WO2024070193A1 - Endophyte material, and method for cultivating endophyte - Google Patents

Endophyte material, and method for cultivating endophyte Download PDF

Info

Publication number
WO2024070193A1
WO2024070193A1 PCT/JP2023/028021 JP2023028021W WO2024070193A1 WO 2024070193 A1 WO2024070193 A1 WO 2024070193A1 JP 2023028021 W JP2023028021 W JP 2023028021W WO 2024070193 A1 WO2024070193 A1 WO 2024070193A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
solid
solid culture
strain
medium
Prior art date
Application number
PCT/JP2023/028021
Other languages
French (fr)
Japanese (ja)
Inventor
良恵 井上
創太 井上
Original Assignee
セトラスホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セトラスホールディングス株式会社 filed Critical セトラスホールディングス株式会社
Publication of WO2024070193A1 publication Critical patent/WO2024070193A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor

Definitions

  • the present invention relates to an endophyte material and a method for producing the same, as well as a method for culturing an endophyte, more specifically, to a material containing a culture of Cephaliophora sp. xsd08001 strain, a method for producing the same, and a method for culturing the strain, which includes subjecting the strain to liquid culture.
  • Endophytes also known as endophytic fungi, are microorganisms that live and symbiotically within the body of a plant host, thereby providing the host with benefits such as promoting growth and increasing stress resistance.
  • One such endophyte that has been reported as a useful microorganism is the Cephaliophora sp. strain xsd08001 (hereinafter sometimes referred to as xsd08001 strain) (Patent Document 1).
  • a culture of the xsd08001 strain is mixed into soil and used to increase the content of highly functional components in vegetables and other plants (Patent Document 2).
  • Patent Document 2 A culture of the xsd08001 strain is mixed into soil and used to increase the content of highly functional components in vegetables and other plants.
  • JP 2018-174708 A Patent No. 6898637 Japanese Patent Application Laid-Open No. 62-171618 Japanese Patent Application Laid-Open No. 62-269624
  • the object of the present invention is to provide a material that can suppress unevenness in the effect of promoting plant growth.
  • Another object of the present invention is to provide a novel culture method that can culture the xsd08001 strain more efficiently.
  • a material containing a culture of Cephaliophora sp. xsd08001 strain has a cumulative 50% particle size (D 50 ) in a volumetric particle size distribution of 100 to 900 ⁇ m.
  • the material has a cumulative 90% particle size (D 90 ) of 1000 to 5000 ⁇ m.
  • the average number of colonies per 1 g of the dried solid culture material in the material described in [1] is 1 ⁇ 10 5 to 1 ⁇ 10 9 cfu (Colony Forming Unit)/g.
  • the material according to [1] or [2] is intended for promoting plant growth.
  • a method for producing a material containing a dried solid culture of Cephaliophora sp. xsd08001 strain comprising a culturing step of obtaining the dried solid culture of the strain, and an adjusting step of adjusting the cumulative 50% particle size (D 50 ) and cumulative 90% particle size (D 90 ) in the volumetric particle size distribution of the dried solid culture to 100 to 900 ⁇ m and 1000 to 5000 ⁇ m, respectively.
  • the culturing step includes a liquid culturing step of subjecting the strain to liquid culture.
  • the culturing step includes a solid culturing step.
  • the strain cultured in the liquid culturing step is cultured in solid culture.
  • the culturing step includes a drying step of drying the solid culture obtained in the solid culturing step to produce the dried solid culture.
  • the preparation step includes a grinding step of grinding the dried solid culture dried in the drying step.
  • the solid culture step is carried out using a solid culture medium containing a solid medium and water in the production method described in [5].
  • the solid culture medium has a water content of 50 to 70%.
  • the solid culture medium contains bran.
  • a method for culturing a Cephaliophora sp. xsd08001 strain comprising subjecting the Cephaliophora sp. xsd08001 strain to liquid culture to obtain a liquid culture.
  • the method comprises subjecting the obtained liquid culture to solid culture to obtain a solid culture.
  • the solid culture is carried out using a medium for solid culture in the culture method according to [9].
  • the medium for solid culture contains a solid medium and water.
  • the solid culture medium has a water content of 50 to 70%.
  • the solid medium contains wheat bran.
  • the liquid culture is carried out for 2 to 4 days in the culture method according to any one of [9] to [12].
  • the solid culture is carried out for 7 to 12 days in the culture method according to any one of [9] to [13].
  • At least one of the liquid culture and the solid culture is carried out at a room humidity of 60 to 90% RH in the culture method according to any one of [9] to [14].
  • the material of the present invention By using the material of the present invention, it is possible to prevent unevenness in the effect of promoting plant growth using the material. In addition, by using the cultivation method of the present invention, the xsd08001 strain can be cultivated more efficiently.
  • Fig. 1 shows lettuce on the 25th day after sowing in Experiment 2 of Example Group I.
  • Fig. 1 shows the state of lettuce in Example 1.
  • Fig. 1 shows the state of lettuce in Comparative Example 1.
  • Fig. 1 shows the state of lettuce in Comparative Example 2.
  • Figure 2 is an electrophoretic photograph showing the PCR detection results of the ITS region of Cephaliophora sp. in Experiment 3 of Example Group I.
  • lane 1 shows Comparative Example 3-2.
  • lane 2 shows Example 3-2.
  • Fig. 3 shows the solid culture medium of the Example and Comparative Example of Example Group II on the 10th day after the start of solid culture.
  • a shows the side of the solid culture medium of the Comparative Example.
  • b shows the side of the solid culture medium of the Example.
  • c shows the back of the solid culture medium of the Comparative Example.
  • d shows the back of the solid culture medium of the Example.
  • Fig. 4 shows the solid medium of Comparative Example of Example Group II on the 25th day from the start of solid culture.
  • Fig. 3 shows the solid culture medium of Comparative Example of Example Group II on the 25th day from the start of solid culture.
  • Fig. 4 shows the side of the solid medium of Comparative Example.
  • Fig. 4, b shows the back of the solid medium of Comparative Example.
  • Fig. 5 shows the state of mycelium elongation of xsd08001 strain in a solid culture medium having a moisture content of 50 to 70% by mass in Reference Experiment 1 of Example Group II.
  • the moisture content of 50% by mass corresponds to Reference Example 1.
  • the moisture content of 60% by mass corresponds to Reference Example 2.
  • Fig. 5 the moisture content of 70% by mass corresponds to Reference Example 3.
  • Fig. 5 a shows the state of the front surface of the petri dish.
  • Fig. 5, b shows the state of the back surface of the petri dish.
  • Fig. 5 shows the state of the front surface of the petri dish.
  • FIG. 6 shows the xsd08001 strain in a solid culture medium with a water content of 80% by mass in Reference Experiment 1 of Example Group II.
  • Fig. 6 corresponds to Comparative Reference Example 3 with a water content of 80% by mass.
  • Fig. 6 shows the appearance of the surface of the petri dish.
  • Fig. 7 shows the xsd08001 strain in solid culture media with a moisture content of 50% by mass and 60% by mass at an environmental humidity of 70% RH in Reference Experiment 2 of Example Group II.
  • a, b, and c correspond to Reference Example 4 with a moisture content of 50% by mass.
  • Fig. 7, d, e, and f correspond to Reference Example 5 with a moisture content of 60% by mass. All Fig. 7 shows the surface appearance of the petri dish.
  • I. Endophyte Materials One embodiment relates to an endophyte material. Adjusting the particle size of a microbial material is important for improving ease of handling, stabilizing effects, promoting plant growth, and the like. However, since filamentous fungi grow by extending strong hyphae, there is a large variation in the density of the hyphae in the medium, making it difficult to adjust the particle size of the culture. Despite this technical common knowledge, the present inventors have discovered that by using the xsd08001 strain, the hyphae can be uniformly extended and a culture with an adjusted particle size can be obtained.
  • Non-Patent Document 1 since the xsd08001 strain was isolated from soil, it is believed that an environment similar to that of soil is suitable, and thus the xsd08001 strain is usually cultivated by solid culture. In addition, liquid culture of filamentous fungi is difficult because the mycelium adheres and aggregates to form mycelium clumps (Non-Patent Document 1). Despite these circumstances, the inventors were surprised to succeed in liquid culture of the xsd08001 strain. Although a culture with adjusted particle size can be obtained even in the case of solid culture, when liquid culture becomes possible, a culture with an even more adjusted particle size can be obtained. This is thought to be because inoculating the liquid culture allows the seed fungus to spread throughout the entire medium, enabling the mycelium to spread evenly in the medium, resulting in a uniform concentration of fungal cells per unit mass.
  • the present embodiment provides a culture of the xsd08001 strain having a cumulative 50% particle size (D 50 ) of 100 to 900 ⁇ m and a cumulative 90% particle size (D 90 ) of 1000 to 5000 ⁇ m in volumetric particle size distribution, and a material containing the same.
  • the particle size of the culture of the strain used in this embodiment is not limited, but is as follows.
  • the cumulative 10% particle size (D10) in the volumetric particle size distribution of the culture of the strain used in this embodiment is, for example, 50 to 400 ⁇ m, among which 100 to 350 ⁇ m, more preferably 150 to 350 ⁇ m, and even more preferably 200 to 300 ⁇ m.
  • the cumulative 50% particle size (D 50 ) of the culture of the strain used in this embodiment is, for example, 100 to 1000 ⁇ m, among which 200 to 900 ⁇ m, more preferably 300 to 850 ⁇ m, and even more preferably 400 to 800 ⁇ m.
  • the cumulative 90% particle size (D 90 ) of the culture of the strain used in this embodiment is, for example, 1000 to 5000 ⁇ m, among which 1100 to 4000 ⁇ m, more preferably 1200 to 3000 ⁇ m, and even more preferably 1200 to 2000 ⁇ m.
  • the cumulative 50% particle size (D 50 ) is 200-800 ⁇ m
  • the cumulative 90% particle size (D 90 ) is 1000-3000 ⁇ m.
  • the particle size can be measured by any method, such as a laser diffraction method, a scattering method, an imaging method, a light transmission centrifugal sedimentation method, a sedimentation method, an electrical resistance method, a specific surface area method, or a sieve passing method.
  • the particle size can be measured using an appropriate particle size measuring instrument, for example, a commercially available instrument such as LMS-2000e or LMS-3000 (Seishin Enterprise Co., Ltd.). Since the culture is dried and then pulverized, it is preferable to use a dry measurement method for the particle size.
  • an appropriate particle size measuring instrument for example, a commercially available instrument such as LMS-2000e or LMS-3000 (Seishin Enterprise Co., Ltd.). Since the culture is dried and then pulverized, it is preferable to use a dry measurement method for the particle size.
  • the culture of the xsd08001 strain is obtained by subjecting the xsd08001 strain to solid culture.
  • the culture of the xsd08001 strain is obtained by subjecting the xsd08001 strain to liquid culture and then to solid culture.
  • the particles of the culture of the xsd08001 strain may be obtained by a process including drying the solid culture obtained by solid culture and grinding the dried solid culture.
  • liquid culture refers to culturing a strain using a liquid medium.
  • the process of performing such liquid culture may be referred to as a "liquid culture process.”
  • Subjecting the xsd08001 strain to liquid culture refers to inoculating the strain into a liquid medium and culturing it in the liquid medium.
  • the strain may be in the form of a seed culture medium carried by a medium.
  • An example of the medium is agar.
  • inoculation is preferably performed under sterile conditions.
  • liquid culture refers to a liquid culture obtained as a result of liquid culture.
  • a liquid medium can be prepared, for example, by adding various additives to the liquid to adjust the composition to be suitable for culture.
  • An example of the liquid is water.
  • additives added to the liquid medium include sugars, minerals, nitrogen sources, vitamins, organic acids, inorganic acids, organic bases, and inorganic bases.
  • the liquid medium contains sugars and a nitrogen source.
  • An example of the nitrogen source contained in the liquid medium is peptone.
  • the sugars are not limited, but may be one or more selected from glucose, galactose, fructose, maltose, sucrose, lactose, oligosaccharides, and glycerol.
  • the upper limit of the sugars is not limited, but the total amount of sugars in the liquid medium is usually 60 g/L or less, more preferably 50 g/L or less, even more preferably 40 g/L or less, and especially preferably 30 g/L or less. This is because, as described in Patent Document 3, if the liquid medium contains too many nutrients such as sugars, the mycelium concentration becomes too high.
  • the lower limit of the sugars is not limited, but the total amount of sugars in the liquid medium is usually 0.5 g/L or more, more preferably 1 g/L or more, even more preferably 5 g/L or more, and especially preferably 10 g/L or more. This is because if the nutrients such as sugars are too few, the mycelium does not grow sufficiently.
  • the sugar is glucose, and is added in an amount of 20 g/L.
  • the minerals may be inorganic salts, such as, but not limited to, alkali and alkaline earth metal salts, and salts of other metals.
  • inorganic salts include one or more salts selected from sulfates, phosphates, carbonates, chlorides, alkali metal oxides, molybdates, selenites, and halides.
  • One or more salts may be used.
  • the upper limit of the salts is not limited, but the total amount of salts in the liquid medium, excluding the amount contained in yeast extract and peptone, is usually 10.0 g/L or less, preferably 8.0 g/L or less, more preferably 5.0 g/L or less, and particularly preferably 2.0 g/L or less.
  • the lower limit of the salts is not limited, but the total amount of salts in the liquid medium, excluding the amount contained in the yeast extract, is usually 0.01 g/L or more, preferably 0.05 g/L or more, more preferably 0.1 g/L or more, and particularly preferably 0.25 g/L or more. This is because if the liquid medium contains too few minerals such as salts, the mycelium will not grow sufficiently.
  • magnesium sulfate is added as salts in an amount of 0.5 g/L of medium
  • potassium dihydrogen phosphate is added in an amount of 0.1 g/L of medium.
  • the nitrogen source may be one or more nitrogen sources selected from yeast extract, protein hydrolysates, and proteins.
  • An example of a protein hydrolysate is peptone.
  • Adding yeast extract and/or peptone to a liquid medium can add nutrients including protein hydrolysates such as amino acids and peptides, proteins, and salts.
  • the amount of nitrogen source relative to the liquid medium is not limited, but for example, the upper limit of the nitrogen source, as the total amount of nitrogen sources such as yeast extract and peptone, is usually 30.0 g/L or less, particularly 20.0 g/L or less, even 15.0 g/L or less, and particularly 10.0 g/L or less.
  • the lower limit of the nitrogen source is usually 0.05 g/L or more, particularly 0.1 g/L or more, even 0.5 g/L or more, and particularly 1.0 g/L or more.
  • the amount of yeast extract relative to the liquid medium is not limited, but the upper limit of yeast extract is usually 20.0 g/L or less, particularly 15.0 g/L or less, further 10.0 g/L or less, and particularly 5.0 g/L or less.
  • the lower limit of yeast extract is usually 0.01 g/L or more, particularly 0.05 g/L or more, further 0.1 g/L or more, and particularly 0.5 g/L or more.
  • the amount of peptone relative to the liquid medium is not limited, but the upper limit of peptone is usually 10.0 g/L or less, particularly 8.0 g/L or less, further 5.0 g/L or less, and particularly 2.0 g/L or less.
  • the lower limit of peptone is usually 0.01 g/L or more, particularly 0.05 g/L or more, further 0.1 g/L or more, and particularly 0.5 g/L or more.
  • yeast extract is added in an amount of 2.0 g/L of medium
  • peptone is added in an amount of 1.0 g/L of medium.
  • the pH may be adjusted appropriately by adding an appropriate acid or base.
  • the liquid culture can be carried out by a suitable culture means.
  • a container such as an Erlenmeyer flask can be used, and the culture can be carried out while stirring with a stirring device such as a stirrer.
  • the culture conditions of the liquid culture are adjusted by a temperature control device or the like.
  • one or more devices selected from a vibration device, a humidity measuring device, a pH adjusting device, a turbidity measuring device, a light control device, a specific gas concentration measuring device, and a pressure measuring device may be used as necessary.
  • the specific gas concentration measuring device may be capable of measuring O 2 and CO 2 as specific gases.
  • a silicon plug may be used optionally from the viewpoint of preventing contamination.
  • aeration stirring culture, shaking culture, stationary culture, or the like may be appropriately carried out.
  • a liquid medium and a stirrer are placed in an Erlenmeyer flask, the mouth of the flask is sealed with a silicon plug, and stirring culture with breathability is carried out.
  • the period of liquid culture is not limited, but the culture can be completed when the desired concentration, for example, the average number of colonies per 1 L of liquid culture is usually 1 x 10 3 cfu/L or more, particularly 1 x 10 4 cfu/L or more, even more preferably 1 x 10 5 cfu/L or more, for example, about 5 x 10 6 cfu/L or more, is reached.
  • the upper limit of the liquid culture period is usually 8 days or less, particularly 6 days or less, even 5 days or less, and particularly 4 days or less.
  • the lower limit of the liquid culture period is usually 6 hours or more, particularly 12 hours or more, even 18 hours or more, and particularly 1 day or more.
  • liquid culture if the culture period is too long, the mycelium concentration becomes too high. On the other hand, if the culture period is too short, the mycelium does not grow sufficiently.
  • the liquid culture period is 2 to 4 days, for example 3 days, which is sufficient to obtain a liquid culture of a suitable concentration for subsequent solid culture.
  • solid culture refers to culturing a strain using a solid culture medium containing a solid medium and water.
  • the process of performing such solid culture may be referred to as a "solid culture process”.
  • a solid culture refers to a culture obtained as a result of solid culture in which a strain is cultured in a solid culture medium.
  • bran, soybean pulp, bamboo powder, sawdust, rice husk, bagasse, cellulose powder, cellobiose, coffee grounds, and starch can be used as the solid culture medium.
  • the water used for solid culture may contain, for example, various additives that contribute to the growth of the strain. Examples of additives include antibiotics that can suppress the growth of bacteria other than the Cephaliophora sp. xsd08001 strain used in this embodiment.
  • the solid culture medium can be prepared by adding water to the solid culture medium and mixing.
  • the moisture content of the solid culture medium is not limited, but for example, the upper limit of the moisture content is usually 85% by mass or less, particularly 80% by mass or less, further 75% by mass or less, and particularly 70% by mass or less is preferable.
  • the lower limit of the moisture content is usually 30% by mass or more, particularly 40% by mass or more, further 45% by mass or more, and particularly 50% by mass or more is preferable. If the moisture content of the solid culture medium is too high, it becomes too watery and sufficient gaps are not formed in the medium, so growth is not promoted. On the other hand, if the moisture content of the solid culture medium is too low, sufficient moisture for culture cannot be secured.
  • the moisture content of the solid culture medium is 50 to 70% by mass, for example 60% by mass, a solid culture having a mycelium concentration appropriate as an endophyte material can be obtained.
  • subjecting a liquid culture to solid culture refers to inoculating a solid culture medium with the liquid culture and carrying out solid culture.
  • a micropipette or other tool can be used to inoculate, or at least one of the following methods can be used: heating the mouth of the container containing the strain with a burner, followed by sterilization, followed by decanting and direct inoculation.
  • inoculating a liquid culture into a solid culture medium makes it possible to spread the liquid culture throughout the solid culture medium. This allows the mycelium to grow more uniformly across the entire solid culture medium, resulting in a more uniform culture, which in turn is believed to result in culture particles with a more uniform particle size.
  • Solid culture can be carried out by a suitable culture means.
  • solid culture can be carried out by using a container such as a plastic bag and allowing the container to stand.
  • a temperature control device e.g., a temperature control device, a humidity measuring device, etc.
  • one or more devices selected from a stirring device, a vibration device, a pH adjusting device, a turbidity measuring device, a light control device, a specific gas concentration measuring device, and a pressure measuring device may be used.
  • the specific gas concentration measuring device may be capable of measuring, for example, O 2 and CO 2 as specific gases.
  • a disposable container for solid culture, it is preferable to use a disposable container from the viewpoint of preventing contamination, and measures such as closing the mouth of the bag may be taken as appropriate. Stirring culture, shaking culture, static culture, etc. may be carried out as appropriate.
  • a disposable bag equipped with a ventilation filter is used, and static culture is carried out by closing the mouth of the bag.
  • the period of solid culture is not limited, but the culture can be completed when the desired concentration, for example, the average number of colonies per 1 g of solid culture, is usually 1 ⁇ 10 3 to 1 ⁇ 10 7 cfu/g, preferably 5 ⁇ 10 3 to 5 ⁇ 10 6 cfu/g, more preferably 1 ⁇ 10 4 to 1 ⁇ 10 6 cfu/g, particularly preferably 5 ⁇ 10 4 to 5 ⁇ 10 5 cfu/g, for example, about 1 ⁇ 10 5 cfu/g.
  • the upper limit of the period of solid culture is usually 20 days or less, more preferably 18 days or less, more preferably 15 days or less, and particularly preferably 12 days or less.
  • the lower limit of the period of solid culture is usually 5 days or more, more preferably 6 days or more, more preferably 7 days or more, and particularly preferably 8 days or more. If the solid culture period is too long, the risk of contamination by various bacteria increases. Furthermore, if the solid culture period is too long, it will hinder efficient production of the endophyte material. On the other hand, in solid culture, if the culture period is too short, the mycelium does not grow sufficiently. For example, in one embodiment, solid culture for 8 to 12 days, e.g., 10 days, can provide a solid culture having a mycelium concentration suitable for use as an endophyte material.
  • the humidity during liquid culture is not particularly limited and can be any humidity.
  • the humidity during solid culture is not limited, but the upper limit of the humidity for solid culture is usually 100% RH or less, particularly 95% RH or less, more preferably 90% RH or less.
  • the lower limit of the humidity for solid culture is usually 55% RH or more, particularly 60% RH or more, more preferably 65% RH or more.
  • the culture can be carried out at a humidity of 60 to 80% RH, for example, 70% RH.
  • the upper limit of the temperature is usually 40° C. or lower, preferably 35° C. or lower, more preferably 30° C. or lower, and particularly preferably 25° C. or lower.
  • the lower limit of the temperature in liquid culture and solid culture is usually 5° C. or higher, preferably 10° C. or higher, more preferably 15° C. or higher, and particularly preferably 20° C. or higher.
  • the culture can be carried out at 20 to 25° C., for example, 25° C. ⁇ 1° C.
  • the liquid medium, solid medium, and/or solid culture medium by any known means, such as filtration sterilization, autoclave sterilization, boiling sterilization, radiation sterilization, sodium hypochlorite, or ozone treatment.
  • Each operation, such as inoculation is preferably performed in a sterile atmosphere.
  • an appropriate amount of moisture can be added to the solid culture medium before sterilization.
  • the present embodiment provides a material containing a culture of the xsd08001 strain.
  • the ratio of the culture of the xsd08001 strain in the present material is not limited.
  • the upper limit of the ratio of the culture of the xsd08001 strain in the present material is 100 mass% or less, 95 mass% or less, 90 mass% or less, or 80 mass% or less.
  • the lower limit of the ratio of the culture of the xsd08001 strain in the present material is 10 mass% or more, 20 mass% or more, or 30 mass% or more.
  • the present material may be composed of a culture of the xsd08001 strain.
  • the present embodiment also provides a method for producing a material containing a culture of the xsd08001 strain.
  • the production method includes obtaining a culture of the xsd08001 strain.
  • obtaining a culture of the xsd08001 strain includes subjecting the xsd08001 strain to liquid culture and then to solid culture.
  • obtaining a culture of the xsd08001 strain includes drying the solid culture obtained by solid culture and pulverizing the dried solid culture.
  • it may also include classifying the pulverized product as necessary. For example, a sieve can be used for classification.
  • drying the solid culture obtained by the solid culture step to produce a dried solid culture is sometimes referred to as a "drying step”.
  • pulverizing the dried solid culture is sometimes referred to as a "pulverizing step”.
  • Drying can be carried out using general-purpose equipment such as an air conditioner or dehumidifier to achieve the following culture concentrations. For example, drying can be carried out by leaving it in an environment of 25°C and 50% RH for 3 days. Grinding can be carried out using general-purpose grinders such as a food processor, coffee mill, or pepper mill.
  • general-purpose equipment such as an air conditioner or dehumidifier to achieve the following culture concentrations. For example, drying can be carried out by leaving it in an environment of 25°C and 50% RH for 3 days. Grinding can be carried out using general-purpose grinders such as a food processor, coffee mill, or pepper mill.
  • the culture particles can be adjusted to a desired particle size simply by drying and pulverizing the solid culture, but in one embodiment, the method may further include adjusting the cumulative 50% particle size (D 50 ) in the volumetric particle size distribution to 100-900 ⁇ m and the cumulative 90% particle size (D 90 ) to 1000-5000 ⁇ m.
  • the adjustment of the cumulative 50% particle size (D 50 ) in the volumetric particle size distribution of the dried solid culture to 100-900 ⁇ m and the cumulative 90% particle size (D 90 ) to 1000-5000 ⁇ m is sometimes referred to as an "adjustment step".
  • the adjustment step includes a pulverization step.
  • This material has a consistent particle size and the bacteria are uniformly distributed, so it can stably function as an endophyte on plants, which is preferable from the standpoint of plant growth and quality improvement.
  • the consistent particle size makes it easy to handle, and is advantageous for tableting, granulation, packaging, transportation, etc.
  • a material with uniformly distributed bacteria can be preferably obtained even with solid culture alone.
  • the mycelium extends throughout the medium, making the concentration of the bacteria even more uniform.
  • the concentration of the solid culture obtained in this embodiment is, for example, usually 1 x 10 to 1 x 10 cfu/g, preferably 5 x 10 to 5 x 10 cfu/g, more preferably 1 x 10 to 1 x 10 cfu/g, and particularly preferably 5 x 10 to 5 x 10 cfu /g, for example, about 1 x 10 cfu/g, as the average number of colonies per gram of solid culture.
  • the concentration of the culture in the material of this embodiment is, for example, 1 x 10 to 1 x 10 cfu/g, preferably 5 x 10 to 5 x 10 cfu/g, more preferably 1 x 10 to 1 x 10 cfu/g, as the average number of colonies per gram of dry solid culture.
  • the average number of colonies per gram of dry solid culture product does not change before and after the crushing step.
  • One embodiment relates to a method for culturing an endophyte.
  • the xsd08001 strain was isolated from soil, it is considered that an environment similar to that of soil is suitable for the xsd08001 strain, and the xsd08001 strain is usually cultured by solid culture.
  • details of how to efficiently culture the xsd08001 strain are not known.
  • Non-Patent Document 1 The use of liquid culture for fungi such as mushrooms has been reported to shorten the culture period and prevent contamination.
  • filamentous fungi mycelium adheres and aggregates to form mycelial masses, making liquid culture difficult and hindering industrial cultivation. For this reason, it was thought that special procedures such as genetic manipulation were necessary to apply liquid culture to filamentous fungi. For example, it has been reported that a gene was knocked out in the filamentous fungus Aspergillus nidulans to create an ⁇ -1,3-glucan-deficient strain in order to facilitate liquid culture (Non-Patent Document 1). The inventors discovered that the same difficulties existed with the xsd08001 strain of the genus Cephaliophora, which belongs to filamentous fungi.
  • the xsd08001 strain does not grow uniformly in the culture medium, and if its effect as an endophyte is unstable, there is a risk that the quality of plants cultivated using it will not be satisfactory.
  • the present embodiment provides a culture method comprising subjecting the xsd08001 strain to liquid culture.
  • One aspect of the culture method relates to a method for culturing the Cephaliophora sp. xsd08001 strain, the culture method comprising subjecting the strain to liquid culture to obtain a liquid culture, and subjecting the obtained liquid culture to solid culture to obtain a solid culture.
  • liquid culture refers to culturing a strain using a liquid medium, as described above. Subjecting the xsd08001 strain to liquid culture refers to inoculating the strain into a liquid medium and culturing it in the liquid medium.
  • the strain may be in the form of a seed culture medium carried by a medium. Examples of the medium include agar.
  • liquid culture refers to a liquid culture obtained as a result of liquid culture, as described above.
  • a liquid medium can be prepared, for example, by adding various additives to the liquid to adjust the composition to be suitable for culture.
  • An example of the liquid is water.
  • the additives include sugars, minerals, nitrogen sources, vitamins, organic acids, inorganic acids, organic bases, and inorganic bases.
  • the liquid medium contains sugars and a nitrogen source.
  • An example of the sugars is glucose.
  • An example of the nitrogen source is peptone. Details of these components are as described in detail in [I. Endophyte materials] .
  • Solid culture In one embodiment of the culture method, a liquid culture of the xsd08001 strain obtained by liquid culture is subjected to solid culture to obtain a solid culture.
  • solid culture in this specification refers to culturing a strain using a solid culture medium containing a solid medium and water.
  • a solid culture refers to a culture obtained as a result of solid culture in which a strain is cultured in a solid culture medium.
  • bran, bean pulp, bamboo powder, sawdust, rice husk, bagasse, cellulose powder, cellobiose, coffee grounds, and starch can be used as the solid culture medium.
  • the solid culture medium can be prepared by adding water to the solid culture medium and mixing.
  • the moisture content of the solid culture medium is not limited, but for example, the upper limit of the moisture content is usually 85% by mass or less, particularly 80% by mass or less, further 75% by mass or less, and particularly 70% by mass or less.
  • the lower limit of the moisture content is usually 30% by mass or more, particularly 40% by mass or more, further 45% by mass or more, and particularly 50% by mass or more. If the moisture content of the solid culture medium is too high, it becomes too watery and there are not enough gaps in the medium, so growth is not promoted, while if the moisture content of the solid culture medium is too low, sufficient moisture for culture cannot be secured.
  • the moisture content of the solid culture medium is 50 to 70% by mass, for example 60% by mass, a solid culture having a mycelium concentration appropriate as an endophyte material can be obtained.
  • subjecting a liquid culture to solid culture refers to inoculating a liquid culture into a solid culture medium and carrying out solid culture.
  • inoculation for example, a method of inoculating using a micropipette or other tool, or at least one of measures of heating the mouth of a container containing the strain with a burner, followed by decanting and direct inoculation can be adopted. Regardless of the method used, by inoculating the liquid culture, it is possible to apply it so that it spreads throughout the entire solid culture medium, and the mycelium can extend and grow more quickly throughout the entire solid culture medium.
  • the humidity during liquid culture is not particularly limited and can be any humidity.
  • the humidity during solid culture is not limited, but the upper humidity limit for solid culture is usually 100% RH or less, particularly 95% RH or less, more preferably 90% RH or less.
  • the lower humidity limit for solid culture is usually 55% RH or more, particularly 60% RH or more, more preferably 65% RH or more. In some embodiments, it can be performed at a humidity of 60 to 80% RH, for example, 70% RH.
  • Non-Patent Documents 2 and 3 In the case of normal mushroom culture, for example, oyster mushroom is cultured at a high humidity of 95% RH and slimy oyster mushroom is cultured at 85% RH (Non-Patent Documents 2 and 3), but the culture method of the present application can be performed at a relatively low humidity of, for example, 70% RH. If the humidity of solid culture is low, it is advantageous in terms of the time, labor, electricity, water, cost, etc. required for installation of the equipment.
  • the upper limit of the temperature is usually 40° C. or lower, preferably 35° C. or lower, more preferably 30° C. or lower, and particularly preferably 25° C. or lower.
  • the lower limit of the temperature in liquid culture and solid culture is usually 5° C. or higher, preferably 10° C. or higher, more preferably 15° C. or higher, and particularly preferably 20° C. or higher.
  • the culture can be carried out at 20 to 25° C., for example, 25° C. ⁇ 1° C.
  • the liquid medium, solid medium, and/or solid culture medium be sterilized by any known means, such as filtration sterilization, autoclave sterilization, boiling sterilization, radiation sterilization, sodium hypochlorite, or ozone treatment, and that each operation, such as inoculation, be carried out in a sterile atmosphere.
  • filtration sterilization autoclave sterilization, boiling sterilization, radiation sterilization, sodium hypochlorite, or ozone treatment
  • each operation such as inoculation
  • be carried out in a sterile atmosphere for example, in the case of a solid culture medium, an appropriate amount of moisture can be added to the solid culture medium before sterilization.
  • the total period required for liquid culture and solid culture is not limited, but for example, the upper limit of the total culture period from inoculation to completion of culture is usually 30 days or less, particularly 25 days or less, further 20 days or less, and particularly 15 days or less.
  • the lower limit of the total culture period is usually 13 days or more, particularly 12 days or more, further 11 days or more, and particularly 10 days or more.
  • a solid culture having a mycelium concentration appropriate for an endophyte material can be obtained by performing the culture for 10 to 15 days, for example, 13 days. As described above, if the total culture period is too long, the mycelium concentration becomes too high and the risk of contamination increases.
  • the present culture method is advantageous not only in that the total culture period can be shortened, thereby reducing the time, labor, cost, etc. required for culture, but also in that the spread of contamination during growth can be prevented.
  • a culture obtained by the present culture method and a material containing the culture are provided. Furthermore, this embodiment is described as providing a method for producing a material, which includes recovering a culture obtained by the present culture method including liquid culture, and drying and pulverizing the recovered culture. Since the present culture employs liquid culture, it has the advantage that contamination is low and the mycelium extends throughout the medium, resulting in a uniform concentration of the fungus. Therefore, the use of the present material using such a culture reduces the risk of contamination of plants using endophytes, and since the fungus is uniformly distributed, it is preferable from the viewpoint of plant growth, since it can stably exert its function as an endophyte on plants.
  • the concentration of the culture obtained by this culture method is, for example, usually 1 x 10 to 1 x 10 cfu/g, preferably 5 x 10 to 5 x 10 cfu/g, more preferably 1 x 10 to 1 x 10 cfu/g, and particularly preferably 5 x 10 to 5 x 10 cfu/g, for example, about 1 x 10 cfu/g, as the average number of colonies per gram of solid culture.
  • the concentration of the present material is usually 1 x 10 to 1 x 10 cfu/g, preferably 5 x 10 to 5 x 10 cfu/g, more preferably 1 x 10 to 1 x 10 cfu/g, and particularly preferably 5 x 10 to 5 x 10 cfu/g, as the average number of colonies per gram of material.
  • Example Group I Examples related to endophyte materials
  • Cultivation of xsd08001 strain The strain used was Cephaliophora sp. xsd08001, deposited at the National Institute of Technology and Evaluation (NITE) under the accession number NITE P-02438. The strain was attached to an agar medium and stored at -80°C and used as the seed culture.
  • a liquid medium was prepared by adding the following reagents to a 500 mL Erlenmeyer flask.
  • Glucose 4.0g Yeast extract 0.4g
  • Magnesium sulfate 0.1g Peptone 0.2g Potassium dihydrogen phosphate 0.2g Ion-exchanged water 200mL
  • a stirrer was added to the flask, the mouth of the flask was sealed with a silicone stopper, and the flask was sterilized in an autoclave at 121°C for 20 minutes.
  • the seed bacteria attached to the agar medium melted from -80°C in a clean bench was added directly to the flask by decantation from the test tube to inoculate the liquid medium.
  • the mouth of the flask was sealed with a silicone stopper, and the mixture was stirred and cultured at 25°C using a stirrer (700 rpm). The culture was completed when the average number of colonies per liter reached approximately 3.0 x 106 cfu/L of medium, and it took 3 days to complete the culture.
  • the solid culture medium was prepared by adding 1500 mL of ion-exchanged water to 1000 g of bran as a solid culture medium in a plastic tub and mixing well to a moisture content of 60%.
  • the solid culture medium was added to a disposable bag equipped with a ventilation filter, and the mouth of the bag was taped and sterilized in an autoclave at 121°C for 60 minutes. After the medium was cooled to room temperature together with the bag, the bag was opened in a clean bench, and 80 mL of liquid culture cultured for 3 days was inoculated so as to spread throughout the solid culture medium by using a sterile micropipette or by heating the mouth of the flask with a burner and then decanting and adding directly.
  • the mouth of the bag was sealed and solid culture was performed by leaving it in a thermo-hygrostat for 10 days under an environment of 25°C and 70% RH.
  • the culture was completed when it was confirmed that the average number of colonies per 1 g reached about 1 x 10 5 cfu/g. It took another 10 days after the start of liquid culture to complete the culture.
  • the solid culture was taken out of the bag and dried by leaving it to stand for 3 days in an environment of 25° C. and 50% RH using an air conditioner or a dehumidifier.
  • the mycelium spread was uniform, and no visible contamination was confirmed. Furthermore, when the concentration of the dried solid culture was measured, the number of colonies per gram was about 5 x 106 to 4 x 107 cfu/g. Furthermore, this dried solid culture was crushed using a crusher (Capsule Cutter Bonne, manufactured by Winners Co., Ltd.) and used as the material of Example 1, and the uncrushed dried product was used as the material of Comparative Example 1. Thereafter, the particle size of the material was measured using an LMS-2000e (Seishin Enterprise Co., Ltd.).
  • Example 1 The results of particle size measurement are shown in Table 1. From Table 1, it can be seen that the material of Example 1 has a cumulative 50% particle size (D 50 ) in the range of 200 to 800 ⁇ m and a cumulative 90% particle size (D 90 ) in the range of 1000 to 5000 ⁇ m for all refractive indices, and thus has uniform particle size and small quality variation.
  • D 50 cumulative 50% particle size
  • D 90 cumulative 90% particle size
  • the material in Comparative Example 1 had a particle size of 5000 ⁇ m or more, which exceeded the upper measurement limit of the LMS-2000e (Seishin Enterprise Co., Ltd.) used for particle size measurement, and therefore could not be measured.
  • Example 2 The material of Example 2 was produced by culturing, drying, and pulverizing the same method as in Example 1, except that the same strain was used and the seed culture was directly inoculated into the solid culture medium without using liquid culture, and cultured only in solid culture. Although the culture took longer in Example 2 than in Example 1, a material with sufficiently uniform particle size was obtained.
  • Example 1 The cultivation soil was a mixture of horticultural soil and vermiculite at a volume ratio of 1:1.
  • the materials of Example 1 prepared in Experiment 1 were added to the cultivation soil at a mass ratio of 1.0%, dry mixed, and dispensed at 135 g per pot into eight 9 cm pots.
  • Three lettuce seeds were sown per pot, watered, and the germinated lettuce was thinned to one plant per pot. After counting the number of true leaves for several days, on the 25th day after sowing when the lettuce reached a diameter of 20 cm, which is the harvest time, the soil was removed from the roots, dried, and the mass was measured.
  • Comparative Example 1 The growth of lettuce was evaluated in the same manner as in Example 1, except that the material of Comparative Example 1 prepared in Experiment 1 was used.
  • Example 1 and Comparative Example 1 in which a culture of the xsd08001 strain was used, the growth of lettuce was promoted compared to Comparative Example 2, in which this culture was not used. Furthermore, in the case of Example 1, in which the particle size of the culture of the xsd08001 strain was uniform, the dry mass of the edible above-ground part increased by 39.8% and the dry mass of the root part also increased by 16.7% compared to Comparative Example 1, in which the particle size was uneven. Furthermore, regardless of the number of days, Example 1 showed less variation in the number of true leaves compared to Comparative Example 1, and it was possible to suppress unevenness in the effect of promoting plant growth. From the above, it can be seen that materials containing a culture of the xsd08001 strain have the effect of promoting plant growth, and this effect is further increased by uniforming the particle size of the culture.
  • Example 3-1 and Comparative Example 3-1 endophyte material added at planting
  • Strawberry variety name: Kaorino
  • the harvest period was from November 2021 to May 2022.
  • Example 3-1 2520 strawberry seedlings were grown by conventional farming methods. The grown strawberry seedlings were planted in a planting hole with 2 g of endophyte per seedling added, and cultivated by conventional farming methods. The yield of strawberry fruit was measured by the number of packs.
  • number of packs refers to a pack containing 250g of fruit, which is the shipping standard for strawberries. Since the weight of each fruit varies, the weight per pack can go up to a maximum of 255g, but it will never go below 250g.
  • Example 3-2 and Comparative Example 3-2 endophyte material added during seedling raising
  • Strawberry variety name: Kaorino
  • the harvest period was from November 2022 to May 2023.
  • Example 3-2 2520 strawberry plants were grown in a conventional manner by adding 2 g of endophyte powder per plant to the soil for growing. The grown strawberry plants were planted and cultivated in a conventional manner. The yield of strawberry fruits was measured by the number of packs.
  • Example 3-2 Cultivation and detection of the microorganism were carried out in the same manner as in Example 3-2, except that no endophyte material was added to the seedling soil.
  • Example 3-2 The results are shown in FIG. 2 and Table 6. As is clear from these results, the fruit yield was higher in Example 3-2 than in Comparative Example 3-2 in all months. The total number of packs throughout the year was increased by about 25.63 % in Example 3-2 compared to Comparative Example 3-2 . In addition, as shown in FIG. 2, the ITS region (about 330 bp) of Cephaliophora sp. xsd08001 strain was detected from the root of Example 3-2, whereas it was not detected from the root of Comparative Example 3-2.
  • Example Group II Examples related to the cultivation method of endophytes (Comparative Example: Cultivation of xsd08001 strain by solid culture only)
  • the strain used was the Cephaliophora sp. xsd08001 strain deposited at the National Institute of Technology and Evaluation (NITE) under the accession number NITE P-02438.
  • the strain was attached to an agar medium and stored at -80°C and used as the seed culture.
  • the solid culture medium was prepared by adding 1,000 g of bran to 1,500 mL of ion-exchanged water in a plastic tub and mixing well to give a moisture content of 60%.
  • the solid culture was carried out by the following method.
  • the solid culture medium was added to a bag with a filter, the mouth of the bag was taped, and sterilized in an autoclave at 121 ° C. for 60 minutes.
  • the bag was opened in a clean bench, the above-mentioned inoculation bacteria were placed on the medium, and the solid culture was carried out by leaving it in a thermostatic chamber under an environment of 25 ° C. and 70% RH.
  • the bag was opened in a clean bench, the solid culture was inoculated into a new solid culture medium, and the solid culture was carried out by leaving it in a thermostatic chamber under an environment of 25 ° C. and 70% RH.
  • the bag was opened on a tray, the solid culture was crushed and mixed well, and the number of colonies per 1 g was measured. When it was confirmed that the number of colonies reached about 1 ⁇ 10 5 cfu / g, the culture was completed, and it took 25 days to complete the culture. In addition, the solid culture was observed on the 10th and 25th days after inoculation into the new solid culture medium, and the state of contamination and the degree of mycelium extension were confirmed. After the cultivation, the solid culture was dried using an air conditioner or a dehumidifier, and the dried material was ground in a food processor to prepare a material.
  • Liquid culture was carried out as follows.
  • a liquid medium was prepared by adding the following reagents to a 500 mL Erlenmeyer flask: Glucose 4.0g Yeast extract 0.4g Magnesium sulfate 0.1g Peptone 0.2g Potassium dihydrogen phosphate 0.2g Ion-exchanged water 200mL
  • a stirrer was added to the flask, the mouth of the flask was sealed with a silicone stopper, and the flask was sterilized in an autoclave at 121°C for 20 minutes.
  • the seed bacteria attached to the agar medium melted from -80°C in a clean bench was added directly to the flask by decantation from the test tube to inoculate the liquid medium.
  • This seed bacteria was the same as the seed bacteria used in the comparative example.
  • the mouth of the flask was sealed with a silicone stopper, and the mixture was stirred and cultured at 25°C and 700 rpm using a stirrer. The culture was completed when the average number of colonies per liter reached about 3.0 x 106 cfu/L of medium, and it took 3 days to complete the culture.
  • Solid culture was carried out by the following method.
  • the solid culture medium was prepared, bagged, and sterilized in the same manner as in the comparative example.
  • a disposable bag equipped with an aeration filter containing the sterilized solid culture medium was opened in a clean bench, and 80 mL of liquid culture was inoculated so as to spread throughout the solid culture medium by using a sterile micropipette or by decanting and directly adding the liquid culture medium after heating the mouth of the flask with a burner.
  • the mouth of the bag was sealed with a sealer, and solid culture was carried out under the same environment as in the comparative example.
  • the culture was completed when it was confirmed that the average number of colonies per gram reached about 1 x 105 cfu/g. It took another 10 days after the start of liquid culture until the culture was completed. After solid culture, the solid culture was dried in the same manner as in the comparative example, and the dried product was crushed in a food processor.
  • Reference experiment 1 Effect of water content in solid culture medium
  • Reference Experiment 1-1 The optimal water content in the solid culture medium was determined by the following method.
  • Reference Experiment 1-2 The results of Reference Experiment 1-1 suggested that a higher moisture content would result in higher culture efficiency. Therefore, solid culture media with a moisture content of 70% by mass and 80% by mass were prepared as follows by further increasing the moisture content, and experiments were conducted to compare the media with those of Reference Examples 1 and 2 prepared in the same manner as in Reference Experiment 1-1.
  • the moisture content in solid culture media should preferably be greater than 45% by mass and less than 80% by mass, for example, 50% by mass or more and 75% by mass or less, or 50% by mass or more and 70% by mass or less.
  • Reference Experiment 2 Effect of humidity on solid culture The effect of humidity on solid culture was investigated using the moisture contents of 50% and 60% by mass, which are the solid culture media that showed good results in Reference Experiment 1. Since Reference Experiment 1 confirmed that the growth was sufficiently good at a humidity of 90% RH, in order to investigate the lower limit, culture at a humidity of 70% RH was attempted as follows.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention provides a material that can suppress the occurrence of unevenness in a growth-promoting effect of plants, and that includes a culture medium of xsd08001 strain of the Cephaliophora sp. genus, with a cumulative 50% particle size (D50) in the volume particle size distribution of 100-900 μm and a cumulative 90% particle size (D90) of 1,000-5,000 μm.

