WO2024070205A1 - Cylinder device - Google Patents

Cylinder device Download PDF

Info

Publication number
WO2024070205A1
WO2024070205A1 PCT/JP2023/028211 JP2023028211W WO2024070205A1 WO 2024070205 A1 WO2024070205 A1 WO 2024070205A1 JP 2023028211 W JP2023028211 W JP 2023028211W WO 2024070205 A1 WO2024070205 A1 WO 2024070205A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
throttle valve
torque
variable throttle
rotation speed
Prior art date
Application number
PCT/JP2023/028211
Other languages
French (fr)
Japanese (ja)
Inventor
央道 菅原
大和 久保
Original Assignee
カヤバ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カヤバ株式会社 filed Critical カヤバ株式会社
Publication of WO2024070205A1 publication Critical patent/WO2024070205A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/14Energy-recuperation means

Definitions

  • the present invention relates to a cylinder device.
  • a conventional cylinder device is, for example, as disclosed in JP2009-196597A, applied to active suspensions interposed between the body and axle of a vehicle, and specifically comprises a cylinder, a piston that is movably inserted into the cylinder to divide the inside of the cylinder into two working chambers, a rod connected to the piston, a first flow path and a second flow path that connect the two working chambers in parallel, a first variable throttle valve provided in the first flow path, a second variable throttle valve and a bidirectional discharge pump provided in series in the second flow path, a hydraulic cylinder having a motor that drives the pump, and a control device that controls the first variable throttle valve, the second variable throttle valve, and the motor.
  • the cylinder When a conventional cylinder device is used as an active suspension, the cylinder is connected to one of the vehicle body and the axle, and the rod is connected to the other of the vehicle body and the axle.
  • the pump is driven by a motor to generate thrust, thereby suppressing vibration of the vehicle body.
  • the amount of hydraulic oil passing through the pump and the torque borne by the motor can be adjusted by adjusting the throttling coefficient of the first variable throttle valve and the throttling coefficient of the second variable throttle valve.
  • the throttling coefficient is the flow rate per unit time divided by the pressure, and a smaller throttling coefficient means greater resistance in the variable throttle valve.
  • the regenerative efficiency When the motor is in a braking state, on a graph with motor torque on the vertical axis and motor rotation speed on the horizontal axis, the regenerative efficiency will be maximized if the intersection of the torque output by the motor and the motor rotation speed (motor operating point) is on a line (maximum regenerative efficiency line) that passes through the origin and has a slope half that of the line tangent to the short-circuit curve that shows the relationship between torque and rotation speed when the motor is short-circuited.
  • the throttling coefficient of the first variable throttle valve and the throttling coefficient of the second variable throttle valve are adjusted so that the intersection of the torque output by the motor and the motor's rotational speed is located on the line that maximizes regenerative efficiency.
  • the present invention aims to provide a cylinder device that can actually maximize regenerative power by determining the conditions under which the operating point of the motor can be moved onto the straight line of maximum regenerative efficiency.
  • the cylinder device in the problem-solving means of the present invention comprises a hydraulic cylinder having a cylinder, a piston that is movably inserted into the cylinder and divides the inside of the cylinder into two working chambers, first and second flow paths that are parallel to each other and communicate the working chambers, a first variable throttle valve provided in the first flow path, a second variable throttle valve provided in series in the second flow path, and a bidirectional discharge pump driven by a motor, and a controller that controls the first variable throttle valve, the second variable throttle valve, and the motor, and when the operating point of the motor is located in a region of greater torque than the maximum regenerative efficiency line in the second quadrant or when the operating point of the motor is located in a region of less torque than the maximum regenerative efficiency line in the fourth quadrant in a rotational speed-torque coordinate system in which the operating state of the motor is in a braking state when the operating point of the motor is in the second and fourth quadrants, the controller calculates a
  • this cylinder device configured, when the motor is in a braking state, enabling power regeneration, and the operating point of the motor can be moved onto the line showing maximum regeneration efficiency by controlling the throttle coefficient of the second variable throttle valve, the operating point of the motor is moved onto the line showing maximum regeneration efficiency.
  • FIG. 1 is a conceptual diagram of a cylinder device according to one embodiment.
  • FIG. 2 is a model diagram showing the relationship between the flow rate and the differential pressure of the cylinder device in one embodiment.
  • FIG. 3 is a graph showing the rotational speed of the motor as a function of the flow rate through the pump, and the torque of the motor as a function of the pressure difference (pressure loss) as the liquid passes through the pump.
  • FIG. 4 is a diagram showing the range of the motor rotation speed and the torque that can be output.
  • FIG. 5 is a diagram showing the configuration of the controller.
  • FIG. 6 is a diagram showing the configuration of the regenerative control unit.
  • the cylinder device A in one embodiment is configured with a hydraulic cylinder 1 and a controller 11.
  • the hydraulic cylinder 1 is configured with a cylinder 2, a piston 3 that is movably inserted into the cylinder 2 and divides the cylinder 2 into two working chambers R1 and R2, a first flow path 4 and a second flow path 5 that are parallel to each other and communicate the working chambers R1 and R2, a first variable throttle valve 6 provided in the first flow path 4, a second variable throttle valve 7 provided in series in the second flow path 5, and a bidirectional discharge pump 9 driven by a motor 8, and the cylinder 2 is filled with liquid and sealed.
  • the piston 3 is connected to a rod 10 that is movably inserted into the cylinder 2, and in the case of this hydraulic cylinder 1, the rod 10 protrudes from both ends of the cylinder 2, making it a so-called double-rod type cylinder device.
  • the hydraulic cylinder 1 When the hydraulic cylinder 1 is applied to a vehicle, the cylinder 2 is connected to one of the sprung and unsprung members of the vehicle, and the rod 10 is connected to the other of the sprung and unsprung members, and is interposed between the sprung and unsprung members.
  • the hydraulic cylinder 1 When the hydraulic cylinder 1 is applied to a vehicle and used, it exerts a thrust to suppress vibrations of the vehicle body, which is the sprung member, and the vehicle wheels, which are the unsprung members.
  • the hydraulic cylinder 1 is said to extend when the rod 10 moves upward in FIG. 1 relative to the cylinder 2 together with the piston 3, and conversely, the hydraulic cylinder 1 is said to contract when the rod 10 moves downward in FIG. 1 relative to the cylinder 2 together with the piston 3.
  • the hydraulic cylinder 1 is configured as a double-rod type in the illustrated example, it may be configured as a single-rod type.
  • the inside of the cylinder 2 is divided by the piston 3 into an extension side working chamber R1 at the top in FIG. 1 and a compression side working chamber R2 at the bottom in FIG. 1, as described above, and each of the working chambers R1, R2 is filled with a liquid such as hydraulic oil.
  • the liquid may be other liquids such as water or an aqueous solution in addition to hydraulic oil.
  • the hydraulic cylinder 1 is a double-rod type hydraulic cylinder, and even if the rod 10 moves up and down in FIG. 1 together with the piston 3 relative to the cylinder 2, the volume displaced by the rod 10 in the cylinder 2 does not change. Therefore, a reservoir is not provided to compensate for the volume of the rod 10 moving in and out of the cylinder 2, but an accumulator connected to the inside of the cylinder 2 may be provided to compensate for the volume change due to the temperature change of the liquid.
  • the pump 9 is set to be a bidirectional discharge type, and may be, for example, a vane pump, gear pump, axial pump, or the like, equipped with a rotating shaft (not shown) that can suck in and discharge fluid by rotating the rotating shaft, and conversely, can forcibly drive the rotating shaft by the flow of fluid. Furthermore, the rotating shaft of the pump 9 is connected to the motor 8, which can be driven by passing electricity, and which, when forcibly driven to rotate by input from the pump 9 side, generates electricity and generates torque to suppress the rotation of the pump 9.
  • Various types of motors, whether DC or AC can be used, for example, brushless motors, induction motors, synchronous motors, etc.
  • the hydraulic cylinder 1 can expand and contract spontaneously and generate thrust in the desired direction by driving the pump 9 with the motor 8 to rotate and send liquid from the extension side working chamber R1 to the compression side working chamber R2, or from the compression side working chamber R2 to the extension side working chamber R1 via the second flow path 5.
  • the pump 9, to which the torque of the motor 8 is transmitted applies resistance to the flow of liquid moving from the extension side working chamber R1 to the compression side working chamber R2, or from the compression side working chamber R2 to the extension side working chamber R1, via the second flow path 5, generating thrust in a direction that prevents expansion or contraction.
  • the motor 8 is forcibly driven via the pump 9 by the flow of liquid going back and forth through the second flow path 5, so that the kinetic energy of the liquid is converted into electrical energy by the motor 8, enabling power regeneration.
  • the power regenerated by the motor 8 may be sent to an external device or stored in a capacitor.
  • the first variable throttle valve 6 is provided in the first flow path 4 that bypasses the pump 9 and communicates between the working chambers R1 and R2, and the second variable throttle valve 7 is provided in the second flow path 5 together with the pump 9. Therefore, the first variable throttle valve 6 is arranged in parallel with the second variable throttle valve 7 and the pump 9.
  • the first variable throttle valve 6 and the second variable throttle valve 7 are capable of changing the throttle coefficient, which is the ratio of the passing flow rate to the pressure loss, by changing the opening degree and the valve passage length.
  • various valves such as a variable choke and a variable orifice can be used, and the throttle coefficient can be changed by driving the valve body (not shown) with a drive source such as a solenoid or a motor.
  • the drive source that changes the throttle coefficient in the first variable throttle valve 6 and the second variable throttle valve 7 is controlled by the controller 11.
  • the pump 9 may be disposed on either the working chamber R1 side or the working chamber R2 side.
  • the fluid filled in the cylinder 2 may be any fluid, such as oil, water, an aqueous solution, or gas.
  • the hydraulic cylinder 1 configured in this manner can function as an actuator that expands and contracts by itself when power is supplied from the controller 11 to the motor 8 to drive the pump 9, but conversely, when the hydraulic cylinder 1 is expanded or contracted by an external force, the torque of the motor 8 suppresses the rotation of the pump 9; that is, the motor 8 is used in the braking region to generate a torque in the opposite direction to the rotation of the pump 9, and the motor 8, first variable throttle valve 6, and second variable throttle valve 7 work together to generate a damping force.
  • the rotational speed and torque of the motor 8 can be controlled by adjusting the throttle coefficients of the first variable throttle valve 6 and second variable throttle valve 7.
  • the first variable throttle valve 6 When a current is applied to the motor 8 to drive the pump 9, that is, when the motor 8 is used in the powering region to cause the hydraulic cylinder 1 to function as an actuator, the first variable throttle valve 6 is fully closed to prevent communication between the working chambers R1 and R2 via the first flow path 4, while the second variable throttle valve 7 is fully opened to prevent unnecessary resistance to the flow of liquid caused by the second variable throttle valve 7, resulting in energy loss.
  • ⁇ P be the pressure difference between one working chamber R1 and the other working chamber R2 when the hydraulic cylinder 1 is expanding or contracting
  • Q be the flow rate per unit time of the fluid flowing out from one working chamber R1 (hereinafter simply referred to as flow rate)
  • C1 be the throttling coefficient which is the ratio of the flow rate q1 of the fluid passing through the first variable throttle valve 6 divided by the differential pressure (pressure loss) ⁇ P generated at the first variable throttle valve 6
  • C2 be the throttling coefficient which is the ratio of the flow rate q2 of the fluid passing through the second variable throttle valve 7 divided by the differential pressure (pressure loss) ⁇ p2 generated at the second variable throttle valve 7
  • C3 be the throttling coefficient which is the ratio of the flow rate q2 of the fluid passing through the variable throttle valve M consisting of the motor 8 and pump 9 divided by the differential pressure (pressure loss) ⁇ pm generated at the variable throttle valve M, then the following formula 1 is obtained.
  • equation 1 can be written as equation 2 below.
  • Equation 3 Substituting Equation 3 into Equation 2 and summarizing, we obtain the following Equation 4.
  • the flow rate q2 passing through the variable throttle valve M can be changed.
  • the flow rate q2 can be increased or decreased to increase or decrease the rotation speed of the motor 8.
  • the flow rate at the second variable throttle valve 7 and the variable throttle valve M is q2
  • the overall differential pressure is ⁇ P
  • the differential pressure (pressure loss) at the variable throttle valve M is ⁇ pm
  • the differential pressure ⁇ pm that occurs when fluid passes through the pump 9.
  • the differential pressure ⁇ pm can be increased or decreased to increase or decrease the torque that must be borne by the motor 8.
  • the burden torque of the motor 8 is the torque acting between the motor 8 and the pump 9, and can be considered as the torque that needs to be applied from the motor 8 to the pump 9 in order for the cylinder device A to output the desired thrust.
  • burden torque is used even when the hydraulic cylinder 1 is expanding and contracting spontaneously.
  • point a in Figure 3 shows the relationship between the rotation speed and the load torque of the motor 8 when the second variable throttle valve 7 is fully open to maximize the throttle coefficient C2 and the first variable throttle valve 6 is fully closed to minimize the throttle coefficient C1;
  • point b shows the relationship between the rotation speed and the load torque of the motor 8 when the second variable throttle valve 7 is fully open to maximize the throttle coefficient C2 and the first variable throttle valve 6 is fully open to maximize the throttle coefficient C1;
  • point c shows the relationship between the rotation speed and the load torque of the motor 8 when the second variable throttle valve 7 is fully closed to minimize the throttle coefficient C2 and the first variable throttle valve 6 is fully closed to minimize the throttle coefficient C1;
  • point d shows the relationship between the rotation speed and the load torque of the motor 8 when the second variable throttle valve 7 is fully closed to minimize the throttle coefficient C2 and the first variable throttle valve 6 is fully open to maximize the throttle coefficient C1. That is, by changing the throttle coefficients C1 and C2 of the first variable throttle valve 6 and the second variable throttle valve 7, the rotation speed and load torque
  • the range of the burden torque that can be output for any rotation speed of the motor 8 is, as shown in FIG. 4, a rotation speed torque coordinate system in which the vertical axis is the burden torque and the horizontal axis is the rotation speed, and is the region surrounded by an output limit line z1 consisting of a straight line parallel to the horizontal axis and a curve connected to the straight line in the first and second quadrants, and an output limit line z2 consisting of a straight line parallel to the horizontal axis and a curve connected to the straight line in the third and fourth quadrants.
  • the straight lines on the output limit lines z1 and z2 indicate the upper limit of the burden torque of the motor 8, and are boundaries that arise due to the current being limited by a current limiter (not shown) provided in the controller 11.
  • the curves on the output limit lines z1 and z2 also divide the burden torque region that can be generated at the rotation speed at that time and the burden torque region that cannot be generated, and are boundary lines determined by the characteristics of the power supply voltage (not shown), the induced power of the motor 8, etc.
  • the sign of the torque in the forward direction of the motor 8 is positive and the sign of the torque in the reverse direction is negative, and the sign of the rotation speed when the motor 8 rotates in the forward direction is positive and the sign of the torque in the reverse direction is negative.
  • the motor 8 in the second quadrant, where the rotation speed is negative and the burden torque is positive, and in the fourth quadrant, where the rotation speed is positive and the burden torque is negative, the motor 8 is operating in the braking region where power regeneration is possible, and in the first quadrant, where the rotation speed is positive and the burden torque is positive, and in the third quadrant, where the rotation speed is negative and the burden torque is negative, the motor 8 is operating in the powering region where power is consumed.
  • the motor 8 is in a braking state when operating in the braking region, and in a powering state when operating in the powering region.
  • the dashed line passing through the second and fourth quadrants where motor 8 is in a braking state is the maximum regenerative efficiency line, which shows the relationship between the rotational speed and torque at which motor 8's regenerative power is at its maximum, and is a straight line that passes through the origin and is tangent to the short-circuit curve that depicts the short-circuit characteristics of motor 8.
  • the maximum regenerative efficiency line shows the relationship between the rotational speed and the maximum regenerative torque at which motor 8's regenerative power is at its maximum when motor 8 is operating in a braking state and rotating at a certain rotational speed, and if the operating point of motor 8 is on the maximum regenerative efficiency line, the regenerative power will be maximum at the rotational speed at that time. In this way, if the rotational speed of motor 8 is constant, regenerative efficiency will be maximized by locating the operating point of motor 8 on the maximum regenerative efficiency line.
  • the operating point of the motor 8 in the rotational speed torque coordinate system in which the operating state of the motor 8 is in the braking state when the operating point of the motor 8 is in the second and fourth quadrants, is located in the hatched area X surrounded by the output limit line z1 and the vertical axis above the maximum regenerative efficiency line in the second quadrant, or when the operating point of the motor 8 is located in the hatched area Y below the maximum regenerative efficiency line in the fourth quadrant, if the throttling coefficient of the second variable throttle valve 7 is reduced to reduce the flow path of the second variable throttle valve 7, the pressure loss in the second variable throttle valve 7 increases and the torque borne by the motor 8 decreases, so that only the torque borne by the motor 8 can be reduced without changing the rotational speed of the motor 8. Then, if the throttling coefficient of the second variable throttle valve 7 is appropriately adjusted, the operating point of the motor 8 can be placed on the maximum regenerative efficiency line to maximize the regenerative power of the motor 8.
  • the controller 11 includes a thrust control unit 20 that receives a thrust command indicating the target thrust of the hydraulic cylinder 1 from a higher-level control device and controls the motor 8, as well as a regeneration control unit 21 that controls the throttling coefficient of the second variable throttle valve 7 to improve the regeneration efficiency of the motor 8.
  • the thrust control unit 20 includes a current command generating unit 20a that, upon receiving a thrust command indicating the target thrust of the hydraulic cylinder 1 from a higher-level control device, determines a target current to be supplied to the motor 8 and outputs a current command indicating the target current, and a motor control unit 20b that, upon receiving the current command generated by the current command generating unit 20a, feeds back the current flowing through the motor 8 to control the current flowing through the motor 8 according to the target current.
  • the hydraulic cylinder 1 is applied to a vehicle, and the higher-level control device determines the thrust to be generated in the hydraulic cylinder 1 mainly for the purpose of suppressing the vibration of the vehicle body as a sprung member.
  • the thrust command may be determined so as to enable not only the reduction of the vibration of the vehicle body but also the reduction of the vibration of the wheels as unsprung members.
  • the thrust control unit 20 may also determine a thrust command by itself, rather than obtaining a thrust command from a higher-level control device, by detecting vibration information of the vehicle body, or the vehicle body and wheels in the vehicle, or by receiving such vibration information from the vehicle.
  • the current command generating unit 20a performs a calculation process to obtain a target current corresponding to the torque to be output to the motor 8 by feeding back the actual thrust generated by the hydraulic cylinder 1, and performing proportional, integral and differential compensation for the control deviation between the target thrust indicated by the thrust command and the actual thrust.
  • the thrust of the hydraulic cylinder 1 is input to the current command generating unit 20a from an actual thrust detecting unit 25 including a pressure sensor 25a for detecting the pressure of the working chamber R1, a pressure sensor 25b for detecting the pressure of the working chamber R2, and a calculation unit 25c for multiplying the difference between the pressures of the working chambers R1 and R2 by the pressure receiving area of the piston 3 to obtain the thrust generated by the hydraulic cylinder 1.
  • the current command generating unit 20a may be configured in any way as long as it can obtain a target current from the thrust command and generate a current command.
  • the actual thrust detecting unit 25 may be a sensor for detecting the load acting on the rod 10.
  • the thrust control unit 20 may not detect the thrust actually output by the hydraulic cylinder 1, but may instead detect the pressure and load described above, and may include an observer that detects state quantities of the hydraulic cylinder 1, such as the throttle coefficients of the first variable throttle valve 6 and the second variable throttle valve 7, the rotation speed of the motor 8, and the torque, and estimates the thrust of the hydraulic cylinder 1 from the state quantities.
  • the actual thrust of the hydraulic cylinder 1 may be estimated from information from an acceleration sensor attached to the vehicle body and the axle, or the actual thrust of the hydraulic cylinder 1 may be estimated using information from a sensor used for purposes other than the control of the cylinder device A.
  • the current command generation unit 20a may feed back the thrust estimated by the observer to obtain the target current.
  • the motor control unit 20b may be provided with a drive circuit suitable for current control of the motor 8 depending on the type of the motor 8, and may be capable of controlling the current of the motor 8 according to the current command.
  • the regenerative control unit 21 includes a first variable throttle valve control unit 22 that controls the throttle coefficient of the first variable throttle valve 6, and a second variable throttle valve control unit 23 that controls the throttle coefficient of the second variable throttle valve 7, and controls the second variable throttle valve 7 while monitoring the rotation speed and torque of the motor 8.
  • the rotation speed of the motor 8 may be obtained from the rotation position information of the rotor detected by a sensor such as a resolver (not shown) that can detect the rotation position of the rotor.
  • the rotation speed of the motor 8 may be estimated from the stroke displacement information of the suspension.
  • the torque of the motor 8 is proportional to the current flowing through the motor 8 when the motor 8 is a DC motor or a motor equivalent to a DC motor, so the current can be regarded as the torque as it is, and since the motor control unit 20b includes a sensor that detects the current of the motor 8, the current value can be obtained from the motor control unit 20b and used as the torque of the motor 8.
  • the regenerative control unit 21 may include a sensor that detects the rotation speed of the motor 8, and a sensor that detects the torque of the motor 8 or a sensor that detects the current of the motor 8 separately.
  • the regenerative control unit 21 sequentially captures the rotation speed and torque of the motor 8 at a predetermined calculation cycle and processes the captured rotation speed and torque.
  • the regenerative control unit 21 processes the torque of the motor 8, but as described above, the current flowing through the motor 8 can be considered as torque, so the current flowing through the motor 8 can be treated and processed as torque.
  • the motor 8 when the motor 8 is operating in a braking state, the higher the rotation speed of the motor 8, the greater the regenerative power of the motor 8, so it is better to reduce the flow area of the first variable throttle valve 6 as much as possible and increase the flow rate of the liquid passing through the second flow path 5. Also, when the motor 8 is operating in a powered state, if the flow area of the first variable throttle valve 6 is large, the pressure difference between the working chambers R1 and R2 will be small, the thrust generated by the hydraulic cylinder 1 will be small, and the energy consumed by the pump 9 will also be high, so it is better to reduce the flow area of the first variable throttle valve 6 as much as possible and increase the flow rate of the liquid passing through the second flow path 5.
  • the first variable throttle valve control unit 22 basically fixes the throttle coefficient of the first variable throttle valve 6 to a predetermined small value regardless of the operating state of the motor 8, and controls the first variable throttle valve 6 to close or reduce the flow path area, thereby limiting the flow rate of the liquid passing through the first flow path 4 to zero or a very small amount.
  • the second variable throttle valve control unit 23 performs regenerative control to reduce the throttling coefficient of the second variable throttle valve 7 so that the operating point of the motor 8 is located on the maximum regenerative efficiency line when the operating state of the motor 8 is in the braking state and the operating point of the motor 8 is in the second quadrant and is located in the region X where the torque is greater than the maximum regenerative efficiency line, or the operating point of the motor 8 is in the fourth quadrant and is located in the region Y where the torque is smaller than the maximum regenerative efficiency line, under the condition that the motor 8 is in the braking state.
  • the second variable throttle valve control unit 23 maximizes the throttling coefficient of the second variable throttle valve 7 so as not to impede the passage of the liquid discharged by the pump 9, since the second variable throttle valve 7 becomes a resistance to the operation of the pump 9.
  • the second variable throttle valve control unit 23 is configured to include a filter processing unit 30 including a first filter 30a that removes components equal to or higher than the unsprung resonance frequency from the rotation speed of the motor 8 and outputs a filtered rotation speed, and a second filter 30b that removes components equal to or higher than the unsprung resonance frequency from the torque of the motor 8 and outputs a filtered torque, a braking state determination unit 31 that determines whether the motor 8 is in a braking state based on the filtered rotation speed and the filtered torque, an operating point position determination unit 32 that determines whether the operating point of the motor 8 is in region X or region Y, a throttling coefficient calculation unit 33 that calculates a throttling coefficient of the second variable throttle valve 7 based on the determination results of the braking state determination unit 31 and the determination results of the operating point position determination unit 32, the rotation speed of the motor 8, and the thrust of the hydraulic cylinder 1, and a drive circuit 34 that receives a command indicating the throttling coefficient calculated by the thrott
  • the filter processing unit 30 includes a first filter 30a that removes components of the rotation speed of the motor 8 that are equal to or higher than the unsprung resonance frequency band and outputs a filtered rotation speed, and a second filter 30b that removes components of the torque of the motor 8 that are equal to or higher than the unsprung resonance frequency band and outputs a filtered torque.
  • the filter processing unit 30 processes the rotation speed and torque of the motor 8 that are input sequentially, and outputs signals of the filtered rotation speed and filtered torque.
  • the hydraulic cylinder 1 When the hydraulic cylinder 1 is used by being interposed between the vehicle body, which is the sprung member, and the wheels, which are the unsprung members of the vehicle, the hydraulic cylinder 1 expands and contracts due to the relative movement between the vehicle body and the wheels, and vibrations of the vehicle body and wheels are input to the hydraulic cylinder 1.
  • the vibrations input to the hydraulic cylinder 1 also change the flow rate of liquid passing through the pump 9 in the second flow path 5, and so the rotation speed and torque of the motor 8 also fluctuate. Therefore, high-frequency components in the resonant frequency band of the wheels and high-frequency noise are superimposed on the rotation speed and torque of the motor 8 before processing by the filter processing unit 30.
  • the first filter 30a and the second filter 30b are bandpass filters that are capable of extracting the resonant frequency components of the sprung member. Since the resonant frequency band of the sprung member is approximately 1 Hz to 2 Hz, the first filter 30a and the second filter 30b are set to have characteristics that enable them to extract components of 1 Hz to 2 Hz.
  • the rotation speed and torque of the motor 8 are processed by the filter processing unit 30 to remove high-frequency components equal to or higher than the unsprung resonance frequency from the rotation speed and torque of the motor 8, so that the braking state of the motor 8 can be accurately grasped according to the vibration of the sprung member in the vehicle, and the throttling coefficient of the second variable throttle valve 7 can be appropriately controlled by the second variable throttle valve control unit 23.
  • the first filter 30a and the second filter 30b in the filter processing unit 30 are filters that extract components in the sprung resonance frequency band, but they may be low-pass filters that can remove at least components equal to or higher than the unsprung resonance frequency band.
  • the first filter 30a and the second filter 30b are low-pass filters that can remove components equal to or higher than the unsprung resonance frequency band, so that the vibration and noise of the unsprung member can be removed from the rotation speed and torque signals, so that the braking state of the motor 8 can be accurately grasped, and the throttling coefficient of the first variable throttle valve 6 can be appropriately controlled by the first variable throttle valve control unit 22.
  • the braking state of the motor 8 can be grasped with high accuracy, but it is also possible to omit the first filter 30a and the second filter 30b.
  • the braking state determination unit 31 determines whether the motor 8 is in a braking state based on the filtered rotation speed and the filtered torque. Specifically, the braking state determination unit 31 determines which quadrant in FIG. 4 the operating point of the motor 8 is in, based on the sign of the filtered rotation speed and the sign of the filtered torque, and determines whether the motor 8 is in a braking state or a powering state. After determining the operating state of the motor 8, the braking state determination unit 31 inputs the determination result to the throttling coefficient calculation unit 33.
  • the braking state determination unit 31 determines that the operating point of the motor 8 is in the powering region of the first quadrant in FIG. 4, and determines that the operating state of the motor 8 is a powering state in the first quadrant.
  • the braking state determination unit 31 determines that the operating point of the motor 8 is in the braking region of the second quadrant in FIG. 4, and determines that the operating state of the motor 8 is a braking state in the second quadrant.
  • the braking state determination unit 31 determines that the operating point of the motor 8 is in the powering region of the third quadrant in FIG. 4, and determines that the operating state of the motor 8 is a powering state in the third quadrant.
  • the braking state determination unit 31 determines that the operating point of the motor 8 is in the braking region of the fourth quadrant in FIG. 4, and determines that the operating state of the motor 8 is a braking state in the fourth quadrant.
  • the braking state determination unit 31 determines whether the value of ⁇ f is positive or negative, and whether the value of Tf is positive or negative, and determines which of the four quadrants the operating point of the motor 8 falls into, and thus determines whether the operating state of the motor 8 is in a braking state or a powering state.
  • the operating point position determination unit 32 determines whether the operating point of the motor 8 is in region X or region Y based on the filtered rotation speed and filtered torque, and inputs the determination result to the throttling coefficient calculation unit 33.
  • motor 8 is a brushless DC motor
  • the q-axis voltage applied to the windings of motor 8 is vq
  • the q-axis current of the windings of motor 8 is iq
  • the inductance of the windings of motor 8 is L
  • the resistance of the windings of motor 8 is R
  • the torque constant of motor 8 is Km
  • the coefficient for converting the rotational speed of motor 8 to angular speed is K ⁇
  • the rotational speed of motor 8 is ⁇ m
  • the torque generated by motor 8 is Tm
  • the burden torque of motor 8 is Tl
  • the viscous resistance of motor 8 is Cm
  • motor 8 is in a steady state with no change in rotational speed
  • the rotation equation, torque equation, and equation of motion for motor 8 can be expressed by the following Equations 6, 7, and 8, respectively.
  • Equation 10 When the sign of the power P is positive, it indicates that the motor 8 consumes power, and here, substituting Equation 6 into Equation 9 gives Equation 10.
  • Equation 13 the maximum value Pmax of the regenerative power at a certain rotation speed can be obtained by the following Equation 13.
  • Equation 14 Equation 14
  • Equation 14 shows the relationship between the rotation speed and burden torque of motor 8 when the regenerative power is maximized, and is nothing but an equation showing the line of maximum regenerative efficiency.
  • the burden torque on the left side of equation 14 is the maximum regenerative torque that maximizes the regenerative power at the rotation speed of motor 8 at that time. Therefore, when the measured values of the rotation speed and torque of motor 8 are substituted into equation 15, if equation 15 holds, it indicates that the operating point of motor 8 is in area X or area Y.
  • the operating point position determination unit 32 substitutes the filtered rotation speed and the filtered torque into equation 15, and determines that the operating point of the motor 8 is in area X or area Y if equation 15 holds.
  • the throttling coefficient calculation unit 33 calculates the throttling coefficient of the second variable throttling valve 7 required to position the operating point of the motor 8 on the line with maximum regenerative efficiency based on the rotational speed of the motor 8 and the thrust generated by the hydraulic cylinder 1.
  • the thrust fa can be expressed by the following equation 17.
  • equation 18 is obtained for determining the throttle coefficient fv2 that places the operating point of the motor 8 on the maximum regenerative efficiency line.
  • Equation 18 Since the values in Equation 18 other than the rotation speed ⁇ m of the motor 8 and the thrust fa generated by the hydraulic cylinder 1 are known, it can be understood that the value of the throttling coefficient fv2 changes with the rotation speed ⁇ m and thrust fa as parameters. Therefore, by detecting the rotation speed ⁇ m and the thrust fa, it is possible to determine the throttling coefficient fv2 that places the operating point of the motor 8 on the maximum regenerative efficiency line.
  • the torque of the motor 8 matches the maximum regenerative torque, and the operating point of the motor 8 is placed on the maximum regenerative efficiency line, thereby maximizing the regenerative efficiency.
  • the throttle coefficient calculation unit 33 substitutes the rotation speed of the motor 8 and the thrust determined by the actual thrust detection unit 25 into equation 18 to determine the throttle coefficient fv2 of the second variable throttle valve 7 that places the operating point of the motor 8 on the maximum regenerative efficiency line. Then, when the throttle coefficient calculation unit 33 determines the throttle coefficient fv2 of the second variable throttle valve 7 that places the operating point of the motor 8 on the maximum regenerative efficiency line, it sets the determined throttle coefficient fv2 as the target throttle coefficient of the second variable throttle valve 7.
  • the throttling coefficient calculation unit 33 sets the maximum throttling coefficient that can be achieved in controlling the second variable throttling valve 7 as the target throttling coefficient so as not to interfere with the operation of the pump 9.
  • the target throttle coefficient calculated by the throttle coefficient calculation unit 33 is input to the drive circuit 34.
  • the drive circuit 34 adjusts the throttle coefficient of the second variable throttle valve 7 by applying a current to a drive source (not shown) of the second variable throttle valve 7 so that the throttle coefficient of the second variable throttle valve 7 matches the target throttle coefficient.
  • the regenerative control unit 21 performs regenerative control to reduce the throttling coefficient of the second variable throttle valve 7.
  • the torque of the motor 8 decreases and coincides with the maximum regenerative torque while the rotation speed of the motor 8 remains constant, and the operating point of the motor 8 moves onto the maximum regenerative efficiency line.
  • the regenerative power of the motor 8 becomes maximum at the rotation speed at that time, and the regenerative efficiency improves.
  • the controller 11 configured as described above controls the throttling coefficient of the second variable throttle valve 7 according to the flowchart shown in FIG. 6.
  • the controller 11 detects the rotation speed of the motor 8 and the torque flowing to the motor 8 (step F1).
  • the controller 11 filters the rotation speed and torque of the motor 8 to obtain the filtered rotation speed and filtered torque (step F2).
  • the controller 11 judges whether the operating state of the motor 8 is in a braking state from the filtered rotation speed and the filtered torque (step F3). Next, if the operating state of the motor 8 is in a braking state, the controller 11 judges whether the operating point of the motor 8 is in the region X or region Y (step F4).
  • step F5 the controller 11 calculates the throttling coefficient of the second variable throttle valve 7 that puts the operating point of the motor 8 on the maximum regenerative efficiency line (step F5), and sets the target throttling coefficient to the calculated throttling coefficient (step F6).
  • step F7 the controller 11 sets the target throttling coefficient to the maximum throttling coefficient that the second variable throttle valve 7 can control.
  • step F8 the controller 11 supplies current from the drive circuit 34 to the drive source of the second variable throttle valve 7 to control the throttle coefficient of the second variable throttle valve 7 to the target throttle coefficient.
  • the controller 11 repeatedly executes the above process to control the throttle coefficient of the second variable throttle valve 7 so as to increase the regenerative power when the motor 8 is in a braking state.
  • the hardware resources of the controller 11 may be configured to include, although not shown in the figure, an interface for inputting signals of thrust commands, the rotational speed and torque (current) of the motor 8, and the pressure in the cylinder 2, a storage device such as a ROM (Read Only Memory) in which programs used for the processing required to control the motor 8, the first variable throttle valve 6, and the second variable throttle valve 7 are stored, an arithmetic unit such as a CPU (Central Processing Unit) that executes processing based on the programs, and a storage device such as a RAM (Random Access Memory) that provides a storage area for the CPU, and each part of the thrust control unit 20 and the regenerative control unit 21 in the controller 11 can be realized by the execution of the programs by the CPU.
  • the controller 11 may be realized by an analog electronic circuit, instead of by
  • the cylinder device A of this embodiment includes a hydraulic cylinder 1 having a cylinder 2, a piston 3 that is movably inserted into the cylinder 2 and divides the inside of the cylinder 2 into two working chambers R1 and R2, a first flow path 4 and a second flow path 5 that are parallel to each other and communicate the working chambers R1 and R2, a first variable throttle valve 6 provided in the first flow path 4, a second variable throttle valve 7 provided in series in the second flow path 5, and a bidirectional discharge type pump 9 driven by a motor 8, and a controller 11 that controls the first variable throttle valve 6, the second variable throttle valve 7, and the motor 8.
  • the throttle valve 11 calculates a target throttle coefficient of the second variable throttle valve 7 that places the operating point of the motor 8 on the maximum regenerative efficiency line based on the rotational speed of the motor 8 and the thrust generated by the hydraulic cylinder 1, and controls the second variable throttle valve.
  • the cylinder device A configured in this way, when the motor 8 is in a braking state and power regeneration is possible, and a situation is reached in which the operating point of the motor 8 can be moved onto the maximum regenerative efficiency line by controlling the throttle coefficient of the second variable throttle valve 7, the throttle coefficient of the second variable throttle valve 7 is adjusted to the target variable throttle coefficient, and the operating point of the motor 8 is moved onto the maximum regenerative efficiency line. Therefore, with cylinder device A, it is possible to determine the conditions under which the operating point of motor 8 can be moved onto the line of maximum regenerative efficiency, and actually maximize the regenerative power.
  • the controller 11 in the cylinder device A of this embodiment also includes a braking state determination unit 31 that determines whether the motor 8 is in a braking state based on the rotation speed and torque of the motor 8.
  • a braking state determination unit 31 that determines whether the motor 8 is in a braking state based on the rotation speed and torque of the motor 8.
  • the controller 11 is equipped with a first filter 30a that removes components equal to or higher than the unsprung resonance frequency of the vehicle from the rotation speed of the motor 8, a second filter 30b that removes components equal to or higher than the unsprung resonance frequency of the vehicle from the torque of the motor 8, a braking state determination unit 31 that determines whether the motor 8 is in a braking state based on the filtered rotation speed and the filtered torque, and an operating point position determination unit 32 that determines whether the operating point of the motor 8 is in the region X or region Y based on the filtered rotation speed and the filtered torque.
  • the cylinder device A configured in this manner, components equal to or higher than the high-frequency unsprung resonance frequency are removed from the rotation speed and torque of the motor 8, so that the braking state and the position of the operating point of the motor 8 can be accurately grasped according to the vibration of the sprung member of the vehicle, and the throttling coefficient of the second variable throttle valve 7 can be appropriately controlled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

