WO2024070446A1 - Access point device and processing device that communicates with wireless device via plurality of access point devices - Google Patents

Access point device and processing device that communicates with wireless device via plurality of access point devices Download PDF

Info

Publication number
WO2024070446A1
WO2024070446A1 PCT/JP2023/031469 JP2023031469W WO2024070446A1 WO 2024070446 A1 WO2024070446 A1 WO 2024070446A1 JP 2023031469 W JP2023031469 W JP 2023031469W WO 2024070446 A1 WO2024070446 A1 WO 2024070446A1
Authority
WO
WIPO (PCT)
Prior art keywords
devices
signal
wireless
processing device
characteristic information
Prior art date
Application number
PCT/JP2023/031469
Other languages
French (fr)
Japanese (ja)
Inventor
一生 菅野
武雄 大関
良晃 天野
Original Assignee
Kddi株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kddi株式会社 filed Critical Kddi株式会社
Publication of WO2024070446A1 publication Critical patent/WO2024070446A1/en

Links

Images

Definitions

  • the present disclosure relates to a mobile communication system that communicates with a wireless device (WD) via multiple access point (AP) devices.
  • WD wireless device
  • AP access point
  • a central processing unit (CPU) located in an aggregate station communicates with wireless devices (WDs) via multiple access points (APs) located at different geographical locations.
  • the AP device located in each AP is simply referred to as "AP" below.
  • the AP has an antenna and a wireless device.
  • the wireless device has a wireless transmitter (TX) that transmits wireless signals to the WD via the antenna, and a wireless receiver (RX) that receives wireless signals from the WD via the antenna.
  • TX wireless transmitter
  • RX wireless receiver
  • the communication link connecting the CPU of the aggregate station and the AP is also called a fronthaul.
  • the CPU generates a transmission signal based on data to be sent to one or more WDs, and sends the generated transmission signal to the TX of each of the multiple APs.
  • the TX of each AP transmits a wireless signal via an antenna based on the transmission signal from the CPU.
  • the RX of each AP receives wireless signals from one or more WDs via an antenna.
  • the RX of each AP transmits a received signal based on the received wireless signal to the CPU.
  • the CPU demodulates the data from each WD based on the received signal from each AP.
  • the CPU precodes a transmission signal generated based on data to be transmitted to one or more WDs based on the downlink (DL) channel matrix between the one or more WDs and transmits the signal to each of the multiple APs.
  • DL downlink
  • the DL channel matrix can be estimated based on a reference signal or standard signal that the CPU receives from one or more WDs via each AP.
  • Patent Documents 1 and 2 disclose a configuration in which test signals are transmitted and received between multiple APs to obtain the ratio of the TX and RX transfer functions of a reference AP among multiple APs to the TX and RX transfer functions of other APs, and the DL channel matrix is obtained by correcting the UL channel matrix based on the ratio.
  • Non-Patent Document 1 discloses "decentralized” or “distributed” CFm MIMO. In distributed CFm MIMO, channel estimation and precoding are performed by the AP.
  • This disclosure provides a technology for estimating downlink channel characteristics from uplink channel characteristics in distributed cell-free massive MIMO.
  • FIG. 1 is a configuration diagram of a mobile communication system according to an embodiment.
  • FIG. 2 is a block diagram of a processing device according to an embodiment.
  • FIG. 2 is a configuration diagram of an AP device according to an embodiment.
  • FIG. 2 illustrates an example of scheduling information according to one embodiment.
  • FIG. 1 is a diagram showing the configuration of a mobile communication system according to this embodiment.
  • the mobile communication system includes a CPU 1, N (N is an integer of 2 or more) access point devices (APs) 2, and two WDs 3.
  • N is an integer of 2 or more
  • APs access point devices
  • WDs 3 are written as WD#1 to AP#N as shown in FIG. 1.
  • WD#1 and WD#2 are written as shown in FIG. 1.
  • the number of WDs 3 is 2 in FIG. 1, the number of WDs 3 can be any number of 1 or more.
  • the mobile communication system according to this embodiment uses time division duplex (TDD).
  • TDD time division duplex
  • the downlink (DL) from AP 2 to WD 3 and the uplink (UL) from WD 3 to AP 2 are separated by time, and the frequency band of the radio signal used in the DL direction is the same as that of the radio signal used in the UL direction.
  • CPU1 is a processing device (also referred to as a central processing device) located in the aggregation station, and as described above, is connected to N APs 2 via the fronthaul. For example, when CPU1 transmits data to WD#1 and WD#2, CPU1 generates a transmission signal including data addressed to WD#1 and WD#2, and transmits the generated transmission signal to each of APs#1 to AP#N.
  • APs#1 to AP#N each have a TX and RX, and one or more antennas.
  • APs#1 to AP#N transmit wireless signals based on the transmission signal from CPU1. The wireless signals transmitted by each of APs#1 to AP#N are received by WD#1 and WD#2.
  • each of AP#1 to AP#N receives wireless signals from WD#1 and WD#2, estimates channel characteristics between each WD3 based on the wireless signals, performs signal processing to separate the WD3 signal from other WD signals, and transmits the corresponding channel estimation results and separated signals to CPU1.
  • the wireless signals from WD#1 and WD#2 include data that WD#1 and WD#2 transmit to the communication partner.
  • CPU1 estimates the data from WD#1 and WD#2 based on the received signals from AP#1 to AP#N.
  • FIG. 2 is a block diagram of the CPU 1 according to this embodiment.
  • the transmitter 11 generates a transmission signal to be sent to each AP 2 based on the transmission data addressed to WD#1 and WD#2, and transmits it to each AP 2.
  • the receiver 12 demodulates and outputs the received data from WD#1 and WD#2 based on the signal received from each AP 2.
  • the controller 13 controls the entire CPU 1, transmits control signals to each AP 2 via the transmitter 11, and receives control signals from each AP 2 via the receiver 12.
  • FIG. 3 is a configuration diagram of AP2 according to this embodiment.
  • the control unit 24 receives a control signal from the CPU 1 via the receiving unit 25, and transmits a control signal to the CPU 1 via the transmitting unit 26.
  • the receiving unit 25 also outputs a transmission signal from the CPU 1 to the TX 22.
  • the TX 22 precodes the transmission signal based on the DL precoding matrix W' notified by the control unit 24, and outputs the precoded transmission signal to the antenna 21.
  • the antenna 21 converts the transmission signal from the TX 22 into a radio signal and transmits it.
  • the antenna 21 also converts the radio signal received from WD3 into a received signal and outputs it to RX 23.
  • RX 23 transmits the received signal to CPU 1 via the transmitter 26.
  • the receiver 12 also outputs a sounding reference signal (SRS) received from WD3 to the controller 24.
  • SRS is an UL reference signal defined by the Third Generation Partnership Project (3GPP).
  • the controller 24 estimates the UL channel characteristic value between WD3 and WD3 based on the SRS, and notifies the CPU 1 of UL characteristic information indicating the estimated UL channel characteristic value by a control signal.
  • the control unit 13 of the CPU 1 estimates the UL channel matrix H UL between the WD 3 based on the UL characteristic information received from each AP 2 by a control signal. Then, the control unit 13 estimates the channel matrix H DL by correcting the channel matrix H UL with the correction matrix C.
  • the control unit 13 generates a precoding matrix W by a method such as ZF, MMSE, or PMMSE based on the DL channel matrix H DL . For example, each column of the precoding matrix W corresponds to one AP 2.
  • the control unit 13 extracts a column corresponding to AP #k (k is an integer from 1 to N) from each column of the precoding matrix W to generate a precoding matrix W' for each AP.
  • the control unit 13 transmits the corresponding precoding matrix W' to each AP 2 using a control signal.
  • a configuration may be adopted in which some or all elements of the estimated channel matrix are transmitted to the AP 2, and the corresponding precoding matrix is calculated in the AP 2.
  • the corresponding precoding matrix can be generated based on a method such as LPMMSE.
  • the control unit 13 of the CPU 1 controls the execution of a calibration process (correction process) to generate the above-mentioned correction matrix C.
