WO2024070164A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2024070164A1
WO2024070164A1 PCT/JP2023/027048 JP2023027048W WO2024070164A1 WO 2024070164 A1 WO2024070164 A1 WO 2024070164A1 JP 2023027048 W JP2023027048 W JP 2023027048W WO 2024070164 A1 WO2024070164 A1 WO 2024070164A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate
region
trench
source
insulating film
Prior art date
Application number
PCT/JP2023/027048
Other languages
French (fr)
Japanese (ja)
Inventor
景 千賀
誠悟 森
翔悟 小川
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2024070164A1 publication Critical patent/WO2024070164A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Definitions

  • the present invention relates to a semiconductor device.
  • Patent document 1 discloses a semiconductor device including a semiconductor layer, a gate insulating film selectively formed on the surface of the semiconductor layer, a built-in resistor formed on the gate insulating film, an interlayer film formed on the surface of the semiconductor layer so as to cover the built-in resistor, a gate metal formed on the interlayer film and electrically connected to the built-in resistor, and a gate finger formed on the interlayer insulating film and electrically connected to the gate metal via the built-in resistor.
  • a relatively large source-drain voltage V DS /dt generated during switching may damage the gate insulating film between the semiconductor layer and the built-in resistor, resulting in an increase in leakage current.
  • the objective of one embodiment of the present disclosure is to provide a semiconductor device that can suppress leakage current.
  • An embodiment of the present disclosure provides a semiconductor device including a chip having a main surface and made of a semiconductor of a first conductivity type, a first region of a second conductivity type selectively formed on a surface layer portion of the main surface side of the chip, a trench gate structure formed on the main surface, a trench source structure formed on the main surface, an insulating film selectively formed on the main surface of the chip, an interlayer insulating film selectively arranged on the insulating film, a gate electrode arranged on the interlayer insulating film and applying a gate potential to the trench gate structure, a source electrode arranged on the interlayer insulating film and applying a source potential to the trench source structure, a gate connection conductive film formed on the insulating film and electrically connected to the gate electrode, and a contact region of a second conductivity type selectively formed on a surface layer portion of the first region and electrically connected to the source electrode, where the region of the contact region to which the source electrode is joined is defined as a source/contact junction region, and
  • This configuration helps to suppress leakage current.
  • FIG. 1 is a plan view showing a semiconductor device according to an embodiment.
  • FIG. 2 is a cross-sectional view taken along the line II-II shown in FIG.
  • FIG. 3 is a plan view showing the layout of the gate electrodes and source electrodes.
  • FIG. 4 is a plan view showing the layout of the first main surface.
  • FIG. 5 is an enlarged plan view showing the layout of the active regions.
  • FIG. 6 is an enlarged plan view showing the layout of the peripheral region.
  • FIG. 7 is a cross-sectional view taken along line VII-VII shown in FIG.
  • FIG. 8 is a cross-sectional view taken along line VIII-VIII shown in FIG.
  • FIG. 9 is a cross-sectional view taken along line IX-IX shown in FIG.
  • FIG. 1 is a plan view showing a semiconductor device according to an embodiment.
  • FIG. 2 is a cross-sectional view taken along the line II-II shown in FIG.
  • FIG. 3 is a plan view showing the layout
  • FIG. 10 is a cross-sectional view taken along line X-X shown in FIG.
  • FIG. 11 is a cross-sectional view taken along the line XI-XI shown in FIG.
  • FIG. 12 is a cross-sectional view taken along line XII-XII shown in FIG.
  • FIG. 13 is an enlarged plan view showing the layout of the termination region.
  • FIG. 14 is an enlarged plan view showing the layout of the gate resistors.
  • FIG. 15 is an enlarged plan view showing the inner part of the gate resistor.
  • FIG. 16 is an enlarged plan view showing the periphery of the gate resistor.
  • 17 is a cross-sectional view taken along line XVII-XVII shown in FIG.
  • FIG. 18 is a cross-sectional view taken along line XVIII-XVIII shown in FIG. 15.
  • FIG. 19 is a cross-sectional view taken along line XIX-XIX shown in FIG.
  • FIG. 20 is a cross-sectional view taken along the line XX-XX shown in FIG. 21 is a cross-sectional view taken along line XXI-XXI shown in FIG. 16.
  • FIG. 22 is a cross-sectional view taken along line XXII-XXII shown in FIG. 16.
  • FIG. 23 is an enlarged plan view showing a main part of the gate resistor.
  • FIG. 24 is an enlarged plan view showing the layout of the termination dummy structure.
  • FIG. 24 is an enlarged plan view showing the layout of the termination dummy structure.
  • FIG. 25 is a further enlarged plan view showing the layout of the termination dummy structure.
  • 26 is a cross-sectional view taken along line XXVI-XXVI shown in FIG. 25.
  • FIG. FIG. 27 is an electrical circuit diagram showing a connection form of the gate electrode and the gate resistor.
  • FIG. 28 is a cross-sectional view showing the structure of the outer periphery region.
  • FIG. 29 is a cross-sectional view taken along line XXIX-XXIX in FIG.
  • FIG. 30 is an enlarged plan view showing a part of the region E3 in FIG. 31 is a cross-sectional view taken along line XXXI-XXXI in FIG. 30.
  • this phrase includes a numerical value (shape) equal to the numerical value (shape) of the comparison target, as well as a numerical error (shape error) within a range of ⁇ 10% based on the numerical value (shape) of the comparison target.
  • the words “first,” “second,” “third,” etc. are used, but these are symbols added to the names of each structure to clarify the order of explanation, and are not added with the intention of limiting the names of each structure.
  • FIG. 1 is a plan view showing a semiconductor device 1 according to one embodiment.
  • FIG. 2 is a cross-sectional view taken along line II-II shown in FIG. 1.
  • FIG. 3 is a plan view showing the layout of a gate electrode 100 and a source electrode 120.
  • FIG. 4 is a plan view showing the layout of a first main surface 3.
  • the semiconductor device 1 is a semiconductor switching device including a MISFET (Metal Insulator Semiconductor Field Effect Transistor).
  • MISFET Metal Insulator Semiconductor Field Effect Transistor
  • the semiconductor device 1 includes a chip 2 that includes a single crystal of a wide bandgap semiconductor and is formed in a hexahedral shape (specifically, a rectangular parallelepiped shape).
  • the semiconductor device 1 is a "wide bandgap semiconductor device.”
  • the chip 2 may also be referred to as a “semiconductor chip” or a "wide bandgap semiconductor chip.”
  • a wide bandgap semiconductor is a semiconductor that has a bandgap that exceeds the bandgap of Si (silicon). Examples of wide bandgap semiconductors include GaN (gallium nitride), SiC (silicon carbide), and C (diamond).
  • the chip 2 is a "SiC chip” that includes hexagonal SiC single crystal as an example of a wide band gap semiconductor.
  • the semiconductor device 1 is a "SiC semiconductor device.”
  • the semiconductor device 1 may also be referred to as a "SiC-MISFET.”
  • the hexagonal SiC single crystal has multiple polytypes including 2H (Hexagonal)-SiC single crystal, 4H-SiC single crystal, 6H-SiC single crystal, and the like.
  • the chip 2 includes 4H-SiC single crystal, but the chip 2 may include other polytypes.
  • the chip 2 has a first main surface 3 on one side, a second main surface 4 on the other side, and first to fourth side surfaces 5A to 5D connecting the first main surface 3 and the second main surface 4.
  • the first main surface 3 and the second main surface 4 are formed in a quadrangular shape when viewed in a plan view from their normal direction Z (hereinafter simply referred to as "plan view").
  • the normal direction Z is also the thickness direction of the chip 2.
  • the first main surface 3 and the second main surface 4 are preferably formed by the c-plane of a SiC single crystal.
  • the first main surface 3 is formed by the silicon surface ((0001) surface) of the SiC single crystal
  • the second main surface 4 is formed by the carbon surface ((000-1) surface) of the SiC single crystal.
  • the first main surface 3 and the second main surface 4 may have an off angle inclined at a predetermined angle in a predetermined off direction with respect to the c-plane.
  • the off direction is preferably the a-axis direction ([11-20] direction) of the SiC single crystal.
  • the off angle may be greater than 0° and less than or equal to 10°.
  • the off angle is preferably less than or equal to 5°.
  • the first side surface 5A and the second side surface 5B extend in a first direction X along the first main surface 3 and face a second direction Y that intersects (specifically, perpendicular to) the first direction X.
  • the third side surface 5C and the fourth side surface 5D extend in the second direction Y and face the first direction X.
  • the first direction X may be the m-axis direction ([1-100] direction) of the SiC single crystal
  • the second direction Y may be the a-axis direction of the SiC single crystal.
  • the first direction X may be the a-axis direction of the SiC single crystal
  • the second direction Y may be the m-axis direction of the SiC single crystal.
  • the chip 2 may have a thickness of 5 ⁇ m or more and 200 ⁇ m or less.
  • the thickness of the chip 2 may be 150 ⁇ m or less, 100 ⁇ m or less, 80 ⁇ m or less, 50 ⁇ m or less, or 40 ⁇ m or less.
  • the first to fourth sides 5A to 5D may have a length of 0.5 mm or more and 10 mm or less in a plan view. It is preferable that the length of the first to fourth sides 5A to 5D is 1 mm or more.
  • the length of the first to fourth side surfaces 5A to 5D is 2 mm or more.
  • the chip 2 has a planar area of 1 mm square or more (preferably 2 mm square or more) and a thickness of 100 ⁇ m or less (preferably 50 ⁇ m or less) in a cross-sectional view.
  • the length of the first to fourth side surfaces 5A to 5D is set in the range of 4 mm or more and 6 mm or less.
  • the semiconductor device 1 includes an n-type first semiconductor region 6 formed in a region (surface layer) on the first main surface 3 side of the chip 2.
  • the first semiconductor region 6 is formed in a layer extending along the first main surface 3, and is exposed from the first main surface 3 and the first to fourth side surfaces 5A to 5D.
  • the first semiconductor region 6 is made of an epitaxial layer (specifically, a SiC epitaxial layer).
