WO2024070507A1 - Medical monitoring device - Google Patents

Medical monitoring device Download PDF

Info

Publication number
WO2024070507A1
WO2024070507A1 PCT/JP2023/032145 JP2023032145W WO2024070507A1 WO 2024070507 A1 WO2024070507 A1 WO 2024070507A1 JP 2023032145 W JP2023032145 W JP 2023032145W WO 2024070507 A1 WO2024070507 A1 WO 2024070507A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
sensor
monitoring device
medical monitoring
harness
Prior art date
Application number
PCT/JP2023/032145
Other languages
French (fr)
Japanese (ja)
Inventor
貴之 内田
知紀 八田
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2024070507A1 publication Critical patent/WO2024070507A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/251Means for maintaining electrode contact with the body
    • A61B5/256Wearable electrodes, e.g. having straps or bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/02Stethoscopes
    • A61B7/04Electric stethoscopes

Definitions

  • This disclosure relates to a medical monitoring device.
  • Vital signs that can be measured non-invasively include heart sounds, electrocardiograms, and pulse waveforms, and it is desirable to combine these multiple pieces of vital signs. It is desirable for appropriate measurement of vital signs to be performed by the patient alone, without the need for complex settings. For this reason, methods have been proposed for measuring a patient's vital signs by placing sensors that measure vital signs on a belt or clothing worn by the patient (see, for example, Patent Documents 1 to 4).
  • the purpose of this disclosure is to provide a medical monitoring device that is easier to use when a user measures multiple pieces of vital signs at home.
  • the present invention is (1) a non-invasive medical monitoring device comprising a harness configured to be worn on at least one of the front and back sides of a user's chest, a first sensor disposed on the user's side of the harness on at least one of the front and back sides of the chest and capable of acquiring vibration information of the user's body surface, and a second sensor disposed on the opposite side of the harness to the user's side and acquiring biometric information different from the vibration information of the user's body surface.
  • the vibration information of the body surface is at least one of heart sounds and apical pulsation.
  • the medical monitoring device of (1) or (2) above further includes a pressure adjustment mechanism that adjusts the pressure with which the first sensor presses against the body surface so that the pressure is appropriate for the first sensor to acquire the vibration information of the body surface.
  • the harness includes a shoulder belt portion that is placed on the shoulder of the user and a chest belt portion that at least partially covers the front or back of the user's chest.
  • the second sensor includes a pulse wave sensor that can be measured by the user touching it with at least one hand.
  • the second sensor includes electrodes that are arranged at two positions that the user can touch with each hand, and that can be measured by touching the electrodes with both hands without overlapping.
  • the harness further includes a waist belt portion that at least partially covers the abdomen of the user.
  • the harness has a position adjustment mechanism that can adjust the position of the first sensor.
  • the medical monitoring device described in any of (1) to (8) above further includes a control unit that calculates parameters related to the cardiac function of the user based on the waveforms output by the first sensor and the second sensor.
  • the present invention is a non-invasive medical monitoring device comprising a harness configured to be worn on at least one of the front and back sides of a user's chest, a first sensor disposed on the user's side of the harness on at least one of the front and back sides of the user's chest and capable of acquiring vibration information of the user's body surface, and a pressure adjustment mechanism that adjusts the pressure with which the first sensor presses against the body surface so that the pressure is appropriate for the first sensor to acquire the vibration information of the body surface.
  • the vibration information of the body surface is at least one of heart sounds and apical pulsation.
  • the medical monitoring device described in (10) or (11) above further comprises a second sensor provided on the side of the harness opposite the side of the user, which acquires biological information different from the vibration information of the body surface of the user.
  • the harness includes a shoulder belt portion that is placed on the shoulder of the user, and a chest belt portion that at least partially covers the front or back of the user's chest.
  • the second sensor includes a pulse wave sensor that can be measured by the user touching it with at least one hand.
  • the second sensor includes electrodes that are arranged at two positions that the user can touch with each hand, and that can be measured by touching the electrodes with both hands without overlapping.
  • the harness further includes a waist belt portion that at least partially covers the abdomen of the user.
  • the harness has a position adjustment mechanism that can adjust the position of the first sensor.
  • the medical monitoring device described in (12), (14) or (15) above further includes a control unit that calculates parameters related to the cardiac function of the user based on the waveforms output by the first sensor and the second sensor.
  • the medical monitoring device described in any one of (1) to (9), (12), (14), (15) or (18) above is configured to be capable of acquiring the plurality of pieces of biometric information using the first sensor and the second sensor while the user is wearing clothing around the user's chest.
  • the medical monitoring device described in any of (1) to (19) above further comprises a third sensor that is disposed on the user's side of the harness on at least one of the front and back sides of the chest of the user and that acquires biological information different from the vibration information of the body surface of the user.
  • This disclosure makes it possible to improve the ease of use of the device when a user measures multiple pieces of biometric information at home.
  • FIG. 1 is a block diagram showing a schematic configuration of a medical monitoring device according to an embodiment.
  • 2 is a diagram showing a first example of the biometric information acquisition unit of FIG. 1 in a state where it is worn by a user; 3 is a diagram of the biometric information acquisition unit in FIG. 2 as viewed from behind the user.
  • FIG. 2 is a view of the chest belt portion of FIG. 1 as seen from the user's side.
  • 5 is a cross-sectional view of the chest belt portion of FIG. 4 taken along line AA.
  • 1 is a diagram illustrating an example of the placement of a heart sound sensor on a body when measuring biological information.
  • FIG. 13 is a diagram showing another example of the arrangement of sensors on the chest belt portion, as viewed from the side opposite to the user's side;
  • FIG. 13 is a diagram showing a second example of the biometric information acquisition unit when worn by a user.
  • FIG. 13 is a diagram showing a third example of a biometric information acquisition unit in a state where it is worn by a user.
  • 10 is a diagram of the biometric information acquisition unit in FIG. 9 as viewed from behind the user.
  • FIG. 13 is a diagram showing a fourth example of a biometric information acquisition unit in a state where it is worn by a user.
  • 12 is a diagram of the biometric information acquisition unit in FIG. 11 as viewed from behind the user.
  • FIG. 11A and 11B are diagrams illustrating an example of a harness position adjustment mechanism.
  • 13A and 13B are diagrams illustrating another example of a harness position adjustment mechanism.
  • FIG. 1 is a diagram showing the overall procedure for monitoring a user's biological information using a medical monitoring device.
  • FIG. 13 is a diagram showing a flow of processing performed by a user at home using a medical monitoring device.
  • FIG. 13 is a top view showing an example of an arrangement of sensors including a third sensor in the chest belt portion.
  • a medical monitoring device 1 includes a bioinformation acquisition unit 10, an information processing unit 20, and a display unit 21.
  • the bioinformation acquisition unit 10, the information processing unit 20, and the display unit 21 may each be configured by independent hardware that can communicate with each other.
  • each function of the bioinformation acquisition unit 10, the information processing unit 20, and the display unit 21 may be implemented in a single piece of hardware, or may be distributed and arranged in an arbitrary form by two or more pieces of hardware.
  • the biometric information acquisition unit 10 is attached to the body of the user who uses the medical monitoring device 1, and acquires the user's biometric information in a non-invasive manner. Therefore, the medical monitoring device 1 is a non-invasive measurement device.
  • the biometric information acquired by the biometric information acquisition unit 10 includes heart sounds, an electrocardiogram, and a pulse waveform. Therefore, the biometric information acquisition unit 10 includes a heart sound sensor 11, an electrocardiogram sensor 12, and a pulse wave sensor 13.
  • "user” refers to a patient who has their biometric information measured at home.
  • the heart sound sensor 11 is the first sensor that is positioned facing the user's heart (the user's side), which is the part where heart sounds are acquired, and acquires the user's heart sounds.
  • the heart sound sensor 11 is a sensor that detects sounds including heart sounds.
  • the heart sound sensor 11 converts sounds including heart sounds into electrical signals, for example.
  • the heart sound sensor 11 can be adopted from among various sensors such as a capacitor type microphone that detects changes in electrostatic capacitance between a diaphragm (vibration plate) and a back plate (electrode), a piezoelectric type microphone that uses a piezoelectric element, and an electrodynamic type microphone that combines a permanent magnet and a coil.
  • the heart sound sensor 11 can output the detected heart sounds to the information processing unit 20.
  • the heart sound sensor 11 can also acquire heart sounds even over thin clothing.
  • the electrocardiogram sensor 12 is a second sensor provided on the surface opposite to the user's side, and acquires the user's electrocardiogram.
  • the electrocardiogram sensor 12 is an electrode capable of measuring the potential difference between two different parts of the user's skin. The two different parts are, for example, the user's hands.
  • the electrocardiogram sensor 12 may include an impedance sensor capable of measuring the impedance between the electrode and two different parts of the user's skin. The impedance sensor may grasp the breathing state and detect the breathing rate from the impedance change between the electrodes.
  • the electrocardiogram sensor 12 has two electrodes 12a (see FIG. 2) arranged in positions where the user can touch them with one of both hands. The user can measure the electrocardiogram by touching the two electrodes 12a with different hands so that the hands do not overlap.
  • the waveform of the electrocardiogram measured by the electrocardiogram sensor 12 indicates the electrical activity of the user's heart.
  • the pulse wave sensor 13 detects pulse waves, which are changes in the user's intra-arterial pressure.
  • the pulse wave sensor 13 can be used as a second sensor in place of or in addition to the electrocardiogram sensor 12.
  • the pulse wave sensor 13 includes a photoplethysmograph (PPG: Photo Plethysmography) and a pulse wave sensor 13 using a piezoelectric element.
  • PPG Photo Plethysmography
  • the photoplethysmograph irradiates the detection target area with light and measures changes in the volume of blood vessels based on changes in the amount of light transmitted or reflected.
  • the pulse wave sensor 13 using a piezoelectric element measures minute vibrations of the blood vessel walls as pressure changes.
  • the pulse wave sensor 13 can measure at various positions on the body.
  • the pulse wave sensor 13 using a piezoelectric element can measure the pulse waveform even over thin clothing, so it may be installed on the surface facing the user.
  • the pulse wave sensor 13 may be placed on the side opposite the user, so that the user can measure the pulse waveform by touching it with at least one hand.
  • the second sensor may be a sensor other than the electrocardiogram sensor 12 and the pulse wave sensor 13.
  • the second sensor is preferably a sensor that can be touched with the hand and can obtain biometric information from the hand. Such a sensor allows the user to measure biometric information while still wearing clothes.
  • the bioinformation acquisition unit 10 may further include a pressure adjustment mechanism 15.
  • the pressure adjustment mechanism 15 adjusts the pressure with which the heart sound sensor 11 presses against the surface of the user's body.
  • the waveform of the heart sound sensor 11 is likely to change due to changes in the pressure with which the heart sound sensor 11 presses against the surface of the user's body (hereinafter referred to as "pressure” as appropriate).
  • the pressure adjustment mechanism 15 is controlled so that the heart sound sensor 11 can measure heart sounds well. The structure of the pressure adjustment mechanism 15 will be described further below.
  • the information processing unit 20 is a computer that controls the entire medical monitoring device 1 and performs various information processing.
  • the information processing unit 20 may be, for example, a dedicated computer used in the medical monitoring device 1, or a general-purpose computer. If it is a general-purpose computer, the information processing unit 20 may be, for example, a tablet terminal, a smartphone, a notebook PC (Personal Computer), a desktop PC, a workstation, or the like.
  • the functions of the information processing unit 20 may be distributed across multiple devices rather than being located in a single device.
  • the information processing unit 20 executes various processes based on the bio-information acquired by the bio-information acquisition unit 10.
  • the information processing unit 20 controls the pressure adjustment mechanism 15 of the bio-information acquisition unit 10.
  • the information processing unit 20 measures or estimates parameters related to cardiac function based on the bio-information acquired by the bio-information acquisition unit 10.
  • the information processing unit 20 can measure or estimate parameters related to cardiac function by combining multiple pieces of bio-information acquired by the bio-information acquisition unit 10.
  • Parameters related to cardiac function may include, for example, cardiac index (CI), or valvular disease, or ejection fraction (EF: ejection fraction) such as left ejection fraction (LEF: left ejection fraction) and right ejection fraction (REF: right ejection fraction), or PEP (Preejection Period), or ET (Ejection Time) such as LVET (Left Ventricular Ejection Time) and RVET (Right Ventricular Ejection Time), or STI (Systolic Time Interval).
  • the parameters related to cardiac function are blood parameters related to cardiac function, and blood parameters related to cardiac function include, for example, brain natriuretic peptide (BNP), NT-proBNP, oxygen saturation, and pulmonary-systemic blood flow ratio.
  • BNP brain natriuretic peptide
  • NT-proBNP oxygen saturation
  • pulmonary-systemic blood flow ratio pulmonary-systemic blood flow ratio
  • intracardiac hemodynamics may include cardiac output (CO), intracardiac pressure, and intracardiac vascular pressure. More specifically, intracardiac pressure refers to the systolic pressure, diastolic pressure, and mean pressure of each part of the heart. Intracardiac pressure includes, for example, left heart pressure, right heart pressure, and left ventricular pressure waveform, right ventricular pressure waveform, and left ventricular end-diastolic pressure (LVEDP), left atrial pressure (LAP), left ventricular pressure (LVP), pulmonary artery end-diastolic pressure (PAP), and other parameters.
  • cardiac output CO
  • intracardiac pressure refers to the systolic pressure, diastolic pressure, and mean pressure of each part of the heart.
  • Intracardiac pressure includes, for example, left heart pressure, right heart pressure, and left ventricular pressure waveform, right ventricular pressure waveform, and left ventricular end-diastolic pressure (LVEDP), left atrial pressure
  • the intracardiac pressure may include pulmonary artery end diastolic pressure (PAEDP) or pulmonary artery diastolic pressure (PADP), right atrial pressure (RAP), and right ventricular pressure (RVP). More specifically, the intracardiac pressure is the pressure or mean pressure of blood vessels near the heart. Examples of cardiovascular pressure include, but are not limited to, central venous pressure (CVP), pulmonary arterial pressure (PAP), and pulmonary wedge pressure (PWP). Pulmonary arterial wedge pressure is also called PAWP (pulmonary arterial wedge pressure), PCWP (pulmonary capillary wedge pressure), or PAOP (pulmonary artery occlusion pressure).
  • the information processing unit 20 includes a control unit 22, a memory unit 23, and an output unit 24.
  • the control unit 22 includes at least one processor, at least one dedicated circuit, or a combination of these.
  • the processor is a general-purpose processor such as a CPU (Central Processing Unit), or a dedicated processor specialized for a specific process.
  • the control unit 22 executes processes related to the operation of the information processing unit 20 while controlling each part of the information processing unit 20.
  • the control unit 22 may execute processes according to a program stored in the memory unit 23. The configuration of the control unit 22 will be described further below.
  • the memory unit 23 is, for example, but not limited to, a semiconductor memory, a magnetic memory, or an optical memory.
  • the memory unit 23 may function, for example, as a main memory device, an auxiliary memory device, or a cache memory.
  • the memory unit 23 stores any information used in the operation of the medical monitoring device 1. For example, the memory unit 23 may sequentially store system programs, application programs, and information acquired by each sensor.
  • the memory unit 23 stores a reference waveform used for measurement by the heart sound sensor 11.
  • the output unit 24 includes one or more output interfaces that output information to notify the user.
  • the output unit 24 may include a communication interface for communicating with an external server 25.
  • the display unit 21 is a display device that displays various information processed by the information processing unit 20.
  • the display unit 21 may be a dedicated display device or a display of a PC or the like.
  • the display unit 21 may also use the display screen of a smartphone.
  • the information processing unit 20 is further configured to be able to transmit the estimated cardiac function parameters to an external server 25 via a communication line.
  • the external server 35 is, for example, a server at a hospital used by a user performing measurements at home, or a dedicated server for the medical monitoring device 1 located in the cloud.
  • the information stored in the external server 25 can be used to assist medical professionals such as doctors in checking the user's condition and, if necessary, intervening by changing the prescription, etc.
  • the heart sound sensor 11, the electrode 12a of the electrocardiogram sensor 12, and the pulse wave sensor 13 of the biometric information acquisition unit 10 are arranged on a harness 16 worn by the user.
  • the heart sound sensor 11 and the pulse wave sensor 13 are arranged on the user's side, and the electrode 12a of the electrocardiogram sensor is provided on the opposite side to the user's side.
  • the harness 16 fixes the heart sound sensor 11, the electrode 12a of the electrocardiogram sensor 12, and the pulse wave sensor 13 to the user's body 30.
  • the harness 16 is composed of a plurality of flat, elongated, strip-like parts.
  • the harness 16 includes a shoulder belt portion 16a and a chest belt portion 16b. When worn by the user, the shoulder belt portion 16a is hung on the left and right shoulders of the user and passes between the left and right shoulders and armpits. The shoulder belt portion 16a connects the left shoulder and left armpit and the right shoulder and right armpit in front of the user, and crosses between the left shoulder and right armpit and the right shoulder and left armpit in the back of the user.
  • the harness 16 may include a fastener for fastening to the user's body.
  • the fastener may include a fastening metal fitting, a buckle, etc.
  • the harness 16 is worn to cover at least one of the front and back of the user's chest.
  • the harness 16 includes a chest belt portion 16b worn on the front of the user's chest.
  • the chest belt portion 16b has a heart sound sensor 11 and a pulse wave sensor 13 arranged on the surface facing the user.
  • the heart sound sensor 11 is a first sensor capable of acquiring vibration information of the user's chest surface. More specifically, the user's chest surface is the skin surface of the chest of the user's body 30 when the user is not wearing clothes, or the clothing surface of the chest of the user's body 30 when the user is wearing clothes.
  • the first heart sensor may be not only the heart sound sensor 11, but also a sensor that detects the apical beat (beat acquired from the tip of the heart).
  • Two electrodes 12a of the electrocardiogram sensor 12 and a measurement start button 14 are provided on the surface of the chest belt portion 16b opposite to the user's side.
  • the heart sound sensor 11 may also acquire lung sounds (breath sounds, accessory murmurs, etc.) and other vibration information from within the body (intestinal peristalsis sounds, vascular murmurs, etc.) as vibration information.
  • FIG. 4 is a view of the chest belt portion 16b as seen from the side of the user's body 30.
  • FIG. 5 is a cross-sectional view of the chest belt portion 16b of FIG. 4 taken along the line A-A.
  • the heart sound sensor 11 and the pulse wave sensor 13 are integrally configured, or are arranged side by side on the same plane.
  • the pulse wave sensor 13 may be a sensor using a piezoelectric element that can be used even when the user is wearing clothes.
  • the heart sound sensor 11 and the pulse wave sensor 13 may be configured to be pressed against the surface of the user's body by the pressure adjustment mechanism 15.
  • the pressure adjustment mechanism 15 includes a housing portion 15a, a movable member 15b, a biasing portion 15c, an air tube 15d, a control valve 15e, and a pump P.
  • the air tube 15d and the pump P are outside the housing portion 15a, but are omitted in FIG. 2 and FIG. 4.
  • the housing 15a houses the movable member 15b and the biasing member 15c.
  • the housing 15a has an opening on the side facing the user's body 30.
  • the movable member 15b which has the heart sound sensor 11 and pulse wave sensor 13 fixed to its end, can advance or retreat through this opening.
  • the movable member 15b is, for example, a cylindrical member with one bottom surface being the surface on which the heart sound sensor 11 and pulse wave sensor 13 are arranged.
  • the movable member 15b When worn by the user, the movable member 15b has a flange portion 15f with a flat surface that contacts the biasing portion 15c on the side opposite the user's body 30.
  • the biasing portion 15c can bias the flange portion 15f toward the user's body 30 with an adjustable force.
  • the biasing portion 15c can be a balloon with elasticity that can expand and contract by introducing air into the interior and expelling air from the interior.
  • the pressure adjustment mechanism 15 includes an air tube 15d that communicates with the inside of the biasing part 15c, which is a balloon, a control valve 15e located midway through the air tube 15d, and a pump P that sends air to the air tube 15d or expels air from the air tube 15d.
  • the control part 22 of the information processing part 20 can control the control valve 15e and the pump P.
  • the pressure adjustment mechanism 15 can adjust the amount of air in the balloon by supplying air to the inside of the balloon, which is the biasing part 15c, or exhausting air from the inside of the balloon, in response to a control signal from the control part 22. This adjusts the biasing force of the biasing part 15c against the movable member 15b, and adjusts the pressure with which the heart sound sensor 11 presses against the heart sound acquisition part of the user's body 30.
  • the pump P, air tube 15d, and control valve 15e are used to adjust the pressure of the heart sound sensor 11.
  • the pressure adjustment mechanism 15 may include a pressure sensor 15g that measures the pressure of the heart sound sensor 11.
  • the pressure sensor 15g may be disposed on the surface of the movable member 15b on which the heart sound sensor 11 is provided.
  • the pressure adjustment mechanism 15 may include a spring 15h for retracting the movable member 15b into the housing part 15a when no biasing force is applied by the biasing part 15c.