  • the calibration process will be described below.
  • the calibration process can be executed when a new AP 2 is added, when the TX or RX of the AP 2 is replaced, or when it is estimated that the characteristics of the TX or RX of the AP 2 have changed significantly due to aging or temperature changes in the equipment.
  • the control unit 13 schedules AP#1 to AP#N in order as transmitting APs, so that one transmitting AP transmits a test signal and the other AP2 (receiving AP) receives this test signal.
  • the control unit 13 notifies the control unit 24 of each AP2 of scheduling information indicating the scheduling result by a control signal.
  • FIG. 4 shows an example of the scheduling information.
  • FIG. 4 shows that AP#k transmits a test signal at timing T#k, and therefore, that an AP2 different from AP#k receives the test signal from AP#k at timing T#k.
  • the scheduling information indicates the radio resources from which each AP2 transmits the test signal. In other words, FIG. 4 shows only the timing at which the test signal is transmitted, but in reality, the frequency band for transmitting the test signal may also be scheduled.
  • the control unit 24 of each AP 2 controls TX 22 and RX 23 to transmit a test signal according to the scheduling information and to receive test signals from other APs 2. If the timing to transmit a test signal is the timing to transmit a DL radio signal, the receiving AP receiving the test signal controls TX 22 and RX 23 to perform a receiving operation but not a transmitting operation at this timing. If the timing to transmit a test signal is the timing to receive a UL radio signal, the transmitting AP transmitting the test signal controls TX 22 and RX 23 to perform a transmitting operation but not a receiving operation at this timing. RX 23 outputs the test signal received from other APs 2 to the control unit 24.
  • the control unit 24 of AP#k estimates channel characteristics in the direction from the other AP2 to AP#k based on the received test signal. For example, based on the test signals transmitted by AP#2 to AP#N and received by AP#1, the control unit 24 of AP#1 can estimate channel characteristic values h2,1 to hN ,1 from AP#2 to AP#N to AP#1, respectively.
  • the control unit 24 of AP#k notifies the CPU1 of each of the (N-1) inter-AP channel characteristic values in the direction from the other AP2 to AP#k by a control signal.
  • the control unit 13 of the CPU 1 receives (N-1) channel characteristic values from each of the N APs 2, that is, bidirectional channel characteristic values for each pair of two APs 2 among the N APs 2.
  • the transfer functions of TX22 and RX23 of AP#k are TX k and RX k
  • the channel characteristic value h 1,2 from AP#1 to AP#2 is TX 1 ⁇ h p1-2 ⁇ RX 2
  • the channel characteristic value h 2,1 from AP#2 to AP#1 is TX 2 ⁇ h p2-1 ⁇ RX 1.
  • h p1-2 is the transfer function of the wireless section from AP#1 to AP#2
  • h p2-1 is the transfer function of the wireless section from AP#2 to AP#1.
  • the correction coefficient C 1,2 is the ratio of the transfer functions of TX22 and RX23 of AP#2 based on the transfer functions of TX22 and RX23 of AP#1.
  • the control unit 13 first selects one of the N APs 2 as the reference AP.
  • the criteria for selecting the reference AP are arbitrary, but for example, the signal-to-noise ratio (SNR) can be estimated based on the test signal received by the AP 2, and the AP 2 with the best average SNR with other APs 2 can be selected as the reference AP. For this reason, the control unit 24 of each AP 2 can be configured to notify the CPU 1 of the SNR of the test signal as well. In the following description, it is assumed that AP #1 is selected as the reference AP. In this case, the control unit 13 obtains correction coefficients C 1,2 to C 1,N .
  • the control unit 13 estimates the DL channel matrix H DL by multiplying the UL channel matrix H UL by the inverse matrix of the correction matrix C, and generates the precoding matrix W as described above. Then, as described above, the control unit 13 transmits the precoding matrix W′ corresponding to each AP 2 to each AP 2 by a control signal.
  • the above configuration makes it possible to estimate downlink channel characteristics in distributed cell-free massive MIMO.
  • the test signal may be transmitted in any format and using any radio resource.
  • a channel state information reference signal (CSI-RS) defined in 3GPP, which is transmitted by AP2 to WD3 to estimate DL channel characteristics, may be used as the test signal.
  • the CSI-RS transmitted by the transmitting AP may be used both to estimate DL channel characteristics by WD3 and to estimate inter-AP channel characteristics by the receiving AP.
  • the CSI-RS as a test signal may be transmitted using radio resources defined in 3GPP as being capable of transmitting CSI-RS.
  • the SRS transmitted by WD3 to estimate UL channel characteristics can be used as a test signal.
  • the SRS as a test signal can be transmitted using radio resources specified by 3GPP as being capable of transmitting the SRS.
  • AP#1 to AP#N are sequentially set as transmitting APs, and only one transmitting AP transmits a test signal at a certain timing, and the remaining AP2 (receiving AP) is scheduled to receive the test signal from the transmitting AP.
  • This is because, by scheduling in this manner, a test signal is transmitted and received in a pair of any two AP2s among AP#1 to AP#N.
  • this is also to select a reference AP based on the transmission and reception results of the test signal of each pair. However, for example, when the reference AP is AP#1, what is required is to transmit and receive a test signal in (N-1) pairs including AP#1.
  • AP#1 transmits a test signal at a certain timing
  • AP#2 to AP#N receive the test signal, so that the channel characteristic values h 1,2 to h 1,N can be estimated.
  • multiple APs 2 can transmit test signals using different frequency bands at a certain timing
  • APs #2 to #N transmit test signals
  • AP #1 receives the test signals, so that channel characteristic values h 2,1 to h N,1 can be estimated, and thus correction matrix C can be estimated.
  • h 2,1 can be obtained by multiplying h 2,m and h m,1 . Note that m is any number from 3 to N.
  • a reference AP or a plurality of candidate APs to be the reference AP can be determined or selected in advance based on the placement positions of APs #1 to AP #N, it is not necessary to schedule transmission and reception of test signals between any two pairs of APs 2.
  • the mobile communication system uses TDD.
  • the above embodiment can be applied to a mobile communication system that uses frequency division duplex (FDD) as long as reciprocity of the wireless channel is recognized even in FDD.
  • FDD frequency division duplex
  • channel matrix is information indicating the characteristics of multiple channels
  • precoding matrix is information indicating the processing to be applied to wireless signals transmitted from multiple APs 2
  • correction matrix is information indicating the amount of correction for the values of each element of the channel matrix. Therefore, the term “matrix" can be replaced with the term "information.”
  • the CPU1 or AP2 may be realized by a computer program that, when executed by one or more processors of a device having the processor, causes the device to function as the CPU1 or AP2.
  • the computer program may include program instructions that are executable by one or more processors.
  • the computer program may be stored in a non-transitory computer-readable storage medium or may be distributed via a network.

Abstract

This processing device comprises: an acquisition means configured to acquire, from a plurality of AP devices, first characteristic information indicating uplink channel characteristics estimated by each of the plurality of AP devices on the basis of reference signals received from a wireless device; a control means configured to schedule the transmission and reception of a test signal by each of the plurality of AP devices, and perform a correction process for acquiring, from the plurality of AP devices, second characteristic information indicating the channel characteristics between the AP devices estimated on the basis of the test signal received by each of the plurality of AP devices from the other AP devices and generating correction information based on a reference AP device; an estimating means configured to estimate third characteristic information indicating downlink channel characteristics on the basis of the first characteristic information and the correction information; and a transmitting means configured to transmit information for precoding transmission signals transmitted to the wireless device by the plurality of AP devices on the basis of the third characteristic information to each of the plurality of AP devices.

