WO2024070228A1 - Drive device - Google Patents

Drive device Download PDF

Info

Publication number
WO2024070228A1
WO2024070228A1 PCT/JP2023/028529 JP2023028529W WO2024070228A1 WO 2024070228 A1 WO2024070228 A1 WO 2024070228A1 JP 2023028529 W JP2023028529 W JP 2023028529W WO 2024070228 A1 WO2024070228 A1 WO 2024070228A1
Authority
WO
WIPO (PCT)
Prior art keywords
axial direction
stator
bearing holder
axial
protrusion
Prior art date
Application number
PCT/JP2023/028529
Other languages
French (fr)
Japanese (ja)
Inventor
啓介 麻生
直大 和田
祐輔 牧野
Original Assignee
ニデック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニデック株式会社 filed Critical ニデック株式会社
Publication of WO2024070228A1 publication Critical patent/WO2024070228A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes

Definitions

  • the present invention relates to a drive device.
  • This application claims priority based on Japanese Patent Application No. 2022-157698, filed in Japan on September 30, 2022, the contents of which are incorporated herein by reference.
  • a motor cooling method is a structure in which the outer circumference of the stator is surrounded by a water jacket to uniformly cool the stator.
  • a bearing holder that supports the bearings is generally fixed to the water jacket.
  • the bracket is positioned relative to the frame by inserting a protrusion on the bracket into a recess on the end face of a cylindrical frame (water jacket) in which a refrigerant passage is provided (for example, Patent Document 1).
  • one of the objectives of the present invention is to provide a drive unit that can be made smaller.
  • One embodiment of the drive device of the present invention includes a rotor rotatable around a central axis, a stator surrounding the rotor from the radial outside, a housing surrounding the stator from the radial outside and holding the stator, a bearing supporting the rotor rotatably, and a bearing holder located on one axial side of the stator and holding the bearing.
  • the housing has a cylindrical inner cylindrical portion centered on the central axis, and an outer cylindrical portion. A flow path portion is provided between the inner cylindrical portion and the outer cylindrical portion.
  • the bearing holder has a disk-shaped main body portion centered on the central axis, a bearing holding portion that holds the bearing, a first fastening portion fixed to the inner cylindrical portion, and a protruding portion that protrudes to the other axial side from a surface of the main body portion facing the other axial side.
  • the protruding portion extends circumferentially along a virtual circle centered on the central axis when viewed from the axial direction, and fits into the inner peripheral surface of the inner cylindrical portion.
  • the main body portion is provided with a first through hole through which a lead wire extending from a coil of the stator passes. The first through hole is positioned on the imaginary circle when viewed in the axial direction.
  • One aspect of the present invention provides a drive device that can be made compact.
  • FIG. 1 is a conceptual diagram of a drive device according to a first embodiment.
  • FIG. 2 is a partial cross-sectional view of the drive device of the first embodiment.
  • FIG. 3 is a front view of a bearing holder attached to the drive device of the first embodiment.
  • FIG. 4 is a perspective view of the bearing holder of the first embodiment.
  • FIG. 5 is a partial perspective view of a modified protrusion.
  • FIG. 6 is a front view of a bearing holder attached to the drive unit of the second embodiment.
  • FIG. 7 is a perspective view of a bearing holder according to the second embodiment.
  • each part will be explained by defining the direction of gravity based on the positional relationship when the drive unit 1 is mounted on a vehicle positioned on a horizontal road surface.
  • the XYZ coordinate system is shown as a three-dimensional Cartesian coordinate system as appropriate.
  • the Z-axis direction indicates the vertical direction (i.e., up-down direction), the +Z direction is the upper side (opposite the direction of gravity), and the -Z direction is the lower side (direction of gravity).
  • the X-axis direction is perpendicular to the Z-axis direction and indicates the front-to-rear direction of the vehicle on which the drive unit 1 is mounted.
  • the Y-axis direction is perpendicular to both the X-axis and Z-axis directions and indicates the width direction (left-right direction) of the vehicle.
  • the direction parallel to the central axis J1 of the motor 2 (Y-axis direction) will be referred to simply as the "axial direction”, the radial direction centered on the central axis J1 will be referred to simply as the “radial direction”, and the circumferential direction centered on the central axis J1, i.e., around the axis of the central axis J1, will be referred to simply as the "circumferential direction”.
  • the above “parallel direction” also includes directions that are approximately parallel.
  • the axial directions of the central axis J1 the +Y direction may be referred to simply as one axial side, and the -Y direction may be referred to simply as the other axial side.
  • Fig. 1 is a conceptual diagram of a drive device 1 according to a first embodiment.
  • Fig. 2 is a partial cross-sectional view of the drive device 1 according to the first embodiment.
  • the drive device 1 of this embodiment is mounted on a vehicle that uses a motor as a power source, such as a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHV), or an electric vehicle (EV), and is used as the power source thereof.
  • a motor such as a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHV), or an electric vehicle (EV)
  • the drive device 1 includes a motor 2, a power transmission unit 4, an inverter (control unit) 7, a temperature sensor 81, a resolver 29, a bearing holder 70, a housing 6, and a plurality of bearings 5A, 5B, and 5C.
  • the housing 6 accommodates the motor 2, power transmission unit 4, inverter 7, resolver 29, temperature sensor 81, and bearing holder 70.
  • the motor 2, power transmission unit 4, and inverter 7 are arranged inside the housing 6 on the central axis J1.
  • the motor 2 in this embodiment is an inner rotor type three-phase AC motor.
  • the motor 2 functions both as an electric motor and as a generator.
  • the configuration of the motor 2 is not limited to this embodiment, and may be, for example, an AC motor with four or more phases.
  • the motor 2 includes a rotor 20 that can rotate around a central axis J1 that extends horizontally, and a stator 30 that faces the rotor 20 across a gap. That is, the drive unit 1 includes the rotor 20 and the stator 30.
  • the motor 2 of this embodiment is an inner rotor type motor in which the rotor 20 is disposed inside the stator 30.
  • the rotor 20 has a first shaft 21, a rotor core 24 fixed to the outer circumferential surface of the first shaft 21, a rotor magnet (not shown) fixed to the rotor core 24, and a pair of fans 10A and 10B.
  • the torque of the rotor 20 is transmitted to the power transmission unit 4.
  • the rotor core 24 is provided with a shaft insertion hole 24h and multiple ventilation holes 24a, 24b.
  • the shaft insertion hole 24h and the ventilation holes 24a, 24b penetrate the rotor core 24 in the axial direction.
  • the shaft insertion hole 24h and the ventilation holes 24a, 24b open at both axial end faces of the rotor core 24.
  • the shaft insertion hole 24h extends in the axial direction around the central axis.
  • the first shaft 21 is inserted into the shaft insertion hole 24h.
  • the multiple air holes 24a, 24b are arranged in the circumferential direction.
  • the air holes 24a, 24b include first air holes 24a and second air holes 24b.
  • the first air holes 24a and the second air holes 24b are arranged alternately in the circumferential direction.
  • the rotor 20 of this embodiment is provided with four first air holes 24a and four second air holes 24b.
  • the cross-sectional shapes of the first air holes 24a and the second air holes 24b are the same.
  • the first air holes 24a and the second air holes 24b have different flow directions of air flowing inside.
  • the first shaft 21 extends in the axial direction around the central axis J1.
  • the first shaft 21 is rotatably supported by bearings 5A and 5B.
  • bearings 5A and 5B In the following description, of the pair of bearings 5A and 5B supporting the first shaft 21, one located on one axial side (+Y side) may be referred to as the first bearing 5A, and the other located on the other axial side (-Y side) may be referred to as the second bearing 5B.
  • the resolver rotor 29a is fixed to the end of the first shaft 21 on one axial side (+Y side). In this embodiment, the resolver rotor 29a is located on one axial side (+Y side) of the bearing 5A.
  • the pair of fans 10A, 10B are fixed to the end faces of the rotor core 24 on one axial side and the other axial side, respectively.
  • the pair of fans 10A, 10B rotate together with the rotor 20.
  • the pair of fans 10A, 10B are attached to the rotor 20 in different positions and orientations.
  • the pair of fans 10A, 10B blow air through the air holes 24a, 24b and outward in the radial direction.
  • the air blown out from the fans 10A, 10B hits the coil ends 31a, 31b located radially outward of the fans 10A, 10B.
  • the fans 10A, 10B cool the rotor 20 and the coil ends 31a, 31b.
  • stator 30 is held in the housing 6.
  • the stator 30 surrounds the rotor 20 from the radial outside.
  • the stator 30 has an annular stator core 32 centered on the central axis J1, a coil 31 attached to the stator core 32, lead wires 31k drawn from the coil 31, and an insulator (not shown) interposed between the stator core 32 and the coil 31.
  • the stator core 32 has an annular core back portion 32a and a number of teeth 32b extending radially inward from the core back portion 32a.
  • the teeth 32b are arranged in the circumferential direction.
  • a coil wire is arranged between the teeth 32b arranged in the circumferential direction.
  • the coil wire located between adjacent teeth 32b constitutes the coil 31.
  • the coil 31 is arranged in the stator core 32.
  • the insulator is made of an insulating material.
  • the coil 31 has a pair of coil ends 31a, 31b that protrude in the axial direction from both axial end faces of the stator core 32.
  • the coil ends 31a, 31b are formed by bundling together parts of the coil wire that connects the slots of the stator core 32.
  • the stator 30 has the first coil end 31a located at the end on one axial side, and the second coil end 31b located at the end on the other axial side.
  • the lead wire 31k extends from the coil 31 to one axial side (+Y side).
  • the stator 30 has three lead wires 31k corresponding to the U-phase, V-phase, and W-phase.
  • the lead wire 31k has a twisted conductor, a crimp terminal crimped to its tip, and an insulating tube (not shown) that covers the outer periphery of the coil wire.
  • the lead wire 31k is connected to the lead wire connection portion 7a of the bus bar 7b at the crimp terminal at the tip.
  • the resolver 29 includes a resolver rotor 29a and a resolver stator (rotation sensor) 29b.
  • the resolver rotor 29a includes a plurality of magnets arranged in the circumferential direction. The resolver rotor 29a rotates together with the rotor 20 around the central axis J1.
  • the resolver stator 29b is fixed to the bearing holder 70.
  • the resolver stator 29b surrounds the resolver rotor 29a from the radial outside.
  • the resolver stator 29b has a coil that is excited by a change in magnetic flux accompanying the rotation of the resolver rotor 29a.
  • the resolver stator 29b detects the rotation angle of the rotor 20 based on the excited magnetic flux change.
  • the resolver stator 29b has resolver wiring 29c.
  • the resolver wiring 29c connects the resolver stator 29b to the inverter 7.
  • the resolver wiring 29c supplies power from the inverter 7 to the resolver stator 29b.
  • the resolver wiring 29c outputs the result of the resolver 29 detecting the rotation angle of the rotor 20 to the inverter 7.
  • the temperature sensor 81 is attached to the coil 31 of the stator 30 to measure the temperature of the coil 31.
  • the temperature sensor 81 has a temperature sensor wiring 81a.
  • the temperature sensor wiring 81a is connected to the inverter 7.
  • the temperature sensor wiring 81a outputs the measurement result of the coil temperature by the temperature sensor 81 to the inverter 7.
  • the inverter 7 shown in Fig. 1 is electrically connected to the motor 2.
  • the inverter 7 is connected to a battery (not shown) mounted on the vehicle, and converts direct current supplied from the battery into alternating current and supplies it to the motor 2.
  • the inverter 7 also controls the motor 2 based on commands from an external device and detection results of each sensor.
  • the inverter 7 is disposed on one axial side (+Y side) of the motor 2. According to this embodiment, the drive device 1 can be made smaller in the radial direction than when the inverter 7 is disposed radially outside the motor 2.
  • the inverter 7 has a bus bar 7b.
  • the bus bar 7b is a plate-shaped member made of a metal material with low electrical resistance.
  • the material of the bus bar 7b is, for example, copper.
  • the bus bar 7b has a lead wire connection part 7a at the end on the other axial side (-Y side).
  • the lead wire connection part 7a is connected to the lead wire 31k extending from the coil 31.
  • the inverter 7 of this embodiment has three bus bars 7b corresponding to the U phase, V phase, and W phase.
  • the inverter 7 passes an AC current through the bus bar 7b to the coil 31 of the stator 30.
  • the housing 6 has an opening 61 that exposes the internal space radially outward. A worker or an assembly device (hereinafter, a worker, etc.) inserts a tool through the opening 61 to connect the lead wire connection part 7a.
  • the power transmission unit 4 is disposed on the other axial side (-Y side) of the rotor 20.
  • the power transmission unit 4 is connected to the rotor 20 and transmits the power of the rotor 20 to an output shaft 47.
  • the power transmission unit 4 has a reduction gear 4a and a differential gear 4b. Torque output from the motor 2 is transmitted to the differential gear 4b via the reduction gear 4a.
  • the reduction gear 4a is a parallel shaft gear type reducer in which the rotation axes of the gears are arranged in parallel.
  • the differential gear 4b transmits the same torque to both the left and right wheels while absorbing the speed difference between the left and right wheels.
  • the reduction gear 4a has a second shaft 44, a third shaft 45, a first gear 41, a second gear 42, and a third gear 43.
  • the differential gear 4b has a ring gear 46g, a differential case 46, and a differential mechanism part 46c arranged inside the differential case 46.
  • the second shaft 44 extends in the axial direction around the central axis J1.
  • the second shaft 44 is arranged coaxially with the first shaft 21.
  • the second shaft 44 is connected at its end on one axial side (+Y side) to the end on the other axial side (-Y side) of the first shaft 21.
  • the second shaft 44 rotates around the central axis J1 together with the first shaft 21.
  • the first gear 41 is provided on the outer peripheral surface of the second shaft 44.
  • the first gear 41 rotates together with the second shaft 44 around the central axis J1.
  • the third shaft 45 rotates around the intermediate axis J2 parallel to the central axis J1.
  • the second gear 42 and the third gear 43 are arranged side by side in the axial direction.
  • the second gear 42 and the third gear 43 are provided on the outer peripheral surface of the third shaft 45.
  • the second gear 42 and the third gear 43 are connected via the third shaft 45.
  • the second gear 42 and the third gear 43 rotate around the intermediate axis J2.
  • the second gear 42 meshes with the first gear 41.
  • the third gear 43 meshes with the ring gear 46g of the differential device 4b.
  • the ring gear 46g rotates about an output axis J3 that is parallel to the central axis J1.
  • the torque output from the motor 2 is transmitted to the ring gear 46g via the reduction gear 4a.
  • the ring gear 46g is fixed to the differential case 46.
  • the differential case 46 has a case portion 46b that houses the differential mechanism portion 46c therein, and a differential case shaft 46a that protrudes from the case portion 46b on one axial side and the other axial side.
  • the differential case shaft 46a is cylindrical and extends axially with the output axis J3 as its center.
  • the ring gear 46g is provided on the outer peripheral surface of the differential case shaft 46a. The differential case shaft 46a rotates together with the ring gear 46g with the output axis J3 as its center.
  • the pair of output shafts 47 are connected to the differential device 4b.
  • the pair of output shafts 47 protrude from the differential case 46 of the differential device 4b on one axial side and the other axial side.
  • the output shafts 47 are disposed inside the differential case shafts 46a.
  • the output shafts 47 are rotatably supported on the inner peripheral surface of the differential case shafts 46a via bearings.
  • the torque output from the motor 2 is transmitted to the ring gear 46g of the differential device 4b via the second shaft 44, the first gear 41, the second gear 42, the third shaft 45, and the third gear 43 of the motor 2, and is output to the output shaft 47 via the differential mechanism part 46c of the differential device 4b.
  • the multiple gears 41, 42, 43, and 46g of the power transmission part 4 transmit the power of the motor 2 in the order of the second shaft 44, the third shaft 45, and the differential case shaft 46a.
  • the housing 6 has an inverter holder 6A, a housing main body 6B, a gear cover 6C, and a water jacket 50.
  • the inverter holder 6A, the housing main body 6B, the gear cover 6C, and the water jacket 50 are each separate members.
  • the inverter holder 6A is disposed on one axial side (+Y side) of the housing main body 6B.
  • the gear cover 6C is disposed on the other axial side (-Y side) of the housing main body 6B.
  • the water jacket 50 is disposed inside the housing main body 6B.
  • the housing 6 is provided with a flow path 90 through which the fluid L flows.
  • the fluid L is, for example, water or antifreeze. Note that the fluid L does not have to be water.
  • the fluid L may be oil or another fluid.
  • the flow path 90 includes an external pipe 97 that passes through the outside of the housing 6, and a first flow path section 91, a second flow path section 92, a third flow path section (flow path section) 93, and a fourth flow path section 94 that pass through the inside of the housing 6.
  • the fluid L flows through the first flow path section 91, the second flow path section 92, the third flow path section 93, and the fourth flow path section 94 in that order inside the housing 6.
  • the fluid L mainly cools the inverter in the first flow path section 91, and mainly cools the motor 2 in the third flow path section 93.
  • the external pipe 97 is connected to the inverter holder 6A at the first connection part 97a, and to the housing main body 6B at the second connection part 97b.
  • a radiator (not shown) for cooling the fluid L is arranged in the path of the external pipe 97.
  • the external pipe 97 sends low-temperature fluid L into the housing 6 at the first connection part 97a, and recovers the fluid L whose temperature has increased by absorbing heat within the housing 6 at the second connection part 97b.
  • the housing body 6B houses the motor 2 and opens on one axial side (+Y side).
  • the housing body 6B has a cylindrical outer tube portion 65 centered on the central axis J1, a partition portion 66 that is disposed on the other axial side (-Y side) of the outer tube portion 65 and covers the opening on the other axial side of the outer tube portion 65, and a recessed portion 67 that opens on the other axial side (-Y side).
  • the housing 6 has a cylindrical outer tube portion 65 centered on the central axis J1.
  • the outer tubular portion 65 surrounds the motor 2 from the radial outside.
  • the outer tubular portion 65 is provided with a second flow passage portion 92 and a fourth flow passage portion 94.
  • the second flow passage portion 92 and the fourth flow passage portion 94 are holes provided in the outer tubular portion 65.
  • the second flow passage portion 92 extends along the axial direction inside the wall of the outer tubular portion 65.
  • the second flow passage portion 92 connects the downstream end of the first flow passage portion 91 and the inlet portion 93a of the third flow passage portion 93.
  • the fourth flow passage portion 94 extends along the radial direction.
  • the fourth flow passage portion 94 extends radially outward from the outlet portion 93b of the third flow passage portion 93 and opens radially outward of the outer tubular portion 65.
  • the opening of the fourth flow passage portion 94 is connected to the second connecting portion 97b of the external piping 97.
  • a shaft insertion hole 66h is provided in the partition portion 66.
  • a pair of bearings 5B, 5C and a seal member 5S are disposed in the shaft insertion hole 66h.
  • the bearing 5B supports the first shaft 21, and the bearing 5C supports the second shaft 44.
  • the first shaft 21 and the second shaft 44 are connected to each other inside the shaft insertion hole 66h.
  • the seal member 5S is disposed between the two bearings 5B, 5C in the axial direction.
  • the seal member 5S seals between the inner circumferential surface of the shaft insertion hole 66h and the outer circumferential surface of the second shaft 44.
  • the gear cover 6C is fixed to the recessed portion 67 of the housing body 6B.
  • the gear cover 6C and the recessed portion 67 form an accommodation space that accommodates the power transmission unit 4.
  • Oil O is stored in the accommodation space for the power transmission unit 4.
  • the oil O increases the lubricity of the power transmission unit 4.
  • the inverter holder 6A houses and supports the inverter 7.
  • the inverter holder 6A covers the opening on one axial side (+Y side) of the housing body 6B.
  • the inverter holder 6A is provided with a first flow passage portion 91 that cools the inverter 7.
  • the water jacket 50 has a cylindrical inner cylindrical portion 51 centered on the central axis J1, and ribs 59 provided on the outer peripheral surface of the inner cylindrical portion 51. That is, the housing 6 has the inner cylindrical portion 51.
  • the inner cylindrical portion 51 surrounds the stator 30 from the radial outside and holds the stator 30. That is, the housing 6 surrounds the stator 30 from the radial outside and holds the stator 30.
  • the inner cylindrical portion 51 is disposed inside the outer cylindrical portion 65. That is, the inner cylindrical portion 51 is surrounded by the outer cylindrical portion 65 from the radial outside.
  • the outer diameter of the inner cylindrical portion 51 is smaller than the inner diameter of the outer cylindrical portion 65.
  • Seal portions 64c, 64d are disposed at both axial ends of the outer peripheral surface of the inner cylindrical portion 51.
  • the seal portions 64c, 64d are O-rings disposed in grooves provided on the outer peripheral surface of the inner cylindrical portion 51.
  • the seal portions 64c, 64d seal between the outer peripheral surface of the inner cylindrical portion 51 and the outer cylindrical portion 65.
  • a gap that functions as a third flow path portion 93 is provided between the pair of seal portions 64c, 64d.
  • the first seal portion 64d is disposed on one axial side (+Y side) of the third flow path portion 93 between the inner tubular portion 51 and the outer tubular portion 65
  • the second seal portion 64c is disposed on the other axial side (-Y side).
  • the rib 59 extends spirally around the central axis J1.
  • the rib 59 has a tip located at the radially outer end.
  • the tip of the rib 59 contacts the inner circumferential surface of the outer tubular portion 65 or faces it with a small gap between them.
  • the rib 59 separates the outer circumferential surface of the inner tubular portion 51 and the outer tubular portion 65, forming a spiral third flow path portion 93.
  • the third flow path portion 93 is provided between the outer cylindrical portion 65 and the inner cylindrical portion 51. More specifically, the third flow path portion 93 is provided radially inside the outer cylindrical portion 65 and radially outside the water jacket 50. The third flow path portion 93 extends spirally around the central axis J1. The third flow path portion 93 surrounds the stator 30 from the radial outside. The fluid L flowing through the third flow path portion 93 cools the water jacket 50. The water jacket 50 comes into contact with the stator core 32 and cools the stator core 32.
  • the third flow path portion 93 extends in a spiral shape.
  • the third flow path portion 93 is not limited to this embodiment as long as it surrounds the stator 30.
  • the third flow path portion 93 may be a flow path that meanders in the axial or circumferential direction.
  • the flow path configuration of the third flow path portion 93 can be determined by the shape of the rib 59.
  • the inner circumferential surface of the inner cylindrical portion 51 includes a mating inner circumferential surface 50e, a first inner circumferential surface 50f, and a second inner circumferential surface 50g.
  • the mating inner circumferential surface 50e contacts the outer circumferential surface of the stator core.
  • the stator core 32 is held by the mating inner circumferential surface 50e.
  • the inner diameters of the first inner circumferential surface 50f and the second inner circumferential surface 50g are larger than the inner diameter of the mating inner circumferential surface 50e.
  • the first inner circumferential surface 50f is located on one axial side (+Y side) of the mating inner circumferential surface 50e.
  • the second inner circumferential surface 50g is located on the other axial side (-Y side) of the mating inner circumferential surface 50e.
  • the first inner circumferential surface 50f surrounds the first coil end 31a from the radial outside via a gap.
  • the second inner circumferential surface 50g surrounds the second coil end 31b from the radial outside via a gap.
  • the first inner peripheral surface 50f is provided with a plurality of first fins (fins) 55a and a plurality of second fins (fins) 55b.
  • the second inner peripheral surface 50g is provided with a plurality of third fins 55c.
  • the inner peripheral surface of the inner cylindrical portion 51 is provided with a plurality of fins (first fins 55a and second fins 55b) arranged radially outward from the first coil end 31a, and a plurality of third fins 55c arranged radially outward from the second coil end 31b.
  • the first fins 55a and the second fins 55b are each provided in a predetermined region along the circumferential direction of the first inner peripheral surface 50f, which will be described later.
  • the first fins 55a, the second fins 55b, and the third fins 55c each extend along the axial direction and are arranged along the circumferential direction.
  • the water jacket 50 is cooled by the fluid L flowing through the third flow path portion 93.
  • the surface area of the water jacket 50 can be increased, thereby improving the cooling efficiency of the air in the space surrounded by the water jacket 50.
