WO2024070359A1 - Vehicular air conditioning device - Google Patents

Vehicular air conditioning device Download PDF

Info

Publication number
WO2024070359A1
WO2024070359A1 PCT/JP2023/030498 JP2023030498W WO2024070359A1 WO 2024070359 A1 WO2024070359 A1 WO 2024070359A1 JP 2023030498 W JP2023030498 W JP 2023030498W WO 2024070359 A1 WO2024070359 A1 WO 2024070359A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
oil
air conditioning
evaporator
compressor
Prior art date
Application number
PCT/JP2023/030498
Other languages
French (fr)
Japanese (ja)
Inventor
俊輔 小寺
史聖 川原
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2024070359A1 publication Critical patent/WO2024070359A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present invention relates to a vehicle air conditioning system that adjusts the room temperature of a vehicle.
  • Patent Document 1 describes an air conditioner for vehicles.
  • the air conditioner in Patent Document 1 performs "oil return operation" in which the oil that lubricates the compressor is returned to the compressor by circulating the refrigerant in the refrigerant circuit of the refrigeration cycle so that the refrigerant passes through the evaporator.
  • This type of oil return operation is performed periodically, for example, at predetermined time intervals relative to the operating time of the air conditioner.
  • the compressor may run out of lubricating oil, reducing its reliability.
  • oil may accumulate in undesirable places in the refrigerant circuit (the evaporator or condenser), reducing cooling efficiency.
  • oil return operation may be performed even when there is no shortage of lubricating oil for the compressor.
  • a forced cooling state occurs, which is different from the air conditioning set by the user, and may cause discomfort to the user, such as fogging of windows and excessive cooling.
  • the object of the present invention is therefore to provide an air conditioning system for vehicles that prevents oil shortages in the compressor, oil retention in undesirable parts of the refrigerant circuit, and discomfort to the user.
  • the vehicle air conditioning system of the present invention comprises a compressor that compresses a refrigerant, a condenser that liquefies the refrigerant discharged from the compressor, an expansion valve for reducing the pressure of the liquefied refrigerant, an evaporator that vaporizes the reduced pressure refrigerant to absorb heat, and a refrigerant circuit in which the refrigerant discharged from the evaporator is circulated to the compressor and in which oil is sealed together with the refrigerant.
  • the vehicle air conditioning system comprises a control device that controls the operation of the compressor and the expansion valve, and an oil sensor provided in at least one of the pipes that connect the condenser, the evaporator, and the condenser and the evaporator in the refrigerant circuit.
  • the control device performs oil return operation according to the output of the oil sensor.
  • the vehicle air conditioning device performs oil return operation when the oil sensor detects oil, and does not perform oil return operation when oil is not detected. This allows the vehicle air conditioning device to perform oil return when it is necessary to return oil to the compressor.
  • This invention can prevent oil shortages in the compressor, oil retention in undesirable places in the refrigerant circuit, and discomfort to the user.
  • FIG. 1 is a configuration diagram of a vehicle air conditioning device according to a first embodiment of the present invention.
  • FIG. 2 is a functional block diagram of a control system of the vehicle air conditioning apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a flowchart showing an example of the oil return operation method according to the first embodiment of the present invention.
  • FIG. 4 is a flowchart showing an example of an oil return operation method according to the second embodiment of the present invention.
  • FIG. 5 is a configuration diagram of a vehicle air conditioning device according to a third embodiment of the present invention.
  • FIG. 6 is a functional block diagram of a control system of a vehicle air conditioning device according to a third embodiment of the present invention.
  • FIG. 7 is a configuration diagram of a vehicle air conditioning device according to a fourth embodiment of the present invention.
  • FIG. 8 is a configuration diagram of a vehicle air conditioning device according to a fifth embodiment of the present invention.
  • Fig. 1 is a configuration diagram of the vehicle air conditioning device according to the first embodiment of the present invention.
  • Fig. 2 is a functional block diagram of a control system of the vehicle air conditioning device according to the first embodiment of the present invention.
  • the vehicle air conditioning device 10 includes a compressor 31, a condenser 32, a receiver tank 33, an expansion valve 41, an expansion valve 42, an evaporator 511, an evaporator 521, a radiator 512, a radiator 522, an air mix door 61, and an air mix door 62.
  • the vehicle air conditioning device 10 includes a plurality of pipes P11, P12, P13, P14, P21, P22, P31, P32, P41, and P42, and a plurality of circuit valves B10, B21, B22, and B23.
  • the vehicle air conditioning device 10 includes a plurality of fans F10 and F20, and a plurality of air introduction devices D10 and D20.
  • the vehicle air conditioning device 10 includes a control device 20, multiple oil sensors 71, 72, 73, a temperature sensor 191 (see FIG. 2), and an operation unit 192 (see FIG. 2).
  • An exhaust port of the compressor 31 is connected to an inlet of the condenser 32 through a pipe P11.
  • a circuit valve B10 is inserted into the pipe P11.
  • An exhaust port of the condenser 32 is connected to an inlet of the receiver tank 33 through a pipe P12.
  • An exhaust port of the receiver tank 33 is connected to an inlet of the evaporator 511 through a pipe P13.
  • An expansion valve 41 is inserted into the pipe P13.
  • An exhaust port of the evaporator 511 is connected to an inlet of the compressor 31 through a pipe P14.
  • a refrigerant supply valve PR is provided in the pipe P14.
  • the compressor 31, condenser 32, receiver tank 33, expansion valve 41, and evaporator 511 are connected in a loop by multiple pipes P11, P12, P13, and P14 to form a refrigerant circuit for the front seats.
  • This refrigerant circuit is mainly filled with refrigerant, and oil is also filled with the refrigerant.
  • pipe P21 One end of pipe P21 is connected to a portion of pipe P13 that connects the receiver tank 33 and the expansion valve 41. The other end of pipe P21 is connected to the inlet of the evaporator 521. An expansion valve 42 is inserted into pipe P21. The outlet of the evaporator 521 is connected to pipe P14 through pipe P22. This forms a refrigerant circuit for the rear seats that is connected to the refrigerant circuit for the front seats.
  • the refrigerant circuit for the front seats and the refrigerant circuit for the rear seats form a refrigerant circuit for the entire vehicle in the vehicle air conditioning device 10.
  • one end of the pipe P31 is connected to a portion of the pipe P11 closer to the compressor 31 than the insertion position of the circuit valve B10.
  • the other end of the pipe P31 is connected to a radiator 512.
  • a circuit valve B21 is inserted into the pipe P31.
  • the radiator 512 is connected through the pipe P32 to a portion of the pipe P11 closer to the condenser 32 than the insertion position of the circuit valve B10.
  • one end of the pipe P41 is connected to a portion of the pipe P31 closer to the radiator 512 than the insertion position of the circuit valve B21.
  • the other end of the pipe P41 is connected to the radiator 522.
  • the circuit valve B22 is inserted into the pipe P41.
  • the radiator 522 is connected through the pipe P42 to a portion of the pipe P32 closer to the radiator 512 than the insertion position of the circuit valve B23.
  • the vehicle air conditioning device 10 forms a refrigerant circuit that can also be used for heating.
  • Oil sensor 71 is installed in evaporator 511.
  • Oil sensor 72 is installed in evaporator 521.
  • Oil sensor 73 is installed in condenser 32.
  • an evaporator 511, a radiator 512, an air mix door 61, and a fan F10 are arranged inside the front seat air duct 91.
  • An air introduction device D10 is arranged at the upstream end of the front seat air duct 91.
  • the fan F10 is arranged upstream of the front seat air duct 91 relative to the evaporator 511, the radiator 512, and the air mix door 61.
  • the air mix door 61 is arranged between the evaporator 511 and the radiator 512 in the flow direction of the front seat air duct 91.
  • an evaporator 521, a radiator 522, an air mix door 62, and a fan F20 are arranged in the rear seat air duct 92.
  • An air introduction device D20 is installed at the upstream end of the rear seat air duct 92.
  • the fan F20 is arranged upstream of the rear seat air duct 92 relative to the evaporator 521, the radiator 522, and the air mix door 62.
  • the air mix door 62 is arranged between the evaporator 521 and the radiator 522 in the flow direction of the rear seat air duct 92.
  • the temperature sensor 191 is not shown in FIG. 1, but is placed in a position where it can measure the temperature that the control device 20 references when conditioning the air inside the vehicle.
  • the operation unit 192 is an air conditioning panel of the vehicle, not shown in FIG. 1, and receives operation inputs for the air conditioning from the user.
  • control device 20 controls the cooling, heating, or dehumidification operation based on the operation input (set temperature, etc.) from the operation unit 192 and the temperature detected by the temperature sensor 191.
  • the control device 20 controls the operation of the compressor 31 and the expansion valve based on the operation input contents (set temperature, etc.) from the operation unit 192 and the temperature detected by the temperature sensor 191.
  • the compressor 31 is driven according to this operation control and compresses the refrigerant. As a result, high-temperature, high-pressure gaseous refrigerant is discharged from the compressor 31. The high-temperature, high-pressure gaseous refrigerant is sent to the condenser 32 through the circuit valve B10.
  • the condenser 32 liquefies the refrigerant, which is mostly in a gaseous state at high temperature and high pressure, and discharges the refrigerant, which is mostly in a liquid state at low temperature and high pressure.
  • the refrigerant in a liquid state at low temperature and high pressure is injected into the expansion valve 41 through the receiver tank 33.
  • the expansion valve 41 reduces the pressure of the low-temperature, high-pressure liquid refrigerant.
  • the expansion valve 41 reduces the pressure and discharges the medium-temperature, low-pressure liquid refrigerant into the evaporator 511.
  • the evaporator 511 vaporizes the refrigerant in a liquid state at medium temperature and low pressure. At this time, the heat of the air flowing through the front seat air duct 91 is absorbed by the refrigerant as it vaporizes. As a result, cooled air is supplied to the front seat air duct 91 and sent out from the front seat air outlet. The vaporized refrigerant is returned to the compressor 31.
  • the vehicle air conditioning device 10 can perform cooling.
  • the refrigerant is circulated through the radiator 512 as well as the evaporator 511. Also, although detailed explanations are omitted, in the case of heating, the refrigerant is circulated through the radiator 512.
  • the above explanation also shows a configuration in which the front seats and rear seats can be air-conditioned separately. However, it is also possible to air-condition the entire vehicle using the front seats, in which case the above-mentioned configuration for the rear seats can be omitted.
  • the vehicle air conditioning device 10 further executes an oil return operation as described below.
  • the oil sensor 71 detects whether oil is stagnating inside the evaporator 511.
  • the oil sensor 71 detects whether oil is stagnating whether or not refrigerant is flowing through the evaporator 511.
  • the oil sensor 71 outputs the oil stagnating detection result to the control device 20.
  • the oil sensor 72 detects whether oil is stagnating inside the evaporator 521.
  • the oil sensor 72 detects whether oil is stagnating whether or not refrigerant is flowing through the evaporator 521.
  • the oil sensor 72 outputs the oil stagnating detection result to the control device 20.
  • the oil sensor 73 detects whether oil is stagnating inside the condenser 32.
  • the oil sensor 73 outputs the oil stagnant detection result to the control device 20.
  • Oil sensors 71, 72, and 73 are, for example, ultrasonic sensors. Oil sensors 71, 72, and 73 may be other sensors as long as they are capable of detecting oil retention in evaporators 511 and 521 and oil retention in condenser 32. However, by using ultrasonic sensors as the oil sensors, oil retention in evaporators 511 and 521 and oil retention in condenser 32 can be easily detected with a simple configuration.
  • the control device 20 performs oil return operation in response to the oil retention detection results of the oil sensors 71, 72, and 73.
  • the control device 20 may perform oil return operation in response to a single oil retention detection result of the oil sensors 71, 72, and 73, or in response to multiple oil retention detection results.
  • the control device 20 can also perform oil return operation, for example, when oil retention is detected multiple times in succession.
  • the control device 20 performs oil return operation for the refrigerant circuit including the evaporator 511.
  • the control device 20 does not perform oil return operation for the refrigerant circuit including the evaporator 511.
  • the control device 20 performs an oil return operation for the refrigerant circuit including the evaporator 521.
  • the control device 20 does not perform an oil return operation for the refrigerant circuit including the evaporator 521.
  • the control device 20 performs oil return operation for the refrigerant circuit including the condenser 32.
  • the control device 20 does not perform oil return operation for the refrigerant circuit including the condenser 32.
  • the vehicle air conditioning device 10 can perform oil return operation when it is necessary to return oil to the compressor 31. Furthermore, the vehicle air conditioning device 10 does not perform oil return operation when it is not necessary to return oil to the compressor 31.
