WO2024070332A1 - Power supply apparatus - Google Patents

Power supply apparatus Download PDF

Info

Publication number
WO2024070332A1
WO2024070332A1 PCT/JP2023/030047 JP2023030047W WO2024070332A1 WO 2024070332 A1 WO2024070332 A1 WO 2024070332A1 JP 2023030047 W JP2023030047 W JP 2023030047W WO 2024070332 A1 WO2024070332 A1 WO 2024070332A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
unit
supply device
circuit
control unit
Prior art date
Application number
PCT/JP2023/030047
Other languages
French (fr)
Japanese (ja)
Inventor
真之介 中口
雅幸 加藤
真二 青山
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2024070332A1 publication Critical patent/WO2024070332A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • This disclosure relates to a power supply device.
  • Patent Document 1 discloses a power supply system that supplies power from a power source to multiple loads.
  • This power supply system has a fuse, one end of which is electrically connected to the power source, and multiple semiconductor switches that are electrically connected between the other end of the fuse and the multiple loads.
  • This power supply system supplies power to the multiple loads by PWM controlling the multiple semiconductor switches.
  • the purpose of this disclosure is to provide technology that makes it easy to reduce the number of switches in a configuration that supplies power to multiple loads.
  • the power supply device of the present disclosure comprises: A power supply device that supplies power based on a power supply unit to a plurality of loads, A plurality of conductive paths connected to a plurality of the loads; a connection portion that connects ends of the conductive paths on the power supply side to each other; A circuit portion having a switch; A control unit that controls the switch, the circuit unit is provided between the connection unit and the power supply unit and is connected to the connection unit; The control unit sets a duty ratio, which is a ratio of an on-time to a switching period, and duty-controls the switch at the set duty ratio to adjust a current supplied to the connection unit; Furthermore, the number of the circuit portions provided is one or more and is less than the number of the conductive paths.
  • the technology disclosed herein makes it easy to reduce the number of switches in a configuration that supplies power to multiple loads.
  • FIG. 1 is a block diagram of a vehicle equipped with a power supply device according to a first embodiment.
  • a power supply device that supplies power based on a power supply unit to a plurality of loads, A plurality of conductive paths connected to a plurality of the loads; a connection portion that connects ends of the conductive paths on the power supply side to each other; A circuit portion having a switch; A control unit that controls the switch, the circuit unit is provided between the connection unit and the power supply unit and is connected to the connection unit; The control unit sets a duty ratio, which is a ratio of an on-time to a switching period, and duty-controls the switch at the set duty ratio to adjust a current supplied to the connection unit; Furthermore, the number of the circuit portions provided is one or more and is less than the number of the conductive paths.
  • the power supply device can adjust the current supplied to the connection section in the circuit section and supply it to multiple loads. Moreover, since the number of circuit sections is smaller than the number of conductive paths connected to each load, the number of switches in the circuit sections can also be smaller than the number of conductive paths. Therefore, the power supply device can easily reduce the number of switches in a configuration that supplies power to multiple loads.
  • the power supply device can set the duty ratio in stages.
  • the power supply device can set the duty ratio in as many stages as there are loads.
  • the duty ratio of the first stage is a value adjusted so that a reference value of current flows through the connection portion
  • the power supply device according to [3], wherein the duty ratio of an Nth stage from the second stage onwards is a value adjusted so that a current N times the reference value flows through the connection part.
  • the power supply device can increase the total current value supplied to multiple loads in proportion to the duty ratio step.
  • the circuit unit is provided in plurality, The power supply device according to any one of [1] to [4], wherein the control unit performs duty control by synchronizing the on/off timings of the switches of each of the circuit units.
  • the above power supply device makes it easy to prevent current from concentrating in certain circuit sections because the on/off timing of each switch is synchronized.
  • a detection unit is provided that detects a voltage value of any one of the plurality of circuit units or a value of a current flowing through any one of the plurality of circuit units, The power supply device according to claim 5, wherein the control unit determines whether or not an overcurrent state exists based on a detection value of the detection unit, and switches all of the switches to an off state when it determines that an overcurrent state exists.
  • the power supply device described above can easily reduce the number of detection units because the detection unit used to determine an overcurrent state can be provided in any of the multiple circuit units.
  • a power supply device for a vehicle comprising: The power supply device according to any one of [1] to [6], wherein the control unit sets a duty ratio based on at least one of an outside air temperature of the vehicle and a switching operation by an operation unit.
  • the power supply device can set the duty ratio to reflect at least one of the vehicle's outside temperature and the switching operation by the operating unit.
  • the above power supply device makes it easy to equalize the performance of the switches in each circuit section.
  • the power supply device can adjust the current supplied to multiple loads of the same type.
  • First Embodiment 1 shows a vehicle 1 equipped with a power supply device 10.
  • the vehicle 1 includes a power supply unit 2 and a plurality of (three in this embodiment) loads 3.
  • the vehicle 1 supplies power based on the power supply unit 2 to the plurality of loads 3 via the power supply device 10.
  • the power supply unit 2 is, for example, a battery.
  • the battery is, for example, a lead battery, a lithium ion battery, etc.
  • the multiple loads 3 are all heaters.
  • the heater includes, for example, a PTC thermistor.
  • the load 3 may be something other than a heater, such as a motor, a lamp, or an ECU (Electronic Control Unit).
  • the multiple loads 3 may be integrated devices or may not be integrated devices.
  • the power supply device 10 is provided between the power supply unit 2 and the multiple loads 3.
  • the power supply device 10 supplies power based on the power supply unit 2 to the multiple loads 3.
  • the power supply device 10 includes multiple conductive paths 11, a first connection unit 12, a circuit unit 13, a second connection unit 14, a detection unit 15, and a control unit 16.
  • the multiple conductive paths 11 are connected to multiple loads 3.
  • the number of conductive paths 11 is the same as the number of loads 3 (3 in this embodiment).
  • Each conductive path 11 is connected to a different load 3.
  • the multiple conductive paths 11 are provided between the power supply unit and the multiple loads 3.
  • the multiple conductive paths 11 are provided in parallel with each other.
  • An output side terminal 20 is provided at the end of the conductive path 11 opposite the power supply unit 2 side.
  • the load 3 is connected to the output side terminal 20.
  • the first connection portion 12 corresponds to an example of a "connection portion.”
  • the first connection portion 12 connects the ends of the respective conductive paths 11 on the side of the power supply portion 2.
  • the respective conductive paths 11 are short-circuited to each other via the first connection portion 12.
  • Each load 3 is short-circuited to the first connection portion 12 by being connected to the conductive path 11.
  • the circuit unit 13 is provided between the first connection unit 12 and the power supply unit 2.
  • the circuit unit 13 is connected to the first connection unit 12.
  • the circuit unit 13 has a power path 30 and a switch 31.
  • the power path 30 is provided between the first connection unit 12 and the power supply unit 2.
  • the power path 30 is connected to the first connection unit 12.
  • the switch 31 is provided on the power path 30. When the switch 31 is in an on state, a current based on the power supply unit 2 is supplied to the first connection unit 12 via the switch 31. When the switch 31 is in an off state, the flow of current to the first connection unit 12 via the switch 31 is cut off.
  • the switch 31 is configured to include a semiconductor switch.
  • the semiconductor switch is a MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor).
  • MOSFET Metal-Oxide-Semiconductor Field Effect Transistor
  • the configuration including the semiconductor switch is composed only of a semiconductor switch, but it may also be a configuration in which a protection circuit and the like are integrated (for example, an IPD (Intelligent Power Device)).
  • the number of circuit parts 13 is one or more and is less than the number of conductive paths 11. In this embodiment, the number of circuit parts 13 is two.
  • the multiple circuit parts 13 are arranged in parallel between the power supply unit 2 and the first connection part 12. Each circuit part 13 (more specifically, the power path 30) is connected to the first connection part 12 and short-circuited to each other via the first connection part 12.
  • the second connection part 14 connects the ends of the multiple circuit parts 13 (more specifically, the power path 30) on the power supply unit 2 side to each other.