  • the first fin 55a, the second fin 55b, and the third fin 55c each extend along the axial direction. Therefore, the first fin 55a, the second fin 55b, and the third fin 55c smoothly guide the air that is blown outward in the radial direction from the fans 10A, 10B and hits the first inner circumferential surface 50f or the second inner circumferential surface 50g along the axial direction. This allows the air to circulate smoothly inside the housing 6, improving the cooling efficiency of the stator 30 and the rotor 20.
  • the bearing holder 70 is located on one axial side (+Y side) of the stator 30.
  • the bearing holder 70 covers the motor 2 from one axial side (+Y side).
  • the bearing holder 70 is fixed to an end face of the water jacket 50 on one axial side (+Y side).
  • the bearing holder 70 holds the first bearing (bearing) 5A.
  • the first bearing 5A is disposed at one axial end (+Y side) of the first shaft 21, and rotatably supports the rotor 20.
  • the bearing holder 70 is made of, for example, an aluminum alloy, and is formed by casting such as die casting. In addition, cutting is performed using an end mill or the like on the surfaces of the bearing holder 70 that serve as reference surfaces during assembly.
  • Fig. 3 is a front view of the bearing holder 70 attached to the drive device 1.
  • Fig. 4 is a perspective view of the bearing holder 70.
  • the bearing holder 70 has a main body portion 71 , a bearing holding portion 72 , a resolver holding portion 74 , a protrusion 73 , and an outer edge portion 76 .
  • the main body 71 is disk-shaped and centered on the central axis J1.
  • the bearing holder 72 is disposed in the center of the main body 71. In other words, the main body 71 extends radially outward from the bearing holder 72.
  • a number of radial ribs 75 are provided on the surface of the main body 71 facing the other axial side (-Y side).
  • the multiple radial ribs 75 are arranged at equal intervals along the circumferential direction.
  • Each radial rib 75 extends radially from the central axis J1.
  • the radially inner ends of the radial ribs 75 are connected to the outer peripheral surface of the bearing holder 72.
  • the radial ribs 75 reinforce the main body 71 and the bearing holder 72.
  • the main body 71 is provided with a central hole 71h, a first through hole 71a, and a second through hole 71b that penetrate in the axial direction.
  • the central hole 71h is circular and centered on the central axis J1. The end of the first shaft 21 on one axial side (+Y side) is inserted into the central hole 71h.
  • the first through hole 71a and the second through hole 71b are arranged side by side in the circumferential direction centered on the central axis J1.
  • the first through hole 71a and the second through hole 71b are each an elongated hole extending in the circumferential direction.
  • the radially inner edge of the first through hole 71a and the radially inner edge of the second through hole 71b are approximately aligned in the radial direction.
  • the radially outer edge of the first through hole 71a is arranged farther away from the central axis J1 than the radially inner edge of the second through hole 71b.
  • the circumferential length of the first through hole 71a is sufficiently larger than the circumferential length of the second through hole 71b. Therefore, the opening area of the first through hole 71a is sufficiently larger than the opening area of the second through hole 71b.
  • the first through hole 71a passes the lead wire 31k extending from the coil 31 of the stator 30. Meanwhile, the second through hole 71b passes the temperature sensor wiring 81a extending from the temperature sensor 81.
  • the lead wire 31k and temperature sensor wiring 81a passing through the first through hole 71a and the second through hole 71b are connected to the inverter 7 on one axial side (+Y side) of the bearing holder 70.
  • the bearing retaining portion 72 is cylindrical and centered on the central axis J1.
  • the bearing retaining portion 72 protrudes toward the other axial side (-Y side) from the surface of the main body portion 71 facing that side.
  • the bearing retaining portion 72 surrounds the first bearing 5A from the radial outside and retains the first bearing 5A.
  • the bearing retaining portion 72 also surrounds the central hole 71h from the radial outside.
  • the resolver holding portion 74 is cylindrical and centered on the central axis J1.
  • the resolver holding portion 74 protrudes to one axial side (+Y side) from a surface of the main body portion 71 facing that side.
  • the resolver holding portion 74 and the bearing holding portion 72 are disposed on one axial side (+Y side) and the other axial side (-Y side) of the main body portion 71, respectively.
  • the resolver holding portion 74 surrounds the resolver stator 29b from the radial outside and holds the resolver stator 29b.
  • the outer edge portion 76 is provided along the outer edge of the main body portion 71.
  • the outer edge portion 76 extends in a substantially annular shape along the circumferential direction centered on the central axis J1.
  • a plurality of first fastening portions 76b are provided on the outer edge portion 76.
  • the first fastening portions 76b are arranged at substantially equal intervals along the circumferential direction.
  • the first fastening portions 76b each have a hole 76a. As shown in FIG. 2, the bearing holder 70 is fixed to the inner cylindrical portion 51 by inserting the first fixing screw 3 into the hole 76a and then screwing it to the surface of the inner cylindrical portion 51 facing one axial side (+Y side). In other words, the first fastening portions 76b are fixed to the inner cylindrical portion 51.
  • first fastening portions 76b are provided on the outer edge portion 76 of this embodiment.
  • the outer edge portion 76 has a larger radial width at the first fastening portions 76b. That is, the outer edge portion 76 protrudes radially inward and outward at the first fastening portions 76b.
  • the first fastening portions 76b are provided wider than other portions of the outer edge portion 76, thereby ensuring a sufficient contact area between the first fastening portions 76b and the head of the first fixing screw 3 (see FIG. 2) and a sufficient area of the fastening surface with the inner tubular portion 51.
  • the protrusion 73 protrudes from the surface of the main body 71 facing the other axial side (-Y side) toward the other axial side (-Y side).
  • the bearing holder 70 of this embodiment is provided with one protrusion 73.
  • the protrusion 73 of this embodiment is a rib that extends in an arc shape along the circumferential direction.
  • the protrusion 73 is provided along the outer edge of the main body 71. Furthermore, the protrusion 73 is positioned radially inward of the outer edge 76.
  • the protrusion 73 in this embodiment is provided in a region of 270° or more around the central axis J1.
  • the protrusion 73 is interrupted at the portion where the first through hole 71a is provided.
  • the first through hole 71a is disposed between the end 73b on one circumferential side of the protrusion 73 and the end 73c on the other circumferential side.
  • the protrusion 73 in this embodiment has multiple (five in this embodiment) detours 73d. Each detour 73d is located radially inward of the first fastening portion 76b. The protrusion 73 detours radially inward at the detours 73d to avoid the first fastening portion 76b. In the area other than the detours 73d, the protrusion 73 extends in a curved circumferential direction with a constant radius of curvature centered on the central axis J1.
  • the protrusion 73 has an outer surface 73a that faces radially outward.
  • the outer surface 73a is a cylindrical surface that is mainly centered on the central axis J1.
  • the outer surface 73a is curved concavely radially inward at the portion where the detour portion 73d is provided.
  • the protrusion 73 extends circumferentially along an imaginary circle VC centered on the central axis J1 when viewed from the axial direction.
  • the protrusion 73 also fits into the inner peripheral surface of the inner cylindrical portion 51. More specifically, the outer surface 73a of the protrusion 73 and the first inner peripheral surface 50f of the inner cylindrical portion 51 fit together in a radially opposed relationship.
  • the protrusions 73 on the bearing holder 70 fit into the inner surface of the inner cylindrical portion 51, thereby positioning the bearing holder 70 radially relative to the inner cylindrical portion 51.
  • the stator 30 is fixed to the inner cylindrical portion 51, and the rotor 20 is supported by the bearing holder 70 via the first bearing 5A.
  • the rotor 20 can be supported with high precision relative to the stator 30, and the air gap between the stator 30 and the rotor 20 can be made uniform in the circumferential direction, thereby improving the driving efficiency of the motor 2.
  • the protrusion 73 in this embodiment fits into the inner peripheral surface of the inner tubular portion 51.
  • the radial thickness of the inner tubular portion 51 can be made smaller than when a fitting recess is provided on the end face of the inner tubular portion 51 on one axial side (+Y side).
  • the drive unit 1 can be made smaller in the radial direction.
  • the first through hole 71a is disposed on the imaginary circle VC when viewed from the axial direction.
  • the protruding portion 73 is interrupted at the portion where the first through hole 71a is provided.
  • the first through hole 71a can be disposed radially outward, compared to the case where the first through hole is disposed radially inside the imaginary circle VC to avoid the protruding portion 73.
  • the lead wire 31k passing through the first through hole 71a can also be disposed radially outward, and in the connection work between the lead wire 31k and the bus bar 7b, it becomes easier for workers to access the lead wire connection portion 7a from the radial outside.
  • the assembly process of the drive unit 1 can be simplified.
  • the bearing holder 70 and the inner cylindrical portion 51 can be made smaller in the radial direction, compared to the case where the protruding portion is disposed radially outward from the imaginary circle VC passing through the first through hole 71a to avoid the first through hole 71a.
  • the drive unit 1 can be made smaller in the radial direction.
  • the protrusion 73 and the first through hole 71a are disposed at different positions in the circumferential direction.
  • the main body 71 has low radial rigidity in the portion where the first through hole 71a is provided. If the first through hole 71a is provided radially inward of the protrusion 73, the force received by the bearing holder 70 from the inner cylindrical portion 51 at the protrusion 73 may cause the bearing holder 70 to deform, causing the bearing holder 70 to become unstable in its support of the rotor 20. According to this embodiment, deformation of the bearing holder 70 can be suppressed even when force is applied to the protrusion 73.
  • the bearing holder 70 has one protrusion 73.
  • the first through hole 71a in this embodiment is located between the end 73b on one circumferential side of the protrusion 73 and the end 73c on the other circumferential side.
  • the protrusion 73 is made sufficiently long in the circumferential direction, so that a large fitting length with the inner cylindrical portion 51 can be ensured. As a result, it becomes easier to position the bearing holder 70 relative to the inner cylindrical portion 51, and the bearing holder 70 is held stably.
  • the protrusion 73 extends over a range of 270° or more in the circumferential direction centered on the central axis J1, which further improves the stability of positioning.
  • the protrusion 73 of this embodiment is provided with a detour 73d, which suppresses the radially outward protrusion of the first fastening portion 76b while ensuring a sufficient fastening area of the first fastening portion 76b.
  • the detour 73d fits into the convex portion on the inner surface of the inner cylindrical portion 51, thereby suppressing the rotation of the bearing holder 70 relative to the inner cylindrical portion 51.
  • the protrusion 73 does not have to have the detour 73d.
  • FIG. 5 is a partial perspective view of a protrusion 273 of a modified example that does not have a detour 73d.
  • the protrusion 273 of this modified example extends in an arc shape along the circumferential direction as in the first embodiment.
  • the protrusion 273 of this modified example extends in an arc shape around the central axis J1 with a uniform radius of curvature even on the radially inner side of the first fastening portion 276b. Therefore, the outer surface 273b of the protrusion 273 becomes a uniform cylindrical surface centered on the central axis J1 over the entire length of the protrusion 273.
  • one uniform outer surface 273b can be fitted to the inner peripheral surface of the inner cylindrical portion 51, improving the positioning accuracy of the bearing holder 70 relative to the inner cylindrical portion 51.
  • the first inner circumferential surface 50f of the inner tubular portion 51 can be divided into a first region A1 and a second region A2 in the circumferential direction.
  • the first region A1 is a region located radially outside the protrusion 73
  • the second region A2 is a region located at the portion where the protrusion 73 ends.
  • the protrusion 73 fits into the first inner circumferential surface 50f of the inner tubular portion 51 in the first region A1.
  • the first fin 55a is provided in the first region A1, and the second fin 55b is provided in the second region A2. It is preferable that the end position P1 on one axial side (+Y side) of the first fin 55a is located on the other axial side (-Y side) of the end position P2 on one axial side (+Y side) of the second fin 55b. In other words, it is preferable that the end on one axial side (+Y side) of the first fin 55a in the first region A1 is located on the other axial side (-Y side) of the end on one axial side (+Y side) of the second fin 55b in the second region A2.
  • the protrusion 73 in this embodiment is located on one axial side (+Y side) of the first coil end 31a. This ensures an insulation distance between the protrusion 73 and the first coil end 31a. According to this embodiment, the protrusion 73 is located radially outward of the first coil end 31a. This makes it easier to bring the main body 71 of the bearing holder 70 closer to the coil 31 in the axial direction, and allows the axial dimension of the drive unit 1 to be reduced.
  • the protrusion 73 is located on one axial side (+Y side) of the first seal portion 64d.
  • the first seal portion 64d which is located on one axial side (+Y side) of the third flow path portion 93, does not overlap with the protrusion 73 in the radial direction. Therefore, according to this embodiment, the inner tube portion 51 can be prevented from becoming large in the radial direction.
  • the protrusion 73 in this embodiment is located at a different position from the first seal portion 64d when viewed from the axial direction. Furthermore, the protrusion 73 overlaps with the third flow path portion 93 when viewed from the axial direction.
  • the protruding portion 73 and the bearing holding portion 72 both protrude from the surface of the main body portion 71 facing the other axial side (-Y side) toward the other axial side (-Y side).
  • the outer surface 73a of the protruding portion 73 and the inner peripheral surface of the bearing holding portion 72 are preferably cut to function as mating surfaces. According to this embodiment, since both the protruding portion 73 and the bearing holding portion 72 are provided on the surface of the other axial side (-Y side) of the main body portion 71, cutting can be performed from the same direction (other axial side). This improves the workability of the cutting process.
  • both the protruding portion 73 and the bearing holding portion 72 can be machined without removing the bearing holder 70 from the machine tool, the coaxiality of the outer surface 73a of the protruding portion 73 and the inner peripheral surface of the bearing holding portion 72 can be improved. This improves the positional accuracy of the rotor 20 relative to the stator 30.
  • the resolver stator 29b is fixed to the bearing holder 70. Furthermore, the axial position of the resolver stator 29b overlaps with the axial position of the protrusion 73. According to this embodiment, by arranging the protrusion 73 and the resolver stator 29b so as to overlap in the axial direction, the bearing holder 70 can be made smaller in the axial direction, and the axial dimension of the drive unit 1 can be made smaller.
  • resolver wiring 29c of resolver stator 29b is fixed to bearing holder 70 in the path. More specifically, resolver wiring 29c is fixed by fixture 8 to a surface of main body 71 facing one axial side (+Y side). Fixture 8 is screwed to main body 71, and a screw hole for screwing fixture 8 is provided on the surface of main body 71 facing one axial side. In this embodiment, the screw portion of the fixture overlaps protrusion 73 when viewed from the axial direction. Therefore, when a screw hole for screwing fixture 8 is provided in main body 71, the screw hole can be provided sufficiently deep, and sufficient screw engagement can be ensured.
  • FIG. 6 is a front view of a bearing holder 170 attached to the driving device 101 of the second embodiment.
  • Fig. 7 is a perspective view of the bearing holder 170 of the second embodiment.
  • a bearing holder 170 according to a second embodiment will be described below with reference to Fig. 6 and Fig. 7.
  • the driving device 101 according to this embodiment differs from the above-described embodiment in the configuration of the bearing holder 170. Note that the same components as those in the above-described embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
  • the bearing holder 170 has a main body portion 71, a bearing holding portion 72, a resolver holding portion 74 (see FIG. 6), multiple protrusions 173, and an outer edge portion 76.
  • the main body portion 71 is provided with a first through hole 71a and a second through hole 71b.
  • the outer edge portion 76 is provided with multiple first fastening portions 76b aligned in the circumferential direction. That is, the bearing holder 170 has multiple first fastening portions 76b.
  • the protrusions 173 protrude from the surface of the main body 71 facing the other axial side (-Y side) toward the other axial side (-Y side).
  • the bearing holder 170 of this embodiment three protrusions 173 are provided.
  • Each protrusion 173 is a rib that extends in a substantially arc shape along the circumferential direction.
  • the protrusions 173 are provided along the outer edge of the main body 71. Furthermore, the protrusions 173 are positioned radially inward of the outer edge 76.
  • the multiple protrusions 173 are arranged on an imaginary circle VC.
  • the three protrusions 173 have substantially the same shape and are arranged rotationally symmetric about the central axis J1.
  • the first protrusion 173A, the second protrusion 173B, and the third protrusion 173C when the bearing holder 170 is viewed from one axial side (+Y side), the first protrusion 173A, the second protrusion 173B, and the third protrusion 173C are arranged in this order in a clockwise direction.
  • the first through hole 71a is disposed between the first protrusion 173A and the third protrusion 173C in the circumferential direction.
  • the first through hole 71a is disposed on the imaginary circle VC when viewed from the axial direction.
  • the first through hole 71a is also located between a pair of protrusions 173 that are adjacent to each other in the circumferential direction among the multiple protrusions 173.
  • the first through hole 71a can be positioned radially outward, and the lead wire 31k can also be positioned radially outward, compared to when the first through hole is positioned radially inward of the virtual circle VC to avoid the protrusion 173.
  • the bearing holder 170 and the inner cylindrical portion 51 can be made smaller in the radial direction, compared to when the protrusion is positioned radially outward of the virtual circle VC that passes through the first through hole 71a to avoid the first through hole 71a.
  • the bearing holder 170 of this embodiment is provided with a plurality of protrusions 173 arranged in the circumferential direction.
  • the bearing holder 170 of this embodiment can be made lighter than the bearing holder 170 having a continuous protrusion 173 as in the above-mentioned embodiment. Note that, although this embodiment has been described as having three protrusions 173, the number of protrusions 173 is not limited to this embodiment and may be two or four or more.
  • the protrusion 173 and the first fastening portion 76b are preferably disposed at different positions in the circumferential direction.
  • the first fastening portion 76b tends to be large in the radial direction in order to secure a fastening area.
  • the radial size of the entire drive device 101 can be suppressed.
  • the outer surface 173a of the protrusion 173 and the fastening surface of the first fastening portion 76b are both contact surfaces with the inner cylindrical portion 51.
  • the contact surfaces between the bearing holder 170 and the inner cylindrical portion 51 can be distributed in the circumferential direction. According to this embodiment, when a force is applied between the bearing holder 170 and the inner cylindrical portion 51, it is possible to suppress the bearing holder 170 and the inner cylindrical portion 51 from being significantly deformed due to a large force being applied locally.
  • the inner tubular portion 51 in this embodiment has a plurality of second fastening portions 56 (four in this embodiment) fixed to the outer tubular portion 65 at the end on one axial side (+Y side).
  • the second fastening portions 56 are arranged at equal intervals in the circumferential direction.
  • Each of the second fastening portions 56 is provided with a hole into which a second fixing screw 13 is inserted.
  • the second fastening portions 56 are fastened to the outer tubular portion 65 by screwing the second fixing screws 13 into threaded holes provided on the surface of the outer tubular portion 65 facing one axial side (+Y side).
  • the protrusions 173 and the second fastening portion 56 are positioned at different positions in the circumferential direction.
  • the first protrusions 173A and the second protrusions 173B are positioned at different positions in the circumferential direction from the second fastening portion 56.
  • the third protrusions 173C partially overlap with the second fastening portion 56 in the circumferential direction.
  • the most preferred embodiment is one in which all of the protrusions 173 are positioned circumferentially offset from the second fastening portion 56.
  • the protrusion 173 and the second fastening portion 56 are arranged at different positions in the circumferential direction, so that when a force is applied from the bearing holder 170 to the outer tubular portion 65 via the inner tubular portion 51, the portions that can become the force transmission path can be arranged in a distributed manner in the circumferential direction. According to this embodiment, when a force is applied from the bearing holder 170 to the inner tubular portion 51, it is possible to prevent the inner tubular portion 51 from being significantly deformed due to a large force being applied locally.
  • the protrusion 173 and the second through hole 71b are disposed at different positions in the circumferential direction.
  • the main body 71 has low radial rigidity in the portion where the second through hole 71b is provided. If the second through hole 71b is provided radially inside the protrusion 173, the force received by the bearing holder 170 from the inner cylindrical portion 51 at the protrusion 173 may cause the bearing holder 170 to deform, causing the bearing holder 170 to become unstable in its support of the rotor 20. According to this embodiment, deformation of the bearing holder 170 can be suppressed even when force is applied to the protrusion 173.
  • the outer tubular portion 65 of this embodiment is provided with a second flow passage portion 92 extending in the axial direction.
  • the protrusion 173 and the second flow passage portion 92 are arranged at different positions in the circumferential direction.
  • the protrusion 173 and the second flow passage portion 92 are arranged at different positions in the circumferential direction, it is possible to prevent a large load from being applied to the second flow passage portion 92 even when a radial force is applied to the bearing holder 170.
  • the coil is a bendable conductor attached to the stator, and the lead wire extending from the coil has a structure in which multiple conductor wires are bundled together with a crimp terminal.
  • the coil may be a segment coil made of a highly rigid rectangular wire, and the lead wire extending from the coil may also be a single rectangular wire.
  • the present technology can be configured as follows: (1) A rotor rotatable about a central axis, a stator surrounding the rotor from the radial outside, a housing surrounding the stator from the radial outside and holding the stator, a bearing rotatably supporting the rotor, and a bearing holder located on one axial side of the stator and holding the bearing, the housing having a cylindrical inner cylindrical portion centered on the central axis and an outer cylindrical portion, a flow path portion is provided between the inner cylindrical portion and the outer cylindrical portion, and the bearing holder is disposed on the central axis.
  • a drive device having a disk-shaped main body part centered on a line, a bearing holding part that holds the bearing, a first fastening part fixed to the inner cylindrical part, and a protrusion that protrudes to the other axial direction side from a surface of the main body part facing the other axial direction side, the protrusion extending in the circumferential direction along a virtual circle centered on the central axis as viewed in the axial direction and fitting to an inner peripheral surface of the inner cylindrical part, the main body part being provided with a first through hole through which a lead wire extending from a coil of the stator passes, the first through hole being disposed on the virtual circle as viewed in the axial direction.
  • stator has a first coil end disposed at an end portion on one axial side and a second coil end disposed at an end portion on the other axial side, and the protruding portion is disposed on one axial side of the first coil end.
  • stator has a first coil end located at an end on one axial side and a second coil end located at an end on the other axial side, and the protruding portion is located radially outward of the first coil end.
  • stator has a first coil end located at an end on one axial side and a second coil end located at an end on the other axial side, and an inner circumferential surface of the inner cylindrical portion is provided with a plurality of fins arranged radially outward of the first coil end, extending along the axial direction, and aligned along the circumferential direction, the inner circumferential surface of the inner cylindrical portion being partitioned into a first region and a second region in the circumferential direction, the protruding portion fits into the inner circumferential surface of the inner cylindrical portion in the first region, and the end on one axial side of the fins in the first region is located on the other axial side of the end on one axial side of the fins in the second region.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