Description

アクセスポイント装置及び複数のアクセスポイント装置を介して無線デバイスと通信する処理装置Access point device and processing device for communicating with wireless devices via a plurality of access point devices - Patents.com
 本開示は、複数のアクセスポイント(AP)装置を介して無線デバイス(WD)と通信する移動通信システムに関する。 The present disclosure relates to a mobile communication system that communicates with a wireless device (WD) via multiple access point (AP) devices.
 例えば、セルフリー大規模MIMO(CFmMIMO)において、集約局に配置される中央処理装置(CPU)は、異なる地理的位置に配置された複数のアクセスポイント(AP)を介して無線デバイス(WD)と通信する。各APに配置されるAP装置を以下では単に"AP"と表記する。APは、アンテナと、無線装置と、を有する。なお、無線装置は、アンテナを介して無線信号をWDに送信する無線送信装置(TX)と、アンテナを介してWDから無線信号を受信する無線受信装置(RX)と、を有する。集約局のCPUと、APとを接続する通信リンクは、フロントホールとも呼ばれる。 For example, in cell-free massive MIMO (CFmMIMO), a central processing unit (CPU) located in an aggregate station communicates with wireless devices (WDs) via multiple access points (APs) located at different geographical locations. The AP device located in each AP is simply referred to as "AP" below. The AP has an antenna and a wireless device. The wireless device has a wireless transmitter (TX) that transmits wireless signals to the WD via the antenna, and a wireless receiver (RX) that receives wireless signals from the WD via the antenna. The communication link connecting the CPU of the aggregate station and the AP is also called a fronthaul.
 CPUは、1つ又は複数のWDに送信するデータに基づき送信信号を生成し、生成した送信信号を複数のAPそれぞれのTXに送信する。各APのTXは、CPUからの送信信号に基づきアンテナを介して無線信号を送信する。また、各APのRXは、アンテナを介して1つ又は複数のWDからの無線信号を受信する。各APのRXは、受信した無線信号に基づく受信信号をCPUに送信する。CPUは、各APからの受信信号に基づき各WDからのデータを復調する。 The CPU generates a transmission signal based on data to be sent to one or more WDs, and sends the generated transmission signal to the TX of each of the multiple APs. The TX of each AP transmits a wireless signal via an antenna based on the transmission signal from the CPU. The RX of each AP receives wireless signals from one or more WDs via an antenna. The RX of each AP transmits a received signal based on the received wireless signal to the CPU. The CPU demodulates the data from each WD based on the received signal from each AP.
 ここで、CPUは、1つ以上のWDに送信するデータに基づき生成した送信信号を、当該1つ以上のWDとの間の下りリンク(DL)のチャネル行列に基づきプリコーディングして複数のAPそれぞれに送信する。例えば、時分割複信(TDD)の様に、DLのチャネル特性と上りリンク(UL)のチャネル特性に相反性が認められる場合、DLチャネル行列は、CPUが各APを介して1つ以上のWDから受信する参照信号又は基準信号に基づき推定することができる。 Here, the CPU precodes a transmission signal generated based on data to be transmitted to one or more WDs based on the downlink (DL) channel matrix between the one or more WDs and transmits the signal to each of the multiple APs. For example, in the case of time division duplex (TDD), when there is a contradiction between the DL channel characteristics and the uplink (UL) channel characteristics, the DL channel matrix can be estimated based on a reference signal or standard signal that the CPU receives from one or more WDs via each AP.
 しかしながら、無線区間のチャネル特性に相反性が認められたとしても、一般的に、各APのTX及びRXの特性は互いに異なる。このため、特許文献1及び特許文献2は、複数のAP間で試験信号を送受信することで、複数のAPの内の基準APのTX及びRXの伝達関数に対する他のAPのTX及びRXの伝達関数の比を求め、これによりULチャネル行列を補正することでDLチャネル行列を求める構成を開示している。 However, even if reciprocity is recognized in the channel characteristics of the wireless section, the TX and RX characteristics of each AP are generally different from each other. For this reason, Patent Documents 1 and 2 disclose a configuration in which test signals are transmitted and received between multiple APs to obtain the ratio of the TX and RX transfer functions of a reference AP among multiple APs to the TX and RX transfer functions of other APs, and the DL channel matrix is obtained by correcting the UL channel matrix based on the ratio.
 なお、特許文献1及び特許文献2に記載されている様にCPUにおいてチャネル推定やプリコーディングを行うCFmMIMOは"集中型"として参照される。これに対し、非特許文献1は、"非集中型"又は"分散型"のCFmMIMOを開示している。分散型のCFmMIMOにおいて、チャネル推定やプリコーディングはAPによって実行される。 As described in Patent Documents 1 and 2, CFm MIMO in which channel estimation and precoding are performed in the CPU is referred to as "centralized." In contrast, Non-Patent Document 1 discloses "decentralized" or "distributed" CFm MIMO. In distributed CFm MIMO, channel estimation and precoding are performed by the AP.
特開2019-091974号公報JP 2019-091974 A 特開2019-004345号公報JP 2019-004345 A
 本開示は、分散型のセルフリー大規模MIMOにおいて上りリンクのチャネル特性から下りリンクのチャネル特性を推定する技術を提供するものである。 This disclosure provides a technology for estimating downlink channel characteristics from uplink channel characteristics in distributed cell-free massive MIMO.
 本開示の一態様によると、無線信号の送受信を行う複数のアクセスポイント(AP)装置を介して1つ以上の無線デバイスと通信する処理装置は、前記複数のAP装置それぞれが前記1つ以上の無線デバイスから受信した参照信号に基づき推定した上りリンクのチャネル特性を示す第1特性情報を前記複数のAP装置から取得する様に構成された取得手段と、前記複数のAP装置のそれぞれによる試験信号の送受信をスケジューリングし、前記複数のAP装置のそれぞれが他のAP装置から受信した前記試験信号に基づき推定したAP装置間のチャネル特性を示す第2特性情報を前記複数のAP装置から取得し、前記複数のAP装置から取得した前記第2特性情報に基づき、前記複数のAP装置の内の基準AP装置を基準とした補正情報を生成する補正処理を行う様に構成された制御手段と、前記第1特性情報と前記補正情報とに基づき、前記1つ以上の無線デバイスとの間の下りリンクのチャネル特性を示す第3特性情報を推定する様に構成された推定手段と、前記第3特性情報に基づき前記複数のAP装置が前記1つ以上の無線デバイスに送信する送信信号のプリコーディングを行うための情報を前記複数のAP装置それぞれに送信する様に構成された送信手段と、を備えている。 According to one aspect of the present disclosure, a processing device that communicates with one or more wireless devices via a plurality of access point (AP) devices that transmit and receive wireless signals includes: an acquisition means configured to acquire from the plurality of AP devices first characteristic information indicating uplink channel characteristics estimated by each of the plurality of AP devices based on a reference signal received from the one or more wireless devices; a control means configured to schedule transmission and reception of test signals by each of the plurality of AP devices, acquire from the plurality of AP devices second characteristic information indicating channel characteristics between the AP devices estimated by each of the plurality of AP devices based on the test signal received from the other AP devices, and perform a correction process to generate correction information based on the second characteristic information acquired from the plurality of AP devices, using a reference AP device among the plurality of AP devices as a reference; an estimation means configured to estimate third characteristic information indicating downlink channel characteristics between the one or more wireless devices based on the first characteristic information and the correction information; and a transmission means configured to transmit information for precoding a transmission signal to be transmitted by the plurality of AP devices to the one or more wireless devices based on the third characteristic information to each of the plurality of AP devices.
 本開示によると、分散型のセルフリー大規模MIMOにおいて上りリンクのチャネル特性から下りリンクのチャネル特性を推定することができる。 According to this disclosure, it is possible to estimate downlink channel characteristics from uplink channel characteristics in distributed cell-free massive MIMO.
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。 Other features and advantages of the present invention will become apparent from the following description taken in conjunction with the accompanying drawings, in which the same or similar components are designated by the same reference numerals.