  • the vehicle air conditioning device 10 can minimize the frequency of oil return operation. Therefore, the vehicle air conditioning device 10 can prevent the occurrence of fogging of the vehicle windows and undesirable excessive cooling, and can reduce discomfort to the user.
  • the vehicle air conditioning device 10 can maintain a state in which oil is always present inside the compressor 31. As a result, the vehicle air conditioning device 10 can prevent insufficient lubrication and improve the reliability of the compressor 31.
  • the vehicle air conditioning device 10 can suppress oil retention in the evaporators 511, 521 and the condenser 32. As a result, the vehicle air conditioning device 10 can minimize the decrease in cooling capacity and cooling efficiency, and improve power consumption.
  • the vehicle air conditioning device 10 described above is not limited to engine vehicles, but can also be applied to EV vehicles that use refrigerant compressed by the compressor 31 for heating.
  • EV vehicles when heating starts, heating with electrical energy alone does not provide sufficient capacity.
  • the oil sensor is disposed in the evaporator 511, 521 and the condenser 32.
  • the oil sensor can be disposed at any position in the refrigerant circuit.
  • the oil sensor is disposed in at least one of the evaporator 511, 521 and the condenser 32.
  • Fig. 3 is a flow chart showing an example of an oil return operation method according to the first embodiment of the present invention. Fig. 3 shows an outline of the oil return method. The specific contents of each process (control) in Fig. 3 have been described above, and therefore will not be described here.
  • the control device 20 performs normal air conditioning control based on the user's operation and the detected temperature (S11).
  • the oil sensors 71, 72, and 73 detect the presence or absence of oil accumulation in each detection target location (evaporator 511, evaporator 521, and condenser 32).
  • control device 20 When the control device 20 detects that oil is stagnating (S12: YES), it performs the oil return operation (S13). When the control device 20 detects that no oil is stagnating (S12: NO), it does not perform the oil return operation.
  • Fig. 4 is a flow chart showing an example of an oil return operation method according to the second embodiment of the present invention.
  • the configuration of the vehicle air conditioning device according to the second embodiment is similar to that of the vehicle air conditioning device according to the first embodiment. As shown in FIG. 4, the vehicle air conditioning device according to the second embodiment differs from the vehicle air conditioning device according to the first embodiment in that it controls the air mix door. Other controls of the vehicle air conditioning device according to the second embodiment are similar to those of the vehicle air conditioning device according to the first embodiment, and a description of similar parts will be omitted.
  • the control device 20 controls the opening degree of the air mix doors 61, 62 during the oil return operation (S13) (S130). More specifically, the control device 20 adjusts the opening degree of the air mix doors 61, 62 so that the temperature of the air blown out from the air outlet during the oil return operation corresponds to the specified room temperature.
  • the control device 20 adjusts the opening of the air mix door 61 to adjust the amount of air passing through the evaporator 511 and the amount of air that does not pass through the evaporator 511. This ensures that the air sent out from the front seat air outlet is not overly cooled.
  • the control device 20 adjusts the opening of the air mix door 62 to adjust the amount of air passing through the evaporator 521 and the amount of air that does not pass through the evaporator 521. This ensures that the air sent out from the rear seat air outlet is not overly cooled.
  • the vehicle air conditioning device 10 can suppress temperature fluctuations in the air blown into the vehicle cabin during oil return operation.
  • FIG. 5 is a configuration diagram of the vehicle air conditioning device according to the third embodiment of the present invention.
  • Fig. 6 is a functional block diagram of a control system of the vehicle air conditioning device according to the third embodiment of the present invention.
  • the vehicle air conditioning device 10A according to the third embodiment differs from the vehicle air conditioning device 10 according to the first embodiment in that it is equipped with an oil sensor 74 and a notification unit 193, and in the control content of the control device 20A.
  • the other configurations and controls of the vehicle air conditioning device 10A are the same as those of the vehicle air conditioning device 10, and descriptions of similar parts will be omitted.
  • the vehicle air conditioning device 10A includes an oil sensor 74 and a notification unit 193.
  • the oil sensor 74 like the other oil sensors 71-73, is, for example, an ultrasonic sensor.
  • the notification unit 193 is, for example, a display or a speaker.
  • the oil sensor 74 is disposed near the refrigerant supply valve PR.
  • the oil sensor 74 detects whether oil is stagnating near the refrigerant supply valve PR in the pipe P14 of the refrigerant circuit.
  • the oil sensor 74 outputs the oil stagnation detection result to the control device 20.
  • control device 20A When the control device 20A detects the presence of oil near the refrigerant supply valve PR based on the oil accumulation detection result from the oil sensor 74, it notifies the user of this through the notification unit 193.
  • control device 20A may notify the refrigerant supply valve PR of its prohibition of opening, and may control the prohibition of opening (lock, etc.).
  • the control device 20A allows the refrigerant supply valve to be opened after the oil return operation. This allows the operator to supply the refrigerant safely.
  • FIG. 7 is a configuration diagram of a vehicle air conditioning device according to the fourth embodiment of the present invention.
  • the vehicle air conditioning device 10B according to the fourth embodiment differs from the vehicle air conditioning device 10 according to the first embodiment in the configuration of the heating system.
  • the other configuration of the vehicle air conditioning device 10B is the same as that of the vehicle air conditioning device 10, and a description of similar parts will be omitted.
  • the vehicle air conditioning device 10B includes a heat exchanger 530B, an electric pump 54B, and pipes P31B1, P32B1, P31B2, and P32B2.
  • Heat exchanger 530B includes heat transfer tubes 531B and 532B that are thermally coupled to each other.
  • Heat transfer tube 531B is connected to circuit valve B21 through pipe P31B1 and to circuit valve B23 through pipe P32B1.
  • Heat transfer tube 532B is connected to pipes P31B2 and P32B2.
  • Pipe P41 is connected to pipe P31B2, and pipe P42 is connected to pipe P32B2.
  • the electric pump 54B is connected to the pipe P42.
  • the heat transfer tube 532B of the heat exchanger 530B, the pipe P31B2, the radiator 512, the pipe P32B2, the pipe P41, the radiator 522, the pipe P42, and the electric pump 54B constitute a cooling water circuit.
  • the flow of the cooling water is controlled by the electric pump 54B.
  • the refrigerant sent from the compressor 31 flows through the heat transfer tube 531B of the heat exchanger 530B.
  • the cooling water is heated in the heat transfer tube 532B of the heat exchanger 530B and is supplied to the radiator 512 through the pipe P31B2.
  • the radiator 512 radiates heat from the heated cooling water and sends it to the pipe P32B2.
  • the cooling water sent to the pipe P32B2 is returned to the heat transfer tube 532B of the heat exchanger 530B.
  • the cooling water heated in the heat transfer tube 532B of the heat exchanger 530B is supplied to the radiator 522 through the pipes P31B2 and P41.
  • the radiator 522 radiates heat from the heated cooling water and sends it to the pipe P42.
  • the cooling water sent to the pipe P42 is returned to the heat transfer tube 532B of the heat exchanger 530B through the pipe P32B2.
  • the vehicle air conditioning device 10B uses a refrigerant for cooling and a cooling water for heating. Even with this configuration, the vehicle air conditioning device 10B can achieve the same effects as the vehicle air conditioning device 10.
  • FIG. 8 is a configuration diagram of a vehicle air conditioning device according to the fifth embodiment of the present invention.
  • the vehicle air conditioning device 10C according to the fifth embodiment differs from the vehicle air conditioning device 10 according to the first embodiment in that it is equipped with a battery cooling function.
  • the other configuration of the vehicle air conditioning device 10C is the same as that of the vehicle air conditioning device 10, and a description of similar parts will be omitted.
  • the vehicle air conditioning device 10C includes an expansion valve 43, a heat exchanger 530C, an electric pump 54C, a battery cooling device 55C, a heat sink 56C, circuit valves B51 and B52, and pipes P51 and P52.
  • Heat exchanger 530C includes heat transfer tubes 531C and 532C that are thermally coupled to each other.
  • One end of the heat transfer tube 531C is connected to the portion of the pipe P13 between the receiver tank 33 and the expansion valve 41 through the expansion valve 43.
  • the other end of the heat transfer tube 531C is connected to the pipe P14.
  • the heat transfer pipe 532C is connected to the circuit valves B51 and B52 through the pipe P51.
  • the circuit valve B51 is connected to the battery cooling device 55C.
  • the circuit valve B52 is connected to the heat absorber 56C.
  • the battery cooling device 55C and the heat absorber 56C are connected to the heat transfer pipe 532C through the pipe P52.
  • the electric pump 54C is connected to the pipe P52, for example.
  • the heat transfer tube 532C of the heat exchanger 530C, the piping P51, the battery cooling device 55C, the heat sink 56C, the piping P52, and the electric pump 54C form a coolant circuit.
  • the flow of the coolant is controlled by the electric pump 54C.
  • the battery cooling device 55C cools the drive battery (power source for the drive motor) for HEVs, PHEVs, and EVs using cooling water flowing through the cooling water circuit.
  • the circuit valve B51 is open and the circuit valve B52 is closed.
  • the cooling water that has cooled the battery is heated and sent to the heat transfer tube 532C of the heat exchanger 530C.
  • the refrigerant is decompressed by the expansion valve 41, and absorbs heat from the surroundings as it vaporizes, causing heat to be removed from the heat transfer tube 532C within the heat exchanger 530C and transferred to the heat transfer tube 531C. This allows the heat of the cooling water to be transferred to the heat transfer tube 531C, warming the refrigerant.
  • the cooling water cooled by the heat transfer tube 532C returns to the battery cooling device 55C and cools the battery.
  • circuit valve B51 When the battery is not being cooled, circuit valve B51 is closed and circuit valve B52 is open. Cooling water heated by heat absorber 56C is sent to heat transfer tube 532C of heat exchanger 530C. Heat exchange between heat transfer tube 532C and heat transfer tube 531C transfers the heat of the cooling water to heat transfer tube 531C, warming the refrigerant.
  • circuit valve B51 When it is desired to warm the battery rather than cool it, circuit valve B51 is opened, circuit valve B52 is closed, and expansion valve 43 is closed. In this way, no heat exchange takes place within heat exchanger 530C, and the temperature of the cooling water rises each time it passes through the battery cooling device, allowing the battery to be warmed as electric pump 54C continues to be driven.
  • the vehicle air conditioning device 10C has the function of cooling the battery, while providing the same effects as the vehicle air conditioning device 10.
  • a compressor that compresses a refrigerant; a condenser that liquefies the refrigerant discharged from the compressor; an expansion valve for reducing the pressure of the liquefied refrigerant; an evaporator that vaporizes the decompressed refrigerant and absorbs heat; a refrigerant circuit in which the refrigerant discharged from the evaporator is circulated through the compressor and in which oil is sealed together with the refrigerant; A control device for controlling the operation of the compressor and the expansion valve; an oil sensor provided in at least one of the pipings connecting the condenser and the evaporator among the condenser, the evaporator, and the refrigerant circuit; Equipped with The control device performs an oil return operation in response to an output of the oil sensor.
  • An air mix door is further provided in an air duct that introduces air into a vehicle cabin through the evaporator, the air mix door adjusting a flow rate of air passing through the evaporator by an opening degree thereof,
  • the vehicle air conditioning device according to ⁇ 1>, wherein the control device controls the opening degree of the air mix door when performing the oil return operation.
  • ⁇ 3> The vehicle air conditioning system of ⁇ 1> or ⁇ 2>, wherein the oil sensor is an ultrasonic sensor.
  • An air conditioning device for a vehicle according to any one of ⁇ 1> to ⁇ 3>, further comprising a path between the compressor and the condenser through which the refrigerant discharged from the compressor passes through a radiator via an electromagnetic valve and returns to the condenser.
  • ⁇ 5> a refrigerant supply valve provided between the evaporator and the compressor in the refrigerant circuit;
  • the vehicle air conditioning device according to any one of ⁇ 1> to ⁇ 4>, wherein the control device notifies, via the notification unit, that the oil sensor has detected the presence of oil.
  • ⁇ 6> The vehicle air conditioning device of ⁇ 5>, wherein the control device enables the refrigerant supply valve to be opened after the oil return operation is completed.
  • An air conditioning device for a vehicle according to any one of ⁇ 1> to ⁇ 6>, wherein the evaporator is provided with an evaporator for the front seats and an evaporator for the rear seats of the vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