One aspect of a drive device according to the present invention comprises a rotor, a stator, a housing, a bearing, and a bearing holder that is located on one side in the axial direction of the stator and that holds the bearing. The housing includes a cylindrical inner tube section centered on the central axis, and an outer tube section. A flow path section is provided between the inner tube section and the outer tube section. The bearing holder includes: a disc-shaped body section centered on the central axis; a bearing holding part that holds the bearing; a first fastening part fixed to the inner tube section; and a protruding part that protrudes toward the other side in the axial direction from the surface of the body section facing the other side in the axial direction. The protruding part extends in the circumferential direction running along an imaginary circle centered on the central axis when viewed from the axial direction, and fits to the inner circumferential surface of the inner tube section. A first through hole, through which a lead wire extending from a stator coil is passed, is provided in the body section. The first through hole is disposed on an imaginary circle when viewed from the axial direction.

Description

駆動装置Drive unit
 本発明は、駆動装置に関する。
 本願は、2022年月9月30日に日本に出願された特願2022-157698号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a drive device.
This application claims priority based on Japanese Patent Application No. 2022-157698, filed in Japan on September 30, 2022, the contents of which are incorporated herein by reference.
 近年の電気自動車への関心の高まりとともに、モータを冷却する方法についても様々に開発が進んでいる。モータの冷却方法の一例として、ステータの外周をウォータジャケットで囲み、ステータを均一に冷却すること構造が知られている。このような構造では、一般的に、ベアリングを支持するベアリングホルダがウォータジャケットに固定される。例えば、冷媒通路が設けられる筒状のフレーム(ウォータジャケット)の端面の凹部に、ブラケット(ベアリングホルダ)に設けられる突起を挿入することで、フレームに対してブラケットを位置決めする(例えば、特許文献1)。 With the growing interest in electric vehicles in recent years, various methods for cooling motors have been developed. One known example of a motor cooling method is a structure in which the outer circumference of the stator is surrounded by a water jacket to uniformly cool the stator. In such a structure, a bearing holder that supports the bearings is generally fixed to the water jacket. For example, the bracket (bearing holder) is positioned relative to the frame by inserting a protrusion on the bracket into a recess on the end face of a cylindrical frame (water jacket) in which a refrigerant passage is provided (for example, Patent Document 1).
特開2012-228105号公報JP 2012-228105 A
 従来構造では、ウォータジャケットの端面に凹部を設けるためにウォータジャケットの肉厚を十分に確保する必要が生じ、駆動装置が大型化する虞がある。  In conventional structures, it is necessary to ensure that the water jacket is thick enough to provide a recess on the end face of the water jacket, which can lead to an increase in the size of the drive unit.
 本発明は、上記事情に鑑みて、小型化を図ることができる駆動装置の提供を目的の一つとする。 In view of the above, one of the objectives of the present invention is to provide a drive unit that can be made smaller.
 本発明の駆動装置の一つの態様は、中心軸線を中心に回転可能なロータと、前記ロータを径方向外側から囲むステータと、前記ステータを径方向外側から囲み前記ステータを保持するハウジングと、前記ロータを回転可能に支持するベアリングと、前記ステータの軸方向一方側に位置し前記ベアリングを保持するベアリングホルダと、を備える。前記ハウジングは、前記中心軸線を中心とする筒状の内側筒部、および外側筒部を有する。前記内側筒部と前記外側筒部との間には、流路部が設けられる。前記ベアリングホルダは、前記中心軸線を中心とする円板状の本体部と、前記ベアリングを保持するベアリング保持部と、前記内側筒部に固定される第1締結部と、前記本体部の軸方向他方側を向く面から軸方向他方側に突出する突出部と、を有する。前記突出部は、軸方向から見て前記中心軸線を中心とする仮想円に沿って周方向に沿って延びて前記内側筒部の内周面に嵌る。前記本体部には、前記ステータのコイルから延び出る引出線を通す第1貫通孔が設けられる。前記第1貫通孔は、軸方向から見て前記仮想円上に配置される。 One embodiment of the drive device of the present invention includes a rotor rotatable around a central axis, a stator surrounding the rotor from the radial outside, a housing surrounding the stator from the radial outside and holding the stator, a bearing supporting the rotor rotatably, and a bearing holder located on one axial side of the stator and holding the bearing. The housing has a cylindrical inner cylindrical portion centered on the central axis, and an outer cylindrical portion. A flow path portion is provided between the inner cylindrical portion and the outer cylindrical portion. The bearing holder has a disk-shaped main body portion centered on the central axis, a bearing holding portion that holds the bearing, a first fastening portion fixed to the inner cylindrical portion, and a protruding portion that protrudes to the other axial side from a surface of the main body portion facing the other axial side. The protruding portion extends circumferentially along a virtual circle centered on the central axis when viewed from the axial direction, and fits into the inner peripheral surface of the inner cylindrical portion. The main body portion is provided with a first through hole through which a lead wire extending from a coil of the stator passes. The first through hole is positioned on the imaginary circle when viewed in the axial direction.
 本発明の一つの態様によれば、小型化を図ることができる駆動装置を提供できる。 One aspect of the present invention provides a drive device that can be made compact.
図1は、第1実施形態の駆動装置の概念図である。FIG. 1 is a conceptual diagram of a drive device according to a first embodiment. 図2は、第1実施形態の駆動装置の部分断面図である。FIG. 2 is a partial cross-sectional view of the drive device of the first embodiment. 図3は、第1実施形態の駆動装置に取り付けられるベアリングホルダの正面図である。FIG. 3 is a front view of a bearing holder attached to the drive device of the first embodiment. 図4は、第1実施形態のベアリングホルダの斜視図である。FIG. 4 is a perspective view of the bearing holder of the first embodiment. 図5は、変形例の突出部の部分斜視図である。FIG. 5 is a partial perspective view of a modified protrusion. 図6は、第2実施形態の駆動装置に取り付けられるベアリングホルダの正面図である。FIG. 6 is a front view of a bearing holder attached to the drive unit of the second embodiment. 図7は、第2実施形態のベアリングホルダの斜視図である。FIG. 7 is a perspective view of a bearing holder according to the second embodiment.
 以下の説明では、駆動装置1が水平な路面上に位置する車両に搭載された場合の位置関係を基に、重力方向を規定して各部を説明する。また、図面においては、適宜3次元直交座標系としてXYZ座標系を示す。 In the following explanation, each part will be explained by defining the direction of gravity based on the positional relationship when the drive unit 1 is mounted on a vehicle positioned on a horizontal road surface. In addition, in the drawings, the XYZ coordinate system is shown as a three-dimensional Cartesian coordinate system as appropriate.
 XYZ座標系において、Z軸方向は、鉛直方向(すなわち上下方向)を示し、+Z方向が上側(重力方向の反対側)であり、-Z方向が下側(重力方向)である。また、X軸方向は、Z軸方向と直交する方向であって駆動装置1が搭載される車両の前後方向を示す。Y軸方向は、X軸方向とZ軸方向との両方と直交する方向であって、車両の幅方向(左右方向)を示す。 In the XYZ coordinate system, the Z-axis direction indicates the vertical direction (i.e., up-down direction), the +Z direction is the upper side (opposite the direction of gravity), and the -Z direction is the lower side (direction of gravity). The X-axis direction is perpendicular to the Z-axis direction and indicates the front-to-rear direction of the vehicle on which the drive unit 1 is mounted. The Y-axis direction is perpendicular to both the X-axis and Z-axis directions and indicates the width direction (left-right direction) of the vehicle.
 以下の説明において特に断りのない限り、モータ2の中心軸線J1に平行な方向(Y軸方向)を単に「軸方向」と呼び、中心軸線J1を中心とする径方向を単に「径方向」と呼び、中心軸線J1を中心とする周方向、すなわち、中心軸線J1の軸周りを単に「周方向」と呼ぶ。ただし、上記の「平行な方向」は、略平行な方向も含む。さらに、以下の説明において、中心軸線J1の軸方向のうち、+Y方向を単に軸方向一方側と呼び、-Y方向を単に軸方向他方側と呼ぶ場合がある。 Unless otherwise specified in the following description, the direction parallel to the central axis J1 of the motor 2 (Y-axis direction) will be referred to simply as the "axial direction", the radial direction centered on the central axis J1 will be referred to simply as the "radial direction", and the circumferential direction centered on the central axis J1, i.e., around the axis of the central axis J1, will be referred to simply as the "circumferential direction". However, the above "parallel direction" also includes directions that are approximately parallel. Furthermore, in the following description, of the axial directions of the central axis J1, the +Y direction may be referred to simply as one axial side, and the -Y direction may be referred to simply as the other axial side.
<第1実施形態>
 <駆動装置>
 図1は、第1実施形態の駆動装置1の概念図である。図2は、第1実施形態の駆動装置1の部分断面図である。
 本実施形態の駆動装置1は、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHV)、電気自動車(EV)等、モータを動力源とする車両に搭載され、その動力源として使用される。
First Embodiment
<Drive unit>
Fig. 1 is a conceptual diagram of a drive device 1 according to a first embodiment. Fig. 2 is a partial cross-sectional view of the drive device 1 according to the first embodiment.
The drive device 1 of this embodiment is mounted on a vehicle that uses a motor as a power source, such as a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHV), or an electric vehicle (EV), and is used as the power source thereof.
 図1に示すように、駆動装置1は、モータ2と、動力伝達部4と、インバータ(制御部)7と、温度センサ81と、レゾルバ29と、ベアリングホルダ70と、ハウジング6と、複数のベアリング5A、5B、5Cと、を備える。ハウジング6は、モータ2、動力伝達部4、インバータ7、レゾルバ29、温度センサ81、およびベアリングホルダ70を収容する。モータ2、動力伝達部4、およびインバータ7は、ハウジング6の内部において、中心軸線J1上に配置される。 As shown in FIG. 1, the drive device 1 includes a motor 2, a power transmission unit 4, an inverter (control unit) 7, a temperature sensor 81, a resolver 29, a bearing holder 70, a housing 6, and a plurality of bearings 5A, 5B, and 5C. The housing 6 accommodates the motor 2, power transmission unit 4, inverter 7, resolver 29, temperature sensor 81, and bearing holder 70. The motor 2, power transmission unit 4, and inverter 7 are arranged inside the housing 6 on the central axis J1.
 <モータ>
 本実施形態のモータ2は、インナーロータ型の三相交流モータである。モータ2は、電動機としての機能と発電機としての機能とを兼ね備える。なお、モータ2の構成は本実施形態に限定されず、例えば四相以上の交流モータであってもよい。
<Motor>
The motor 2 in this embodiment is an inner rotor type three-phase AC motor. The motor 2 functions both as an electric motor and as a generator. The configuration of the motor 2 is not limited to this embodiment, and may be, for example, an AC motor with four or more phases.
 モータ2は、水平方向に延びる中心軸線J1を中心に回転可能なロータ20と、ロータ20と隙間を介して対向するステータ30と、を備える。すなわち、駆動装置1は、ロータ20とステータ30とを備える。本実施形態のモータ2は、ステータ30の内側にロータ20が配置されるインナーロータ型モータである。 The motor 2 includes a rotor 20 that can rotate around a central axis J1 that extends horizontally, and a stator 30 that faces the rotor 20 across a gap. That is, the drive unit 1 includes the rotor 20 and the stator 30. The motor 2 of this embodiment is an inner rotor type motor in which the rotor 20 is disposed inside the stator 30.
 ロータ20は、第1シャフト21と、第1シャフト21の外周面に固定されるロータコア24と、ロータコア24に固定されるロータマグネット(図示略)と、一対のファン10A、10Bと、を有する。ロータ20のトルクは、動力伝達部4に伝達される。 The rotor 20 has a first shaft 21, a rotor core 24 fixed to the outer circumferential surface of the first shaft 21, a rotor magnet (not shown) fixed to the rotor core 24, and a pair of fans 10A and 10B. The torque of the rotor 20 is transmitted to the power transmission unit 4.
 図2に示すように、ロータコア24には、シャフト挿入孔24hと、複数の送風孔24a、24bが設けられる。シャフト挿入孔24h、および送風孔24a、24bは、ロータコア24を軸方向に貫通する。シャフト挿入孔24h、および送風孔24a、24bは、ロータコア24の軸方向の両端面に開口する。シャフト挿入孔24hは、中心軸線を中心として軸方向に沿って延びる。シャフト挿入孔24hには、第1シャフト21が挿入される。 As shown in FIG. 2, the rotor core 24 is provided with a shaft insertion hole 24h and multiple ventilation holes 24a, 24b. The shaft insertion hole 24h and the ventilation holes 24a, 24b penetrate the rotor core 24 in the axial direction. The shaft insertion hole 24h and the ventilation holes 24a, 24b open at both axial end faces of the rotor core 24. The shaft insertion hole 24h extends in the axial direction around the central axis. The first shaft 21 is inserted into the shaft insertion hole 24h.
 複数の送風孔24a、24bは、周方向に沿って並ぶ。送風孔24a、24bは、第1送風孔24aと第2送風孔24bとを有する。第1送風孔24a、および第2送風孔24bは、周方向に沿って交互に並ぶ。本実施形態のロータ20には、4つの第1送風孔24aと4つの第2送風孔24bとが設けられる。第1送風孔24aと第2送風孔24bの横断面形状は、互いに等しい。第1送風孔24aと第2送風孔24bとは、内部を流れる空気の流動方向が互いに異なる。 The multiple air holes 24a, 24b are arranged in the circumferential direction. The air holes 24a, 24b include first air holes 24a and second air holes 24b. The first air holes 24a and the second air holes 24b are arranged alternately in the circumferential direction. The rotor 20 of this embodiment is provided with four first air holes 24a and four second air holes 24b. The cross-sectional shapes of the first air holes 24a and the second air holes 24b are the same. The first air holes 24a and the second air holes 24b have different flow directions of air flowing inside.
 第1シャフト21は、中心軸線J1を中心として軸方向に沿って延びる。第1シャフト21は、ベアリング5A、5Bに回転可能に支持される。以下の説明において、第1シャフト21を支持する一対のベアリング5A、5Bのうち、軸方向一方側(+Y側)に位置する一方を第1ベアリング5Aと呼ぶ場合があり、軸方向他方側(-Y側)に位置する他方を第2ベアリング5Bと呼ぶ場合がある。 The first shaft 21 extends in the axial direction around the central axis J1. The first shaft 21 is rotatably supported by bearings 5A and 5B. In the following description, of the pair of bearings 5A and 5B supporting the first shaft 21, one located on one axial side (+Y side) may be referred to as the first bearing 5A, and the other located on the other axial side (-Y side) may be referred to as the second bearing 5B.
 第1シャフト21の軸方向一方側(+Y側)の端部には、レゾルバロータ29aが固定される。本実施形態において、レゾルバロータ29aは、ベアリング5Aよりも軸方向一方側(+Y側)に位置する。 The resolver rotor 29a is fixed to the end of the first shaft 21 on one axial side (+Y side). In this embodiment, the resolver rotor 29a is located on one axial side (+Y side) of the bearing 5A.
 一対のファン10A、10Bは、それぞれロータコア24の軸方向一方側、および他方側の端面に固定される。一対のファン10A、10Bは、ロータ20とともに回転する。一対のファン10A、10Bは、ロータ20に対して取り付けられる位置および向きが互いに異なる。 The pair of fans 10A, 10B are fixed to the end faces of the rotor core 24 on one axial side and the other axial side, respectively. The pair of fans 10A, 10B rotate together with the rotor 20. The pair of fans 10A, 10B are attached to the rotor 20 in different positions and orientations.
 一対のファン10A、10Bは、ロータ20の回転に伴い、送風孔24a、24bに空気を流すとともに径方向外側に空気を吹き出す。ファン10A、10Bから吹き出される空気は、ファン10A、10Bの径方向外側に配置されるコイルエンド31a、31bに当たる。ファン10A、10Bは、ロータ20、およびコイルエンド31a、31bを冷却する。 As the rotor 20 rotates, the pair of fans 10A, 10B blow air through the air holes 24a, 24b and outward in the radial direction. The air blown out from the fans 10A, 10B hits the coil ends 31a, 31b located radially outward of the fans 10A, 10B. The fans 10A, 10B cool the rotor 20 and the coil ends 31a, 31b.
 図1に示すように、ステータ30は、ハウジング6に保持される。ステータ30は、ロータ20を径方向外側から囲む。ステータ30は、中心軸線J1を中心とする環状のステータコア32と、ステータコア32に装着されるコイル31と、コイル31から引き出させる引出線31kと、ステータコア32とコイル31との間に介在するインシュレータ(図示略)とを有する。 As shown in FIG. 1, the stator 30 is held in the housing 6. The stator 30 surrounds the rotor 20 from the radial outside. The stator 30 has an annular stator core 32 centered on the central axis J1, a coil 31 attached to the stator core 32, lead wires 31k drawn from the coil 31, and an insulator (not shown) interposed between the stator core 32 and the coil 31.
 ステータコア32は、環状のコアバック部32aと、コアバック部32aから径方向内側に延びる複数のティース部32bと、を有する。複数のティース部32bは、周方向に沿って並ぶ。周方向に並ぶティース部32b同士の間には、コイル線が配置される。隣り合うティース部32bの間に位置するコイル線は、コイル31を構成する。すなわち、コイル31は、ステータコア32に配置される。インシュレータは、絶縁性の材料からなる。 The stator core 32 has an annular core back portion 32a and a number of teeth 32b extending radially inward from the core back portion 32a. The teeth 32b are arranged in the circumferential direction. A coil wire is arranged between the teeth 32b arranged in the circumferential direction. The coil wire located between adjacent teeth 32b constitutes the coil 31. In other words, the coil 31 is arranged in the stator core 32. The insulator is made of an insulating material.
 コイル31は、ステータコア32の軸方向両側の端面から軸方向にそれぞれ突出する一対のコイルエンド31a、31bを有する。コイルエンド31a、31bは、ステータコア32のスロット間を繋ぐコイル線の一部が束ねられて形成されている。以下の説明において、一対のコイルエンド31a、31bを区別する場合、軸方向一方側(+Y側)の一方を第1コイルエンド31aと呼び、軸方向他方側(-Y側)の他方を第2コイルエンド31bと呼ぶ。すなわち、ステータ30は、軸方向一方側の端部に位置する第1コイルエンド31a、および軸方向他方側の端部に位置する第2コイルエンド31bを有する。 The coil 31 has a pair of coil ends 31a, 31b that protrude in the axial direction from both axial end faces of the stator core 32. The coil ends 31a, 31b are formed by bundling together parts of the coil wire that connects the slots of the stator core 32. In the following description, when distinguishing between the pair of coil ends 31a, 31b, the one on one axial side (+Y side) is called the first coil end 31a, and the other on the other axial side (-Y side) is called the second coil end 31b. In other words, the stator 30 has the first coil end 31a located at the end on one axial side, and the second coil end 31b located at the end on the other axial side.
 引出線31kは、コイル31から軸方向一方側(+Y側)に延び出る。本実施形態のステータ30は、U相、V相およびW相に対応する3本の引出線31kを有する。引出線31kは、撚り合わせられた導線と、その先端に圧着された圧着端子と、コイル線の外周を覆う絶縁チューブ(図示略)と、を有する。引出線31kは、先端の圧着端子においてバスバー7bの引出線接続部7aに接続される。 The lead wire 31k extends from the coil 31 to one axial side (+Y side). In this embodiment, the stator 30 has three lead wires 31k corresponding to the U-phase, V-phase, and W-phase. The lead wire 31k has a twisted conductor, a crimp terminal crimped to its tip, and an insulating tube (not shown) that covers the outer periphery of the coil wire. The lead wire 31k is connected to the lead wire connection portion 7a of the bus bar 7b at the crimp terminal at the tip.
 <レゾルバ>
 レゾルバ29は、レゾルバロータ29aとレゾルバステータ(回転センサ)29bを有する。レゾルバロータ29aは、周方向に沿って並ぶ複数のマグネットを有する。レゾルバロータ29aは、ロータ20と共に中心軸線J1周りを回転する。
<Resolver>
The resolver 29 includes a resolver rotor 29a and a resolver stator (rotation sensor) 29b. The resolver rotor 29a includes a plurality of magnets arranged in the circumferential direction. The resolver rotor 29a rotates together with the rotor 20 around the central axis J1.
 レゾルバステータ29bは、ベアリングホルダ70に固定される。レゾルバステータ29bは、レゾルバロータ29aを径方向外側から囲む。レゾルバステータ29bは、レゾルバロータ29aの回転に伴う磁束変化で励磁されるコイルを有する。レゾルバステータ29bは、励起される磁束変化を基に、ロータ20の回転角を検知する。レゾルバステータ29bは、レゾルバ配線29cを有する。レゾルバ配線29cは、レゾルバステータ29bとインバータ7とを繋ぐ。レゾルバ配線29cは、インバータ7からレゾルバステータ29bに電力を供給する。レゾルバ配線29cは、レゾルバ29がロータ20の回転角を検知した結果をインバータ7に出力する。 The resolver stator 29b is fixed to the bearing holder 70. The resolver stator 29b surrounds the resolver rotor 29a from the radial outside. The resolver stator 29b has a coil that is excited by a change in magnetic flux accompanying the rotation of the resolver rotor 29a. The resolver stator 29b detects the rotation angle of the rotor 20 based on the excited magnetic flux change. The resolver stator 29b has resolver wiring 29c. The resolver wiring 29c connects the resolver stator 29b to the inverter 7. The resolver wiring 29c supplies power from the inverter 7 to the resolver stator 29b. The resolver wiring 29c outputs the result of the resolver 29 detecting the rotation angle of the rotor 20 to the inverter 7.
 <温度センサ>
 温度センサ81は、ステータ30のコイル31に取り付けられてコイル31の温度を測定する。温度センサ81は、温度センサ配線81aを有する。温度センサ配線81aは、インバータ7に接続される。温度センサ配線81aは、温度センサ81によるコイル温度の測定結果をインバータ7に出力する。
<Temperature sensor>
The temperature sensor 81 is attached to the coil 31 of the stator 30 to measure the temperature of the coil 31. The temperature sensor 81 has a temperature sensor wiring 81a. The temperature sensor wiring 81a is connected to the inverter 7. The temperature sensor wiring 81a outputs the measurement result of the coil temperature by the temperature sensor 81 to the inverter 7.
 <インバータ>
 図1に示すインバータ7は、モータ2と電気的に接続される。インバータ7は、車両に搭載されるバッテリ(不図示)に接続され、バッテリーから供給された直流電流を交流電流に変換して、モータ2に供給する。また、インバータ7は、外部装置からの指令、および各センサの検知結果を基にモータ2を制御する。インバータ7は、モータ2に対し軸方向一方側(+Y側)に配置される。本実施形態によれば、インバータ7をモータ2の径方向外側に配置する場合と比較して駆動装置1を径方向に小型化することができる。
<Inverter>
The inverter 7 shown in Fig. 1 is electrically connected to the motor 2. The inverter 7 is connected to a battery (not shown) mounted on the vehicle, and converts direct current supplied from the battery into alternating current and supplies it to the motor 2. The inverter 7 also controls the motor 2 based on commands from an external device and detection results of each sensor. The inverter 7 is disposed on one axial side (+Y side) of the motor 2. According to this embodiment, the drive device 1 can be made smaller in the radial direction than when the inverter 7 is disposed radially outside the motor 2.
 インバータ7は、バスバー7bを有する。バスバー7bは、電気抵抗の低い金属材料から構成される板状の部材である。バスバー7bの材料は、例えば、銅である。バスバー7bは、軸方向他方側(-Y側)の端部に引出線接続部7aを有する。引出線接続部7aには、コイル31から延び出る引出線31kに接続される。本実施形態のインバータ7は、U相、V相、およびW相に対応する3つのバスバー7bを有する。インバータ7は、バスバー7bを介して、ステータ30のコイル31に交流電流を流す。図2に示すように、ハウジング6には、内部空間を径方向外側に露出させる開口部61が設けられる。作業者や組み立て装置(以下、作業者等)は、開口部61から工具を挿入して引出線接続部7aの接続作業を行う。 The inverter 7 has a bus bar 7b. The bus bar 7b is a plate-shaped member made of a metal material with low electrical resistance. The material of the bus bar 7b is, for example, copper. The bus bar 7b has a lead wire connection part 7a at the end on the other axial side (-Y side). The lead wire connection part 7a is connected to the lead wire 31k extending from the coil 31. The inverter 7 of this embodiment has three bus bars 7b corresponding to the U phase, V phase, and W phase. The inverter 7 passes an AC current through the bus bar 7b to the coil 31 of the stator 30. As shown in FIG. 2, the housing 6 has an opening 61 that exposes the internal space radially outward. A worker or an assembly device (hereinafter, a worker, etc.) inserts a tool through the opening 61 to connect the lead wire connection part 7a.
 <動力伝達部>
 図1に示すように、動力伝達部4は、ロータ20に対し軸方向他方側(-Y側)に配置される。動力伝達部4は、ロータ20に接続されてロータ20の動力を出力シャフト47に伝達する。動力伝達部4は、減速装置4aと差動装置4bとを有する。モータ2から出力されるトルクは、減速装置4aを介して差動装置4bに伝達される。減速装置4aは、各ギヤの回転軸線が平行に配置される平行軸歯車タイプの減速機である。差動装置4bは、車両の旋回時に、左右の車輪の速度差を吸収しつつ左右両輪に同トルクを伝達する。
<Power transmission section>
As shown in FIG. 1, the power transmission unit 4 is disposed on the other axial side (-Y side) of the rotor 20. The power transmission unit 4 is connected to the rotor 20 and transmits the power of the rotor 20 to an output shaft 47. The power transmission unit 4 has a reduction gear 4a and a differential gear 4b. Torque output from the motor 2 is transmitted to the differential gear 4b via the reduction gear 4a. The reduction gear 4a is a parallel shaft gear type reducer in which the rotation axes of the gears are arranged in parallel. When the vehicle turns, the differential gear 4b transmits the same torque to both the left and right wheels while absorbing the speed difference between the left and right wheels.
