WO2024070310A1 - Overhead vehicle system - Google Patents

Overhead vehicle system Download PDF

Info

Publication number
WO2024070310A1
WO2024070310A1 PCT/JP2023/029731 JP2023029731W WO2024070310A1 WO 2024070310 A1 WO2024070310 A1 WO 2024070310A1 JP 2023029731 W JP2023029731 W JP 2023029731W WO 2024070310 A1 WO2024070310 A1 WO 2024070310A1
Authority
WO
WIPO (PCT)
Prior art keywords
rail
traveling
running
traveling vehicle
unit
Prior art date
Application number
PCT/JP2023/029731
Other languages
French (fr)
Japanese (ja)
Inventor
政佳 虎澤
Original Assignee
村田機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 村田機械株式会社 filed Critical 村田機械株式会社
Publication of WO2024070310A1 publication Critical patent/WO2024070310A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B13/00Other railway systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B3/00Elevated railway systems with suspended vehicles
    • B61B3/02Elevated railway systems with suspended vehicles with self-propelled vehicles

Definitions

  • One aspect of the present disclosure relates to an overhead vehicle system.
  • An overhead traveling vehicle system includes a track arranged in a lattice pattern, a traveling section that travels along the track, and an overhead traveling vehicle that has a main body section that is arranged below the track and suspended from the traveling section (see, for example, Patent Document 1).
  • the traveling section has traveling wheels and a direction change mechanism (steering drive section) that rotates the traveling wheels around a pivot.
  • the direction change mechanism is provided on the top surface of the main body section and includes a drive source, a pinion gear, and a rack.
  • the drive source drives and rotates the pinion gear, causing the pinion gear to move along the rack in a circumferential direction around the pivot, and the traveling wheel to rotate around the pivot.
  • One aspect of the present disclosure has been made in consideration of the above-mentioned circumstances, and aims to provide an overhead traveling vehicle system that allows for a more compact overhead traveling vehicle.
  • An overhead traveling vehicle system is equipped with a track, at least a portion of which is arranged in a lattice pattern, a running unit that runs along the track, a steering drive unit that turns the running unit, and an overhead running vehicle having a main body that is arranged below the track and suspended from the running unit, the running unit rolls on the track around a rotation axis and includes running wheels that are rotatable around a swivel axis, and the steering drive unit is provided below the track and below the running wheels and turns the running wheels.
  • the steering drive unit can be positioned by effectively utilizing the space below the track. This means that, for example, there is no need to position the steering drive unit between the top surface of the main body and the track, and the height dimension of the overhead traveling vehicle can be reduced. As a result, the overhead traveling vehicle can be made more compact.
  • the traveling section may include a traveling drive motor provided on the rotation axis of the traveling wheels.
  • the traveling drive motor can be arranged by effectively utilizing the space above the track. This makes it possible to reduce the height dimension from the traveling drive motor to the traveling wheels, for example, and to make the overhead traveling vehicle more compact.
  • the track has a plurality of first rails extending in a first direction and a second rail extending in a second direction perpendicular to the first direction, the first rails and the second rails are arranged in a grid pattern, the overhead traveling vehicle moves in the first direction by a running part running on a pair of first rails adjacent to each other in the second direction, and moves in the second direction by a running part running on a pair of second rails adjacent to each other in the first direction, and the overhead traveling vehicle is a first information acquisition device that acquires the first information from a first mark indicating the first information.
  • the overhead traveling vehicle system may have a sensor and a second sensor that acquires second information from a second mark indicating second information that is different from the first information
  • each of the first rail and the second rail may have a first surface facing the first sensor and on which the first mark is arranged, and a second surface facing the second sensor and on which the second mark is arranged, the second surface being arranged outside the first surface and inclined toward the overhead traveling vehicle side with respect to the first surface when viewed from the center of a cell that is a space surrounded by a pair of first rails and a pair of second rails in a plan view.
  • the first surface and the second surface other than the first surface are provided on each of the first rail and the second rail that form the track, two different types of marks can be arranged on the track by arranging two different types of marks on each surface.
  • the second surface arranged outside the first surface when viewed from the center of the cell in a plan view is arranged so as to be inclined toward the overhead traveling vehicle side with respect to the first surface. This eliminates the need to have the second sensor protrude from the overhead vehicle in order to face the second surface, which helps prevent the overhead vehicle from becoming too large.
  • the traveling section may further include a support member that axially supports the traveling wheels
  • the steering drive section may include a steering motor that is a drive source, a first gear connected to the output shaft of the steering motor, and a second gear that meshes with the first gear and is connected to the support member.
  • the steering motor may be provided so that the output shaft of the steering motor is parallel to the rotation axis.
  • the steering drive unit can be configured more simply. As a result, the steering drive unit can be made more compact.
  • an overhead traveling vehicle system that allows for the compactification of overhead traveling vehicles.
  • FIG. 1 is a perspective view illustrating an example of an overhead traveling vehicle system according to an embodiment.
  • FIG. 2 is an exploded perspective view showing four rail units constituting the rail assembly in FIG. 1 and a connecting member connecting the rail units.
  • FIG. 3 is a side view showing the overhead traveling vehicle in FIG.
  • FIG. 4 is a perspective view showing the overhead traveling vehicle in FIG.
  • FIG. 5 is a perspective view showing only the track portion of the rail assembly.
  • FIG. 6 is a cross-sectional view showing a connection portion between a plurality of rail units.
  • FIG. 7 is a side view showing the running unit, the wheel turning mechanism, and the track.
  • FIG. 8 is a cross-sectional view showing the running portion.
  • FIG. 9 is a perspective view showing the running unit and the wheel turning mechanism.
  • FIG. 10 is a perspective view showing the inside of the gear box in FIG. 9 exposed.
  • 11 is a cross-sectional perspective view showing the running unit and the wheel turning mechanism in FIG.
  • FIG. 12 is a perspective view showing an overhead traveling vehicle according to a modified example.
  • FIG. 13 is a perspective view showing a rail unit according to a modified example.
  • FIG. 14 is a schematic cross-sectional view of the first rail taken along a plane perpendicular to the X direction.
  • the overhead traveling vehicle system 1 is a grid system (transport system) for transporting an item M by an overhead traveling vehicle 2, for example, in a clean room of a semiconductor manufacturing factory.
  • the overhead traveling vehicle system 1 includes, for example, a plurality of overhead traveling vehicles 2 (hereinafter collectively referred to as "traveling vehicles 2"), a system controller 5 for controlling the plurality of traveling vehicles 2, and a track (rail) R on which the plurality of traveling vehicles 2 travel.
  • the traveling vehicles 2 move along the track R of the overhead traveling vehicle system 1.
  • the traveling vehicles 2 travel along the track R and transport items M, such as FOUPs (Front Opening Unified Pods) that house semiconductor wafers or reticle pods that house reticles.
  • FOUPs Front Opening Unified Pods
  • the traveling vehicles 2 may be referred to as carts, transport vehicles, transport carts, traveling carts, or the like.
  • the plurality of traveling vehicles 2 enables high-density transport of the items M, improving the transport efficiency of the items M.
  • the overhead traveling vehicle system 1 may include only one traveling vehicle 2.
  • the track R is provided on or near the ceiling of a building such as a clean room.
  • the track R is provided adjacent to, for example, a processing device, a stocker (automated warehouse), etc.
  • the processing device is, for example, an exposure device, a coater developer, a film forming device, an etching device, etc., and performs various processes on the semiconductor wafers in the goods M transported by the traveling vehicle 2.
  • the stocker stores the goods M transported by the traveling vehicle 2.
  • the track R is arranged in a lattice shape in a plan view (see also FIG. 5).
  • the track R extends horizontally.
  • the track R is constructed by arranging a plurality of rail units 100, each having a first rail R1, a second rail R2, and an intersection rail R3, in the X and Y directions.
  • the overhead traveling vehicle system 1 includes a plurality of rail units 100 arranged in the X and Y directions, and a plurality of connecting members 140 that connect the plurality of rail units 100 to each other.
  • the plurality of rail units 100 and the plurality of connecting members 140 form a rail assembly 200.
  • the rail assembly 200 is suspended from a ceiling (not shown) by a plurality of hanging members H at the portion where the rail units 100 are connected to each other by the connecting members 140.
  • Each rail unit 100 is a rectangular parallelepiped (frame-shaped) member and has the same configuration.
  • Each rail unit 100 includes two first rail members 110 arranged along the X direction, two second rail members 120 arranged along the Y direction, and four intersection rail members 130 arranged so that gaps are formed on the extension lines of the first rail members 110 and the second rail members 120 (i.e., the positions of the intersection points of the lattice).
  • the two parallel first rail members 110 and the two parallel second rail members 120 are arranged in a square shape, and the four intersection rail members 130 are arranged at the vertices of the square.
  • Each rail unit 100 is made of, for example, metal, and is an integrated unit formed after each part of the first rail member 110, the second rail member 120, and the cross rail member 130 is molded.
  • Each first rail member 110 includes a first beam portion 111 arranged at the upper end position of the rail unit 100 and extending in the X direction, a first rail R1 arranged at the lower end position of the rail unit 100 and extending in the X direction, and a first support wall 113 arranged between the first beam portion 111 and the first rail R1 and joined to the first beam portion 111 and the first rail R1.
  • Each second rail member 120 includes a second beam portion 121 arranged at the upper end position of the rail unit 100 and extending in the Y direction, a second rail R2 arranged at the lower end position of the rail unit 100 and extending in the Y direction, and a second support wall 123 arranged between the second beam portion 121 and the second rail R2 and joined to the second beam portion 121 and the second rail R2.
  • the multiple first beam portions 111 and the multiple second beam portions 121 form a lattice-like structure extending along the XY plane at the upper end position of the rail assembly 200.
  • the first support wall 113 extends along the XZ plane.
  • the second support wall 123 extends along the YZ plane.
  • the intersection rail member 130 includes an intersection support pillar 133 that extends along the Z direction (vertical direction) at the position where the first beam portion 111 and the second beam portion 121 are joined at a right angle, and an intersection rail R3 that is provided at the lower end of the intersection support pillar 133.
  • the first rails R1 each extend along the X direction.
  • the second rails R2 each extend along the Y direction.
  • the track R is formed in a lattice shape in a plan view by the first rails R1 and the second rails R2.
  • the track R forms a plurality of squares by the first rails R1 and the second rails R2.
  • the intersection rail R3 is disposed at a portion corresponding to the intersection of the first rail R1 and the second rail R2.
  • the intersection rail R3 is adjacent to the first rail R1 with a gap in the X direction.
  • the intersection rail R3 is adjacent to the second rail R2 with a gap in the Y direction.
  • intersection rail R3 is used when the traveling vehicle 2 travels along the first rail R1, when the traveling vehicle 2 travels along the second rail R2, and when the traveling vehicle 2 travels from the first rail R1 to the second rail R2 or from the second rail R2 to the first rail R1.
  • Each rail unit 100 forms a square (or rectangular) track R corresponding to one square on the inside.
  • a plurality of first rails R1 extend in a row in the X direction
  • a plurality of second rails R2 extend in a row in the Y direction.
  • two intersecting rails R3 are arranged at intervals between one first rail R1 and another first rail R1.
  • two intersecting rails R3 are arranged at intervals between one second rail R2 and another second rail R2.
  • a plurality of first rails R1, a plurality of second rails R2, and a plurality of intersection rails R3 are arranged at a predetermined interval from each other, thereby constructing a track R. Between each of the first rails R1 and each of the intersection rails R3, a gap G corresponding to the above-mentioned interval is formed. Between each of the second rails R2 and each of the intersection rails R3, a gap G corresponding to the above-mentioned interval is formed.
  • the gap G in the track R has a constant size.
  • Each of the first rails R1 includes a first running surface R1a that is flat and horizontal on the upper surface, and the running wheels 31 of the running vehicle 2 run on the first running surface R1a in the X direction (first running direction D1).
  • Each of the second rails R2 includes a second running surface R2a that is flat and horizontal on the upper surface, and the running wheels 31 of the running vehicle 2 run on the second running surface R2a in the Y direction (second running direction D2).
  • the intersection rail R3 includes a crossing running surface R3a that is flat and horizontal on the upper surface.
  • the heights of the first running surface R1a, the second running surface R2a, and the intersection running surface R3a are equal throughout the entire track R.
  • the first running surface R1a, the second running surface R2a, and the intersection running surface R3a are arranged on the same or nearly the same horizontal plane.
  • no gaps as large as the gap G are formed between the four intersecting rails R3 described above.
  • the traveling wheels 31 of the traveling vehicle 2 run on the intersecting running surface R3a. At that time, the traveling wheels 31 pass over any two of the four intersecting rails R3 described above.
  • the traveling vehicle 2 changes its traveling direction between the rail units 100 (changing its traveling direction by 90 degrees, i.e., when steering), the traveling wheels 31 of the traveling vehicle 2 pass over the intersecting running surface R3a (while changing direction).
  • a lattice-shaped track R is formed by the first rail member 110, the second rail member 120, and the intersection rail member 130.
  • the layout of the lattice-shaped track R in the overhead traveling vehicle system 1 can be adjusted or changed as appropriate by arranging the multiple rail units 100 in any desired arrangement (including adding or deleting rail units 100).
  • each connecting member 140 includes an upper connecting member 141 and a lower connecting member 142.
  • the upper connecting member 141 which is a plate-like or frame-like member extending horizontally, is attached to the upper surface of one of the four corners of the multiple (typically four) rail units 100.
  • the upper connecting member 141 abuts near the intersection of the first beam portion 111 and the second beam portion 121 in each rail unit 100.
  • the lower connecting member 142 which is a plate-like or frame-like member extending horizontally, supports the lower surface of one of the four corners of the multiple (typically four) rail units 100.
  • the lower connecting member 142 abuts against the intersection rail R3 in each rail unit 100.
  • the upper connecting member 141 and/or the lower connecting member 142 are fixed to the rail units 100 by fastening members (not shown) or the like, thereby connecting the rail units 100 to each other.
  • a space 100e extending in the Z direction is formed between the rail units 100, and a space R3e extending in the Z direction is formed between the four intersection rails R3 adjacent in the X and Y directions (the central parts in a plan view).
  • the hanging member H is inserted into the space 100e and the space R3e, and the upper connecting member 141 and/or the lower connecting member 142 are fixed to the hanging member H.
  • the overhead traveling vehicle system 1 includes a communication system (not shown).
  • the communication system is used for communication between the traveling vehicles 2 and the system controller 5.
  • the traveling vehicles 2 and the system controller 5 are each connected to each other so that they can communicate with each other via the communication system.
  • the traveling vehicle 2 is provided so as to be able to travel along the track R.
  • the traveling vehicle 2 has a traveling carriage 20 that travels on the track R, and a main body 10 that is attached to the lower part of the traveling carriage 20 and can freely turn with respect to the traveling carriage 20.
  • the traveling carriage 20 includes a carriage unit 50, for example, rectangular, that is arranged below the track R, a running section 30 that is provided at the four corners of the carriage unit 50 in a plan view and protrudes upward from the carriage unit 50, and four wheel turning mechanisms 40 that turn each of the four running wheels 31 of the running section 30 with respect to the carriage unit 50.
  • the running section 30 and the wheel turning mechanism 40 are integrated as one unit.
  • a carriage controller (control unit) 8 is provided inside the carriage unit 50.
  • the main body 10 is disposed below the track R and suspended from the running part 30.
  • the main body 10 has a main body frame 12 formed, for example, in a cylindrical shape.
  • the main body frame 12 includes a disk-shaped top plate part 12a and a cylindrical frame 12b that hangs down from the periphery of the top plate part 12a, and has a shape with an open bottom.
  • the main body 10 is formed to a size that fits into one square (see Figure 1) on the track R in a plan view.
  • the running vehicle 2 can pass other running vehicles 2 running on the adjacent first rail R1 or second rail R2.
  • the main body 10 is equipped with a transfer device 18 disposed inside the main body frame 12.
  • the transfer device 18 is, for example, rectangular in a plan view.
  • the cylindrical frame 12b is open in a part of the circumferential direction. The range in which the open part (notch) is formed is large enough to allow the transfer device 18 to pass through. When moving horizontally, the transfer device 18 passes through an opening in the cylindrical frame
  • the main body 10 is attached to the bottom of the bogie unit 50 and can rotate freely around a rotation axis L10 in the Z direction relative to the bogie unit 50.
  • the running wheels 31 provided at the four corners of the bogie unit 50 are placed on the track R (on the first running surface R1a, the second running surface R2a, or the intersection running surface R3a).
  • the bogie unit 50 is suspended from the track R via the four running wheels 31 and the four wheel turning mechanisms 40.
  • the four running wheels 31 allow the bogie unit 50 and the main body 10 to be stably suspended, and the main body 10 to run stably.
  • the running vehicle 2 is suspended and supported by the running wheels 31 that run along the track R, and moves below the track R.
  • the transfer device 18 moves horizontally relative to the main body 10 to transfer the item M between the load port (mounting platform).
  • the transfer device 18 is provided below the top plate 12a of the main body frame 12.
  • the main body 10 including the transfer device 18 can rotate around the rotation axis L10 by a rotation drive unit such as an electric motor (not shown) provided on the top plate 12a.
  • the transfer device 18 has an item holding unit 13 that holds the item M below the track R, a lifting drive unit 14 that raises and lowers the item holding unit 13 in the vertical direction, and a slide mechanism 11 that slides the lifting drive unit 14 in the horizontal direction.
  • the slide mechanism 11 is held on the underside of the top plate 12a.
  • a rotation drive unit 16 that rotates the lifting drive unit 14 around the rotation axis L14 relative to the slide mechanism 11 is provided between the slide mechanism 11 and the lifting drive unit 14.
  • the rotation drive unit 16 is provided below the slide mechanism 11, and the lift drive unit 14 is provided below the rotation drive unit 16.
  • the item holder 13 is provided below the lift drive unit 14 via multiple hanging members 13b.
  • the load port is the transfer destination or source of the traveling vehicle 2, and is the point where the item M is handed over to and from the traveling vehicle 2.
  • the item holding part 13 holds the item M by suspending it by gripping the flange part Ma of the item M.
  • the item holding part 13 is, for example, a chuck having a claw part 13a that can move horizontally.
  • the item holding part 13 holds the item M by inserting the claw part 13a below the flange part Ma of the item M and raising the item holding part 13.
  • the item holding part 13 is connected to a hanging member 13b such as a wire or belt.
  • the lifting drive unit 14 is, for example, a hoist, which lowers the item holding unit 13 by paying out the hanging member 13b, and raises the item holding unit 13 by winding up the hanging member 13b.
  • the lifting drive unit 14 is controlled by the cart controller 8, and lowers or raises the item holding unit 13 at a predetermined speed.
  • the lifting drive unit 14 is also controlled by the cart controller 8, and holds the item holding unit 13 at a target height.
  • the slide mechanism 11 has multiple movable plates arranged, for example, stacked in the Z direction.
  • the slide mechanism 11 moves the rotation drive unit 16, the lift drive unit 14, and the item holding unit 13 attached to the lowest movable plate in any direction in the horizontal plane.
  • the direction of movement of the movable plate in the slide mechanism 11 is determined by the rotation angle of the main body 10 relative to the cart unit 50.
  • the orientation of the transfer device 18 and the main body frame 12 is set so that the direction of movement of the movable plate coincides with the position of the opening of the cylindrical frame 12b.
  • the rotation drive unit 16 includes, for example, an electric motor, and rotates the lift drive unit 14 (and the item holding unit 13) within a predetermined angle range around a rotation axis L14 extending vertically.
  • the angle at which the lift drive unit 14 can be rotated by the rotation drive unit 16 is, for example, any angle less than 180 degrees, but the upper limit is not limited to 180 degrees.
  • the rotation drive unit 16 can orient the item holding unit 13 (or the item M held by the item holding unit 13) protruding from the side in a desired direction.
  • the slide mechanism 11 and the rotation drive unit 16 are controlled by the cart controller 8.
  • the lift drive unit 14 can be rotated by the rotation drive unit 16 even when the movable plate of the slide mechanism 11 is stored without moving (as shown by the solid line in FIG. 3). In that case, for example, the rotation axis L14 of the lift drive unit 14 coincides with the rotation axis L10 of the main body unit 10.
  • the cart unit 50 has a cylindrical support member (cylindrical member) 52 at the lower end.
  • the top plate portion 12a of the main body frame 12 is rotatably attached to the underside of the support member 52.
  • a rotation drive unit (not shown), such as an electric motor, is provided on the top plate portion 12a.
  • the main body frame 12 rotates around a rotation axis L10 extending vertically to the cart unit 50.
  • the angle at which the main body frame 12 can rotate is, for example, any angle between 360 degrees and 540 degrees, but the upper limit is not limited to 540 degrees and the lower limit is not limited to 360 degrees.
  • the slide mechanism 11 is attached to the underside of the top plate portion 12a, and the top plate portion 12a supports the slide mechanism 11.
  • the main body frame 12 and the transfer device 18 are integrated, and the main body frame 12 and the transfer device 18 rotate together.
  • the traveling vehicle 2 can transfer the item M to and from the load port by using the transfer device 18.
  • a cover may be attached to the outer surface of the cylindrical frame 12b.
  • the cover surrounds the transfer device 18 and the item M held by the transfer device 18.
  • the cover is cylindrical with an open bottom end, and has a cutout at the portion where the movable plate of the slide mechanism 11 protrudes (the above-mentioned open portion).
  • the running unit 30 has four running wheels 31. Two auxiliary wheels 32 are provided for each running wheel 31. As shown in FIG. 4, the running wheels 31 are provided at the four corners of the cart unit 50 so as to protrude upward from the upper cover 51. Each running wheel 31 can rotate around a horizontal or nearly horizontal axle axis along the XY plane.
  • a running drive motor 33 is provided on the rotation axis L31 of each running wheel 31. Each running wheel 31 is driven to rotate by the driving force of the running drive motor 33.
  • the running drive motor 33 is configured to be able to switch between forward and reverse rotation, for example.
  • Each running wheel 31 rolls on the track R with the rotation axis L31 (see FIGS. 7 and 8) as the base axis.
  • Each running wheel 31 rolls on the running surfaces R1a, R2a, and R3a of the first rail R1, the second rail R2, and the intersection rail R3, causing the running car 2 to run. That is, the running unit 30 runs along the track R. Note that it is not limited to the configuration in which all of the four running wheels 31 are rotated by the driving force of the running drive motor 33, and it is also possible to configure the running wheels 31 to be rotated only in part.
  • wheel turning mechanisms 40 (steering drive units) are fixed to a frame (not shown) in the bogie unit 50, and a pedestal 34 is connected to each wheel turning mechanism 40 via the turning shaft of the wheel turning mechanism 40.
  • a running wheel 31, two auxiliary wheels 32, and one running drive motor 33 are attached to the pedestal 34 via a connecting portion 35 and a support portion 36 (support member).
  • a square-shaped top cover 51 is provided on the top surface of the housing 53, and the pedestal 34 is arranged in the notches formed in the four corners of the top cover 51.
  • the connecting portion 35, running wheels 31, auxiliary wheels 32, and running drive motor 33 are arranged above the top cover 51.
  • the connecting portion 35 connects the bogie unit 50 (specifically, the wheel turning mechanism 40 fixed in the bogie unit 50) and the running wheels 31.
  • This connecting structure places the bogie unit 50 and the main body 10 below the track R and suspended from the running portion 30.
  • the connecting portion 35 is formed to a thickness that allows it to pass through the gap G between the first rail R1 and the intersection rail R3, and between the second rail R2 and the intersection rail R3.
  • the support portion 36 is provided on the upper portion of the connecting portion 35, and rotatably supports the rotation shaft of the running wheels 31 and the rotation shaft of the auxiliary wheels 32. The support portion 36 maintains the relative positions of the running wheels 31 and the auxiliary wheels 32.
  • the running wheels 31 are rotatable about the vertically extending pivot axis L30.
  • the four pivot axes L30 are arranged at the vertices of a square in a plan view, and the rotation axis L10 is located at the center of the pivot axis L30.
  • the four pivot axes L30 are arranged at positions that are four-fold symmetrical with respect to the rotation axis L10 of the main body 10.
  • the positions of the running wheels 31 and the pivot axes L30 are different (displaced).
  • the running wheels 31 are rotated by the wheel rotation mechanism 40, and as a result, the running direction of the running vehicle 2 can be changed.
  • the auxiliary wheels 32 are arranged one each in front and behind the running wheel 31 in the running direction. Each of the auxiliary wheels 32 can rotate around a horizontal or nearly horizontal axle axis along the XY plane.
  • the lower end of the auxiliary wheel 32 is set, for example, to be higher than the lower end of the running wheel 31. Therefore, when the running wheel 31 is running on the running surfaces R1a, R2a, R3a, the auxiliary wheel 32 does not contact the running surfaces R1a, R2a, R3a.
  • auxiliary wheel 32 comes into contact with auxiliary members (not shown) provided on the first rail R1 and the second rail R2, suppressing the sagging of the running wheel 31.
  • auxiliary wheels 32 there is no limitation to providing two auxiliary wheels 32 for one running wheel 31; for example, one auxiliary wheel 32 may be provided for one running wheel 31, or no auxiliary wheel 32 may be provided.
  • the wheel turning mechanism 40 is a mechanism for turning the running wheels 31.
  • the four wheel turning mechanisms 40 are arranged, for example, at the four corners of the housing 53 of the bogie unit 50.
  • Each wheel turning mechanism 40 has a steering motor 43 and a driving force transmission unit 42 provided between the steering motor 43 and the running wheels 31.
  • the driving force transmission unit 42 is fixed to a frame (not shown) in the bogie unit 50.
  • the driving force transmission unit 42 and the base unit 34 are connected via a turning shaft.
  • Each wheel turning mechanism 40 turns the base unit 34, the connecting unit 35, the support unit 36, the running wheels 31, the auxiliary wheels 32, and the running drive motor 33 together around the turning shaft L30.
  • each running wheel 31 is turned 90 degrees around each turning shaft L30. This causes the running wheels 31 to turn on the intersection rail R3. This allows the traveling vehicle 2 to turn.
  • Turning means switching from a first state in which the traveling vehicle 2 travels in the first traveling direction D1 to a second state in which the traveling vehicle 2 travels in the second traveling direction D2, or from the second state in which the traveling vehicle 2 travels in the second traveling direction D2 to the first state in which the traveling vehicle 2 travels in the first traveling direction D1.
  • the traveling vehicle 2 turns, for example, when the traveling vehicle 2 is stopped.
  • the traveling vehicle 2 may also turn when the traveling vehicle 2 is stopped but the object M is moving (for example, turning).
  • the driving of the wheel turning mechanism 40 is controlled by the cart controller 8.
  • the bogie controller 8 performs overall control of the traveling vehicle 2.
  • the bogie controller 8 is a computer consisting of a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), etc.
  • the bogie controller 8 can be configured as software in which a program stored in the ROM is loaded onto the RAM and executed by the CPU, for example.
  • the bogie controller 8 may be configured as hardware such as electronic circuits.
  • the bogie controller 8 may be configured as a single device, or may be configured as multiple devices. When configured as multiple devices, these are connected via a communication network such as the Internet or an intranet to logically construct a single bogie controller 8.
  • the bogie controller 8 is provided in the bogie unit 50, for example.
  • the cart controller 8 controls the traveling of the traveling vehicle 2 based on the transport command.
  • the cart controller 8 controls the traveling of the traveling vehicle 2 by controlling the travel drive motor 33 and the steering motor 43, etc.
  • the cart controller 8 controls, for example, the traveling speed, the operation related to stopping, and the operation related to changing direction.
  • the cart controller 8 controls the transfer operation of the traveling vehicle 2 based on the transport command.
  • the cart controller 8 controls the rotation (rotation) of the main body 10 (main body frame 12 and transfer device 18) to control the transfer direction of the transfer device 18.
  • the cart controller 8 controls the transfer operation of the traveling vehicle 2 by controlling the transfer device 18, etc.
  • the cart controller 8 controls the operation of the load grabber that grasps the item M placed at the specified load port, and the unloading operation that lowers the held item M to the specified load port.
  • the system controller 5 is a computer consisting of a CPU, ROM, RAM, etc.
  • the system controller 5 can be configured as software, for example, in which a program stored in the ROM is loaded onto the RAM and executed by the CPU.
  • the system controller 5 may be configured as hardware such as electronic circuits.
  • the system controller 5 may be configured as one device, or multiple devices. When configured as multiple devices, these are connected via a communication network such as the Internet or an intranet to logically construct a single system controller 5. At least some of the various controls of the system controller 5 may be executed by the trolley controller 8.
  • the system controller 5 selects one of the multiple traveling vehicles 2 capable of transporting the item M, and assigns a transport command to the selected traveling vehicle 2.