Description

エンドファイト資材及びエンドファイトの培養方法Endophyte materials and endophyte cultivation method
 本発明は、エンドファイト資材およびその製造方法並びにエンドファイトの培養方法、より具体的には、セファリオフォラ属(Cephaliophora sp.)xsd08001株の培養物を含む資材及びその製造方法並びに当該株を液体培養に供することを含む当該株の培養方法に関する。 The present invention relates to an endophyte material and a method for producing the same, as well as a method for culturing an endophyte, more specifically, to a material containing a culture of Cephaliophora sp. xsd08001 strain, a method for producing the same, and a method for culturing the strain, which includes subjecting the strain to liquid culture.
 エンドファイトとは内生菌とも呼ばれ、植物宿主の体内で生息し共生することにより生長促進、ストレス耐性の増大等の利益を宿主にもたらす微生物を指す。このようなエンドファイトとして、セファリオフォラ属(Cephaliophora sp.)xsd08001株(以下、xsd08001株と称することがある)が有用な微生物として報告されている(特許文献1)。 Endophytes, also known as endophytic fungi, are microorganisms that live and symbiotically within the body of a plant host, thereby providing the host with benefits such as promoting growth and increasing stress resistance. One such endophyte that has been reported as a useful microorganism is the Cephaliophora sp. strain xsd08001 (hereinafter sometimes referred to as xsd08001 strain) (Patent Document 1).
 xsd08001株の培養物は、土に混ぜて野菜などの植物における高機能性成分含量を増加させるために利用されている(特許文献2)。ところで、エンドファイト資材では、資材のどのような特徴が植物の品質に影響するかについては、知られていなかった。 A culture of the xsd08001 strain is mixed into soil and used to increase the content of highly functional components in vegetables and other plants (Patent Document 2). However, it was not known what characteristics of endophyte materials affect the quality of plants.
特開2018-174708号公報JP 2018-174708 A 特許第6898637号公報Patent No. 6898637 特開昭62-171618号公報Japanese Patent Application Laid-Open No. 62-171618 特開昭62-269624号公報Japanese Patent Application Laid-Open No. 62-269624
 本発明の課題は、植物の育成促進の効果にムラが生ずることを抑制できる資材の提供にある。また、本発明の別の課題は、xsd08001株をより効率的に培養できる新規な培養方法の提供にある。 The object of the present invention is to provide a material that can suppress unevenness in the effect of promoting plant growth. Another object of the present invention is to provide a novel culture method that can culture the xsd08001 strain more efficiently.
 発明者らは、鋭意研究の結果、所定の培養法を用いることで、当該菌株の培養物の粒度を揃えることに成功した。また、従来の固体培地のみによる培養ではなく液体培地による培養を組み合わせることで培養期間を短縮することを見出し、以下の発明を完成した。
[1]セファリオフォラ属(Cephaliophora sp.)xsd08001株の培養物を含む資材である。上記資材は、体積粒度分布における累積50%粒子径(D50)が100~900μmである。上記資材は、累積90%粒子径(D90)が1000~5000μmである。
[2]乾燥固体培養物1gあたりの平均コロニー数は、[1]に記載の資材において、1×10~1×10cfu(Colony Forming Unit)/gの濃度である。
[3][1]又は[2]に記載の資材は、植物の生育促進のためのものである。
[4]セファリオフォラ属(Cephaliophora sp.)xsd08001株の乾燥固体培養物を含む資材を製造する製造方法である。製造方法は、上記株の上記乾燥固体培養物を得る培養工程を含む。製造方法は、上記乾燥固体培養物の体積粒度分布における累積50%粒子径(D50)を100~900μmかつ累積90%粒子径(D90)を1000~5000μmに調整する調整工程を含む。
[5]上記培養工程は、[4]に記載の製造方法において、上記株を液体培養に供する液体培養工程を含む。上記培養工程は、固体培養工程を含む。上記固体培養工程は、上記液体培養工程で培養された上記株を固体培養で培養する。上記培養工程は、上記固体培養工程により得られた固体培養物を乾燥して上記乾燥固体培養物を生成する乾燥工程を含む。上記調製工程は、上記乾燥工程で乾燥した上記乾燥固体培養物を粉砕する粉砕工程を含む。
[6]上記固体培養工程は、[5]に記載の製造方法において、固体培地と水を含有する固体培養用培地を用いて実施される。
[7]上記固体培養用培地は、[6]に記載の製造方法において、含水率が50~70%である。
[8]上記固体培養用培地は、[6]又は[7]に記載の製造方法において、フスマを含む。
[9] セファリオフォラ属(Cephaliophora sp.)xsd08001株を培養する培養方法である。培養方法は、セファリオフォラ属(Cephaliophora sp.)xsd08001株を液体培養に供することにより液体培養物を得る。培養方法は、得られた上記液体培養物を固体培養に供することにより固体培養物を得る。
[10] 上記固体培養は、[9]に記載の培養方法において、固体培養用培地を使用して実施される。上記固体培養用培地は、固体培地および水を含有する。
[11] 上記固体培養用培地は、[9]又は[10]に記載の培養方法において、含水率が50~70%である。
[12] 上記固体培地は、[9]~[11]のいずれか1項に記載の培養方法において、フスマを含む。
[13] 上記液体培養は、[9]~[12]のいずれか1項に記載の培養方法において、2~4日間行われる。
[14] 上記固体培養は、[9]~[13]のいずれか1項に記載の培養方法において、7~12日間行われる。
[15] 上記液体培養又は上記固体培養の少なくとも何れか一方は、[9]~[14]のいずれか1項に記載の培養方法において、60~90%RHの室内湿度で行われる。
[16] [9]~[15]のいずれか1項に記載の培養方法により得られる培養物である。
As a result of intensive research, the inventors have succeeded in making the grain size of the culture of the strain uniform by using a specific culture method. They have also discovered that the culture period can be shortened by combining culture in a liquid medium with culture in a conventional solid medium alone, and have completed the following invention.
[1] A material containing a culture of Cephaliophora sp. xsd08001 strain. The material has a cumulative 50% particle size (D 50 ) in a volumetric particle size distribution of 100 to 900 μm. The material has a cumulative 90% particle size (D 90 ) of 1000 to 5000 μm.
[2] The average number of colonies per 1 g of the dried solid culture material in the material described in [1] is 1×10 5 to 1×10 9 cfu (Colony Forming Unit)/g.
[3] The material according to [1] or [2] is intended for promoting plant growth.
[4] A method for producing a material containing a dried solid culture of Cephaliophora sp. xsd08001 strain, the method comprising a culturing step of obtaining the dried solid culture of the strain, and an adjusting step of adjusting the cumulative 50% particle size (D 50 ) and cumulative 90% particle size (D 90 ) in the volumetric particle size distribution of the dried solid culture to 100 to 900 μm and 1000 to 5000 μm, respectively.
[5] In the production method according to [4], the culturing step includes a liquid culturing step of subjecting the strain to liquid culture. The culturing step includes a solid culturing step. In the solid culturing step, the strain cultured in the liquid culturing step is cultured in solid culture. The culturing step includes a drying step of drying the solid culture obtained in the solid culturing step to produce the dried solid culture. The preparation step includes a grinding step of grinding the dried solid culture dried in the drying step.
[6] The solid culture step is carried out using a solid culture medium containing a solid medium and water in the production method described in [5].
[7] In the production method according to [6], the solid culture medium has a water content of 50 to 70%.
[8] In the production method according to [6] or [7], the solid culture medium contains bran.
[9] A method for culturing a Cephaliophora sp. xsd08001 strain. The method comprises subjecting the Cephaliophora sp. xsd08001 strain to liquid culture to obtain a liquid culture. The method comprises subjecting the obtained liquid culture to solid culture to obtain a solid culture.
[10] The solid culture is carried out using a medium for solid culture in the culture method according to [9]. The medium for solid culture contains a solid medium and water.
[11] In the culture method according to [9] or [10], the solid culture medium has a water content of 50 to 70%.
[12] In the culture method according to any one of [9] to [11], the solid medium contains wheat bran.
[13] The liquid culture is carried out for 2 to 4 days in the culture method according to any one of [9] to [12].
[14] The solid culture is carried out for 7 to 12 days in the culture method according to any one of [9] to [13].
[15] At least one of the liquid culture and the solid culture is carried out at a room humidity of 60 to 90% RH in the culture method according to any one of [9] to [14].
[16] A culture obtained by the culture method according to any one of [9] to [15].
 本発明の資材を採用することにより、当該資材を利用した植物の育成促進の効果にムラが生ずることを抑制することができる。また、本発明の培養方法を採用することにより、xsd08001株をより効率的に培養できる。 By using the material of the present invention, it is possible to prevent unevenness in the effect of promoting plant growth using the material. In addition, by using the cultivation method of the present invention, the xsd08001 strain can be cultivated more efficiently.
図1は、実施例群Iの実験2における播種25日目のサラダ菜を示す。図1中、aは実施例1のサラダ菜の様子を示す。図1中、bは比較例1のサラダ菜の様子を示す。図1中、cは比較例2のサラダ菜の様子を示す。Fig. 1 shows lettuce on the 25th day after sowing in Experiment 2 of Example Group I. In Fig. 1, "a" shows the state of lettuce in Example 1. In Fig. 1, "b" shows the state of lettuce in Comparative Example 1. In Fig. 1, "c" shows the state of lettuce in Comparative Example 2. 図2は、実施例群Iの実験3におけるCephaliophora sp.のITS領域のPCRによる検出結果を示す電気泳動写真である。図2中、レーンMはTAKARA社100bp DNA Ladder Markerを示す(各DNAバンドの塩基長については以下の製造者のホームページ参照:https://catalog.takara-bio.co.jp/product/basic_info.php?unitid=U100006433)。図2中、レーン1は比較例3-2を示す。図2中、レーン2は実施例3-2を示す。Figure 2 is an electrophoretic photograph showing the PCR detection results of the ITS region of Cephaliophora sp. in Experiment 3 of Example Group I. In Figure 2, lane M shows TAKARA 100 bp DNA Ladder Marker (for the base length of each DNA band, see the manufacturer's website below: https://catalog.takara-bio.co.jp/product/basic_info.php?unitid=U100006433). In Figure 2, lane 1 shows Comparative Example 3-2. In Figure 2, lane 2 shows Example 3-2. 図3は、実施例群IIの実施例および比較例の固体培養開始から10日目の固体培地を示す。図3中、aは比較例の固体培地の側面の様子を示す。図3中、bは実施例の固体培地の側面の様子を示す。図3中、cは比較例の固体培地の裏面の様子を示す。図3中、dは実施例の固体培地の裏面の様子を示す。Fig. 3 shows the solid culture medium of the Example and Comparative Example of Example Group II on the 10th day after the start of solid culture. In Fig. 3, a shows the side of the solid culture medium of the Comparative Example. In Fig. 3, b shows the side of the solid culture medium of the Example. In Fig. 3, c shows the back of the solid culture medium of the Comparative Example. In Fig. 3, d shows the back of the solid culture medium of the Example. 図4は、実施例群IIの比較例の固体培養開始から25日目の固体培地を示す。図4中、a、c、d及びeは比較例の固体培地の側面の様子を示す。図4中、bは比較例の固体培地の裏面の様子を示す。Fig. 4 shows the solid medium of Comparative Example of Example Group II on the 25th day from the start of solid culture. In Fig. 4, a, c, d, and e show the side of the solid medium of Comparative Example. In Fig. 4, b shows the back of the solid medium of Comparative Example. 図5は、実施例群IIの参考実験1における含水率50~70質量%の固体培養用培地のxsd08001株の菌糸体の伸長の様子を示す。図5は、含水率50質量%が参考例1に対応する。図4は、含水率60質量%が参考例2に対応する。図5は、含水率70質量%が参考例3に対応する。図5中、aは、いずれもシャーレの表面の様子を示す。図5中、bは、いずれもシャーレの裏面の様子を示す。Fig. 5 shows the state of mycelium elongation of xsd08001 strain in a solid culture medium having a moisture content of 50 to 70% by mass in Reference Experiment 1 of Example Group II. In Fig. 5, the moisture content of 50% by mass corresponds to Reference Example 1. In Fig. 4, the moisture content of 60% by mass corresponds to Reference Example 2. In Fig. 5, the moisture content of 70% by mass corresponds to Reference Example 3. In Fig. 5, a shows the state of the front surface of the petri dish. In Fig. 5, b shows the state of the back surface of the petri dish. 図6は、実施例群IIの参考実験1における含水率80質量%の固体培養用培地のxsd08001株を示す。図6は、含水率80質量%の比較参考例3に対応する。図6は、シャーレの表面の様子を示す。Fig. 6 shows the xsd08001 strain in a solid culture medium with a water content of 80% by mass in Reference Experiment 1 of Example Group II. Fig. 6 corresponds to Comparative Reference Example 3 with a water content of 80% by mass. Fig. 6 shows the appearance of the surface of the petri dish. 図7は、実施例群IIの参考実験2における環境湿度70%RHでの含水率50質量%及び含水率60質量%の固体培養用培地のxsd08001株を示す。図7中、a、b及びcは、含水率50質量%の参考例4に対応する。図7中、d、e及びfは、含水率60質量%の参考例5に対応する。図7は、いずれもシャーレの表面の様子を示す。Fig. 7 shows the xsd08001 strain in solid culture media with a moisture content of 50% by mass and 60% by mass at an environmental humidity of 70% RH in Reference Experiment 2 of Example Group II. In Fig. 7, a, b, and c correspond to Reference Example 4 with a moisture content of 50% by mass. In Fig. 7, d, e, and f correspond to Reference Example 5 with a moisture content of 60% by mass. All Fig. 7 shows the surface appearance of the petri dish.
 以下、本発明を具体的な実施の形態に即して詳細に説明する。但し、本発明は以下の実施の形態に束縛されるものではなく、本発明の趣旨を逸脱しない範囲において、任意の形態で実施することが可能である。 The present invention will be described in detail below with reference to specific embodiments. However, the present invention is not limited to the following embodiments, and can be implemented in any form without departing from the spirit of the present invention.
[I.エンドファイト資材]
 一実施形態は、エンドファイト資材に関する。微生物資材の粒度を調整することは取り扱い性の向上、効果の安定性、植物の生長促進等のために重要である。しかしながら、糸状菌は強固な菌糸を伸ばして成長するため、培地における菌糸の密度にばらつきが大きく、培養物の粒度の調整が困難である。このような技術常識にもかかわらず、本発明者らは、xsd08001株を用いると菌糸が均一に伸長でき粒度が調整された培養物を得ることができることを発見した。
I. Endophyte Materials
One embodiment relates to an endophyte material. Adjusting the particle size of a microbial material is important for improving ease of handling, stabilizing effects, promoting plant growth, and the like. However, since filamentous fungi grow by extending strong hyphae, there is a large variation in the density of the hyphae in the medium, making it difficult to adjust the particle size of the culture. Despite this technical common knowledge, the present inventors have discovered that by using the xsd08001 strain, the hyphae can be uniformly extended and a culture with an adjusted particle size can be obtained.
 さらに、特許文献1に記載のようにxsd08001株は土壌中から単離されたため土壌に近い環境が適していると考えられ、xsd08001株の培養は固体培養で行われることが通常である。また、糸状菌は菌糸が接着集合して菌糸塊をつくる等の理由により液体培養が困難である(非特許文献1)。かかる事情にもかかわらず、本発明者らは驚くことに、xsd08001株の液体培養に成功した。固体培養の場合でも粒度が調製された培養物が得られるものの、液体培養が可能になると、一層粒度が調整された培養物を得ることができる。これは、液体培養物を接種することで培地全体に種菌がいきわたり菌糸が培地中で均一に拡がることが可能になり、単位質量あたりの菌体濃度が均一になるためと考えられる。 Furthermore, as described in Patent Document 1, since the xsd08001 strain was isolated from soil, it is believed that an environment similar to that of soil is suitable, and thus the xsd08001 strain is usually cultivated by solid culture. In addition, liquid culture of filamentous fungi is difficult because the mycelium adheres and aggregates to form mycelium clumps (Non-Patent Document 1). Despite these circumstances, the inventors were surprised to succeed in liquid culture of the xsd08001 strain. Although a culture with adjusted particle size can be obtained even in the case of solid culture, when liquid culture becomes possible, a culture with an even more adjusted particle size can be obtained. This is thought to be because inoculating the liquid culture allows the seed fungus to spread throughout the entire medium, enabling the mycelium to spread evenly in the medium, resulting in a uniform concentration of fungal cells per unit mass.
[資材]
 よって、本実施形態は、体積粒度分布における累積50%粒子径(D50)が100~900μmかつ累積90%粒子径(D90)が1000~5000μmであるxsd08001株の培養物、及びそれを含む資材を提供する。
[Materials]
Thus, the present embodiment provides a culture of the xsd08001 strain having a cumulative 50% particle size (D 50 ) of 100 to 900 μm and a cumulative 90% particle size (D 90 ) of 1000 to 5000 μm in volumetric particle size distribution, and a material containing the same.
[株]
 本実施形態に用いるセファリオフォラ属(Cephaliophora sp.)xsd08001株は、独立行政法人製品評価技術基盤機構(NITE)に寄託されておりNITE P-02438の受託番号にて入手可能である。
[KK]
The Cephaliophora sp. xsd08001 strain used in this embodiment has been deposited at the National Institute of Technology and Evaluation (NITE), an independent administrative institution, and is available under the accession number NITE P-02438.
[粒度]
 本実施形態に用いる株の培養物の粒度は、限定されないものの、以下の通りである。本実施形態に用いる株の培養物の体積粒度分布における累積10%粒子径(D10)は、例えば50~400μm、中でも100~350μm、より好ましくは150~350μm、更に好ましくは200~300μmである。本実施形態に用いる株の培養物の累積50%粒子径(D50)は、例えば100~1000μm、中でも200~900μm、より好ましくは300~850μm、更に好ましくは400~800μmである。本実施形態に用いる株の培養物の累積90%粒子径(D90)は、例えば1000~5000μm、中でも1100~4000μm、より好ましくは1200~3000μm、更に好ましくは1200~2000μmである。例えば、ある実施形態では、累積50%粒子径(D50)が200~800μmであり、かつ、累積90%粒子径(D90)が1000~3000μmである。粒度は、レーザー回折法、散乱法、撮像法、光透過式遠心沈降法、沈降法、電気抵抗法、比表面積法、篩通過法等任意の方法で測定することができる。粒度は、適切な粒度測定器、例えば、LMS-2000e、LMS-3000(株式会社セイシン企業)等の市販の機器を用いて測定することができる。粒度は、培養物を乾燥させてから粉砕するので、乾式の測定方法を用いることが好ましい。
[Grain size]
The particle size of the culture of the strain used in this embodiment is not limited, but is as follows. The cumulative 10% particle size (D10) in the volumetric particle size distribution of the culture of the strain used in this embodiment is, for example, 50 to 400 μm, among which 100 to 350 μm, more preferably 150 to 350 μm, and even more preferably 200 to 300 μm. The cumulative 50% particle size (D 50 ) of the culture of the strain used in this embodiment is, for example, 100 to 1000 μm, among which 200 to 900 μm, more preferably 300 to 850 μm, and even more preferably 400 to 800 μm. The cumulative 90% particle size (D 90 ) of the culture of the strain used in this embodiment is, for example, 1000 to 5000 μm, among which 1100 to 4000 μm, more preferably 1200 to 3000 μm, and even more preferably 1200 to 2000 μm. For example, in one embodiment, the cumulative 50% particle size (D 50 ) is 200-800 μm, and the cumulative 90% particle size (D 90 ) is 1000-3000 μm. The particle size can be measured by any method, such as a laser diffraction method, a scattering method, an imaging method, a light transmission centrifugal sedimentation method, a sedimentation method, an electrical resistance method, a specific surface area method, or a sieve passing method. The particle size can be measured using an appropriate particle size measuring instrument, for example, a commercially available instrument such as LMS-2000e or LMS-3000 (Seishin Enterprise Co., Ltd.). Since the culture is dried and then pulverized, it is preferable to use a dry measurement method for the particle size.
 また、一実施形態では、xsd08001株の培養物は、xsd08001株を固体培養に供することにより得られる。別の実施形態では、xsd08001株の培養物は、xsd08001株を液体培養に供した後固体培養に供することにより得られる。これらの実施態様では、xsd08001株の培養物の粒子は、固体培養により得られた固体培養物を乾燥すること、及び、乾燥した固体培養物を粉砕すること、を含むプロセスにより得られてもよい。 In one embodiment, the culture of the xsd08001 strain is obtained by subjecting the xsd08001 strain to solid culture. In another embodiment, the culture of the xsd08001 strain is obtained by subjecting the xsd08001 strain to liquid culture and then to solid culture. In these embodiments, the particles of the culture of the xsd08001 strain may be obtained by a process including drying the solid culture obtained by solid culture and grinding the dried solid culture.
[液体培養]
 本明細書において「液体培養」とは、液体培地を用いて株を培養することを指す。斯かる液体培養を行う工程を「液体培養工程」と称することがある。xsd08001株を液体培養に供するとは、当該株を液体培地に接種し液体培地において培養を行うことを指す。株は、媒体に保菌された種菌の状態であってもよい。媒体としては、例えば、寒天が挙げられる。雑菌による汚染を回避するため、接種は滅菌条件で行うことが好ましい。
[Liquid culture]
In this specification, "liquid culture" refers to culturing a strain using a liquid medium. The process of performing such liquid culture may be referred to as a "liquid culture process." Subjecting the xsd08001 strain to liquid culture refers to inoculating the strain into a liquid medium and culturing it in the liquid medium. The strain may be in the form of a seed culture medium carried by a medium. An example of the medium is agar. In order to avoid contamination by various bacteria, inoculation is preferably performed under sterile conditions.