 減速装置4aは、第2シャフト44、第3シャフト45、第1ギヤ41、第2ギヤ42、および第3ギヤ43を有する。差動装置4bは、リングギヤ46g、デフケース46、およびデフケース46の内部に配置される差動機構部46cを有する。 The reduction gear 4a has a second shaft 44, a third shaft 45, a first gear 41, a second gear 42, and a third gear 43. The differential gear 4b has a ring gear 46g, a differential case 46, and a differential mechanism part 46c arranged inside the differential case 46.
 第2シャフト44は、中心軸線J1を中心として軸方向に延びる。第2シャフト44は、第1シャフト21と同軸上に配置される。第2シャフト44は、軸方向一方側(+Y側)の端部において、第1シャフト21の軸方向他方側(-Y側)の端部に連結される。第2シャフト44は、第1シャフト21ととともに中心軸線J1周りを回転する。 The second shaft 44 extends in the axial direction around the central axis J1. The second shaft 44 is arranged coaxially with the first shaft 21. The second shaft 44 is connected at its end on one axial side (+Y side) to the end on the other axial side (-Y side) of the first shaft 21. The second shaft 44 rotates around the central axis J1 together with the first shaft 21.
 第1ギヤ41は、第2シャフト44の外周面に設けられる。第1ギヤ41は、第2シャフト44とともに中心軸線J1周りに回転する。第3シャフト45は、中心軸線J1と平行な中間軸線J2を中心として回転する。第2ギヤ42と第3ギヤ43とは、軸方向に並んで配置される。第2ギヤ42および第3ギヤ43は、第3シャフト45の外周面に設けられる。第2ギヤ42および第3ギヤ43は、第3シャフト45を介して接続される。第2ギヤ42および第3ギヤ43は、中間軸線J2を中心として回転する。第2ギヤ42は、第1ギヤ41と噛み合う。第3ギヤ43は、差動装置4bのリングギヤ46gと噛み合う。 The first gear 41 is provided on the outer peripheral surface of the second shaft 44. The first gear 41 rotates together with the second shaft 44 around the central axis J1. The third shaft 45 rotates around the intermediate axis J2 parallel to the central axis J1. The second gear 42 and the third gear 43 are arranged side by side in the axial direction. The second gear 42 and the third gear 43 are provided on the outer peripheral surface of the third shaft 45. The second gear 42 and the third gear 43 are connected via the third shaft 45. The second gear 42 and the third gear 43 rotate around the intermediate axis J2. The second gear 42 meshes with the first gear 41. The third gear 43 meshes with the ring gear 46g of the differential device 4b.
 リングギヤ46gは、中心軸線J1と平行な出力軸線J3を中心として回転する。リングギヤ46gには、モータ2から出力されるトルクが減速装置4aを介して伝えられる。リングギヤ46gは、デフケース46に固定される。 The ring gear 46g rotates about an output axis J3 that is parallel to the central axis J1. The torque output from the motor 2 is transmitted to the ring gear 46g via the reduction gear 4a. The ring gear 46g is fixed to the differential case 46.
 デフケース46は、内部に差動機構部46cを収容するケース部46bと、ケース部46bに対して軸方向一方側および他方側にそれぞれ突出するデフケースシャフト46aと、を有する。デフケースシャフト46aは、出力軸線J3を中心として軸方向に沿って延びる筒状である。リングギヤ46gは、デフケースシャフト46aの外周面に設けられる。デフケースシャフト46aは、出力軸線J3を中心としてリングギヤ46gとともに回転する。 The differential case 46 has a case portion 46b that houses the differential mechanism portion 46c therein, and a differential case shaft 46a that protrudes from the case portion 46b on one axial side and the other axial side. The differential case shaft 46a is cylindrical and extends axially with the output axis J3 as its center. The ring gear 46g is provided on the outer peripheral surface of the differential case shaft 46a. The differential case shaft 46a rotates together with the ring gear 46g with the output axis J3 as its center.
 一対の出力シャフト47は、差動装置4bに接続される。一対の出力シャフト47は、差動装置4bのデフケース46から軸方向一方側および他方側に突出する。出力シャフト47は、デフケースシャフト46aの内側に配置される。出力シャフト47は、デフケースシャフト46aの内周面に、ベアリングを介して回転可能に支持される。 The pair of output shafts 47 are connected to the differential device 4b. The pair of output shafts 47 protrude from the differential case 46 of the differential device 4b on one axial side and the other axial side. The output shafts 47 are disposed inside the differential case shafts 46a. The output shafts 47 are rotatably supported on the inner peripheral surface of the differential case shafts 46a via bearings.
 モータ2から出力されるトルクは、モータ2の第2シャフト44、第1ギヤ41、第2ギヤ42、第3シャフト45および第3ギヤ43を介して差動装置4bのリングギヤ46gに伝達され、差動装置4bの差動機構部46cを介して出力シャフト47に出力される。動力伝達部4の複数のギヤ41、42、43、46gは、第2シャフト44、第3シャフト45、デフケースシャフト46aの順でモータ2の動力を伝達する。 The torque output from the motor 2 is transmitted to the ring gear 46g of the differential device 4b via the second shaft 44, the first gear 41, the second gear 42, the third shaft 45, and the third gear 43 of the motor 2, and is output to the output shaft 47 via the differential mechanism part 46c of the differential device 4b. The multiple gears 41, 42, 43, and 46g of the power transmission part 4 transmit the power of the motor 2 in the order of the second shaft 44, the third shaft 45, and the differential case shaft 46a.
 <ハウジング>
 ハウジング6は、インバータホルダ6Aとハウジング本体6Bとギヤカバー6Cとウォータジャケット50と、を有する。インバータホルダ6A、ハウジング本体6B、ギヤカバー6C、およびウォータジャケット50は、それぞれ別部材である。インバータホルダ6Aは、ハウジング本体6Bの軸方向一方側(+Y側)に配置される。ギヤカバー6Cは、ハウジング本体6Bの軸方向他方側(-Y側)に配置される。ウォータジャケット50は、ハウジング本体6Bの内部に配置される。
<Housing>
The housing 6 has an inverter holder 6A, a housing main body 6B, a gear cover 6C, and a water jacket 50. The inverter holder 6A, the housing main body 6B, the gear cover 6C, and the water jacket 50 are each separate members. The inverter holder 6A is disposed on one axial side (+Y side) of the housing main body 6B. The gear cover 6C is disposed on the other axial side (-Y side) of the housing main body 6B. The water jacket 50 is disposed inside the housing main body 6B.
 ハウジング6には、流体Lが流れる流路90が設けられる。流体Lは、例えば、水や不凍液である。なお、流体Lは、水でなくてもよい。例えば、流体Lは、オイルであってもよく、他の流体であってもよい。流路90は、ハウジング6の外部を通過する外部配管97と、ハウジング6の内部を通過する第1流路部91、第2流路部92、第3流路部(流路部)93、および第4流路部94を含む。 The housing 6 is provided with a flow path 90 through which the fluid L flows. The fluid L is, for example, water or antifreeze. Note that the fluid L does not have to be water. For example, the fluid L may be oil or another fluid. The flow path 90 includes an external pipe 97 that passes through the outside of the housing 6, and a first flow path section 91, a second flow path section 92, a third flow path section (flow path section) 93, and a fourth flow path section 94 that pass through the inside of the housing 6.
 流体Lは、ハウジング6の内部において、第1流路部91、第2流路部92、第3流路部93、第4流路部94の順で流れる。流体Lは、第1流路部91で主にインバータを冷却し、第3流路部93で主にモータ2を冷却する。 The fluid L flows through the first flow path section 91, the second flow path section 92, the third flow path section 93, and the fourth flow path section 94 in that order inside the housing 6. The fluid L mainly cools the inverter in the first flow path section 91, and mainly cools the motor 2 in the third flow path section 93.
 外部配管97は、第1連結部97aにおいてインバータホルダ6Aに連結され、第2連結部97bにおいてハウジング本体6Bに接続される。外部配管97の経路中には、流体Lを冷却するラジエータ(図示略)が配置される。外部配管97は、第1連結部97aにおいてハウジング6内に低温の流体Lを送り、第2連結部97bにおいてハウジング6内で熱を吸収して温度が高まった流体Lを回収する。 The external pipe 97 is connected to the inverter holder 6A at the first connection part 97a, and to the housing main body 6B at the second connection part 97b. A radiator (not shown) for cooling the fluid L is arranged in the path of the external pipe 97. The external pipe 97 sends low-temperature fluid L into the housing 6 at the first connection part 97a, and recovers the fluid L whose temperature has increased by absorbing heat within the housing 6 at the second connection part 97b.
 ハウジング本体6Bは、モータ2を収容し軸方向一方側(+Y側)に開口する。ハウジング本体6Bは、中心軸線J1を中心とする筒状の外側筒部65と、外側筒部65の軸方向他方側(-Y側)に配置され外側筒部65の軸方向他方側の開口を覆う隔壁部66と、軸方向他方側(-Y側)に開口する凹状部67と、を有する。すなわち、ハウジング6は、中心軸線J1を中心とする筒状の外側筒部65を有する。 The housing body 6B houses the motor 2 and opens on one axial side (+Y side). The housing body 6B has a cylindrical outer tube portion 65 centered on the central axis J1, a partition portion 66 that is disposed on the other axial side (-Y side) of the outer tube portion 65 and covers the opening on the other axial side of the outer tube portion 65, and a recessed portion 67 that opens on the other axial side (-Y side). In other words, the housing 6 has a cylindrical outer tube portion 65 centered on the central axis J1.
 外側筒部65は、径方向外側からモータ2を囲む。外側筒部65には、第2流路部92と第4流路部94とが設けられる。第2流路部92および第4流路部94は、外側筒部65に設けられる孔部である。第2流路部92は、外側筒部65の壁内部を軸方向に沿って延びる。第2流路部92は、第1流路部91の下流側端部と第3流路部93の入口部93a部とを繋ぐ。第4流路部94は、径方向に沿って延びる。第4流路部94は、第3流路部93の出口部93bから径方向外側に延びて外側筒部65の径方向外側に開口する。第4流路部94の開口には、外部配管97の第2連結部97bが接続される。 The outer tubular portion 65 surrounds the motor 2 from the radial outside. The outer tubular portion 65 is provided with a second flow passage portion 92 and a fourth flow passage portion 94. The second flow passage portion 92 and the fourth flow passage portion 94 are holes provided in the outer tubular portion 65. The second flow passage portion 92 extends along the axial direction inside the wall of the outer tubular portion 65. The second flow passage portion 92 connects the downstream end of the first flow passage portion 91 and the inlet portion 93a of the third flow passage portion 93. The fourth flow passage portion 94 extends along the radial direction. The fourth flow passage portion 94 extends radially outward from the outlet portion 93b of the third flow passage portion 93 and opens radially outward of the outer tubular portion 65. The opening of the fourth flow passage portion 94 is connected to the second connecting portion 97b of the external piping 97.
 隔壁部66には、シャフト挿通孔66hが設けられる。シャフト挿通孔66hには、一対のベアリング5B、5Cと、シール部材5Sが配置される。ベアリング5Bは、第1シャフト21を支持し、ベアリング5Cは、第2シャフト44を支持する。第1シャフト21と第2シャフト44とは、シャフト挿通孔66hの内部で互いに連結される。シール部材5Sは、軸方向において2つのベアリング5B、5Cの間に配置される。シール部材5Sは、シャフト挿通孔66hの内周面と第2シャフト44の外周面との間をシールする。 A shaft insertion hole 66h is provided in the partition portion 66. A pair of bearings 5B, 5C and a seal member 5S are disposed in the shaft insertion hole 66h. The bearing 5B supports the first shaft 21, and the bearing 5C supports the second shaft 44. The first shaft 21 and the second shaft 44 are connected to each other inside the shaft insertion hole 66h. The seal member 5S is disposed between the two bearings 5B, 5C in the axial direction. The seal member 5S seals between the inner circumferential surface of the shaft insertion hole 66h and the outer circumferential surface of the second shaft 44.
 ギヤカバー6Cは、ハウジング本体6Bの凹状部67に固定される。ギヤカバー6Cと凹状部67とは、動力伝達部4を収容する収容空間を構成する。動力伝達部4の収容空間には、オイルOが貯留される。オイルOは、動力伝達部4の潤滑性を高める。 The gear cover 6C is fixed to the recessed portion 67 of the housing body 6B. The gear cover 6C and the recessed portion 67 form an accommodation space that accommodates the power transmission unit 4. Oil O is stored in the accommodation space for the power transmission unit 4. The oil O increases the lubricity of the power transmission unit 4.
 インバータホルダ6Aは、インバータ7を収容するとともにインバータ7を支持する。インバータホルダ6Aは、ハウジング本体6Bの軸方向一方側(+Y側)の開口を覆う。インバータホルダ6Aには、インバータ7を冷却する第1流路部91が設けられる。 The inverter holder 6A houses and supports the inverter 7. The inverter holder 6A covers the opening on one axial side (+Y side) of the housing body 6B. The inverter holder 6A is provided with a first flow passage portion 91 that cools the inverter 7.
 ウォータジャケット50は、中心軸線J1を中心とする筒状の内側筒部51と、内側筒部51の外周面に設けられるリブ59と、を有する。すなわち、ハウジング6は、内側筒部51を有する。内側筒部51は、ステータ30を径方向外側から囲みステータ30を保持する。すなわち、ハウジング6は、ステータ30を径方向外側から囲みステータ30を保持する。 The water jacket 50 has a cylindrical inner cylindrical portion 51 centered on the central axis J1, and ribs 59 provided on the outer peripheral surface of the inner cylindrical portion 51. That is, the housing 6 has the inner cylindrical portion 51. The inner cylindrical portion 51 surrounds the stator 30 from the radial outside and holds the stator 30. That is, the housing 6 surrounds the stator 30 from the radial outside and holds the stator 30.
 内側筒部51は、外側筒部65の内側に配置される。すなわち、内側筒部51は、外側筒部65に径方向外側から囲まれる。内側筒部51の外径は、外側筒部65の内径よりも小さい。内側筒部51の外周面の軸方向両端部には、それぞれシール部64c、64dが配置される。本実施形態のシール部64c、64dは、内側筒部51の外周面に設けられる凹溝に配置されるOリングである。シール部64c、64dは、内側筒部51の外周面と外側筒部65との間をシールする。内側筒部51と外側筒部65との間であって、一対のシール部64c、64dの間には、第3流路部93として機能する隙間が設けられる。 The inner cylindrical portion 51 is disposed inside the outer cylindrical portion 65. That is, the inner cylindrical portion 51 is surrounded by the outer cylindrical portion 65 from the radial outside. The outer diameter of the inner cylindrical portion 51 is smaller than the inner diameter of the outer cylindrical portion 65. Seal portions 64c, 64d are disposed at both axial ends of the outer peripheral surface of the inner cylindrical portion 51. In this embodiment, the seal portions 64c, 64d are O-rings disposed in grooves provided on the outer peripheral surface of the inner cylindrical portion 51. The seal portions 64c, 64d seal between the outer peripheral surface of the inner cylindrical portion 51 and the outer cylindrical portion 65. Between the inner cylindrical portion 51 and the outer cylindrical portion 65, a gap that functions as a third flow path portion 93 is provided between the pair of seal portions 64c, 64d.
 ここで一対のシール部64c、64dのうち軸方向一方側(+Y側)に位置する一方を第1シール部64dと呼び、軸方向他方側(-Y側)に位置する他方を第2シール部64cと呼ぶ。本実施形態において、内側筒部51と外側筒部65との間であって第3流路部93の軸方向一方側(+Y側)には、第1シール部64dが配置され、軸方向他方側(-Y側)には第2シール部64cが配置される。 Here, of the pair of seal portions 64c, 64d, the one located on one axial side (+Y side) is referred to as the first seal portion 64d, and the other located on the other axial side (-Y side) is referred to as the second seal portion 64c. In this embodiment, the first seal portion 64d is disposed on one axial side (+Y side) of the third flow path portion 93 between the inner tubular portion 51 and the outer tubular portion 65, and the second seal portion 64c is disposed on the other axial side (-Y side).
 リブ59は、中心軸線J1を中心として螺旋状に延びる。リブ59は、径方向外側の端部に位置する先端部を有する。リブ59の先端部は、外側筒部65の内周面に接触するか、又はわずかな隙間を介して対向する。これにより、リブ59は、内側筒部51の外周面と外側筒部65の間を仕切って螺旋状の第3流路部93を形成する。 The rib 59 extends spirally around the central axis J1. The rib 59 has a tip located at the radially outer end. The tip of the rib 59 contacts the inner circumferential surface of the outer tubular portion 65 or faces it with a small gap between them. As a result, the rib 59 separates the outer circumferential surface of the inner tubular portion 51 and the outer tubular portion 65, forming a spiral third flow path portion 93.
 第3流路部93は、外側筒部65と内側筒部51との間に設けられる。より具体的には、第3流路部93は、外側筒部65の径方向内側かつウォータジャケット50の径方向外側に設けられる。第3流路部93は、中心軸線J1を中心として螺旋状に延びる。第3流路部93は、ステータ30を径方向外側から囲む。第3流路部93を流れる流体Lは、ウォータジャケット50を冷却する。ウォータジャケット50は、ステータコア32に接触しステータコア32を冷却する。 The third flow path portion 93 is provided between the outer cylindrical portion 65 and the inner cylindrical portion 51. More specifically, the third flow path portion 93 is provided radially inside the outer cylindrical portion 65 and radially outside the water jacket 50. The third flow path portion 93 extends spirally around the central axis J1. The third flow path portion 93 surrounds the stator 30 from the radial outside. The fluid L flowing through the third flow path portion 93 cools the water jacket 50. The water jacket 50 comes into contact with the stator core 32 and cools the stator core 32.
 本実施形態では、第3流路部93が螺旋状に延びる場合について説明した。しかしながら、第3流路部93は、ステータ30を囲むものであれば、本実施形態に限定されない。第3流路部93は、軸方向又は周方向に蛇行する流路であってもよい。第3流路部93の流路構成は、リブ59の形状によって決めることができる。 In this embodiment, the third flow path portion 93 extends in a spiral shape. However, the third flow path portion 93 is not limited to this embodiment as long as it surrounds the stator 30. The third flow path portion 93 may be a flow path that meanders in the axial or circumferential direction. The flow path configuration of the third flow path portion 93 can be determined by the shape of the rib 59.
 内側筒部51の内周面は、嵌合内周面50eと第1内周面50fと第2内周面50gとを含む。嵌合内周面50eは、ステータコアの外周面に接触する。嵌合内周面50eには、ステータコア32が保持される。第1内周面50f、および第2内周面50gの内径は、嵌合内周面50eの内径よりも大きい。第1内周面50fは、嵌合内周面50eの軸方向一方側(+Y側)に位置する。第2内周面50gは、嵌合内周面50eの軸方向他方側(-Y側)に位置する。 The inner circumferential surface of the inner cylindrical portion 51 includes a mating inner circumferential surface 50e, a first inner circumferential surface 50f, and a second inner circumferential surface 50g. The mating inner circumferential surface 50e contacts the outer circumferential surface of the stator core. The stator core 32 is held by the mating inner circumferential surface 50e. The inner diameters of the first inner circumferential surface 50f and the second inner circumferential surface 50g are larger than the inner diameter of the mating inner circumferential surface 50e. The first inner circumferential surface 50f is located on one axial side (+Y side) of the mating inner circumferential surface 50e. The second inner circumferential surface 50g is located on the other axial side (-Y side) of the mating inner circumferential surface 50e.
 第1内周面50fは、隙間を介して第1コイルエンド31aを径方向外側から囲む。第2内周面50gは、隙間を介して第2コイルエンド31bを径方向外側から囲む。 The first inner circumferential surface 50f surrounds the first coil end 31a from the radial outside via a gap. The second inner circumferential surface 50g surrounds the second coil end 31b from the radial outside via a gap.
 第1内周面50fには、複数の第1フィン(フィン)55a、および複数の第2フィン(フィン)55bが設けられる。同様に第2内周面50gには、複数の第3フィン55cが設けられる。内側筒部51の内周面には、第1コイルエンド31aの径方向外側に配置される複数のフィン(第1フィン55a、および第2フィン55b)と、第2コイルエンド31bの径方向外側に配置される複数の第3フィン55cと、が設けられる。第1フィン55aと第2フィン55bとは、それぞれ第1内周面50fの周方向に沿う後述の所定の領域に設けられる。複数の第1フィン55a、複数の第2フィン55b、および複数の第3フィン55cは、それぞれ軸方向に沿って延び周方向に沿って並ぶ。 The first inner peripheral surface 50f is provided with a plurality of first fins (fins) 55a and a plurality of second fins (fins) 55b. Similarly, the second inner peripheral surface 50g is provided with a plurality of third fins 55c. The inner peripheral surface of the inner cylindrical portion 51 is provided with a plurality of fins (first fins 55a and second fins 55b) arranged radially outward from the first coil end 31a, and a plurality of third fins 55c arranged radially outward from the second coil end 31b. The first fins 55a and the second fins 55b are each provided in a predetermined region along the circumferential direction of the first inner peripheral surface 50f, which will be described later. The first fins 55a, the second fins 55b, and the third fins 55c each extend along the axial direction and are arranged along the circumferential direction.
 ウォータジャケット50は、第3流路部93を流れる流体Lによって冷却される。本実施形態によれば、ウォータジャケット50の内周面にフィン55a、55b、55cを設けることで、ウォータジャケット50の表面積を高めてウォータジャケット50に囲まれる空間の空気の冷却効率を高めることができる。 The water jacket 50 is cooled by the fluid L flowing through the third flow path portion 93. According to this embodiment, by providing fins 55a, 55b, and 55c on the inner peripheral surface of the water jacket 50, the surface area of the water jacket 50 can be increased, thereby improving the cooling efficiency of the air in the space surrounded by the water jacket 50.
 本実施形態によれば、第1フィン55a、第2フィン55b、および第3フィン55cがそれぞれ軸方向に沿って延びる。このため、第1フィン55a、第2フィン55b、および第3フィン55cは、ファン10A、10Bから径方向外側に吹き出され、第1内周面50f、又は第2内周面50gに当たった空気を軸方向に沿って円滑に誘導する。これにより、ハウジング6の内部での空気を円滑に循環させて、ステータ30およびロータ20の冷却効率を高めることができる。 According to this embodiment, the first fin 55a, the second fin 55b, and the third fin 55c each extend along the axial direction. Therefore, the first fin 55a, the second fin 55b, and the third fin 55c smoothly guide the air that is blown outward in the radial direction from the fans 10A, 10B and hits the first inner circumferential surface 50f or the second inner circumferential surface 50g along the axial direction. This allows the air to circulate smoothly inside the housing 6, improving the cooling efficiency of the stator 30 and the rotor 20.
 <ベアリングホルダ>
 図2に示すように、ベアリングホルダ70は、ステータ30の軸方向一方側(+Y側)に位置する。ベアリングホルダ70は、モータ2を軸方向一方側(+Y側)から覆う。ベアリングホルダ70は、ウォータジャケット50の軸方向一方側(+Y側)の端面に固定される。
<Bearing holder>
2, the bearing holder 70 is located on one axial side (+Y side) of the stator 30. The bearing holder 70 covers the motor 2 from one axial side (+Y side). The bearing holder 70 is fixed to an end face of the water jacket 50 on one axial side (+Y side).
 ベアリングホルダ70は、第1ベアリング(ベアリング)5Aを保持する。第1ベアリング5Aは、第1シャフト21の軸方向一方側(+Y側)の端部に配置され、ロータ20を回転可能に支持する。 The bearing holder 70 holds the first bearing (bearing) 5A. The first bearing 5A is disposed at one axial end (+Y side) of the first shaft 21, and rotatably supports the rotor 20.
 ベアリングホルダ70は、例えばアルミニウム合金から構成され、ダイカスト等の鋳造により成形される。また、ベアリングホルダ70の各面のうち組み立て時の基準となる面などについては、エンドミルなどによる切削加工が追加される。 The bearing holder 70 is made of, for example, an aluminum alloy, and is formed by casting such as die casting. In addition, cutting is performed using an end mill or the like on the surfaces of the bearing holder 70 that serve as reference surfaces during assembly.
 図3は、駆動装置1に取り付けられるベアリングホルダ70の正面図である。図4は、ベアリングホルダ70の斜視図である。
 ベアリングホルダ70は、本体部71と、ベアリング保持部72と、レゾルバ保持部74と、突出部73と、外縁部76と、を有する。
Fig. 3 is a front view of the bearing holder 70 attached to the drive device 1. Fig. 4 is a perspective view of the bearing holder 70.
The bearing holder 70 has a main body portion 71 , a bearing holding portion 72 , a resolver holding portion 74 , a protrusion 73 , and an outer edge portion 76 .
 図4に示すように、本体部71は、中心軸線J1を中心とする円板状である。本体部71の中央には、ベアリング保持部72が配置される。すなわち、本体部71は、ベアリング保持部72から径方向外側に延びる。 As shown in FIG. 4, the main body 71 is disk-shaped and centered on the central axis J1. The bearing holder 72 is disposed in the center of the main body 71. In other words, the main body 71 extends radially outward from the bearing holder 72.
 本体部71の軸方向他方側(-Y側)を向く面には、複数の放射状リブ75が設けられる。複数の放射状リブ75は、周方向に沿って等間隔に並ぶ。それぞれの放射状リブ75は、中心軸線J1に対して放射状に延びる。放射状リブ75の径方向内側の端部は、ベアリング保持部72の外周面に繋がる。放射状リブ75は、本体部71およびベアリング保持部72を補強する。 A number of radial ribs 75 are provided on the surface of the main body 71 facing the other axial side (-Y side). The multiple radial ribs 75 are arranged at equal intervals along the circumferential direction. Each radial rib 75 extends radially from the central axis J1. The radially inner ends of the radial ribs 75 are connected to the outer peripheral surface of the bearing holder 72. The radial ribs 75 reinforce the main body 71 and the bearing holder 72.
 本体部71には、軸方向に貫通する中央孔71h、第1貫通孔71a、および第2貫通孔71bが設けられる。中央孔71hは、中心軸線J1を中心とする円形である。中央孔71hには、第1シャフト21の軸方向一方側(+Y側)の端部が挿入される。 The main body 71 is provided with a central hole 71h, a first through hole 71a, and a second through hole 71b that penetrate in the axial direction. The central hole 71h is circular and centered on the central axis J1. The end of the first shaft 21 on one axial side (+Y side) is inserted into the central hole 71h.