  • the transport command includes a travel command to cause the traveling vehicle 2 to travel to the load port, and a command to grab the item M placed at the load port or a command to unload the held item M to the load port.
  • Figs. 7 and 8 show an example in which the running wheel 31 runs on the intersection running surface R3a in the Y direction.
  • Fig. 8 shows a cross section of the running unit 30 along the XZ plane.
  • the running unit 30 has the running wheel 31, the running drive motor 33, the support unit 36, and the connecting unit 35.
  • the running wheel 31 rolls on the track R with the rotation axis L31 as the base axis.
  • the running wheel 31 rotates on the pivot axis L30.
  • the running wheel 31 can rotate on the intersection rail R3.
  • the running wheel 31 includes an outer wheel portion 31a and a wheel portion 31b.
  • the traveling drive motor 33 is a drive source that generates a driving force for rotating the traveling wheel 31.
  • the traveling drive motor 33 drives the traveling wheel 31.
  • the traveling drive motor 33 is arranged so that the output shaft 33a of the traveling drive motor 33 is coaxial with the rotation axis L31 of the traveling wheel 31.
  • the traveling drive motor 33 is provided on the rotation axis L31 of the traveling wheel 31. Specifically, when viewed from the direction along the rotation axis L31, the traveling drive motor 33 is arranged so that it overlaps with the rotation axis L31.
  • the output shaft 33a of the traveling drive motor 33 is connected to the wheel portion 31b of the traveling wheel 31 via a connection portion 37.
  • the connection portion 37 includes, for example, a reducer that reduces the rotation speed of the traveling drive motor 33, and an axle that transmits the driving force of the traveling drive motor 33 to the traveling wheel 31.
  • the outer diameter of the traveling drive motor 33 is smaller than the outer diameter of the traveling wheel 31.
  • the outer shape of the traveling drive motor 33 is included in the outer shape of the traveling wheel 31.
  • a cable Ca is electrically connected to the traveling drive motor 33.
  • the traveling drive motor 33 is electrically connected to the carriage controller 8, which will be described later, via the cable Ca.
  • the traveling drive motor 33 is driven based on instructions input from the carriage controller 8, thereby driving the traveling wheel 31 to rotate.
  • the support portion 36 rotatably supports the running wheel 31 and the auxiliary wheel 32.
  • the support portion 36 supports the axle of the running wheel 31 so that the running wheel 31 can rotate in a rotational direction around the rotation axis L31.
  • the support portion 36 supports the axle of the auxiliary wheel 32 so that the auxiliary wheel 32 can rotate in a rotational direction around the rotation axis of the auxiliary wheel 32.
  • the support portion 36 extends in the vertical direction.
  • the support portion 36 rotatably supports the running wheel 31 via the connection portion 37, and also rotatably supports the auxiliary wheel 32.
  • the connecting part 35 is connected to the lower part of the support part 36.
  • the connecting part 35 extends downward from the lower part of the support part 36 while bending inward (towards the travel drive motor 33) and then extends downward in a straight line.
  • the connecting part 35 then extends so as to bend outward (towards the travel wheel 31).
  • the connecting part 35 is arranged so as to bend along the cable Ca.
  • the base part 34 is a substantially rectangular parallelepiped part that is continuous with the lower part of the connecting part 35 (see FIG. 4).
  • the base part 34 is fixed at its upper end to the rotating cylinder 48.
  • a first support wall (support wall) 113 is connected to the upper surfaces of the multiple first rails R1.
  • a second support wall (support wall) 123 is connected to the upper surfaces of the multiple second rails R2.
  • a first cutout portion K1 is formed in the first support wall 113 and the second support wall 123. The first cutout portion K1 allows the running part 30 to pass through when the running vehicle 2 is running. For example, the first cutout portion K1 and the second cutout portion K2 allow the running wheel 31 and the running drive motor 33 to pass through.
  • the first cutout portion K1 of the first support wall 113 has a shape in which the X-direction end of the first support wall 113 is cut out so as to open outward in the X-direction when viewed from the Y-direction.
  • the first cutout portion K1 of the second support wall 123 has a shape in which the Y-direction end of the second support wall 123 is cut out so as to open outward in the Y-direction when viewed from the X-direction.
  • the first cutout portion K1 includes a first portion K11 and a second portion K12.
  • the first portion K11 and the second portion K12 are continuous with each other.
  • the first portion K11 allows a part of the side of the travel drive motor 33 opposite the travel wheel 31 to pass through.
  • the second portion K12 allows other parts of the travel drive motor 33, the connection portion 37, the support portion 36, the travel wheel 31, and the auxiliary wheel 32 to pass through.
  • a second cutout portion K2 is formed on the side of the intersection support pillar 133.
  • the second cutout portion K2 allows the running wheel 31 and the auxiliary wheel 32 to pass through.
  • the second cutout portion K2 has a shape that is cut out so as to open on the first support wall 113 or the second support wall 123 side.
  • the second cutout portion K2 is formed so as to be continuous with the first cutout portion K1. Also, the second cutout portion K2 does not have to be provided.
  • the wheel turning mechanism (steering drive unit) 40 will be described in detail with reference to Fig. 7 and Fig. 9 to Fig. 11.
  • the wheel turning mechanism 40 is provided below the track R and below the running wheels 31.
  • the driving force transmission unit 42 of the wheel turning mechanism 40 is a mechanism that transmits the driving force generated in the steering motor 43 to the running unit 30.
  • the driving force transmission unit 42 has a gear box 44, a housing 45, and a rotating cylinder 48.
  • the gear box 44 is provided below the base unit 34.
  • the housing 45 is disposed below the gear box 44.
  • a fixing member 45a is provided on the side of the housing 45.
  • the housing 45 is fixed to the frame 54 in the cart unit 50 via the fixing member 45a (see Fig. 7).
  • the swivel tube 48 has, for example, a cylindrical shape.
  • the swivel tube 48 has a swivel axis L30 as its axial direction, and passes through the gear box 44 and the housing 45.
  • the swivel tube 48 is provided so as to be rotatable about the swivel axis L30 relative to the gear box 44 and the housing 45.
  • the base portion 34 is connected to the upper end of the swivel tube 48.
  • the lower end of the swivel tube 48 protrudes downward from the housing 45.
  • a slip-out prevention member 49 is provided at the lower end of the swivel tube 48.
  • the outer diameter of the slip-out prevention member 49 is larger than the outer diameter of the through hole in the housing 45 through which the swivel tube 48 passes. This prevents the swivel tube 48 from slipping out upward.
  • the steering motor 43 of the wheel turning mechanism 40 is a driving source that generates the driving force for turning.
  • the steering motor 43 is disposed below the gear box 44.
  • the steering motor 43 is fixed to the housing 45.
  • the output shaft 43b of the steering motor 43 is arranged so as to be parallel to the turning axis L30.
  • the output shaft 43b is connected to the driving force transmission unit 42.
  • the gear box 44 has a first gear 46, a second gear 47, and a bearing 43c therein.
  • the first gear 46 is, for example, a spur gear.
  • the first gear 46 is arranged with the vertical direction as its axial direction.
  • the first gear 46 is coaxially connected to the output shaft 43b of the steering motor 43.
  • the second gear 47 is, for example, a sector gear.
  • the second gear 47 is arranged with the swivel axis L30 as its axial direction.
  • the second gear 47 meshes with the first gear 46.
  • the second gear 47 is engaged with the outer peripheral surface of the swivel tube 48 in the direction of rotation about the swivel axis L30.
  • a cylinder to which the inner peripheral surface of the second gear 47 is fixed can rotate in the direction of rotation about the swivel axis L30.
  • the inner peripheral surface of this cylinder and the outer peripheral surface of the swivel tube 48 can rotate synchronously so as to be integrated in the direction of rotation via a key groove.
  • the second gear 47 is connected to the support portion 36 via the rotating cylinder 48, the base portion 34, and the connecting portion 35.
  • the bearing 43c rotatably supports the output shaft 43b of the steering motor 43.
  • the bearing 43c is disposed below the first gear 46.
  • the wheel turning mechanism 40 configured as above, when the running wheel 31 turns, first, a driving force is generated in the steering motor 43, and the driving force is transmitted to the first gear 46 via the output shaft 43b. As a result, the first gear 46 rotates, and the second gear 47 meshing with the first gear 46 rotates about the turning axis L30. In synchronization with the rotation of the second gear 47, the turning cylinder 48 rotates, for example, 90 degrees about the turning axis L30. As a result, the base portion 34, the connecting portion 35, and the support portion 36 rotate 90 degrees about the turning axis L30, and the running wheel 31 turns 90 degrees about the turning axis L30.
  • a guide roller that abuts against the side of the intersection rail R3 may be provided between the running wheel 31 and the wheel turning mechanism 40 (for example, near the connecting portion 35). The guide roller prevents the running carriage 20 (running vehicle 2) from shifting position relative to the track R.
  • the traveling vehicle 2 is equipped with a position detection unit (not shown) that detects position information.
  • the position detection unit detects the current position of the traveling vehicle 2, for example, by detecting a position marker indicating position information provided on the track R.
  • the position detection unit detects the position marker in a non-contact manner.
  • the wheel turning mechanism 40 can be arranged by effectively utilizing the space below the track R. Specifically, the wheel turning mechanism 40 can be arranged in the dead space below the track R and below the traveling wheels 31. This eliminates the need to arrange the wheel turning mechanism 40 between the top cover 51 of the bogie unit 50 and the track R, and the height dimension of the traveling vehicle 2 can be reduced. As a result, the traveling vehicle 2 can be made more compact.
  • the traveling section 30 includes a traveling drive motor 33 provided on the rotation axis L31 of the traveling wheel 31.
  • the traveling drive motor 33 can be arranged by effectively utilizing the space above the track R. This makes it possible to reduce the height dimension from the traveling drive motor 33 to the traveling wheel 31, for example, and to make the traveling vehicle 2 more compact. As a result, it becomes possible to make the overhead traveling vehicle system 1 a more compact system.
  • the traveling wheels 31 can overcome the gap G more reliably.
  • the traveling unit 30 includes a support unit 36 that supports the traveling wheels 31, and the wheel turning mechanism 40 includes a steering motor 43, which is a driving source, a first gear 46 connected to the output shaft 43b of the steering motor 43, and a second gear 47 that meshes with the first gear 46 and is connected to the support unit 36.
  • the support unit 36 the first gear 46, the second gear 47, and the steering motor 43.
  • the productivity of the wheel turning mechanism 40 is improved, and the ease of replacement and inspection of the wheel turning mechanism 40 is improved.
  • the first gear 46 and the second gear 47 are provided inside the gear box 44, not in the top cover 51 of the cart unit 50. Therefore, compared to a structure in which gears such as rack gears are provided directly on the main body 10, it is possible to suppress friction between the gears caused by vibrations during traveling, etc.
  • the connecting part 35 and the cable Ca pass through the gap G, for example, when the traveling vehicle 2 travels on the first rail R1 and crosses the second rail R2, or when the traveling vehicle 2 travels on the second rail R2 and crosses the first rail R1. Since there is no need to provide the connecting part 35 with a transmission mechanism such as a belt that transmits driving force to the traveling wheels 31, it is possible to increase the strength of the connecting part 35, etc.
  • the overhead traveling vehicle system 1 does not require a transmission mechanism such as a belt between the traveling drive motor 33 and the traveling wheels 31, the following effects are achieved.
  • Backlash can be reduced and rigidity can be improved.
  • Stop position accuracy can be improved.
  • the size of the guide roller can be increased. The structure can be simplified and productivity can be improved.
  • the running unit 30 is provided above the track R, not on the top cover 51 of the cart unit 50.
  • the wheel turning mechanism 40 is provided inside the housing 53 of the cart unit 50, not on the top cover 51 of the cart unit 50. This makes it possible to add other components to the top cover 51 of the cart unit 50. For example, it is possible to provide a cell recognition sensor S1 on the top cover 51 of the cart unit 50 (FIG. 13). For example, it is also possible to provide a position recognition sensor S2 inside the housing 53, and for the position recognition sensor S2 to recognize the position recognition mark M2 via the cutout 51a. Details will be explained in the modified example described later.
  • the overhead traveling vehicle system 1 of the above embodiment may be configured as follows. That is, in the overhead traveling vehicle system 1, the track R has a plurality of first rails R1 extending in the X direction and a second rail R2 extending in the Y direction, and the first rails R1 and the second rails R2 are arranged in a grid pattern.
  • the traveling vehicle 2 moves in the X direction by the running unit 30 running on a pair of first rails R1 adjacent to each other in the Y direction, and moves in the Y direction by the running unit 30 running on a pair of second rails R2 adjacent to each other in the X direction.
  • the traveling vehicle 2 has a cell recognition sensor S1 that acquires first information from a cell recognition mark M1 that indicates the first information, and a position recognition sensor S2 that acquires second information from a position recognition mark M2 that indicates second information that is different from the first information.
  • Each of the first rail R1 and the second rail R2 may have a first surface 61 facing the cell recognition sensor S1 and on which the cell recognition mark M1 is arranged, and a second surface 62 facing the position recognition sensor S2 and on which the position recognition mark M2 is arranged, the second surface 62 being arranged outside the first surface 61 and inclined toward the overhead traveling vehicle 2 side with respect to the first surface 61 when viewed from the center of the cell C, which is a space surrounded by the pair of first rails R1 and the pair of second rails R2 in a plan view.
  • the first surface 61 and the second surface 62 other than the first surface 61 are provided on each of the first rail R1 and the second rail R2 forming the track R, so that at least two different types of marks can be arranged at the same position in the traveling direction of the track R by arranging at least two different types of marks on each surface.
  • the second surface 62 arranged outside the first surface 61 when viewed from the center of the cell C in a plan view is arranged so as to be inclined toward the traveling vehicle 2 side with respect to the first surface 61. This eliminates the need to provide the position recognition sensor S2 so that it protrudes from the vehicle 2 in order to face the second surface 62, which helps prevent the vehicle 2 from becoming too large.
  • Such an overhead vehicle system 1 may be configured as follows.
  • FIG. 12 is a perspective view showing a traveling vehicle 2 according to a modified example.
  • the traveling vehicle 2 is equipped with one cell recognition sensor (first sensor) S1 and four position recognition sensors (second sensors) S2. Note that in the example of FIG. 11, only three of the four position recognition sensors S2 are shown.
  • the cell recognition sensor S1 and the position recognition sensor S2 are provided in the housing 53 of the cart unit 50.
  • the cell recognition sensor S1 is arranged so that its detection direction faces upward and is approximately perpendicular to the top cover 51.
  • the position recognition sensor S2 is arranged so that its detection direction faces approximately upward. More specifically, the position recognition sensor S2 is arranged so that its detection direction faces in a direction inclined outward from the center of the cell C with respect to the Z direction.
  • a cell recognition mark (first mark) M1 and a position recognition mark (second mark) M2 are arranged on the track R (see FIG. 13).
  • the cell recognition sensor S1 detects the cell recognition mark M1 arranged on the track R in a non-contact manner.
  • the position recognition sensor S2 detects the position recognition mark M2 arranged on the track R in a non-contact manner.
  • the position recognition sensor S2 detects the position recognition mark M2 through a notch 51a provided in the top cover 51.
  • the cell recognition sensor S1 faces the cell recognition mark M1 when the traveling vehicle 2 is located at a predetermined position within the cell C (when the traveling vehicle 2 is stopped or traveling). At this time, the cell recognition sensor S1 acquires information (first information) about the cell C from the cell recognition mark M1.
  • the position recognition sensor S2 is arranged to face each of the second surfaces 62 (see FIG. 8) on which the position recognition mark M2 is arranged on each of the pair of first rails R1 included in the rail unit 100 when the traveling vehicle 2 moves in the X direction.
  • the position recognition sensor S2 is also arranged to face each of the second surfaces 62 on which the position recognition mark M2 is arranged on each of the pair of second rails R2 included in the rail unit 100 when the traveling vehicle 2 moves in the Y direction.
  • the position recognition sensor S2 acquires position information (second information) on the track R from the position recognition mark M2.
  • FIG. 13 is a perspective view showing a rail unit 100 according to a modified example.
  • FIG. 14 is a schematic cross-sectional view of the first rail R1 when cut along a plane perpendicular to the X direction.
  • the example of FIG. 13 illustrates one rail unit 100 as viewed from the negative side in the Z direction.
  • Each of the first rail R1 and second rail R2 included in the rail unit 100 has a first surface 61 and a second surface 62.
  • the first surface 61 is perpendicular to the Z direction.
  • the first surface 61 is parallel to the first running surface R1a in the Z direction.
  • the shape of the first surface 61 is a rectangle extending in the X direction in a plan view.
  • the first surface 61 is formed to face the cell recognition sensor S1 of the running vehicle 2.
  • the first surface 61 is formed so that the running vehicle 2 can run in the X direction with the cell recognition sensor S1 of the running vehicle 2 facing it.
  • a cell recognition mark M1 indicating information about the cell C is arranged on the first surface 61. It can also be said that the cell recognition mark M1 indicates information about which cell is which among the multiple cells C formed by the track R.
  • the information about the cell C may be an ID that uniquely identifies the cell C, or may be information about the position of the cell C.
  • the cell recognition mark M1 is composed of one barcode Ba.
  • the barcode Ba is arranged in the center of the first rail R1 (first surface 61) in the X direction.
  • the cell recognition mark M1 faces the cell recognition sensor S1 when the traveling vehicle 2 is located at a predetermined position in the cell C.
  • the cell recognition sensor S1 acquires information about the cell C from the cell recognition mark M1.
  • the predetermined position refers to the cell center.
  • the state in which the traveling vehicle 2 is located at the cell center in the cell C refers to a state in which the bogie unit 50 is not misaligned horizontally with respect to the cell C and is not misaligned in the rotational direction with respect to the cell C.
  • the bogie unit 50 is not misaligned horizontally with respect to the cell C refers to the center of the bogie unit 50 and the center of the cell C being aligned in a plan view.
  • the bogie unit 50 is not misaligned in the rotational direction with respect to the cell C" refers to the two sides of the rectangular bogie unit 50 that extend in the X direction being parallel to the pair of first rails R1 that constitute the cell C in a plan view, and the two sides that extend in the Y direction being parallel to the pair of second rails R2 that constitute the cell C in a plan view.
  • the center of the first rail R1 or the center of the cell C does not need to be strictly the center or center, and may have a certain width.
  • the second surface 62 is disposed outside the first surface 61 when viewed from the center of the cell C.
  • the second surface 62 is inclined toward the traveling vehicle 2 (vertically downward in the example of FIG. 13) with respect to the first surface 61.
  • the shape of the second surface 62 is a rectangle extending in the X direction when viewed from a direction perpendicular to the second surface 62.
  • the second surface 62 is formed so as to face the position recognition sensor S2 of the traveling vehicle 2.
  • the second surface 62 is formed so that the traveling vehicle 2 can travel in the X direction with the position recognition sensor S2 of the traveling vehicle 2 facing it.
  • a position recognition mark M2 indicating position information on the track R (first rail R1) is arranged on the second surface 62.
  • the position information on the first rail R1 may be information regarding the position in the X direction on the first rail R1, or information regarding the distance from the center of the first rail R1 (center of the cell) in the X direction.
  • the information indicated by the position recognition mark M2 is different from the information indicated by the cell recognition mark M1.
  • the position recognition mark M2 is composed of multiple (14, for example) barcodes Bb arranged in the X direction.
  • the multiple barcodes Bb are arranged on the second surface 62 along the X direction with no gaps.
  • the position recognition mark M2 faces the position recognition sensor S2 when the traveling vehicle 2 is traveling or stopped along the first rail R1.
  • the position recognition sensor S2 acquires position information on the first rail R1 from the position recognition mark M2.
  • the second rail R2 will be described.
  • the configuration of the second rail R2 is the same as the configuration of the first rail R1. Therefore, any explanation that overlaps with the first rail R1 described above will be omitted as appropriate.
  • the first surface 61 is parallel to the second running surface R2a (see Figures 1, 2 and 5) in the Z direction.
  • the shape of the first surface 61 is a rectangle extending in the Y direction in a plan view.
  • the first surface 61 is formed so that the running vehicle 2 can run in the Y direction with the cell recognition sensor S1 facing it.
  • a barcode Ba which is the cell recognition mark M1, is arranged on the first surface 61.
  • the barcode Ba is arranged in the center of the second rail R2 (first surface 61) in the Y direction.
  • the shape of the second surface 62 is a rectangle extending in the Y direction when viewed from a direction perpendicular to the second surface 62.
  • the second surface 62 is formed so that the traveling vehicle 2 can travel in the Y direction with the position recognition sensor S2 of the traveling vehicle 2 facing it.
  • a position recognition mark M2 is arranged on the second surface 62.
  • the position information on the second rail R2 may be information about the position in the Y direction on the second rail R2, or information about the distance from the center of the second rail R2 (center of the cell) in the Y direction.
  • the position recognition mark M2 is composed of a plurality of barcodes Bb (14 as an example) arranged in the Y direction.
  • the plurality of barcodes Bb are arranged on the second surface 62 along the Y direction with no gaps.
  • the position recognition mark M2 faces the position recognition mark M2 when the traveling vehicle 2 is traveling or stopped along the second rail R2.
  • the position recognition sensor S2 acquires position information on the second rail R2 from the position recognition mark M2.
  • the bogie controller 8 acquires the detection result of the cell recognition sensor S1. Specifically, the bogie controller 8 acquires information on the cell C acquired by the cell recognition sensor S1. Furthermore, the bogie controller 8 identifies the cell C in which the traveling vehicle 2 is located based on the information on the cell C.
  • the trolley controller 8 acquires the detection result of the position recognition sensor S2. Specifically, the trolley controller 8 acquires the position information acquired by the position recognition sensor S2. Based on the position information, the trolley controller 8 also derives the amount of deviation between a predetermined position in the cell C and the stopping position of the traveling vehicle 2.
  • the amount of deviation includes the amount of deviation in the horizontal direction (X direction and Y direction) as well as the amount of deviation in the rotational direction around the Z direction.
  • the amount of deviation in the X direction can be derived, for example, by performing a predetermined calculation process using position information acquired by at least one of the two position recognition sensors S2 facing the second surface 62 of the first rail R1 and pre-stored position information of the center of cell C.
  • the amount of deviation in the X direction can also be derived by pre-storing a table in which the relationship between the position information indicated by the position recognition mark M2 and the above-mentioned amount of deviation is associated and stored, and performing a read process to read out from the table the above-mentioned amount of deviation that corresponds to the position information indicated by the position recognition mark M2 acquired by the position recognition sensor S2.
  • the amount of deviation in the Y direction can also be derived by the above-mentioned calculation process or read process, similar to the amount of deviation in the X direction.
  • the deviation amount in the rotation direction around the Z direction can be derived by performing a predetermined calculation process using four pieces of position information acquired from two position recognition sensors S2 facing the second surface 62 of the first rail R1 and two position recognition sensors S2 facing the second surface 62 of the second rail R2, for example.
  • the deviation amount in the rotation direction around the Z direction can be calculated using at least the above three pieces of position information.
  • the deviation amount in the rotation direction around the Z direction can also be derived by storing in advance a table in which the relationship between the position information and the deviation amount for each of the four rails that make up one cell C is associated and stored, and performing a read process to read out the above deviation amount corresponding to the three pieces of position information acquired by the position recognition sensors S2 from the table.
  • the cart controller 8 may control the travel unit 30 to control the amount of movement of the traveling vehicle 2 along the X direction and the Y direction. Specifically, the cart controller 8 may control the drive amount of the traveling drive motor 33 that drives the traveling wheels 31 included in the traveling unit 30. The cart controller 8 controls the traveling unit 30 so that the traveling vehicle 2 moves to the specified position based on the amount of horizontal deviation.
  • a bogie controller 8 is provided to control the traveling vehicle 2.
  • One of the two different types of marks is a position recognition mark M2 that indicates position information on the track R.
  • the position recognition sensor S2 facing the position recognition mark M2 is arranged so as to face each of the position recognition marks M2 arranged on each of the pair of first rails R1 when the traveling vehicle 2 moves in the X direction.
  • the position recognition sensor S2 is also arranged so as to face each of the position recognition marks M2 arranged on each of the pair of second rails R2 when the traveling vehicle 2 moves in the Y direction.
  • the position recognition sensor S2 is four position recognition sensors S2 that acquire position information from the position recognition mark M2.
  • the bogie controller 8 derives the amount of deviation between a predetermined position in the cell C and the stop position of the traveling vehicle 2 based on the position information acquired by the position recognition sensor S2. In this case, the bogie controller 8 can detect the position deviation when the traveling vehicle 2 is stopped.
  • the traveling vehicle 2 holds the item M below the track R.
  • the traveling vehicle 2 may hold the item M above the track R.
  • the cart unit 50 is disposed above the traveling section 30.
  • the cell recognition sensor S1 is disposed, for example, so as to face downwards approximately perpendicular to the lower surface of the cart unit 50.
  • the position recognition sensor S2 is disposed, for example, so as to face approximately downwards.
  • the position recognition sensor S2 is disposed so as to face in a direction inclined toward the outside as viewed from the center of the cell C with respect to the Z direction.
  • the first surface 61 is disposed so as to be perpendicular to the Z direction and face upwards
  • the second surface 62 is disposed so as to be inclined toward the traveling vehicle 2 side (for example, the vertical upward side in the example of FIG. 13) with respect to the first surface 61.
  • the cell recognition sensor S1 faces the cell recognition mark M1 disposed on the first surface 61
  • the position recognition sensor S2 faces the position recognition mark M2 disposed on the second surface 62.
  • the cell recognition mark M1 is described as being provided at the center of the first rail R1 in the X direction and at the center of the second rail R2 in the Y direction.
  • the position of the cell recognition mark M1 may be arranged along the extension direction, for example, similar to the position recognition mark M2, and the installation position of the cell recognition mark M1 is not particularly limited as long as it can be detected by the cell recognition sensor S1.
  • the case where the cell recognition mark M1 is arranged on the first surface 61 and the position recognition mark M2 is arranged on the second surface 62 has been described, but the arrangement of the marks may be reversed. In other words, the cell recognition mark M1 may be arranged on the second surface 62 and the position recognition mark M2 may be arranged on the first surface 61.
  • a barcode has been used as an example of the cell recognition mark M1 and the position recognition mark M2, but a two-dimensional code such as a QR code (registered trademark) may also be used.
  • a barcode reader capable of reading two-dimensional barcodes may be used instead of the barcode reader capable of reading the barcodes employed as the cell recognition sensor S1 and the position recognition sensor S2.
  • a display (mark) identifiable by the cell recognition sensor S1 and the position recognition sensor S2 such as a letter, symbol, figure, color, etc.
  • a camera or the like may be used as the cell recognition sensor S1 and the position recognition sensor S2.
  • the four pivot axes L30 in the running unit 30 and the wheel turning mechanism 40 are arranged at the vertices of a square in a plan view, but the arrangement of the pivot axes L30 does not have to be square. In a plan view, the position of the running wheels 31 and the position of the pivot axes L30 may coincide.
  • the travel drive motor 33 is arranged so that the output shaft 33a of the travel drive motor 33 is coaxial with the rotation axis L31, but this is not limited to the above. As long as the travel drive motor 33 is arranged on the rotation axis L31, the output shaft 33a may be configured to be offset from the rotation axis L31.
  • each running wheel 31 may transfer from the first running surface R1a to the second running surface R2a, or from the second running surface R2a to the first running surface R1a.
  • the traveling vehicle is an overhead traveling vehicle, but the traveling vehicle may be a tracked vehicle that travels on a track installed on the ground.
  • a grid system is used as the overhead traveling vehicle system 1, but the overhead traveling vehicle system 1 is not limited to a grid system.
  • an AGV Automated Guided Vehicle
  • various known systems that travel on a grid-shaped traveling path may be used.
  • the components in the above embodiment and modified examples are not limited to the materials and shapes described above, and various materials and shapes can be applied.
  • the components in the above embodiment or modified examples can be arbitrarily applied to the components in other embodiments or modified examples. Parts of the components in the above embodiment or modified examples can be omitted as appropriate without departing from the gist of one aspect of this disclosure.
  • the trolley V holds the item M below the track R, but the main body 10 may be disposed above the track R and hold the item M above the track R.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Platform Screen Doors And Railroad Systems (AREA)
  • Carriers, Traveling Bodies, And Overhead Traveling Cranes (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