  • the switch 31 When the switch 31 is in the on state, the current based on the power supply unit 2 flows into the circuit part 13 (more specifically, the power path 30) via the second connection part 14 and is supplied to the first connection part 12. As a result, the current based on the power supply unit 2 is supplied to the multiple loads 3 via the first connection part 12. All of the multiple switches 31 have the same model number.
  • Circuit unit 13 includes circuit units 13A and 13B.
  • Circuit unit 13A has a power path 30A and a switch 31A.
  • Circuit unit 13B has a power path 30B and a switch 31B.
  • Detection unit 15 is, for example, a known voltage detection circuit. Detection unit 15 detects the voltage value of circuit unit 13A. More specifically, detection unit 15 detects the voltage on the first connection unit 12 side of switch 31A in power path 30A. Detection unit 15 outputs a signal that can identify the detection value.
  • the control unit 16 is a control circuit such as an integrated circuit.
  • the control unit 16 controls the switch 31.
  • the control unit 16 sets a duty ratio, which is the ratio of on time to the switching period.
  • the control unit 16 duty controls the switch 31 with the set duty ratio to adjust the current supplied to the first connection unit 12.
  • the duty control is PWM (Pulse Width Modulation) control, but it may also be duty control with a variable period (for example, PFM (Pulse Frequency Modulation) control).
  • the control unit 16 selects and sets one of the multiple duty ratio stages.
  • the number of duty ratio stages is the same as the number of conductive paths 11, and the same as the number of loads 3. In other words, in this embodiment, the number of duty ratio stages is three.
  • the first stage duty ratio is a value adjusted so that a current of a reference value flows through the first connection part 12.
  • the second stage and subsequent N stages of duty ratios are values adjusted so that a current N times the reference value flows through the first connection part 12. For example, if the reference value is 24 A, the first stage duty ratio is a value adjusted so that a current of 24 A flows through the first connection part 12.
  • the second stage duty ratio is a value adjusted so that a current twice as large as 24 A (a current of 48 A) flows through the first connection part 12.
  • the third stage duty ratio is a value adjusted so that a current three times as large as 24 A (a current of 72 A) flows through the first connection part 12.
  • a current N times the reference value includes not only a current strictly N times the reference value, but also a current that is substantially N times the reference value.
  • a current that is substantially N times the reference value means “a current that is equal to or greater than the reference value multiplied by (N-0.1) and equal to or less than the reference value multiplied by (N+0.1).”
  • a current that is substantially twice the reference value means “a current that is equal to or greater than the reference value multiplied by 1.9 and equal to or less than the reference value multiplied by 2.1.”
  • N is an integer equal to or greater than 2.
  • the duty ratio is a value greater than 0% and equal to or less than 100%.
  • the control unit 16 performs duty control by synchronizing the on/off timing of each switch 31 in each circuit unit 13.
  • the power supply device 10 has a common line 33 and multiple branch lines 34. Each branch line 34 branches off from the common line 33 and is connected to the input section (gate) of each switch 31. A signal applied to the common line 33 is applied to the input section (gate) of each switch 31 via each branch line 34.
  • the control unit 16 applies a control signal to the common line 33 to synchronize the on/off timing of each switch 31 in each circuit unit 13 and performs duty control.
  • the control unit 16 determines whether or not an overcurrent state exists based on the detection value of the detection unit 15.
  • the control unit 16 makes the determination based on, for example, the detection value of the detection unit 15 and a threshold value. More specifically, the control unit 16 determines that an overcurrent state exists if the detection value of the detection unit 15 is equal to or less than the threshold value when the switch 31A is in the on state. The control unit 16 determines that an overcurrent state does not exist if the detection value of the detection unit 15 is not equal to or less than the threshold value when the switch 31A is in the on state. If the control unit 16 determines that an overcurrent state exists, it switches all of the switches 31 to the off state.
  • the control unit 16 sets the duty ratio based on at least one of the outside air temperature of the vehicle 1 and a switching operation by an operation unit 41 provided in the vehicle 1.
  • the control unit 16 can acquire the outside air temperature of the vehicle 1 based on a signal output by a temperature detection unit 40 provided in the vehicle 1.
  • the temperature detection unit 40 is, for example, a known temperature sensor. It detects the outside air temperature of the vehicle 1 and outputs a signal that can identify the detected value.
  • the control unit 16 may acquire the signal output from the temperature detection unit 40 directly or via another device.
  • the operation unit 41 is, for example, an operation member for adjusting the temperature of a heater (load 3).
  • the duty ratio that is set is switched by switching the position of the operation member.
  • control unit 16 sets a high stage duty ratio when the outside temperature of the vehicle 1 is low. As a result, when the outside temperature of the vehicle 1 is low, the current supplied to the load 3 increases, and the temperature of the heater (load 3) increases. Also, the control unit 16 sets a low stage duty ratio when the outside temperature of the vehicle 1 is high. As a result, when the outside temperature of the vehicle 1 is high, the current supplied to the load 3 decreases, and the temperature of the heater (load 3) decreases.
  • the control unit 16 sets a high duty ratio. This increases the current supplied to the load 3, and the temperature of the heater (load 3) increases.
  • the control unit 16 sets a low duty ratio. This decreases the current supplied to the load 3, and the temperature of the heater (load 3) decreases.
  • the control unit 16 sets the duty ratio when a start condition is satisfied.
  • the start condition may be that the start switch of the vehicle 1 is switched to the on state, that a start operation is performed by the user, or other conditions.
  • the control unit 16 sets the duty ratio based on, for example, the outside air temperature of the vehicle 1 or the position of an operating member when the start condition is satisfied. Then, the control unit 16 performs duty control of the switch 31 with the set duty ratio.
  • the control unit 16 performs duty control for all the switches 31 by synchronizing the on/off timing of the switches 31.
  • the control unit 16 determines whether or not an overcurrent state exists during duty control. If the control unit 16 determines that an overcurrent state exists, it stops duty control and switches all switches 31 to the off state.
  • the control unit 16 also determines whether or not a termination condition is met during duty control.
  • the termination condition may be that the start switch of the vehicle 1 is switched to the OFF state, that a termination operation is performed by the user, or other conditions.
  • the control unit 16 ends the duty control and switches all switches 31 to the OFF state.
  • the power supply device 10 can adjust the current supplied to the first connection portion 12 by the circuit unit 13 and supply the current to the multiple loads 3. Moreover, since the number of circuit units 13 is smaller than the number of conductive paths 11 connected to each load 3, the number of switches 31 included in the circuit units 13 can also be smaller than the number of conductive paths 11. Therefore, the power supply device 10 can easily reduce the number of switches 31 in a configuration in which power is supplied to the multiple loads 3.
  • the power supply device 10 can set the duty ratio in stages.
  • the power supply device 10 can set the duty ratio in as many stages as there are loads 3.
  • the power supply device 10 can increase the total current value supplied to the multiple loads 3 in proportion to the stages of the duty ratio.
  • the power supply device 10 makes it easy to prevent current from concentrating in some circuit sections 13 because the on/off timing of each switch 31 is synchronized.
  • the power supply device 10 only needs to provide the detection unit 15 used to determine an overcurrent state in the circuit unit 13A out of the multiple circuit units 13, making it easy to reduce the number of detection units 15.
  • the power supply device 10 can set the duty ratio by reflecting at least one of the outside temperature of the vehicle 1 and the switching operation by the operation unit 41.
  • the power supply device 10 makes it easy to standardize the performance of the switches 31 in each circuit section 13.
  • the power supply device 10 can adjust the current supplied to multiple loads 3 of the same type.
  • the number of duty cycle stages does not have to be the same as the number of conductive paths, nor does it have to be the same as the number of loads.
  • the on/off timing of each switch does not have to be synchronized.
  • the detection unit detects the voltage value of the circuit unit, but it may also be configured to detect the current flowing through the circuit unit.
  • the detection unit may be, for example, a known current sensor.
  • the control unit may determine that an overcurrent state has occurred when the detection value (the value of the current flowing through the circuit unit) exceeds a threshold current.