This vehicular air conditioning device (10) comprises: a compressor (31) that compresses a refrigerant; a condenser (32) that liquefies a refrigerant discharged from the compressor (31); expansion valves (41, 42) that decompress the liquefied refrigerant; evaporators (511, 521) that vaporize the decompressed refrigerant and absorb the heat; and a refrigerant circuit which circulates, to the compressor (31), the refrigerant discharged from the evaporators (511, 521), and in which oil is encapsulated together with the refrigerant. The vehicular air conditioning device (10) includes a control device (20) that controls the expansion valves (41, 42) and operation of the compressor (31), and oil sensors (71, 72, 73) provided to at least one among piping connecting the condenser (32) and the evaporators (511, 521), and piping connecting the condenser (32) and the evaporators (511, 521) in the refrigerant circuit. The control device (20) performs an oil return operation in accordance with an output of the oil sensors (71, 72, 73).

Description

車両用空気調和装置Vehicle air conditioning system
 本発明は、車両の室温を調整する車両用空気調和装置に関する。 The present invention relates to a vehicle air conditioning system that adjusts the room temperature of a vehicle.
 特許文献1には、車両用の空気調和装置が記載されている。特許文献1の空気調和装置は、蒸発器を通るように冷媒を冷凍サイクルの冷媒回路に循環させることにより、圧縮機を潤滑するオイルを圧縮機に戻す「オイル戻し運転」を行う。 Patent Document 1 describes an air conditioner for vehicles. The air conditioner in Patent Document 1 performs "oil return operation" in which the oil that lubricates the compressor is returned to the compressor by circulating the refrigerant in the refrigerant circuit of the refrigeration cycle so that the refrigerant passes through the evaporator.
 このようなオイル戻し運転は、例えば、空気調和装置の運転時間に対して予め決められた時間間隔で定期的に行われている。 This type of oil return operation is performed periodically, for example, at predetermined time intervals relative to the operating time of the air conditioner.
特開2018-177034号公報JP 2018-177034 A
 しかしながら、オイル戻し運転を定期的に行う場合、圧縮機の潤滑用オイルが不足して、圧縮機の信頼性が低下してしまう可能性がある。また、冷媒回路の不所望な箇所(蒸発器や凝縮器)にオイルが滞留し、冷房効率の低下を招く可能性がある。 However, if oil return operation is performed periodically, the compressor may run out of lubricating oil, reducing its reliability. In addition, oil may accumulate in undesirable places in the refrigerant circuit (the evaporator or condenser), reducing cooling efficiency.
 また、圧縮機の潤滑用オイルが不足していないのにオイル戻し運転を行ってしまうことがある。オイル戻し運転の際には、ユーザが設定した空調とは異なり、強制的な冷却状態が発生し、窓の曇りや過度な冷房等のユーザへの不快感を与える可能性がある。 In addition, oil return operation may be performed even when there is no shortage of lubricating oil for the compressor. When oil return operation is performed, a forced cooling state occurs, which is different from the air conditioning set by the user, and may cause discomfort to the user, such as fogging of windows and excessive cooling.
 したがって、本発明の目的は、圧縮機でのオイル不足、冷媒回路の不所望な箇所でのオイルの滞留、ユーザへの不快感を抑制する車両用空気調和装置を提供することにある。 The object of the present invention is therefore to provide an air conditioning system for vehicles that prevents oil shortages in the compressor, oil retention in undesirable parts of the refrigerant circuit, and discomfort to the user.
 この発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、圧縮機から排出される冷媒を液化させる凝縮器と、液化した冷媒を減圧するための膨張弁と、減圧された冷媒を気化させて吸熱する蒸発器と、蒸発器から排出される冷媒を圧縮機に循環させ、冷媒とともにオイルが封入された冷媒回路と、を備える。車両用空気調和装置は、圧縮機の運転および膨張弁を制御する制御装置と、凝縮器、蒸発器、および冷媒回路のうち凝縮器と蒸発器とを接続する配管の少なくとも1つに設けられたオイルセンサと、を備える。制御装置は、オイルセンサの出力に応じてオイル戻し運転を行う。 The vehicle air conditioning system of the present invention comprises a compressor that compresses a refrigerant, a condenser that liquefies the refrigerant discharged from the compressor, an expansion valve for reducing the pressure of the liquefied refrigerant, an evaporator that vaporizes the reduced pressure refrigerant to absorb heat, and a refrigerant circuit in which the refrigerant discharged from the evaporator is circulated to the compressor and in which oil is sealed together with the refrigerant. The vehicle air conditioning system comprises a control device that controls the operation of the compressor and the expansion valve, and an oil sensor provided in at least one of the pipes that connect the condenser, the evaporator, and the condenser and the evaporator in the refrigerant circuit. The control device performs oil return operation according to the output of the oil sensor.
 この構成では、車両用空気調和装置は、オイルセンサがオイルを検知したときにオイル戻し運転を行い、オイルを検知していないときにはオイル戻し運転を行わない。これにより、車両用空気調和装置は、圧縮機へのオイル戻しが必要な時にオイル戻しを行うことができる。 In this configuration, the vehicle air conditioning device performs oil return operation when the oil sensor detects oil, and does not perform oil return operation when oil is not detected. This allows the vehicle air conditioning device to perform oil return when it is necessary to return oil to the compressor.
 この発明によれば、圧縮機でのオイル不足、冷媒回路の不所望な箇所でのオイルの滞留、ユーザへの不快感を抑制できる。 This invention can prevent oil shortages in the compressor, oil retention in undesirable places in the refrigerant circuit, and discomfort to the user.
図1は、本発明の第1の実施形態に係る車両用空気調和装置の構成図である。FIG. 1 is a configuration diagram of a vehicle air conditioning device according to a first embodiment of the present invention. 図2は、本発明の第1の実施形態に係る車両用空気調和装置の制御系の機能ブロック図である。FIG. 2 is a functional block diagram of a control system of the vehicle air conditioning apparatus according to the first embodiment of the present invention. 図3は、本発明の第1の実施形態に係るオイル戻し運転方法の一例を示すフローチャートである。FIG. 3 is a flowchart showing an example of the oil return operation method according to the first embodiment of the present invention. 図4は、本発明の第2の実施形態に係るオイル戻し運転方法の一例を示すフローチャートである。FIG. 4 is a flowchart showing an example of an oil return operation method according to the second embodiment of the present invention. 図5は、本発明の第3の実施形態に係る車両用空気調和装置の構成図である。FIG. 5 is a configuration diagram of a vehicle air conditioning device according to a third embodiment of the present invention. 図6は、本発明の第3の実施形態に係る車両用空気調和装置の制御系の機能ブロック図である。FIG. 6 is a functional block diagram of a control system of a vehicle air conditioning device according to a third embodiment of the present invention. 図7は、本発明の第4の実施形態に係る車両用空気調和装置の構成図である。FIG. 7 is a configuration diagram of a vehicle air conditioning device according to a fourth embodiment of the present invention. 図8は、本発明の第5の実施形態に係る車両用空気調和装置の構成図である。FIG. 8 is a configuration diagram of a vehicle air conditioning device according to a fifth embodiment of the present invention.
 [第1の実施形態]
 本発明の第1の実施形態に係る車両用空気調和装置について、図を参照して説明する。図1は、本発明の第1の実施形態に係る車両用空気調和装置の構成図である。図2は、本発明の第1の実施形態に係る車両用空気調和装置の制御系の機能ブロック図である。
[First embodiment]
The vehicle air conditioning device according to the first embodiment of the present invention will be described with reference to the drawings. Fig. 1 is a configuration diagram of the vehicle air conditioning device according to the first embodiment of the present invention. Fig. 2 is a functional block diagram of a control system of the vehicle air conditioning device according to the first embodiment of the present invention.
 図1、図2に示すように、車両用空気調和装置10は、圧縮機31、凝縮器32、レシーバータンク33、膨張弁41、膨張弁42、蒸発器511、蒸発器521、放熱器512、放熱器522、エアミックスドア61、および、エアミックスドア62を備える。 As shown in Figures 1 and 2, the vehicle air conditioning device 10 includes a compressor 31, a condenser 32, a receiver tank 33, an expansion valve 41, an expansion valve 42, an evaporator 511, an evaporator 521, a radiator 512, a radiator 522, an air mix door 61, and an air mix door 62.
 車両用空気調和装置10は、複数の配管P11、P12、P13、P14、P21、P22、P31、P32、P41、P42、および、複数の回路弁B10、B21、B22、B23を備える。車両用空気調和装置10は、複数のファンF10、F20、および、複数の空気導入装置D10、D20を備える。 The vehicle air conditioning device 10 includes a plurality of pipes P11, P12, P13, P14, P21, P22, P31, P32, P41, and P42, and a plurality of circuit valves B10, B21, B22, and B23. The vehicle air conditioning device 10 includes a plurality of fans F10 and F20, and a plurality of air introduction devices D10 and D20.
 車両用空気調和装置10は、制御装置20、複数のオイルセンサ71、72、73、温度センサ191(図2参照)、および、操作部192(図2参照)を備える。 The vehicle air conditioning device 10 includes a control device 20, multiple oil sensors 71, 72, 73, a temperature sensor 191 (see FIG. 2), and an operation unit 192 (see FIG. 2).
 (冷媒回路の構成)
 圧縮機31の排出口は、配管P11を通じて凝縮器32の送入口に接続される。配管P11には、回路弁B10が挿入されている。凝縮器32の排出口は、配管P12を通じてレシーバータンク33の送入口に接続される。レシーバータンク33の排出口は、配管P13を通じて蒸発器511の送入口に接続される。配管P13には、膨張弁41が挿入されている。蒸発器511の排出口は、配管P14を通じて圧縮機31の送入口に接続される。配管P14には、冷媒供給バルブPRが設けられている。
(Configuration of refrigerant circuit)
An exhaust port of the compressor 31 is connected to an inlet of the condenser 32 through a pipe P11. A circuit valve B10 is inserted into the pipe P11. An exhaust port of the condenser 32 is connected to an inlet of the receiver tank 33 through a pipe P12. An exhaust port of the receiver tank 33 is connected to an inlet of the evaporator 511 through a pipe P13. An expansion valve 41 is inserted into the pipe P13. An exhaust port of the evaporator 511 is connected to an inlet of the compressor 31 through a pipe P14. A refrigerant supply valve PR is provided in the pipe P14.
 このように、圧縮機31、凝縮器32、レシーバータンク33、膨張弁41、および、蒸発器511が、複数の配管P11、P12、P13、P14によってループ状に接続されることで、前席用の冷媒回路が構成される。そして、この冷媒回路には、主として冷媒が封入されており、冷媒とともにオイルが封入されている。 In this way, the compressor 31, condenser 32, receiver tank 33, expansion valve 41, and evaporator 511 are connected in a loop by multiple pipes P11, P12, P13, and P14 to form a refrigerant circuit for the front seats. This refrigerant circuit is mainly filled with refrigerant, and oil is also filled with the refrigerant.
 配管P21の一方端は、配管P13におけるレシーバータンク33と膨張弁41とを接続する部分に接続される。配管P21の他方端は、蒸発器521の送入口に接続される。配管P21には、膨張弁42が挿入されている。蒸発器521の排出口は、配管P22を通じて配管P14に接続される。これにより、前席用の冷媒回路に接続する後席用の冷媒回路が構成される。 One end of pipe P21 is connected to a portion of pipe P13 that connects the receiver tank 33 and the expansion valve 41. The other end of pipe P21 is connected to the inlet of the evaporator 521. An expansion valve 42 is inserted into pipe P21. The outlet of the evaporator 521 is connected to pipe P14 through pipe P22. This forms a refrigerant circuit for the rear seats that is connected to the refrigerant circuit for the front seats.
 そして、前席用の冷媒回路と後席用の冷媒回路によって、車両用空気調和装置10は、車両全体に対する冷媒回路を構成する。 The refrigerant circuit for the front seats and the refrigerant circuit for the rear seats form a refrigerant circuit for the entire vehicle in the vehicle air conditioning device 10.
 さらに、配管P31の一方端は、配管P11における回路弁B10の挿入位置よりも圧縮機31側の部分に接続される。配管P31の他方端は、放熱器512に接続される。配管P31には、回路弁B21が挿入されている。放熱器512は、配管P32を通じて配管P11における回路弁B10の挿入位置よりも凝縮器32側の部分に接続される。 Furthermore, one end of the pipe P31 is connected to a portion of the pipe P11 closer to the compressor 31 than the insertion position of the circuit valve B10. The other end of the pipe P31 is connected to a radiator 512. A circuit valve B21 is inserted into the pipe P31. The radiator 512 is connected through the pipe P32 to a portion of the pipe P11 closer to the condenser 32 than the insertion position of the circuit valve B10.
 また、配管P41の一方端は、配管P31における回路弁B21の挿入位置よりも放熱器512側の部分に接続される。配管P41の他方端は、放熱器522に接続される。配管P41には、回路弁B22が挿入されている。放熱器522は、配管P42を通じて配管P32における回路弁B23の挿入位置よりも放熱器512側の部分に接続される。 Furthermore, one end of the pipe P41 is connected to a portion of the pipe P31 closer to the radiator 512 than the insertion position of the circuit valve B21. The other end of the pipe P41 is connected to the radiator 522. The circuit valve B22 is inserted into the pipe P41. The radiator 522 is connected through the pipe P42 to a portion of the pipe P32 closer to the radiator 512 than the insertion position of the circuit valve B23.