 本明細書において「液体培養物」とは、液体培養の結果得られる液体の培養物を指す。液体培地は、例えば液体に様々な添加物を添加することにより、培養に適した組成となるように調整することで作製できる。液体としては、例えば、水が挙げられる。液体培地に添加する添加物は、例えば、糖類、ミネラル、窒素源、ビタミン、有機酸、無機酸、有機塩基、無機塩基が挙げられる。好ましくは、液体培地は、糖類、窒素源を含む。液体培地に含まれる窒素源は、例えば、ペプトンが挙げられる。 In this specification, the term "liquid culture" refers to a liquid culture obtained as a result of liquid culture. A liquid medium can be prepared, for example, by adding various additives to the liquid to adjust the composition to be suitable for culture. An example of the liquid is water. Examples of additives added to the liquid medium include sugars, minerals, nitrogen sources, vitamins, organic acids, inorganic acids, organic bases, and inorganic bases. Preferably, the liquid medium contains sugars and a nitrogen source. An example of the nitrogen source contained in the liquid medium is peptone.
 糖類としては、限定されないが、例えば、グルコース、ガラクトース、フルクトース、マルトース、シュクロース、ラクトース、オリゴ糖、及びグリセロールから選択される一種又は複数種が挙げられる。糖類の上限は、制限されるものではないが、液体培地に対する糖類の合計量として通常60g/培地L以下、中でも50g/培地L以下、更には40g/培地L以下、特に30g/培地L以下であることが好ましい。液体培地は、糖類などの栄養分が多すぎると特許文献3に記載のように、菌糸濃度が高くなりすぎるためである。一方、糖類の下限は、制限されるものではないが、液体培地に対する糖類の合計量として通常0.5g/培地L以上、中でも1g/培地L以上、更には5g/培地L以上、特に10g/培地L以上であることが好ましい。糖類などの栄養分が少なすぎると、菌糸が十分に伸長しないためである。例えば、ある実施形態では、糖類はグルコースであり、20g/培地Lの量で添加される。 The sugars are not limited, but may be one or more selected from glucose, galactose, fructose, maltose, sucrose, lactose, oligosaccharides, and glycerol. The upper limit of the sugars is not limited, but the total amount of sugars in the liquid medium is usually 60 g/L or less, more preferably 50 g/L or less, even more preferably 40 g/L or less, and especially preferably 30 g/L or less. This is because, as described in Patent Document 3, if the liquid medium contains too many nutrients such as sugars, the mycelium concentration becomes too high. On the other hand, the lower limit of the sugars is not limited, but the total amount of sugars in the liquid medium is usually 0.5 g/L or more, more preferably 1 g/L or more, even more preferably 5 g/L or more, and especially preferably 10 g/L or more. This is because if the nutrients such as sugars are too few, the mycelium does not grow sufficiently. For example, in one embodiment, the sugar is glucose, and is added in an amount of 20 g/L.
 ミネラルとしては、限定されないが、無機塩、例えばアルカリ及びアルカリ土類金属塩、その他の金属の塩であってよい。このような無機塩として、例えば、硫酸塩、リン酸塩、炭酸塩、塩化物、アルカリ金属酸化物、モリブデン酸塩、亜セレン酸塩、ハロゲン化物から選択される一種又は複数種の塩類が挙げられる。塩類は、一種又は複数種を用いることができる。塩類の上限は、制限されるものではないが、酵母エキスおよびペプトンに含まれる量を除くものとして、液体培地に対する塩類の合計量が通常10.0g/培地L以下、中でも8.0g/培地L以下、更には5.0g/培地L以下、特に2.0g/培地L以下であることが好ましい。液体培地は、塩類が上述のように栄養分として多すぎると菌糸濃度が高くなりすぎるためである。一方、塩類の下限は、制限されるものではないが、酵母エキスに含まれる量を除くものとして、液体培地に対する塩類の合計量が通常0.01g/培地L以上、中でも0.05g/培地L以上、更には0.1g/培地L以上、特に0.25g/培地L以上であることが好ましい。液体培地は、塩類などのミネラルが少なすぎると、菌糸が十分に伸長しないためである。例えば、ある実施形態では、塩類として、硫酸マグネシウムが0.5g/培地Lの量で添加され、かつ、リン酸二水素カリウムが0.1g/培地Lの量で添加される。 The minerals may be inorganic salts, such as, but not limited to, alkali and alkaline earth metal salts, and salts of other metals. Examples of such inorganic salts include one or more salts selected from sulfates, phosphates, carbonates, chlorides, alkali metal oxides, molybdates, selenites, and halides. One or more salts may be used. The upper limit of the salts is not limited, but the total amount of salts in the liquid medium, excluding the amount contained in yeast extract and peptone, is usually 10.0 g/L or less, preferably 8.0 g/L or less, more preferably 5.0 g/L or less, and particularly preferably 2.0 g/L or less. This is because, as described above, if the liquid medium contains too many salts as nutrients, the mycelium concentration will become too high. On the other hand, the lower limit of the salts is not limited, but the total amount of salts in the liquid medium, excluding the amount contained in the yeast extract, is usually 0.01 g/L or more, preferably 0.05 g/L or more, more preferably 0.1 g/L or more, and particularly preferably 0.25 g/L or more. This is because if the liquid medium contains too few minerals such as salts, the mycelium will not grow sufficiently. For example, in one embodiment, magnesium sulfate is added as salts in an amount of 0.5 g/L of medium, and potassium dihydrogen phosphate is added in an amount of 0.1 g/L of medium.
 窒素源としては、酵母エキス、タンパク質分解物及びタンパク質から選択される一種又は複数種の窒素源が挙げられる。タンパク質分解物としては、例えば、ペプトンが挙げられる。液体培地に酵母エキス及び/又はペプトンを添加すると、アミノ酸、ペプチドといったタンパク質分解物、タンパク質、塩類を含む栄養素を追加することができる。液体培地に対する窒素源の量は制限されるものではないが、例えば、窒素源の上限は、酵母エキス及びペプトン等の窒素源の合計量として、通常30.0g/培地L以下、中でも20.0g/培地L以下、更には15.0g/培地L以下、特に10.0g/培地L以下であることが好まし。窒素源の下限は、酵母エキス及びペプトン等の窒素源の合計量として、通常0.05g/培地L以上、中でも0.1g/培地L以上、更には0.5g/培地L以上、特に1.0g/培地L以上であることが好ましい。例えば、液体培地に対する酵母エキスの量は制限されるものではないが、酵母エキスの上限は、通常20.0g/培地L以下、中でも15.0g/培地L以下、更には10.0g/培地L以下、特に5.0g/培地L以下であることが好ましい。酵母エキスの下限は、通常0.01g/培地L以上、中でも0.05g/培地L以上、更には0.1g/培地L以上、特に0.5g/培地L以上であることが好ましい。液体培地に対するペプトンの量は制限されるものではないが、ペプトンの上限は、通常10.0g/培地L以下、中でも8.0g/培地L以下、更には5.0g/培地L以下、特に2.0g/培地L以下であることが好ましい。ペプトンの下限は、通常0.01g/培地L以上、中でも0.05g/培地L以上、更には0.1g/培地L以上、特に0.5g/培地L以上であることが好ましい。上記と同様、栄養分が多すぎると菌糸濃度が高くなりすぎてしまい、一方窒素源が少なすぎると、菌糸が十分に伸長しないためである。例えば、ある実施形態では、酵母エキスが2.0g/培地Lの量で添加され、かつ、ペプトンが1.0g/培地Lの量で添加される。更に、必要であれば適当な酸又は塩基を加えることにより適宜pHを調整してもよい。 The nitrogen source may be one or more nitrogen sources selected from yeast extract, protein hydrolysates, and proteins. An example of a protein hydrolysate is peptone. Adding yeast extract and/or peptone to a liquid medium can add nutrients including protein hydrolysates such as amino acids and peptides, proteins, and salts. The amount of nitrogen source relative to the liquid medium is not limited, but for example, the upper limit of the nitrogen source, as the total amount of nitrogen sources such as yeast extract and peptone, is usually 30.0 g/L or less, particularly 20.0 g/L or less, even 15.0 g/L or less, and particularly 10.0 g/L or less. The lower limit of the nitrogen source, as the total amount of nitrogen sources such as yeast extract and peptone, is usually 0.05 g/L or more, particularly 0.1 g/L or more, even 0.5 g/L or more, and particularly 1.0 g/L or more. For example, the amount of yeast extract relative to the liquid medium is not limited, but the upper limit of yeast extract is usually 20.0 g/L or less, particularly 15.0 g/L or less, further 10.0 g/L or less, and particularly 5.0 g/L or less. The lower limit of yeast extract is usually 0.01 g/L or more, particularly 0.05 g/L or more, further 0.1 g/L or more, and particularly 0.5 g/L or more. The amount of peptone relative to the liquid medium is not limited, but the upper limit of peptone is usually 10.0 g/L or less, particularly 8.0 g/L or less, further 5.0 g/L or less, and particularly 2.0 g/L or less. The lower limit of peptone is usually 0.01 g/L or more, particularly 0.05 g/L or more, further 0.1 g/L or more, and particularly 0.5 g/L or more. As above, if there are too many nutrients, the mycelium concentration will be too high, while if there is too little nitrogen source, the mycelium will not grow sufficiently. For example, in one embodiment, yeast extract is added in an amount of 2.0 g/L of medium, and peptone is added in an amount of 1.0 g/L of medium. Furthermore, if necessary, the pH may be adjusted appropriately by adding an appropriate acid or base.
 液体培養は、適切な培養手段で実施できる。例えば、三角フラスコといった容器を用い、スターラーといった攪拌装置により攪拌しながら培養できる。また、液体培養は、温度制御装置等により培養条件を調節されることが好ましい。液体培養には、必要に応じて、振動装置、湿度測定装置、pH調節装置、濁度測定装置、光制御装置、特定気体濃度測定装置及び圧力測定装置から選択される1又は複数の装置を用いてもよい。特定気体濃度測定装置は、例えば、特定気体として、O、COが測定できればよい。液体培養には、汚染を防ぐ観点から任意にシリコ栓を用いてもよい。適宜、液体培養には、通気攪拌培養、振とう培養、又は静置培養等を行ってもよい。例えば、ある実施形態では、三角フラスコに液体培地とスターラーを投入し、フラスコの口をシリコ栓で封じ、通気性を確保した攪拌培養が行われる。 The liquid culture can be carried out by a suitable culture means. For example, a container such as an Erlenmeyer flask can be used, and the culture can be carried out while stirring with a stirring device such as a stirrer. In addition, it is preferable that the culture conditions of the liquid culture are adjusted by a temperature control device or the like. For the liquid culture, one or more devices selected from a vibration device, a humidity measuring device, a pH adjusting device, a turbidity measuring device, a light control device, a specific gas concentration measuring device, and a pressure measuring device may be used as necessary. For example, the specific gas concentration measuring device may be capable of measuring O 2 and CO 2 as specific gases. For the liquid culture, a silicon plug may be used optionally from the viewpoint of preventing contamination. For the liquid culture, aeration stirring culture, shaking culture, stationary culture, or the like may be appropriately carried out. For example, in one embodiment, a liquid medium and a stirrer are placed in an Erlenmeyer flask, the mouth of the flask is sealed with a silicon plug, and stirring culture with breathability is carried out.
 液体培養の期間は、制限されるものではないが、所望の濃度、例えば、液体培養物1Lあたりの平均コロニー数として通常1×10cfu/培地L以上、中でも1×10cfu/培地L以上、更には1×10cfu/培地L以上、特に好ましくは1×10cfu/培地L以上、例えば、約5×10cfu/培地Lに達したときに培養を完了できる。例えば、液体培養の期間の上限は、通常8日間以下、中でも6日間以下、更には5日間以下、特に4日間以下であることが好ましい。液体培養の期間の下限は、通常6時間以上、中でも12時間以上、更には18時間以上、特に1日間以上であることが好ましい。液体培養は、培養期間が長すぎると菌糸濃度が高くなりすぎてしまう。一方、液体培養は、培養期間が短すぎると、菌糸が十分に伸長しない。例えば、ある実施形態では、液体培養の期間は、2~4日間、例えば、3日間行えば、液体培養に続く固体培養を行うのに適切な濃度の液体培養物が得られる。 The period of liquid culture is not limited, but the culture can be completed when the desired concentration, for example, the average number of colonies per 1 L of liquid culture is usually 1 x 10 3 cfu/L or more, particularly 1 x 10 4 cfu/L or more, even more preferably 1 x 10 5 cfu/L or more, for example, about 5 x 10 6 cfu/L or more, is reached. For example, the upper limit of the liquid culture period is usually 8 days or less, particularly 6 days or less, even 5 days or less, and particularly 4 days or less. The lower limit of the liquid culture period is usually 6 hours or more, particularly 12 hours or more, even 18 hours or more, and particularly 1 day or more. In liquid culture, if the culture period is too long, the mycelium concentration becomes too high. On the other hand, if the culture period is too short, the mycelium does not grow sufficiently. For example, in one embodiment, the liquid culture period is 2 to 4 days, for example 3 days, which is sufficient to obtain a liquid culture of a suitable concentration for subsequent solid culture.
[固体培養]
 本明細書において「固体培養」とは、固体培地および水を含有する固体培養用培地を用いて株を培養することを指す。斯かる固体培養を行う工程を「固体培養工程」と称することがある。固体培養物とは、固体培養の結果得られる、固体培養用培地において株が培養された培養物を指す。固体培地は、例えば培地として、フスマ、オカラ、竹粉、オガクズ、モミガラ、バガス、セルロースパウダー、セロビオース、コーヒー粕、デンプンを使用できる。固体培養に用いられる水は、例えば、菌株の成長に寄与する様々な添加物を添加してもよい。添加物は、例えば本実施形態に用いるセファリオフォラ属(Cephaliophora sp.)xsd08001株以外の細菌の増殖を抑制できる抗生物質が挙げられる。
[Solid culture]
In this specification, "solid culture" refers to culturing a strain using a solid culture medium containing a solid medium and water. The process of performing such solid culture may be referred to as a "solid culture process". A solid culture refers to a culture obtained as a result of solid culture in which a strain is cultured in a solid culture medium. For example, bran, soybean pulp, bamboo powder, sawdust, rice husk, bagasse, cellulose powder, cellobiose, coffee grounds, and starch can be used as the solid culture medium. The water used for solid culture may contain, for example, various additives that contribute to the growth of the strain. Examples of additives include antibiotics that can suppress the growth of bacteria other than the Cephaliophora sp. xsd08001 strain used in this embodiment.
 固体培養用培地は、固体培地に水を添加し混合することにより調製できる。固体培養用培地の含水率は、制限されるものではないが、例えば、含水率の上限は、通常85質量%以下、中でも80質量%以下、更には75質量%以下、特に70質量%以下であることが好まし。含水率の下限は、通常30質量%以上、中でも40質量%以上、更には45質量%以上、特に50質量%以上であることが好ましい。固体培養培地は、含水率が高すぎると水分過多となり培地に十分な間隙が生じないため生育が促進されない。一方、固体培養培地は、含水率が低すぎると、培養に十分な水分を確保できない。例えば、ある実施形態では、固体培養用培地の含水率は、50~70質量%、例えば、60質量%であると、エンドファイト資材として適切な菌糸濃度を有する固体培養物が得られる。 The solid culture medium can be prepared by adding water to the solid culture medium and mixing. The moisture content of the solid culture medium is not limited, but for example, the upper limit of the moisture content is usually 85% by mass or less, particularly 80% by mass or less, further 75% by mass or less, and particularly 70% by mass or less is preferable. The lower limit of the moisture content is usually 30% by mass or more, particularly 40% by mass or more, further 45% by mass or more, and particularly 50% by mass or more is preferable. If the moisture content of the solid culture medium is too high, it becomes too watery and sufficient gaps are not formed in the medium, so growth is not promoted. On the other hand, if the moisture content of the solid culture medium is too low, sufficient moisture for culture cannot be secured. For example, in one embodiment, when the moisture content of the solid culture medium is 50 to 70% by mass, for example 60% by mass, a solid culture having a mycelium concentration appropriate as an endophyte material can be obtained.
 本明細書では、液体培養物を固体培養に供するとは、液体培養物を固体培養用培地に接種して固体培養を行うことを指す。接種には、例えば、マイクロピペットその他の器具を用いて接種する、又は株が入っている容器の口をバーナーで炙る措置の少なくとも何れか一方の方法により滅菌後デカントして直接接種する方法が採用できる。いずれの方法を用いるにせよ、液体培養物を固体培養用培地に接種することにより、液体培養物を固体培養用培地の全体にいきわたらせることが可能になる。これにより、菌糸がより均一に固体培養用培地全体に伸長するように繁殖する結果、一層均一な培養物が得られることとなり、惹いてはより粒度が揃った培養物の粒子を得ることができると考えられる。 In this specification, subjecting a liquid culture to solid culture refers to inoculating a solid culture medium with the liquid culture and carrying out solid culture. For inoculation, for example, a micropipette or other tool can be used to inoculate, or at least one of the following methods can be used: heating the mouth of the container containing the strain with a burner, followed by sterilization, followed by decanting and direct inoculation. Regardless of which method is used, inoculating a liquid culture into a solid culture medium makes it possible to spread the liquid culture throughout the solid culture medium. This allows the mycelium to grow more uniformly across the entire solid culture medium, resulting in a more uniform culture, which in turn is believed to result in culture particles with a more uniform particle size.
 固体培養は、適切な培養手段で実施できる。例えば、固体培養は、プラスチック等の袋といった容器を用い、容器を静置することにより培養できる。また、固体培養には、温度制御装置、湿度測定装置等により培養条件を調節することが好ましい。必要に応じて、攪拌装置、振動装置、pH調節装置、濁度測定装置、光制御装置、特定の気体濃度測定装置及び圧力測定装置から選択される1又は複数の装置を用いてもよい。特定気体濃度測定装置は、例えば、特定気体として、O、COが測定できればよい。固体培養には、汚染を防ぐ観点から使い捨ての容器を使用することが好ましく、任意に袋の口を閉じるといった方策を行ってもよい。適宜攪拌培養、振とう培養、又は静置培養等を行ってもよい。例えば、ある実施形態では、通気フィルターを備えた使い捨ての袋を使用し、袋の口を閉じて静置培養が行われる。 Solid culture can be carried out by a suitable culture means. For example, solid culture can be carried out by using a container such as a plastic bag and allowing the container to stand. In addition, for solid culture, it is preferable to adjust the culture conditions using a temperature control device, a humidity measuring device, etc. If necessary, one or more devices selected from a stirring device, a vibration device, a pH adjusting device, a turbidity measuring device, a light control device, a specific gas concentration measuring device, and a pressure measuring device may be used. The specific gas concentration measuring device may be capable of measuring, for example, O 2 and CO 2 as specific gases. For solid culture, it is preferable to use a disposable container from the viewpoint of preventing contamination, and measures such as closing the mouth of the bag may be taken as appropriate. Stirring culture, shaking culture, static culture, etc. may be carried out as appropriate. For example, in one embodiment, a disposable bag equipped with a ventilation filter is used, and static culture is carried out by closing the mouth of the bag.
 固体培養の期間は、制限されるものではないが、所望の濃度、例えば、固体培養物1gあたりの平均コロニー数として通常1×10~1×10cfu/g、中でも5×10~5×10cfu/g、更には1×10~1×10cfu/g、特に好ましくは5×10~5×10cfu/g、例えば、約1×10cfu/gに達したときに培養を完了できる。例えば、固体培養の期間の上限は、通常20日間以下、中でも18日間以下、更には15日間以下、特に12日間以下であることが好ましい。固体培養の期間の下限は、通常5日間以上、中でも6日間以上、更には7日間以上、特に8日間以上であることが好ましい。固体培養は、培養期間が長すぎると、雑菌による汚染のリスクが増大する。また、固体培養は、培養期間が長すぎると、エンドファイト資材の効率的な生産の妨げになる。一方、固体培養は、培養期間が短すぎると菌糸が十分に伸長しない。例えば、ある実施形態では、固体培養を8~12日間、例えば、10日間行えば、エンドファイト資材として適切な菌糸濃度を有する固体培養物が得られる。 The period of solid culture is not limited, but the culture can be completed when the desired concentration, for example, the average number of colonies per 1 g of solid culture, is usually 1×10 3 to 1×10 7 cfu/g, preferably 5×10 3 to 5×10 6 cfu/g, more preferably 1×10 4 to 1×10 6 cfu/g, particularly preferably 5×10 4 to 5×10 5 cfu/g, for example, about 1×10 5 cfu/g. For example, the upper limit of the period of solid culture is usually 20 days or less, more preferably 18 days or less, more preferably 15 days or less, and particularly preferably 12 days or less. The lower limit of the period of solid culture is usually 5 days or more, more preferably 6 days or more, more preferably 7 days or more, and particularly preferably 8 days or more. If the solid culture period is too long, the risk of contamination by various bacteria increases. Furthermore, if the solid culture period is too long, it will hinder efficient production of the endophyte material. On the other hand, in solid culture, if the culture period is too short, the mycelium does not grow sufficiently. For example, in one embodiment, solid culture for 8 to 12 days, e.g., 10 days, can provide a solid culture having a mycelium concentration suitable for use as an endophyte material.
[湿度]
 液体培養の際の湿度は、特に制限されるものではなく、任意の湿度とすることができる。一方、固体培養の際の湿度は、制限されるものではないが、固体培養の湿度の上限は通常100%RH以下、中でも95%RH以下、より好ましくは90%RH以下である。固体培養の湿度の下限は通常55%RH以上、中でも60%RH以上、より好ましくは65%RH以上で実施できる。ある実施形態では、60~80%RH、例えば、70%RHの湿度で実施できる。
[Humidity]
The humidity during liquid culture is not particularly limited and can be any humidity. On the other hand, the humidity during solid culture is not limited, but the upper limit of the humidity for solid culture is usually 100% RH or less, particularly 95% RH or less, more preferably 90% RH or less. The lower limit of the humidity for solid culture is usually 55% RH or more, particularly 60% RH or more, more preferably 65% RH or more. In some embodiments, the culture can be carried out at a humidity of 60 to 80% RH, for example, 70% RH.