  • the first semiconductor region 6 may have a thickness of 1 ⁇ m or more and 50 ⁇ m or less.
  • the thickness of the first semiconductor region 6 is preferably 3 ⁇ m or more and 30 ⁇ m or less. It is particularly preferable that the thickness of the first semiconductor region 6 is 5 ⁇ m or more and 25 ⁇ m or less.
  • the semiconductor device 1 includes an n-type second semiconductor region 7 formed in a region (surface layer) on the second main surface 4 side within the chip 2.
  • the second semiconductor region 7 is formed in a layer extending along the second main surface 4, and is exposed from the second main surface 4 and the first to fourth side surfaces 5A to 5D.
  • the second semiconductor region 7 has a higher n-type impurity concentration than the first semiconductor region 6, and is electrically connected to the first semiconductor region 6.
  • the second semiconductor region 7 is made of a semiconductor substrate (specifically, a SiC semiconductor substrate). That is, the chip 2 has a layered structure including a semiconductor substrate and an epitaxial layer.
  • the second semiconductor region 7 may have a thickness of 1 ⁇ m or more and 200 ⁇ m or less.
  • the thickness of the second semiconductor region 7 may be 150 ⁇ m or less, 100 ⁇ m or less, 50 ⁇ m or less, or 40 ⁇ m or less.
  • the thickness of the second semiconductor region 7 may be 5 ⁇ m or more.
  • the thickness of the second semiconductor region 7 is preferably 10 ⁇ m or more.
  • the second semiconductor region 7 has a thickness that exceeds the thickness of the first semiconductor region 6.
  • the semiconductor device 1 includes an active surface 8, an outer surface 9, and first to fourth connecting surfaces 10A-10D formed on the first main surface 3.
  • the active surface 8, the outer surface 9, and the first to fourth connecting surfaces 10A-10D define an active plateau 11 on the first main surface 3.
  • the active surface 8 may be referred to as the "first surface portion,” the outer surface 9 as the “second surface portion,” and the first to fourth connecting surfaces 10A-10D as the "connecting surface portion.”
  • the active surface 8, the outer surface 9, and the first to fourth connecting surfaces 10A-10D (i.e., the active plateau 11) may be considered as components of the chip 2 (first main surface 3).
  • the active surface 8 is formed at a distance inward from the periphery (first to fourth side surfaces 5A to 5D) of the first main surface 3.
  • the active surface 8 has a flat surface extending in the first direction X and the second direction Y.
  • the active surface 8 is formed by a c-plane (Si-plane).
  • the active surface 8 is formed in a quadrangle shape having four sides parallel to the first to fourth side surfaces 5A to 5D in a plan view.
  • the outer peripheral surface 9 is located outside the active surface 8 and is recessed from the active surface 8 in the thickness direction of the chip 2 (towards the second main surface 4). Specifically, the outer peripheral surface 9 is recessed to a depth less than the thickness of the first semiconductor region 6 so as to expose the first semiconductor region 6.
  • the outer peripheral surface 9 extends in a band shape along the active surface 8 in a plan view and is formed in a ring shape (specifically a square ring shape) surrounding the active surface 8.
  • the outer peripheral surface 9 has a flat surface extending in the first direction X and the second direction Y, and is formed approximately parallel to the active surface 8.
  • the outer peripheral surface 9 is formed by a c-plane (Si-plane).
  • the outer peripheral surface 9 is continuous with the first to fourth side surfaces 5A to 5D.
  • the outer peripheral surface 9 has a outer peripheral depth DO.
  • the outer peripheral depth DO may be 0.5 ⁇ m or more and 5 ⁇ m or less. It is preferable that the outer peripheral depth DO is 2.5 ⁇ m or less.
  • the first to fourth connection surfaces 10A to 10D extend in the normal direction Z and connect the active surface 8 and the outer peripheral surface 9.
  • the first connection surface 10A is located on the first side surface 5A side
  • the second connection surface 10B is located on the second side surface 5B side
  • the third connection surface 10C is located on the third side surface 5C side
  • the fourth connection surface 10D is located on the fourth side surface 5D side.
  • the first connection surface 10A and the second connection surface 10B extend in the first direction X and face the second direction Y.
  • the third connection surface 10C and the fourth connection surface 10D extend in the second direction Y and face the first direction X.
  • the first to fourth connection surfaces 10A to 10D may extend approximately vertically between the active surface 8 and the outer peripheral surface 9 so as to define a square-prism-shaped active plateau 11.
  • the first to fourth connection surfaces 10A to 10D may be inclined downward from the active surface 8 toward the outer peripheral surface 9 so as to define a square-prism-shaped active plateau 11.
  • the semiconductor device 1 includes an active plateau 11 that is defined in a protruding shape in the first semiconductor region 6 on the first main surface 3.
  • the active plateau 11 is formed only in the first semiconductor region 6, and is not formed in the second semiconductor region 7.
  • the semiconductor device 1 includes an active region 12, an outer peripheral region 13, a peripheral region 14, and a termination region 15.
  • the active region 12 is provided on the active surface 8.
  • the active region 12 is provided in the inner portion of the active surface 8 at a distance from the peripheral edge (first to fourth connection surfaces 10A to 10D) of the active surface 8.
  • the active region 12 is provided in a quadrangle shape having four sides parallel to the first to fourth side surfaces 5A to 5D in a plan view.
  • the outer peripheral region 13 is provided on the outer peripheral surface 9.
  • the outer peripheral region 13 is provided in a ring shape (specifically a quadrangular ring shape) surrounding the active surface 8 (active plateau 11) in a plan view.
  • the peripheral region 14 is provided on the active surface 8 in the region between the active region 12 and the outer peripheral region 13.
  • the peripheral region 14 is provided to sandwich the active region 12 from both sides in the first direction X, and extends in a strip shape in the second direction Y.
  • the peripheral region 14 includes a first peripheral region 14A and a second peripheral region 14B.
  • the first peripheral region 14A is provided on the third side surface 5C side (third connection surface 10C side) of the active region 12, and the second peripheral region 14B is provided on the fourth side surface 5D side (fourth connection surface 10D side) of the active region 12.
  • the termination region 15 is provided on the active surface 8 in the region between the active region 12 and the peripheral region 13.
  • the termination region 15 is provided to sandwich the active region 12 from both sides in the second direction Y, and extends in a strip shape in the first direction X.
  • the termination region 15 includes a first termination region 15A and a second termination region 15B.
  • the first termination region 15A is provided on the first side surface 5A side (first connection surface 10A side) of the active region 12, and the second termination region 15B is provided on the second side surface 5B side (second connection surface 10B side) of the active region 12.
  • the semiconductor device 1 includes a main surface insulating film 16 that covers the first main surface 3.
  • the main surface insulating film 16 selectively covers the active surface 8, the outer peripheral surface 9, and the first to fourth connection surfaces 10A to 10D.
  • the main surface insulating film 16 may include at least one of a silicon oxide film, a silicon nitride film, and a silicon oxynitride film.
  • the main surface insulating film 16 has a single-layer structure made of a silicon oxide film. It is particularly preferable that the main surface insulating film 16 includes a silicon oxide film made of an oxide of the chip 2. In this embodiment, the main surface insulating film 16 is continuous with the first to fourth side surfaces 5A to 5D. Of course, the wall portion of the main surface insulating film 16 may be formed at a distance inward from the periphery of the outer peripheral surface 9, exposing the first semiconductor region 6 from the periphery of the outer peripheral surface 9.
  • FIG. 5 is an enlarged plan view showing the layout of the active region 12.
  • FIG. 6 is an enlarged plan view showing the layout of the peripheral region 14.
  • FIG. 7 is a cross-sectional view taken along line VII-VII shown in FIG. 5.
  • FIG. 8 is a cross-sectional view taken along line VIII-VIII shown in FIG. 5.
  • FIG. 9 is a cross-sectional view taken along line IX-IX shown in FIG. 6.
  • FIG. 10 is a cross-sectional view taken along line X-X shown in FIG. 6.
  • FIG. 11 is a cross-sectional view taken along line XI-XI shown in FIG. 6.
  • FIG. 12 is a cross-sectional view taken along line XII-XII shown in FIG. 6.
  • FIG. 6 the layout on the first peripheral region 14A side is shown. Since the layout on the second peripheral region 14B side is almost the same as the layout on the first peripheral region 14A side, the layout on the first peripheral region 14A side will be mainly described below.
  • the layout on the second peripheral region 14B side can be obtained by replacing "third connection surface 10C" with "fourth connection surface 10D" in the following description.
  • the semiconductor device 1 includes a p-type (second conductivity type) body region 17 formed in a surface layer portion of the first main surface 3 (active surface 8).
  • the body region 17 is formed at a distance from the bottom of the first semiconductor region 6 toward the active surface 8.
  • the body region 17 is formed in a layer extending along the active surface 8.
  • the body region 17 is formed over the entire active surface 8, and may be exposed from the first to fourth connection surfaces 10A to 10D.
  • the semiconductor device 1 includes an n-type source region 18 formed in a surface layer portion of the first main surface 3 (active surface 8) in the active region 12. Specifically, the source region 18 is formed in the surface layer portion of the body region 17 with a gap from the bottom of the body region 17 toward the active surface 8. The source region 18 is not formed in the peripheral region 14 or the termination region 15.
  • the source region 18 may be formed in the peripheral region 14 and the termination region 15 to the extent that it does not affect the control of the channel.
  • the source region 18 has a higher n-type impurity concentration than the first semiconductor region 6.
  • the source region 18 forms a channel of the MISFET together with the first semiconductor region 6 in the body region 17.
  • the semiconductor device 1 includes a plurality of trench gate structures 20 formed on the first main surface 3 (active surface 8) in the active region 12.
  • a gate potential VG is applied to the plurality of trench gate structures 20 as a first potential.
  • the plurality of trench gate structures 20 control the inversion and non-inversion of the channel in the body region 17.
  • the plurality of trench gate structures 20 are each formed in a band shape extending in the first direction X in a plan view, and are arranged at intervals in the second direction Y.