 これにより、車両用空気調和装置10は、ヒータ用にも利用可能な冷媒回路を構成する。 As a result, the vehicle air conditioning device 10 forms a refrigerant circuit that can also be used for heating.
 オイルセンサ71は、蒸発器511に設置される。オイルセンサ72は、蒸発器521に設置される。オイルセンサ73は、凝縮器32に設置される。 Oil sensor 71 is installed in evaporator 511. Oil sensor 72 is installed in evaporator 521. Oil sensor 73 is installed in condenser 32.
 前席用送風管91内には、蒸発器511、放熱器512、エアミックスドア61、ファンF10が配置される。前席用送風管91の上流端には、空気導入装置D10が配置される。ファンF10は、蒸発器511、放熱器512、エアミックスドア61よりも前席用送風管91の上流側に配置される。エアミックスドア61は、前席用送風管91の流路方向において蒸発器511と放熱器512との間に配置される。 Inside the front seat air duct 91, an evaporator 511, a radiator 512, an air mix door 61, and a fan F10 are arranged. An air introduction device D10 is arranged at the upstream end of the front seat air duct 91. The fan F10 is arranged upstream of the front seat air duct 91 relative to the evaporator 511, the radiator 512, and the air mix door 61. The air mix door 61 is arranged between the evaporator 511 and the radiator 512 in the flow direction of the front seat air duct 91.
 後席用送風管92内には、蒸発器521、放熱器522、エアミックスドア62、ファンF20が配置される。後席用送風管92の上流端には、空気導入装置D20が設置される。ファンF20は、蒸発器521、放熱器522、エアミックスドア62よりも後席用送風管92の上流側に配置される。エアミックスドア62は、後席用送風管92の流路方向において蒸発器521と放熱器522との間に配置される。 In the rear seat air duct 92, an evaporator 521, a radiator 522, an air mix door 62, and a fan F20 are arranged. An air introduction device D20 is installed at the upstream end of the rear seat air duct 92. The fan F20 is arranged upstream of the rear seat air duct 92 relative to the evaporator 521, the radiator 522, and the air mix door 62. The air mix door 62 is arranged between the evaporator 521 and the radiator 522 in the flow direction of the rear seat air duct 92.
 温度センサ191は、図1には図示していないが、制御装置20が車両内の空調を行う際に参照する温度を測定可能な位置に配置される。 The temperature sensor 191 is not shown in FIG. 1, but is placed in a position where it can measure the temperature that the control device 20 references when conditioning the air inside the vehicle.
 操作部192は、図1には図示していないが、車両の空調パネル等であり、ユーザの空調に対する操作入力を受け付ける。 The operation unit 192 is an air conditioning panel of the vehicle, not shown in FIG. 1, and receives operation inputs for the air conditioning from the user.
 (通常運転)
 制御装置20は、通常運転時には、操作部192からの操作入力内容(設定温度等)と温度センサ191の検出温度に基づいて、冷房、暖房、または除湿の運転制御を行う。
(Normal operation)
During normal operation, the control device 20 controls the cooling, heating, or dehumidification operation based on the operation input (set temperature, etc.) from the operation unit 192 and the temperature detected by the temperature sensor 191.
 一例として、前席に対する冷房の運転制御では、制御装置20は、操作部192からの操作入力内容(設定温度等)と温度センサ191の検出温度に基づいて、圧縮機31の運転制御と膨張弁の制御を行う。 As an example, in controlling the operation of the air conditioner for the front seats, the control device 20 controls the operation of the compressor 31 and the expansion valve based on the operation input contents (set temperature, etc.) from the operation unit 192 and the temperature detected by the temperature sensor 191.
 圧縮機31は、この運転制御にしたがって駆動し、冷媒を圧縮する。これにより、圧縮機31からは、高温高圧で気体状態の冷媒が排出される。高温高圧で気体状態の冷媒は、回路弁B10を通じて凝縮器32に送入される。 The compressor 31 is driven according to this operation control and compresses the refrigerant. As a result, high-temperature, high-pressure gaseous refrigerant is discharged from the compressor 31. The high-temperature, high-pressure gaseous refrigerant is sent to the condenser 32 through the circuit valve B10.
 凝縮器32は、高温高圧でその殆どが気体状態の冷媒を液化し、低温高圧でその殆どが液体状態の冷媒を排出する。低温高圧で液体状態の冷媒は、レシーバータンク33を通じて、膨張弁41に挿入される。 The condenser 32 liquefies the refrigerant, which is mostly in a gaseous state at high temperature and high pressure, and discharges the refrigerant, which is mostly in a liquid state at low temperature and high pressure. The refrigerant in a liquid state at low temperature and high pressure is injected into the expansion valve 41 through the receiver tank 33.
 膨張弁41は、低温高圧で液体状態の冷媒を減圧する。膨張弁41は、減圧して中温低圧で液体状態の冷媒を蒸発器511に排出する。 The expansion valve 41 reduces the pressure of the low-temperature, high-pressure liquid refrigerant. The expansion valve 41 reduces the pressure and discharges the medium-temperature, low-pressure liquid refrigerant into the evaporator 511.
 蒸発器511は、中温低圧で液体状態の冷媒を気化させる。この際、前席用送風管91に流れる空気の熱は、冷媒の気化時に冷媒に吸熱される。これにより、前席用送風管91には冷却された空気が供給され、前席送風口から送出される。気化した冷媒は、圧縮機31に戻される。 The evaporator 511 vaporizes the refrigerant in a liquid state at medium temperature and low pressure. At this time, the heat of the air flowing through the front seat air duct 91 is absorbed by the refrigerant as it vaporizes. As a result, cooled air is supplied to the front seat air duct 91 and sent out from the front seat air outlet. The vaporized refrigerant is returned to the compressor 31.
 このように、冷媒を冷媒回路で循環させることで、車両用空気調和装置10は、冷房を行うことができる。 In this way, by circulating the refrigerant through the refrigerant circuit, the vehicle air conditioning device 10 can perform cooling.
 なお、詳細な説明を省略するが、除湿の場合は、蒸発器511とともに放熱器512に冷媒を循環させる。また、詳細な説明を省略するが、暖房の場合は、放熱器512に冷媒を循環させる。 Although detailed explanations are omitted, in the case of dehumidification, the refrigerant is circulated through the radiator 512 as well as the evaporator 511. Also, although detailed explanations are omitted, in the case of heating, the refrigerant is circulated through the radiator 512.
 さらに、これらの説明は、前席用の空調を例に示したが、膨張弁42、蒸発器521、放熱器522を用いることで、詳細な説明は省略するが後席用の空調を行うこともできる。 Furthermore, although these explanations have been given with an example of air conditioning for the front seats, it is also possible to provide air conditioning for the rear seats by using the expansion valve 42, evaporator 521, and radiator 522, although a detailed explanation will be omitted.
 また、上述の説明では、前席用と後席用のそれぞれを個別に空調できる態様を示した。しかしながら、前席用で車両全体の空調を行うことも可能であり、この場合、上述の後席用の構成は省略できる。 The above explanation also shows a configuration in which the front seats and rear seats can be air-conditioned separately. However, it is also possible to air-condition the entire vehicle using the front seats, in which case the above-mentioned configuration for the rear seats can be omitted.
 (オイル戻し運転)
 このような構成において、車両用空気調和装置10は、さらに、次に示すようなオイル戻し運転を実行する。
(Oil return operation)
In such a configuration, the vehicle air conditioning device 10 further executes an oil return operation as described below.
 オイルセンサ71は、蒸発器511内部のオイルの滞留の有無を検知する。オイルセンサ71は、蒸発器511に冷媒が流れているときも、流れていないときも、オイルの滞留の有無を検知する。オイルセンサ71は、オイル滞留検知結果を制御装置20に出力する。 The oil sensor 71 detects whether oil is stagnating inside the evaporator 511. The oil sensor 71 detects whether oil is stagnating whether or not refrigerant is flowing through the evaporator 511. The oil sensor 71 outputs the oil stagnating detection result to the control device 20.
 オイルセンサ72は、蒸発器521内部のオイルの滞留の有無を検知する。オイルセンサ72は、蒸発器521に冷媒が流れているときも、流れていないときも、オイルの滞留の有無を検知する。オイルセンサ72は、オイル滞留検知結果を制御装置20に出力する。 The oil sensor 72 detects whether oil is stagnating inside the evaporator 521. The oil sensor 72 detects whether oil is stagnating whether or not refrigerant is flowing through the evaporator 521. The oil sensor 72 outputs the oil stagnating detection result to the control device 20.
 オイルセンサ73は、凝縮器32内部のオイルの滞留の有無を検知する。オイルセンサ73は、オイル滞留検知結果を制御装置20に出力する。 The oil sensor 73 detects whether oil is stagnating inside the condenser 32. The oil sensor 73 outputs the oil stagnant detection result to the control device 20.
 オイルセンサ71、オイルセンサ72、および、オイルセンサ73は、例えば、超音波センサである。なお、オイルセンサ71、オイルセンサ72、および、オイルセンサ73は、蒸発器511、521内のオイルの滞留、および、凝縮器32内のオイルの滞留を検出できるセンサであれば、他のセンサであってもよい。ただし、オイルセンサを超音波センサとすることで、蒸発器511、521内のオイルの滞留、および、凝縮器32内のオイルの滞留を、簡素な構成で容易に検知できる。 Oil sensors 71, 72, and 73 are, for example, ultrasonic sensors. Oil sensors 71, 72, and 73 may be other sensors as long as they are capable of detecting oil retention in evaporators 511 and 521 and oil retention in condenser 32. However, by using ultrasonic sensors as the oil sensors, oil retention in evaporators 511 and 521 and oil retention in condenser 32 can be easily detected with a simple configuration.
 制御装置20は、オイルセンサ71、オイルセンサ72、オイルセンサ73のオイル滞留検知結果に応じて、オイル戻し運転を行う。この際、制御装置20は、オイルセンサ71、オイルセンサ72、オイルセンサ73の1回のオイル滞留検知結果に応じてもよく、複数回のオイル滞留検知結果に応じてもよい。複数回のオイル滞留検知結果を用いる場合、制御装置20は、例えば、連続する複数回でオイルの滞留が検知されたときに、オイル戻し運転を行うこともできる。 The control device 20 performs oil return operation in response to the oil retention detection results of the oil sensors 71, 72, and 73. In this case, the control device 20 may perform oil return operation in response to a single oil retention detection result of the oil sensors 71, 72, and 73, or in response to multiple oil retention detection results. When multiple oil retention detection results are used, the control device 20 can also perform oil return operation, for example, when oil retention is detected multiple times in succession.
 具体的には、制御装置20は、オイルセンサ71からのオイル滞留検知結果に基づいて、蒸発器511のオイル滞留が有れば、蒸発器511を含む冷媒回路に対するオイル戻し運転を行う。一方、制御装置20は、オイルセンサ71からのオイル滞留検知結果に基づいて、蒸発器511のオイル滞留がなければ、蒸発器511を含む冷媒回路に対するオイル戻し運転を行わない。 Specifically, if there is oil retention in the evaporator 511 based on the oil retention detection result from the oil sensor 71, the control device 20 performs oil return operation for the refrigerant circuit including the evaporator 511. On the other hand, if there is no oil retention in the evaporator 511 based on the oil retention detection result from the oil sensor 71, the control device 20 does not perform oil return operation for the refrigerant circuit including the evaporator 511.
 また、制御装置20は、オイルセンサ72からのオイル滞留検知結果に基づいて、蒸発器521のオイル滞留が有れば、蒸発器521を含む冷媒回路に対するオイル戻し運転を行う。一方、制御装置20は、オイルセンサ72からのオイル滞留検知結果に基づいて、蒸発器521のオイル滞留がなければ、蒸発器521を含む冷媒回路に対するオイル戻し運転を行わない。 In addition, if there is oil retention in the evaporator 521 based on the oil retention detection result from the oil sensor 72, the control device 20 performs an oil return operation for the refrigerant circuit including the evaporator 521. On the other hand, if there is no oil retention in the evaporator 521 based on the oil retention detection result from the oil sensor 72, the control device 20 does not perform an oil return operation for the refrigerant circuit including the evaporator 521.
 さらに、制御装置20は、オイルセンサ73からのオイル滞留検知結果に基づいて、凝縮器32のオイル滞留が有れば、凝縮器32を含む冷媒回路に対するオイル戻し運転を行う。一方、制御装置20は、オイルセンサ73からのオイル滞留検知結果に基づいて、凝縮器32のオイル滞留がなければ、凝縮器32を含む冷媒回路に対するオイル戻し運転を行わない。 Furthermore, if there is oil stagnation in the condenser 32 based on the oil retention detection result from the oil sensor 73, the control device 20 performs oil return operation for the refrigerant circuit including the condenser 32. On the other hand, if there is no oil stagnation in the condenser 32 based on the oil retention detection result from the oil sensor 73, the control device 20 does not perform oil return operation for the refrigerant circuit including the condenser 32.
 このような制御を行うことで、車両用空気調和装置10は、圧縮機31へのオイル戻しが必要なときに、オイル戻し運転を行うことができる。また、車両用空気調和装置10は、圧縮機31へのオイル戻しが必要でないときには、オイル戻し運転を行わない。 By performing such control, the vehicle air conditioning device 10 can perform oil return operation when it is necessary to return oil to the compressor 31. Furthermore, the vehicle air conditioning device 10 does not perform oil return operation when it is not necessary to return oil to the compressor 31.
 これにより、車両用空気調和装置10は、オイル戻し運転の頻度を必要最小限にできる。したがって、車両用空気調和装置10は、車両の窓の曇りや不所望な過度の冷却等の発生を抑制でき、ユーザに与える不快感を抑制できる。 As a result, the vehicle air conditioning device 10 can minimize the frequency of oil return operation. Therefore, the vehicle air conditioning device 10 can prevent the occurrence of fogging of the vehicle windows and undesirable excessive cooling, and can reduce discomfort to the user.
