WO2024070537A1 - Method for producing polythiol composition, and use application thereof - Google Patents

Method for producing polythiol composition, and use application thereof Download PDF

Info

Publication number
WO2024070537A1
WO2024070537A1 PCT/JP2023/032430 JP2023032430W WO2024070537A1 WO 2024070537 A1 WO2024070537 A1 WO 2024070537A1 JP 2023032430 W JP2023032430 W JP 2023032430W WO 2024070537 A1 WO2024070537 A1 WO 2024070537A1
Authority
WO
WIPO (PCT)
Prior art keywords
polythiol
composition
compound
polythiol composition
producing
Prior art date
Application number
PCT/JP2023/032430
Other languages
French (fr)
Japanese (ja)
Inventor
進之介 仲井
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Publication of WO2024070537A1 publication Critical patent/WO2024070537A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/26Separation; Purification; Stabilisation; Use of additives
    • C07C319/28Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C321/00Thiols, sulfides, hydropolysulfides or polysulfides
    • C07C321/12Sulfides, hydropolysulfides, or polysulfides having thio groups bound to acyclic carbon atoms
    • C07C321/14Sulfides, hydropolysulfides, or polysulfides having thio groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/26Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with only hetero atoms directly attached to ring carbon atoms
    • C07D251/40Nitrogen atoms
    • C07D251/48Two nitrogen atoms
    • C07D251/52Two nitrogen atoms with an oxygen or sulfur atom attached to the third ring carbon atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen

