the multi-fluorescence filter 810.
 マルチ蛍光フィルタ810を通過した光(蛍光)は、結像レンズ811及び像側開口部812を通過して、受光素子813の受光面において、所定の倍率で結像される。受光素子813は、受光した光(蛍光)を電気信号に変換し、制御部61に出力する。制御部61は、受光素子813から受け取った電気信号に基づいて、核酸の増幅判定を行う。 The light (fluorescence) that passes through the multi-fluorescence filter 810 passes through the imaging lens 811 and the image-side opening 812, and is imaged at a predetermined magnification on the light-receiving surface of the light-receiving element 813. The light-receiving element 813 converts the received light (fluorescence) into an electrical signal and outputs it to the control unit 61. The control unit 61 performs an amplification determination of the nucleic acid based on the electrical signal received from the light-receiving element 813.
 次に、核酸増幅装置6において実施される核酸増幅検査方法について説明する。核酸増幅検査方法の各工程の処理は、制御部61により制御される。 Next, we will explain the nucleic acid amplification test method performed in the nucleic acid amplifier 6. The processing of each step of the nucleic acid amplification test method is controlled by the control unit 61.
 核酸増幅検査方法は、RNA抽出工程、試薬混合工程、及びサーマルサイクル工程を含む。又、サーマルサイクル工程は、酵素活性化工程、逆転写工程、熱変性工程、アニーリング工程、及び伸長反応工程を含む。 The nucleic acid amplification test method includes an RNA extraction step, a reagent mixing step, and a thermal cycle step. The thermal cycle step also includes an enzyme activation step, a reverse transcription step, a thermal denaturation step, an annealing step, and an extension reaction step.
 先ず、作業者は、患者から採取した検体と試料とを、容器(不図示)内で混合する。検体には、対象核酸が含まれている。そして、容器内の試料を、カートリッジCの試料滴下口20bから試料貯留空間20aに滴下する。試料滴下口20bと空気孔20cとは、封止部材51、52(図1参照)により塞がれる。ここまでは、核酸増幅装置6の外部で実施される前処理工程である。 First, the operator mixes the specimen collected from the patient with the sample in a container (not shown). The specimen contains the target nucleic acid. The sample in the container is then dripped from the sample drip port 20b of the cartridge C into the sample storage space 20a. The sample drip port 20b and the air hole 20c are blocked by sealing members 51 and 52 (see Figure 1). Up to this point, this is a pre-processing step that is carried out outside the nucleic acid amplification device 6.
 次に、作業者は、試料が収容されたカートリッジCを、核酸増幅装置6のカートリッジ支持部62にセットする。本実施形態の場合、カートリッジCは、カートリッジ支持部62により鉛直に支持される(図8参照)。具体的には、カートリッジCは、低温側ヒート部33が下側に配置され、且つ、高温側ヒート部36が上側に配置されるように、カートリッジ支持部62に支持される。 Next, the operator sets the cartridge C containing the sample in the cartridge support part 62 of the nucleic acid amplification device 6. In this embodiment, the cartridge C is supported vertically by the cartridge support part 62 (see FIG. 8). Specifically, the cartridge C is supported by the cartridge support part 62 so that the low-temperature side heat part 33 is located on the lower side and the high-temperature side heat part 36 is located on the upper side.
 この状態で、作業者が、核酸増幅装置6に対して検査開始操作を行うと、核酸増幅検査が実施される。 In this state, when the operator performs the test start operation on the nucleic acid amplification device 6, the nucleic acid amplification test is carried out.
 図13は、核酸増幅検査における温度サイクルを示すタイムチャートである。図13において、横軸は時間を示し、縦軸は試料の温度を示す。 Figure 13 is a time chart showing the temperature cycle in a nucleic acid amplification test. In Figure 13, the horizontal axis shows time, and the vertical axis shows the temperature of the sample.
 図13の工程S1は、RNA抽出工程である。図13の工程S2は、試薬混合工程である。又、図13の工程S3は、サーマルサイクル工程である。又、図13の工程S3のうちの工程S31は、酵素活性化工程である。又、図13の工程S3のうちの工程S32は、逆転写工程である。 Step S1 in FIG. 13 is an RNA extraction step. Step S2 in FIG. 13 is a reagent mixing step. Step S3 in FIG. 13 is a thermal cycle step. Step S31 in step S3 in FIG. 13 is an enzyme activation step. Step S32 in step S3 in FIG. 13 is a reverse transcription step.
 更に、図13の工程S3のうちの工程S33において、熱変性工程、アニーリング工程、及び伸長反応工程が、所定のサイクル回数、繰り返し実施される。以下、各工程について簡単に説明する。 Furthermore, in step S33 of step S3 in FIG. 13, the thermal denaturation step, annealing step, and extension reaction step are repeated a predetermined number of cycles. Each step will be briefly described below.
 核酸増幅検査が開始されると、図14Aに斜格子で示すように、試料は、試料貯留空間20aに収容されている。この状態で、制御部61は、バルブ駆動部65の第一低温側バルブ駆動部651及び第一高温側バルブ駆動部652を制御して、第一低温側バルブ30及び第一高温側バルブ31を閉状態とする。この際、第二バルブ37は開状態である。 When the nucleic acid amplification test is started, the sample is contained in the sample storage space 20a, as shown by the diagonal grid in Figure 14A. In this state, the control unit 61 controls the first low-temperature side valve drive unit 651 and the first high-temperature side valve drive unit 652 of the valve drive unit 65 to close the first low-temperature side valve 30 and the first high-temperature side valve 31. At this time, the second valve 37 is in an open state.
 図14Aに示すカートリッジCの第一低温側バルブ30、第一高温側バルブ31、及び第二バルブ37の状態、並びに、試料の位置は以下である。図14Aに示すカートリッジCの状態は、RNA抽出工程S1を実施する際のカートリッジCの状態である。
 
 第一低温側バルブ30 : 閉状態
 第一高温側バルブ31 : 閉状態
 第二バルブ37    : 開状態
 試料の位置      : 試料貯留空間20a
 
The states of the first low temperature side valve 30, the first high temperature side valve 31, and the second valve 37 of the cartridge C and the position of the sample shown in Fig. 14A are as follows: The state of the cartridge C shown in Fig. 14A is the state of the cartridge C when the RNA extraction step S1 is performed.

First low-temperature side valve 30: closed state First high-temperature side valve 31: closed state Second valve 37: open state Position of sample: sample storage space 20a
 又、核酸増幅検査が開始されると、制御部61は、低温ヒータ642aを制御して、ベース部1の低温領域R2(具体的には、低温側ヒート部33)を、第一所定温度T1で加熱する。 In addition, when the nucleic acid amplification test is started, the control unit 61 controls the low-temperature heater 642a to heat the low-temperature region R2 of the base unit 1 (specifically, the low-temperature side heat unit 33) to the first predetermined temperature T1.
 又、制御部61は、第一高温ヒータ641aを制御して、ベース部1の第一高温領域R11(具体的には、高温側ヒート部36及び試料貯留空間20a)を、第二所定温度T2で加熱する。 The control unit 61 also controls the first high-temperature heater 641a to heat the first high-temperature region R11 of the base unit 1 (specifically, the high-temperature side heat unit 36 and the sample storage space 20a) to a second predetermined temperature T2.
 更に、制御部61は、第二高温ヒータ641bを制御して、ベース部1の第二高温領域R12(具体的には、プレヒート部35)を、第三所定温度T3で加熱してもよい。尚、プレヒート部35によるベース部1の第二高温領域R12(プレヒート部35)の加熱は、省略されてもよい。 Furthermore, the control unit 61 may control the second high-temperature heater 641b to heat the second high-temperature region R12 (specifically, the preheat section 35) of the base section 1 to a third predetermined temperature T3. Note that the heating of the second high-temperature region R12 (preheat section 35) of the base section 1 by the preheat section 35 may be omitted.
 図14Aに示す状態で、制御部61は、図13のタイムチャートにおけるRNA抽出工程S1を実施する。RNA抽出工程S1において、第一高温領域R11が第一高温ヒータ641aにより加熱されると、第一高温領域R11に設けられた試料貯留空間20aも、第二所定温度T2(例えば、95°)で加熱される。尚、RNA抽出工程S1から後述の第二試料移動工程までが、核酸増幅検査における分注処理に該当する。 In the state shown in FIG. 14A, the control unit 61 performs the RNA extraction step S1 in the time chart of FIG. 13. In the RNA extraction step S1, when the first high temperature area R11 is heated by the first high temperature heater 641a, the sample storage space 20a provided in the first high temperature area R11 is also heated to a second predetermined temperature T2 (e.g., 95°). Note that the process from the RNA extraction step S1 to the second sample movement step described below corresponds to the dispensing process in the nucleic acid amplification test.
 この結果、試料貯留空間20aに収容された試料も、第二所定温度T2で加熱される。試料が加熱されると、対象核酸のエンベローブが破壊されて、対象核酸のRNAが抽出される。RNA抽出工程S1における試料の加熱時間は、例えば、60秒である。尚、RNA抽出工程S1は、対象核酸がRNAである場合に、実施される工程である。 As a result, the sample contained in the sample storage space 20a is also heated to the second predetermined temperature T2. When the sample is heated, the envelope of the target nucleic acid is destroyed and the RNA of the target nucleic acid is extracted. The heating time of the sample in the RNA extraction step S1 is, for example, 60 seconds. Note that the RNA extraction step S1 is a step that is performed when the target nucleic acid is RNA.
 RNA抽出工程S1が終わると、制御部61は、バルブ駆動部65の第一低温側バルブ駆動部651及び第一高温側バルブ駆動部652を制御して、第一低温側バルブ30及び第一高温側バルブ31を開状態とする。 When the RNA extraction process S1 is completed, the control unit 61 controls the first low-temperature side valve drive unit 651 and the first high-temperature side valve drive unit 652 of the valve drive unit 65 to open the first low-temperature side valve 30 and the first high-temperature side valve 31.
 又、制御部61は、第二バルブ駆動部653を制御して、第二バルブ37を閉状態とする。 The control unit 61 also controls the second valve drive unit 653 to close the second valve 37.
 上述のバルブ制御後のカートリッジCの第一低温側バルブ30、第一高温側バルブ31、及び第二バルブ37の状態、並びに、試料の位置は以下である。
 
 第一低温側バルブ30 : 開状態
 第一高温側バルブ31 : 開状態
 第二バルブ37    : 閉状態
 試料の位置      : 試料貯留空間20a
 
The states of the first low temperature side valve 30, the first high temperature side valve 31, and the second valve 37 of the cartridge C, as well as the position of the sample, after the above-mentioned valve control are as follows.

First low-temperature side valve 30: open state First high-temperature side valve 31: open state Second valve 37: closed state Position of sample: sample storage space 20a
 上述のバルブ制御後において、カートリッジCには、試料貯留部20、個別試薬担持部21、第一低温側バルブ30、第一並列流路32a(具体的には、低温側ヒート部33、ポンプ34、プレヒート部35)、及び第一高温側バルブ31を繋ぐ循環流路が形成される。当該循環流路は、第二循環流路の一例に該当する。 After the above-mentioned valve control, a circulation flow path is formed in the cartridge C, connecting the sample storage section 20, the individual reagent support section 21, the first low-temperature side valve 30, the first parallel flow path 32a (specifically, the low-temperature side heat section 33, the pump 34, and the preheat section 35), and the first high-temperature side valve 31. This circulation flow path corresponds to an example of a second circulation flow path.
 次に、制御部61は、第一試料移動工程を実施する。第一試料移動工程は、試料を試料貯留部20から個別試薬担持部21に移動させる工程である。第一試料移動工程において、試料貯留部20に貯留された試料は、ポンプ34により、複数の個別試薬担持部21に分配される。第一試料移動工程は、RNA抽出工程S1と試薬混合工程S2との間に実施される工程である。 Next, the control unit 61 performs a first sample transfer process. The first sample transfer process is a process for transferring the sample from the sample storage unit 20 to the individual reagent holding units 21. In the first sample transfer process, the sample stored in the sample storage unit 20 is distributed to the multiple individual reagent holding units 21 by the pump 34. The first sample transfer process is a process carried out between the RNA extraction process S1 and the reagent mixing process S2.
 制御部61は、ポンプ34を駆動して、試料を試料貯留部20から個別試薬担持部21に移動させる。試料の移動方向は、図14Aにおける時計回りの方向と反対方向である。具体的には、試料は、流路要素L1を通って、試料貯留部20から個別試薬担持部21に移動する。 The control unit 61 drives the pump 34 to move the sample from the sample storage unit 20 to the individual reagent holding unit 21. The direction in which the sample moves is opposite to the clockwise direction in FIG. 14A. Specifically, the sample moves from the sample storage unit 20 to the individual reagent holding unit 21 through the flow path element L1.
 第一試料移動工程において、制御部61は、サーマル流路3a~3eに対応する全てのポンプ駆動部661を制御して、サーマル流路3a~3eに対応する全てのポンプ34を駆動する。 In the first sample movement process, the control unit 61 controls all pump drive units 661 corresponding to the thermal flow paths 3a to 3e to drive all pumps 34 corresponding to the thermal flow paths 3a to 3e.
 ポンプ34のポンプ空間34cには空気が存在しているため、ポンプ34の駆動にともないポンプ空間34c内の空気がポンプ空間34cから押し出される。ポンプ空間34cから押し出される空気の移動方向は、試料の循環方向に一致する。 Since air is present in the pump space 34c of the pump 34, the air in the pump space 34c is pushed out of the pump space 34c as the pump 34 is driven. The direction of movement of the air pushed out of the pump space 34c coincides with the direction of circulation of the sample.
 第二循環流路は、空気及び試料で満たされているため、ポンプ空間34cから押し出された空気の移動と連動して、第二循環流路内の空気及び試料が移動する。この結果、試料貯留部20内の試料が、個別試薬担持部21に向かって移動する。そして、試料は、サーマル流路3a~3eそれぞれの個別試薬担持部21に、順次収容される。 Because the second circulation flow path is filled with air and sample, the air and sample in the second circulation flow path move in conjunction with the movement of the air pushed out from the pump space 34c. As a result, the sample in the sample storage section 20 moves toward the individual reagent carrier 21. The sample is then sequentially stored in the individual reagent carrier 21 of each of the thermal flow paths 3a to 3e.
 制御部61は、サーマル流路3a~3eそれぞれの個別試薬担持部21が試料で満たされたことを検出すると、ポンプ34の駆動を停止する。 When the control unit 61 detects that the individual reagent carriers 21 of the thermal channels 3a to 3e are filled with sample, it stops driving the pump 34.
 尚、第一試料移動工程において、制御部61は、個別試薬担持部21が試料で満たされたサーマル流路3a~3eから順にポンプ駆動部661を停止する。 In addition, in the first sample movement process, the control unit 61 stops the pump drive unit 661 in the order of the thermal flow paths 3a to 3e in which the individual reagent holding units 21 are filled with sample.
 ここで、個別試薬担持部21が試料で満たされたことを検出する方法の一例について説明する。 Here, we will explain one example of a method for detecting when the individual reagent holder 21 is filled with sample.
 先ず、第一の検出方法では、流路2における個別試薬担持部21と第一低温側バルブ30との間の流路に試料が収容されたことを検出するための試料位置検出部(不図示)を設ける。そして、制御部61は、この試料位置検出部が試料を検出した場合に、個別試薬担持部21が試料で満たされたと判定する。尚、上記試料位置検出部の構成は、既述の試料位置検出部67の低温側検出部671等の構成と同様であってよい。 First, in the first detection method, a sample position detection unit (not shown) is provided to detect that a sample has been contained in the flow path between the individual reagent holding unit 21 and the first low-temperature side valve 30 in the flow path 2. Then, when this sample position detection unit detects a sample, the control unit 61 determines that the individual reagent holding unit 21 is filled with sample. The configuration of the sample position detection unit may be the same as the configuration of the low-temperature side detection unit 671 of the sample position detection unit 67 described above.
 又、第二の検出方法では、制御部61は、試料位置検出部67の低温側検出部671が試料を検出した場合に、個別試薬担持部21が試料で満たされたと判定する。第二の検出方法の場合、低温側検出部671が試料を検出した状態では、試料の一部が個別試薬担持部21よりも下流側に存在している。このため、制御部61は、ポンプ34を逆に駆動して、試料を上流側に所定量移動させる。 In addition, in the second detection method, the control unit 61 determines that the individual reagent holding unit 21 is filled with sample when the low temperature side detection unit 671 of the sample position detection unit 67 detects a sample. In the case of the second detection method, when the low temperature side detection unit 671 detects a sample, a portion of the sample is present downstream of the individual reagent holding unit 21. Therefore, the control unit 61 drives the pump 34 in the reverse direction to move a predetermined amount of sample upstream.
 尚、第一試料移動工程では、試料はヒータ部64により加熱されない。つまり、第一試料移動工程において試料は、主に装置内の温度の影響を受ける。第一試料移動工程の時間は、約10~30秒である。 In addition, in the first sample movement process, the sample is not heated by the heater unit 64. In other words, in the first sample movement process, the sample is mainly affected by the temperature inside the device. The time for the first sample movement process is approximately 10 to 30 seconds.
 第一試料移動工程が終わると、カートリッジCは、図14Bに示す状態となる。図14Bに示すカートリッジCの第一低温側バルブ30、第一高温側バルブ31、及び第二バルブ37の状態、並びに、試料の位置は以下である。図14Bに示すカートリッジCの状態は、第一試料移動工程の後に実施される試薬混合工程S2及び第二試料移動工程におけるカートリッジCの状態でもある。
 