[温度]
 液体培養及び固体培養のいずれにおいても、温度の上限は通常40℃以下、中でも35℃以下、より好ましくは30℃以下、特に25℃以下であることが好ましい。液体培養及び固体培養の温度の下限は通常5℃以上、中でも10℃以上、より好ましくは15℃以上、特に20℃以上であることが好ましい。ある実施形態では、20~25℃、例えば、25℃±1℃で実施できる。
[temperature]
In both liquid culture and solid culture, the upper limit of the temperature is usually 40° C. or lower, preferably 35° C. or lower, more preferably 30° C. or lower, and particularly preferably 25° C. or lower. The lower limit of the temperature in liquid culture and solid culture is usually 5° C. or higher, preferably 10° C. or higher, more preferably 15° C. or higher, and particularly preferably 20° C. or higher. In one embodiment, the culture can be carried out at 20 to 25° C., for example, 25° C.±1° C.
[滅菌]
 また、汚染防止の観点から、液体培地、固体培地、及び/又は固体培養用培地は、例えば、濾過滅菌、オートクレーブ滅菌、煮沸滅菌、及び放射線滅菌、次亜塩素酸ソーダ、オゾン処理といった任意の公知の手段で殺菌することが好ましい。接種といった各作業は滅菌雰囲気下で行うことが好ましい。例えば、固体培養用培地の場合、固体培地に適度な水分を加えてから滅菌することができる。
[Sterilization]
From the viewpoint of preventing contamination, it is preferable to sterilize the liquid medium, solid medium, and/or solid culture medium by any known means, such as filtration sterilization, autoclave sterilization, boiling sterilization, radiation sterilization, sodium hypochlorite, or ozone treatment. Each operation, such as inoculation, is preferably performed in a sterile atmosphere. For example, in the case of a solid culture medium, an appropriate amount of moisture can be added to the solid culture medium before sterilization.
[培養物及び資材]
 本実施形態は、xsd08001株の培養物を含む資材を提供する。本資材におけるxsd08001株の培養物の割合は限定されない。例えば、本資材におけるxsd08001株の培養物の割合の上限は100質量%以下、95質量%以下、90質量%以下、80質量%以下である。本資材におけるxsd08001株の培養物の割合の下限は、10質量%以上、20質量%以上、30質量%以上である。本資材は、xsd08001株の培養物からなるものであってもよい。また、本実施形態は、xsd08001株の培養物を含む資材を製造する方法を提供する。本製造方法は、xsd08001株の培養物を得ることを含む。一態様では、xsd08001株の培養物を得ることは、xsd08001株を液体培養に供した後固体培養に供することを含む。本製造方法の一態様では、xsd08001株の培養物を得ることは、固体培養により得られた固体培養物を乾燥すること、及び乾燥した固体培養物を粉砕することを含む。また、必要に応じて粉砕物を分級することを含んでもよい。分級には、例えば、篩を使用することができる。なお、本明細書において、固体培養工程により得られた固体培養物を乾燥して乾燥固体培養物を生成することを、「乾燥工程」と称することがある。また、乾燥固体培養物を粉砕することを、「粉砕工程」と称することがある。
[Cultures and materials]
The present embodiment provides a material containing a culture of the xsd08001 strain. The ratio of the culture of the xsd08001 strain in the present material is not limited. For example, the upper limit of the ratio of the culture of the xsd08001 strain in the present material is 100 mass% or less, 95 mass% or less, 90 mass% or less, or 80 mass% or less. The lower limit of the ratio of the culture of the xsd08001 strain in the present material is 10 mass% or more, 20 mass% or more, or 30 mass% or more. The present material may be composed of a culture of the xsd08001 strain. The present embodiment also provides a method for producing a material containing a culture of the xsd08001 strain. The production method includes obtaining a culture of the xsd08001 strain. In one aspect, obtaining a culture of the xsd08001 strain includes subjecting the xsd08001 strain to liquid culture and then to solid culture. In one embodiment of the present production method, obtaining a culture of the xsd08001 strain includes drying the solid culture obtained by solid culture and pulverizing the dried solid culture. In addition, it may also include classifying the pulverized product as necessary. For example, a sieve can be used for classification. In this specification, drying the solid culture obtained by the solid culture step to produce a dried solid culture is sometimes referred to as a "drying step". In addition, pulverizing the dried solid culture is sometimes referred to as a "pulverizing step".
 乾燥は、エアコン、除湿器など汎用の機器を用いて、例えば、下記のような培養物濃度を達成するように行えばよい。例えば、25℃、50%RHの環境で3日間放置することにより行うことができる。粉砕は、フードプロセッサー、コーヒーミル、ペッパーミルなど汎用の粉砕機を用いて行うことができる。 Drying can be carried out using general-purpose equipment such as an air conditioner or dehumidifier to achieve the following culture concentrations. For example, drying can be carried out by leaving it in an environment of 25°C and 50% RH for 3 days. Grinding can be carried out using general-purpose grinders such as a food processor, coffee mill, or pepper mill.
 本製造方法では、菌糸が培養物内で均一に伸長しているため、固体培養物を乾燥後粉砕するのみで培養物の粒子を所望の粒度とすることが可能であるが、一態様では、更に体積粒度分布における累積50%粒子径(D50)が100~900μmかつ累積90%粒子径(D90)が1000~5000μmとなるように調整することを含んでもよい。なお、本明細書において、乾燥固体培養物の体積粒度分布における累積50%粒子径(D50)が100~900μmかつ累積90%粒子径(D90)が1000~5000μmに調整することを、「調整工程」と称することがある。調整工程は、粉砕工程を含む。 In this production method, since the mycelium extends uniformly within the culture, the culture particles can be adjusted to a desired particle size simply by drying and pulverizing the solid culture, but in one embodiment, the method may further include adjusting the cumulative 50% particle size (D 50 ) in the volumetric particle size distribution to 100-900 μm and the cumulative 90% particle size (D 90 ) to 1000-5000 μm. In this specification, the adjustment of the cumulative 50% particle size (D 50 ) in the volumetric particle size distribution of the dried solid culture to 100-900 μm and the cumulative 90% particle size (D 90 ) to 1000-5000 μm is sometimes referred to as an "adjustment step". The adjustment step includes a pulverization step.
 本資材は、粒度が一定であり菌が均一に分布しているためエンドファイトとして植物に対し安定的に機能を発揮することができ、植物の生育の観点や品質向上の面からも好ましい。また、粒度が一定であるため取り扱いも容易になり、錠剤化、造粒、梱包、運搬等にも有利である。本実施形態の株を用いれば固体培養のみであっても菌が均一に分布している資材が好適に得られる。更に液体培養を併用すると、菌糸が培地の全体に伸長し菌の濃度をより一層均一化することができる。 This material has a consistent particle size and the bacteria are uniformly distributed, so it can stably function as an endophyte on plants, which is preferable from the standpoint of plant growth and quality improvement. In addition, the consistent particle size makes it easy to handle, and is advantageous for tableting, granulation, packaging, transportation, etc. By using the strain of this embodiment, a material with uniformly distributed bacteria can be preferably obtained even with solid culture alone. Furthermore, when liquid culture is used in combination, the mycelium extends throughout the medium, making the concentration of the bacteria even more uniform.
 本実施形態で得られる固体培養物の濃度は、例えば、固体培養物1gあたりの平均コロニー数として通常1×10~1×10cfu/g、中でも5×10~5×10cfu/g、更には1×10~1×10cfu/g、特に好ましくは5×10~5×10cfu/g、例えば、約1×10cfu/gである。本実施形態の資材における培養物の濃度は、例えば、乾燥固体培養物1gあたりの平均コロニー数として1×10~1×10cfu/g、中でも5×10~5×10cfu/g、更には1×10~1×10cfu/g、特に好ましくは5×10~5×10cfu/gである。なお、乾燥固体培養物1gあたりの平均コロニー数は、粉砕工程前後で変化しない。 The concentration of the solid culture obtained in this embodiment is, for example, usually 1 x 10 to 1 x 10 cfu/g, preferably 5 x 10 to 5 x 10 cfu/g, more preferably 1 x 10 to 1 x 10 cfu/g, and particularly preferably 5 x 10 to 5 x 10 cfu /g, for example, about 1 x 10 cfu/g, as the average number of colonies per gram of solid culture. The concentration of the culture in the material of this embodiment is, for example, 1 x 10 to 1 x 10 cfu/g, preferably 5 x 10 to 5 x 10 cfu/g, more preferably 1 x 10 to 1 x 10 cfu/g, as the average number of colonies per gram of dry solid culture. The average number of colonies per gram of dry solid culture product does not change before and after the crushing step.
[II.エンドファイトの培養方法]
 一実施形態は、エンドファイトの培養方法に関する。特許文献2に記載のようにxsd08001株は土壌中から単離されたため土壌に近い環境が適していると考えられ、xsd08001株の培養は固体培養で行われることが通常である。しかしながら、xsd08001株の培養物をどのように効率的に培養させればよいかについての詳細は、知られていない。
[II. Method for culturing endophytes]
One embodiment relates to a method for culturing an endophyte. As described in Patent Document 2, since the xsd08001 strain was isolated from soil, it is considered that an environment similar to that of soil is suitable for the xsd08001 strain, and the xsd08001 strain is usually cultured by solid culture. However, details of how to efficiently culture the xsd08001 strain are not known.
 また、種菌の接種から培養物を得るまでの時間が長いと、共生対象とする植物の育成に十分な量の菌体が含まれるエンドファイト製品の効率的な生産の妨げとなる。更に、特許文献3に記載のように、培養期間が長いとエンドファイト製品が雑菌の汚染を受けるリスクが増大する。雑菌に汚染されたエンドファイトを使用すると、共生対象とする植物も汚染され病気を引き起こすなど栽培にも支障をきたすため、エンドファイト製品では汚染が少ないことが重要である。 In addition, if the time from inoculation of the seed fungus to obtaining a culture is long, this hinders the efficient production of endophyte products that contain a sufficient amount of fungal bodies for the growth of the intended symbiotic plant. Furthermore, as described in Patent Document 3, a long culture period increases the risk of the endophyte product being contaminated by various bacteria. If an endophyte contaminated by various bacteria is used, the intended symbiotic plant will also be contaminated, causing disease and hindering cultivation, so it is important that endophyte products are as little contaminated as possible.
 きのこなどの真菌類では培養期間を短縮し汚染を防ぐべく液体培養の使用が報告されている(特許文献3)。しかしながら、糸状菌の場合、菌糸が接着集合して菌糸塊をつくることにより液体培養が困難であり工業培養の障害となっている。そのため、糸状菌に液体培養を適用するには遺伝子操作といった特別な操作が必要であると考えられていた。例えば、液体培養を容易にするために、糸状菌Aspergillus nidulansでは、遺伝子をノックアウトし、α-1,3-グルカン欠損株を作製したことが報告されている(非特許文献1)。発明者らは、糸状菌に属するセファリオフォラ属のxsd08001株でも同様の困難があることを突き止めた。 The use of liquid culture for fungi such as mushrooms has been reported to shorten the culture period and prevent contamination (Patent Document 3). However, in the case of filamentous fungi, mycelium adheres and aggregates to form mycelial masses, making liquid culture difficult and hindering industrial cultivation. For this reason, it was thought that special procedures such as genetic manipulation were necessary to apply liquid culture to filamentous fungi. For example, it has been reported that a gene was knocked out in the filamentous fungus Aspergillus nidulans to create an α-1,3-glucan-deficient strain in order to facilitate liquid culture (Non-Patent Document 1). The inventors discovered that the same difficulties existed with the xsd08001 strain of the genus Cephaliophora, which belongs to filamentous fungi.
 また、xsd08001株では、培地内で均一に増殖しないことによって、エンドファイトとしての効果が安定しない場合は、それを利用して栽培した植物の品質が十分なものとならない虞がある。 In addition, the xsd08001 strain does not grow uniformly in the culture medium, and if its effect as an endophyte is unstable, there is a risk that the quality of plants cultivated using it will not be satisfactory.
 上記課題に鑑み、本発明者らは鋭意研究の結果、驚くことに遺伝子ノックアウト等の特別な操作を要さずxsd08001株の液体培養を可能とし、更に固体培養の条件を最適化して効率的に培養することにより、培養および製品化までの期間を短縮することおよび汚染リスクを低減することに成功した。 In light of the above problems, the inventors conducted extensive research and were surprised to discover that it was possible to culture the xsd08001 strain in liquid form without the need for special procedures such as gene knockout, and that by optimizing the conditions for solid culture to culture it efficiently, they were able to shorten the time required for culture and commercialization and reduce the risk of contamination.
[培養方法]
 本実施形態は、xsd08001株を液体培養に供することを含む培養方法を提供する。培養方法の一態様は、セファリオフォラ属(Cephaliophora sp.)xsd08001株を培養する方法であって、株を液体培養に供することにより液体培養物を得ることと、得られた液体培養物を固体培養に供することにより固体培養物を得ることを含む培養方法に関する。
[Culture method]
The present embodiment provides a culture method comprising subjecting the xsd08001 strain to liquid culture. One aspect of the culture method relates to a method for culturing the Cephaliophora sp. xsd08001 strain, the culture method comprising subjecting the strain to liquid culture to obtain a liquid culture, and subjecting the obtained liquid culture to solid culture to obtain a solid culture.
[株]
 本実施形態に用いるセファリオフォラ属(Cephaliophora sp.)xsd08001株は、前述のとおり、独立行政法人製品評価技術基盤機構(NITE)に寄託されておりNITE P-02438の受託番号にて入手可能である。
[KK]
The Cephaliophora sp. xsd08001 strain used in this embodiment has been deposited at the National Institute of Technology and Evaluation (NITE) as described above, and is available under the accession number NITE P-02438.
[液体培養]
 本明細書において「液体培養」とは、前述のとおり、液体培地を用いて株を培養することを指す。xsd08001株を液体培養に供するとは、当該株を液体培地に接種し液体培地において培養を行うことを指す。株は、媒体に保菌された種菌の状態であってもよい。媒体としては、例えば、寒天が挙げられる。汚染を回避するため、接種は、例えば、菌体が入っている容器からデカンテーションにて直接培養槽に添加する又は滅菌済みのピンセット等の把持器具を使用する措置、又はクリーンベンチの滅菌雰囲気下で行う措置の少なくとも何れか一方を採ることが好ましい。
[Liquid culture]
As used herein, "liquid culture" refers to culturing a strain using a liquid medium, as described above. Subjecting the xsd08001 strain to liquid culture refers to inoculating the strain into a liquid medium and culturing it in the liquid medium. The strain may be in the form of a seed culture medium carried by a medium. Examples of the medium include agar. In order to avoid contamination, it is preferable to take at least one of the following measures: adding the bacteria directly to a culture tank by decantation from a container containing the bacteria, using a holding tool such as sterilized tweezers, or performing the inoculation under a sterile atmosphere in a clean bench.
 本明細書において「液体培養物」とは、前述のとおり、液体培養の結果得られる液体の培養物を指す。液体培地は、例えば液体に様々な添加物を添加することにより、培養に適した組成となるように調整することで作製できる。液体としては、例えば、水が挙げられる。添加物として、例えば、糖類、ミネラル、窒素源、ビタミン、有機酸、無機酸、有機塩基、無機塩基が挙げられる。好ましくは、液体培地は糖類および窒素源を含む。糖類としては、例えば、グルコースが挙げられる。窒素源としては、例えば、ペプトンが挙げられる。これらの成分の詳細は、[I.エンドファイト資材]で詳述したとおりである。 As used herein, the term "liquid culture" refers to a liquid culture obtained as a result of liquid culture, as described above. A liquid medium can be prepared, for example, by adding various additives to the liquid to adjust the composition to be suitable for culture. An example of the liquid is water. Examples of the additives include sugars, minerals, nitrogen sources, vitamins, organic acids, inorganic acids, organic bases, and inorganic bases. Preferably, the liquid medium contains sugars and a nitrogen source. An example of the sugars is glucose. An example of the nitrogen source is peptone. Details of these components are as described in detail in [I. Endophyte materials] .
[固体培養]
 培養方法の一態様では、液体培養により得られたxsd08001株の液体培養物を固体培養に供することにより固体培養物を得ることを含む。本明細書において「固体培養」とは、前述のとおり、固体培地および水を含有する固体培養用培地を用いて株を培養することを指す。固体培養物とは固体培養の結果得られる、固体培養用培地において株が培養された培養物を指す。固体培地は、例えば培地として、フスマ、オカラ、竹粉、オガクズ、モミガラ、バガス、セルロースパウダー、セロビオース、コーヒー粕、デンプンを使用できる。
[Solid culture]
In one embodiment of the culture method, a liquid culture of the xsd08001 strain obtained by liquid culture is subjected to solid culture to obtain a solid culture. As described above, "solid culture" in this specification refers to culturing a strain using a solid culture medium containing a solid medium and water. A solid culture refers to a culture obtained as a result of solid culture in which a strain is cultured in a solid culture medium. For example, bran, bean pulp, bamboo powder, sawdust, rice husk, bagasse, cellulose powder, cellobiose, coffee grounds, and starch can be used as the solid culture medium.
 固体培養用培地は、固体培地に水を添加し混合することにより調製できる。固体培養用培地の含水率は、制限されるものではないが、例えば、含水率の上限は、通常85質量%以下、中でも80質量%以下、更には75質量%以下、特に70質量%以下であることが好ましい。含水率の下限は、通常30質量%以上、中でも40質量%以上、更には45質量%以上、特に50質量%以上であることが好ましい。固体培養培地は、含水率が高すぎると水分過多となり培地に十分な間隙が生じないため育成が促進されず、一方、固体培養培地は、含水率が低すぎると、培養に十分な水分を確保できないためである。例えば、ある実施形態では、固体培養用培地の含水率は、50~70質量%、例えば、60質量%であると、エンドファイト資材として適切な菌糸濃度を有する固体培養物が得られる。 The solid culture medium can be prepared by adding water to the solid culture medium and mixing. The moisture content of the solid culture medium is not limited, but for example, the upper limit of the moisture content is usually 85% by mass or less, particularly 80% by mass or less, further 75% by mass or less, and particularly 70% by mass or less. The lower limit of the moisture content is usually 30% by mass or more, particularly 40% by mass or more, further 45% by mass or more, and particularly 50% by mass or more. If the moisture content of the solid culture medium is too high, it becomes too watery and there are not enough gaps in the medium, so growth is not promoted, while if the moisture content of the solid culture medium is too low, sufficient moisture for culture cannot be secured. For example, in one embodiment, when the moisture content of the solid culture medium is 50 to 70% by mass, for example 60% by mass, a solid culture having a mycelium concentration appropriate as an endophyte material can be obtained.
 本明細書では、液体培養物を固体培養に供するとは、液体培養物を固体培養用培地に接種して固体培養を行うことを指す。接種には、例えば、マイクロピペットその他の器具を用いて接種する、又は株が入っている容器の口をバーナーで炙る措置の少なくとも何れか一方により滅菌後デカントして直接接種する方法が採用できる。いずれの方法を用いるにせよ、液体培養物を接種することにより、固体培養用培地の全体にいきわたるようにかけることが可能になり、菌糸がより早く固体培養用培地全体に伸長し繁殖させることができる。また、従来技術では、特許文献2に記載のように、培地上に種株の培養片を静置することにより接種を行っていたが、接種の際に培養片を混ぜ、全体に微生物がいきわたるようにする作業が必要であった。かかる作業は汚染のリスク回避のため滅菌雰囲気下にて行う必要があり、例え滅菌雰囲気下で行ったとしても汚染のリスクは排除しきれない。しかしながら、本培養方法では、このような攪拌作業自体が不要若しくは培地上に種株の培養片を静置して接種を行うものと比較して攪拌作業回数を少なくできる。したがって、本培養方法は、攪拌作業に伴う汚染のリスクを減少させることができ、作業に要する時間や労力も節約できる。また、特許文献2に記載のように、きのこ類の栽培では、培養液を接種し菌床へ浸透させるために特殊な装置を使用している。しかしながら、本培養方法の株の場合、マイクロピペットといった簡便な器具の使用であっても、液体培養物が固体培養用培地の全体にいきわたり、均一な培養物が得られる。 In this specification, subjecting a liquid culture to solid culture refers to inoculating a liquid culture into a solid culture medium and carrying out solid culture. For inoculation, for example, a method of inoculating using a micropipette or other tool, or at least one of measures of heating the mouth of a container containing the strain with a burner, followed by decanting and direct inoculation can be adopted. Regardless of the method used, by inoculating the liquid culture, it is possible to apply it so that it spreads throughout the entire solid culture medium, and the mycelium can extend and grow more quickly throughout the entire solid culture medium. In addition, in the conventional technology, as described in Patent Document 2, inoculation was performed by placing culture pieces of the seed strain on the medium, but it was necessary to mix the culture pieces during inoculation so that the microorganisms spread throughout the medium. Such work must be performed in a sterile atmosphere to avoid the risk of contamination, and even if it is performed in a sterile atmosphere, the risk of contamination cannot be completely eliminated. However, in this culture method, such stirring work itself is not necessary, or the number of stirring operations can be reduced compared to inoculation by placing culture pieces of the seed strain on the medium. Therefore, this culture method can reduce the risk of contamination associated with stirring, and can also save time and labor required for the work. In addition, as described in Patent Document 2, special equipment is used in mushroom cultivation to inoculate the culture liquid and allow it to penetrate into the mushroom bed. However, in the case of the strains used in this culture method, even with the use of a simple tool such as a micropipette, the liquid culture is able to permeate the entire solid culture medium, resulting in a uniform culture.