Definitions

  • This disclosure relates to a method for producing a polythiol composition and its applications.
  • Plastic lenses which are lenses that contain resin, are lighter and less likely to break than inorganic lenses, and can be dyed, so in recent years they have rapidly become popular for use in eyeglass lenses, camera lenses, etc.
  • Thiourethane resin is known as one of the resins for lenses.
  • Patent Documents 1 and 2 disclose a method for producing a polythiol compound, which is one of the raw materials for a thiourethane resin, and a polymerizable composition for optical materials (e.g., a polymerizable composition for lenses) containing a polythiol compound.
  • Patent Documents 3 and 4 disclose polythiol compositions that contain a polythiol compound and have a reduced content of nitrogen-containing compounds as polythiol compositions that can produce lenses with excellent quality.
  • Patent Documents 3 and 4 also disclose polymerizable compositions for optical materials (e.g., polymerizable compositions for lenses) that contain the polythiol composition.
  • Patent Document 1 International Publication No. 2014/027427
  • Patent Document 2 International Publication No. 2014/027428
  • Patent Document 3 International Publication No. 2016/010065
  • Patent Document 4 International Publication No. 2020/41183
  • the object of one aspect of the present disclosure is to provide a method for producing a polythiol composition that can improve the pot life of a polymerizable composition containing the polythiol composition, and applications thereof.
  • Means for solving the above problems include the following aspects. ⁇ 1> A preparation step of preparing a crude polythiol composition that is a polythiol composition before purification; A purification step of purifying the crude polythiol composition with a solvent X containing an alkylene glycol to obtain a polythiol composition; including, A method for producing a polythiol composition.
  • the crude polythiol composition includes a polythiol component A1 which is a polythiol compound represented by the following formula (5), and a compound (NA1) in which at least one of the mercapto groups in the polythiol component A1 is replaced with a group represented by the following formula (N1), and,
  • the crude polythiol composition satisfies at least one of the following conditions: the crude polythiol composition contains a polythiol component A2 which is at least one selected from the group consisting of a polythiol compound represented by the following formula (6), a polythiol compound represented by the following formula (7), and a polythiol compound represented by the following formula (8), and a compound (NA2) in which at least one of the mercapto groups in the polythiol component A2 is replaced with a group represented by the following formula (N1):
  • the crude polythiol composition contains the polythiol component A1 and the compound (NA1)
  • the preparation step includes: A method for producing a polyalcohol compound represented by the following formula (2) by reacting 2-mercaptoethanol with an epihalohydrin compound represented by the following formula (1); reacting the polyalcohol compound represented by the formula (2) with thiourea under acidic conditions to obtain a reaction solution containing an isothiuronium salt; adding a base compound to the reaction solution containing the isothiuronium salt to hydrolyze the isothiuronium salt to obtain the crude polythiol composition; including, A method for producing the polythiol composition according to ⁇ 2>.
  • X represents a halogen atom.
  • the crude polythiol composition contains the polythiol component A2 and the compound (NA2)
  • the preparation step includes: Reacting 2-mercaptoethanol with an epihalohydrin compound represented by the following formula (1) to obtain a compound represented by the following formula (3); Reacting the compound represented by formula (3) with sodium sulfide to obtain a polyalcohol compound represented by formula (4): reacting the polyalcohol compound represented by the formula (4) with thiourea under acidic conditions to obtain a reaction solution containing an isothiuronium salt; adding a base compound to the reaction solution containing the isothiuronium salt to hydrolyze the isothiuronium salt to obtain the crude polythiol composition; including, A method for producing the polythiol composition according to ⁇ 2>.
  • X represents a halogen atom.
  • the preparation step includes preparing a toluene solution of the crude polythiol composition,
  • the purification step includes purifying the crude polythiol composition in the toluene solution with the solvent X by mixing the toluene solution with the solvent X.
  • the purification step includes: purifying the crude polythiol composition with the solvent X to obtain a polythiol composition; washing the resulting polythiol composition with an acid; including, A method for producing a polythiol composition according to any one of ⁇ 1> to ⁇ 6>.
  • a method for producing a polymerizable composition comprising the steps of:
  • the step of obtaining the polymerizable composition is a step of obtaining a polymerizable composition containing the polythiol composition and the polyisocyanate composition by mixing the polythiol composition and the polyisocyanate composition containing the polyisocyanate compound,
  • the polyisocyanate composition comprises: Xylylene diisocyanate, At least one selected from the group consisting of the following compound (N1), the following compound (N2), and the following compound (N3); Including,
  • the polyisocyanate composition contains the compound (N1)
  • the peak area of the compound (N1) measured by high performance liquid chromatography is 0.20 ppm or more relative to 100 of the peak area of xylylene diisocyanate
  • the peak area of the compound (N2) measured by high performance liquid chromatography is 0.05 ppm or more relative to 100 of the peak area of xylylene diisocyanate
  • the polyisocyanate composition contains the compound (N2)
  • a method for producing a resin comprising the steps of:
  • a polythiol component A2 containing at least one selected from the group consisting of a polythiol compound represented by the following formula (6), a polythiol compound represented by the following formula (7), and a polythiol compound represented by the following formula (8) as a main component,
  • the polythiol component A2 contains a compound (NA2) in which at least one of the mercapto groups is replaced with a group represented by the following formula (N1): In a high performance liquid chromatography measurement, the peak area of the compound (NA2) is 0.50 to 1.50 relative to the total peak area of the compounds contained in the polythiol composition (100). Polythiol compositions.
  • a polymerizable composition comprising: ⁇ 13> A polyisocyanate composition containing the polyisocyanate compound,
  • the polyisocyanate composition comprises: Xylylene diisocyanate, At least one selected from the group consisting of the following compound (N1), the following compound (N2), and the following compound (N3); Including, When the polyisocyanate composition contains the compound (N1), the peak area of the compound (N1) measured by high performance liquid chromatography is 0.20 ppm or more relative to 100 of the peak area of xylylene diisocyanate, When the polyisocyanate composition contains the compound (N2), the peak area of the compound (N2) measured by high performance liquid chromatography is 0.05 ppm or more relative to 100 of the peak area of xylylene diisocyanate, When the polyisocyanate composition contains the compound (N3), the peak area of the compound (N3) measured by
  • a method for producing a polythiol composition that can improve the pot life of a polymerizable composition, and applications thereof.
  • a numerical range expressed using “to” means a range that includes the numerical values before and after “to” as the lower and upper limits.
  • the term “process” refers not only to an independent process, but also to a process that cannot be clearly distinguished from other processes, as long as the intended purpose of the process is achieved.
  • the amount of each component contained in the composition means the total amount of the plurality of substances present in the composition, unless otherwise specified.
  • the upper or lower limit value described in one numerical range may be replaced with the upper or lower limit value of another numerical range described in stages.
  • the upper or lower limit value of the numerical range may be replaced with a value shown in the examples.
  • the method for producing the polythiol composition of the present disclosure includes: A preparation step of preparing a crude polythiol composition that is a polythiol composition before purification; A purification step of purifying the crude polythiol composition with a solvent X containing an alkylene glycol to obtain a polythiol composition; including.
  • the method for producing the polythiol composition of the present disclosure may include other steps as necessary.
  • a polymerizable composition containing a polythiol composition if unintended polymerization of polymerizable monomers (e.g., a polythiol compound in the polythiol composition and a polyisocyanate compound described below) progresses during storage, the viscosity of the polymerizable composition may increase during storage, i.e., the pot life of the polymerizable composition may decrease.
  • the unintended polymerization of the polymerizable monomer is believed to occur when an impurity (e.g., compound (NA1) or compound (NA2) described later) that may be unintentionally contained in the polymerizable composition acts as a polymerization catalyst.
  • an impurity e.g., compound (NA1) or compound (NA2) described later
  • the method for producing a polythiol composition disclosed herein includes a purification step of purifying a crude polythiol composition, which is a polythiol composition before purification, with a solvent X containing an alkylene glycol (hereinafter also referred to as "purification with solvent X" or simply “purification”) to obtain a polythiol composition. It is believed that this removes at least a portion of the impurities from the crude polythiol composition by purification with solvent X, thereby obtaining a polythiol composition with a reduced impurity content. As a result, it is believed that an increase in viscosity during storage is suppressed in a polymerizable composition containing the obtained polythiol composition (i.e., the pot life of the polymerizable composition is improved).
  • the above-mentioned effect improved pot life of the polymerizable composition
  • the above-mentioned effect improved pot life of the polymerizable composition
  • purification with solvent X can selectively remove impurities while reducing the effect on the polythiol compound contained in the polythiol composition.
  • the method for producing a polythiol composition of the present disclosure includes a preparation step of preparing a crude polythiol composition, which is a polythiol composition before purification.
  • the preparation step may be a step of simply preparing a crude polythiol composition that has been produced in advance, or may be a step of producing a crude polythiol composition.
  • a crude polythiol composition is a polythiol composition before purification.
  • a polythiol composition means a composition containing at least one polythiol compound.
  • the polythiol compound is not particularly limited as long as it contains two or more thiol groups (also known as mercapto groups).
  • the polythiol composition may contain components other than the polythiol compound as impurities.
  • the polythiol composition preferably contains at least one polythiol compound as a main component.
  • the polythiol composition contains at least one polythiol compound as a main component
  • the total content of the at least one polythiol compound relative to the total amount of the polythiol composition is 50% or more.
  • the total content of the at least one polythiol compound relative to the total amount of the polythiol composition is preferably 60% or more, more preferably 70% or more, and even more preferably 80% or more.
  • a composition "contains as a main component” a certain component means that the content of component X (when component X consists of two or more compounds, the total content of the two or more compounds) is 50% or more of the total amount of the composition.
  • the content of the main component, Component X is preferably 60% or more, more preferably 70% or more, and even more preferably 80% or more, based on the total amount of the composition.
  • % in the explanation of the term “contains as a main component” above means the ratio (area %) of the total area of all peaks of component X (e.g., at least one polythiol compound) to the total area of all peaks of the composition (e.g., a polythiol composition) as determined by high performance liquid chromatography.
  • component X e.g., at least one polythiol compound
  • composition e.g., a polythiol composition
  • the polythiol compound contained in the polythiol composition is also referred to as a "polythiol component.”
  • the polythiol composition is 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, Pentaerythritol tetrakis(2-mercaptoacetate), Pentaerythritol tetrakis(3-mercaptopropionate), 2,5-dimercaptomethyl-1,4-dithiane, Bis(2-mercaptoethyl) sulfide, and diethylene glycol bis(3-mercap
  • polythiol compounds include, for example, methanedithiol, 1,2-ethanedithiol, 1,2,3-propanetrithiol, tetrakis(mercaptomethylthiomethyl)methane, tetrakis(2-mercaptoethylthiomethyl)methane, tetrakis(3-mercaptopropylthiomethyl)methane, bis(2,3-dimercaptopropyl)sulfide, 2,5-dimercapto-1,4-dithiane, 2,5-dimercaptomethyl-2,5-dimethyl-1,4-dithiane, 1,1,3,3-tetrakis(mercaptomethylthio)propane, 1,1,2,2-tetrakis(mercaptomethylthio)ethane, 4,6-bis(mercaptomethylthio)-1,3-dithiane, etc.
  • polythiol composition as a raw material for the thiourethane resin
  • polythiol component A1 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane
  • polythiol component A1 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane
  • polythiol component A2 An embodiment including pentaerythritol tetrakis(3-mercaptopropionate) (hereinafter also referred to as “polythiol component A1"
  • polythiol component A2 An embodiment containing pentaerythritol tetrakis(3-mercaptopropionate)
  • the polythiol composition of each embodiment may contain at least one other component (for example, other polythiol compound, component other than polythiol compound, etc.) other than the main component.
  • other components include the compound (NA1) and the compound (NA2) described below.
  • the preparing step may include preparing a toluene solution of the crude polythiol composition.
  • the toluene solution is mixed with a solvent X (that is, a solvent X containing an alkylene glycol) to purify the crude polythiol composition in the toluene solution with the solvent X.
  • a solvent X that is, a solvent X containing an alkylene glycol
  • the toluene solution of the crude polythiol composition contains the crude polythiol composition and toluene, and may contain other components as necessary. It is also possible to purify the crude polythiol composition by directly mixing the crude polythiol composition and solvent X, without converting the crude polythiol composition into a toluene solution.
  • the method for producing a polythiol composition of the present disclosure includes a purification step of purifying a crude polythiol composition with a solvent X containing an alkylene glycol to obtain a polythiol composition.
  • impurities e.g., the compounds (NA1) and (NA2) described below
  • a polythiol composition having a reduced amount of the impurities is obtained. This results in a polythiol composition that can improve the pot life of the polymerizable composition.
  • the temperature of the mixture of the crude polythiol composition and solvent X during purification with solvent X is preferably 10°C to 60°C, more preferably 20°C to 60°C, and even more preferably 20°C to 50°C.
  • the time for purification with solvent X is preferably 1 to 120 minutes, more preferably 10 to 90 minutes, and even more preferably 20 to 60 minutes.
  • solvent X includes an alkylene glycol. From the viewpoint of impurity removal by purification, it is preferable that the solvent X contains at least one of ethylene glycol and propylene glycol.
  • the solvent X may contain a solvent component other than the alkylene glycol.
  • the solvent component other than alkylene glycol include monoalcohols (for example, monoalcohols having 1 to 6 carbon atoms, such as methanol, ethanol, propanol, and isopropanol).
  • the proportion of alkylene glycol in solvent X is preferably 20% by mass to 100% by mass, more preferably 50% by mass to 100% by mass, even more preferably 50% by mass to 100% by mass, and even more preferably 80% by mass to 100% by mass.
  • the purification process is purifying the crude polythiol composition with a solvent X to obtain a polythiol composition; washing the resulting polythiol composition with an acid; It is preferred that the compound contains
  • the acid used for the acid washing is preferably hydrochloric acid.
  • the temperature of the mixture of the polythiol composition and the acid during the acid washing is preferably 10°C to 60°C, more preferably 20°C to 60°C, and even more preferably 20°C to 50°C.
  • the time for acid washing is preferably 1 to 120 minutes, more preferably 5 to 90 minutes, and further preferably 10 to 70 minutes.
  • the concentration of hydrochloric acid is preferably 25% by mass to 36% by mass, and more preferably 30% by mass to 36% by mass.
  • the purification step may further include washing the polythiol composition with water and/or washing with an alkali.
  • the water washing and/or the alkali washing is preferably carried out after the acid washing.
  • deaerated water having an oxygen concentration of 5 mg/L or less can be used.
  • the alkaline washing can be carried out by adding an alkaline aqueous solution and stirring the mixture at a temperature preferably in the range of 20° C. to 50° C., preferably for 10 minutes to 3 hours.
  • the alkaline aqueous solution is preferably ammonia water.
  • the concentration of the aqueous ammonia is preferably 0.1% by mass to 10% by mass, more preferably 0.1% by mass to 1% by mass, and further preferably 0.1% by mass to 0.5% by mass.
  • the method for producing the polythiol composition of the present disclosure may include other steps as necessary. Other steps include a solvent removal step, a filtration step, a distillation step, etc., which are performed after the purification step.
  • first and second embodiments may have some overlapping portions, i.e., one of the first and second embodiments may have features of the other.
  • the crude polythiol composition is A polythiol component A1 which is a polythiol compound represented by the following formula (5) (i.e., 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane); A compound (NA1) in which at least one of the mercapto groups in the polythiol component A1 has been replaced with a group represented by the following formula (N1);
  • the crude polythiol composition is a polythiol component A2 which is at least one selected from the group consisting of a polythiol compound represented by the following formula (6) (i.e., 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane), a polythiol compound represented by the following formula (6)
  • the first embodiment is an embodiment in which the crude polythiol composition contains a polythiol component A1 and a compound (NA1).
  • the crude polythiol composition in the first embodiment preferably contains polythiol component A1 as a main component.
  • the compound (NA1) in the first embodiment is a compound in which at least one of the mercapto groups in the polythiol component A1 is replaced with a group represented by formula (N1).
  • the compound (NA1) is a reaction by-product generated in the process of producing the polythiol component A1, and is considered to be a compound that can be mixed as an impurity into the crude polythiol composition containing the polythiol component A1 as a main component.
  • Compound (NA1) has a retention time of 4.3 to 4.8 minutes in HPLC (high performance liquid chromatography) measurement shown in the "Examples" section below.
  • the compound (NA1) is considered to be an impurity having a catalytic action that promotes the polymerization of the monomer in the polymerizable composition.
  • compound (NA1) reference can be made to WO 2016/010065 (particularly the description of “nitrogen-containing compound (b)”) and WO 2020/41183 (particularly the description of “nitrogen-containing compound (B)”).
  • the compound (NA1) is removed from the crude polythiol composition by purification with a solvent X, and a polythiol composition having a reduced content of the compound (NA1) is obtained. This suppresses an increase in viscosity of the polymerizable compound containing the polythiol composition during storage.
  • the peak area of compound (NA1) is preferably 0.01 to 0.30, and more preferably 0.01 to 0.20, relative to the total peak area of 100 of the compounds contained in the polythiol composition obtained by the purification process.
  • the preparation process in the first embodiment includes the following steps: A method for producing a polyalcohol compound represented by the following formula (2) by reacting 2-mercaptoethanol with an epihalohydrin compound represented by the following formula (1); reacting a polyalcohol compound represented by formula (2) with thiourea under acidic conditions to obtain a reaction solution containing an isothiuronium salt; adding a base compound to the reaction solution containing the isothiuronium salt to hydrolyze the isothiuronium salt to obtain a crude polythiol composition; It is preferred that the compound contains
  • X represents a halogen atom.
  • the preferred aspect of the preparation step in the first embodiment includes reacting 2-mercaptoethanol with an epihalohydrin compound represented by formula (1) to obtain a polyalcohol compound represented by the following formula (2).
  • X is preferably a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, and more preferably a chlorine atom.
  • the reaction temperature between 2-mercaptoethanol and the epihalohydrin compound represented by formula (1) is preferably 10°C to 50°C, more preferably 15°C to 50°C, and even more preferably 25°C to 45°C.
  • the amount of 2-mercaptoethanol used is preferably 1.8 to 3 moles, more preferably 1.9 to 2.1 moles, per mole of the epihalohydrin compound represented by formula (1).
  • the reaction between 2-mercaptoethanol and the epihalohydrin compound represented by the following formula (1) is preferably carried out in an aqueous solvent.
  • the aqueous solvent includes water or a mixed solvent of water and a lower alcohol (eg, methanol or ethanol).
  • the reaction between 2-mercaptoethanol and the epihalohydrin compound represented by the following formula (1) is preferably carried out in the presence of a base.
  • the base include metal hydroxides such as sodium hydroxide and potassium hydroxide; metal carbonates such as sodium carbonate and potassium carbonate; and tertiary amines such as triethylamine and tributylamine. Of these, sodium hydroxide is particularly preferred.
  • the amount of the base used is preferably 0.5 to 2 moles, more preferably 0.9 to 1.1 moles, per mole of the epihalohydrin compound represented by formula (1).
  • the amount used is preferably half the amount of the monovalent base.
  • the above-mentioned preferred aspect of the preparation step in the first embodiment includes reacting a polyalcohol compound represented by formula (2) with thiourea under acidic conditions to obtain a reaction liquid containing an isothiuronium salt.
  • the amount of thiourea used is preferably 2.7 moles or more, more preferably 2.7 moles to 6.0 moles, and even more preferably 2.9 moles to 3.2 moles, per mole of the polyalcohol compound represented by formula (2).
  • the acidic conditions are preferably in the presence of hydrochloric acid.
  • the amount of hydrochloric acid used is preferably 3 mol or more, more preferably 3 mol to 12 mol, and even more preferably 3 mol to 5 mol, per mol of the polyalcohol compound represented by the formula (2).
  • the reaction temperature of the polyalcohol compound represented by formula (2) with thiourea is preferably from room temperature (25°C) to the reflux temperature, more preferably from 90°C to 120°C.
  • the reaction time is preferably from 1 hour to 10 hours.
  • the above-mentioned preferred aspect of the preparation step in the first embodiment includes adding a base compound to a reaction liquid containing an isothiuronium salt to hydrolyze the isothiuronium salt and obtain a crude polythiol composition.
  • the basic compound is preferably ammonia.
  • an aqueous solution of a base compound eg, aqueous ammonia
  • the reaction temperature for hydrolyzing the isothiuronium salt is preferably 15°C to 60°C, more preferably 25°C to 55°C.
  • the basic compound or an aqueous solution thereof is added to the reaction liquid containing the isothiuronium salt preferably over a period of 80 minutes or less, more preferably 70 minutes or less, and even more preferably 20 to 60 minutes.
  • the hydrolysis reaction is carried out preferably at room temperature to reflux temperature (more preferably 30° C. to 80° C.) for preferably 1 hour to 8 hours.
  • the amount of ammonia used per mole of hydrochloric acid is preferably 1 mole or more, more preferably 1 mole to 3 moles.
  • an organic solvent to the reaction solution containing the isothiuronium salt before adding the base compound or an aqueous solution thereof.
  • the organic solvent include toluene, xylene, chlorobenzene, and dichlorobenzene. Of these, toluene is preferred.
  • the second embodiment is an embodiment in which the crude polythiol composition contains a polythiol component A2 and a compound (NA2).
  • the crude polythiol composition in the second embodiment preferably contains polythiol component A2 as a main component.
  • the compound (NA2) in the second embodiment is a compound in which at least one of the mercapto groups in the polythiol component A2 is replaced with a group represented by formula (N1).
  • the compound (NA2) is a reaction by-product generated in the process of producing the polythiol component A2, and is considered to be a compound that can be mixed as an impurity into the crude polythiol composition containing the polythiol component A2 as a main component.
  • Compound (NA2) has a retention time of 6.5 to 8.0 minutes in HPLC (high performance liquid chromatography) measurement shown in the "Examples" section below.
  • the compound (NA2) is considered to be an impurity having a catalytic action that promotes the polymerization of the monomer in the polymerizable composition.
  • the compound (NA2) is removed from the crude polythiol composition by purification with a solvent X, and a polythiol composition having a reduced content of the compound (NA2) is obtained.
  • the peak area of the compound (NA2) is preferably 0.04 to 1.50, more preferably 0.50 to 1.50, and even more preferably 0.50 to 1.00, relative to the total peak area 100 of the compounds contained in the polythiol composition obtained by the purification step.
  • the peak area of the compound (NA2) is 0.04 or more (more preferably 0.50 or more) relative to the total peak area 100 of the compounds contained in the polythiol composition, the heat resistance (e.g., glass transition temperature (Tg)) of a resin produced using the polythiol composition is further improved.
  • the peak area of the compound (NA2) is 1.50 or less relative to the total peak area of the compounds contained in the polythiol composition (100)
  • the increase in viscosity of the polymerizable compound containing the polythiol composition during storage is further suppressed (i.e., the pot life of the polymerizable compound containing the polythiol composition is further improved).
  • the preparation process in the second embodiment includes the following steps: Reacting 2-mercaptoethanol with an epihalohydrin compound represented by the following formula (1) to obtain a compound represented by the following formula (3); Reacting a compound represented by formula (3) with sodium sulfide to obtain a polyalcohol compound represented by the following formula (4); reacting a polyalcohol compound represented by formula (4) with thiourea under acidic conditions to obtain a reaction solution containing an isothiuronium salt; adding a base compound to the reaction solution containing the isothiuronium salt to hydrolyze the isothiuronium salt to obtain a crude polythiol composition containing a polythiol component A2; It is preferred that the compound contains
  • X represents a halogen atom.
  • the above-mentioned preferred aspect of the preparation step in the second embodiment includes reacting 2-mercaptoethanol with an epihalohydrin compound represented by formula (1) to obtain a compound represented by formula (3).
  • X is preferably a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, and more preferably a chlorine atom.
  • the reaction temperature of 2-mercaptoethanol with the epihalohydrin compound represented by formula (1) is preferably 2°C to 30°C, more preferably 5°C to 20°C, and even more preferably 5°C to 15°C.
  • the reaction time is preferably from 2 to 10 hours.
  • the amount of 2-mercaptoethanol used is preferably 0.5 mol to 3 mol, more preferably 0.7 mol to 2.0 mol, and even more preferably 0.9 mol to 1.1 mol per mol of the epihalohydrin compound represented by formula (1).
  • the reaction between 2-mercaptoethanol and the epihalohydrin compound represented by the following formula (1) is preferably carried out in an aqueous solvent.
  • the aqueous solvent includes water or a mixed solvent of water and a lower alcohol (eg, methanol or ethanol).
  • the reaction between 2-mercaptoethanol and the epihalohydrin compound represented by the following formula (1) is preferably carried out in the presence of a base.
  • the base include metal hydroxides such as sodium hydroxide and potassium hydroxide; metal carbonates such as sodium carbonate and potassium carbonate; and tertiary amines such as triethylamine and tributylamine. Of these, sodium hydroxide is particularly preferred.
  • the amount of the base used, in the case of a monovalent base is preferably 0.001 to 0.1 moles per mole of the epihalohydrin compound represented by formula (1). In the case of a divalent base, the amount used is preferably half the amount of the monovalent base.
  • the preferred aspect of the preparation step in the second embodiment includes reacting a compound represented by formula (3) with sodium sulfide to obtain a polyalcohol compound represented by formula (4).
  • the amount of sodium sulfide used is preferably 0.4 to 0.6 moles per mole of the polyalcohol compound represented by the formula (3).
  • the reaction temperature is preferably from 10°C to 50°C, more preferably from 20°C to 40°C.
  • the reaction time is preferably from 1 hour to 10 hours.
  • the above-mentioned preferred aspect of the preparation step in the second embodiment includes reacting a polyalcohol compound represented by formula (4) with thiourea under acidic conditions to obtain a reaction liquid containing an isothiuronium salt.
  • the amount of thiourea used is preferably 3.0 mol or more, more preferably 3.0 mol to 6.0 mol, and even more preferably 4.6 to 5.0 mol, per mol of the polyalcohol compound represented by the formula (4).
  • the acidic conditions are preferably in the presence of hydrochloric acid.
  • the amount of hydrochloric acid used is preferably 3 moles or more, more preferably 3 moles to 12 moles, per mole of the polyalcohol compound represented by the formula (4).
  • the reaction temperature between the polyalcohol compound represented by formula (4) and thiourea is preferably from room temperature (25°C) to the reflux temperature, more preferably from 90°C to 120°C.
  • the reaction time is preferably from 1 hour to 10
  • the above-mentioned preferred aspect of the preparation step in the second embodiment includes adding a base compound to a reaction liquid containing an isothiuronium salt to hydrolyze the isothiuronium salt and obtain a crude polythiol composition.
  • the basic compound is preferably ammonia.
  • an aqueous solution of a base compound eg, aqueous ammonia
  • the reaction temperature for hydrolyzing the isothiuronium salt is preferably 20°C to 60°C, more preferably 25°C to 55°C.
  • the basic compound or an aqueous solution thereof is added to the reaction liquid containing the isothiuronium salt preferably over a period of 80 minutes or less, more preferably 70 minutes or less, and even more preferably 20 to 60 minutes.
  • the hydrolysis reaction is carried out preferably at room temperature to reflux temperature (more preferably 30° C. to 80° C.) for preferably 1 hour to 8 hours.
  • the amount of ammonia used per mole of hydrochloric acid is preferably 1 mole or more, more preferably 1 mole to 3 moles.
  • an organic solvent to the reaction solution containing the isothiuronium salt before adding the base compound or an aqueous solution thereof.
  • the organic solvent include toluene, xylene, chlorobenzene, and dichlorobenzene. Of these, toluene is preferred.
  • the method for producing the polymerizable composition of the present disclosure includes: Producing a polythiol composition by the method for producing a polythiol composition of the present disclosure described above; A step of obtaining a polymerizable composition containing the polythiol composition and the polyisocyanate compound by mixing at least the polythiol composition and the polyisocyanate compound; including.
  • the method for producing the polymerizable composition of the present disclosure may include other steps as necessary.
  • a polythiol composition is produced by the method for producing a polythiol composition of the present disclosure described above, and therefore, the same effects as those of the method for producing a polythiol composition of the present disclosure are achieved. That is, according to the method for producing a polymerizable composition disclosed herein, a polymerization reaction between a polythiol composition and a polyisocyanate compound during storage is suppressed, thereby suppressing an increase in viscosity during storage (i.e., suppressing a decrease in pot life).
  • Step of Producing Polythiol Composition For the step of producing a polythiol composition in the method for producing a polymerizable composition of the present disclosure, the above-mentioned method for producing a polythiol composition of the present disclosure can be appropriately referred to.
  • Step of Obtaining Polymerizable Composition In the step of obtaining a polymerizable composition, at least the polythiol composition and a polyisocyanate compound are mixed to obtain a polymerizable composition containing the polythiol composition and the polyisocyanate compound.
  • the preferred embodiment of the polyisocyanate compound used in the process for obtaining the polymerizable composition is the same as the preferred embodiment of the "isocyanate compound as a raw material for the thiourethane resin" explained in the section "Production method of the polythiol composition”.
  • the mixing ratio of the polythiol composition and the polyisocyanate compound is not particularly limited.
  • the ratio of the charged mass of the polythiol composition to the charged mass of the polyisocyanate compound is preferably 0.10 to 10.0, more preferably 0.20 to 5.00, even more preferably 0.50 to 1.50, and even more preferably 0.70 to 1.30.
  • the molar ratio of the mercapto groups of the polythiol compound contained in the polythiol composition to the isocyanato groups of the polyisocyanate compound is preferably 0.5 to 3.0, more preferably 0.6 to 2.0, and even more preferably 0.8 to 1.3.
  • the total mass of the polythiol composition and the polyisocyanate compound is not particularly limited, but is preferably 60% by mass or more, more preferably 80% by mass or more, and even more preferably 90% by mass or more, based on the total amount of the polymerizable composition produced.
  • the process for obtaining the polymerizable composition may be a process for obtaining a polymerizable composition containing a polythiol composition and a polyisocyanate composition by mixing a polythiol composition with a polyisocyanate composition containing a polyisocyanate compound.
  • a polyisocyanate composition means a composition containing at least one polyisocyanate compound.
  • the polyisocyanate composition may contain components other than the polyisocyanate compound as impurities.
  • the polyisocyanate composition preferably contains at least one polyisocyanate compound as a main component.
  • the meaning of "containing as a main component" is as described above.
  • the polyisocyanate composition preferably contains xylylene diisocyanate.
  • a polyisocyanate composition containing xylylene diisocyanate is also referred to as an XDI composition.
  • the XDI composition preferably contains xylylene diisocyanate as a main component.
  • the XDI composition preferably contains at least one selected from the group consisting of the following compound (N1), the following compound (N2), and the following compound (N3):
  • the peak area of the compound (N1) measured by gas chromatography under the following GC condition 1 is preferably 0.20 ppm or more relative to the peak area 1 of xylylene diisocyanate.
  • -GC condition 1- Filler: DB-1 (film thickness) 1.5 ⁇ m
  • the peak area of the compound (N1) is more preferably 5.0 ppm or more, further preferably 50 ppm or more, and further preferably 100 ppm or more, relative to the peak area of xylylene diisocyanate.
  • the peak area of the compound (N1) is preferably 4000 ppm or less, more preferably 3000 ppm or less, even more preferably 2000 ppm or less, even more preferably 1500 ppm or less, and even more preferably 1000 ppm or less, relative to the peak area of xylylene diisocyanate.
  • the peak area of the compound (N1) can be measured in accordance with the method described in paragraph 0377 of Japanese Patent No. 6,373,536.
  • the peak area of the compound (N2) measured by gas chromatography under the following GC condition 2 is preferably 0.05 ppm or more relative to the peak area 1 of xylylene diisocyanate.
  • -GC condition 2- Column: HP-50+, inner diameter 0.25 mm ⁇ length 30 m ⁇ film thickness 0.25 ⁇ m (manufactured by Hewlett-Packard) Oven temperature: Raise from 50° C. to 280° C. at 10° C./min, and hold for 6 min after reaching 280° C.
  • the peak area of the compound (N2) is more preferably 0.1 ppm or more, further preferably 0.3 ppm or more, and further preferably 0.6 ppm or more, relative to the peak area of xylylene diisocyanate.
  • the peak area of the compound (N2) is preferably 200 ppm or less, more preferably 150 ppm or less, even more preferably 100 ppm or less, even more preferably 80 ppm or less, even more preferably 70 ppm or less, and even more preferably 60 ppm or less, relative to the peak area of xylylene diisocyanate.
  • the peak area of the compound (N2) can be measured in accordance with the method described in paragraphs 0375 and 0376 of Japanese Patent No. 6,373,536.
  • the peak area of the compound (N3) measured by gas chromatography under the above-mentioned GC condition 1 is preferably 0.10 ppm or more relative to the peak area 1 of xylylene diisocyanate.
  • the peak area of the compound (N3) is more preferably 0.1 ppm or more, further preferably 3.0 ppm or more, and further preferably 5.0 ppm or more, relative to the peak area of xylylene diisocyanate.
  • the peak area of the compound (N3) is preferably 1000 ppm or less, more preferably 500 ppm or less, even more preferably 300 ppm or less, even more preferably 100 ppm or less, and even more preferably 75 ppm or less, relative to the peak area of xylylene diisocyanate.
  • the peak area of the compound (N3) can be measured in accordance with the method described in paragraph 0377 of Japanese Patent No. 6,373,536.
  • the acid content of the XDI composition is preferably 3000 ppm or less, more preferably 2000 ppm or less, even more preferably 1000 ppm or less, even more preferably 100 ppm or less, even more preferably 50 ppm or less, even more preferably 30 ppm or less, even more preferably less than 15 ppm.
  • the lower limit of the acid content of the XDI composition is not particularly limited, but the lower limit is, for example, 1 ppm.
  • the acid content of the XDI composition can be measured according to the method described in paragraph 0091 of WO 2021/256417.
  • the XDI composition may also include a stabilizer.
  • the polythiol composition and the polyisocyanate compound are mixed, but if necessary, the polythiol composition and the polyisocyanate compound may be mixed with other components.
  • the polythiol composition and the polyisocyanate compound may be mixed, and then other components may be added to the mixture.
  • These other components include polymerization catalysts, internal release agents, resin modifiers, chain extenders, crosslinking agents, radical scavengers, light stabilizers, ultraviolet absorbers, antioxidants, oil-soluble dyes, fillers, adhesion improvers, antibacterial agents, antistatic agents, dyes, fluorescent brightening agents, fluorescent pigments, inorganic pigments, and the like.
  • Polymerization catalysts include tertiary amine compounds, their inorganic or organic acid salts, metal compounds, quaternary ammonium salts, organic sulfonic acids, etc.
  • an acidic phosphate ester can be used as the internal mold release agent.
  • acidic phosphate esters include monophosphate esters and diphosphate esters, and each can be used alone or in a mixture of two or more types.
  • resin modifiers include episulfide compounds, alcohol compounds, amine compounds, epoxy compounds, organic acids, anhydrides of organic acids, olefin compounds including (meth)acrylate compounds, etc.
  • a (meth)acrylate compound means at least one of an acrylate compound and a methacrylate compound.
  • the above-mentioned components can be mixed in a conventional manner, and the mixing method is not particularly limited.
  • the method for producing the resin of the present disclosure includes: A step of producing a polymerizable composition by the method for producing a polymerizable composition according to the present disclosure described above; a step of curing the polymerizable composition to obtain a resin; including.
  • the method for producing the resin of the present disclosure may include other steps as necessary.
  • the polymerizable composition is cured to obtain a resin.
  • the curing of the polymerizable composition can be carried out by polymerizing the monomers in the polymerizable composition (specifically, the polythiol composition and the polyisocyanate compound; the same applies below).
  • the polymerizable composition may be subjected to a treatment such as filtration or degassing.
  • the polymerization conditions (e.g., polymerization temperature, polymerization time, etc.) for polymerizing the monomers in the polymerizable composition are appropriately set in consideration of the composition of the composition, the type and amount of the monomer in the composition, the type and amount of the polymerization catalyst in the composition, and the properties of the mold when a mold described below is used.
  • the polymerization temperature may be, for example, from -50°C to 150°C, or from 10°C to 150°C.
  • the polymerization time may be, for example, 1 hour to 200 hours, or 1 hour to 80 hours.
  • the polymer obtained by polymerization of the monomer may be subjected to a treatment such as annealing to obtain the resin.
  • the annealing temperature may be 50°C to 150°C, 90°C to 140°C, 100°C to 130°C, or the like.
  • the method for producing a molded body according to the present disclosure is a method for producing a molded body containing a resin (hereinafter also referred to as a "resin molded body"), comprising the steps of: A step of producing a polymerizable composition by the method for producing a polymerizable composition according to the present disclosure described above; a step of obtaining a molded body containing a resin by curing the polymerizable composition; including.
  • the method for producing a molded article according to the present disclosure may include other steps as necessary.
  • the polymerizable composition is cured to obtain a molded article containing a resin.
  • a resin for preferred conditions for curing the polymerizable composition, i.e., for polymerization of the monomers in the polymerizable composition, see the section "Method for producing resin" as appropriate.
  • An example of the polymerization in this step is cast polymerization.
  • cast polymerization first, the polymerizable composition is poured between the molds held by a gasket or tape, etc. At this time, degassing treatment, filtration treatment, etc. may be carried out as necessary.
  • the monomer in the polymerizable composition injected between the molds is polymerized to cure the composition between the molds, and the cured product is obtained.
  • the cured product is then removed from the molds to obtain a molded product containing the resin.
  • the polymerization of the monomer may be carried out by heating the polymerizable composition, for example, using a heating device equipped with a mechanism for heating an object to be heated in an oven, water, or the like.
  • the method for producing an optical material (e.g., a lens) according to the present disclosure is a method for producing an optical material (e.g., a lens) including a molded body containing a resin, the method comprising the steps of: A step of producing a polymerizable composition by the method for producing a polymerizable composition according to the present disclosure described above; a step of obtaining a molded body containing a resin by curing the polymerizable composition; including.
  • the method for producing an optical material (e.g., a lens; the same applies below) of the present disclosure may include other steps as necessary.
  • the method for producing an optical material according to the present disclosure is an application of the method for producing a molded body according to the present disclosure.
  • a molded article applicable to an optical material e.g., a lens
  • Optical materials include lenses (e.g., eyeglass lenses, camera lenses, polarized lenses), light-emitting diodes (LEDs), etc.
  • lenses e.g., eyeglass lenses, camera lenses, polarized lenses
  • LEDs light-emitting diodes
  • the manufacturing method of the optical material (e.g., lens) of the present disclosure may include a step of forming a coating layer on one or both sides of a molded body containing a resin.
  • the coating layer include a primer layer, a hard coat layer, an anti-reflection layer, an anti-fogging coat layer, an anti-fouling layer, and a water-repellent layer.
  • Each of these coating layers may be formed alone, or a plurality of coating layers may be formed in a multi-layer structure. When coating layers are formed on both sides, the same coating layer may be formed on each side, or different coating layers may be formed on each side.
  • the components of the coating layer can be appropriately selected depending on the purpose.
  • components of the coating layer include resins (e.g., urethane resins, epoxy resins, polyester resins, melamine resins, polyvinyl acetal resins, etc.), infrared absorbers, light stabilizers, antioxidants, photochromic compounds, dyes, pigments, and antistatic agents.
  • the polymerizable composition of the present disclosure contains a polythiol composition obtained by the above-described method for producing a polythiol composition of the present disclosure, and a polyisocyanate compound.
  • the polymerizable composition of the present disclosure may include a polyisocyanate composition containing the polyisocyanate compound described above.
  • the polyisocyanate composition preferably contains xylylene diisocyanate (i.e., is the XDI composition described above).
  • a preferred aspect of the XDI composition e.g., containing at least one selected from the group consisting of compound (N1), compound (N2), and compound (N3) is as described in the section " ⁇ Step of obtaining polymerizable composition>" in the method for producing a polymerizable composition of the present disclosure described above.
  • the polymerizable composition of the present disclosure can be produced by the above-mentioned method for producing a polymerizable composition of the present disclosure.
  • the above-mentioned method for producing the polymerizable composition of the present disclosure can be referred to as appropriate.
  • the charge mass [polythiol composition/polyisocyanate compound] is read as the content mass ratio [polythiol composition/polyisocyanate compound]
  • the total charge mass of the polythiol composition and the polyisocyanate compound is read as the total content mass of the polythiol composition and the polyisocyanate compound.
  • the resin of the present disclosure is a cured product of the polymerizable composition of the present disclosure described above.
  • the molded article of the present disclosure is a molded article containing the resin of the present disclosure described above.
  • the optical material (e.g., a lens) of the present disclosure is an optical material (e.g., a lens) containing the resin of the present disclosure described above.
  • the resin of the present disclosure, the molded body of the present disclosure, and the optical material (e.g., a lens) of the present disclosure can be produced by the above-mentioned method for producing the resin of the present disclosure, the method for producing the molded body of the present disclosure, and the method for producing the optical material (e.g., a lens) of the present disclosure, respectively.
  • the resin of the present disclosure for preferred aspects of the resin of the present disclosure, the molded article of the present disclosure, and the optical material (e.g., a lens) of the present disclosure, reference can be made to the preferred aspects of the manufacturing method for the resin of the present disclosure, the manufacturing method for the molded article of the present disclosure, and the manufacturing method for the optical material (e.g., a lens) of the present disclosure, respectively, described above.
  • the manufacturing method for the resin of the present disclosure the manufacturing method for the molded article of the present disclosure, and the manufacturing method for the optical material (e.g., a lens) of the present disclosure, respectively, described above.
  • the glass transition temperature Tg of the resin (or molded article) of the present disclosure is preferably 70° C. or higher, more preferably 80° C. or higher, and even more preferably 85° C. or higher.
  • the glass transition temperature Tg may be 130° C. or lower, 120° C. or lower, or 110° C. or lower.
  • the refractive index (ne) of the resin (or molded article) of the present disclosure is preferably 1.500 or more, more preferably 1.540 or more, and even more preferably 1.590 or more.
  • the refractive index (ne) is, for example, 1.750.
  • the Abbe number of the resin (or molded article) of the present disclosure is preferably 28 or more, and more preferably 30 or more.
  • the upper limit of the Abbe number is not particularly limited, but the upper limit is, for example, 50, and preferably 45.
  • the specific gravity d of the resin (or molded article) of the present disclosure is preferably 1.10 or more, and more preferably 1.20 or more.
  • the upper limit is, for example, 1.50, and preferably 1.40.
  • a polythiol composition according to one embodiment of the present disclosure includes
  • the polythiol component A2 contains, as a main component, at least one selected from the group consisting of a polythiol compound represented by the following formula (6), a polythiol compound represented by the following formula (7), and a polythiol compound represented by the following formula (8),
  • the polythiol component A2 contains a compound (XC) in which at least one of the mercapto groups is replaced with a group represented by the following formula (N1): In a high performance liquid chromatography measurement, the peak area of the compound (NA2) is 0.50 to 1.50 relative to the total peak area of the compounds contained in the polythiol composition (100).
  • a polythiol composition contains, as a main component, at least one selected from the group consisting of a polythiol compound represented by the following formula (6), a polythiol compound represented by the following formula (7), and a polythiol compound represented by the following formula (8),
  • the peak area of the compound (NA2) is preferably 0.04 to 1.50, more preferably 0.50 to 1.50, and even more preferably 0.50 to 1.00, relative to the total peak area 100 of the compounds contained in the polythiol composition obtained by the purification step.
  • the peak area of the compound (NA2) is 0.04 or more (more preferably 0.50 or more) relative to the total peak area 100 of the compounds contained in the polythiol composition, the heat resistance (e.g., glass transition temperature (Tg)) of a resin produced using the polythiol composition is further improved.
  • a polymerizable composition according to one example of the present disclosure contains the polythiol composition according to the above example and a polyisocyanate compound.
  • a polymerizable composition according to one example of the present disclosure may include the polythiol composition according to the above example and a polyisocyanate composition including a polyisocyanate compound.
  • the polyisocyanate composition preferably contains xylylene diisocyanate (i.e., is the XDI composition described above).
  • a preferred aspect of the XDI composition (e.g., containing at least one selected from the group consisting of compound (N1), compound (N2), and compound (N3)) is as described in the section " ⁇ Step of obtaining polymerizable composition>" in the method for producing a polymerizable composition of the present disclosure described above.
  • the polymerizable composition according to one example of the present disclosure can be produced by the method for producing a polymerizable composition according to the present disclosure described above.
  • the above-mentioned method for producing the polymerizable composition according to the present disclosure can be referred to as appropriate.
  • the charge mass [polythiol composition/polyisocyanate compound] is read as the content mass ratio [polythiol composition/polyisocyanate compound]
  • the total charge mass of the polythiol composition and the polyisocyanate compound is read as the total content mass of the polythiol composition and the polyisocyanate compound.
  • the resin according to one example of the present disclosure is a cured product of the polymerizable composition according to one example of the present disclosure described above.
  • the molded article according to one example of the present disclosure is a molded article containing the resin according to one example of the present disclosure described above.
  • An optical material (e.g., a lens) according to one example of the present disclosure is an optical material (e.g., a lens) containing the resin of the present disclosure described above.
  • Preferred aspects of the resin according to one example of the present disclosure, the molded body according to one example of the present disclosure, and the optical material according to one example of the present disclosure are similar to the preferred aspects of the resin according to the present disclosure, the molded body according to the present disclosure, and the optical material according to the present disclosure described above.
  • the toluene solution after washing with the ammonia water was washed twice with 147.8 parts by mass of degassed water at 35° C. to 40° C. for 10 minutes.
  • the crude polythiol composition (A1) was purified, and a toluene solution of the polythiol composition (A1), which is the purified crude polythiol composition (A1), was obtained by this purification.
  • the toluene solution of polythiol composition (A1) obtained by the above purification was heated under reduced pressure to remove toluene and trace amounts of water, and then filtered under reduced pressure using a 3.0 ⁇ m PTFE-type membrane filter to obtain 200.0 parts by mass of polythiol composition (A1).
  • the polythiol composition (A1) was filled into a 10 mm glass cell, and the yellowness index was determined based on the transmittance.
  • the transmittance was measured using a spectrophotometer CM-5 manufactured by Konica Minolta, Inc.
  • the thiol value [mmol/g] of the polythiol composition (A1) was determined by oxidation-reduction titration using a 0.05 M aqueous iodine solution.
  • the refractive index of the polythiol composition (A1) was measured using a liquid refractometer RA600 manufactured by Kyoto Electronics Manufacturing Co., Ltd.
  • HPLC Measurement The polythiol composition (A1) obtained above was subjected to high performance liquid chromatography (HPLC) measurement under the following HPLC measurement conditions.
  • a polythiol component A1 which is a main component, A compound (NA1) in which at least one of the mercapto groups in the polythiol component A1 has been replaced with a group represented by the above formula (N1);
  • the content of each of the compounds was determined.
  • the compound (NA1) has a retention time of 4.3 minutes to 4.8 minutes in this measurement.
  • Viscosity of Polymerizable Composition The viscosity (mPa ⁇ s) of the resulting polymerizable composition at 20° C. was measured using a Brookfield Type B viscometer. Viscosity measurements are Immediately after 5 minutes of stirring and mixing (hereinafter referred to as "0 h") After 5 minutes of stirring and mixing, the mixture was allowed to stand at 20°C for 1 hour (hereinafter referred to as "1h"). After 5 minutes of stirring and mixing, the mixture was allowed to stand at 20°C for 3 hours (hereinafter referred to as "1h").
  • the obtained polymerizable composition was degassed at 600 Pa for 1 hour, and then filtered through a 1 ⁇ m Teflon (registered trademark) filter.
  • the filtered polymerizable composition was injected between a pair of glass molds fixed with tape, and then the pair of glass molds were placed in an oven, and the temperature inside the oven was set to 10 ° C. Next, the temperature inside the oven was raised from 10 ° C. to 120 ° C. over 38 hours.
  • the monomers (polyisocyanate compound and polythiol composition) in the polymerizable composition were polymerized, and a resin molded body containing a thiourethane resin (i.e., a cured product of the polymerizable composition) was formed between the pair of glass molds. Subsequently, the oven was cooled, and after cooling, the pair of glass molds were taken out of the oven. The resin molded body was then removed from the pair of glass molds to obtain a plate-like resin molded body having a thickness of 9 mm. The obtained resin molded body was annealed at 120° C. for 1 hour.
  • the refractive indices (ne, nF', nC') of the molded body were measured at wavelengths of 546.1 nm (mercury e-line), 480.0 nm (Cd F'-line), and 643.9 nm (Cd C'-line) at 20° C. using a Pulfrich refractometer KPR-30 manufactured by Shimadzu Corporation. Based on these measurement results, the refractive index (ne) and Abbe number ( ⁇ e) of the molded body were each determined.
  • the glass transition temperature (Tg) of the resin molded product was measured by the TMA penetration method (load of 50 g, pin tip 0.5 mm ⁇ , heating rate 10° C./min) using a thermomechanical analyzer TMA-60 manufactured by Shimadzu Corporation, and used as an index of heat resistance.
  • Example 1 In the "purification of crude polythiol composition (A1)", the same procedure as in Comparative Example 1 was carried out, except that the following purification procedure with solvent X was added before the acid washing with hydrochloric acid. The results are shown in Table 1.
  • Example 2 The polythiol composition (A1) (50 parts by mass) obtained in Example 1 and the polythiol composition (A1) (50 parts by mass) obtained in Comparative Example 1 were blended to obtain the polythiol composition (A1) (100 parts by mass) in Example 2. The same operations as in Comparative Example 1 were performed (in detail, the operations after "Evaluation of Polythiol Composition (A1)"), except that the polythiol composition (A1) in Comparative Example 1 was changed to the polythiol composition (A1) in Example 2. The results are shown in Table 1.
  • the polythiol compositions (A1) of Examples 1 and 2 obtained by purifying the crude polythiol composition (A1) with solvent X were confirmed to have an effect of suppressing viscosity change in a polymerizable composition containing the polythiol composition (A1) (i.e., an effect of improving pot life), compared to the polythiol composition (A1) of Comparative Example 1 obtained without purifying the crude polythiol composition (A1) with solvent X.
  • the polythiol compositions (A1) of Examples 1 and 2 it was confirmed that the content of the impurity compound (NA1) was reduced compared to the polythiol composition (A1) of Comparative Example 1.
  • the impurity compound (NA1) functions as a polymerization catalyst, promoting the polymerization of the polythiol composition (A1) and the polyisocyanate compound, and this polymerization causes the viscosity increase.
  • the content of the compound (NA1) in the polythiol composition (A1) was reduced, suppressing the polymerization of the polythiol composition (A1) and the polyisocyanate compound, and as a result, the viscosity increase was reduced.
  • Example 1X In Example 1X, the same procedure as in Example 1 was carried out except that the production of the molded body was changed as follows, and the same results as those in Example 1 (Table 1) were obtained.
  • Example 1 m-xylylene diisocyanate (XDI) (52 parts by mass) was used in the production of the molded body, but in Example 1X, this XDI (52 parts by mass) was changed to XDI composition X1 (an amount such that the amount of XDI contained was 52 parts by mass) as the XDI composition described above.
  • the XDI composition X1 was produced by adding trace amounts of compound (N1), compound (N2), and compound (N3) to the main component XDI and mixing them.
  • the XDI composition X1 was subjected to gas chromatography measurement under the above-mentioned GC condition 1 and GC condition 2.
  • the peak area of the compound (N1) is 0.20 ppm or more (specifically, 600 ppm) relative to the peak area of xylylene diisocyanate;
  • the peak area of the compound (N2) is 0.05 ppm or more (specifically, 18 ppm) relative to the peak area of xylylene diisocyanate;
  • the peak area of the compound (N3) was 0.10 ppm or more (specifically, 100 ppm) relative to the peak area of xylylene diisocyanate.
  • the polythiol component A2 is A polythiol compound represented by formula (6) (i.e., 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane), A polythiol compound represented by formula (7) (i.e., 4,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane), and
  • the polythiol compound is at least one selected from the group consisting of polythiol compounds represented by formula (8) (i.e., 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane).
  • a reactor was charged with 89.25 parts by mass of 2-mercaptoethanol, 44.61 parts by mass of degassed water, and 0.58 parts by mass of a 30.7% by mass aqueous sodium hydroxide solution, and cooled to 10° C. Then, 107.68 parts by mass of epichlorohydrin as the epihalohydrin compound represented by formula (1) was added dropwise thereto at 9° C. to 11° C. over a period of 3.9 hours, followed by stirring for 60 minutes for aging. As a result, the production of a compound represented by formula (3) was confirmed from NMR data. Next, 262.09 parts by mass of a 17.3% by mass aqueous solution of sodium sulfide was added dropwise over 1.0 hour at 28° C.
  • the toluene solution of polythiol composition (A2) obtained by the above purification was heated under reduced pressure to remove toluene and trace amounts of water, and then filtered under reduced pressure using a 3.0 ⁇ m PTFE-type membrane filter to obtain 200.0 parts by mass of polythiol composition (A2).
  • a polythiol component A2 which is the main component;
  • the content of each of the compounds was determined.
  • the compound (NA2) has a retention time of 6.5 to 8.0 minutes in this HPLC measurement.
  • Example 101 In the "purification of crude polythiol composition (A2)", the same procedure as in Comparative Example 101 was carried out, except that the following alcohol purification procedure was added before the acid washing with 4 mass% hydrochloric acid. The results are shown in Table 2.
  • Example 102 The polythiol composition (A2) (50 parts by mass) obtained in Example 101 and the polythiol composition (A2) (50 parts by mass) obtained in Comparative Example 101 were blended to obtain the polythiol composition (A2) (100 parts by mass) in Example 102.
  • the same operations as in Comparative Example 101 in detail, the operations after "Evaluation of Polythiol Composition (A2)") were performed except that the polythiol composition (A2) in Comparative Example 101 was changed to the polythiol composition (A1) (blend product) in Example 102.
  • the results are shown in Table 2.
  • Example 103 The polythiol composition (A2) (70 parts by mass) obtained in Example 101 and the polythiol composition (A2) (30 parts by mass) obtained in Comparative Example 101 were blended to obtain the polythiol composition (A2) (100 parts by mass) in Example 103.
  • the same operations as in Comparative Example 101 specifically, the operations after "Evaluation of Polythiol Composition (A2)" were carried out except that the polythiol composition (A2) in Comparative Example 101 was changed to the polythiol composition (A1) (blend product) in Example 103.
  • the results are shown in Table 2.
  • the polythiol compositions (A2) of Examples 101 to 103 obtained by purifying the crude polythiol composition (A2) with solvent X were confirmed to have an effect of suppressing the viscosity change of the polymerizable composition containing the polythiol composition (A2) (i.e., an effect of improving the pot life), as compared with the polythiol composition (A2) of Comparative Example 1 obtained without purifying the crude polythiol composition (A2) with solvent X.
  • the polythiol compositions (A2) of Examples 101 to 103 it was confirmed that the content of the impurity compound (NA2) was reduced compared to the polythiol composition (A2) of Comparative Example 101.
  • the impurity compound (NA2) functions as a polymerization catalyst, promoting the polymerization of the polythiol composition (A2) and the polyisocyanate compound, and this polymerization causes the viscosity increase.
  • the content of compound (NA2) in the polythiol composition (A2) was reduced, suppressing the polymerization of the polythiol composition (A2) and the polyisocyanate compound, and as a result, reducing the viscosity increase.
  • Example 101X In Example 101X, the same procedure as in Example 101 was carried out except that the production of the molded body was changed as follows, and the same results as those of Example 101 (Table 2) were obtained.
  • Example 101 m-xylylene diisocyanate (XDI) (52 parts by mass) was used in the production of the molded body, but in Example 101X, this XDI (52 parts by mass) was changed to XDI composition X1 (an amount such that the amount of XDI contained was 52 parts by mass) as the XDI composition described above.
  • the XDI composition X1 was produced by adding trace amounts of compound (N1), compound (N2), and compound (N3) to the main component XDI and mixing them.
  • the XDI composition X1 was subjected to gas chromatography measurement under the above-mentioned GC condition 1 and GC condition 2.
  • the peak area of the compound (N1) is 0.20 ppm or more (specifically, 600 ppm) relative to the peak area of xylylene diisocyanate;
  • the peak area of the compound (N2) is 0.05 ppm or more (specifically, 18 ppm) relative to the peak area of xylylene diisocyanate;
  • the peak area of the compound (N3) was 0.10 ppm or more (specifically, 100 ppm) relative to the peak area of xylylene diisocyanate.