This cylinder device (A) comprises: a cylinder (2); a piston (3) that partitions the inside of the cylinder (2) into two working chambers (R1, R2); a first flow path (4) and a second flow path (5) that connect the working chambers (R1, R2) in parallel; a first variable throttle valve (6) provided in the first flow path (4); a hydraulic cylinder (1) having a second variable throttle valve (7) provided in series in the second flow path (5) and a bidirectional discharge type pump (9) driven by a motor (8); and a controller (11) that controls the first variable throttle valve (6), the second variable throttle valve (7), and the motor (8). The controller (11) determines a target aperture coefficient of the second variable throttle valve (7) at which the operating point of the motor (8) is placed on a straight line of maximum regeneration efficiency on the basis of the rotation speed of the motor (8) and the thrust of the hydraulic cylinder (1), and the controller controls the second variable throttle valve (7).

Description

シリンダ装置Cylinder Unit
 本発明は、シリンダ装置に関する。 The present invention relates to a cylinder device.
 従来のシリンダ装置としては、たとえば、JP2009-196597Aに開示されているように、車両の車体と車軸との間に介装されるアクティブサスペンション等に適用され、具体的には、シリンダと、シリンダ内に移動自在に挿入されてシリンダ内を二つの作動室に区画するピストンと、ピストンに連結されるロッドと、並列して二つの作動室を連通する第1流路および第2流路と、第1流路に設けられた第1可変絞り弁と、第2流路に直列に設けられた第2可変絞り弁および双方向吐出型のポンプと、ポンプを駆動するモータとを有する油圧シリンダと、第1可変絞り弁、第2可変絞り弁およびモータを制御する制御装置とを備えて構成されている。 A conventional cylinder device is, for example, as disclosed in JP2009-196597A, applied to active suspensions interposed between the body and axle of a vehicle, and specifically comprises a cylinder, a piston that is movably inserted into the cylinder to divide the inside of the cylinder into two working chambers, a rod connected to the piston, a first flow path and a second flow path that connect the two working chambers in parallel, a first variable throttle valve provided in the first flow path, a second variable throttle valve and a bidirectional discharge pump provided in series in the second flow path, a hydraulic cylinder having a motor that drives the pump, and a control device that controls the first variable throttle valve, the second variable throttle valve, and the motor.
 そして、従来のシリンダ装置は、アクティブサスペンションとして使用される場合、シリンダが車体と車軸の一方に連結されるとともに、ロッドが車体と車軸の他方に連結され、ポンプをモータによって駆動することによって推力を発生して、車体の振動を抑制できる。 When a conventional cylinder device is used as an active suspension, the cylinder is connected to one of the vehicle body and the axle, and the rod is connected to the other of the vehicle body and the axle. The pump is driven by a motor to generate thrust, thereby suppressing vibration of the vehicle body.
 さらに、従来のシリンダ装置では、油圧シリンダが外力によって強制的に伸縮させられる場合、第2流路を流れる作動油によってポンプが回転させられるため、モータが制動領域で使用されて発電して回生電力が発生する。このようにモータが制動領域で使用される場合、モータが発生するトルクによってポンプが作動油の流れに抵抗を与える。そのため、油圧シリンダは、外力による油圧シリンダの伸縮を妨げる推力が発生する。 Furthermore, in conventional cylinder devices, when the hydraulic cylinder is forcibly extended or retracted by an external force, the pump is rotated by the hydraulic oil flowing through the second flow path, and the motor is used in the braking range to generate electricity and generate regenerative power. When the motor is used in the braking range in this way, the torque generated by the motor causes the pump to provide resistance to the flow of hydraulic oil. As a result, the hydraulic cylinder generates thrust that prevents the hydraulic cylinder from being extended or retracted by external forces.
JP2009-196597AJP2009-196597A
 従来のシリンダ装置では、第1可変絞り弁の絞り係数と第2可変絞り弁の絞り係数の調整によって、ポンプを通過する作動油量の調整とモータが負担するトルクを調整できる。なお、絞り係数は、単位時間当たり流量を圧力で割った値であり、絞り係数を小さくすれば可変絞り弁における抵抗が大きくなることを示している。 In conventional cylinder devices, the amount of hydraulic oil passing through the pump and the torque borne by the motor can be adjusted by adjusting the throttling coefficient of the first variable throttle valve and the throttling coefficient of the second variable throttle valve. Note that the throttling coefficient is the flow rate per unit time divided by the pressure, and a smaller throttling coefficient means greater resistance in the variable throttle valve.
 モータが制動状態にある場合、モータのトルクを縦軸に採り、モータの回転速度を横軸に採ったグラフ上で、原点を通ってモータを短絡した際のトルクと回転速度との関係を示す短絡曲線に接する直線の傾きの2分の1の傾きを持つ直線(回生効率最大直線)上に、モータが出力しているトルクとモータの回転速度との交点(モータの動作点)があると回生効率が最大となる。 When the motor is in a braking state, on a graph with motor torque on the vertical axis and motor rotation speed on the horizontal axis, the regenerative efficiency will be maximized if the intersection of the torque output by the motor and the motor rotation speed (motor operating point) is on a line (maximum regenerative efficiency line) that passes through the origin and has a slope half that of the line tangent to the short-circuit curve that shows the relationship between torque and rotation speed when the motor is short-circuited.
 そのため、従来のシリンダ装置では、モータが制動状態にある場合、モータが出力しているトルクとモータの回転速度との交点が回生効率最大直線上に配置されるように、第1可変絞り弁における絞り係数と第2可変絞り弁における絞り係数とを調整するとしている。 Therefore, in conventional cylinder devices, when the motor is in a braking state, the throttling coefficient of the first variable throttle valve and the throttling coefficient of the second variable throttle valve are adjusted so that the intersection of the torque output by the motor and the motor's rotational speed is located on the line that maximizes regenerative efficiency.
 しかしながら、従来のシリンダ装置では、具体的に、どのようにモータがどのような状況になればモータの動作点を回生効率最大直線上に移動させ得るのかについても、どのように第1可変絞り弁と第2可変絞り弁とを制御してモータの動作点を回生効率最大直線上に配置させるかについても開示されていない。 However, conventional cylinder devices do not specifically disclose what conditions the motor must be in to move the operating point of the motor onto the line of maximum regenerative efficiency, nor does it disclose how to control the first and second variable throttle valves to position the operating point of the motor on the line of maximum regenerative efficiency.
 そこで、本発明は、モータの動作点を回生効率最大直線上へ移動させ得る状況を見極めて、実際に回生電力を最大とすることができるシリンダ装置の提供を目的とする。 The present invention aims to provide a cylinder device that can actually maximize regenerative power by determining the conditions under which the operating point of the motor can be moved onto the straight line of maximum regenerative efficiency.
 上記目的を達成するために、本発明の課題解決手段におけるシリンダ装置は、シリンダと、シリンダ内に移動自在に挿入されてシリンダ内を二つの作動室に区画するピストンと、互いに並列して作動室同士を連通する第1流路と第2流路と、第1流路に設けられた第1可変絞り弁と、第2流路に直列に設けられる第2可変絞り弁およびモータによって駆動される双方向吐出型のポンプとを有する液圧シリンダと、第1可変絞り弁、第2可変絞り弁およびモータを制御するコントローラとを備え、コントローラは、モータの動作点が第2象限と第4象限にあるとモータの動作状態が制動状態となる回転速度トルク座標系において、モータの動作点が第2象限中の回生効率最大直線よりもトルクの大きい領域に位置している場合、或いは、モータの動作点が第4象限中の回生効率最大直線よりもトルクの小さい領域に位置している場合、回転速度と液圧シリンダが発生している推力とに基づいてモータの動作点を回生効率最大直線上に乗せる第2可変絞り弁の目標絞り係数を求め、第2可変絞り弁を制御する。このように構成されたシリンダ装置によれば、モータが制動状態になって電力回生が可能となって、第2可変絞り弁の絞り係数の制御でモータの動作点を回生効率最大直線上へ移動させ得る状況となると、モータの動作点を回生効率最大直線上へ移動させる。 In order to achieve the above object, the cylinder device in the problem-solving means of the present invention comprises a hydraulic cylinder having a cylinder, a piston that is movably inserted into the cylinder and divides the inside of the cylinder into two working chambers, first and second flow paths that are parallel to each other and communicate the working chambers, a first variable throttle valve provided in the first flow path, a second variable throttle valve provided in series in the second flow path, and a bidirectional discharge pump driven by a motor, and a controller that controls the first variable throttle valve, the second variable throttle valve, and the motor, and when the operating point of the motor is located in a region of greater torque than the maximum regenerative efficiency line in the second quadrant or when the operating point of the motor is located in a region of less torque than the maximum regenerative efficiency line in the fourth quadrant in a rotational speed-torque coordinate system in which the operating state of the motor is in a braking state when the operating point of the motor is in the second and fourth quadrants, the controller calculates a target throttle coefficient of the second variable throttle valve that places the operating point of the motor on the maximum regenerative efficiency line based on the rotational speed and thrust generated by the hydraulic cylinder, and controls the second variable throttle valve. With this cylinder device configured, when the motor is in a braking state, enabling power regeneration, and the operating point of the motor can be moved onto the line showing maximum regeneration efficiency by controlling the throttle coefficient of the second variable throttle valve, the operating point of the motor is moved onto the line showing maximum regeneration efficiency.
図1は、一実施の形態におけるシリンダ装置の概念図である。FIG. 1 is a conceptual diagram of a cylinder device according to one embodiment. 図2は、一実施の形態におけるシリンダ装置の流量と差圧の関係を示したモデル図である。FIG. 2 is a model diagram showing the relationship between the flow rate and the differential pressure of the cylinder device in one embodiment. 図3は、モータの回転速度をポンプの通過流量に対応させるとともに、モータのトルクを液体がポンプを通過する際の差圧(圧力損失)に対応させたグラフである。FIG. 3 is a graph showing the rotational speed of the motor as a function of the flow rate through the pump, and the torque of the motor as a function of the pressure difference (pressure loss) as the liquid passes through the pump. 図4は、モータの回転速度と出力可能なトルクの範囲を示す図である。FIG. 4 is a diagram showing the range of the motor rotation speed and the torque that can be output. 図5は、コントローラの構成を示した図である。FIG. 5 is a diagram showing the configuration of the controller. 図6は、回生制御部の構成を示した図である。FIG. 6 is a diagram showing the configuration of the regenerative control unit.
 以下、図に示した実施の形態に基づき、本発明を説明する。一実施の形態におけるシリンダ装置Aは、図1に示すように、液圧シリンダ1と、コントローラ11とを備えて構成されている。 The present invention will be described below based on the embodiment shown in the figures. As shown in FIG. 1, the cylinder device A in one embodiment is configured with a hydraulic cylinder 1 and a controller 11.
 以下、シリンダ装置Aの各部について詳細に説明する。液圧シリンダ1は、図1に示すように、シリンダ2と、シリンダ2内に移動自在に挿入されてシリンダ2内を二つの作動室R1,R2に区画するピストン3と、互いに並列して作動室R1,R2同士を連通する第1流路4と第2流路5と、第1流路4に設けられた第1可変絞り弁6と、第2流路5に直列に設けられる第2可変絞り弁7およびモータ8によって駆動される双方向吐出型のポンプ9とを備えて構成され、シリンダ2内には液体が充填され密閉されている。また、ピストン3はシリンダ2内に移動自在に挿通されるロッド10に連結されており、この液圧シリンダ1の場合、シリンダ2の両端からロッド10が突出する、いわゆる、両ロッド型のシリンダ装置とされている。 The components of the cylinder device A will be described in detail below. As shown in FIG. 1, the hydraulic cylinder 1 is configured with a cylinder 2, a piston 3 that is movably inserted into the cylinder 2 and divides the cylinder 2 into two working chambers R1 and R2, a first flow path 4 and a second flow path 5 that are parallel to each other and communicate the working chambers R1 and R2, a first variable throttle valve 6 provided in the first flow path 4, a second variable throttle valve 7 provided in series in the second flow path 5, and a bidirectional discharge pump 9 driven by a motor 8, and the cylinder 2 is filled with liquid and sealed. The piston 3 is connected to a rod 10 that is movably inserted into the cylinder 2, and in the case of this hydraulic cylinder 1, the rod 10 protrudes from both ends of the cylinder 2, making it a so-called double-rod type cylinder device.
 そして、液圧シリンダ1を車両に適用する場合、シリンダ2を車両のばね上部材およびばね下部材のうち一方に連結し、ロッド10をばね上部材およびばね下部材のうち他方に連結して、ばね上部材とばね下部材との間に介装すればよい。液圧シリンダ1は、車両に適用されて使用される場合、発揮する推力によってばね上部材である車両の車体とばね下部材である車両の車輪の振動を抑制する。なお、本書では、ロッド10がピストン3とともにシリンダ2に対して図1中上方へ移動する場合に液圧シリンダ1が伸長作動すると言い、反対に、ロッド10がピストン3とともにシリンダ2に対して図1中下方へ移動する場合に液圧シリンダ1が収縮作動すると言う。なお、液圧シリンダ1は、図示したところでは、両ロッド型に設定されているが、片ロッド型に設定されてもよい。 When the hydraulic cylinder 1 is applied to a vehicle, the cylinder 2 is connected to one of the sprung and unsprung members of the vehicle, and the rod 10 is connected to the other of the sprung and unsprung members, and is interposed between the sprung and unsprung members. When the hydraulic cylinder 1 is applied to a vehicle and used, it exerts a thrust to suppress vibrations of the vehicle body, which is the sprung member, and the vehicle wheels, which are the unsprung members. In this document, the hydraulic cylinder 1 is said to extend when the rod 10 moves upward in FIG. 1 relative to the cylinder 2 together with the piston 3, and conversely, the hydraulic cylinder 1 is said to contract when the rod 10 moves downward in FIG. 1 relative to the cylinder 2 together with the piston 3. Although the hydraulic cylinder 1 is configured as a double-rod type in the illustrated example, it may be configured as a single-rod type.
 シリンダ2内は、前述したようにピストン3によって図1中上方の伸側の作動室R1と図1中下方の圧側の作動室R2とに区画されており、各作動室R1,R2内には作動油等の液体が充填されている。液体は、作動油の他にも水や水溶液といった他の液体であってもよい。なお、液圧シリンダ1は、前述したように両ロッド型の液圧シリンダとされており、シリンダ2に対してロッド10がピストン3とともに図1中上下方向に移動してもシリンダ2内でロッド10が押し退ける容積が変化しないため、ロッド10がシリンダ2内に出入りする体積の補償をするリザーバを備えていないが、液体の温度変化による体積変化を補償するためにシリンダ2内に連通されるアキュムレータを備えていてもよい。 The inside of the cylinder 2 is divided by the piston 3 into an extension side working chamber R1 at the top in FIG. 1 and a compression side working chamber R2 at the bottom in FIG. 1, as described above, and each of the working chambers R1, R2 is filled with a liquid such as hydraulic oil. The liquid may be other liquids such as water or an aqueous solution in addition to hydraulic oil. As described above, the hydraulic cylinder 1 is a double-rod type hydraulic cylinder, and even if the rod 10 moves up and down in FIG. 1 together with the piston 3 relative to the cylinder 2, the volume displaced by the rod 10 in the cylinder 2 does not change. Therefore, a reservoir is not provided to compensate for the volume of the rod 10 moving in and out of the cylinder 2, but an accumulator connected to the inside of the cylinder 2 may be provided to compensate for the volume change due to the temperature change of the liquid.
 ポンプ9は、双方向吐出型に設定され、たとえば、ベーンポンプ、ギアポンプやアキシャルポンプ等、図示しない回転軸を備えて当該回転軸の回転によって流体を吸込んで吐出することができるとともに、逆に流体の流れによって回転軸を強制的に駆動することができるものであればよい。さらに、ポンプ9の回転軸は、モータ8に接続されており、モータ8は、通電によって駆動することができるとともに、ポンプ9側からの入力によって強制的に回転駆動させられると発電してポンプ9の回転を抑制するトルクを発生するモータであればよく、直流、交流を問わず、種々の形式のモータ、たとえば、ブラシレスモータ、誘導モータ、同期モータ等を採用することができる。 The pump 9 is set to be a bidirectional discharge type, and may be, for example, a vane pump, gear pump, axial pump, or the like, equipped with a rotating shaft (not shown) that can suck in and discharge fluid by rotating the rotating shaft, and conversely, can forcibly drive the rotating shaft by the flow of fluid. Furthermore, the rotating shaft of the pump 9 is connected to the motor 8, which can be driven by passing electricity, and which, when forcibly driven to rotate by input from the pump 9 side, generates electricity and generates torque to suppress the rotation of the pump 9. Various types of motors, whether DC or AC, can be used, for example, brushless motors, induction motors, synchronous motors, etc.
 液圧シリンダ1は、モータ8によってポンプ9を回転駆動して液体を伸側の作動室R1から圧側の作動室R2へ、あるいは、圧側の作動室R2から伸側の作動室R1へ第2流路5を介して送り込むことで、自発的に伸縮できるとともに、望む方向へ推力を発生することができる。また、液圧シリンダ1は、液圧シリンダ1が外部入力によって強制的に伸縮させられる場合、伸側の作動室R1から圧側の作動室R2へ、あるいは、圧側の作動室R2から伸側の作動室R1へ、第2流路5を介して移動する液体の流れにモータ8のトルクが伝達されるポンプ9で抵抗を与えて伸縮を妨げる方向に推力を発生することができる。 The hydraulic cylinder 1 can expand and contract spontaneously and generate thrust in the desired direction by driving the pump 9 with the motor 8 to rotate and send liquid from the extension side working chamber R1 to the compression side working chamber R2, or from the compression side working chamber R2 to the extension side working chamber R1 via the second flow path 5. When the hydraulic cylinder 1 is forcibly expanded or contracted by an external input, the pump 9, to which the torque of the motor 8 is transmitted, applies resistance to the flow of liquid moving from the extension side working chamber R1 to the compression side working chamber R2, or from the compression side working chamber R2 to the extension side working chamber R1, via the second flow path 5, generating thrust in a direction that prevents expansion or contraction.
 さらに、液圧シリンダ1が強制的に伸縮させられる場合、第2流路5を行き来する液体の流れによってポンプ9を介してモータ8が強制的に駆動されるため、モータ8によって液体の運動エネルギが電気エネルギに変換されて電力回生できる。なお、モータ8によって回生した電力は、外部機器へ送電してもよいし、蓄電器に蓄電するようにしてもよい。 Furthermore, when the hydraulic cylinder 1 is forcibly expanded or contracted, the motor 8 is forcibly driven via the pump 9 by the flow of liquid going back and forth through the second flow path 5, so that the kinetic energy of the liquid is converted into electrical energy by the motor 8, enabling power regeneration. The power regenerated by the motor 8 may be sent to an external device or stored in a capacitor.