 また、車両用空気調和装置10は、オイルが圧縮機31内に常に存在する状態にできる。このため、車両用空気調和装置10は、潤滑不足の発生を防ぎ、圧縮機31の信頼性を向上できる。 Furthermore, the vehicle air conditioning device 10 can maintain a state in which oil is always present inside the compressor 31. As a result, the vehicle air conditioning device 10 can prevent insufficient lubrication and improve the reliability of the compressor 31.
 また、車両用空気調和装置10は、蒸発器511、521内や凝縮器32内のオイル滞留を抑制できる。これにより、車両用空気調和装置10は、冷房能力および冷房効率の低下を最小限に留め、電費を向上できる。 Furthermore, the vehicle air conditioning device 10 can suppress oil retention in the evaporators 511, 521 and the condenser 32. As a result, the vehicle air conditioning device 10 can minimize the decrease in cooling capacity and cooling efficiency, and improve power consumption.
 なお、上述の車両用空気調和装置10は、エンジン車に限るものではなく、圧縮機31で圧縮した冷媒を暖房に利用するEV車にも適用できる。例えば、EV車の場合、暖房開始時には、電気エネルギーだけの暖房では十分な能力が得られない。このため、圧縮機31で圧縮した冷媒を用いた暖房で補助を行うことによって、暖房開始時に所望の暖房を実現できる。 The vehicle air conditioning device 10 described above is not limited to engine vehicles, but can also be applied to EV vehicles that use refrigerant compressed by the compressor 31 for heating. For example, in the case of EV vehicles, when heating starts, heating with electrical energy alone does not provide sufficient capacity. For this reason, by providing supplemental heating using refrigerant compressed by the compressor 31, the desired heating can be achieved when heating starts.
 また、上述の説明では、蒸発器511、521および凝縮器32にオイルセンサを配置する態様を示した。しかしながら、オイルセンサは、冷媒回路のいずれの位置に配置することも可能である。ただし、オイルが滞留し易いのは、蒸発器511、521および凝縮器32であるので、オイルセンサは、蒸発器511、521および凝縮器32の少なくとも1つに配置されてることが好ましい。 In the above explanation, the oil sensor is disposed in the evaporator 511, 521 and the condenser 32. However, the oil sensor can be disposed at any position in the refrigerant circuit. However, since oil is likely to accumulate in the evaporator 511, 521 and the condenser 32, it is preferable that the oil sensor is disposed in at least one of the evaporator 511, 521 and the condenser 32.
 (オイル戻し運転方法)
 図3は、本発明の第1の実施形態に係るオイル戻し運転方法の一例を示すフローチャートである。なお、図3は、オイル戻し方法を概略的に示している。図3の各処理(制御)の具体的な内容は上述しており、ここでの説明は省略する。
(Oil return operation method)
Fig. 3 is a flow chart showing an example of an oil return operation method according to the first embodiment of the present invention. Fig. 3 shows an outline of the oil return method. The specific contents of each process (control) in Fig. 3 have been described above, and therefore will not be described here.
 制御装置20は、ユーザからの操作内容、検知温度に基づいて、通常の空調制御を行う(S11)。オイルセンサ71、72、73は、それぞれの検知対象箇所(蒸発器511、蒸発器521、凝縮器32)のオイルの滞留の有無を検知する。 The control device 20 performs normal air conditioning control based on the user's operation and the detected temperature (S11). The oil sensors 71, 72, and 73 detect the presence or absence of oil accumulation in each detection target location (evaporator 511, evaporator 521, and condenser 32).
 制御装置20は、オイルの滞留が有ることを検知すると(S12:YES)、オイル戻し運転を行う(S13)。制御装置20は、オイルの滞留が無いことを検知すると(S12:NO)、オイル戻し運転を行わない。 When the control device 20 detects that oil is stagnating (S12: YES), it performs the oil return operation (S13). When the control device 20 detects that no oil is stagnating (S12: NO), it does not perform the oil return operation.
 [第2の実施形態]
 本発明の第2の実施形態に係る車両用空気調和装置について、図を参照して説明する。図4は、本発明の第2の実施形態に係るオイル戻し運転方法の一例を示すフローチャートである。
Second Embodiment
A vehicle air conditioning device according to a second embodiment of the present invention will be described with reference to the drawings. Fig. 4 is a flow chart showing an example of an oil return operation method according to the second embodiment of the present invention.
 第2の実施形態に係る車両用空気調和装置の構成は、第1の実施形態に係る車両用空気調和装置と同様である。図4に示すように、第2の実施形態に係る車両用空気調和装置は、第1の実施形態に係る車両用空気調和装置に対して、エアミックスドアの制御を行う点で異なる。第2の実施形態に係る車両用空気調和装置の他の制御については、第1の実施形態に係る車両用空気調和装置と同様であり、同様の箇所の説明は省略する。 The configuration of the vehicle air conditioning device according to the second embodiment is similar to that of the vehicle air conditioning device according to the first embodiment. As shown in FIG. 4, the vehicle air conditioning device according to the second embodiment differs from the vehicle air conditioning device according to the first embodiment in that it controls the air mix door. Other controls of the vehicle air conditioning device according to the second embodiment are similar to those of the vehicle air conditioning device according to the first embodiment, and a description of similar parts will be omitted.
 制御装置20は、オイル戻し運転時(S13)に、エアミックスドア61、62の開度を制御する(S130)。より具体的には、制御装置20は、オイル戻し運転時に、送風口から送出される空気の温度が指定された室温に対応するように、エアミックスドア61、62の開度を調整する。 The control device 20 controls the opening degree of the air mix doors 61, 62 during the oil return operation (S13) (S130). More specifically, the control device 20 adjusts the opening degree of the air mix doors 61, 62 so that the temperature of the air blown out from the air outlet during the oil return operation corresponds to the specified room temperature.
 オイル戻し運転時には、蒸発器511、521にて、設定室温に対する冷却量よりも大きな冷却量で空気が冷却される。したがって、制御装置20は、エアミックスドア61の開度を調整し、蒸発器511を通る空気量と、蒸発器511を通らない空気量とを調整する。これにより、前席送風口からの送出される空気は過度に冷却されていない空気となる。同様に、制御装置20は、エアミックスドア62の開度を調整し、蒸発器521を通る空気量と、蒸発器521を通らない空気量とを調整する。これにより、後席送風口からの送出される空気は過度に冷却されていない空気となる。 During oil return operation, the air is cooled by the evaporators 511 and 521 at a rate greater than the rate for the set room temperature. Therefore, the control device 20 adjusts the opening of the air mix door 61 to adjust the amount of air passing through the evaporator 511 and the amount of air that does not pass through the evaporator 511. This ensures that the air sent out from the front seat air outlet is not overly cooled. Similarly, the control device 20 adjusts the opening of the air mix door 62 to adjust the amount of air passing through the evaporator 521 and the amount of air that does not pass through the evaporator 521. This ensures that the air sent out from the rear seat air outlet is not overly cooled.
 このような制御を行うことで、車両用空気調和装置10は、オイル戻し運転中の車室内送風空気の温度変動を抑制できる。 By performing this type of control, the vehicle air conditioning device 10 can suppress temperature fluctuations in the air blown into the vehicle cabin during oil return operation.
 [第3の実施形態]
 本発明の第3の実施形態に係る車両用空気調和装置について、図を参照して説明する。図5は、本発明の第3の実施形態に係る車両用空気調和装置の構成図である。図6は、本発明の第3の実施形態に係る車両用空気調和装置の制御系の機能ブロック図である。
[Third embodiment]
A vehicle air conditioning device according to a third embodiment of the present invention will be described with reference to the drawings. Fig. 5 is a configuration diagram of the vehicle air conditioning device according to the third embodiment of the present invention. Fig. 6 is a functional block diagram of a control system of the vehicle air conditioning device according to the third embodiment of the present invention.
 図5、図6に示すように、第3の実施形態に係る車両用空気調和装置10Aは、第1の実施形態に係る車両用空気調和装置10に対して、オイルセンサ74、通知部193を備える点、制御装置20Aの制御内容において異なる。車両用空気調和装置10Aの他の構成および制御は、車両用空気調和装置10と同様であり、同様の箇所の説明は省略する。 As shown in Figures 5 and 6, the vehicle air conditioning device 10A according to the third embodiment differs from the vehicle air conditioning device 10 according to the first embodiment in that it is equipped with an oil sensor 74 and a notification unit 193, and in the control content of the control device 20A. The other configurations and controls of the vehicle air conditioning device 10A are the same as those of the vehicle air conditioning device 10, and descriptions of similar parts will be omitted.
 車両用空気調和装置10Aは、オイルセンサ74および通知部193を備える。オイルセンサ74は、他のオイルセンサ71-73と同様に、例えば、超音波センサである。通知部193は、例えば、表示器やスピーカ等である。 The vehicle air conditioning device 10A includes an oil sensor 74 and a notification unit 193. The oil sensor 74, like the other oil sensors 71-73, is, for example, an ultrasonic sensor. The notification unit 193 is, for example, a display or a speaker.
 オイルセンサ74は、冷媒供給バルブPRの近傍に配置される。オイルセンサ74は、冷媒回路の配管P14における冷媒供給バルブPRの近傍でのオイルの滞留の有無を検知する。オイルセンサ74は、オイル滞留検知結果を制御装置20に出力する。 The oil sensor 74 is disposed near the refrigerant supply valve PR. The oil sensor 74 detects whether oil is stagnating near the refrigerant supply valve PR in the pipe P14 of the refrigerant circuit. The oil sensor 74 outputs the oil stagnation detection result to the control device 20.
 制御装置20Aは、オイルセンサ74からのオイル滞留検知結果から、冷媒供給バルブPRの近傍にオイルが存在したことを検知すると、通知部193を通じて、この旨を通知する。 When the control device 20A detects the presence of oil near the refrigerant supply valve PR based on the oil accumulation detection result from the oil sensor 74, it notifies the user of this through the notification unit 193.
 これにより、ユーザや冷媒供給を行う作業者は、冷媒供給バルブPRの近傍にオイルが存在(滞留)していることを確認できる。したがって、冷媒の供給作業時に冷媒供給バルブPRを開放した際にオイルが噴き出す可能性があることを、作業者に注意勧告できる。 This allows the user or the worker supplying the refrigerant to confirm that oil is present (accumulating) near the refrigerant supply valve PR. Therefore, the worker can be warned that there is a possibility that oil may spray out when the refrigerant supply valve PR is opened during the refrigerant supply operation.
 この際、制御装置20Aは、冷媒供給バルブPRの開放の禁止の通知、および、開放の禁止制御(ロック等)を行ってもよい。冷媒供給バルブPRの開放の禁止制御を行う場合、制御装置20Aは、オイル戻し運転後に冷媒供給バルブを開栓可能にする。これにより、作業者は、冷媒の供給を安全に行うことができる。 At this time, the control device 20A may notify the refrigerant supply valve PR of its prohibition of opening, and may control the prohibition of opening (lock, etc.). When controlling the refrigerant supply valve PR to prohibit its opening, the control device 20A allows the refrigerant supply valve to be opened after the oil return operation. This allows the operator to supply the refrigerant safely.
 [第4の実施形態]
 本発明の第4の実施形態に係る車両用空気調和装置について、図7を参照して説明する。図7は、本発明の第4の実施形態に係る車両用空気調和装置の構成図である。
[Fourth embodiment]
A vehicle air conditioning device according to a fourth embodiment of the present invention will be described with reference to Fig. 7. Fig. 7 is a configuration diagram of a vehicle air conditioning device according to the fourth embodiment of the present invention.
 図7に示すように、第4の実施形態に係る車両用空気調和装置10Bは、第1の実施形態に係る車両用空気調和装置10に対して、暖房系の構成において異なる。車両用空気調和装置10Bの他の構成は、車両用空気調和装置10と同様であり、同様の箇所の説明は省略する。 As shown in FIG. 7, the vehicle air conditioning device 10B according to the fourth embodiment differs from the vehicle air conditioning device 10 according to the first embodiment in the configuration of the heating system. The other configuration of the vehicle air conditioning device 10B is the same as that of the vehicle air conditioning device 10, and a description of similar parts will be omitted.
 車両用空気調和装置10Bは、熱交換器530B、電動ポンプ54B、配管P31B1、P32B1、P31B2、P32B2を備える。 The vehicle air conditioning device 10B includes a heat exchanger 530B, an electric pump 54B, and pipes P31B1, P32B1, P31B2, and P32B2.
 熱交換器530Bは、互いに熱的に結合する伝熱管531Bと伝熱管532Bとを備える。伝熱管531Bは、配管P31B1を通じて回路弁B21に接続され、配管P32B1を通じて回路弁B23に接続される。伝熱管532Bは、配管P31B2、配管P32B2に接続される。配管P41は、配管P31B2に接続され、配管P42は、配管P32B2に接続される。 Heat exchanger 530B includes heat transfer tubes 531B and 532B that are thermally coupled to each other. Heat transfer tube 531B is connected to circuit valve B21 through pipe P31B1 and to circuit valve B23 through pipe P32B1. Heat transfer tube 532B is connected to pipes P31B2 and P32B2. Pipe P41 is connected to pipe P31B2, and pipe P42 is connected to pipe P32B2.
 電動ポンプ54Bは、配管P42に接続される。 The electric pump 54B is connected to the pipe P42.