Abstract

Provided is a method for producing a polythiol composition, the method comprising: a preparation step for preparing a crude polythiol composition that is a polythiol composition that is not purified yet; and a purification step for purifying the crude polythiol composition with a solvent X comprising an alkylene glycol to produce a polythiol composition.

Description

ポリチオール組成物の製造方法及びその応用Method for producing polythiol composition and its application
 本開示は、ポリチオール組成物の製造方法及びその応用に関する。 This disclosure relates to a method for producing a polythiol composition and its applications.
 樹脂を含むレンズであるプラスチックレンズは、無機レンズに比べ軽量で割れ難く、染色が可能なため、近年、メガネレンズ、カメラレンズ等の用途に急速に普及してきている。 Plastic lenses, which are lenses that contain resin, are lighter and less likely to break than inorganic lenses, and can be dyed, so in recent years they have rapidly become popular for use in eyeglass lenses, camera lenses, etc.
 レンズ用樹脂の一つとして、チオウレタン樹脂が知られている。
 特許文献1及び2には、チオウレタン樹脂の原料の一つであるポリチオール化合物を製造するためのポリチオール化合物の製造方法、及び、ポリチオール化合物を含む光学材料用重合性組成物(例えば、レンズ用重合性組成物)について開示されている。
 また、特許文献3及び4には、品質に優れたレンズを製造できるポリチオール組成物として、ポリチオール化合物を含有し、かつ、窒素含有化合物の含有量が低減されたポリチオール組成物が開示されている。特許文献3及び4には、ポリチオール組成物を含む光学材料用重合性組成物(例えば、レンズ用重合性組成物)についても開示されている。
Thiourethane resin is known as one of the resins for lenses.
Patent Documents 1 and 2 disclose a method for producing a polythiol compound, which is one of the raw materials for a thiourethane resin, and a polymerizable composition for optical materials (e.g., a polymerizable composition for lenses) containing a polythiol compound.
In addition, Patent Documents 3 and 4 disclose polythiol compositions that contain a polythiol compound and have a reduced content of nitrogen-containing compounds as polythiol compositions that can produce lenses with excellent quality. Patent Documents 3 and 4 also disclose polymerizable compositions for optical materials (e.g., polymerizable compositions for lenses) that contain the polythiol composition.
 特許文献1:国際公開第2014/027427号
 特許文献2:国際公開第2014/027428号
 特許文献3:国際公開第2016/010065号
 特許文献4:国際公開第2020/41183号
Patent Document 1: International Publication No. 2014/027427 Patent Document 2: International Publication No. 2014/027428 Patent Document 3: International Publication No. 2016/010065 Patent Document 4: International Publication No. 2020/41183
 しかしながら、チオウレタン樹脂の製造に用いられ、ポリチオール組成物を含む重合性組成物のポットライフをより向上させることが求められる場合がある。 However, there are cases where it is required to further improve the pot life of a polymerizable composition that contains a polythiol composition and is used in the production of a thiourethane resin.
 本開示の一態様の目的は、ポリチオール組成物を含む重合性組成物のポットライフを向上させることができるポリチオール組成物を製造できるポリチオール組成物の製造方法及びその応用を提供することである。 The object of one aspect of the present disclosure is to provide a method for producing a polythiol composition that can improve the pot life of a polymerizable composition containing the polythiol composition, and applications thereof.
 上記課題を解決する手段には、以下の態様が含まれる。
<1> 精製前のポリチオール組成物である粗ポリチオール組成物を準備する準備工程と、
 前記粗ポリチオール組成物を、アルキレングリコールを含む溶剤Xによって精製することにより、ポリチオール組成物を得る精製工程と、
を含む、
ポリチオール組成物の製造方法。
<2> 前記粗ポリチオール組成物が、下記式(5)で表されるポリチオール化合物であるポリチオール成分A1と、前記ポリチオール成分A1におけるメルカプト基のうちの少なくとも1つを下記式(N1)で表される基に置き換えた化合物(NA1)と、を含むこと、
 並びに、
 前記粗ポリチオール組成物が、下記式(6)で表されるポリチオール化合物、下記式(7)で表されるポリチオール化合物、及び下記式(8)で表されるポリチオール化合物からなる群から選択される少なくとも1種であるポリチオール成分A2と、前記ポリチオール成分A2におけるメルカプト基のうちの少なくとも1つを下記式(N1)で表される基に置き換えた化合物(NA2)と、を含むこと
の少なくとも一方を満足する、
<1>に記載のポリチオール組成物の製造方法。
Means for solving the above problems include the following aspects.
<1> A preparation step of preparing a crude polythiol composition that is a polythiol composition before purification;
A purification step of purifying the crude polythiol composition with a solvent X containing an alkylene glycol to obtain a polythiol composition;
including,
A method for producing a polythiol composition.
<2> The crude polythiol composition includes a polythiol component A1 which is a polythiol compound represented by the following formula (5), and a compound (NA1) in which at least one of the mercapto groups in the polythiol component A1 is replaced with a group represented by the following formula (N1),
and,
The crude polythiol composition satisfies at least one of the following conditions: the crude polythiol composition contains a polythiol component A2 which is at least one selected from the group consisting of a polythiol compound represented by the following formula (6), a polythiol compound represented by the following formula (7), and a polythiol compound represented by the following formula (8), and a compound (NA2) in which at least one of the mercapto groups in the polythiol component A2 is replaced with a group represented by the following formula (N1):
A method for producing the polythiol composition according to <1>.
 式(N1)中、*は、結合位置を表す。 In formula (N1), * indicates the bond position.
<3> 前記粗ポリチオール組成物が、前記ポリチオール成分A1及び前記化合物(NA1)を含み、
 前記準備工程が、
 2-メルカプトエタノールと下記式(1)で表されるエピハロヒドリン化合物とを反応させて下記式(2)で表されるポリアルコール化合物を得ることと、
 前記式(2)で表されるポリアルコール化合物とチオ尿素とを、酸性条件下で反応させてイソチウロニウム塩を含む反応液を得ることと、
 前記イソチウロニウム塩を含む反応液に塩基化合物を加え、前記イソチウロニウム塩を加水分解し、前記粗ポリチオール組成物を得ることと、
を含む、
<2>に記載のポリチオール組成物の製造方法。
<3> The crude polythiol composition contains the polythiol component A1 and the compound (NA1),
The preparation step includes:
A method for producing a polyalcohol compound represented by the following formula (2) by reacting 2-mercaptoethanol with an epihalohydrin compound represented by the following formula (1);
reacting the polyalcohol compound represented by the formula (2) with thiourea under acidic conditions to obtain a reaction solution containing an isothiuronium salt;
adding a base compound to the reaction solution containing the isothiuronium salt to hydrolyze the isothiuronium salt to obtain the crude polythiol composition;
including,
A method for producing the polythiol composition according to <2>.
 式(1)中、Xは、ハロゲン原子を表す。 In formula (1), X represents a halogen atom.
<4> 前記粗ポリチオール組成物が、前記ポリチオール成分A2及び前記化合物(NA2)を含み、
 前記準備工程が、
 2-メルカプトエタノールと下記式(1)で表されるエピハロヒドリン化合物とを反応させて下記式(3)で表される化合物を得ることと、
 前記式(3)で表される化合物と硫化ナトリウムとを反応させて下記式(4)で表されるポリアルコール化合物を得ることと、
 前記式(4)で表されるポリアルコール化合物とチオ尿素とを、酸性条件下で反応させてイソチウロニウム塩を含む反応液を得ることと、
 前記イソチウロニウム塩を含む反応液に塩基化合物を加え、前記イソチウロニウム塩を加水分解し、前記粗ポリチオール組成物を得ることと、
を含む、
<2>に記載のポリチオール組成物の製造方法。
<4> The crude polythiol composition contains the polythiol component A2 and the compound (NA2),
The preparation step includes:
Reacting 2-mercaptoethanol with an epihalohydrin compound represented by the following formula (1) to obtain a compound represented by the following formula (3);
Reacting the compound represented by formula (3) with sodium sulfide to obtain a polyalcohol compound represented by formula (4):
reacting the polyalcohol compound represented by the formula (4) with thiourea under acidic conditions to obtain a reaction solution containing an isothiuronium salt;
adding a base compound to the reaction solution containing the isothiuronium salt to hydrolyze the isothiuronium salt to obtain the crude polythiol composition;
including,
A method for producing the polythiol composition according to <2>.
 式(1)中、Xは、ハロゲン原子を表す。 In formula (1), X represents a halogen atom.
<5> 前記溶剤Xが、エチレングリコール及びプロピレングリコールからなる群から選択される少なくとも1種を含む、<1>~<4>のいずれか1つに記載のポリチオール組成物の製造方法。
<6> 前記準備工程は、前記粗ポリチオール組成物のトルエン溶液を準備し、
 前記精製工程は、前記トルエン溶液と前記溶剤Xとを混合することにより、前記トルエン溶液中の前記粗ポリチオール組成物を前記溶剤Xによって精製する、
<1>~<5>のいずれか1つに記載のポリチオール組成物の製造方法。
<7> 前記精製工程は、
 前記粗ポリチオール組成物を、前記溶剤Xによって精製することにより、ポリチオール組成物を得ることと、
 得られた前記ポリチオール組成物を酸洗浄することと、
を含む、
<1>~<6>のいずれか1つに記載のポリチオール組成物の製造方法。
<8> <1>~<7>のいずれか1つに記載のポリチオール組成物の製造方法によってポリチオール組成物を製造する工程と、
 前記ポリチオール組成物とポリイソシアネート化合物とを混合することにより、前記ポリチオール組成物及び前記ポリイソシアネート化合物を含有する重合性組成物を得る工程と、
を含む重合性組成物の製造方法。
<5> The method for producing a polythiol composition according to any one of <1> to <4>, wherein the solvent X includes at least one selected from the group consisting of ethylene glycol and propylene glycol.
<6> The preparation step includes preparing a toluene solution of the crude polythiol composition,
The purification step includes purifying the crude polythiol composition in the toluene solution with the solvent X by mixing the toluene solution with the solvent X.
A method for producing a polythiol composition according to any one of <1> to <5>.
<7> The purification step includes:
purifying the crude polythiol composition with the solvent X to obtain a polythiol composition;
washing the resulting polythiol composition with an acid;
including,
A method for producing a polythiol composition according to any one of <1> to <6>.
<8> A step of producing a polythiol composition by the method for producing a polythiol composition according to any one of <1> to <7>;
A step of mixing the polythiol composition with a polyisocyanate compound to obtain a polymerizable composition containing the polythiol composition and the polyisocyanate compound;
A method for producing a polymerizable composition comprising the steps of:
<9> 前記重合性組成物を得る工程が、前記ポリチオール組成物と、前記ポリイソシアネート化合物を含むポリイソシアネート組成物と、を混合することにより、前記ポリチオール組成物及び前記ポリイソシアネート組成物を含有する重合性組成物を得る工程であり、
 前記ポリイソシアネート組成物が、
 キシリレンジイソシアネートと、
 下記化合物(N1)、下記化合物(N2)、及び下記化合物(N3)からなる群から選択される少なくとも1種と、
を含み、
 前記ポリイソシアネート組成物が前記化合物(N1)を含む場合には、高速液体クロマトグラフィー測定における前記化合物(N1)のピーク面積が、キシリレンジイソシアネートのピーク面積100に対して0.20ppm以上であり、
 前記ポリイソシアネート組成物が前記化合物(N2)を含む場合には、高速液体クロマトグラフィー測定における前記化合物(N2)のピーク面積が、キシリレンジイソシアネートのピーク面積100に対して0.05ppm以上であり、
 前記ポリイソシアネート組成物が前記化合物(N3)を含む場合には、高速液体クロマトグラフィー測定における前記化合物(N3)のピーク面積が、キシリレンジイソシアネートのピーク面積100に対して0.10ppm以上である、
<8>に記載の重合性組成物の製造方法。
<9> The step of obtaining the polymerizable composition is a step of obtaining a polymerizable composition containing the polythiol composition and the polyisocyanate composition by mixing the polythiol composition and the polyisocyanate composition containing the polyisocyanate compound,
The polyisocyanate composition comprises:
Xylylene diisocyanate,
At least one selected from the group consisting of the following compound (N1), the following compound (N2), and the following compound (N3);
Including,
When the polyisocyanate composition contains the compound (N1), the peak area of the compound (N1) measured by high performance liquid chromatography is 0.20 ppm or more relative to 100 of the peak area of xylylene diisocyanate,
When the polyisocyanate composition contains the compound (N2), the peak area of the compound (N2) measured by high performance liquid chromatography is 0.05 ppm or more relative to 100 of the peak area of xylylene diisocyanate,
When the polyisocyanate composition contains the compound (N3), the peak area of the compound (N3) measured by high performance liquid chromatography is 0.10 ppm or more relative to 100 of the peak area of xylylene diisocyanate.
A method for producing the polymerizable composition according to <8>.
<10> <8>に記載の重合性組成物の製造方法によって重合性組成物を製造する工程と、
 前記重合性組成物を硬化させることにより、樹脂を得る工程と、
を含む樹脂の製造方法。
<10> A step of producing a polymerizable composition by the method for producing a polymerizable composition according to <8>;
curing the polymerizable composition to obtain a resin;
A method for producing a resin comprising the steps of:
<11> 下記式(6)で表されるポリチオール化合物と下記式(7)で表されるポリチオール化合物と下記式(8)で表されるポリチオール化合物とからなる群から選択される少なくとも1種であるポリチオール成分A2を主成分として含有し、かつ、
 前記ポリチオール成分A2におけるメルカプト基のうちの少なくとも1つを下記式(N1)で表される基に置き換えた化合物(NA2)を含有し、
 高速液体クロマトグラフィー測定において、前記化合物(NA2)のピーク面積が、ポリチオール組成物に含まれる化合物の合計ピーク面積100に対して、0.50~1.50である、
ポリチオール組成物。
<11> A polythiol component A2 containing at least one selected from the group consisting of a polythiol compound represented by the following formula (6), a polythiol compound represented by the following formula (7), and a polythiol compound represented by the following formula (8) as a main component,
The polythiol component A2 contains a compound (NA2) in which at least one of the mercapto groups is replaced with a group represented by the following formula (N1):
In a high performance liquid chromatography measurement, the peak area of the compound (NA2) is 0.50 to 1.50 relative to the total peak area of the compounds contained in the polythiol composition (100).
Polythiol compositions.
 式(N1)中、*は、結合位置を表す。 In formula (N1), * indicates the bond position.
<12> <11>に記載のポリチオール組成物と、
 ポリイソシアネート化合物と、
を含む重合性組成物。
<13> 前記ポリイソシアネート化合物を含むポリイソシアネート組成物を含み、
 前記ポリイソシアネート組成物が、
 キシリレンジイソシアネートと、
 下記化合物(N1)、下記化合物(N2)、及び下記化合物(N3)からなる群から選択される少なくとも1種と、
を含み、
 前記ポリイソシアネート組成物が前記化合物(N1)を含む場合には、高速液体クロマトグラフィー測定における前記化合物(N1)のピーク面積が、キシリレンジイソシアネートのピーク面積100に対して0.20ppm以上であり、
 前記ポリイソシアネート組成物が前記化合物(N2)を含む場合には、高速液体クロマトグラフィー測定における前記化合物(N2)のピーク面積が、キシリレンジイソシアネートのピーク面積100に対して0.05ppm以上であり、
 前記ポリイソシアネート組成物が前記化合物(N3)を含む場合には、高速液体クロマトグラフィー測定における前記化合物(N3)のピーク面積が、キシリレンジイソシアネートのピーク面積100に対して0.10ppm以上である、
<12>に記載の重合性組成物。
<12> The polythiol composition according to <11>,
A polyisocyanate compound,
1. A polymerizable composition comprising:
<13> A polyisocyanate composition containing the polyisocyanate compound,
The polyisocyanate composition comprises:
Xylylene diisocyanate,
At least one selected from the group consisting of the following compound (N1), the following compound (N2), and the following compound (N3);
Including,
When the polyisocyanate composition contains the compound (N1), the peak area of the compound (N1) measured by high performance liquid chromatography is 0.20 ppm or more relative to 100 of the peak area of xylylene diisocyanate,
When the polyisocyanate composition contains the compound (N2), the peak area of the compound (N2) measured by high performance liquid chromatography is 0.05 ppm or more relative to 100 of the peak area of xylylene diisocyanate,
When the polyisocyanate composition contains the compound (N3), the peak area of the compound (N3) measured by high performance liquid chromatography is 0.10 ppm or more relative to 100 of the peak area of xylylene diisocyanate.
The polymerizable composition according to <12>.
 本開示の一態様によれば、重合性組成物のポットライフを向上させることができるポリチオール組成物を製造できるポリチオール組成物の製造方法及びその応用が提供される。
 