 第一低温側バルブ30 : 開状態
 第一高温側バルブ31 : 開状態
 第二バルブ37    : 閉状態
 試料の位置      : 個別試薬担持部21
 
When the first sample transfer step is completed, the cartridge C is in the state shown in Fig. 14B. The states of the first low temperature side valve 30, the first high temperature side valve 31, and the second valve 37 of the cartridge C and the position of the sample shown in Fig. 14B are as follows. The state of the cartridge C shown in Fig. 14B is also the state of the cartridge C in the reagent mixing step S2 and the second sample transfer step performed after the first sample transfer step.

First low-temperature side valve 30: open state First high-temperature side valve 31: open state Second valve 37: closed state Position of sample: individual reagent support portion 21
 次に、図14Bに示す状態で、図13のタイムチャートにおける試薬混合工程S2が実施される。試薬混合工程S2において、制御部61は、振動部63を駆動する。そして、振動部63は、個別試薬担持部21に振動を付与する。 Next, in the state shown in FIG. 14B, the reagent mixing step S2 in the time chart of FIG. 13 is performed. In the reagent mixing step S2, the control unit 61 drives the vibration unit 63. Then, the vibration unit 63 applies vibration to the individual reagent holder 21.
 個別試薬担持部21が振動を付与されると、個別試薬担持部21において試料と個別試薬とが混合される。尚、試薬混合工程S2における試料の温度は、例えば、低温ヒータ642aの加熱温度である第一所定温度T1である。但し、試薬混合工程における試料の温度は、第一所定温度T1に限定されない。 When the individual reagent holder 21 is vibrated, the sample and the individual reagent are mixed in the individual reagent holder 21. The temperature of the sample in the reagent mixing process S2 is, for example, a first predetermined temperature T1, which is the heating temperature of the low-temperature heater 642a. However, the temperature of the sample in the reagent mixing process is not limited to the first predetermined temperature T1.
 次に、制御部61は、第二試料移動工程を実施する。第二試料移動工程は、試料を個別試薬担持部21から低温側ヒート部33に移動させる工程である。第二試料移動工程は、試薬混合工程S2とサーマルサイクル工程S3(具体的には、酵素活性化工程S31)との間に実施される工程である。 Next, the control unit 61 performs a second sample transfer process. The second sample transfer process is a process for transferring the sample from the individual reagent support unit 21 to the low-temperature side heat unit 33. The second sample transfer process is a process carried out between the reagent mixing process S2 and the thermal cycle process S3 (specifically, the enzyme activation process S31).
 制御部61は、ポンプ34を駆動して、試料を個別試薬担持部21から低温側ヒート部33に移動させる。試料の移動方向は、図14Bにおける時計回りの方向と反対方向である。具体的には、試料は、流路要素L3(図2参照)を通って、個別試薬担持部21から低温側ヒート部33に移動する。 The control unit 61 drives the pump 34 to move the sample from the individual reagent holder 21 to the low-temperature side heat unit 33. The direction in which the sample moves is opposite to the clockwise direction in FIG. 14B. Specifically, the sample moves from the individual reagent holder 21 to the low-temperature side heat unit 33 through the flow path element L3 (see FIG. 2).
 第二試料移動工程において、制御部61は、サーマル流路3a~3eに対応する全てのポンプ駆動部661を制御して、サーマル流路3a~3eに対応する全てのポンプ34を駆動する。この結果、試料は、サーマル流路3a~3eそれぞれの低温側ヒート部33に、順次収容される。 In the second sample movement process, the control unit 61 controls all pump drive units 661 corresponding to the thermal flow paths 3a to 3e to drive all pumps 34 corresponding to the thermal flow paths 3a to 3e. As a result, the sample is sequentially accommodated in the low-temperature side heat units 33 of each of the thermal flow paths 3a to 3e.
 制御部61は、サーマル流路3a~3eそれぞれの低温側ヒート部33に試料が収容されたことを検出すると、ポンプ34の駆動を停止する。 When the control unit 61 detects that a sample has been placed in the low-temperature side heat unit 33 of each of the thermal flow paths 3a to 3e, it stops driving the pump 34.
 尚、第二試料移動工程において、制御部61は、試料位置検出部67の低温側検出部671の検出値に基づいて、試料が低温側ヒート部33に収容されたことを示す情報(低温側収容情報)を取得する。 In addition, in the second sample movement process, the control unit 61 acquires information indicating that the sample has been accommodated in the low-temperature side heat unit 33 (low-temperature side accommodation information) based on the detection value of the low-temperature side detection unit 671 of the sample position detection unit 67.
 そして、制御部61は、取得した低温側収容情報に基づいて、試料が低温側ヒート部33に収容されたか否かを判定する。制御部61は、試料が低温側ヒート部33に収容されたサーマル流路3a~3eから順にポンプ駆動部661を停止する。 Then, the control unit 61 determines whether or not a sample has been accommodated in the low-temperature side heat unit 33 based on the acquired low-temperature side accommodation information. The control unit 61 stops the pump drive unit 661 in the order of thermal flow paths 3a to 3e in which a sample has been accommodated in the low-temperature side heat unit 33.
 第二試料移動工程が終わると、制御部61は、第一低温側バルブ駆動部651及び第一高温側バルブ駆動部652を制御して、第一低温側バルブ30及び第一高温側バルブ31を閉状態とする。 When the second sample movement process is completed, the control unit 61 controls the first low-temperature side valve drive unit 651 and the first high-temperature side valve drive unit 652 to close the first low-temperature side valve 30 and the first high-temperature side valve 31.
 又、制御部61は、第二バルブ駆動部653を制御して、第二バルブ37を開状態とする。この状態で、流路2において、サーマル流路3a~3eの循環流路32が閉流路となる。この状態の循環流路32は、第一循環流路の一例に該当する。第一循環流路は、核酸増幅検査におけるサーマルサイクル処理S3において形成される流路である。 The control unit 61 also controls the second valve drive unit 653 to open the second valve 37. In this state, the circulation flow paths 32 of the thermal flow paths 3a to 3e in the flow path 2 become closed flow paths. The circulation flow paths 32 in this state correspond to an example of the first circulation flow path. The first circulation flow path is a flow path formed in the thermal cycle process S3 in the nucleic acid amplification test.
 尚、流路2に第一循環流路が形成されると、第二循環流路は循環流路ではなくなる。つまり、流路2は、核酸増幅検査において、第一低温側バルブ30、第一高温側バルブ31、及び第二バルブ37の状態に応じて、第一循環流路が形成された状態(流路2の第一状態とも称する。)と、第二循環流路が形成された状態(流路2の第二状態とも称する。)と、を択一的に取り得る。 When the first circulation flow path is formed in flow path 2, the second circulation flow path is no longer a circulation flow path. In other words, in a nucleic acid amplification test, flow path 2 can alternatively be in a state where the first circulation flow path is formed (also referred to as the first state of flow path 2) or a state where the second circulation flow path is formed (also referred to as the second state of flow path 2), depending on the states of first low-temperature side valve 30, first high-temperature side valve 31, and second valve 37.
 上述のバルブ制御が終わると、カートリッジCは、図14Cに示す状態となる。図14Cに示すカートリッジCの第一低温側バルブ30、第一高温側バルブ31、及び第二バルブ37の状態、並びに、試料の位置は以下である。
 
 第一低温側バルブ30 : 閉状態
 第一高温側バルブ31 : 閉状態
 第二バルブ37    : 開状態
 試料の位置      : 低温側ヒート部33
 
When the above-mentioned valve control is completed, the cartridge C is in the state shown in Fig. 14C. The states of the first low temperature side valve 30, the first high temperature side valve 31, and the second valve 37 of the cartridge C and the position of the sample shown in Fig. 14C are as follows.

First low-temperature side valve 30: closed state First high-temperature side valve 31: closed state Second valve 37: open state Position of sample: low-temperature side heat unit 33
 次に、制御部61は、第三試料移動工程を実施する。第三試料移動工程は、試料を低温側ヒート部33から高温側ヒート部36に移動させる工程である。 Next, the control unit 61 performs a third sample transfer process. The third sample transfer process is a process for transferring the sample from the low-temperature side heat unit 33 to the high-temperature side heat unit 36.
 制御部61は、ポンプ34を駆動して、試料を低温側ヒート部33から高温側ヒート部36に移動させる。試料の移動方向は、図14Cにおける時計回りの方向と反対方向である。 The control unit 61 drives the pump 34 to move the sample from the low-temperature side heat unit 33 to the high-temperature side heat unit 36. The direction in which the sample moves is opposite to the clockwise direction in FIG. 14C.
 具体的には、試料は、流路要素L5(図2参照)、ポンプ34、流路要素L6(図2参照)、プレヒート部35、及び流路要素L7(図2参照)を通って、低温側ヒート部33から高温側ヒート部36に移動する。 Specifically, the sample moves from the low-temperature side heat section 33 to the high-temperature side heat section 36 through flow path element L5 (see FIG. 2), pump 34, flow path element L6 (see FIG. 2), preheat section 35, and flow path element L7 (see FIG. 2).
 第三試料移動工程において、制御部61は、サーマル流路3a~3eに対応する全てのポンプ駆動部661を制御して、サーマル流路3a~3eに対応する全てのポンプ34を駆動する。この結果、試料は、サーマル流路3a~3eそれぞれの高温側ヒート部36に、順次収容される。 In the third sample movement process, the control unit 61 controls all pump drive units 661 corresponding to the thermal flow paths 3a to 3e to drive all pumps 34 corresponding to the thermal flow paths 3a to 3e. As a result, the sample is sequentially accommodated in the high-temperature side heat units 36 of each of the thermal flow paths 3a to 3e.
 制御部61は、サーマル流路3a~3eそれぞれの高温側ヒート部36に試料が収容されたことを検出すると、ポンプ34の駆動を停止する。 When the control unit 61 detects that a sample has been placed in the high-temperature side heat unit 36 of each of the thermal flow paths 3a to 3e, it stops driving the pump 34.
 尚、第三試料移動工程において、制御部61は、試料位置検出部67の高温側検出部672の検出値に基づいて、試料が高温側ヒート部36に収容されたことを示す情報(高温側収容情報)を取得する。 In addition, in the third sample movement process, the control unit 61 acquires information indicating that the sample has been accommodated in the high-temperature side heat unit 36 (high-temperature side accommodation information) based on the detection value of the high-temperature side detection unit 672 of the sample position detection unit 67.
 そして、制御部61は、取得した高温側収容情報に基づいて、試料が高温側ヒート部36に収容されたか否かを判定する。制御部61は、試料が高温側ヒート部36に収容されたサーマル流路3a~3eから順にポンプ駆動部661を停止する。 Then, the control unit 61 determines whether or not a sample has been accommodated in the high-temperature side heat unit 36 based on the acquired high-temperature side accommodation information. The control unit 61 stops the pump drive unit 661 in the order of thermal flow paths 3a to 3e in which a sample has been accommodated in the high-temperature side heat unit 36.
 第三試料移動工程が終わると、カートリッジCは、図14Dに示す状態となる。図14Dに示すカートリッジCの第一低温側バルブ30、第一高温側バルブ31、及び第二バルブ37の状態、並びに、試料の位置は以下である。
 
 第一低温側バルブ30 : 閉状態
 第一高温側バルブ31 : 閉状態
 第二バルブ37    : 開状態
 試料の位置      : 高温側ヒート部36
 
When the third sample movement step is completed, the cartridge C is in the state shown in Fig. 14D. The states of the first low temperature side valve 30, the first high temperature side valve 31, and the second valve 37 of the cartridge C shown in Fig. 14D, and the position of the sample are as follows.