Abstract

A power supply apparatus (10) supplies power from a power source part (2) to a plurality of loads (3). The power supply apparatus (10) comprises: a plurality of conducting paths (11) connected to the plurality of loads (3); a connection part (first connection part (12)); a circuit part (13); and a control part (16). The connection part connects the ends, on the power source part (2) side, of the conducting paths (11). The circuit part (13) has a switch (31). The control part (16) controls the switch (31). The circuit part (13) is provided between the connection part and the power source part (2) and is connected to the connection part. The control part (16) sets a duty cycle which is a proportion of on-time to a switching period, and performs duty control on the switch (31) at the set duty cycle to adjust a current to be supplied to the connection part. Further, at least one circuit part (13) is provided, but the number thereof is less than that of the conducting paths (11).

Description

電力供給装置Power Supply
 本開示は、電力供給装置に関する。 This disclosure relates to a power supply device.
 特許文献1には、電源の電力を複数の負荷に供給する電力供給システムが開示されている。この電力供給システムは、一端が電源と電気的に接続するヒューズと、ヒューズの他端と複数の負荷の間にそれぞれ電気的に接続された複数の半導体スイッチと、を有する。この電力供給システムは、複数の半導体スイッチをPWM制御して、複数の負荷に電力を供給する。 Patent Document 1 discloses a power supply system that supplies power from a power source to multiple loads. This power supply system has a fuse, one end of which is electrically connected to the power source, and multiple semiconductor switches that are electrically connected between the other end of the fuse and the multiple loads. This power supply system supplies power to the multiple loads by PWM controlling the multiple semiconductor switches.
特開2019-41509号公報JP 2019-41509 A
 特許文献1の技術では、負荷の数が増加するにつれてスイッチの数を増加させる必要がある。 In the technology of Patent Document 1, the number of switches needs to be increased as the number of loads increases.
 本開示は、複数の負荷に電力を供給する構成においてスイッチの数の低減を図りやすい技術を提供することを目的とする。 The purpose of this disclosure is to provide technology that makes it easy to reduce the number of switches in a configuration that supplies power to multiple loads.
 本開示の電力供給装置は、
 電源部に基づく電力を複数の負荷に供給する電力供給装置であって、
 複数の前記負荷に接続される複数の導電路と、
 各々の前記導電路における前記電源部側の端部同士を接続する接続部と、
 スイッチを有する回路部と、
 前記スイッチを制御する制御部と、を備え、
 前記回路部は、前記接続部と前記電源部との間に設けられ、前記接続部に接続され、
 前記制御部は、スイッチング周期に対するオン時間の割合であるデューティ比を設定し、設定したデューティ比で前記スイッチをデューティ制御して前記接続部に供給される電流を調整し、
 更に、前記回路部は、1以上で、且つ前記導電路よりも少ない数設けられる。
The power supply device of the present disclosure comprises:
A power supply device that supplies power based on a power supply unit to a plurality of loads,
A plurality of conductive paths connected to a plurality of the loads;
a connection portion that connects ends of the conductive paths on the power supply side to each other;
A circuit portion having a switch;
A control unit that controls the switch,
the circuit unit is provided between the connection unit and the power supply unit and is connected to the connection unit;
The control unit sets a duty ratio, which is a ratio of an on-time to a switching period, and duty-controls the switch at the set duty ratio to adjust a current supplied to the connection unit;
Furthermore, the number of the circuit portions provided is one or more and is less than the number of the conductive paths.
 本開示に係る技術は、複数の負荷に電力を供給する構成においてスイッチの数の低減を図りやすい。 The technology disclosed herein makes it easy to reduce the number of switches in a configuration that supplies power to multiple loads.
図1は、第1実施形態の電力供給装置を備える車両のブロック図である。FIG. 1 is a block diagram of a vehicle equipped with a power supply device according to a first embodiment.
 以下では、本開示の実施形態が列記されて例示される。 Below, embodiments of the present disclosure are listed and illustrated.
 〔1〕電源部に基づく電力を複数の負荷に供給する電力供給装置であって、
 複数の前記負荷に接続される複数の導電路と、
 各々の前記導電路における前記電源部側の端部同士を接続する接続部と、
 スイッチを有する回路部と、
 前記スイッチを制御する制御部と、を備え、
 前記回路部は、前記接続部と前記電源部との間に設けられ、前記接続部に接続され、
 前記制御部は、スイッチング周期に対するオン時間の割合であるデューティ比を設定し、設定したデューティ比で前記スイッチをデューティ制御して前記接続部に供給される電流を調整し、
 更に、前記回路部は、1以上で、且つ前記導電路よりも少ない数設けられる
 電力供給装置。
[1] A power supply device that supplies power based on a power supply unit to a plurality of loads,
A plurality of conductive paths connected to a plurality of the loads;
a connection portion that connects ends of the conductive paths on the power supply side to each other;
A circuit portion having a switch;
A control unit that controls the switch,
the circuit unit is provided between the connection unit and the power supply unit and is connected to the connection unit;
The control unit sets a duty ratio, which is a ratio of an on-time to a switching period, and duty-controls the switch at the set duty ratio to adjust a current supplied to the connection unit;
Furthermore, the number of the circuit portions provided is one or more and is less than the number of the conductive paths.
 上記電力供給装置は、接続部に供給される電流を回路部で調整して複数の負荷に供給することができる。しかも、回路部の数は、各々の負荷に接続される導電路の数よりも少ないため、回路部が有するスイッチの数も導電路の数よりも少なくすることができる。したがって、上記電力供給装置は、複数の負荷に電力を供給する構成においてスイッチの数の低減を図りやすい。 The power supply device can adjust the current supplied to the connection section in the circuit section and supply it to multiple loads. Moreover, since the number of circuit sections is smaller than the number of conductive paths connected to each load, the number of switches in the circuit sections can also be smaller than the number of conductive paths. Therefore, the power supply device can easily reduce the number of switches in a configuration that supplies power to multiple loads.
 〔2〕前記制御部は、複数段階のデューティ比のうちいずれかのデューティ比を選択して設定する
 〔1〕に記載の電力供給装置。
[2] The power supply device according to [1], wherein the control unit selects and sets one of a plurality of duty ratios.
 上記電力供給装置は、デューティ比を段階的に設定することができる。 The power supply device can set the duty ratio in stages.
 〔3〕デューティ比の段階数は、前記導電路の数と同じである
 〔2〕に記載の電力供給装置。
[3] The power supply device according to [2], wherein the number of stages of the duty ratio is the same as the number of the conductive paths.
 上記電力供給装置は、負荷の数と同じ数の段階でデューティ比を設定することができる。 The power supply device can set the duty ratio in as many stages as there are loads.
 〔4〕1段階目のデューティ比は、前記接続部に基準値の電流が流れるように調整する値であり、
 2段階目以降のN段階目のデューティ比は、前記接続部に前記基準値をN倍した電流が流れるように調整する値である
 〔3〕に記載の電力供給装置。
[4] The duty ratio of the first stage is a value adjusted so that a reference value of current flows through the connection portion,
The power supply device according to [3], wherein the duty ratio of an Nth stage from the second stage onwards is a value adjusted so that a current N times the reference value flows through the connection part.
 上記電力供給装置は、複数の負荷に供給する合計の電流値をデューティ比の段階に比例して増加させることができる。 The power supply device can increase the total current value supplied to multiple loads in proportion to the duty ratio step.
 〔5〕前記回路部は複数設けられ、
 前記制御部は、各々の前記回路部が有する各々の前記スイッチのオンオフ時期を同期させてデューティ制御する
 〔1〕から〔4〕のいずれかに記載の電力供給装置。
[5] The circuit unit is provided in plurality,
The power supply device according to any one of [1] to [4], wherein the control unit performs duty control by synchronizing the on/off timings of the switches of each of the circuit units.
 上記電力供給装置は、各々のスイッチのオンオフ時期が同期されるため、一部の回路部に電流が集中することを抑えやすい。 The above power supply device makes it easy to prevent current from concentrating in certain circuit sections because the on/off timing of each switch is synchronized.
 〔6〕複数の前記回路部のいずれかの電圧値、又は複数の前記回路部のいずれかを流れる電流の値を検出する検出部を備え、
 前記制御部は、前記検出部の検出値に基づいて過電流状態であるか否かを判定し、前記過電流状態であると判定した場合に全ての前記スイッチをオフ状態に切り替える
 〔5〕に記載の電力供給装置。
[6] A detection unit is provided that detects a voltage value of any one of the plurality of circuit units or a value of a current flowing through any one of the plurality of circuit units,