  • the multiple trench gate structures 20 are arranged inward of the active surface 8 at intervals from the periphery of the active surface 8. Specifically, the multiple trench gate structures 20 are arranged at intervals in the first direction X and the second direction Y from the first to fourth connection surfaces 10A to 10D.
  • the multiple trench gate structures 20 define an active region 12 in the inner part of the active surface 8, and at the same time define a peripheral region 14 and a termination region 15 together with the periphery of the active surface 8.
  • the multiple trench gate structures 20 penetrate the body region 17 and the source region 18 to reach the first semiconductor region 6.
  • the multiple trench gate structures 20 are formed at intervals from the bottom of the first semiconductor region 6 toward the active surface 8.
  • the trench gate structure 20 has a first width W1 in the second direction Y and a first depth D1 in the normal direction Z.
  • the first width W1 may be 0.1 ⁇ m or more and 3 ⁇ m or less.
  • the first width W1 is preferably 0.5 ⁇ m or more and 2 ⁇ m or less.
  • the first depth D1 is less than the outer circumferential depth DO of the outer circumferential surface 9.
  • the first depth D1 may be 0.1 ⁇ m or more and 3 ⁇ m or less.
  • the first depth D1 is preferably 0.5 ⁇ m or more and 1.5 ⁇ m or less.
  • the trench gate structure 20 includes a gate trench 21, a gate insulating film 22, and a gate buried electrode 23.
  • the gate trench 21 is formed in the active surface 8 and defines the wall surface of the trench gate structure 20.
  • the gate insulating film 22 covers the wall surface of the gate trench 21 and is connected to the main surface insulating film 16 at the active surface 8.
  • the gate insulating film 22 may include at least one of a silicon oxide film, a silicon nitride film, and a silicon oxynitride film.
  • the gate insulating film 22 has a single-layer structure made of a silicon oxide film. It is particularly preferable that the gate insulating film 22 contains a silicon oxide film made of an oxide of the chip 2.
  • the gate buried electrode 23 is buried in the gate trench 21 with the gate insulating film 22 in between, and faces the channel with the gate insulating film 22 in between.
  • the gate buried electrode 23 may contain conductive polysilicon.
  • the semiconductor device 1 includes a plurality of first trench source structures 25 formed in the first main surface 3 (active surface 8) in the active region 12.
  • a source potential VS is applied to the plurality of first trench source structures 25 as a second potential different from the first potential.
  • the source potential VS may be a reference potential (e.g., ground potential) that serves as an operating reference.
  • the multiple first trench source structures 25 are each disposed in a region between two adjacent trench gate structures 20.
  • the multiple first trench source structures 25 are arranged alternately with the multiple trench gate structures 20 in the second direction Y in a plan view, and are each formed in a strip shape extending in the first direction X.
  • the multiple first trench source structures 25 are drawn out from the active region 12 to the peripheral region 14.
  • the multiple first trench source structures 25 are exposed from at least one of the third connection surface 10C and the fourth connection surface 10D.
  • the multiple first trench source structures 25 penetrate both the third connection surface 10C and the fourth connection surface 10D and are exposed from both the third connection surface 10C and the fourth connection surface 10D.
  • the multiple first trench source structures 25 face the trench gate structure 20 in the second direction Y in the active region 12, and do not face the trench gate structure 20 in the second direction Y in the peripheral region 14.
  • the multiple first trench source structures 25 penetrate the body region 17 and source region 18 in the active region 12 to reach the first semiconductor region 6, and penetrate the body region 17 in the peripheral region 14.
  • the multiple first trench source structures 25 are formed at intervals from the bottom of the first semiconductor region 6 toward the active surface 8.
  • the first trench source structure 25 has a second width W2 in the second direction Y and a second depth D2 in the normal direction Z.
  • the second width W2 is preferably approximately equal to the first width W1.
  • the second width W2 may be 0.1 ⁇ m or more and 3 ⁇ m or less.
  • the second width W2 is preferably 0.5 ⁇ m or more and 2 ⁇ m or less.
  • the second depth D2 is equal to or greater than the first depth D1. In this embodiment, the second depth D2 is greater than the first depth D1. It is preferable that the second depth D2 is 1.5 to 3 times the first depth D1. In this embodiment, the second depth D2 is approximately equal to the outer circumferential depth DO of the outer circumferential surface 9.
  • the second depth D2 may be 0.5 ⁇ m to 5 ⁇ m. It is particularly preferable that the second depth D2 is 2.5 ⁇ m or less.
  • the first trench source structure 25 is disposed in the second direction Y at a first distance I1 from the trench gate structure 20. It is preferable that the first distance I1 is 0.5 to 2 times the first width W1 (second width W2). It is particularly preferable that the first distance I1 is less than the first width W1 (second width W2).
  • the first distance I1 may be 0.1 ⁇ m to 2.5 ⁇ m. It is preferable that the first distance I1 is 0.5 ⁇ m to 1.5 ⁇ m.
  • the first trench source structure 25 includes a first source trench 26, a first source insulating film 27, and a first source buried electrode 28.
  • the first source trench 26 is formed in the active surface 8 and defines the wall surface of the first trench source structure 25.
  • the sidewall of the first source trench 26 is in communication with the third connection surface 10C and the fourth connection surface 10D.
  • the bottom wall of the first source trench 26 is in communication with the outer peripheral surface 9.
  • the first source insulating film 27 covers the wall surface of the first source trench 26 and is connected to the main surface insulating film 16 at the active surface 8.
  • the first source insulating film 27 is connected to the main surface insulating film 16 at the communicating portion of the third connection surface 10C, the communicating portion of the fourth connection surface 10D, and the communicating portion of the outer peripheral surface 9.
  • the first source insulating film 27 may include at least one of a silicon oxide film, a silicon nitride film, and a silicon oxynitride film.
  • the first source insulating film 27 has a single-layer structure made of a silicon oxide film. It is particularly preferable that the first source insulating film 27 includes a silicon oxide film made of an oxide of the chip 2.
  • the first source buried electrode 28 is buried in the first source trench 26 with the first source insulating film 27 in between.
  • the first source buried electrode 28 may include conductive polysilicon.
  • the semiconductor device 1 includes a plurality of second trench source structures 30 formed in the first main surface 3 (active surface 8) in the peripheral region 14.
  • a source potential VS is applied to the plurality of second trench source structures 30.
  • the plurality of second trench source structures 30 are arranged in a region between the periphery (third connection surface 10C) of the active surface 8 and the plurality of trench gate structures 20.
  • the plurality of second trench source structures 30 are arranged in a region between two first trench source structures 25 adjacent to each other in the second direction Y, and face the plurality of trench gate structures 20 in a one-to-one correspondence in the first direction X.
  • the multiple second trench source structures 30 are each formed in a band shape extending in the first direction X in a plan view. In this embodiment, the multiple second trench source structures 30 penetrate the third connection surface 10C and are exposed from the third connection surface 10C. The multiple second trench source structures 30 penetrate the body region 17 to reach the first semiconductor region 6. The multiple second trench source structures 30 are formed at intervals from the bottom of the first semiconductor region 6 toward the active surface 8.
  • the second trench source structure 30 has a third width W3 in the second direction Y and a third depth D3 in the normal direction Z.
  • the third width W3 is preferably approximately equal to the first width W1 of the trench gate structure 20.
  • the third width W3 is preferably approximately equal to the second width W2 of the first trench source structure 25.
  • the third width W3 may be 0.1 ⁇ m or more and 3 ⁇ m or less.
  • the third width W3 is preferably 0.5 ⁇ m or more and 2 ⁇ m or less.
  • the third depth D3 is equal to or greater than the first depth D1 of the trench gate structure 20. In this embodiment, the third depth D3 is greater than the first depth D1. It is preferable that the third depth D3 is equal to or greater than 1.5 times and equal to or less than 3 times the first depth D1. In this embodiment, the third depth D3 is approximately equal to the second depth D2 of the first trench source structure 25. The third depth D3 is approximately equal to the outer circumferential depth DO of the outer circumferential surface 9. The third depth D3 may be equal to or greater than 0.5 ⁇ m and equal to or less than 5 ⁇ m. It is particularly preferable that the third depth D3 is equal to or less than 2.5 ⁇ m.
  • the second trench source structure 30 is disposed in the second direction Y at a second distance I2 from the first trench source structure 25.
  • the second distance I2 is preferably 0.5 to 2 times the second width W2 (third width W3). It is particularly preferable that the second distance I2 is less than the second width W2 (third width W3). It is preferable that the second distance I2 is approximately equal to the first distance I1.
  • the second distance I2 may be 0.1 ⁇ m to 2.5 ⁇ m. It is preferable that the second distance I2 is 0.5 ⁇ m to 1.5 ⁇ m.
  • the second trench source structure 30 is disposed in the first direction X at a third interval I3 from the trench gate structure 20.
  • the third interval I3 is preferably 0.5 to 2 times the first width W1 (third width W3).
  • the third interval I3 is preferably 0.5 to 2 times the first interval I1 (second interval I2). It is particularly preferable that the third interval I3 is 1.5 times or less the first interval I1 (second interval I2).
  • the third interval I3 may be approximately equal to the first interval I1 (second interval I2).
  • the third interval I3 may be 0.1 ⁇ m to 2.5 ⁇ m. It is preferable that the third interval I3 is 0.5 ⁇ m to 1.5 ⁇ m.
  • the second trench source structure 30 includes a second source trench 31, a second source insulating film 32, and a second source buried electrode 33.
  • the second source trench 31 is formed in the active surface 8 and defines the wall surface of the second trench source structure 30.
  • the side wall of the second source trench 31 is connected to the third connection surface 10C.
  • the bottom wall of the second source trench 31 is connected to the outer peripheral surface 9.
  • the second source insulating film 32 covers the wall surface of the second source trench 31 and is connected to the main surface insulating film 16 at the active surface 8.
  • the second source insulating film 32 is connected to the main surface insulating film 16 at the communicating portion of the third connection surface 10C and the communicating portion of the outer peripheral surface 9.
  • the second source insulating film 32 may include at least one of a silicon oxide film, a silicon nitride film, and a silicon oxynitride film.