First low-temperature side valve 30: closed state First high-temperature side valve 31: closed state Second valve 37: open state Position of sample: high-temperature side heat unit 36
 次に、制御部61は、図14Dに示す状態で、図13のタイムチャートにおける酵素活性化工程S31を実施する。酵素活性化工程S31は、試料内の酵素の活性を高めるための工程である。酵素活性化工程S31において、制御部61は、所定時間(例えば、60秒)の間、高温側ヒート部36内の試料を、第一高温ヒータ641aにより第二所定温度T2(例えば、95度)で加熱する。 Next, in the state shown in FIG. 14D, the control unit 61 performs the enzyme activation step S31 in the time chart of FIG. 13. The enzyme activation step S31 is a step for increasing the activity of the enzyme in the sample. In the enzyme activation step S31, the control unit 61 heats the sample in the high-temperature side heat unit 36 to a second predetermined temperature T2 (e.g., 95 degrees) by the first high-temperature heater 641a for a predetermined time (e.g., 60 seconds).
 換言すれば、第一高温ヒータ641aは高温側ヒート部36を常時加熱しているため、制御部61は、所定時間の間、試料を高温側ヒート部36に留める。 In other words, since the first high-temperature heater 641a constantly heats the high-temperature side heat section 36, the control section 61 keeps the sample at the high-temperature side heat section 36 for a predetermined time.
 次に、制御部61は、第四試料移動工程を実施する。第四試料移動工程は、試料を高温側ヒート部36から低温側ヒート部33に移動させる工程である。第四試料移動工程は、酵素活性化工程S31と逆転写工程S32の間に実施される工程である。 Next, the control unit 61 performs a fourth sample transfer process. The fourth sample transfer process is a process for transferring the sample from the high-temperature side heat unit 36 to the low-temperature side heat unit 33. The fourth sample transfer process is a process carried out between the enzyme activation process S31 and the reverse transcription process S32.
 制御部61は、ポンプ34を駆動して、試料を高温側ヒート部36から低温側ヒート部33に移動させる。試料の移動方向は、図14Dにおける時計回りの方向と反対方向である。具体的には、試料は、流路要素L8(図2参照)を通って、高温側ヒート部36から低温側ヒート部33に移動する。 The control unit 61 drives the pump 34 to move the sample from the high-temperature side heat unit 36 to the low-temperature side heat unit 33. The direction in which the sample moves is opposite to the clockwise direction in FIG. 14D. Specifically, the sample moves from the high-temperature side heat unit 36 to the low-temperature side heat unit 33 through the flow path element L8 (see FIG. 2).
 第四試料移動工程において、制御部61は、サーマル流路3a~3eに対応する全てのポンプ駆動部661を制御して、サーマル流路3a~3eに対応する全てのポンプ34を駆動する。この結果、試料は、サーマル流路3a~3eそれぞれの低温側ヒート部33に、順次収容される。 In the fourth sample movement process, the control unit 61 controls all pump drive units 661 corresponding to the thermal flow paths 3a to 3e to drive all pumps 34 corresponding to the thermal flow paths 3a to 3e. As a result, the sample is sequentially accommodated in the low-temperature side heat units 33 of each of the thermal flow paths 3a to 3e.
 制御部61は、サーマル流路3a~3eそれぞれの低温側ヒート部33に試料が収容されたことを検出すると、ポンプ34の駆動を停止する。 When the control unit 61 detects that a sample has been placed in the low-temperature side heat unit 33 of each of the thermal flow paths 3a to 3e, it stops driving the pump 34.
 尚、第四試料移動工程において、制御部61は、試料位置検出部67の低温側検出部671の検出値に基づいて、試料が低温側ヒート部33に収容されたことを示す情報(低温側収容情報)を取得する。 In addition, in the fourth sample movement process, the control unit 61 acquires information indicating that the sample has been accommodated in the low-temperature side heat unit 33 (low-temperature side accommodation information) based on the detection value of the low-temperature side detection unit 671 of the sample position detection unit 67.
 そして、制御部61は、取得した低温側収容情報に基づいて、試料が低温側ヒート部33に収容されたか否かを判定する。制御部61は、試料が低温側ヒート部33に収容されたサーマル流路3a~3eから順にポンプ駆動部661を停止する。 Then, the control unit 61 determines whether or not a sample has been accommodated in the low-temperature side heat unit 33 based on the acquired low-temperature side accommodation information. The control unit 61 stops the pump drive unit 661 in the order of thermal flow paths 3a to 3e in which a sample has been accommodated in the low-temperature side heat unit 33.
 第四試料移動工程が終わると、カートリッジCは、図14Cに示す状態となる。図14Cに示すカートリッジCの第一低温側バルブ30、第一高温側バルブ31、及び第二バルブ37の状態、並びに、試料の位置は以下である。
 
 第一低温側バルブ30 : 閉状態
 第一高温側バルブ31 : 閉状態
 第二バルブ37    : 開状態
 試料の位置      : 低温側ヒート部33
 
When the fourth sample movement step is completed, the cartridge C is in the state shown in Fig. 14C. The states of the first low temperature side valve 30, the first high temperature side valve 31, and the second valve 37 of the cartridge C and the position of the sample shown in Fig. 14C are as follows.

First low-temperature side valve 30: closed state First high-temperature side valve 31: closed state Second valve 37: open state Position of sample: low-temperature side heat unit 33
 次に、制御部61は、図14Cに示す状態で、図13のタイムチャートにおける逆転写工程S32を実施する。逆転写工程S32は、試料内のRNAと酵素(逆転写酵素)との間で所謂逆転写反応を開始させるための工程である。 Next, the control unit 61 performs the reverse transcription step S32 in the time chart of FIG. 13 in the state shown in FIG. 14C. The reverse transcription step S32 is a step for starting the so-called reverse transcription reaction between the RNA in the sample and an enzyme (reverse transcriptase).
 逆転写工程において、制御部61は、所定時間(例えば、60秒)の間、低温側ヒート部33内の試料を、低温ヒータ642aにより第一所定温度T1(例えば、60度)で加熱する。 In the reverse transcription process, the control unit 61 heats the sample in the low-temperature side heating unit 33 to a first predetermined temperature T1 (e.g., 60 degrees) using the low-temperature heater 642a for a predetermined time (e.g., 60 seconds).
 換言すれば、低温ヒータ642aは低温側ヒート部33を常時加熱しているため、制御部61は、所定時間の間、試料を低温側ヒート部33に留める。 In other words, since the low-temperature heater 642a constantly heats the low-temperature side heat section 33, the control section 61 keeps the sample in the low-temperature side heat section 33 for a specified time.
 次に、制御部61は、第三試料移動工程と同様に、ポンプ34を駆動して、試料を低温側ヒート部33から高温側ヒート部36に移動させる。試料は、プレヒート部35を通る際、プレヒート部35で加熱されて昇温する。 Next, the control unit 61 drives the pump 34 to move the sample from the low-temperature side heat unit 33 to the high-temperature side heat unit 36, as in the third sample movement process. As the sample passes through the preheat unit 35, it is heated by the preheat unit 35 and the temperature of the sample increases.
 プレヒート部35を加熱する第二高温ヒータ641bの加熱温度は第三所定温度T3であるため、試料は、プレヒート部35を通過する際、最高で第三所定温度T3まで昇温する。 The heating temperature of the second high-temperature heater 641b that heats the preheat section 35 is the third predetermined temperature T3, so when the sample passes through the preheat section 35, the temperature of the sample rises to a maximum of the third predetermined temperature T3.
 試料が高温側ヒート部36に収容されると、カートリッジCは、図14Dに示す状態となる。図14Dに示すカートリッジCの第一低温側バルブ30、第一高温側バルブ31、及び第二バルブ37の状態、並びに、試料の位置は以下である。
 
 第一低温側バルブ30 : 閉状態
 第一高温側バルブ31 : 閉状態
 第二バルブ37    : 開状態
 試料の位置      : 高温側ヒート部36
 
When the sample is accommodated in the high-temperature side heating part 36, the cartridge C is in the state shown in Fig. 14D. The states of the first low-temperature side valve 30, the first high-temperature side valve 31, and the second valve 37 of the cartridge C shown in Fig. 14D, and the position of the sample are as follows.

First low-temperature side valve 30: closed state First high-temperature side valve 31: closed state Second valve 37: open state Position of sample: high-temperature side heat unit 36
 次に、制御部61は、図14Dに示す状態で、図13のタイムチャートにおける工程S33で熱変性工程を実施する。熱変性工程において、制御部61は、所定時間(例えば、2秒)の間、高温側ヒート部36内の試料を、第一高温ヒータ641aにより第二所定温度T2(例えば、95度)で加熱する。 Next, in the state shown in FIG. 14D, the control unit 61 performs the thermal denaturation step at step S33 in the time chart of FIG. 13. In the thermal denaturation step, the control unit 61 heats the sample in the high-temperature side heat unit 36 to a second predetermined temperature T2 (e.g., 95°C) by the first high-temperature heater 641a for a predetermined time (e.g., 2 seconds).
 換言すれば、第一高温ヒータ641aは高温側ヒート部36を常時加熱しているため、制御部61は、所定時間の間、試料を高温側ヒート部36に留める。 In other words, since the first high-temperature heater 641a constantly heats the high-temperature side heat section 36, the control section 61 keeps the sample at the high-temperature side heat section 36 for a predetermined time.
 本実施形態の場合、試料は、プレヒート部35において第三所定温度T3で加熱されているため、高温側ヒート部36に流入した時点で、すでに高温となっている。このため、高温側ヒート部36において試料を加熱する時間を短縮できる。 In this embodiment, the sample is heated to the third predetermined temperature T3 in the preheat section 35, so it is already at a high temperature when it flows into the high-temperature side heat section 36. This makes it possible to shorten the time it takes to heat the sample in the high-temperature side heat section 36.
 次に、制御部61は、第四試料移動工程と同様に、ポンプ34を駆動して、試料を高温側ヒート部36から低温側ヒート部33に移動させる。 Next, the control unit 61 drives the pump 34 to move the sample from the high-temperature side heat unit 36 to the low-temperature side heat unit 33, similar to the fourth sample movement process.
 試料が低温側ヒート部33に収容されると、カートリッジCは、図14Cに示す状態となる。図14Cに示すカートリッジCの第一低温側バルブ30、第一高温側バルブ31、及び第二バルブ37の状態、並びに、試料の位置は以下である。
 
 第一低温側バルブ30 : 閉状態
 第一高温側バルブ31 : 閉状態
 第二バルブ37    : 開状態
 試料の位置      : 低温側ヒート部33
 
When the sample is accommodated in the low-temperature side heating part 33, the cartridge C is in the state shown in Fig. 14C. The states of the first low-temperature side valve 30, the first high-temperature side valve 31, and the second valve 37 of the cartridge C shown in Fig. 14C, and the position of the sample are as follows.