The power supply device according to claim 5, wherein the control unit determines whether or not an overcurrent state exists based on a detection value of the detection unit, and switches all of the switches to an off state when it determines that an overcurrent state exists.
 上記電力供給装置は、過電流状態の判定に用いる検出部を複数の回路部のいずれかに設ければよいので、検出部の数を低減しやすい。 The power supply device described above can easily reduce the number of detection units because the detection unit used to determine an overcurrent state can be provided in any of the multiple circuit units.
 〔7〕車両用の電力供給装置であって、
 前記制御部は、車両の外気温、及び操作部による切替操作の少なくとも一方に基づいてデューティ比を設定する
 〔1〕から〔6〕のいずれかに記載の電力供給装置。
[7] A power supply device for a vehicle, comprising:
The power supply device according to any one of [1] to [6], wherein the control unit sets a duty ratio based on at least one of an outside air temperature of the vehicle and a switching operation by an operation unit.
 上記電力供給装置は、車両の外気温、及び操作部による切替操作の少なくとも一方を反映してデューティ比を設定することができる。 The power supply device can set the duty ratio to reflect at least one of the vehicle's outside temperature and the switching operation by the operating unit.
 〔8〕複数の前記スイッチは、全て同じ型番である
 〔1〕から〔7〕のいずれかに記載の電力供給装置。
[8] The power supply device according to any one of [1] to [7], wherein the multiple switches all have the same model number.
 上記電力供給装置は、各回路部のスイッチの性能を均一化しやすい。 The above power supply device makes it easy to equalize the performance of the switches in each circuit section.
 〔9〕複数の前記負荷は、ヒータ、モータ、ランプ、及びECUのいずれか一種である
 〔1〕から〔8〕のいずれかに記載の電力供給装置。
[9] The power supply device according to any one of [1] to [8], wherein the plurality of loads are any one of a heater, a motor, a lamp, and an ECU.
 上記電力供給装置は、複数の同種の負荷に対して供給する電流を調整することができる。 The power supply device can adjust the current supplied to multiple loads of the same type.
 <第1実施形態>
 図1には、電力供給装置10を備えた車両1が示されている。車両1は、電源部2と、複数(本実施形態では3)の負荷3と、を備える。車両1は、電力供給装置10を介して、電源部2に基づく電力を複数の負荷3に供給する。
First Embodiment
1 shows a vehicle 1 equipped with a power supply device 10. The vehicle 1 includes a power supply unit 2 and a plurality of (three in this embodiment) loads 3. The vehicle 1 supplies power based on the power supply unit 2 to the plurality of loads 3 via the power supply device 10.
 電源部2は、例えば、バッテリである。バッテリは、例えば鉛バッテリ、リチウムイオンバッテリなどである。 The power supply unit 2 is, for example, a battery. The battery is, for example, a lead battery, a lithium ion battery, etc.
 複数の負荷3は、本実施形態では、いずれもヒータである。ヒータは、例えばPTCサーミスタを含んで構成される。なお、負荷3は、ヒータ以外であってもよく、例えばモータ、ランプ、ECU(Electronic Control Unit)などであってもよい。複数の負荷3は、一体化された機器であってもよいし、一体化されていない機器であってもよい。 In this embodiment, the multiple loads 3 are all heaters. The heater includes, for example, a PTC thermistor. Note that the load 3 may be something other than a heater, such as a motor, a lamp, or an ECU (Electronic Control Unit). The multiple loads 3 may be integrated devices or may not be integrated devices.
 電力供給装置10は、電源部2と、複数の負荷3との間に設けられる。電力供給装置10は、電源部2に基づく電力を複数の負荷3に供給する。電力供給装置10は、複数の導電路11と、第1接続部12と、回路部13と、第2接続部14、検出部15と、制御部16と、を備える。 The power supply device 10 is provided between the power supply unit 2 and the multiple loads 3. The power supply device 10 supplies power based on the power supply unit 2 to the multiple loads 3. The power supply device 10 includes multiple conductive paths 11, a first connection unit 12, a circuit unit 13, a second connection unit 14, a detection unit 15, and a control unit 16.
 複数の導電路11は、複数の負荷3に接続される。導電路11の数は、負荷3の数と同じ数(本実施形態では3)である。各々の導電路11は、互いに異なる負荷3に接続される。複数の導電路11は、電源部と複数の負荷3との間に設けられる。複数の導電路11は、互いに並列に設けられる。導電路11における電源部2側とは反対側の端部には、出力側端子20が設けられている。出力側端子20には、負荷3が接続される。 The multiple conductive paths 11 are connected to multiple loads 3. The number of conductive paths 11 is the same as the number of loads 3 (3 in this embodiment). Each conductive path 11 is connected to a different load 3. The multiple conductive paths 11 are provided between the power supply unit and the multiple loads 3. The multiple conductive paths 11 are provided in parallel with each other. An output side terminal 20 is provided at the end of the conductive path 11 opposite the power supply unit 2 side. The load 3 is connected to the output side terminal 20.
 第1接続部12は、「接続部」の一例に相当する。第1接続部12は、各々の導電路11における電源部2側の端部同士を接続する。各々の導電路11は、第1接続部12を介して互いに短絡する。各々の負荷3は、導電路11に接続されることで第1接続部12に短絡する。 The first connection portion 12 corresponds to an example of a "connection portion." The first connection portion 12 connects the ends of the respective conductive paths 11 on the side of the power supply portion 2. The respective conductive paths 11 are short-circuited to each other via the first connection portion 12. Each load 3 is short-circuited to the first connection portion 12 by being connected to the conductive path 11.
 回路部13は、第1接続部12と電源部2との間に設けられる。回路部13は、第1接続部12に接続される。回路部13は、電力路30と、スイッチ31と、を有する。電力路30は、第1接続部12と電源部2との間に設けられる。電力路30は、第1接続部12に接続される。スイッチ31は、電力路30に設けられる。スイッチ31がオン状態のときに、電源部2に基づく電流がスイッチ31を介して第1接続部12に供給される。スイッチ31がオフ状態のときに、スイッチ31を介した第1接続部12への電流の流れが遮断される。スイッチ31は、本実施形態では、半導体スイッチを含む構成である。半導体スイッチは、本実施形態では、MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)である。半導体スイッチを含む構成は、本実施形態では、半導体スイッチのみで構成されるものであるが、保護回路などを一体化した構成(例えばIPD(Intelligent Power Device)であってもよい。 The circuit unit 13 is provided between the first connection unit 12 and the power supply unit 2. The circuit unit 13 is connected to the first connection unit 12. The circuit unit 13 has a power path 30 and a switch 31. The power path 30 is provided between the first connection unit 12 and the power supply unit 2. The power path 30 is connected to the first connection unit 12. The switch 31 is provided on the power path 30. When the switch 31 is in an on state, a current based on the power supply unit 2 is supplied to the first connection unit 12 via the switch 31. When the switch 31 is in an off state, the flow of current to the first connection unit 12 via the switch 31 is cut off. In this embodiment, the switch 31 is configured to include a semiconductor switch. In this embodiment, the semiconductor switch is a MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor). In this embodiment, the configuration including the semiconductor switch is composed only of a semiconductor switch, but it may also be a configuration in which a protection circuit and the like are integrated (for example, an IPD (Intelligent Power Device)).
 回路部13は、1以上で、且つ導電路11よりも少ない数設けられる。本実施形態では、回路部13の数は、2である。複数の回路部13は、電源部2と第1接続部12との間において並列に設けられる。各々の回路部13(より具体的には電力路30)は、第1接続部12に接続され、第1接続部12を介して互いに短絡する。第2接続部14は、複数の回路部13(より具体的には電力路30)における電源部2側の端部同士を接続する。電源部2に基づく電流は、スイッチ31がオン状態のときに、第2接続部14を介して、回路部13(より具体的には電力路30)に流れ込み、第1接続部12に供給される。その結果、電源部2に基づく電流は、第1接続部12を介して複数の負荷3に供給される。複数のスイッチ31は、全て同じ型番である。 The number of circuit parts 13 is one or more and is less than the number of conductive paths 11. In this embodiment, the number of circuit parts 13 is two. The multiple circuit parts 13 are arranged in parallel between the power supply unit 2 and the first connection part 12. Each circuit part 13 (more specifically, the power path 30) is connected to the first connection part 12 and short-circuited to each other via the first connection part 12. The second connection part 14 connects the ends of the multiple circuit parts 13 (more specifically, the power path 30) on the power supply unit 2 side to each other. When the switch 31 is in the on state, the current based on the power supply unit 2 flows into the circuit part 13 (more specifically, the power path 30) via the second connection part 14 and is supplied to the first connection part 12. As a result, the current based on the power supply unit 2 is supplied to the multiple loads 3 via the first connection part 12. All of the multiple switches 31 have the same model number.