According to one aspect of the present disclosure, there is provided a method for producing a polythiol composition that can improve the pot life of a polymerizable composition, and applications thereof.
 本開示において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本開示において、「工程」との用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
 本開示において、組成物に含まれる各成分の量は、組成物中に各成分に該当する物質が複数存在する場合は、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示における複数の実施形態間に重複部分が存在していてもよい。即ち、一の実施形態における特徴を、他の実施形態が備えていてもよい。
In the present disclosure, a numerical range expressed using "to" means a range that includes the numerical values before and after "to" as the lower and upper limits.
In the present disclosure, the term "process" refers not only to an independent process, but also to a process that cannot be clearly distinguished from other processes, as long as the intended purpose of the process is achieved.
In the present disclosure, when a plurality of substances corresponding to each component are present in the composition, the amount of each component contained in the composition means the total amount of the plurality of substances present in the composition, unless otherwise specified.
In the numerical ranges described in the present disclosure in stages, the upper or lower limit value described in one numerical range may be replaced with the upper or lower limit value of another numerical range described in stages. In addition, in the numerical ranges described in the present disclosure, the upper or lower limit value of the numerical range may be replaced with a value shown in the examples.
There may be overlap between embodiments of the present disclosure, i.e. features of one embodiment may be included in other embodiments.
〔ポリチオール組成物の製造方法〕
 本開示のポリチオール組成物の製造方法は、
 精製前のポリチオール組成物である粗ポリチオール組成物を準備する準備工程と、
 粗ポリチオール組成物を、アルキレングリコールを含む溶剤Xによって精製することにより、ポリチオール組成物を得る精製工程と、
を含む。
 本開示のポリチオール組成物の製造方法は、必要に応じ、その他の工程を含んでいてもよい。
[Method for producing polythiol composition]
The method for producing the polythiol composition of the present disclosure includes:
A preparation step of preparing a crude polythiol composition that is a polythiol composition before purification;
A purification step of purifying the crude polythiol composition with a solvent X containing an alkylene glycol to obtain a polythiol composition;
including.
The method for producing the polythiol composition of the present disclosure may include other steps as necessary.
 本開示のポリチオール組成物の製造方法によれば、ポリチオール組成物を含む重合性組成物のポットライフを向上させることができるポリチオール組成物を製造できる。
 かかる効果が奏される理由は、以下のように推測される。
According to the method for producing a polythiol composition of the present disclosure, it is possible to produce a polythiol composition that can improve the pot life of a polymerizable composition that contains the polythiol composition.
The reason why such an effect is achieved is presumed to be as follows.
 ポリチオール組成物を含む重合性組成物では、その保管中に、重合性モノマー(例えば、ポリチオール組成物中のポリチオール化合物、及び、後述のポリイソシアネート化合物等)の意図しない重合が進行すると、重合性組成物の粘度が保管中に上昇する場合、即ち、重合性組成物のポットライフが低下する場合がある。
 重合性モノマーの意図しない重合は、重合性組成物中に意図せずに含まれることがある不純物(例えば、後述の化合物(NA1)又は化合物(NA2))が、重合触媒として作用することによって生じると考えられる。
 この問題に関し、本開示のポリチオール組成物の製造方法は、精製前のポリチオール組成物である粗ポリチオール組成物を、アルキレングリコールを含む溶剤Xによって精製(以下、「溶剤Xによる精製」又は単に「精製」ともいう)することにより、ポリチオール組成物を得る精製工程を含む。
 これにより、溶剤Xによる精製によって、粗ポリチオール組成物から不純物の少なくとも一部が除去され、不純物の含有量が低減されたポリチオール組成物が得られると考えられる。その結果、得られたポリチオール組成物を含む重合性組成物において、保管中の粘度の上昇が抑制される(即ち、重合性組成物のポットライフが向上する)と考えられる。
In a polymerizable composition containing a polythiol composition, if unintended polymerization of polymerizable monomers (e.g., a polythiol compound in the polythiol composition and a polyisocyanate compound described below) progresses during storage, the viscosity of the polymerizable composition may increase during storage, i.e., the pot life of the polymerizable composition may decrease.
The unintended polymerization of the polymerizable monomer is believed to occur when an impurity (e.g., compound (NA1) or compound (NA2) described later) that may be unintentionally contained in the polymerizable composition acts as a polymerization catalyst.
Regarding this problem, the method for producing a polythiol composition disclosed herein includes a purification step of purifying a crude polythiol composition, which is a polythiol composition before purification, with a solvent X containing an alkylene glycol (hereinafter also referred to as "purification with solvent X" or simply "purification") to obtain a polythiol composition.
It is believed that this removes at least a portion of the impurities from the crude polythiol composition by purification with solvent X, thereby obtaining a polythiol composition with a reduced impurity content. As a result, it is believed that an increase in viscosity during storage is suppressed in a polymerizable composition containing the obtained polythiol composition (i.e., the pot life of the polymerizable composition is improved).
 本開示のポリチオール組成物の製造方法における精製によれば、ポリチオール組成物並びにポリチオール組成物を用いて得られる重合性組成物及び樹脂の性能の劣化を抑制しつつ、上述した効果(重合性組成物のポットライフ向上)が得られる。
 即ち、溶剤Xによる精製では、ポリチオール組成物に含まれるポリチオール化合物への影響を低減しつつ、不純物を選択的に除去することができると考えられる。
According to the purification method for producing a polythiol composition of the present disclosure, the above-mentioned effect (improved pot life of the polymerizable composition) can be obtained while suppressing deterioration of the performance of the polythiol composition and the polymerizable composition and resin obtained using the polythiol composition.
That is, it is believed that purification with solvent X can selectively remove impurities while reducing the effect on the polythiol compound contained in the polythiol composition.
 以下、本開示のポリチオール組成物の製造方法に含まれ得る各工程について説明する。 The following describes each step that may be included in the method for producing the polythiol composition of the present disclosure.
<準備工程>
 本開示のポリチオール組成物の製造方法は、精製前のポリチオール組成物である粗ポリチオール組成物を準備する準備工程を含む。
 準備工程は、予め製造された粗ポリチオール組成物を単に準備するだけの工程であってもよいし、粗ポリチオール組成物を製造する工程であってもよい。
<Preparation process>
The method for producing a polythiol composition of the present disclosure includes a preparation step of preparing a crude polythiol composition, which is a polythiol composition before purification.
The preparation step may be a step of simply preparing a crude polythiol composition that has been produced in advance, or may be a step of producing a crude polythiol composition.
(粗ポリチオール組成物、ポリチオール組成物)
 本開示において、粗ポリチオール組成物は、精製前のポリチオール組成物である。
(Crude Polythiol Composition, Polythiol Composition)
In this disclosure, a crude polythiol composition is a polythiol composition before purification.
 本開示において、ポリチオール組成物(粗ポリチオール組成物を包含する。以下同じ。)とは、少なくとも1種のポリチオール化合物を含有する組成物を意味する。
 ポリチオール化合物としては、チオール基(別名:メルカプト基)を2つ以上含む化合物であればよく、その他には特に限定されない。
In the present disclosure, a polythiol composition (including a crude polythiol composition; the same applies hereinafter) means a composition containing at least one polythiol compound.
The polythiol compound is not particularly limited as long as it contains two or more thiol groups (also known as mercapto groups).
 ポリチオール組成物には、不純物として、ポリチオール化合物以外の成分が含有されていてもよい。
 ポリチオール組成物は、少なくとも1種のポリチオール化合物を主成分として含むことが好ましい。
The polythiol composition may contain components other than the polythiol compound as impurities.
The polythiol composition preferably contains at least one polythiol compound as a main component.
 ここで、「ポリチオール組成物は、少なくとも1種のポリチオール化合物を主成分として含む」とは、ポリチオール組成物の全量に対する少なくとも1種のポリチオール化合物の総含有量が、50%以上であることを意味する。
 ポリチオール組成物の全量に対する少なくとも1種のポリチオール化合物の総含有量は、好ましくは60%以上であり、より好ましくは70%以上であり、更に好ましくは80%以上である。
Here, "the polythiol composition contains at least one polythiol compound as a main component" means that the total content of the at least one polythiol compound relative to the total amount of the polythiol composition is 50% or more.
The total content of the at least one polythiol compound relative to the total amount of the polythiol composition is preferably 60% or more, more preferably 70% or more, and even more preferably 80% or more.
 同様に、本開示において、組成物が、ある成分(以下、「成分X」とする)を「主成分として含む」とは、成分Xの含有量(成分Xが2種以上の化合物からなる場合には、2種以上の化合物の総含有量)が、組成物の全量に対し、50%以上であることを意味する。
 主成分である成分Xの含有量は、組成物の全量に対し、好ましくは60%以上であり、より好ましくは70%以上であり、更に好ましくは80%以上である。
Similarly, in the present disclosure, a composition "contains as a main component" a certain component (hereinafter referred to as "component X") means that the content of component X (when component X consists of two or more compounds, the total content of the two or more compounds) is 50% or more of the total amount of the composition.
The content of the main component, Component X, is preferably 60% or more, more preferably 70% or more, and even more preferably 80% or more, based on the total amount of the composition.
 上記の「主成分として含む」との語の説明中における「%」は、高速液体クロマトグラフィーによって求められる、組成物(例えばポリチオール組成物)の全ピークの合計面積に対する成分X(例えば少なくとも1種のポリチオール化合物)の全ピークの合計面積の比率(面積%)を意味する。 The "%" in the explanation of the term "contains as a main component" above means the ratio (area %) of the total area of all peaks of component X (e.g., at least one polythiol compound) to the total area of all peaks of the composition (e.g., a polythiol composition) as determined by high performance liquid chromatography.
 以下では、ポリチオール組成物に含有されるポリチオール化合物を、「ポリチオール成分」とも称する。
 ポリチオール組成物は、
4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、
4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、
4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、
5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、
ペンタエリスリトールテトラキス(2-メルカプトアセテート)、
ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、
2,5-ジメルカプトメチル-1,4-ジチアン、
ビス(2-メルカプトエチル)スルフィド、及び
ジエチレングリコールビス(3-メルカプトプロピオネート)
からなる群から選択される少なくとも1種(以下、「ポリチオール成分A」ともいう)を含むことが好ましい。
 ポリチオール組成物は、ポリチオール成分Aを主成分として含むことがより好ましい。
 この場合、ポリチオール組成物は、ポリチオール成分A以外のその他の成分(例えば、その他のポリチオール化合物、ポリチオール化合物以外の成分、等)を少なくとも1種含有していてもよい。
Hereinafter, the polythiol compound contained in the polythiol composition is also referred to as a "polythiol component."
The polythiol composition is
4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane,
4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane,
4,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane,
5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane,
Pentaerythritol tetrakis(2-mercaptoacetate),
Pentaerythritol tetrakis(3-mercaptopropionate),
2,5-dimercaptomethyl-1,4-dithiane,
Bis(2-mercaptoethyl) sulfide, and diethylene glycol bis(3-mercaptopropionate)
It is preferable that the polythiol component contains at least one selected from the group consisting of:
The polythiol composition more preferably contains polythiol component A as a major component.
In this case, the polythiol composition may contain at least one component other than the polythiol component A (for example, another polythiol compound, a component other than a polythiol compound, etc.).
 その他のポリチオール化合物としては、例えば、メタンジチオール、1,2-エタンジチオール、1,2,3-プロパントリチオール、テトラキス(メルカプトメチルチオメチル)メタン、テトラキス(2-メルカプトエチルチオメチル)メタン、テトラキス(3-メルカプトプロピルチオメチル)メタン、ビス(2,3-ジメルカプトプロピル)スルフィド、2,5-ジメルカプト-1,4-ジチアン、2,5-ジメルカプトメチル-2,5-ジメチル-1,4-ジチアン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、1,1,2,2-テトラキス(メルカプトメチルチオ)エタン、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、等が挙げられる。 Other polythiol compounds include, for example, methanedithiol, 1,2-ethanedithiol, 1,2,3-propanetrithiol, tetrakis(mercaptomethylthiomethyl)methane, tetrakis(2-mercaptoethylthiomethyl)methane, tetrakis(3-mercaptopropylthiomethyl)methane, bis(2,3-dimercaptopropyl)sulfide, 2,5-dimercapto-1,4-dithiane, 2,5-dimercaptomethyl-2,5-dimethyl-1,4-dithiane, 1,1,3,3-tetrakis(mercaptomethylthio)propane, 1,1,2,2-tetrakis(mercaptomethylthio)ethane, 4,6-bis(mercaptomethylthio)-1,3-dithiane, etc.
 チオウレタン樹脂の原料としてのポリチオール組成物のより具体的な態様としては、例えば;
4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン(以下、「ポリチオール成分A1」ともいう)を主成分として含む態様;
4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、及び5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンからなる群から選択される少なくとも1種(以下、「ポリチオール成分A2」ともいう)を主成分として含む態様;
ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)(以下、「ポリチオール成分A3」ともいう)を主成分として含む態様;
ポリチオール成分A1及びポリチオール成分A3を主成分として含む態様;
ポリチオール成分A2及びポリチオール成分A3を主成分として含む態様;
等が挙げられる。
 各態様のポリチオール組成物は、主成分以外のその他の成分(例えば、その他のポリチオール化合物、ポリチオール化合物以外の成分、等)を少なくとも1種含有していてもよい。
 その他の成分としては、例えば、後述の化合物(NA1)及び化合物(NA2)が挙げられる。
More specific embodiments of the polythiol composition as a raw material for the thiourethane resin include, for example:
An embodiment containing 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane (hereinafter also referred to as "polythiol component A1") as a main component;
An embodiment including at least one selected from the group consisting of 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, and 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane (hereinafter also referred to as "polythiol component A2");
An embodiment containing pentaerythritol tetrakis(3-mercaptopropionate) (hereinafter also referred to as “polythiol component A3”) as a main component;
An embodiment including polythiol component A1 and polythiol component A3 as main components;
An embodiment including polythiol component A2 and polythiol component A3 as main components;
etc.
The polythiol composition of each embodiment may contain at least one other component (for example, other polythiol compound, component other than polythiol compound, etc.) other than the main component.
Examples of the other components include the compound (NA1) and the compound (NA2) described below.
 準備工程は、粗ポリチオール組成物のトルエン溶液を準備してもよい。
 この場合、後述の精製工程では、上記トルエン溶液と溶剤X(即ち、アルキレングリコールを含む溶剤X)とを混合することにより、上記トルエン溶液中の粗ポリチオール組成物を溶剤Xで精製する。
 これにより、溶剤Xを用いた精製の効果がより効果的に発揮される場合がある。
 粗ポリチオール組成物のトルエン溶液は、粗ポリチオール組成物及びトルエンを含むが、必要に応じ、その他の成分を含んでいてもよい。
 また、粗ポリチオール組成物をトルエン溶液の状態にせずに、粗ポリチオール組成物及び溶剤Xを直接混合して精製することも可能である。
The preparing step may include preparing a toluene solution of the crude polythiol composition.
In this case, in the purification step described below, the toluene solution is mixed with a solvent X (that is, a solvent X containing an alkylene glycol) to purify the crude polythiol composition in the toluene solution with the solvent X.
This may allow the effect of refining using the solvent X to be more effectively exhibited.
The toluene solution of the crude polythiol composition contains the crude polythiol composition and toluene, and may contain other components as necessary.
It is also possible to purify the crude polythiol composition by directly mixing the crude polythiol composition and solvent X, without converting the crude polythiol composition into a toluene solution.
<精製工程>
 本開示のポリチオール組成物の製造方法は、粗ポリチオール組成物を、アルキレングリコールを含む溶剤Xによって精製することにより、ポリチオール組成物を得る精製工程を含む。
 溶剤Xによる精製により、粗ポリチオール組成物中における不純物(例えば、後述の化合物(NA1)及び化合物(NA2))が除去され、上記不純物の量が低減されたポリチオール組成物が得られる。これにより、重合性組成物のポットライフを向上させることができるポリチオール組成物が得られる。
<Refining process>
The method for producing a polythiol composition of the present disclosure includes a purification step of purifying a crude polythiol composition with a solvent X containing an alkylene glycol to obtain a polythiol composition.
By purifying with the solvent X, impurities (e.g., the compounds (NA1) and (NA2) described below) in the crude polythiol composition are removed, and a polythiol composition having a reduced amount of the impurities is obtained. This results in a polythiol composition that can improve the pot life of the polymerizable composition.
(溶剤Xによる精製)
 溶剤Xによる精製の具体的な操作としては、例えば、液状の組成物を溶剤Xによって洗浄する操作を適用することができる。
 溶剤Xによる精製時の粗ポリチオール組成物及び溶剤Xの混合物の温度は、好ましくは10℃~60℃、より好ましくは20℃~60℃、更に好ましくは20℃~50℃である。
 溶剤Xによる精製の時間は、好ましくは1分間~120分間、より好ましくは10分間~90分間、更に好ましくは20分間~60分間である。
(Refining with Solvent X)
As a specific example of the purification procedure using a solvent X, a procedure of washing a liquid composition with a solvent X can be applied.
The temperature of the mixture of the crude polythiol composition and solvent X during purification with solvent X is preferably 10°C to 60°C, more preferably 20°C to 60°C, and even more preferably 20°C to 50°C.
The time for purification with solvent X is preferably 1 to 120 minutes, more preferably 10 to 90 minutes, and even more preferably 20 to 60 minutes.
 前述のとおり、溶剤Xは、アルキレングリコールを含む。
 精製による不純物除去性の観点から、溶剤Xは、エチレングリコール及びプロピレングリコールの少なくとも一方を含むことが好ましい
As mentioned above, solvent X includes an alkylene glycol.
From the viewpoint of impurity removal by purification, it is preferable that the solvent X contains at least one of ethylene glycol and propylene glycol.
 溶剤Xは、アルキレングリコール以外の溶剤成分を含んでいてもよい。
 アルキレングリコール以外の溶剤成分としては、例えば、モノアルコール(例えば、メタノール、エタノール、プロパノール、イソプロパノール等の、炭素数1~6のモノアルコール)が挙げられる。
 溶剤X中におけるアルキレングリコールの割合(例えば、エチレングリコール及びプロピレングリコールの合計の割合)は、好ましくは20質量%~100質量%、より好ましくは50質量%~100質量%、更に好ましくは50質量%~100質量%、更に好ましくは80質量%~100質量%である。
The solvent X may contain a solvent component other than the alkylene glycol.
Examples of the solvent component other than alkylene glycol include monoalcohols (for example, monoalcohols having 1 to 6 carbon atoms, such as methanol, ethanol, propanol, and isopropanol).
The proportion of alkylene glycol in solvent X (for example, the total proportion of ethylene glycol and propylene glycol) is preferably 20% by mass to 100% by mass, more preferably 50% by mass to 100% by mass, even more preferably 50% by mass to 100% by mass, and even more preferably 80% by mass to 100% by mass.
(酸洗浄)
 精製工程は、
 粗ポリチオール組成物を、溶剤Xによって精製することにより、ポリチオール組成物を得ることと、
 得られたポリチオール組成物を酸洗浄することと、
を含むことが好ましい。
(Acid washing)
The purification process is
purifying the crude polythiol composition with a solvent X to obtain a polythiol composition;
washing the resulting polythiol composition with an acid;
It is preferred that the compound contains
 酸洗浄に用いる酸としては、塩酸が好ましい。
 酸洗浄時のポリチオール組成物及び酸の混合物の温度は、好ましくは10℃~60℃、より好ましくは20℃~60℃、更に好ましくは20℃~50℃である。
 酸洗浄の時間は、好ましくは1分間~120分間、より好ましくは5分間~90分間、更に好ましくは10分間~70分間である。
 塩酸の濃度は、好ましくは25質量%~36質量%、より好ましくは30質量%~36質量%である。
The acid used for the acid washing is preferably hydrochloric acid.
The temperature of the mixture of the polythiol composition and the acid during the acid washing is preferably 10°C to 60°C, more preferably 20°C to 60°C, and even more preferably 20°C to 50°C.
The time for acid washing is preferably 1 to 120 minutes, more preferably 5 to 90 minutes, and further preferably 10 to 70 minutes.
The concentration of hydrochloric acid is preferably 25% by mass to 36% by mass, and more preferably 30% by mass to 36% by mass.
 精製工程は、ポリチオール組成物の酸洗浄に加え、更に、ポリチオール組成物の水洗浄及び/又はアルカリ洗浄を含んでもよい。
 水洗浄及び/又はアルカリ洗浄は、好ましくは酸洗浄後に行う。
 水洗浄は、好ましくは酸素濃度が5mg/L以下である脱気水を用いることができる。
 アルカリ洗浄は、アルカリ性水溶液を加え、好ましくは20℃~50℃の範囲で、好ましくは10分~3時間撹拌することにより行うことができる。
 アルカリ性水溶液としてはアンモニア水が好ましい。
 アンモニア水の濃度は、好ましくは0.1質量%~10質量%、より好ましくは0.1質量%~1質量%、更に好ましくは0.1質量%~0.5質量%である。
In addition to washing the polythiol composition with an acid, the purification step may further include washing the polythiol composition with water and/or washing with an alkali.
The water washing and/or the alkali washing is preferably carried out after the acid washing.
For washing with water, deaerated water having an oxygen concentration of 5 mg/L or less can be used.
The alkaline washing can be carried out by adding an alkaline aqueous solution and stirring the mixture at a temperature preferably in the range of 20° C. to 50° C., preferably for 10 minutes to 3 hours.
The alkaline aqueous solution is preferably ammonia water.
The concentration of the aqueous ammonia is preferably 0.1% by mass to 10% by mass, more preferably 0.1% by mass to 1% by mass, and further preferably 0.1% by mass to 0.5% by mass.
<その他の工程>
 本開示のポリチオール組成物の製造方法は、必要に応じ、その他の工程を含んでいてもよい。
 その他の工程としては、精製工程の後に設けられる、溶媒除去工程、濾過工程、蒸留工程等が挙げられる。
<Other processes>
The method for producing the polythiol composition of the present disclosure may include other steps as necessary.
Other steps include a solvent removal step, a filtration step, a distillation step, etc., which are performed after the purification step.
<第1実施形態及び第2実施形態>
 以下、本開示のポリチオール組成物の製造方法における、第1実施形態及び第2実施形態について説明する。
 第1実施形態及び第2実施形態は、互いに重複する部分を有していてもよい。即ち、第1実施形態及び第2実施形態の一方が、他方の特長を備えていてもよい。
First and Second Embodiments
Hereinafter, a first embodiment and a second embodiment of the method for producing a polythiol composition according to the present disclosure will be described.
The first and second embodiments may have some overlapping portions, i.e., one of the first and second embodiments may have features of the other.
 本開示のポリチオール組成物の製造方法は、下記第1実施形態及び下記第2実施形態の少なくとも一方を満足することが好ましい。
 第1実施形態は、粗ポリチオール組成物が、
 下記式(5)で表されるポリチオール化合物(即ち、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン)であるポリチオール成分A1と、
 ポリチオール成分A1におけるメルカプト基のうちの少なくとも1つを下記式(N1)で表される基に置き換えた化合物(NA1)と、
を含む実施形態である。
 第2実施形態は、粗ポリチオール組成物が、
 下記式(6)で表されるポリチオール化合物(即ち、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン)、下記式(7)で表されるポリチオール化合物(即ち、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン)、及び下記式(8)で表されるポリチオール化合物(即ち、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン)からなる群から選択される少なくとも1種であるポリチオール成分A2と、
 ポリチオール成分A2におけるメルカプト基のうちの少なくとも1つを下記式(N1)で表される基に置き換えた化合物(NA2)と、
を含む実施形態である。
The method for producing a polythiol composition of the present disclosure preferably satisfies at least one of the following first embodiment and the following second embodiment.
In a first embodiment, the crude polythiol composition is
A polythiol component A1 which is a polythiol compound represented by the following formula (5) (i.e., 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane);
A compound (NA1) in which at least one of the mercapto groups in the polythiol component A1 has been replaced with a group represented by the following formula (N1);
This is an embodiment including:
In a second embodiment, the crude polythiol composition is
a polythiol component A2 which is at least one selected from the group consisting of a polythiol compound represented by the following formula (6) (i.e., 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane), a polythiol compound represented by the following formula (7) (i.e., 4,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane), and a polythiol compound represented by the following formula (8) (i.e., 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane);
A compound (NA2) in which at least one of the mercapto groups in the polythiol component A2 is replaced with a group represented by the following formula (N1);
This is an embodiment including:
 式(N1)中、*は、結合位置を表す。 In formula (N1), * indicates the bond position.
(第1実施形態)
 第1実施形態は、粗ポリチオール組成物が、ポリチオール成分A1と、化合物(NA1)と、を含む実施形態である。
 第1実施形態における粗ポリチオール組成物は、ポリチオール成分A1を、主成分として含むことが好ましい。
First Embodiment
The first embodiment is an embodiment in which the crude polythiol composition contains a polythiol component A1 and a compound (NA1).
The crude polythiol composition in the first embodiment preferably contains polythiol component A1 as a main component.
 第1実施形態における化合物(NA1)は、ポリチオール成分A1におけるメルカプト基のうちの少なくとも1つを式(N1)で表される基に置き換えた化合物である。
 化合物(NA1)は、ポリチオール成分A1を製造する過程で生じる反応副生成物であり、ポリチオール成分A1を主成分とする粗ポリチオール組成物中に不純物として混入し得る化合物であると考えられる。
 化合物(NA1)は、後述の「実施例」の項に示すHPLC(高速液体クロマトグラフィー)測定における保持時間が4.3分~4.8分である化合物である。
 化合物(NA1)は、重合性組成物において、モノマーの重合を促進させる触媒作用を有する不純物であると考えられる。
 化合物(NA1)については、国際公開第2016/010065号(特に、「含窒素化合物(b)」に関する記載)及び国際公開第2020/41183号(特に、「含窒素化合物(B)」に関する記載)を参照することができる。
The compound (NA1) in the first embodiment is a compound in which at least one of the mercapto groups in the polythiol component A1 is replaced with a group represented by formula (N1).
The compound (NA1) is a reaction by-product generated in the process of producing the polythiol component A1, and is considered to be a compound that can be mixed as an impurity into the crude polythiol composition containing the polythiol component A1 as a main component.
Compound (NA1) has a retention time of 4.3 to 4.8 minutes in HPLC (high performance liquid chromatography) measurement shown in the "Examples" section below.
The compound (NA1) is considered to be an impurity having a catalytic action that promotes the polymerization of the monomer in the polymerizable composition.
For compound (NA1), reference can be made to WO 2016/010065 (particularly the description of “nitrogen-containing compound (b)”) and WO 2020/41183 (particularly the description of “nitrogen-containing compound (B)”).
 第1実施形態では、後述の精製工程において、溶剤Xによる精製により、粗ポリチオール組成物から化合物(NA1)が除去され、化合物(NA1)の含有量が低減されたポリチオール組成物が得られる。
 これにより、ポリチオール組成物を含む重合性化合物の保管中の粘度上昇が抑制される。
In the first embodiment, in the purification step described later, the compound (NA1) is removed from the crude polythiol composition by purification with a solvent X, and a polythiol composition having a reduced content of the compound (NA1) is obtained.
This suppresses an increase in viscosity of the polymerizable compound containing the polythiol composition during storage.
 上述したHPLC測定において、化合物(NA1)のピーク面積は、精製工程によって得られるポリチオール組成物に含まれる化合物の合計ピーク面積100に対し、好ましくは0.01~0.30であり、より好ましくは0.01~0.20である。 In the above-mentioned HPLC measurement, the peak area of compound (NA1) is preferably 0.01 to 0.30, and more preferably 0.01 to 0.20, relative to the total peak area of 100 of the compounds contained in the polythiol composition obtained by the purification process.
 第1実施形態における準備工程は、
 2-メルカプトエタノールと下記式(1)で表されるエピハロヒドリン化合物とを反応させて下記式(2)で表されるポリアルコール化合物を得ることと、
 式(2)で表されるポリアルコール化合物とチオ尿素とを、酸性条件下で反応させてイソチウロニウム塩を含む反応液を得ることと、
 イソチウロニウム塩を含む反応液に塩基化合物を加え、イソチウロニウム塩を加水分解し、粗ポリチオール組成物を得ることと、
を含むことが好ましい。
The preparation process in the first embodiment includes the following steps:
A method for producing a polyalcohol compound represented by the following formula (2) by reacting 2-mercaptoethanol with an epihalohydrin compound represented by the following formula (1);
reacting a polyalcohol compound represented by formula (2) with thiourea under acidic conditions to obtain a reaction solution containing an isothiuronium salt;
adding a base compound to the reaction solution containing the isothiuronium salt to hydrolyze the isothiuronium salt to obtain a crude polythiol composition;
It is preferred that the compound contains
 式(1)中、Xは、ハロゲン原子を表す。 In formula (1), X represents a halogen atom.
 第1実施形態における準備工程の上記好ましい態様については、国際公開第2014/027427号(特に、ポリチオール化合物の製造方法に関する記載)を参照できる。 For the above-mentioned preferred aspects of the preparation step in the first embodiment, reference can be made to International Publication No. 2014/027427 (particularly the description regarding the method for producing a polythiol compound).
 第1実施形態における準備工程の上記好ましい態様は、2-メルカプトエタノールと式(1)で表されるエピハロヒドリン化合物とを反応させて下記式(2)で表されるポリアルコール化合物を得ることを含む。 The preferred aspect of the preparation step in the first embodiment includes reacting 2-mercaptoethanol with an epihalohydrin compound represented by formula (1) to obtain a polyalcohol compound represented by the following formula (2).
 式(1)中、Xとして、好ましくは、フッ素原子、塩素原子、臭素原子またはヨウ素原子であり、より好ましくは塩素原子である。 In formula (1), X is preferably a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, and more preferably a chlorine atom.
 2-メルカプトエタノールと式(1)で表されるエピハロヒドリン化合物との反応温度は、好ましくは10℃~50℃、より好ましくは15℃~50℃、更に好ましくは25℃~45℃である。 The reaction temperature between 2-mercaptoethanol and the epihalohydrin compound represented by formula (1) is preferably 10°C to 50°C, more preferably 15°C to 50°C, and even more preferably 25°C to 45°C.
 2-メルカプトエタノールの使用量は、式(1)で表されるエピハロヒドリン化合物1モルに対し、好ましくは1.8モル~3モル、より好ましくは1.9モル~2.1モルである。 The amount of 2-mercaptoethanol used is preferably 1.8 to 3 moles, more preferably 1.9 to 2.1 moles, per mole of the epihalohydrin compound represented by formula (1).
 2-メルカプトエタノールと下記式(1)で表されるエピハロヒドリン化合物との反応は、好ましくは、水性溶媒中で行う。
 水性溶媒としては、水、又は、水と低級アルコール(例えば、メタノール又はエタノール)との混合溶媒が挙げられる。
The reaction between 2-mercaptoethanol and the epihalohydrin compound represented by the following formula (1) is preferably carried out in an aqueous solvent.
The aqueous solvent includes water or a mixed solvent of water and a lower alcohol (eg, methanol or ethanol).
 2-メルカプトエタノールと下記式(1)で表されるエピハロヒドリン化合物との反応は、好ましくは塩基の存在下で行う。
 塩基としては、水酸化ナトリウム、水酸化カリウム等の金属水酸化物;炭酸ナトリウム、炭酸カリウム等の金属炭酸塩;トリエチルアミン、トリブチルアミン等の第三級アミン;等が挙げられる。
 中でも水酸化ナトリウムが特に好ましい。
 塩基の使用量は、1価塩基の場合、式(1)で表されるエピハロヒドリン化合物1モルに対し、好ましくは0.5モル~2モル、より好ましくは0.9モル~1.1モルである。
 2価塩基の場合は1価塩基の使用量の半分の量が好ましい。
The reaction between 2-mercaptoethanol and the epihalohydrin compound represented by the following formula (1) is preferably carried out in the presence of a base.
Examples of the base include metal hydroxides such as sodium hydroxide and potassium hydroxide; metal carbonates such as sodium carbonate and potassium carbonate; and tertiary amines such as triethylamine and tributylamine.
Of these, sodium hydroxide is particularly preferred.
In the case of a monovalent base, the amount of the base used is preferably 0.5 to 2 moles, more preferably 0.9 to 1.1 moles, per mole of the epihalohydrin compound represented by formula (1).
In the case of a divalent base, the amount used is preferably half the amount of the monovalent base.
 第1実施形態における準備工程の上記好ましい態様は、式(2)で表されるポリアルコール化合物とチオ尿素とを、酸性条件下で反応させてイソチウロニウム塩を含む反応液を得ることを含む。
 チオ尿素の使用量は、式(2)で表されるポリアルコール化合物1モルに対し、好ましくは2.7モル以上、より好ましくは2.7モル~6.0モル、更に好ましくは2.9~3.2モルである。
 酸性条件下としては、塩酸の存在下であることが好ましい。
 塩酸の使用量は、式(2)で表されるポリアルコール化合物1モルに対し、好ましくは3モル以上、より好ましくは3モル~12モル、更に好ましくは3モル~5モルである。
 式(2)で表されるポリアルコール化合物とチオ尿素との反応温度は、好ましくは室温(25℃)~還流温度、より好ましくは90℃~120℃である。
 反応時間は、好ましくは1時間~10時間である。
The above-mentioned preferred aspect of the preparation step in the first embodiment includes reacting a polyalcohol compound represented by formula (2) with thiourea under acidic conditions to obtain a reaction liquid containing an isothiuronium salt.
The amount of thiourea used is preferably 2.7 moles or more, more preferably 2.7 moles to 6.0 moles, and even more preferably 2.9 moles to 3.2 moles, per mole of the polyalcohol compound represented by formula (2).
The acidic conditions are preferably in the presence of hydrochloric acid.
The amount of hydrochloric acid used is preferably 3 mol or more, more preferably 3 mol to 12 mol, and even more preferably 3 mol to 5 mol, per mol of the polyalcohol compound represented by the formula (2).
The reaction temperature of the polyalcohol compound represented by formula (2) with thiourea is preferably from room temperature (25°C) to the reflux temperature, more preferably from 90°C to 120°C.
The reaction time is preferably from 1 hour to 10 hours.
 第1実施形態における準備工程の上記好ましい態様は、イソチウロニウム塩を含む反応液に塩基化合物を加え、イソチウロニウム塩を加水分解し、粗ポリチオール組成物を得ることを含む。
 塩基化合物として、好ましくはアンモニアである。
 この加水分解では、イソチウロニウム塩を含む反応液に塩基化合物の水溶液(例えばアンモニア水)を加えてもよい。
 イソチウロニウム塩を加水分解の反応温度は、好ましくは15℃~60℃、より好ましくは25℃~55℃である。
 塩基化合物又はその水溶液は、イソチウロニウム塩を含む反応液に、好ましくは80分以下、より好ましくは70分以下、更に好ましくは20分~60分かけて加える。
 イソチウロニウム塩を含む反応液に塩基化合物又はその水溶液を加えた後、好ましくは室温~還流温度(より好ましくは30℃~80℃)にて、好ましくは1時間~8時間、加水分解反応を行う。
The above-mentioned preferred aspect of the preparation step in the first embodiment includes adding a base compound to a reaction liquid containing an isothiuronium salt to hydrolyze the isothiuronium salt and obtain a crude polythiol composition.
The basic compound is preferably ammonia.
In this hydrolysis, an aqueous solution of a base compound (eg, aqueous ammonia) may be added to the reaction solution containing the isothiuronium salt.
The reaction temperature for hydrolyzing the isothiuronium salt is preferably 15°C to 60°C, more preferably 25°C to 55°C.
The basic compound or an aqueous solution thereof is added to the reaction liquid containing the isothiuronium salt preferably over a period of 80 minutes or less, more preferably 70 minutes or less, and even more preferably 20 to 60 minutes.
After adding a base compound or an aqueous solution thereof to the reaction solution containing an isothiuronium salt, the hydrolysis reaction is carried out preferably at room temperature to reflux temperature (more preferably 30° C. to 80° C.) for preferably 1 hour to 8 hours.
 イソチウロニウム塩を含む反応液を得る過程で、式(2)で表されるポリアルコール化合物とチオ尿素とを、塩酸の存在下で反応させ、かつ、イソチウロニウム塩を加水分解時に塩基化合物としてアンモニアを用いる場合、塩酸の使用量1モルに対するアンモニアの使用量は、好ましくは1モル以上、より好ましくは1モル~3モルである。 In the process of obtaining a reaction solution containing an isothiuronium salt, if the polyalcohol compound represented by formula (2) is reacted with thiourea in the presence of hydrochloric acid and ammonia is used as a base compound when hydrolyzing the isothiuronium salt, the amount of ammonia used per mole of hydrochloric acid is preferably 1 mole or more, more preferably 1 mole to 3 moles.
 イソチウロニウム塩を含む反応液に、塩基化合物又はその水溶液を加える前に、有機溶媒を加えることが好ましい。
 有機溶媒としては、トルエン、キシレン、クロロベンゼン、ジクロロベンゼン等が挙げられる。
 中でも、トルエンが好ましい。
 有機溶媒としてトルエンを加えることにより、粗ポリチオール組成物のトルエン溶液が得られる。これにより、前述したとおり、溶剤Xによる精製の効果がより効果的に発揮される。
It is preferable to add an organic solvent to the reaction solution containing the isothiuronium salt before adding the base compound or an aqueous solution thereof.
Examples of the organic solvent include toluene, xylene, chlorobenzene, and dichlorobenzene.
Of these, toluene is preferred.
By adding toluene as an organic solvent, a toluene solution of the crude polythiol composition is obtained, which allows the purification effect by the solvent X to be more effectively exerted, as described above.
<第2実施形態>
 第2実施形態は、粗ポリチオール組成物が、ポリチオール成分A2と、化合物(NA2)と、を含む実施形態である。
 第2実施形態における粗ポリチオール組成物は、ポリチオール成分A2を、主成分として含むことが好ましい。
Second Embodiment
The second embodiment is an embodiment in which the crude polythiol composition contains a polythiol component A2 and a compound (NA2).
The crude polythiol composition in the second embodiment preferably contains polythiol component A2 as a main component.
 第2実施形態における化合物(NA2)は、ポリチオール成分A2におけるメルカプト基のうちの少なくとも1つを式(N1)で表される基に置き換えた化合物である。
 化合物(NA2)は、ポリチオール成分A2を製造する過程で生じる反応副生成物であり、ポリチオール成分A2を主成分とする粗ポリチオール組成物中に不純物として混入し得る化合物であると考えられる。
 化合物(NA2)は、後述の「実施例」の項に示すHPLC(高速液体クロマトグラフィー)測定における保持時間が6.5分~8.0分である化合物である。
 化合物(NA2)は、重合性組成物において、モノマーの重合を促進させる触媒作用を有する不純物であると考えられる。
The compound (NA2) in the second embodiment is a compound in which at least one of the mercapto groups in the polythiol component A2 is replaced with a group represented by formula (N1).
The compound (NA2) is a reaction by-product generated in the process of producing the polythiol component A2, and is considered to be a compound that can be mixed as an impurity into the crude polythiol composition containing the polythiol component A2 as a main component.
Compound (NA2) has a retention time of 6.5 to 8.0 minutes in HPLC (high performance liquid chromatography) measurement shown in the "Examples" section below.
The compound (NA2) is considered to be an impurity having a catalytic action that promotes the polymerization of the monomer in the polymerizable composition.
 第2実施形態では、後述の精製工程において、溶剤Xによる精製により、粗ポリチオール組成物から化合物(NA2)が除去され、化合物(NA2)の含有量が低減されたポリチオール組成物が得られる。
 これにより、ポリチオール組成物を含む重合性化合物の保管中の粘度上昇が抑制される(即ち、ポリチオール組成物を含む重合性化合物のポットライフが向上する)。
In the second embodiment, in the purification step described below, the compound (NA2) is removed from the crude polythiol composition by purification with a solvent X, and a polythiol composition having a reduced content of the compound (NA2) is obtained.
This suppresses an increase in viscosity of the polymerizable compound containing the polythiol composition during storage (that is, the pot life of the polymerizable compound containing the polythiol composition is improved).
 HPLC測定において、化合物(NA2)のピーク面積は、精製工程によって得られるポリチオール組成物に含まれる化合物の合計ピーク面積100に対し、好ましくは0.04~1.50であり、より好ましくは0.50~1.50であり、更に好ましくは0.50~1.00である。
 化合物(NA2)のピーク面積が、ポリチオール組成物に含まれる化合物の合計ピーク面積100に対して0.04以上(より好ましくは0.50以上)である場合には、ポリチオール組成物を用いて製造される樹脂の耐熱性(例えば、ガラス転移温度(Tg))がより向上する。
 化合物(NA2)のピーク面積が、ポリチオール組成物に含まれる化合物の合計ピーク面積100に対して1.50以下である場合には、ポリチオール組成物を含む重合性化合物の保管中の粘度上昇がより抑制される(即ち、ポリチオール組成物を含む重合性化合物のポットライフがより向上する)。
In the HPLC measurement, the peak area of the compound (NA2) is preferably 0.04 to 1.50, more preferably 0.50 to 1.50, and even more preferably 0.50 to 1.00, relative to the total peak area 100 of the compounds contained in the polythiol composition obtained by the purification step.
When the peak area of the compound (NA2) is 0.04 or more (more preferably 0.50 or more) relative to the total peak area 100 of the compounds contained in the polythiol composition, the heat resistance (e.g., glass transition temperature (Tg)) of a resin produced using the polythiol composition is further improved.
When the peak area of the compound (NA2) is 1.50 or less relative to the total peak area of the compounds contained in the polythiol composition (100), the increase in viscosity of the polymerizable compound containing the polythiol composition during storage is further suppressed (i.e., the pot life of the polymerizable compound containing the polythiol composition is further improved).
 第2実施形態における準備工程は、
 2-メルカプトエタノールと下記式(1)で表されるエピハロヒドリン化合物とを反応させて下記式(3)で表される化合物を得ることと、
 式(3)で表される化合物と硫化ナトリウムとを反応させて下記式(4)で表されるポリアルコール化合物を得ることと、
 式(4)で表されるポリアルコール化合物とチオ尿素とを、酸性条件下で反応させてイソチウロニウム塩を含む反応液を得ることと、
 イソチウロニウム塩を含む反応液に塩基化合物を加え、イソチウロニウム塩を加水分解し、ポリチオール成分A2を含む粗ポリチオール組成物を得ることと、
を含むことが好ましい。
The preparation process in the second embodiment includes the following steps:
Reacting 2-mercaptoethanol with an epihalohydrin compound represented by the following formula (1) to obtain a compound represented by the following formula (3);
Reacting a compound represented by formula (3) with sodium sulfide to obtain a polyalcohol compound represented by the following formula (4);
reacting a polyalcohol compound represented by formula (4) with thiourea under acidic conditions to obtain a reaction solution containing an isothiuronium salt;
adding a base compound to the reaction solution containing the isothiuronium salt to hydrolyze the isothiuronium salt to obtain a crude polythiol composition containing a polythiol component A2;
It is preferred that the compound contains
 式(1)中、Xは、ハロゲン原子を表す。 In formula (1), X represents a halogen atom.
 第2実施形態における準備工程の上記好ましい態様については、国際公開第2014/027428号(特に、ポリチオール化合物の製造方法に関する記載)を参照できる。 For the above-mentioned preferred aspects of the preparation step in the second embodiment, reference can be made to International Publication No. 2014/027428 (particularly the description regarding the method for producing a polythiol compound).
 第2実施形態における準備工程の上記好ましい態様は、2-メルカプトエタノールと式(1)で表されるエピハロヒドリン化合物とを反応させて式(3)で表される化合物を得ることを含む。 The above-mentioned preferred aspect of the preparation step in the second embodiment includes reacting 2-mercaptoethanol with an epihalohydrin compound represented by formula (1) to obtain a compound represented by formula (3).
 式(1)中、Xとして、好ましくは、フッ素原子、塩素原子、臭素原子またはヨウ素原子であり、より好ましくは塩素原子である。 In formula (1), X is preferably a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, and more preferably a chlorine atom.
 2-メルカプトエタノールと式(1)で表されるエピハロヒドリン化合物との反応温度は、好ましくは2℃~30℃、より好ましくは5℃~20℃、更に好ましくは5℃~15℃である。
 反応時間は、好ましくは2時間~10時間である。
The reaction temperature of 2-mercaptoethanol with the epihalohydrin compound represented by formula (1) is preferably 2°C to 30°C, more preferably 5°C to 20°C, and even more preferably 5°C to 15°C.
The reaction time is preferably from 2 to 10 hours.
 2-メルカプトエタノールの使用量は、式(1)で表されるエピハロヒドリン化合物1モルに対し、好ましくは0.5モル~3モル、より好ましくは0.7モル~2.0モルであり、更に好ましくは0.9モル~1.1モルである。 The amount of 2-mercaptoethanol used is preferably 0.5 mol to 3 mol, more preferably 0.7 mol to 2.0 mol, and even more preferably 0.9 mol to 1.1 mol per mol of the epihalohydrin compound represented by formula (1).
 2-メルカプトエタノールと下記式(1)で表されるエピハロヒドリン化合物との反応は、好ましくは、水性溶媒中で行う。
 水性溶媒としては、水、又は、水と低級アルコール(例えば、メタノール又はエタノール)との混合溶媒が挙げられる。
The reaction between 2-mercaptoethanol and the epihalohydrin compound represented by the following formula (1) is preferably carried out in an aqueous solvent.
The aqueous solvent includes water or a mixed solvent of water and a lower alcohol (eg, methanol or ethanol).