 熱交換器530Bの伝熱管532B、配管P31B2、放熱器512、配管P32B2、配管P41、放熱器522、配管P42、電動ポンプ54Bは、冷却水回路を構成する。冷却水の流れは、電動ポンプ54Bによって制御される。 The heat transfer tube 532B of the heat exchanger 530B, the pipe P31B2, the radiator 512, the pipe P32B2, the pipe P41, the radiator 522, the pipe P42, and the electric pump 54B constitute a cooling water circuit. The flow of the cooling water is controlled by the electric pump 54B.
 熱交換器530Bの伝熱管531Bには、圧縮機31から送出される冷媒が流れる。 The refrigerant sent from the compressor 31 flows through the heat transfer tube 531B of the heat exchanger 530B.
 冷却水は、熱交換器530Bの伝熱管532Bにおいて温められ、配管P31B2を通じて放熱器512に供給される。放熱器512は、温められた冷却水を放熱し、配管P32B2に送出する。配管P32B2に送出された冷却水は、熱交換器530Bの伝熱管532Bに戻される。また、熱交換器530Bの伝熱管532Bにおいて温められた冷却水は、配管P31B2、P41を通じて放熱器522に供給される。放熱器522は、温められた冷却水を放熱し、配管P42に送出する。配管P42に送出された冷却水は、配管P32B2を通じて熱交換器530Bの伝熱管532Bに戻される。 The cooling water is heated in the heat transfer tube 532B of the heat exchanger 530B and is supplied to the radiator 512 through the pipe P31B2. The radiator 512 radiates heat from the heated cooling water and sends it to the pipe P32B2. The cooling water sent to the pipe P32B2 is returned to the heat transfer tube 532B of the heat exchanger 530B. The cooling water heated in the heat transfer tube 532B of the heat exchanger 530B is supplied to the radiator 522 through the pipes P31B2 and P41. The radiator 522 radiates heat from the heated cooling water and sends it to the pipe P42. The cooling water sent to the pipe P42 is returned to the heat transfer tube 532B of the heat exchanger 530B through the pipe P32B2.
 このように、車両用空気調和装置10Bは、冷房に冷媒を用いて、暖房に冷却水を用いる。そして、このような構成であっても、車両用空気調和装置10Bは、車両用空気調和装置10と同様の作用効果を奏することができる。 In this way, the vehicle air conditioning device 10B uses a refrigerant for cooling and a cooling water for heating. Even with this configuration, the vehicle air conditioning device 10B can achieve the same effects as the vehicle air conditioning device 10.
 [第5の実施形態]
 本発明の第5の実施形態に係る車両用空気調和装置について、図8を参照して説明する。図8は、本発明の第5の実施形態に係る車両用空気調和装置の構成図である。
[Fifth embodiment]
A vehicle air conditioning device according to a fifth embodiment of the present invention will be described with reference to Fig. 8. Fig. 8 is a configuration diagram of a vehicle air conditioning device according to the fifth embodiment of the present invention.
 図8に示すように、第5の実施形態に係る車両用空気調和装置10Cは、第1の実施形態に係る車両用空気調和装置10に対して、バッテリの冷却機能を備える点で異なる。車両用空気調和装置10Cの他の構成は、車両用空気調和装置10と同様であり、同様の箇所の説明は省略する。 As shown in FIG. 8, the vehicle air conditioning device 10C according to the fifth embodiment differs from the vehicle air conditioning device 10 according to the first embodiment in that it is equipped with a battery cooling function. The other configuration of the vehicle air conditioning device 10C is the same as that of the vehicle air conditioning device 10, and a description of similar parts will be omitted.
 車両用空気調和装置10Cは、膨張弁43、熱交換器530C、電動ポンプ54C、バッテリ冷却装置55C、吸熱器56C、回路弁B51、B52、および、配管P51、P52を備える。 The vehicle air conditioning device 10C includes an expansion valve 43, a heat exchanger 530C, an electric pump 54C, a battery cooling device 55C, a heat sink 56C, circuit valves B51 and B52, and pipes P51 and P52.
 熱交換器530Cは、互いに熱的に結合する伝熱管531Cと伝熱管532Cを備える。 Heat exchanger 530C includes heat transfer tubes 531C and 532C that are thermally coupled to each other.
 伝熱管531Cの一方端は、膨張弁43を通じて配管P13におけるレシーバータンク33と膨張弁41との間の部分に接続される。伝熱管531Cの他方端は、配管P14に接続される。 One end of the heat transfer tube 531C is connected to the portion of the pipe P13 between the receiver tank 33 and the expansion valve 41 through the expansion valve 43. The other end of the heat transfer tube 531C is connected to the pipe P14.
 伝熱管532Cは、配管P51を通じて回路弁B51と回路弁B52に接続される。回路弁B51は、バッテリ冷却装置55Cに接続される。回路弁B52は、吸熱器56Cに接続される。バッテリ冷却装置55Cおよび吸熱器56Cは、配管P52を通じて伝熱管532Cに接続される。電動ポンプ54Cは、例えば、配管P52に接続される。 The heat transfer pipe 532C is connected to the circuit valves B51 and B52 through the pipe P51. The circuit valve B51 is connected to the battery cooling device 55C. The circuit valve B52 is connected to the heat absorber 56C. The battery cooling device 55C and the heat absorber 56C are connected to the heat transfer pipe 532C through the pipe P52. The electric pump 54C is connected to the pipe P52, for example.
 熱交換器530Cの伝熱管532C、配管P51、バッテリ冷却装置55C、吸熱器56C、配管P52、および、電動ポンプ54Cは、冷却水回路を構成する。冷却水の流れは、電動ポンプ54Cによって制御される。 The heat transfer tube 532C of the heat exchanger 530C, the piping P51, the battery cooling device 55C, the heat sink 56C, the piping P52, and the electric pump 54C form a coolant circuit. The flow of the coolant is controlled by the electric pump 54C.
 バッテリ冷却装置55Cは、HEV、PHEV、EV用の駆動バッテリ(駆動用モータの電力源)を、冷却水回路を流れる冷却水によって冷却する。このバッテリの冷却時、回路弁B51は開放であり、回路弁B52は遮断である。 The battery cooling device 55C cools the drive battery (power source for the drive motor) for HEVs, PHEVs, and EVs using cooling water flowing through the cooling water circuit. When cooling the battery, the circuit valve B51 is open and the circuit valve B52 is closed.
 バッテリを冷却した冷却水は温められ、熱交換器530Cの伝熱管532Cに送入される。膨張弁41によって冷媒が減圧され、気化する際に周囲の熱を吸熱するので、それによって熱交換器530C内で伝熱管532Cから熱が奪われ、伝熱管531Cに熱が移動する。これによって、冷却水の熱は、伝熱管531Cに伝搬され、冷媒を温める。 The cooling water that has cooled the battery is heated and sent to the heat transfer tube 532C of the heat exchanger 530C. The refrigerant is decompressed by the expansion valve 41, and absorbs heat from the surroundings as it vaporizes, causing heat to be removed from the heat transfer tube 532C within the heat exchanger 530C and transferred to the heat transfer tube 531C. This allows the heat of the cooling water to be transferred to the heat transfer tube 531C, warming the refrigerant.
 さらに、伝熱管532Cで冷却された冷却水は、バッテリ冷却装置55Cに戻り、バッテリを冷却する。 Furthermore, the cooling water cooled by the heat transfer tube 532C returns to the battery cooling device 55C and cools the battery.
 バッテリの冷却を行わないときは、回路弁B51は遮断であり、回路弁B52は開放である。吸熱器56Cで温められた冷却水が熱交換器530Cの伝熱管532Cに送入される。伝熱管532Cと伝熱管531Cとの熱交換によって、冷却水の熱は、伝熱管531Cに伝搬され、冷媒を温める。また、バッテリを冷却ではなく温めたいときは、回路弁B51を開放、回路弁B52を遮断し、膨張弁43は遮断する。こうすることで、熱交換器530C内で熱交換が行われず、冷却水はバッテリ冷却装置を通る度に温度上昇するので、電動ポンプ54Cを駆動し続けて行くにつれてバッテリを温めることができる。 When the battery is not being cooled, circuit valve B51 is closed and circuit valve B52 is open. Cooling water heated by heat absorber 56C is sent to heat transfer tube 532C of heat exchanger 530C. Heat exchange between heat transfer tube 532C and heat transfer tube 531C transfers the heat of the cooling water to heat transfer tube 531C, warming the refrigerant. When it is desired to warm the battery rather than cool it, circuit valve B51 is opened, circuit valve B52 is closed, and expansion valve 43 is closed. In this way, no heat exchange takes place within heat exchanger 530C, and the temperature of the cooling water rises each time it passes through the battery cooling device, allowing the battery to be warmed as electric pump 54C continues to be driven.
 このように、車両用空気調和装置10Cは、バッテリの冷却する機能を有しながら、車両用空気調和装置10と同様の作用効果を奏することができる。 In this way, the vehicle air conditioning device 10C has the function of cooling the battery, while providing the same effects as the vehicle air conditioning device 10.
 <1> 冷媒を圧縮する圧縮機と、
 前記圧縮機から排出される前記冷媒を液化させる凝縮器と、
 液化した前記冷媒を減圧するための膨張弁と、
 減圧された前記冷媒を気化させて吸熱する蒸発器と、
 前記蒸発器から排出される前記冷媒を前記圧縮機に循環させ、前記冷媒とともにオイルが封入された冷媒回路と、
 前記圧縮機の運転および前記膨張弁を制御する制御装置と、
 前記凝縮器、前記蒸発器、及び前記冷媒回路のうち、前記凝縮器と前記蒸発器の間を接続する配管の少なくとも1つに設けられたオイルセンサと、
 を備え、
 前記制御装置は、前記オイルセンサの出力に応じてオイル戻し運転を行う、車両用空気調和装置。
<1> A compressor that compresses a refrigerant;
a condenser that liquefies the refrigerant discharged from the compressor;
an expansion valve for reducing the pressure of the liquefied refrigerant;
an evaporator that vaporizes the decompressed refrigerant and absorbs heat;
a refrigerant circuit in which the refrigerant discharged from the evaporator is circulated through the compressor and in which oil is sealed together with the refrigerant;
A control device for controlling the operation of the compressor and the expansion valve;
an oil sensor provided in at least one of the pipings connecting the condenser and the evaporator among the condenser, the evaporator, and the refrigerant circuit;
Equipped with
The control device performs an oil return operation in response to an output of the oil sensor.
 <2> 前記蒸発器を通り車両の室内に空気を導入する送風管に、前記蒸発器を通る空気の流量を開度によって調整するエアミックスドアをさらに備え、
 前記制御装置は、前記オイル戻し運転を行う際に、前記エアミックスドアの前記開度を制御する、<1>の車両用空気調和装置。
<2> An air mix door is further provided in an air duct that introduces air into a vehicle cabin through the evaporator, the air mix door adjusting a flow rate of air passing through the evaporator by an opening degree thereof,
The vehicle air conditioning device according to <1>, wherein the control device controls the opening degree of the air mix door when performing the oil return operation.
 <3> 前記オイルセンサは、超音波センサである、<1>または<2>の車両用空気調和装置。 <3> The vehicle air conditioning system of <1> or <2>, wherein the oil sensor is an ultrasonic sensor.
 <4> 前記圧縮機と前記凝縮器の間に、前記圧縮機から排出される前記冷媒が電磁弁を介して放熱器を通り、前記凝縮器に戻ってくる経路をさらに備えた、<1>乃至<3>のいずれかの車両用空気調和装置。 <4> An air conditioning device for a vehicle according to any one of <1> to <3>, further comprising a path between the compressor and the condenser through which the refrigerant discharged from the compressor passes through a radiator via an electromagnetic valve and returns to the condenser.
 <5> 前記冷媒回路における前記蒸発器と前記圧縮機の間に設けられた冷媒供給バルブと、
 外部に情報提供を行う通知部と、
 を備え、
 前記オイルセンサは、前記冷媒供給バルブの近傍に配置され、
 前記制御装置は、前記オイルセンサがオイルの存在を検知したことを前記通知部を通じて通知する、<1>乃至<4>のいずれかの車両用空気調和装置。
<5> a refrigerant supply valve provided between the evaporator and the compressor in the refrigerant circuit;
A notification section that provides information to the outside;
Equipped with
the oil sensor is disposed near the refrigerant supply valve;
The vehicle air conditioning device according to any one of <1> to <4>, wherein the control device notifies, via the notification unit, that the oil sensor has detected the presence of oil.
 <6> 前記制御装置は、前記オイル戻し運転を終了した後に前記冷媒供給バルブを開栓可能にする、<5>の車両用空気調和装置。 <6> The vehicle air conditioning device of <5>, wherein the control device enables the refrigerant supply valve to be opened after the oil return operation is completed.
 <7> 前記蒸発器は、車両の前席用の蒸発器と後席用の蒸発器とをそれぞれに備える、<1>乃至<6>のいずれかの車両用空気調和装置。 <7> An air conditioning device for a vehicle according to any one of <1> to <6>, wherein the evaporator is provided with an evaporator for the front seats and an evaporator for the rear seats of the vehicle.
10、10A、10B、10C:車両用空気調和装置
20、20A:制御装置
31:圧縮機
32:凝縮器
33:レシーバータンク
41、42、43:膨張弁
54B、54C:電動ポンプ
55C:バッテリ冷却装置
56C:吸熱器
61、62:エアミックスドア
71、72、73、74:オイルセンサ
91:前席用送風管
92:後席用送風管
191:温度センサ
192:操作部
193:通知部
511、521:蒸発器
512、522:放熱器
530B、530C:熱交換器
531B、532B、531C、532C:伝熱管
B10、B21、B22、B23、B51、B52:回路弁
D10、D20:空気導入装置
F10、F20:ファン
P11、P12、P13、P14、P21、P22、P31、P32、P31B1、P32B1、P31B2、P32B2、P41、P42、P51、P52:配管
PR:冷媒供給バルブ
10, 10A, 10B, 10C: Vehicle air conditioning device 20, 20A: Control device 31: Compressor 32: Condenser 33: Receiver tank 41, 42, 43: Expansion valve 54B, 54C: Electric pump 55C: Battery cooling device 56C: Heat absorber 61, 62: Air mix door 71, 72, 73, 74: Oil sensor 91: Front seat air duct 92: Rear seat air duct 191: Temperature sensor 192: Operation unit 193: Notification unit 511, 521: Evaporation 531B, 532B, 531C, 532C: heat transfer tubes B10, B21, B22, B23, B51, B52: circuit valves D10, D20: air introduction devices F10, F20: fans P11, P12, P13, P14, P21, P22, P31, P32, P31B1, P32B1, P31B2, P32B2, P41, P42, P51, P52: piping PR: refrigerant supply valve