 回路部13は、回路部13A、13Bを含む。回路部13Aは、電力路30Aと、スイッチ31Aと、を有する。回路部13Bは、電力路30Bと、スイッチ31Bと、を有する。 Circuit unit 13 includes circuit units 13A and 13B. Circuit unit 13A has a power path 30A and a switch 31A. Circuit unit 13B has a power path 30B and a switch 31B.
 検出部15は、例えば公知の電圧検出回路である。検出部15は、回路部13Aの電圧値を検出する。より具体的には、検出部15は、電力路30Aにおけるスイッチ31Aよりも第1接続部12側の電圧を検出する。検出部15は、検出値を特定可能な信号を出力する。 Detection unit 15 is, for example, a known voltage detection circuit. Detection unit 15 detects the voltage value of circuit unit 13A. More specifically, detection unit 15 detects the voltage on the first connection unit 12 side of switch 31A in power path 30A. Detection unit 15 outputs a signal that can identify the detection value.
 制御部16は、例えば集積回路などの制御回路である。制御部16は、スイッチ31を制御する。制御部16は、スイッチング周期に対するオン時間の割合であるデューティ比を設定する。制御部16は、設定したデューティ比でスイッチ31をデューティ制御して第1接続部12に供給される電流を調整する。デューティ制御は、本実施形態ではPWM(Pulse Width Modulation)制御であるが、周期が変動するデューティ制御(例えばPFM(Pulse Frequency Modulation)制御)であってもよい。 The control unit 16 is a control circuit such as an integrated circuit. The control unit 16 controls the switch 31. The control unit 16 sets a duty ratio, which is the ratio of on time to the switching period. The control unit 16 duty controls the switch 31 with the set duty ratio to adjust the current supplied to the first connection unit 12. In this embodiment, the duty control is PWM (Pulse Width Modulation) control, but it may also be duty control with a variable period (for example, PFM (Pulse Frequency Modulation) control).
 制御部16は、複数段階のデューティ比のうちいずれかのデューティ比を選択して設定する。デューティ比の段階数は、導電路11の数と同じであり、負荷3の数と同じである。つまり、本実施形態では、デューティ比の段階数は、3である。 The control unit 16 selects and sets one of the multiple duty ratio stages. The number of duty ratio stages is the same as the number of conductive paths 11, and the same as the number of loads 3. In other words, in this embodiment, the number of duty ratio stages is three.
 1段階目のデューティ比は、第1接続部12に基準値の電流が流れるように調整する値である。2段階目以降のN段階目のデューティ比は、第1接続部12に基準値をN倍した電流が流れるように調整する値である。例えば、基準値が24Aである場合、1段階目のデューティ比は、第1接続部12に24Aの電流が流れるように調整する値である。2段階目のデューティ比は、第1接続部12に24Aを2倍した電流(48Aの電流)が流れるように調整する値である。3段階目のデューティ比は、第1接続部12に24Aを3倍した電流(72Aの電流)が流れるように調整する値である。「基準値をN倍した電流」は、厳密に基準値をN倍した電流のみでなく、実質的に基準値をN倍した電流も含まれる。「実質的に基準値をN倍した電流」とは、「基準値を(N-0.1)倍した電流以上で、且つ基準値を(N+0.1)倍した電流以下」である。例えば、「実質的に基準値を2倍した電流」とは、「基準値を1.9倍した電流以上で、且つ基準値を2.1倍した電流以下」である。Nは、2以上の整数である。デューティ比は、0%よりも大きく、100%以下の値である。 The first stage duty ratio is a value adjusted so that a current of a reference value flows through the first connection part 12. The second stage and subsequent N stages of duty ratios are values adjusted so that a current N times the reference value flows through the first connection part 12. For example, if the reference value is 24 A, the first stage duty ratio is a value adjusted so that a current of 24 A flows through the first connection part 12. The second stage duty ratio is a value adjusted so that a current twice as large as 24 A (a current of 48 A) flows through the first connection part 12. The third stage duty ratio is a value adjusted so that a current three times as large as 24 A (a current of 72 A) flows through the first connection part 12. "A current N times the reference value" includes not only a current strictly N times the reference value, but also a current that is substantially N times the reference value. "A current that is substantially N times the reference value" means "a current that is equal to or greater than the reference value multiplied by (N-0.1) and equal to or less than the reference value multiplied by (N+0.1)." For example, "a current that is substantially twice the reference value" means "a current that is equal to or greater than the reference value multiplied by 1.9 and equal to or less than the reference value multiplied by 2.1." N is an integer equal to or greater than 2. The duty ratio is a value greater than 0% and equal to or less than 100%.
 制御部16は、各々の回路部13が有する各々のスイッチ31のオンオフ時期を同期させてデューティ制御する。電力供給装置10は、共通線33と、複数の分岐線34と、を有する。各々の分岐線34は、共通線33から分岐して、各々のスイッチ31の入力部(ゲート)に接続される。共通線33に印加された信号は、各々の分岐線34を介して、各々のスイッチ31の入力部(ゲート)に印加される。制御部16は、共通線33に制御信号を印加することで、各々の回路部13が有する各々のスイッチ31のオンオフ時期を同期させてデューティ制御する。 The control unit 16 performs duty control by synchronizing the on/off timing of each switch 31 in each circuit unit 13. The power supply device 10 has a common line 33 and multiple branch lines 34. Each branch line 34 branches off from the common line 33 and is connected to the input section (gate) of each switch 31. A signal applied to the common line 33 is applied to the input section (gate) of each switch 31 via each branch line 34. The control unit 16 applies a control signal to the common line 33 to synchronize the on/off timing of each switch 31 in each circuit unit 13 and performs duty control.
 制御部16は、検出部15の検出値に基づいて過電流状態であるか否かを判定する。制御部16は、例えば、検出部15の検出値と、閾値とに基づいて判定する。より具体的には、制御部16は、スイッチ31Aがオン状態のときに、検出部15の検出値が閾値以下である場合に過電流状態であると判定する。制御部16は、スイッチ31Aがオン状態のときに、検出部15の検出値が閾値以下でない場合に過電流状態でないと判定する。制御部16は、過電流状態であると判定した場合、全てのスイッチ31をオフ状態に切り替える。 The control unit 16 determines whether or not an overcurrent state exists based on the detection value of the detection unit 15. The control unit 16 makes the determination based on, for example, the detection value of the detection unit 15 and a threshold value. More specifically, the control unit 16 determines that an overcurrent state exists if the detection value of the detection unit 15 is equal to or less than the threshold value when the switch 31A is in the on state. The control unit 16 determines that an overcurrent state does not exist if the detection value of the detection unit 15 is not equal to or less than the threshold value when the switch 31A is in the on state. If the control unit 16 determines that an overcurrent state exists, it switches all of the switches 31 to the off state.
 制御部16は、車両1の外気温、及び車両1に設けられる操作部41による切替操作の少なくとも一方に基づいてデューティ比を設定する。制御部16は、車両1に設けられる温度検出部40が出力した信号に基づいて、車両1の外気温を取得し得る。温度検出部40は、例えば公知の温度センサである。車両1の外気温を検出し、検出値を特定可能な信号を出力する。制御部16は、温度検出部40から出力された信号を直接取得してもよいし、別の装置を介して取得してもよい。操作部41は、例えばヒータ(負荷3)の温度を調節するための操作部材である。操作部材の位置が切り替わることで、設定されるデューティ比が切り替わる。 The control unit 16 sets the duty ratio based on at least one of the outside air temperature of the vehicle 1 and a switching operation by an operation unit 41 provided in the vehicle 1. The control unit 16 can acquire the outside air temperature of the vehicle 1 based on a signal output by a temperature detection unit 40 provided in the vehicle 1. The temperature detection unit 40 is, for example, a known temperature sensor. It detects the outside air temperature of the vehicle 1 and outputs a signal that can identify the detected value. The control unit 16 may acquire the signal output from the temperature detection unit 40 directly or via another device. The operation unit 41 is, for example, an operation member for adjusting the temperature of a heater (load 3). The duty ratio that is set is switched by switching the position of the operation member.
 例えば、制御部16は、車両1の外気温が低い場合に高い段階のデューティ比を設定する。これにより、車両1の外気温が低い場合には負荷3に供給される電流が大きくなり、ヒータ(負荷3)の温度が高くなる。また、制御部16は、車両1の外気温が高い場合に低い段階のデューティ比を設定する。これにより、車両1の外気温が高い場合には負荷3に供給される電流が小さくなり、ヒータ(負荷3)の温度が低くなる。 For example, the control unit 16 sets a high stage duty ratio when the outside temperature of the vehicle 1 is low. As a result, when the outside temperature of the vehicle 1 is low, the current supplied to the load 3 increases, and the temperature of the heater (load 3) increases. Also, the control unit 16 sets a low stage duty ratio when the outside temperature of the vehicle 1 is high. As a result, when the outside temperature of the vehicle 1 is high, the current supplied to the load 3 decreases, and the temperature of the heater (load 3) decreases.