 2-メルカプトエタノールと下記式(1)で表されるエピハロヒドリン化合物との反応は、好ましくは塩基の存在下で行う。
 塩基としては、水酸化ナトリウム、水酸化カリウム等の金属水酸化物;炭酸ナトリウム、炭酸カリウム等の金属炭酸塩;トリエチルアミン、トリブチルアミン等の第三級アミン;等が挙げられる。
 中でも水酸化ナトリウムが特に好ましい。
 塩基の使用量は、1価塩基の場合、式(1)で表されるエピハロヒドリン化合物1モルに対し、好ましくは0.001モル~0.1モルである。
 2価塩基の場合は1価塩基の使用量の半分の量が好ましい。
The reaction between 2-mercaptoethanol and the epihalohydrin compound represented by the following formula (1) is preferably carried out in the presence of a base.
Examples of the base include metal hydroxides such as sodium hydroxide and potassium hydroxide; metal carbonates such as sodium carbonate and potassium carbonate; and tertiary amines such as triethylamine and tributylamine.
Of these, sodium hydroxide is particularly preferred.
The amount of the base used, in the case of a monovalent base, is preferably 0.001 to 0.1 moles per mole of the epihalohydrin compound represented by formula (1).
In the case of a divalent base, the amount used is preferably half the amount of the monovalent base.
 第2実施形態における準備工程の上記好ましい態様は、式(3)で表される化合物と硫化ナトリウムとを反応させて式(4)で表されるポリアルコール化合物を得ることを含む。
 硫化ナトリウムの使用量は、式(3)で表されるポリアルコール化合物1モルに対し、好ましくは0.4モル~0.6モルである。
 反応温度は、好ましくは10℃~50℃、より好ましくは20℃~40℃である。
 反応時間は、好ましくは1時間~10時間である。
The preferred aspect of the preparation step in the second embodiment includes reacting a compound represented by formula (3) with sodium sulfide to obtain a polyalcohol compound represented by formula (4).
The amount of sodium sulfide used is preferably 0.4 to 0.6 moles per mole of the polyalcohol compound represented by the formula (3).
The reaction temperature is preferably from 10°C to 50°C, more preferably from 20°C to 40°C.
The reaction time is preferably from 1 hour to 10 hours.
 第2実施形態における準備工程の上記好ましい態様は、式(4)で表されるポリアルコール化合物とチオ尿素とを、酸性条件下で反応させてイソチウロニウム塩を含む反応液を得ることを含む。
 チオ尿素の使用量は、式(4)で表されるポリアルコール化合物1モルに対し、好ましくは3.0モル以上、より好ましくは3.0モル~6.0モル、更に好ましくは4.6~5.0モルである。
 酸性条件下としては、塩酸の存在下であることが好ましい。
 塩酸の使用量は、式(4)で表されるポリアルコール化合物1モルに対し、好ましくは3モル以上、より好ましくは3モル~12モルである。
 式(4)で表されるポリアルコール化合物とチオ尿素との反応温度は、好ましくは室温(25℃)~還流温度、より好ましくは90℃~120℃である。
 反応時間は、好ましくは1時間~10時間である。
The above-mentioned preferred aspect of the preparation step in the second embodiment includes reacting a polyalcohol compound represented by formula (4) with thiourea under acidic conditions to obtain a reaction liquid containing an isothiuronium salt.
The amount of thiourea used is preferably 3.0 mol or more, more preferably 3.0 mol to 6.0 mol, and even more preferably 4.6 to 5.0 mol, per mol of the polyalcohol compound represented by the formula (4).
The acidic conditions are preferably in the presence of hydrochloric acid.
The amount of hydrochloric acid used is preferably 3 moles or more, more preferably 3 moles to 12 moles, per mole of the polyalcohol compound represented by the formula (4).
The reaction temperature between the polyalcohol compound represented by formula (4) and thiourea is preferably from room temperature (25°C) to the reflux temperature, more preferably from 90°C to 120°C.
The reaction time is preferably from 1 hour to 10 hours.
 第2実施形態における準備工程の上記好ましい態様は、イソチウロニウム塩を含む反応液に塩基化合物を加え、イソチウロニウム塩を加水分解し、粗ポリチオール組成物を得ることを含む。
 塩基化合物として、好ましくはアンモニアである。
 この加水分解では、イソチウロニウム塩を含む反応液に塩基化合物の水溶液(例えばアンモニア水)を加えてもよい。
 イソチウロニウム塩を加水分解の反応温度は、好ましくは20℃~60℃、より好ましくは25℃~55℃である。
 塩基化合物又はその水溶液は、イソチウロニウム塩を含む反応液に、好ましくは80分以下、より好ましくは70分以下、更に好ましくは20分~60分かけて加える。
 イソチウロニウム塩を含む反応液に塩基化合物又はその水溶液を加えた後、好ましくは室温~還流温度(より好ましくは30℃~80℃)にて、好ましくは1時間~8時間、加水分解反応を行う。
The above-mentioned preferred aspect of the preparation step in the second embodiment includes adding a base compound to a reaction liquid containing an isothiuronium salt to hydrolyze the isothiuronium salt and obtain a crude polythiol composition.
The basic compound is preferably ammonia.
In this hydrolysis, an aqueous solution of a base compound (eg, aqueous ammonia) may be added to the reaction solution containing the isothiuronium salt.
The reaction temperature for hydrolyzing the isothiuronium salt is preferably 20°C to 60°C, more preferably 25°C to 55°C.
The basic compound or an aqueous solution thereof is added to the reaction liquid containing the isothiuronium salt preferably over a period of 80 minutes or less, more preferably 70 minutes or less, and even more preferably 20 to 60 minutes.
After adding a base compound or an aqueous solution thereof to the reaction solution containing an isothiuronium salt, the hydrolysis reaction is carried out preferably at room temperature to reflux temperature (more preferably 30° C. to 80° C.) for preferably 1 hour to 8 hours.
 イソチウロニウム塩を含む反応液を得る過程で、式(4)で表されるポリアルコール化合物とチオ尿素とを、塩酸の存在下で反応させ、かつ、イソチウロニウム塩を加水分解時に塩基化合物としてアンモニアを用いる場合、塩酸の使用量1モルに対するアンモニアの使用量は、好ましくは1モル以上、より好ましくは1モル~3モルである。 In the process of obtaining a reaction solution containing an isothiuronium salt, if the polyalcohol compound represented by formula (4) is reacted with thiourea in the presence of hydrochloric acid and ammonia is used as a base compound when hydrolyzing the isothiuronium salt, the amount of ammonia used per mole of hydrochloric acid is preferably 1 mole or more, more preferably 1 mole to 3 moles.
 イソチウロニウム塩を含む反応液に、塩基化合物又はその水溶液を加える前に、有機溶媒を加えることが好ましい。
 有機溶媒としては、トルエン、キシレン、クロロベンゼン、ジクロロベンゼン等が挙げられる。
 中でも、トルエンが好ましい。
 有機溶媒としてトルエンを加えることにより、粗ポリチオール組成物のトルエン溶液が得られる。これにより、前述したとおり、溶剤Xによる精製の効果がより効果的に発揮される。
It is preferable to add an organic solvent to the reaction solution containing the isothiuronium salt before adding the base compound or an aqueous solution thereof.
Examples of the organic solvent include toluene, xylene, chlorobenzene, and dichlorobenzene.
Of these, toluene is preferred.
By adding toluene as an organic solvent, a toluene solution of the crude polythiol composition is obtained, which allows the purification effect by the solvent X to be more effectively exerted, as described above.
〔重合性組成物の製造方法〕
 本開示の重合性組成物の製造方法は、
 前述した本開示のポリチオール組成物の製造方法によってポリチオール組成物を製造する工程と、
 少なくとも上記ポリチオール組成物とポリイソシアネート化合物とを混合することにより、上記ポリチオール組成物及びポリイソシアネート化合物を含有する重合性組成物を得る工程と、
を含む。
 本開示の重合性組成物の製造方法は、必要に応じ、その他の工程を含んでもよい。
[Method for producing polymerizable composition]
The method for producing the polymerizable composition of the present disclosure includes:
Producing a polythiol composition by the method for producing a polythiol composition of the present disclosure described above;
A step of obtaining a polymerizable composition containing the polythiol composition and the polyisocyanate compound by mixing at least the polythiol composition and the polyisocyanate compound;
including.
The method for producing the polymerizable composition of the present disclosure may include other steps as necessary.
 本開示の重合性組成物の製造方法では、前述した本開示のポリチオール組成物の製造方法によってポリチオール組成物を製造するので、本開示のポリチオール組成物の製造方法と同様の効果が奏される。
 即ち、本開示の重合性組成物の製造方法によれば、保管中における、ポリチオール組成物とポリイソシアネート化合物との重合反応が抑制され、これにより、保管中における粘度上昇が抑制される(即ち、ポットライフの低下が抑制される)。
In the method for producing a polymerizable composition of the present disclosure, a polythiol composition is produced by the method for producing a polythiol composition of the present disclosure described above, and therefore, the same effects as those of the method for producing a polythiol composition of the present disclosure are achieved.
That is, according to the method for producing a polymerizable composition disclosed herein, a polymerization reaction between a polythiol composition and a polyisocyanate compound during storage is suppressed, thereby suppressing an increase in viscosity during storage (i.e., suppressing a decrease in pot life).
<ポリチオール組成物を製造する工程>
 本開示の重合性組成物の製造方法におけるポリチオール組成物を製造する工程については、前述した本開示のポリチオール組成物の製造方法を適宜参照できる。
<Step of Producing Polythiol Composition>
For the step of producing a polythiol composition in the method for producing a polymerizable composition of the present disclosure, the above-mentioned method for producing a polythiol composition of the present disclosure can be appropriately referred to.
<重合性組成物を得る工程>
 重合性組成物を得る工程では、少なくとも上記ポリチオール組成物とポリイソシアネート化合物とを混合することにより、上記ポリチオール組成物及びポリイソシアネート化合物を含有する重合性組成物を得る。
<Step of Obtaining Polymerizable Composition>
In the step of obtaining a polymerizable composition, at least the polythiol composition and a polyisocyanate compound are mixed to obtain a polymerizable composition containing the polythiol composition and the polyisocyanate compound.
 重合性組成物を得る工程に用いるポリイソシアネート化合物の好ましい態様は、「ポリチオール組成物の製造方法」の項で説明した、「チオウレタン樹脂の原料としてのイソシアネート化合物」の好ましい態様と同様である。 The preferred embodiment of the polyisocyanate compound used in the process for obtaining the polymerizable composition is the same as the preferred embodiment of the "isocyanate compound as a raw material for the thiourethane resin" explained in the section "Production method of the polythiol composition".
 重合性組成物を得る工程において、ポリチオール組成物と、ポリイソシアネート化合物と、の混合割合は特に限定されない。
 重合性組成物を得る工程において、ポリイソシアネート化合物の仕込み質量に対するポリチオール組成物の仕込み質量の比(即ち、仕込み質量〔ポリチオール組成物/ポリイソシアネート化合物〕)は、好ましくは0.10~10.0であり、より好ましくは0.20~5.00であり、更に好ましくは0.50~1.50であり、更に好ましくは0.70~1.30である。
 また、ポリチオール組成物に含まれるポリチオール化合物のメルカプト基とポリイソシアネート化合物のイソシアナト基のモル比(メルカプト基/イソシアナト基)が0.5~3.0であることが好ましく、0.6~2.0であることがより好ましく、0.8~1.3であることがさらに好ましい。
In the step of obtaining a polymerizable composition, the mixing ratio of the polythiol composition and the polyisocyanate compound is not particularly limited.
In the step of obtaining the polymerizable composition, the ratio of the charged mass of the polythiol composition to the charged mass of the polyisocyanate compound (i.e., charged mass [polythiol composition/polyisocyanate compound]) is preferably 0.10 to 10.0, more preferably 0.20 to 5.00, even more preferably 0.50 to 1.50, and even more preferably 0.70 to 1.30.
In addition, the molar ratio of the mercapto groups of the polythiol compound contained in the polythiol composition to the isocyanato groups of the polyisocyanate compound (mercapto groups/isocyanato groups) is preferably 0.5 to 3.0, more preferably 0.6 to 2.0, and even more preferably 0.8 to 1.3.
 重合性組成物を得る工程において、ポリチオール組成物と、ポリイソシアネート化合物と、の総仕込み質量は特に限定されないが、製造される重合性組成物の全量に対し、好ましくは60質量%以上であり、より好ましくは80質量%以上であり、更に好ましくは90質量%以上である。 In the process for obtaining the polymerizable composition, the total mass of the polythiol composition and the polyisocyanate compound is not particularly limited, but is preferably 60% by mass or more, more preferably 80% by mass or more, and even more preferably 90% by mass or more, based on the total amount of the polymerizable composition produced.
 重合性組成物を得る工程は、ポリチオール組成物と、ポリイソシアネート化合物を含むポリイソシアネート組成物と、を混合することにより、ポリチオール組成物及びポリイソシアネート組成物を含有する重合性組成物を得る工程であってもよい。 The process for obtaining the polymerizable composition may be a process for obtaining a polymerizable composition containing a polythiol composition and a polyisocyanate composition by mixing a polythiol composition with a polyisocyanate composition containing a polyisocyanate compound.
 ここで、ポリイソシアネート組成物とは、少なくとも1種のポリイソシアネート化合物を含有する組成物を意味する。 Here, a polyisocyanate composition means a composition containing at least one polyisocyanate compound.
 ポリイソシアネート組成物には、不純物として、ポリイソシアネート化合物以外の成分が含有されていてもよい。
 ポリイソシアネート組成物は、少なくとも1種のポリイソシアネート化合物を主成分として含むことが好ましい。
 「主成分として含む」の意味については前述したとおりである。
The polyisocyanate composition may contain components other than the polyisocyanate compound as impurities.
The polyisocyanate composition preferably contains at least one polyisocyanate compound as a main component.
The meaning of "containing as a main component" is as described above.
 ポリイソシアネート組成物は、キシリレンジイソシアネートを含むことが好ましい。 The polyisocyanate composition preferably contains xylylene diisocyanate.
 以下、キシリレンジイソシアネートを含むポリイソシアネート組成物を、XDI組成物ともいう。
 XDI組成物は、キシリレンジイソシアネートを主成分として含むことが好ましい
Hereinafter, a polyisocyanate composition containing xylylene diisocyanate is also referred to as an XDI composition.
The XDI composition preferably contains xylylene diisocyanate as a main component.
 XDI組成物は、下記化合物(N1)、下記化合物(N2)、及び下記化合物(N3)からなる群から選択される少なくとも1種を含むことが好ましい。 The XDI composition preferably contains at least one selected from the group consisting of the following compound (N1), the following compound (N2), and the following compound (N3):
 以下、ポリイソシアネート組成物の安定性、及び、ポリイソシアネート組成物を用いて形成された樹脂の透明性により優れる観点から見た、XDI組成物の好ましい態様を示す。 Below are preferred embodiments of the XDI composition from the viewpoint of the stability of the polyisocyanate composition and the transparency of the resin formed using the polyisocyanate composition.
 XDI組成物が化合物(N1)を含む場合には、下記GC条件1でのガスクロマトグラフィー測定における化合物(N1)のピーク面積が、キシリレンジイソシアネートのピーク面積1に対して0.20ppm以上であることが好ましい。
-GC条件1-
充填剤;DB-1(膜厚)1.5μm
カラム;内径0.53mm×長さ60m(Agilent社製)
オーブン温度;130℃から220℃まで3℃/minで昇温、220℃到達後300℃まで10℃/minで昇温。
スプリット比;パルスドスプリットレス法
注入口温度;280℃
検出器温度;300℃
キャリアガス;N 158kPa、H 55kPa、Air 45kPa(定圧制御)
溶媒;クロロホルム
サンプル濃度:2.0質量%クロロホルム溶液
注入量;2μL
検出方法;FID
When the XDI composition contains the compound (N1), the peak area of the compound (N1) measured by gas chromatography under the following GC condition 1 is preferably 0.20 ppm or more relative to the peak area 1 of xylylene diisocyanate.
-GC condition 1-
Filler: DB-1 (film thickness) 1.5 μm
Column: inner diameter 0.53 mm x length 60 m (Agilent)
Oven temperature: heated from 130°C to 220°C at 3°C/min, and after reaching 220°C, heated to 300°C at 10°C/min.
Split ratio: Pulsed splitless method Injection port temperature: 280°C
Detector temperature: 300°C
Carrier gas: N2 158 kPa, H2 55 kPa, Air 45 kPa (constant pressure control)
Solvent: chloroform Sample concentration: 2.0% by mass chloroform solution Injection amount: 2 μL
Detection method: FID
 上記化合物(N1)のピーク面積は、キシリレンジイソシアネートのピーク面積1に対し、より好ましくは5.0ppm以上、更に好ましくは50ppm以上、更に好ましくは100ppm以上である。
 上記化合物(N1)のピーク面積は、キシリレンジイソシアネートのピーク面積1に対し、好ましくは4000ppm以下、より好ましくは3000ppm以下、更に好ましくは2000ppm以下、更に好ましくは1500ppm以下、更に好ましくは1000ppm以下である。
 上記化合物(N1)のピーク面積は、特許第6373536号公報の段落0377に記載の方法に準拠して測定できる。
The peak area of the compound (N1) is more preferably 5.0 ppm or more, further preferably 50 ppm or more, and further preferably 100 ppm or more, relative to the peak area of xylylene diisocyanate.
The peak area of the compound (N1) is preferably 4000 ppm or less, more preferably 3000 ppm or less, even more preferably 2000 ppm or less, even more preferably 1500 ppm or less, and even more preferably 1000 ppm or less, relative to the peak area of xylylene diisocyanate.
The peak area of the compound (N1) can be measured in accordance with the method described in paragraph 0377 of Japanese Patent No. 6,373,536.
 XDI組成物が化合物(N2)を含む場合には、下記GC条件2でのガスクロマトグラフィー測定における化合物(N2)のピーク面積が、キシリレンジイソシアネートのピーク面積1に対して0.05ppm以上であることが好ましい。
-GC条件2-
カラム;HP-50+、内径0.25mm×長さ30m×膜厚0.25μm(ヒューレットパッカード社製)
オーブン温度;50℃から280℃まで10℃/minで昇温、280℃到達後6minホールド。
スプリット比;パルスドスプリットレス法
注入口温度;200℃
検出器温度;280℃
キャリアガス;He
キャリアガス流量;1.0ml/min(定流量制御)
サンプル濃度:1.0質量%ジクロロメタン溶液
注入量;1.0μL
検出方法;SIM(モニタリングイオン:m/z 180、215)(キシリレンジイソシアネート(XDI)の含有割合)
When the XDI composition contains the compound (N2), the peak area of the compound (N2) measured by gas chromatography under the following GC condition 2 is preferably 0.05 ppm or more relative to the peak area 1 of xylylene diisocyanate.
-GC condition 2-
Column: HP-50+, inner diameter 0.25 mm × length 30 m × film thickness 0.25 μm (manufactured by Hewlett-Packard)
Oven temperature: Raise from 50° C. to 280° C. at 10° C./min, and hold for 6 min after reaching 280° C.
Split ratio: Pulsed splitless method Injection port temperature: 200°C
Detector temperature: 280°C
Carrier gas: He
Carrier gas flow rate: 1.0 ml/min (constant flow rate control)
Sample concentration: 1.0% by mass dichloromethane solution Injection amount: 1.0 μL
Detection method: SIM (monitoring ions: m/z 180, 215) (content of xylylene diisocyanate (XDI))
 上記化合物(N2)のピーク面積は、キシリレンジイソシアネートのピーク面積1に対し、より好ましくは0.1ppm以上、更に好ましくは0.3ppm以上、更に好ましくは0.6ppm以上である。
 上記化合物(N2)のピーク面積は、キシリレンジイソシアネートのピーク面積1に対し、好ましくは200ppm以下、より好ましくは150ppm以下、更に好ましくは100ppm以下、更に好ましくは80ppm以下、更に好ましくは70ppm以下、更に好ましくは60ppm以下である。
 上記化合物(N2)のピーク面積は、特許第6373536号公報の段落0375及び0376に記載の方法に準拠して測定できる。
The peak area of the compound (N2) is more preferably 0.1 ppm or more, further preferably 0.3 ppm or more, and further preferably 0.6 ppm or more, relative to the peak area of xylylene diisocyanate.
The peak area of the compound (N2) is preferably 200 ppm or less, more preferably 150 ppm or less, even more preferably 100 ppm or less, even more preferably 80 ppm or less, even more preferably 70 ppm or less, and even more preferably 60 ppm or less, relative to the peak area of xylylene diisocyanate.
The peak area of the compound (N2) can be measured in accordance with the method described in paragraphs 0375 and 0376 of Japanese Patent No. 6,373,536.
 XDI組成物が化合物(N3)を含む場合には、前述のGC条件1でのガスクロマトグラフィー測定における化合物(N3)のピーク面積が、キシリレンジイソシアネートのピーク面積1に対して0.10ppm以上であることが好ましい。
 上記化合物(N3)のピーク面積は、キシリレンジイソシアネートのピーク面積1に対し、より好ましくは0.1ppm以上、更に好ましくは3.0ppm以上、更に好ましくは5.0ppm以上である。
 上記化合物(N3)のピーク面積は、キシリレンジイソシアネートのピーク面積1に対し、好ましくは1000ppm以下、より好ましくは500ppm以下、更に好ましくは300ppm以下、更に好ましくは100ppm以下、更に好ましくは75ppm以下である。
 上記化合物(N3)のピーク面積は、特許第6373536号公報の段落0377に記載の方法に準拠して測定できる。
When the XDI composition contains the compound (N3), the peak area of the compound (N3) measured by gas chromatography under the above-mentioned GC condition 1 is preferably 0.10 ppm or more relative to the peak area 1 of xylylene diisocyanate.
The peak area of the compound (N3) is more preferably 0.1 ppm or more, further preferably 3.0 ppm or more, and further preferably 5.0 ppm or more, relative to the peak area of xylylene diisocyanate.
The peak area of the compound (N3) is preferably 1000 ppm or less, more preferably 500 ppm or less, even more preferably 300 ppm or less, even more preferably 100 ppm or less, and even more preferably 75 ppm or less, relative to the peak area of xylylene diisocyanate.
The peak area of the compound (N3) can be measured in accordance with the method described in paragraph 0377 of Japanese Patent No. 6,373,536.
 XDI組成物の酸分は、好ましくは3000ppm以下、より好ましくは2000ppm以下、更に好ましくは1000ppm以下、更に好ましくは100ppm以下、更に好ましくは50ppm以下、更に好ましくは30ppm以下、更に好ましくは15ppm未満である。
 XDI組成物の酸分の下限値は特に限定されないが、下限値は、例えば、1ppmである。
 XDI組成物の酸分は、国際公開第2021/256417号の段落0091に記載の方法に準拠して測定できる。
 また、XDI組成物は、安定剤を含んでいてもよい。
The acid content of the XDI composition is preferably 3000 ppm or less, more preferably 2000 ppm or less, even more preferably 1000 ppm or less, even more preferably 100 ppm or less, even more preferably 50 ppm or less, even more preferably 30 ppm or less, even more preferably less than 15 ppm.
The lower limit of the acid content of the XDI composition is not particularly limited, but the lower limit is, for example, 1 ppm.
The acid content of the XDI composition can be measured according to the method described in paragraph 0091 of WO 2021/256417.
The XDI composition may also include a stabilizer.
 重合性組成物を得る工程では、少なくとも上記ポリチオール組成物とポリイソシアネート化合物とを混合するが、必要に応じ、上記ポリチオール組成物及びポリイソシアネート化合物と、その他の成分と、を混合してもよい。
 また、重合性組成物を得る工程では、少なくとも上記ポリチオール組成物とポリイソシアネート化合物とを混合した後、混合物に対し、その他の成分を添加してもよい。
 これらのその他の成分としては、重合触媒、内部離型剤、樹脂改質剤、鎖延長剤、架橋剤、ラジカル捕捉剤、光安定剤、紫外線吸収剤、酸化防止剤、油溶染料、充填剤、密着性向上剤、抗菌剤、帯電防止剤、染料、蛍光増白剤、蛍光顔料、無機顔料、等が挙げられる。
In the step of obtaining the polymerizable composition, at least the polythiol composition and the polyisocyanate compound are mixed, but if necessary, the polythiol composition and the polyisocyanate compound may be mixed with other components.
In the step of obtaining the polymerizable composition, at least the polythiol composition and the polyisocyanate compound may be mixed, and then other components may be added to the mixture.
These other components include polymerization catalysts, internal release agents, resin modifiers, chain extenders, crosslinking agents, radical scavengers, light stabilizers, ultraviolet absorbers, antioxidants, oil-soluble dyes, fillers, adhesion improvers, antibacterial agents, antistatic agents, dyes, fluorescent brightening agents, fluorescent pigments, inorganic pigments, and the like.
 重合触媒としては、3級アミン化合物、その無機酸塩又は有機酸塩、金属化合物、4級アンモニウム塩、有機スルホン酸等を挙げることができる。 Polymerization catalysts include tertiary amine compounds, their inorganic or organic acid salts, metal compounds, quaternary ammonium salts, organic sulfonic acids, etc.
 内部離型剤としては、酸性リン酸エステルを用いることができる。酸性リン酸エステルとしては、リン酸モノエステル、リン酸ジエステルを挙げることができ、それぞれ単独又は2種類以上混合して使用することできる。 As the internal mold release agent, an acidic phosphate ester can be used. Examples of acidic phosphate esters include monophosphate esters and diphosphate esters, and each can be used alone or in a mixture of two or more types.
 樹脂改質剤としては、例えば、エピスルフィド化合物、アルコール化合物、アミン化合物、エポキシ化合物、有機酸、有機酸の無水物、(メタ)アクリレート化合物等を含むオレフィン化合物、等が挙げられる。ここで、(メタ)アクリレート化合物とは、アクリレート化合物及びメタクリレート化合物の少なくとも一方を意味する。 Examples of resin modifiers include episulfide compounds, alcohol compounds, amine compounds, epoxy compounds, organic acids, anhydrides of organic acids, olefin compounds including (meth)acrylate compounds, etc. Here, a (meth)acrylate compound means at least one of an acrylate compound and a methacrylate compound.
 重合性組成物を得る工程において、上述した成分の混合は、常法に従って行うことができ、混合の方法は特に制限されない。 In the process of obtaining the polymerizable composition, the above-mentioned components can be mixed in a conventional manner, and the mixing method is not particularly limited.
〔樹脂の製造方法〕
 本開示の樹脂の製造方法は、
 上述した本開示の重合性組成物の製造方法によって重合性組成物を製造する工程と、
 上記重合性組成物を硬化させることにより、樹脂を得る工程と、
を含む。
 本開示の樹脂の製造方法は、必要に応じ、その他の工程を含んでいてもよい。
[Method of producing resin]
The method for producing the resin of the present disclosure includes:
A step of producing a polymerizable composition by the method for producing a polymerizable composition according to the present disclosure described above;
a step of curing the polymerizable composition to obtain a resin;
including.
The method for producing the resin of the present disclosure may include other steps as necessary.
 樹脂を得る工程では、上記重合性組成物を硬化させることにより、樹脂を得る。
 上記重合性組成物の硬化は、上記重合性組成物中のモノマー(具体的には、ポリチオール組成物及びポリイソシアネート化合物。以下同じ。)を重合させることによって行うことができる。重合の前処理として、重合性組成物に対し、濾過、脱気等の処理を施してもよい。
 上記重合性組成物中のモノマーを重合させるための重合条件(例えば、重合温度、重合時間等)は、組成物の組成、組成物中のモノマーの種類及び使用量、組成物中の重合触媒の種類及び使用量、後述のモールドを用いる場合にはモールドの性状、等を考慮し、適宜設定される。
 重合温度として、例えば、-50℃~150℃、10℃~150℃、等が挙げられる。
 重合時間として、例えば、1時間~200時間、1時間~80時間、等が挙げられる。
In the step of obtaining a resin, the polymerizable composition is cured to obtain a resin.
The curing of the polymerizable composition can be carried out by polymerizing the monomers in the polymerizable composition (specifically, the polythiol composition and the polyisocyanate compound; the same applies below). As a pretreatment for polymerization, the polymerizable composition may be subjected to a treatment such as filtration or degassing.
The polymerization conditions (e.g., polymerization temperature, polymerization time, etc.) for polymerizing the monomers in the polymerizable composition are appropriately set in consideration of the composition of the composition, the type and amount of the monomer in the composition, the type and amount of the polymerization catalyst in the composition, and the properties of the mold when a mold described below is used.
The polymerization temperature may be, for example, from -50°C to 150°C, or from 10°C to 150°C.
The polymerization time may be, for example, 1 hour to 200 hours, or 1 hour to 80 hours.
 樹脂を得る工程は、モノマーの重合によって得られた重合体に対し、アニール等の処理を施して樹脂を得てもよい。
 アニールの温度としては、50℃~150℃、90℃~140℃、100℃~130℃、等が挙げられる。
In the step of obtaining the resin, the polymer obtained by polymerization of the monomer may be subjected to a treatment such as annealing to obtain the resin.
The annealing temperature may be 50°C to 150°C, 90°C to 140°C, 100°C to 130°C, or the like.
〔成形体の製造方法〕
 本開示の成形体の製造方法は、樹脂を含む成形体(以下、「樹脂成形体」ともいう)を製造する方法であって、
 上述した本開示の重合性組成物の製造方法によって重合性組成物を製造する工程と、
 上記重合性組成物を硬化させることにより、樹脂を含む成形体を得る工程と、
を含む。
 本開示の成形体の製造方法は、必要に応じ、その他の工程を含んでいてもよい。
[Method for producing molded body]
The method for producing a molded body according to the present disclosure is a method for producing a molded body containing a resin (hereinafter also referred to as a "resin molded body"), comprising the steps of:
A step of producing a polymerizable composition by the method for producing a polymerizable composition according to the present disclosure described above;
a step of obtaining a molded body containing a resin by curing the polymerizable composition;
including.
The method for producing a molded article according to the present disclosure may include other steps as necessary.
 樹脂を含む成形体を得る工程では、上記重合性組成物を硬化させることにより、樹脂を含む成形体を得る。
 上記重合性組成物の硬化、即ち、上記重合性組成物中のモノマーの重合の好ましい条件は、「樹脂の製造方法」の項を適宜参照できる。
In the step of obtaining a molded article containing a resin, the polymerizable composition is cured to obtain a molded article containing a resin.
For preferred conditions for curing the polymerizable composition, i.e., for polymerization of the monomers in the polymerizable composition, see the section "Method for producing resin" as appropriate.
 本工程における重合の一例として、注型重合が挙げられる。
 注型重合では、はじめに、ガスケット又はテープ等で保持された成型モールド間に、上記重合性組成物を注入する。この際、必要に応じ、脱泡処理、濾過処理等を行ってもよい。
 次に、成型モールド間に注入された重合性組成物中のモノマーを重合させることにより、成型モールド間で組成物を硬化させて硬化物を得る。次いで、硬化物を成型モールドから外し、樹脂を含む成形体を得る。
 上記モノマーの重合は、重合性組成物を加熱することによって行ってもよい。この加熱は、例えば、オーブン中、水中等で加熱対象物を加熱する機構を備えた加熱装置を用いて行うことができる。
An example of the polymerization in this step is cast polymerization.
In cast polymerization, first, the polymerizable composition is poured between the molds held by a gasket or tape, etc. At this time, degassing treatment, filtration treatment, etc. may be carried out as necessary.
Next, the monomer in the polymerizable composition injected between the molds is polymerized to cure the composition between the molds, and the cured product is obtained. The cured product is then removed from the molds to obtain a molded product containing the resin.
The polymerization of the monomer may be carried out by heating the polymerizable composition, for example, using a heating device equipped with a mechanism for heating an object to be heated in an oven, water, or the like.
〔光学材料の製造方法、レンズの製造方法〕
 本開示の光学材料(例えばレンズ)の製造方法は、樹脂を含む成形体を含む光学材料(例えばレンズ)を製造する方法であって、
 上述した本開示の重合性組成物の製造方法によって重合性組成物を製造する工程と、
 上記重合性組成物を硬化させることにより、樹脂を含む成形体を得る工程と、
を含む。
 本開示の光学材料(例えばレンズ。以下同じ。)の製造方法は、必要に応じ、その他の工程を含んでいてもよい。
[Method of manufacturing optical materials and lens]
The method for producing an optical material (e.g., a lens) according to the present disclosure is a method for producing an optical material (e.g., a lens) including a molded body containing a resin, the method comprising the steps of:
A step of producing a polymerizable composition by the method for producing a polymerizable composition according to the present disclosure described above;
a step of obtaining a molded body containing a resin by curing the polymerizable composition;
including.
The method for producing an optical material (e.g., a lens; the same applies below) of the present disclosure may include other steps as necessary.
 本開示の光学材料の製造方法は、本開示の成形体の製造方法の応用である。
 例えば、本開示の成形体の製造方法において、前述した注型重合に用いる成型モールドの形状を適宜選択することにより、光学材料(例えばレンズ)に適用可能な成形体を得ることができる。
The method for producing an optical material according to the present disclosure is an application of the method for producing a molded body according to the present disclosure.
For example, in the method for producing a molded article according to the present disclosure, by appropriately selecting the shape of the molding mold used in the above-mentioned cast polymerization, a molded article applicable to an optical material (e.g., a lens) can be obtained.
 光学材料としては、レンズ(例えば、眼鏡レンズ、カメラレンズ、偏光レンズ)、発光ダイオード(LED)、等が挙げられる。 Optical materials include lenses (e.g., eyeglass lenses, camera lenses, polarized lenses), light-emitting diodes (LEDs), etc.
 本開示の光学材料(例えばレンズ)の製造方法は、樹脂を含む成形体に対し、片面又は両面にコーティング層を形成する工程を含んでいてもよい。 The manufacturing method of the optical material (e.g., lens) of the present disclosure may include a step of forming a coating layer on one or both sides of a molded body containing a resin.
 コーティング層として、具体的には、プライマー層、ハードコート層、反射防止層、防曇コート層、防汚染層、撥水層等が挙げられる。
 これらのコーティング層はそれぞれ単独で形成してもよいし、複数のコーティング層を多層化して形成してもよい。両面にコーティング層を形成する場合、それぞれの面に同様なコーティング層を形成してもよいし、異なるコーティング層を形成してもよい。
Specific examples of the coating layer include a primer layer, a hard coat layer, an anti-reflection layer, an anti-fogging coat layer, an anti-fouling layer, and a water-repellent layer.
Each of these coating layers may be formed alone, or a plurality of coating layers may be formed in a multi-layer structure. When coating layers are formed on both sides, the same coating layer may be formed on each side, or different coating layers may be formed on each side.
 コーティング層の成分は、目的に応じて適宜選択できる。
 コーティング層の成分としては、例えば、樹脂(例えば、ウレタン樹脂、エポキシ樹脂、ポリエステル樹脂、メラミン樹脂、ポリビニルアセタール樹脂、等)、赤外線吸収剤、光安定剤、酸化防止剤、フォトクロ化合物、染料、顔料、帯電防止剤等が挙げられる。
The components of the coating layer can be appropriately selected depending on the purpose.
Examples of components of the coating layer include resins (e.g., urethane resins, epoxy resins, polyester resins, melamine resins, polyvinyl acetal resins, etc.), infrared absorbers, light stabilizers, antioxidants, photochromic compounds, dyes, pigments, and antistatic agents.
 メガネレンズ及びコーティング層については、例えば、国際公開第2017/047745号等の公知文献の記載を適宜参照できる。 For details about eyeglass lenses and coating layers, refer to the descriptions in publicly known documents such as International Publication No. WO 2017/047745 as appropriate.
〔重合性組成物〕
 本開示の重合性組成物は、前述した本開示のポリチオール組成物の製造方法によって得られたポリチオール組成物と、ポリイソシアネート化合物と、を含有する。
[Polymerizable composition]
The polymerizable composition of the present disclosure contains a polythiol composition obtained by the above-described method for producing a polythiol composition of the present disclosure, and a polyisocyanate compound.
 本開示の重合性組成物は、上記ポリイソシアネート化合物を含むポリイソシアネート組成物を含んでいてもよい。
 ポリイソシアネート組成物は、キシリレンジイソシアネートを含むこと(即ち、前述のXDI組成物であること)が好ましい。
 XDI組成物の好ましい態様(例えば、化合物(N1)、化合物(N2)、及び化合物(N3)からなる群から選択される少なくとも1種を含むこと等)については、前述した本開示の重合性組成物の製造方法における「<重合性組成物を得る工程>」の項において示したとおりである。
The polymerizable composition of the present disclosure may include a polyisocyanate composition containing the polyisocyanate compound described above.
The polyisocyanate composition preferably contains xylylene diisocyanate (i.e., is the XDI composition described above).
A preferred aspect of the XDI composition (e.g., containing at least one selected from the group consisting of compound (N1), compound (N2), and compound (N3)) is as described in the section "<Step of obtaining polymerizable composition>" in the method for producing a polymerizable composition of the present disclosure described above.
 本開示の重合性組成物は、前述した本開示の重合性組成物の製造方法によって製造することができる。
 本開示の重合性組成物の好ましい態様は、前述した本開示の重合性組成物の製造方法を適宜参照できる。
 但し、仕込み質量〔ポリチオール組成物/ポリイソシアネート化合物〕は、含有質量比〔ポリチオール組成物/ポリイソシアネート化合物〕と読み替え、ポリチオール組成物とポリイソシアネート化合物との総仕込み質量は、ポリチオール組成物とポリイソシアネート化合物との総含有質量と読み替える。
The polymerizable composition of the present disclosure can be produced by the above-mentioned method for producing a polymerizable composition of the present disclosure.
For preferred embodiments of the polymerizable composition of the present disclosure, the above-mentioned method for producing the polymerizable composition of the present disclosure can be referred to as appropriate.
However, the charge mass [polythiol composition/polyisocyanate compound] is read as the content mass ratio [polythiol composition/polyisocyanate compound], and the total charge mass of the polythiol composition and the polyisocyanate compound is read as the total content mass of the polythiol composition and the polyisocyanate compound.
〔樹脂、成形体、光学材料(例えばレンズ)〕
 本開示の樹脂は、上述した本開示の重合性組成物の硬化物である。
 本開示の成形体は、上述した本開示の樹脂を含む成形体である。
 本開示の光学材料(例えばレンズ)は、上述した本開示の樹脂を含む光学材料(例えばレンズ)である。
[Resins, molded bodies, optical materials (e.g. lenses)]
The resin of the present disclosure is a cured product of the polymerizable composition of the present disclosure described above.
The molded article of the present disclosure is a molded article containing the resin of the present disclosure described above.
The optical material (e.g., a lens) of the present disclosure is an optical material (e.g., a lens) containing the resin of the present disclosure described above.
 本開示の樹脂、本開示の成形体、及び本開示の光学材料(例えばレンズ)は、それぞれ、前述した本開示の樹脂の製造方法、本開示の成形体の製造方法、及び本開示の光学材料(例えばレンズ)の製造方法によって製造できる。
 本開示の樹脂、本開示の成形体、及び本開示の光学材料(例えばレンズ)の好ましい態様は、それぞれ、前述した本開示の樹脂の製造方法、本開示の成形体の製造方法、及び本開示の光学材料(例えばレンズ)の製造方法の好ましい態様を参照できる。
The resin of the present disclosure, the molded body of the present disclosure, and the optical material (e.g., a lens) of the present disclosure can be produced by the above-mentioned method for producing the resin of the present disclosure, the method for producing the molded body of the present disclosure, and the method for producing the optical material (e.g., a lens) of the present disclosure, respectively.
For preferred aspects of the resin of the present disclosure, the molded article of the present disclosure, and the optical material (e.g., a lens) of the present disclosure, reference can be made to the preferred aspects of the manufacturing method for the resin of the present disclosure, the manufacturing method for the molded article of the present disclosure, and the manufacturing method for the optical material (e.g., a lens) of the present disclosure, respectively, described above.
<樹脂又は成形体の好ましい性能>
 本開示の樹脂(又は成形体)のガラス転移温度Tgは、耐熱性の観点から、好ましくは70℃以上、より好ましくは80℃以上であり、更に好ましくは85℃以上である。
 上記ガラス転移温度Tgは、130℃以下であってもよく、120℃以下であってもよく、110℃以下であってもよい。
<Preferable properties of resin or molded article>
From the viewpoint of heat resistance, the glass transition temperature Tg of the resin (or molded article) of the present disclosure is preferably 70° C. or higher, more preferably 80° C. or higher, and even more preferably 85° C. or higher.
The glass transition temperature Tg may be 130° C. or lower, 120° C. or lower, or 110° C. or lower.
 本開示の樹脂(又は成形体)の屈折率(ne)は、光学材料への適用の観点から、好ましくは1.500以上であり、より好ましくは1.540以上であり、更に好ましくは1.590以上である。
 上記屈折率(ne)の上限は特に制限はないが、上限は例えば1.750である。
From the viewpoint of application to optical materials, the refractive index (ne) of the resin (or molded article) of the present disclosure is preferably 1.500 or more, more preferably 1.540 or more, and even more preferably 1.590 or more.
There is no particular upper limit to the refractive index (ne), but the upper limit is, for example, 1.750.
 本開示の樹脂(又は成形体)のアッベ数は、光学材料への適用の観点から、好ましくは28以上であり、より好ましくは30以上である。
 上記アッベ数の上限は特に制限はないが、上限は例えば50であり、好ましくは45である。
From the viewpoint of application to optical materials, the Abbe number of the resin (or molded article) of the present disclosure is preferably 28 or more, and more preferably 30 or more.
The upper limit of the Abbe number is not particularly limited, but the upper limit is, for example, 50, and preferably 45.
 本開示の樹脂(又は成形体)の比重dは、光学材料への適用の観点から、好ましくは1.10以上であり、より好ましくは1.20以上である。
 上記比重dの上限は特に制限はないが、上限は例えば1.50であり、好ましくは1.40である。
From the viewpoint of application to optical materials, the specific gravity d of the resin (or molded article) of the present disclosure is preferably 1.10 or more, and more preferably 1.20 or more.
There is no particular upper limit to the specific gravity d, but the upper limit is, for example, 1.50, and preferably 1.40.
 本開示の一例に係るポリチオール組成物は、
 下記式(6)で表されるポリチオール化合物と下記式(7)で表されるポリチオール化合物と下記式(8)で表されるポリチオール化合物とからなる群から選択される少なくとも1種であるポリチオール成分A2を主成分として含有し、かつ、
 ポリチオール成分A2におけるメルカプト基のうちの少なくとも1つを下記式(N1)で表される基に置き換えた化合物(XC)を含有し、
 高速液体クロマトグラフィー測定において、化合物(NA2)のピーク面積が、ポリチオール組成物に含まれる化合物の合計ピーク面積100に対して、0.50~1.50である、
ポリチオール組成物である。
A polythiol composition according to one embodiment of the present disclosure includes
The polythiol component A2 contains, as a main component, at least one selected from the group consisting of a polythiol compound represented by the following formula (6), a polythiol compound represented by the following formula (7), and a polythiol compound represented by the following formula (8),
The polythiol component A2 contains a compound (XC) in which at least one of the mercapto groups is replaced with a group represented by the following formula (N1):
In a high performance liquid chromatography measurement, the peak area of the compound (NA2) is 0.50 to 1.50 relative to the total peak area of the compounds contained in the polythiol composition (100).
A polythiol composition.
 式(N1)中、*は、結合位置を表す。 In formula (N1), * indicates the bond position.
 本開示の一例に係るポリチオール組成物は、前述の第2実施形態を参照できる。
 HPLC測定において、化合物(NA2)のピーク面積は、精製工程によって得られるポリチオール組成物に含まれる化合物の合計ピーク面積100に対し、好ましくは0.04~1.50であり、より好ましくは0.50~1.50であり、更に好ましくは0.50~1.00である。
 化合物(NA2)のピーク面積が、ポリチオール組成物に含まれる化合物の合計ピーク面積100に対して0.04以上(より好ましくは0.50以上)である場合には、ポリチオール組成物を用いて製造される樹脂の耐熱性(例えば、ガラス転移温度(Tg))がより向上する。
For a polythiol composition according to one example of the present disclosure, the above-mentioned second embodiment can be referred to.
In the HPLC measurement, the peak area of the compound (NA2) is preferably 0.04 to 1.50, more preferably 0.50 to 1.50, and even more preferably 0.50 to 1.00, relative to the total peak area 100 of the compounds contained in the polythiol composition obtained by the purification step.
When the peak area of the compound (NA2) is 0.04 or more (more preferably 0.50 or more) relative to the total peak area 100 of the compounds contained in the polythiol composition, the heat resistance (e.g., glass transition temperature (Tg)) of a resin produced using the polythiol composition is further improved.
 本開示の一例に係る重合性組成物は、上記一例に係るポリチオール組成物と、ポリイソシアネート化合物と、を含有する。
 本開示の一例に係る重合性組成物は、上記一例に係るポリチオール組成物と、ポリイソシアネート化合物を含むポリイソシアネート組成物を含んでいてもよい。
 ポリイソシアネート組成物は、キシリレンジイソシアネートを含むこと(即ち、前述のXDI組成物であること)が好ましい。
 XDI組成物の好ましい態様(例えば、化合物(N1)、化合物(N2)、及び化合物(N3)からなる群から選択される少なくとも1種を含むこと等)については、前述した本開示の重合性組成物の製造方法における「<重合性組成物を得る工程>」の項において示したとおりである。
A polymerizable composition according to one example of the present disclosure contains the polythiol composition according to the above example and a polyisocyanate compound.
A polymerizable composition according to one example of the present disclosure may include the polythiol composition according to the above example and a polyisocyanate composition including a polyisocyanate compound.
The polyisocyanate composition preferably contains xylylene diisocyanate (i.e., is the XDI composition described above).
A preferred aspect of the XDI composition (e.g., containing at least one selected from the group consisting of compound (N1), compound (N2), and compound (N3)) is as described in the section "<Step of obtaining polymerizable composition>" in the method for producing a polymerizable composition of the present disclosure described above.
 本開示の一例に係る重合性組成物は、前述した本開示の重合性組成物の製造方法によって製造することができる。
 本開示の一例に係る重合性組成物の好ましい態様は、前述した本開示の重合性組成物の製造方法を適宜参照できる。
 但し、仕込み質量〔ポリチオール組成物/ポリイソシアネート化合物〕は、含有質量比〔ポリチオール組成物/ポリイソシアネート化合物〕と読み替え、ポリチオール組成物とポリイソシアネート化合物との総仕込み質量は、ポリチオール組成物とポリイソシアネート化合物との総含有質量と読み替える。
The polymerizable composition according to one example of the present disclosure can be produced by the method for producing a polymerizable composition according to the present disclosure described above.
For a preferred embodiment of the polymerizable composition according to one example of the present disclosure, the above-mentioned method for producing the polymerizable composition according to the present disclosure can be referred to as appropriate.
However, the charge mass [polythiol composition/polyisocyanate compound] is read as the content mass ratio [polythiol composition/polyisocyanate compound], and the total charge mass of the polythiol composition and the polyisocyanate compound is read as the total content mass of the polythiol composition and the polyisocyanate compound.
 本開示の一例に係る樹脂は、上述した本開示の一例に係る重合性組成物の硬化物である。
 本開示の一例に係る成形体は、上述した本開示の一例に係る樹脂を含む成形体である。
 本開示の一例に係る光学材料(例えばレンズ)は、上述した本開示の樹脂を含む光学材料(例えばレンズ)である。
 本開示の一例に係る樹脂、本開示の一例に係る成形体、及び本開示の一例に係る光学材料の好ましい態様は、前述した、本開示の樹脂、本開示の成形体、及び本開示の光学材料の好ましい態様と同様である。
 