First low-temperature side valve 30: closed state First high-temperature side valve 31: closed state Second valve 37: open state Position of sample: low-temperature side heat unit 33
 次に、制御部61は、図14Cに示す状態で、図13のタイムチャートにおける工程S33でアニーリング工程及び伸長反応工程を実施する。アニーリング工程及び伸長反応工程において、制御部61は、所定時間(例えば、5秒)の間、低温側ヒート部33内の試料を、低温ヒータ642aにより第一所定温度T1(例えば、60度)で加熱する。 Next, in the state shown in FIG. 14C, the control unit 61 performs an annealing step and an extension reaction step at step S33 in the time chart of FIG. 13. In the annealing step and the extension reaction step, the control unit 61 heats the sample in the low-temperature side heat unit 33 to a first predetermined temperature T1 (e.g., 60 degrees) by the low-temperature heater 642a for a predetermined time (e.g., 5 seconds).
 換言すれば、低温ヒータ642aは低温側ヒート部33を常時加熱しているため、制御部61は、所定時間の間、試料を低温側ヒート部33に留める。 In other words, since the low-temperature heater 642a constantly heats the low-temperature side heat section 33, the control section 61 keeps the sample in the low-temperature side heat section 33 for a specified time.
 又、制御部61は、アニーリング工程及び伸長反応工程とともに、所定のタイミングで、蛍光検出装置7の検出値に基づいて、増幅判定処理を実施する。増幅判定処理については既述の通りである。所定のタイミングは、例えば、伸長反応工程の直後である。 In addition, the control unit 61 performs an amplification determination process based on the detection value of the fluorescence detection device 7 at a predetermined timing, along with the annealing process and the extension reaction process. The amplification determination process is as described above. The predetermined timing is, for example, immediately after the extension reaction process.
 その後、所定サイクル(例えば、40サイクル)だけ熱変性工程、アニーリング工程、及び伸長反応工程を繰り返し実施する。制御部61は、各サイクルにおけるアニーリング工程、及び伸長反応工程とともに、増幅判定処理を実施する。 Then, the thermal denaturation step, annealing step, and extension reaction step are repeatedly performed for a predetermined number of cycles (e.g., 40 cycles). The control unit 61 performs an amplification determination process along with the annealing step and extension reaction step in each cycle.
 尚、制御部61は、例えば、低温側検出部671の検出回数に基づいて、サーマルサイクル処理のサイクル回数をカウントする。或いは、制御部61は、例えば、蛍光検出装置7の検出回数に基づいて、サーマルサイクル処理のサイクル回数をカウントしてもよい。 The control unit 61 counts the number of cycles of the thermal cycle process, for example, based on the number of detections by the low-temperature side detection unit 671. Alternatively, the control unit 61 may count the number of cycles of the thermal cycle process, for example, based on the number of detections by the fluorescence detection device 7.
 図13のタイムチャートに示すように、本実施形態に係る核酸増幅検査方法の場合、1回の検査が、約900秒(15分)で終了する。 As shown in the time chart in FIG. 13, in the case of the nucleic acid amplification testing method according to this embodiment, one test is completed in approximately 900 seconds (15 minutes).
 (本実施形態の作用・効果)
 以上のような構成を有する本実施形態に係るカートリッジC、核酸増幅装置6、及び核酸増幅検査方法によれば、サーマルサイクル処理において、試料は、カートリッジCの循環流路32を所定方向に循環的に移動する。このため、試料の移動方向の切り換え制御等の面倒な制御が不要となり、検査に要する時間を短くできる。
(Actions and Effects of the Present Embodiment)
According to the cartridge C, nucleic acid amplifier 6, and nucleic acid amplification testing method of this embodiment having the above-mentioned configurations, in the thermal cycle process, the sample circulates in a predetermined direction through the circulation flow path 32 of the cartridge C. This eliminates the need for cumbersome controls such as switching the sample movement direction, and shortens the time required for testing.
 又、本実施形態のカートリッジC、核酸増幅装置6、及び核酸増幅検査方法によれば、サーマルサイクル処理において、試料は、カートリッジCの循環流路32を所定方向に循環的に移動する。このため、試料の位置検出、試料の位置制御、及び核酸増幅装置6の駆動制御を、比較的容易に行うことができる。この結果、核酸増幅装置6の構成を、比較的簡易にできる。よって、核酸増幅装置6の製造コストの低減を図れる。 Furthermore, according to the cartridge C, nucleic acid amplifier 6, and nucleic acid amplification testing method of this embodiment, in the thermal cycle process, the sample moves cyclically in a predetermined direction through the circulation flow path 32 of the cartridge C. Therefore, it is relatively easy to detect the position of the sample, control the position of the sample, and control the drive of the nucleic acid amplifier 6. As a result, the configuration of the nucleic acid amplifier 6 can be made relatively simple. Therefore, the manufacturing cost of the nucleic acid amplifier 6 can be reduced.
 又、本実施形態のカートリッジCは、対象核酸に対応する個別試薬を予め担持する個別試薬担持部21を有する。このため、従来から行われてきた、カートリッジ外で検体と個別試薬とを混合する前処理工程を省略できる。この結果、作業者の手間を減らしつつ、検査時間を短縮できる。 In addition, the cartridge C of this embodiment has an individual reagent carrying section 21 that carries in advance an individual reagent corresponding to the target nucleic acid. This makes it possible to omit the pre-treatment step of mixing the sample and the individual reagent outside the cartridge, which has been conventionally performed. As a result, it is possible to reduce the testing time while reducing the burden on the operator.
 又、本実施形態の場合、検査時に、カートリッジCの流路2が、封止部材50、51、52により、外気から完全に遮断される。このため、検査時のウイルスの漏洩を確実に抑制しつつ、検査を確実に実施できる。 In addition, in the case of this embodiment, during testing, the flow path 2 of the cartridge C is completely blocked from the outside air by the sealing members 50, 51, and 52. This ensures that the test can be performed reliably while reliably preventing the leakage of viruses during testing.
 又、本実施形態のカートリッジCは、複数のサーマル流路3a~3eを有している。このため、1回の検査で、複数項目の検査を実施できる。この結果、作業者の手間及び被験者の負担を減らしつつ、検査効率を向上できる。 In addition, the cartridge C of this embodiment has multiple thermal flow paths 3a to 3e. This allows multiple items to be tested in one test. As a result, it is possible to improve the efficiency of testing while reducing the workload of the operator and the burden on the subject.
 又、本実施形態の核酸増幅装置6は、検査時に、カートリッジCを、低温側ヒート部33が下側に配置されるように鉛直に支持する。このため、サーマルサイクル処理の開始位置である低温側ヒート部33に、試料を集めやすくなる。又、試料に作用する重力の影響により、流路2内の試料を一つの塊として維持しやすくなる。 In addition, during testing, the nucleic acid amplification device 6 of this embodiment supports the cartridge C vertically so that the low-temperature side heat section 33 is positioned at the bottom. This makes it easier to collect the sample at the low-temperature side heat section 33, which is the starting position for the thermal cycle process. In addition, the effect of gravity acting on the sample makes it easier to maintain the sample in the flow channel 2 as a single mass.
 更に、低温側ヒート部33が高温側ヒート部36よりも下方に配置されているため、検査時に、低温側ヒート部33が、高温ヒータ部641の熱の影響を受けにくくなる。この結果、安定した検査結果を得ることができる。 Furthermore, because the low-temperature side heat section 33 is positioned lower than the high-temperature side heat section 36, the low-temperature side heat section 33 is less susceptible to the heat of the high-temperature heater section 641 during testing. As a result, stable test results can be obtained.
 (付記)
 上述の実施形態1に係る核酸増幅検査方法の場合、試料は、ポンプ34を通過する経路で、循環流路32を循環的に流通する。但し、試料は、核酸増幅検査時に、ポンプ34を通過しない経路で、循環流路32を循環的に流通してもよい。具体的には、試料は、核酸増幅検査におけるサーマルサイクル処理時に、ポンプ34を通過しない経路で、循環流路32を循環的に流通してもよい。
(Additional Note)
In the case of the nucleic acid amplification testing method according to the above-mentioned first embodiment, the sample circulates through the circulation flow path 32 in a path that passes through the pump 34. However, during the nucleic acid amplification testing, the sample may circulate through the circulation flow path 32 in a path that does not pass through the pump 34. Specifically, the sample may circulate through the circulation flow path 32 in a path that does not pass through the pump 34 during the thermal cycle processing in the nucleic acid amplification testing.
 以下、核酸増幅検査方法の変形例1について説明する。尚、核酸増幅検査方法の変形例1の説明において、上述の実施形態1で使用した図面を適宜援用する。 Below, Variant 1 of the nucleic acid amplification testing method will be described. In the description of Variant 1 of the nucleic acid amplification testing method, the drawings used in the above-mentioned embodiment 1 will be appropriately cited.
 又、核酸増幅検査方法の変形例1において使用されるカートリッジCの構成は、上述の実施形態1におけるカートリッジCの構成と同様である。但し、カートリッジの構成は、実施形態1におけるカートリッジCの構成と異なってもよい。 The configuration of the cartridge C used in the modified example 1 of the nucleic acid amplification testing method is the same as the configuration of the cartridge C in the above-mentioned embodiment 1. However, the configuration of the cartridge may be different from the configuration of the cartridge C in embodiment 1.
 又、核酸増幅検査方法の変形例1において使用される核酸増幅装置6の構成も、上述の実施形態1における核酸増幅装置6の構成とほぼ同様である。但し、核酸増幅装置の構成は、実施形態1における核酸増幅装置6の構成と異なってもよい。 The configuration of the nucleic acid amplifier 6 used in the modified example 1 of the nucleic acid amplification testing method is also substantially the same as the configuration of the nucleic acid amplifier 6 in the above-mentioned embodiment 1. However, the configuration of the nucleic acid amplifier may be different from the configuration of the nucleic acid amplifier 6 in embodiment 1.
 本変形例の場合、核酸増幅検査方法を実施する核酸増幅装置6の動作が、上述の実施形態1における核酸増幅装置6の動作と異なる。以下、核酸増幅検査方法の変形例1について、上述の実施形態1に係る核酸増幅検査方法と異なる構成を中心に説明する。 In the case of this modified example, the operation of the nucleic acid amplification device 6 that performs the nucleic acid amplification testing method differs from the operation of the nucleic acid amplification device 6 in the above-mentioned embodiment 1. Below, modified example 1 of the nucleic acid amplification testing method will be described, focusing on the configuration that differs from the nucleic acid amplification testing method according to the above-mentioned embodiment 1.
 核酸増幅検査方法の変形例1において、上述の実施形態1に係る核酸増幅検査方法と同じ構成に関する説明は、実施形態1に係る核酸増幅検査方法の説明を適宜援用してよい。 In the nucleic acid amplification testing method variant 1, the explanation of the configuration that is the same as that of the nucleic acid amplification testing method of embodiment 1 described above may be appropriately cited from the explanation of the nucleic acid amplification testing method of embodiment 1.
 本変形例の場合、サーマルサイクル処理時に、試料は、循環流路32における第一位置と第二位置との間を、繰り返し往復移動する。換言すれば、カートリッジCのポンプ34は、試料を、循環流路32における第一位置と第二位置との間で繰り返し往復移動させる。更に換言すれば、核酸増幅装置6の制御部61は、ポンプ34を駆動して、試料を、循環流路32における第一位置と第二位置との間で繰り返し往復移動させる。 In the case of this modified example, during thermal cycle processing, the sample repeatedly moves back and forth between the first position and the second position in the circulation flow path 32. In other words, the pump 34 of the cartridge C repeatedly moves the sample back and forth between the first position and the second position in the circulation flow path 32. In further other words, the control unit 61 of the nucleic acid amplification device 6 drives the pump 34 to repeatedly move the sample back and forth between the first position and the second position in the circulation flow path 32.
 本変形例のように、循環流路32における第一位置と第二位置との間を繰り返し移動することも、試料が循環的に流通することの概念に含まれる。つまり、試料が循環的に流通することは、循環流路32において試料が一方向に周回移動することだけでなく、循環流路32において試料が往復移動することも含む概念である。 As in this modified example, the repeated movement between the first position and the second position in the circulation flow channel 32 is also included in the concept of the sample circulating. In other words, the concept of the sample circulating is not limited to the sample moving circularly in one direction in the circulation flow channel 32, but also includes the sample moving back and forth in the circulation flow channel 32.
 先ず、本変形例の場合も、実施形態1と同様に、核酸増幅装置6において実施される核酸増幅検査方法の各工程の処理は、制御部61(図8参照)により制御される。 First, in this modified example, as in the first embodiment, the processing of each step of the nucleic acid amplification testing method performed in the nucleic acid amplifier 6 is controlled by the control unit 61 (see FIG. 8).
 本変形例の場合も、制御部61は、実施形態1の核酸増幅検査方法と同様に、図13のタイムチャートにおけるRNA抽出工程S1及び試薬混合工程S2を実施する。本変形例のRNA抽出工程S1及び試薬混合工程S2の説明は、実施形態1におけるRNA抽出工程S1及び試薬混合工程S2の説明を適宜援用してよい。 In this modified example, the control unit 61 also performs the RNA extraction step S1 and the reagent mixing step S2 in the time chart of FIG. 13, as in the nucleic acid amplification testing method of embodiment 1. The explanation of the RNA extraction step S1 and the reagent mixing step S2 in embodiment 1 may be appropriately used for the explanation of the RNA extraction step S1 and the reagent mixing step S2 in this modified example.
 又、本変形例の場合も、制御部61は、試薬混合工程S2の後に、図13のタイムチャートにおけるサーマルサイクル工程S3を実施する。以下、本変形例のサーマルサイクル工程S3について説明する。 Also in this modified example, the control unit 61 performs the thermal cycle step S3 in the time chart of FIG. 13 after the reagent mixing step S2. The thermal cycle step S3 in this modified example is described below.
 試薬混合工程S2が終わると、制御部61は、第二試料移動工程を実施する。第二試料移動工程は、試料を個別試薬担持部21から低温側ヒート部33に移動させる工程である。第二試料移動工程の説明は、実施形態1における第二試料移動工程の説明を適宜援用してよい。第二試料移動工程の後、カートリッジCは、図14Cに示す状態となる。 When the reagent mixing process S2 is completed, the control unit 61 performs a second sample transfer process. The second sample transfer process is a process for transferring the sample from the individual reagent holder 21 to the low-temperature side heat unit 33. The explanation of the second sample transfer process may be appropriately applied to the explanation of the second sample transfer process in the first embodiment. After the second sample transfer process, the cartridge C is in the state shown in FIG. 14C.
 次に、制御部61は、第三試料移動工程を実施する。第三試料移動工程は、試料を低温側ヒート部33から高温側ヒート部36に移動させる工程である。本変形例の場合、第三試料移動工程において、試料は、低温側ヒート部33から、第二並列流路32bを通って、高温側ヒート部36に向かう。つまり、試料は、ポンプ34を通らない。 Next, the control unit 61 performs a third sample transfer process. The third sample transfer process is a process for transferring the sample from the low-temperature side heat unit 33 to the high-temperature side heat unit 36. In the case of this modified example, in the third sample transfer process, the sample travels from the low-temperature side heat unit 33 through the second parallel flow path 32b toward the high-temperature side heat unit 36. In other words, the sample does not pass through the pump 34.
 具体的には、第三試料移動工程において、制御部61は、ポンプ34を駆動して、試料を低温側ヒート部33から高温側ヒート部36に移動させる。循環流路32における試料の移動方向は、図14Cにおける時計回りの方向(図14Cにおける矢印Y8が示す方向)である。 Specifically, in the third sample movement step, the control unit 61 drives the pump 34 to move the sample from the low-temperature side heat unit 33 to the high-temperature side heat unit 36. The movement direction of the sample in the circulation flow path 32 is the clockwise direction in FIG. 14C (the direction indicated by the arrow Y8 in FIG. 14C).
 この結果、カートリッジCの状態は、図14Cに示す状態から図14Dに示す状態に遷移する。尚、第三試料移動工程におけるポンプ34の駆動方向を、ポンプ34の第一駆動方向とも称する。 As a result, the state of cartridge C transitions from the state shown in FIG. 14C to the state shown in FIG. 14D. The driving direction of pump 34 in the third sample movement process is also referred to as the first driving direction of pump 34.
 次に、制御部61は、図14Dに示す状態で、図13のタイムチャートにおける酵素活性化工程S31を実施する。酵素活性化工程S31の説明は、実施形態1における酵素活性化工程S31の説明を適宜援用してよい。 Next, the control unit 61 performs the enzyme activation step S31 in the time chart of FIG. 13 in the state shown in FIG. 14D. The explanation of the enzyme activation step S31 may be appropriately cited from the explanation of the enzyme activation step S31 in the first embodiment.
 次に、制御部61は、第四試料移動工程を実施する。第四試料移動工程は、試料を高温側ヒート部36から低温側ヒート部33に移動させる工程である。本変形例の場合、第四試料移動工程において、試料は、高温側ヒート部36から、第二並列流路32bを通って、低温側ヒート部33に向かう。つまり、試料は、ポンプ34を通らない。 Next, the control unit 61 performs a fourth sample transfer process. The fourth sample transfer process is a process for transferring the sample from the high-temperature side heat unit 36 to the low-temperature side heat unit 33. In the case of this modified example, in the fourth sample transfer process, the sample travels from the high-temperature side heat unit 36 through the second parallel flow path 32b toward the low-temperature side heat unit 33. In other words, the sample does not pass through the pump 34.
 具体的には、第四試料移動工程において、制御部61は、ポンプ34を駆動して、試料を高温側ヒート部36から低温側ヒート部33に移動させる。循環流路32における試料の移動方向は、図14Cにおける時計回りの方向と反対方向(図14Cにおける矢印Y1が示す方向)である。 Specifically, in the fourth sample movement step, the control unit 61 drives the pump 34 to move the sample from the high-temperature side heat unit 36 to the low-temperature side heat unit 33. The movement direction of the sample in the circulation flow path 32 is the opposite direction to the clockwise direction in FIG. 14C (the direction indicated by the arrow Y1 in FIG. 14C).
 この結果、カートリッジCの状態は、図14Dに示す状態から図14Cに示す状態に遷移する。尚、第四試料移動工程におけるポンプ34の駆動方向を、ポンプ34の第二駆動方向とも称する。ポンプ34の第二駆動方向は、ポンプ34の第一駆動方向と逆である。 As a result, the state of cartridge C transitions from the state shown in FIG. 14D to the state shown in FIG. 14C. The driving direction of pump 34 in the fourth sample movement process is also referred to as the second driving direction of pump 34. The second driving direction of pump 34 is opposite to the first driving direction of pump 34.
 このように本変形例の場合、第三試料移動工程における試料の移動方向(換言すれば、ポンプ34の駆動方向)と、第四試料移動工程における試料の移動方向(換言すれば、ポンプ34の駆動方向)とが、逆である。 In this modified example, the direction of sample movement in the third sample movement process (in other words, the driving direction of pump 34) is opposite to the direction of sample movement in the fourth sample movement process (in other words, the driving direction of pump 34).
 次に、本変形例の場合も、制御部61は、図14Cに示す状態で、図13のタイムチャートにおける逆転写工程S32を実施する。逆転写工程S32の説明は、実施形態1における逆転写工程S32の説明を適宜援用してよい。 Next, in this modified example, the control unit 61 also performs the reverse transcription step S32 in the time chart of FIG. 13 in the state shown in FIG. 14C. The description of the reverse transcription step S32 in the first embodiment may be used as appropriate for the description of the reverse transcription step S32.
 次に、制御部61は、第三試料移動工程と同様に、ポンプ34を第一駆動方向に駆動して、試料を低温側ヒート部33から高温側ヒート部36に移動させる。 Next, the control unit 61 drives the pump 34 in the first driving direction to move the sample from the low-temperature side heat unit 33 to the high-temperature side heat unit 36, similar to the third sample movement process.
 この移動の際、試料は、低温側ヒート部33から、第二並列流路32bを通って、高温側ヒート部36に向かう。つまり、試料は、ポンプ34を通らない。本変形例の場合、試料は、高温側ヒート部36を通過して、プレヒート部35まで移動する。 During this movement, the sample travels from the low-temperature side heat section 33 through the second parallel flow path 32b toward the high-temperature side heat section 36. In other words, the sample does not pass through the pump 34. In the case of this modified example, the sample passes through the high-temperature side heat section 36 and moves to the preheat section 35.
 そして、試料は、プレヒート部35で加熱される。その後、制御部61は、ポンプ34を第一駆動方向と逆方向(つまり、第二駆動方向)に駆動して、試料をプレヒート部35から高温側ヒート部36に移動させる。 Then, the sample is heated in the preheat section 35. After that, the control section 61 drives the pump 34 in the direction opposite to the first driving direction (i.e., the second driving direction) to move the sample from the preheat section 35 to the high-temperature side heating section 36.
 このように、本変形例の場合、逆転写工程S32の後、試料は、低温側ヒート部33からプレヒート部35に移動する。そして、試料は、プレヒート部35で加熱される。その後、試料は、プレヒート部35から高温側ヒート部36に移動する。よって、高温側ヒート部36に収容された試料の状態(具体的には温度)は、上述の実施形態1において高温側ヒート部36に収容された試料の状態(具体的には温度)とほぼ同様である。 In this manner, in the case of this modified example, after the reverse transfer step S32, the sample moves from the low-temperature side heat section 33 to the preheat section 35. The sample is then heated in the preheat section 35. The sample then moves from the preheat section 35 to the high-temperature side heat section 36. Therefore, the state (specifically, the temperature) of the sample accommodated in the high-temperature side heat section 36 is substantially the same as the state (specifically, the temperature) of the sample accommodated in the high-temperature side heat section 36 in the above-described first embodiment.
 尚、本変形例の場合、プレヒート部35は、第二並列流路32bに設けられてもよい。このような構成の場合、制御部61は、逆転写工程S32の後、ポンプ34を第一駆動方向にのみ駆動して、試料を低温側ヒート部33から高温側ヒート部36に移動させることができる。 In addition, in this modified example, the preheat section 35 may be provided in the second parallel flow path 32b. In this configuration, after the reverse transcription process S32, the control section 61 can drive the pump 34 only in the first driving direction to move the sample from the low-temperature side heat section 33 to the high-temperature side heat section 36.
 次に、制御部61は、図14Dに示す状態で、図13のタイムチャートにおける工程S33で熱変性工程を実施する。熱変性工程の説明は、実施形態1における熱変性工程の説明を適宜援用してよい。 Next, in the state shown in FIG. 14D, the control unit 61 performs a thermal denaturation process at step S33 in the time chart of FIG. 13. The description of the thermal denaturation process may be appropriately referenced from the description of the thermal denaturation process in embodiment 1.
 次に、制御部61は、第四試料移動工程と同様に、ポンプ34を第二駆動方向に駆動して、試料を高温側ヒート部36から低温側ヒート部33に移動させる。 Next, the control unit 61 drives the pump 34 in the second driving direction to move the sample from the high-temperature side heat unit 36 to the low-temperature side heat unit 33, similar to the fourth sample movement process.
 この移動の際、試料は、高温側ヒート部36から、第二並列流路32bを通って、低温側ヒート部33に移動する。つまり、試料は、ポンプ34を通らない。試料が低温側ヒート部33に収容されると、カートリッジCは、図14Cに示す状態となる。 During this movement, the sample moves from the high-temperature side heat section 36 through the second parallel flow path 32b to the low-temperature side heat section 33. In other words, the sample does not pass through the pump 34. When the sample is contained in the low-temperature side heat section 33, the cartridge C is in the state shown in Figure 14C.
 次に、制御部61は、図14Cに示す状態で、図13のタイムチャートにおける工程S33でアニーリング工程及び伸長反応工程を実施する。アニーリング工程及び伸長反応工程の説明は、実施形態1におけるアニーリング工程及び伸長反応工程の説明を適宜援用してよい。 Next, in the state shown in FIG. 14C, the control unit 61 performs an annealing step and an extension reaction step in step S33 in the time chart of FIG. 13. The explanation of the annealing step and the extension reaction step may be appropriately cited from the explanation of the annealing step and the extension reaction step in embodiment 1.
 本変形例の場合も、制御部61は、アニーリング工程及び伸長反応工程とともに、所定のタイミングで、蛍光検出装置7の検出値に基づいて、増幅判定処理を実施する。増幅判定処理については既述の通りである。所定のタイミングは、例えば、伸長反応工程の直後である。 In this modified example, the control unit 61 also performs an amplification determination process based on the detection value of the fluorescence detection device 7 at a predetermined timing in addition to the annealing process and the extension reaction process. The amplification determination process is as described above. The predetermined timing is, for example, immediately after the extension reaction process.