一実施形態による移動通信システムの構成図。1 is a configuration diagram of a mobile communication system according to an embodiment. 一実施形態による処理装置の構成図。FIG. 2 is a block diagram of a processing device according to an embodiment. 一実施形態によるAP装置の構成図。FIG. 2 is a configuration diagram of an AP device according to an embodiment. 一実施形態によるスケジューリング情報の例を示す図。FIG. 2 illustrates an example of scheduling information according to one embodiment.
 以下、添付図面を参照して実施形態を詳しく説明する。なお、以下の実施形態は特許請求の範囲に係る発明を限定するものではなく、また実施形態で説明されている特徴の組み合わせの全てが発明に必須のものとは限らない。実施形態で説明されている複数の特徴のうちの二つ以上の特徴が任意に組み合わされてもよい。また、同一若しくは同様の構成には同一の参照番号を付し、重複した説明は省略する。 The embodiments are described in detail below with reference to the attached drawings. Note that the following embodiments do not limit the invention as claimed, and not all combinations of features described in the embodiments are necessarily essential to the invention. Two or more of the features described in the embodiments may be combined in any desired manner. In addition, the same reference numbers are used for the same or similar configurations, and duplicate descriptions will be omitted.
 図1は、本実施形態による移動通信システムの構成図である。移動通信システムは、CPU1と、N個(Nは2以上の整数)のアクセスポイント装置(AP)2と、2つのWD3と、を有する。なお、以下の説明において、各AP2を区別する場合には、図1に示す様にAP#1~AP#Nと表記する。同様に、2つのWD3を区別する場合には、図1に示す様にWD#1及びWD#2と表記する。なお、図1においてはWD3の数を2としているが、WD3の数は1以上の任意の数であり得る。なお、本実施形態による移動通信システムは、時分割複信(TDD)を使用する。つまり、AP2からWD3への方向である下りリンク(DL)とWD3からAP2への方向である上りリンク(UL)は時間により区切られ、DL方向に使用される無線信号と、UL方向に使用される無線信号の周波数帯域は同じである。 FIG. 1 is a diagram showing the configuration of a mobile communication system according to this embodiment. The mobile communication system includes a CPU 1, N (N is an integer of 2 or more) access point devices (APs) 2, and two WDs 3. In the following description, when each AP 2 is to be distinguished, they are written as AP#1 to AP#N as shown in FIG. 1. Similarly, when two WDs 3 are to be distinguished, they are written as WD#1 and WD#2 as shown in FIG. 1. Although the number of WDs 3 is 2 in FIG. 1, the number of WDs 3 can be any number of 1 or more. The mobile communication system according to this embodiment uses time division duplex (TDD). In other words, the downlink (DL) from AP 2 to WD 3 and the uplink (UL) from WD 3 to AP 2 are separated by time, and the frequency band of the radio signal used in the DL direction is the same as that of the radio signal used in the UL direction.
 CPU1は、集約局に配置される処理装置(中央処理装置としても参照される)であり、上述した様に、フロントホールを介してN個のAP2に接続される。例えば、CPU1がWD#1及びWD#2にデータを送信する場合、CPU1は、WD#1及びWD#2宛のデータを含む送信信号を生成し、生成した送信信号をAP#1~AP#Nそれぞれに送信する。AP#1~AP#Nは、それぞれ、TX及びRXと、1つ以上のアンテナと、を有する。AP#1~AP#Nは、CPU1からの送信信号に基づき無線信号を送信する。AP#1~AP#Nそれぞれによって送信された無線信号は、WD#1及びWD#2によって受信される。 CPU1 is a processing device (also referred to as a central processing device) located in the aggregation station, and as described above, is connected to N APs 2 via the fronthaul. For example, when CPU1 transmits data to WD#1 and WD#2, CPU1 generates a transmission signal including data addressed to WD#1 and WD#2, and transmits the generated transmission signal to each of APs#1 to AP#N. APs#1 to AP#N each have a TX and RX, and one or more antennas. APs#1 to AP#N transmit wireless signals based on the transmission signal from CPU1. The wireless signals transmitted by each of APs#1 to AP#N are received by WD#1 and WD#2.
 また、AP#1~AP#Nそれぞれは、WD#1及びWD#2からの無線信号を受信し、当該無線信号に基づき各WD3との間のチャネル特性を推定し、WD3の信号を他のWD信号と分離する信号処理を行い、対応するチャネル推定結果および分離した信号をCPU1に送信する。なお、WD#1及びWD#2からの無線信号は、WD#1及びWD#2が通信相手に送信するデータを含む。CPU1は、AP#1~AP#Nそれぞれからの受信信号に基づきWD#1及びWD#2からのデータを推定する。 In addition, each of AP#1 to AP#N receives wireless signals from WD#1 and WD#2, estimates channel characteristics between each WD3 based on the wireless signals, performs signal processing to separate the WD3 signal from other WD signals, and transmits the corresponding channel estimation results and separated signals to CPU1. Note that the wireless signals from WD#1 and WD#2 include data that WD#1 and WD#2 transmit to the communication partner. CPU1 estimates the data from WD#1 and WD#2 based on the received signals from AP#1 to AP#N.
 図2は、本実施形態によるCPU1の構成図である。送信部11は、WD#1及びWD#2宛の送信データに基づき各AP2に送信する送信信号を生成して各AP2に送信する。また、受信部12は、各AP2から受信した信号に基づきWD#1及びWD#2からの受信データを復調して出力する。制御部13は、CPU1の全体を制御すると共に送信部11を介して各AP2に制御信号を送信し、かつ、受信部12を介して各AP2から制御信号を受信する。 FIG. 2 is a block diagram of the CPU 1 according to this embodiment. The transmitter 11 generates a transmission signal to be sent to each AP 2 based on the transmission data addressed to WD#1 and WD#2, and transmits it to each AP 2. The receiver 12 demodulates and outputs the received data from WD#1 and WD#2 based on the signal received from each AP 2. The controller 13 controls the entire CPU 1, transmits control signals to each AP 2 via the transmitter 11, and receives control signals from each AP 2 via the receiver 12.
 図3は、本実施形態によるAP2の構成図である。制御部24は、受信部25を介してCPU1からの制御信号を受信し、かつ、送信部26を介してCPU1に制御信号を送信する。また、受信部25は、CPU1からの送信信号をTX22に出力する。TX22は、制御部24から通知されるDLのプリコーディング行列W´に基づき送信信号のプリコーディングを行い、プリコーディング後の送信信号をアンテナ21に出力する。アンテナ21は、TX22からの送信信号を無線信号に変換して送信する。 FIG. 3 is a configuration diagram of AP2 according to this embodiment. The control unit 24 receives a control signal from the CPU 1 via the receiving unit 25, and transmits a control signal to the CPU 1 via the transmitting unit 26. The receiving unit 25 also outputs a transmission signal from the CPU 1 to the TX 22. The TX 22 precodes the transmission signal based on the DL precoding matrix W' notified by the control unit 24, and outputs the precoded transmission signal to the antenna 21. The antenna 21 converts the transmission signal from the TX 22 into a radio signal and transmits it.
 また、アンテナ21は、WD3から受信した無線信号を受信信号に変換してRX23に出力する。RX23は、送信部26を介して、受信信号をCPU1に送信する。また、受信部12は、WD3から受信するサウンディング参照信号(SRS)を制御部24に出力する。SRSは、第3世代パートナシッププロジェクト(3GPP)で規定されるULの参照信号である。制御部24は、SRSに基づきWD3との間のULのチャネル特性値を推定し、推定したULのチャネル特性値を示すUL特性情報を制御信号によりCPU1に通知する。 The antenna 21 also converts the radio signal received from WD3 into a received signal and outputs it to RX 23. RX 23 transmits the received signal to CPU 1 via the transmitter 26. The receiver 12 also outputs a sounding reference signal (SRS) received from WD3 to the controller 24. The SRS is an UL reference signal defined by the Third Generation Partnership Project (3GPP). The controller 24 estimates the UL channel characteristic value between WD3 and WD3 based on the SRS, and notifies the CPU 1 of UL characteristic information indicating the estimated UL channel characteristic value by a control signal.