 例えば、制御部16は、切替操作によってヒータの温度を高くすることが指示された場合には、高い段階のデューティ比を設定する。これにより、負荷3に供給される電流が大きくなり、ヒータ(負荷3)の温度が高くなる。また、制御部16は、切替操作によってヒータの温度を低くすることが指示された場合には、低い段階のデューティ比を設定する。これにより、負荷3に供給される電流が小さくなり、ヒータ(負荷3)の温度が低くなる。 For example, when a switching operation is instructed to increase the heater temperature, the control unit 16 sets a high duty ratio. This increases the current supplied to the load 3, and the temperature of the heater (load 3) increases. On the other hand, when a switching operation is instructed to decrease the heater temperature, the control unit 16 sets a low duty ratio. This decreases the current supplied to the load 3, and the temperature of the heater (load 3) decreases.
 以下の説明は、電力供給装置10の動作に関する。
 制御部16は、開始条件が成立した場合に、デューティ比を設定する。開始条件は、車両1の始動スイッチがオン状態に切り替わったことであってもよいし、ユーザによって開始操作が行われたことであってもよいし、その他の条件であってもよい。制御部16は、例えば開始条件が成立したときの車両1の外気温、又は操作部材の位置に基づいてデューティ比を設定する。そして、制御部16は、設定したデューティ比でスイッチ31をデューティ制御する。制御部16は、全てのスイッチ31に対し、スイッチ31のオンオフ時期を同期させてデューティ制御する。
The following description relates to the operation of power supply 10.
The control unit 16 sets the duty ratio when a start condition is satisfied. The start condition may be that the start switch of the vehicle 1 is switched to the on state, that a start operation is performed by the user, or other conditions. The control unit 16 sets the duty ratio based on, for example, the outside air temperature of the vehicle 1 or the position of an operating member when the start condition is satisfied. Then, the control unit 16 performs duty control of the switch 31 with the set duty ratio. The control unit 16 performs duty control for all the switches 31 by synchronizing the on/off timing of the switches 31.
 制御部16は、デューティ制御中に、過電流状態であるか否かを判定する。制御部16は、過電流状態であると判定した場合、デューティ制御を中止し、全てのスイッチ31をオフ状態に切り替える。 The control unit 16 determines whether or not an overcurrent state exists during duty control. If the control unit 16 determines that an overcurrent state exists, it stops duty control and switches all switches 31 to the off state.
 また、制御部16は、デューティ制御中に、終了条件が成立したか否かを判定する。終了条件は、車両1の始動スイッチがオフ状態に切り替わったことであってもよいし、ユーザによって終了操作が行われたことであってもよいし、その他の条件であってもよい。制御部16は、終了条件が成立した場合に、デューティ制御を終了し、全てのスイッチ31をオフ状態に切り替える。 The control unit 16 also determines whether or not a termination condition is met during duty control. The termination condition may be that the start switch of the vehicle 1 is switched to the OFF state, that a termination operation is performed by the user, or other conditions. When the termination condition is met, the control unit 16 ends the duty control and switches all switches 31 to the OFF state.
 以下の説明は、電力供給装置10の効果に関する。
 電力供給装置10は、第1接続部12に供給される電流を回路部13で調整して複数の負荷3に供給することができる。しかも、回路部13の数は、各々の負荷3に接続される導電路11の数よりも少ないため、回路部13が有するスイッチ31の数も導電路11の数よりも少なくすることができる。したがって、電力供給装置10は、複数の負荷3に電力を供給する構成においてスイッチ31の数の低減を図りやすい。
The following description relates to the effects of the power supply device 10.
The power supply device 10 can adjust the current supplied to the first connection portion 12 by the circuit unit 13 and supply the current to the multiple loads 3. Moreover, since the number of circuit units 13 is smaller than the number of conductive paths 11 connected to each load 3, the number of switches 31 included in the circuit units 13 can also be smaller than the number of conductive paths 11. Therefore, the power supply device 10 can easily reduce the number of switches 31 in a configuration in which power is supplied to the multiple loads 3.
 電力供給装置10は、デューティ比を段階的に設定することができる。電力供給装置10は、負荷3の数と同じ数の段階でデューティ比を設定することができる。電力供給装置10は、複数の負荷3に供給する合計の電流値をデューティ比の段階に比例して増加させることができる。 The power supply device 10 can set the duty ratio in stages. The power supply device 10 can set the duty ratio in as many stages as there are loads 3. The power supply device 10 can increase the total current value supplied to the multiple loads 3 in proportion to the stages of the duty ratio.
 電力供給装置10は、各々のスイッチ31のオンオフ時期が同期されるため、一部の回路部13に電流が集中することを抑えやすい。 The power supply device 10 makes it easy to prevent current from concentrating in some circuit sections 13 because the on/off timing of each switch 31 is synchronized.
 電力供給装置10は、過電流状態の判定に用いる検出部15を複数の回路部13のうち回路部13Aのみに設ければよいので、検出部15の数を低減しやすい。 The power supply device 10 only needs to provide the detection unit 15 used to determine an overcurrent state in the circuit unit 13A out of the multiple circuit units 13, making it easy to reduce the number of detection units 15.
 電力供給装置10は、車両1の外気温、及び操作部41による切替操作の少なくとも一方を反映してデューティ比を設定することができる。 The power supply device 10 can set the duty ratio by reflecting at least one of the outside temperature of the vehicle 1 and the switching operation by the operation unit 41.
 電力供給装置10は、各回路部13のスイッチ31の性能を均一化しやすい。 The power supply device 10 makes it easy to standardize the performance of the switches 31 in each circuit section 13.
 電力供給装置10は、複数の同種の負荷3に対して供給する電流を調整することができる。 The power supply device 10 can adjust the current supplied to multiple loads 3 of the same type.
 <他の実施形態>
 本開示は、上記記述及び図面によって説明した実施形態に限定されるものではない。例えば、上述又は後述の実施形態の特徴は、矛盾しない範囲であらゆる組み合わせが可能である。また、上述又は後述の実施形態のいずれの特徴も、必須のものとして明示されていなければ省略することもできる。更に、上述した実施形態は、次のように変更されてもよい。
<Other embodiments>
The present disclosure is not limited to the embodiments described above and in the drawings. For example, the features of the above or later described embodiments can be combined in any combination within a range that does not contradict. In addition, any feature of the above or later described embodiments can be omitted unless it is clearly stated as essential. Furthermore, the above-mentioned embodiment may be modified as follows.
 デューティ比の段階数は、導電路の数と同じでなくてもよいし、負荷の数と同じでなくてもよい。 The number of duty cycle stages does not have to be the same as the number of conductive paths, nor does it have to be the same as the number of loads.
 各々のスイッチのオンオフ時期は、同期していなくてもよい。 The on/off timing of each switch does not have to be synchronized.
 上記各実施形態では、検出部が回路部の電圧値を検出する構成であったが、回路部を流れる電流を検出する構成であってもよい。この場合、検出部は、例えば公知の電流センサであってもよい。制御部は、検出値(回路部を流れる電流の値)が閾値電流を超えた場合に過電流状態と判定してもよい。 In each of the above embodiments, the detection unit detects the voltage value of the circuit unit, but it may also be configured to detect the current flowing through the circuit unit. In this case, the detection unit may be, for example, a known current sensor. The control unit may determine that an overcurrent state has occurred when the detection value (the value of the current flowing through the circuit unit) exceeds a threshold current.
 なお、今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、今回開示された実施の形態に限定されるものではなく、請求の範囲によって示された範囲内又は請求の範囲と均等の範囲内での全ての変更が含まれることが意図される。 The embodiments disclosed herein should be considered to be illustrative and not restrictive in all respects. The scope of the present invention is not limited to the embodiments disclosed herein, but is intended to include all modifications within the scope of the claims or within the scope equivalent to the claims.
1…車両
2…電源部
3…負荷
10…電力供給装置
11…導電路
12…第1接続部(接続部)
13…回路部
13A…回路部
13B…回路部
14…第2接続部
15…検出部
16…制御部
20…出力側端子
30…電力路
30A…電力路
30B…電力路
31…スイッチ
31A…スイッチ
31B…スイッチ
33…共通線
34…分岐線
40…温度検出部
41…操作部
1... vehicle 2... power supply unit 3... load 10... power supply device 11... conductive path 12... first connection unit (connection unit)
Reference Signs List 13: Circuit section 13A: Circuit section 13B: Circuit section 14: Second connection section 15: Detection section 16: Control section 20: Output side terminal 30: Power path 30A: Power path 30B: Power path 31: Switch 31A: Switch 31B: Switch 33: Common line 34: Branch line 40: Temperature detection section 41: Operation section