 その後、所定サイクル(例えば、40サイクル)だけ熱変性工程、アニーリング工程、及び伸長反応工程を繰り返し実施する。制御部61は、各サイクルにおけるアニーリング工程、及び伸長反応工程とともに、増幅判定処理を実施する。 Then, the thermal denaturation step, annealing step, and extension reaction step are repeatedly performed for a predetermined number of cycles (e.g., 40 cycles). The control unit 61 performs an amplification determination process along with the annealing step and extension reaction step in each cycle.
 以上のように、本変形例の場合、サーマルサイクル処理において、試料は、ポンプ34を通らない。本変形例の場合、試料を往復移動させることで、試料がポンプ部34の直下を通過することなくサーマルサイクル処理を行うことができる。 As described above, in this modified example, the sample does not pass through the pump 34 during thermal cycling. In this modified example, by moving the sample back and forth, thermal cycling can be performed without the sample passing directly below the pump section 34.
 このように、試料がポンプ部34の直下を通過しないことで、試料がポンプ部34によって直接圧迫されることがない。このため、試料に気泡が発生することを抑制できる。この結果、精度の高い検出が可能となる。又、本変形例の場合も、試料はプレヒート部35を通過する。このため、検査時間の短縮を図ることができる。 In this way, the sample does not pass directly below the pump section 34, so the sample is not directly compressed by the pump section 34. This makes it possible to prevent air bubbles from being generated in the sample. As a result, highly accurate detection is possible. Furthermore, in this modified example, the sample also passes through the preheat section 35. This makes it possible to shorten the inspection time.
 [実施形態2]
 図15は、本発明の実施形態2に係る核酸増幅装置6Aの断面模式図である。核酸増幅装置6Aは、カートリッジCの支持態様が、図8に示す核酸増幅装置6と異なる。この違いに伴い、核酸増幅装置6Aの一部の構成は、図8に示す核酸増幅装置6の構成と異なる。以下、核酸増幅装置6Aの構成について、図8に示す核酸増幅装置6と相違する部分を中心に説明する。
[Embodiment 2]
Fig. 15 is a schematic cross-sectional view of a nucleic acid amplifier 6A according to embodiment 2 of the present invention. The nucleic acid amplifier 6A differs from the nucleic acid amplifier 6 shown in Fig. 8 in the manner in which the cartridge C is supported. Due to this difference, a portion of the configuration of the nucleic acid amplifier 6A differs from the configuration of the nucleic acid amplifier 6 shown in Fig. 8. The configuration of the nucleic acid amplifier 6A will be described below, focusing on the parts that differ from the nucleic acid amplifier 6 shown in Fig. 8.
 核酸増幅装置6Aは、ハウジング60A、制御部61A、カートリッジ支持部62A、振動部63A、ヒータ部64A、バルブ駆動部65A、送液部66A、試料位置検出部67A、及び蛍光検出装置7Aを有する。 The nucleic acid amplification device 6A has a housing 60A, a control unit 61A, a cartridge support unit 62A, a vibration unit 63A, a heater unit 64A, a valve drive unit 65A, a liquid delivery unit 66A, a sample position detection unit 67A, and a fluorescence detection device 7A.
 ハウジング60Aは、箱状であって、収容空間601Aを有する。収容空間601Aには、核酸増幅装置6Aを構成する各エレメント61A~67A、7Aが収容されている。 The housing 60A is box-shaped and has a storage space 601A. The storage space 601A contains the elements 61A to 67A and 7A that make up the nucleic acid amplification device 6A.
 制御部61Aは、第一制御部611A、及び、第二制御部612Aを有する。第一制御部611A、及び、第二制御部612Aの構成は、図8に示す核酸増幅装置6の第一制御部611、及び、第二制御部612の構成と同様である。 The control unit 61A has a first control unit 611A and a second control unit 612A. The configurations of the first control unit 611A and the second control unit 612A are similar to the configurations of the first control unit 611 and the second control unit 612 of the nucleic acid amplification device 6 shown in FIG. 8.
 カートリッジ支持部62Aは、ハウジング60Aに支持されており、カートリッジCを支持する部材である。カートリッジ支持部62Aの構成は、図8に示す核酸増幅装置6におけるカートリッジ支持部62の構成とほぼ同様である。 The cartridge support portion 62A is supported by the housing 60A and is a member that supports the cartridge C. The configuration of the cartridge support portion 62A is substantially the same as the configuration of the cartridge support portion 62 in the nucleic acid amplification device 6 shown in FIG. 8.
 但し、本実施形態の核酸増幅装置6Aの場合、カートリッジ支持部62Aは、カートリッジCを水平に支持する。つまり、カートリッジCがカートリッジ支持部62Aに支持された状態で、カートリッジCの第一主面及び第二主面が、鉛直方向を向く。 However, in the case of the nucleic acid amplification device 6A of this embodiment, the cartridge support portion 62A supports the cartridge C horizontally. In other words, when the cartridge C is supported by the cartridge support portion 62A, the first and second main surfaces of the cartridge C face vertically.
 振動部63Aは、ハウジング60Aに支持されている。振動部63Aの構成は、図8に示す核酸増幅装置6における振動部63の構成とほぼ同様である。 The vibration unit 63A is supported by the housing 60A. The configuration of the vibration unit 63A is almost the same as the configuration of the vibration unit 63 in the nucleic acid amplification device 6 shown in FIG. 8.
 但し、本実施形態の核酸増幅装置6Aの場合、振動部63Aは、検査時に、カートリッジCの個別試薬担持部21と所定方向(本実施形態の場合、鉛直方向)に対向する位置に設けられている。 However, in the case of the nucleic acid amplification device 6A of this embodiment, the vibration unit 63A is provided at a position facing the individual reagent holding unit 21 of the cartridge C in a predetermined direction (vertical direction in this embodiment) during testing.
 ヒータ部64Aは、ハウジング60Aに支持されている。ヒータ部64Aの構成は、図8に示す核酸増幅装置6におけるヒータ部64の構成とほぼ同様である。 The heater unit 64A is supported by the housing 60A. The configuration of the heater unit 64A is substantially the same as the configuration of the heater unit 64 in the nucleic acid amplification device 6 shown in FIG. 8.
 但し、本実施形態の核酸増幅装置6Aの場合、低温ヒータ642bは、検査時に、カートリッジCの低温領域R2(具体的には、低温側ヒート部33)と、所定方向(本実施形態の場合、鉛直方向)に対向する位置に設けられている。 However, in the case of the nucleic acid amplification device 6A of this embodiment, the low-temperature heater 642b is provided at a position facing the low-temperature region R2 (specifically, the low-temperature side heat section 33) of the cartridge C in a predetermined direction (vertical direction in this embodiment) during testing.
 又、本実施形態の核酸増幅装置6Aの場合、第一高温ヒータ641cは、検査時に、カートリッジCの第一高温領域R11(具体的には、高温側ヒート部36)と、所定方向(本実施形態の場合、鉛直方向)に対向する位置に支持されている。 Furthermore, in the case of the nucleic acid amplification device 6A of this embodiment, the first high temperature heater 641c is supported at a position facing the first high temperature region R11 (specifically, the high temperature side heat section 36) of the cartridge C in a predetermined direction (vertical direction in this embodiment) during testing.
 更に、本実施形態の核酸増幅装置6Aの場合、第二高温ヒータ641dは、検査時に、カートリッジCの第二高温領域R12(具体的には、プレヒート部35)と、所定方向(本実施形態の場合、鉛直方向)に対向する位置に支持されている。 Furthermore, in the case of the nucleic acid amplification device 6A of this embodiment, the second high-temperature heater 641d is supported at a position facing the second high-temperature region R12 (specifically, the preheat section 35) of the cartridge C in a predetermined direction (vertical direction in this embodiment) during testing.
 バルブ駆動部65Aは、ハウジング60Aに支持されている。バルブ駆動部65Aの構成は、図8に示す核酸増幅装置6におけるバルブ駆動部65の構成とほぼ同様である。 The valve drive unit 65A is supported by the housing 60A. The configuration of the valve drive unit 65A is substantially the same as the configuration of the valve drive unit 65 in the nucleic acid amplification device 6 shown in FIG. 8.
 但し、本実施形態の核酸増幅装置6Aの場合、第一低温側バルブ駆動部651Aの押圧部651bは、検査時に、カートリッジCにおける第一低温側バルブ30の被押圧部30cと所定方向(本実施形態の場合、鉛直方向)に対向する位置に支持されている。 However, in the case of the nucleic acid amplification device 6A of this embodiment, the pressing portion 651b of the first low-temperature side valve driving portion 651A is supported at a position facing the pressed portion 30c of the first low-temperature side valve 30 in the cartridge C in a predetermined direction (vertical direction in this embodiment) during testing.
 又、本実施形態の核酸増幅装置6Aの場合、第一高温側バルブ駆動部652Aの押圧部652bは、検査時に、カートリッジCにおける第一高温側バルブ31の被押圧部31cと所定方向(本実施形態の場合、鉛直方向)に対向する位置に設けられている。 Furthermore, in the case of the nucleic acid amplification device 6A of this embodiment, the pressing portion 652b of the first high temperature side valve driving portion 652A is provided at a position facing the pressed portion 31c of the first high temperature side valve 31 in the cartridge C in a predetermined direction (vertical direction in this embodiment) during testing.
 更に、本実施形態の核酸増幅装置6Aの場合、第二バルブ駆動部653Aの押圧部653bは、検査時に、カートリッジCにおける第二バルブ37の被押圧部37cと所定方向(本実施形態の場合、鉛直方向)に対向する位置に設けられている。 Furthermore, in the case of the nucleic acid amplification device 6A of this embodiment, the pressing portion 653b of the second valve driving portion 653A is provided at a position facing the pressed portion 37c of the second valve 37 in the cartridge C in a predetermined direction (vertical direction in this embodiment) during testing.
 送液部66Aは、ハウジング60Aに支持されている。送液部66Aの構成は、図8に示す核酸増幅装置6における送液部66の構成とほぼ同様である。 The liquid delivery unit 66A is supported by the housing 60A. The configuration of the liquid delivery unit 66A is substantially the same as the configuration of the liquid delivery unit 66 in the nucleic acid amplification device 6 shown in FIG. 8.
 但し、本実施形態の核酸増幅装置6Aの場合、送液部66Aのポンプ駆動部661Aは、ポンプ34と所定方向(本実施形態の場合、鉛直方向)に対向する位置に設けられている。 However, in the case of the nucleic acid amplification device 6A of this embodiment, the pump drive unit 661A of the liquid delivery unit 66A is provided at a position facing the pump 34 in a predetermined direction (the vertical direction in this embodiment).
 試料位置検出部67Aは、ハウジング60Aに支持されている。試料位置検出部67の構成は、図8に示す核酸増幅装置6における試料位置検出部67の構成とほぼ同様である。 The sample position detection unit 67A is supported by the housing 60A. The configuration of the sample position detection unit 67 is substantially the same as the configuration of the sample position detection unit 67 in the nucleic acid amplification device 6 shown in FIG. 8.
 但し、本実施形態の核酸増幅装置6Aの場合、試料位置検出部67Aの低温側検出部671Aは、検査時に、カートリッジCにおける低温側ヒート部33と所定方向(本実施形態の場合、鉛直方向)に対向する位置に設けられている。 However, in the case of the nucleic acid amplification device 6A of this embodiment, the low-temperature side detection section 671A of the sample position detection section 67A is provided at a position facing the low-temperature side heating section 33 of the cartridge C in a predetermined direction (vertical direction in this embodiment) during testing.
 又、本実施形態の核酸増幅装置6Aの場合、試料位置検出部67Aの高温側検出部672Aは、検査時に、カートリッジCにおける高温側ヒート部36と所定方向(本実施形態の場合、鉛直方向)に対向する位置に設けられている。 In addition, in the case of the nucleic acid amplification device 6A of this embodiment, the high temperature side detection section 672A of the sample position detection section 67A is provided at a position facing the high temperature side heating section 36 of the cartridge C in a predetermined direction (vertical direction in this embodiment) during testing.
 蛍光検出装置7Aは、ハウジング60Aに支持されている。蛍光検出装置7Aの構成は、図8に示す核酸増幅装置6における蛍光検出装置7の構成とほぼ同様である。 The fluorescence detection device 7A is supported by the housing 60A. The configuration of the fluorescence detection device 7A is almost the same as the configuration of the fluorescence detection device 7 in the nucleic acid amplification device 6 shown in FIG. 8.
 但し、本実施形態の核酸増幅装置6Aの場合、蛍光検出装置7Aの蛍光検出部8は、検査時に、カートリッジCにおける被検出領域(低温側ヒート部33)と所定方向(本実施形態の場合、鉛直方向)に対向する位置に設けられている。 However, in the case of the nucleic acid amplification device 6A of this embodiment, the fluorescence detection unit 8 of the fluorescence detection device 7A is provided at a position facing the detection area (low-temperature side heat unit 33) in the cartridge C in a predetermined direction (vertical direction in this embodiment) during testing.
 以上のような構成を有する本実施形態の核酸増幅装置6Aも、検査に要する時間を短くできる。その他の核酸増幅装置6Aの構成及び作用・効果は、実施形態1に係る核酸増幅装置6の構成及び作用・効果と同様である。 The nucleic acid amplifier 6A of this embodiment, which has the above-described configuration, can also shorten the time required for testing. The rest of the configuration and the actions and effects of the nucleic acid amplifier 6A are the same as those of the nucleic acid amplifier 6 of embodiment 1.
 [実施形態3]
 図16~図18を参照して、実施形態3に係る核酸増幅装置6Bについて説明する。本実施形態の核酸増幅装置6Bの場合、ポンプ駆動部661Bの構成が、実施形態1に係る核酸増幅装置6のポンプ駆動部661と異なる。ポンプ駆動部661B以外の構成は、実施形態1に係る核酸増幅装置6と同様である。
[Embodiment 3]
A nucleic acid amplifier 6B according to embodiment 3 will be described with reference to Figures 16 to 18. In the case of the nucleic acid amplifier 6B of this embodiment, the configuration of a pump driver 661B is different from the pump driver 661 of the nucleic acid amplifier 6 according to embodiment 1. The configuration other than the pump driver 661B is the same as that of the nucleic acid amplifier 6 according to embodiment 1.
 以下、ポンプ駆動部661Bの構成について説明する。尚、図16~図18には、サーマル流路3gが示されている。サーマル流路3gの循環流路32Aは、一対のポンプ34C、34Dを有する。尚、サーマル流路3gの構成は、実施形態1のサーマル流路3aの構成と僅かに異なる。但し、サーマル流路3g以外の流路の構成は、実施形態1の流路2の構成とほぼ同様である。 The configuration of the pump drive unit 661B will be described below. Thermal flow path 3g is shown in Figures 16 to 18. The circulation flow path 32A of thermal flow path 3g has a pair of pumps 34C, 34D. The configuration of thermal flow path 3g is slightly different from the configuration of thermal flow path 3a in embodiment 1. However, the configurations of the flow paths other than thermal flow path 3g are almost the same as the configuration of flow path 2 in embodiment 1.
 ポンプ34C、34Dは、循環流路32Aにおいて並列に配置されている。ポンプ34C、34Dの構成は、図5及び図6に示す変形例1のポンプ34Aの構成とほぼ同様である。 Pumps 34C and 34D are arranged in parallel in circulation flow path 32A. The configuration of pumps 34C and 34D is substantially the same as the configuration of pump 34A of modification 1 shown in Figures 5 and 6.
 但し、本実施形態の場合、ポンプ34C、34Dはそれぞれ、曲線状の上側ポンプ空間形成部材34k、34mを有する。よって、上側ポンプ空間形成部材34k、34mにより画定されるポンプ空間34n、34pも曲線状である。 However, in this embodiment, pumps 34C and 34D each have curved upper pump space forming members 34k and 34m. Therefore, pump spaces 34n and 34p defined by upper pump space forming members 34k and 34m are also curved.
 上側ポンプ空間形成部材34k、34mはそれぞれ、共通の中心点を中心とする円弧に沿うように設けられている。 The upper pump space forming members 34k, 34m are each arranged along an arc centered on a common center point.
 ポンプ駆動部661Bは、基部662a、及び、複数(本実施形態の場合、3個)のローラ部材662bを有する。 The pump drive unit 661B has a base 662a and multiple (in this embodiment, three) roller members 662b.
 基部662aは、ハウジング60(図8参照)に固定される部分である。又、基部662aは、中心軸A1を中心に、回転可能である。中心軸A1は、検査時に、カートリッジC1の主面に直交する。基部662aは、ローラ部材662bを回転可能に支持する部材でもある。 The base 662a is a part that is fixed to the housing 60 (see FIG. 8). The base 662a is also rotatable about a central axis A1. The central axis A1 is perpendicular to the main surface of the cartridge C1 during inspection. The base 662a is also a member that rotatably supports the roller member 662b.
 ローラ部材662bは、基部662aの回転方向において等間隔(本実施形態の場合、120度間隔)に配置されている。ローラ部材662bはそれぞれ、軸部662c、及び、押圧ローラ662dを有する。 The roller members 662b are arranged at equal intervals (120 degree intervals in this embodiment) in the rotation direction of the base 662a. Each roller member 662b has a shaft portion 662c and a pressure roller 662d.
 軸部662cと押圧ローラ662dとは、一体に形成されている。軸部662cは、基部662aに、軸部662cの中心軸A2を中心に回転可能な状態で支持されている。 The shaft portion 662c and the pressure roller 662d are integrally formed. The shaft portion 662c is supported by the base portion 662a in a state in which it can rotate around the central axis A2 of the shaft portion 662c.
 押圧ローラ662dは、円錐台状であって、軸部662cの先端部に一体に成形されている。押圧ローラ662dは、外周面に押圧面662eを有する。押圧面662eは、ポンプ34C、34Dを駆動する際、ポンプ34C、34Dの上側ポンプ空間形成部材34k、34mを押圧する部分である。 The pressure roller 662d is frustum-shaped and is integrally formed at the tip of the shaft portion 662c. The pressure roller 662d has a pressure surface 662e on its outer circumferential surface. The pressure surface 662e is the part that presses the upper pump space forming members 34k, 34m of the pumps 34C, 34D when the pumps 34C, 34D are driven.
 図17において左側の押圧ローラ662dは、ポンプ34Cの上側ポンプ空間形成部材34kを押し潰している。よって、ポンプ34Cのポンプ空間34nも、押し潰されている。 In FIG. 17, the pressure roller 662d on the left side is crushing the upper pump space forming member 34k of the pump 34C. Therefore, the pump space 34n of the pump 34C is also crushed.
 ポンプ駆動部661Aは、ポンプ34C、34Dの上側ポンプ空間形成部材34k、34mを所定方向から覆うように配置されている。この状態で、押圧ローラ662dの押圧面662eは、ポンプ34C、34Dの上側ポンプ空間形成部材34k、34mと当接可能である。 The pump drive unit 661A is arranged to cover the upper pump space forming members 34k, 34m of the pumps 34C, 34D from a predetermined direction. In this state, the pressing surface 662e of the pressing roller 662d can abut against the upper pump space forming members 34k, 34m of the pumps 34C, 34D.
 尚、図16において、ポンプ駆動部661AとカートリッジC1とは、説明の便宜上、検査時よりも離れて配置されている。 In addition, in FIG. 16, for ease of explanation, the pump drive unit 661A and the cartridge C1 are positioned farther apart than they were during testing.
 ここで、図18を参照して、ポンプ駆動部661Aの動作について説明する。図18は、ポンプ駆動部661Aの押圧ローラ662dと、ポンプ34C、34Dの上側ポンプ空間形成部材34k、34mとの当接位置D1、D2を、模式的に示す図である。 The operation of the pump drive unit 661A will now be described with reference to Figure 18. Figure 18 is a schematic diagram showing the contact positions D1 and D2 between the pressure roller 662d of the pump drive unit 661A and the upper pump space forming members 34k and 34m of the pumps 34C and 34D.
 3個の押圧ローラ662dのうちの1個の押圧ローラ662d(図18における上側の押圧ローラ662d)は、ポンプ34Cの上側ポンプ空間形成部材34kと当接位置D1において当接している。つまり、図18における上側の押圧ローラ662dは、当接位置D1において、ポンプ34Cの上側ポンプ空間形成部材34kを押し潰している。 One of the three pressure rollers 662d (the upper pressure roller 662d in FIG. 18) abuts against the upper pump space forming member 34k of the pump 34C at abutment position D1. In other words, the upper pressure roller 662d in FIG. 18 presses against the upper pump space forming member 34k of the pump 34C at abutment position D1.
 又、3個の押圧ローラ662dのうちの1個の押圧ローラ662d(図18における左下の押圧ローラ662d)は、ポンプ34Dの上側ポンプ空間形成部材34mと当接位置D2において当接している。つまり、図18における左下の押圧ローラ662dは、当接位置D2において、ポンプ34Dの上側ポンプ空間形成部材34mを押し潰している。 Furthermore, one of the three pressure rollers 662d (the lower left pressure roller 662d in FIG. 18) abuts against the upper pump space forming member 34m of the pump 34D at abutment position D2. In other words, the lower left pressure roller 662d in FIG. 18 presses against the upper pump space forming member 34m of the pump 34D at abutment position D2.
 図18に示す状態から、ポンプ駆動部661Aの基部662aが、図18の矢印Y3が示す方向に自転すると、3個の押圧ローラ662dはそれぞれ、転がりながら矢印Y4、Y5、Y6が示す方向に自転する。 When the base 662a of the pump drive unit 661A rotates in the direction indicated by the arrow Y3 in FIG. 18 from the state shown in FIG. 18, the three pressure rollers 662d each rotate in the directions indicated by the arrows Y4, Y5, and Y6 while rolling.
 すると、3個の押圧ローラ662dはそれぞれ、転がりながら矢印Y3の方向に移動する。又、当接位置D1及び当接位置D2も、矢印Y3の方向に移動する。この際、ポンプ34Cの上側ポンプ空間形成部材34k及びポンプ34Dの上側ポンプ空間形成部材34mは、押圧ローラ662dに押し潰されている。 Then, the three pressure rollers 662d each move in the direction of the arrow Y3 while rolling. The contact positions D1 and D2 also move in the direction of the arrow Y3. At this time, the upper pump space forming member 34k of the pump 34C and the upper pump space forming member 34m of the pump 34D are crushed by the pressure rollers 662d.
 このため、ポンプ34C、34Dのポンプ空間34n、34p内の空気及び/又は試料が、試料の循環方向(図16の矢印Y7が示す方向)に移動する。その結果、ポンプ空間34n、34p内の空気及び/又は試料の移動に連動して、サーマル流路3g内の空気及び試料が、循環方向に移動する。 As a result, the air and/or sample in the pump spaces 34n and 34p of the pumps 34C and 34D move in the sample circulation direction (the direction indicated by the arrow Y7 in FIG. 16). As a result, the air and sample in the thermal flow path 3g move in the circulation direction in conjunction with the movement of the air and/or sample in the pump spaces 34n and 34p.
 尚、基部662aの自転に応じて、3個の押圧ローラ662dは、順次、ポンプ34C及びポンプ34Dを駆動する。本実施形態の場合、3個の押圧ローラ662dがポンプ34C及びポンプ34Dに加える摩擦力の方向は、ポンプ34C及びポンプ34Dの延在方向に沿う方向である。 In addition, the three pressure rollers 662d sequentially drive pumps 34C and 34D in response to the rotation of base 662a. In this embodiment, the direction of the frictional force that the three pressure rollers 662d apply to pumps 34C and 34D is along the extension direction of pumps 34C and 34D.
 以上のように、本実施形態の場合、ポンプ駆動部661Aは、3個の押圧ローラ662dにより、ポンプ34Cとポンプ34Dを順次駆動することができる。このため、流路内で試料を効率よく移動させることができる。 As described above, in this embodiment, the pump drive unit 661A can sequentially drive pumps 34C and 34D using the three pressure rollers 662d. This allows the sample to move efficiently through the flow path.
 尚、本実施形態に係るポンプ駆動部661Aは、曲線状のポンプを有するカートリッジに適用できる。ポンプの数は、2個に限定されず、1個でもよい。その他の、構成及び作用・効果は実施形態1とほぼ同様である。 The pump drive unit 661A of this embodiment can be applied to a cartridge having a curved pump. The number of pumps is not limited to two, and may be one. Other configurations and actions/effects are substantially the same as those of the first embodiment.
 2022年9月28日出願の特願2022-154913の日本出願に含まれる明細書、図面、及び要約書の開示内容は、総て本願に援用される。 The entire disclosures of the specification, drawings, and abstract contained in the Japanese application No. 2022-154913, filed on September 28, 2022, are incorporated herein by reference.
 本発明は、リアルタイムPCR装置等の核酸増幅装置における検査の効率化向上に寄与するものであり、その産業上の利用可能性は多大である。 The present invention contributes to improving the efficiency of testing in nucleic acid amplification devices such as real-time PCR devices, and has great industrial applicability.
 C、C1 カートリッジ
 R1 高温領域
 R11 第一高温領域
 R12 第二高温領域
 R2 低温領域
 R3 中間領域
 1 ベース部
 11a、11bポンプ固定部
 2 流路
 2a 分注流路
 20 試料貯留部
 20a 試料貯留空間
 20b 試料滴下口
 20c 空気孔
 21 個別試薬担持部
 22 共通試薬担持部
 3a、3b、3c、3d、3e、3f、3g サーマル流路
 30 第一低温側バルブ
 30a 本体部
 30b バルブ流路
 30c 被押圧部
 30d 接続部
 31 第一高温側バルブ
 31a 本体部
 31b バルブ流路
 31c 被押圧部
 31d 接続部
 32、32A 循環流路
 32a 第一並列流路
 32b 第二並列流路
 33 低温側ヒート部
 34、34A、34B、34C、34D ポンプ
 34a 本体部
 34b ポンプ空間形成部
 34c、34i、34j、34n、34p ポンプ空間
 34d 接続部
 34e、34k、34m 上側ポンプ空間形成部材
 34f 下側ポンプ空間形成部材
 34g 基部
 34h 突条部
 35 プレヒート部
 36 高温側ヒート部
 37 第二バルブ
 37a 本体部
 37b バルブ流路
 37c 被押圧部
 37d 接続部
 50 封止部材
 51、52 封止部材
 6、6A、6B 核酸増幅装置
 60、60A ハウジング
 601、601A 収容空間
 61、61A 制御部
 611、611A 第一制御部
 612、612A 第二制御部
 62、62A カートリッジ支持部
 63、63A 振動部
 63a 振動子
 64、64A ヒータ部
 641、641A 高温ヒータ部
 641a、641c 第一高温ヒータ
 641b、641d 第二高温ヒータ
 642、642A 低温ヒータ部
 642a、642b 低温ヒータ
 65、65A バルブ駆動部
 651、651A 第一低温側バルブ駆動部
 651a、651b 押圧部
 652、652A 第一高温側バルブ駆動部
 652a、652b 押圧部
 653、653A 第二バルブ駆動部
 653a、653b 押圧部
 66、66A 送液部
 661、661A、661B ポンプ駆動部
 661a 基部
 661f 上側基部
 661g 下側基部
 661h 貫通孔
 661b 回転部材
 661c、661d 回転支持部
 661e 押圧部
 662a 基部
 662b ローラ部材
 662c 軸部
 662d 押圧ローラ
 662e 押圧面
 67、67A 試料位置検出部
 671、671A 低温側検出部
 672、672A 高温側検出部
 7、7A 蛍光検出装置
 8 蛍光検出部
 80 発光光学系
 801 光源部
 801a、801b 光源
 802 フィルタ部
 802a、802b 励起フィルタ
 81 受光光学系
 810 マルチ蛍光フィルタ
 811 結像レンズ
 812 像側開口部
 813 受光素子
 820 物体側開口部
 821 対物レンズ
 83 基板
 9 駆動部
 91 モータ
 92 変換機構
 L1、L2、L3、L4 L5、L6、L7、L8 流路要素
 