 CPU1の制御部13は、各AP2から制御信号により受信するUL特性情報に基づきWD3との間のULのチャネル行列HULを推定する。そして、制御部13は、チャネル行列HULを補正行列Cで補正することでチャネル行列HDLを推定する。制御部13は、DLのチャネル行列HDLに基づきZF、MMSE、PMMSE等の方法によりプリコーディング行列Wを生成する。例えば、プリコーディング行列Wの各列は、1つのAP2に対応する。制御部13は、プリコーディング行列Wの各列の内、AP#k(kは、1からNまでの整数)に対応する列を抜き出して各APのプリコーディング行列W´を生成する。制御部13は、制御信号を使用して、各AP2それぞれに、対応するプリコーディング行列W´を送信する。なお、推定したチャネル行列の一部又は総ての要素をAP2に送信し、AP2で対応するプレコーディング行列を計算する構成であっても良い。この場合には、LPMMSE等の方法に基づいて対応するプレコーディング行列を生成することができる。 The control unit 13 of the CPU 1 estimates the UL channel matrix H UL between the WD 3 based on the UL characteristic information received from each AP 2 by a control signal. Then, the control unit 13 estimates the channel matrix H DL by correcting the channel matrix H UL with the correction matrix C. The control unit 13 generates a precoding matrix W by a method such as ZF, MMSE, or PMMSE based on the DL channel matrix H DL . For example, each column of the precoding matrix W corresponds to one AP 2. The control unit 13 extracts a column corresponding to AP #k (k is an integer from 1 to N) from each column of the precoding matrix W to generate a precoding matrix W' for each AP. The control unit 13 transmits the corresponding precoding matrix W' to each AP 2 using a control signal. Note that a configuration may be adopted in which some or all elements of the estimated channel matrix are transmitted to the AP 2, and the corresponding precoding matrix is calculated in the AP 2. In this case, the corresponding precoding matrix can be generated based on a method such as LPMMSE.
 CPU1の制御部13は、上述した補正行列Cを生成するため、キャリブレーション処理(補正処理)の実行を制御する。以下、キャリブレーション処理について説明する。なお、キャリブレーション処理は、新たなAP2が増設されたタイミングや、AP2のTX又はRXが交換されたタイミングや、経年劣化又は機器の温度変化等によりAP2のTX又はRXの特性が大きく変化したと推定されるタイミング等において実行され得る。 The control unit 13 of the CPU 1 controls the execution of a calibration process (correction process) to generate the above-mentioned correction matrix C. The calibration process will be described below. The calibration process can be executed when a new AP 2 is added, when the TX or RX of the AP 2 is replaced, or when it is estimated that the characteristics of the TX or RX of the AP 2 have changed significantly due to aging or temperature changes in the equipment.
 キャリブレーション処理において、制御部13は、AP#1~AP#Nを順に送信APとして、1つの送信APが試験信号を送信し、他のAP2(受信AP)がこの試験信号を受信する様にスケジューリングを行う。制御部13は、スケジューリング結果を示すスケジューリング情報を制御信号により各AP2の制御部24に通知する。図4は、スケジューリング情報の例を示している。図4によると、タイミングT#kにおいて、AP#kが試験信号を送信すること、したがって、タイミングT#kにおいて、AP#kとは異なるAP2が、AP#kからの試験信号を受信することが示されている。なお、より詳しくは、スケジューリング情報は、各AP2が試験信号を送信する無線リソースを示す。つまり、図4では、試験信号を送信するタイミングのみを示しているが、実際には、試験信号を送信する周波数帯域もスケジューリングされ得る。 In the calibration process, the control unit 13 schedules AP#1 to AP#N in order as transmitting APs, so that one transmitting AP transmits a test signal and the other AP2 (receiving AP) receives this test signal. The control unit 13 notifies the control unit 24 of each AP2 of scheduling information indicating the scheduling result by a control signal. FIG. 4 shows an example of the scheduling information. FIG. 4 shows that AP#k transmits a test signal at timing T#k, and therefore, that an AP2 different from AP#k receives the test signal from AP#k at timing T#k. More specifically, the scheduling information indicates the radio resources from which each AP2 transmits the test signal. In other words, FIG. 4 shows only the timing at which the test signal is transmitted, but in reality, the frequency band for transmitting the test signal may also be scheduled.
 各AP2の制御部24は、スケジューリング情報に従い試験信号を送信し、かつ、他のAP2からの試験信号を受信する様にTX22及びRX23を制御する。なお、試験信号を送信するタイミングがDLの無線信号を送信するタイミングである場合、試験信号を受信する受信APは、このタイミングにおいて送信動作を行わず受信動作を行う様にTX22及びRX23を制御する。また、試験信号を送信するタイミングがULの無線信号を受信するタイミングである場合、試験信号を送信する送信APは、このタイミングにおいて受信動作を行わず送信動作を行う様にTX22及びRX23を制御する。RX23は、他のAP2から受信した試験信号を制御部24に出力する。 The control unit 24 of each AP 2 controls TX 22 and RX 23 to transmit a test signal according to the scheduling information and to receive test signals from other APs 2. If the timing to transmit a test signal is the timing to transmit a DL radio signal, the receiving AP receiving the test signal controls TX 22 and RX 23 to perform a receiving operation but not a transmitting operation at this timing. If the timing to transmit a test signal is the timing to receive a UL radio signal, the transmitting AP transmitting the test signal controls TX 22 and RX 23 to perform a transmitting operation but not a receiving operation at this timing. RX 23 outputs the test signal received from other APs 2 to the control unit 24.
 AP#kの制御部24は、受信した試験信号に基づき他のAP2からAP#kへの方向におけるチャネル特性を推定する。例えば、AP#2~AP#Nそれぞれが送信し、AP#1が受信した試験信号に基づきAP#1の制御部24は、AP#2~AP#NそれぞれからAP#1へのチャネル特性値h2,1~hN,1を推定することができる。AP#kの制御部24は、他のAP2からAP#kへの方向における(N-1)個のAP間チャネル特性値それぞれを、制御信号によりCPU1に通知する。 The control unit 24 of AP#k estimates channel characteristics in the direction from the other AP2 to AP#k based on the received test signal. For example, based on the test signals transmitted by AP#2 to AP#N and received by AP#1, the control unit 24 of AP#1 can estimate channel characteristic values h2,1 to hN ,1 from AP#2 to AP#N to AP#1, respectively. The control unit 24 of AP#k notifies the CPU1 of each of the (N-1) inter-AP channel characteristic values in the direction from the other AP2 to AP#k by a control signal.
 したがって、CPU1の制御部13は、N個のAP2それぞれから(N-1)個のチャネル特性値、つまり、N個のAP2の内の2つのAP2のペアそれぞれについて、双方向のチャネル特性値を受信する。ここで、AP#kのTX22及びRX23の伝達関数をTX及びRXとすると、AP#1からAP#2へのチャネル特性値h1,2=TX×hp1-2×RXであり、AP#2からAP#1へのチャネル特性値h2,1=TX×hp2-1×RXである。なお、hp1-2は、AP#1からAP#2に至る無線区間の伝達関数であり、hp2-1は、AP#2からAP#1に至る無線区間の伝達関数である。 Therefore, the control unit 13 of the CPU 1 receives (N-1) channel characteristic values from each of the N APs 2, that is, bidirectional channel characteristic values for each pair of two APs 2 among the N APs 2. Here, if the transfer functions of TX22 and RX23 of AP#k are TX k and RX k , the channel characteristic value h 1,2 from AP#1 to AP#2 is TX 1 ×h p1-2 ×RX 2 , and the channel characteristic value h 2,1 from AP#2 to AP#1 is TX 2 ×h p2-1 ×RX 1. Note that h p1-2 is the transfer function of the wireless section from AP#1 to AP#2, and h p2-1 is the transfer function of the wireless section from AP#2 to AP#1.
 無線区間の相反性が認められる場合、hp1-2=hp2-1となる。したがって、この場合、AP#1を基準とするAP#2の補正係数C1,2をC1,2=h1,2/h2,1=(TX×RX)/(TX×RX)として求める。補正係数C1,2は、AP#1のTX22及びRX23の伝達関数を基準としたAP#2のTX22及びRX23の伝達関数の比である。 When reciprocity of the wireless section is recognized, h p1-2 =h p2-1 . Therefore, in this case, the correction coefficient C 1,2 of AP#2 based on AP#1 is calculated as C 1,2 =h 1,2 /h 2,1 =(TX 1 ×RX 2 )/(TX 2 ×RX 1 ). The correction coefficient C 1,2 is the ratio of the transfer functions of TX22 and RX23 of AP#2 based on the transfer functions of TX22 and RX23 of AP#1.
 制御部13は、まず、N個のAP2の内の1つを基準APとして選択する。基準APの選択基準は任意であるが、例えば、AP2が受信する試験信号に基づき信号対雑音比(SNR)を推定し、他のAP2とのSNRの平均値が最も良いAP2を基準APとして選択することができる。このため、各AP2の制御部24が、試験信号のSNRもCPU1に通知する構成とし得る。以下の説明においては、AP#1が基準APとして選択されたものとする。この場合、制御部13は、補正係数C1,2~C1,Nを求める。なお、補正係数C1,1は1=(TX×RX)/(TX×RX)である。制御部13は、補正係数C1,1~C1,Nを要素とする対角行列を補正行列Cとして求める。つまり、C=diag[C1,1,C1,2,・・・,C1,N]=(TX/RX)diag[RX/TX,RX/TX,・・・,RX/TX]である。 The control unit 13 first selects one of the N APs 2 as the reference AP. The criteria for selecting the reference AP are arbitrary, but for example, the signal-to-noise ratio (SNR) can be estimated based on the test signal received by the AP 2, and the AP 2 with the best average SNR with other APs 2 can be selected as the reference AP. For this reason, the control unit 24 of each AP 2 can be configured to notify the CPU 1 of the SNR of the test signal as well. In the following description, it is assumed that AP #1 is selected as the reference AP. In this case, the control unit 13 obtains correction coefficients C 1,2 to C 1,N . The correction coefficient C 1,1 is 1=(TX 1 ×RX 1 )/(TX 1 ×RX 1 ). The control unit 13 obtains a diagonal matrix with the correction coefficients C 1,1 to C 1,N as elements as the correction matrix C. That is, C = diag[ C1,1 , C1,2 , ..., C1 ,N ] = ( TX1 / RX1 ) diag[ RX1 / TX1 , RX2 / TX2 , ..., RXN / TXN ].