  • the spring 15h is provided in the housing part 15a and biases the surface of the flange part 15f facing the user's body 30 toward the opposite side of the user's body 30.
  • the pressure sensor 15g and the spring 15h are not essential components.
  • the pressure adjustment mechanism 15 is not limited to the configuration shown in FIG. 5.
  • the pressure adjustment mechanism 15 may have a configuration including a motor and a movable member that advances and retreats as the motor rotates.
  • the pressure with which the heart sound sensor 11 presses against the user's body 30 can be adjusted by electrically controlling the motor, without introducing air from outside the housing 15a as shown in FIG. 5.
  • a rubber bag such as that used in blood pressure measurement can be used as the pressure adjustment mechanism 15 to press the heart sound sensor 11 against the user.
  • the pressure adjustment mechanism 15 may be incorporated into a bag- or pocket-shaped portion of the chest belt portion 16b.
  • the chest belt portion 16b may be divided into two portions with the pressure adjustment mechanism 15 in between, and the ends of each portion may be fixed to the left and right ends of the housing portion 15a of the pressure adjustment mechanism 15 as seen from the user.
  • the housing portion 15a does not need to be a hard material as long as it can press the heart sound sensor 11 against the user's body 30.
  • the heart sound sensor 11 is positioned toward the heart 31 of the user's body 30 as shown in FIG. 6.
  • the heart sound sensor 11 is positioned at a position determined in advance by a doctor.
  • the user attaches the harness 16 to the body 30 and operates the measurement start button 14 while touching the left and right electrodes 12a of the electrocardiogram sensor 12 with each hand, respectively. This starts the measurement, and the heart sounds, electrocardiogram, and pulse waveform are measured simultaneously or sequentially.
  • the pressure adjustment mechanism 15 adjusts the pressure with which the heart sound sensor 11 presses against the user's body 30 so that it is appropriate for acquiring heart sounds.
  • the heart sound sensor 11 and the pulse wave sensor 13 are arranged on the same surface of the movable member 15b, but the arrangement of the heart sound sensor 11, the electrocardiogram sensor 12, and the pulse wave sensor 13 is not limited to this.
  • the heart sound sensor 11 and the pulse wave sensor 13 may be arranged in different positions as shown in FIG. 7.
  • the pulse wave sensor 13 is arranged on the outside of the left and right electrodes 12a, but the pulse wave sensor 13 may be arranged on the inside of the left and right electrodes 12a.
  • two pulse wave sensors 13 are shown, but there may be only one pulse wave sensor 13.
  • the pulse wave sensor 13 may be provided on the side opposite to the user, and a photoelectric volume pulse wave meter may be used.
  • the user touches the left and right electrodes 12a with the fingers of the left and right hands, respectively, and touches both or either of the pulse wave sensors 13 with the fingers of the hand.
  • the fingers touching the electrodes 12a and the fingers touching the pulse wave sensor 13 may be different fingers. This allows you to measure the electrocardiogram and pulse waveform from your fingers.
  • the bioinformation acquiring unit 10A differs from the bioinformation acquiring unit 10 shown in FIG. 2 and FIG. 3 in the arrangement of the heart sound sensor 11, the electrocardiogram sensor 12, and the pulse wave sensor 13.
  • the two electrodes 12a of the electrocardiogram sensor 12 are arranged on the left and right shoulder belt parts 16a, respectively.
  • the measurement start button 14 is arranged near one of the electrodes 12a. During measurement, the user can touch the left electrode 12a with the left hand and the right electrode 12a with the right hand.
  • the electrode 12a of the electrocardiogram sensor 12 and the heart sound sensor 11 are separated, so that the possibility that the sound generated when the user touches the electrode 12a becomes noise and is detected by the heart sound sensor 11 can be reduced.
  • the two electrodes 12a are separated compared to the arrangement of the electrodes 12a in the configuration example 1, so that the possibility that the left and right hands will come into contact with each other is low. For this reason, it is expected that more accurate measurement can be performed.
  • FIG. 10 (Configuration Example 3 of Biometric Information Acquisition Unit) 9 and 10 a further example of the configuration of a bioinformation acquisition unit 10B in which the heart sound sensor 11, electrocardiogram sensor 12, and pulse wave sensor 13 are arranged differently will be described.
  • the chest belt portion 16b of the harness 16 is absent, and the pulse wave sensor 13 is arranged on the shoulder belt portion 16a together with the electrode 12a of the electrocardiogram sensor 12.
  • the heart sound sensor 11 is provided at a position where the shoulder belt portion 16a crosses on the back side of the user when the bioinformation acquisition unit 10B is worn. In this way, it is possible to acquire heart sounds from the back side of the user.
  • the heart sound sensor 11 may be placed on the user's side, at least on either the front or back of the user's chest, of the harness 16.
  • the harness 16 can also be configured to have a chest belt portion 16b on the back side of the user in order to measure heart sounds on the back of the user's chest.
  • the chest belt portion 16b is placed so as to at least partially cover the front or back of the chest.
  • the bioinformation acquisition unit 10C shown in FIG. 11 and FIG. 12 is different from the above-mentioned examples 1 to 3, and includes, in addition to the shoulder belt portion 16a and the chest belt portion 16b, a waist belt portion 16c that at least partially covers the abdomen of the user and is fixed to the waist.
  • the heart sound sensor 11 is disposed in the chest belt portion 16b.
  • the electrodes 12a of the electrocardiogram sensor 12 and the pulse wave sensor 13 are disposed in the left and right shoulder belt portions 16a.
  • the ends of the shoulder belt portions 16a that are farther from the shoulders are fixed to the waist belt portions 16c on both the front and back sides of the user. This makes it possible to fix the harness 16 to the user's body 30 more accurately.
  • the harness 16 is provided with a position adjustment mechanism.
  • the chest belt part 16b where the heart sound sensor 11 is placed on the side of the user's body 30 may be position adjustable in the vertical direction (up and down direction of the user) on the surface of the user's body.
  • the position adjustment mechanism may include, for example, a hook-and-loop fastener and a clip for fixing the chest belt part 16b of the harness 16 at an appropriate position relative to the shoulder belt part 16a.
  • the shoulder belt part 16a may have a scale 17a indicating the vertical position of the chest belt part 16b.
  • the position where the heart sound sensor 11 is placed on the chest belt portion 16b may be adjustable in the horizontal direction (left and right direction of the user) on the surface of the user's body.
  • the chest belt portion 16b of the harness 16 may be configured so that the lengths of the left and right portions sandwiching the heart sound sensor 11 are adjustable.
  • the heart sound sensor 11 may be configured so that it can slide and be fixed along the chest belt portion 16b.
  • the chest belt portion 16b may have a scale 17b that indicates the horizontal position of the heart sound sensor 11.
  • the mechanism for adjusting the position of the heart sound sensor 11 in the horizontal direction is included in the position adjustment mechanism.
  • the position adjustment mechanism may simultaneously include the configurations shown in FIG. 13 and FIG. 14.
  • each sensor will be positioned in the same position as set with respect to the user's body 30.
  • weights or the like may be attached to predetermined parts of the harness 16.
  • the control unit 22 of the information processing unit 20 will be further described with reference to Fig. 1.
  • the control unit 22 includes functional blocks of a waveform processing unit 22a, a pressure determination unit 22b, and a hemodynamics calculation unit 22c.
  • the processing of each functional block may be executed by the same processor or may be executed by multiple different processors.
  • the waveform processing unit 22a performs processing such as filtering and noise removal on the measurement signals acquired by the heart sound sensor 11, the electrocardiogram sensor 12, and the pulse wave sensor 13. Furthermore, the waveform processing unit 22a recognizes upwardly convex and downwardly convex parts in the waveform, and recognizes characteristic parts of each waveform. For example, in the case of a measurement signal from the heart sound sensor 11, the waveform processing unit 22a detects the first sound and the second sound, etc. In addition, in the case of a measurement signal from the electrocardiogram sensor 12, the waveform processing unit 22a detects waveforms such as the Q wave, the R wave, and the S wave.
  • the waveform processing unit 22a may perform processing such as differentiating the measurement signal from the pulse wave sensor 13 twice to calculate the waveform shape of an accelerated pulse wave.
  • the waveform processing unit 22a passes the waveform of the detected heart sound signal (phonocardiogram) to the pressure determination unit 22b.
  • the pressure determination unit 22b is configured to determine an increase or decrease in pressure on the heart sound sensor 11 based on the waveform of the heart sound signal detected by the heart sound sensor 11 and processed by the waveform processing unit 22a.
  • the pressure determination unit 22b controls the pressure adjustment mechanism 15 so as to bring the heart sound signal obtained from the heart sound sensor 11 closer to the shape of a reference waveform of the heart sound waveform stored in advance in the storage unit 23.
  • the pressure determination unit 22b controls the pressure adjustment mechanism 15 to slightly increase or decrease the pressure on the heart sound sensor 11, and acquires the amplitude of the heart sound signal from the waveform processing unit 22a.
  • the increase or decrease in pressure can be achieved by controlling the pump P and control valve 15e.
  • the pressure determination unit 22b changes the pressure on the heart sound sensor 11 in a direction that increases the amplitude of the heart sound signal, based on the increase or decrease in the amplitude of the heart sound signal acquired after adjusting the pressure.
  • the waveform processing unit 22a tracks the change in the amplitude of the heart sound signal while gradually increasing the pressure on the heart sound sensor 11.
  • the pressure determination unit 22b determines that the amplitude of the heart sound signal has peaked or that a predetermined threshold value based on the amplitude of a reference waveform of the heart sound waveform previously stored in the storage unit 23 has been exceeded, the pressure determination unit 22b fixes the pressure on the heart sound sensor 11 and performs measurement.
  • the pressure determination unit 22b may control the pressure based on the overall similarity between the two waveforms, rather than comparing the amplitude of the heart sound signal measured by the heart sound sensor 11 with the amplitude of the reference waveform stored in the memory unit 23.
  • the pressure determination unit 22b controls the pressure adjustment mechanism 15 so that the similarity is maximized.
  • the similarity between the two waveforms can be calculated using a known method.
  • the control unit 22 may acquire the pressure detected by the pressure sensor 15g and use it to control the pressure.
  • the information processing unit 20 may pre-store an optimal pressure in the memory unit 23, and the pressure determination unit 22b may control the pressure adjustment mechanism 15 so that the pressure detected by the pressure sensor 15g approaches the optimal pressure.
  • the memory unit 23 may store an alternative parameter for achieving the optimal pressure instead of the optimal pressure, for example a setting value of the pump or control valve of the pressure adjustment mechanism 15.
  • the pressure determination unit 22b controls the pressure of the heart sound sensor based on the waveform of the heart sound signal processed by the waveform processing unit 22a.
  • the information processing unit 20 can also control the bioinformation acquisition unit 10 in a manner other than this to obtain an appropriate waveform of the heart sound signal.
  • the control unit 22 of the information processing unit 20 can control the pressure adjustment mechanism 15 to gradually increase the pressure from a low pressure while continuously monitoring the heart sound waveform, and measure the heart sound signal when an appropriate waveform appears.
  • the control unit 22 can determine whether the heart sound waveform is an appropriate waveform by determining the similarity to a reference waveform stored in the memory unit 23, for example. In this case, adjustment of the pressure by the pressure determination unit 22b is not necessary.
  • the hemodynamics calculation unit 22c acquires the heart sound signal obtained from the heart sound sensor 11 after the pressure has been adjusted by the pressure determination unit 22b, together with the measurement signals of the electrocardiogram and/or pulse waveform, from the waveform processing unit 22a.
  • the hemodynamics calculation unit 22c combines the measurement data of the heart sound with the measurement data of the electrocardiogram and/or pulse waveform to measure parameters related to cardiac function.
  • the parameters related to cardiac function may include STIs such as PEP or LVET, as described above.
  • the hemodynamics calculation unit 22c may store the measurement results in the memory unit 23.
  • the hemodynamics calculation unit 22c may estimate parameters indicating intracardiac hemodynamics by machine learning by inputting the measurement data of the heart sounds, electrocardiogram, and pulse waveform as explanatory variables into a learned model previously stored in the memory unit 23.
  • the parameters indicating intracardiac hemodynamics may include intracardiac pressures such as left ventricular end-diastolic pressure, pulmonary artery pressure, and pulmonary artery wedge pressure.
  • the parameters indicating intracardiac hemodynamics are included in the parameters related to cardiac function.
  • the control unit 22 may store the parameters related to cardiac function calculated and estimated by the hemodynamics calculation unit 22c in the memory unit 23 and/or display them on the display unit 21. The control unit 22 may further transmit the parameters related to cardiac function to an external server 25.
  • the doctor in charge of the user decides to remotely monitor the user using the medical monitoring device 1 (step S101).
  • a doctor or nurse puts the biometric information acquisition unit 10 on the user and adjusts the positions of the chest belt portion 16b of the harness 16, as well as the heart sound sensor 11, the electrocardiogram sensor 12, and the pulse wave sensor 13 (step S102).
  • the doctor or nurse may adjust the entire harness 16 so that it is fixed to the user's body 30.
  • the doctor or nurse adjusts the position of the heart sound sensor 11 so that an optimal heart sound signal is obtained.
  • the doctor or nurse stores the heart sound signal acquired after the adjustments of step S102 as a reference waveform in the memory unit 23 of the information processing unit 20 or another storage medium (step S103). If the information processing unit 20 is located remotely, the reference waveform may be transmitted to and stored in the memory unit 23 of the information processing unit 20 by any method.
  • step S104 the user performs measurements at home using the biometric information acquisition unit 10 that has been adjusted at the medical institution.
  • the user may perform measurements of biometric information at a set time each day.
  • the measurement process of step S104 is described below with reference to FIG. 16.
  • the user at home puts on the harness 16 of the biometric information acquisition unit 10 on the body 30 (S201). At this time, the user does not need to remove his/her clothes.
  • the medical monitoring device 1 can acquire biometric information even if the user is clothed.
  • step S202 The user operates the measurement start button 14 while wearing the harness 16. This starts the measurement (step S202).
  • steps S202 to S209 is a process executed by the control unit 22 of the information processing unit 20.
  • the electrocardiogram sensor 12 and pulse wave sensor 13 can continue to acquire measurement data continuously from the start of measurement.
  • the electrodes 12a of the electrocardiogram sensor 12 are provided on the side of the harness 16 opposite the side facing the user's body surface, and the user can measure their electrocardiogram by touching one of the two electrodes 12a with one of both hands and the other hand to the other of the two electrodes 12a. Therefore, the user can measure their electrocardiogram while still wearing their clothes.
  • the pulse wave sensor 13 When the pulse wave sensor 13 is attached to the surface of the user's body of the harness 16 as shown in Figure 4, a sensor using a piezoelectric element is used, making it possible to measure even while the user is wearing clothes. Furthermore, when the pulse wave sensor 13 is attached to the surface of the harness 16 opposite to the surface facing the user's body as shown in Figure 7, the pulse wave sensor 13 is configured as a photoelectric volume pulse wave meter and obtains a pulse wave signal from the user's finger, making it possible to measure even while the user is wearing clothes.
  • the pressure determination unit 22b of the control unit 22 controls the pressure adjustment mechanism 15 to increase the pressure of the heart sound sensor 11 to the initial pressure value previously stored in the memory unit 23 (step S203).
  • step S203 is not essential.
  • the control unit 22 may start with the pressure that the heart sound sensor 11 applies to the user's body surface when the harness 16 is attached, and gradually increase the pressure.
  • the control unit 22 acquires a heart sound signal from the heart sound sensor 11 (step S204).
  • the acquired heart sound signal is subjected to filtering, noise removal, and other processing in the waveform processing unit 22a.
  • the pressure determination unit 22b of the control unit 22 determines the degree of similarity between the waveform of the heart sound signal obtained from the heart sound sensor 11 and the reference waveform of the heart sound waveform stored in the memory unit 23 (step S205).
  • a publicly known method can be used to evaluate the degree of similarity of the waveforms.
  • the pressure determination unit 22b recognizes the acquisition state of the heart sound based on the acquired heart sound signal (step S206).
  • the acquisition state of the heart sound includes a state in which the amplitude of the heart sound signal is smaller or larger than the reference waveform by a predetermined percentage or more, or the shape of the waveform of the heart sound signal is significantly different from that of the reference waveform.
  • the pressure determination unit 22b may control the pressure adjustment mechanism 15 to change the pressure of the heart sound sensor 11 in order to determine whether to adjust the pressure to increase or decrease.
  • the pressure determination unit 22b automatically controls the pressure adjustment mechanism 15 to increase or decrease the pressure on the heart sound sensor 11 (step S207).
  • the pressure determination unit 22b again acquires the heart sound signal from the heart sound sensor 11 (step S203) and determines whether the waveform of the heart sound signal is similar to the reference waveform (step S205).
  • the pressure determination unit 22b repeats the processes of steps S204 to S207 unless it is determined that the heart sound signal is similar to the reference waveform (step S205: No).
  • step S205 If it is determined in step S205 that the heart sound signal is similar to the reference waveform (step S205: Yes), the hemodynamics calculation unit 22c acquires signals obtained by processing the signals from the heart sound sensor 11, the electrocardiogram sensor 12, and the pulse wave sensor 13 in the waveform processing unit 22a. Based on these signals, the hemodynamics calculation unit 22c calculates or estimates parameters related to cardiac function (step S208).
  • the control unit 22 stores the parameters related to cardiac function calculated or estimated by the hemodynamics calculation unit 22c in the memory unit 23, and causes the output unit 24 to display them on the display unit 21 (step S209).
  • control unit 22 of the information processing unit 20 transmits the parameters related to cardiac function obtained as the measurement results to the external server 25 via the output unit 24 (step S105).
  • Doctors and/or nurses at the medical institution can remotely monitor the user's measurement result data stored on the external server 25 (step S106).
  • the doctor and/or nurse can change the treatment or prescription based on changes in the parameters related to the user's cardiac function.
  • the doctor and/or nurse can communicate the changes to the user at home via a communication line (step S107).
  • the medical monitoring device 1 disclosed herein can improve the ease of use of the device when a user measures multiple pieces of biological information at home. This allows doctors and/or nurses to remotely monitor the user's condition, such as heart failure.
  • the medical monitoring device 1 disclosed herein can calculate or estimate parameters related to cardiac function by combining multiple pieces of biological information including heart sounds, electrocardiograms, and pulse waveforms, allowing doctors at medical institutions to respond quickly when there is a change in a parameter related to cardiac function.
  • the user can measure heart sounds, electrocardiograms, and pulse waveforms at home in a non-invasive manner, which places less strain on the user's body 30. Furthermore, by fixing each sensor to the harness 16, multiple pieces of vital signs can be easily measured simultaneously in parallel simply by wearing the harness 16. Furthermore, the electrodes 12a of the electrocardiogram sensor 12 are provided on the side of the harness 16 opposite the user's side, and the user can measure by touching them with their hands, so the user can measure vital signs while wearing their clothes.
  • the heart sound sensor 11 is provided with a pressure adjustment mechanism 15 that adjusts the pressure of the heart sound sensor 11 against the user's body 30, and this is controlled by the control unit 22 based on the heart sound signal from the heart sound sensor 11. Therefore, the medical monitoring device 1 is able to measure heart sounds by optimizing the pressure of the heart sound sensor 11, which requires delicate adjustment.
  • the harness 16 of the medical monitoring device 1 has a position adjustment mechanism that can adjust the position of the heart sound sensor 11, so that a doctor or the like can set the heart sound sensor 11, whose position needs to be adjusted for each user, to an appropriate position. This allows heart sounds to be measured in the same position every time.
  • the electrode 12a of the electrocardiogram sensor 12 was provided on the surface of the harness 16 opposite to the side of the body 30 of the user.
  • the bioinformation acquisition unit 10 may be provided with an electrode 18 of a third sensor that is arranged on at least one of the front and back chest of the user of the harness 16 on the side of the user's body 30 and acquires bioinformation different from the vibration information of the user's body surface.
  • the third sensor is, for example, an electrocardiogram sensor.
  • FIG. 17 shows an example of the arrangement of each sensor (including electrodes) when the electrode 18 of the third sensor is added on the chest belt part 16b of the configuration example 1 of the bioinformation acquisition unit 10 shown in FIG. 2.
  • the pressure adjustment mechanism 15 is shown in a simplified form.
  • the electrode 18 is also provided on the surface side of the user's body, so that if the user is not wearing clothes, the user can continuously monitor without touching the electrode 12a with his or her hand.
  • the electrode 18 of the third sensor can be provided at any position on the harness 16 as long as it is on the surface side of the body. In this case, since it is necessary to touch the skin, it is assumed that the measurement is performed without wearing clothes.
  • the embodiments of the present disclosure can also be realized as a method, a program executed by a processor provided in the device, or a non-transitory computer-readable medium having a program recorded thereon. It should be understood that these are also included in the scope of the present disclosure.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Cardiology (AREA)
  • Acoustics & Sound (AREA)
  • Physiology (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