  • the second source insulating film 32 has a single-layer structure made of a silicon oxide film. It is particularly preferable that the second source insulating film 32 includes a silicon oxide film made of an oxide of the chip 2.
  • the second source buried electrode 33 is buried in the second source trench 31 with the second source insulating film 32 in between.
  • the second source buried electrode 33 may include conductive polysilicon.
  • the semiconductor device 1 includes a plurality of p-type first well regions 35 formed in the active region 12 in a region along the plurality of trench gate structures 20.
  • the first well regions 35 have a higher p-type impurity concentration than the body region 17.
  • the p-type impurity concentration of the first well regions 35 may be lower than that of the body region 17.
  • the multiple first well regions 35 cover the wall surfaces of the corresponding trench gate structures 20 at intervals from the adjacent first trench source structures 25, and are electrically connected to the body region 17 at the surface portion of the active surface 8.
  • the multiple first well regions 35 are formed at intervals from the bottom of the first semiconductor region 6 toward the active surface 8, and face the second semiconductor region 7 with a part of the first semiconductor region 6 in between.
  • the multiple first well regions 35 form pn junctions with the first semiconductor region 6.
  • the semiconductor device 1 includes a plurality of p-type second well regions 36 formed in the active region 12 and the peripheral region 14 in regions along the plurality of first trench source structures 25.
  • the second well regions 36 have a higher p-type impurity concentration than the body region 17.
  • the p-type impurity concentration of the second well regions 36 may be lower than the body region 17. It is preferable that the p-type impurity concentration of the second well regions 36 is approximately equal to the p-type impurity concentration of the first well region 35.
  • the second well regions 36 cover the walls of the corresponding first trench source structures 25 at intervals from the adjacent trench gate structures 20 and are electrically connected to the body region 17 at the surface portion of the active surface 8.
  • the second well regions 36 cover the walls of the corresponding first trench source structures 25 in the active region 12 and the peripheral region 14 and are exposed from the third connection surface 10C and the fourth connection surface 10D.
  • the multiple second well regions 36 are formed at intervals from the bottom of the first semiconductor region 6 toward the active surface 8, and face the second semiconductor region 7 across a portion of the first semiconductor region 6.
  • the bottoms of the multiple second well regions 36 are located on the bottom side of the first semiconductor region 6 relative to the depth positions of the bottoms of the multiple first well regions 35.
  • the multiple second well regions 36 form pn junctions with the first semiconductor region 6.
  • the semiconductor device 1 includes a plurality of p-type third well regions 37 formed in the peripheral region 14 in a region along the plurality of second trench source structures 30.
  • the third well region 37 has a higher p-type impurity concentration than the body region 17.
  • the p-type impurity concentration of the third well region 37 may be lower than the body region 17. It is preferable that the p-type impurity concentration of the third well region 37 is approximately equal to the p-type impurity concentration of the first well region 35 (second well region 36).
  • the multiple third well regions 37 cover the walls of the corresponding second trench source structures 30 at intervals from the adjacent trench gate structures 20 and the adjacent first trench source structures 25, and are electrically connected to the body region 17 in the surface portion of the active surface 8.
  • the third well regions 37 may be integrated with the first well region 35 in the region between the trench gate structures 20 and the second trench source structures 30.
  • the multiple third well regions 37 are exposed from the third connection surface 10C.
  • the multiple third well regions 37 are formed at intervals from the bottom of the first semiconductor region 6 toward the active surface 8, and face the second semiconductor region 7 across a portion of the first semiconductor region 6.
  • the bottoms of the multiple third well regions 37 are located on the bottom side of the first semiconductor region 6 relative to the depth position of the bottoms of the multiple first well regions 35.
  • the bottoms of the multiple third well regions 37 are formed at approximately the same depth as the bottoms of the multiple second well regions 36.
  • the multiple third well regions 37 form pn junctions with the first semiconductor region 6.
  • the semiconductor device 1 includes a plurality of first contact regions 38 of p-type formed in the active region 12 in a region along the plurality of first trench source structures 25.
  • the first contact regions 38 have a higher p-type impurity concentration than the body region 17.
  • the p-type impurity concentration of the first contact regions 38 is higher than that of the second well region 36.
  • the multiple first contact regions 38 cover the wall surfaces of the corresponding first trench source structures 25 in the corresponding second well regions 36.
  • the multiple first contact regions 38 are formed in a one-to-many correspondence with each first trench source structure 25.
  • the multiple first contact regions 38 are formed at intervals along the corresponding first trench source structures 25.
  • the multiple first contact regions 38 are pulled out from within the corresponding second well region 36 along the wall surface of the corresponding first trench source structure 25 to the surface layer of the body region 17 and exposed from the active surface 8.
  • the multiple first contact regions 38 are formed in the active region 12 and are not formed in the peripheral region 14. In other words, the multiple first contact regions 38 face the trench gate structure 20 in the second direction Y, but do not face the second trench source structure 30 in the second direction Y.
  • the first contact regions 38 are not formed in the third well region 37.
  • the multiple first contact regions 38 are each formed in a band shape extending in the first direction X in a plan view.
  • the length of the multiple first contact regions 38 in the first direction X is preferably equal to or greater than the second width W2 of the first trench source structure 25.
  • the length of the multiple first contact regions 38 is preferably greater than the distance between two adjacent first contact regions 38 in the first direction X.
  • the first contact regions 38 along one first trench source structure 25 face the first contact regions 38 along the other first trench source structure 25 in the second direction Y.
  • the first contact regions 38 are arranged in a matrix shape with gaps in between in the first direction X and the second direction Y as a whole when viewed in a plan view.
  • the first contact regions 38 along one first trench source structure 25 may be arranged offset in the first direction X so as to face the second direction Y in a region between the first contact regions 38 along another first trench source structure 25.
  • the first contact regions 38 may be arranged in a staggered manner with gaps in the first direction X and the second direction Y as a whole in a plan view.
  • the semiconductor device 1 includes a plurality of gate connection electrode films 39 that cover the ends of the plurality of trench gate structures 20 on the first main surface 3 (active surface 8) in the active region 12. Specifically, the plurality of gate connection electrode films 39 are disposed on the main surface insulating film 16. The plurality of gate connection electrode films 39 cover the inner portions of the plurality of trench gate structures 20 and the ends of the corresponding trench gate structures 20 at intervals from the plurality of first trench source structures 25 and the plurality of second trench source structures 30.
  • the multiple gate connection electrode films 39 are arranged alternately with the multiple first trench source structures 25 in the second direction Y in a planar view.
  • the multiple gate connection electrode films 39 are each formed in a strip shape extending in the first direction X.
  • the multiple gate connection electrode films 39 do not face the multiple second trench source structures 30 in the second direction Y in a planar view. Below, one gate connection electrode film 39 will be described.
  • the gate connection electrode film 39 is connected to the corresponding gate buried electrode 23 in the portion covering the corresponding trench gate structure 20.
  • the gate connection electrode film 39 is formed integrally with the corresponding gate buried electrode 23.
  • the gate connection electrode film 39 is made up of a portion of the gate buried electrode 23 that is pulled out in the form of a film onto the active surface 8 (main surface insulating film 16).
  • the gate connection electrode film 39 may be formed separately from the gate buried electrode 23.
  • the gate connection electrode film 39 has an electrode surface 39a extending along the active surface 8.
  • the gate connection electrode film 39 is formed in a tapered shape (quadratic pyramid shape) from the active surface 8 towards the electrode surface 39a in a cross-sectional view.
  • the electrode surface 39a is preferably formed to be wider than the trench gate structure 20 in the second direction Y.
  • the electrode surface 39a preferably has a portion facing the trench gate structure 20 in the normal direction Z, and a portion facing the area outside the trench gate structure 20 (i.e., the main surface insulating film 16) in the normal direction Z.
  • the gate connection electrode film 39 includes conductive polysilicon.
  • the gate connection electrode film 39 has an electrode thickness TE.
  • the electrode thickness TE is preferably 0.5 times or more the first width W1 of the trench gate structure 20 (the second width W2 of the first trench source structure 25).
  • the electrode thickness TE is preferably equal to or less than the peripheral depth DO of the peripheral surface 9.
  • the electrode thickness TE is preferably equal to or less than the second depth D2 of the first trench source structure 25. It is particularly preferable that the electrode thickness TE is less than the second depth D2 (peripheral depth DO).
  • the electrode thickness TE is preferably equal to or less than the first depth D1 of the trench gate structure 20. It is particularly preferable that the electrode thickness TE is less than the first depth D1.
  • the electrode thickness TE may be 0.05 ⁇ m or more and 2.5 ⁇ m or less. It is preferable that the electrode thickness TE is 0.5 ⁇ m or more and 1.5 ⁇ m or less. Of course, the electrode thickness TE may be greater than the first depth D1. Also, the electrode thickness TE may be greater than the outer periphery depth DO (second depth D2).
  • FIG. 13 is an enlarged plan view showing the layout of the termination region 15 (first termination region 15A).
  • FIG. 14 is an enlarged plan view showing the layout of the gate resistor 40.
  • FIG. 15 is an enlarged plan view showing the inner part of the gate resistor 40.
  • FIG. 16 is an enlarged plan view showing the peripheral part of the gate resistor 40.
  • FIG. 17 is a cross-sectional view taken along line XVII-XVII shown in FIG. 15.
  • FIG. 18 is a cross-sectional view taken along line XVIII-XVIII shown in FIG. 15.
  • FIG. 19 is a cross-sectional view taken along line XIX-XIX shown in FIG. 16.
  • FIG. 20 is a cross-sectional view taken along line XX-XX shown in FIG. 16.
  • FIG. 21 is a cross-sectional view taken along line XXI-XXI shown in FIG. 16.
  • FIG. 22 is a cross-sectional view taken along line XXII-XXII shown in FIG. 16.
  • FIG. 23 is an enlarged plan view showing a main portion of gate resistor 40.
  • the semiconductor device 1 includes a gate resistor 40 formed on the first main surface 3 (active surface 8) in the first termination region 15A.