 その他、固体培養の培養手段や培養期間の詳細は、[I.エンドファイト資材]で詳述したとおりである。 Other details regarding the culture method and culture period for solid culture are as described in detail in [I. Endophyte Materials] .
[湿度]
 液体培養の際の湿度は、特に制限されるものではなく、任意の湿度とすることができる。固体培養の際の湿度は、制限されるものではないが、固体培養の湿度上限は通常100%RH以下、中でも95%RH以下、より好ましくは90%RH以下である。固体培養の湿度下限は通常55%RH以上、中でも60%RH以上、より好ましくは65%RH以上で実施できる。ある実施形態では、60~80%RH、例えば、70%RHの湿度で実施できる。通常きのこなどの培養の場合、例えば、ヒラタケでは95%RH、ヌメリツバタケモドキでは85%RHといった高い湿度で行われる(非特許文献2、3)が、本願の培養方法では、例えば70%RHといった比較的低い湿度にて行うことができる。固体培養の湿度が低くて済むと設備の設置にかかる時間、労力、電力、水、コスト等の観点で有利である。
[Humidity]
The humidity during liquid culture is not particularly limited and can be any humidity. The humidity during solid culture is not limited, but the upper humidity limit for solid culture is usually 100% RH or less, particularly 95% RH or less, more preferably 90% RH or less. The lower humidity limit for solid culture is usually 55% RH or more, particularly 60% RH or more, more preferably 65% RH or more. In some embodiments, it can be performed at a humidity of 60 to 80% RH, for example, 70% RH. In the case of normal mushroom culture, for example, oyster mushroom is cultured at a high humidity of 95% RH and slimy oyster mushroom is cultured at 85% RH (Non-Patent Documents 2 and 3), but the culture method of the present application can be performed at a relatively low humidity of, for example, 70% RH. If the humidity of solid culture is low, it is advantageous in terms of the time, labor, electricity, water, cost, etc. required for installation of the equipment.
[温度]
 液体培養及び固体培養のいずれにおいても、温度の上限は通常40℃以下、中でも35℃以下、より好ましくは30℃以下、特に25℃以下であることが好ましい。液体培養及び固体培養の温度の下限は通常5℃以上、中でも10℃以上、より好ましくは15℃以上、特に20℃以上であることが好ましい。ある実施形態では、20~25℃、例えば、25℃±1℃で実施できる。
[temperature]
In both liquid culture and solid culture, the upper limit of the temperature is usually 40° C. or lower, preferably 35° C. or lower, more preferably 30° C. or lower, and particularly preferably 25° C. or lower. The lower limit of the temperature in liquid culture and solid culture is usually 5° C. or higher, preferably 10° C. or higher, more preferably 15° C. or higher, and particularly preferably 20° C. or higher. In one embodiment, the culture can be carried out at 20 to 25° C., for example, 25° C.±1° C.
[滅菌]
 また、汚染防止の観点から、液体培地、固体培地、及び/又は固体培養用培地は、例えば、濾過滅菌、オートクレーブ滅菌、煮沸滅菌、及び放射線滅菌、次亜塩素酸ソーダ、オゾン処理といった任意の公知の手段で殺菌し、接種といった各作業は滅菌雰囲気下で行うことが好ましい。例えば、固体培養用培地の場合、固体培地に適度な水分を加えてから滅菌することができる。
[Sterilization]
From the viewpoint of preventing contamination, it is preferable that the liquid medium, solid medium, and/or solid culture medium be sterilized by any known means, such as filtration sterilization, autoclave sterilization, boiling sterilization, radiation sterilization, sodium hypochlorite, or ozone treatment, and that each operation, such as inoculation, be carried out in a sterile atmosphere. For example, in the case of a solid culture medium, an appropriate amount of moisture can be added to the solid culture medium before sterilization.
[培養に要する合計の期間]
 液体培養と固体培養に要する期間の合計は、制限されるものではないが、例えば、接種から培養完了までの培養合計期間として、上限は、通常30日間以下、中でも25日間以下、更には20日間以下、特に15日間以下であることが好ましい。培養合計期間の下限は、通常13日間以上、中でも12日間以上、更には11日間以上、特に10日間以上であることが好ましい。例えば、ある実施形態では、10~15日間、例えば、13日間行えば、エンドファイト資材として適切な菌糸濃度を有する固体培養物が得られる。上述のように、培養合計期間が長すぎると菌糸濃度が高くなりすぎてしまう上に汚染のリスクが増大する。また、固体培養は、培養期間が長すぎると、xsd08001株を効率的に培養することができない。一方、培養合計期間が短すぎると菌糸が十分に伸長しないためである。液体培養を含む本培養方法を用いると、固体培養のみで培養する場合に比べて、同量の菌体量を得るのに必要な期間が短縮できる。本培養方法では、培養合計期間が短縮でき、培養にかかる時間、労力、コスト等の削減のみならず、増殖の間に汚染が広がることも防止できる点でも有利である。
[Total period required for culture]
The total period required for liquid culture and solid culture is not limited, but for example, the upper limit of the total culture period from inoculation to completion of culture is usually 30 days or less, particularly 25 days or less, further 20 days or less, and particularly 15 days or less. The lower limit of the total culture period is usually 13 days or more, particularly 12 days or more, further 11 days or more, and particularly 10 days or more. For example, in one embodiment, a solid culture having a mycelium concentration appropriate for an endophyte material can be obtained by performing the culture for 10 to 15 days, for example, 13 days. As described above, if the total culture period is too long, the mycelium concentration becomes too high and the risk of contamination increases. In addition, if the solid culture period is too long, the xsd08001 strain cannot be cultured efficiently. On the other hand, if the total culture period is too short, the mycelium does not extend sufficiently. When the main culture method including liquid culture is used, the period required to obtain the same amount of fungal mass can be shortened compared to the case of culturing only by solid culture. The present culture method is advantageous not only in that the total culture period can be shortened, thereby reducing the time, labor, cost, etc. required for culture, but also in that the spread of contamination during growth can be prevented.
[培養物及び資材]
 以下、本培養方法により得られる培養物及び当該培養物を含む資材を提供することについて記載する。更に、本実施形態は、液体培養を含む本培養方法により得られる培養物を回収し、当該回収された培養物を乾燥し粉砕することを含む、資材の製造方法を提供することについて記載する。本培養物は、液体培養を採用することから、汚染が少なく、また、菌糸が培地の全体に伸長し菌の濃度が均一であるという利点を有する。そのため、かかる培養物を用いる本資材を用いると、エンドファイトを使用する植物への汚染リスクが低減し、かつ、菌が均一に分布しているためエンドファイトとして植物に対し安定的に機能を発揮することができるため、植物の生育の観点から好ましい。
[Cultures and materials]
Hereinafter, a culture obtained by the present culture method and a material containing the culture are provided. Furthermore, this embodiment is described as providing a method for producing a material, which includes recovering a culture obtained by the present culture method including liquid culture, and drying and pulverizing the recovered culture. Since the present culture employs liquid culture, it has the advantage that contamination is low and the mycelium extends throughout the medium, resulting in a uniform concentration of the fungus. Therefore, the use of the present material using such a culture reduces the risk of contamination of plants using endophytes, and since the fungus is uniformly distributed, it is preferable from the viewpoint of plant growth, since it can stably exert its function as an endophyte on plants.
 本培養方法により得られる培養物の濃度は、例えば、固体培養物1gあたりの平均コロニー数として通常1×10~1×10cfu/g、中でも5×10~5×10cfu/g、更には1×10~1×10cfu/g、特に好ましくは5×10~5×10cfu/g、例えば、約1×10cfu/gである。本資材の濃度は、資材1gあたりの平均コロニー数として通常1×10~1×10cfu/g、中でも5×10~5×10cfu/g、更には1×10~1×10cfu/g、特に好ましくは5×10~5×10cfu/gである。 The concentration of the culture obtained by this culture method is, for example, usually 1 x 10 to 1 x 10 cfu/g, preferably 5 x 10 to 5 x 10 cfu/g, more preferably 1 x 10 to 1 x 10 cfu/g, and particularly preferably 5 x 10 to 5 x 10 cfu/g, for example, about 1 x 10 cfu/g, as the average number of colonies per gram of solid culture. The concentration of the present material is usually 1 x 10 to 1 x 10 cfu/g, preferably 5 x 10 to 5 x 10 cfu/g, more preferably 1 x 10 to 1 x 10 cfu/g, and particularly preferably 5 x 10 to 5 x 10 cfu/g, as the average number of colonies per gram of material.
 次に実施例によって本発明を更に詳細に説明する。なお、本発明はこれにより限定されるものではない。 The present invention will now be described in more detail with reference to examples. Note that the present invention is not limited to these examples.
[実施例群I]エンドファイト資材に関する実施例群
実験1:xsd08001株の培養
 使用菌株は、独立行政法人製品評価技術基盤機構(NITE)にNITE P-02438の受託番号にて寄託されたセファリオフォラ属(Cephaliophora sp.)xsd08001株である。同株が寒天培地に付着された状態で-80℃に保存されたものを種菌として使用した。
[Example Group I] Examples related to endophyte materials
Experiment 1: Cultivation of xsd08001 strain The strain used was Cephaliophora sp. xsd08001, deposited at the National Institute of Technology and Evaluation (NITE) under the accession number NITE P-02438. The strain was attached to an agar medium and stored at -80°C and used as the seed culture.
 また、500mL容積の三角フラスコに以下の試薬を加えることにより液体培地を調製した。
  グルコース 4.0g
  酵母エキス 0.4g
  硫酸マグネシウム 0.1g
  ペプトン 0.2g
  リン酸二水素カリウム 0.2g
  イオン交換水 200mL
In addition, a liquid medium was prepared by adding the following reagents to a 500 mL Erlenmeyer flask.
Glucose 4.0g
Yeast extract 0.4g
Magnesium sulfate 0.1g
Peptone 0.2g
Potassium dihydrogen phosphate 0.2g
Ion-exchanged water 200mL
 上記フラスコにスターラーを加えてシリコ栓でフラスコの口を塞ぎ、オートクレーブで121℃、20分間滅菌した。冷却後、クリーンベンチ内で-80℃から融解された寒天培地に付着された種菌を試験菅からデカンテーションで直接フラスコに添加して液体培地に接種した。フラスコの口をシリコ栓で封じ、スターラーを用いて25℃で攪拌培養した(700rpm)。1Lあたりの平均コロニー数が約3.0×10cfu/培地Lに達したときに培養を完了したところ、培養完了まで3日間を要した。 A stirrer was added to the flask, the mouth of the flask was sealed with a silicone stopper, and the flask was sterilized in an autoclave at 121°C for 20 minutes. After cooling, the seed bacteria attached to the agar medium melted from -80°C in a clean bench was added directly to the flask by decantation from the test tube to inoculate the liquid medium. The mouth of the flask was sealed with a silicone stopper, and the mixture was stirred and cultured at 25°C using a stirrer (700 rpm). The culture was completed when the average number of colonies per liter reached approximately 3.0 x 106 cfu/L of medium, and it took 3 days to complete the culture.
 固体培養用培地は、プラスチック桶に固体培地として1000gのフスマに1500mLのイオン交換水を加えてよく混合し、含水率60%となるように作製した。固体培養用培地を通気フィルターを備えた使い捨ての袋に加えてから袋の口をテープで留め、オートクレーブで121℃、60分間滅菌した。培地を袋ごと室温まで冷却したのち、クリーンベンチ内で袋を開け、3日間の液体培養した80mLの液体培養物を滅菌マイクロピペットを用いるか又はフラスコの口をバーナーで炙ってからデカントし直接添加することにより固体培養用培地の全体にいきわたるようにかけて接種した。接種後、袋の口をシール機で留め、恒温恒湿機内において25℃、70%RHの環境下で10日間静置して固体培養を行い、1gあたりの平均コロニー数が約1×10cfu/gに達したことを確認した時点で培養完了とした。培養完了まで、液体培養開始後更に10日を要した。固体培養後、固体培養物を袋から取り出しエアコン又は除湿器を使用して、25℃、50%RHの環境で3日間静置することにより乾燥した。 The solid culture medium was prepared by adding 1500 mL of ion-exchanged water to 1000 g of bran as a solid culture medium in a plastic tub and mixing well to a moisture content of 60%. The solid culture medium was added to a disposable bag equipped with a ventilation filter, and the mouth of the bag was taped and sterilized in an autoclave at 121°C for 60 minutes. After the medium was cooled to room temperature together with the bag, the bag was opened in a clean bench, and 80 mL of liquid culture cultured for 3 days was inoculated so as to spread throughout the solid culture medium by using a sterile micropipette or by heating the mouth of the flask with a burner and then decanting and adding directly. After inoculation, the mouth of the bag was sealed and solid culture was performed by leaving it in a thermo-hygrostat for 10 days under an environment of 25°C and 70% RH. The culture was completed when it was confirmed that the average number of colonies per 1 g reached about 1 x 10 5 cfu/g. It took another 10 days after the start of liquid culture to complete the culture. After the solid culture, the solid culture was taken out of the bag and dried by leaving it to stand for 3 days in an environment of 25° C. and 50% RH using an air conditioner or a dehumidifier.
 得られた固体培養物では、菌糸の広がりも均一であり、眼に見える汚染も確認されなかった。また、乾燥固体培養物の濃度を測定したところ、1gあたりのコロニー数が約5×10~4×10cfu/gであった。さらに、この乾燥固体培養物を粉砕機(ウィナーズ株式会社製、カプセルカッターボンヌ)を用いて粉砕した後これを実施例1の資材とし、乾燥物を粉砕しないものを比較例1の資材として使用した。その後、資材の粒度をLMS-2000e(株式会社セイシン企業)で測定した。 In the obtained solid culture, the mycelium spread was uniform, and no visible contamination was confirmed. Furthermore, when the concentration of the dried solid culture was measured, the number of colonies per gram was about 5 x 106 to 4 x 107 cfu/g. Furthermore, this dried solid culture was crushed using a crusher (Capsule Cutter Bonne, manufactured by Winners Co., Ltd.) and used as the material of Example 1, and the uncrushed dried product was used as the material of Comparative Example 1. Thereafter, the particle size of the material was measured using an LMS-2000e (Seishin Enterprise Co., Ltd.).
 粒度測定の結果を表1に示す。表1より、実施例1の資材は、いずれの屈折率の場合でも、累積50%粒子径(D50)が200~800μm、累積90%粒子径(D90)が1000~5000μmの範囲内にあり、粒子の大きさが均一で品質のばらつきが小さいことがわかる。 The results of particle size measurement are shown in Table 1. From Table 1, it can be seen that the material of Example 1 has a cumulative 50% particle size (D 50 ) in the range of 200 to 800 μm and a cumulative 90% particle size (D 90 ) in the range of 1000 to 5000 μm for all refractive indices, and thus has uniform particle size and small quality variation.
 なお、比較例1の資材は、粒径5000μm以上であり、粒度測定に使用したLMS-2000e(株式会社セイシン企業)の計測上限を越える粒径であったため、測定することができなかった。 The material in Comparative Example 1 had a particle size of 5000 μm or more, which exceeded the upper measurement limit of the LMS-2000e (Seishin Enterprise Co., Ltd.) used for particle size measurement, and therefore could not be measured.
 また、同じ株を用い、液体培養を採用せず種菌を直接固体培養用培地に接種し固体培養のみで培養する以外は、実施例1と同じ方法で培養、乾燥、粉砕することにより、実施例2の資材を作製した。実施例2では、実施例1と比較して培養に時間を要したものの、粒子の大きさが十分に均一な資材が得られた。 The material of Example 2 was produced by culturing, drying, and pulverizing the same method as in Example 1, except that the same strain was used and the seed culture was directly inoculated into the solid culture medium without using liquid culture, and cultured only in solid culture. Although the culture took longer in Example 2 than in Example 1, a material with sufficiently uniform particle size was obtained.
実験2:粒度の違いによる植物の生育評価
(実施例1)
 栽培土は、園芸用土とバーミキュライトを容量比1:1で混合した。実験1で作製した実施例1の資材を栽培土に質量比1.0%で加えて乾式混合し、8個の9cmポットに135gずつ分注した。サラダ菜の種を1ポットあたり3粒ずつ播種して水を与え、発芽したサラダ菜を1ポットあたり1個体となるように間引きした。数日間本葉を数えたのち、サラダ菜の収穫時期にあたる直径20cmに達した播種25日目に根から土を落とし、乾燥して質量を測定した。
Experiment 2: Evaluation of plant growth due to differences in particle size
Example 1
The cultivation soil was a mixture of horticultural soil and vermiculite at a volume ratio of 1:1. The materials of Example 1 prepared in Experiment 1 were added to the cultivation soil at a mass ratio of 1.0%, dry mixed, and dispensed at 135 g per pot into eight 9 cm pots. Three lettuce seeds were sown per pot, watered, and the germinated lettuce was thinned to one plant per pot. After counting the number of true leaves for several days, on the 25th day after sowing when the lettuce reached a diameter of 20 cm, which is the harvest time, the soil was removed from the roots, dried, and the mass was measured.
(比較例1)
 実験1で作製した比較例1の資材を使用した以外は実施例1と同じ方法でサラダ菜の生育評価を行った。
(Comparative Example 1)
The growth of lettuce was evaluated in the same manner as in Example 1, except that the material of Comparative Example 1 prepared in Experiment 1 was used.
(比較例2)
 栽培土にxsd08001株の培養物を含む資材を混合しない以外は、実施例1と同じ方法でサラダ菜の生育評価を行った。
(Comparative Example 2)
Lettuce growth evaluation was carried out in the same manner as in Example 1, except that the material containing the culture of the xsd08001 strain was not mixed into the cultivation soil.
 結果を図1並びに表2及び表3に示す。
The results are shown in FIG.
 表2及び表3より、xsd08001株の培養物を用いる実施例1および比較例1の場合では、この培養物を用いない比較例2と比べてサラダ菜の生育が促進されたことがわかる。更に、xsd08001株の培養物の粒度を揃えた実施例1の場合、粒度が不均一な比較例1と比べて、可食部である地上部の乾燥質量は39.8%増加し、根部の乾燥質量も16.7%増加した。また、いずれの日数でも、実施例1では比較例1と比べて本葉の数のばらつきが小さく、植物の育成促進の効果にムラが生ずることを抑制できた。以上より、xsd08001株の培養物を含む資材は植物の生育を促進する効果を奏し、その効果は培養物の粒度を揃えることにより更に増加することがわかる。 From Tables 2 and 3, it can be seen that in Example 1 and Comparative Example 1, in which a culture of the xsd08001 strain was used, the growth of lettuce was promoted compared to Comparative Example 2, in which this culture was not used. Furthermore, in the case of Example 1, in which the particle size of the culture of the xsd08001 strain was uniform, the dry mass of the edible above-ground part increased by 39.8% and the dry mass of the root part also increased by 16.7% compared to Comparative Example 1, in which the particle size was uneven. Furthermore, regardless of the number of days, Example 1 showed less variation in the number of true leaves compared to Comparative Example 1, and it was possible to suppress unevenness in the effect of promoting plant growth. From the above, it can be seen that materials containing a culture of the xsd08001 strain have the effect of promoting plant growth, and this effect is further increased by uniforming the particle size of the culture.
 以上の結果より、本願発明を用いると、従来技術で作製した資材よりも粒度が均一なxsd08001株の培養物を含む資材を得ることが可能になる。かかる資材を用いると植物の生育を更に促進することができ、植物の育成促進の効果にムラが生ずることも抑制できる。 The above results show that the use of the present invention makes it possible to obtain a material containing a culture of the xsd08001 strain with a more uniform particle size than materials produced using conventional technology. The use of such a material can further promote plant growth and also suppress unevenness in the effects of promoting plant growth.
実験3:エンドファイト資材の添加下でのイチゴの栽培Experiment 3: Cultivation of strawberries with the addition of endophytic materials
実施例3-1及び比較例3-1(定植時にエンドファイト資材を添加)
 供試植物としてはイチゴ(品種名:かおり野)を使用した。その収穫期間は2021年11月~2022年5月であった。
Example 3-1 and Comparative Example 3-1 (endophyte material added at planting)
Strawberry (variety name: Kaorino) was used as the test plant. The harvest period was from November 2021 to May 2022.
(実施例3-1)
 2520株のイチゴを慣行農法により育苗した。育苗したイチゴは、定植穴に1株あたり2gのエンドファイト資材を加えて定植し、慣行農法により栽培を行った。イチゴの果実の収穫量はパック数によって測定した。
(Example 3-1)
2520 strawberry seedlings were grown by conventional farming methods. The grown strawberry seedlings were planted in a planting hole with 2 g of endophyte per seedling added, and cultivated by conventional farming methods. The yield of strawberry fruit was measured by the number of packs.
 ここで「パック数」とは、イチゴの出荷規格である250gの果実を詰めたパックを単位とするものである。なお、果実ひとつひとつの質量が異なるため、1パックあたり最大255gまで上ぶれることはあるが、250gを下回ることは無い。 Here, "number of packs" refers to a pack containing 250g of fruit, which is the shipping standard for strawberries. Since the weight of each fruit varies, the weight per pack can go up to a maximum of 255g, but it will never go below 250g.
(比較例3-1)
 定植穴にエンドファイト資材を加えないこと以外は、実施例3-1と同様にして栽培を行った。
(Comparative Example 3-1)
Cultivation was carried out in the same manner as in Example 3-1, except that no endophyte material was added to the planting hole.
(試験結果)
 結果を表4に示す。これらの結果から明らかなように、すべての月間において、実施例3-1は比較例3-1よりも果実の収穫量が多かった。年間を通したパック数の合計は、実施例3-1では比較例3-1と比較して、約19.64%増加した。
(Test results)