This non-invasive medical monitoring device is provided with a harness, a first sensor and a second sensor. The harness is configured so as to be attached to at least any one of a chest front face and a chest back face of a user. The first sensor is disposed on the user-side surface of the harness in at least one of the chest front face and the chest back face of the user, and can acquire vibration information about the body surface of the user. The second sensor is arranged on a surface of the harness which is opposite to the user-side surface, and acquires biological information that is different from the vibration information about the body surface of the user.

Description

医療モニタリング装置Medical Monitoring Devices
 本開示は、医療モニタリング装置に関する。 This disclosure relates to a medical monitoring device.
 心不全等の慢性疾患は、患者が退院した後も病状が悪化する危険性が有るため、複数の生体情報を非侵襲で継続して計測することにより病状の悪化を検知することが重要である。非侵襲で計測できる生体情報には、心音、心電図、及び脈波波形が含まれ、これらの複数の生体情報を組み合わせることが望まれている。適切な生体情報の測定には、複雑な設定を必要とせず患者自身が単独で行えることが望ましい。このため、患者が装着するベルト又は衣類に生体情報を測定するセンサを配置して、患者の生体情報を測定する方法が提案されている(例えば、特許文献1~4参照)。 Chronic diseases such as heart failure run the risk of worsening even after a patient is discharged from the hospital, so it is important to detect deterioration by continuously measuring multiple vital signs non-invasively. Vital signs that can be measured non-invasively include heart sounds, electrocardiograms, and pulse waveforms, and it is desirable to combine these multiple pieces of vital signs. It is desirable for appropriate measurement of vital signs to be performed by the patient alone, without the need for complex settings. For this reason, methods have been proposed for measuring a patient's vital signs by placing sensors that measure vital signs on a belt or clothing worn by the patient (see, for example, Patent Documents 1 to 4).
特開2020-089502号公報JP 2020-089502 A 特開2018-121928号公報JP 2018-121928 A 米国特許出願公開第2018/0325407号明細書US Patent Application Publication No. 2018/0325407 国際公開第2018/047814号明細書International Publication No. WO 2018/047814
 従来技術では、心電図の測定のために、ベルト又は衣類に設けた電極を患者の皮膚に対して直接接する(密着する)ようにしていた。このため、従来技術では、生体情報の測定のために、衣類を脱ぐ必要があった。また、従来技術による生体情報の測定では、血行動態を把握するうえで重要な測定項目である心音波形の測定が含まれていない場合があった。心音の測定は、測定条件の微小な変化により測定精度が変化しやすいので、測定位置の調整及びセンサで患者の測定部位を押圧する圧力の調整が必要となる。しかし、従来技術では、心音の測定を行う場合でも、測定に必要な調整を行うしくみが無かった。以上のようなことから、患者にとって在宅での複数の生体情報の測定には手間がかかるか、測定自体が困難であった。 In conventional technology, to measure an electrocardiogram, electrodes attached to a belt or clothing were placed in direct contact (close contact) with the patient's skin. For this reason, with conventional technology, it was necessary to remove the clothing in order to measure vital signs. Furthermore, measurements of vital signs using conventional technology did not always include measurement of heart sound waveforms, which is an important measurement item for understanding hemodynamics. Since the accuracy of measuring heart sounds is easily affected by minute changes in the measurement conditions, it is necessary to adjust the measurement position and the pressure with which the sensor presses against the patient's measurement site. However, with conventional technology, there was no mechanism for making the necessary adjustments even when measuring heart sounds. For these reasons, it was either time-consuming or difficult for patients to measure multiple pieces of vital signs at home.
 したがって、これらの点に着目してなされた本開示の目的は、使用者が在宅で複数の生体情報を測定する際の使いやすさを向上した、医療モニタリング装置を提供することにある。 Therefore, the purpose of this disclosure, which has been made with these points in mind, is to provide a medical monitoring device that is easier to use when a user measures multiple pieces of vital signs at home.
 本発明は、(1)非侵襲性の医療モニタリング装置であって、使用者の胸部前面及び胸部背面の少なくとも何れかに装着されるように構成されたハーネスと、前記ハーネスの前記使用者の前記胸部前面及び前記胸部背面の少なくとも何れかにおいて前記使用者の側に配置され、前記使用者の体表の振動情報を取得可能な第1のセンサと、前記ハーネスの前記使用者の側と反対側に設けられ、前記使用者の前記体表の前記振動情報とは異なる生体情報を取得する第2のセンサとを備える医療モニタリング装置である。 The present invention is (1) a non-invasive medical monitoring device comprising a harness configured to be worn on at least one of the front and back sides of a user's chest, a first sensor disposed on the user's side of the harness on at least one of the front and back sides of the chest and capable of acquiring vibration information of the user's body surface, and a second sensor disposed on the opposite side of the harness to the user's side and acquiring biometric information different from the vibration information of the user's body surface.
 (2)上記(1)の医療モニタリング装置において、前記体表の前記振動情報は、心音及び心尖拍動の少なくとも何れかであることが好ましい。 (2) In the medical monitoring device of (1) above, it is preferable that the vibration information of the body surface is at least one of heart sounds and apical pulsation.
 (3)上記(1)または(2)の医療モニタリング装置は、前記第1のセンサが前記体表の前記振動情報を取得するのに適切な圧力となるように、前記第1のセンサが前記体表を押圧する圧力を調整する押圧調整機構をさらに備えることが好ましい。 (3) It is preferable that the medical monitoring device of (1) or (2) above further includes a pressure adjustment mechanism that adjusts the pressure with which the first sensor presses against the body surface so that the pressure is appropriate for the first sensor to acquire the vibration information of the body surface.
 (4)上記(1)~(3)の何れかに記載の医療モニタリング装置において、前記ハーネスは、前記使用者の肩にかけられる肩ベルト部と、前記使用者の前記胸部前面又は前記胸部背面を少なくとも部分的に覆う胸ベルト部とを備えることが好ましい。 (4) In the medical monitoring device described in any of (1) to (3) above, it is preferable that the harness includes a shoulder belt portion that is placed on the shoulder of the user and a chest belt portion that at least partially covers the front or back of the user's chest.
 (5)上記(1)~(4)の何れかに記載の医療モニタリング装置において、前記第2のセンサは、前記使用者が少なくとも片方の手で触れることにより計測可能な脈波センサを含むことが好ましい。 (5) In the medical monitoring device described in any one of (1) to (4) above, it is preferable that the second sensor includes a pulse wave sensor that can be measured by the user touching it with at least one hand.
 (6)上記(1)~(5)の何れかに記載の医療モニタリング装置において、前記第2のセンサは、前記使用者がそれぞれ両方の手の一方で触れることのできる2つの位置に配置され、かつ、両手が重ならないように触れることにより計測可能な電極を含むことが好ましい。 (6) In the medical monitoring device described in any of (1) to (5) above, it is preferable that the second sensor includes electrodes that are arranged at two positions that the user can touch with each hand, and that can be measured by touching the electrodes with both hands without overlapping.
 (7)上記(1)~(6)の何れかに記載の医療モニタリング装置において、前記ハーネスは、前記使用者の腹部を少なくとも部分的に覆う腰ベルト部をさらに備えることが好ましい。 (7) In the medical monitoring device described in any one of (1) to (6) above, it is preferable that the harness further includes a waist belt portion that at least partially covers the abdomen of the user.
 (8)上記(1)~(7)の何れかに記載の医療モニタリング装置において、前記ハーネスは、前記第1のセンサの位置を調節可能な位置調節機構を有することが好ましい。 (8) In the medical monitoring device described in any of (1) to (7) above, it is preferable that the harness has a position adjustment mechanism that can adjust the position of the first sensor.
 (9)上記(1)~(8)の何れかに記載の医療モニタリング装置は、前記第1のセンサ及び前記第2のセンサの出力する波形に基づいて前記使用者の心機能に関するパラメータを算出する制御部をさらに備えることが好ましい。 (9) It is preferable that the medical monitoring device described in any of (1) to (8) above further includes a control unit that calculates parameters related to the cardiac function of the user based on the waveforms output by the first sensor and the second sensor.
 本発明は、(10)非侵襲性の医療モニタリング装置であって、使用者の胸部前面及び胸部背面の少なくとも何れかに装着されるように構成されたハーネスと、前記ハーネスの前記使用者の前記胸部前面及び前記胸部背面の少なくとも何れかにおいて前記使用者の側に配置され、前記使用者の体表の振動情報を取得可能な第1のセンサと、前記第1のセンサが前記体表の前記振動情報を取得するのに適切な圧力となるように、前記第1のセンサが前記体表を押圧する圧力を調整する押圧調整機構とを備える医療モニタリング装置である。 The present invention (10) is a non-invasive medical monitoring device comprising a harness configured to be worn on at least one of the front and back sides of a user's chest, a first sensor disposed on the user's side of the harness on at least one of the front and back sides of the user's chest and capable of acquiring vibration information of the user's body surface, and a pressure adjustment mechanism that adjusts the pressure with which the first sensor presses against the body surface so that the pressure is appropriate for the first sensor to acquire the vibration information of the body surface.
 (11)上記(10)の医療モニタリング装置において、前記体表の前記振動情報は、心音及び心尖拍動の少なくとも何れかであることが好ましい。 (11) In the medical monitoring device of (10) above, it is preferable that the vibration information of the body surface is at least one of heart sounds and apical pulsation.
 (12)上記(10)又は(11)に記載の医療モニタリング装置は、前記ハーネスの前記使用者の側と反対側の面に設けられ、前記使用者の前記体表の前記振動情報とは異なる生体情報を取得する第2のセンサをさらに備えることが好ましい。 (12) It is preferable that the medical monitoring device described in (10) or (11) above further comprises a second sensor provided on the side of the harness opposite the side of the user, which acquires biological information different from the vibration information of the body surface of the user.
 (13)上記(10)~(12)の何れかに記載の医療モニタリング装置において、前記ハーネスは、前記使用者の肩にかけられる肩ベルト部と、前記使用者の前記胸部前面又は前記胸部背面を少なくとも部分的に覆う胸ベルト部とを備えることが好ましい。 (13) In the medical monitoring device described in any of (10) to (12) above, it is preferable that the harness includes a shoulder belt portion that is placed on the shoulder of the user, and a chest belt portion that at least partially covers the front or back of the user's chest.
 (14)上記(12)に記載の医療モニタリング装置において前記第2のセンサは、前記使用者が少なくとも片方の手で触れることにより計測可能な脈波センサを含むことが好ましい。 (14) In the medical monitoring device described in (12) above, it is preferable that the second sensor includes a pulse wave sensor that can be measured by the user touching it with at least one hand.
 (15)上記(12)の何れかに記載の医療モニタリング装置において、前記第2のセンサは、前記使用者がそれぞれ両方の手の一方で触れることのできる2つの位置に配置され、かつ、両手が重ならないように触れることにより計測可能な電極を含むことが好ましい。 (15) In any of the medical monitoring devices described in (12) above, it is preferable that the second sensor includes electrodes that are arranged at two positions that the user can touch with each hand, and that can be measured by touching the electrodes with both hands without overlapping.
 (16)上記(10)~(15)の何れかに記載の医療モニタリング装置において、前記ハーネスは、前記使用者の腹部を少なくとも部分的に覆う腰ベルト部をさらに備えることが好ましい。 (16) In the medical monitoring device described in any one of (10) to (15) above, it is preferable that the harness further includes a waist belt portion that at least partially covers the abdomen of the user.
 (17)上記(10)~(16)の何れかに記載の医療モニタリング装置において、前記ハーネスは、前記第1のセンサの位置を調節可能な位置調節機構を有することが好ましい。 (17) In the medical monitoring device described in any of (10) to (16) above, it is preferable that the harness has a position adjustment mechanism that can adjust the position of the first sensor.
 (18)上記(12)、(14)又は(15)に記載の医療モニタリング装置は、前記第1のセンサ及び前記第2のセンサの出力する波形に基づいて前記使用者の心機能に関するパラメータを算出する制御部をさらに備えることが好ましい。 (18) It is preferable that the medical monitoring device described in (12), (14) or (15) above further includes a control unit that calculates parameters related to the cardiac function of the user based on the waveforms output by the first sensor and the second sensor.
 (19)上記(1)~(9)、(12)、(14)、(15)又は(18)の何れかに記載の医療モニタリング装置は、前記使用者が、該使用者の胸部に衣類を着用した状態で、前記第1のセンサ及び前記第2のセンサによる複数の前記生体情報の取得が可能に構成されることが好ましい。 (19) It is preferable that the medical monitoring device described in any one of (1) to (9), (12), (14), (15) or (18) above is configured to be capable of acquiring the plurality of pieces of biometric information using the first sensor and the second sensor while the user is wearing clothing around the user's chest.
 (20)上記(1)から(19)の何れかに記載の医療モニタリング装置は、前記ハーネスの前記使用者の前記胸部前面及び前記胸部背面の少なくとも何れかにおいて前記使用者の側に配置され、前記使用者の前記体表の前記振動情報とは異なる生体情報を取得する第3のセンサをさらに備えることが好ましい。 (20) It is preferable that the medical monitoring device described in any of (1) to (19) above further comprises a third sensor that is disposed on the user's side of the harness on at least one of the front and back sides of the chest of the user and that acquires biological information different from the vibration information of the body surface of the user.
 本開示によれば、使用者が在宅で複数の生体情報を測定する際の装置の使いやすさを向上させることができる。 This disclosure makes it possible to improve the ease of use of the device when a user measures multiple pieces of biometric information at home.
一実施形態に係る医療モニタリング装置の概略構成を示すブロック図である。1 is a block diagram showing a schematic configuration of a medical monitoring device according to an embodiment. 使用者に装着された状態の図1の生体情報取得部の第1例を示す図である。2 is a diagram showing a first example of the biometric information acquisition unit of FIG. 1 in a state where it is worn by a user; 図2の生体情報取得部を使用者の背面から見た図である。3 is a diagram of the biometric information acquisition unit in FIG. 2 as viewed from behind the user. 図1の胸ベルト部を使用者の側から見た図である。FIG. 2 is a view of the chest belt portion of FIG. 1 as seen from the user's side. 図4の胸ベルト部のA-A断面図である。5 is a cross-sectional view of the chest belt portion of FIG. 4 taken along line AA. 生体情報を測定する際の心音センサの身体に対する配置の一例を説明する図である。1 is a diagram illustrating an example of the placement of a heart sound sensor on a body when measuring biological information. FIG. 胸ベルト部における各センサの配置の他の一例を示す図であって、胸ベルト部を使用者の側の反対側から見た図である。FIG. 13 is a diagram showing another example of the arrangement of sensors on the chest belt portion, as viewed from the side opposite to the user's side; 使用者に装着された状態の生体情報取得部の第2例を示す図である。FIG. 13 is a diagram showing a second example of the biometric information acquisition unit when worn by a user. 使用者に装着された状態の生体情報取得部の第3例を示す図である。FIG. 13 is a diagram showing a third example of a biometric information acquisition unit in a state where it is worn by a user. 図9の生体情報取得部を使用者の背面から見た図である。10 is a diagram of the biometric information acquisition unit in FIG. 9 as viewed from behind the user. 使用者に装着された状態の生体情報取得部の第4例を示す図である。FIG. 13 is a diagram showing a fourth example of a biometric information acquisition unit in a state where it is worn by a user. 図11の生体情報取得部を使用者の背面から見た図である。12 is a diagram of the biometric information acquisition unit in FIG. 11 as viewed from behind the user. ハーネスの位置調節機構の一例について説明する図である。11A and 11B are diagrams illustrating an example of a harness position adjustment mechanism. ハーネスの位置調節機構の他の一例について説明する図である。13A and 13B are diagrams illustrating another example of a harness position adjustment mechanism. 医療モニタリング装置を用いて使用者の生体情報のモニタリングを行う全体の手順を示す図である。FIG. 1 is a diagram showing the overall procedure for monitoring a user's biological information using a medical monitoring device. 使用者が医療モニタリング装置を用いて在宅で行う処理のフローを示す図である。FIG. 13 is a diagram showing a flow of processing performed by a user at home using a medical monitoring device. 胸ベルト部における第3のセンサを含むセンサの配置の一例を示す上面図である。FIG. 13 is a top view showing an example of an arrangement of sensors including a third sensor in the chest belt portion.
 以下、本開示の実施形態について、図面を参照して説明する。以下の説明で用いられる図は模式的なものである。図面上の形状及び比率等は現実のものとは必ずしも一致していない。 Below, an embodiment of the present disclosure will be described with reference to the drawings. The drawings used in the following description are schematic. The shapes and proportions in the drawings do not necessarily correspond to the real thing.
(医療モニタリング装置の全体構成)
 本開示の一実施形態に係る医療モニタリング装置1は、図1に示すように生体情報取得部10と、情報処理部20と、表示部21とを含む。生体情報取得部10、情報処理部20及び表示部21は、それぞれ、互いに通信可能な独立したハードウェアにより構成されてよい。また、生体情報取得部10、情報処理部20及び表示部21の各機能は、1つのハードウェアに搭載されてよく、或いは、2つ以上のハードウェアにより任意の形態で分散して配置されてよい。
(Overall configuration of medical monitoring device)
As shown in Fig. 1, a medical monitoring device 1 according to an embodiment of the present disclosure includes a bioinformation acquisition unit 10, an information processing unit 20, and a display unit 21. The bioinformation acquisition unit 10, the information processing unit 20, and the display unit 21 may each be configured by independent hardware that can communicate with each other. Furthermore, each function of the bioinformation acquisition unit 10, the information processing unit 20, and the display unit 21 may be implemented in a single piece of hardware, or may be distributed and arranged in an arbitrary form by two or more pieces of hardware.
 生体情報取得部10は、医療モニタリング装置1を使用する使用者の身体に装着されて、非侵襲的方法で使用者の生体情報を取得する。したがって、医療モニタリング装置1は非侵襲性の測定装置である。生体情報取得部10が取得する生体情報は、心音、心電図および脈波波形を含む。このため、生体情報取得部10は、心音センサ11、心電センサ12及び脈波センサ13を含む。なお、以下において、「使用者」は、在宅で生体情報の測定を行う患者を意味する。 The biometric information acquisition unit 10 is attached to the body of the user who uses the medical monitoring device 1, and acquires the user's biometric information in a non-invasive manner. Therefore, the medical monitoring device 1 is a non-invasive measurement device. The biometric information acquired by the biometric information acquisition unit 10 includes heart sounds, an electrocardiogram, and a pulse waveform. Therefore, the biometric information acquisition unit 10 includes a heart sound sensor 11, an electrocardiogram sensor 12, and a pulse wave sensor 13. In the following, "user" refers to a patient who has their biometric information measured at home.
 心音センサ11は、心音の取得部位である使用者の心臓(使用者の側)に向けて配置され、使用者の心音を取得する第1のセンサである。心音センサ11は、心音を含む音を検出するセンサである。心音センサ11は、例えば、心音を含む音を電気信号に変換する。心音センサ11は、ダイアフラム(振動板)とバックプレート(電極)との間の静電容量の変化を検出するコンデンサ型マイクロホン、圧電素子を用いた圧電型マイクロホン、及び、永久磁石とコイルを組み合わせた動電型マイクロホン等の種々のセンサの中から採用されうる。心音センサ11は、検出した心音を情報処理部20に出力することができる。また、心音センサ11は、薄い服の上からであっても心音の取得が可能である。 The heart sound sensor 11 is the first sensor that is positioned facing the user's heart (the user's side), which is the part where heart sounds are acquired, and acquires the user's heart sounds. The heart sound sensor 11 is a sensor that detects sounds including heart sounds. The heart sound sensor 11 converts sounds including heart sounds into electrical signals, for example. The heart sound sensor 11 can be adopted from among various sensors such as a capacitor type microphone that detects changes in electrostatic capacitance between a diaphragm (vibration plate) and a back plate (electrode), a piezoelectric type microphone that uses a piezoelectric element, and an electrodynamic type microphone that combines a permanent magnet and a coil. The heart sound sensor 11 can output the detected heart sounds to the information processing unit 20. The heart sound sensor 11 can also acquire heart sounds even over thin clothing.
 心電センサ12は、使用者の側と反対側の面に設けられ、使用者の心電図を取得する第2のセンサである。心電センサ12は、使用者の皮膚の異なる2つの部位間の電位差を計測可能な電極である。異なる2つの部位は、例えば、使用者の両手である。心電センサ12は、電極と使用者の皮膚の異なる2つの部位間のインピーダンスを測定可能なインピーダンスセンサを含んでもよい。インピーダンスセンサは、電極間のインピーダンス変化から、呼吸の状態の把握や呼吸数の検出をしてもよい。心電センサ12は、2つの電極12a(図2参照)が、それぞれ、使用者が両方の手の一方で触れることのできる位置に配置される。使用者は、両手が重ならないように2つの電極12aにそれぞれ異なる手で触れることにより心電図を測定することができる。心電センサ12により測定される心電図の波形は、使用者の心臓の電気的な活動を示す。 The electrocardiogram sensor 12 is a second sensor provided on the surface opposite to the user's side, and acquires the user's electrocardiogram. The electrocardiogram sensor 12 is an electrode capable of measuring the potential difference between two different parts of the user's skin. The two different parts are, for example, the user's hands. The electrocardiogram sensor 12 may include an impedance sensor capable of measuring the impedance between the electrode and two different parts of the user's skin. The impedance sensor may grasp the breathing state and detect the breathing rate from the impedance change between the electrodes. The electrocardiogram sensor 12 has two electrodes 12a (see FIG. 2) arranged in positions where the user can touch them with one of both hands. The user can measure the electrocardiogram by touching the two electrodes 12a with different hands so that the hands do not overlap. The waveform of the electrocardiogram measured by the electrocardiogram sensor 12 indicates the electrical activity of the user's heart.