 転じて、第1可変絞り弁6は、ポンプ9を迂回して作動室R1,R2同士を連通する第1流路4に設けられており、第2可変絞り弁7は、ポンプ9とともに第2流路5に設けられている。よって、第1可変絞り弁6は、第2可変絞り弁7およびポンプ9に対して並列に配置されている。これら第1可変絞り弁6および第2可変絞り弁7は、開度や弁通路長を変更することで、圧力損失に対する通過流量の比である絞り係数を変更することができるようになっており、具体的にはたとえば、可変チョークや可変オリフィスといった種々の弁を使用することができ、また、図示しない弁体をソレノイドやモータ等の駆動源で駆動することによって絞り係数を変更できるようになっている。これら第1可変絞り弁6および第2可変絞り弁7における絞り係数を変更する駆動源はコントローラ11によって制御される。 In other words, the first variable throttle valve 6 is provided in the first flow path 4 that bypasses the pump 9 and communicates between the working chambers R1 and R2, and the second variable throttle valve 7 is provided in the second flow path 5 together with the pump 9. Therefore, the first variable throttle valve 6 is arranged in parallel with the second variable throttle valve 7 and the pump 9. The first variable throttle valve 6 and the second variable throttle valve 7 are capable of changing the throttle coefficient, which is the ratio of the passing flow rate to the pressure loss, by changing the opening degree and the valve passage length. Specifically, for example, various valves such as a variable choke and a variable orifice can be used, and the throttle coefficient can be changed by driving the valve body (not shown) with a drive source such as a solenoid or a motor. The drive source that changes the throttle coefficient in the first variable throttle valve 6 and the second variable throttle valve 7 is controlled by the controller 11.
 なお、ポンプ9と第2可変絞り弁7の配置関係であるが、ポンプ9は作動室R1と作動室R2のいずれに側に配置してもよい。また、シリンダ2内に充填される流体は、たとえば、油、水、水溶液、気体等、どのような流体を使用しても良い。 Regarding the relative positioning of the pump 9 and the second variable throttle valve 7, the pump 9 may be disposed on either the working chamber R1 side or the working chamber R2 side. In addition, the fluid filled in the cylinder 2 may be any fluid, such as oil, water, an aqueous solution, or gas.
 さて、このように構成された液圧シリンダ1は、モータ8にコントローラ11側から電力供給してポンプ9を駆動させる場合には、自ら伸縮するアクチュエータとして機能することができるが、反対に、外力を受けて液圧シリンダ1が伸縮させられる場合、モータ8のトルクでポンプ9の回転を抑制する、すなわち、モータ8を制動領域で使用してモータ8にポンプ9の回転方向とは逆のトルクを発生させるようにし、モータ8、第1可変絞り弁6および第2可変絞り弁7とで協働して減衰力を発生できる。そして、モータ8を制動領域で使用する際、これら第1可変絞り弁6および第2可変絞り弁7の絞り係数を調節することによってモータ8の回転速度とトルクをコントロールすることが可能である。 The hydraulic cylinder 1 configured in this manner can function as an actuator that expands and contracts by itself when power is supplied from the controller 11 to the motor 8 to drive the pump 9, but conversely, when the hydraulic cylinder 1 is expanded or contracted by an external force, the torque of the motor 8 suppresses the rotation of the pump 9; that is, the motor 8 is used in the braking region to generate a torque in the opposite direction to the rotation of the pump 9, and the motor 8, first variable throttle valve 6, and second variable throttle valve 7 work together to generate a damping force. When the motor 8 is used in the braking region, the rotational speed and torque of the motor 8 can be controlled by adjusting the throttle coefficients of the first variable throttle valve 6 and second variable throttle valve 7.
 なお、モータ8に電流を与えてポンプ9を駆動する、つまり、モータ8を力行領域で使用して、液圧シリンダ1をアクチュエータとして機能させる場合、第1可変絞り弁6を全閉として第1流路4を介しての作動室R1,R2同士が連通されないようにしつつ、第2可変絞り弁7を全開として第2可変絞り弁7によって液体の流れに無用な抵抗を与えてエネルギ損失を生じないようにする。 When a current is applied to the motor 8 to drive the pump 9, that is, when the motor 8 is used in the powering region to cause the hydraulic cylinder 1 to function as an actuator, the first variable throttle valve 6 is fully closed to prevent communication between the working chambers R1 and R2 via the first flow path 4, while the second variable throttle valve 7 is fully opened to prevent unnecessary resistance to the flow of liquid caused by the second variable throttle valve 7, resulting in energy loss.
 ここで、液圧シリンダ1が外力で伸縮させられる場合におけるモータ8の負荷(回転速度とトルク)のコントロールについて、図2に示すモデル図を使用して説明する。なお、ポンプ9は、モータ8から伝達されるトルクによって液体の流れに抵抗を与え、液体通過時に圧力損失を生じさせることから、可変絞り弁と同等に取り扱うことができるため、図2中では、モータ8およびポンプ9を一つの可変絞り弁Mとして記載している。 Here, we will use the model diagram shown in Figure 2 to explain how to control the load (rotational speed and torque) of the motor 8 when the hydraulic cylinder 1 is extended or retracted by an external force. Note that the pump 9 provides resistance to the flow of liquid by the torque transmitted from the motor 8, causing pressure loss when the liquid passes through, so it can be treated as equivalent to a variable throttle valve. Therefore, in Figure 2, the motor 8 and pump 9 are shown as one variable throttle valve M.
 そして、液圧シリンダ1の伸縮時における一方の作動室R1と他方の作動室R2との差圧をΔPとし、一方の作動室R1から流出する流体の単位時間当たりの流量(以下、単に流量という)をQとし、第1可変絞り弁6を通過する流体の流量q1を第1可変絞り弁6で生じる差圧(圧力損失)ΔPで除した比である絞り係数をC1とし、第2可変絞り弁7を通過する流体の流量q2を第2可変絞り弁7で生じる差圧(圧力損失)Δp2で除した比である絞り係数をC2とし、モータ8とポンプ9でなる可変絞り弁Mを通過する流体の流量q2を可変絞り弁Mで生じる差圧(圧力損失)Δpmで除した比である絞り係数をC3とすると、下記式1が得られる。 Then, let ΔP be the pressure difference between one working chamber R1 and the other working chamber R2 when the hydraulic cylinder 1 is expanding or contracting, Q be the flow rate per unit time of the fluid flowing out from one working chamber R1 (hereinafter simply referred to as flow rate), C1 be the throttling coefficient which is the ratio of the flow rate q1 of the fluid passing through the first variable throttle valve 6 divided by the differential pressure (pressure loss) ΔP generated at the first variable throttle valve 6, C2 be the throttling coefficient which is the ratio of the flow rate q2 of the fluid passing through the second variable throttle valve 7 divided by the differential pressure (pressure loss) Δp2 generated at the second variable throttle valve 7, and C3 be the throttling coefficient which is the ratio of the flow rate q2 of the fluid passing through the variable throttle valve M consisting of the motor 8 and pump 9 divided by the differential pressure (pressure loss) Δpm generated at the variable throttle valve M, then the following formula 1 is obtained.
Figure JPOXMLDOC01-appb-M000001
 ここで、C=C2×C3/(C2+C3)とおくと、式1は下記式2と書くことができる。
Figure JPOXMLDOC01-appb-M000001
Here, if C=C2×C3/(C2+C3), then equation 1 can be written as equation 2 below.
Figure JPOXMLDOC01-appb-M000002
 さらに、全体の流量Q=q1+q2が成り立ち、第1可変絞り弁6で生じる差圧ΔPは、第2可変絞り弁7とモータ8とポンプ9でなる可変絞り弁Mの全体で生じる差圧に等しいので、以下の式3が成立する。
Figure JPOXMLDOC01-appb-M000002
Furthermore, since the total flow rate Q = q1 + q2 holds, and the differential pressure ΔP generated at the first variable throttle valve 6 is equal to the differential pressure generated across the entire variable throttle valve M consisting of the second variable throttle valve 7, the motor 8, and the pump 9, the following equation 3 holds:
Figure JPOXMLDOC01-appb-M000003
 式3を式2に代入してまとめると、以下の式4を得る。
Figure JPOXMLDOC01-appb-M000003
Substituting Equation 3 into Equation 2 and summarizing, we obtain the following Equation 4.
Figure JPOXMLDOC01-appb-M000004
 そして、上記式4から理解できるように、流量Qおよび差圧ΔPを変化させない場合、絞り係数C1を変更することで、流量q2を変更することができる。
Figure JPOXMLDOC01-appb-M000004
As can be seen from the above formula 4, when the flow rate Q and the differential pressure ΔP are not changed, the flow rate q2 can be changed by changing the restriction coefficient C1.
 つまり、絞り係数C1を変更することによってポンプ9を迂回する第1可変絞り弁6における流量q1を調整することで、可変絞り弁Mを通過する流量q2を変更することができ、たとえば、第1可変絞り弁6を全閉状態から全開状態に移行する場合、流量q2を増減させて、モータ8の回転速度を増減させることができる。 In other words, by adjusting the flow rate q1 in the first variable throttle valve 6 that bypasses the pump 9 by changing the throttle coefficient C1, the flow rate q2 passing through the variable throttle valve M can be changed. For example, when the first variable throttle valve 6 is shifted from a fully closed state to a fully open state, the flow rate q2 can be increased or decreased to increase or decrease the rotation speed of the motor 8.
 また、第2可変絞り弁7と可変絞り弁Mにおける流量はq2であり、全体の差圧はΔPであり、可変絞り弁Mにおける差圧(圧力損失)はΔpmであり、第2可変絞り弁7と可変絞り弁Mの合成絞り係数Cは、上述のようにC=C2×C3/(C2+C3)となるため、第2可変絞り弁7と可変絞り弁Mにのみ着目して整理すると、下記式5を得る。 Furthermore, the flow rate at the second variable throttle valve 7 and the variable throttle valve M is q2, the overall differential pressure is ΔP, the differential pressure (pressure loss) at the variable throttle valve M is Δpm, and the composite throttle coefficient C of the second variable throttle valve 7 and the variable throttle valve M is C = C2 x C3 / (C2 + C3) as described above, so by focusing only on the second variable throttle valve 7 and the variable throttle valve M, the following equation 5 is obtained.
Figure JPOXMLDOC01-appb-M000005
そして、上記式5から理解できるように、流量q2および差圧ΔPを変化させない場合、絞り係数C2を変更することで、可変絞り弁Mにおける差圧Δpmを変更することができる。
Figure JPOXMLDOC01-appb-M000005
As can be seen from the above formula 5, when the flow rate q2 and the differential pressure ΔP are not changed, the differential pressure Δpm in the variable throttle valve M can be changed by changing the throttling coefficient C2.
 つまり、絞り係数C2を変更することによってポンプ9を流体が通過する際に生じる差圧Δpmを変更することができ、たとえば、第2可変絞り弁7を全閉状態から全開状態に移行する場合、差圧Δpmを増減させて、モータ8で負担すべきトルクを増減させることができる。 In other words, by changing the throttling coefficient C2, it is possible to change the differential pressure Δpm that occurs when fluid passes through the pump 9. For example, when the second variable throttling valve 7 is shifted from a fully closed state to a fully open state, the differential pressure Δpm can be increased or decreased to increase or decrease the torque that must be borne by the motor 8.
 以上のことを、流量Qおよび差圧ΔPを一定にした状態において、モータ8の回転速度をポンプ9の通過流量に対応させるとともに、モータ8のトルクを流体がポンプ9を通過する際の差圧(圧力損失)に対応させた図3に示すグラフを参照して説明すると、第2可変絞り弁7の絞り係数C2を変更することでモータ8の負担すべきトルク(負担トルク)を縦軸に沿って調節でき、第1可変絞り弁6の絞り係数C1を変更することでモータ8の回転速度を横軸に沿って調節することができるということになる。モータ8の負担トルクは、モータ8とポンプ9との間で作用するトルクであり、シリンダ装置Aが所望の推力を出力するためにモータ8からポンプ9に加える必要があるトルクと看做すことができる。なお、本書では、液圧シリンダ1が自発的に伸縮している場合であっても負担トルクという名称を用いる。 The above will be explained with reference to the graph shown in FIG. 3, in which the rotation speed of the motor 8 corresponds to the flow rate through the pump 9 and the torque of the motor 8 corresponds to the differential pressure (pressure loss) when the fluid passes through the pump 9, with the flow rate Q and the differential pressure ΔP kept constant. By changing the throttling coefficient C2 of the second variable throttle valve 7, the torque to be borne by the motor 8 (burden torque) can be adjusted along the vertical axis, and by changing the throttling coefficient C1 of the first variable throttle valve 6, the rotation speed of the motor 8 can be adjusted along the horizontal axis. The burden torque of the motor 8 is the torque acting between the motor 8 and the pump 9, and can be considered as the torque that needs to be applied from the motor 8 to the pump 9 in order for the cylinder device A to output the desired thrust. Note that in this document, the term "burden torque" is used even when the hydraulic cylinder 1 is expanding and contracting spontaneously.
 詳しくは、図3中の点aは、第2可変絞り弁7を全開にして絞り係数C2を最大にし、第1可変絞り弁6を全閉にして絞り係数C1を最小にした状態におけるモータ8の回転速度と負担トルクとの関係を示し、点bは、第2可変絞り弁7を全開にして絞り係数C2を最大にし、第1可変絞り弁6を全開にして絞り係数C1を最大にした状態におけるモータ8の回転速度と負担トルクとの関係を示し、点cは、第2可変絞り弁7を全閉にして絞り係数C2を最小にし、第1可変絞り弁6を全閉にして絞り係数C1を最小にした状態におけるモータ8の回転速度と負担トルクとの関係を示し、点dは、第2可変絞り弁7を全閉にして絞り係数C2を最小にし、第1可変絞り弁6を全開にして絞り係数C1を最大にした状態におけるモータ8の回転速度と負担トルクとの関係を示している。すなわち、第1可変絞り弁6および第2可変絞り弁7における絞り係数C1,C2を変更することで点a,b,c,dで囲まれる範囲でモータ8の回転速度と負担トルクを調節することができる。 In detail, point a in Figure 3 shows the relationship between the rotation speed and the load torque of the motor 8 when the second variable throttle valve 7 is fully open to maximize the throttle coefficient C2 and the first variable throttle valve 6 is fully closed to minimize the throttle coefficient C1; point b shows the relationship between the rotation speed and the load torque of the motor 8 when the second variable throttle valve 7 is fully open to maximize the throttle coefficient C2 and the first variable throttle valve 6 is fully open to maximize the throttle coefficient C1; point c shows the relationship between the rotation speed and the load torque of the motor 8 when the second variable throttle valve 7 is fully closed to minimize the throttle coefficient C2 and the first variable throttle valve 6 is fully closed to minimize the throttle coefficient C1; and point d shows the relationship between the rotation speed and the load torque of the motor 8 when the second variable throttle valve 7 is fully closed to minimize the throttle coefficient C2 and the first variable throttle valve 6 is fully open to maximize the throttle coefficient C1. That is, by changing the throttle coefficients C1 and C2 of the first variable throttle valve 6 and the second variable throttle valve 7, the rotation speed and load torque of the motor 8 can be adjusted within the range surrounded by points a, b, c, and d.
 具体的には、モータ8の回転速度と負担トルクの交点(モータの動作点)が点aにあるときに、第1可変絞り弁6における絞り係数C1を大きくしていくと、前記交点を点b側へシフトさせることができ、第2可変絞り弁7における絞り係数C2を小さくしていくと、前記交点を点c側へシフトさせることができ、第1可変絞り弁6における絞り係数C1を大きくし第2可変絞り弁7における絞り係数C2を小さくしていくと、前記交点を点d側へシフトさせることができるのである。つまり、第1可変絞り弁6および第2可変絞り弁7の絞り係数を制御することで、モータ8の回転速度と負担トルクをコントロールすることができるのである。 Specifically, when the intersection of the rotation speed and the load torque of the motor 8 (the operating point of the motor) is at point a, increasing the throttling coefficient C1 of the first variable throttle valve 6 can shift the intersection toward point b, decreasing the throttling coefficient C2 of the second variable throttle valve 7 can shift the intersection toward point c, and increasing the throttling coefficient C1 of the first variable throttle valve 6 and decreasing the throttling coefficient C2 of the second variable throttle valve 7 can shift the intersection toward point d. In other words, by controlling the throttling coefficients of the first variable throttle valve 6 and the second variable throttle valve 7, the rotation speed and the load torque of the motor 8 can be controlled.
 なお、図3の説明において流量Qおよび差圧ΔPを一定にした状態を仮定しているため、モータ8の負担トルクが0であるのに回転している状態や回転速度が0であるのに負担トルクがある状態は生じないので、点bと点dを結ぶ線および点dと点cを結ぶ線は、モータ8の動作点が採りえる範囲の境界を示しており、モータ8の動作点は、上記線上の値を採ることは無い。 In addition, in the explanation of Figure 3, it is assumed that the flow rate Q and the differential pressure ΔP are constant, so there is no state in which the motor 8 is rotating despite its burden torque being 0, or in which there is a burden torque even though the rotational speed is 0. Therefore, the line connecting points b and d and the line connecting points d and c show the boundaries of the range in which the operating point of motor 8 can be, and the operating point of motor 8 will never be a value on these lines.
 ところで、モータ8の任意の回転速度に対して出力することが可能な負担トルク範囲は、図4に示すように、負担トルクを縦軸に採り回転速度を横軸に採った回転速度トルク座標系において、第1象限および第2象限にて、横軸に平行な直線と直線に連なる曲線とでなる出力限界線z1と、第3象限および第4象限にて、横軸に平行な直線と直線に連なる曲線とでなる出力限界線z2とで囲まれた領域となる。なお、出力限界線z1,z2における直線は、モータ8の負担トルクの上限を示しており、コントローラ11内に設けられる図示しない電流リミッタによって電流が制限されることに起因して生じる境界である。出力限界線z1,z2における曲線もまた、その時の回転速度において発生可能な負担トルク領域と発生不可能な負担トルク領域とを仕切る線であり、図示しない電源電圧、モータ8の誘起電力等の特性によって決せられる境界線である。モータ8が正転方向のトルクの符号を正とするとともに逆転方向のトルクの符号を負とし、モータ8が正転方向に回転する場合の回転速度の符号を正とするとともに逆転方向のトルクの符号を負としている。 The range of the burden torque that can be output for any rotation speed of the motor 8 is, as shown in FIG. 4, a rotation speed torque coordinate system in which the vertical axis is the burden torque and the horizontal axis is the rotation speed, and is the region surrounded by an output limit line z1 consisting of a straight line parallel to the horizontal axis and a curve connected to the straight line in the first and second quadrants, and an output limit line z2 consisting of a straight line parallel to the horizontal axis and a curve connected to the straight line in the third and fourth quadrants. The straight lines on the output limit lines z1 and z2 indicate the upper limit of the burden torque of the motor 8, and are boundaries that arise due to the current being limited by a current limiter (not shown) provided in the controller 11. The curves on the output limit lines z1 and z2 also divide the burden torque region that can be generated at the rotation speed at that time and the burden torque region that cannot be generated, and are boundary lines determined by the characteristics of the power supply voltage (not shown), the induced power of the motor 8, etc. The sign of the torque in the forward direction of the motor 8 is positive and the sign of the torque in the reverse direction is negative, and the sign of the rotation speed when the motor 8 rotates in the forward direction is positive and the sign of the torque in the reverse direction is negative.