The results are shown in Table 4. As is clear from these results, the fruit yield was greater in Example 3-1 than in Comparative Example 3-1 in all months. The total number of packs throughout the year was increased by about 19.64% in Example 3-1 compared to Comparative Example 3-1.
実施例3-2及び比較例3-2(育苗時にエンドファイト資材を添加)
 供試植物としてはイチゴ(品種名:かおり野)を使用した。その収穫期間は2022年11月~2023年5月であった。
Example 3-2 and Comparative Example 3-2 (endophyte material added during seedling raising)
Strawberry (variety name: Kaorino) was used as the test plant. The harvest period was from November 2022 to May 2023.
(実施例3-2)
 2520株のイチゴを、育苗培土に1株あたり2gのエンドファイト粉末資材を加えて慣行農法により育苗した。育苗したイチゴを定植したのち、慣行農法により栽培を行った。イチゴの果実の収穫量はパック数によって測定した。
(Example 3-2)
2520 strawberry plants were grown in a conventional manner by adding 2 g of endophyte powder per plant to the soil for growing. The grown strawberry plants were planted and cultivated in a conventional manner. The yield of strawberry fruits was measured by the number of packs.
 また、収穫終了後に根部を回収し、核酸抽出を行ったのちに、PCRによってCephaliophora sp. xsd08001株のITS領域(約330bp)を検出した。その際に用いたプライマーの配列は表5に示すとおりである。 After harvesting, the roots were collected and nucleic acid was extracted, after which the ITS region (approximately 330 bp) of Cephaliophora sp. xsd08001 strain was detected by PCR. The primer sequences used are shown in Table 5.
(比較例3-2)
 育苗培土にエンドファイト資材を加えないこと以外は、実施例3-2と同様にして栽培および当該微生物の検出を行った。
(Comparative Example 3-2)
Cultivation and detection of the microorganism were carried out in the same manner as in Example 3-2, except that no endophyte material was added to the seedling soil.
(試験結果)
 結果を図2及び表6に示す。これらの結果から明らかなように、すべての月間において、実施例3-2は比較例3-2よりも果実の収穫量が多かった。年間を通したパック数の合計は、実施例3-2では比較例3-2と比較して、約25.63%増加した。また、図2に示すとおり、実施例3-2の根部からはCephaliophora sp. xsd08001株のITS領域(約330bp)が検出されたのに対して、比較例3-2の根部からは検出されなかった。
(Test results)
The results are shown in FIG. 2 and Table 6. As is clear from these results, the fruit yield was higher in Example 3-2 than in Comparative Example 3-2 in all months. The total number of packs throughout the year was increased by about 25.63 % in Example 3-2 compared to Comparative Example 3-2 . In addition, as shown in FIG. 2, the ITS region (about 330 bp) of Cephaliophora sp. xsd08001 strain was detected from the root of Example 3-2, whereas it was not detected from the root of Comparative Example 3-2.
[実施例群II]エンドファイトの培養方法に関する実施例群
(比較例:固体培養のみによるxsd08001株の培養)
 使用菌株は、独立行政法人製品評価技術基盤機構(NITE)にNITE P-02438の受託番号にて寄託されたセファリオフォラ属(Cephaliophora sp.)xsd08001株である。同株が寒天培地に付着された状態で-80℃に保存されたものを種菌として使用した。
[Example Group II] Examples related to the cultivation method of endophytes
(Comparative Example: Cultivation of xsd08001 strain by solid culture only)
The strain used was the Cephaliophora sp. xsd08001 strain deposited at the National Institute of Technology and Evaluation (NITE) under the accession number NITE P-02438. The strain was attached to an agar medium and stored at -80°C and used as the seed culture.
 固体培養用培地は、プラスチック桶に固体培地として1000gのフスマに1500mLのイオン交換水を加えてよく混合し、含水率60%となるように作製した。 The solid culture medium was prepared by adding 1,000 g of bran to 1,500 mL of ion-exchanged water in a plastic tub and mixing well to give a moisture content of 60%.
 固体培養は、以下の方法により行った。固体培養用培地をフィルターつき袋に加えてから袋の口をテープで留め、オートクレーブで121℃、60分間滅菌した。培地を袋ごと室温まで冷却したのち、クリーンベンチ内で袋を開け、上記接種用の菌を培地上に静置し恒温恒湿機内において25℃、70%RHの環境下で静置して固体培養を行った。7日間の培養後、クリーンベンチ内で袋を開け、固体培養物を新しい固体培養用培地へ接種し、恒温恒湿機内において25℃、70%RHの環境下で静置して固体培養を行った。その後、袋をトレイの上で開き、固体培養物を砕き、よく混合してから、1gあたりのコロニー数を測定し約1×10cfu/gに達したことを確認した時点で培養完了としたところ、培養完了まで、25日を要した。また、新しい固体培養用培地への接種から10日目と25日目に固体培養物を観察し、汚染の状況や菌糸の伸長度合いを確認した。培養後、固体培養物をエアコン又は除湿器を使用して乾燥し、乾燥物をフードプロセッサーで粉砕して資材を作製した。 The solid culture was carried out by the following method. The solid culture medium was added to a bag with a filter, the mouth of the bag was taped, and sterilized in an autoclave at 121 ° C. for 60 minutes. After cooling the medium together with the bag to room temperature, the bag was opened in a clean bench, the above-mentioned inoculation bacteria were placed on the medium, and the solid culture was carried out by leaving it in a thermostatic chamber under an environment of 25 ° C. and 70% RH. After 7 days of culture, the bag was opened in a clean bench, the solid culture was inoculated into a new solid culture medium, and the solid culture was carried out by leaving it in a thermostatic chamber under an environment of 25 ° C. and 70% RH. Thereafter, the bag was opened on a tray, the solid culture was crushed and mixed well, and the number of colonies per 1 g was measured. When it was confirmed that the number of colonies reached about 1 × 10 5 cfu / g, the culture was completed, and it took 25 days to complete the culture. In addition, the solid culture was observed on the 10th and 25th days after inoculation into the new solid culture medium, and the state of contamination and the degree of mycelium extension were confirmed. After the cultivation, the solid culture was dried using an air conditioner or a dehumidifier, and the dried material was ground in a food processor to prepare a material.
 結果を図3及び図4に示す。10日目の時点において、比較例では図3に示すように、白色の菌糸が固体培養物内で伸長しきっておらず、また、固体培養物における菌糸の広がりも不均一であった。また、所望の濃度を得るまでに新しい固体培養用培地への接種から更に25日を要した。つまり、種菌からの接種を起点とし、最終培養物を得るまでの期間は合計で32日かかり、培養に非常に時間がかかった。また、新しい固体培養用培地への接種から25日目の時点で菌糸が固体培養物の最下部まで伸長したものの、底面には至っておらず(図4a、b)、その上、黒カビによる汚染(図4c)や青カビによる汚染(図4d)も随所に確認された。さらに菌糸が伸長していない部分においてバクテリアによる汚染も確認され(図4e)、独特の腐敗臭とともに粘り気が生じていた。更に、資材の濃度を測定したところ、平均5×10cfu/gであったが、xsd08001株のものでないコロニーが多数存在することが確認された。 The results are shown in Figures 3 and 4. At the 10th day, in the comparative example, as shown in Figure 3, the white hyphae had not fully extended in the solid culture, and the hyphae were not uniformly spread in the solid culture. In addition, it took another 25 days from inoculation into the new solid culture medium to obtain the desired concentration. In other words, it took a total of 32 days from inoculation of the seed fungus to obtaining the final culture, and the culture took a very long time. In addition, at the 25th day from inoculation into the new solid culture medium, the hyphae extended to the bottom of the solid culture, but did not reach the bottom (Figures 4a, b), and furthermore, contamination by black mold (Figure 4c) and blue mold (Figure 4d) was confirmed everywhere. Furthermore, bacterial contamination was confirmed in the parts where the hyphae had not extended (Figure 4e), and a unique putrid odor and stickiness were generated. Furthermore, when the concentration of the material was measured, it was found to be 5×10 6 cfu/g on average, but it was confirmed that there were many colonies that were not of the xsd08001 strain.
(実施例:液体培養及び固体培養を含むxsd08001株の培養)
 液体培養は以下の方法により行った。
 500mL容積の三角フラスコに以下の試薬を加えることにより液体培地を調製した。
  グルコース 4.0g
  酵母エキス 0.4g
  硫酸マグネシウム 0.1g
  ペプトン 0.2g
  リン酸二水素カリウム 0.2g
  イオン交換水 200mL
Example: Cultivation of strain xsd08001, including liquid and solid cultures
Liquid culture was carried out as follows.
A liquid medium was prepared by adding the following reagents to a 500 mL Erlenmeyer flask:
Glucose 4.0g
Yeast extract 0.4g
Magnesium sulfate 0.1g
Peptone 0.2g
Potassium dihydrogen phosphate 0.2g
Ion-exchanged water 200mL
 上記フラスコにスターラーを加えてシリコ栓でフラスコの口を塞ぎ、オートクレーブで121℃、20分間滅菌した。冷却後、クリーンベンチ内で-80℃から融解された寒天培地に付着された種菌を試験菅からデカンテーションで直接フラスコに添加して液体培地に接種した。この種菌は、比較例で用いた種菌と同じである。フラスコの口をシリコ栓で封じ、スターラーを用いて25℃、700rpmで攪拌培養した。1Lあたりの平均コロニー数が約3.0×10cfu/培地Lに達したときに培養を完了したところ、培養完了まで3日間を要した。 A stirrer was added to the flask, the mouth of the flask was sealed with a silicone stopper, and the flask was sterilized in an autoclave at 121°C for 20 minutes. After cooling, the seed bacteria attached to the agar medium melted from -80°C in a clean bench was added directly to the flask by decantation from the test tube to inoculate the liquid medium. This seed bacteria was the same as the seed bacteria used in the comparative example. The mouth of the flask was sealed with a silicone stopper, and the mixture was stirred and cultured at 25°C and 700 rpm using a stirrer. The culture was completed when the average number of colonies per liter reached about 3.0 x 106 cfu/L of medium, and it took 3 days to complete the culture.
 固体培養は以下の方法により行った。固体培養培地を比較例と同じ方法で作製、袋詰め、滅菌を行った。3日間の液体培養後、滅菌済み固体培養用培地入りの通気フィルターを備えた使い捨ての袋をクリーンベンチ内で開け、80mLの液体培養物を滅菌マイクロピペットを用いるか又はフラスコの口をバーナーで炙ってからデカントし直接添加することにより固体培養用培地の全体にいきわたるようにかけて接種した。接種後、袋の口をシール機で留め、比較例と同じ環境下にて固体培養を行い、1gあたりの平均コロニー数が約1×10cfu/gに達したことを確認した時点で培養完了とした。培養完了まで、液体培養開始後更に10日を要した。固体培養後、固体培養物を比較例と同じ方法で乾燥し、乾燥物をフードプロセッサーで粉砕した。 Solid culture was carried out by the following method. The solid culture medium was prepared, bagged, and sterilized in the same manner as in the comparative example. After 3 days of liquid culture, a disposable bag equipped with an aeration filter containing the sterilized solid culture medium was opened in a clean bench, and 80 mL of liquid culture was inoculated so as to spread throughout the solid culture medium by using a sterile micropipette or by decanting and directly adding the liquid culture medium after heating the mouth of the flask with a burner. After inoculation, the mouth of the bag was sealed with a sealer, and solid culture was carried out under the same environment as in the comparative example. The culture was completed when it was confirmed that the average number of colonies per gram reached about 1 x 105 cfu/g. It took another 10 days after the start of liquid culture until the culture was completed. After solid culture, the solid culture was dried in the same manner as in the comparative example, and the dried product was crushed in a food processor.
 結果を図3に示す。図3に示すように、10日目の時点で比較例では白色の菌糸が菌床に伸長しきっていなかったのに対し、実施例では裏面まで菌糸が伸長しており、10日で培養が完了できた。また、種菌からの接種を起点とし、最終培養物を得るまでの期間も合計13日しかかからず、比較例の場合と比べて格段に短縮できた。更に、固体培養物における菌糸の広がりも均一であり、眼に見える汚染も確認されず、腐敗臭や粘り気もなかった。また、資材の濃度は、資材1gあたりのコロニー数が5×10~4×10cfu/gであり、さらに粒子の大きさが均一で品質のばらつきが小さいことが確認された。 The results are shown in Figure 3. As shown in Figure 3, in the comparative example, the white mycelium had not yet fully extended on the fungal bed at the time of the 10th day, whereas in the example, the mycelium had extended to the back side, and the culture was completed in 10 days. In addition, the period from the inoculation of the seed fungus to obtaining the final culture was only 13 days in total, which was significantly shorter than that of the comparative example. Furthermore, the mycelium spread evenly in the solid culture, no visible contamination was confirmed, and there was no putrid odor or stickiness. In addition, the concentration of the material was confirmed to be 5 x 10 6 to 4 x 10 7 cfu/g in terms of the number of colonies per 1 g of material, and furthermore, the particle size was uniform and there was little variation in quality.
参考実験1:固体培養用培地における含水率の影響
参考実験1-1:
 以下の方法により、固体培養用培地における最適な含水率を求めた。
Reference experiment 1: Effect of water content in solid culture medium
Reference Experiment 1-1:
The optimal water content in the solid culture medium was determined by the following method.
(参考例1)
 10gのフスマに、含水率50質量%となるようにイオン交換水を加え、これを固体培養用培地として用いた。この培地をガラスシャーレに入れ、121℃、60分でオートクレーブ滅菌したのち、クリーンベンチ内でxsd08001株の種菌を無菌的に接種した。25℃、90%RHで静置し、ガラスシャーレの裏面にて、伸長した菌糸体が確認できる領域の中心をとおる最短の長さを測定し、伸長菌糸のコロニーの直径とした。
(Reference Example 1)
Ion-exchanged water was added to 10 g of bran to a moisture content of 50% by mass, and this was used as a medium for solid culture. This medium was placed in a glass petri dish and sterilized in an autoclave at 121°C for 60 minutes, and then inoculated with an inoculum of xsd08001 strain aseptically in a clean bench. The medium was left to stand at 25°C and 90% RH, and the shortest length passing through the center of the area where the elongated mycelium could be confirmed on the back of the glass petri dish was measured, and this was taken as the diameter of the colony of the elongated mycelium.
(参考例2)
 イオン交換水の量を調節して含水率を60質量%とした以外は、参考例1と同様にして、伸長菌糸のコロニーの直径を測定した。
(Reference Example 2)
The diameter of colonies of elongated hyphae was measured in the same manner as in Reference Example 1, except that the amount of ion-exchanged water was adjusted to give a water content of 60% by mass.
(比較参考例1)
 イオン交換水の量を調節して含水率を40質量%とした以外は、参考例1と同様にして、伸長菌糸のコロニーの直径を測定した。
(Comparative Reference Example 1)
The diameter of colonies of elongated hyphae was measured in the same manner as in Reference Example 1, except that the amount of ion-exchanged water was adjusted to give a water content of 40% by mass.
(比較参考例2)
 イオン交換水の量を調節して含水率を45質量%とした以外は、参考例1と同様にして、伸長菌糸のコロニーの直径を測定した。
(Comparative Reference Example 2)
The diameter of colonies of elongated hyphae was measured in the same manner as in Reference Example 1, except that the amount of ion-exchanged water was adjusted to give a water content of 45% by mass.
 結果を表7に示す。含水率が60質量%以下の参考例1及び2並びに比較参考例1及び2の場合、表7に示すように、含水率が高いほど伸長菌糸のコロニーの直径が大きくなる傾向が確認された。 The results are shown in Table 7. In the case of Reference Examples 1 and 2 and Comparative Reference Examples 1 and 2, which have a moisture content of 60% by mass or less, as shown in Table 7, it was confirmed that the higher the moisture content, the larger the diameter of the colonies of elongated hyphae.
参考実験1-2:
 参考実験1-1の結果より、含水率が高い方が培養効率が高くなることが示唆されたため、含水率を更に上げて以下のように70質量%及び80質量%の固体培養用培地を作製し、参考実験1-1と同じ方法で作製した参考例1及び2の固体培養用培地と比較する実験を行った。
Reference Experiment 1-2:
The results of Reference Experiment 1-1 suggested that a higher moisture content would result in higher culture efficiency. Therefore, solid culture media with a moisture content of 70% by mass and 80% by mass were prepared as follows by further increasing the moisture content, and experiments were conducted to compare the media with those of Reference Examples 1 and 2 prepared in the same manner as in Reference Experiment 1-1.
(参考例3)
 イオン交換水の量を調節して含水率を70質量%とした以外は、参考例1と同様にして、伸長菌糸のコロニーの直径を測定した。
(Reference Example 3)
The diameter of colonies of elongated hyphae was measured in the same manner as in Reference Example 1, except that the amount of ion-exchanged water was adjusted to give a water content of 70% by mass.
(比較参考例3)
 イオン交換水の量を調節して含水率を80質量%とした以外は、参考例1と同様にして、培養を行った。
(Comparative Reference Example 3)
Cultivation was carried out in the same manner as in Reference Example 1, except that the amount of ion-exchanged water was adjusted to a water content of 80% by mass.
 結果を表8並びに図5及び図6に示す。含水率が70質量%以下の場合、含水率が高いほど、表8に示すように、伸長菌糸のコロニーの直径が大きく、図5に示すように、菌糸体の長さは長く、菌糸体の密度が高くなる傾向が確認され、白い菌糸が明確に目視できた。よって、70質量%以下の場合、固体培養用培地は、含水率が高いほど培養効率が高くなることが示唆される。しかしながら、固体培養用培地は、比較参考例3に示す含水率が80質量%の場合、図6に示すように、水分過多により培地に間隙が生じず菌糸が伸長できず十分に生育できなかった。これは、xsd08001株が属するCephaliophora sp.は好気性の糸状菌であることに起因するものと考えられる。 The results are shown in Table 8 and Figures 5 and 6. When the moisture content was 70% by mass or less, the higher the moisture content, the larger the diameter of the colony of elongated hyphae, as shown in Table 8, and the longer the mycelium, as shown in Figure 5, the higher the mycelium density, and the white mycelium was clearly visible. Therefore, when the moisture content was 70% by mass or less, it is suggested that the higher the moisture content of the solid culture medium, the higher the culture efficiency. However, when the moisture content of the solid culture medium was 80% by mass as shown in Comparative Reference Example 3, as shown in Figure 6, the excess moisture did not create gaps in the medium, preventing the mycelium from elongating and sufficient growth. This is thought to be due to the fact that Cephaliophora sp., to which the xsd08001 strain belongs, is an aerobic filamentous fungus.
 以上の結果により、固体培養用培地における含水率は、45質量%超80質量%未満、例えば、50質量%以上75質量%以下、50質量%以上70質量%以下が好ましいことが示唆される。 These results suggest that the moisture content in solid culture media should preferably be greater than 45% by mass and less than 80% by mass, for example, 50% by mass or more and 75% by mass or less, or 50% by mass or more and 70% by mass or less.
参考実験2:固体培養における湿度の影響
 参考実験1で良好な結果を示した固体培養培地の含水率である50質量%と60質量%を採用し、固体培養における湿度の影響を調べた。参考実験1より、湿度90%RHの場合、十分に良好な生育が確認されているため、下限を調べるべく、以下のように湿度70%RHによる培養を試みた。
Reference Experiment 2: Effect of humidity on solid culture The effect of humidity on solid culture was investigated using the moisture contents of 50% and 60% by mass, which are the solid culture media that showed good results in Reference Experiment 1. Since Reference Experiment 1 confirmed that the growth was sufficiently good at a humidity of 90% RH, in order to investigate the lower limit, culture at a humidity of 70% RH was attempted as follows.
(参考例4)
 湿度を70%RHとした以外は、参考例1と同様にして含水率が50質量%の固体培養培地にて伸長菌糸のコロニーの直径を測定した。
(Reference Example 4)
The diameter of colonies of elongated hyphae was measured in a solid culture medium having a moisture content of 50% by mass in the same manner as in Reference Example 1, except that the humidity was set to 70% RH.
(参考例5)
 湿度を70%RHとした以外は、参考例2と同様にして含水率が60質量%の固体培養培地にて伸長菌糸のコロニーの直径を測定した。
(Reference Example 5)
The diameter of colonies of elongated hyphae was measured in a solid culture medium having a moisture content of 60% by mass in the same manner as in Reference Example 2, except that the humidity was set to 70% RH.
 培養6日目の結果を図7に示す。図7に示すように、湿度を70%RHに下げても、50質量%と60質量%のいずれの場合も良好な培養が可能であった。従って、固体培養における湿度は、70%RH~90%RHの範囲であれば好ましく、例えば、60%RH~100%RHといった広範な湿度範囲や、例えば、60~80%RHといった比較的低湿度であっても良好に行うことが可能であることが示唆される。 The results on the sixth day of cultivation are shown in Figure 7. As shown in Figure 7, even when the humidity was lowered to 70% RH, good cultivation was possible at both 50% and 60% by mass. Therefore, it is preferable for the humidity in solid cultivation to be in the range of 70% to 90% RH, and it is suggested that good cultivation can be performed in a wide range of humidity, for example, 60% to 100% RH, or even at a relatively low humidity, for example, 60 to 80% RH.
 以上の結果より、本願発明を用いると、固体培養のみの培養方法と比較しても培養時間が短縮でき、汚染も少なく、更に菌糸が培地全体に均一に伸長する質の良い培養物が得られた。 The above results show that the use of the present invention can shorten the culture time compared to solid culture alone, reduces contamination, and produces high-quality cultures in which mycelia grow uniformly throughout the medium.