 図3に示すように、第1貫通孔71aおよび第2貫通孔71bは、中心軸線J1を中心とする周方向に沿って並んで配置される。第1貫通孔71a、および第2貫通孔71bは、それぞれ周方向に沿って延びる長孔形状である。第1貫通孔71aの径方向内側の縁部と第2貫通孔71bの径方向内側の縁部とは、径方向の位置が略一致する。一方で、第1貫通孔71aの径方向外側の縁部は、第2貫通孔71bの径方向内側の縁部よりも中心軸線J1から離間して配置される。また、第1貫通孔71aの周方向の長さは、第2貫通孔71bの周方向の長さよりも十分に大きい。したがって、第1貫通孔71aの開口面積は、第2貫通孔71bの開口面積よりも十分に大きい。 As shown in FIG. 3, the first through hole 71a and the second through hole 71b are arranged side by side in the circumferential direction centered on the central axis J1. The first through hole 71a and the second through hole 71b are each an elongated hole extending in the circumferential direction. The radially inner edge of the first through hole 71a and the radially inner edge of the second through hole 71b are approximately aligned in the radial direction. On the other hand, the radially outer edge of the first through hole 71a is arranged farther away from the central axis J1 than the radially inner edge of the second through hole 71b. In addition, the circumferential length of the first through hole 71a is sufficiently larger than the circumferential length of the second through hole 71b. Therefore, the opening area of the first through hole 71a is sufficiently larger than the opening area of the second through hole 71b.
 第1貫通孔71aは、ステータ30のコイル31から延び出る引出線31kを通す。一方で、第2貫通孔71bは、温度センサ81から延び出る温度センサ配線81aを通す。第1貫通孔71a、および第2貫通孔71bを通る引出線31k、および温度センサ配線81aは、ベアリングホルダ70の軸方向一方側(+Y側)でインバータ7に接続される。 The first through hole 71a passes the lead wire 31k extending from the coil 31 of the stator 30. Meanwhile, the second through hole 71b passes the temperature sensor wiring 81a extending from the temperature sensor 81. The lead wire 31k and temperature sensor wiring 81a passing through the first through hole 71a and the second through hole 71b are connected to the inverter 7 on one axial side (+Y side) of the bearing holder 70.
 図2に示すように、ベアリング保持部72は、中心軸線J1を中心とする筒状である。ベアリング保持部72は、本体部71の軸方向他方側(-Y側)を向く面から軸方向他方側(-Y側)に突出する。ベアリング保持部72は、第1ベアリング5Aを径方向外側から囲み第1ベアリング5Aを保持する。また、ベアリング保持部72は、中央孔71hを径方向外側から囲む。 As shown in FIG. 2, the bearing retaining portion 72 is cylindrical and centered on the central axis J1. The bearing retaining portion 72 protrudes toward the other axial side (-Y side) from the surface of the main body portion 71 facing that side. The bearing retaining portion 72 surrounds the first bearing 5A from the radial outside and retains the first bearing 5A. The bearing retaining portion 72 also surrounds the central hole 71h from the radial outside.
 レゾルバ保持部74は、中心軸線J1を中心とする筒状である。レゾルバ保持部74は、本体部71の軸方向一方側(+Y側)を向く面から軸方向一方側(+Y側)に突出する。レゾルバ保持部74とベアリング保持部72とは、本体部71を挟んで軸方向一方側(+Y側)、および軸方向他方側(-Y側)にそれぞれ配置される。レゾルバ保持部74は、レゾルバステータ29bを径方向外側から囲みレゾルバステータ29bを保持する。 The resolver holding portion 74 is cylindrical and centered on the central axis J1. The resolver holding portion 74 protrudes to one axial side (+Y side) from a surface of the main body portion 71 facing that side. The resolver holding portion 74 and the bearing holding portion 72 are disposed on one axial side (+Y side) and the other axial side (-Y side) of the main body portion 71, respectively. The resolver holding portion 74 surrounds the resolver stator 29b from the radial outside and holds the resolver stator 29b.
 図4に示すように、外縁部76は、本体部71の外縁に沿って設けられる。外縁部76は、中心軸線J1を中心として周方向に沿って略円環状に延びる。外縁部76には、複数の第1締結部76bが設けられる。第1締結部76bは、周方向に沿って略等間隔に配置される。 As shown in FIG. 4, the outer edge portion 76 is provided along the outer edge of the main body portion 71. The outer edge portion 76 extends in a substantially annular shape along the circumferential direction centered on the central axis J1. A plurality of first fastening portions 76b are provided on the outer edge portion 76. The first fastening portions 76b are arranged at substantially equal intervals along the circumferential direction.
 第1締結部76bには、それぞれ孔部76aが設けられる。図2に示すように、ベアリングホルダ70は、第1固定ネジ3を孔部76aに挿入し、さらに内側筒部51の軸方向一方側(+Y側)を向く面にネジ止めすることで内側筒部51に固定される。すなわち、第1締結部76bは、内側筒部51に固定される。 The first fastening portions 76b each have a hole 76a. As shown in FIG. 2, the bearing holder 70 is fixed to the inner cylindrical portion 51 by inserting the first fixing screw 3 into the hole 76a and then screwing it to the surface of the inner cylindrical portion 51 facing one axial side (+Y side). In other words, the first fastening portions 76b are fixed to the inner cylindrical portion 51.
 図4に示すように、本実施形態の外縁部76には、5個の第1締結部76bが設けられる。外縁部76は、第1締結部76bにおいて径方向に沿う幅寸法が大きくなっている。すなわち、外縁部76は、第1締結部76bにおいて径方向の内外に突出する。本実施形態によれば、第1締結部76bが、外縁部76の他の部位と比較して幅広に設けられることで、第1締結部76bにおいて第1固定ネジ3(図2参照)の頭部との接触面積、および内側筒部51との締結面の面積を十分に確保することができる。 As shown in FIG. 4, five first fastening portions 76b are provided on the outer edge portion 76 of this embodiment. The outer edge portion 76 has a larger radial width at the first fastening portions 76b. That is, the outer edge portion 76 protrudes radially inward and outward at the first fastening portions 76b. According to this embodiment, the first fastening portions 76b are provided wider than other portions of the outer edge portion 76, thereby ensuring a sufficient contact area between the first fastening portions 76b and the head of the first fixing screw 3 (see FIG. 2) and a sufficient area of the fastening surface with the inner tubular portion 51.
 図4に示すように、突出部73は、本体部71の軸方向他方側(-Y側)を向く面から軸方向他方側(-Y側)に突出する。本実施形態のベアリングホルダ70には、1つの突出部73が設けられる。本実施形態の突出部73は、周方向に沿って円弧状に延びるリブである。突出部73は、本体部71の外縁に沿って設けられる。また、突出部73は、外縁部76の径方向内側に配置される。 As shown in FIG. 4, the protrusion 73 protrudes from the surface of the main body 71 facing the other axial side (-Y side) toward the other axial side (-Y side). The bearing holder 70 of this embodiment is provided with one protrusion 73. The protrusion 73 of this embodiment is a rib that extends in an arc shape along the circumferential direction. The protrusion 73 is provided along the outer edge of the main body 71. Furthermore, the protrusion 73 is positioned radially inward of the outer edge 76.
 本実施形態の突出部73は、中心軸線J1周りの270°以上の領域に設けられる。突出部73は、第1貫通孔71aが設けられる部分において途切れている。すなわち、第1貫通孔71aは、突出部73の周方向一方側の端部73bと周方向他方側の端部73cとの間に配置される。 The protrusion 73 in this embodiment is provided in a region of 270° or more around the central axis J1. The protrusion 73 is interrupted at the portion where the first through hole 71a is provided. In other words, the first through hole 71a is disposed between the end 73b on one circumferential side of the protrusion 73 and the end 73c on the other circumferential side.
 本実施形態の突出部73は、複数(本実施形態では5個)の迂回部73dを有する。それぞれの迂回部73dは、第1締結部76bの径方向内側に位置する。突出部73は、迂回部73dにおいて第1締結部76bを避けて径方向内側に迂回する。突出部73は、迂回部73d以外の領域で、中心軸線J1を中心とする一定の曲率半径で周方向に湾曲して延びる。 The protrusion 73 in this embodiment has multiple (five in this embodiment) detours 73d. Each detour 73d is located radially inward of the first fastening portion 76b. The protrusion 73 detours radially inward at the detours 73d to avoid the first fastening portion 76b. In the area other than the detours 73d, the protrusion 73 extends in a curved circumferential direction with a constant radius of curvature centered on the central axis J1.
 突出部73は、径方向外側を向く外側面73aを有する。外側面73aは、主に中心軸線J1を中心とする円筒面である。また、外側面73aは、迂回部73dが設けられる部分で径方向内側に向かって凹状に湾曲する。 The protrusion 73 has an outer surface 73a that faces radially outward. The outer surface 73a is a cylindrical surface that is mainly centered on the central axis J1. In addition, the outer surface 73a is curved concavely radially inward at the portion where the detour portion 73d is provided.
 図3に示すように、突出部73は、軸方向から見て中心軸線J1を中心とする仮想円VCに沿って周方向に沿って延びる。また、突出部73は、内側筒部51の内周面に嵌る。より具体的には、突出部73の外側面73aと内側筒部51の第1内周面50fとは、径方向に対向し嵌合する。 As shown in FIG. 3, the protrusion 73 extends circumferentially along an imaginary circle VC centered on the central axis J1 when viewed from the axial direction. The protrusion 73 also fits into the inner peripheral surface of the inner cylindrical portion 51. More specifically, the outer surface 73a of the protrusion 73 and the first inner peripheral surface 50f of the inner cylindrical portion 51 fit together in a radially opposed relationship.
 本実施形態によれば、ベアリングホルダ70に設けられる突出部73が内側筒部51の内側面に嵌ることで、ベアリングホルダ70が内側筒部51に対し径方向に位置決めされる。内側筒部51にはステータ30が固定されるため、ベアリングホルダ70には第1ベアリング5Aを介しロータ20が支持される。本実施形態によれば、ステータ30に対しロータ20を高精度に支持することができ、ステータ30とロータ20との間のエアギャップを周方向において一様としてモータ2の駆動効率を高めることができる。 In this embodiment, the protrusions 73 on the bearing holder 70 fit into the inner surface of the inner cylindrical portion 51, thereby positioning the bearing holder 70 radially relative to the inner cylindrical portion 51. The stator 30 is fixed to the inner cylindrical portion 51, and the rotor 20 is supported by the bearing holder 70 via the first bearing 5A. In this embodiment, the rotor 20 can be supported with high precision relative to the stator 30, and the air gap between the stator 30 and the rotor 20 can be made uniform in the circumferential direction, thereby improving the driving efficiency of the motor 2.
 本実施形態の突出部73は、内側筒部51の内周面に嵌る。本実施形態によれば、内側筒部51の軸方向一方側(+Y側)の端面に嵌合用の凹部を設ける場合と比較して、内側筒部51の径方向の厚さを小さくできる。結果的に、駆動装置1を径方向に小型化することができる。 The protrusion 73 in this embodiment fits into the inner peripheral surface of the inner tubular portion 51. According to this embodiment, the radial thickness of the inner tubular portion 51 can be made smaller than when a fitting recess is provided on the end face of the inner tubular portion 51 on one axial side (+Y side). As a result, the drive unit 1 can be made smaller in the radial direction.
 本実施形態において、第1貫通孔71aは、軸方向から見て仮想円VC上に配置される。これにより、突出部73は、第1貫通孔71aが設けられる部分で途切れた形状となる。本実施形態によれば、突出部73を避けて仮想円VCの径方向内側に第1貫通孔を配置する場合と比較して、第1貫通孔71aを径方向外側に寄せて配置することができる。第1貫通孔71aを径方向外側に寄せて配置することで、第1貫通孔71aに通される引出線31kも径方向外側に配置することができ、引出線31kとバスバー7bとの接続作業において、作業者等が引出線接続部7aに径方向外側からアクセスしやすくなる。結果的に駆動装置1の組立工程を簡素化することができる。また、本実施形態によれば、第1貫通孔71aを避けて第1貫通孔71aを通過する仮想円VCよりも突出部を径方向外側に配置する場合と比較して、ベアリングホルダ70、および内側筒部51を径方向に小型化できる。本実施形態によれば、駆動装置1を径方向に小型化することができる。 In this embodiment, the first through hole 71a is disposed on the imaginary circle VC when viewed from the axial direction. As a result, the protruding portion 73 is interrupted at the portion where the first through hole 71a is provided. According to this embodiment, the first through hole 71a can be disposed radially outward, compared to the case where the first through hole is disposed radially inside the imaginary circle VC to avoid the protruding portion 73. By disposing the first through hole 71a radially outward, the lead wire 31k passing through the first through hole 71a can also be disposed radially outward, and in the connection work between the lead wire 31k and the bus bar 7b, it becomes easier for workers to access the lead wire connection portion 7a from the radial outside. As a result, the assembly process of the drive unit 1 can be simplified. According to this embodiment, the bearing holder 70 and the inner cylindrical portion 51 can be made smaller in the radial direction, compared to the case where the protruding portion is disposed radially outward from the imaginary circle VC passing through the first through hole 71a to avoid the first through hole 71a. According to this embodiment, the drive unit 1 can be made smaller in the radial direction.
 本実施形態によれば、突出部73と第1貫通孔71aとは、周方向において互いに異なる位置に配置される。本体部71は、第1貫通孔71aが設けられる部分において径方向の剛性が低くなる。突出部73の径方向内側に第1貫通孔71aが設けられると、突出部73においてベアリングホルダ70が内側筒部51から受けた力でベアリングホルダ70が変形しベアリングホルダ70によるロータ20の支持が不安定となる虞がある。本実施形態によれば、突出部73に力が付与されてもベアリングホルダ70が変形することを抑制できる。 According to this embodiment, the protrusion 73 and the first through hole 71a are disposed at different positions in the circumferential direction. The main body 71 has low radial rigidity in the portion where the first through hole 71a is provided. If the first through hole 71a is provided radially inward of the protrusion 73, the force received by the bearing holder 70 from the inner cylindrical portion 51 at the protrusion 73 may cause the bearing holder 70 to deform, causing the bearing holder 70 to become unstable in its support of the rotor 20. According to this embodiment, deformation of the bearing holder 70 can be suppressed even when force is applied to the protrusion 73.
 本実施形態によれば、ベアリングホルダ70は、1つの突出部73を有する。また、本実施形態の第1貫通孔71aは、突出部73の周方向一方側の端部73bと周方向他方側の端部73cとの間に位置する。本実施形態によれば、突出部73を周方向に十分に長くすることで内側筒部51と嵌合長さも大きく確保することができる。結果的に、内側筒部51に対してベアリングホルダ70を位置決めしやすくなり、ベアリングホルダ70が安定的に保持される。なお、本実施形態では、突出部73が、中心軸線J1を中心とする周方向において270°以上の範囲に延びるため、より位置決めの安定性を高めることができる。 According to this embodiment, the bearing holder 70 has one protrusion 73. The first through hole 71a in this embodiment is located between the end 73b on one circumferential side of the protrusion 73 and the end 73c on the other circumferential side. According to this embodiment, the protrusion 73 is made sufficiently long in the circumferential direction, so that a large fitting length with the inner cylindrical portion 51 can be ensured. As a result, it becomes easier to position the bearing holder 70 relative to the inner cylindrical portion 51, and the bearing holder 70 is held stably. Note that in this embodiment, the protrusion 73 extends over a range of 270° or more in the circumferential direction centered on the central axis J1, which further improves the stability of positioning.
 図4に示すように、本実施形態の突出部73は、迂回部73dが設けられることで第1締結部76bの径方向外側への突出量を抑制しつつ第1締結部76bの締結面積を十分に確保することができる。また、迂回部73dが、内側筒部51の内側面の凸部に嵌ることで内側筒部51に対するベアリングホルダ70の回転が抑制される。しかしながら、突出部73は、迂回部73dを有していなくてもよい。図5は、迂回部73dを有さない変形例の突出部273の部分斜視図である。本変形例の突出部273は、第1実施形態と同様に周方向に沿って円弧状に延びる。しかしながら、本変形例の突出部273は、第1締結部276bの径方向内側においても一様な曲率半径で中心軸線J1周りに沿って円弧状に延びる。このため、突出部273の外側面273bは、突出部273の全長に亘って中心軸線J1を中心とする一様な円筒面となる。本変形例によれば、一つの一様な外側面273bを内側筒部51の内周面に嵌合させることができ、内側筒部51に対するベアリングホルダ70の位置決め精度を高めることができる。 4, the protrusion 73 of this embodiment is provided with a detour 73d, which suppresses the radially outward protrusion of the first fastening portion 76b while ensuring a sufficient fastening area of the first fastening portion 76b. In addition, the detour 73d fits into the convex portion on the inner surface of the inner cylindrical portion 51, thereby suppressing the rotation of the bearing holder 70 relative to the inner cylindrical portion 51. However, the protrusion 73 does not have to have the detour 73d. FIG. 5 is a partial perspective view of a protrusion 273 of a modified example that does not have a detour 73d. The protrusion 273 of this modified example extends in an arc shape along the circumferential direction as in the first embodiment. However, the protrusion 273 of this modified example extends in an arc shape around the central axis J1 with a uniform radius of curvature even on the radially inner side of the first fastening portion 276b. Therefore, the outer surface 273b of the protrusion 273 becomes a uniform cylindrical surface centered on the central axis J1 over the entire length of the protrusion 273. According to this modification, one uniform outer surface 273b can be fitted to the inner peripheral surface of the inner cylindrical portion 51, improving the positioning accuracy of the bearing holder 70 relative to the inner cylindrical portion 51.
 図3に示すように内側筒部51の第1内周面50fは、周方向において第1領域A1、および第2領域A2に区画することができる。ここで、第1領域A1は、突出部73の径方向外側に配置される領域であり、第2領域A2は、突出部73が途切れる部分に配置される領域である。突出部73は、第1領域A1において内側筒部51の第1内周面50fに嵌る。 As shown in FIG. 3, the first inner circumferential surface 50f of the inner tubular portion 51 can be divided into a first region A1 and a second region A2 in the circumferential direction. Here, the first region A1 is a region located radially outside the protrusion 73, and the second region A2 is a region located at the portion where the protrusion 73 ends. The protrusion 73 fits into the first inner circumferential surface 50f of the inner tubular portion 51 in the first region A1.
 図2に示すように、第1内周面50fに設ける複数のフィンのうち第1領域A1には第1フィン55aが設けられ、第2領域A2には第2フィン55bが設けられる。第1フィン55aの軸方向一方側(+Y側)の端部位置P1は、第2フィン55bの軸方向一方側(+Y側)の端部位置P2よりも軸方向他方側(-Y側)とすることが好ましい。すなわち、第1領域A1の第1フィン55aの軸方向一方側(+Y側)の端部は、第2領域A2の第2フィン55bの軸方向一方側(+Y側)の端部よりも軸方向他方側(-Y側)に位置することが好ましい。これにより、第1領域A1に突出部73が嵌った状態で、第1フィン55aと突出部73との干渉を抑制しつつ、第1内周面50fの軸方向のできるだけ広い領域に第1フィン55a、および第2フィン55bを設けることができる。 As shown in FIG. 2, among the multiple fins provided on the first inner peripheral surface 50f, the first fin 55a is provided in the first region A1, and the second fin 55b is provided in the second region A2. It is preferable that the end position P1 on one axial side (+Y side) of the first fin 55a is located on the other axial side (-Y side) of the end position P2 on one axial side (+Y side) of the second fin 55b. In other words, it is preferable that the end on one axial side (+Y side) of the first fin 55a in the first region A1 is located on the other axial side (-Y side) of the end on one axial side (+Y side) of the second fin 55b in the second region A2. This makes it possible to provide the first fin 55a and the second fin 55b in as wide an area as possible in the axial direction of the first inner peripheral surface 50f while suppressing interference between the first fin 55a and the protrusion 73 with the protrusion 73 fitted in the first region A1.
 図2に示すように、本実施形態の突出部73は、第1コイルエンド31aよりも軸方向一方側(+Y側)に位置する。このため、突出部73と第1コイルエンド31aとの絶縁距離を確保することができる。本実施形態によれば、突出部73は、第1コイルエンド31aよりも径方向外側に位置する。このため、ベアリングホルダ70の本体部71を軸方向においてコイル31に近づけやすくなり、駆動装置1の軸方向寸法の小型化を図ることができる。 As shown in FIG. 2, the protrusion 73 in this embodiment is located on one axial side (+Y side) of the first coil end 31a. This ensures an insulation distance between the protrusion 73 and the first coil end 31a. According to this embodiment, the protrusion 73 is located radially outward of the first coil end 31a. This makes it easier to bring the main body 71 of the bearing holder 70 closer to the coil 31 in the axial direction, and allows the axial dimension of the drive unit 1 to be reduced.
 本実施形態において、突出部73は、第1シール部64dよりも軸方向一方側(+Y側)に位置する。本実施形態によれば、第3流路部93の軸方向一方側(+Y側)に位置する第1シール部64dと突出部73とが径方向に重ならない。このため、本実施形態によれば、内側筒部51が径方向に大型化することを抑制できる。また、本実施形態の突出部73は、軸方向から見て第1シール部64dと異なる位置に配置される。さらに突出部73は、軸方向から見て第3流路部93と重なる。 In this embodiment, the protrusion 73 is located on one axial side (+Y side) of the first seal portion 64d. According to this embodiment, the first seal portion 64d, which is located on one axial side (+Y side) of the third flow path portion 93, does not overlap with the protrusion 73 in the radial direction. Therefore, according to this embodiment, the inner tube portion 51 can be prevented from becoming large in the radial direction. Furthermore, the protrusion 73 in this embodiment is located at a different position from the first seal portion 64d when viewed from the axial direction. Furthermore, the protrusion 73 overlaps with the third flow path portion 93 when viewed from the axial direction.
 本実施形態のベアリングホルダ70において、突出部73とベアリング保持部72とは、ともに本体部71の軸方向他方側(-Y側)を向く面から軸方向他方側(-Y側)に突出する。突出部73の外側面73a、およびベアリング保持部72の内周面は、それぞれ嵌合面として機能するため切削加工を施すことが好ましい。本実施形態によれば、突出部73、およびベアリング保持部72が何れも本体部71の軸方向他方側(-Y側)の面に設けられるため、同方向(軸方向他方側)から切削加工を行うことができる。これにより、切削加工の作業性が高まる。加えて、本実施形態によれば、ベアリングホルダ70を工作機械から取り外すことなく、突出部73とベアリング保持部72の両方の加工を行うことができるため、突出部73の外側面73aとベアリング保持部72の内周面の同軸度を高めることができる。これにより、ステータ30に対するロータ20の位置精度を高めることができる。 In the bearing holder 70 of this embodiment, the protruding portion 73 and the bearing holding portion 72 both protrude from the surface of the main body portion 71 facing the other axial side (-Y side) toward the other axial side (-Y side). The outer surface 73a of the protruding portion 73 and the inner peripheral surface of the bearing holding portion 72 are preferably cut to function as mating surfaces. According to this embodiment, since both the protruding portion 73 and the bearing holding portion 72 are provided on the surface of the other axial side (-Y side) of the main body portion 71, cutting can be performed from the same direction (other axial side). This improves the workability of the cutting process. In addition, according to this embodiment, since both the protruding portion 73 and the bearing holding portion 72 can be machined without removing the bearing holder 70 from the machine tool, the coaxiality of the outer surface 73a of the protruding portion 73 and the inner peripheral surface of the bearing holding portion 72 can be improved. This improves the positional accuracy of the rotor 20 relative to the stator 30.
 本実施形態によれば、レゾルバステータ29bは、ベアリングホルダ70に固定される。また、レゾルバステータ29bの軸方向における位置は、突出部73の軸方向における位置に重なる。本実施形態によれば、軸方向において突出部73とレゾルバステータ29bとを重ねて配置することでベアリングホルダ70を軸方向に小型化して、駆動装置1の軸方向寸法の小型化を図ることができる。 According to this embodiment, the resolver stator 29b is fixed to the bearing holder 70. Furthermore, the axial position of the resolver stator 29b overlaps with the axial position of the protrusion 73. According to this embodiment, by arranging the protrusion 73 and the resolver stator 29b so as to overlap in the axial direction, the bearing holder 70 can be made smaller in the axial direction, and the axial dimension of the drive unit 1 can be made smaller.
 図3に示すようにレゾルバステータ29bのレゾルバ配線29cは、経路中でベアリングホルダ70に固定される。より具体的には、レゾルバ配線29cは、本体部71の軸方向一方側(+Y側)を向く面に固定具8によって固定される。固定具8は、本体部71にネジ止めされており、本体部71の軸方向一方側を向く面には、固定具8をネジ止めするためのネジ穴が設けられる。本実施形態において、固定具のネジ止め部は、軸方向からみて突出部73に重なる。このため、固定具8のネジ止め用のネジ穴を本体部71に設ける場合において、ネジ穴を十分に深く設けることができネジの掛かり代を十分に確保できる。 As shown in FIG. 3, resolver wiring 29c of resolver stator 29b is fixed to bearing holder 70 in the path. More specifically, resolver wiring 29c is fixed by fixture 8 to a surface of main body 71 facing one axial side (+Y side). Fixture 8 is screwed to main body 71, and a screw hole for screwing fixture 8 is provided on the surface of main body 71 facing one axial side. In this embodiment, the screw portion of the fixture overlaps protrusion 73 when viewed from the axial direction. Therefore, when a screw hole for screwing fixture 8 is provided in main body 71, the screw hole can be provided sufficiently deep, and sufficient screw engagement can be ensured.