Claims (7)

  1.  冷媒を圧縮する圧縮機と、
     前記圧縮機から排出される前記冷媒を液化させる凝縮器と、
     液化した前記冷媒を減圧するための膨張弁と、
     減圧された前記冷媒を気化させて吸熱する蒸発器と、
     前記蒸発器から排出される前記冷媒を前記圧縮機に循環させ、前記冷媒と共にオイルが封入された冷媒回路と、
     前記圧縮機の運転および前記膨張弁を制御する制御装置と、
     前記凝縮器、前記蒸発器、及び前記冷媒回路のうち、前記凝縮器と前記蒸発器の間を接続する配管の少なくとも1つに設けられたオイルセンサと、
     を備え、
     前記制御装置は、前記オイルセンサの出力に応じてオイル戻し運転を行う、
     車両用空気調和装置。
    A compressor that compresses a refrigerant;
    a condenser that liquefies the refrigerant discharged from the compressor;
    an expansion valve for reducing the pressure of the liquefied refrigerant;
    an evaporator that vaporizes the decompressed refrigerant and absorbs heat;
    a refrigerant circuit in which the refrigerant discharged from the evaporator is circulated to the compressor and in which oil is sealed together with the refrigerant;
    A control device for controlling the operation of the compressor and the expansion valve;
    an oil sensor provided in at least one of the pipings connecting the condenser and the evaporator among the condenser, the evaporator, and the refrigerant circuit;
    Equipped with
    The control device performs an oil return operation in response to an output of the oil sensor.
    Vehicle air conditioning system.
  2.  前記蒸発器を通り車両の室内に空気を導入する送風管に、前記蒸発器を通る空気の流量を開度によって調整するエアミックスドアをさらに備え、
     前記制御装置は、前記オイル戻し運転を行う際に、前記エアミックスドアの前記開度を制御する、
     請求項1に記載の車両用空気調和装置。
    An air mix door is further provided in an air duct that introduces air into a vehicle cabin through the evaporator, the air mix door adjusting the flow rate of air passing through the evaporator by changing the opening degree of the air mix door.
    The control device controls the opening degree of the air mix door when performing the oil return operation.
    The vehicle air conditioning system according to claim 1.
  3.  前記オイルセンサは、超音波センサである、
     請求項1または請求項2に記載の車両用空気調和装置。
    The oil sensor is an ultrasonic sensor.
    The vehicle air conditioning system according to claim 1 or 2.
  4.  前記圧縮機と前記凝縮器の間に、前記圧縮機から排出される前記冷媒が電磁弁を介して放熱器を通り、前記凝縮器に戻ってくる経路をさらに備えた、
     請求項1乃至請求項3のいずれかに記載の車両用空気調和装置。
    Between the compressor and the condenser, a path is further provided through which the refrigerant discharged from the compressor passes through a radiator via an electromagnetic valve and returns to the condenser.
    4. The vehicle air conditioning system according to claim 1.
  5.  前記冷媒回路における前記蒸発器と前記圧縮機の間に設けられた冷媒供給バルブと、
     外部に情報提供を行う通知部と、
     を備え、
     前記オイルセンサは、前記冷媒供給バルブの近傍に配置され、
     前記制御装置は、前記オイルセンサがオイルの存在を検知したことを前記通知部を通じて通知する、
     請求項1乃至請求項4のいずれかに記載の車両用空気調和装置。
    a refrigerant supply valve provided between the evaporator and the compressor in the refrigerant circuit;
    A notification section that provides information to the outside;
    Equipped with
    the oil sensor is disposed near the refrigerant supply valve;
    The control device notifies the user through the notification unit that the oil sensor has detected the presence of oil.
    5. The vehicle air conditioning system according to claim 1.
  6.  前記制御装置は、前記オイル戻し運転を終了した後に前記冷媒供給バルブを開栓可能にする、
     請求項5に記載の車両用空気調和装置。
    The control device enables the refrigerant supply valve to be opened after the oil return operation is completed.
    The vehicle air conditioning system according to claim 5.
  7.  前記蒸発器は、車両の前席用の蒸発器と後席用の蒸発器とをそれぞれに備える、
     請求項1乃至請求項6のいずれかに記載の車両用空気調和装置。
    The evaporator includes an evaporator for a front seat of a vehicle and an evaporator for a rear seat of the vehicle.
    7. The vehicle air conditioning system according to claim 1.
PCT/JP2023/030498 2022-09-28 2023-08-24 Vehicular air conditioning device WO2024070359A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022154566 2022-09-28
JP2022-154566 2022-09-28