 この図4から理解できるように、モータ8は、各象限にて回転速度が高くなればなるほど出力可能な負担トルクの上限が小さくなる。すなわち、第1可変絞り弁6を閉弁して第1流路4を遮断して作動室R1,R2を行き交う液体の全流量をポンプ9に流す場合、液圧シリンダ1の伸縮速度が高くなればなるほど、モータ8の回転速度も高くなりモータ8の出力可能な負担トルクが小さくなることになる。 As can be seen from Figure 4, the higher the rotational speed of the motor 8 in each quadrant, the smaller the upper limit of the load torque that can be output. In other words, when the first variable throttle valve 6 is closed to block the first flow path 4 and the entire flow rate of the liquid passing through the working chambers R1 and R2 is passed to the pump 9, the higher the extension/retraction speed of the hydraulic cylinder 1, the higher the rotational speed of the motor 8 will be, and the smaller the load torque that can be output by the motor 8 will be.
 また、第2象限の回転速度が負で負担トルクが正である領域および第4象限の回転速度が正で負担トルクが負である領域では、モータ8は電力回生を行うことができる制動領域で動作しており、第1象限の回転速度が正で負担トルクが正である領域および第3象限の回転速度が負で負担トルクが負である領域では、モータ8は、電力を消費して力行する力行領域で動作していることを示している。よって、モータ8は、制動領域で動作している場合に制動状態にあり、力行領域で動作している場合に力行状態にある。 In addition, in the second quadrant, where the rotation speed is negative and the burden torque is positive, and in the fourth quadrant, where the rotation speed is positive and the burden torque is negative, the motor 8 is operating in the braking region where power regeneration is possible, and in the first quadrant, where the rotation speed is positive and the burden torque is positive, and in the third quadrant, where the rotation speed is negative and the burden torque is negative, the motor 8 is operating in the powering region where power is consumed. Thus, the motor 8 is in a braking state when operating in the braking region, and in a powering state when operating in the powering region.
 図4中でモータ8が制動状態となる第2象限と第4象限を通る破線は、モータ8の回生電力を最大とする回転速度とトルクとの関係を示す回生効率最大直線であり、原点を通ってモータ8の短絡特性を描く短絡曲線に接する直線となっている。回生効率最大直線は、モータ8が制動状態で動作しており、或る回転速度で回転している場合に、当該回転速度とモータ8の回生電力を最大とする回生最大トルクとの関係を示しており、当該回生効率最大直線上にモータ8の動作点がある場合にその時の回転速度において回生電力が最大となる。このようにモータ8の回転速度を一定とするのであれば、モータ8の動作点を回生効率最大直線上に配置することによって回生効率が最大となる。 In Figure 4, the dashed line passing through the second and fourth quadrants where motor 8 is in a braking state is the maximum regenerative efficiency line, which shows the relationship between the rotational speed and torque at which motor 8's regenerative power is at its maximum, and is a straight line that passes through the origin and is tangent to the short-circuit curve that depicts the short-circuit characteristics of motor 8. The maximum regenerative efficiency line shows the relationship between the rotational speed and the maximum regenerative torque at which motor 8's regenerative power is at its maximum when motor 8 is operating in a braking state and rotating at a certain rotational speed, and if the operating point of motor 8 is on the maximum regenerative efficiency line, the regenerative power will be maximum at the rotational speed at that time. In this way, if the rotational speed of motor 8 is constant, regenerative efficiency will be maximized by locating the operating point of motor 8 on the maximum regenerative efficiency line.
 よって、モータ8の動作点が第2象限と第4象限にあるとモータ8の動作状態が制動状態となる回転速度トルク座標系におけるモータ8の動作点が第2象限中の回生効率最大直線よりも上方の出力限界線z1と縦軸とで囲まれたハッチングで示した領域Xに位置している場合、或いは、モータ8の動作点が第4象限中の回生効率最大直線よりも下方のハッチングで示した領域Yに位置している場合、第2可変絞り弁7の絞り係数を小さくして第2可変絞り弁7の流路を小さくすれば、第2可変絞り弁7における圧力損失が大きくなってモータ8が負担するトルクが減って、モータ8の回転速度を変えずに負担するトルクのみを小さくすることができる。そして、第2可変絞り弁7の絞り係数を適切に調整すれば、モータ8の動作点を回生効率最大直線上に配置してモータ8の回生電力の最大化を図ることができる。 Therefore, when the operating point of the motor 8 in the rotational speed torque coordinate system, in which the operating state of the motor 8 is in the braking state when the operating point of the motor 8 is in the second and fourth quadrants, is located in the hatched area X surrounded by the output limit line z1 and the vertical axis above the maximum regenerative efficiency line in the second quadrant, or when the operating point of the motor 8 is located in the hatched area Y below the maximum regenerative efficiency line in the fourth quadrant, if the throttling coefficient of the second variable throttle valve 7 is reduced to reduce the flow path of the second variable throttle valve 7, the pressure loss in the second variable throttle valve 7 increases and the torque borne by the motor 8 decreases, so that only the torque borne by the motor 8 can be reduced without changing the rotational speed of the motor 8. Then, if the throttling coefficient of the second variable throttle valve 7 is appropriately adjusted, the operating point of the motor 8 can be placed on the maximum regenerative efficiency line to maximize the regenerative power of the motor 8.
 そこで、コントローラ11は、図5に示すように、上位の制御装置からの液圧シリンダ1の目標推力を指示する推力指令を受けてモータ8を制御する推力制御部20の他に、第2可変絞り弁7の絞り係数を制御してモータ8の回生効率を向上させる回生制御部21を備えている。 As shown in FIG. 5, the controller 11 includes a thrust control unit 20 that receives a thrust command indicating the target thrust of the hydraulic cylinder 1 from a higher-level control device and controls the motor 8, as well as a regeneration control unit 21 that controls the throttling coefficient of the second variable throttle valve 7 to improve the regeneration efficiency of the motor 8.
 推力制御部20は、上位の制御装置から液圧シリンダ1の目標推力を指示する推力指令を受けるとモータ8に供給すべき目標電流を求めて当該目標電流を指示する電流指令を出力する電流指令生成部20aと、電流指令生成部20aが生成した電流指令を受け取るとモータ8に流れる電流をフィードバックしてモータ8に流れる電流を目標電流通りに制御するモータ制御部20bとを備えている。本実施の形態では、液圧シリンダ1を車両に適用して、上位の制御装置は、主としてばね上部材としての車体の振動の抑制と目的して液圧シリンダ1に発生するべき推力を求める。なお、推力指令は、車体の振動の低減のみならずばね下部材としての車輪の振動の抑制の低減も可能となるように求められてもよい。また、推力制御部20は、上位の制御装置から推力指令を入手するのではなく、車両における車体、或いは車体および車輪の振動情報を検知するか、或いはこれらの振動情報を車両から受け取って、自ら推力指令を求めてもよい。 The thrust control unit 20 includes a current command generating unit 20a that, upon receiving a thrust command indicating the target thrust of the hydraulic cylinder 1 from a higher-level control device, determines a target current to be supplied to the motor 8 and outputs a current command indicating the target current, and a motor control unit 20b that, upon receiving the current command generated by the current command generating unit 20a, feeds back the current flowing through the motor 8 to control the current flowing through the motor 8 according to the target current. In this embodiment, the hydraulic cylinder 1 is applied to a vehicle, and the higher-level control device determines the thrust to be generated in the hydraulic cylinder 1 mainly for the purpose of suppressing the vibration of the vehicle body as a sprung member. The thrust command may be determined so as to enable not only the reduction of the vibration of the vehicle body but also the reduction of the vibration of the wheels as unsprung members. The thrust control unit 20 may also determine a thrust command by itself, rather than obtaining a thrust command from a higher-level control device, by detecting vibration information of the vehicle body, or the vehicle body and wheels in the vehicle, or by receiving such vibration information from the vehicle.
 電流指令生成部20aは、たとえば、液圧シリンダ1が発生している実推力をフィードバックして、推力指令が指示する目標推力と実推力との制御偏差を比例積分微分補償して、モータ8に出力させるべきトルクに応じた目標電流を求める演算処理を行う。なお、液圧シリンダ1の推力は、作動室R1の圧力を検知する圧力センサ25aと、作動室R2の圧力を検知する圧力センサ25bと、作動室R1の圧力と作動室R2の圧力との差にピストン3の受圧面積を乗じて液圧シリンダ1が発生している推力を求める演算部25cとを備えた実推力検知部25から電流指令生成部20aに入力される。電流指令生成部20aは、推力指令から目標電流を求めて電流指令を生成できる限りにおいて、どのように構成されてもよい。また、液圧シリンダ1が発生する推力は、ロッド10に設けられれる荷重の検知によって把握できるので、実推力検知部25はロッド10に作用する荷重を検知するセンサとされてもよい。また、推力制御部20は、実際に液圧シリンダ1が出力している推力を検知するのではなく、前述の圧力や荷重の検知に代えて、たとえば、第1可変絞り弁6、第2可変絞り弁7における絞り係数、モータ8の回転速度、トルクといった液圧シリンダ1の状態量を検知して、当該状態量から液圧シリンダ1の推力を推定するオブザーバを備えてもよい。また、車体と車軸とに取り付けられた加速度センサの情報から液圧シリンダ1の実推力を推定してもよく、シリンダ装置Aの制御以外の用途に使用されるセンサの情報を用いて液圧シリンダ1の実推力を推定してもよい。この場合、電流指令生成部20aはオブザーバが推定した推力をフィードバックして目標電流を求めてもよい。モータ制御部20bは、モータ8の形式によってモータ8の電流制御に適した駆動回路を備えて、電流指令に従ってモータ8の電流を制御可能であればよい。 The current command generating unit 20a performs a calculation process to obtain a target current corresponding to the torque to be output to the motor 8 by feeding back the actual thrust generated by the hydraulic cylinder 1, and performing proportional, integral and differential compensation for the control deviation between the target thrust indicated by the thrust command and the actual thrust. The thrust of the hydraulic cylinder 1 is input to the current command generating unit 20a from an actual thrust detecting unit 25 including a pressure sensor 25a for detecting the pressure of the working chamber R1, a pressure sensor 25b for detecting the pressure of the working chamber R2, and a calculation unit 25c for multiplying the difference between the pressures of the working chambers R1 and R2 by the pressure receiving area of the piston 3 to obtain the thrust generated by the hydraulic cylinder 1. The current command generating unit 20a may be configured in any way as long as it can obtain a target current from the thrust command and generate a current command. In addition, since the thrust generated by the hydraulic cylinder 1 can be grasped by detecting the load provided on the rod 10, the actual thrust detecting unit 25 may be a sensor for detecting the load acting on the rod 10. In addition, the thrust control unit 20 may not detect the thrust actually output by the hydraulic cylinder 1, but may instead detect the pressure and load described above, and may include an observer that detects state quantities of the hydraulic cylinder 1, such as the throttle coefficients of the first variable throttle valve 6 and the second variable throttle valve 7, the rotation speed of the motor 8, and the torque, and estimates the thrust of the hydraulic cylinder 1 from the state quantities. The actual thrust of the hydraulic cylinder 1 may be estimated from information from an acceleration sensor attached to the vehicle body and the axle, or the actual thrust of the hydraulic cylinder 1 may be estimated using information from a sensor used for purposes other than the control of the cylinder device A. In this case, the current command generation unit 20a may feed back the thrust estimated by the observer to obtain the target current. The motor control unit 20b may be provided with a drive circuit suitable for current control of the motor 8 depending on the type of the motor 8, and may be capable of controlling the current of the motor 8 according to the current command.
 回生制御部21は、第1可変絞り弁6の絞り係数を制御する第1可変絞り弁制御部22と、第2可変絞り弁7の絞り係数を制御する第2可変絞り弁制御部23とを備え、モータ8の回転速度とトルクとを監視しつつ第2可変絞り弁7を制御する。モータ8の回転速度については、モータ8が図示しないロータの回転位置を検知可能なレゾルバ等のセンサを備えている場合には、当該センサが検知するロータの回転位置情報から得ればよい。モータ8の回転速度をサスペンションのストローク変位の情報から推定してもよい。モータ8のトルクについてはモータ8をDCモータ或いはDCモータと等価なモータとする場合にはモータ8に流れる電流に比例するから電流をそのままトルクと看做すことができ、モータ8の電流を検知するセンサをモータ制御部20bが備えているので、モータ制御部20bから電流値を入手してモータ8のトルクとして利用すればよい。なお、回生制御部21は、モータ8の回転速度を検知するセンサと、モータ8のトルクを検知するセンサ或いはモータ8の電流を検知するセンサを個別に備えていてもよい。回生制御部21は、モータ8の回転速度とトルクとを所定の演算周期で順次取り込み、取り込んだ回転速度とトルクとを処理する。回生制御部21は、モータ8のトルクを処理するが、前述したように、モータ8に流れる電流をトルクと看做すことができるので、モータ8に流れる電流をトルクとして取り扱って処理すればよい。 The regenerative control unit 21 includes a first variable throttle valve control unit 22 that controls the throttle coefficient of the first variable throttle valve 6, and a second variable throttle valve control unit 23 that controls the throttle coefficient of the second variable throttle valve 7, and controls the second variable throttle valve 7 while monitoring the rotation speed and torque of the motor 8. The rotation speed of the motor 8 may be obtained from the rotation position information of the rotor detected by a sensor such as a resolver (not shown) that can detect the rotation position of the rotor. The rotation speed of the motor 8 may be estimated from the stroke displacement information of the suspension. The torque of the motor 8 is proportional to the current flowing through the motor 8 when the motor 8 is a DC motor or a motor equivalent to a DC motor, so the current can be regarded as the torque as it is, and since the motor control unit 20b includes a sensor that detects the current of the motor 8, the current value can be obtained from the motor control unit 20b and used as the torque of the motor 8. The regenerative control unit 21 may include a sensor that detects the rotation speed of the motor 8, and a sensor that detects the torque of the motor 8 or a sensor that detects the current of the motor 8 separately. The regenerative control unit 21 sequentially captures the rotation speed and torque of the motor 8 at a predetermined calculation cycle and processes the captured rotation speed and torque. The regenerative control unit 21 processes the torque of the motor 8, but as described above, the current flowing through the motor 8 can be considered as torque, so the current flowing through the motor 8 can be treated and processed as torque.
 ここで、モータ8が制動状態で動作している場合には、モータ8の回転速度が高い方がモータ8の回生電力が大きくなるので、極力、第1可変絞り弁6における流路面積を小さくして第2流路5を通過する液体の流量を多くする方がよい。また、モータ8が力行状態で動作している場合には、第1可変絞り弁6の流路面積が大きいと作動室R1と作動室R2の圧力差が小さくなって液圧シリンダ1が発生する推力が小さくなるとともにポンプ9で消費するエネルギも高くなってしまうため、極力、第1可変絞り弁6における流路面積を小さくして第2流路5を通過する液体の流量を多くする方がよい。このように、モータ8の動作状態が制動状態であるか力行状態であるかによらず第1可変絞り弁6の流路面積は小さい方が好ましい。そこで、第1可変絞り弁制御部22は、基本的には、モータ8の動作状態によらず第1可変絞り弁6の絞り係数を所定の小さな値に固定して、第1可変絞り弁6を閉弁或いは流路面積を小さくするように制御して、第1流路4を通過する液体の流量を0或いはごく少量に制限させる。 Here, when the motor 8 is operating in a braking state, the higher the rotation speed of the motor 8, the greater the regenerative power of the motor 8, so it is better to reduce the flow area of the first variable throttle valve 6 as much as possible and increase the flow rate of the liquid passing through the second flow path 5. Also, when the motor 8 is operating in a powered state, if the flow area of the first variable throttle valve 6 is large, the pressure difference between the working chambers R1 and R2 will be small, the thrust generated by the hydraulic cylinder 1 will be small, and the energy consumed by the pump 9 will also be high, so it is better to reduce the flow area of the first variable throttle valve 6 as much as possible and increase the flow rate of the liquid passing through the second flow path 5. In this way, regardless of whether the operating state of the motor 8 is a braking state or a powered state, it is preferable for the flow area of the first variable throttle valve 6 to be small. Therefore, the first variable throttle valve control unit 22 basically fixes the throttle coefficient of the first variable throttle valve 6 to a predetermined small value regardless of the operating state of the motor 8, and controls the first variable throttle valve 6 to close or reduce the flow path area, thereby limiting the flow rate of the liquid passing through the first flow path 4 to zero or a very small amount.
 第2可変絞り弁制御部23は、モータ8の動作状態が制動状態であり、モータ8の動作点が第2象限中にあって回生効率最大直線よりもトルクの大きい領域Xに位置していること、或いは、モータ8の動作点が第4象限中にあって回生効率最大直線よりもトルクの小さい領域Yに位置していることを条件として、当該条件に合致する状況となると、モータ8の動作点が回生効率最大直線上に配置されるように第2可変絞り弁7の絞り係数を小さする回生制御を行う。他方、第2可変絞り弁制御部23は、制動状態でも回生制御を行う条件が整っていない場合、および、モータ8が力行状態である場合、第2可変絞り弁7がポンプ9の動作に対して抵抗となってしまうので、ポンプ9が吐出する液体の通過を妨げないように、第2可変絞り弁7の絞り係数を最大とする。 The second variable throttle valve control unit 23 performs regenerative control to reduce the throttling coefficient of the second variable throttle valve 7 so that the operating point of the motor 8 is located on the maximum regenerative efficiency line when the operating state of the motor 8 is in the braking state and the operating point of the motor 8 is in the second quadrant and is located in the region X where the torque is greater than the maximum regenerative efficiency line, or the operating point of the motor 8 is in the fourth quadrant and is located in the region Y where the torque is smaller than the maximum regenerative efficiency line, under the condition that the motor 8 is in the braking state. On the other hand, when the conditions for performing regenerative control are not met even in the braking state and when the motor 8 is in the powered state, the second variable throttle valve control unit 23 maximizes the throttling coefficient of the second variable throttle valve 7 so as not to impede the passage of the liquid discharged by the pump 9, since the second variable throttle valve 7 becomes a resistance to the operation of the pump 9.