 脈波センサ13は、使用者の動脈内圧の変化である脈波を検出する。脈波センサ13は、心電センサ12に代えて、又は、心電センサ12に加えて第2のセンサとすることができる。脈波センサ13には、光電式容積脈波計(PPG:Photo Plethysmography)と、圧電素子を用いる脈波センサ13とが含まれる。光電式容積脈波計は、検出対象部位に光を照射し、透過又は反射された光量の変化により、血管の容積変化を測定する。圧電素子を用いる脈波センサ13は、微小な血管壁の振動を圧力変化として測定する。脈波センサ13は、身体の種々の位置で測定をすることが可能である。また、圧電素子を用いた脈波センサ13では、薄い服の上からであっても脈波波形の測定が可能であるため、使用者の側の面に設けられてよい。また、脈波センサ13は、使用者が少なくとも片方の手で触れることにより、脈波波形を計測することができるため、使用者と反対側の面に配置されてよい。 The pulse wave sensor 13 detects pulse waves, which are changes in the user's intra-arterial pressure. The pulse wave sensor 13 can be used as a second sensor in place of or in addition to the electrocardiogram sensor 12. The pulse wave sensor 13 includes a photoplethysmograph (PPG: Photo Plethysmography) and a pulse wave sensor 13 using a piezoelectric element. The photoplethysmograph irradiates the detection target area with light and measures changes in the volume of blood vessels based on changes in the amount of light transmitted or reflected. The pulse wave sensor 13 using a piezoelectric element measures minute vibrations of the blood vessel walls as pressure changes. The pulse wave sensor 13 can measure at various positions on the body. In addition, the pulse wave sensor 13 using a piezoelectric element can measure the pulse waveform even over thin clothing, so it may be installed on the surface facing the user. In addition, the pulse wave sensor 13 may be placed on the side opposite the user, so that the user can measure the pulse waveform by touching it with at least one hand.
 なお、第2のセンサは、心電センサ12及び脈波センサ13以外のセンサとすることもできる。第2のセンサは、好ましくは、手で触れることができ、手から生体情報を取得できるセンサである。このようなセンサであれば、使用者は服を着たまま生体情報を測定することができる。 The second sensor may be a sensor other than the electrocardiogram sensor 12 and the pulse wave sensor 13. The second sensor is preferably a sensor that can be touched with the hand and can obtain biometric information from the hand. Such a sensor allows the user to measure biometric information while still wearing clothes.
 生体情報取得部10は、さらに、押圧調整機構15を含んでよい。押圧調整機構15は、心音センサ11が使用者の体表を押圧する圧力を調整する。心音センサ11は、心音センサ11が使用者の体表を押圧する圧力(以下、適宜「押し圧」という)が変化することによって、波形が変化しやすい。押圧調整機構15は、心音センサ11により良好な心音の測定が可能なように制御される。押圧調整機構15の構造については、さらに後述する。 The bioinformation acquisition unit 10 may further include a pressure adjustment mechanism 15. The pressure adjustment mechanism 15 adjusts the pressure with which the heart sound sensor 11 presses against the surface of the user's body. The waveform of the heart sound sensor 11 is likely to change due to changes in the pressure with which the heart sound sensor 11 presses against the surface of the user's body (hereinafter referred to as "pressure" as appropriate). The pressure adjustment mechanism 15 is controlled so that the heart sound sensor 11 can measure heart sounds well. The structure of the pressure adjustment mechanism 15 will be described further below.
 情報処理部20は、医療モニタリング装置1の全体を制御するとともに、種々の情報処理を行うコンピュータである。情報処理部20は、例えば、医療モニタリング装置1に用いられる専用のコンピュータであってもよいし、汎用のコンピュータであってもよい。汎用のコンピュータである場合、情報処理部20は、例えば、タブレット端末、スマートフォン、ノートPC(Personal Computer)、デスクトップPC、及びワークステーション等の何れかであってよい。情報処理部20の機能は、単一の装置ではなく、複数の装置に分散して配置されてもよい。 The information processing unit 20 is a computer that controls the entire medical monitoring device 1 and performs various information processing. The information processing unit 20 may be, for example, a dedicated computer used in the medical monitoring device 1, or a general-purpose computer. If it is a general-purpose computer, the information processing unit 20 may be, for example, a tablet terminal, a smartphone, a notebook PC (Personal Computer), a desktop PC, a workstation, or the like. The functions of the information processing unit 20 may be distributed across multiple devices rather than being located in a single device.
 情報処理部20は、生体情報取得部10により取得された生体情報に基づいて、種々の処理を実行する。情報処理部20は、生体情報取得部10の押圧調整機構15を制御する。情報処理部20は、生体情報取得部10で取得した生体情報に基づいて、心機能に関するパラメータを測定又は推定する。情報処理部20は、生体情報取得部10で取得した複数の生体情報を組み合わせて心機能に関するパラメータを測定又は推定することができる。心機能に関するパラメータは、例えば、心係数(CI)、又は弁膜症、又は左室駆出率(LEF:left ejection fraction)、及び右室駆出率(REF:right ejection fraction)等の駆出率(EF:ejection fraction)、又はPEP(Preejection Period)、又はLVET(Left Ventricular Ejection Time)、及びRVET(Right Ventricular Ejection Time)等のET(Ejection Time)、又はSTI(Systolic Time Interval)を含んでよい。さらに、心機能に関するパラメータは、心機能に関する血液のパラメータであって、心機能に関する血液のパラメータは、例えば、脳性ナトリウム利尿ペププチド(BNP:brain natriuretic peptide)、NT-proBNP、酸素飽和度、肺体血流比を含む。 The information processing unit 20 executes various processes based on the bio-information acquired by the bio-information acquisition unit 10. The information processing unit 20 controls the pressure adjustment mechanism 15 of the bio-information acquisition unit 10. The information processing unit 20 measures or estimates parameters related to cardiac function based on the bio-information acquired by the bio-information acquisition unit 10. The information processing unit 20 can measure or estimate parameters related to cardiac function by combining multiple pieces of bio-information acquired by the bio-information acquisition unit 10. Parameters related to cardiac function may include, for example, cardiac index (CI), or valvular disease, or ejection fraction (EF: ejection fraction) such as left ejection fraction (LEF: left ejection fraction) and right ejection fraction (REF: right ejection fraction), or PEP (Preejection Period), or ET (Ejection Time) such as LVET (Left Ventricular Ejection Time) and RVET (Right Ventricular Ejection Time), or STI (Systolic Time Interval). Furthermore, the parameters related to cardiac function are blood parameters related to cardiac function, and blood parameters related to cardiac function include, for example, brain natriuretic peptide (BNP), NT-proBNP, oxygen saturation, and pulmonary-systemic blood flow ratio.
 また、心機能に関するパラメータは、心内血行動態を示すパラメータであって、心拍出量(CO)、心内圧、及び心血管内圧を含んでよい。心内圧とは、より具体的には、心臓の各部の収縮期圧や拡張期圧、平均圧である。心内圧は、例えば、左心圧、右心圧及び左心室圧波形、右心室圧波形、及び左室拡張末期圧(LVEDP:left ventricular end-diastolic pressure)、左房圧(LAP:left atrium pressure)、左室圧(LVP:left ventricular pressure)、肺動脈拡張期末圧(PAEDP:pulmonary artery end diastolic pressure、又は、PADP:pulmonary artery diastolic pressure)、右房圧(RAP:right atrium pressure)、右室圧(RVP:Right ventricular pressure)を含んでよい。心血管内圧は、より具体的には、心臓近傍の血管の圧力や平均圧である。心血管内圧は、例えば、中心静脈圧(CVP:Central Venous Pressure)、肺動脈圧(PAP:pulmonary arterial pressure)、及び肺動脈楔入圧(PWP:pulmonary wedge pressure)を含むが、これらに限られない。肺動脈楔入圧は、PAWP(pulmonary arterial wedge pressure)、PCWP(pulmonary capillary wedge pressure)、又はPAOP(pulmonary artery occlusion pressure)とも称される。 Furthermore, the parameters relating to cardiac function are parameters indicating intracardiac hemodynamics, and may include cardiac output (CO), intracardiac pressure, and intracardiac vascular pressure. More specifically, intracardiac pressure refers to the systolic pressure, diastolic pressure, and mean pressure of each part of the heart. Intracardiac pressure includes, for example, left heart pressure, right heart pressure, and left ventricular pressure waveform, right ventricular pressure waveform, and left ventricular end-diastolic pressure (LVEDP), left atrial pressure (LAP), left ventricular pressure (LVP), pulmonary artery end-diastolic pressure (PAP), and other parameters. The intracardiac pressure may include pulmonary artery end diastolic pressure (PAEDP) or pulmonary artery diastolic pressure (PADP), right atrial pressure (RAP), and right ventricular pressure (RVP). More specifically, the intracardiac pressure is the pressure or mean pressure of blood vessels near the heart. Examples of cardiovascular pressure include, but are not limited to, central venous pressure (CVP), pulmonary arterial pressure (PAP), and pulmonary wedge pressure (PWP). Pulmonary arterial wedge pressure is also called PAWP (pulmonary arterial wedge pressure), PCWP (pulmonary capillary wedge pressure), or PAOP (pulmonary artery occlusion pressure).
 情報処理部20は、制御部22、記憶部23、及び出力部24を含む。 The information processing unit 20 includes a control unit 22, a memory unit 23, and an output unit 24.
 制御部22は、少なくとも1つのプロセッサ、少なくとも1つの専用回路、又はこれらの組み合わせを含む。プロセッサは、CPU(Central Processing Unit)等の汎用プロセッサ、又は特定の処理に特化した専用プロセッサである。制御部22は、情報処理部20の各部を制御しながら、情報処理部20の動作に関わる処理を実行する。制御部22は、記憶部23に記憶されたプログラムに従って処理を実行してよい。制御部22の構成については、さらに後述する。 The control unit 22 includes at least one processor, at least one dedicated circuit, or a combination of these. The processor is a general-purpose processor such as a CPU (Central Processing Unit), or a dedicated processor specialized for a specific process. The control unit 22 executes processes related to the operation of the information processing unit 20 while controlling each part of the information processing unit 20. The control unit 22 may execute processes according to a program stored in the memory unit 23. The configuration of the control unit 22 will be described further below.
 記憶部23は、例えば半導体メモリ、磁気メモリ、又は光メモリ等であるが、これらに限定されない。記憶部23は、例えば主記憶装置、補助記憶装置、又はキャッシュメモリとして機能してもよい。記憶部23は、医療モニタリング装置1の動作に用いられる任意の情報を記憶する。例えば、記憶部23は、システムプログラム、アプリケーションプログラム、並びに、それぞれのセンサによって取得された情報等を順次記憶してよい。記憶部23は、心音センサ11の測定に使用する基準波形を記憶する。 The memory unit 23 is, for example, but not limited to, a semiconductor memory, a magnetic memory, or an optical memory. The memory unit 23 may function, for example, as a main memory device, an auxiliary memory device, or a cache memory. The memory unit 23 stores any information used in the operation of the medical monitoring device 1. For example, the memory unit 23 may sequentially store system programs, application programs, and information acquired by each sensor. The memory unit 23 stores a reference waveform used for measurement by the heart sound sensor 11.
 出力部24は、情報を出力してユーザに通知する1つ以上の出力用インタフェースを含む。出力部24は、外部サーバ25と通信を行うための通信インタフェースを備えてよい。 The output unit 24 includes one or more output interfaces that output information to notify the user. The output unit 24 may include a communication interface for communicating with an external server 25.
 表示部21は、情報処理部20で処理された各種の情報を表示する表示装置である。表示部21は、専用の表示装置又はPC等のディスプレイであってよい。また、表示部21は、スマートフォンの表示画面を使用することができる。 The display unit 21 is a display device that displays various information processed by the information processing unit 20. The display unit 21 may be a dedicated display device or a display of a PC or the like. The display unit 21 may also use the display screen of a smartphone.
 情報処理部20は、さらに、通信回線を介して外部サーバ25に対して、推定した心機能に関するパラメータを送信可能に構成される。外部サーバ35は、例えば、在宅で測定を行う使用者が利用している病院のサーバ、又は、クラウドに配置された医療モニタリング装置1の専用のサーバである。外部サーバ25に格納された情報は、医師等の医療従事者が使用者の状態を確認し、必要な場合に処方変更等の介入をすることを支援する情報として使用されることができる。 The information processing unit 20 is further configured to be able to transmit the estimated cardiac function parameters to an external server 25 via a communication line. The external server 35 is, for example, a server at a hospital used by a user performing measurements at home, or a dedicated server for the medical monitoring device 1 located in the cloud. The information stored in the external server 25 can be used to assist medical professionals such as doctors in checking the user's condition and, if necessary, intervening by changing the prescription, etc.
(生体情報取得部の構成例1)
 生体情報取得部10の構成例について図2及び図3を参照して説明する。生体情報取得部10の心音センサ11、心電センサ12の電極12a、及び脈波センサ13は、使用者が装着するハーネス16上に配置される。例えば、心音センサ11及び脈波センサ13は使用者の側に配置され、心電センサの電極12aは使用者の側と反対側に設けられる。ハーネス16は、これら心音センサ11、心電センサ12の電極12a、及び脈波センサ13を使用者の身体30に対して固定する。ハーネス16は、平坦で細長い帯状の複数の部分から構成される。ハーネス16は、肩ベルト部16aと胸ベルト部16bとを含む。肩ベルト部16aは、使用者の装着時、使用者の左右の肩にかけられ、左右の肩及び脇の間を通る。肩ベルト部16aは、使用者の正面において左肩と左脇、及び、右肩と右脇との間を繋ぎ、使用者の背面において左肩と右脇、及び、右肩と左脇との間で交差する。ハーネス16は、使用者の体に対して固定するための固定具を含んでよい。固定具は、固定用の金具及びバックル等を含んでよい。
(Configuration Example 1 of Biometric Information Acquisition Unit)
An example of the configuration of the biometric information acquisition unit 10 will be described with reference to Figs. 2 and 3. The heart sound sensor 11, the electrode 12a of the electrocardiogram sensor 12, and the pulse wave sensor 13 of the biometric information acquisition unit 10 are arranged on a harness 16 worn by the user. For example, the heart sound sensor 11 and the pulse wave sensor 13 are arranged on the user's side, and the electrode 12a of the electrocardiogram sensor is provided on the opposite side to the user's side. The harness 16 fixes the heart sound sensor 11, the electrode 12a of the electrocardiogram sensor 12, and the pulse wave sensor 13 to the user's body 30. The harness 16 is composed of a plurality of flat, elongated, strip-like parts. The harness 16 includes a shoulder belt portion 16a and a chest belt portion 16b. When worn by the user, the shoulder belt portion 16a is hung on the left and right shoulders of the user and passes between the left and right shoulders and armpits. The shoulder belt portion 16a connects the left shoulder and left armpit and the right shoulder and right armpit in front of the user, and crosses between the left shoulder and right armpit and the right shoulder and left armpit in the back of the user. The harness 16 may include a fastener for fastening to the user's body. The fastener may include a fastening metal fitting, a buckle, etc.
 ハーネス16は、使用者の胸部前面及び胸部背面の少なくとも何れかを覆うように装着される。図2の例では、ハーネス16は、使用者の胸部前面に装着される胸ベルト部16bを含む。胸ベルト部16bには、使用者の側を向いた面に心音センサ11と脈波センサ13とが配置される。心音センサ11は、使用者の胸部体表の振動情報を取得可能な第1のセンサである。使用者の胸部体表は、より具体的には、衣類を着用していない状態の使用者の身体30の胸部の皮膚表面、あるいは、衣類を着用した状態の使用者の身体30の胸部の衣類表面である。心第1のセンサは、心音センサ11のみならず、心尖拍動(心臓の先端部から取得される拍動)を検出するセンサであってもよい。胸ベルト部16bの使用者の側と反対側の面には、心電センサ12の2つの電極12aと、測定開始ボタン14とが設けられる。なお、心音センサ11は振動情報として心音及び心尖拍動の他に、肺音(呼吸音、副雑音など)、その他の体内からの振動情報(腸蠕動音、血管雑音など)を取得してもよい。 The harness 16 is worn to cover at least one of the front and back of the user's chest. In the example of FIG. 2, the harness 16 includes a chest belt portion 16b worn on the front of the user's chest. The chest belt portion 16b has a heart sound sensor 11 and a pulse wave sensor 13 arranged on the surface facing the user. The heart sound sensor 11 is a first sensor capable of acquiring vibration information of the user's chest surface. More specifically, the user's chest surface is the skin surface of the chest of the user's body 30 when the user is not wearing clothes, or the clothing surface of the chest of the user's body 30 when the user is wearing clothes. The first heart sensor may be not only the heart sound sensor 11, but also a sensor that detects the apical beat (beat acquired from the tip of the heart). Two electrodes 12a of the electrocardiogram sensor 12 and a measurement start button 14 are provided on the surface of the chest belt portion 16b opposite to the user's side. In addition to heart sounds and apical pulsation, the heart sound sensor 11 may also acquire lung sounds (breath sounds, accessory murmurs, etc.) and other vibration information from within the body (intestinal peristalsis sounds, vascular murmurs, etc.) as vibration information.
 図4は、胸ベルト部16bを、使用者の身体30の側から見た図である。図5は、図4の胸ベルト部16bのA-A断面図である。この例において、心音センサ11と脈波センサ13とは、一体として構成される、又は、同一平面上に並んで配置される。この場合、脈波センサ13としては、使用者が服を着ていても使用できる圧電素子を用いるセンサを使用することができる。心音センサ11及び脈波センサ13は、押圧調整機構15により使用者の体表に対して、押し付けられるように構成されてもよい。一例として、押圧調整機構15は、筐体部15a、可動部材15b、付勢部15c、エア管15d、制御バルブ15e、及びポンプPを含んで構成される。エア管15d及びポンプPは、筐体部15aの外にあるが、図2及び図4等においては省略している。 FIG. 4 is a view of the chest belt portion 16b as seen from the side of the user's body 30. FIG. 5 is a cross-sectional view of the chest belt portion 16b of FIG. 4 taken along the line A-A. In this example, the heart sound sensor 11 and the pulse wave sensor 13 are integrally configured, or are arranged side by side on the same plane. In this case, the pulse wave sensor 13 may be a sensor using a piezoelectric element that can be used even when the user is wearing clothes. The heart sound sensor 11 and the pulse wave sensor 13 may be configured to be pressed against the surface of the user's body by the pressure adjustment mechanism 15. As an example, the pressure adjustment mechanism 15 includes a housing portion 15a, a movable member 15b, a biasing portion 15c, an air tube 15d, a control valve 15e, and a pump P. The air tube 15d and the pump P are outside the housing portion 15a, but are omitted in FIG. 2 and FIG. 4.
 筐体部15aは、可動部材15b及び付勢部15cを内蔵する。筐体部15aは、使用者の身体30側の面に開口を有している。この開口を通して、端部に心音センサ11及び脈波センサ13が固定された可動部材15bが、進出又は後退可能となっている。 The housing 15a houses the movable member 15b and the biasing member 15c. The housing 15a has an opening on the side facing the user's body 30. The movable member 15b, which has the heart sound sensor 11 and pulse wave sensor 13 fixed to its end, can advance or retreat through this opening.
 可動部材15bは、例えば、心音センサ11及び脈波センサ13が配置される面を一方の底面とする円柱状の部材である。使用者の装着状態における可動部材15bの使用者の身体30の側と反対側は、付勢部15cに接する平坦な面を有するつば部15fとなっている。 The movable member 15b is, for example, a cylindrical member with one bottom surface being the surface on which the heart sound sensor 11 and pulse wave sensor 13 are arranged. When worn by the user, the movable member 15b has a flange portion 15f with a flat surface that contacts the biasing portion 15c on the side opposite the user's body 30.
 付勢部15cは、つば部15fを使用者の身体30側に向けて調整可能な力で付勢することができる。例えば、付勢部15cは、内部に空気を導入すること及び内部から空気を排出することにより、拡張及び収縮可能な弾力性を有するバルーンとすることができる。 The biasing portion 15c can bias the flange portion 15f toward the user's body 30 with an adjustable force. For example, the biasing portion 15c can be a balloon with elasticity that can expand and contract by introducing air into the interior and expelling air from the interior.
 押圧調整機構15は、バルーンである付勢部15cの内部に連通するエア管15dと、エア管15dの途中に位置する制御バルブ15eと、エア管15dに対して空気を送出する、又は、エア管15dから空気を排出するポンプPとを含む。情報処理部20の制御部22は、制御バルブ15e及びポンプPを制御することができる。 The pressure adjustment mechanism 15 includes an air tube 15d that communicates with the inside of the biasing part 15c, which is a balloon, a control valve 15e located midway through the air tube 15d, and a pump P that sends air to the air tube 15d or expels air from the air tube 15d. The control part 22 of the information processing part 20 can control the control valve 15e and the pump P.
 上記のような構成により、押圧調整機構15は、制御部22からの制御信号により付勢部15cであるバルーンの内部に給気して、又は、バルーンの内部から排気してバルーン内の空気の量を調節することができる。これにより、付勢部15cの可動部材15bに対する付勢力が調節され、心音センサ11が使用者の身体30の心音取得部位を押圧する圧力が調整される。すなわち、ポンプP、エア管15d、及び、制御バルブ15eは、心音センサ11の押し圧を調節するために使用される。 With the above-mentioned configuration, the pressure adjustment mechanism 15 can adjust the amount of air in the balloon by supplying air to the inside of the balloon, which is the biasing part 15c, or exhausting air from the inside of the balloon, in response to a control signal from the control part 22. This adjusts the biasing force of the biasing part 15c against the movable member 15b, and adjusts the pressure with which the heart sound sensor 11 presses against the heart sound acquisition part of the user's body 30. In other words, the pump P, air tube 15d, and control valve 15e are used to adjust the pressure of the heart sound sensor 11.
 押圧調整機構15は、心音センサ11の押し圧を測定する圧力センサ15gを含んでよい。圧力センサ15gは、可動部材15bの心音センサ11の設けられた面上に配置されてよい。押圧調整機構15は、付勢部15cによる付勢力が加わっていない場合に、可動部材15bを筐体部15a内に後退させるためのバネ15hを含んでよい。バネ15hは、筐体部15a内に設けられ、つば部15fの使用者の身体30側の面を使用者の身体30側の反対側に向けて付勢する。圧力センサ15g及びバネ15hは、必須の構成要素ではない。 The pressure adjustment mechanism 15 may include a pressure sensor 15g that measures the pressure of the heart sound sensor 11. The pressure sensor 15g may be disposed on the surface of the movable member 15b on which the heart sound sensor 11 is provided. The pressure adjustment mechanism 15 may include a spring 15h for retracting the movable member 15b into the housing part 15a when no biasing force is applied by the biasing part 15c. The spring 15h is provided in the housing part 15a and biases the surface of the flange part 15f facing the user's body 30 toward the opposite side of the user's body 30. The pressure sensor 15g and the spring 15h are not essential components.
 押圧調整機構15は、図5に示した構成のものに限られない。例えば、押圧調整機構15は、モータとモータの回転によって進出及び後退する可動部材を有する構成であってもよい。この場合、図5のように筐体部15aの外部から空気を導入しなくとも、モータを電気的に制御することによって心音センサ11が使用者の身体30を押圧する圧力を調整することができる。また、押圧調整機構15として、使用者に対して心音センサ11を押し付けるために、血圧測定で用いられるようなゴム嚢を用いることもできる。 The pressure adjustment mechanism 15 is not limited to the configuration shown in FIG. 5. For example, the pressure adjustment mechanism 15 may have a configuration including a motor and a movable member that advances and retreats as the motor rotates. In this case, the pressure with which the heart sound sensor 11 presses against the user's body 30 can be adjusted by electrically controlling the motor, without introducing air from outside the housing 15a as shown in FIG. 5. Also, a rubber bag such as that used in blood pressure measurement can be used as the pressure adjustment mechanism 15 to press the heart sound sensor 11 against the user.