Claims (9)

  1.  電源部に基づく電力を複数の負荷に供給する電力供給装置であって、
     複数の前記負荷に接続される複数の導電路と、
     各々の前記導電路における前記電源部側の端部同士を接続する接続部と、
     スイッチを有する回路部と、
     前記スイッチを制御する制御部と、を備え、
     前記回路部は、前記接続部と前記電源部との間に設けられ、前記接続部に接続され、
     前記制御部は、スイッチング周期に対するオン時間の割合であるデューティ比を設定し、設定したデューティ比で前記スイッチをデューティ制御して前記接続部に供給される電流を調整し、
     更に、前記回路部は、1以上で、且つ前記導電路よりも少ない数設けられる
     電力供給装置。
    A power supply device that supplies power based on a power supply unit to a plurality of loads,
    A plurality of conductive paths connected to a plurality of the loads;
    a connection portion that connects ends of the conductive paths on the power supply side to each other;
    A circuit portion having a switch;
    A control unit that controls the switch,
    the circuit unit is provided between the connection unit and the power supply unit and is connected to the connection unit;
    The control unit sets a duty ratio, which is a ratio of an on-time to a switching period, and duty-controls the switch at the set duty ratio to adjust a current supplied to the connection unit;
    Furthermore, the number of the circuit portions provided is one or more and is less than the number of the conductive paths.
  2.  前記制御部は、複数段階のデューティ比のうちいずれかのデューティ比を選択して設定する
     請求項1に記載の電力供給装置。
    The power supply device according to claim 1 , wherein the control unit selects and sets one of a plurality of duty ratios.
  3.  デューティ比の段階数は、前記導電路の数と同じである
     請求項2に記載の電力供給装置。
    The power supply device according to claim 2 , wherein the number of stages of the duty ratio is the same as the number of the conductive paths.
  4.  1段階目のデューティ比は、前記接続部に基準値の電流が流れるように調整する値であり、
     2段階目以降のN段階目のデューティ比は、前記接続部に前記基準値をN倍した電流が流れるように調整する値である
     請求項3に記載の電力供給装置。
    The duty ratio of the first stage is a value adjusted so that a reference value of current flows through the connection portion,
    The power supply device according to claim 3 , wherein the duty ratio of the Nth stage from the second stage onwards is a value adjusted so that a current N times the reference value flows through the connection part.
  5.  前記回路部は複数設けられ、
     前記制御部は、各々の前記回路部が有する各々の前記スイッチのオンオフ時期を同期させてデューティ制御する
     請求項1から請求項4のいずれか一項に記載の電力供給装置。
    A plurality of the circuit units are provided,
    The power supply device according to claim 1 , wherein the control unit performs duty control by synchronizing on/off timings of the switches included in the respective circuit units.
  6.  複数の前記回路部のいずれかの電圧値、又は複数の前記回路部のいずれかを流れる電流の値を検出する検出部を備え、
     前記制御部は、前記検出部の検出値に基づいて過電流状態であるか否かを判定し、前記過電流状態であると判定した場合に全ての前記スイッチをオフ状態に切り替える
     請求項5に記載の電力供給装置。
    a detection unit that detects a voltage value of any one of the plurality of circuit units or a value of a current flowing through any one of the plurality of circuit units,
    The power supply device according to claim 5 , wherein the control unit determines whether or not an overcurrent state exists based on a detection value of the detection unit, and switches all of the switches to an off state when it determines that an overcurrent state exists.
  7.  車両用の電力供給装置であって、
     前記制御部は、車両の外気温、及び操作部による切替操作の少なくとも一方に基づいてデューティ比を設定する
     請求項1から請求項4のいずれか一項に記載の電力供給装置。
    A power supply device for a vehicle, comprising:
    The power supply device according to claim 1 , wherein the control unit sets the duty ratio based on at least one of an outside air temperature of the vehicle and a switching operation by an operation unit.
  8.  複数の前記スイッチは、全て同じ型番である
     請求項1から請求項4のいずれか一項に記載の電力供給装置。
    The power supply device according to claim 1 , wherein all of the switches have the same model number.
  9.  複数の前記負荷は、ヒータ、モータ、ランプ、及びECUのいずれか一種である
     請求項1から請求項4のいずれか一項に記載の電力供給装置。
    The power supply device according to claim 1 , wherein the plurality of loads are any one of a heater, a motor, a lamp, and an ECU.
PCT/JP2023/030047 2022-09-29 2023-08-21 Power supply apparatus WO2024070332A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022156350A JP2024049864A (en) 2022-09-29 2022-09-29 Power Supply
JP2022-156350 2022-09-29