 そのため、第2可変絞り弁制御部23は、モータ8の回転速度からばね下共振周波数以上の成分を除去してフィルタ処理後回転速度を出力する第1フィルタ30aとモータ8のトルクからばね下共振周波数以上の成分を除去してフィルタ処理後トルクを出力する第2フィルタ30bとを備えたフィルタ処理部30と、フィルタ処理後回転速度とフィルタ処理後トルクとに基づいてモータ8が制動状態であるか否かを判定する制動状態判定部31と、モータ8の動作点が領域X或いは領域Yにあるか否かを判定する動作点位置判定部32と、制動状態判定部31の判定結果と動作点位置判定部32の判定結果とモータ8の回転速度と液圧シリンダ1の推力とに基づいて第2可変絞り弁7の絞り係数を求める絞り係数演算部33と、絞り係数演算部33が求めた絞り係数を指示する指令を受けて第2可変絞り弁7における図外の駆動源に供給する電流を制御する駆動回路34とを備えて構成されている。 Therefore, the second variable throttle valve control unit 23 is configured to include a filter processing unit 30 including a first filter 30a that removes components equal to or higher than the unsprung resonance frequency from the rotation speed of the motor 8 and outputs a filtered rotation speed, and a second filter 30b that removes components equal to or higher than the unsprung resonance frequency from the torque of the motor 8 and outputs a filtered torque, a braking state determination unit 31 that determines whether the motor 8 is in a braking state based on the filtered rotation speed and the filtered torque, an operating point position determination unit 32 that determines whether the operating point of the motor 8 is in region X or region Y, a throttling coefficient calculation unit 33 that calculates a throttling coefficient of the second variable throttle valve 7 based on the determination results of the braking state determination unit 31 and the determination results of the operating point position determination unit 32, the rotation speed of the motor 8, and the thrust of the hydraulic cylinder 1, and a drive circuit 34 that receives a command indicating the throttling coefficient calculated by the throttling coefficient calculation unit 33 and controls the current supplied to a drive source (not shown) in the second variable throttle valve 7.
 フィルタ処理部30は、モータ8の回転速度のばね下共振周波数帯以上の成分を除去してフィルタ処理後回転速度を出力する第1フィルタ30aと、モータ8のトルクのばね下共振周波数帯以上の成分を除去してフィルタ処理後トルクを出力する第2フィルタ30bとを備えている。フィルタ処理部30は、順次入力されるモータ8の回転速度とトルクを処理してフィルタ処理後回転速度とフィルタ処理後トルクの信号を出力する。 The filter processing unit 30 includes a first filter 30a that removes components of the rotation speed of the motor 8 that are equal to or higher than the unsprung resonance frequency band and outputs a filtered rotation speed, and a second filter 30b that removes components of the torque of the motor 8 that are equal to or higher than the unsprung resonance frequency band and outputs a filtered torque. The filter processing unit 30 processes the rotation speed and torque of the motor 8 that are input sequentially, and outputs signals of the filtered rotation speed and filtered torque.
 ここで、液圧シリンダ1が車両におけるばね上部材である車体とばね下部材である車輪との間に介装されて使用される場合、液圧シリンダ1は、車体と車輪との相対移動によって伸縮するため、液圧シリンダ1には車体および車輪の振動が入力される。液圧シリンダ1に入力される振動によって、第2流路5におけるポンプ9を通過する液体の流量も変化するので、モータ8の回転速度およびトルクも変動する。よって、フィルタ処理部30で処理する前のモータ8の回転速度およびトルクには、車輪の共振周波数帯の高周波成分や高周波ノイズが重畳している。 When the hydraulic cylinder 1 is used by being interposed between the vehicle body, which is the sprung member, and the wheels, which are the unsprung members of the vehicle, the hydraulic cylinder 1 expands and contracts due to the relative movement between the vehicle body and the wheels, and vibrations of the vehicle body and wheels are input to the hydraulic cylinder 1. The vibrations input to the hydraulic cylinder 1 also change the flow rate of liquid passing through the pump 9 in the second flow path 5, and so the rotation speed and torque of the motor 8 also fluctuate. Therefore, high-frequency components in the resonant frequency band of the wheels and high-frequency noise are superimposed on the rotation speed and torque of the motor 8 before processing by the filter processing unit 30.
 そのため、フィルタ処理部30による処理を行わない場合、モータ8の動作点は、高周波で振動的に推移するので、後に続く、モータ8の動作状態の判定等の処理でハンチングが生じる可能性がある。そのため、第1フィルタ30aおよび第2フィルタ30bは、本実施の形態では、ばね上部材の共振周波数成分の抽出が可能なようにバンドパスフィルタとされている。ばね上部材の共振周波数帯は、1Hz~2Hz程度であるので、第1フィルタ30aおよび第2フィルタ30bは、1Hz~2Hzの成分を抽出できる特性となるように設定される。 As a result, if processing by the filter processing unit 30 is not performed, the operating point of the motor 8 will shift in an oscillatory manner at high frequencies, and hunting may occur in subsequent processing such as determining the operating state of the motor 8. For this reason, in this embodiment, the first filter 30a and the second filter 30b are bandpass filters that are capable of extracting the resonant frequency components of the sprung member. Since the resonant frequency band of the sprung member is approximately 1 Hz to 2 Hz, the first filter 30a and the second filter 30b are set to have characteristics that enable them to extract components of 1 Hz to 2 Hz.
 このように、本実施の形態のシリンダ装置Aでは、モータ8の回転速度およびトルクがフィルタ処理部30によって処理されてモータ8の回転速度およびトルクから高周波のばね下共振周波数以上の成分が除去されるので、車両におけるばね上部材の振動に応じてモータ8の制動状態を精度良く把握できるようになり、第2可変絞り弁制御部23による第2可変絞り弁7の絞り係数を適切に制御できるようになる。なお、フィルタ処理部30における第1フィルタ30aおよび第2フィルタ30bは、ばね上共振周波数帯の成分を抽出するフィルタとされているが、少なくともばね下共振周波数帯以上の成分を除去可能なローパスフィルタであってもよい。このように、第1フィルタ30aおよび第2フィルタ30bがばね下共振周波数帯以上の成分を除去可能なローパスフィルタとされても、ばね下部材の振動やノイズを回転速度およびトルクの信号から取り除いて、モータ8の制動状態を精度良く把握できるようになり、第1可変絞り弁制御部22による第1可変絞り弁6の絞り係数を適切に制御できるようになる。なお、フィルタ処理部30における第1フィルタ30aおよび第2フィルタ30bを設けることで、モータ8の制動状態を精度良く把握できるようになるが、第1フィルタ30aおよび第2フィルタ30bを省略することも可能である。 In this way, in the cylinder device A of this embodiment, the rotation speed and torque of the motor 8 are processed by the filter processing unit 30 to remove high-frequency components equal to or higher than the unsprung resonance frequency from the rotation speed and torque of the motor 8, so that the braking state of the motor 8 can be accurately grasped according to the vibration of the sprung member in the vehicle, and the throttling coefficient of the second variable throttle valve 7 can be appropriately controlled by the second variable throttle valve control unit 23. Note that the first filter 30a and the second filter 30b in the filter processing unit 30 are filters that extract components in the sprung resonance frequency band, but they may be low-pass filters that can remove at least components equal to or higher than the unsprung resonance frequency band. In this way, even if the first filter 30a and the second filter 30b are low-pass filters that can remove components equal to or higher than the unsprung resonance frequency band, the vibration and noise of the unsprung member can be removed from the rotation speed and torque signals, so that the braking state of the motor 8 can be accurately grasped, and the throttling coefficient of the first variable throttle valve 6 can be appropriately controlled by the first variable throttle valve control unit 22. By providing the first filter 30a and the second filter 30b in the filter processing unit 30, the braking state of the motor 8 can be grasped with high accuracy, but it is also possible to omit the first filter 30a and the second filter 30b.
 つづいて、制動状態判定部31は、フィルタ処理後回転速度とフィルタ処理後トルクとに基づいてモータ8が制動状態であるか否かを判定する。具体的には、制動状態判定部31は、フィルタ処理後回転速度の符号とフィルタ処理後トルクの符号とから、モータ8の動作点が図4中でどの象限にあるのかを判断して、モータ8が制動状態と力行状態の何れであるのかを判定する。制動状態判定部31は、モータ8の動作状態を判定した後、判定結果を絞り係数演算部33に入力する。 Then, the braking state determination unit 31 determines whether the motor 8 is in a braking state based on the filtered rotation speed and the filtered torque. Specifically, the braking state determination unit 31 determines which quadrant in FIG. 4 the operating point of the motor 8 is in, based on the sign of the filtered rotation speed and the sign of the filtered torque, and determines whether the motor 8 is in a braking state or a powering state. After determining the operating state of the motor 8, the braking state determination unit 31 inputs the determination result to the throttling coefficient calculation unit 33.
 詳細には、制動状態判定部31は、フィルタ処理後回転速度が正であってフィルタ処理後トルクが正である場合、つまり、フィルタ処理後回転速度をωfとし、フィルタ処理後トルクをTfとすると、ωf≧0かつTf≧0である場合、モータ8の動作点が図4中第1象限の力行領域にあると判断して、モータ8の動作状態を第1象限における力行状態であると判定する。 In detail, if the filtered rotation speed is positive and the filtered torque is positive, that is, if the filtered rotation speed is ωf and the filtered torque is Tf, and ωf ≧ 0 and Tf ≧ 0, the braking state determination unit 31 determines that the operating point of the motor 8 is in the powering region of the first quadrant in FIG. 4, and determines that the operating state of the motor 8 is a powering state in the first quadrant.
 また、制動状態判定部31は、フィルタ処理後回転速度が負であってフィルタ処理後トルクが正である場合、つまり、ωf<0かつTf≧0である場合、モータ8の動作点が図4中第2象限の制動領域にあると判断して、モータ8の動作状態を第2象限における制動状態であると判定する。 Furthermore, if the filtered rotation speed is negative and the filtered torque is positive, that is, if ωf<0 and Tf≧0, the braking state determination unit 31 determines that the operating point of the motor 8 is in the braking region of the second quadrant in FIG. 4, and determines that the operating state of the motor 8 is a braking state in the second quadrant.
 さらに、制動状態判定部31は、フィルタ処理後回転速度が負であってフィルタ処理後トルクが負である場合、ωf<0かつTf<0である場合、モータ8の動作点が図4中第3象限の力行領域にあると判断して、モータ8の動作状態を第3象限における力行状態であると判定する。 Furthermore, if the filtered rotation speed is negative and the filtered torque is negative, and ωf<0 and Tf<0, the braking state determination unit 31 determines that the operating point of the motor 8 is in the powering region of the third quadrant in FIG. 4, and determines that the operating state of the motor 8 is a powering state in the third quadrant.
 そして、制動状態判定部31は、フィルタ処理後回転速度が正であってフィルタ処理後トルクが負である場合、つまり、ωf≧0かつTf<0である場合、モータ8の動作点が図4中第4象限の制動領域にあると判断して、モータ8の動作状態を第4象限における制動状態であると判定する。 Then, if the filtered rotation speed is positive and the filtered torque is negative, that is, if ωf≧0 and Tf<0, the braking state determination unit 31 determines that the operating point of the motor 8 is in the braking region of the fourth quadrant in FIG. 4, and determines that the operating state of the motor 8 is a braking state in the fourth quadrant.
 このように、制動状態判定部31は、ωfの値が正である負であるか、およびTfの値が正であるか負であるのかを判断して、モータ8の動作点が4つの象限の何れに当てはまるのかを判断して、モータ8の動作状態が制動状態であるか力行状態であるかを判断する。 In this way, the braking state determination unit 31 determines whether the value of ωf is positive or negative, and whether the value of Tf is positive or negative, and determines which of the four quadrants the operating point of the motor 8 falls into, and thus determines whether the operating state of the motor 8 is in a braking state or a powering state.
 動作点位置判定部32は、フィルタ処理後回転速度とフィルタ処理後トルクとに基づいてモータ8の動作点が領域X或いは領域Yにあるか否かを判定して、判定結果を絞り係数演算部33に入力する。 The operating point position determination unit 32 determines whether the operating point of the motor 8 is in region X or region Y based on the filtered rotation speed and filtered torque, and inputs the determination result to the throttling coefficient calculation unit 33.
 ここで、モータ8をブラシレスDCモータとして、モータ8の巻線に印可されるq軸電圧をvqとし、モータ8の巻線のq軸電流をiqとし、モータ8の巻線のインダクタンスをLとし、モータ8の巻線の抵抗をRとし、モータ8のトルク定数をKmとし、モータ8の回転速度から角速度へ変換する係数をKωとし、モータ8の回転速度をωmとし、モータ8の発生トルクをTmとし、モータ8の負担トルクをTlとし、モータ8の粘性抵抗をCmとし、モータ8が定常状態であって回転速度に変化がないものとすると、モータ8における回転方程式、トルク方程式および運動方程式は、それぞれ、以下の式6、式7および式8で表すことができる。 Here, assuming that motor 8 is a brushless DC motor, the q-axis voltage applied to the windings of motor 8 is vq, the q-axis current of the windings of motor 8 is iq, the inductance of the windings of motor 8 is L, the resistance of the windings of motor 8 is R, the torque constant of motor 8 is Km, the coefficient for converting the rotational speed of motor 8 to angular speed is Kω, the rotational speed of motor 8 is ωm, the torque generated by motor 8 is Tm, the burden torque of motor 8 is Tl, the viscous resistance of motor 8 is Cm, and motor 8 is in a steady state with no change in rotational speed, the rotation equation, torque equation, and equation of motion for motor 8 can be expressed by the following Equations 6, 7, and 8, respectively.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 また、図外の電源からモータ8に入力される電力Pは、以下の式9で表される。
Figure JPOXMLDOC01-appb-M000008
Moreover, the power P input to the motor 8 from a power source not shown in the figure is expressed by the following formula 9.
Figure JPOXMLDOC01-appb-M000009
 電力Pの符号が正である場合、モータ8は電力を消費することを表し、ここで、式9に式6を代入すると式10を得る。
Figure JPOXMLDOC01-appb-M000009
When the sign of the power P is positive, it indicates that the motor 8 consumes power, and here, substituting Equation 6 into Equation 9 gives Equation 10.
Figure JPOXMLDOC01-appb-M000010
 式10を変形して平方完成すると式11が得られる。
Figure JPOXMLDOC01-appb-M000010
By transforming equation 10 and completing the square, we obtain equation 11.
Figure JPOXMLDOC01-appb-M000011
 上述の式11から、式11中の第1項が0になるとき電力Pの値が最小になって負の値を採ることが解る。電力Pの値が負となるということは、モータ8が発電して電力回生している状態となっているということである。つまり、モータ8の回転速度がωmであるときにモータ8の回生電力を最大化する電流iqmaxは以下の式12のように求まる。
Figure JPOXMLDOC01-appb-M000011
It can be seen from the above formula 11 that when the first term in formula 11 becomes 0, the value of the power P becomes minimum and takes a negative value. When the value of the power P becomes negative, this means that the motor 8 is generating power and regenerating power. In other words, when the rotation speed of the motor 8 is ωm, the current iqmax that maximizes the regenerative power of the motor 8 is calculated by the following formula 12.
Figure JPOXMLDOC01-appb-M000012
 式12を式11に代入すると、或る回転速度での回生電力の最大値Pmaxを以下の式13によって求めることができる。
Figure JPOXMLDOC01-appb-M000012
By substituting Equation 12 into Equation 11, the maximum value Pmax of the regenerative power at a certain rotation speed can be obtained by the following Equation 13.
Figure JPOXMLDOC01-appb-M000013
 さらに、式7および式12を式8に代入すると、モータ8の負担トルクTmとモータ8の回転速度との関係が以下の式14で表される。
Figure JPOXMLDOC01-appb-M000013
Furthermore, by substituting Equation 7 and Equation 12 into Equation 8, the relationship between the burden torque Tm of the motor 8 and the rotation speed of the motor 8 is expressed by the following Equation 14.
Figure JPOXMLDOC01-appb-M000014
 式14は、回生電力を最大とする場合のモータ8の回転速度と負担トルクとの関係を示しており、回生効率最大直線を示す式に他ならない。つまり、式14の左辺の負担トルクは、その時のモータ8の回転速度において、回生電力を最大とする回生最大トルクとなる。よって、モータ8の回転速度とトルクの実測値を式15に代入して、式15が成り立つ場合、モータ8の動作点が領域X或いは領域Yに存在していること示している。
Figure JPOXMLDOC01-appb-M000014
Equation 14 shows the relationship between the rotation speed and burden torque of motor 8 when the regenerative power is maximized, and is nothing but an equation showing the line of maximum regenerative efficiency. In other words, the burden torque on the left side of equation 14 is the maximum regenerative torque that maximizes the regenerative power at the rotation speed of motor 8 at that time. Therefore, when the measured values of the rotation speed and torque of motor 8 are substituted into equation 15, if equation 15 holds, it indicates that the operating point of motor 8 is in area X or area Y.
Figure JPOXMLDOC01-appb-M000015
 よって、動作点位置判定部32は、フィルタ処理後回転速度とフィルタ処理後トルクとを式15に代入して、式15が成り立つ場合、モータ8の動作点が領域X或いは領域Yに存在すると判定する。
Figure JPOXMLDOC01-appb-M000015
Therefore, the operating point position determination unit 32 substitutes the filtered rotation speed and the filtered torque into equation 15, and determines that the operating point of the motor 8 is in area X or area Y if equation 15 holds.
 絞り係数演算部33は、制動状態判定部31の判定結果がモータ8の動作状態が制動状態であって、動作点位置判定部32の判定結果がモータ8の動作点が領域X或いは領域Yに存在しているとの判定である場合、モータ8の回転速度と液圧シリンダ1が発生している推力とに基づいて、モータ8の動作点を回生効率最大直線上に配置するために必要な第2可変絞り弁7の絞り係数を求める。 When the braking state determination unit 31 determines that the operating state of the motor 8 is in a braking state and the operating point position determination unit 32 determines that the operating point of the motor 8 is in area X or area Y, the throttling coefficient calculation unit 33 calculates the throttling coefficient of the second variable throttling valve 7 required to position the operating point of the motor 8 on the line with maximum regenerative efficiency based on the rotational speed of the motor 8 and the thrust generated by the hydraulic cylinder 1.
 モータ8が定常状態であるとして、モータ8の回転速度に変化がないものとし、ポンプ9の押し退け容積をVpとし、液圧シリンダ1の上方の作動室R1の圧力をpuとし、液圧シリンダ1の下方の作動室R2の圧力をplとし、第2可変絞り弁7の絞り係数をfv2とし、モータ8の巻線に流れる電流をimとすると、以下の式16が成り立つ。 Assuming that the motor 8 is in a steady state and that there is no change in the rotational speed of the motor 8, the displacement volume of the pump 9 is Vp, the pressure in the working chamber R1 above the hydraulic cylinder 1 is pu, the pressure in the working chamber R2 below the hydraulic cylinder 1 is pl, the throttling coefficient of the second variable throttle valve 7 is fv2, and the current flowing through the windings of the motor 8 is im, the following equation 16 is established.
Figure JPOXMLDOC01-appb-M000016
 また、液圧シリンダ1が発生する推力をfaとし、ピストン3の受圧面積をAとすると、推力faは以下の式17で表すことができる。
Figure JPOXMLDOC01-appb-M000016
In addition, if the thrust generated by the hydraulic cylinder 1 is fa and the pressure-receiving area of the piston 3 is A, the thrust fa can be expressed by the following equation 17.
Figure JPOXMLDOC01-appb-M000017
 式16に式12と式17を代入して変形すると、モータ8の動作点が回生効率最大直線上に乗る絞り係数fv2を求める式18が得られる。
Figure JPOXMLDOC01-appb-M000017