The resin according to one example of the present disclosure is a cured product of the polymerizable composition according to one example of the present disclosure described above.
The molded article according to one example of the present disclosure is a molded article containing the resin according to one example of the present disclosure described above.
An optical material (e.g., a lens) according to one example of the present disclosure is an optical material (e.g., a lens) containing the resin of the present disclosure described above.
Preferred aspects of the resin according to one example of the present disclosure, the molded body according to one example of the present disclosure, and the optical material according to one example of the present disclosure are similar to the preferred aspects of the resin according to the present disclosure, the molded body according to the present disclosure, and the optical material according to the present disclosure described above.
 以下、本開示の実施例を示すが、本開示は以下の実施例には限定されない。
 以下、特に断りのない限り、「部」は質量基準であり、「室温」は25℃である。
Examples of the present disclosure will be described below, but the present disclosure is not limited to the following examples.
Hereinafter, unless otherwise specified, "parts" are by weight and "room temperature" is 25°C.
〔比較例1〕
<粗ポリチオール組成物(A1)の調製>
 国際公開第2014/027427号の実施例A-1における製造方法に従い、ポリチオール成分A1(即ち、式(5)で表されるポリチオール化合物(4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン))を主成分とする粗ポリチオール組成物(A1)のトルエン溶液を得た。
 以下、詳細を示す。
Comparative Example 1
<Preparation of Crude Polythiol Composition (A1)>
According to the production method in Example A-1 of WO 2014/027427, a toluene solution of a crude polythiol composition (A1) mainly composed of a polythiol component A1 (i.e., a polythiol compound represented by formula (5) (4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane)) was obtained.
Details are given below.
 反応器内に、2-メルカプトエタノール125.4質量部、及び脱気水18.3質量部を装入した。ここに、12℃~35℃にて、32質量%の水酸化ナトリウム水溶液99.8質量部を40分かけて滴下装入した後、式(1)で表されるエピハロヒドリン化合物としてのエピクロルヒドリン73.8質量部を29℃~36℃にて4時間かけて滴下装入し、引き続き30分撹拌を行った。その結果、NMRデータから、式(2)で表されるポリアルコール化合物としての1,3-ビス(2-ヒドロキシエチルチオ)-2-プロパノールの生成を確認した。
 1,3-ビス(2-ヒドロキシエチルチオ)-2-プロパノールの生成が確認された液体に対し、36質量%の塩酸332.0質量部を装入し、次に、純度99.9%のチオ尿素183.8質量部を装入し、110℃還流下にて3時間撹拌して、チウロニウム塩化反応を行い、イソチウロニウム塩を含む反応液を得た。
 得られた反応液を45℃まで冷却した後、ここに、トルエン355.0質量部を加え、30℃まで冷却し、25質量%のアンモニア水溶液244.6質量部を30℃~40℃で44分掛けて装入し、54℃~62℃で3時間撹拌により加水分解反応を行い、ポリチオール成分A1を主成分とする粗ポリチオール組成物(A1)のトルエン溶液を得た。
Into the reactor, 125.4 parts by mass of 2-mercaptoethanol and 18.3 parts by mass of degassed water were charged. After 99.8 parts by mass of 32% by mass aqueous sodium hydroxide solution was added dropwise over 40 minutes at 12°C to 35°C, 73.8 parts by mass of epichlorohydrin as the epihalohydrin compound represented by formula (1) was added dropwise over 4 hours at 29°C to 36°C, followed by stirring for 30 minutes. As a result, from the NMR data, the production of 1,3-bis(2-hydroxyethylthio)-2-propanol as the polyalcohol compound represented by formula (2) was confirmed.
To the liquid in which production of 1,3-bis(2-hydroxyethylthio)-2-propanol was confirmed, 332.0 parts by mass of 36% by mass hydrochloric acid was added, and then 183.8 parts by mass of thiourea with a purity of 99.9% was added. The mixture was stirred for 3 hours under reflux at 110°C to carry out a thiuronium salt reaction, and a reaction liquid containing an isothiuronium salt was obtained.
The resulting reaction liquid was cooled to 45°C, and then 355.0 parts by mass of toluene was added thereto and cooled to 30°C. 244.6 parts by mass of a 25% by mass aqueous ammonia solution was added thereto at 30°C to 40°C over 44 minutes, and a hydrolysis reaction was carried out with stirring at 54°C to 62°C for 3 hours to obtain a toluene solution of a crude polythiol composition (A1) mainly composed of polythiol component A1.
<粗ポリチオール組成物(A1)の精製>
 上記で得られた粗ポリチオール組成物(A1)のトルエン溶液に対し、36質量%塩酸147.8質量部を用い、35℃~40℃で1時間の酸洗浄を施した。
 酸洗浄後のトルエン溶液に対し、脱気水147.8質量部を用い、35℃~40℃で10分間の洗浄を1回施した。
 脱気水による1回の洗浄後のトルエン溶液に対し、0.1質量%アンモニア水147.8質量部を用い、10分間の洗浄を施した。
 アンモニア水による洗浄後のトルエン溶液に対し、脱気水147.8質量部を用いて35℃~40℃で10分間洗浄する操作を、2回施した。
 以上の操作により、粗ポリチオール組成物(A1)の精製を行い、この精製により、精製された粗ポリチオール組成物(A1)であるポリチオール組成物(A1)のトルエン溶液を得た。
<Purification of Crude Polythiol Composition (A1)>
The toluene solution of the crude polythiol composition (A1) obtained above was subjected to acid washing at 35° C. to 40° C. for 1 hour using 147.8 parts by mass of 36% by mass hydrochloric acid.
The toluene solution after the acid washing was washed once with 147.8 parts by mass of degassed water at 35° C. to 40° C. for 10 minutes.
The toluene solution after one washing with degassed water was washed for 10 minutes with 147.8 parts by mass of 0.1% by mass ammonia water.
The toluene solution after washing with the ammonia water was washed twice with 147.8 parts by mass of degassed water at 35° C. to 40° C. for 10 minutes.
By the above operations, the crude polythiol composition (A1) was purified, and a toluene solution of the polythiol composition (A1), which is the purified crude polythiol composition (A1), was obtained by this purification.
 上記精製によって得られたポリチオール組成物(A1)のトルエン溶液に対し、加熱減圧下で、トルエン及び微量の水分の除去を施した後、3.0μmのPTFEタイプメンブランフィルターを用いて減圧濾過を施すことにより、ポリチオール組成物(A1)200.0質量部を得た。 The toluene solution of polythiol composition (A1) obtained by the above purification was heated under reduced pressure to remove toluene and trace amounts of water, and then filtered under reduced pressure using a 3.0 μm PTFE-type membrane filter to obtain 200.0 parts by mass of polythiol composition (A1).
<ポリチオール組成物(A1)の評価>
 上記で得られたポリチオール組成物(A1)について、以下の評価を実施した。
 結果を表1に示す。
<Evaluation of Polythiol Composition (A1)>
The polythiol composition (A1) obtained above was subjected to the following evaluations.
The results are shown in Table 1.
(外観確認)
 ポリチオール組成物(A1)の外観を目視で観察した。
(External appearance check)
The appearance of the polythiol composition (A1) was visually observed.
(黄色度(Yellow Index;YI))
 ポリチオール組成物(A1)を10mm圧のガラスセルに充填し、透過度により、黄色度を求めた。
 透過度は、コニカミノルタ株式会社製分光測色計CM-5によって測定した。
(Yellow Index (YI))
The polythiol composition (A1) was filled into a 10 mm glass cell, and the yellowness index was determined based on the transmittance.
The transmittance was measured using a spectrophotometer CM-5 manufactured by Konica Minolta, Inc.
(チオール価)
 0.05Mヨウ素水溶液を用いた酸化還元滴定により、ポリチオール組成物(A1)のチオール価〔mmol/g〕を求めた。
(Thiol value)
The thiol value [mmol/g] of the polythiol composition (A1) was determined by oxidation-reduction titration using a 0.05 M aqueous iodine solution.
(屈折率)
 京都電子工業社製の液体屈折率計RA600を用い、ポリチオール組成物(A1)の屈折率を測定した。
(Refractive Index)
The refractive index of the polythiol composition (A1) was measured using a liquid refractometer RA600 manufactured by Kyoto Electronics Manufacturing Co., Ltd.
(HPLC測定)
 上記で得られたポリチオール組成物(A1)の高速液体クロマトグラフィー(HPLC)測定を、以下のHPLC測定条件にて行った。
 このHPLC測定では、
 主成分であるポリチオール成分A1と、
 ポリチオール成分A1におけるメルカプト基のうちの少なくとも1つを前述の式(N1)で表される基に置き換えた化合物(NA1)と、
のそれぞれの含有量(詳細には、ポリチオール組成物(A1)に含まれる化合物の合計ピーク面積に対する面積率(area%))を求めた。
 化合物(NA1)は、この測定における保持時間は4.3分~4.8分の化合物である。
(HPLC Measurement)
The polythiol composition (A1) obtained above was subjected to high performance liquid chromatography (HPLC) measurement under the following HPLC measurement conditions.
In this HPLC measurement,
A polythiol component A1 which is a main component,
A compound (NA1) in which at least one of the mercapto groups in the polythiol component A1 has been replaced with a group represented by the above formula (N1);
The content of each of the compounds (more specifically, the area ratio (area %) relative to the total peak area of the compounds contained in the polythiol composition (A1)) was determined.
The compound (NA1) has a retention time of 4.3 minutes to 4.8 minutes in this measurement.
-HPLC測定条件-
 カラムとして、関東化学株式会社製Mightysil RP-18 GP(登録商標)(粒子径S:5μm、カラム形状:Φ6mm×150mm、製品番号: 25477-9)を用い、
 移動相として、アセトニトリル/0.01mol/L-リン酸二水素カリウム水溶液=60/40(vol/vol)の混合溶液を用い、
 測定溶液として、ポリチオール組成物160mgとアセトニトリル10mLとの混合溶液を用い、
 検出器として、測定波長230nmの紫外線検出器を用い、
 カラム温度を40℃とし、
 流量を1.0mL/minとし、
 注入量を2μLとする条件。
- HPLC measurement conditions -
The column used was Kanto Chemical Co., Ltd.'s Mightysil RP-18 GP (registered trademark) (particle size S: 5 μm, column shape: Φ6 mm × 150 mm, product number: 25477-9).
As the mobile phase, a mixed solution of acetonitrile/0.01 mol/L potassium dihydrogen phosphate aqueous solution = 60/40 (vol/vol) was used.
As a measurement solution, a mixed solution of 160 mg of a polythiol composition and 10 mL of acetonitrile was used.
As a detector, an ultraviolet detector with a measurement wavelength of 230 nm was used.
The column temperature was set to 40° C.
The flow rate was 1.0 mL/min.
The injection volume was 2 μL.
<重合性組成物の調製>
 攪拌子のついたフラスコ中に、
重合触媒である二塩化ジブチルスズ(ポリイソシアネート化合物とポリチオール組成物(A)との合計量に対して150質量ppm)と、
離型剤であるZelec-UN(Stepan社製;酸性リン酸エステル)(ポリイソシアネート化合物とポリチオール組成物(A)との合計量に対して1000質量ppm)と、
紫外線吸収剤であるTinuvin329(BASFジャパン社製、2-(2H-ベンゾトリアゾール-2-イル)-4-tert-オクチルフェノール)(ポリイソシアネート化合物とポリチオール組成物(A)との合計量に対して0.05質量%)と、
ポリイソシアネート化合物であるm-キシリレンジイソシアネート(XDI)(52質量部)と、
上記ポリチオール組成物(A1)(48質量部)と、
を加えて20℃で5分攪拌混合し、重合性組成物を得た。
<Preparation of Polymerizable Composition>
In a flask equipped with a stir bar,
Dibutyltin dichloride as a polymerization catalyst (150 ppm by mass based on the total amount of the polyisocyanate compound and the polythiol composition (A));
Zelec-UN (Stepan Corporation; acidic phosphate ester) as a release agent (1000 ppm by mass based on the total amount of the polyisocyanate compound and the polythiol composition (A));
Tinuvin 329 (manufactured by BASF Japan, 2-(2H-benzotriazol-2-yl)-4-tert-octylphenol) as an ultraviolet absorber (0.05% by mass based on the total amount of the polyisocyanate compound and the polythiol composition (A));
m-xylylene diisocyanate (XDI) (52 parts by mass), which is a polyisocyanate compound;
The polythiol composition (A1) (48 parts by mass),
The mixture was stirred and mixed at 20° C. for 5 minutes to obtain a polymerizable composition.
<重合性組成物の粘度変化>
 得られた重合性組成物の20℃での粘度(mPa・s)を、ブルックフィールド社製B型粘度計を使用して測定した。
 粘度の測定は、
5分の攪拌混合直後(以下、「0h」とする)、
5分の攪拌混合から20℃で1時間静置後(以下、「1h」とする)、
5分の攪拌混合から20℃で3時間静置後(以下、「1h」とする)、
5分の攪拌混合から20℃で5時間静置後(以下、「1h」とする)、及び
5分の攪拌混合から20℃で7時間静置後(以下、「1h」とする)
のそれぞれのタイミングで実施し、これにより、粘度の時間的な変化を観測した。
 粘度の変化が少ないほど、重合性組成物のポットライフに優れる。
<Change in Viscosity of Polymerizable Composition>
The viscosity (mPa·s) of the resulting polymerizable composition at 20° C. was measured using a Brookfield Type B viscometer.
Viscosity measurements are
Immediately after 5 minutes of stirring and mixing (hereinafter referred to as "0 h")
After 5 minutes of stirring and mixing, the mixture was allowed to stand at 20°C for 1 hour (hereinafter referred to as "1h").
After 5 minutes of stirring and mixing, the mixture was allowed to stand at 20°C for 3 hours (hereinafter referred to as "1h").
After 5 minutes of stirring and mixing and then leaving the mixture at 20°C for 5 hours (hereinafter referred to as "1h"), and after 5 minutes of stirring and mixing and then leaving the mixture at 20°C for 7 hours (hereinafter referred to as "1h")
The test was carried out at each of the timings above, and the change in viscosity over time was observed.
The smaller the change in viscosity, the better the pot life of the polymerizable composition.
<無触媒重合性組成物の調製及び粘度>
 攪拌子のついたフラスコ中に、
ポリイソシアネート化合物であるm-キシリレンジイソシアネート(XDI)(52質量部)と、
上記ポリチオール組成物(A1)(48質量部)と、
を加えて30℃で8時間攪拌混合し、無触媒重合性組成物を得た。
 得られた無触媒重合性組成物の30℃での粘度(mPa・s)を、ブルックフィールド社製B型粘度計を使用して測定した。
 結果を表1に示す。
<Preparation and Viscosity of Non-Catalyst Polymerizable Composition>
In a flask equipped with a stir bar,
m-xylylene diisocyanate (XDI) (52 parts by mass), which is a polyisocyanate compound;
The polythiol composition (A1) (48 parts by mass),
The mixture was stirred and mixed at 30° C. for 8 hours to obtain a non-catalyst polymerizable composition.
The viscosity (mPa·s) of the resulting catalyst-free polymerizable composition at 30° C. was measured using a Brookfield Type B viscometer.
The results are shown in Table 1.
<樹脂成形体の製造>
 m-キシリレンジイソシアネート52質量部、
硬化触媒として二塩化ジブチルスズ0.015質量部、
ゼレックUN(商品名Stepan社製品;酸性リン酸エステル)0.10質量部、及びバイオソーブ583(共同薬品社製;紫外線吸収剤)0.05質量部
を、20℃にて混合溶解させた。ここに、ポリチオール組成物(A)48質量部を装入混合し、均一液として、樹脂成形体製造用の重合性組成物を得た。得られた重合性組成物を、600Paにて1時間脱泡させた後、1μmテフロン(登録商標)フィルターによってろ過した。ろ過後の重合性組成物を、テープで固定された一対のガラスモールド間に注入し、次いでこの一対のガラスモールドをオーブンに入れ、オーブン内温度を10℃に設定した。次に、オーブン内温度を10℃から120℃まで、38時間かけて昇温した。以上の過程により、重合性組成物中のモノマー(ポリイソシアネート化合物及びポリチオール組成物)を重合させ、一対のガラスモールド間で、チオウレタン樹脂を含む樹脂成形体(即ち、重合性組成物の硬化物)を形成させた。
 続いて、オーブン内を冷却し、冷却後、オーブンから一対のガラスモールドを取り出し、次いで一対のガラスモールドから樹脂成形体を外し、厚さ9mmの平板状の樹脂成形体を得た。
 得られた樹脂成形体に対し、120℃で1時間のアニールを施した。
<Production of resin molded body>
m-xylylene diisocyanate 52 parts by mass,
0.015 parts by mass of dibutyltin dichloride as a curing catalyst,
0.10 parts by mass of Zelec UN (product name Stepan Co., Ltd.; acidic phosphate ester) and 0.05 parts by mass of Biosorb 583 (manufactured by Kyodo Pharmaceutical Co., Ltd.; ultraviolet absorber) were mixed and dissolved at 20 ° C. Here, 48 parts by mass of polythiol composition (A) were charged and mixed to obtain a homogeneous liquid, and a polymerizable composition for manufacturing a resin molded body was obtained. The obtained polymerizable composition was degassed at 600 Pa for 1 hour, and then filtered through a 1 μm Teflon (registered trademark) filter. The filtered polymerizable composition was injected between a pair of glass molds fixed with tape, and then the pair of glass molds were placed in an oven, and the temperature inside the oven was set to 10 ° C. Next, the temperature inside the oven was raised from 10 ° C. to 120 ° C. over 38 hours. Through the above process, the monomers (polyisocyanate compound and polythiol composition) in the polymerizable composition were polymerized, and a resin molded body containing a thiourethane resin (i.e., a cured product of the polymerizable composition) was formed between the pair of glass molds.
Subsequently, the oven was cooled, and after cooling, the pair of glass molds were taken out of the oven. The resin molded body was then removed from the pair of glass molds to obtain a plate-like resin molded body having a thickness of 9 mm.
The obtained resin molded body was annealed at 120° C. for 1 hour.
<樹脂成形体の評価>
 上記アニール後の樹脂成形体について、以下の評価を実施した。
 結果を表1に示す。
<Evaluation of resin molded product>
The resin molded article after the annealing was subjected to the following evaluations.
The results are shown in Table 1.
(外観確認)
 樹脂成形体の外観を目視で観察した。
(External appearance check)
The appearance of the resin molded article was visually observed.
(黄色度(Yellow Index;YI)、L*、a*、及びb*)
 コニカミノルタ株式会社製分光測色計CM-5を用い、樹脂成形体の、黄色度(YI)、L*、a*、及びb*を測定した。
(Yellow Index (YI), L*, a*, and b*)
The yellowness index (YI), L*, a*, and b* of the resin molded product were measured using a spectrophotometer CM-5 manufactured by Konica Minolta, Inc.
(屈折率(ne)及びアッベ数(νe))
 島津製作所社製プルフリッヒ屈折計KPR-30を用いて、20℃で、波長546.1nm(水銀e線)、波長480.0nm(Cd F’線)、及び波長643.9nm(Cd C’線)の各波長における成形体の屈折率(ne、nF’、nC’)をそれぞれ測定した。これらの測定結果に基づき、成形体の屈折率(ne)及びアッベ数(νe)をそれぞれ求めた。
(Refractive index (ne) and Abbe number (νe))
The refractive indices (ne, nF', nC') of the molded body were measured at wavelengths of 546.1 nm (mercury e-line), 480.0 nm (Cd F'-line), and 643.9 nm (Cd C'-line) at 20° C. using a Pulfrich refractometer KPR-30 manufactured by Shimadzu Corporation. Based on these measurement results, the refractive index (ne) and Abbe number (νe) of the molded body were each determined.
(耐熱性)
 島津製作所製熱機械分析装置TMA-60を用い、TMAペネートレーション法(50g荷重、ピン先0.5mmφ、昇温速度10℃/min)によって、樹脂成形体のガラス転移温度(Tg)測定し、耐熱性の指標とした。
(Heat-resistant)
The glass transition temperature (Tg) of the resin molded product was measured by the TMA penetration method (load of 50 g, pin tip 0.5 mmφ, heating rate 10° C./min) using a thermomechanical analyzer TMA-60 manufactured by Shimadzu Corporation, and used as an index of heat resistance.
(比重d)
 20℃にてアルキメデス法により、成形体の比重dを測定した。
(Specific Gravity d)
The specific gravity d of the molded body was measured at 20° C. by the Archimedes method.
〔実施例1〕
 「粗ポリチオール組成物(A1)の精製」において、塩酸による酸洗浄の前に、以下の溶剤Xによる精製の操作を追加したこと以外は比較例1と同様の操作を行った。
 結果を表1に示す。
Example 1
In the "purification of crude polythiol composition (A1)", the same procedure as in Comparative Example 1 was carried out, except that the following purification procedure with solvent X was added before the acid washing with hydrochloric acid.
The results are shown in Table 1.
-溶剤Xによる精製-
 「粗ポリチオール組成物(A1)の調製」で得られた粗ポリチオール組成物(A1)のトルエン溶液に対し、溶剤Xとしてのエチレングリコール147.8質量部による35~40℃での15分間の洗浄を、3回施した。
-Refining with Solvent X-
The toluene solution of crude polythiol composition (A1) obtained in "Preparation of crude polythiol composition (A1)" was washed three times with 147.8 parts by mass of ethylene glycol as solvent X at 35 to 40°C for 15 minutes.
〔実施例2〕
 実施例1で得られたポリチオール組成物(A1)(50質量部)と比較例1で得られたポリチオール組成物(A1)(50質量部)とをブレンドし、実施例2におけるポリチオール組成物(A1)(100質量部)を得た。
 比較例1におけるポリチオール組成物(A1)を、実施例2におけるポリチオール組成物(A1)に変更したこと以外は比較例1と同様の操作(詳細には、「ポリチオール組成物(A1)の評価」以降の操作)を行った。
 結果を表1に示す。
 