  • the gate resistor 40 is incorporated in the chip 2 (first termination region 15A) as a resistor electrically connected to the gate (trench gate structure 20) of the MISFET.
  • the gate resistor 40 is disposed in a region on the first side surface 5A side (first connection surface 10A side) of the active region 12, and faces the active region 12 in the second direction Y.
  • the gate resistor 40 is disposed at a distance from the peripheral region 14 in the first direction X so as not to face the peripheral region 14 in the second direction Y.
  • the gate resistor 40 is disposed between the center of the first side surface 5A (first connection surface 10A) and the active region 12.
  • the gate resistor 40 includes at least one (in this embodiment, multiple) trench resistor structures 41 formed on the first main surface 3 (active surface 8) in the first termination region 15A.
  • a gate potential VG is applied as a first potential to the multiple trench resistor structures 41, but they do not contribute to channel control.
  • the multiple trench resistance structures 41 are each formed in a band shape extending in the first direction X, and are arranged at intervals in the second direction Y.
  • the multiple trench resistance structures 41 penetrate the body region 17 to reach the first semiconductor region 6.
  • the multiple trench resistance structures 41 are formed at intervals from the bottom of the first semiconductor region 6 toward the active surface 8.
  • the multiple trench resistance structures 41 include multiple first trench resistance structures 42 and multiple second trench resistance structures 43.
  • the multiple first trench resistance structures 42 are formed on the active surface 8 at intervals from the periphery of the active surface 8 in the first termination region 15A.
  • the multiple first trench resistance structures 42 are each formed in a band shape extending in the first direction X, and are arranged at intervals in the second direction Y.
  • the multiple first trench resistance structures 42 face the first trench source structure 25 in the second direction Y.
  • the multiple first trench resistance structures 42 are arranged at intervals from the second trench source structure 30 in the first direction X so as not to face the second trench source structure 30 in the second direction Y.
  • the multiple first trench resistance structures 42 penetrate the body region 17 to reach the first semiconductor region 6.
  • the multiple first trench resistance structures 42 are formed at intervals from the bottom of the first semiconductor region 6 toward the active surface 8.
  • the first trench resistor structure 42 has a first resistor length L1 in the first direction X.
  • the first resistor length L1 is arbitrary and is appropriately determined according to the resistance value to be achieved.
  • the first trench resistor structure 42 has a fourth width W4 in the second direction Y and a fourth depth D4 in the normal direction Z. It is preferable that the fourth width W4 is approximately equal to the first width W1 of the trench gate structure 20.
  • the fourth width W4 may be 0.1 ⁇ m or more and 3 ⁇ m or less. It is preferable that the fourth width W4 is 0.5 ⁇ m or more and 2 ⁇ m or less.
  • the fourth depth D4 is less than the second depth D2 of the first trench source structure 25.
  • the fourth depth D4 is less than the outer circumferential depth DO of the outer circumferential surface 9. It is preferable that the fourth depth D4 is approximately equal to the first depth D1 of the trench gate structure 20.
  • the fourth depth D4 may be greater than or equal to 0.1 ⁇ m and less than or equal to 3 ⁇ m. It is preferable that the fourth depth D4 is greater than or equal to 0.5 ⁇ m and less than or equal to 1.5 ⁇ m.
  • the innermost first trench resistance structure 42 on the active region 12 side is disposed at the aforementioned first interval I1 from the outermost first trench source structure 25 so as to be adjacent to the outermost first trench source structure 25 in the second direction Y.
  • the innermost first trench resistance structure 42 is disposed at an interval in the first direction X from the outermost second trench source structure 30 so as not to be adjacent to the outermost second trench source structure 30 in the second direction Y.
  • the first trench resistance structure 42 includes a first trench 44, a first insulating film 45, and a first buried electrode 46.
  • the first buried electrode 46 may be referred to as a "first buried resistor.”
  • the first trench 44 is formed in the active surface 8 and defines the wall surface of the first trench resistance structure 42.
  • the first insulating film 45 covers the wall surface of the first trench 44 and is connected to the main surface insulating film 16 at the active surface 8.
  • the first insulating film 45 may include at least one of a silicon oxide film, a silicon nitride film, and a silicon oxynitride film.
  • the first insulating film 45 has a single-layer structure made of a silicon oxide film. It is particularly preferable that the first insulating film 45 includes a silicon oxide film made of an oxide of the chip 2.
  • the first buried electrode 46 is buried in the first trench 44 with the first insulating film 45 in between.
  • the first buried electrode 46 may include conductive polysilicon.
  • the multiple second trench resistance structures 43 are formed on the active surface 8 at intervals from the periphery of the active surface 8 in the first termination region 15A.
  • the multiple second trench resistance structures 43 are each disposed in a region between two adjacent first trench resistance structures 42.
  • the multiple second trench resistance structures 43 are arranged alternately with the multiple first trench resistance structures 42 in the second direction Y.
  • the multiple second trench resistance structures 43 are each formed in a band shape extending in the first direction X in a plan view.
  • the multiple second trench resistance structures 43 face the trench gate structure 20 and the first trench source structure 25 in the second direction Y.
  • the multiple second trench resistance structures 43 are arranged at intervals from the second trench source structure 30 in the first direction X so as not to face the second trench source structure 30 in the second direction Y.
  • the multiple second trench resistance structures 43 penetrate the body region 17 to reach the first semiconductor region 6.
  • the multiple second trench resistance structures 43 are formed at intervals from the bottom of the first semiconductor region 6 toward the active surface 8.
  • the second trench resistance structure 43 has a second resistance length L2 in the first direction X.
  • the second resistance length L2 is arbitrary and is appropriately determined according to the resistance value to be achieved.
  • the second resistance length L2 is less than the first resistance length L1 of the first trench resistance structure 42.
  • both ends of the second trench resistance structure 43 are set back inward from both ends of the first trench resistance structure 42.
  • the second resistance length L2 may be approximately equal to the first resistance length L1.
  • the second resistance length L2 may be greater than the first resistance length L1.
  • the second trench resistor structure 43 has a fifth width W5 in the second direction Y and a fifth depth D5 in the normal direction Z.
  • the fifth width W5 is preferably approximately equal to the fourth width W4 of the first trench resistor structure 42.
  • the fifth width W5 is preferably approximately equal to the second width W2 of the first trench source structure 25 (the first width W1 of the trench gate structure 20).
  • the fifth width W5 may be 0.1 ⁇ m or more and 3 ⁇ m or less.
  • the fifth width W5 is preferably 0.5 ⁇ m or more and 2 ⁇ m or less.
  • the fifth depth D5 is equal to or greater than the fourth depth D4 of the first trench resistor structure 42 (the first depth D1 of the trench gate structure 20). In this embodiment, the fifth depth D5 is greater than the fourth depth D4 (the first depth D1). The fifth depth D5 is preferably equal to or greater than 1.5 times and equal to or less than 3 times the fourth depth D4 (the first depth D1). The fifth depth D5 is preferably approximately equal to the second depth D2 of the first trench source structure 25. The fifth depth D5 is approximately equal to the outer circumferential depth DO of the outer circumferential surface 9. The fifth depth D5 may be equal to or greater than 0.5 ⁇ m and equal to or less than 5 ⁇ m. It is particularly preferable that the fifth depth D5 is equal to or less than 2.5 ⁇ m.
  • the second trench resistance structure 43 is disposed in the second direction Y at a fourth interval I4 from the first trench resistance structure 42.
  • the fourth interval I4 is preferably 0.5 to 2 times the fourth width W4 (fifth width W5). It is particularly preferable that the fourth interval I4 is less than the fourth width W4 (fifth width W5). It is preferable that the fourth interval I4 is approximately equal to the first interval I1 between the trench gate structure 20 and the first trench source structure 25.
  • the fourth interval I4 may be 0.1 ⁇ m to 2.5 ⁇ m. It is preferable that the fourth interval I4 is 0.5 ⁇ m to 1.5 ⁇ m.
  • the second trench resistance structure 43 includes a second trench 47, a second insulating film 48, and a second buried electrode 49.
  • the second buried electrode 49 may be referred to as a "second buried resistor.”
  • the second trench 47 is formed in the active surface 8 and defines the wall surface of the second trench resistance structure 43.
  • the second insulating film 48 covers the wall surface of the second trench 47 and is connected to the main surface insulating film 16 at the active surface 8.
  • the second insulating film 48 may include at least one of a silicon oxide film, a silicon nitride film, and a silicon oxynitride film.
  • the second insulating film 48 has a single-layer structure made of a silicon oxide film. It is particularly preferable that the second insulating film 48 includes a silicon oxide film made of an oxide of the chip 2.
  • the second buried electrode 49 is buried in the second trench 47 with the second insulating film 48 in between.
  • the second buried electrode 49 may include conductive polysilicon.
  • the gate resistor 40 includes a resistive film 50 covering at least one (in this embodiment, multiple) trench resistor structures 41 on the first main surface 3 (active surface 8).
  • the resistive film 50 includes at least one of a conductive polysilicon film and an alloy crystal film.
  • the alloy crystal film includes alloy crystals composed of a metal element and a nonmetal element.
  • the alloy crystal film may include at least one of a CrSi film, a CrSiN film, a CrSiO film, a TaN film, and a TiN film.
  • the resistive film 50 includes conductive polysilicon.
  • the resistive film 50 is disposed on the main surface insulating film 16, and has a portion covering the active surface 8 and a portion covering the multiple trench resistance structures 41. In this form, the resistive film 50 covers all of the multiple trench resistance structures 41 in the short direction (second direction Y) of the multiple trench resistance structures 41.
  • the resistive film 50 is connected to the first buried electrode 46 and the second buried electrode 49 in the portion covering the multiple trench resistance structures 41.
  • the resistive film 50 is formed integrally with the first buried electrode 46 and the second buried electrode 49.
  • the resistive film 50 is made up of a portion of the first buried electrode 46 and a portion of the second buried electrode 49 that are pulled out in a film shape onto the active surface 8 (main surface insulating film 16).
  • the resistive film 50 may be formed separately from the first buried electrode 46 and the second buried electrode 49.