By substituting equations 12 and 17 into equation 16 and rearranging it, equation 18 is obtained for determining the throttle coefficient fv2 that places the operating point of the motor 8 on the maximum regenerative efficiency line.
Figure JPOXMLDOC01-appb-M000018
 式18中のモータ8の回転速度ωmおよび液圧シリンダ1が発生している推力fa以外の値は既知であるから、絞り係数fv2の値は、回転速度ωmおよび推力faをパラメータとして変化することが理解できる。よって、回転速度ωmおよび推力faを検知することによってモータ8の動作点が回生効率最大直線上に乗る絞り係数fv2を求めることができる。そして、第2可変絞り弁7の絞り係数が前述のようにして求めた絞り係数fv2に一致させると、モータ8のトルクが回生最大トルクに一致するようになって、モータ8の動作点が回生効率最大直線上に乗って回生効率を最大にすることができる。
Figure JPOXMLDOC01-appb-M000018
Since the values in Equation 18 other than the rotation speed ωm of the motor 8 and the thrust fa generated by the hydraulic cylinder 1 are known, it can be understood that the value of the throttling coefficient fv2 changes with the rotation speed ωm and thrust fa as parameters. Therefore, by detecting the rotation speed ωm and the thrust fa, it is possible to determine the throttling coefficient fv2 that places the operating point of the motor 8 on the maximum regenerative efficiency line. Then, when the throttling coefficient of the second variable throttle valve 7 is made to match the throttling coefficient fv2 determined as described above, the torque of the motor 8 matches the maximum regenerative torque, and the operating point of the motor 8 is placed on the maximum regenerative efficiency line, thereby maximizing the regenerative efficiency.
 よって、絞り係数演算部33は、制動状態判定部31の判定結果がモータ8の動作状態が制動状態であって、動作点位置判定部32の判定結果がモータ8の動作点が領域X或いは領域Yに存在しているとの判定である場合、モータ8の回転速度と、実推力検知部25が求めた推力とを式18に代入して、モータ8の動作点を回生効率最大直線上に乗せる第2可変絞り弁7の絞り係数fv2を求める。そして、絞り係数演算部33は、モータ8の動作点を回生効率最大直線上に乗せる第2可変絞り弁7の絞り係数fv2を求めると、求めた絞り係数fv2を第2可変絞り弁7の目標絞り係数に設定する。 Therefore, when the braking state determination unit 31 determines that the operating state of the motor 8 is in the braking state and the operating point position determination unit 32 determines that the operating point of the motor 8 is in area X or area Y, the throttle coefficient calculation unit 33 substitutes the rotation speed of the motor 8 and the thrust determined by the actual thrust detection unit 25 into equation 18 to determine the throttle coefficient fv2 of the second variable throttle valve 7 that places the operating point of the motor 8 on the maximum regenerative efficiency line. Then, when the throttle coefficient calculation unit 33 determines the throttle coefficient fv2 of the second variable throttle valve 7 that places the operating point of the motor 8 on the maximum regenerative efficiency line, it sets the determined throttle coefficient fv2 as the target throttle coefficient of the second variable throttle valve 7.
 他方、絞り係数演算部33は、制動状態判定部31の判定結果がモータ8の動作状態が力行状態である場合、或いは、動作点位置判定部32の判定結果がモータ8の動作点が領域X或いは領域Yに存在していないと判定される場合、絞り係数演算部33は、ポンプ9の駆動の妨げにならないように第2可変絞り弁7の制御上で採りえる最大の絞り係数を目標絞り係数に設定する。 On the other hand, if the braking state determination unit 31 determines that the operating state of the motor 8 is in a powering state, or if the operating point position determination unit 32 determines that the operating point of the motor 8 is not in region X or region Y, the throttling coefficient calculation unit 33 sets the maximum throttling coefficient that can be achieved in controlling the second variable throttling valve 7 as the target throttling coefficient so as not to interfere with the operation of the pump 9.
 絞り係数演算部33が求めた目標絞り係数は、駆動回路34に入力される。駆動回路34は、第2可変絞り弁7の絞り係数を目標絞り係数通りになるように第2可変絞り弁7の図外の駆動源に電流を与えて第2可変絞り弁7の絞り係数を調整する。 The target throttle coefficient calculated by the throttle coefficient calculation unit 33 is input to the drive circuit 34. The drive circuit 34 adjusts the throttle coefficient of the second variable throttle valve 7 by applying a current to a drive source (not shown) of the second variable throttle valve 7 so that the throttle coefficient of the second variable throttle valve 7 matches the target throttle coefficient.
 このように、モータ8の動作状態が制動状態であり、モータ8の動作点が第2象限中にあって回生効率最大直線よりも上方の領域Xに位置しているか、或いは、モータ8の動作点が第4象限中にあって回生効率最大直線よりも下方の領域Yに位置している場合、回生制御部21は、回生制御を行って第2可変絞り弁7の絞り係数を小さくする。回生制御部21が回生制御を行って第2可変絞り弁7の絞り係数を小さくすると、モータ8の回転速度が一定のまま、モータ8のトルクが減少して回生最大トルクに一致するようになり、モータ8の動作点が回生効率最大直線に乗ることになる。そして、回生制御部21の回生制御によってモータ8の動作点が回生効率最大直線に乗ると、モータ8の回生電力がその時の回転速度で最大となって回生効率が向上する。 In this way, when the operating state of the motor 8 is in a braking state and the operating point of the motor 8 is in the second quadrant and located in region X above the maximum regenerative efficiency line, or when the operating point of the motor 8 is in the fourth quadrant and located in region Y below the maximum regenerative efficiency line, the regenerative control unit 21 performs regenerative control to reduce the throttling coefficient of the second variable throttle valve 7. When the regenerative control unit 21 performs regenerative control to reduce the throttling coefficient of the second variable throttle valve 7, the torque of the motor 8 decreases and coincides with the maximum regenerative torque while the rotation speed of the motor 8 remains constant, and the operating point of the motor 8 moves onto the maximum regenerative efficiency line. When the operating point of the motor 8 moves onto the maximum regenerative efficiency line due to the regenerative control of the regenerative control unit 21, the regenerative power of the motor 8 becomes maximum at the rotation speed at that time, and the regenerative efficiency improves.
 以上のように構成されたコントローラ11は、図6に示したフローチャートにしたがって、第2可変絞り弁7の絞り係数の制御を行う。まず、コントローラ11は、モータ8の回転速度とモータ8に流れるトルクとを検知する(ステップF1)。つづいて、コントローラ11は、モータ8の回転速度とトルクとをフィルタ処理して、フィルタ処理後回転速度とフィルタ処理後トルクとを得る(ステップF2)。 The controller 11 configured as described above controls the throttling coefficient of the second variable throttle valve 7 according to the flowchart shown in FIG. 6. First, the controller 11 detects the rotation speed of the motor 8 and the torque flowing to the motor 8 (step F1). Next, the controller 11 filters the rotation speed and torque of the motor 8 to obtain the filtered rotation speed and filtered torque (step F2).
 さらに、コントローラ11は、フィルタ処理後回転速度とフィルタ処理後トルクとからモータ8の動作状態が制動状態であるか否かを判定する(ステップF3)。つづいて、モータ8の動作状態が制動状態である場合、コントローラ11は、モータ8の動作点が領域X或いは領域Yに存在しているか否かを判定する(ステップF4)。そして、ステップF3およびステップF4の判定で、モータ8が制動状態であって、かつ、モータ8の動作点が領域X或いは領域Yに存在していると判定される場合、コントローラ11は、モータ8の動作点を回生効率最大直線上に乗せる第2可変絞り弁7の絞り係数を求めて(ステップF5)、目標絞り係数を求めた絞り係数に設定する(ステップF6)。ステップF3およびステップF4の判定で、モータ8が力行状態であるか、或いは、モータ8の動作点が領域X或いは領域Yに存在していないと判定される場合、コントローラ11は、第2可変絞り弁7が制御上採りえる最大の絞り係数を目標絞り係数に設定する(ステップF7)。目標絞り係数の設定が完了すると、コントローラ11は、駆動回路34から電流を第2可変絞り弁7の駆動源に供給して第2可変絞り弁7の絞り係数が目標絞り係数となるように制御する(ステップF8)。 Furthermore, the controller 11 judges whether the operating state of the motor 8 is in a braking state from the filtered rotation speed and the filtered torque (step F3). Next, if the operating state of the motor 8 is in a braking state, the controller 11 judges whether the operating point of the motor 8 is in the region X or region Y (step F4). Then, if it is judged in the judgments of steps F3 and F4 that the motor 8 is in a braking state and that the operating point of the motor 8 is in the region X or region Y, the controller 11 calculates the throttling coefficient of the second variable throttle valve 7 that puts the operating point of the motor 8 on the maximum regenerative efficiency line (step F5), and sets the target throttling coefficient to the calculated throttling coefficient (step F6). If it is judged in the judgments of steps F3 and F4 that the motor 8 is in a powered state or that the operating point of the motor 8 is not in the region X or region Y, the controller 11 sets the target throttling coefficient to the maximum throttling coefficient that the second variable throttle valve 7 can control (step F7). Once the target throttle coefficient has been set, the controller 11 supplies current from the drive circuit 34 to the drive source of the second variable throttle valve 7 to control the throttle coefficient of the second variable throttle valve 7 to the target throttle coefficient (step F8).
 コントローラ11は、以上までの処理を繰り返して実行して、モータ8が制動状態における回生電力を大きくなるように、第2可変絞り弁7の絞り係数を制御する。 The controller 11 repeatedly executes the above process to control the throttle coefficient of the second variable throttle valve 7 so as to increase the regenerative power when the motor 8 is in a braking state.
 なお、コントローラ11は、推力制御部20における駆動回路、実推力検知部25における圧力センサ25a,25b、第1可変絞り弁制御部22における駆動回路および第2可変絞り弁制御部23における駆動回路34を除き、ハードウェア資源としては、図示はしないが具体的にはたとえば、推力指令、モータ8の回転速度およびトルク(電流)およびシリンダ2内の圧力の信号を取り込むためのインターフェースと、モータ8、第1可変絞り弁6および第2可変絞り弁7を制御するのに必要な処理に使用されるプログラムが格納されるROM(Read Only Memory)等の記憶装置と、前記プログラムに基づいた処理を実行するCPU(Central Processing Unit)等の演算装置と、前記CPUに記憶領域を提供するRAM(Random Access Memory)等の記憶装置とを備えて構成されればよく、コントローラ11における推力制御部20および回生制御部21の各部は、CPUの前記プログラムの実行により実現できる。また、コントローラ11は、CPUの前記プログラムの実行による実現にかえて、アナログの電子回路によって実現されてもよい。 In addition, except for the drive circuit in the thrust control unit 20, the pressure sensors 25a, 25b in the actual thrust detection unit 25, the drive circuit in the first variable throttle valve control unit 22, and the drive circuit 34 in the second variable throttle valve control unit 23, the hardware resources of the controller 11 may be configured to include, although not shown in the figure, an interface for inputting signals of thrust commands, the rotational speed and torque (current) of the motor 8, and the pressure in the cylinder 2, a storage device such as a ROM (Read Only Memory) in which programs used for the processing required to control the motor 8, the first variable throttle valve 6, and the second variable throttle valve 7 are stored, an arithmetic unit such as a CPU (Central Processing Unit) that executes processing based on the programs, and a storage device such as a RAM (Random Access Memory) that provides a storage area for the CPU, and each part of the thrust control unit 20 and the regenerative control unit 21 in the controller 11 can be realized by the execution of the programs by the CPU. Additionally, the controller 11 may be realized by an analog electronic circuit, instead of by a CPU executing the program.
 以上、本実施の形態のシリンダ装置Aは、シリンダ2と、シリンダ2内に移動自在に挿入されてシリンダ2内を二つの作動室R1,R2に区画するピストン3と、互いに並列して作動室同士R1,R2を連通する第1流路4と第2流路5と、第1流路4に設けられた第1可変絞り弁6と、第2流路5に直列に設けられる第2可変絞り弁7およびモータ8によって駆動される双方向吐出型のポンプ9とを有する液圧シリンダ1と、第1可変絞り弁6、第2可変絞り弁7およびモータ8を制御するコントローラ11とを備え、コントローラ11は、モータ8の動作点が第2象限と第4象限にあるとモータ8の動作状態が制動状態となる回転速度トルク座標系において、モータ8の動作点が第2象限中の回生効率最大直線よりもトルクの大きい領域Xに位置している場合、或いは、モータ8の動作点が第4象限中の回生効率最大直線よりもトルクの小さい領域Yに位置している場合、モータ8の回転速度と液圧シリンダ1が発生している推力とに基づいてモータ8の動作点を回生効率最大直線上に乗せる第2可変絞り弁7の目標絞り係数を求め、第2可変絞り弁を制御する。このように構成されたシリンダ装置Aによれば、モータ8が制動状態になって電力回生が可能となって、第2可変絞り弁7の絞り係数の制御でモータ8の動作点を回生効率最大直線上へ移動させ得る状況となると、第2可変絞り弁7の絞り係数を目標可変絞り係数に調整して、モータ8の動作点を回生効率最大直線上へ移動させる。よって、シリンダ装置Aによれば、モータ8の動作点を回生効率最大直線上へ移動させ得る状況を見極めて、実際に回生電力を最大とすることができる。 As described above, the cylinder device A of this embodiment includes a hydraulic cylinder 1 having a cylinder 2, a piston 3 that is movably inserted into the cylinder 2 and divides the inside of the cylinder 2 into two working chambers R1 and R2, a first flow path 4 and a second flow path 5 that are parallel to each other and communicate the working chambers R1 and R2, a first variable throttle valve 6 provided in the first flow path 4, a second variable throttle valve 7 provided in series in the second flow path 5, and a bidirectional discharge type pump 9 driven by a motor 8, and a controller 11 that controls the first variable throttle valve 6, the second variable throttle valve 7, and the motor 8. In a rotational speed torque coordinate system in which the operating state of the motor 8 is in a braking state when the operating point of the motor 8 is in the second quadrant and in the fourth quadrant, when the operating point of the motor 8 is in an area X where the torque is greater than the maximum regenerative efficiency line in the second quadrant, or when the operating point of the motor 8 is in an area Y where the torque is smaller than the maximum regenerative efficiency line in the fourth quadrant, the throttle valve 11 calculates a target throttle coefficient of the second variable throttle valve 7 that places the operating point of the motor 8 on the maximum regenerative efficiency line based on the rotational speed of the motor 8 and the thrust generated by the hydraulic cylinder 1, and controls the second variable throttle valve. According to the cylinder device A configured in this way, when the motor 8 is in a braking state and power regeneration is possible, and a situation is reached in which the operating point of the motor 8 can be moved onto the maximum regenerative efficiency line by controlling the throttle coefficient of the second variable throttle valve 7, the throttle coefficient of the second variable throttle valve 7 is adjusted to the target variable throttle coefficient, and the operating point of the motor 8 is moved onto the maximum regenerative efficiency line. Therefore, with cylinder device A, it is possible to determine the conditions under which the operating point of motor 8 can be moved onto the line of maximum regenerative efficiency, and actually maximize the regenerative power.
 また、本実施の形態のシリンダ装置Aにおけるコントローラ11は、モータ8の回転速度とトルクとに基づいてモータ8が制動状態であるか否かを判定する制動状態判定部31を備えている。このように構成されたシリンダ装置Aによれば、モータ8の回転速度とトルクとに基づいて回転速度トルク座標系においてモータ8の動作点が制動状態となる第2象限と第4象限に存在していることを精度よく判定できるので、第2可変絞り弁7の絞り係数を調整して回生効率を向上させる回生制御を実行する1つの条件の見極めを正確に行える。 The controller 11 in the cylinder device A of this embodiment also includes a braking state determination unit 31 that determines whether the motor 8 is in a braking state based on the rotation speed and torque of the motor 8. With the cylinder device A configured in this manner, it is possible to accurately determine whether the operating point of the motor 8 is in the second or fourth quadrant in the rotation speed torque coordinate system, where the motor 8 is in a braking state, based on the rotation speed and torque of the motor 8, and therefore it is possible to accurately determine one condition for executing regenerative control that improves regenerative efficiency by adjusting the throttling coefficient of the second variable throttle valve 7.
 また、本実施の形態のシリンダ装置Aでは、コントローラ11は、モータ8の回転速度から車両におけるばね下共振周波数以上の成分を除去する第1フィルタ30aと、モータ8のトルクから車両におけるばね下共振周波数以上の成分を除去する第2フィルタ30bと、フィルタ処理後回転速度とフィルタ処理後トルクとに基づいてモータ8が制動状態であるか否かを判定する制動状態判定部31と、フィルタ処理後回転速度とフィルタ処理後トルクとに基づいてモータ8の動作点が領域X或いは領域Yに存在している否かを判定する動作点位置判定部32とを備えている。このように構成されたシリンダ装置Aによれば、モータ8の回転速度およびトルクから高周波のばね下共振周波数以上の成分が除去されるので、車両におけるばね上部材の振動に応じてモータ8の制動状態と動作点の位置を精度良く把握できるようになり、第2可変絞り弁7の絞り係数を適切に制御できるようになる。 In addition, in the cylinder device A of this embodiment, the controller 11 is equipped with a first filter 30a that removes components equal to or higher than the unsprung resonance frequency of the vehicle from the rotation speed of the motor 8, a second filter 30b that removes components equal to or higher than the unsprung resonance frequency of the vehicle from the torque of the motor 8, a braking state determination unit 31 that determines whether the motor 8 is in a braking state based on the filtered rotation speed and the filtered torque, and an operating point position determination unit 32 that determines whether the operating point of the motor 8 is in the region X or region Y based on the filtered rotation speed and the filtered torque. According to the cylinder device A configured in this manner, components equal to or higher than the high-frequency unsprung resonance frequency are removed from the rotation speed and torque of the motor 8, so that the braking state and the position of the operating point of the motor 8 can be accurately grasped according to the vibration of the sprung member of the vehicle, and the throttling coefficient of the second variable throttle valve 7 can be appropriately controlled.
 以上、本発明の好ましい実施の形態を詳細に説明したが、特許請求の範囲から逸脱しない限り、改造、変形、および変更が可能である。 Although the preferred embodiment of the present invention has been described in detail above, modifications, variations, and changes are possible without departing from the scope of the claims.
1・・・液圧シリンダ、2・・・シリンダ、3・・・ピストン、4・・・第1流路、5・・・第2流路、6・・・第1可変絞り弁、7・・・第2可変絞り弁、8・・・モータ、9・・・ポンプ、11・・・コントローラ、31・・・制動状態判定部、A・・・シリンダ装置、R1,R2・・・作動室 1: hydraulic cylinder, 2: cylinder, 3: piston, 4: first flow path, 5: second flow path, 6: first variable throttle valve, 7: second variable throttle valve, 8: motor, 9: pump, 11: controller, 31: braking state determination unit, A: cylinder device, R1, R2: working chamber