Example 2
The polythiol composition (A1) (50 parts by mass) obtained in Example 1 and the polythiol composition (A1) (50 parts by mass) obtained in Comparative Example 1 were blended to obtain the polythiol composition (A1) (100 parts by mass) in Example 2.
The same operations as in Comparative Example 1 were performed (in detail, the operations after "Evaluation of Polythiol Composition (A1)"), except that the polythiol composition (A1) in Comparative Example 1 was changed to the polythiol composition (A1) in Example 2.
The results are shown in Table 1.
 表1に示すように、粗ポリチオール組成物(A1)の溶剤Xによる精製を行って得られた実施例1及び2のポリチオール組成物(A1)では、粗ポリチオール組成物(A1)の溶剤Xによる精製を行わずに得られた比較例1のポリチオール組成物(A1)と比較して、ポリチオール組成物(A1)を含む重合性組成物の粘度変化を抑制する効果(即ち、ポットライフを向上させる効果)が確認された。
 実施例1及び2のポリチオール組成物(A1)では、比較例1のポリチオール組成物(A1)と比較して、不純物である化合物(NA1)の含有量が低減されていることが確認された。
 これらの結果から、比較例1の重合性組成物中では、不純物である化合物(NA1)が重合触媒として機能することにより、ポリチオール組成物(A1)とポリイソシアネート化合物との重合が促進され、この重合により、粘度上昇が引き起こされていると考えられる。比較例1に対し、実施例1及び2では、ポリチオール組成物(A1)における化合物(NA1)の含有量が低減されたことにより、ポリチオール組成物(A1)とポリイソシアネート化合物との重合が抑制され、その結果、粘度上昇が低減されたと考えられる。
As shown in Table 1, the polythiol compositions (A1) of Examples 1 and 2 obtained by purifying the crude polythiol composition (A1) with solvent X were confirmed to have an effect of suppressing viscosity change in a polymerizable composition containing the polythiol composition (A1) (i.e., an effect of improving pot life), compared to the polythiol composition (A1) of Comparative Example 1 obtained without purifying the crude polythiol composition (A1) with solvent X.
In the polythiol compositions (A1) of Examples 1 and 2, it was confirmed that the content of the impurity compound (NA1) was reduced compared to the polythiol composition (A1) of Comparative Example 1.
From these results, it is considered that in the polymerizable composition of Comparative Example 1, the impurity compound (NA1) functions as a polymerization catalyst, promoting the polymerization of the polythiol composition (A1) and the polyisocyanate compound, and this polymerization causes the viscosity increase. Compared to Comparative Example 1, in Examples 1 and 2, the content of the compound (NA1) in the polythiol composition (A1) was reduced, suppressing the polymerization of the polythiol composition (A1) and the polyisocyanate compound, and as a result, the viscosity increase was reduced.
 また、ポリチオール組成物(A1)の各評価結果及び樹脂成形体の各評価結果より、実施例1及び2では、比較例1と比較して、ポリチオール組成物(A1)の性能及び樹脂成形体の性能が同程度に維持されていることが確認された。 In addition, from the evaluation results of the polythiol composition (A1) and the evaluation results of the resin molded body, it was confirmed that the performance of the polythiol composition (A1) and the performance of the resin molded body were maintained to the same extent in Examples 1 and 2 compared to Comparative Example 1.
 以上のように、実施例1及び2では、比較例1と比較して、ポリチオール組成物(A1)の性能及び樹脂成形体の性能が同程度に維持されたまま、重合性組成物のポットライフが改善されたことが確認された。 As described above, it was confirmed that in Examples 1 and 2, the pot life of the polymerizable composition was improved while the performance of the polythiol composition (A1) and the performance of the resin molded body were maintained at the same level compared to Comparative Example 1.
[実施例1X]
 実施例1Xでは、成形体の製造を、以下のように変更したこと以外は実施例1と同様の操作を行ったところ、実施例1の結果(表1)と同様の結果が得られた。
[Example 1X]
In Example 1X, the same procedure as in Example 1 was carried out except that the production of the molded body was changed as follows, and the same results as those in Example 1 (Table 1) were obtained.
-実施例1からの変更点-
 実施例1では、成形体の製造において、m-キシリレンジイソシアネート(XDI)(52質量部)を用いたが、実施例1Xでは、このXDI(52質量部)を、前述したXDI組成物としてのXDI組成物X1(含有されるXDIの量が52質量部となる量)に変更した。
 XDI組成物X1は、主成分であるXDIに対し、微量の化合物(N1)、微量の化合物(N2)、及び微量の化合物(N3)を添加し、これらを混合して製造した。
 XDI組成物X1において、前述したGC条件1及びGC条件2の各々により、ガスクロマトグラフィー測定を行った結果、
 化合物(N1)のピーク面積が、キシリレンジイソシアネートのピーク面積1に対して0.20ppm以上(具体的には600ppm)であり、
 化合物(N2)のピーク面積が、キシリレンジイソシアネートのピーク面積1に対して0.05ppm以上(具体的には18ppm)であり、
 化合物(N3)のピーク面積が、キシリレンジイソシアネートのピーク面積1に対して0.10ppm以上(具体的には100ppm)であった。
--Changes from Example 1--
In Example 1, m-xylylene diisocyanate (XDI) (52 parts by mass) was used in the production of the molded body, but in Example 1X, this XDI (52 parts by mass) was changed to XDI composition X1 (an amount such that the amount of XDI contained was 52 parts by mass) as the XDI composition described above.
The XDI composition X1 was produced by adding trace amounts of compound (N1), compound (N2), and compound (N3) to the main component XDI and mixing them.
The XDI composition X1 was subjected to gas chromatography measurement under the above-mentioned GC condition 1 and GC condition 2. As a result,
The peak area of the compound (N1) is 0.20 ppm or more (specifically, 600 ppm) relative to the peak area of xylylene diisocyanate;
The peak area of the compound (N2) is 0.05 ppm or more (specifically, 18 ppm) relative to the peak area of xylylene diisocyanate;
The peak area of the compound (N3) was 0.10 ppm or more (specifically, 100 ppm) relative to the peak area of xylylene diisocyanate.
〔比較例101〕
<粗ポリチオール組成物(A2)の調製>
 国際公開第2014/027428号の実施例C-1における製造方法に従い、ポリチオール成分A2を主成分とする粗ポリチオール組成物(A2)のトルエン溶液を得た。
 以下、詳細を示す。
[Comparative Example 101]
<Preparation of Crude Polythiol Composition (A2)>
According to the production method in Example C-1 of WO 2014/027428, a toluene solution of a crude polythiol composition (A2) mainly composed of a polythiol component A2 was obtained.
Details are given below.
 ここで、ポリチオール成分A2は、
式(6)で表されるポリチオール化合物(即ち、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン)、
式(7)で表されるポリチオール化合物(即ち、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン)、及び、
式(8)で表されるポリチオール化合物(即ち、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン)からなる群から選択される少なくとも1種である。
Here, the polythiol component A2 is
A polythiol compound represented by formula (6) (i.e., 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane),
A polythiol compound represented by formula (7) (i.e., 4,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane), and
The polythiol compound is at least one selected from the group consisting of polythiol compounds represented by formula (8) (i.e., 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane).
 反応器内に、2-メルカプトエタノール89.25質量部、脱気水44.61質量部、及び30.7質量%の水酸化ナトリウム水溶液0.58質量部を装入し、10℃に冷却した。次いでここに、式(1)で表されるエピハロヒドリン化合物としてのエピクロルヒドリン107.68質量部を、9℃~11℃にて、3.9時間かけて滴下装入し、引き続き60分撹拌して熟成を行った。その結果、NMRデータから、式(3)で表される化合物の生成を確認した。
 次いでここに、17.3質量%の硫化ナトリウム水溶液262.09質量部を、28℃~30℃にて、1.0時間かけて滴下装入し、引き続き3.0時間撹拌して熟成を行った。その結果、NMRデータから、式(4)で表されるポリアルコール化合物の生成を確認した。
 次いでここに、36質量%の塩酸484.6質量部を装入し、次に、純度99.9%のチオ尿素214.0質量部を装入し、110℃還流下にて3時間撹拌して、チウロニウム塩化反応を行い、イソチウロニウム塩を含む反応液を得た。
 得られた反応液を45℃に冷却した後、ここに、トルエン373.0質量部を加え、32℃まで冷却し、24.6質量%のアンモニア水溶液354.2質量部を30℃~38℃で25分かけて装入し、次いで60℃に昇温し、60℃にて1時間撹拌することにより加水分解反応を行い、ポリチオール成分A2を主成分とする粗ポリチオール組成物(A2)のトルエン溶液を得た。
A reactor was charged with 89.25 parts by mass of 2-mercaptoethanol, 44.61 parts by mass of degassed water, and 0.58 parts by mass of a 30.7% by mass aqueous sodium hydroxide solution, and cooled to 10° C. Then, 107.68 parts by mass of epichlorohydrin as the epihalohydrin compound represented by formula (1) was added dropwise thereto at 9° C. to 11° C. over a period of 3.9 hours, followed by stirring for 60 minutes for aging. As a result, the production of a compound represented by formula (3) was confirmed from NMR data.
Next, 262.09 parts by mass of a 17.3% by mass aqueous solution of sodium sulfide was added dropwise over 1.0 hour at 28° C. to 30° C., followed by stirring for 3.0 hours to perform aging. As a result, the production of a polyalcohol compound represented by formula (4) was confirmed from NMR data.
Next, 484.6 parts by mass of 36% by mass hydrochloric acid were added, followed by 214.0 parts by mass of 99.9% purity thiourea, and the mixture was stirred under reflux at 110°C for 3 hours to carry out a thiuronium salt reaction, thereby obtaining a reaction liquid containing an isothiuronium salt.
The resulting reaction liquid was cooled to 45°C, and then 373.0 parts by mass of toluene was added thereto and cooled to 32°C. 354.2 parts by mass of a 24.6% by mass aqueous ammonia solution was charged at 30°C to 38°C over 25 minutes. The mixture was then heated to 60°C and stirred at 60°C for 1 hour to carry out a hydrolysis reaction, thereby obtaining a toluene solution of a crude polythiol composition (A2) mainly composed of polythiol component A2.
<粗ポリチオール組成物(A2)の精製>
 上記で得られた粗ポリチオール組成物(A2)のトルエン溶液に対し、4質量%塩酸101.1質量部を用い、35℃~40℃で15分間の酸洗浄を施し、次いで、35質量%塩酸101.1質量部を用い35℃~40℃で30分間の酸洗浄を施した。
 35質量%塩酸による酸洗浄後のトルエン溶液に対し、脱気水101.1質量部を用いた35℃~40℃での30分間の洗浄を、5回施した。
 以上の操作により、粗ポリチオール組成物(A2)の精製を行い、この精製により、精製された粗ポリチオール組成物(A2)であるポリチオール組成物(A2)のトルエン溶液を得た。
<Purification of Crude Polythiol Composition (A2)>
The toluene solution of the crude polythiol composition (A2) obtained above was subjected to acid washing for 15 minutes at 35° C. to 40° C. using 101.1 parts by mass of 4% by mass hydrochloric acid, and then subjected to acid washing for 30 minutes at 35° C. to 40° C. using 101.1 parts by mass of 35% by mass hydrochloric acid.
The toluene solution after the acid washing with 35% by mass hydrochloric acid was washed five times with 101.1 parts by mass of degassed water at 35° C. to 40° C. for 30 minutes.
By the above operations, the crude polythiol composition (A2) was purified, and a toluene solution of the polythiol composition (A2), which is the purified crude polythiol composition (A2), was obtained by this purification.
 上記精製によって得られたポリチオール組成物(A2)のトルエン溶液に対し、加熱減圧下で、トルエン及び微量の水分の除去を施した後、3.0μmのPTFEタイプメンブランフィルターを用いて減圧濾過を施すことにより、ポリチオール組成物(A2)200.0質量部を得た。 The toluene solution of polythiol composition (A2) obtained by the above purification was heated under reduced pressure to remove toluene and trace amounts of water, and then filtered under reduced pressure using a 3.0 μm PTFE-type membrane filter to obtain 200.0 parts by mass of polythiol composition (A2).
<ポリチオール組成物(A2)の評価>
 上記で得られたポリチオール組成物(A2)について、比較例1においてポリチオール組成物(A1)に対して行った評価と同様の評価を実施した。
 結果を表2に示す。
<Evaluation of Polythiol Composition (A2)>
The polythiol composition (A2) obtained above was subjected to the same evaluation as that performed on the polythiol composition (A1) in Comparative Example 1.
The results are shown in Table 2.
 比較例101におけるHPLC測定では、
 主成分であるポリチオール成分A2と、
 ポリチオール成分A2におけるメルカプト基のうちの少なくとも1つを前述の式(N1)で表される基に置き換えた化合物(NA2)と、
のそれぞれの含有量(詳細には、ポリチオール組成物(A2)に含まれる化合物の合計ピーク面積に対する面積率(area%))を求めた。
 化合物(NA2)は、このHPLC測定における保持時間が6.5分~8.0分である化合物である。
In the HPLC measurement of Comparative Example 101,
A polythiol component A2 which is the main component;
A compound (NA2) in which at least one of the mercapto groups in the polythiol component A2 has been replaced with a group represented by the above formula (N1);
The content of each of the compounds (specifically, the area ratio (area %) relative to the total peak area of the compounds contained in the polythiol composition (A2)) was determined.
The compound (NA2) has a retention time of 6.5 to 8.0 minutes in this HPLC measurement.
<重合性組成物の調製及び粘度変化>
 ポリチオール組成物(A1)をポリチオール組成物(A2)に変更したこと以外は比較例1と同様の操作を行った。
 結果を表2に示す。
<Preparation of polymerizable composition and viscosity change>
The same procedure as in Comparative Example 1 was carried out, except that the polythiol composition (A1) was changed to the polythiol composition (A2).
The results are shown in Table 2.
<無触媒重合性組成物の調製及び粘度>
 ポリチオール組成物(A1)をポリチオール組成物(A2)に変更したこと以外は比較例1と同様の操作を行った。
 結果を表2に示す。
<Preparation and Viscosity of Non-Catalyst Polymerizable Composition>
The same procedure as in Comparative Example 1 was carried out, except that the polythiol composition (A1) was changed to the polythiol composition (A2).
The results are shown in Table 2.
<樹脂成形体の製造及び評価>
 ポリチオール組成物(A1)をポリチオール組成物(A2)に変更したこと以外は比較例1と同様の操作を行った。
 結果を表2に示す。
<Production and Evaluation of Resin Molded Product>
The same procedure as in Comparative Example 1 was carried out, except that the polythiol composition (A1) was changed to the polythiol composition (A2).
The results are shown in Table 2.
〔実施例101〕
 「粗ポリチオール組成物(A2)の精製」において、4質量%塩酸による酸洗浄の前に、以下のアルコール精製の操作を追加したこと以外は比較例101と同様の操作を行った。
 結果を表2に示す。
Example 101
In the "purification of crude polythiol composition (A2)", the same procedure as in Comparative Example 101 was carried out, except that the following alcohol purification procedure was added before the acid washing with 4 mass% hydrochloric acid.
The results are shown in Table 2.
-溶剤Xによる精製-
 「粗ポリチオール組成物(A2)の調製」で得られた粗ポリチオール組成物(A2)のトルエン溶液に対し、エチレングリコール75.8質量部及びメタノール24.3質量部の混合溶剤による35℃~40℃での15分間の洗浄を、3回施した。
-Refining with Solvent X-
The toluene solution of the crude polythiol composition (A2) obtained in "Preparation of crude polythiol composition (A2)" was washed three times with a mixed solvent of 75.8 parts by mass of ethylene glycol and 24.3 parts by mass of methanol at 35°C to 40°C for 15 minutes.
〔実施例102〕
 実施例101で得られたポリチオール組成物(A2)(50質量部)と比較例101で得られたポリチオール組成物(A2)(50質量部)とをブレンドし、実施例102におけるポリチオール組成物(A2)(100質量部)を得た。
 比較例101におけるポリチオール組成物(A2)を、実施例102におけるポリチオール組成物(A1)(ブレンド品)に変更したこと以外は比較例101と同様の操作(詳細には、「ポリチオール組成物(A2)の評価」以降の操作)を行った。
 結果を表2に示す。
Example 102
The polythiol composition (A2) (50 parts by mass) obtained in Example 101 and the polythiol composition (A2) (50 parts by mass) obtained in Comparative Example 101 were blended to obtain the polythiol composition (A2) (100 parts by mass) in Example 102.
The same operations as in Comparative Example 101 (in detail, the operations after "Evaluation of Polythiol Composition (A2)") were performed except that the polythiol composition (A2) in Comparative Example 101 was changed to the polythiol composition (A1) (blend product) in Example 102.
The results are shown in Table 2.
〔実施例103〕
 実施例101で得られたポリチオール組成物(A2)(70質量部)と比較例101で得られたポリチオール組成物(A2)(30質量部)とをブレンドし、実施例103におけるポリチオール組成物(A2)(100質量部)を得た。
 比較例101におけるポリチオール組成物(A2)を、実施例103におけるポリチオール組成物(A1)(ブレンド品)に変更したこと以外は比較例101と同様の操作(詳細には、「ポリチオール組成物(A2)の評価」以降の操作)を行った。
 結果を表2に示す。
Example 103
The polythiol composition (A2) (70 parts by mass) obtained in Example 101 and the polythiol composition (A2) (30 parts by mass) obtained in Comparative Example 101 were blended to obtain the polythiol composition (A2) (100 parts by mass) in Example 103.
The same operations as in Comparative Example 101 (specifically, the operations after "Evaluation of Polythiol Composition (A2)") were carried out except that the polythiol composition (A2) in Comparative Example 101 was changed to the polythiol composition (A1) (blend product) in Example 103.
The results are shown in Table 2.
 表2に示すように、粗ポリチオール組成物(A2)の溶剤Xによる精製を行って得られた実施例101~103のポリチオール組成物(A2)では、粗ポリチオール組成物(A2)の溶剤Xによる精製を行わずに得られた比較例1のポリチオール組成物(A2)と比較して、ポリチオール組成物(A2)を含む重合性組成物の粘度変化を抑制する効果(即ち、ポットライフを向上させる効果)が確認された。
 実施例101~103のポリチオール組成物(A2)では、比較例101のポリチオール組成物(A2)と比較して、不純物である化合物(NA2)の含有量が低減されていることが確認された。
 これらの結果から、比較例101の重合性組成物中では、不純物である化合物(NA2)が重合触媒として機能することにより、ポリチオール組成物(A2)とポリイソシアネート化合物との重合が促進され、この重合により、粘度上昇が引き起こされていると考えられる。比較例101に対し、実施例101~103では、ポリチオール組成物(A2)における化合物(NA2)の含有量が低減されたことにより、ポリチオール組成物(A2)とポリイソシアネート化合物との重合が抑制され、その結果、粘度上昇が低減されたと考えられる。
As shown in Table 2, the polythiol compositions (A2) of Examples 101 to 103 obtained by purifying the crude polythiol composition (A2) with solvent X were confirmed to have an effect of suppressing the viscosity change of the polymerizable composition containing the polythiol composition (A2) (i.e., an effect of improving the pot life), as compared with the polythiol composition (A2) of Comparative Example 1 obtained without purifying the crude polythiol composition (A2) with solvent X.
In the polythiol compositions (A2) of Examples 101 to 103, it was confirmed that the content of the impurity compound (NA2) was reduced compared to the polythiol composition (A2) of Comparative Example 101.
From these results, it is believed that in the polymerizable composition of Comparative Example 101, the impurity compound (NA2) functions as a polymerization catalyst, promoting the polymerization of the polythiol composition (A2) and the polyisocyanate compound, and this polymerization causes the viscosity increase. Compared to Comparative Example 101, in Examples 101 to 103, the content of compound (NA2) in the polythiol composition (A2) was reduced, suppressing the polymerization of the polythiol composition (A2) and the polyisocyanate compound, and as a result, reducing the viscosity increase.
 また、ポリチオール組成物(A2)の各評価結果及び樹脂成形体の各評価結果より、実施例101~103では、比較例101と比較して、ポリチオール組成物(A2)の性能の劣化及び樹脂成形体の性能の劣化が抑制されていること(即ち、ポリチオール組成物(A2)の性能の劣化及び樹脂成形体の性能の劣化を起こすことなく、重合性組成物のポットライフが改善されたこと)が確認された。 Furthermore, from the evaluation results of the polythiol composition (A2) and the evaluation results of the resin molded body, it was confirmed that in Examples 101 to 103, the deterioration of the performance of the polythiol composition (A2) and the deterioration of the performance of the resin molded body was suppressed compared to Comparative Example 101 (i.e., the pot life of the polymerizable composition was improved without causing deterioration of the performance of the polythiol composition (A2) and the performance of the resin molded body).
 実施例101~103の中でも、HPLC測定において、化合物(NA2)のピーク面積が、ポリチオール組成物(A2)に含まれる化合物の合計ピーク面積100に対して、0.50~1.50である実施例102及び103における樹脂成形体では、化合物(NA2)のピーク面積が、ポリチオール組成物(A2)に含まれる化合物の合計ピーク面積100に対して、0.50未満である実施例101の樹脂成形体と比較して、Tgが高く維持されており、耐熱性に優れることが確認された。 Among Examples 101 to 103, in the resin molded products of Examples 102 and 103, in which the peak area of compound (NA2) is 0.50 to 1.50 relative to the total peak area of the compounds contained in polythiol composition (A2) of 100 in HPLC measurement, it was confirmed that the Tg is maintained high and the heat resistance is excellent, compared to the resin molded product of Example 101, in which the peak area of compound (NA2) is less than 0.50 relative to the total peak area of the compounds contained in polythiol composition (A2) of 100.
[実施例101X]
 実施例101Xでは、成形体の製造を、以下のように変更したこと以外は実施例101と同様の操作を行ったところ、実施例101の結果(表2)と同様の結果が得られた。
[Example 101X]
In Example 101X, the same procedure as in Example 101 was carried out except that the production of the molded body was changed as follows, and the same results as those of Example 101 (Table 2) were obtained.
-実施例101からの変更点-
 実施例101では、成形体の製造において、m-キシリレンジイソシアネート(XDI)(52質量部)を用いたが、実施例101Xでは、このXDI(52質量部)を、前述したXDI組成物としてのXDI組成物X1(含有されるXDIの量が52質量部となる量)に変更した。
 XDI組成物X1は、主成分であるXDIに対し、微量の化合物(N1)、微量の化合物(N2)、及び微量の化合物(N3)を添加し、これらを混合して製造した。
 XDI組成物X1において、前述したGC条件1及びGC条件2の各々により、ガスクロマトグラフィー測定を行った結果、
 化合物(N1)のピーク面積が、キシリレンジイソシアネートのピーク面積1に対して0.20ppm以上(具体的には600ppm)であり、
 化合物(N2)のピーク面積が、キシリレンジイソシアネートのピーク面積1に対して0.05ppm以上(具体的には18ppm)であり、
 化合物(N3)のピーク面積が、キシリレンジイソシアネートのピーク面積1に対して0.10ppm以上(具体的には100ppm)であった。
--Changes from Example 101--
In Example 101, m-xylylene diisocyanate (XDI) (52 parts by mass) was used in the production of the molded body, but in Example 101X, this XDI (52 parts by mass) was changed to XDI composition X1 (an amount such that the amount of XDI contained was 52 parts by mass) as the XDI composition described above.
The XDI composition X1 was produced by adding trace amounts of compound (N1), compound (N2), and compound (N3) to the main component XDI and mixing them.
The XDI composition X1 was subjected to gas chromatography measurement under the above-mentioned GC condition 1 and GC condition 2. As a result,
The peak area of the compound (N1) is 0.20 ppm or more (specifically, 600 ppm) relative to the peak area of xylylene diisocyanate;
The peak area of the compound (N2) is 0.05 ppm or more (specifically, 18 ppm) relative to the peak area of xylylene diisocyanate;
The peak area of the compound (N3) was 0.10 ppm or more (specifically, 100 ppm) relative to the peak area of xylylene diisocyanate.
 2022年9月26日に出願された日本国特許出願2022-153094の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2022-153094, filed on September 26, 2022, is incorporated herein by reference in its entirety.
All publications, patent applications, and standards mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent application, or standard was specifically and individually indicated to be incorporated by reference.