  • the resistive film 50 faces the trench gate structure 20 and the first trench source structure 25 in the second direction Y.
  • the resistive film 50 is spaced apart from the second trench source structure 30 in the first direction X so as not to face the second trench source structure 30 in the second direction Y.
  • the resistive film 50 is formed in a band shape extending in the first direction X in a plan view.
  • the planar shape of the resistive film 50 is arbitrary and is adjusted appropriately according to the resistance value to be achieved.
  • the resistive film 50 preferably has a third resistance length L3 in the first direction X that is shorter than the first resistance length L1 of the first trench resistance structure 42 and the second resistance length L2 of the second trench resistance structure 43.
  • the resistive film 50 preferably covers the inner portions of the multiple trench resistance structures 41 with a gap inward from both ends of the multiple trench resistance structures 41 in the longitudinal direction (first direction X) of the multiple trench resistance structures 41.
  • the resistive film 50 preferably exposes both ends of the multiple first trench resistance structures 42 and both ends of the multiple second trench resistance structures 43.
  • the resistive film 50 may cover the entire area of the multiple trench resistance structures 41. That is, the third resistance length L3 may be greater than the first resistance length L1.
  • the resistive film 50 may also expose both ends of the multiple first trench resistance structures 42 and cover both ends of the multiple second trench resistance structures 43. That is, the third resistance length L3 may be smaller than the first resistance length L1 and greater than the second resistance length L2.
  • the resistive film 50 has a resistive thickness TR in the normal direction Z.
  • the resistive thickness TR is adjusted as appropriate according to the resistance value to be achieved.
  • the resistance value of the resistive film 50 is adjusted by increasing or decreasing the resistive thickness TR and increasing or decreasing the third resistive length L3. It is preferable that the resistive thickness TR be 0.5 or more times the aforementioned fourth width W4 (fifth width W5).
  • the resistor thickness TR satisfies this condition, when a conductive polysilicon film is formed by CVD to fill the first trench 44 and the second trench 47 and cover the first main surface 3 (active surface 8), the first buried electrode 46, the second buried electrode 49, and the resistor film 50 can be formed using a portion of the conductive polysilicon film. It is preferable that the resistor thickness TR is equal to or less than the aforementioned outer periphery depth DO. It is preferable that the resistor thickness TR is equal to or less than the aforementioned fifth depth D5 (the aforementioned second depth D2).
  • the resistor thickness TR is less than the fifth depth D5. It is preferred that the resistor thickness TR is less than the aforementioned fourth depth D4 (first depth D1). It is particularly preferred that the resistor thickness TR is less than the fourth depth D4. It is preferred that the resistor thickness TR is approximately equal to the aforementioned electrode thickness TE.
  • the resistor thickness TR may be 0.05 ⁇ m or more and 2.5 ⁇ m or less. It is preferred that the resistor thickness TR is 0.5 ⁇ m or more and 1.5 ⁇ m or less.
  • the resistor thickness TR may be greater than the fourth depth D4. Also, the resistor thickness TR may be greater than or equal to the outer circumferential depth DO (fifth depth D5). Also, when the resistor film 50 is made of an alloy crystal film, the resistor thickness TR may be less than the fourth depth D4. In this case, the resistor thickness TR may be greater than or equal to 0.1 nm and less than or equal to 100 nm.
  • the semiconductor device 1 includes a dummy structure 55 formed on the first main surface 3 (active surface 8) in the first termination region 15A.
  • the dummy structure 55 is incorporated in the active surface 8 (first termination region 15A) for one purpose, which is to reduce localized electric field concentration in the vicinity of the gate resistor 40 and improve the breakdown voltage (e.g., breakdown voltage).
  • the presence or absence of the dummy structure 55 is optional, and a configuration without the dummy structure 55 may be adopted.
  • the dummy structure 55 includes a first dummy structure 56 and a second dummy structure 57.
  • the first dummy structure 56 is arranged in a region on the third side surface 5C side (third connection surface 10C side) of the gate resistor 40.
  • the first dummy structure 56 faces the gate resistor 40 in the first direction X, and faces the active region 12 and the first peripheral region 14A in the second direction Y.
  • the second dummy structure 57 is arranged in a region on the fourth side surface 5D side (fourth connection surface 10D side) of the gate resistor 40.
  • the second dummy structure 57 faces the first dummy structure 56 across the gate resistor 40 in the first direction X, and faces the active region 12 and the second peripheral region 14B in the second direction Y. Since the layout of the second dummy structure 57 is substantially similar to the layout of the first dummy structure 56, the configuration of the first dummy structure 56 will be described below.
  • the layout of the second dummy structure 57 can be obtained by replacing "third connection surface 10C" with "fourth connection surface 10D" in the following description.
  • the first dummy structure 56 includes at least one (in this embodiment, multiple) dummy trench structures 60 formed in the first main surface 3 (active surface 8) in the first termination region 15A.
  • a source potential VS is applied to the multiple dummy trench structures 60 as a second potential.
  • the multiple dummy trench structures 60 are each formed in a band shape extending in the first direction X, and are arranged at intervals in the second direction Y.
  • the multiple dummy trench structures 60 face the multiple trench resistor structures 41 in a one-to-one correspondence in the first direction X.
  • the multiple dummy trench structures 60 face the first trench source structure 25 and the second trench source structure 30 in the second direction Y.
  • the multiple dummy trench structures 60 penetrate the body region 17 to reach the first semiconductor region 6.
  • the multiple dummy trench structures 60 penetrate the third connection surface 10C and are exposed from the third connection surface 10C.
  • the multiple trench gate structures 20 are formed at intervals from the bottom of the first semiconductor region 6 toward the active surface 8.
  • the multiple dummy trench structures 60 include multiple first dummy trench structures 61 and multiple second dummy trench structures 62.
  • the multiple first dummy trench structures 61 are arranged in the region between the periphery of the active surface 8 and the multiple first trench resistance structures 42.
  • the multiple first dummy trench structures 61 are each formed in a band shape extending in the first direction X, and are arranged at intervals in the second direction Y.
  • the multiple first dummy trench structures 61 face the multiple first trench resistance structures 42 in a one-to-one correspondence in the first direction X.
  • the first trench resistance structure 42 to which the gate potential VG is applied and the first dummy trench structure 61 to which the source potential VS is applied face each other in the first direction X.
  • the multiple first dummy trench structures 61 face the first trench source structure 25 and the second trench source structure 30 in the second direction Y.
  • the multiple first dummy trench structures 61 penetrate the third connection surface 10C and are exposed from the third connection surface 10C.
  • the multiple first dummy trench structures 61 penetrate the body region 17 to reach the first semiconductor region 6.
  • the multiple first dummy trench structures 61 are formed at intervals from the bottom of the first semiconductor region 6 toward the active surface 8.
  • the first dummy trench structure 61 has a sixth width W6 in the second direction Y and a sixth depth D6 in the normal direction Z.
  • the sixth width W6 is preferably approximately equal to the fourth width W4 of the first trench resistor structure 42.
  • the sixth width W6 is preferably approximately equal to the first width W1 of the trench gate structure 20.
  • the sixth width W6 may be 0.1 ⁇ m or more and 3 ⁇ m or less.
  • the sixth width W6 is preferably 0.5 ⁇ m or more and 2 ⁇ m or less.
  • the sixth depth D6 is less than the fifth depth D5 of the second trench resistance structure 43 (the second depth D2 of the first trench source structure 25).
  • the sixth depth D6 is less than the outer circumferential depth DO of the outer circumferential surface 9. It is preferable that the sixth depth D6 is approximately equal to the fourth depth D4 of the first trench resistance structure 42 (the first depth D1 of the trench gate structure 20).
  • the sixth depth D6 may be 0.1 ⁇ m or more and 3 ⁇ m or less. It is preferable that the sixth depth D6 is 0.5 ⁇ m or more and 1.5 ⁇ m or less.
  • the first dummy trench structure 61 is disposed in the first direction X at a fifth interval I5 from the first trench resistance structure 42.
  • the fifth interval I5 is preferably 0.5 to 2 times the fourth width W4 (sixth width W6).
  • the fifth interval I5 is preferably 0.5 to 2 times the fourth interval I4 between the first trench resistance structure 42 and the second trench resistance structure 43. It is particularly preferable that the fifth interval I5 is 1.5 times or less than the fourth interval I4.
  • the fifth interval I5 may be approximately equal to the fourth interval I4.
  • the fifth interval I5 may be 0.1 ⁇ m to 2.5 ⁇ m. It is preferable that the fifth interval I5 is 0.5 ⁇ m to 1.5 ⁇ m.
  • the innermost first dummy trench structure 61 on the active region 12 side is arranged adjacent to the outermost first trench source structure 25 in the second direction Y, with the aforementioned first distance I1 from the outermost first trench source structure 25.
  • the first dummy trench structure 61 includes a first dummy trench 63, a first dummy insulating film 64, and a first dummy buried electrode 65.
  • the first dummy trench 63 is formed in the active surface 8 and defines the wall surface of the first dummy trench structure 61.
  • the sidewall and bottom wall of the first dummy trench 63 are connected to the third connection surface 10C.
  • the first dummy insulating film 64 covers the wall surface of the first dummy trench 63 and is connected to the main surface insulating film 16 at the active surface 8.
  • the first dummy insulating film 64 is connected to the main surface insulating film 16 at the communicating portion of the third connection surface 10C.
  • the first dummy insulating film 64 may include at least one of a silicon oxide film, a silicon nitride film, and a silicon oxynitride film.
  • the first dummy insulating film 64 has a single-layer structure made of a silicon oxide film. It is particularly preferable that the first dummy insulating film 64 includes a silicon oxide film made of an oxide of the chip 2.
  • the first dummy buried electrode 65 is buried in the first dummy trench 63 with the first dummy insulating film 64 in between.
  • the first dummy buried electrode 65 may include conductive polysilicon.
  • the multiple second dummy trench structures 62 are arranged in the region between the periphery of the active surface 8 and the multiple second trench resistance structures 43.
  • the multiple second dummy trench structures 62 are arranged in the region between two first dummy trench structures 61 adjacent in the second direction Y.