 制御部13は、補正行列Cの逆行列をULのチャネル行列HULに乗ずることで、DLのチャネル行列HDLを推定し、上述した様にプリコーディング行列Wを生成する。そして、上述した様に、各AP2に対応するプリコーディング行列W´を制御信号により各AP2に送信する。 The control unit 13 estimates the DL channel matrix H DL by multiplying the UL channel matrix H UL by the inverse matrix of the correction matrix C, and generates the precoding matrix W as described above. Then, as described above, the control unit 13 transmits the precoding matrix W′ corresponding to each AP 2 to each AP 2 by a control signal.
 以上の構成により、分散型のセルフリー大規模MIMOにおいて下りリンクのチャネル特性を推定することができる。 The above configuration makes it possible to estimate downlink channel characteristics in distributed cell-free massive MIMO.
 なお、試験信号は、任意のフォーマット及び任意の無線リソースを使用して送信され得る。一例として、DLのチャネル特性を推定するためにAP2がWD3に送信する、3GPPで規定されたチャネル状態情報参照信号(CSI-RS)を試験信号として使用することができる。この場合、送信APが送信するCSI-RSは、WD3によるDLのチャネル特性の推定と、受信APによるAP間のチャネル特性の推定の両方に使用され得る。また、試験信号としてのCSI-RSは、CSI-RSを送信できると3GPPで規定される無線リソースで送信され得る。 The test signal may be transmitted in any format and using any radio resource. As an example, a channel state information reference signal (CSI-RS) defined in 3GPP, which is transmitted by AP2 to WD3 to estimate DL channel characteristics, may be used as the test signal. In this case, the CSI-RS transmitted by the transmitting AP may be used both to estimate DL channel characteristics by WD3 and to estimate inter-AP channel characteristics by the receiving AP. Furthermore, the CSI-RS as a test signal may be transmitted using radio resources defined in 3GPP as being capable of transmitting CSI-RS.
 また、一例として、ULのチャネル特性を推定するためにWD3が送信するSRSを試験信号として使用することができる。この場合、試験信号としてのSRSは、SRSを送信できると3GPPで規定される無線リソースで送信され得る。 As another example, the SRS transmitted by WD3 to estimate UL channel characteristics can be used as a test signal. In this case, the SRS as a test signal can be transmitted using radio resources specified by 3GPP as being capable of transmitting the SRS.
 なお、本実施形態では、AP#1~AP#Nそれぞれを順に送信APとし、あるタイミングにおいて1つの送信APのみが試験信号を送信し、残りのAP2(受信AP)が送信APからの試験信号を受信する様にスケジューリングするものとしていた。これは、この様にスケジューリングすることで、AP#1~AP#Nの内の任意の2つのAP2のペアにおいて試験信号の送受信が行われるからであった。また、各ペアの試験信号の送受信結果に基づき基準APを選択するためでもあった。しかしながら、例えば、基準APをAP#1とする場合、必要なのは、AP#1を含む(N-1)個のペアにおいて試験信号を送受信することである。したがって、例えば、あるタイミングでAP#1が試験信号を送信し、AP#2~AP#Nが試験信号を受信することで、チャネル特性値h1,2~h1,Nを推定することができる。また、あるタイミングにおいて異なる周波数帯域を使用して複数のAP2が試験信号を送信できる場合、例えば、あるタイミングにおいて(N-1)個のAP2が試験信号を送信できる場合、AP#2~AP#Nそれぞれが試験信号を送信し、AP#1が試験信号を受信することで、チャネル特性値h2,1~hN,1を推定することができ、これにより補正行列Cを推定できる。また、例えば、h2,1は、h2,mとhm,1を乗ずることで求めることができる。なお、mは3~Nまでの任意の数である。したがって、例えば、基準APや基準APとする複数の候補APを、AP#1~AP#Nの配置位置等に基づき事前に決定又は選択できる場合、任意の2つのAP2のペアにおいて試験信号の送受信が行われる様にスケジューリングする必要はない。 In this embodiment, AP#1 to AP#N are sequentially set as transmitting APs, and only one transmitting AP transmits a test signal at a certain timing, and the remaining AP2 (receiving AP) is scheduled to receive the test signal from the transmitting AP. This is because, by scheduling in this manner, a test signal is transmitted and received in a pair of any two AP2s among AP#1 to AP#N. In addition, this is also to select a reference AP based on the transmission and reception results of the test signal of each pair. However, for example, when the reference AP is AP#1, what is required is to transmit and receive a test signal in (N-1) pairs including AP#1. Therefore, for example, AP#1 transmits a test signal at a certain timing, and AP#2 to AP#N receive the test signal, so that the channel characteristic values h 1,2 to h 1,N can be estimated. In addition, when multiple APs 2 can transmit test signals using different frequency bands at a certain timing, for example, when (N-1) APs 2 can transmit test signals at a certain timing, APs #2 to #N transmit test signals, and AP #1 receives the test signals, so that channel characteristic values h 2,1 to h N,1 can be estimated, and thus correction matrix C can be estimated. In addition, for example, h 2,1 can be obtained by multiplying h 2,m and h m,1 . Note that m is any number from 3 to N. Therefore, for example, when a reference AP or a plurality of candidate APs to be the reference AP can be determined or selected in advance based on the placement positions of APs #1 to AP #N, it is not necessary to schedule transmission and reception of test signals between any two pairs of APs 2.
 なお、上記実施形態においては移動通信システムがTDDを使用するものとした。しかしながら、周波数分割複信(FDD)であっても無線チャネルの相反性が認められるのであれば、FDDを使用する移動通信システムであっても上記実施形態を適用可能である。 In the above embodiment, the mobile communication system uses TDD. However, the above embodiment can be applied to a mobile communication system that uses frequency division duplex (FDD) as long as reciprocity of the wireless channel is recognized even in FDD.
 また、上記実施形態においては、チャネル行列、プリコーディング行列、補正行列との用語を使用していた。チャネル行列は複数のチャネルの特性を示す情報であり、プリコーディング行列は、複数のAP2から送信する無線信号に対して適用する処理を示す情報であり、補正行列は、チャネル行列の各要素の値の補正量を示す情報である。したがって、"行列"との用語は、"情報"との用語に置換可能である。 In addition, in the above embodiment, the terms channel matrix, precoding matrix, and correction matrix are used. A channel matrix is information indicating the characteristics of multiple channels, a precoding matrix is information indicating the processing to be applied to wireless signals transmitted from multiple APs 2, and a correction matrix is information indicating the amount of correction for the values of each element of the channel matrix. Therefore, the term "matrix" can be replaced with the term "information."
 なお、本開示によるCPU1やAP2は、1つ以上のプロセッサを有する装置の当該1つ以上のプロセッサで実行されると、当該装置を上記CPU1やAP2として機能させるコンピュータプログラムにより実現され得る。コンピュータプログラムは、1つ以上のプロセッサが実行可能なプログラム命令を含み得る。コンピュータプログラムは、コンピュータが読み取り可能な非一時的な記憶媒体に記憶されて、又は、ネットワーク経由で配布が可能なものである。 The CPU1 or AP2 according to the present disclosure may be realized by a computer program that, when executed by one or more processors of a device having the processor, causes the device to function as the CPU1 or AP2. The computer program may include program instructions that are executable by one or more processors. The computer program may be stored in a non-transitory computer-readable storage medium or may be distributed via a network.
 発明は上記の実施形態に制限されるものではなく、発明の要旨の範囲内で、種々の変形・変更が可能である。 The invention is not limited to the above-described embodiments, and various modifications and variations are possible within the scope of the invention.
 本願は、2022年9月26日提出の日本国特許出願特願2022-152527を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。 This application claims priority based on Japanese Patent Application No. 2022-152527, filed on September 26, 2022, the entire contents of which are incorporated herein by reference.