This overhead vehicle system comprises: tracks that are at least partially arranged in a lattice-like manner; and an overhead vehicle including a travel unit that travels along the tracks, a wheel pivot mechanism that pivots the travel unit, and a body unit that is arranged below the tracks and suspended from the travel unit. The travel unit includes travel wheels that roll on the tracks around a rotational axis and is capable of pivoting around a pivot axis. The wheel pivot mechanism is provided below the tracks and below the travel wheels, and pivots the travel wheels.

Description

天井走行車システムOverhead vehicle system
 本開示の一側面は、天井走行車システムに関する。 One aspect of the present disclosure relates to an overhead vehicle system.
 格子状に配置された軌道と、軌道に沿って走行する走行部及び軌道よりも下方に配置されて走行部から懸垂される本体部を有する天井走行車と、を備えた天井走行車システムが知られている(例えば、特許文献1参照)。このような天井走行車システムにおいて、走行部は、走行車輪と、旋回軸を中心として走行車輪を旋回させる方向転換機構(ステアリング駆動部)とを有する。方向転換機構は、本体部の上面に設けられており、駆動源と、ピニオンギヤと、ラックとを含む。駆動源がピニオンギヤを回転駆動することにより、ピニオンギヤがラックに沿って旋回軸を中心とする円周方向に移動し、走行車輪が旋回軸を中心として旋回する。 An overhead traveling vehicle system is known that includes a track arranged in a lattice pattern, a traveling section that travels along the track, and an overhead traveling vehicle that has a main body section that is arranged below the track and suspended from the traveling section (see, for example, Patent Document 1). In such an overhead traveling vehicle system, the traveling section has traveling wheels and a direction change mechanism (steering drive section) that rotates the traveling wheels around a pivot. The direction change mechanism is provided on the top surface of the main body section and includes a drive source, a pinion gear, and a rack. The drive source drives and rotates the pinion gear, causing the pinion gear to move along the rack in a circumferential direction around the pivot, and the traveling wheel to rotate around the pivot.
特許7070704号公報Patent Publication No. 7070704
 上述したような天井走行車システムでは、例えば本体部の上面と軌道との間にステアリング駆動部を配置する必要があり、天井走行車の高さ方向の寸法が比較的大きくなるおそれがある。そのため、上述したような天井走行車システムでは、天井走行車のコンパクト化が望まれる。 In an overhead traveling vehicle system such as that described above, for example, it is necessary to place a steering drive unit between the top surface of the main body and the track, which may result in a relatively large height dimension of the overhead traveling vehicle. For this reason, in an overhead traveling vehicle system such as that described above, it is desirable to make the overhead traveling vehicle more compact.
 本開示の一側面は、上記実情に鑑みてなされたものであり、天井走行車のコンパクト化が可能な天井走行車システムを提供することを目的とする。 One aspect of the present disclosure has been made in consideration of the above-mentioned circumstances, and aims to provide an overhead traveling vehicle system that allows for a more compact overhead traveling vehicle.
 (1)本開示の一側面に係る天井走行車システムは、
 少なくとも一部が格子状に配置された軌道と、軌道に沿って走行する走行部、走行部を旋回させるステアリング駆動部、及び、軌道よりも下方に配置されて走行部から懸垂される本体部を有する天井走行車と、を備え、走行部は、回転軸を基軸に軌道上を転動し、旋回軸を基軸に旋回自在な走行車輪を含み、ステアリング駆動部は、軌道の下方で且つ走行車輪の下方に設けられ、走行車輪を旋回させる。
(1) An overhead traveling vehicle system according to one aspect of the present disclosure,
The vehicle is equipped with a track, at least a portion of which is arranged in a lattice pattern, a running unit that runs along the track, a steering drive unit that turns the running unit, and an overhead running vehicle having a main body that is arranged below the track and suspended from the running unit, the running unit rolls on the track around a rotation axis and includes running wheels that are rotatable around a swivel axis, and the steering drive unit is provided below the track and below the running wheels and turns the running wheels.
 この天井走行車システムによれば、軌道の下方の空間を有効活用してステアリング駆動部を配置することができる。これにより、例えば本体部の上面と軌道との間にステアリング駆動部を配置する必要がなく、天井走行車の高さ方向の寸法を小さくすることができる。その結果、天井走行車のコンパクト化が可能となる。 With this overhead traveling vehicle system, the steering drive unit can be positioned by effectively utilizing the space below the track. This means that, for example, there is no need to position the steering drive unit between the top surface of the main body and the track, and the height dimension of the overhead traveling vehicle can be reduced. As a result, the overhead traveling vehicle can be made more compact.
 (2)上記(1)に記載の天井走行車システムでは、走行部は、走行車輪の回転軸上に設けられた走行駆動モータを含んでもよい。この場合、軌道の上方の空間を有効活用して走行駆動モータを配置することができる。これにより、例えば走行駆動モータから走行車輪までの高さ方向の寸法を小さくし、天井走行車のコンパクト化が可能となる。 (2) In the overhead traveling vehicle system described in (1) above, the traveling section may include a traveling drive motor provided on the rotation axis of the traveling wheels. In this case, the traveling drive motor can be arranged by effectively utilizing the space above the track. This makes it possible to reduce the height dimension from the traveling drive motor to the traveling wheels, for example, and to make the overhead traveling vehicle more compact.
 (3)上記(2)に記載の天井走行車システムでは、軌道は、第1方向に延在する複数の第1レールと、第1方向と直交する第2方向に延在する第2レールと、を有し、第1レール及び第2レールは、格子状に配置されており、天井走行車は、第2方向に隣り合う一対の第1レールを走行部が走行することにより第1方向に移動し、第1方向に隣り合う一対の第2レールを走行部が走行することにより第2方向に移動し、天井走行車は、第1情報を示す第1マークから第1情報を取得する第1センサと、第1情報と異なる情報である第2情報を示す第2マークから第2情報を取得する第2センサと、を有し、第1レール及び第2レールのそれぞれは、第1センサに対向し、第1マークが配置される第1面と、第2センサに対向し、第2マークが配置される第2面であって、平面視において一対の第1レールと一対の第2レールとによって囲まれる空間であるセルの中心から見たときに、第1面の外側に配置されると共に第1面に対して天井走行車側に傾斜する第2面と、を有してもよい。この場合、軌道を形成する第1レール及び第2レールのそれぞれに、第1面と第1面とは別の第2面とを設けたので、種類の異なる2種類のマークをそれぞれの面に1種類ずつマークを配置することで、互いに異なる2種類のマークを軌道に配置できる。また、この構成の天井走行車システムでは、平面視においてセルの中心から見たときに第1面の外側に配置される第2面が、第1面に対して天井走行車側に傾斜するように配置される。これにより、第2センサを第2面に対向させるために、第2センサを天井走行車から張り出すように設ける必要がなく、天井走行車の大型化を抑制できる。 (3) In the overhead traveling vehicle system described in (2) above, the track has a plurality of first rails extending in a first direction and a second rail extending in a second direction perpendicular to the first direction, the first rails and the second rails are arranged in a grid pattern, the overhead traveling vehicle moves in the first direction by a running part running on a pair of first rails adjacent to each other in the second direction, and moves in the second direction by a running part running on a pair of second rails adjacent to each other in the first direction, and the overhead traveling vehicle is a first information acquisition device that acquires the first information from a first mark indicating the first information. The overhead traveling vehicle system may have a sensor and a second sensor that acquires second information from a second mark indicating second information that is different from the first information, and each of the first rail and the second rail may have a first surface facing the first sensor and on which the first mark is arranged, and a second surface facing the second sensor and on which the second mark is arranged, the second surface being arranged outside the first surface and inclined toward the overhead traveling vehicle side with respect to the first surface when viewed from the center of a cell that is a space surrounded by a pair of first rails and a pair of second rails in a plan view. In this case, since the first surface and the second surface other than the first surface are provided on each of the first rail and the second rail that form the track, two different types of marks can be arranged on the track by arranging two different types of marks on each surface. In addition, in the overhead traveling vehicle system of this configuration, the second surface arranged outside the first surface when viewed from the center of the cell in a plan view is arranged so as to be inclined toward the overhead traveling vehicle side with respect to the first surface. This eliminates the need to have the second sensor protrude from the overhead vehicle in order to face the second surface, which helps prevent the overhead vehicle from becoming too large.
 (4)上記(1)~(3)のいずれかに記載の天井走行車システムでは、走行部は、走行車輪を軸支する支持部材を更に含み、ステアリング駆動部は、駆動源であるステアリングモータと、ステアリングモータの出力軸に接続された第1ギヤと、第1ギヤと噛み合い、支持部材に接続された第2ギヤと、を含んでもよい。この場合、支持部材、第1ギヤ、第2ギヤ及びステアリングモータをユニット化することが可能となる。その結果、走行部のコンパクト化が可能となる。 (4) In the overhead traveling vehicle system described in any one of (1) to (3) above, the traveling section may further include a support member that axially supports the traveling wheels, and the steering drive section may include a steering motor that is a drive source, a first gear connected to the output shaft of the steering motor, and a second gear that meshes with the first gear and is connected to the support member. In this case, it is possible to unitize the support member, the first gear, the second gear, and the steering motor. As a result, it is possible to make the traveling section more compact.
 (5)上記(4)に記載の天井走行車システムでは、ステアリングモータは、当該ステアリングモータの出力軸が旋回軸と平行となるように設けられてもよい。この場合、ステアリング駆動部をより簡易な構成とすることができる。その結果、ステアリング駆動部をよりコンパクトにすることができる。 (5) In the overhead traveling vehicle system described in (4) above, the steering motor may be provided so that the output shaft of the steering motor is parallel to the rotation axis. In this case, the steering drive unit can be configured more simply. As a result, the steering drive unit can be made more compact.
 本開示の一側面によれば、天井走行車のコンパクト化が可能な天井走行車システムを提供することができる。 According to one aspect of the present disclosure, it is possible to provide an overhead traveling vehicle system that allows for the compactification of overhead traveling vehicles.
図1は、実施形態に係る天井走行車システムの一例を示す斜視図である。FIG. 1 is a perspective view illustrating an example of an overhead traveling vehicle system according to an embodiment. 図2は、図1中のレール組立体を構成する4つのレールユニットとそれらを連結する連結部材とを示す分解斜視図である。FIG. 2 is an exploded perspective view showing four rail units constituting the rail assembly in FIG. 1 and a connecting member connecting the rail units. 図3は、図1中の天井走行車を示す側面図である。FIG. 3 is a side view showing the overhead traveling vehicle in FIG. 図4は、図1中の天井走行車を示す斜視図である。FIG. 4 is a perspective view showing the overhead traveling vehicle in FIG. 図5は、レール組立体のうちの軌道部分のみを示す斜視図である。FIG. 5 is a perspective view showing only the track portion of the rail assembly. 図6は、複数のレールユニット同士の連結部を示す断面図である。FIG. 6 is a cross-sectional view showing a connection portion between a plurality of rail units. 図7は、走行部、車輪旋回機構及び軌道を示す側面図である。FIG. 7 is a side view showing the running unit, the wheel turning mechanism, and the track. 図8は、走行部を示す断面図である。FIG. 8 is a cross-sectional view showing the running portion. 図9は、走行部及び車輪旋回機構を示す斜視図である。FIG. 9 is a perspective view showing the running unit and the wheel turning mechanism. 図10は、図9中のギヤボックスの内部が露出した状態を示す斜視図である。FIG. 10 is a perspective view showing the inside of the gear box in FIG. 9 exposed. 図11は、図9中の走行部及び車輪旋回機構を示す断面斜視図である。11 is a cross-sectional perspective view showing the running unit and the wheel turning mechanism in FIG. 図12は、変形例に係る天井走行車を示す斜視図である。FIG. 12 is a perspective view showing an overhead traveling vehicle according to a modified example. 図13は、変形例に係るレールユニットを示す斜視図である。FIG. 13 is a perspective view showing a rail unit according to a modified example. 図14は、X方向に直交する面で切断した場合の第1レールの模式的な断面図である。FIG. 14 is a schematic cross-sectional view of the first rail taken along a plane perpendicular to the X direction.
 以下、本開示の一側面の実施形態について、図面を参照しながら説明する。なお、図面の説明において同一要素には同一符号を付し、重複する説明を省略する。図面においては、説明の便宜上、実施形態に係る各構成が縮尺を適宜に変更して表現される。いくつかの図面にはXYZ直交座標系が併記される。以下の説明では、説明の容易のためにこの座標系が参照される。以下、水平面に沿った一方向をX方向(第1方向)とし、X方向に直交し且つ水平面に沿った方向をY方向(第2方向)とし、鉛直方向をZ方向として説明する。 Below, an embodiment of one aspect of the present disclosure will be described with reference to the drawings. In the description of the drawings, the same elements are given the same reference numerals, and duplicated description will be omitted. In the drawings, for convenience of description, each configuration according to the embodiment is depicted with an appropriately changed scale. An XYZ Cartesian coordinate system is also shown in some drawings. In the following description, this coordinate system will be referred to for ease of description. In the following description, one direction along a horizontal plane will be referred to as the X direction (first direction), a direction perpendicular to the X direction and along the horizontal plane will be referred to as the Y direction (second direction), and the vertical direction will be referred to as the Z direction.
 図1に示されるように、実施形態に係る天井走行車システム1は、例えば半導体製造工場のクリーンルームにおいて、物品Mを天井走行車2により搬送するためのグリッドシステム(搬送システム)である。天井走行車システム1は、例えば複数の天井走行車2(以下、「走行車2」と総称する)と、複数の走行車2を制御するシステムコントローラ5と、複数の走行車2が走行する軌道(レール)Rと、を備える。走行車2は、天井走行車システム1の軌道Rに沿って移動する。走行車2は、軌道Rに沿って走行し、半導体ウエハを収容するFOUP(Front Opening Unified Pod)、或いはレチクルを収容するレチクルPod等の物品Mを搬送する。走行車2は、台車、搬送車、搬送台車、又は走行台車等と称されてもよい。複数の走行車2により、物品Mの高密度な搬送が可能となり、物品Mの搬送効率が向上する。なお、天井走行車システム1が1つの走行車2のみを備えてもよい。 As shown in FIG. 1, the overhead traveling vehicle system 1 according to the embodiment is a grid system (transport system) for transporting an item M by an overhead traveling vehicle 2, for example, in a clean room of a semiconductor manufacturing factory. The overhead traveling vehicle system 1 includes, for example, a plurality of overhead traveling vehicles 2 (hereinafter collectively referred to as "traveling vehicles 2"), a system controller 5 for controlling the plurality of traveling vehicles 2, and a track (rail) R on which the plurality of traveling vehicles 2 travel. The traveling vehicles 2 move along the track R of the overhead traveling vehicle system 1. The traveling vehicles 2 travel along the track R and transport items M, such as FOUPs (Front Opening Unified Pods) that house semiconductor wafers or reticle pods that house reticles. The traveling vehicles 2 may be referred to as carts, transport vehicles, transport carts, traveling carts, or the like. The plurality of traveling vehicles 2 enables high-density transport of the items M, improving the transport efficiency of the items M. Note that the overhead traveling vehicle system 1 may include only one traveling vehicle 2.
 軌道Rは、クリーンルーム等の建屋の天井又は天井付近に設けられている。軌道Rは、例えば、処理装置、ストッカ(自動倉庫)等に隣接して設けられる。処理装置は、例えば、露光装置、コータディベロッパ、成膜装置、エッチング装置等であり、走行車2が搬送する物品M内の半導体ウエハに各種処理を施す。ストッカは、走行車2が搬送する物品Mを保管する。 The track R is provided on or near the ceiling of a building such as a clean room. The track R is provided adjacent to, for example, a processing device, a stocker (automated warehouse), etc. The processing device is, for example, an exposure device, a coater developer, a film forming device, an etching device, etc., and performs various processes on the semiconductor wafers in the goods M transported by the traveling vehicle 2. The stocker stores the goods M transported by the traveling vehicle 2.
 軌道Rは、平面視で格子状に配置されている(図5も参照)。軌道Rは、水平方向に沿って延びる。本実施形態では、軌道Rは、第1レールR1、第2レールR2、及び交差部レールR3を備えた複数のレールユニット100がX方向及びY方向に並んで設けられることによって構築される。天井走行車システム1は、X方向及びY方向に並んで設けられた複数のレールユニット100と、複数のレールユニット100を互いに連結する複数の連結部材140とを備える。複数のレールユニット100と複数の連結部材140とによって、レール組立体200が形成される。レール組立体200は、連結部材140によってレールユニット100同士が連結される部分において、複数の吊り下げ部材Hによって不図示の天井等に吊り下げられる。 The track R is arranged in a lattice shape in a plan view (see also FIG. 5). The track R extends horizontally. In this embodiment, the track R is constructed by arranging a plurality of rail units 100, each having a first rail R1, a second rail R2, and an intersection rail R3, in the X and Y directions. The overhead traveling vehicle system 1 includes a plurality of rail units 100 arranged in the X and Y directions, and a plurality of connecting members 140 that connect the plurality of rail units 100 to each other. The plurality of rail units 100 and the plurality of connecting members 140 form a rail assembly 200. The rail assembly 200 is suspended from a ceiling (not shown) by a plurality of hanging members H at the portion where the rail units 100 are connected to each other by the connecting members 140.
 図2は、図1中のレール組立体200を構成する4つのレールユニット100と、それらを連結する連結部材140とを示す分解斜視図である。各レールユニット100は、直方体状(枠状)の部材であり、同一の構成を有する。各レールユニット100は、X方向に沿って配置された2つの第1レール部材110と、Y方向に沿って配置された2つの第2レール部材120と、第1レール部材110及び第2レール部材120の延長線上(すなわち格子の交点の位置)に隙間が形成されるように配置された4つの交差部レール部材130とを含む。レールユニット100を平面視した場合に、平行な2つの第1レール部材110と平行な2つの第2レール部材120とが正方形状に配置されており、その正方形の頂点の位置に4つの交差部レール部材130が配置される。 2 is an exploded perspective view showing the four rail units 100 constituting the rail assembly 200 in FIG. 1 and the connecting members 140 connecting them. Each rail unit 100 is a rectangular parallelepiped (frame-shaped) member and has the same configuration. Each rail unit 100 includes two first rail members 110 arranged along the X direction, two second rail members 120 arranged along the Y direction, and four intersection rail members 130 arranged so that gaps are formed on the extension lines of the first rail members 110 and the second rail members 120 (i.e., the positions of the intersection points of the lattice). When the rail unit 100 is viewed in a plane, the two parallel first rail members 110 and the two parallel second rail members 120 are arranged in a square shape, and the four intersection rail members 130 are arranged at the vertices of the square.
 各レールユニット100は、例えば金属製であり、第1レール部材110、第2レール部材120、及び交差部レール部材130の各部が成形された後に一体化されたユニットである。各第1レール部材110は、レールユニット100の上端位置に配置されてX方向に延びる第1ビーム部111と、レールユニット100の下端位置に配置されてX方向に延びる第1レールR1と、第1ビーム部111及び第1レールR1の間に配置されると共に第1ビーム部111及び第1レールR1に接合された第1支持壁113とを含む。各第2レール部材120は、レールユニット100の上端位置に配置されてY方向に延びる第2ビーム部121と、レールユニット100の下端位置に配置されてY方向に延びる第2レールR2と、第2ビーム部121及び第2レールR2の間に配置されると共に第2ビーム部121及び第2レールR2に接合された第2支持壁123とを含む。複数の第1ビーム部111と複数の第2ビーム部121とによって、レール組立体200の上端位置においてXY平面に沿って延びる格子状の構造体が形成されている。第1支持壁113は、XZ平面に沿って延びる。第2支持壁123は、YZ平面に沿って延びる。 Each rail unit 100 is made of, for example, metal, and is an integrated unit formed after each part of the first rail member 110, the second rail member 120, and the cross rail member 130 is molded. Each first rail member 110 includes a first beam portion 111 arranged at the upper end position of the rail unit 100 and extending in the X direction, a first rail R1 arranged at the lower end position of the rail unit 100 and extending in the X direction, and a first support wall 113 arranged between the first beam portion 111 and the first rail R1 and joined to the first beam portion 111 and the first rail R1. Each second rail member 120 includes a second beam portion 121 arranged at the upper end position of the rail unit 100 and extending in the Y direction, a second rail R2 arranged at the lower end position of the rail unit 100 and extending in the Y direction, and a second support wall 123 arranged between the second beam portion 121 and the second rail R2 and joined to the second beam portion 121 and the second rail R2. The multiple first beam portions 111 and the multiple second beam portions 121 form a lattice-like structure extending along the XY plane at the upper end position of the rail assembly 200. The first support wall 113 extends along the XZ plane. The second support wall 123 extends along the YZ plane.
 交差部レール部材130は、第1ビーム部111及び第2ビーム部121が直角に接合された位置においてZ方向(鉛直方向)に沿って延びる交差部支持柱133と、交差部支持柱133の下端に設けられた交差部レールR3とを含む。 The intersection rail member 130 includes an intersection support pillar 133 that extends along the Z direction (vertical direction) at the position where the first beam portion 111 and the second beam portion 121 are joined at a right angle, and an intersection rail R3 that is provided at the lower end of the intersection support pillar 133.
 図1及び図5に示されるように、複数の第1レールR1は、それぞれX方向に沿って延在する。複数の第2レールR2は、それぞれY方向に沿って延在する。軌道Rは、複数の第1レールR1と複数の第2レールR2とにより、平面視において格子状に形成されている。軌道Rは、複数の第1レールR1と複数の第2レールR2とにより複数のマス目を形成する。交差部レールR3は、第1レールR1と第2レールR2との交差点に対応する部分に配置される。交差部レールR3は、第1レールR1に対してX方向に間隔をあけて隣り合っている。交差部レールR3は、第2レールR2に対してY方向に間隔をあけて隣り合っている。交差部レールR3は、走行車2が第1レールR1に沿って走行する際と、走行車2が第2レールR2に沿って走行する際と、走行車2が第1レールR1から第2レールR2へと又は第2レールR2から第1レールR1へと走行する際と、の何れの際にも用いられる。 1 and 5, the first rails R1 each extend along the X direction. The second rails R2 each extend along the Y direction. The track R is formed in a lattice shape in a plan view by the first rails R1 and the second rails R2. The track R forms a plurality of squares by the first rails R1 and the second rails R2. The intersection rail R3 is disposed at a portion corresponding to the intersection of the first rail R1 and the second rail R2. The intersection rail R3 is adjacent to the first rail R1 with a gap in the X direction. The intersection rail R3 is adjacent to the second rail R2 with a gap in the Y direction. The intersection rail R3 is used when the traveling vehicle 2 travels along the first rail R1, when the traveling vehicle 2 travels along the second rail R2, and when the traveling vehicle 2 travels from the first rail R1 to the second rail R2 or from the second rail R2 to the first rail R1.