Claims (16)

  1.  セファリオフォラ属(Cephaliophora sp.)xsd08001株の乾燥固体培養物を含む資材であって、
     前記乾燥固体培養物は、体積粒度分布における累積50%粒子径(D50)が100~900μmかつ累積90%粒子径(D90)が1000~5000μmである、資材。
    A material comprising a dry solid culture of Cephaliophora sp. xsd08001 strain,
    The dried solid culture material has a cumulative 50% particle size (D 50 ) of 100 to 900 μm and a cumulative 90% particle size (D 90 ) of 1000 to 5000 μm in a volumetric particle size distribution.
  2.  前記乾燥固体培養物1gあたりの平均コロニー数は、1×10~1×10cfu(Colony Forming Unit)/gの濃度である、請求項1に記載の資材。 2. The material according to claim 1, wherein the average number of colonies per gram of the dry solid culture is at a concentration of 1×10 5 to 1×10 9 cfu (Colony Forming Unit)/g.
  3.  植物の生育促進のための、請求項1又は請求項2に記載の資材。 A material as described in claim 1 or claim 2 for promoting plant growth.
  4.  セファリオフォラ属(Cephaliophora sp.)xsd08001株の乾燥固体培養物を含む資材を製造する製造方法であって、
     前記株の前記乾燥固体培養物を得る培養工程と、
     前記乾燥固体培養物の体積粒度分布における累積50%粒子径(D50)を100~900μmかつ累積90%粒子径(D90)を1000~5000μmに調整する調整工程と、を含む製造方法。
    A method for producing a material containing a dried solid culture of Cephaliophora sp. xsd08001 strain, comprising:
    a culturing step to obtain said dry solid culture of said strain;
    and adjusting the cumulative 50% particle size (D 50 ) in the volumetric particle size distribution of the dried solid culture product to 100 to 900 μm and the cumulative 90% particle size (D 90 ) to 1000 to 5000 μm.
  5.  前記培養工程は、
     前記株を液体培養に供する液体培養工程と、
    前記液体培養工程で培養された前記株を固体培養で培養する固体培養工程と、
     前記固体培養工程により得られた固体培養物を乾燥して前記乾燥固体培養物を生成する乾燥工程と、を有し、
     前記調整工程は、前記乾燥工程で乾燥した前記乾燥固体培養物を粉砕する粉砕工程、を含む、請求項4に記載の製造方法。
    The culture step comprises:
    A liquid culture step of subjecting the strain to liquid culture;
    A solid culture step of culturing the strain cultured in the liquid culture step in solid culture;
    A drying step of drying the solid culture obtained by the solid culture step to produce the dried solid culture,
    The method according to claim 4 , wherein the adjusting step includes a grinding step of grinding the dried solid culture product dried in the drying step.
  6.  前記固体培養工程は、固体培地と水を含有する固体培養用培地を用いて実施される、請求項5に記載の製造方法。 The method according to claim 5, wherein the solid culture step is carried out using a solid culture medium containing a solid medium and water.
  7.  前記固体培養用培地は、含水率が50~70%である、請求項6に記載の製造方法。 The method of claim 6, wherein the solid culture medium has a water content of 50 to 70%.
  8.  前記固体培養用培地は、フスマを含む、請求項6又は請求項7に記載の資材。 The material according to claim 6 or claim 7, wherein the solid culture medium contains bran.
  9.  セファリオフォラ属(Cephaliophora sp.)xsd08001株を培養する方法であって、
     前記株を液体培養に供することにより液体培養物を得ることと、
     得られた液体培養物を固体培養に供することにより固体培養物を得ることを含む、培養方法。
    A method for culturing Cephaliophora sp. xsd08001 strain, comprising:
    Obtaining a liquid culture by subjecting the strain to liquid culture;
    The culture method includes subjecting the obtained liquid culture to solid culture to obtain a solid culture.
  10.  前記固体培養は、固体培地および水を含有する固体培養用培地を使用して実施される、請求項9の培養方法。 The culture method of claim 9, wherein the solid culture is carried out using a solid culture medium containing a solid medium and water.
  11.  前記固体培養用培地の含水率は50~70%である、請求項9の培養方法。 The culture method of claim 9, wherein the moisture content of the solid culture medium is 50 to 70%.
  12.  前記固体培地は、フスマを含む、請求項9の培養方法。 The culture method of claim 9, wherein the solid medium contains bran.
  13.  前記液体培養は2~4日間行われる、請求項9の培養方法。 The culture method of claim 9, wherein the liquid culture is carried out for 2 to 4 days.
  14.  前記固体培養は7~12日間行われる、請求項9の培養方法。 The culture method of claim 9, wherein the solid culture is carried out for 7 to 12 days.
  15.  前記液体培養及び/又は固体培養は60~90%RHの室内湿度で行われる、請求項9の培養方法。 The culture method of claim 9, wherein the liquid culture and/or solid culture is carried out at an indoor humidity of 60 to 90% RH.
  16.  請求項9~15のいずれか1項に記載の培養方法により得られる培養物。 A culture obtained by the culture method according to any one of claims 9 to 15.
PCT/JP2023/028021 2022-09-30 2023-07-31 Endophyte material, and method for cultivating endophyte WO2024070193A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-158758 2022-09-30
JP2022-158794 2022-09-30
JP2022158794 2022-09-30
JP2022158758 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024070193A1 true WO2024070193A1 (en) 2024-04-04