  • the multiple second dummy trench structures 62 are arranged alternately with the multiple first dummy trench structures 61 in the second direction Y, and face the multiple second trench resistance structures 43 in a one-to-one correspondence in the first direction X.
  • the second trench resistance structure 43 to which the gate potential VG is applied and the second dummy trench structure 62 to which the source potential VS is applied face each other in the first direction X.
  • the multiple second dummy trench structures 62 are each formed in a band shape extending in the first direction X in a plan view.
  • the second dummy trench structures 62 face the first trench source structure 25 and the second trench source structure 30 in the second direction Y.
  • the second dummy trench structures 62 have portions that are extended toward the ends of the second trench resistance structures 43 relative to the ends of the first trench resistance structures 42.
  • the multiple second dummy trench structures 62 are pulled out toward the ends of the multiple second trench resistance structures 43 with respect to the region between the first trench resistance structure 42 and the first dummy trench structure 61. As a result, the ends of the multiple second dummy trench structures 62 face the first trench resistance structure 42 in the second direction Y. In other words, the multiple second dummy trench structures 62 have a portion facing the first trench resistance structure 42 in the second direction Y, and a portion facing the first dummy trench structure 61 in the second direction Y.
  • the multiple second dummy trench structures 62 penetrate the third connection surface 10C and are exposed from the third connection surface 10C.
  • the multiple second dummy trench structures 62 penetrate the body region 17 to reach the first semiconductor region 6.
  • the multiple second dummy trench structures 62 are formed at intervals from the bottom of the first semiconductor region 6 toward the active surface 8.
  • the second dummy trench structure 62 has a seventh width W7 in the second direction Y and a seventh depth D7 in the normal direction Z.
  • the seventh width W7 is preferably approximately equal to the fifth width W5 of the second trench resistor structure 43.
  • the seventh width W7 is preferably approximately equal to the second width W2 of the first trench source structure 25 (the first width W1 of the trench gate structure 20).
  • the seventh width W7 may be 0.1 ⁇ m or more and 3 ⁇ m or less.
  • the seventh width W7 is preferably 0.5 ⁇ m or more and 2 ⁇ m or less.
  • the seventh depth D7 is equal to or greater than the sixth depth D6 of the first dummy trench structure 61 (the fourth depth D4 of the first trench resistor structure 42). In this embodiment, the seventh depth D7 is greater than the sixth depth D6 (the fourth depth D4). It is preferable that the seventh depth D7 is greater than or equal to 1.5 times and less than or equal to 3 times the sixth depth D6 (the fourth depth D4).
  • the seventh depth D7 is preferably approximately equal to the fifth depth D5 of the second trench resistor structure 43 (the second depth D2 of the first trench source structure 25). In this embodiment, the seventh depth D7 is approximately equal to the outer circumferential depth DO of the outer circumferential surface 9.
  • the seventh depth D7 may be 0.5 ⁇ m or more and 5 ⁇ m or less. It is particularly preferable that the seventh depth D7 is 2.5 ⁇ m or less.
  • the second dummy trench structure 62 is disposed at a sixth interval I6 from the first dummy trench structure 61 in the second direction Y.
  • the sixth interval I6 is preferably 0.5 to 2 times the sixth width W6 (seventh width W7). It is particularly preferable that the sixth interval I6 is less than the sixth width W6 (seventh width W7).
  • the sixth interval I6 is preferably approximately equal to the fourth interval I4 between the first trench resistor structure 42 and the second trench resistor structure 43.
  • the sixth interval I6 is preferably approximately equal to the first interval I1 between the trench gate structure 20 and the first trench source structure 25.
  • the sixth interval I6 may be 0.1 ⁇ m or more and 2.5 ⁇ m or less.
  • the sixth interval I6 is preferably 0.5 ⁇ m or more and 1.5 ⁇ m or less.
  • the second dummy trench structure 62 is disposed in the first direction X at a seventh interval I7 from the second trench resistor structure 43.
  • the seventh interval I7 is preferably 0.5 to 2 times the sixth width W6 (seventh width W7).
  • the seventh interval I7 is preferably 0.5 to 2 times the sixth width W6 (seventh width W7).
  • the seventh interval I7 is 1.5 times or less the sixth interval I6 (fourth interval I4). It is preferable that the seventh interval I7 is approximately equal to the aforementioned fifth interval I5. The seventh interval I7 may be approximately equal to the sixth interval I6 (fourth interval I4). The seventh interval I7 may be 0.1 ⁇ m or more and 2.5 ⁇ m or less. It is preferable that the seventh interval I7 is 0.5 ⁇ m or more and 1.5 ⁇ m or less.
  • the second dummy trench structure 62 includes a second dummy trench 66, a second dummy insulating film 67, and a second dummy buried electrode 68.
  • the second dummy trench 66 is formed in the active surface 8 and defines the wall surface of the second dummy trench structure 62.
  • the side wall of the second dummy trench 66 is connected to the third connection surface 10C.
  • the bottom wall of the second dummy trench 66 is connected to the outer peripheral surface 9.
  • the second dummy insulating film 67 covers the wall surface of the second dummy trench 66 and is connected to the main surface insulating film 16 at the active surface 8.
  • the second dummy insulating film 67 is connected to the main surface insulating film 16 at the communicating portion of the third connection surface 10C and the communicating portion of the outer peripheral surface 9.
  • the second dummy insulating film 67 may include at least one of a silicon oxide film, a silicon nitride film, and a silicon oxynitride film.
  • the second dummy insulating film 67 has a single-layer structure made of a silicon oxide film. It is particularly preferable that the second dummy insulating film 67 includes a silicon oxide film made of an oxide of the chip 2.
  • the second dummy buried electrode 68 is buried in the second dummy trench 66 with the second dummy insulating film 67 in between.
  • the second dummy buried electrode 68 may include conductive polysilicon.
  • the semiconductor device 1 includes a plurality of main mesa portions 70, a plurality of first mesa portions 71, and a plurality of second mesa portions 72.
  • Each main mesa portion 70 is partitioned into a region between the first trench resistance structure 42 and the second trench resistance structure 43, and a region between the first dummy trench structure 61 and the second dummy trench structure 62.
  • Each main mesa portion 70 extends in a strip shape in the first direction X.
  • the width of each main mesa portion 70 in the second direction Y is determined by the aforementioned fourth interval I4 and sixth interval I6.
  • Each first mesa portion 71 is partitioned into an area between the first trench resistor structure 42 and the first dummy trench structure 61, and is connected to the main mesa portion 70.
  • Each first mesa portion 71 is an area in which a voltage drop occurs between the gate potential VG and the source potential VS in the first direction X.
  • the width of each first mesa portion 71 in the first direction X is determined by the fifth interval I5 described above.
  • each first mesa portion 71 faces the second dummy trench structure 62 in the second direction Y, but is shifted toward the second dummy trench structure 62 with respect to the end of the second trench resistance structure 43 so as not to face the second trench resistance structure 43 in the second direction Y.
  • Each first mesa portion 71 is formed at a distance from the periphery of the resistance film 50 in the first direction X, and does not face the resistance film 50 in the normal direction Z.
  • each first mesa portion 71 may face the resistive film 50 in the normal direction Z.
  • Each first mesa portion 71 defines one main mesa portion 70 and a T-shaped mesa in plan view. From another perspective, each first mesa portion 71 defines two main mesa portions 70 and an H-shaped mesa in plan view. In this embodiment, the multiple first mesa portions 71 are formed on the same straight line along the second direction Y. Of course, the multiple first mesa portions 71 may be formed offset from each other in the first direction X so as not to be positioned on the same straight line along the second direction Y.
  • Each second mesa portion 72 is partitioned into an area between the second trench resistor structure 43 and the second dummy trench structure 62, and is connected to the main mesa portion 70.
  • Each second mesa portion 72 is an area in which a voltage drop occurs between the gate potential VG and the source potential VS in the first direction X.
  • the width of each second mesa portion 72 in the first direction X is determined by the seventh interval I7 described above.
  • Each second mesa portion 72 is formed at a distance from the first mesa portion 71 in the first direction X so as not to face the first mesa portion 71 in the second direction Y.
  • each second mesa portion 72 faces the first trench resistance structure 42 in the second direction Y, and is shifted toward the first trench resistance structure 42 with respect to the end of the first dummy trench structure 61 so as not to face the first dummy trench structure 61 in the second direction Y.
  • Each second mesa portion 72 is formed at a distance from the periphery of the resistive film 50 in the first direction X in a plan view, and does not face the resistive film 50 in the normal direction Z. Therefore, electrical interference of the resistive film 50 with each second mesa portion 72 is suppressed, and electrical interference of each second mesa portion 72 with the resistive film 50 is suppressed. Of course, if a resistive film 50 wider than the multiple trench resistance structures 41 is formed, each second mesa portion 72 may face the resistive film 50 in the normal direction Z.
  • Each second mesa portion 72 defines one main mesa portion 70 and a T-shaped mesa in plan view. From another perspective, each second mesa portion 72 defines two main mesa portions 70 and an H-shaped mesa in plan view. In this embodiment, the multiple second mesa portions 72 are formed on the same straight line along the second direction Y.
  • the multiple second mesa portions 72 may be formed offset from each other in the first direction X so as not to be positioned on the same straight line along the second direction Y. Even in this case, the multiple second mesa portions 72 are formed at intervals from the first mesa portion 71 in the first direction X so as not to face the first mesa portion 71 in the second direction Y.
  • the semiconductor device 1 includes a plurality of fourth well regions 75 of p-type formed in a region along the plurality of first trench resistance structures 42 in the first termination region 15A.
  • the fourth well region 75 has a higher p-type impurity concentration than the body region 17.
  • the p-type impurity concentration of the fourth well region 75 may be lower than the body region 17. It is preferable that the p-type impurity concentration of the fourth well region 75 is approximately equal to the p-type impurity concentration of the first well region 35.
  • the multiple fourth well regions 75 cover the wall surfaces of the corresponding first trench resistance structures 42 at intervals from the second trench resistance structure 43, the first dummy trench structure 61, and the second dummy trench structure 62, and are electrically connected to the body region 17 in the surface portion of the active surface 8.