Claims (3)

  1.  シリンダ装置であって、
     シリンダと、前記シリンダ内に移動自在に挿入されて前記シリンダ内を二つの作動室に区画するピストンと、互いに並列して前記作動室同士を連通する第1流路と第2流路と、前記第1流路に設けられた第1可変絞り弁と、前記第2流路に直列に設けられる第2可変絞り弁およびモータによって駆動される双方向吐出型のポンプとを有する液圧シリンダと、
     前記第1可変絞り弁、前記第2可変絞り弁および前記モータを制御するコントローラとを備え、
     前記コントローラは、前記モータの動作点が第2象限と第4象限にあると前記モータの動作状態が制動状態となる回転速度トルク座標系において、前記モータの動作点が前記第2象限中の回生効率最大直線よりもトルクの大きい領域に位置している場合、或いは、前記モータの動作点が前記第4象限中の回生効率最大直線よりもトルクの小さい領域に位置している場合、前記モータの回転速度と前記液圧シリンダが発生している推力とに基づいて前記モータの動作点を前記回生効率最大直線上に乗せる前記第2可変絞り弁の目標絞り係数を求め、前記第2可変絞り弁を制御する
     シリンダ装置。
    A cylinder device,
    a hydraulic cylinder having a cylinder, a piston movably inserted into the cylinder to divide the inside of the cylinder into two working chambers, a first flow passage and a second flow passage arranged in parallel with each other and communicating the working chambers with each other, a first variable throttle valve provided in the first flow passage, a second variable throttle valve provided in series in the second flow passage, and a two-way discharge pump driven by a motor;
    a controller for controlling the first variable throttle valve, the second variable throttle valve, and the motor,
    the controller determines a target throttle coefficient of the second variable throttle valve that places the operating point of the motor on the maximum regenerative efficiency line based on the rotational speed of the motor and the thrust generated by the hydraulic cylinder, and controls the second variable throttle valve when the operating point of the motor is located in a region of greater torque than the maximum regenerative efficiency line in the second quadrant, or when the operating point of the motor is located in a region of less torque than the maximum regenerative efficiency line in the fourth quadrant, in a rotational speed-torque coordinate system in which the operating state of the motor is in a braking state when the operating point of the motor is in the second or fourth quadrant.
  2.  請求項1に記載のシリンダ装置であって、
     前記コントローラは、
     前記モータの回転速度とトルクとに基づいて前記モータが制動状態であるか否かを判定する制動状態判定部を有する
     シリンダ装置。
    The cylinder device according to claim 1,
    The controller:
    a braking state determination unit that determines whether the motor is in a braking state based on a rotation speed and a torque of the motor.
  3.  請求項2に記載のシリンダ装置であって、
     前記コントローラは、
     前記モータの回転速度から車両におけるばね下共振周波数以上の成分を除去してフィルタ処理後回転速度を出力する第1フィルタと、
     前記モータのトルクから前記車両におけるばね下共振周波数以上の成分を除去してフィルタ処理後トルクを出力する第2フィルタと、
     前記フィルタ処理後回転速度と前記フィルタ処理後トルクとに基づいて前記モータの動作点が前記第2象限中の回生効率最大直線よりもトルクの大きい領域、或いは、前記第4象限中の回生効率最大直線よりもトルクの小さい領域に存在している否かを判定する動作点位置判定部とを備え、
     前記制動状態判定部は、前記フィルタ処理後回転速度と前記フィルタ処理後トルクとに基づいて前記モータが制動状態であるか否かを判定する
     シリンダ装置。
    The cylinder device according to claim 2,
    The controller:
    a first filter that removes components equal to or higher than an unsprung resonance frequency of a vehicle from the rotation speed of the motor and outputs a filtered rotation speed;
    a second filter that removes components having frequencies equal to or higher than an unsprung resonance frequency of the vehicle from the torque of the motor and outputs a filtered torque;
    an operating point position determination unit that determines whether an operating point of the motor is in a region in the second quadrant where the torque is greater than a maximum regenerative efficiency line or in a region in the fourth quadrant where the torque is smaller than a maximum regenerative efficiency line, based on the filtered rotation speed and the filtered torque;
    The braking state determination unit determines whether the motor is in a braking state based on the filtered rotation speed and the filtered torque.
PCT/JP2023/028211 2022-09-27 2023-08-02 Cylinder device WO2024070205A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-153802 2022-09-27
JP2022153802A JP7431915B1 (en) 2022-09-27 2022-09-27 cylinder device