Publications (1)

Publication Number Publication Date
WO2024070332A1 true WO2024070332A1 (en) 2024-04-04

Family

ID=90477201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030047 WO2024070332A1 (en) 2022-09-29 2023-08-21 Power supply apparatus

Country Status (2)

Country Link
JP (1) JP2024049864A (en)
WO (1) WO2024070332A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007215257A (en) * 2006-02-07 2007-08-23 Nagasaki Univ Decentralized power distributing system and decentralized power system
JP2017188772A (en) * 2016-04-05 2017-10-12 株式会社オートネットワーク技術研究所 Power feed control device
JP2019047582A (en) * 2017-08-31 2019-03-22 株式会社オートネットワーク技術研究所 On-vehicle power control apparatus and on-vehicle power control system
JP2021045018A (en) * 2019-09-13 2021-03-18 矢崎総業株式会社 On-vehicle power supply device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007215257A (en) * 2006-02-07 2007-08-23 Nagasaki Univ Decentralized power distributing system and decentralized power system
JP2017188772A (en) * 2016-04-05 2017-10-12 株式会社オートネットワーク技術研究所 Power feed control device
JP2019047582A (en) * 2017-08-31 2019-03-22 株式会社オートネットワーク技術研究所 On-vehicle power control apparatus and on-vehicle power control system
JP2021045018A (en) * 2019-09-13 2021-03-18 矢崎総業株式会社 On-vehicle power supply device

Also Published As

Publication number Publication date
JP2024049864A (en) 2024-04-10

Similar Documents

Publication Publication Date Title
JP5170248B2 (en) Power supply control circuit, power supply apparatus, power supply system, and control method for power supply control apparatus
CN102047368B (en) Relay controller
US8947064B2 (en) System and method for driving an electronic switch dependent on temperature
JP6632794B2 (en) System for powering a load coupled from an input node to an output node
JP6288379B2 (en) Inrush current prevention circuit
US20090167272A1 (en) Power Supply Controller
US8299766B2 (en) Switching output circuit
US20140091853A1 (en) Switching circuit
US20080048630A1 (en) Switching power supply circuit
US20080074820A1 (en) Current protection circuit for intelligent power switch
JP5724397B2 (en) Switching element drive circuit
JPH03256407A (en) Control circuit
KR20180071114A (en) Pre-charge redundancy circuit
US10715043B2 (en) Single inductor multiple output power converter with overload control
JP2014068415A (en) Driving circuit for switching element to be driven
KR950002233A (en) Integrated circuit with output stage to reduce noise
WO2024070332A1 (en) Power supply apparatus
JP2017212805A (en) Vehicular voltage conversion device
US20070103988A1 (en) Circuit arrangement and method for controlling an inductive load
CN107408887B (en) Current sensing controller for DC-DC converter
JP6322123B2 (en) Current limit circuit
JP3793027B2 (en) Load drive circuit
KR20100014890A (en) Led module and method for operating at least one led
JP2001224176A (en) Electric power unit for current balance type parallel power system
JP2018196115A (en) Electronic module, motor vehicle, and method for limiting input current during switch-on process of module