C, C1 Cartridge R1 High temperature region R11 First high temperature region R12 Second high temperature region R2 Low temperature region R3 Intermediate region 1 Base portion 11a, 11b Pump fixing portion 2 Flow path 2a Dispensing flow path 20 Sample storage portion 20a Sample storage space 20b Sample dropping port 20c Air hole 21 Individual reagent support portion 22 Common reagent support portion 3a, 3b, 3c, 3d, 3e, 3f, 3g Thermal flow path 30 First low temperature side valve 30a Main body portion 30b Valve flow path 30c Pressed portion 30d Connection portion 31 First high temperature side valve 31a Main body portion 31b Valve flow path 31c Pressed portion 31d Connection portion 32, 32A Circulation flow path 32a First parallel flow path 32b Second parallel flow path 33 Low temperature side heat portion Reference Signs List 34, 34A, 34B, 34C, 34D Pump 34a Main body 34b Pump space forming portion 34c, 34i, 34j, 34n, 34p Pump space 34d Connection portion 34e, 34k, 34m Upper pump space forming member 34f Lower pump space forming member 34g Base 34h Protrusion portion 35 Preheat portion 36 High temperature side heating portion 37 Second valve 37a Main body 37b Valve flow path 37c Pressed portion 37d Connection portion 50 Sealing member 51, 52 Sealing member 6, 6A, 6B Nucleic acid amplification device 60, 60A Housing 601, 601A Storage space 61, 61A Control portion 611, 611A First control portion 612, 612A Second control portion 62, 62A Cartridge support section 63, 63A Vibration section 63a Vibrator 64, 64A Heater section 641, 641A High temperature heater section 641a, 641c First high temperature heater 641b, 641d Second high temperature heater 642, 642A Low temperature heater section 642a, 642b Low temperature heater 65, 65A Valve drive section 651, 651A First low temperature side valve drive section 651a, 651b Pressing section 652, 652A First high temperature side valve drive section 652a, 652b Pressing section 653, 653A Second valve drive section 653a, 653b Pressing section 66, 66A Liquid delivery section 661, 661A, 661B Pump drive section 661a Base section 661f Upper base section 661g Lower base 661h Through hole 661b Rotating member 661c, 661d Rotation support portion 661e Pressing portion 662a Base 662b Roller member 662c Shaft portion 662d Pressing roller 662e Pressing surface 67, 67A Sample position detection portion 671, 671A Low temperature side detection portion 672, 672A High temperature side detection portion 7, 7A Fluorescence detection device 8 Fluorescence detection portion 80 Emission optical system 801 Light source portion 801a, 801b Light source 802 Filter portion 802a, 802b Excitation filter 81 Light receiving optical system 810 Multi-fluorescence filter 811 Imaging lens 812 Image side opening 813 Light receiving element 820 Object side opening 821 Objective lens 83 Substrate 9 Drive unit 91 Motor 92 Conversion mechanism L1, L2, L3, L4 L5, L6, L7, L8 Flow path element