 押圧調整機構15は、胸ベルト部16bに設けた袋状又はポケット状の部分に組み込まれてよい。或いは、胸ベルト部16bは、押圧調整機構15を挟んで2つの部分に分かれており、それぞれの部分の端部は、押圧調整機構15の筐体部15aの使用者から見て左右の端部に固定されていてよい。筐体部15aは、心音センサ11を使用者の身体30に対して押圧できるのであれば、硬い部材である必要はない。 The pressure adjustment mechanism 15 may be incorporated into a bag- or pocket-shaped portion of the chest belt portion 16b. Alternatively, the chest belt portion 16b may be divided into two portions with the pressure adjustment mechanism 15 in between, and the ends of each portion may be fixed to the left and right ends of the housing portion 15a of the pressure adjustment mechanism 15 as seen from the user. The housing portion 15a does not need to be a hard material as long as it can press the heart sound sensor 11 against the user's body 30.
 心音センサ11は、図6に示すように、使用者の身体30の心臓31に向けて配置される。心音センサ11は、予め医師によって決定された位置に配置される。 The heart sound sensor 11 is positioned toward the heart 31 of the user's body 30 as shown in FIG. 6. The heart sound sensor 11 is positioned at a position determined in advance by a doctor.
 生体情報取得部10を用いて測定をするとき、使用者はハーネス16を身体30に装着し、左右の手で、それぞれ心電センサ12の左右の電極12aに触れながら、測定開始ボタン14を操作する。これによって、測定が開始され、同時に、又は、順次に心音、心電図及び脈波波形の測定が行われる。心音については、押圧調整機構15により、心音センサ11で使用者の身体30を押圧する押し圧が心音を取得するのに適切な圧力となるように調整される。 When taking measurements using the bioinformation acquisition unit 10, the user attaches the harness 16 to the body 30 and operates the measurement start button 14 while touching the left and right electrodes 12a of the electrocardiogram sensor 12 with each hand, respectively. This starts the measurement, and the heart sounds, electrocardiogram, and pulse waveform are measured simultaneously or sequentially. For heart sounds, the pressure adjustment mechanism 15 adjusts the pressure with which the heart sound sensor 11 presses against the user's body 30 so that it is appropriate for acquiring heart sounds.
 上記構成例では、心音センサ11と脈波センサ13とが、可動部材15bの同一の面に配置されるものとしたが、心音センサ11、心電センサ12及び脈波センサ13の配置はこれに限られない。心音センサ11と脈波センサ13とは、図7に示すように別の位置に配置されてよい。図7の例では、左右の電極12aの外側に、脈波センサ13が配置されるが、左右の電極12aの内側に、脈波センサ13が配置されてもよい。図7では、脈波センサ13が2つ示されているが、脈波センサ13は1つであってよい。脈波センサ13は、使用者の側と反対側に設けられて、光電式容積脈波計を用いることができる。使用者は、測定を行う際に、左右の手の指でそれぞれ左右の電極12aに触れるとともに、双方又は何れか一方の脈波センサ13に手の指で触れる。電極12aに触れる指と、脈波センサ13に触れる指とは、異なる指であってよい。これによって、手の指から心電図の測定ができるとともに脈波波形を測定することができる。 In the above configuration example, the heart sound sensor 11 and the pulse wave sensor 13 are arranged on the same surface of the movable member 15b, but the arrangement of the heart sound sensor 11, the electrocardiogram sensor 12, and the pulse wave sensor 13 is not limited to this. The heart sound sensor 11 and the pulse wave sensor 13 may be arranged in different positions as shown in FIG. 7. In the example of FIG. 7, the pulse wave sensor 13 is arranged on the outside of the left and right electrodes 12a, but the pulse wave sensor 13 may be arranged on the inside of the left and right electrodes 12a. In FIG. 7, two pulse wave sensors 13 are shown, but there may be only one pulse wave sensor 13. The pulse wave sensor 13 may be provided on the side opposite to the user, and a photoelectric volume pulse wave meter may be used. When performing measurement, the user touches the left and right electrodes 12a with the fingers of the left and right hands, respectively, and touches both or either of the pulse wave sensors 13 with the fingers of the hand. The fingers touching the electrodes 12a and the fingers touching the pulse wave sensor 13 may be different fingers. This allows you to measure the electrocardiogram and pulse waveform from your fingers.
(生体情報取得部の構成例2)
 図8を参照して、生体情報取得部10Aの構成例について説明する。生体情報取得部10Aは、図2及び図3に示した生体情報取得部10とは、心音センサ11、心電センサ12及び脈波センサ13の配置が異なる。生体情報取得部10Aでは、心電センサ12の2つの電極12aが、それぞれ左右の肩ベルト部16aに配置される。また、測定開始ボタン14は、一方の電極12aの近くに配置される。使用者は、測定時において、左手で左の電極12aに触れ、右手で右の電極12aに触れることができる。この構成では、心電センサ12の電極12aと、心音センサ11とが離れているので、使用者が電極12aに触れたとき発生する音がノイズとなって、心音センサ11に検出される可能性を低減することができる。また、この構成では、構成例1の電極12aの配置に比べ、2つの電極12aが離れているので、左右の手が互いに接触する可能性が低い。このため、より正確な測定ができることが期待される。
(Configuration Example 2 of Biometric Information Acquisition Unit)
With reference to FIG. 8, a configuration example of the bioinformation acquiring unit 10A will be described. The bioinformation acquiring unit 10A differs from the bioinformation acquiring unit 10 shown in FIG. 2 and FIG. 3 in the arrangement of the heart sound sensor 11, the electrocardiogram sensor 12, and the pulse wave sensor 13. In the bioinformation acquiring unit 10A, the two electrodes 12a of the electrocardiogram sensor 12 are arranged on the left and right shoulder belt parts 16a, respectively. In addition, the measurement start button 14 is arranged near one of the electrodes 12a. During measurement, the user can touch the left electrode 12a with the left hand and the right electrode 12a with the right hand. In this configuration, the electrode 12a of the electrocardiogram sensor 12 and the heart sound sensor 11 are separated, so that the possibility that the sound generated when the user touches the electrode 12a becomes noise and is detected by the heart sound sensor 11 can be reduced. In addition, in this configuration, the two electrodes 12a are separated compared to the arrangement of the electrodes 12a in the configuration example 1, so that the possibility that the left and right hands will come into contact with each other is low. For this reason, it is expected that more accurate measurement can be performed.
(生体情報取得部の構成例3)
 図9及び図10を参照して、心音センサ11、心電センサ12及び脈波センサ13の配置が異なるさらに他の生体情報取得部10Bの構成例について説明する。生体情報取得部10Bでは、ハーネス16の胸ベルト部16bが無く、脈波センサ13は、心電センサ12の電極12aとともに肩ベルト部16aに配置される。また、生体情報取得部10Bでは、図10に示すように、装着時の使用者の背中側の肩ベルト部16aが交差する位置に、心音センサ11が設けられる。このようにすることで、使用者の背中側から心音を取得することが可能になる。
(Configuration Example 3 of Biometric Information Acquisition Unit)
9 and 10, a further example of the configuration of a bioinformation acquisition unit 10B in which the heart sound sensor 11, electrocardiogram sensor 12, and pulse wave sensor 13 are arranged differently will be described. In the bioinformation acquisition unit 10B, the chest belt portion 16b of the harness 16 is absent, and the pulse wave sensor 13 is arranged on the shoulder belt portion 16a together with the electrode 12a of the electrocardiogram sensor 12. In addition, in the bioinformation acquisition unit 10B, as shown in Fig. 10, the heart sound sensor 11 is provided at a position where the shoulder belt portion 16a crosses on the back side of the user when the bioinformation acquisition unit 10B is worn. In this way, it is possible to acquire heart sounds from the back side of the user.
 このように、心音センサ11は、ハーネス16の使用者の胸部前面及び胸部背面の少なくとも何れかにおいて、使用者の側に配置されてよい。また、ハーネス16は、使用者の胸部背面の心音を測定するため、使用者の背面側に胸ベルト部16bを設ける構成とすることも可能である。胸ベルト部16bは、胸部前面または胸部背面を少なくとも部分的に覆って配置される。 In this way, the heart sound sensor 11 may be placed on the user's side, at least on either the front or back of the user's chest, of the harness 16. The harness 16 can also be configured to have a chest belt portion 16b on the back side of the user in order to measure heart sounds on the back of the user's chest. The chest belt portion 16b is placed so as to at least partially cover the front or back of the chest.
(生体情報取得部の構成例4)
 図11及び図12を参照して、さらに他の生体情報取得部10Cの構成例について説明する。図11及び図12に示す生体情報取得部10Cは、上記構成例1~3と異なり、肩ベルト部16a及び胸ベルト部16bに加え、使用者の腹部を少なくとも部分的に覆い、腰の部分に固定される腰ベルト部16cを含む。心音センサ11は、胸ベルト部16bに配置される。心電センサ12の電極12a及び脈波センサ13は、左右の肩ベルト部16aに配置される。さらに、肩ベルト部16aは、使用者の正面側及び背面側の双方において、肩から離れた側の端部が腰ベルト部16cに固定される。このようにすることで、ハーネス16を使用者の身体30により正確に固定することが可能になる。
(Configuration Example 4 of Biometric Information Acquisition Unit)
11 and 12, a further example of the configuration of the bioinformation acquisition unit 10C will be described. The bioinformation acquisition unit 10C shown in FIG. 11 and FIG. 12 is different from the above-mentioned examples 1 to 3, and includes, in addition to the shoulder belt portion 16a and the chest belt portion 16b, a waist belt portion 16c that at least partially covers the abdomen of the user and is fixed to the waist. The heart sound sensor 11 is disposed in the chest belt portion 16b. The electrodes 12a of the electrocardiogram sensor 12 and the pulse wave sensor 13 are disposed in the left and right shoulder belt portions 16a. Furthermore, the ends of the shoulder belt portions 16a that are farther from the shoulders are fixed to the waist belt portions 16c on both the front and back sides of the user. This makes it possible to fix the harness 16 to the user's body 30 more accurately.
(心音センサの位置調整)
 心音は、心音センサ11の装着位置によって検出される波形が変化しやすい。心音センサ11は、医師や看護師などが使用者ごとの適切な位置に調整できることが必要である。このため、ハーネス16は、位置調整機構を備える。例えば、図13に示すように、使用者の身体30の側に心音センサ11が配置される胸ベルト部16bは、使用者の体表上で垂直方向(使用者の上下方向)に位置調整可能であってよい。位置調整機構は、例えば、ハーネス16の胸ベルト部16bを、肩ベルト部16aに対して適宜の位置で固定するための面ファスナー及びクリップなどを含んでよい。肩ベルト部16aは、胸ベルト部16bの垂直方向の位置を示す目盛り17aを有してよい。
(Adjusting the position of the heart sound sensor)
The waveform of the heart sound detected is likely to change depending on the position where the heart sound sensor 11 is attached. It is necessary that the heart sound sensor 11 can be adjusted to an appropriate position for each user by a doctor, nurse, etc. For this reason, the harness 16 is provided with a position adjustment mechanism. For example, as shown in FIG. 13, the chest belt part 16b where the heart sound sensor 11 is placed on the side of the user's body 30 may be position adjustable in the vertical direction (up and down direction of the user) on the surface of the user's body. The position adjustment mechanism may include, for example, a hook-and-loop fastener and a clip for fixing the chest belt part 16b of the harness 16 at an appropriate position relative to the shoulder belt part 16a. The shoulder belt part 16a may have a scale 17a indicating the vertical position of the chest belt part 16b.
 また、例えば、図14に示すように、胸ベルト部16bの心音センサ11が配置される位置は、使用者の体表上で水平方向(使用者の左右方向)に位置調整可能であってよい。例えば、ハーネス16の胸ベルト部16bは心音センサ11を挟んで左右の部分の長さを調整可能に構成されてよい。また、例えば、心音センサ11は、胸ベルト部16bに沿ってスライド可能且つ固定可能に構成されてよい。胸ベルト部16bは、心音センサ11の水平方向の位置を示す目盛り17bを有してよい。心音センサ11の位置を水平方向に調整する機構は、位置調整機構に含まれる。位置調整機構は、図13及び図14に示す構成を同時に含んでよい。 Furthermore, for example, as shown in FIG. 14, the position where the heart sound sensor 11 is placed on the chest belt portion 16b may be adjustable in the horizontal direction (left and right direction of the user) on the surface of the user's body. For example, the chest belt portion 16b of the harness 16 may be configured so that the lengths of the left and right portions sandwiching the heart sound sensor 11 are adjustable. Further, for example, the heart sound sensor 11 may be configured so that it can slide and be fixed along the chest belt portion 16b. The chest belt portion 16b may have a scale 17b that indicates the horizontal position of the heart sound sensor 11. The mechanism for adjusting the position of the heart sound sensor 11 in the horizontal direction is included in the position adjustment mechanism. The position adjustment mechanism may simultaneously include the configurations shown in FIG. 13 and FIG. 14.
 ハーネス16に対して、一度、心音センサ11を含む各センサの位置を設定すると、次回以降使用者が装着したとき、各センサは、使用者の身体30に対して設定した位置と同じ位置に位置する。装着時のハーネス16の位置を安定させるため、ハーネス16は所定の部分に錘などを設けてよい。 Once the positions of the sensors, including the heart sound sensor 11, are set with respect to the harness 16, the next time the user wears the harness, each sensor will be positioned in the same position as set with respect to the user's body 30. To stabilize the position of the harness 16 when worn, weights or the like may be attached to predetermined parts of the harness 16.
(制御部の構成)
 図1を参照して、情報処理部20の制御部22についてさらに説明する。制御部22は、波形処理部22a、押圧判断部22b及び血行動態算出部22cの各機能ブロックを含む。各機能ブロックの処理は、同一のプロセッサにより実行されてよく、複数の異なるプロセッサによって実行されてよい。
(Configuration of the control unit)
The control unit 22 of the information processing unit 20 will be further described with reference to Fig. 1. The control unit 22 includes functional blocks of a waveform processing unit 22a, a pressure determination unit 22b, and a hemodynamics calculation unit 22c. The processing of each functional block may be executed by the same processor or may be executed by multiple different processors.
 波形処理部22aは、心音センサ11、心電センサ12及び脈波センサ13で取得した測定信号に対し、フィルタ処理及びノイズ除去などの処理を行う。さらに、波形処理部22aは、波形中の上に凸の部分及び下に凸の部分を認識し、それぞれの波形に特徴的な部分を認識する。例えば、心音センサ11からの測定信号の場合、波形処理部22aは、I音及びII音等を検出する。また、心電センサ12からの測定信号の場合、波形処理部22aはQ波、R波及びS波等の波形を検出する。さらに、波形処理部22aは、脈波センサ13からの測定信号を2回微分して加速度脈波の波形形状を算出する等の処理を行ってよい。波形処理部22aは、検出した心音信号の波形(心音図)を、押圧判断部22bに引き渡す。 The waveform processing unit 22a performs processing such as filtering and noise removal on the measurement signals acquired by the heart sound sensor 11, the electrocardiogram sensor 12, and the pulse wave sensor 13. Furthermore, the waveform processing unit 22a recognizes upwardly convex and downwardly convex parts in the waveform, and recognizes characteristic parts of each waveform. For example, in the case of a measurement signal from the heart sound sensor 11, the waveform processing unit 22a detects the first sound and the second sound, etc. In addition, in the case of a measurement signal from the electrocardiogram sensor 12, the waveform processing unit 22a detects waveforms such as the Q wave, the R wave, and the S wave. Furthermore, the waveform processing unit 22a may perform processing such as differentiating the measurement signal from the pulse wave sensor 13 twice to calculate the waveform shape of an accelerated pulse wave. The waveform processing unit 22a passes the waveform of the detected heart sound signal (phonocardiogram) to the pressure determination unit 22b.
 押圧判断部22bは、心音センサ11で検出し波形処理部22aで処理された心音信号の波形に基づいて心音センサ11の押し圧の増加又は減少を判定するように構成される。押圧判断部22bは、予め記憶部23に記憶された心音波形の基準波形の形状に、心音センサ11から取得される心音信号を近づけるように、押圧調整機構15を制御する。 The pressure determination unit 22b is configured to determine an increase or decrease in pressure on the heart sound sensor 11 based on the waveform of the heart sound signal detected by the heart sound sensor 11 and processed by the waveform processing unit 22a. The pressure determination unit 22b controls the pressure adjustment mechanism 15 so as to bring the heart sound signal obtained from the heart sound sensor 11 closer to the shape of a reference waveform of the heart sound waveform stored in advance in the storage unit 23.
 例えば、心音信号の振幅が記憶部23に記憶された心音波形の振幅よりも小さい場合、押圧判断部22bは押圧調整機構15を制御して、心音センサ11の押し圧を増加又は減少方向に微小に変化させ、心音信号の振幅を波形処理部22aから取得する。押し圧の増加又は減少は、例えば、図5の圧力制御機構の場合、ポンプP及び制御バルブ15eを制御することにより行うことができる。押圧判断部22bは、押し圧調整後に取得した心音信号の振幅の増減に基づいて、心音信号の振幅を増加させる方向に、心音センサ11の押し圧を変化させる。例えば、心音センサ11の押し圧を高くすると、心音信号の振幅が大きくなる場合、波形処理部22aは心音センサ11の押し圧を徐々に高くしながら、心音信号の振幅の変化を追跡する。押圧判断部22bは、予め記憶部23に記憶された心音波形の基準波形の振幅に基づく所定の閾値を越えたとき、又は、心音信号の振幅がピークとなったと判断したとき、心音センサ11の押し圧を固定して測定を行う。 For example, if the amplitude of the heart sound signal is smaller than the amplitude of the heart sound waveform stored in the memory unit 23, the pressure determination unit 22b controls the pressure adjustment mechanism 15 to slightly increase or decrease the pressure on the heart sound sensor 11, and acquires the amplitude of the heart sound signal from the waveform processing unit 22a. In the case of the pressure control mechanism of Figure 5, for example, the increase or decrease in pressure can be achieved by controlling the pump P and control valve 15e. The pressure determination unit 22b changes the pressure on the heart sound sensor 11 in a direction that increases the amplitude of the heart sound signal, based on the increase or decrease in the amplitude of the heart sound signal acquired after adjusting the pressure. For example, if increasing the pressure on the heart sound sensor 11 increases the amplitude of the heart sound signal, the waveform processing unit 22a tracks the change in the amplitude of the heart sound signal while gradually increasing the pressure on the heart sound sensor 11. When the pressure determination unit 22b determines that the amplitude of the heart sound signal has peaked or that a predetermined threshold value based on the amplitude of a reference waveform of the heart sound waveform previously stored in the storage unit 23 has been exceeded, the pressure determination unit 22b fixes the pressure on the heart sound sensor 11 and performs measurement.
 押圧判断部22bは、心音センサ11で測定された心音信号の振幅と記憶部23に記憶された基準波形の振幅との比較ではなく、両者の波形全体の類似度に基づいて、押し圧を制御してもよい。押圧判断部22bは、類似度が最も高くなるように、押圧調整機構15を制御する。2つの波形の類似度は、公知の方法で算出することができる。 The pressure determination unit 22b may control the pressure based on the overall similarity between the two waveforms, rather than comparing the amplitude of the heart sound signal measured by the heart sound sensor 11 with the amplitude of the reference waveform stored in the memory unit 23. The pressure determination unit 22b controls the pressure adjustment mechanism 15 so that the similarity is maximized. The similarity between the two waveforms can be calculated using a known method.
 押圧調整機構15が圧力センサ15gを有する場合、制御部22は、圧力センサ15gにより検出された押し圧を取得して、押し圧の制御に使用してよい。この場合、情報処理部20は、記憶部23に最適な押し圧を予め記憶し、押圧判断部22bは、圧力センサ15gで検出される押し圧を最適な押し圧に近づけるように、押圧調整機構15を制御してよい。記憶部23は、最適な押し圧の代わりとして、最適な押し圧を実現するための代替のパラメータを記憶してもよく、例えば押圧調整機構15のポンプまたは制御バルブの設定値である。 If the pressure adjustment mechanism 15 has a pressure sensor 15g, the control unit 22 may acquire the pressure detected by the pressure sensor 15g and use it to control the pressure. In this case, the information processing unit 20 may pre-store an optimal pressure in the memory unit 23, and the pressure determination unit 22b may control the pressure adjustment mechanism 15 so that the pressure detected by the pressure sensor 15g approaches the optimal pressure. The memory unit 23 may store an alternative parameter for achieving the optimal pressure instead of the optimal pressure, for example a setting value of the pump or control valve of the pressure adjustment mechanism 15.
 なお、上記説明では、押圧判断部22bが波形処理部22aで処理された心音信号の波形に基づいて心音センサの押し圧を制御するものとした。しかし、情報処理部20は、これ以外の方法で生体情報取得部10を制御して、適切な心音信号の波形を取得することもできる。例えば、情報処理部20の制御部22は、押圧調整機構15を制御して押し圧を低い圧力から徐々に加圧しつつ心音波形を継続的に監視し、適切な波形が表れた時点で心音信号の測定を行ってよい。心音波形が適切な波形か否かの判断は、例えば、制御部22が記憶部23に記憶された基準波形との類似度を判断することによって行ってよい。この場合、押圧判断部22bによる押し圧の調整は不要となる。 In the above description, the pressure determination unit 22b controls the pressure of the heart sound sensor based on the waveform of the heart sound signal processed by the waveform processing unit 22a. However, the information processing unit 20 can also control the bioinformation acquisition unit 10 in a manner other than this to obtain an appropriate waveform of the heart sound signal. For example, the control unit 22 of the information processing unit 20 can control the pressure adjustment mechanism 15 to gradually increase the pressure from a low pressure while continuously monitoring the heart sound waveform, and measure the heart sound signal when an appropriate waveform appears. The control unit 22 can determine whether the heart sound waveform is an appropriate waveform by determining the similarity to a reference waveform stored in the memory unit 23, for example. In this case, adjustment of the pressure by the pressure determination unit 22b is not necessary.
 血行動態算出部22cは、押圧判断部22bにより押し圧が調整された後の心音センサ11から取得される心音信号を、心電図及び/又は脈波波形の測定信号と共に、波形処理部22aから取得する。血行動態算出部22cは、心音の測定データと心電図及び/又は脈波波形の測定データとを組み合わせて、心機能に関するパラメータを測定する。心機能に関するパラメータは、前述のようにPEP又はLVET等のSTIを含んでよい。血行動態算出部22cは、測定結果を記憶部23に記憶してよい。 The hemodynamics calculation unit 22c acquires the heart sound signal obtained from the heart sound sensor 11 after the pressure has been adjusted by the pressure determination unit 22b, together with the measurement signals of the electrocardiogram and/or pulse waveform, from the waveform processing unit 22a. The hemodynamics calculation unit 22c combines the measurement data of the heart sound with the measurement data of the electrocardiogram and/or pulse waveform to measure parameters related to cardiac function. The parameters related to cardiac function may include STIs such as PEP or LVET, as described above. The hemodynamics calculation unit 22c may store the measurement results in the memory unit 23.