Claims (11)

  1.  無線信号の送受信を行う複数のアクセスポイント(AP)装置を介して1つ以上の無線デバイスと通信する処理装置であって、
     前記複数のAP装置それぞれが前記1つ以上の無線デバイスから受信した参照信号に基づき推定した上りリンクのチャネル特性を示す第1特性情報を前記複数のAP装置から取得する様に構成された取得手段と、
     前記複数のAP装置のそれぞれによる試験信号の送受信をスケジューリングし、前記複数のAP装置のそれぞれが他のAP装置から受信した前記試験信号に基づき推定したAP装置間のチャネル特性を示す第2特性情報を前記複数のAP装置から取得し、前記複数のAP装置から取得した前記第2特性情報に基づき、前記複数のAP装置の内の基準AP装置を基準とした補正情報を生成する補正処理を行う様に構成された制御手段と、
     前記第1特性情報と前記補正情報とに基づき、前記1つ以上の無線デバイスとの間の下りリンクのチャネル特性を示す第3特性情報を推定する様に構成された推定手段と、
     前記第3特性情報に基づき前記複数のAP装置が前記1つ以上の無線デバイスに送信する送信信号のプリコーディングを行うための情報を前記複数のAP装置それぞれに送信する様に構成された送信手段と、
    を備えている、処理装置。
    A processing device for communicating with one or more wireless devices via a plurality of access point (AP) devices for transmitting and receiving wireless signals, comprising:
    an acquisition means configured to acquire, from the plurality of AP devices, first characteristic information indicating uplink channel characteristics estimated by each of the plurality of AP devices based on a reference signal received from the one or more wireless devices;
    a control means configured to schedule transmission and reception of a test signal by each of the plurality of AP devices, acquire second characteristic information from the plurality of AP devices indicating channel characteristics between the AP devices estimated based on the test signal received by each of the plurality of AP devices from other AP devices, and perform correction processing to generate correction information based on the second characteristic information acquired from the plurality of AP devices and using a reference AP device among the plurality of AP devices as a reference;
    an estimation means configured to estimate third characteristic information indicating channel characteristics of a downlink between the one or more wireless devices and the one or more wireless devices based on the first characteristic information and the correction information;
    A transmitting means configured to transmit information for performing precoding of a transmission signal to be transmitted by the plurality of AP devices to the one or more wireless devices based on the third characteristic information, to each of the plurality of AP devices;
    The processing device comprises:
  2.  前記制御手段は、前記補正処理の間、前記複数のAP装置それぞれが異なるタイミングで前記試験信号を送信する様に、前記試験信号の送受信をスケジューリングする様に構成されている、請求項1に記載の処理装置。 The processing device according to claim 1, wherein the control means is configured to schedule transmission and reception of the test signal so that each of the multiple AP devices transmits the test signal at a different timing during the correction process.
  3.  前記制御手段は、前記スケジューリングの結果を示すスケジューリング情報を前記複数のAP装置それぞれに通知する様に構成されている、請求項1又は2に記載の処理装置。 The processing device according to claim 1 or 2, wherein the control means is configured to notify each of the plurality of AP devices of scheduling information indicating the result of the scheduling.
  4.  1つ以上のプロセッサを有する装置の前記1つ以上のプロセッサで実行されると前記装置を請求項1から3のいずれか1項に記載の処理装置として機能させる、コンピュータプログラムを格納しているコンピュータ可読記憶媒体。 A computer-readable storage medium storing a computer program that, when executed by one or more processors of a device having one or more processors, causes the device to function as a processing device according to any one of claims 1 to 3.
  5.  処理装置から受信した送信信号を無線信号として送信し、1つ以上の無線デバイスから受信した無線信号に対応する受信信号を前記処理装置に送信するアクセスポイント(AP)装置であって、
     前記処理装置は、前記AP装置と、1つ以上の他のAP装置を介して前記1つ以上の無線デバイスと通信し、
     前記AP装置は、
     前記1つ以上の無線デバイスから受信した参照信号に基づき推定した上りリンクのチャネル特性を示す第1特性情報を前記処理装置に送信する様に構成された第1送信手段と、
     前記処理装置から受信するスケジューリング情報に従い試験信号を含む無線信号を送信し、かつ、前記スケジューリング情報に従い前記1つ以上の他のAP装置から受信した無線信号に含まれる前記試験信号に基づき推定したAP装置間のチャネル特性を示す第2特性情報を前記処理装置に送信する様に構成された第2送信手段と、
     前記処理装置から受信したプリコーディング情報に基づき前記送信信号のプリコーディングを行う様に構成されたプリコーディング手段と、
    を備えている、AP装置。
    An access point (AP) device that transmits a transmission signal received from a processing device as a wireless signal and transmits a reception signal corresponding to a wireless signal received from one or more wireless devices to the processing device,
    The processing device communicates with the AP device and with the one or more wireless devices via one or more other AP devices;
    The AP device includes:
    a first transmitting means configured to transmit, to the processing device, first characteristic information indicating uplink channel characteristics estimated based on reference signals received from the one or more wireless devices;
    a second transmitting means configured to transmit a wireless signal including a test signal according to scheduling information received from the processing device, and to transmit to the processing device second characteristic information indicating a channel characteristic between the AP devices estimated based on the test signal included in the wireless signal received from the one or more other AP devices according to the scheduling information;
    A precoding means configured to perform precoding of the transmission signal based on precoding information received from the processing device;
    The AP device includes:
  6.  前記プリコーディング情報は、前記処理装置が、前記AP装置及び前記1つ以上の他のAP装置それぞれから受信した前記第1特性情報及び前記第2特性情報に基づき生成されたものである、請求項5に記載のAP装置。 The AP device according to claim 5, wherein the precoding information is generated by the processing device based on the first characteristic information and the second characteristic information received from the AP device and the one or more other AP devices, respectively.
  7.  前記1つ以上の無線デバイスに無線信号を送信する期間と、前記1つ以上の無線デバイスからの無線信号を受信する期間とは異なり、
     前記試験信号を含む無線信号を送信するタイミングが、前記1つ以上の無線デバイスからの無線信号を受信する期間内である、請求項5又は6に記載のAP装置。
    A period for transmitting a radio signal to the one or more wireless devices is different from a period for receiving a radio signal from the one or more wireless devices,
    The AP device according to claim 5 or 6, wherein a timing for transmitting a wireless signal including the test signal is within a period for receiving a wireless signal from the one or more wireless devices.
  8.  前記参照信号及び前記試験信号は、共に、サウンディング参照信号である、請求項7に記載のAP装置。 The AP device of claim 7, wherein the reference signal and the test signal are both sounding reference signals.
  9.  前記1つ以上の無線デバイスに無線信号を送信する期間と、前記1つ以上の無線デバイスからの無線信号を受信する期間とは異なり、
     前記1つ以上の他のAP装置から前記試験信号を含む無線信号を受信するタイミングが、前記1つ以上の無線デバイスに無線信号を送信する期間内である、請求項5又は6に記載のAP装置。
    A period for transmitting a radio signal to the one or more wireless devices is different from a period for receiving a radio signal from the one or more wireless devices,
    The AP device according to claim 5 or 6, wherein the timing for receiving the wireless signal including the test signal from the one or more other AP devices is within a period for transmitting a wireless signal to the one or more wireless devices.
  10.  前記参照信号は、サウンディング参照信号であり、
     前記試験信号は、チャネル状態情報参照信号である、請求項9に記載のAP装置。
    the reference signal is a sounding reference signal;
    The AP device of claim 9 , wherein the test signal is a channel state information reference signal.
  11.  1つ以上のプロセッサを有する装置の前記1つ以上のプロセッサで実行されると前記装置を請求項5から10のいずれか1項に記載のAP装置として機能させる、コンピュータプログラムを格納しているコンピュータ可読記憶媒体。 A computer-readable storage medium storing a computer program that, when executed by one or more processors of an apparatus having one or more processors, causes the apparatus to function as an AP apparatus according to any one of claims 5 to 10.
PCT/JP2023/031469 2022-09-26 2023-08-30 Access point device and processing device that communicates with wireless device via plurality of access point devices WO2024070446A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022152527A JP2024047102A (en) 2022-09-26 2022-09-26 Access point device and processing device for communicating with wireless devices via a plurality of access point devices - Patents.com
JP2022-152527 2022-09-26