Claims (13)

  1.  精製前のポリチオール組成物である粗ポリチオール組成物を準備する準備工程と、
     前記粗ポリチオール組成物を、アルキレングリコールを含む溶剤Xによって精製することにより、ポリチオール組成物を得る精製工程と、
    を含む、
    ポリチオール組成物の製造方法。
    A preparation step of preparing a crude polythiol composition that is a polythiol composition before purification;
    A purification step of purifying the crude polythiol composition with a solvent X containing an alkylene glycol to obtain a polythiol composition;
    including,
    A method for producing a polythiol composition.
  2.  前記粗ポリチオール組成物が、下記式(5)で表されるポリチオール化合物であるポリチオール成分A1と、前記ポリチオール成分A1におけるメルカプト基のうちの少なくとも1つを下記式(N1)で表される基に置き換えた化合物(NA1)と、を含むこと、
     並びに、
     前記粗ポリチオール組成物が、下記式(6)で表されるポリチオール化合物、下記式(7)で表されるポリチオール化合物、及び下記式(8)で表されるポリチオール化合物からなる群から選択される少なくとも1種であるポリチオール成分A2と、前記ポリチオール成分A2におけるメルカプト基のうちの少なくとも1つを下記式(N1)で表される基に置き換えた化合物(NA2)と、を含むこと
    の少なくとも一方を満足する、
    請求項1に記載のポリチオール組成物の製造方法。

    〔式(N1)中、*は、結合位置を表す。〕
    The crude polythiol composition includes a polythiol component A1 which is a polythiol compound represented by the following formula (5), and a compound (NA1) in which at least one of the mercapto groups in the polythiol component A1 is replaced with a group represented by the following formula (N1):
    and,
    The crude polythiol composition satisfies at least one of the following conditions: the crude polythiol composition contains a polythiol component A2 which is at least one selected from the group consisting of a polythiol compound represented by the following formula (6), a polythiol compound represented by the following formula (7), and a polythiol compound represented by the following formula (8), and a compound (NA2) in which at least one of the mercapto groups in the polythiol component A2 is replaced with a group represented by the following formula (N1):
    A method for producing the polythiol composition of claim 1.

    In formula (N1), * represents a bonding position.
  3.  前記粗ポリチオール組成物が、前記ポリチオール成分A1及び前記化合物(NA1)を含み、
     前記準備工程が、
     2-メルカプトエタノールと下記式(1)で表されるエピハロヒドリン化合物とを反応させて下記式(2)で表されるポリアルコール化合物を得ることと、
     前記式(2)で表されるポリアルコール化合物とチオ尿素とを、酸性条件下で反応させてイソチウロニウム塩を含む反応液を得ることと、
     前記イソチウロニウム塩を含む反応液に塩基化合物を加え、前記イソチウロニウム塩を加水分解し、前記粗ポリチオール組成物を得ることと、
    を含む、
    請求項2に記載のポリチオール組成物の製造方法。

    〔式(1)中、Xは、ハロゲン原子を表す。〕
    The crude polythiol composition comprises the polythiol component A1 and the compound (NA1),
    The preparation step includes:
    A method for producing a polyalcohol compound represented by the following formula (2) by reacting 2-mercaptoethanol with an epihalohydrin compound represented by the following formula (1);
    reacting the polyalcohol compound represented by the formula (2) with thiourea under acidic conditions to obtain a reaction solution containing an isothiuronium salt;
    adding a base compound to the reaction solution containing the isothiuronium salt to hydrolyze the isothiuronium salt to obtain the crude polythiol composition;
    including,
    A method for producing the polythiol composition according to claim 2.

    [In formula (1), X represents a halogen atom.]
  4.  前記粗ポリチオール組成物が、前記ポリチオール成分A2及び前記化合物(NA2)を含み、
     前記準備工程が、
     2-メルカプトエタノールと下記式(1)で表されるエピハロヒドリン化合物とを反応させて下記式(3)で表される化合物を得ることと、
     前記式(3)で表される化合物と硫化ナトリウムとを反応させて下記式(4)で表されるポリアルコール化合物を得ることと、
     前記式(4)で表されるポリアルコール化合物とチオ尿素とを、酸性条件下で反応させてイソチウロニウム塩を含む反応液を得ることと、
     前記イソチウロニウム塩を含む反応液に塩基化合物を加え、前記イソチウロニウム塩を加水分解し、前記粗ポリチオール組成物を得ることと、
    を含む、
    請求項2に記載のポリチオール組成物の製造方法。

    〔式(1)中、Xは、ハロゲン原子を表す。〕
    The crude polythiol composition comprises the polythiol component A2 and the compound (NA2),
    The preparation step includes:
    Reacting 2-mercaptoethanol with an epihalohydrin compound represented by the following formula (1) to obtain a compound represented by the following formula (3);
    Reacting the compound represented by formula (3) with sodium sulfide to obtain a polyalcohol compound represented by formula (4):
    reacting the polyalcohol compound represented by the formula (4) with thiourea under acidic conditions to obtain a reaction solution containing an isothiuronium salt;
    adding a base compound to the reaction solution containing the isothiuronium salt to hydrolyze the isothiuronium salt to obtain the crude polythiol composition;
    including,
    A method for producing the polythiol composition according to claim 2.

    [In formula (1), X represents a halogen atom.]
  5.  前記溶剤Xが、エチレングリコール及びプロピレングリコールからなる群から選択される少なくとも1種を含む、
    請求項1に記載のポリチオール組成物の製造方法。
    The solvent X contains at least one selected from the group consisting of ethylene glycol and propylene glycol.
    A method for producing the polythiol composition of claim 1.
  6.  前記準備工程は、前記粗ポリチオール組成物のトルエン溶液を準備し、
     前記精製工程は、前記トルエン溶液と前記溶剤Xとを混合することにより、前記トルエン溶液中の前記粗ポリチオール組成物を前記溶剤Xによって精製する、
    請求項1に記載のポリチオール組成物の製造方法。
    The preparing step includes preparing a toluene solution of the crude polythiol composition,
    The purification step includes purifying the crude polythiol composition in the toluene solution with the solvent X by mixing the toluene solution with the solvent X.
    A method for producing the polythiol composition of claim 1.
  7.  前記精製工程は、
     前記粗ポリチオール組成物を、前記溶剤Xによって精製することにより、ポリチオール組成物を得ることと、
     得られた前記ポリチオール組成物を酸洗浄することと、
    を含む、
    請求項1に記載のポリチオール組成物の製造方法。
    The purification step comprises:
    purifying the crude polythiol composition with the solvent X to obtain a polythiol composition;
    washing the resulting polythiol composition with an acid;
    including,
    A method for producing the polythiol composition of claim 1.
  8.  請求項1~請求項7のいずれか1項に記載のポリチオール組成物の製造方法によってポリチオール組成物を製造する工程と、
     前記ポリチオール組成物とポリイソシアネート化合物とを混合することにより、前記ポリチオール組成物及び前記ポリイソシアネート化合物を含有する重合性組成物を得る工程と、
    を含む重合性組成物の製造方法。
    A step of producing a polythiol composition by the method for producing a polythiol composition according to any one of claims 1 to 7;
    A step of mixing the polythiol composition with a polyisocyanate compound to obtain a polymerizable composition containing the polythiol composition and the polyisocyanate compound;
    A method for producing a polymerizable composition comprising the steps of:
  9.  前記重合性組成物を得る工程が、前記ポリチオール組成物と、前記ポリイソシアネート化合物を含むポリイソシアネート組成物と、を混合することにより、前記ポリチオール組成物及び前記ポリイソシアネート組成物を含有する重合性組成物を得る工程であり、
     前記ポリイソシアネート組成物が、
     キシリレンジイソシアネートと、
     下記化合物(N1)、下記化合物(N2)、及び下記化合物(N3)からなる群から選択される少なくとも1種と、
    を含み、
     前記ポリイソシアネート組成物が前記化合物(N1)を含む場合には、高速液体クロマトグラフィー測定における前記化合物(N1)のピーク面積が、キシリレンジイソシアネートのピーク面積100に対して0.20ppm以上であり、
     前記ポリイソシアネート組成物が前記化合物(N2)を含む場合には、高速液体クロマトグラフィー測定における前記化合物(N2)のピーク面積が、キシリレンジイソシアネートのピーク面積100に対して0.05ppm以上であり、
     前記ポリイソシアネート組成物が前記化合物(N3)を含む場合には、高速液体クロマトグラフィー測定における前記化合物(N3)のピーク面積が、キシリレンジイソシアネートのピーク面積100に対して0.10ppm以上である、
    請求項8に記載の重合性組成物の製造方法。
    the step of obtaining a polymerizable composition is a step of obtaining a polymerizable composition containing the polythiol composition and the polyisocyanate composition by mixing the polythiol composition with a polyisocyanate composition containing the polyisocyanate compound,
    The polyisocyanate composition comprises:
    Xylylene diisocyanate,
    At least one selected from the group consisting of the following compound (N1), the following compound (N2), and the following compound (N3);
    Including,
    When the polyisocyanate composition contains the compound (N1), the peak area of the compound (N1) measured by high performance liquid chromatography is 0.20 ppm or more relative to 100 of the peak area of xylylene diisocyanate,
    When the polyisocyanate composition contains the compound (N2), the peak area of the compound (N2) measured by high performance liquid chromatography is 0.05 ppm or more relative to 100 of the peak area of xylylene diisocyanate,
    When the polyisocyanate composition contains the compound (N3), the peak area of the compound (N3) measured by high performance liquid chromatography is 0.10 ppm or more relative to 100 of the peak area of xylylene diisocyanate.
    A method for producing the polymerizable composition according to claim 8 .
  10.  請求項8に記載の重合性組成物の製造方法によって重合性組成物を製造する工程と、
     前記重合性組成物を硬化させることにより、樹脂を得る工程と、
    を含む樹脂の製造方法。
    A step of producing a polymerizable composition by the method for producing a polymerizable composition according to claim 8;
    curing the polymerizable composition to obtain a resin;
    A method for producing a resin comprising the steps of:
  11.  下記式(6)で表されるポリチオール化合物と下記式(7)で表されるポリチオール化合物と下記式(8)で表されるポリチオール化合物とからなる群から選択される少なくとも1種であるポリチオール成分A2を主成分として含有し、かつ、
     前記ポリチオール成分A2におけるメルカプト基のうちの少なくとも1つを下記式(N1)で表される基に置き換えた化合物(NA2)を含有し、
     高速液体クロマトグラフィー測定において、前記化合物(NA2)のピーク面積が、ポリチオール組成物に含まれる化合物の合計ピーク面積100に対して、0.50~1.50である、
    ポリチオール組成物。

    〔式(N1)中、*は、結合位置を表す。〕
    The polythiol component A2 contains, as a main component, at least one selected from the group consisting of a polythiol compound represented by the following formula (6), a polythiol compound represented by the following formula (7), and a polythiol compound represented by the following formula (8),
    The polythiol component A2 contains a compound (NA2) in which at least one of the mercapto groups is replaced with a group represented by the following formula (N1):
    In a high performance liquid chromatography measurement, the peak area of the compound (NA2) is 0.50 to 1.50 relative to the total peak area of the compounds contained in the polythiol composition (100).
    Polythiol compositions.

    In formula (N1), * represents a bonding position.
  12.  請求項11に記載のポリチオール組成物と、
     ポリイソシアネート化合物と、
    を含む重合性組成物。
    The polythiol composition of claim 11 ;
    A polyisocyanate compound,
    1. A polymerizable composition comprising:
  13.  前記ポリイソシアネート化合物を含むポリイソシアネート組成物を含み、
     前記ポリイソシアネート組成物が、
     キシリレンジイソシアネートと、
     下記化合物(N1)、下記化合物(N2)、及び下記化合物(N3)からなる群から選択される少なくとも1種と、
    を含み、
     前記ポリイソシアネート組成物が前記化合物(N1)を含む場合には、高速液体クロマトグラフィー測定における前記化合物(N1)のピーク面積が、キシリレンジイソシアネートのピーク面積100に対して0.20ppm以上であり、
     前記ポリイソシアネート組成物が前記化合物(N2)を含む場合には、高速液体クロマトグラフィー測定における前記化合物(N2)のピーク面積が、キシリレンジイソシアネートのピーク面積100に対して0.05ppm以上であり、
     前記ポリイソシアネート組成物が前記化合物(N3)を含む場合には、高速液体クロマトグラフィー測定における前記化合物(N3)のピーク面積が、キシリレンジイソシアネートのピーク面積100に対して0.10ppm以上である、
    請求項12に記載の重合性組成物。

     
    A polyisocyanate composition comprising the polyisocyanate compound,
    The polyisocyanate composition comprises:
    Xylylene diisocyanate,
    At least one selected from the group consisting of the following compound (N1), the following compound (N2), and the following compound (N3);
    Including,
    When the polyisocyanate composition contains the compound (N1), the peak area of the compound (N1) measured by high performance liquid chromatography is 0.20 ppm or more relative to 100 of the peak area of xylylene diisocyanate,
    When the polyisocyanate composition contains the compound (N2), the peak area of the compound (N2) measured by high performance liquid chromatography is 0.05 ppm or more relative to 100 of the peak area of xylylene diisocyanate,
    When the polyisocyanate composition contains the compound (N3), the peak area of the compound (N3) measured by high performance liquid chromatography is 0.10 ppm or more relative to 100 of the peak area of xylylene diisocyanate.
    The polymerizable composition of claim 12.

PCT/JP2023/032430 2022-09-26 2023-09-05 Method for producing polythiol composition, and use application thereof WO2024070537A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-153094 2022-09-26
JP2022153094 2022-09-26

Publications (1)

Publication Number Publication Date
WO2024070537A1 true WO2024070537A1 (en) 2024-04-04

Family

ID=90477369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032430 WO2024070537A1 (en) 2022-09-26 2023-09-05 Method for producing polythiol composition, and use application thereof

Country Status (1)

Country Link
WO (1) WO2024070537A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018058772A (en) * 2016-09-30 2018-04-12 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd Production method of polythiol compound for optical material
WO2018190290A1 (en) * 2017-04-10 2018-10-18 三井化学株式会社 Xylylene diisocyanate composition, xylylene diisocyanate modification composition, two-component resin starting material, and resin
JP2022061763A (en) * 2020-10-07 2022-04-19 本州化学工業株式会社 Novel polythiol compound
WO2022138865A1 (en) * 2020-12-25 2022-06-30 三井化学株式会社 Polythiol composition, polymerizable composition, resin, molded article, optical material, and lens

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018058772A (en) * 2016-09-30 2018-04-12 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd Production method of polythiol compound for optical material
WO2018190290A1 (en) * 2017-04-10 2018-10-18 三井化学株式会社 Xylylene diisocyanate composition, xylylene diisocyanate modification composition, two-component resin starting material, and resin
JP2022061763A (en) * 2020-10-07 2022-04-19 本州化学工業株式会社 Novel polythiol compound
WO2022138865A1 (en) * 2020-12-25 2022-06-30 三井化学株式会社 Polythiol composition, polymerizable composition, resin, molded article, optical material, and lens

Similar Documents

Publication Publication Date Title
KR101349273B1 (en) A method of preparing thioepoxy based optical material and its polymerizable composition
WO2016174788A1 (en) Plastic lens
TWI818903B (en) Compositions for optical materials
EP2980113B1 (en) Polymerizable composition for optical material, optical material, and method for producing optical material
EP2891672A1 (en) Method for manufacturing thiourethane-based optical material
KR101487709B1 (en) Polymerizable composition for thioepoxy based optical material and method of preparing the optical material
CN113924326B (en) Polythiol composition and use thereof
KR20130081253A (en) Copolymerizable composition for high refractive optical lens comprising thioepoxy, polyisocyanate and polythiol compounds, and method of preparing the optical lens
KR101464943B1 (en) Method of Producing Polythiol Compound for Thioepoxy based Optical Material, and Copolymerizable Composition for Thioepoxy based Optical Material Comprising the Polythiol Compound
KR20200046829A (en) Composition for thioepoxy based optical material having superhigh refractive index and method of preparing the optical material
WO2024070537A1 (en) Method for producing polythiol composition, and use application thereof
KR20200026853A (en) Polythiol composition and preparation method thereof
KR20200085258A (en) A method of preparing thioepoxy based optical material
KR20200069146A (en) Novel episulfide compound, a composition for an episulfide-based optical material comprising the same, and a method for producing an optical material
KR102588224B1 (en) Polythiol compositions, polymerizable compositions, resins, molded bodies, optical materials and lenses
KR20130072165A (en) Polymerizable composition for optical material comprising thioepoxy compounds and method of preparing thioepoxy based optical material
WO2024080384A1 (en) Polythiol composition, polymerizable composition, resin, molded body, optical material, and lens
KR20160100422A (en) Method of Producing Thioepoxy Compound for Optical Material and Polymerizable Composition for Thioepoxy based Optical Material Comprising the Compound
US20240084105A1 (en) Polythiol composition, polymerizable composition, resin, molded body, optical material, and lens
WO2024080383A1 (en) Polythiol composition, polymerizable composition, resin, molded body, optical material and lens
KR20220013950A (en) Manufacturing method of polythiol composition
KR20220013951A (en) Manufacturing method of polythiol composition
WO2024058014A1 (en) Polythiol composition, polymerizable composition, resin, molded body, optical material, and lens
KR20190138145A (en) Polythiol composition and preparation method thereof
KR20210130547A (en) Method for manufacturing epoxy compound for optical materials and method for manufacturing episulfide compound for optical material and high refractive optical material using same