 血行動態算出部22cは、記憶部23に予め記憶された学習済みモデルに、心音、心電図及び脈波波形の測定データを説明変数として入力することにより、機械学習により心内血行動態を示すパラメータを推定してもよい。心内血行動態を示すパラメータは、前述のように、左室拡張末期圧、肺動脈圧、及び肺動脈楔入圧等の心内圧を含んでよい。心内血行動態を示すパラメータは、心機能に関するパラメータに含まれる。 The hemodynamics calculation unit 22c may estimate parameters indicating intracardiac hemodynamics by machine learning by inputting the measurement data of the heart sounds, electrocardiogram, and pulse waveform as explanatory variables into a learned model previously stored in the memory unit 23. As described above, the parameters indicating intracardiac hemodynamics may include intracardiac pressures such as left ventricular end-diastolic pressure, pulmonary artery pressure, and pulmonary artery wedge pressure. The parameters indicating intracardiac hemodynamics are included in the parameters related to cardiac function.
 制御部22は、血行動態算出部22cにより算出及び推定された心機能に関するパラメータを、記憶部23に記憶し、及び/又は、表示部21に表示させてよい。制御部22は、さらに、心機能に関するパラメータを外部サーバ25に送信してよい。 The control unit 22 may store the parameters related to cardiac function calculated and estimated by the hemodynamics calculation unit 22c in the memory unit 23 and/or display them on the display unit 21. The control unit 22 may further transmit the parameters related to cardiac function to an external server 25.
(在宅で医療モニタリング装置を使用するためのフロー)
 次に、図15を参照して、押圧調整機構15を有する医療モニタリング装置1を用いて在宅で測定を行うための手順について説明する。
(Flow for using medical monitoring devices at home)
Next, a procedure for performing a measurement at home using the medical monitoring device 1 having the pressure adjustment mechanism 15 will be described with reference to FIG.
 まず、使用者を担当する医師が医療モニタリング装置1を用いて使用者の遠隔モニタリングをすることを決定する(ステップS101)。 First, the doctor in charge of the user decides to remotely monitor the user using the medical monitoring device 1 (step S101).
 次に、医療機関において、医師又は看護師が生体情報取得部10を使用者に装着し、ハーネス16の胸ベルト部16b、並びに、心音センサ11、心電センサ12及び脈波センサ13の各センサの位置調整を行う(ステップS102)。医師又は看護師は、ハーネス16が使用者の身体30に固定されるように、ハーネス16全体を調整してよい。医師又は看護師は、心音センサ11について、最適な心音信号が得られるように、位置調整を行う。 Next, at the medical institution, a doctor or nurse puts the biometric information acquisition unit 10 on the user and adjusts the positions of the chest belt portion 16b of the harness 16, as well as the heart sound sensor 11, the electrocardiogram sensor 12, and the pulse wave sensor 13 (step S102). The doctor or nurse may adjust the entire harness 16 so that it is fixed to the user's body 30. The doctor or nurse adjusts the position of the heart sound sensor 11 so that an optimal heart sound signal is obtained.
 医師または看護師は、ステップS102の調整を行った状態で取得した、心音信号を基準波形として情報処理部20の記憶部23又は他の記憶媒体に記憶する(ステップS103)。情報処理部20が遠隔に位置する場合、基準波形は、任意の方法で情報処理部20の記憶部23に送信され、記憶されてよい。 The doctor or nurse stores the heart sound signal acquired after the adjustments of step S102 as a reference waveform in the memory unit 23 of the information processing unit 20 or another storage medium (step S103). If the information processing unit 20 is located remotely, the reference waveform may be transmitted to and stored in the memory unit 23 of the information processing unit 20 by any method.
 次に、使用者は医療機関で調整を行った生体情報取得部10を用いて、在宅で測定を行う(ステップS104)。使用者は、毎日決められた時間に生体情報の測定を行ってよい。ステップS104の測定処理について、以下に図16を参照して説明する。 Next, the user performs measurements at home using the biometric information acquisition unit 10 that has been adjusted at the medical institution (step S104). The user may perform measurements of biometric information at a set time each day. The measurement process of step S104 is described below with reference to FIG. 16.
 まず、在宅で使用者自身が生体情報取得部10のハーネス16を身体30に装着する(S201)。このとき、使用者は服を脱がなくてよい。医療モニタリング装置1は、使用者が服を着ていても、生体情報の取得が可能である。 First, the user at home puts on the harness 16 of the biometric information acquisition unit 10 on the body 30 (S201). At this time, the user does not need to remove his/her clothes. The medical monitoring device 1 can acquire biometric information even if the user is clothed.
 使用者は、ハーネス16を装着した状態で、測定開始ボタン14を操作する。これにより、測定が開始される(ステップS202)。以降のステップS202~S209の各ステップは、情報処理部20の制御部22により実行される処理である。 The user operates the measurement start button 14 while wearing the harness 16. This starts the measurement (step S202). Each of the subsequent steps S202 to S209 is a process executed by the control unit 22 of the information processing unit 20.
 心電センサ12及び脈波センサ13については、測定開始とともに連続的に測定データを取得し続けることができる。心電センサ12の電極12aは、ハーネス16の使用者の体表を向いた面と反対側の面に設けられ、使用者は両手のうち片方の手を2つの電極12aの一方に触れ、他方の手を2つの電極12aの他方に触れることにより心電図を測定することができる。したがって、使用者は服を着たままで心電図の測定が可能である。 The electrocardiogram sensor 12 and pulse wave sensor 13 can continue to acquire measurement data continuously from the start of measurement. The electrodes 12a of the electrocardiogram sensor 12 are provided on the side of the harness 16 opposite the side facing the user's body surface, and the user can measure their electrocardiogram by touching one of the two electrodes 12a with one of both hands and the other hand to the other of the two electrodes 12a. Therefore, the user can measure their electrocardiogram while still wearing their clothes.
 また、脈波センサ13は、図4に示したようにハーネス16の使用者の体表側に設けられている場合、圧電素子を用いたセンサを用いることにより、服を着たままでも測定が可能である。さらに、図7のように、ハーネス16の使用者の体表を向いた面と反対側の面に設けられている場合、脈波センサ13は光電式容積脈波計として構成され、使用者の指から脈波信号を取得するので、使用者が服を着たままでも測定が可能である。 When the pulse wave sensor 13 is attached to the surface of the user's body of the harness 16 as shown in Figure 4, a sensor using a piezoelectric element is used, making it possible to measure even while the user is wearing clothes. Furthermore, when the pulse wave sensor 13 is attached to the surface of the harness 16 opposite to the surface facing the user's body as shown in Figure 7, the pulse wave sensor 13 is configured as a photoelectric volume pulse wave meter and obtains a pulse wave signal from the user's finger, making it possible to measure even while the user is wearing clothes.
 制御部22の押圧判断部22bは、押圧調整機構15を制御して、記憶部23に予め記憶された圧力の初期値まで心音センサ11の押し圧を加圧する(ステップS203)。なお、ステップS203は必須ではない。例えば、制御部22は、ハーネス16の装着により心音センサ11が使用者の体表を押圧する圧力から開始して、押圧を徐々に上昇させてもよい。 The pressure determination unit 22b of the control unit 22 controls the pressure adjustment mechanism 15 to increase the pressure of the heart sound sensor 11 to the initial pressure value previously stored in the memory unit 23 (step S203). Note that step S203 is not essential. For example, the control unit 22 may start with the pressure that the heart sound sensor 11 applies to the user's body surface when the harness 16 is attached, and gradually increase the pressure.
 制御部22は、心音センサ11から心音信号を取得する(ステップS204)。取得された心音信号は、波形処理部22aでフィルタ処理及びノイズ除去等の処理を受ける。 The control unit 22 acquires a heart sound signal from the heart sound sensor 11 (step S204). The acquired heart sound signal is subjected to filtering, noise removal, and other processing in the waveform processing unit 22a.
 制御部22の押圧判断部22bは、心音センサ11から得られた心音信号の波形と、記憶部23に記憶された心音波形の基準波形との類似度を判断する(ステップS205)。波形の類似度の評価は公知の方法を用いることができる。 The pressure determination unit 22b of the control unit 22 determines the degree of similarity between the waveform of the heart sound signal obtained from the heart sound sensor 11 and the reference waveform of the heart sound waveform stored in the memory unit 23 (step S205). A publicly known method can be used to evaluate the degree of similarity of the waveforms.
 心音センサ11から得られた波形が、基準波形と類似していない場合(ステップS205:No)、押圧判断部22bは、取得した心音信号に基づいて心音の取得状態を認識する(ステップS206)。心音の取得状態としては、心音信号の振幅が基準波形よりも所定の割合以上小さい又は大きい、若しくは、心音信号の波形と基準波形との形状が大きく異なっている、等の状態を含む。押圧判断部22bは、押し圧を増加又は減少の何れの方向に調整するか調べるため、押圧調整機構15を制御して心音センサ11の押し圧を変化させてよい。 If the waveform obtained from the heart sound sensor 11 is not similar to the reference waveform (step S205: No), the pressure determination unit 22b recognizes the acquisition state of the heart sound based on the acquired heart sound signal (step S206). The acquisition state of the heart sound includes a state in which the amplitude of the heart sound signal is smaller or larger than the reference waveform by a predetermined percentage or more, or the shape of the waveform of the heart sound signal is significantly different from that of the reference waveform. The pressure determination unit 22b may control the pressure adjustment mechanism 15 to change the pressure of the heart sound sensor 11 in order to determine whether to adjust the pressure to increase or decrease.
 押圧判断部22bは、ステップS206の認識結果に基づいて、押圧調整機構15を自動で制御して、心音センサ11の押し圧を加圧又は減圧させる(ステップS207)。押圧判断部22bは、再度心音センサ11から心音信号を取得し(ステップS203)、心音信号の波形が基準波形に類似するか否か判断する(ステップS205)。押圧判断部22bは、心音信号が基準波形と類似すると判断されない限り(ステップS205:No)、ステップS204~ステップS207の処理を繰り返す。 Based on the recognition result in step S206, the pressure determination unit 22b automatically controls the pressure adjustment mechanism 15 to increase or decrease the pressure on the heart sound sensor 11 (step S207). The pressure determination unit 22b again acquires the heart sound signal from the heart sound sensor 11 (step S203) and determines whether the waveform of the heart sound signal is similar to the reference waveform (step S205). The pressure determination unit 22b repeats the processes of steps S204 to S207 unless it is determined that the heart sound signal is similar to the reference waveform (step S205: No).
 ステップS205で、心音信号が基準波形と類似すると判断されると(ステップS205:Yes)、血行動態算出部22cが、心音センサ11、心電センサ12及び脈波センサ13の各センサの信号が、波形処理部22aで処理された信号を取得する。これらの信号に基づき、血行動態算出部22cは、心機能に関するパラメータを算出又は推定する(ステップS208)。 If it is determined in step S205 that the heart sound signal is similar to the reference waveform (step S205: Yes), the hemodynamics calculation unit 22c acquires signals obtained by processing the signals from the heart sound sensor 11, the electrocardiogram sensor 12, and the pulse wave sensor 13 in the waveform processing unit 22a. Based on these signals, the hemodynamics calculation unit 22c calculates or estimates parameters related to cardiac function (step S208).
 制御部22は、血行動態算出部22cで算出又は推定された心機能に関するパラメータを、記憶部23に記憶し、出力部24により表示部21に表示させる(ステップS209)。 The control unit 22 stores the parameters related to cardiac function calculated or estimated by the hemodynamics calculation unit 22c in the memory unit 23, and causes the output unit 24 to display them on the display unit 21 (step S209).
 図15に戻り、情報処理部20の制御部22は、測定結果として得られた心機能に関するパラメータを、出力部24により外部サーバ25に送信する(ステップS105)。 Returning to FIG. 15, the control unit 22 of the information processing unit 20 transmits the parameters related to cardiac function obtained as the measurement results to the external server 25 via the output unit 24 (step S105).
 医療機関の医師及び/又は看護師は、外部サーバ25に格納された使用者の測定結果のデータを、遠隔でモニタリングすることができる(ステップS106)。 Doctors and/or nurses at the medical institution can remotely monitor the user's measurement result data stored on the external server 25 (step S106).
 医師及び/看護師は、使用者の心機能に関するパラメータの変化に基づいて、治療内容又は処方内容を変更することができる。医師及び/又は看護師は、変更内容を、通信回線を介して在宅の使用者に連絡することができる(ステップS107)。 The doctor and/or nurse can change the treatment or prescription based on changes in the parameters related to the user's cardiac function. The doctor and/or nurse can communicate the changes to the user at home via a communication line (step S107).
 図15及び図16を参照して、押圧調整機構15を有する医療モニタリング装置1を用いて在宅で測定を行うための手順について説明したが、医療モニタリング装置は押圧調整機構15を有さない構成も可能である。その場合、図15のステップS103、及び、図16のステップS203~S207は実行されない。 The procedure for performing measurements at home using a medical monitoring device 1 having a pressure adjustment mechanism 15 has been described with reference to Figures 15 and 16, but the medical monitoring device can also be configured without a pressure adjustment mechanism 15. In that case, step S103 in Figure 15 and steps S203 to S207 in Figure 16 are not executed.
 以上のように、本開示の医療モニタリング装置1によれば、使用者が在宅で複数の生体情報を測定する際の装置の使いやすさを向上することができる。これにより、医師及び/又は看護師は、心不全等の使用者の状態を遠隔でモニタリングすることができる。本開示の医療モニタリング装置1は、心音、心電図及び脈波波形を含む複数の生体情報を組み合わせることで心機能に関するパラメータを算出又は推定できるので、心機能に関するパラメータに変化があったとき、医療機関の医師等が迅速に対応することが可能になる。 As described above, the medical monitoring device 1 disclosed herein can improve the ease of use of the device when a user measures multiple pieces of biological information at home. This allows doctors and/or nurses to remotely monitor the user's condition, such as heart failure. The medical monitoring device 1 disclosed herein can calculate or estimate parameters related to cardiac function by combining multiple pieces of biological information including heart sounds, electrocardiograms, and pulse waveforms, allowing doctors at medical institutions to respond quickly when there is a change in a parameter related to cardiac function.
 また、使用者は在宅で非侵襲的な方法で、心音、心電図及び脈波波形の測定を行うことができるので、使用者の身体30に対する負担が少ない。さらに、各センサがハーネス16に固定されることで、ハーネス16を装着するだけで、複数の生体情報を同時に並行して容易に測定することができる。さらに、心電センサ12の電極12aが、ハーネス16の使用者の側と反対側の面に設けられており、使用者はこれを手で触れることにより測定をすることができるので、使用者は服を着た状態で生体情報の測定を行うことができる。 In addition, the user can measure heart sounds, electrocardiograms, and pulse waveforms at home in a non-invasive manner, which places less strain on the user's body 30. Furthermore, by fixing each sensor to the harness 16, multiple pieces of vital signs can be easily measured simultaneously in parallel simply by wearing the harness 16. Furthermore, the electrodes 12a of the electrocardiogram sensor 12 are provided on the side of the harness 16 opposite the user's side, and the user can measure by touching them with their hands, so the user can measure vital signs while wearing their clothes.
 さらに、本開示の医療モニタリング装置1では、心音センサ11について、使用者の身体30への心音センサ11の押し圧を調整する押圧調整機構15を設け、これを制御部22が心音センサ11の心音信号に基づいて制御するようにしている。したがって、医療モニタリング装置1は、微妙な調整が必要な心音センサ11の押し圧を最適な圧力にして心音の測定をすることが可能になる。また、医療モニタリング装置1のハーネス16は、心音センサ11の位置を調節可能な位置調節機構を有するので、医師等が使用者ごとに位置の調整が必要な心音センサ11を好適な位置に設定することができる。これによって、毎回同じ位置で心音の測定をすることができる。 Furthermore, in the medical monitoring device 1 of the present disclosure, the heart sound sensor 11 is provided with a pressure adjustment mechanism 15 that adjusts the pressure of the heart sound sensor 11 against the user's body 30, and this is controlled by the control unit 22 based on the heart sound signal from the heart sound sensor 11. Therefore, the medical monitoring device 1 is able to measure heart sounds by optimizing the pressure of the heart sound sensor 11, which requires delicate adjustment. In addition, the harness 16 of the medical monitoring device 1 has a position adjustment mechanism that can adjust the position of the heart sound sensor 11, so that a doctor or the like can set the heart sound sensor 11, whose position needs to be adjusted for each user, to an appropriate position. This allows heart sounds to be measured in the same position every time.
(第3のセンサの配置例)
 上記各実施形態では、心電センサ12の電極12aは、ハーネス16の使用の身体30の側の反対の面に設けられていた。生体情報取得部10は、ハーネス16の使用者の胸部前面及び胸部背面の少なくとも何れかにおいて使用者の身体30側に配置され、使用者の体表の振動情報とは異なる生体情報を取得する第3のセンサの電極18を備えてもよい。第3のセンサは、例えば、心電センサである。図17は、図2に示した生体情報所得部10の構成例1の胸ベルト部16b上に、第3のセンサの電極18を加えた場合の各センサ(電極を含む)の配置の一例を示す。圧力調整機構15は、簡略化して示されている。手で触れられる位置に配置される電極12aに加え、使用者の体表側にも電極18を設けることにより、使用者が服を着ていない状態であれば、使用者が電極12aに手で触れることなく連続でモニタリングすることができる。第3のセンサの電極18は、体表側であればハーネス16の任意の位置に設けることができる。この場合、肌に触れる必要があるため、服を着ない状態で測定を行うことが前提となる。使用者が服を着ているか否かに応じて、体表側の電極を用いるか、手で触れられる電極を用いるかを選択できるボタンがあってもよい。
(Third Sensor Arrangement Example)
In each of the above embodiments, the electrode 12a of the electrocardiogram sensor 12 was provided on the surface of the harness 16 opposite to the side of the body 30 of the user. The bioinformation acquisition unit 10 may be provided with an electrode 18 of a third sensor that is arranged on at least one of the front and back chest of the user of the harness 16 on the side of the user's body 30 and acquires bioinformation different from the vibration information of the user's body surface. The third sensor is, for example, an electrocardiogram sensor. FIG. 17 shows an example of the arrangement of each sensor (including electrodes) when the electrode 18 of the third sensor is added on the chest belt part 16b of the configuration example 1 of the bioinformation acquisition unit 10 shown in FIG. 2. The pressure adjustment mechanism 15 is shown in a simplified form. In addition to the electrode 12a arranged at a position that can be touched by hand, the electrode 18 is also provided on the surface side of the user's body, so that if the user is not wearing clothes, the user can continuously monitor without touching the electrode 12a with his or her hand. The electrode 18 of the third sensor can be provided at any position on the harness 16 as long as it is on the surface side of the body. In this case, since it is necessary to touch the skin, it is assumed that the measurement is performed without wearing clothes. There may be a button that allows the user to select whether to use electrodes on the body surface or electrodes that can be touched by the hand, depending on whether the user is wearing clothes or not.
 本開示に係る実施形態について、諸図面及び実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形又は修正を行うことが容易であることに注意されたい。従って、これらの変形又は修正は本開示の範囲に含まれることに留意されたい。例えば、各実施形態に示された医療モニタリング装置の各構成部の形状及び配置は例示に過ぎない。また、例えば、各構成部又は各ステップ等に含まれる機能等は論理的に矛盾しないように再配置可能であり、複数の構成部又はステップ等を1つに組み合わせたり、或いは分割したりすることが可能である。本開示に係る実施形態について装置を中心に説明してきたが、本開示に係る実施形態は装置の各構成部が実行するステップを含む方法としても実現し得るものである。本開示に係る実施形態は装置が備えるプロセッサにより実行される方法、プログラム、又はプログラムを記録した非一時的なコンピュータ可読媒体としても実現し得るものである。本開示の範囲にはこれらも包含されるものと理解されたい。 Although the embodiments of the present disclosure have been described based on the drawings and examples, it should be noted that those skilled in the art can easily make various modifications or corrections based on the present disclosure. Therefore, it should be noted that these modifications or corrections are included in the scope of the present disclosure. For example, the shape and arrangement of each component of the medical monitoring device shown in each embodiment are merely examples. In addition, for example, the functions included in each component or each step can be rearranged so as not to cause logical contradictions, and multiple components or steps can be combined into one or divided. Although the embodiments of the present disclosure have been described mainly with respect to the device, the embodiments of the present disclosure can also be realized as a method including steps executed by each component of the device. The embodiments of the present disclosure can also be realized as a method, a program executed by a processor provided in the device, or a non-transitory computer-readable medium having a program recorded thereon. It should be understood that these are also included in the scope of the present disclosure.
 1   医療モニタリング装置
 10、10A、10B、10C  生体情報取得部
 11  心音センサ(第1のセンサ)
 12  心電センサ(第2のセンサ)
 12a 電極
 13  脈波センサ(第2のセンサ)
 14  測定開始ボタン
 15  押圧調整機構
 15a 筺体部
 15b 可動部材
 15c 付勢部
 15d エア管
 15e 制御バルブ
 15f つば部
 15g 圧力センサ
 15h バネ
 16  ハーネス
 16a 肩ベルト部
 16b 胸ベルト部
 16c 腰ベルト部
 17a、b  目盛り
 18  電極(第3のセンサ) 20  情報処理部
 21  表示部
 22  制御部
 22a 波形処理部
 22b 押圧判断部
 22c 血行動態算出部
 23  記憶部
 24  出力部
 25  外部サーバ
 30  身体
 31  心臓
1 Medical monitoring device 10, 10A, 10B, 10C Biometric information acquisition unit 11 Heart sound sensor (first sensor)
12 electrocardiogram sensor (second sensor)
12a Electrode 13 Pulse wave sensor (second sensor)
DESCRIPTION OF SYMBOLS 14 Measurement start button 15 Pressure adjustment mechanism 15a Housing 15b Movable member 15c Pressing section 15d Air tube 15e Control valve 15f Collar 15g Pressure sensor 15h Spring 16 Harness 16a Shoulder belt section 16b Chest belt section 16c Waist belt section 17a, b Scale 18 Electrode (third sensor) 20 Information processing section 21 Display section 22 Control section 22a Waveform processing section 22b Pressure determination section 22c Hemodynamics calculation section 23 Memory section 24 Output section 25 External server 30 Body 31 Heart