 各レールユニット100は、その内側において1つのマス目に対応する正方形状の(又は長方形状の)軌道Rを形成する。複数のレールユニット100がX方向及びY方向に並べられることにより、複数の第1レールR1がX方向に連なって延在し、複数の第2レールR2がY方向に連なって延在する。X方向線上において、1つの第1レールR1と別の1つの第1レールR1との間に、間隔をあけて2つの交差部レールR3が配置される。Y方向線上において、1つの第2レールR2と別の1つの第2レールR2との間に、間隔をあけて2つの交差部レールR3が配置される。軌道Rについて別の観点で説明する。X方向に並ぶ2つのマス目及びY方向に並ぶ2つのマス目からなる4つのマス目に着目した場合、Y方向に隣り合う2つの第1レールR1と、Y方向に隣り合う別の2つの第1レールR1との間に、X方向及びY方向に隣り合う4つの交差部レールR3が(第1レールR1に対して)間隔をあけて配置されている。またX方向に隣り合う2つの第2レールR2と、X方向に隣り合う別の2つの第2レールR2との間に、上記と同じ4つの交差部レールR3が(第2レールR2に対して)間隔をあけて配置されている。 Each rail unit 100 forms a square (or rectangular) track R corresponding to one square on the inside. By arranging a plurality of rail units 100 in the X direction and the Y direction, a plurality of first rails R1 extend in a row in the X direction, and a plurality of second rails R2 extend in a row in the Y direction. On the X direction line, two intersecting rails R3 are arranged at intervals between one first rail R1 and another first rail R1. On the Y direction line, two intersecting rails R3 are arranged at intervals between one second rail R2 and another second rail R2. The track R will be explained from another perspective. When focusing on four squares consisting of two squares arranged in the X direction and two squares arranged in the Y direction, four intersecting rails R3 adjacent in the X direction and the Y direction are arranged at intervals (with respect to the first rail R1) between two first rails R1 adjacent in the Y direction and two other first rails R1 adjacent in the Y direction. In addition, between two second rails R2 adjacent in the X direction and another two second rails R2 adjacent in the X direction, the same four intersection rails R3 as above are arranged at intervals (relative to the second rails R2).
 レール組立体200では、複数の第1レールR1、複数の第2レールR2、及び複数の交差部レールR3が相互に所定の間隔をあけて配置され、これによって軌道Rが構築されている。各第1レールR1と各交差部レールR3との間には、上記間隔に相当する隙間Gが形成されている。各第2レールR2と各交差部レールR3との間には、上記間隔に相当する隙間Gが形成されている。軌道Rにおける隙間Gは、一定の大きさを有する。各第1レールR1は、上面において平坦かつ水平な第1走行面R1aを含み、走行車2の走行車輪31が第1走行面R1a上をX方向(第1走行方向D1)走行する。各第2レールR2は、上面において平坦かつ水平な第2走行面R2aを含み、走行車2の走行車輪31が第2走行面R2a上をY方向(第2走行方向D2)に走行する。交差部レールR3は、上面において平坦かつ水平な交差部走行面R3aを含む。軌道Rの全体にわたって、第1走行面R1a、第2走行面R2a、及び交差部走行面R3aの高さは等しい。第1走行面R1a、第2走行面R2a、及び交差部走行面R3aは、同一又はほぼ同一の水平面上に配置される。 In the rail assembly 200, a plurality of first rails R1, a plurality of second rails R2, and a plurality of intersection rails R3 are arranged at a predetermined interval from each other, thereby constructing a track R. Between each of the first rails R1 and each of the intersection rails R3, a gap G corresponding to the above-mentioned interval is formed. Between each of the second rails R2 and each of the intersection rails R3, a gap G corresponding to the above-mentioned interval is formed. The gap G in the track R has a constant size. Each of the first rails R1 includes a first running surface R1a that is flat and horizontal on the upper surface, and the running wheels 31 of the running vehicle 2 run on the first running surface R1a in the X direction (first running direction D1). Each of the second rails R2 includes a second running surface R2a that is flat and horizontal on the upper surface, and the running wheels 31 of the running vehicle 2 run on the second running surface R2a in the Y direction (second running direction D2). The intersection rail R3 includes a crossing running surface R3a that is flat and horizontal on the upper surface. The heights of the first running surface R1a, the second running surface R2a, and the intersection running surface R3a are equal throughout the entire track R. The first running surface R1a, the second running surface R2a, and the intersection running surface R3a are arranged on the same or nearly the same horizontal plane.
 例えば、上記した4つの交差部レールR3の間には、隙間Gのような大きさの隙間は形成されていない。走行車2が複数のレールユニット100を直線的に通過する際に、走行車2の走行車輪31が交差部走行面R3a上を走行する。その際、上記した4つの交差部レールR3の何れか2つの上を走行車輪31が通過する。或いは、走行車2がレールユニット100間において走行方向を変更する際(走行方向を90度変更する、すなわち転舵する際)に、走行車2の走行車輪31が交差部走行面R3a上を(向きを変えながら)通過する。 For example, no gaps as large as the gap G are formed between the four intersecting rails R3 described above. When the traveling vehicle 2 passes over the rail units 100 in a straight line, the traveling wheels 31 of the traveling vehicle 2 run on the intersecting running surface R3a. At that time, the traveling wheels 31 pass over any two of the four intersecting rails R3 described above. Alternatively, when the traveling vehicle 2 changes its traveling direction between the rail units 100 (changing its traveling direction by 90 degrees, i.e., when steering), the traveling wheels 31 of the traveling vehicle 2 pass over the intersecting running surface R3a (while changing direction).
 以上のとおり、レール組立体200では、第1レール部材110、第2レール部材120、及び交差部レール部材130によって格子状の軌道Rが構成されている。天井走行車システム1における格子状に構成された軌道Rのレイアウトは、複数のレールユニット100を任意の配列(レールユニット100の追加又は削除を含む)とすることにより、適宜に調整又は変更され得る。 As described above, in the rail assembly 200, a lattice-shaped track R is formed by the first rail member 110, the second rail member 120, and the intersection rail member 130. The layout of the lattice-shaped track R in the overhead traveling vehicle system 1 can be adjusted or changed as appropriate by arranging the multiple rail units 100 in any desired arrangement (including adding or deleting rail units 100).
 図2及び図6を参照して、連結部材140によるレールユニット100の連結構造について説明する。図2及び図6に示されるように、各連結部材140は、上連結部材141と下連結部材142とを含む。水平に延在する板状又は枠状の上連結部材141には、複数の(典型的には4つの)レールユニット100の四隅のいずれか1つの上面が取り付けられる。上連結部材141は、各レールユニット100における第1ビーム部111と第2ビーム部121の交点付近に当接する。水平に延在する板状又は枠状の下連結部材142は、複数の(典型的には4つの)レールユニット100の四隅のいずれか1つの下面を支持する。下連結部材142は、各レールユニット100における交差部レールR3に当接する。 The connection structure of the rail units 100 using the connecting member 140 will be described with reference to Figures 2 and 6. As shown in Figures 2 and 6, each connecting member 140 includes an upper connecting member 141 and a lower connecting member 142. The upper connecting member 141, which is a plate-like or frame-like member extending horizontally, is attached to the upper surface of one of the four corners of the multiple (typically four) rail units 100. The upper connecting member 141 abuts near the intersection of the first beam portion 111 and the second beam portion 121 in each rail unit 100. The lower connecting member 142, which is a plate-like or frame-like member extending horizontally, supports the lower surface of one of the four corners of the multiple (typically four) rail units 100. The lower connecting member 142 abuts against the intersection rail R3 in each rail unit 100.
 鉛直方向に延びる棒状の吊り下げ部材Hが、上連結部材141及び下連結部材142を貫通している。不図示の締結部材等によって上連結部材141及び/又は下連結部材142がレールユニット100に固定されており、それによってレールユニット100同士が連結されている。なお、レールユニット100の間にはZ方向に延びる空間100eが形成されており、X方向及びY方向に隣り合う4つの交差部レールR3の間(平面視における中央部分)にはZ方向に延びる空間R3eが形成されている。空間100e及び空間R3eに吊り下げ部材Hが挿通され、吊り下げ部材Hに対して上連結部材141及び/又は下連結部材142が固定されている。 A rod-shaped hanging member H extending vertically passes through the upper connecting member 141 and the lower connecting member 142. The upper connecting member 141 and/or the lower connecting member 142 are fixed to the rail units 100 by fastening members (not shown) or the like, thereby connecting the rail units 100 to each other. A space 100e extending in the Z direction is formed between the rail units 100, and a space R3e extending in the Z direction is formed between the four intersection rails R3 adjacent in the X and Y directions (the central parts in a plan view). The hanging member H is inserted into the space 100e and the space R3e, and the upper connecting member 141 and/or the lower connecting member 142 are fixed to the hanging member H.
 天井走行車システム1は、通信システム(図示せず)を備える。通信システムは、走行車2及びシステムコントローラ5の通信に用いられる。走行車2及びシステムコントローラ5は、それぞれ通信システムを介して通信可能に接続される。 The overhead traveling vehicle system 1 includes a communication system (not shown). The communication system is used for communication between the traveling vehicles 2 and the system controller 5. The traveling vehicles 2 and the system controller 5 are each connected to each other so that they can communicate with each other via the communication system.
 続いて、図1、図3及び図4を参照して、走行車2の構成について説明する。図1及び図3に示されるように、走行車2は、軌道Rに沿って走行可能に設けられている。走行車2は、軌道R上を走行する走行台車20と、走行台車20の下部に取り付けられ、走行台車20に対して旋回自在な本体部10とを有する。走行台車20は、軌道Rの下方に配置された例えば矩形状の台車ユニット50と、平面視における台車ユニット50の四隅の位置に設けられ、台車ユニット50から上方に突出して設けられた走行部30と、走行部30における4つの走行車輪31のそれぞれを台車ユニット50に対して旋回させる4つの車輪旋回機構40とを含む。走行部30及び車輪旋回機構40は、1つのユニットとして一体化されている。台車ユニット50の内部には、台車コントローラ(制御部)8が設けられている。 Next, the configuration of the traveling vehicle 2 will be described with reference to Figs. 1, 3, and 4. As shown in Figs. 1 and 3, the traveling vehicle 2 is provided so as to be able to travel along the track R. The traveling vehicle 2 has a traveling carriage 20 that travels on the track R, and a main body 10 that is attached to the lower part of the traveling carriage 20 and can freely turn with respect to the traveling carriage 20. The traveling carriage 20 includes a carriage unit 50, for example, rectangular, that is arranged below the track R, a running section 30 that is provided at the four corners of the carriage unit 50 in a plan view and protrudes upward from the carriage unit 50, and four wheel turning mechanisms 40 that turn each of the four running wheels 31 of the running section 30 with respect to the carriage unit 50. The running section 30 and the wheel turning mechanism 40 are integrated as one unit. A carriage controller (control unit) 8 is provided inside the carriage unit 50.
 本体部10は、軌道Rの下方に配置され、走行部30から懸垂される。図3及び図4に示されるように、本体部10は、例えば円筒状に形成された本体フレーム12を有する。本体フレーム12は、円盤状の天板部12aと、天板部12aの周縁部から垂下する円筒フレーム12bとを含み、下面が開放された形状を有する。本体部10は、平面視で軌道Rにおける1つのマス目(図1参照)に収まる寸法に形成される。走行車2は、隣り合う第1レールR1又は第2レールR2を走行する他の走行車2とすれ違うことが可能である。本体部10は、本体フレーム12の内部に配置された移載装置18を備える。移載装置18は、例えば平面視で矩形状である。円筒フレーム12bは、周方向の一部において開放されている。開放部(切欠き)が形成される範囲は、移載装置18の通過を許容できる程度に十分大きい。移載装置18は、水平に移動する際、円筒フレーム12bの開放部を通過する。 The main body 10 is disposed below the track R and suspended from the running part 30. As shown in Figures 3 and 4, the main body 10 has a main body frame 12 formed, for example, in a cylindrical shape. The main body frame 12 includes a disk-shaped top plate part 12a and a cylindrical frame 12b that hangs down from the periphery of the top plate part 12a, and has a shape with an open bottom. The main body 10 is formed to a size that fits into one square (see Figure 1) on the track R in a plan view. The running vehicle 2 can pass other running vehicles 2 running on the adjacent first rail R1 or second rail R2. The main body 10 is equipped with a transfer device 18 disposed inside the main body frame 12. The transfer device 18 is, for example, rectangular in a plan view. The cylindrical frame 12b is open in a part of the circumferential direction. The range in which the open part (notch) is formed is large enough to allow the transfer device 18 to pass through. When moving horizontally, the transfer device 18 passes through an opening in the cylindrical frame 12b.
 本体部10は、台車ユニット50の下部に取り付けられ、台車ユニット50に対してZ方向の回転軸線L10周りに旋回自在である。台車ユニット50の四隅の位置に設けられた走行車輪31が、軌道R上(第1走行面R1a上、第2走行面R2a、又は交差部走行面R3a上)に載っている。台車ユニット50は、4つの走行車輪31及び4つの車輪旋回機構40を介して、軌道Rに吊り下げられている。4つの走行車輪31により、台車ユニット50及び本体部10を安定して吊り下げることができ、且つ、本体部10を安定して走行させることができる。すなわち、走行車2は、軌道Rに沿って走行する走行車輪31に吊り下げ支持されて、軌道Rの下方で移動する。 The main body 10 is attached to the bottom of the bogie unit 50 and can rotate freely around a rotation axis L10 in the Z direction relative to the bogie unit 50. The running wheels 31 provided at the four corners of the bogie unit 50 are placed on the track R (on the first running surface R1a, the second running surface R2a, or the intersection running surface R3a). The bogie unit 50 is suspended from the track R via the four running wheels 31 and the four wheel turning mechanisms 40. The four running wheels 31 allow the bogie unit 50 and the main body 10 to be stably suspended, and the main body 10 to run stably. In other words, the running vehicle 2 is suspended and supported by the running wheels 31 that run along the track R, and moves below the track R.
 移載装置18は、本体部10に対して水平方向に移動してロードポート(載置台)との間で物品Mを移載する。移載装置18は、本体フレーム12の天板部12aの下方に設けられている。移載装置18を含む本体部10は、天板部12aに設けられた不図示の電動モータ等の回転駆動部によって回転軸線L10周りに回転可能である。移載装置18は、軌道Rの下側で物品Mを保持する物品保持部13と、物品保持部13を鉛直方向に昇降させる昇降駆動部14と、昇降駆動部14を水平方向にスライド移動させるスライド機構11と、を有する。スライド機構11は天板部12aの下面に保持される。スライド機構11と昇降駆動部14の間には、スライド機構11に対して昇降駆動部14を回転軸線L14周りに回転駆動する回転駆動部16が設けられている。回転駆動部16はスライド機構11の下方に設けられ、昇降駆動部14は回転駆動部16の下方に設けられる。物品保持部13は、複数本の吊り下げ部材13bを介して昇降駆動部14の下方に設けられる。ロードポートは、走行車2の移載先又は移載元であって、走行車2との間で物品Mの受け渡しをする地点である。 The transfer device 18 moves horizontally relative to the main body 10 to transfer the item M between the load port (mounting platform). The transfer device 18 is provided below the top plate 12a of the main body frame 12. The main body 10 including the transfer device 18 can rotate around the rotation axis L10 by a rotation drive unit such as an electric motor (not shown) provided on the top plate 12a. The transfer device 18 has an item holding unit 13 that holds the item M below the track R, a lifting drive unit 14 that raises and lowers the item holding unit 13 in the vertical direction, and a slide mechanism 11 that slides the lifting drive unit 14 in the horizontal direction. The slide mechanism 11 is held on the underside of the top plate 12a. A rotation drive unit 16 that rotates the lifting drive unit 14 around the rotation axis L14 relative to the slide mechanism 11 is provided between the slide mechanism 11 and the lifting drive unit 14. The rotation drive unit 16 is provided below the slide mechanism 11, and the lift drive unit 14 is provided below the rotation drive unit 16. The item holder 13 is provided below the lift drive unit 14 via multiple hanging members 13b. The load port is the transfer destination or source of the traveling vehicle 2, and is the point where the item M is handed over to and from the traveling vehicle 2.
 物品保持部13は、物品Mのフランジ部Maを把持することにより、物品Mを吊り下げて保持する。物品保持部13は、例えば、水平方向に移動可能な爪部13aを有するチャックである。物品保持部13は、爪部13aを物品Mのフランジ部Maの下方に進入させ、物品保持部13を上昇させることで、物品Mを保持する。物品保持部13は、ワイヤあるいはベルト等の吊り下げ部材13bに接続されている。 The item holding part 13 holds the item M by suspending it by gripping the flange part Ma of the item M. The item holding part 13 is, for example, a chuck having a claw part 13a that can move horizontally. The item holding part 13 holds the item M by inserting the claw part 13a below the flange part Ma of the item M and raising the item holding part 13. The item holding part 13 is connected to a hanging member 13b such as a wire or belt.
 昇降駆動部14は、例えばホイストであり、吊り下げ部材13bを繰り出すことにより物品保持部13を下降させ、吊り下げ部材13bを巻き取ることにより物品保持部13を上昇させる。昇降駆動部14は、台車コントローラ8によって制御され、所定の速度で物品保持部13を下降あるいは上昇させる。また、昇降駆動部14は、台車コントローラ8によって制御され、物品保持部13を目標の高さに保持する。 The lifting drive unit 14 is, for example, a hoist, which lowers the item holding unit 13 by paying out the hanging member 13b, and raises the item holding unit 13 by winding up the hanging member 13b. The lifting drive unit 14 is controlled by the cart controller 8, and lowers or raises the item holding unit 13 at a predetermined speed. The lifting drive unit 14 is also controlled by the cart controller 8, and holds the item holding unit 13 at a target height.
 スライド機構11は、例えばZ方向に重ねて配置された複数の可動板を有する。本体部10を旋回させることによって、スライド機構11は、水平面内における任意の方向に、最下層の可動板に取り付けられた回転駆動部16、昇降駆動部14及び物品保持部13を移動させる。台車ユニット50に対する本体部10の旋回角度により、スライド機構11における可動板の移動方向が決まる。本体部10では、可動板の移動方向と、円筒フレーム12bの開放部の位置とが一致するよう、移載装置18と本体フレーム12の方位が設定されている。 The slide mechanism 11 has multiple movable plates arranged, for example, stacked in the Z direction. By rotating the main body 10, the slide mechanism 11 moves the rotation drive unit 16, the lift drive unit 14, and the item holding unit 13 attached to the lowest movable plate in any direction in the horizontal plane. The direction of movement of the movable plate in the slide mechanism 11 is determined by the rotation angle of the main body 10 relative to the cart unit 50. In the main body 10, the orientation of the transfer device 18 and the main body frame 12 is set so that the direction of movement of the movable plate coincides with the position of the opening of the cylindrical frame 12b.
 回転駆動部16は、例えば電動モータ等を含み、鉛直方向に延びる回転軸線L14周りに所定の角度範囲で昇降駆動部14(及び物品保持部13)を回転させる。回転駆動部16によって回転可能な角度は、例えば180度以下の任意の角度であるが、上限は180度に限られない。回転駆動部16により、横出しされた物品保持部13(又は物品保持部13が保持する物品M)を所望の向きに向けることができる。スライド機構11及び回転駆動部16は、台車コントローラ8によって制御される。なお、スライド機構11の可動板が移動せず収納された状態(図3において実線で示される状態)でも、回転駆動部16による昇降駆動部14の回転は可能である。その場合、例えば、昇降駆動部14の回転軸線L14は本体部10の回転軸線L10に一致する。 The rotation drive unit 16 includes, for example, an electric motor, and rotates the lift drive unit 14 (and the item holding unit 13) within a predetermined angle range around a rotation axis L14 extending vertically. The angle at which the lift drive unit 14 can be rotated by the rotation drive unit 16 is, for example, any angle less than 180 degrees, but the upper limit is not limited to 180 degrees. The rotation drive unit 16 can orient the item holding unit 13 (or the item M held by the item holding unit 13) protruding from the side in a desired direction. The slide mechanism 11 and the rotation drive unit 16 are controlled by the cart controller 8. Note that the lift drive unit 14 can be rotated by the rotation drive unit 16 even when the movable plate of the slide mechanism 11 is stored without moving (as shown by the solid line in FIG. 3). In that case, for example, the rotation axis L14 of the lift drive unit 14 coincides with the rotation axis L10 of the main body unit 10.
 台車ユニット50は、下端において、円筒状の支持部材(円筒部材)52を有する。支持部材52の下面側に、本体フレーム12の天板部12aが回転可能に取り付けられている。例えば、天板部12aに、電動モータ等の不図示の回転駆動部が設けられている。回転駆動部の駆動力が支持部材52に伝達されることで、本体フレーム12が、台車ユニット50に対して鉛直方向に延びる回転軸線L10周りに回転する。本体フレーム12が回転可能な角度は、例えば360度以上540度以下の任意の角度であるが、上限は540度に限られないし、下限は360度に限られない。スライド機構11が天板部12aの下面側に取り付けられており、天板部12aがスライド機構11を支持している。本体フレーム12及び移載装置18は一体化されており、本体フレーム12と移載装置18は一緒に回転する。走行車2は、移載装置18を用いることにより、ロードポートに対して物品Mの受け渡しをすることができる。 The cart unit 50 has a cylindrical support member (cylindrical member) 52 at the lower end. The top plate portion 12a of the main body frame 12 is rotatably attached to the underside of the support member 52. For example, a rotation drive unit (not shown), such as an electric motor, is provided on the top plate portion 12a. When the driving force of the rotation drive unit is transmitted to the support member 52, the main body frame 12 rotates around a rotation axis L10 extending vertically to the cart unit 50. The angle at which the main body frame 12 can rotate is, for example, any angle between 360 degrees and 540 degrees, but the upper limit is not limited to 540 degrees and the lower limit is not limited to 360 degrees. The slide mechanism 11 is attached to the underside of the top plate portion 12a, and the top plate portion 12a supports the slide mechanism 11. The main body frame 12 and the transfer device 18 are integrated, and the main body frame 12 and the transfer device 18 rotate together. The traveling vehicle 2 can transfer the item M to and from the load port by using the transfer device 18.
 なお、円筒フレーム12bの外面側には、不図示のカバーが取り付けられてもよい。その場合、カバーは、移載装置18及び移載装置18に保持している物品Mを囲む。カバーは、下端を開放した筒状であって、且つ、スライド機構11の可動板が突出する部分(上記の開放部)を切り欠いた形状を有している。 A cover (not shown) may be attached to the outer surface of the cylindrical frame 12b. In this case, the cover surrounds the transfer device 18 and the item M held by the transfer device 18. The cover is cylindrical with an open bottom end, and has a cutout at the portion where the movable plate of the slide mechanism 11 protrudes (the above-mentioned open portion).
 走行部30は、4つの走行車輪31を有する。各走行車輪31には、2つの補助車輪32が設けられている。図4に示されるように、走行車輪31は、台車ユニット50の四隅の位置において、上面カバー51から上方に突出するように設けられる。各走行車輪31は、XY平面に沿った水平又はほぼ水平な車軸の軸周りに回転可能である。各走行車輪31の回転軸L31上には、走行駆動モータ33が設けられている。各走行車輪31は、走行駆動モータ33の駆動力により回転駆動する。走行駆動モータ33は、例えば、正転及び逆転を切替え可能に構成されている。走行車輪31のそれぞれは、回転軸L31(図7及び8参照)を基軸に軌道R上を転動する。走行車輪31のそれぞれは、第1レールR1、第2レールR2、及び交差部レールR3の走行面R1a、R2a、R3a上を転動し、走行車2を走行させる。すなわち、走行部30は、軌道Rに沿って走行する。なお、4つの走行車輪31の全てが走行駆動モータ33の駆動力により回転駆動することに限定されず、4つの走行車輪31のうち一部について回転駆動させる構成であってもよい。 The running unit 30 has four running wheels 31. Two auxiliary wheels 32 are provided for each running wheel 31. As shown in FIG. 4, the running wheels 31 are provided at the four corners of the cart unit 50 so as to protrude upward from the upper cover 51. Each running wheel 31 can rotate around a horizontal or nearly horizontal axle axis along the XY plane. A running drive motor 33 is provided on the rotation axis L31 of each running wheel 31. Each running wheel 31 is driven to rotate by the driving force of the running drive motor 33. The running drive motor 33 is configured to be able to switch between forward and reverse rotation, for example. Each running wheel 31 rolls on the track R with the rotation axis L31 (see FIGS. 7 and 8) as the base axis. Each running wheel 31 rolls on the running surfaces R1a, R2a, and R3a of the first rail R1, the second rail R2, and the intersection rail R3, causing the running car 2 to run. That is, the running unit 30 runs along the track R. Note that it is not limited to the configuration in which all of the four running wheels 31 are rotated by the driving force of the running drive motor 33, and it is also possible to configure the running wheels 31 to be rotated only in part.