<第2実施形態>
 図6は、第2実施形態の駆動装置101に取り付けられるベアリングホルダ170の正面図である。図7は、第2実施形態のベアリングホルダ170の斜視図である。
 以下に、図6および図7を基の第2実施形態のベアリングホルダ170について説明する。本実施形態の駆動装置101は、上述の実施形態と比較してベアリングホルダ170の構成が異なる。なお、上述の実施形態と同一態様の構成要素については、同一符号を付し、その説明を省略する。
Second Embodiment
Fig. 6 is a front view of a bearing holder 170 attached to the driving device 101 of the second embodiment. Fig. 7 is a perspective view of the bearing holder 170 of the second embodiment.
A bearing holder 170 according to a second embodiment will be described below with reference to Fig. 6 and Fig. 7. The driving device 101 according to this embodiment differs from the above-described embodiment in the configuration of the bearing holder 170. Note that the same components as those in the above-described embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
 図7に示すように、ベアリングホルダ170は、本体部71と、ベアリング保持部72と、レゾルバ保持部74(図6参照)と、複数の突出部173と、外縁部76と、を有する。本体部71には、第1貫通孔71aおよび第2貫通孔71bが設けられる。また、外縁部76には、周方向に沿って並ぶ複数の第1締結部76bが設けられる。すなわち、ベアリングホルダ170は、複数の第1締結部76bを有する。 As shown in FIG. 7, the bearing holder 170 has a main body portion 71, a bearing holding portion 72, a resolver holding portion 74 (see FIG. 6), multiple protrusions 173, and an outer edge portion 76. The main body portion 71 is provided with a first through hole 71a and a second through hole 71b. Furthermore, the outer edge portion 76 is provided with multiple first fastening portions 76b aligned in the circumferential direction. That is, the bearing holder 170 has multiple first fastening portions 76b.
 上述の実施形態と同様に、突出部173は、本体部71の軸方向他方側(-Y側)を向く面から軸方向他方側(-Y側)に突出する。本実施形態のベアリングホルダ170において、突出部173は、3つ設けられる。それぞれの突出部173は、周方向に沿って略円弧状に延びるリブである。突出部173は、本体部71の外縁に沿って設けられる。また、突出部173は、外縁部76の径方向内側に配置される。 Similar to the embodiment described above, the protrusions 173 protrude from the surface of the main body 71 facing the other axial side (-Y side) toward the other axial side (-Y side). In the bearing holder 170 of this embodiment, three protrusions 173 are provided. Each protrusion 173 is a rib that extends in a substantially arc shape along the circumferential direction. The protrusions 173 are provided along the outer edge of the main body 71. Furthermore, the protrusions 173 are positioned radially inward of the outer edge 76.
 図6に示すように、複数の突出部173は、仮想円VC上に並ぶ。本実施形態の3つの突出部173は、互いに略同形状であり、中心軸線J1周りの回転対称に配置される。以下の説明において、3つの突出部173を互いに区別する場合、これらを第1突出部173A、第2突出部173B、および第3突出部173Cと呼ぶ。ベアリングホルダ170を軸方向一方側(+Y側)から見て、第1突出部173A、第2突出部173B、および第3突出部173Cは時計回りにこの順で並ぶ。 As shown in FIG. 6, the multiple protrusions 173 are arranged on an imaginary circle VC. In this embodiment, the three protrusions 173 have substantially the same shape and are arranged rotationally symmetric about the central axis J1. In the following description, when the three protrusions 173 are to be distinguished from one another, they are referred to as the first protrusion 173A, the second protrusion 173B, and the third protrusion 173C. When the bearing holder 170 is viewed from one axial side (+Y side), the first protrusion 173A, the second protrusion 173B, and the third protrusion 173C are arranged in this order in a clockwise direction.
 本実施形態において、周方向において第1突出部173Aと第3突出部173Cとの間には、第1貫通孔71aが配置される。すなわち、第1貫通孔71aは、軸方向から見て仮想円VC上に配置される。また、第1貫通孔71aは、複数の突出部173のうち周方向に隣り合う一対の突出部173同士の間に位置する。 In this embodiment, the first through hole 71a is disposed between the first protrusion 173A and the third protrusion 173C in the circumferential direction. In other words, the first through hole 71a is disposed on the imaginary circle VC when viewed from the axial direction. The first through hole 71a is also located between a pair of protrusions 173 that are adjacent to each other in the circumferential direction among the multiple protrusions 173.
 本実施形態によれば、突出部173を避けて仮想円VCの径方向内側に第1貫通孔を配置する場合と比較して、第1貫通孔71aを径方向外側に寄せて配置することができ、引出線31kも径方向外側に配置できる。これにより、引出線31kとバスバー7bとの接続作業において、作業者等が引出線接続部7aに径方向外側からアクセスしやすくなる。また、本実施形態によれば、第1貫通孔71aを避けて第1貫通孔71aを通過する仮想円VCよりも突出部を径方向外側に配置する場合と比較して、ベアリングホルダ170、および内側筒部51を径方向に小型化できる。 According to this embodiment, the first through hole 71a can be positioned radially outward, and the lead wire 31k can also be positioned radially outward, compared to when the first through hole is positioned radially inward of the virtual circle VC to avoid the protrusion 173. This makes it easier for workers to access the lead wire connection portion 7a from the radial outside when connecting the lead wire 31k to the bus bar 7b. Furthermore, according to this embodiment, the bearing holder 170 and the inner cylindrical portion 51 can be made smaller in the radial direction, compared to when the protrusion is positioned radially outward of the virtual circle VC that passes through the first through hole 71a to avoid the first through hole 71a.
 本実施形態のベアリングホルダ170には、周方向に並ぶ複数の突出部173が設けられる。本実施形態のベアリングホルダ170によれば、上述の実施形態のような一繋がりの突出部173を有するベアリングホルダ170と比較して、軽量化を図ることができる。なお、本実施形態では、ベアリングホルダ70が3つの突出部173を有する場合について説明したが、突出部173の数は本実施形態に限定されず、2つであっても4つ以上であってもよい。 The bearing holder 170 of this embodiment is provided with a plurality of protrusions 173 arranged in the circumferential direction. The bearing holder 170 of this embodiment can be made lighter than the bearing holder 170 having a continuous protrusion 173 as in the above-mentioned embodiment. Note that, although this embodiment has been described as having three protrusions 173, the number of protrusions 173 is not limited to this embodiment and may be two or four or more.
 突出部173と第1締結部76bとは、周方向において互いに異なる位置に配置されることが好ましい。第1締結部76bは、締結面積を確保するために径方向に大きくなりやすい。突出部173と第1締結部76bとの周方向位置をずらすことで、駆動装置101全体の径方向への大型化を抑制できる。ベアリングホルダ170において、突出部173の外側面173aと第1締結部76bの締結面とは、ともに内側筒部51に対する接触面である。本実施形態によれば、突出部173と第1締結部76bとを周方向位置をずらすことで、ベアリングホルダ170と内側筒部51との接触面を周方向に分散して配置することができる。本実施形態によれば、ベアリングホルダ170と内側筒部51との間に力が加わった場合に、ベアリングホルダ170、および内側筒部51に局所的に大きな力が加わり大きく変形することを抑制できる。 The protrusion 173 and the first fastening portion 76b are preferably disposed at different positions in the circumferential direction. The first fastening portion 76b tends to be large in the radial direction in order to secure a fastening area. By shifting the circumferential positions of the protrusion 173 and the first fastening portion 76b, the radial size of the entire drive device 101 can be suppressed. In the bearing holder 170, the outer surface 173a of the protrusion 173 and the fastening surface of the first fastening portion 76b are both contact surfaces with the inner cylindrical portion 51. According to this embodiment, by shifting the circumferential positions of the protrusion 173 and the first fastening portion 76b, the contact surfaces between the bearing holder 170 and the inner cylindrical portion 51 can be distributed in the circumferential direction. According to this embodiment, when a force is applied between the bearing holder 170 and the inner cylindrical portion 51, it is possible to suppress the bearing holder 170 and the inner cylindrical portion 51 from being significantly deformed due to a large force being applied locally.
 本実施形態の内側筒部51は、軸方向一方側(+Y側)の端部に外側筒部65に固定される複数(本実施形態では、4つ)の第2締結部56を有する。複数の第2締結部56は、周方向において等間隔に配置される。複数の第2締結部56には、それぞれ第2固定ネジ13が挿入される孔部が設けられる。第2締結部56は、第2固定ネジ13を外側筒部65の軸方向一方側(+Y側)を向く面に設けられるネジ穴にネジ止めすることで、外側筒部65に締結される。 The inner tubular portion 51 in this embodiment has a plurality of second fastening portions 56 (four in this embodiment) fixed to the outer tubular portion 65 at the end on one axial side (+Y side). The second fastening portions 56 are arranged at equal intervals in the circumferential direction. Each of the second fastening portions 56 is provided with a hole into which a second fixing screw 13 is inserted. The second fastening portions 56 are fastened to the outer tubular portion 65 by screwing the second fixing screws 13 into threaded holes provided on the surface of the outer tubular portion 65 facing one axial side (+Y side).
 本実施形態において、突出部173と第2締結部56とは、周方向において互いに異なる位置に配置されることが好ましい。本実施形態では、第1突出部173A、および第2突出部173Bについては、第2締結部56と周方向において異なる位置に配置される。しかしながら、第3突出部173Cは、一部が第2締結部56と周方向位置が互いに重なり合う。最も好ましい形態は、全ての突出部173が第2締結部56と周方向にずれて配置される形態である。 In this embodiment, it is preferable that the protrusions 173 and the second fastening portion 56 are positioned at different positions in the circumferential direction. In this embodiment, the first protrusions 173A and the second protrusions 173B are positioned at different positions in the circumferential direction from the second fastening portion 56. However, the third protrusions 173C partially overlap with the second fastening portion 56 in the circumferential direction. The most preferred embodiment is one in which all of the protrusions 173 are positioned circumferentially offset from the second fastening portion 56.
 突出部173と第2締結部56とは、周方向において互いに異なる位置に配置されることで、ベアリングホルダ170から内側筒部51を介して外側筒部65に力が加わる場合に、力の伝達経路になりうる部位を周方向に分散して配置することができる。本実施形態によれば、ベアリングホルダ170から内側筒部51に力が加わる場合に、内側筒部51に局所的に大きな力が付与されて大きく変形することを抑制できる。 The protrusion 173 and the second fastening portion 56 are arranged at different positions in the circumferential direction, so that when a force is applied from the bearing holder 170 to the outer tubular portion 65 via the inner tubular portion 51, the portions that can become the force transmission path can be arranged in a distributed manner in the circumferential direction. According to this embodiment, when a force is applied from the bearing holder 170 to the inner tubular portion 51, it is possible to prevent the inner tubular portion 51 from being significantly deformed due to a large force being applied locally.
 本実施形態において、突出部173と第2貫通孔71bとは、周方向において互いに異なる位置に配置される。本体部71は、第2貫通孔71bが設けられる部分において径方向の剛性が低くなる。突出部173の径方向内側に第2貫通孔71bが設けられると、突出部173においてベアリングホルダ170が内側筒部51から受けた力でベアリングホルダ170が変形しベアリングホルダ170によるロータ20の支持が不安定となる虞がある。本実施形態によれば、突出部173に力が付与されてもベアリングホルダ170が変形することを抑制できる。 In this embodiment, the protrusion 173 and the second through hole 71b are disposed at different positions in the circumferential direction. The main body 71 has low radial rigidity in the portion where the second through hole 71b is provided. If the second through hole 71b is provided radially inside the protrusion 173, the force received by the bearing holder 170 from the inner cylindrical portion 51 at the protrusion 173 may cause the bearing holder 170 to deform, causing the bearing holder 170 to become unstable in its support of the rotor 20. According to this embodiment, deformation of the bearing holder 170 can be suppressed even when force is applied to the protrusion 173.
 図6に示すように、本実施形態の外側筒部65には、軸方向に延びる第2流路部92が設けられる。突出部173と第2流路部92とは、周方向において互いに異なる位置に配置される。ベアリングホルダ170に対し径方向の力が付与され場合に、突出部173の外側面173aから内側筒部51を介し外側筒部65の第2流路部92に負荷が加わる虞がある。本実施形態によれば、突出部173と第2流路部92とは、周方向において互いに異なる位置に配置されるため、ベアリングホルダ170に径方向の力が付与されても第2流路部92に大きな負荷が加わることを抑制できる。 As shown in FIG. 6, the outer tubular portion 65 of this embodiment is provided with a second flow passage portion 92 extending in the axial direction. The protrusion 173 and the second flow passage portion 92 are arranged at different positions in the circumferential direction. When a radial force is applied to the bearing holder 170, there is a risk that a load will be applied from the outer surface 173a of the protrusion 173 to the second flow passage portion 92 of the outer tubular portion 65 via the inner tubular portion 51. According to this embodiment, since the protrusion 173 and the second flow passage portion 92 are arranged at different positions in the circumferential direction, it is possible to prevent a large load from being applied to the second flow passage portion 92 even when a radial force is applied to the bearing holder 170.
 以上に、本発明の様々な実施形態および変形例を説明したが、各実施形態および変形例における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはない。 Various embodiments and variations of the present invention have been described above, but the configurations and combinations thereof in each embodiment and variation are merely examples, and additions, omissions, substitutions and other modifications of configurations are possible without departing from the spirit of the present invention. Furthermore, the present invention is not limited to the embodiments.
 例えば、上述の実施形態において、コイルは、ステータに装着される屈曲可能な導線であり、コイルから延び出る引出線は、複数の導線を圧着端子によった束ねた構造を有する。しかしながら、コイルは、剛性の高い平角線から構成されるセグメントコイルであって、コイルから延び出る引出線も1本の平角線であってもよい。 For example, in the above embodiment, the coil is a bendable conductor attached to the stator, and the lead wire extending from the coil has a structure in which multiple conductor wires are bundled together with a crimp terminal. However, the coil may be a segment coil made of a highly rigid rectangular wire, and the lead wire extending from the coil may also be a single rectangular wire.
 なお、本技術は以下のような構成をとることが可能である。(1) 中心軸線を中心に回転可能なロータと、前記ロータを径方向外側から囲むステータと、前記ステータを径方向外側から囲み前記ステータを保持するハウジングと、前記ロータを回転可能に支持するベアリングと、前記ステータの軸方向一方側に位置し前記ベアリングを保持するベアリングホルダと、を備え、前記ハウジングは、前記中心軸線を中心とする筒状の内側筒部、および外側筒部を有し、前記内側筒部と前記外側筒部との間には、流路部が設けられ、前記ベアリングホルダは、前記中心軸線を中心とする円板状の本体部と、前記ベアリングを保持するベアリング保持部と、前記内側筒部に固定される第1締結部と、前記本体部の軸方向他方側を向く面から軸方向他方側に突出する突出部と、を有し、前記突出部は、軸方向から見て前記中心軸線を中心とする仮想円に沿って周方向に沿って延びて前記内側筒部の内周面に嵌り、前記本体部には、前記ステータのコイルから延び出る引出線を通す第1貫通孔が設けられ、前記第1貫通孔は、軸方向から見て前記仮想円上に配置される、駆動装置。(2) 前記ベアリングホルダは、1つの前記突出部を有し、前記第1貫通孔は、前記突出部の周方向一方側の端部と周方向他方側の端部との間に位置する、(1)に記載の駆動装置。(3) 前記ベアリングホルダは、前記仮想円上に並ぶ複数の前記突出部を有し、前記第1貫通孔は、複数の前記突出部のうち周方向に隣り合う一対の前記突出部同士の間に位置する、(1)に記載の駆動装置。(4) 前記ベアリングホルダは、周方向に沿って並ぶ複数の前記第1締結部を有し、周方向において、前記突出部と前記第1締結部とは、異なる位置に配置される、(3)に記載の駆動装置。(5) 前記内側筒部は、軸方向一方側の端部に前記外側筒部に固定される複数の第2締結部を有し、前記突出部と前記第2締結部とは、周方向において互いに異なる位置に配置される、(3)又は(4)に記載の駆動装置。(6) 前記ステータに取り付けられる温度センサを備え、前記本体部には、前記温度センサから延び出る温度センサ配線を通す第2貫通孔が設けられ、前記突出部と前記第2貫通孔とは、周方向において互いに異なる位置に配置される、(3)~(5)の何れか一項に記載の駆動装置。(7) 前記ステータは、軸方向一方側の端部に位置する第1コイルエンド、および軸方向他方側の端部に位置する第2コイルエンドを有し、前記突出部は、前記第1コイルエンドよりも軸方向一方側に位置する、(1)~(6)の何れか一項に記載の駆動装置。(8) 前記ステータは、軸方向一方側の端部に位置する第1コイルエンド、および軸方向他方側の端部に位置する第2コイルエンドを有し、前記突出部は、前記第1コイルエンドよりも径方向外側に位置する、(1)~(7)の何れか一項に記載の駆動装置。(9) 前記ステータは、軸方向一方側の端部に位置する第1コイルエンド、および軸方向他方側の端部に位置する第2コイルエンドを有し、前記内側筒部の内周面には、前記第1コイルエンドの径方向外側に配置され軸方向に沿って延び周方向に沿って並ぶ複数のフィンが設けられ、前記内側筒部の内周面は、周方向において第1領域、および第2領域に区画され、前記突出部は、前記第1領域において前記内側筒部の内周面に嵌り、前記第1領域の前記フィンの軸方向一方側の端部は、前記第2領域の前記フィンの軸方向一方側の端部よりも軸方向他方側に位置する、(1)~(8)の何れか一項に記載の駆動装置。(10) 前記内側筒部と前記外側筒部との間であって前記流路部の軸方向一方側には、シール部が配置され、前記突出部は、前記シール部よりも軸方向一方側に位置する、(1)~(9)の何れか一項に記載の駆動装置。(11) 前記ベアリング保持部は筒状であって、前記本体部の軸方向他方側を向く面から軸方向他方側に突出する、(1)~(10)の何れか一項に記載の駆動装置。(12) 前記ロータの回転を検知する回転センサを備え、前記回転センサは、前記ベアリングホルダに固定され、前記回転センサの軸方向における位置は、前記突出部の軸方向における位置に重なる、(1)~(11)の何れか一項に記載の駆動装置。(13) 前記ロータに接続されて前記ロータの動力を出力シャフトに伝達する動力伝達部を備え、前記動力伝達部は、前記ロータに対し軸方向他方側に配置される、(1)~(12)の何れか一項に記載の駆動装置。 The present technology can be configured as follows: (1) A rotor rotatable about a central axis, a stator surrounding the rotor from the radial outside, a housing surrounding the stator from the radial outside and holding the stator, a bearing rotatably supporting the rotor, and a bearing holder located on one axial side of the stator and holding the bearing, the housing having a cylindrical inner cylindrical portion centered on the central axis and an outer cylindrical portion, a flow path portion is provided between the inner cylindrical portion and the outer cylindrical portion, and the bearing holder is disposed on the central axis. A drive device having a disk-shaped main body part centered on a line, a bearing holding part that holds the bearing, a first fastening part fixed to the inner cylindrical part, and a protrusion that protrudes to the other axial direction side from a surface of the main body part facing the other axial direction side, the protrusion extending in the circumferential direction along a virtual circle centered on the central axis as viewed in the axial direction and fitting to an inner peripheral surface of the inner cylindrical part, the main body part being provided with a first through hole through which a lead wire extending from a coil of the stator passes, the first through hole being disposed on the virtual circle as viewed in the axial direction. (2) The drive device described in (1), in which the bearing holder has one of the protrusions, and the first through hole is located between an end portion on one circumferential side and an end portion on the other circumferential side of the protrusion. (3) The drive device described in (1), in which the bearing holder has a plurality of the protrusions arranged on the virtual circle, and the first through hole is located between a pair of the protrusions adjacent to each other in the circumferential direction among the plurality of the protrusions. (4) The driving device according to (3), wherein the bearing holder has a plurality of the first fastening portions arranged along the circumferential direction, and the protruding portion and the first fastening portion are disposed at different positions in the circumferential direction. (5) The driving device according to (3) or (4), wherein the inner cylindrical portion has a plurality of second fastening portions fixed to the outer cylindrical portion at an end portion on one axial side, and the protruding portion and the second fastening portion are disposed at different positions in the circumferential direction. (6) The driving device according to any one of (3) to (5), wherein the stator is provided with a temperature sensor attached thereto, and the main body portion is provided with a second through hole through which a temperature sensor wiring extending from the temperature sensor passes, and the protruding portion and the second through hole are disposed at different positions in the circumferential direction. (7) The driving device according to any one of (1) to (6), wherein the stator has a first coil end disposed at an end portion on one axial side and a second coil end disposed at an end portion on the other axial side, and the protruding portion is disposed on one axial side of the first coil end. (8) The drive device according to any one of (1) to (7), wherein the stator has a first coil end located at an end on one axial side and a second coil end located at an end on the other axial side, and the protruding portion is located radially outward of the first coil end. (9) The drive device according to any one of (1) to (8), wherein the stator has a first coil end located at an end on one axial side and a second coil end located at an end on the other axial side, and an inner circumferential surface of the inner cylindrical portion is provided with a plurality of fins arranged radially outward of the first coil end, extending along the axial direction, and aligned along the circumferential direction, the inner circumferential surface of the inner cylindrical portion being partitioned into a first region and a second region in the circumferential direction, the protruding portion fits into the inner circumferential surface of the inner cylindrical portion in the first region, and the end on one axial side of the fins in the first region is located on the other axial side of the end on one axial side of the fins in the second region. (10) The drive device according to any one of (1) to (9), in which a seal portion is disposed between the inner cylindrical portion and the outer cylindrical portion on one axial side of the flow passage portion, and the protruding portion is located on one axial side of the seal portion. (11) The drive device according to any one of (1) to (10), in which the bearing holder is cylindrical and protrudes on the other axial side from a surface of the main body portion facing the other axial side. (12) The drive device according to any one of (1) to (11), in which a rotation sensor that detects the rotation of the rotor is provided, the rotation sensor is fixed to the bearing holder, and the axial position of the rotation sensor overlaps with the axial position of the protruding portion. (13) The drive device according to any one of (1) to (12), in which a power transmission unit that is connected to the rotor and transmits the power of the rotor to an output shaft is provided, and the power transmission unit is located on the other axial side of the rotor.
1,101…駆動装置、2…モータ、4…動力伝達部、5A,5B,5C…ベアリング、6…ハウジング、20…ロータ、29b…レゾルバステータ(回転センサ)、30…ステータ、31…コイル、31a…第1コイルエンド、31b…第2コイルエンド、31k…引出線、47…出力シャフト、51…内側筒部、55a…フィン、55a…第1フィン(フィン)、55b…第2フィン(フィン)、56…第2締結部、64c…シール部、64d…第1シール部(シール部)、65…外側筒部、70,170…ベアリングホルダ、71…本体部、71a…第1貫通孔、71b…第2貫通孔、72…ベアリング保持部、73,173,273…突出部、73b,73c…端部、76b,276b…第1締結部、81…温度センサ、81a…温度センサ配線、93…第3流路部(流路部)、A1…第1領域、A2…第2領域、J1…中心軸線、VC…仮想円 1,101...Drive device, 2...Motor, 4...Power transmission section, 5A, 5B, 5C...Bearing, 6...Housing, 20...Rotor, 29b...Resolver stator (rotation sensor), 30...Stator, 31...Coil, 31a...First coil end, 31b...Second coil end, 31k...Outlet wire, 47...Output shaft, 51...Inner cylinder portion, 55a...Fin, 55a...First fin (fin), 55b...Second fin (fin), 56...Second fastening section, 64c ...sealing portion, 64d...first sealing portion (sealing portion), 65...outer cylinder portion, 70, 170...bearing holder, 71...main body portion, 71a...first through hole, 71b...second through hole, 72...bearing holding portion, 73, 173, 273...projection portion, 73b, 73c...end portion, 76b, 276b...first fastening portion, 81...temperature sensor, 81a...temperature sensor wiring, 93...third flow path portion (flow path portion), A1...first region, A2...second region, J1...center axis, VC...virtual circle