Claims (20)

  1.  非侵襲性の医療モニタリング装置であって、
     使用者の胸部前面及び胸部背面の少なくとも何れかに装着されるように構成されたハーネスと、
     前記ハーネスの前記使用者の前記胸部前面及び前記胸部背面の少なくとも何れかにおいて前記使用者の側に配置され、前記使用者の体表の振動情報を取得可能な第1のセンサと、
     前記ハーネスの前記使用者の側と反対側の面に設けられ、前記使用者の前記体表の前記振動情報とは異なる生体情報を取得する第2のセンサと
    を備える医療モニタリング装置。
    1. A non-invasive medical monitoring device, comprising:
    A harness configured to be worn on at least one of a front chest and a back chest of a user;
    a first sensor that is disposed on a side of the user at least on one of the front and back sides of the chest of the user of the harness and that is capable of acquiring vibration information of a body surface of the user;
    a second sensor provided on the side of the harness opposite the user's side and configured to acquire biometric information different from the vibration information of the user's body surface.
  2.  前記体表の前記振動情報は、心音及び心尖拍動の少なくとも何れかである、請求項1に記載の医療モニタリング装置。 The medical monitoring device according to claim 1, wherein the vibration information of the body surface is at least one of heart sounds and apical pulsation.
  3.  前記第1のセンサが前記体表の前記振動情報を取得するのに適切な圧力となるように、前記第1のセンサが前記体表を押圧する圧力を調整する押圧調整機構をさらに備える、請求項1に記載の医療モニタリング装置。 The medical monitoring device of claim 1 further comprises a pressure adjustment mechanism that adjusts the pressure with which the first sensor presses against the body surface so that the pressure is appropriate for the first sensor to acquire the vibration information of the body surface.
  4.  前記ハーネスは、前記使用者の肩にかけられる肩ベルト部と、前記使用者の前記胸部前面又は前記胸部背面を少なくとも部分的に覆う胸ベルト部とを備える、請求項1に記載の医療モニタリング装置。 The medical monitoring device according to claim 1, wherein the harness comprises a shoulder belt portion that is placed on the shoulders of the user and a chest belt portion that at least partially covers the front or back of the user's chest.
  5.  前記第2のセンサは、前記使用者が少なくとも片方の手で触れることにより計測可能な脈波センサを含む請求項1に記載の医療モニタリング装置。 The medical monitoring device of claim 1, wherein the second sensor includes a pulse wave sensor that can be measured by the user touching it with at least one hand.
  6.  前記第2のセンサは、前記使用者がそれぞれ両方の手の一方で触れることのできる2つの位置に配置され、かつ、両手が重ならないように触れることにより計測可能な電極を含む請求項1に記載の医療モニタリング装置。 The medical monitoring device according to claim 1, wherein the second sensor includes electrodes that are arranged at two positions that the user can touch with each hand, and that can be measured by touching the electrodes with both hands without overlapping.
  7.  前記ハーネスは、前記使用者の腹部を少なくとも部分的に覆う腰ベルト部をさらに備える、請求項1に記載の医療モニタリング装置。 The medical monitoring device of claim 1, wherein the harness further comprises a waist belt portion that at least partially covers the abdomen of the user.
  8.  前記ハーネスは、前記第1のセンサの位置を調節可能な位置調節機構を有する、請求項1に記載の医療モニタリング装置。 The medical monitoring device of claim 1, wherein the harness has a position adjustment mechanism that can adjust the position of the first sensor.
  9.  前記第1のセンサ及び前記第2のセンサの出力する波形に基づいて前記使用者の心機能に関するパラメータを算出する制御部をさらに備える、請求項1に記載の医療モニタリング装置。 The medical monitoring device according to claim 1, further comprising a control unit that calculates a parameter related to the cardiac function of the user based on the waveforms output by the first sensor and the second sensor.
  10.  非侵襲性の医療モニタリング装置であって、
     使用者の胸部前面及び胸部背面の少なくとも何れかに装着されるように構成されたハーネスと、
     前記ハーネスの前記使用者の前記胸部前面及び前記胸部背面の少なくとも何れかにおいて前記使用者の側に配置され、前記使用者の体表の振動情報を取得可能な第1のセンサと、
     前記第1のセンサが前記体表の前記振動情報を取得するのに適切な圧力となるように、前記第1のセンサが前記体表を押圧する圧力を調整する押圧調整機構と
    を備える医療モニタリング装置。
    1. A non-invasive medical monitoring device, comprising:
    A harness configured to be worn on at least one of a front chest and a back chest of a user;
    a first sensor that is disposed on a side of the user at least on one of the front and back sides of the chest of the user of the harness and that is capable of acquiring vibration information of a body surface of the user;
    a pressure adjustment mechanism that adjusts the pressure with which the first sensor presses against the body surface so that the pressure is appropriate for the first sensor to acquire the vibration information of the body surface.
  11.  前記体表の前記振動情報は、心音及び心尖拍動の少なくとも何れかである、請求項10に記載の医療モニタリング装置。 The medical monitoring device according to claim 10, wherein the vibration information of the body surface is at least one of heart sounds and apical pulsation.
  12.  前記ハーネスの前記使用者の側と反対側の面に設けられ、前記使用者の前記体表の前記振動情報とは異なる生体情報を取得する第2のセンサをさらに備える、請求項10に記載の医療モニタリング装置。 The medical monitoring device according to claim 10, further comprising a second sensor provided on the surface of the harness opposite the user's side, for acquiring biological information different from the vibration information of the user's body surface.
  13.  前記ハーネスは、前記使用者の肩にかけられる肩ベルト部と、前記使用者の前記胸部前面又は前記胸部背面を少なくとも部分的に覆う胸ベルト部とを備える、請求項10に記載の医療モニタリング装置。 The medical monitoring device according to claim 10, wherein the harness comprises a shoulder belt portion that is placed on the shoulders of the user and a chest belt portion that at least partially covers the front or back of the user's chest.
  14.  前記第2のセンサは、前記使用者が少なくとも片方の手で触れることにより計測可能な脈波センサを含む請求項12に記載の医療モニタリング装置。 The medical monitoring device of claim 12, wherein the second sensor includes a pulse wave sensor that can be measured by the user touching it with at least one hand.
  15.  前記第2のセンサは、前記使用者がそれぞれ両方の手の一方で触れることのできる2つの位置に配置され、かつ、両手が重ならないように触れることにより計測可能な電極を含む請求項12に記載の医療モニタリング装置。 The medical monitoring device according to claim 12, wherein the second sensor includes electrodes that are arranged at two positions that the user can touch with each hand, and that can be measured by touching the electrodes with both hands without overlapping.
  16.  前記ハーネスは、前記使用者の腹部を少なくとも部分的に覆う腰ベルト部をさらに備える、請求項10に記載の医療モニタリング装置。 The medical monitoring device of claim 10, wherein the harness further comprises a waist belt portion that at least partially covers the abdomen of the user.
  17.  前記ハーネスは、前記第1のセンサの位置を調節可能な位置調節機構を有する、請求項10に記載の医療モニタリング装置。 The medical monitoring device of claim 10, wherein the harness has a position adjustment mechanism that can adjust the position of the first sensor.
  18.  前記第1のセンサ及び前記第2のセンサの出力する波形に基づいて前記使用者の心機能に関するパラメータを算出する制御部をさらに備える、請求項12に記載の医療モニタリング装置。 The medical monitoring device according to claim 12, further comprising a control unit that calculates a parameter related to the cardiac function of the user based on the waveforms output by the first sensor and the second sensor.
  19.  前記使用者が、該使用者の胸部に衣類を着用した状態で、前記第1のセンサ及び前記第2のセンサによる複数の前記生体情報の取得が可能に構成される、請求項1又は12に記載の医療モニタリング装置。 The medical monitoring device according to claim 1 or 12, configured to enable acquisition of the plurality of pieces of biometric information by the first sensor and the second sensor while the user is wearing clothing on the user's chest.
  20.  前記ハーネスの前記使用者の前記胸部前面及び前記胸部背面の少なくとも何れかにおいて前記使用者の側に配置され、前記使用者の前記体表の前記振動情報とは異なる生体情報を取得する第3のセンサをさらに備える、請求項1に記載の医療モニタリング装置。 The medical monitoring device according to claim 1, further comprising a third sensor arranged on the side of the user of the harness on at least one of the front and back sides of the chest of the user, and acquiring biological information different from the vibration information of the body surface of the user.
PCT/JP2023/032145 2022-09-26 2023-09-01 Medical monitoring device WO2024070507A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-153064 2022-09-26
JP2022153064 2022-09-26