 台車ユニット50内の不図示のフレームに、4つの車輪旋回機構40(ステアリング駆動部)が固定されており、各車輪旋回機構40に、車輪旋回機構40の旋回軸を介して台座部34が連結されている。台座部34上に、連結部35及び支持部36(支持部材)を介して、走行車輪31、2つの補助車輪32、及び1つの走行駆動モータ33が取り付けられている。例えば、筐体53の上面には正方形状の上面カバー51が設けられており、上面カバー51の四隅に形成された切り欠きに、台座部34が配置されている。連結部35、走行車輪31、補助車輪32、及び走行駆動モータ33は上面カバー51よりも上方に配置される。 Four wheel turning mechanisms 40 (steering drive units) are fixed to a frame (not shown) in the bogie unit 50, and a pedestal 34 is connected to each wheel turning mechanism 40 via the turning shaft of the wheel turning mechanism 40. A running wheel 31, two auxiliary wheels 32, and one running drive motor 33 are attached to the pedestal 34 via a connecting portion 35 and a support portion 36 (support member). For example, a square-shaped top cover 51 is provided on the top surface of the housing 53, and the pedestal 34 is arranged in the notches formed in the four corners of the top cover 51. The connecting portion 35, running wheels 31, auxiliary wheels 32, and running drive motor 33 are arranged above the top cover 51.
 図3及び図4に示されるように、連結部35は、台車ユニット50(詳細には台車ユニット50内に固定された車輪旋回機構40)と走行車輪31とを連結する。この連結構造によって、台車ユニット50及び本体部10は、軌道Rよりも下方に配置され、走行部30から吊り下げられた状態となる。連結部35は、第1レールR1と交差部レールR3との間、及び、第2レールR2と交差部レールR3との間の隙間Gを通過可能な厚さに形成される。支持部36は、連結部35の上部に設けられ、走行車輪31の回転軸及び補助車輪32の回転軸を回転可能に支持する。支持部36は、走行車輪31と補助車輪32との相対位置を保持する。 3 and 4, the connecting portion 35 connects the bogie unit 50 (specifically, the wheel turning mechanism 40 fixed in the bogie unit 50) and the running wheels 31. This connecting structure places the bogie unit 50 and the main body 10 below the track R and suspended from the running portion 30. The connecting portion 35 is formed to a thickness that allows it to pass through the gap G between the first rail R1 and the intersection rail R3, and between the second rail R2 and the intersection rail R3. The support portion 36 is provided on the upper portion of the connecting portion 35, and rotatably supports the rotation shaft of the running wheels 31 and the rotation shaft of the auxiliary wheels 32. The support portion 36 maintains the relative positions of the running wheels 31 and the auxiliary wheels 32.
 図4に示されるように、走行車輪31は、鉛直方向に延びる旋回軸L30を基軸に旋回自在に設けられている。4本の旋回軸L30は、平面視で正方形の頂点の位置に配置されており、旋回軸L30の中心に回転軸線L10が配置される。言い換えれば、4本の旋回軸L30は、本体部10の回転軸線L10に関して4回対称の位置に配置されている。平面視において走行車輪31の位置と旋回軸L30の位置とは異なっている(ずれている)。走行車輪31は、車輪旋回機構40によって旋回し、その結果、走行車2の走行方向を変更することができる。 As shown in FIG. 4, the running wheels 31 are rotatable about the vertically extending pivot axis L30. The four pivot axes L30 are arranged at the vertices of a square in a plan view, and the rotation axis L10 is located at the center of the pivot axis L30. In other words, the four pivot axes L30 are arranged at positions that are four-fold symmetrical with respect to the rotation axis L10 of the main body 10. In a plan view, the positions of the running wheels 31 and the pivot axes L30 are different (displaced). The running wheels 31 are rotated by the wheel rotation mechanism 40, and as a result, the running direction of the running vehicle 2 can be changed.
 補助車輪32は、走行車輪31の走行方向の前後にそれぞれ1つずつ配置される。補助車輪32のそれぞれは、XY平面に沿った水平又はほぼ水平な車軸の軸周りに回転可能である。補助車輪32の下端は、例えば、走行車輪31の下端より高くなるように設定されている。従って、走行車輪31が走行面R1a、R2a、R3aを走行しているときは、補助車輪32は、走行面R1a、R2a、R3aに接触しない。また、第1レールR1と交差部レールR3との間、及び、第2レールR2と交差部レールR3との間の隙間Gを走行車輪31が通過する際には、補助車輪32が第1レールR1及び第2レールR2に設けられた不図示の補助部材に接触して、走行車輪31の落ち込みを抑制している。なお、1つの走行車輪31に2つの補助車輪32を設けることに限定されず、例えば、1つの走行車輪31に1つの補助車輪32が設けられてもよいし、補助車輪32が設けられなくてもよい。 The auxiliary wheels 32 are arranged one each in front and behind the running wheel 31 in the running direction. Each of the auxiliary wheels 32 can rotate around a horizontal or nearly horizontal axle axis along the XY plane. The lower end of the auxiliary wheel 32 is set, for example, to be higher than the lower end of the running wheel 31. Therefore, when the running wheel 31 is running on the running surfaces R1a, R2a, R3a, the auxiliary wheel 32 does not contact the running surfaces R1a, R2a, R3a. In addition, when the running wheel 31 passes through the gap G between the first rail R1 and the intersection rail R3, and between the second rail R2 and the intersection rail R3, the auxiliary wheel 32 comes into contact with auxiliary members (not shown) provided on the first rail R1 and the second rail R2, suppressing the sagging of the running wheel 31. Note that there is no limitation to providing two auxiliary wheels 32 for one running wheel 31; for example, one auxiliary wheel 32 may be provided for one running wheel 31, or no auxiliary wheel 32 may be provided.
 車輪旋回機構40は、走行車輪31を旋回させる機構である。4つの車輪旋回機構40は、例えば、台車ユニット50の筐体53内の四隅の位置に1つずつ配置されている。各車輪旋回機構40は、ステアリングモータ43と、ステアリングモータ43と走行車輪31との間に設けられた駆動力伝達部42と、を有する。駆動力伝達部42は、台車ユニット50内の不図示のフレームに固定されている。駆動力伝達部42と台座部34とが、旋回軸を介して連結されている。各車輪旋回機構40は、台座部34、連結部35、支持部36、走行車輪31、補助車輪32、及び走行駆動モータ33を旋回軸L30周りで一体に旋回させる。走行車2が各レールユニット100の中心に位置する状態で、各旋回軸L30を基軸に各走行車輪31を90度旋回させる。これにより、走行車輪31が交差部レールR3上において旋回する。これにより、走行車2はターンすることができる。ターンすることとは、走行車2が第1走行方向D1に走行する第1状態から第2走行方向D2に走行する第2状態に、又は走行車2が第2走行方向D2に走行する第2状態から第1走行方向D1に走行する第1状態に切り替えることである。走行車2のターンは、例えば、走行車2の停止状態において行われる。走行車2のターンが、走行車2は停止しているが物品Mは動いている(例えば旋回している)状態で行われてもよい。車輪旋回機構40の駆動は、台車コントローラ8によって制御される。 The wheel turning mechanism 40 is a mechanism for turning the running wheels 31. The four wheel turning mechanisms 40 are arranged, for example, at the four corners of the housing 53 of the bogie unit 50. Each wheel turning mechanism 40 has a steering motor 43 and a driving force transmission unit 42 provided between the steering motor 43 and the running wheels 31. The driving force transmission unit 42 is fixed to a frame (not shown) in the bogie unit 50. The driving force transmission unit 42 and the base unit 34 are connected via a turning shaft. Each wheel turning mechanism 40 turns the base unit 34, the connecting unit 35, the support unit 36, the running wheels 31, the auxiliary wheels 32, and the running drive motor 33 together around the turning shaft L30. With the running vehicle 2 positioned at the center of each rail unit 100, each running wheel 31 is turned 90 degrees around each turning shaft L30. This causes the running wheels 31 to turn on the intersection rail R3. This allows the traveling vehicle 2 to turn. Turning means switching from a first state in which the traveling vehicle 2 travels in the first traveling direction D1 to a second state in which the traveling vehicle 2 travels in the second traveling direction D2, or from the second state in which the traveling vehicle 2 travels in the second traveling direction D2 to the first state in which the traveling vehicle 2 travels in the first traveling direction D1. The traveling vehicle 2 turns, for example, when the traveling vehicle 2 is stopped. The traveling vehicle 2 may also turn when the traveling vehicle 2 is stopped but the object M is moving (for example, turning). The driving of the wheel turning mechanism 40 is controlled by the cart controller 8.
 台車コントローラ8は、走行車2を統括的に制御する。台車コントローラ8は、CPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)等からなるコンピュータである。台車コントローラ8は、例えばROMに格納されているプログラムがRAM上にロードされてCPUで実行されるソフトウェアとして構成することができる。台車コントローラ8は、電子回路等によるハードウェアとして構成されてもよい。台車コントローラ8は、一つの装置で構成されてもよいし、複数の装置で構成されてもよい。複数の装置で構成されている場合には、これらがインターネット又はイントラネット等の通信ネットワークを介して接続されることで、論理的に一つの台車コントローラ8が構築される。台車コントローラ8は、例えば、台車ユニット50に設けられる。 The bogie controller 8 performs overall control of the traveling vehicle 2. The bogie controller 8 is a computer consisting of a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), etc. The bogie controller 8 can be configured as software in which a program stored in the ROM is loaded onto the RAM and executed by the CPU, for example. The bogie controller 8 may be configured as hardware such as electronic circuits. The bogie controller 8 may be configured as a single device, or may be configured as multiple devices. When configured as multiple devices, these are connected via a communication network such as the Internet or an intranet to logically construct a single bogie controller 8. The bogie controller 8 is provided in the bogie unit 50, for example.
 台車コントローラ8は、搬送指令に基づいて、走行車2の走行を制御する。台車コントローラ8は、走行駆動モータ33及びステアリングモータ43等を制御することにより、走行車2の走行を制御する。台車コントローラ8は、例えば、走行速度、停止に関する動作、及び、方向転換に関する動作を制御する。台車コントローラ8は、搬送指令に基づいて、走行車2の移載動作を制御する。台車コントローラ8は、本体部10(本体フレーム12及び移載装置18)の旋回(回転)を制御することにより、移載装置18の移載方向を制御する。台車コントローラ8は、移載装置18等を制御することにより、走行車2の移載動作を制御する。台車コントローラ8は、所定のロードポートに配置される物品Mを把持する荷つかみの動作、及び、保持した物品Mを所定のロードポートに下ろす荷下ろしの動作を制御する。 The cart controller 8 controls the traveling of the traveling vehicle 2 based on the transport command. The cart controller 8 controls the traveling of the traveling vehicle 2 by controlling the travel drive motor 33 and the steering motor 43, etc. The cart controller 8 controls, for example, the traveling speed, the operation related to stopping, and the operation related to changing direction. The cart controller 8 controls the transfer operation of the traveling vehicle 2 based on the transport command. The cart controller 8 controls the rotation (rotation) of the main body 10 (main body frame 12 and transfer device 18) to control the transfer direction of the transfer device 18. The cart controller 8 controls the transfer operation of the traveling vehicle 2 by controlling the transfer device 18, etc. The cart controller 8 controls the operation of the load grabber that grasps the item M placed at the specified load port, and the unloading operation that lowers the held item M to the specified load port.
 システムコントローラ5は、CPU、ROM及びRAM等からなるコンピュータである。システムコントローラ5は、例えばROMに格納されているプログラムがRAM上にロードされてCPUで実行されるソフトウェアとして構成することができる。システムコントローラ5は、電子回路等によるハードウェアとして構成されてもよい。システムコントローラ5は、一つの装置で構成されてもよいし、複数の装置で構成されてもよい。複数の装置で構成されている場合には、これらがインターネット又はイントラネット等の通信ネットワークを介して接続されることで、論理的に一つのシステムコントローラ5が構築される。システムコントローラ5の各種の制御の少なくとも一部が、台車コントローラ8により実行されてもよい。 The system controller 5 is a computer consisting of a CPU, ROM, RAM, etc. The system controller 5 can be configured as software, for example, in which a program stored in the ROM is loaded onto the RAM and executed by the CPU. The system controller 5 may be configured as hardware such as electronic circuits. The system controller 5 may be configured as one device, or multiple devices. When configured as multiple devices, these are connected via a communication network such as the Internet or an intranet to logically construct a single system controller 5. At least some of the various controls of the system controller 5 may be executed by the trolley controller 8.
 システムコントローラ5は、物品Mを搬送可能な複数の走行車2のうちの何れかを選択し、選択した走行車2に搬送指令を割付ける。搬送指令は、走行車2のロードポートまでの走行を実行させる走行指令と、ロードポートに配置された物品Mの荷つかみ指令又は保持している物品Mのロードポートへの荷下ろし指令と、を含む。 The system controller 5 selects one of the multiple traveling vehicles 2 capable of transporting the item M, and assigns a transport command to the selected traveling vehicle 2. The transport command includes a travel command to cause the traveling vehicle 2 to travel to the load port, and a command to grab the item M placed at the load port or a command to unload the held item M to the load port.
 次に、図7及び図8を参照して、走行部30に関して詳細に説明する。図7及び図8では、走行車輪31が交差部走行面R3a上をY方向に沿って走行する場合の例を示す。図8では、走行部30のXZ面に沿った断面を示す。走行部30は、上述したように、走行車輪31、走行駆動モータ33、支持部36及び連結部35を有している。走行車輪31は、回転軸L31を基軸に軌道R上を転動する。走行車輪31は、旋回軸L30を基軸に旋回する。このとき、該旋回軸L30が交差部レールR3上に位置するため、走行車輪31は、交差部レールR3上において旋回可能である。走行車輪31は、外輪部31aとホイール部31bとを含む。 Next, the running unit 30 will be described in detail with reference to Figs. 7 and 8. Figs. 7 and 8 show an example in which the running wheel 31 runs on the intersection running surface R3a in the Y direction. Fig. 8 shows a cross section of the running unit 30 along the XZ plane. As described above, the running unit 30 has the running wheel 31, the running drive motor 33, the support unit 36, and the connecting unit 35. The running wheel 31 rolls on the track R with the rotation axis L31 as the base axis. The running wheel 31 rotates on the pivot axis L30. At this time, since the pivot axis L30 is located on the intersection rail R3, the running wheel 31 can rotate on the intersection rail R3. The running wheel 31 includes an outer wheel portion 31a and a wheel portion 31b.
 走行駆動モータ33は、走行車輪31を回転させるための駆動力を発生する駆動源である。走行駆動モータ33は、走行車輪31を駆動する。走行駆動モータ33は、走行駆動モータ33の出力軸33aが走行車輪31の回転軸L31に対して同軸となるように配置されている。走行駆動モータ33は、走行車輪31の回転軸L31上に設けられている。具体的には、回転軸L31に沿う方向から見て、走行駆動モータ33が回転軸L31に重なるように配置されている。走行駆動モータ33の出力軸33aは、走行車輪31のホイール部31bに接続部37を介して接続されている。接続部37は、例えば、走行駆動モータ33の回転速度を減速する減速機、及び、走行駆動モータ33の駆動力を走行車輪31に伝達する車軸を含む。 The traveling drive motor 33 is a drive source that generates a driving force for rotating the traveling wheel 31. The traveling drive motor 33 drives the traveling wheel 31. The traveling drive motor 33 is arranged so that the output shaft 33a of the traveling drive motor 33 is coaxial with the rotation axis L31 of the traveling wheel 31. The traveling drive motor 33 is provided on the rotation axis L31 of the traveling wheel 31. Specifically, when viewed from the direction along the rotation axis L31, the traveling drive motor 33 is arranged so that it overlaps with the rotation axis L31. The output shaft 33a of the traveling drive motor 33 is connected to the wheel portion 31b of the traveling wheel 31 via a connection portion 37. The connection portion 37 includes, for example, a reducer that reduces the rotation speed of the traveling drive motor 33, and an axle that transmits the driving force of the traveling drive motor 33 to the traveling wheel 31.
 走行駆動モータ33の外径は、走行車輪31の外径よりも小さい。回転軸L31の軸方向から見て、走行駆動モータ33の外形は、走行車輪31の外形に含まれている。走行駆動モータ33には、ケーブルCaが電気的に接続されている。走行駆動モータ33には、ケーブルCaを介して後述の台車コントローラ8に電気的に接続されている。台車コントローラ8から入力された指示に基づいて走行駆動モータ33が駆動することにより、走行車輪31が回転駆動する。 The outer diameter of the traveling drive motor 33 is smaller than the outer diameter of the traveling wheel 31. When viewed in the axial direction of the rotation axis L31, the outer shape of the traveling drive motor 33 is included in the outer shape of the traveling wheel 31. A cable Ca is electrically connected to the traveling drive motor 33. The traveling drive motor 33 is electrically connected to the carriage controller 8, which will be described later, via the cable Ca. The traveling drive motor 33 is driven based on instructions input from the carriage controller 8, thereby driving the traveling wheel 31 to rotate.
 支持部36は、走行車輪31及び補助車輪32を回転自在に軸支する。換言すると、支持部36は、走行車輪31が回転軸L31回りの回転方向に回転可能となるように、走行車輪31の車軸を支持する。支持部36は、補助車輪32が当該補助車輪32の回転軸回りの回転方向に回転可能となるように、補助車輪32の車軸を支持する。図示する例では、支持部36は、上下方向に延在している。支持部36は、接続部37を介して走行車輪31を回転自在に支持すると共に、補助車輪32を回転自在に支持する。 The support portion 36 rotatably supports the running wheel 31 and the auxiliary wheel 32. In other words, the support portion 36 supports the axle of the running wheel 31 so that the running wheel 31 can rotate in a rotational direction around the rotation axis L31. The support portion 36 supports the axle of the auxiliary wheel 32 so that the auxiliary wheel 32 can rotate in a rotational direction around the rotation axis of the auxiliary wheel 32. In the example shown, the support portion 36 extends in the vertical direction. The support portion 36 rotatably supports the running wheel 31 via the connection portion 37, and also rotatably supports the auxiliary wheel 32.
 連結部35は、支持部36の下部に連結されている。図示する例では、連結部35は、支持部36の下部から、内側(走行駆動モータ33側)へ曲がりながら下方へ延び、直線状に下方へ延びる。その後、連結部35は、外側(走行車輪31側)に曲がるように延びる。連結部35には、ケーブルCaが沿うように配置されている。連結部35及びケーブルCaは、例えば走行車2が第1レールR1を走行して第2レールR2を横切る際、又は、第2レールR2を走行して第1レールR1を横切る際、隙間Gを通過して軌道Rの上方から下方へ延びる(図7参照)。台座部34は、連結部35の下部に連続する略直方体状の部分である(図4参照)。例えば台座部34は、旋回筒48に上端部に固定されている。 The connecting part 35 is connected to the lower part of the support part 36. In the illustrated example, the connecting part 35 extends downward from the lower part of the support part 36 while bending inward (towards the travel drive motor 33) and then extends downward in a straight line. The connecting part 35 then extends so as to bend outward (towards the travel wheel 31). The connecting part 35 is arranged so as to bend along the cable Ca. For example, when the travel vehicle 2 travels on the first rail R1 and crosses the second rail R2, or when the travel vehicle 2 travels on the second rail R2 and crosses the first rail R1, the connecting part 35 and the cable Ca pass through the gap G and extend downward from above the track R (see FIG. 7). The base part 34 is a substantially rectangular parallelepiped part that is continuous with the lower part of the connecting part 35 (see FIG. 4). For example, the base part 34 is fixed at its upper end to the rotating cylinder 48.
 図2及び図8に示されるように、複数の第1レールR1の上面には第1支持壁(支持壁)113が接続されている。複数の第2レールR2の上面には、第2支持壁(支持壁)123が接続されている。第1支持壁113及び第2支持壁123には、第1切り欠き部K1が形成されている。第1切り欠き部K1は、走行車2の走行の際における走行部30の通過を許容する。例えば、第1切り欠き部K1及び第2切り欠き部K2は、走行車輪31及び走行駆動モータ33の通過を許容する。 As shown in Figures 2 and 8, a first support wall (support wall) 113 is connected to the upper surfaces of the multiple first rails R1. A second support wall (support wall) 123 is connected to the upper surfaces of the multiple second rails R2. A first cutout portion K1 is formed in the first support wall 113 and the second support wall 123. The first cutout portion K1 allows the running part 30 to pass through when the running vehicle 2 is running. For example, the first cutout portion K1 and the second cutout portion K2 allow the running wheel 31 and the running drive motor 33 to pass through.
 第1支持壁113の第1切り欠き部K1は、Y方向から見て、第1支持壁113のX方向の端部が、X方向の外側に開口するように切り欠かれて成る形状を有する。第2支持壁123の第1切り欠き部K1は、X方向から見て、第2支持壁123のY方向の端部が、Y方向の外側に開口するように切り欠かれて成る形状を有する。第1切り欠き部K1は、第1部分K11及び第2部分K12を含む。第1部分K11及び第2部分K12は、互いに連続する。第1部分K11は、走行駆動モータ33の走行車輪31側とは反対側の一部分の通過を許容する。第2部分K12は、走行駆動モータ33の他部分、接続部37、支持部36、走行車輪31及び補助車輪32の通過を許容する。 The first cutout portion K1 of the first support wall 113 has a shape in which the X-direction end of the first support wall 113 is cut out so as to open outward in the X-direction when viewed from the Y-direction. The first cutout portion K1 of the second support wall 123 has a shape in which the Y-direction end of the second support wall 123 is cut out so as to open outward in the Y-direction when viewed from the X-direction. The first cutout portion K1 includes a first portion K11 and a second portion K12. The first portion K11 and the second portion K12 are continuous with each other. The first portion K11 allows a part of the side of the travel drive motor 33 opposite the travel wheel 31 to pass through. The second portion K12 allows other parts of the travel drive motor 33, the connection portion 37, the support portion 36, the travel wheel 31, and the auxiliary wheel 32 to pass through.
 なお、交差部支持柱133の側部には、第2切り欠き部K2が形成されている。第2切り欠き部K2は、走行車輪31及び補助車輪32の通過を許容する。第2切り欠き部K2は、第1支持壁113又は第2支持壁123側に開口するように切り欠かれて成る形状を有する。第2切り欠き部K2は、第1切り欠き部K1と連続するように形成されている。また、第2切り欠き部K2はなくてもよい。 In addition, a second cutout portion K2 is formed on the side of the intersection support pillar 133. The second cutout portion K2 allows the running wheel 31 and the auxiliary wheel 32 to pass through. The second cutout portion K2 has a shape that is cut out so as to open on the first support wall 113 or the second support wall 123 side. The second cutout portion K2 is formed so as to be continuous with the first cutout portion K1. Also, the second cutout portion K2 does not have to be provided.
 次に、図7、図9~図11を参照して、車輪旋回機構(ステアリング駆動部)40に関して詳細に説明する。図7に示されるように、車輪旋回機構40は、軌道Rの下方且つ走行車輪31の下方に設けられている。図9~図11に示されるように、車輪旋回機構40の駆動力伝達部42は、ステアリングモータ43において発生した駆動力を走行部30に伝達する機構である。駆動力伝達部42は、ギヤボックス44と、筐体45と、旋回筒48と、を有する。ギヤボックス44は、台座部34の下方に設けられている。筐体45は、ギヤボックス44の下方に配置されている。筐体45の側面には、固定部材45aが設けられている。筐体45は、固定部材45aを介して、台車ユニット50内のフレーム54に固定されている(図7参照)。 Next, the wheel turning mechanism (steering drive unit) 40 will be described in detail with reference to Fig. 7 and Fig. 9 to Fig. 11. As shown in Fig. 7, the wheel turning mechanism 40 is provided below the track R and below the running wheels 31. As shown in Fig. 9 to Fig. 11, the driving force transmission unit 42 of the wheel turning mechanism 40 is a mechanism that transmits the driving force generated in the steering motor 43 to the running unit 30. The driving force transmission unit 42 has a gear box 44, a housing 45, and a rotating cylinder 48. The gear box 44 is provided below the base unit 34. The housing 45 is disposed below the gear box 44. A fixing member 45a is provided on the side of the housing 45. The housing 45 is fixed to the frame 54 in the cart unit 50 via the fixing member 45a (see Fig. 7).