Publications (1)

Publication Number Publication Date
WO2024070205A1 true WO2024070205A1 (en) 2024-04-04

Family

ID=89852839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028211 WO2024070205A1 (en) 2022-09-27 2023-08-02 Cylinder device

Country Status (2)

Country Link
JP (1) JP7431915B1 (en)
WO (1) WO2024070205A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003104025A (en) * 2001-09-28 2003-04-09 Tokico Ltd Electromagnetic suspension device
JP2007083813A (en) * 2005-09-21 2007-04-05 Kayaba Ind Co Ltd Electromagnetic suspension device and control device of electromagnetic suspension device
JP2009196597A (en) * 2008-02-25 2009-09-03 Kayaba Ind Co Ltd Cylinder device
US20200324610A1 (en) * 2016-05-24 2020-10-15 Sistemi Sospensioni S.P.A. Vehicle suspension with a regenerative hydraulic shock-absorber and with a system for adjusting the attitude of the vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003104025A (en) * 2001-09-28 2003-04-09 Tokico Ltd Electromagnetic suspension device
JP2007083813A (en) * 2005-09-21 2007-04-05 Kayaba Ind Co Ltd Electromagnetic suspension device and control device of electromagnetic suspension device
JP2009196597A (en) * 2008-02-25 2009-09-03 Kayaba Ind Co Ltd Cylinder device
US20200324610A1 (en) * 2016-05-24 2020-10-15 Sistemi Sospensioni S.P.A. Vehicle suspension with a regenerative hydraulic shock-absorber and with a system for adjusting the attitude of the vehicle

Also Published As

Publication number Publication date
JP2024047992A (en) 2024-04-08
JP7431915B1 (en) 2024-02-15

Similar Documents

Publication Publication Date Title
JP7336194B2 (en) Active hydraulic ripple cancellation method and system
US8997950B2 (en) Vibration control device for railroad vehicle
JP3780010B2 (en) Semi-active damper
JP6700735B2 (en) Suspension device
WO2010030830A1 (en) Method of controlling an electro-hydraulic actuator system having multiple functions
JP6242765B2 (en) Hydraulic transmission
TW201807321A (en) Motor operated accumulator
JP5486367B2 (en) Actuator unit
CN105544631A (en) Control loop of hydraulic bucket working device
WO2024070205A1 (en) Cylinder device
CN104100508A (en) Use of a motor-driven speed-variable hydraulic pump as a hydrostatic transmission
JP6349182B2 (en) Damper control device
CN105644619B (en) Intelligent hydraulic servo steering system and its control method
JP5929628B2 (en) Active damper
JP2024047608A (en) Cylinder Unit
JP2024053184A (en) Cylinder Unit
JP2024047362A (en) Cylinder Unit
CN110198877B (en) Damping device for railway vehicle
JP2024047991A (en) Cylinder Unit
JP6924043B2 (en) Vibration damping device for railway vehicles
JP2024047609A (en) Cylinder Unit
JP2024044933A (en) Cylinder Unit
US9890777B2 (en) Delay-minimized detection of an auxiliary control variable
JP5927879B2 (en) Actuator control device
JP2023059526A (en) Vibration control device for railway vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871447

Country of ref document: EP

Kind code of ref document: A1