Claims (24)

  1.  核酸増幅装置において実施される核酸増幅検査に使用される検査用容器であって、
     基板と、
     前記基板に設けられ、核酸を含む試料が収容される流路と、を備え、
     前記流路は、
      前記試料が循環的に流通する循環流路を有するサーマル流路と、
      前記循環流路に設けられ、前記試料を移動させるポンプと、を備える、
     検査用容器。
    A test container used in a nucleic acid amplification test performed in a nucleic acid amplification device,
    A substrate;
    a channel provided on the substrate and configured to accommodate a sample containing nucleic acid;
    The flow path is
    a thermal flow path having a circulation flow path through which the sample circulates;
    A pump is provided in the circulation flow path and moves the sample.
    Inspection container.
  2.  前記流路は、
      前記試料を貯留する試料貯留部及び試薬を担持する試薬担持部を有し、前記サーマル流路に接続された分注流路と、
     前記循環流路と前記分注流路との間に設けられ、閉状態において前記循環流路が閉流路となる第一バルブと、を有する、
     請求項1に記載の検査用容器。
    The flow path is
    a dispensing flow path having a sample reservoir for storing the sample and a reagent holder for holding a reagent, the dispensing flow path being connected to the thermal flow path;
    A first valve is provided between the circulation flow path and the dispensing flow path, and in a closed state, the circulation flow path becomes a closed flow path.
    2. The container for inspection according to claim 1.
  3.  前記サーマル流路は、前記循環流路と前記試薬担持部とを接続する第一接続流路と、前記循環流路と前記試料貯留部とを接続する第二接続流路と、を有し、
     前記第一バルブは、前記第一接続流路及び前記第二接続流路のそれぞれに設けられている、
     請求項2に記載の検査用容器。
    the thermal flow path has a first connection flow path connecting the circulation flow path and the reagent support section, and a second connection flow path connecting the circulation flow path and the sample storage section,
    The first valve is provided in each of the first connection flow path and the second connection flow path.
    3. The container for inspection according to claim 2.
  4.  前記循環流路は、第二バルブを有し、
     前記流路は、前記第一バルブの開状態且つ前記第二バルブの閉状態において、前記分注流路から前記サーマル流路への前記試料の移動を許可する、
     請求項3に記載の検査用容器。
    The circulation flow path has a second valve,
    The flow path allows the sample to move from the dispensing flow path to the thermal flow path when the first valve is open and the second valve is closed.
    4. The container for inspection according to claim 3.
  5.  前記サーマル流路は、並列配置された複数の前記循環流路を有する、
     請求項2に記載の検査用容器。
    The thermal flow path has a plurality of the circulation flow paths arranged in parallel.
    3. The container for inspection according to claim 2.
  6.  前記分注流路は、前記複数の循環流路のそれぞれに対応する複数の前記試薬担持部を有し、
     前記複数の試薬担持部はそれぞれ、前記試料貯留部に接続されており、
     前記試料貯留部に貯留された前記試料は、前記核酸増幅検査時に、前記ポンプにより、前記複数の試薬担持部に分配される、
     請求項5に記載の検査用容器。
    the dispensing flow path includes a plurality of the reagent carriers corresponding to the plurality of circulation flow paths,
    Each of the plurality of reagent carrying units is connected to the sample storage unit;
    The sample stored in the sample storage section is distributed to the plurality of reagent holding sections by the pump during the nucleic acid amplification test.
    6. The container for inspection according to claim 5.
  7.  前記循環流路は、
      前記核酸増幅検査時に前記核酸増幅装置により第一所定温度で加熱さる低温側ヒート部と、
      前記核酸増幅検査時に前記核酸増幅装置により前記第一所定温度よりも高い第二所定温度で加熱される高温側ヒート部と、を有する、
     請求項1に記載の検査用容器。
    The circulation flow path is
    a low-temperature side heating section that is heated to a first predetermined temperature by the nucleic acid amplification device during the nucleic acid amplification test;
    and a high-temperature side heating section that is heated by the nucleic acid amplification device at a second predetermined temperature that is higher than the first predetermined temperature during the nucleic acid amplification test.
    2. The container for inspection according to claim 1.
  8.  前記循環流路は、前記試料の循環方向における前記高温側ヒート部の上流側近傍に、前記核酸増幅検査時に前記核酸増幅装置により前記第二所定温度よりも高い第三所定温度で加熱されるプレヒート部を有する、
     請求項7に記載の検査用容器。
    The circulation flow path has a preheat section that is heated to a third predetermined temperature higher than the second predetermined temperature by the nucleic acid amplification device during the nucleic acid amplification test, in the vicinity of the upstream side of the high-temperature side heating section in the circulation direction of the sample.
    8. The container for inspection according to claim 7.
  9.  前記流路は、前記核酸増幅装置において実施される前記試料の位置検出処理の際に使用される一対の電極を有する、
     請求項1に記載の検査用容器。
    The flow channel has a pair of electrodes used during a position detection process of the sample performed in the nucleic acid amplification device.
    2. The container for inspection according to claim 1.
  10.  前記サーマル流路は、並列配置された複数の前記循環流路を有し、
     隣り合う前記循環流路に設けられた前記ポンプ同士が、一体に構成されている、
     請求項1に記載の検査用容器。
    The thermal flow path has a plurality of the circulation flow paths arranged in parallel,
    The pumps provided in the adjacent circulation flow paths are integrally configured.
    2. The container for inspection according to claim 1.
  11.  前記流路は、前記試料を滴下する試料滴下口、前記試料滴下口に接続され前記試料を貯留する試料貯留部、及び前記試料貯留部に接続された空気孔を有し、
     前記試料滴下口及び前記空気孔は、封止部材により外気と遮断される、
     請求項1に記載の検査用容器。
    the flow path includes a sample dropping port through which the sample is dropped, a sample reservoir connected to the sample dropping port and configured to store the sample, and an air hole connected to the sample reservoir;
    The sample dropping port and the air hole are sealed off from the outside air by a sealing member.
    2. The container for inspection according to claim 1.
  12.  試料が循環的に移動する循環流路を有する検査用容器が組み込まれた状態で、核酸増幅検査を実施する核酸増幅装置であって、
     前記循環流路に設けられたポンプを駆動するポンプ駆動部と、
     前記循環流路の低温側ヒート部を、第一所定温度で加熱する低温ヒータ部と、
     前記循環流路の高温側ヒート部を、前記第一所定温度よりも高い第二所定温度で加熱する高温ヒータ部と、
     前記試料に含まれる蛍光色素の蛍光を検出する蛍光検出部と、を備える、
     核酸増幅装置。
    A nucleic acid amplification device that performs a nucleic acid amplification test in a state in which a test container having a circulation flow path through which a sample circulates is incorporated,
    a pump driving unit that drives a pump provided in the circulation flow path;
    a low-temperature heater section that heats a low-temperature side heat section of the circulation flow path at a first predetermined temperature;
    a high-temperature heater section that heats a high-temperature side heat section of the circulation flow path at a second predetermined temperature that is higher than the first predetermined temperature;
    A fluorescence detection unit that detects fluorescence of a fluorescent dye contained in the sample.
    Nucleic acid amplification device.
  13.  前記循環流路の端部に設けられたバルブの状態を切り換えるバルブ駆動部を、更に備える、
     請求項12に記載の核酸増幅装置。
    Further comprising a valve driving unit that switches the state of a valve provided at an end of the circulation flow path,
    The nucleic acid amplification device according to claim 12.
  14.  前記循環流路のプレヒート部を、前記第二所定温度より高い温度である第三所定温度で加熱するプレヒータを、更に備える、
     請求項12に記載の核酸増幅装置。
    The preheater further includes a preheater that heats the preheat portion of the circulation flow path to a third predetermined temperature that is higher than the second predetermined temperature.
    The nucleic acid amplification device according to claim 12.
  15.  前記第三所定温度は、前記第二所定温度よりも1度~3度高い、
     請求項14に記載の核酸増幅装置。
    The third predetermined temperature is 1 to 3 degrees higher than the second predetermined temperature.
    The nucleic acid amplification device according to claim 14.
  16.  前記ポンプ駆動部は、前記核酸増幅検査時に、自身の回転にともない前記ポンプを押圧する位置が前記試料の循環方向における上流から下流に移動するように構成される、
     請求項15に記載の核酸増幅装置。
    the pump driving unit is configured such that, during the nucleic acid amplification test, a position at which the pump is pressed moves from upstream to downstream in a circulating direction of the sample as the pump driving unit rotates.
    The nucleic acid amplification device according to claim 15.
  17.  前記ポンプ駆動部は、複数の前記循環流路に設けられたポンプを同時に駆動するように構成される、
     請求項15に記載の核酸増幅装置。
    The pump driving unit is configured to simultaneously drive pumps provided in the plurality of circulation flow paths.
    The nucleic acid amplification device according to claim 15.
  18.  前記循環流路に接続された試薬担持部に振動を付与する振動部、を更に備える、
     請求項12に記載の核酸増幅装置。
    The liquid supply system further includes a vibration unit that applies vibration to the reagent support unit connected to the circulation flow path.
    The nucleic acid amplification device according to claim 12.
  19.  前記検査用容器を、前記循環流路の低温側ヒート部が下側に配置され且つ前記循環流路の高温側ヒート部が上側に配置された状態で、鉛直に支持する容器支持部を、更に備える、
     請求項12に記載の核酸増幅装置。
    The test container further includes a container support section that vertically supports the test container with the low-temperature side heat section of the circulation flow path disposed on the lower side and the high-temperature side heat section of the circulation flow path disposed on the upper side.
    The nucleic acid amplification device according to claim 12.
  20.  試料が収容される流路を有する検査用容器が装着された状態で、核酸増幅検査を実施する核酸増幅装置において実施される核酸増幅検査方法であって、
     前記流路は、
      前記核酸増幅検査時に、前記試料が循環的に流通する循環流路を含むサーマル流路と、
      前記サーマル流路に接続された分注流路と、
      前記循環流路に設けられ、前記試料を移動させるポンプと、
      前記サーマル流路において、前記循環流路と前記分注流路との間に設けられた第一バルブと、
      前記循環流路に設けられた第二バルブと、を備え、
     前記核酸増幅検査方法は、
      前記第一バルブの開状態且つ前記第二バルブの閉状態において、前記ポンプを駆動して、前記試料を前記分注流路から前記循環流路に移動させる分注処理を実施するステップと、
      前記第一バルブの閉状態且つ前記第二バルブの開状態において、前記ポンプを駆動して、前記循環流路において前記試料を循環させつつ加熱するサーマルサイクル処理を実施するステップと、を含む、
     核酸増幅検査方法。
    A nucleic acid amplification test method performed in a nucleic acid amplification device that performs a nucleic acid amplification test in a state in which a test container having a flow path in which a sample is contained is attached, comprising:
    The flow path is
    a thermal flow path including a circulation flow path through which the sample circulates during the nucleic acid amplification test;
    a dispensing channel connected to the thermal channel;
    a pump provided in the circulation flow path for moving the sample;
    a first valve provided in the thermal flow path between the circulation flow path and the dispensing flow path;
    A second valve provided in the circulation flow path,
    The nucleic acid amplification testing method includes:
    performing a dispensing process of moving the sample from the dispensing flow path to the circulation flow path by driving the pump while the first valve is in an open state and the second valve is in a closed state;
    and performing a thermal cycle process in which the sample is circulated and heated in the circulation flow path by driving the pump with the first valve in a closed state and the second valve in an open state.
    Nucleic acid amplification testing methods.
  21.  前記サーマル流路は、
      前記核酸増幅検査時に前記核酸増幅装置により第一所定温度で加熱される低温側ヒート部と、
      前記核酸増幅検査時に前記核酸増幅装置により前記第一所定温度よりも高い第二所定温度で加熱される高温側ヒート部と、
      前記核酸増幅検査時に前記核酸増幅装置により前記第二所定温度よりも高い第三所定温度で加熱されるプレヒート部と、を有し、
     前記サーマルサイクル処理を実施するステップは、前記試料を、前記低温側ヒート部、前記プレヒート部、及び前記高温側ヒート部の順に循環させるステップを含む、
     請求項20に記載の核酸増幅検査方法。
    The thermal flow path is
    a low-temperature side heating section that is heated to a first predetermined temperature by the nucleic acid amplification device during the nucleic acid amplification test;
    a high-temperature side heating section that is heated by the nucleic acid amplification device at a second predetermined temperature that is higher than the first predetermined temperature during the nucleic acid amplification test;
    a preheating unit that is heated to a third predetermined temperature higher than the second predetermined temperature by the nucleic acid amplification device during the nucleic acid amplification test,
    The step of performing the thermal cycle treatment includes a step of circulating the sample through the low-temperature side heating section, the preheating section, and the high-temperature side heating section in this order.
    The nucleic acid amplification testing method according to claim 20.
  22.  前記分注流路は、試薬を担持する試薬担持部、を更に備え、
     前記分注処理を実施するステップは、前記試薬担持部に前記試料が収容された状態で、前記試薬担持部に振動を付与するステップを含む、
     請求項20に記載の核酸増幅検査方法。
    The dispensing flow path further includes a reagent support portion that supports a reagent,
    the step of performing the dispensing process includes a step of applying vibration to the reagent support portion while the sample is contained in the reagent support portion.
    The nucleic acid amplification testing method according to claim 20.
  23.  前記サーマル流路は、並列配置された、複数の前記循環流路を有し、
     前記サーマルサイクル処理を実施するステップは、所定のタイミングで、前記複数の循環流路毎に核酸の増幅判定処理を実施するステップを含む、
     請求項20に記載の核酸増幅検査方法。
    The thermal flow path has a plurality of the circulation flow paths arranged in parallel,
    The step of performing the thermal cycling treatment includes a step of performing an amplification determination process of nucleic acid for each of the plurality of circulation channels at a predetermined timing.
    The nucleic acid amplification testing method according to claim 20.
  24.  前記サーマルサイクル処理を実施するステップは、前記核酸増幅装置に設けられた試料位置検出部の検出回数に基づいて、前記サーマルサイクル処理のサイクル回数をカウントするステップを含む、
     請求項20に記載の核酸増幅検査方法。
    The step of performing the thermal cycling treatment includes a step of counting the number of cycles of the thermal cycling treatment based on the number of detections by a sample position detection unit provided in the nucleic acid amplification device.
    The nucleic acid amplification testing method according to claim 20.
PCT/JP2023/032960 2022-09-28 2023-09-11 Test container, nucleic acid amplification device, and nucleic acid amplification test method WO2024070614A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022154913 2022-09-28
JP2022-154913 2022-09-28