 旋回筒48は、例えば円筒状を呈している。旋回筒48は、旋回軸L30を軸方向とし、ギヤボックス44及び筐体45を貫通する。旋回筒48は、ギヤボックス44及び筐体45に対して、旋回軸L30を基軸に回転自在に設けられている。旋回筒48の上端部には、台座部34が接続されている。旋回筒48の下端部は、筐体45から下方に突出している。旋回筒48の当該下端部には、抜け防止部材49が設けられている。抜け防止部材49の外径は、筐体45における旋回筒48が貫通する貫通孔の外径よりも大きい。これにより、旋回筒48が上方に抜けることが防止される。 The swivel tube 48 has, for example, a cylindrical shape. The swivel tube 48 has a swivel axis L30 as its axial direction, and passes through the gear box 44 and the housing 45. The swivel tube 48 is provided so as to be rotatable about the swivel axis L30 relative to the gear box 44 and the housing 45. The base portion 34 is connected to the upper end of the swivel tube 48. The lower end of the swivel tube 48 protrudes downward from the housing 45. A slip-out prevention member 49 is provided at the lower end of the swivel tube 48. The outer diameter of the slip-out prevention member 49 is larger than the outer diameter of the through hole in the housing 45 through which the swivel tube 48 passes. This prevents the swivel tube 48 from slipping out upward.
 車輪旋回機構40のステアリングモータ43は、旋回の駆動力を発生する駆動源である。ステアリングモータ43は、ギヤボックス44の下方に配置されている。ステアリングモータ43は、筐体45に固定されている。ステアリングモータ43の出力軸43bは、旋回軸L30と平行となるように設けられている。出力軸43bは、駆動力伝達部42に接続されている。 The steering motor 43 of the wheel turning mechanism 40 is a driving source that generates the driving force for turning. The steering motor 43 is disposed below the gear box 44. The steering motor 43 is fixed to the housing 45. The output shaft 43b of the steering motor 43 is arranged so as to be parallel to the turning axis L30. The output shaft 43b is connected to the driving force transmission unit 42.
 図10及び図11に示されるように、ギヤボックス44は、第1ギヤ46、及び第2ギヤ47及びベアリング43cを内部に有する。第1ギヤ46は、例えば平歯車である。第1ギヤ46は、鉛直方向を軸方向として配置されている。第1ギヤ46は、ステアリングモータ43の出力軸43bに同軸で接続されている。第2ギヤ47は、例えば扇形歯車である。第2ギヤ47は、旋回軸L30を軸方向として配置されている。第2ギヤ47は、第1ギヤ46と噛み合っている。第2ギヤ47は、旋回筒48の外周面に対して、旋回軸L30回りの回転方向において係合されている。例えば、第2ギヤ47の内周面が固定された円筒体が、旋回軸L30回りの回転方向に回転可能である。この円筒体の内周面と旋回筒48の外周面とが、キー溝を介して当該回転方向に一体となるように同期回転可能とされている。これにより、第2ギヤ47は、旋回筒48、台座部34、及び連結部35を介して支持部36に接続されている。ベアリング43cは、ステアリングモータ43の出力軸43bを回転自在に支持する。ベアリング43cは、第1ギヤ46の下方に配置されている。 10 and 11, the gear box 44 has a first gear 46, a second gear 47, and a bearing 43c therein. The first gear 46 is, for example, a spur gear. The first gear 46 is arranged with the vertical direction as its axial direction. The first gear 46 is coaxially connected to the output shaft 43b of the steering motor 43. The second gear 47 is, for example, a sector gear. The second gear 47 is arranged with the swivel axis L30 as its axial direction. The second gear 47 meshes with the first gear 46. The second gear 47 is engaged with the outer peripheral surface of the swivel tube 48 in the direction of rotation about the swivel axis L30. For example, a cylinder to which the inner peripheral surface of the second gear 47 is fixed can rotate in the direction of rotation about the swivel axis L30. The inner peripheral surface of this cylinder and the outer peripheral surface of the swivel tube 48 can rotate synchronously so as to be integrated in the direction of rotation via a key groove. As a result, the second gear 47 is connected to the support portion 36 via the rotating cylinder 48, the base portion 34, and the connecting portion 35. The bearing 43c rotatably supports the output shaft 43b of the steering motor 43. The bearing 43c is disposed below the first gear 46.
 以上のように構成された車輪旋回機構40では、走行車輪31を旋回する場合、まず、ステアリングモータ43で駆動力が発生し、該駆動力が出力軸43bを介して第1ギヤ46に伝達される。これにより、第1ギヤ46が回転すると共に、第1ギヤ46と噛み合う第2ギヤ47が旋回軸L30を基軸に回転する。第2ギヤ47の当該回転に同期して、旋回筒48が旋回軸L30を基軸に例えば90度回転する。これにより、台座部34、連結部35、及び支持部36が、旋回軸L30を基軸に90度回転し、走行車輪31が旋回軸L30を基軸に90度旋回する。 In the wheel turning mechanism 40 configured as above, when the running wheel 31 turns, first, a driving force is generated in the steering motor 43, and the driving force is transmitted to the first gear 46 via the output shaft 43b. As a result, the first gear 46 rotates, and the second gear 47 meshing with the first gear 46 rotates about the turning axis L30. In synchronization with the rotation of the second gear 47, the turning cylinder 48 rotates, for example, 90 degrees about the turning axis L30. As a result, the base portion 34, the connecting portion 35, and the support portion 36 rotate 90 degrees about the turning axis L30, and the running wheel 31 turns 90 degrees about the turning axis L30.
 なお、走行車輪31と車輪旋回機構40との間(例えば連結部35付近)に、交差部レールR3の側面に当接するガイドローラが設けられてもよい。ガイドローラにより、軌道Rに対する走行台車20(走行車2)の位置ずれが防止される。 In addition, a guide roller that abuts against the side of the intersection rail R3 may be provided between the running wheel 31 and the wheel turning mechanism 40 (for example, near the connecting portion 35). The guide roller prevents the running carriage 20 (running vehicle 2) from shifting position relative to the track R.
 走行車2は、位置情報を検出する不図示の位置検出部を備える。位置検出部は、例えば軌道Rに設けられた位置情報を示す位置マーカを検出することにより、走行車2の現在位置を検出する。位置検出部は、非接触により位置マーカを検出する。 The traveling vehicle 2 is equipped with a position detection unit (not shown) that detects position information. The position detection unit detects the current position of the traveling vehicle 2, for example, by detecting a position marker indicating position information provided on the track R. The position detection unit detects the position marker in a non-contact manner.
 以上、本実施形態の天井走行車システム1では、軌道Rの下方の空間を有効活用して車輪旋回機構40を配置することができる。具体的には、車輪旋回機構40を軌道Rの下方で且つ走行車輪31の下方のデッドスペースに配置することができる。これにより、台車ユニット50の上面カバー51と軌道Rとの間に車輪旋回機構40を配置する必要がなく、走行車2の高さ方向の寸法を小さくすることができる。その結果、走行車2のコンパクト化が可能となる。 As described above, in the overhead traveling vehicle system 1 of this embodiment, the wheel turning mechanism 40 can be arranged by effectively utilizing the space below the track R. Specifically, the wheel turning mechanism 40 can be arranged in the dead space below the track R and below the traveling wheels 31. This eliminates the need to arrange the wheel turning mechanism 40 between the top cover 51 of the bogie unit 50 and the track R, and the height dimension of the traveling vehicle 2 can be reduced. As a result, the traveling vehicle 2 can be made more compact.
 本実施形態の天井走行車システム1では、走行部30は、走行車輪31の回転軸L31上に設けられた走行駆動モータ33を含む。この場合、軌道Rの上方の空間を有効活用して走行駆動モータ33を配置することができる。これにより、例えば走行駆動モータ33から走行車輪31までの高さ方向の寸法を小さくし、走行車2のコンパクト化が可能となる。その結果、天井走行車システム1をよりコンパクトなシステムとすることが可能となる。 In the overhead traveling vehicle system 1 of this embodiment, the traveling section 30 includes a traveling drive motor 33 provided on the rotation axis L31 of the traveling wheel 31. In this case, the traveling drive motor 33 can be arranged by effectively utilizing the space above the track R. This makes it possible to reduce the height dimension from the traveling drive motor 33 to the traveling wheel 31, for example, and to make the traveling vehicle 2 more compact. As a result, it becomes possible to make the overhead traveling vehicle system 1 a more compact system.
 本実施形態の天井走行車システム1では、走行車輪31を大径化することが可能となる。その結果、走行車2の走行がより安定すると共に、走行車2がより重い荷を運ぶことが可能となる(走行車2の耐荷重が向上する)。また、走行車輪31が隙間Gをより確実に乗り越えることが可能となる。 In the overhead traveling vehicle system 1 of this embodiment, it is possible to increase the diameter of the traveling wheels 31. As a result, the traveling of the traveling vehicle 2 becomes more stable, and the traveling vehicle 2 can carry heavier loads (the load-bearing capacity of the traveling vehicle 2 is improved). In addition, the traveling wheels 31 can overcome the gap G more reliably.
 本実施形態の天井走行車システム1では、走行部30は、走行車輪31を軸支する支持部36を含み、車輪旋回機構40は、駆動源であるステアリングモータ43と、ステアリングモータ43の出力軸43bに接続された第1ギヤ46と、第1ギヤ46と噛み合い、支持部36に接続された第2ギヤ47と、を含む。この場合、支持部36、第1ギヤ46、第2ギヤ47及びステアリングモータ43をユニット化することが可能となる。その結果、車輪旋回機構40のコンパクト化が可能となる。また、車輪旋回機構40をユニット化することが可能となることから、車輪旋回機構40の生産性が向上すると共に、車輪旋回機構40の交換及び検査のしやすさが向上する。 In the overhead traveling vehicle system 1 of this embodiment, the traveling unit 30 includes a support unit 36 that supports the traveling wheels 31, and the wheel turning mechanism 40 includes a steering motor 43, which is a driving source, a first gear 46 connected to the output shaft 43b of the steering motor 43, and a second gear 47 that meshes with the first gear 46 and is connected to the support unit 36. In this case, it is possible to unitize the support unit 36, the first gear 46, the second gear 47, and the steering motor 43. As a result, it is possible to make the wheel turning mechanism 40 more compact. In addition, since it is possible to unitize the wheel turning mechanism 40, the productivity of the wheel turning mechanism 40 is improved, and the ease of replacement and inspection of the wheel turning mechanism 40 is improved.
 本実施形態の天井走行車システム1では、第1ギヤ46及び第2ギヤ47は、台車ユニット50の上面カバー51ではなく、ギヤボックス44の内部に設けられる。したがって、本体部10にラックギヤ等のギヤが直接設けられているような構造と比較して、走行の振動等に起因したギヤ同士の擦れを抑制することができる。 In the overhead traveling vehicle system 1 of this embodiment, the first gear 46 and the second gear 47 are provided inside the gear box 44, not in the top cover 51 of the cart unit 50. Therefore, compared to a structure in which gears such as rack gears are provided directly on the main body 10, it is possible to suppress friction between the gears caused by vibrations during traveling, etc.
 天井走行車システム1では、連結部35及びケーブルCaが、例えば走行車2が第1レールR1を走行して第2レールR2を横切る際、又は、第2レールR2を走行して第1レールR1を横切る際、隙間Gを通過する。駆動力を走行車輪31へ伝達するベルト等の伝達機構を連結部35に設ける必要がないため、連結部35等の強度を高めることが可能となる。 In the overhead traveling vehicle system 1, the connecting part 35 and the cable Ca pass through the gap G, for example, when the traveling vehicle 2 travels on the first rail R1 and crosses the second rail R2, or when the traveling vehicle 2 travels on the second rail R2 and crosses the first rail R1. Since there is no need to provide the connecting part 35 with a transmission mechanism such as a belt that transmits driving force to the traveling wheels 31, it is possible to increase the strength of the connecting part 35, etc.
 なお、天井走行車システム1では、走行駆動モータ33と走行車輪31との間にベルト等の伝達機構が不要であることから、次の効果を奏する。バックラッシの低下及び剛性の向上が可能となる。停止位置精度の向上が可能となる。ガイドローラのサイズの向上が可能となる。構造の簡素化、及び、生産性の向上が可能となる。 In addition, since the overhead traveling vehicle system 1 does not require a transmission mechanism such as a belt between the traveling drive motor 33 and the traveling wheels 31, the following effects are achieved. Backlash can be reduced and rigidity can be improved. Stop position accuracy can be improved. The size of the guide roller can be increased. The structure can be simplified and productivity can be improved.
 また、走行部30は、台車ユニット50の上面カバー51ではなく、軌道Rよりも上方に設けられる。そして、車輪旋回機構40は、台車ユニット50の上面カバー51ではなく、台車ユニット50の筐体53内部に設けられている。これにより、台車ユニット50の上面カバー51においてその他の構成を追加することが可能となる。例えば、台車ユニット50の上面カバー51にセル認識用センサS1を設けることが可能となる(図13)。また、例えば、位置認識用センサS2を筐体53の内部に設けると共に、位置認識用センサS2が切り欠き51aを介して位置認識用マークM2を認識することが可能となる。詳細は、後述の変形例において説明する。 The running unit 30 is provided above the track R, not on the top cover 51 of the cart unit 50. The wheel turning mechanism 40 is provided inside the housing 53 of the cart unit 50, not on the top cover 51 of the cart unit 50. This makes it possible to add other components to the top cover 51 of the cart unit 50. For example, it is possible to provide a cell recognition sensor S1 on the top cover 51 of the cart unit 50 (FIG. 13). For example, it is also possible to provide a position recognition sensor S2 inside the housing 53, and for the position recognition sensor S2 to recognize the position recognition mark M2 via the cutout 51a. Details will be explained in the modified example described later.
 [変形例]
 以上、実施形態について説明したが、本開示の一態様は、上記実施形態に限られず、発明の趣旨を逸脱しない範囲で種々の変更が可能である。
[Modification]
Although the embodiments have been described above, one aspect of the present disclosure is not limited to the above-described embodiments, and various modifications are possible without departing from the spirit of the invention.
 上記実施形態の天井走行車システム1は、次のように構成されていてもよい。すなわち、天井走行車システム1では、軌道Rは、X方向に延在する複数の第1レールR1と、Y方向に延在する第2レールR2と、を有し、第1レールR1及び第2レールR2は、格子状に配置される。走行車2は、Y方向に隣り合う一対の第1レールR1を走行部30が走行することによりX方向に移動し、X方向に隣り合う一対の第2レールR2を走行部30が走行することによりY方向に移動する。走行車2は、第1情報を示すセル認識用マークM1から第1情報を取得するセル認識用センサS1と、第1情報と異なる情報である第2情報を示す位置認識用マークM2から第2情報を取得する位置認識用センサS2と、を有する。第1レールR1及び第2レールR2のそれぞれは、セル認識用センサS1に対向し、セル認識用マークM1が配置される第1面61と、位置認識用センサS2に対向し、位置認識用マークM2が配置される第2面62であって、平面視において一対の第1レールR1と一対の第2レールR2とによって囲まれる空間であるセルCの中心から見たときに、第1面61の外側に配置されると共に第1面61に対して天井走行車2側に傾斜する第2面62と、を有してもよい。この場合、軌道Rを形成する第1レールR1及び第2レールR2のそれぞれに、第1面61と第1面61とは別の第2面62とを設けたので、種類の異なる少なくとも2種類のマークをそれぞれの面に1種類ずつ配置することで、互いに異なる少なくとも2種類のマークを軌道Rの走行方向における同じ位置に配置できる。また、この構成の天井走行車システム1では、平面視においてセルCの中心から見たときに第1面61の外側に配置される第2面62が、第1面61に対して走行車2側に傾斜するように配置される。これにより、位置認識用センサS2を第2面62に対向させるために、位置認識用センサS2を走行車2から張り出すように設ける必要がなく、走行車2の大型化を抑制できる。このような天井走行車システム1として、以下のように構成されていてもよい。 The overhead traveling vehicle system 1 of the above embodiment may be configured as follows. That is, in the overhead traveling vehicle system 1, the track R has a plurality of first rails R1 extending in the X direction and a second rail R2 extending in the Y direction, and the first rails R1 and the second rails R2 are arranged in a grid pattern. The traveling vehicle 2 moves in the X direction by the running unit 30 running on a pair of first rails R1 adjacent to each other in the Y direction, and moves in the Y direction by the running unit 30 running on a pair of second rails R2 adjacent to each other in the X direction. The traveling vehicle 2 has a cell recognition sensor S1 that acquires first information from a cell recognition mark M1 that indicates the first information, and a position recognition sensor S2 that acquires second information from a position recognition mark M2 that indicates second information that is different from the first information. Each of the first rail R1 and the second rail R2 may have a first surface 61 facing the cell recognition sensor S1 and on which the cell recognition mark M1 is arranged, and a second surface 62 facing the position recognition sensor S2 and on which the position recognition mark M2 is arranged, the second surface 62 being arranged outside the first surface 61 and inclined toward the overhead traveling vehicle 2 side with respect to the first surface 61 when viewed from the center of the cell C, which is a space surrounded by the pair of first rails R1 and the pair of second rails R2 in a plan view. In this case, the first surface 61 and the second surface 62 other than the first surface 61 are provided on each of the first rail R1 and the second rail R2 forming the track R, so that at least two different types of marks can be arranged at the same position in the traveling direction of the track R by arranging at least two different types of marks on each surface. In addition, in the overhead traveling vehicle system 1 having this configuration, the second surface 62 arranged outside the first surface 61 when viewed from the center of the cell C in a plan view is arranged so as to be inclined toward the traveling vehicle 2 side with respect to the first surface 61. This eliminates the need to provide the position recognition sensor S2 so that it protrudes from the vehicle 2 in order to face the second surface 62, which helps prevent the vehicle 2 from becoming too large. Such an overhead vehicle system 1 may be configured as follows.
 図12は、変形例に係る走行車2を示す斜視図である。図12に示されるように、走行車2は、1つのセル認識用センサ(第1センサ)S1と、4つの位置認識用センサ(第2センサ)S2とを備える。なお、図11の例では、4つの位置認識用センサS2のうち、3つのみが図示されている。セル認識用センサS1及び位置認識用センサS2は、台車ユニット50の筐体53に設けられている。セル認識用センサS1は、検出方向が上面カバー51に対して略垂直に上方向を向くように配置されている。位置認識用センサS2は、検出方向が略上方向を向くように配置されている。より詳細には、位置認識用センサS2は、検出方向がZ方向に対してセルCの中心から見て外側に向かって傾いた方向を向くように配置されている。 FIG. 12 is a perspective view showing a traveling vehicle 2 according to a modified example. As shown in FIG. 12, the traveling vehicle 2 is equipped with one cell recognition sensor (first sensor) S1 and four position recognition sensors (second sensors) S2. Note that in the example of FIG. 11, only three of the four position recognition sensors S2 are shown. The cell recognition sensor S1 and the position recognition sensor S2 are provided in the housing 53 of the cart unit 50. The cell recognition sensor S1 is arranged so that its detection direction faces upward and is approximately perpendicular to the top cover 51. The position recognition sensor S2 is arranged so that its detection direction faces approximately upward. More specifically, the position recognition sensor S2 is arranged so that its detection direction faces in a direction inclined outward from the center of the cell C with respect to the Z direction.
 軌道Rには、セル認識用マーク(第1マーク)M1及び位置認識用マーク(第2マーク)M2が配置されている(図13参照)。セル認識用センサS1は、軌道Rに配置されたセル認識用マークM1を非接触により検出する。位置認識用センサS2は、軌道Rに配置された位置認識用マークM2を非接触により検出する。位置認識用センサS2は、上面カバー51に設けられた切欠き51aを通して位置認識用マークM2を検出する。セル認識用マークM1及び位置認識用マークM2の詳細については後段にて詳述する。 A cell recognition mark (first mark) M1 and a position recognition mark (second mark) M2 are arranged on the track R (see FIG. 13). The cell recognition sensor S1 detects the cell recognition mark M1 arranged on the track R in a non-contact manner. The position recognition sensor S2 detects the position recognition mark M2 arranged on the track R in a non-contact manner. The position recognition sensor S2 detects the position recognition mark M2 through a notch 51a provided in the top cover 51. The cell recognition mark M1 and the position recognition mark M2 will be described in detail later.
 セル認識用センサS1は、走行車2がセルC内における所定位置に位置しているとき(停車しているとき、又は走行しているとき)に、セル認識用マークM1と対向する。このとき、セル認識用センサS1は、セル認識用マークM1からセルCの情報(第1情報)を取得する。 The cell recognition sensor S1 faces the cell recognition mark M1 when the traveling vehicle 2 is located at a predetermined position within the cell C (when the traveling vehicle 2 is stopped or traveling). At this time, the cell recognition sensor S1 acquires information (first information) about the cell C from the cell recognition mark M1.
 位置認識用センサS2は、走行車2がX方向に移動するときに、レールユニット100に含まれる一対の第1レールR1のそれぞれにおいて位置認識用マークM2が配置された第2面62(図8参照)のそれぞれに対向するように配置する。また、位置認識用センサS2は、走行車2がY方向に移動するときに、レールユニット100に含まれる一対の第2レールR2のそれぞれにおいて位置認識用マークM2が配置された第2面62のそれぞれに対向するように配置する。位置認識用センサS2は、位置認識用マークM2から軌道Rにおける位置情報(第2情報)を取得する。 The position recognition sensor S2 is arranged to face each of the second surfaces 62 (see FIG. 8) on which the position recognition mark M2 is arranged on each of the pair of first rails R1 included in the rail unit 100 when the traveling vehicle 2 moves in the X direction. The position recognition sensor S2 is also arranged to face each of the second surfaces 62 on which the position recognition mark M2 is arranged on each of the pair of second rails R2 included in the rail unit 100 when the traveling vehicle 2 moves in the Y direction. The position recognition sensor S2 acquires position information (second information) on the track R from the position recognition mark M2.
 図13は、変形例に係るレールユニット100を示す斜視図である。図14は、X方向に直交する面で切断した場合の第1レールR1の模式的な断面図である。図13の例では、1つのレールユニット100をZ方向負側から見た様子を図示している。レールユニット100に含まれる第1レールR1及び第2レールR2のそれぞれは、第1面61と、第2面62とを有する。 FIG. 13 is a perspective view showing a rail unit 100 according to a modified example. FIG. 14 is a schematic cross-sectional view of the first rail R1 when cut along a plane perpendicular to the X direction. The example of FIG. 13 illustrates one rail unit 100 as viewed from the negative side in the Z direction. Each of the first rail R1 and second rail R2 included in the rail unit 100 has a first surface 61 and a second surface 62.
 第1レールR1について説明する。本変形例では、第1面61は、Z方向に直交する。第1面61は、Z方向において第1走行面R1aと平行である。第1面61の形状は、平面視においてX方向に延びる矩形状である。第1面61は、走行車2のセル認識用センサS1と対向するように形成されている。第1面61は、走行車2のセル認識用センサS1を対向させた状態で走行車2をX方向に走行させることができるように形成されている。 The first rail R1 will now be described. In this modified example, the first surface 61 is perpendicular to the Z direction. The first surface 61 is parallel to the first running surface R1a in the Z direction. The shape of the first surface 61 is a rectangle extending in the X direction in a plan view. The first surface 61 is formed to face the cell recognition sensor S1 of the running vehicle 2. The first surface 61 is formed so that the running vehicle 2 can run in the X direction with the cell recognition sensor S1 of the running vehicle 2 facing it.
 第1面61には、セルCの情報を示すセル認識用マークM1が配置されている。セル認識用マークM1は、軌道Rによって構成される複数のセルCのうちどのセルであるかという情報を示しているとも言える。セルCの情報は、セルCを一意に特定するIDであってもよいし、セルCの位置に関する情報であってもよい。本変形例では、セル認識用マークM1は、1つのバーコードBaにより構成されている。図13の例では、バーコードBaは、X方向における第1レールR1(第1面61)の中央に配置されている。セル認識用マークM1は、走行車2がセルC内における所定位置に位置している状態においてセル認識用センサS1と対向する。セル認識用センサS1は、セル認識用マークM1からセルCの情報を取得する。 A cell recognition mark M1 indicating information about the cell C is arranged on the first surface 61. It can also be said that the cell recognition mark M1 indicates information about which cell is which among the multiple cells C formed by the track R. The information about the cell C may be an ID that uniquely identifies the cell C, or may be information about the position of the cell C. In this modified example, the cell recognition mark M1 is composed of one barcode Ba. In the example of FIG. 13, the barcode Ba is arranged in the center of the first rail R1 (first surface 61) in the X direction. The cell recognition mark M1 faces the cell recognition sensor S1 when the traveling vehicle 2 is located at a predetermined position in the cell C. The cell recognition sensor S1 acquires information about the cell C from the cell recognition mark M1.