Claims (13)

  1.  中心軸線を中心に回転可能なロータと、
     前記ロータを径方向外側から囲むステータと、
     前記ステータを径方向外側から囲み前記ステータを保持するハウジングと、
     前記ロータを回転可能に支持するベアリングと、
     前記ステータの軸方向一方側に位置し前記ベアリングを保持するベアリングホルダと、を備え、
     前記ハウジングは、前記中心軸線を中心とする筒状の内側筒部、および外側筒部を有し、
     前記内側筒部と前記外側筒部との間には、流路部が設けられ、
     前記ベアリングホルダは、
      前記中心軸線を中心とする円板状の本体部と、
      前記ベアリングを保持するベアリング保持部と、
      前記内側筒部に固定される第1締結部と、
      前記本体部の軸方向他方側を向く面から軸方向他方側に突出する突出部と、を有し、
     前記突出部は、軸方向から見て前記中心軸線を中心とする仮想円に沿って周方向に沿って延びて前記内側筒部の内周面に嵌り、
     前記本体部には、前記ステータのコイルから延び出る引出線を通す第1貫通孔が設けられ、
     前記第1貫通孔は、軸方向から見て前記仮想円上に配置される、駆動装置。
    A rotor rotatable about a central axis;
    a stator surrounding the rotor from the radially outer side;
    a housing that surrounds the stator from a radially outer side and holds the stator;
    a bearing that rotatably supports the rotor;
    a bearing holder located on one axial side of the stator and holding the bearing,
    The housing has an inner cylindrical portion and an outer cylindrical portion that are cylindrical and centered on the central axis line,
    A flow path is provided between the inner cylindrical portion and the outer cylindrical portion,
    The bearing holder includes:
    A disk-shaped main body having the central axis as a center;
    A bearing holder that holds the bearing;
    A first fastening portion fixed to the inner tubular portion;
    a protruding portion protruding from a surface of the main body portion facing the other axial direction to the other axial direction,
    the protrusion extends in a circumferential direction along a virtual circle centered on the central axis as viewed in the axial direction and fits into an inner peripheral surface of the inner cylindrical portion,
    The main body portion is provided with a first through hole through which a lead wire extending from a coil of the stator passes,
    The first through hole is disposed on the imaginary circle when viewed in the axial direction.
  2.  前記ベアリングホルダは、1つの前記突出部を有し、
     前記第1貫通孔は、前記突出部の周方向一方側の端部と周方向他方側の端部との間に位置する、請求項1に記載の駆動装置。
    The bearing holder has one of the protrusions,
    The drive unit according to claim 1 , wherein the first through hole is located between an end portion on one circumferential side and an end portion on the other circumferential side of the protruding portion.
  3.  前記ベアリングホルダは、前記仮想円上に並ぶ複数の前記突出部を有し、
     前記第1貫通孔は、複数の前記突出部のうち周方向に隣り合う一対の前記突出部同士の間に位置する、請求項1に記載の駆動装置。
    the bearing holder has a plurality of the protrusions arranged on the imaginary circle,
    The drive unit according to claim 1 , wherein the first through hole is located between a pair of the protruding portions that are adjacent to each other in a circumferential direction among the plurality of protruding portions.
  4.  前記ベアリングホルダは、周方向に沿って並ぶ複数の前記第1締結部を有し、
     周方向において、前記突出部と前記第1締結部とは、異なる位置に配置される、請求項3に記載の駆動装置。
    the bearing holder has a plurality of the first fastening portions arranged along a circumferential direction,
    The drive unit according to claim 3 , wherein the protrusion and the first fastening portion are disposed at different positions in a circumferential direction.
  5.  前記内側筒部は、軸方向一方側の端部に前記外側筒部に固定される複数の第2締結部を有し、
     前記突出部と前記第2締結部とは、周方向において互いに異なる位置に配置される、請求項3に記載の駆動装置。
    the inner tubular portion has a plurality of second fastening portions fixed to the outer tubular portion at one end in the axial direction,
    The drive unit according to claim 3 , wherein the protruding portion and the second fastening portion are disposed at different positions from each other in a circumferential direction.
  6.  前記ステータに取り付けられる温度センサを備え、
     前記本体部には、前記温度センサから延び出る温度センサ配線を通す第2貫通孔が設けられ、
     前記突出部と前記第2貫通孔とは、周方向において互いに異なる位置に配置される、請求項3に記載の駆動装置。
    A temperature sensor is provided attached to the stator.
    The main body portion is provided with a second through hole through which a temperature sensor wire extending from the temperature sensor passes,
    The drive unit according to claim 3 , wherein the protrusion and the second through hole are disposed at different positions in a circumferential direction.
  7.  前記ステータは、軸方向一方側の端部に位置する第1コイルエンド、および軸方向他方側の端部に位置する第2コイルエンドを有し、
     前記突出部は、前記第1コイルエンドよりも軸方向一方側に位置する、請求項1に記載の駆動装置。
    the stator has a first coil end located at one end in the axial direction and a second coil end located at the other end in the axial direction,
    The drive unit according to claim 1 , wherein the protruding portion is located on one axial side of the first coil end.
  8.  前記ステータは、軸方向一方側の端部に位置する第1コイルエンド、および軸方向他方側の端部に位置する第2コイルエンドを有し、
     前記突出部は、前記第1コイルエンドよりも径方向外側に位置する、請求項1に記載の駆動装置。
    the stator has a first coil end located at one end in the axial direction and a second coil end located at the other end in the axial direction,
    The drive unit according to claim 1 , wherein the protruding portion is located radially outward of the first coil end.
  9.  前記ステータは、軸方向一方側の端部に位置する第1コイルエンド、および軸方向他方側の端部に位置する第2コイルエンドを有し、
     前記内側筒部の内周面には、前記第1コイルエンドの径方向外側に配置され軸方向に沿って延び周方向に沿って並ぶ複数のフィンが設けられ、
     前記内側筒部の内周面は、周方向において第1領域、および第2領域に区画され、
     前記突出部は、前記第1領域において前記内側筒部の内周面に嵌り、
     前記第1領域の前記フィンの軸方向一方側の端部は、前記第2領域の前記フィンの軸方向一方側の端部よりも軸方向他方側に位置する、請求項1に記載の駆動装置。
    the stator has a first coil end located at one end in the axial direction and a second coil end located at the other end in the axial direction,
    a plurality of fins are provided on an inner peripheral surface of the inner cylindrical portion, the fins being arranged radially outward of the first coil end, the fins extending along the axial direction, and the fins being arranged along the circumferential direction;
    The inner circumferential surface of the inner cylindrical portion is divided into a first region and a second region in a circumferential direction,
    the protrusion fits into an inner circumferential surface of the inner cylindrical portion in the first region,
    The drive unit according to claim 1 , wherein an end portion on one axial direction side of the fin in the first region is located on the other axial direction side of an end portion on one axial direction side of the fin in the second region.
  10.  前記内側筒部と前記外側筒部との間であって前記流路部の軸方向一方側には、シール部が配置され、
     前記突出部は、前記シール部よりも軸方向一方側に位置する、請求項1に記載の駆動装置。
    a seal portion is disposed between the inner cylindrical portion and the outer cylindrical portion and on one axial side of the flow passage portion,
    The drive unit according to claim 1 , wherein the protruding portion is located on one axial side of the seal portion.
  11.  前記ベアリング保持部は筒状であって、前記本体部の軸方向他方側を向く面から軸方向他方側に突出する、請求項1に記載の駆動装置。 The drive device according to claim 1, wherein the bearing holder is cylindrical and protrudes in the other axial direction from a surface of the main body facing the other axial direction.
  12.  前記ロータの回転を検知する回転センサを備え、
     前記回転センサは、前記ベアリングホルダに固定され、
     前記回転センサの軸方向における位置は、前記突出部の軸方向における位置に重なる、請求項1に記載の駆動装置。
    a rotation sensor that detects rotation of the rotor;
    The rotation sensor is fixed to the bearing holder,
    The drive device according to claim 1 , wherein an axial position of the rotation sensor overlaps with an axial position of the protrusion.
  13.  前記ロータに接続されて前記ロータの動力を出力シャフトに伝達する動力伝達部を備え、
     前記動力伝達部は、前記ロータに対し軸方向他方側に配置される、請求項1に記載の駆動装置。
    a power transmission section connected to the rotor and transmitting power of the rotor to an output shaft;
    The drive unit according to claim 1 , wherein the power transmission portion is disposed on the other axial side of the rotor.
PCT/JP2023/028529 2022-09-30 2023-08-04 Drive device WO2024070228A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022157698A JP2024051496A (en) 2022-09-30 2022-09-30 Drive unit
JP2022-157698 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024070228A1 true WO2024070228A1 (en) 2024-04-04