Publications (1)

Publication Number Publication Date
WO2024070507A1 true WO2024070507A1 (en) 2024-04-04

Family

ID=90477294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032145 WO2024070507A1 (en) 2022-09-26 2023-09-01 Medical monitoring device

Country Status (1)

Country Link
WO (1) WO2024070507A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005261464A (en) * 2004-03-16 2005-09-29 A & D Co Ltd Health measuring apparatus
JP2006110180A (en) * 2004-10-15 2006-04-27 Fukushima Prefecture Electrocardiograph measurement apparatus and system
JP2006271659A (en) * 2005-03-29 2006-10-12 Hirona Gi Instantaneous installation type electrode device
CN210843011U (en) * 2019-04-30 2020-06-26 广东乐之康医疗技术有限公司 Wearable heart-lung monitoring equipment
US20200312453A1 (en) * 2019-03-31 2020-10-01 Emfit Oy Wearable sensor and healthcare management system using a wearable sensor
JP2021516080A (en) * 2018-03-16 2021-07-01 ゾール メディカル コーポレイションZOLL Medical Corporation Physiological condition monitoring based on biovibration and radio frequency data analysis
WO2021240439A1 (en) * 2020-05-29 2021-12-02 Atcor Medical Pty Ltd Wearable device with plethysmogram sensor
JP2022526212A (en) * 2019-03-29 2022-05-24 メドトロニック,インコーポレイテッド Systems, methods, and devices for adaptive heart treatment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005261464A (en) * 2004-03-16 2005-09-29 A & D Co Ltd Health measuring apparatus
JP2006110180A (en) * 2004-10-15 2006-04-27 Fukushima Prefecture Electrocardiograph measurement apparatus and system
JP2006271659A (en) * 2005-03-29 2006-10-12 Hirona Gi Instantaneous installation type electrode device
JP2021516080A (en) * 2018-03-16 2021-07-01 ゾール メディカル コーポレイションZOLL Medical Corporation Physiological condition monitoring based on biovibration and radio frequency data analysis
JP2022526212A (en) * 2019-03-29 2022-05-24 メドトロニック,インコーポレイテッド Systems, methods, and devices for adaptive heart treatment
US20200312453A1 (en) * 2019-03-31 2020-10-01 Emfit Oy Wearable sensor and healthcare management system using a wearable sensor
CN210843011U (en) * 2019-04-30 2020-06-26 广东乐之康医疗技术有限公司 Wearable heart-lung monitoring equipment
WO2021240439A1 (en) * 2020-05-29 2021-12-02 Atcor Medical Pty Ltd Wearable device with plethysmogram sensor

Similar Documents

Publication Publication Date Title
US20220330842A1 (en) Non-invasive blood pressure measurement system
US11534071B2 (en) Blood pressure measurement
WO2018113442A1 (en) Continuous ambulatory blood pressure monitoring device and method based on pulse wave transit
US20190059752A1 (en) Method and apparatus for cuff less blood pressure monitoring based on simultaneously measured ECG and PPG signals designed in wristband form for continuous wearing
US11684270B2 (en) Method for collection of blood pressure measurement
US20190133516A1 (en) Physiological monitor for monitoring patients undergoing hemodialysis
CN212521748U (en) Sleep physiological system
Barvik et al. Noninvasive continuous blood pressure estimation from pulse transit time: A review of the calibration models
US20190175033A1 (en) Blood pressure estimating device
WO2016119656A1 (en) Cardiovascular health monitoring device and method
JPWO2018030380A1 (en) Blood pressure status measuring device
JP7136629B2 (en) Pulse wave transit time measuring device and blood pressure measuring device
US20220192600A1 (en) Implantable cardiac monitor
TW202041194A (en) Sleep physiological system capable of evaluating and alleviating the snoring and sleep apnea
JP2004321253A (en) Pulse wave propagation velocity information measuring device
US10758131B2 (en) Non-invasive measurement of ambulatory blood pressure
TWI624246B (en) Blood pressure measurement device and method thereof
WO2024070507A1 (en) Medical monitoring device
CN116636821A (en) Blood pressure management system and method
CN208876506U (en) Pulse wave velocity device and blood pressure continuous measurement device
JP2024516573A (en) Physiological parameter sensing system and method - Patents.com
TWI586319B (en) Cardiovascular health monitoring device and method
US20200297225A1 (en) Vital sign measurement device
TWI586321B (en) Cardiovascular health monitoring device and method
TWI586320B (en) Cardiovascular health monitoring device and method