Publications (1)

Publication Number Publication Date
WO2024070446A1 true WO2024070446A1 (en) 2024-04-04

Family

ID=90477208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031469 WO2024070446A1 (en) 2022-09-26 2023-08-30 Access point device and processing device that communicates with wireless device via plurality of access point devices

Country Status (2)

Country Link
JP (1) JP2024047102A (en)
WO (1) WO2024070446A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220123795A1 (en) * 2020-10-16 2022-04-21 Electronics And Telecommunications Research Institute Cell-free massive mimo transmission method, and apparatus for the same
WO2022184263A1 (en) * 2021-03-04 2022-09-09 Telefonaktiebolaget Lm Ericsson (Publ) Controlling over-the-air beamforming calibration

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220123795A1 (en) * 2020-10-16 2022-04-21 Electronics And Telecommunications Research Institute Cell-free massive mimo transmission method, and apparatus for the same
WO2022184263A1 (en) * 2021-03-04 2022-09-09 Telefonaktiebolaget Lm Ericsson (Publ) Controlling over-the-air beamforming calibration

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ISHII, DAISUKE ET AL.: "Investigations on TRP Clustering Method in Downlink Cell-Free MIMO Using Layered Partially Non-orthogonal ZF-Based Beamforming", IEICE TECHNICAL REPORT, vol. 122, no. 73, 8 June 2022 (2022-06-08), pages 73 - 78 *

Also Published As

Publication number Publication date
JP2024047102A (en) 2024-04-05

Similar Documents

Publication Publication Date Title
CN107615856B (en) System and method for multi-stage beamforming non-orthogonal multiple access communication
JP6860152B2 (en) Systems and methods for transmitting subspace selection
JP6400001B2 (en) Method and apparatus for channel state information feedback reporting
KR20210032355A (en) Method and apparatus for channel state information report for beam operation in a wireless communication system
US8543063B2 (en) Multi-point opportunistic beamforming with selective beam attenuation
KR20180040368A (en) Apparatus and method for beam searching based on antenna configuration in wireless communication system
US20150029986A1 (en) Mu-mimo transmission method in wireless lan system
JP7273719B2 (en) Uplink transmit beam identification method and apparatus
US20090238303A1 (en) Method and system for codebook-based closed-loop mimo using common pilots and analog feedback
US10985813B2 (en) Downlink user equipment selection
JP2014515213A (en) Channel feedback for coordinated multipoint transmission
CN110268637B (en) User equipment and method for SRS transmission
JP2019511883A (en) Method and apparatus for precoding matrix indicator feedback
US10735057B1 (en) Uplink user equipment selection
JP6583409B2 (en) Wireless communication control method, wireless communication system, receiving device, and transmitting device
CN113366787B (en) Method, apparatus and computer readable medium for estimating channel state information
WO2021176836A1 (en) Wireless base station and wireless terminal
WO2024070446A1 (en) Access point device and processing device that communicates with wireless device via plurality of access point devices
EP4297471A1 (en) Base station and communication method
EP4239897A1 (en) Transmission method, apparatus and device, and readable storage medium
WO2024070445A1 (en) Processing apparatus that communicates with wireless devices via multiple access point devices
CN114514723B (en) CSI omission procedure for release 16 type II Channel State Information (CSI)
WO2022027625A1 (en) Frequency domain precoding for fdd reciprocity
WO2024070444A1 (en) Processing apparatus that communicates with wireless device via multiple access point apparatuses
CN115733523A (en) Transmission method, device, equipment and computer storage medium