 本変形例では、所定位置とは、セル中心をいう。走行車2がセルC内におけるセル中心に位置している状態とは、台車ユニット50がセルCに対して水平方向にずれておらず、且つ、台車ユニット50がセルCに対して回転方向にずれていない状態を言う。「台車ユニット50がセルCに対して水平方向にずれていない」とは、平面視において、台車ユニット50の中心とセルCの中心とが一致していることを言う。「台車ユニット50がセルCに対して回転方向にずれていない」とは、平面視において、矩形状の台車ユニット50が有する4辺のうち、X方向に延びる2辺のそれぞれが当該セルCを構成する一対の第1レールR1と平行であり、且つ、Y方向に延びる2辺のそれぞれが当該セルCを構成する一対の第2レールR2と平行であることを言う。なお、第1レールR1の中央、又はセルCの中心は、厳密に中央、又は中心である必要はなく、一定の幅を有していてもよい。 In this modified example, the predetermined position refers to the cell center. The state in which the traveling vehicle 2 is located at the cell center in the cell C refers to a state in which the bogie unit 50 is not misaligned horizontally with respect to the cell C and is not misaligned in the rotational direction with respect to the cell C. "The bogie unit 50 is not misaligned horizontally with respect to the cell C" refers to the center of the bogie unit 50 and the center of the cell C being aligned in a plan view. "The bogie unit 50 is not misaligned in the rotational direction with respect to the cell C" refers to the two sides of the rectangular bogie unit 50 that extend in the X direction being parallel to the pair of first rails R1 that constitute the cell C in a plan view, and the two sides that extend in the Y direction being parallel to the pair of second rails R2 that constitute the cell C in a plan view. The center of the first rail R1 or the center of the cell C does not need to be strictly the center or center, and may have a certain width.
 第2面62は、セルCの中心から見たときに、第1面61の外側に配置されている。第2面62は、第1面61に対して走行車2側(図13の例では鉛直方向下方側)に傾斜している。第2面62の形状は、第2面62に直交する方向から見たときにX方向に延びる矩形状である。第2面62は、走行車2の位置認識用センサS2と対向するように形成されている。第2面62は、走行車2の位置認識用センサS2を対向させた状態で走行車2をX方向に走行させることができるように形成されている。 The second surface 62 is disposed outside the first surface 61 when viewed from the center of the cell C. The second surface 62 is inclined toward the traveling vehicle 2 (vertically downward in the example of FIG. 13) with respect to the first surface 61. The shape of the second surface 62 is a rectangle extending in the X direction when viewed from a direction perpendicular to the second surface 62. The second surface 62 is formed so as to face the position recognition sensor S2 of the traveling vehicle 2. The second surface 62 is formed so that the traveling vehicle 2 can travel in the X direction with the position recognition sensor S2 of the traveling vehicle 2 facing it.
 第2面62には、軌道R(第1レールR1)における位置情報を示す位置認識用マークM2が配置されている。第1レールR1における位置情報は、第1レールR1におけるX方向の位置に関する情報であってもよいし、X方向における第1レールR1の中央(セルの中央)からの距離に関する情報であってもよい。位置認識用マークM2が示す情報は、セル認識用マークM1が示す情報と異なっている。本変形例では、位置認識用マークM2は、X方向に配列された複数(一例として14個)のバーコードBbにより構成されている。当該複数のバーコードBbは、X方向に沿って第2面62に隙間なく配列されている。位置認識用マークM2は、走行車2が第1レールR1に沿って走行又は停止している状態において位置認識用センサS2と対向する。位置認識用センサS2は、位置認識用マークM2から第1レールR1における位置情報を取得する。 A position recognition mark M2 indicating position information on the track R (first rail R1) is arranged on the second surface 62. The position information on the first rail R1 may be information regarding the position in the X direction on the first rail R1, or information regarding the distance from the center of the first rail R1 (center of the cell) in the X direction. The information indicated by the position recognition mark M2 is different from the information indicated by the cell recognition mark M1. In this modified example, the position recognition mark M2 is composed of multiple (14, for example) barcodes Bb arranged in the X direction. The multiple barcodes Bb are arranged on the second surface 62 along the X direction with no gaps. The position recognition mark M2 faces the position recognition sensor S2 when the traveling vehicle 2 is traveling or stopped along the first rail R1. The position recognition sensor S2 acquires position information on the first rail R1 from the position recognition mark M2.
 続いて、第2レールR2について説明する。本変形例では、第2レールR2の構成は、第1レールR1の構成と同一である。よって、上述した第1レールR1と重複する説明は適宜省略する。 Next, the second rail R2 will be described. In this modified example, the configuration of the second rail R2 is the same as the configuration of the first rail R1. Therefore, any explanation that overlaps with the first rail R1 described above will be omitted as appropriate.
 第2レールR2では、第1面61は、Z方向において第2走行面R2a(図1、図2及び図5参照)と平行である。第1面61の形状は、平面視においてY方向に延びる矩形状である。第1面61は、セル認識用センサS1を対向させた状態で走行車2をY方向に走行させることができるように形成されている。第1面61には、セル認識用マークM1であるバーコードBaが配置されている。図13の例では、バーコードBaは、Y方向における第2レールR2(第1面61)の中央に配置されている。 In the second rail R2, the first surface 61 is parallel to the second running surface R2a (see Figures 1, 2 and 5) in the Z direction. The shape of the first surface 61 is a rectangle extending in the Y direction in a plan view. The first surface 61 is formed so that the running vehicle 2 can run in the Y direction with the cell recognition sensor S1 facing it. A barcode Ba, which is the cell recognition mark M1, is arranged on the first surface 61. In the example of Figure 13, the barcode Ba is arranged in the center of the second rail R2 (first surface 61) in the Y direction.
 第2面62の形状は、第2面62に直交する方向から見たときにY方向に延びる矩形状である。第2面62は、走行車2の位置認識用センサS2を対向させた状態で走行車2をY方向に走行させることができるように形成されている。第2面62には、位置認識用マークM2が配置されている。第2レールR2における位置情報は、第2レールR2におけるY方向の位置に関する情報であってもよいし、Y方向における第2レールR2の中央(セルの中央)からの距離に関する情報であってもよい。本変形例では、位置認識用マークM2は、Y方向に配列された複数(一例として14個)のバーコードBbにより構成されている。当該複数のバーコードBbは、Y方向に沿って第2面62に隙間なく配列されている。位置認識用マークM2は、走行車2が第2レールR2に沿って走行又は停止している状態において位置認識用マークM2と対向する。位置認識用センサS2は、位置認識用マークM2から第2レールR2における位置情報を取得する。 The shape of the second surface 62 is a rectangle extending in the Y direction when viewed from a direction perpendicular to the second surface 62. The second surface 62 is formed so that the traveling vehicle 2 can travel in the Y direction with the position recognition sensor S2 of the traveling vehicle 2 facing it. A position recognition mark M2 is arranged on the second surface 62. The position information on the second rail R2 may be information about the position in the Y direction on the second rail R2, or information about the distance from the center of the second rail R2 (center of the cell) in the Y direction. In this modified example, the position recognition mark M2 is composed of a plurality of barcodes Bb (14 as an example) arranged in the Y direction. The plurality of barcodes Bb are arranged on the second surface 62 along the Y direction with no gaps. The position recognition mark M2 faces the position recognition mark M2 when the traveling vehicle 2 is traveling or stopped along the second rail R2. The position recognition sensor S2 acquires position information on the second rail R2 from the position recognition mark M2.
 台車コントローラ8は、セル認識用センサS1の検出結果を取得する。具体的には、台車コントローラ8は、セル認識用センサS1により取得されたセルCの情報を取得する。また、台車コントローラ8は、当該セルCの情報に基づいて、走行車2が位置しているセルCを特定する。 The bogie controller 8 acquires the detection result of the cell recognition sensor S1. Specifically, the bogie controller 8 acquires information on the cell C acquired by the cell recognition sensor S1. Furthermore, the bogie controller 8 identifies the cell C in which the traveling vehicle 2 is located based on the information on the cell C.
 台車コントローラ8は、位置認識用センサS2の検出結果を取得する。具体的には、台車コントローラ8は、位置認識用センサS2により取得された位置情報を取得する。また、台車コントローラ8は、当該位置情報に基づいて、セルC内における所定位置と走行車2の停止位置とのずれ量を導出する。当該ずれ量は、水平方向(X方向及びY方向)のずれ量に加え、Z方向まわりの回転方向のずれ量を含む。 The trolley controller 8 acquires the detection result of the position recognition sensor S2. Specifically, the trolley controller 8 acquires the position information acquired by the position recognition sensor S2. Based on the position information, the trolley controller 8 also derives the amount of deviation between a predetermined position in the cell C and the stopping position of the traveling vehicle 2. The amount of deviation includes the amount of deviation in the horizontal direction (X direction and Y direction) as well as the amount of deviation in the rotational direction around the Z direction.
 X方向におけるずれ量は、例えば、第1レールR1の第2面62に対向する2つの位置認識用センサS2の少なくとも一方によって取得された位置情報と、予め記憶されたセルC中心の位置情報とを用いて所定の計算処理をすることによって導出できる。また、X方向におけるずれ量は、位置認識用マークM2が示す位置情報と上記ずれ量との関係が対応付けて記憶されたテーブルを予め記憶しておき、位置認識用センサS2により取得された位置認識用マークM2が示す位置情報に対応する上記ずれ量をテーブルから読み出す読出処理をすることによって、X方向におけるずれ量を導出できる。Y方向におけるずれ量も、X方向におけるずれ量と同様に、上記の計算処理又は読出処理によって導出できる。 The amount of deviation in the X direction can be derived, for example, by performing a predetermined calculation process using position information acquired by at least one of the two position recognition sensors S2 facing the second surface 62 of the first rail R1 and pre-stored position information of the center of cell C. The amount of deviation in the X direction can also be derived by pre-storing a table in which the relationship between the position information indicated by the position recognition mark M2 and the above-mentioned amount of deviation is associated and stored, and performing a read process to read out from the table the above-mentioned amount of deviation that corresponds to the position information indicated by the position recognition mark M2 acquired by the position recognition sensor S2. The amount of deviation in the Y direction can also be derived by the above-mentioned calculation process or read process, similar to the amount of deviation in the X direction.
 Z方向まわりの回転方向におけるずれ量は、例えば、第1レールR1の第2面62に対向する2つの位置認識用センサS2及び第2レールR2の第2面62に対向する2つの位置認識用センサS2から取得される4つの位置情報を用いて所定の計算処理をすることによって導出できる。なお、Z方向まわりの回転方向におけるずれ量は、少なくとも上記3つの位置情報を用いて計算により求めることができる。また、Z方向まわりの回転方向におけるずれ量は、一つのセルCを構成する4つのレールにおけるそれぞれの位置情報とずれ量との関係が対応付けて記憶されたテーブルを予め記憶しておき、位置認識用センサS2により取得された3つの位置情報に対応する上記ずれ量をテーブルから読み出す読出処理をすることによっても導出できる。 The deviation amount in the rotation direction around the Z direction can be derived by performing a predetermined calculation process using four pieces of position information acquired from two position recognition sensors S2 facing the second surface 62 of the first rail R1 and two position recognition sensors S2 facing the second surface 62 of the second rail R2, for example. The deviation amount in the rotation direction around the Z direction can be calculated using at least the above three pieces of position information. The deviation amount in the rotation direction around the Z direction can also be derived by storing in advance a table in which the relationship between the position information and the deviation amount for each of the four rails that make up one cell C is associated and stored, and performing a read process to read out the above deviation amount corresponding to the three pieces of position information acquired by the position recognition sensors S2 from the table.
 台車コントローラ8は、走行部30を制御することで、X方向及びY方向に沿った走行車2の移動量を制御してもよい。具体的には、台車コントローラ8は、走行部30に含まれる走行車輪31を駆動する走行駆動モータ33の駆動量を制御してもよい。台車コントローラ8は、水平方向のずれ量に基づいて、当該所定位置に走行車2が移動するように走行部30を制御する。 The cart controller 8 may control the travel unit 30 to control the amount of movement of the traveling vehicle 2 along the X direction and the Y direction. Specifically, the cart controller 8 may control the drive amount of the traveling drive motor 33 that drives the traveling wheels 31 included in the traveling unit 30. The cart controller 8 controls the traveling unit 30 so that the traveling vehicle 2 moves to the specified position based on the amount of horizontal deviation.
 上記変形例では、走行車2を制御する台車コントローラ8を備える。異なる2種類のマークのいずれか一方は、軌道Rにおける位置情報を示す位置認識用マークM2である。位置認識用マークM2に対向する位置認識用センサS2は、走行車2がX方向に移動するときに一対の第1レールR1のそれぞれに配置された位置認識用マークM2ごとに対向するように配置される。また、位置認識用センサS2は、走行車2がY方向に移動するときに一対の第2レールR2のそれぞれに配置された位置認識用マークM2ごとに対向するように配置される。さらに、位置認識用センサS2は、位置認識用マークM2から位置情報を取得する4つの位置認識用センサS2である。台車コントローラ8は、位置認識用センサS2により取得された位置情報に基づいて、セルC内における所定位置と走行車2の停止位置とのずれ量を導出する。この場合、台車コントローラ8は、走行車2の停止時における位置ずれを検出できる。 In the above modification, a bogie controller 8 is provided to control the traveling vehicle 2. One of the two different types of marks is a position recognition mark M2 that indicates position information on the track R. The position recognition sensor S2 facing the position recognition mark M2 is arranged so as to face each of the position recognition marks M2 arranged on each of the pair of first rails R1 when the traveling vehicle 2 moves in the X direction. The position recognition sensor S2 is also arranged so as to face each of the position recognition marks M2 arranged on each of the pair of second rails R2 when the traveling vehicle 2 moves in the Y direction. Furthermore, the position recognition sensor S2 is four position recognition sensors S2 that acquire position information from the position recognition mark M2. The bogie controller 8 derives the amount of deviation between a predetermined position in the cell C and the stop position of the traveling vehicle 2 based on the position information acquired by the position recognition sensor S2. In this case, the bogie controller 8 can detect the position deviation when the traveling vehicle 2 is stopped.
 上記変形例では、走行車2が軌道Rの下側で物品Mを保持する例について説明した。しかし、走行車2は、軌道Rの上側で物品Mを保持してもよい。この場合、台車ユニット50は、走行部30の上側に配置される。セル認識用センサS1は、例えば、台車ユニット50の下面に対して略垂直に下方向を向くように配置される。位置認識用センサS2は、例えば、略下方向を向くように配置されている。位置認識用センサS2は、Z方向に対して、セルCの中心から見て外側に向かって傾いた方向を向くように配置されている。また、第1面61は、Z方向に直交すると共に上方向を向くように配置され、第2面62は、第1面61に対して走行車2側(例えば図13の例では鉛直方向上方側)に傾斜するように配置される。これにより、セル認識用センサS1は、第1面61に配置されたセル認識用マークM1と対向すると共に、位置認識用センサS2は、第2面62に配置された位置認識用マークM2と対向する。 In the above modified example, the traveling vehicle 2 holds the item M below the track R. However, the traveling vehicle 2 may hold the item M above the track R. In this case, the cart unit 50 is disposed above the traveling section 30. The cell recognition sensor S1 is disposed, for example, so as to face downwards approximately perpendicular to the lower surface of the cart unit 50. The position recognition sensor S2 is disposed, for example, so as to face approximately downwards. The position recognition sensor S2 is disposed so as to face in a direction inclined toward the outside as viewed from the center of the cell C with respect to the Z direction. In addition, the first surface 61 is disposed so as to be perpendicular to the Z direction and face upwards, and the second surface 62 is disposed so as to be inclined toward the traveling vehicle 2 side (for example, the vertical upward side in the example of FIG. 13) with respect to the first surface 61. As a result, the cell recognition sensor S1 faces the cell recognition mark M1 disposed on the first surface 61, and the position recognition sensor S2 faces the position recognition mark M2 disposed on the second surface 62.
上記変形例では、セル認識用マークM1は、X方向における第1レールR1の中央、及び、Y方向における第2レールR2の中央に設けられている場合について説明した。しかし、セル認識用マークM1の位置は、例えば、位置認識用マークM2と同様に、延在方向に沿って配置されてもよく、セル認識用センサS1により検出可能であれば、セル認識用マークM1の設置位置は特に限定されない。 In the above modified example, the cell recognition mark M1 is described as being provided at the center of the first rail R1 in the X direction and at the center of the second rail R2 in the Y direction. However, the position of the cell recognition mark M1 may be arranged along the extension direction, for example, similar to the position recognition mark M2, and the installation position of the cell recognition mark M1 is not particularly limited as long as it can be detected by the cell recognition sensor S1.
 上記変形例では、セル認識用マークM1が第1面61に配置され、位置認識用マークM2が第2面62に配置されている場合について説明したが、当該マークの配置関係は逆であってもよい。すなわち、セル認識用マークM1が第2面62に配置され、位置認識用マークM2が第1面61に配置されていてもよい。 In the above modified example, the case where the cell recognition mark M1 is arranged on the first surface 61 and the position recognition mark M2 is arranged on the second surface 62 has been described, but the arrangement of the marks may be reversed. In other words, the cell recognition mark M1 may be arranged on the second surface 62 and the position recognition mark M2 may be arranged on the first surface 61.
 上記変形例では、位置認識用センサS2が走行車2に4つ設けられている場合について説明したが、位置認識用センサS2の数は適宜変更可能である。 In the above modified example, a case was described in which four position recognition sensors S2 are provided on the traveling vehicle 2, but the number of position recognition sensors S2 can be changed as appropriate.
 上記変形例では、セル認識用マークM1及び位置認識用マークM2の例として、バーコードを例に挙げて説明したが、例えばQRコード(登録商標)のような二次元コードであってもよい。この場合、セル認識用センサS1及び位置認識用センサS2として採用されたバーコードを読み取り可能なバーコードリーダに代えて、二次元バーコードを読み取り可能なバーコードリーダを採用すればよい。また、セル認識用マークM1及び位置認識用マークM2として上記のコードに代えて又は加えて、文字、記号、図形、色等、セル認識用センサS1及び位置認識用センサS2によって識別可能な表示(マーク)を採用してもよい。この場合、セル認識用センサS1及び位置認識用センサS2としてカメラ等を採用してもよい。 In the above modified example, a barcode has been used as an example of the cell recognition mark M1 and the position recognition mark M2, but a two-dimensional code such as a QR code (registered trademark) may also be used. In this case, a barcode reader capable of reading two-dimensional barcodes may be used instead of the barcode reader capable of reading the barcodes employed as the cell recognition sensor S1 and the position recognition sensor S2. Furthermore, instead of or in addition to the above codes, as the cell recognition mark M1 and the position recognition mark M2, a display (mark) identifiable by the cell recognition sensor S1 and the position recognition sensor S2, such as a letter, symbol, figure, color, etc., may be used. In this case, a camera or the like may be used as the cell recognition sensor S1 and the position recognition sensor S2.
 上記実施形態では、走行部30及び車輪旋回機構40における4本の旋回軸L30が、平面視で正方形の頂点の位置に配置される場合について説明したが、旋回軸L30の配置は正方形状でなくてもよい。平面視において、走行車輪31の位置と旋回軸L30の位置とが一致していてもよい。 In the above embodiment, the four pivot axes L30 in the running unit 30 and the wheel turning mechanism 40 are arranged at the vertices of a square in a plan view, but the arrangement of the pivot axes L30 does not have to be square. In a plan view, the position of the running wheels 31 and the position of the pivot axes L30 may coincide.
 上記実施形態では、走行駆動モータ33の出力軸33aが回転軸L31に対して同軸になるように走行駆動モータ33を配置したが、これに限定されない。走行駆動モータ33が回転軸L31上に配置されていれば、出力軸33aが回転軸L31からずれて構成されていてもよい。 In the above embodiment, the travel drive motor 33 is arranged so that the output shaft 33a of the travel drive motor 33 is coaxial with the rotation axis L31, but this is not limited to the above. As long as the travel drive motor 33 is arranged on the rotation axis L31, the output shaft 33a may be configured to be offset from the rotation axis L31.
 上記実施形態では、走行車輪31が交差部レールR3上において回転する場合について説明したが、各車輪旋回機構40による旋回時に、各走行車輪31が、第1走行面R1aから第2走行面R2aへと、又は第2走行面R2aから第1走行面R1aへと乗り移ってもよい。 In the above embodiment, the case where the running wheels 31 rotate on the intersection rail R3 has been described, but when each wheel turning mechanism 40 turns, each running wheel 31 may transfer from the first running surface R1a to the second running surface R2a, or from the second running surface R2a to the first running surface R1a.
 上記実施形態では、走行車が天井走行車である場合について説明したが、走行車は、地上に設けられた軌道上を走行する有軌道台車であってもよい。上記実施形態では、天井走行車システム1としてグリッドシステムを採用したが天井走行車システム1はグリッドシステムに限定されない。例えば天井走行車システムとして、AGV(Automated Guided Vehicle)を採用してもよいし、格子状の走行路を走行する種々の公知のシステムを採用してもよい。 In the above embodiment, the traveling vehicle is an overhead traveling vehicle, but the traveling vehicle may be a tracked vehicle that travels on a track installed on the ground. In the above embodiment, a grid system is used as the overhead traveling vehicle system 1, but the overhead traveling vehicle system 1 is not limited to a grid system. For example, an AGV (Automated Guided Vehicle) may be used as the overhead traveling vehicle system, or various known systems that travel on a grid-shaped traveling path may be used.
 上記実施形態及び変形例における各構成には、上述した材料及び形状に限定されず、様々な材料及び形状を適用することができる。上記実施形態又は変形例における各構成は、他の実施形態又は変形例における各構成に任意に適用することができる。上記実施形態又は変形例における各構成の一部は、本開示の一態様の要旨を逸脱しない範囲で適宜に省略可能である。上記実施形態では、台車Vは軌道Rの下側で物品Mを保持したが、本体部10が軌道Rの上方に配置され、軌道Rの上側で物品Mを保持してもよい。 The components in the above embodiment and modified examples are not limited to the materials and shapes described above, and various materials and shapes can be applied. The components in the above embodiment or modified examples can be arbitrarily applied to the components in other embodiments or modified examples. Parts of the components in the above embodiment or modified examples can be omitted as appropriate without departing from the gist of one aspect of this disclosure. In the above embodiment, the trolley V holds the item M below the track R, but the main body 10 may be disposed above the track R and hold the item M above the track R.
 1…天井走行車システム、2…天井走行車、8…台車コントローラ(制御部)、10…本体部、20…走行台車、30…走行部、31…走行車輪、33…走行駆動モータ、36…支持部、40…車輪旋回機構(ステアリング駆動部)、43…ステアリングモータ、43b…出力軸、46…第1ギヤ、47…第2ギヤ、C…セル、D1…第1走行方向(第1方向)、D2…第2走行方向(第2方向)、L30…旋回軸、L31…回転軸、M1…セル認識用マーク(第1マーク)、M2…位置認識用マーク(第2マーク)、R…軌道、R1…第1レール、R2…第2レール、S1…セル認識用センサ(第1センサ)、S2…位置認識用センサ(第2センサ)。