Publications (1)

Publication Number Publication Date
WO2024070614A1 true WO2024070614A1 (en) 2024-04-04

Family

ID=90477507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032960 WO2024070614A1 (en) 2022-09-28 2023-09-11 Test container, nucleic acid amplification device, and nucleic acid amplification test method

Country Status (1)

Country Link
WO (1) WO2024070614A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0775544A (en) * 1993-07-28 1995-03-20 Perkin Elmer Corp:The Device for causing amplification reaction of nucleic acid and chemical chain reaction, device for causing amplification reaction of nucleic acid including modification, annealing and extension process simultaneously and method of causing amplification reaction of nucleic acid
US20080176292A1 (en) * 2007-01-23 2008-07-24 Texas A&M University System Portable buoyancy driven pcr thermocycler
US20100267127A1 (en) * 2009-04-16 2010-10-21 Electronics And Telecommunications Research Institute Polymerase chain reaction apparatus
KR20130008266A (en) * 2011-07-12 2013-01-22 강원대학교산학협력단 Pcr amplification apparatus using gravity flow
JP2021073983A (en) * 2019-09-09 2021-05-20 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Smartphone PCR device
US20210388428A1 (en) * 2020-06-12 2021-12-16 Electronics And Telecommunications Research Institute Method and device for amplifying and detecting gene

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0775544A (en) * 1993-07-28 1995-03-20 Perkin Elmer Corp:The Device for causing amplification reaction of nucleic acid and chemical chain reaction, device for causing amplification reaction of nucleic acid including modification, annealing and extension process simultaneously and method of causing amplification reaction of nucleic acid
US20080176292A1 (en) * 2007-01-23 2008-07-24 Texas A&M University System Portable buoyancy driven pcr thermocycler
US20100267127A1 (en) * 2009-04-16 2010-10-21 Electronics And Telecommunications Research Institute Polymerase chain reaction apparatus
KR20130008266A (en) * 2011-07-12 2013-01-22 강원대학교산학협력단 Pcr amplification apparatus using gravity flow
JP2021073983A (en) * 2019-09-09 2021-05-20 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Smartphone PCR device
US20210388428A1 (en) * 2020-06-12 2021-12-16 Electronics And Telecommunications Research Institute Method and device for amplifying and detecting gene

Similar Documents

Publication Publication Date Title
AU2010237532B2 (en) Optical detection system for monitoring rtPCR reaction
US20190004054A1 (en) Assays
EP2032722B1 (en) Pcr-free sample preparation and detection systems for high speed biologic analysis and identification
US11198122B2 (en) Diagnostic test assembly, apparatus, method
OA11191A (en) Laboratory in a disk
CA2521999A1 (en) Assay apparatus and method using microfluidic arrays
CN112638241A (en) Portable diagnostic apparatus and method thereof
WO2012063647A1 (en) Reaction plate assembly, reaction plate and nucleic acid analysis device
JP5567526B2 (en) Analysis apparatus and analysis method
US20100227384A1 (en) Portable Genomic Analyzer
CN111778156A (en) High-flux PCR microdroplet fluorescence detection device and method
WO2024070614A1 (en) Test container, nucleic acid amplification device, and nucleic acid amplification test method
KR102102773B1 (en) Fluorescence analyzing apparatus based portable micro-optical component
EP2225548B1 (en) Detection system and method
JP2023545555A (en) Systems and methods for rapid multiplexed sample processing with application to nucleic acid amplification assays
KR20220023948A (en) Analysis Device for Sample Analysis Chip and Sample Analysis Method using the same
WO2012019119A1 (en) Systems, devices and methods for monitoring and detection of chemical reactions
CN115605577A (en) Real-time quantitative polymerase chain reaction (qPCR) reactor system with sample detection and injection