Publications (1)

Publication Number Publication Date
WO2024070359A1 true WO2024070359A1 (en) 2024-04-04

Family

ID=90477336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030498 WO2024070359A1 (en) 2022-09-28 2023-08-24 Vehicular air conditioning device

Country Status (1)

Country Link
WO (1) WO2024070359A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018040518A (en) * 2016-09-06 2018-03-15 サンデン・オートモーティブクライメイトシステム株式会社 Heat pump cycle, vehicular air conditioning device comprising the same, and refrigeration cycle
JP2018177034A (en) * 2017-04-14 2018-11-15 株式会社デンソー Air conditioning control device
JP2020193725A (en) * 2019-05-24 2020-12-03 株式会社デンソー Refrigeration cycle device and vehicular air conditioner
WO2022085125A1 (en) * 2020-10-21 2022-04-28 三菱電機株式会社 Refrigeration cycle device
JP2022088798A (en) * 2020-12-03 2022-06-15 株式会社デンソー Refrigeration cycle apparatus
WO2022176652A1 (en) * 2021-02-22 2022-08-25 住友重機械工業株式会社 Compressor for ultra-low-temperature freezer, and adsorber unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018040518A (en) * 2016-09-06 2018-03-15 サンデン・オートモーティブクライメイトシステム株式会社 Heat pump cycle, vehicular air conditioning device comprising the same, and refrigeration cycle
JP2018177034A (en) * 2017-04-14 2018-11-15 株式会社デンソー Air conditioning control device
JP2020193725A (en) * 2019-05-24 2020-12-03 株式会社デンソー Refrigeration cycle device and vehicular air conditioner
WO2022085125A1 (en) * 2020-10-21 2022-04-28 三菱電機株式会社 Refrigeration cycle device
JP2022088798A (en) * 2020-12-03 2022-06-15 株式会社デンソー Refrigeration cycle apparatus
WO2022176652A1 (en) * 2021-02-22 2022-08-25 住友重機械工業株式会社 Compressor for ultra-low-temperature freezer, and adsorber unit

Similar Documents

Publication Publication Date Title
CN112074425B (en) Thermal management system for vehicle
JP3237187B2 (en) Air conditioner
KR20180007021A (en) Heat pump system for vehicle
KR20190053487A (en) Heat pump system for vehicle
KR20180065332A (en) Vehicle thermal management system
US4384608A (en) Reverse cycle air conditioner system
JPH08258548A (en) Air conditioner for automobile
JP2004142551A (en) Air conditioning device for vehicle
JP2011178372A (en) Air conditioner for vehicle and operation switching method thereof
JP2002354608A (en) Battery cooling device for electric automobile
US7370486B2 (en) Air-treatment system with secondary circuit
JP2014037182A (en) Thermal management system for electric vehicle
CN113525017A (en) Refrigerating capacity distribution method and system for battery cooling and passenger compartment refrigeration
CN115042582B (en) Integrated heat exchange valve module, vehicle thermal management system and control method of vehicle thermal management system
CN103857545B (en) The method in refrigerant loop and this loop of control
CN112302778A (en) Whole-vehicle thermal management device and management method for hybrid electric vehicle
CN114312219A (en) Air conditioning system of electric automobile and control method thereof
JPH09240266A (en) Air conditioner
WO2024070359A1 (en) Vehicular air conditioning device
KR20180114400A (en) Air conditioner for vehicles
KR20180114388A (en) Air conditioner for vehicle
US20230158858A1 (en) Method for Controlling Vehicle HVAC System
JP2003034131A (en) Cool storage system for vehicular air conditioning
KR20220166932A (en) A cooling system for vehicle
CN112519533A (en) Integrated electric air conditioning system for hybrid electric vehicle and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871600

Country of ref document: EP

Kind code of ref document: A1