Family

ID=90477134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028529 WO2024070228A1 (en) 2022-09-30 2023-08-04 Drive device

Country Status (2)

Country Link
JP (1) JP2024051496A (en)
WO (1) WO2024070228A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004147449A (en) * 2002-10-25 2004-05-20 Nissan Motor Co Ltd Rotating machine
JP2014166067A (en) * 2013-02-26 2014-09-08 Fanuc Ltd Cooling jacket having groove for passing refrigerant, stator with cooling jacket, and dynamo-electric machine with cooling jacket
WO2018030479A1 (en) * 2016-08-12 2018-02-15 日本電産株式会社 Motor
WO2018139497A1 (en) * 2017-01-25 2018-08-02 株式会社Ihi Electric compressor
JP2018126041A (en) * 2017-02-03 2018-08-09 日本電産株式会社 motor
JP2020054162A (en) * 2018-09-28 2020-04-02 日本電産株式会社 motor
JP2020054149A (en) * 2018-09-27 2020-04-02 日本電産株式会社 motor
WO2021166298A1 (en) * 2020-02-19 2021-08-26 日本電産株式会社 Motor unit

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004147449A (en) * 2002-10-25 2004-05-20 Nissan Motor Co Ltd Rotating machine
JP2014166067A (en) * 2013-02-26 2014-09-08 Fanuc Ltd Cooling jacket having groove for passing refrigerant, stator with cooling jacket, and dynamo-electric machine with cooling jacket
WO2018030479A1 (en) * 2016-08-12 2018-02-15 日本電産株式会社 Motor
WO2018139497A1 (en) * 2017-01-25 2018-08-02 株式会社Ihi Electric compressor
JP2018126041A (en) * 2017-02-03 2018-08-09 日本電産株式会社 motor
JP2020054149A (en) * 2018-09-27 2020-04-02 日本電産株式会社 motor
JP2020054162A (en) * 2018-09-28 2020-04-02 日本電産株式会社 motor
WO2021166298A1 (en) * 2020-02-19 2021-08-26 日本電産株式会社 Motor unit

Also Published As

Publication number Publication date
JP2024051496A (en) 2024-04-11

Similar Documents

Publication Publication Date Title
US9438082B2 (en) Rotary electric machine
JPWO2019022110A1 (en) motor
JPWO2019022106A1 (en) motor
WO2024070228A1 (en) Drive device
US20230090548A1 (en) Drive apparatus
US20220393546A1 (en) Motor unit and method for manufacturing motor unit
WO2023162442A1 (en) Drive device
WO2024042797A1 (en) Drive device
WO2023188619A1 (en) Drive device and method for manufacturing drive device
WO2023188622A1 (en) Drive device
WO2024070226A1 (en) Drive device
WO2023188620A1 (en) Drive device
WO2024070227A1 (en) Drive device
WO2023162443A1 (en) Drive device
JP7468269B2 (en) Drive unit
WO2023243316A1 (en) Rotary electric machine
JP6962772B2 (en) Stator core cooling structure and rotary electric machine
US20230027341A1 (en) Rotating electric machine and drive apparatus
WO2023189033A1 (en) Drive device
JP2021175235A (en) Rotary electric machine
JP2016149866A (en) Vehicular rotary electric machine
WO2024042796A1 (en) Drive device
JP7482023B2 (en) Liquid-cooled electric motor
US20230093962A1 (en) Motor and drive apparatus
US20210194325A1 (en) Rotary electric machine unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871470

Country of ref document: EP

Kind code of ref document: A1