 
1...Overhead traveling vehicle system, 2...Overhead traveling vehicle, 8...Cart controller (control unit), 10...Main body, 20...Traveling vehicle, 30...Travel unit, 31...Traveling wheels, 33...Travel drive motor, 36...Support unit, 40...Wheel turning mechanism (steering drive unit), 43...Steering motor, 43b...Output shaft, 46...First gear, 47...Second gear, C...Cell, D1...First traveling direction (first direction), D2...Second traveling direction (second direction), L30...Turning axis, L31...Rotation axis, M1...Cell recognition mark (first mark), M2...Position recognition mark (second mark), R...Rail, R1...First rail, R2...Second rail, S1...Cell recognition sensor (first sensor), S2...Position recognition sensor (second sensor).

Claims (5)

  1.  少なくとも一部が格子状に配置された軌道と、
     前記軌道に沿って走行する走行部、前記走行部を旋回させるステアリング駆動部、及び、前記軌道よりも下方に配置されて前記走行部から懸垂される本体部を有する天井走行車と、を備え、
     前記走行部は、回転軸を基軸に前記軌道上を転動し、旋回軸を基軸に旋回自在な走行車輪を含み、
     前記ステアリング駆動部は、前記軌道の下方で且つ前記走行車輪の下方に設けられ、前記走行車輪を旋回させる、天井走行車システム。
    At least a portion of the tracks is arranged in a grid pattern;
    an overhead traveling vehicle having a running section that runs along the track, a steering drive section that turns the running section, and a main body section that is disposed below the track and suspended from the running section;
    The traveling unit includes a traveling wheel that rolls on the track around a rotation axis and is rotatable around a pivot axis,
    The steering drive unit is provided below the track and below the running wheels, and rotates the running wheels.
  2.  前記走行部は、前記走行車輪の前記回転軸上に設けられた走行駆動モータを更に含む、請求項1に記載の天井走行車システム。 The overhead traveling vehicle system according to claim 1, wherein the traveling unit further includes a traveling drive motor provided on the rotation shaft of the traveling wheel.
  3.  前記軌道は、第1方向に延在する複数の第1レールと、前記第1方向と直交する第2方向に延在する第2レールと、を有し、
     前記第1レール及び前記第2レールは、格子状に配置されており、
     前記天井走行車は、前記第2方向に隣り合う一対の前記第1レールを前記走行部が走行することにより前記第1方向に移動し、前記第1方向に隣り合う一対の前記第2レールを前記走行部が走行することにより前記第2方向に移動し、
     前記天井走行車は、
      第1情報を示す第1マークから前記第1情報を取得する第1センサと、
      前記第1情報と異なる情報である第2情報を示す第2マークから前記第2情報を取得する第2センサと、を有し、
     前記第1レール及び前記第2レールのそれぞれは、
      前記第1センサに対向し、前記第1マークが配置される第1面と、
      前記第2センサに対向し、前記第2マークが配置される第2面であって、平面視において前記一対の第1レールと前記一対の第2レールとによって囲まれる空間であるセルの中心から見たときに、前記第1面の外側に配置されると共に前記第1面に対して前記天井走行車側に傾斜する前記第2面と、を有する、請求項2に記載の天井走行車システム。
    The track includes a plurality of first rails extending in a first direction and a second rail extending in a second direction perpendicular to the first direction,
    The first rail and the second rail are arranged in a grid pattern,
    the overhead traveling vehicle moves in the first direction by the traveling unit traveling on a pair of the first rails adjacent to each other in the second direction, and moves in the second direction by the traveling unit traveling on a pair of the second rails adjacent to each other in the first direction,
    The overhead traveling vehicle is
    a first sensor that acquires the first information from a first mark indicating the first information;
    a second sensor that acquires the second information from a second mark indicating second information that is different from the first information,
    Each of the first rail and the second rail is
    a first surface facing the first sensor and on which the first mark is disposed;
    3. The overhead traveling vehicle system according to claim 2, further comprising: a second surface facing the second sensor and on which the second mark is arranged, the second surface being arranged outside the first surface and inclined toward the overhead traveling vehicle relative to the first surface when viewed from the center of a cell, which is a space surrounded by the pair of first rails and the pair of second rails in a plan view.
  4.  前記走行部は、前記走行車輪を軸支する支持部材を更に含み、
     前記ステアリング駆動部は、
      駆動源であるステアリングモータと、
      前記ステアリングモータの出力軸に接続された第1ギヤと、
      前記第1ギヤと噛み合い、前記支持部材に接続された第2ギヤと、を含む、請求項1に記載の天井走行車システム。
    The traveling portion further includes a support member that supports the traveling wheel,
    The steering drive unit is
    A steering motor serving as a drive source;
    a first gear connected to an output shaft of the steering motor;
    2. The overhead traveling vehicle system according to claim 1, further comprising: a second gear that meshes with the first gear and is connected to the support member.
  5.  前記ステアリングモータは、当該ステアリングモータの出力軸が前記旋回軸と平行となるように設けられている、請求項4に記載の天井走行車システム。

     
    5. The overhead traveling vehicle system according to claim 4, wherein the steering motor is provided such that an output shaft of the steering motor is parallel to the rotation shaft.

PCT/JP2023/029731 2022-09-29 2023-08-17 Overhead vehicle system WO2024070310A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022156093 2022-09-29
JP2022-156093 2022-09-29

Publications (1)

Publication Number Publication Date
WO2024070310A1 true WO2024070310A1 (en) 2024-04-04

Family

ID=90477206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029731 WO2024070310A1 (en) 2022-09-29 2023-08-17 Overhead vehicle system

Country Status (2)

Country Link
TW (1) TW202428480A (en)
WO (1) WO2024070310A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837973Y1 (en) * 1970-09-14 1973-11-10
US20110006026A1 (en) * 2009-07-13 2011-01-13 Samsung Electronics Co., Ltd. Intersection navigation system
JP2012040961A (en) * 2010-08-19 2012-03-01 Daifuku Co Ltd Article carrying facility
JP2016175506A (en) * 2015-03-19 2016-10-06 村田機械株式会社 Conveyance truck and conveyance truck system
WO2019102743A1 (en) * 2017-11-22 2019-05-31 村田機械株式会社 Traveling dolly

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837973Y1 (en) * 1970-09-14 1973-11-10
US20110006026A1 (en) * 2009-07-13 2011-01-13 Samsung Electronics Co., Ltd. Intersection navigation system
JP2012040961A (en) * 2010-08-19 2012-03-01 Daifuku Co Ltd Article carrying facility
JP2016175506A (en) * 2015-03-19 2016-10-06 村田機械株式会社 Conveyance truck and conveyance truck system
WO2019102743A1 (en) * 2017-11-22 2019-05-31 村田機械株式会社 Traveling dolly

Also Published As

Publication number Publication date
TW202428480A (en) 2024-07-16

Similar Documents

Publication Publication Date Title
CN113056405B (en) Overhead carrier and overhead carrier system
KR102701137B1 (en) Return system and grid system
TW201924996A (en) Traveling dolly
WO2019003799A1 (en) Conveying system and conveying method
JP5517182B2 (en) Storage system
WO2024070310A1 (en) Overhead vehicle system
WO2024070298A1 (en) Rail-guided carrier system
JP7347695B2 (en) ceiling storage system
WO2024070301A1 (en) Overhead traveling vehicle system
WO2024070302A1 (en) Rail guided cart system
JP7327660B2 (en) Ceiling carrier and ceiling carrier system
WO2024070300A1 (en) Rotation mechanism and ceiling carrier
WO2024070299A1 (en) Overhead conveyance vehicle
JP7323059B2 (en) carrier system
WO2024070303A1 (en) Overhead conveyance vehicle
WO2024070297A1 (en) Travel rail and traveling vehicle system
CN113165671B (en) Driving vehicle system
WO2024142502A1 (en) Conveyance vehicle system
KR102707577B1 (en) Apparatus and method for transferring article
WO2023026512A1 (en) Conveyance system
US20240189991A1 (en) Autonomous driving robot and article transport method using the same
KR20230009505A (en) ceiling transfer system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871552

Country of ref document: EP

Kind code of ref document: A1