Family

ID=90477075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028021 WO2024070193A1 (en) 2022-09-30 2023-07-31 Endophyte material, and method for cultivating endophyte

Country Status (1)

Country Link
WO (1) WO2024070193A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003079362A (en) * 2001-07-05 2003-03-18 Dainippon Ink & Chem Inc Method for producing mycotic spore
JP2007014296A (en) * 2005-07-11 2007-01-25 Nitto Denko Corp Method for culturing filamentous fungus
WO2017188051A1 (en) * 2016-04-28 2017-11-02 クミアイ化学工業株式会社 Composition for pesticide formulation using trichoderma fungi, method for producing same, and method for applying same
JP2018174708A (en) * 2017-04-03 2018-11-15 協和化学工業株式会社 Raising method of high functional component-including plant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003079362A (en) * 2001-07-05 2003-03-18 Dainippon Ink & Chem Inc Method for producing mycotic spore
JP2007014296A (en) * 2005-07-11 2007-01-25 Nitto Denko Corp Method for culturing filamentous fungus
WO2017188051A1 (en) * 2016-04-28 2017-11-02 クミアイ化学工業株式会社 Composition for pesticide formulation using trichoderma fungi, method for producing same, and method for applying same
JP2018174708A (en) * 2017-04-03 2018-11-15 協和化学工業株式会社 Raising method of high functional component-including plant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BEMILLER, JAMES N. ET AL. : "Production of Indoleacetic Acid by Cephaliophora tropica. ", TRANSACTIONS OF THE ILLINOIS STATE ACADEMY OF SCIENCE, ILLINOIS STATE ACADEMY OF SCIENCE, SPRINGFIELD, IL, US, vol. 59, no. 4, 1 January 1966 (1966-01-01), US , pages 388 - 389, XP009553742, ISSN: 0019-2252 *

Similar Documents

Publication Publication Date Title
TWI424060B (en) Mushrooms of the fungal bed cultivation method
JP3781434B2 (en) Artificial fungus bed cultivation method of Agaricus persimmon fruiting body
KR101645802B1 (en) Cultivating method of mushroom using sawdust media
CN102742452A (en) Manufacture method of corncob halimasch production seeds
CN102369838B (en) The production method of the liquid strain bacterium of mushroom
JP5124670B2 (en) Mushroom artificial cultivation method
TW201026220A (en) Fungal bed cultivation method of hon-shimeji mushroom
KR101687892B1 (en) Cultivating method of pleurotus eryngii and the composition of cultur medium
CN106718016A (en) A kind of earthing matrix for improving agaricus bisporus fruit-body formation amount and preparation method thereof
WO2024070193A1 (en) Endophyte material, and method for cultivating endophyte
KR101687891B1 (en) Cultivating method of tree ear and the composition of cultur medium
KR101687890B1 (en) Cultivating method of oyster mushroomr and the composition of culture medium
KR100362902B1 (en) Process for mass production of Cordyceps bassiana
JP3871425B2 (en) Mukitake cultivation method
JP4132536B2 (en) Artificial cultivation method of Honshimeji
JP4685821B2 (en) Artificial cultivation method of Honshimeji
JP4202541B2 (en) Artificial cultivation method of Honshimeji
JP4751409B2 (en) Artificial cultivation method of Honshimeji
JP3542945B2 (en) Artificial cultivation method of Hatake Shimeji
JP4063707B2 (en) Mushroom artificial cultivation method
KR100380029B1 (en) Process for manufacturing powdered seed of a mushroom
JPS5839485B2 (en) How to cultivate Maitake mushrooms
JP3735267B2 (en) Hatake shimeji cultivation method
JP4842235B2 (en) Mushroom artificial cultivation method
KR101645801B1 (en) Sawdust media for cultivating mushroom and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871436

Country of ref document: EP

Kind code of ref document: A1