  • Each fourth well region 75 includes a portion that covers the wall surface of each first trench resistance structure 42 in each first mesa portion 71, and faces each first dummy trench structure 61 in the first direction X.
  • each fourth well region 75 has a portion that faces the second trench resistance structure 43 in the second direction Y, and a portion that faces the second dummy trench structure 62 in the second direction Y.
  • the multiple fourth well regions 75 are formed at intervals from the bottom of the first semiconductor region 6 toward the active surface 8, and face the second semiconductor region 7 across a portion of the first semiconductor region 6.
  • the bottoms of the multiple fourth well regions 75 are located on the active surface 8 side relative to the depth position of the bottoms of the multiple second well regions 36.
  • the bottoms of the multiple fourth well regions 75 are formed at approximately the same depth as the bottoms of the multiple first well regions 35.
  • the multiple fourth well regions 75 form pn junctions with the first semiconductor region 6.
  • the semiconductor device 1 includes a plurality of p-type fifth well regions 76 formed in a region along the plurality of second trench resistance structures 43 in the first termination region 15A.
  • the fifth well region 76 has a higher p-type impurity concentration than the body region 17.
  • the p-type impurity concentration of the fifth well region 76 may be lower than the body region 17. It is preferable that the p-type impurity concentration of the fifth well region 76 is approximately equal to the p-type impurity concentration of the plurality of fourth well regions 75 (second well region 36).
  • the plurality of fifth well regions 76 cover the wall surfaces of the corresponding second trench resistance structures 43 at intervals from the first trench resistance structure 42, the first dummy trench structure 61, and the second dummy trench structure 62, and are electrically connected to the body region 17 at the surface portion of the active surface 8.
  • Each fifth well region 76 includes a portion that covers the wall surface of each second trench resistance structure 43 in each second mesa portion 72, and faces the second dummy trench structure 62 in the first direction X. In this embodiment, each fifth well region 76 faces the first trench resistance structure 42 in the second direction Y, but does not face the first dummy trench structure 61 in the second direction Y.
  • the multiple fifth well regions 76 are formed at intervals from the bottom of the first semiconductor region 6 toward the active surface 8, and face the second semiconductor region 7 across a portion of the first semiconductor region 6.
  • the bottoms of the multiple fifth well regions 76 are located on the bottom side of the first semiconductor region 6 relative to the depth position of the bottoms of the multiple fourth well regions 75 (first well regions 35).
  • the bottoms of the multiple fifth well regions 76 are formed at a depth approximately equal to the bottoms of the multiple second well regions 36.
  • the multiple fifth well regions 76 form pn junctions with the first semiconductor region 6.
  • the semiconductor device 1 includes a plurality of sixth well regions 77 of p-type formed in a region along the plurality of first dummy trench structures 61 in the first termination region 15A.
  • the sixth well region 77 has a higher p-type impurity concentration than the body region 17.
  • the p-type impurity concentration of the sixth well region 77 may be lower than the body region 17. It is preferable that the p-type impurity concentration of the sixth well region 77 is approximately equal to the p-type impurity concentration of the fourth well region 75 (first well region 35).
  • the sixth well regions 77 cover the walls of the corresponding first dummy trench structures 61 at intervals from the first trench resistance structure 42, the second trench resistance structure 43, and the second dummy trench structure 62, and are electrically connected to the body region 17 at the surface portion of the active surface 8.
  • Each sixth well region 77 includes a portion that covers the wall of each first dummy trench structure 61 in each first mesa portion 71, and faces the first trench resistance structure 42 in the first direction X.
  • Each sixth well region 77 may be formed in each first mesa portion 71 at a distance from each fourth well region 75, or may be integrated with each fourth well region 75. Each sixth well region 77 faces the second dummy trench structure 62 in the second direction Y, but does not face the second trench resistor structure 43 in the second direction Y.
  • the multiple sixth well regions 77 are formed at intervals from the bottom of the first semiconductor region 6 toward the active surface 8, and face the second semiconductor region 7 across a portion of the first semiconductor region 6.
  • the bottoms of the multiple sixth well regions 77 are located on the active surface 8 side relative to the depth position of the bottoms of the multiple fifth well regions 76 (second well regions 36).
  • the bottoms of the multiple sixth well regions 77 are formed at a depth approximately equal to the bottoms of the multiple fourth well regions 75 (first well regions 35).
  • the multiple sixth well regions 77 form pn junctions with the first semiconductor region 6.
  • the semiconductor device 1 includes a plurality of p-type seventh well regions 78 formed in a region along the plurality of second dummy trench structures 62 in the first termination region 15A.
  • the seventh well regions 78 have a higher p-type impurity concentration than the body region 17.
  • the p-type impurity concentration of the seventh well regions 78 may be lower than the body region 17. It is preferable that the p-type impurity concentration of the seventh well regions 78 is approximately equal to the p-type impurity concentration of the fifth well region 76 (second well region 36).
  • the seventh well regions 78 cover the walls of the corresponding second dummy trench structures 62 at intervals from the first trench resistance structure 42, the second trench resistance structure 43, and the first dummy trench structure 61, and are electrically connected to the body region 17 at the surface portion of the active surface 8.
  • Each seventh well region 78 includes a portion that covers the wall of each second dummy trench structure 62 in each second mesa portion 72, and faces the second trench resistance structure 43 in the first direction X.
  • Each seventh well region 78 may be formed in each second mesa portion 72 at a distance from each fifth well region 76, or may be integrated with each fifth well region 76.
  • Each seventh well region 78 has a portion facing the first dummy trench structure 61 in the second direction Y, and a portion facing the first trench resistor structure 42 in the second direction Y.
  • the multiple seventh well regions 78 are formed at intervals from the bottom of the first semiconductor region 6 toward the active surface 8, and face the second semiconductor region 7 across a portion of the first semiconductor region 6.
  • the bottoms of the multiple seventh well regions 78 are located on the bottom side of the first semiconductor region 6 relative to the depth position of the bottoms of the multiple sixth well regions 77 (fourth well regions 75).
  • the bottoms of the multiple seventh well regions 78 are formed at a depth approximately equal to the bottoms of the multiple fifth well regions 76 (second well regions 36).
  • the multiple seventh well regions 78 form pn junctions with the first semiconductor region 6.
  • the semiconductor device 1 includes a plurality of second contact regions 79 of p-type formed in a region along the plurality of second trench resistance structures 43 in the first termination region 15A.
  • the second contact regions 79 have a higher p-type impurity concentration than the body region 17.
  • the p-type impurity concentration of the second contact regions 79 is higher than the fifth well region 76. It is preferable that the p-type impurity concentration of the second contact regions 79 is approximately equal to the p-type impurity concentration of the first contact region 38.
  • the second contact regions 79 cover the wall surfaces of the corresponding second trench resistance structures 43 in the corresponding fifth well regions 76.
  • the second contact regions 79 are formed in a one-to-many correspondence with each second trench resistance structure 43.
  • the second contact regions 79 are formed at intervals along the corresponding second trench resistance structures 43.
  • the second contact regions 79 are extended from the corresponding fifth well regions 76 along the wall surfaces of the corresponding second trench resistance structures 43 to the surface layer of the body region 17 and exposed from the active surface 8.
  • the multiple second contact regions 79 are each formed in a band shape extending in the first direction X in a plan view.
  • the length of the multiple second contact regions 79 in the first direction X is preferably equal to or greater than the fifth width W5 of the second trench resistance structure 43.
  • the length of the multiple second contact regions 79 is preferably greater than the distance between two adjacent second contact regions 79 in the first direction X.
  • the length of the multiple second contact regions 79 is preferably less than the distance between the first mesa portion 71 and the second mesa portion 72.
  • the length of the multiple second contact regions 79 is preferably approximately equal to the length of the multiple first contact regions 38.
  • the multiple second contact regions 79 include an outermost second contact region 79 that covers an area along the end of each second trench resistance structure 43.
  • the outermost second contact region 79 is preferably formed at a distance from the second mesa portion 72. In other words, the outermost second contact region 79 preferably faces the first trench resistance structure 42 in the second direction Y, but does not face the first dummy trench structure 61 in the second direction Y.
  • the distance between the second mesa portion 72 and the outermost second contact region 79 may be less than the length of the second contact region 79.
  • the distance between the second mesa portion 72 and the outermost second contact region 79 may be less than the fifth width W5 of the second trench resistor structure 43. It is particularly preferable that the distance between the second mesa portion 72 and the outermost second contact region 79 is less than the width (seventh interval I7) of the second mesa portion 72.
  • the second contact regions 79 along one second trench resistance structure 43 face the second contact regions 79 along the other second trench resistance structures 43 in the second direction Y. That is, in this embodiment, the second contact regions 79 are arranged in a matrix with gaps in the first direction X and the second direction Y as a whole in a plan view. The second contact regions 79 may face the first contact regions 38 in the second direction Y. In this case, the second contact regions 79 may be arranged in a matrix with the first contact regions 38.
  • the second contact regions 79 along one second trench resistance structure 43 may be arranged offset in the first direction X so as to face the regions between the second contact regions 79 along the other second trench resistance structures 43 in the second direction Y.
  • the second contact regions 79 may be arranged in a staggered manner with gaps in the first direction X and the second direction Y as a whole in a plan view.
  • the second contact regions 79 may face the regions between the first contact regions 38 in the second direction Y.
  • the second contact regions 79 may be arranged in a staggered manner together with the first contact regions 38.
  • the semiconductor device 1 includes a plurality of p-type third contact regions 80 formed in a region along the plurality of second dummy trench structures 62 in the first termination region 15A.
  • the third contact regions 80 have a higher p-type impurity concentration than the body region 17.
  • the p-type impurity concentration of the third contact regions 80 is higher than the seventh well region 78. It is preferable that the p-type impurity concentration of the third contact regions 80 is approximately equal to the p-type impurity concentration of the second contact region 79 (first contact region 38).
  • the multiple third contact regions 80 cover the wall surfaces of the corresponding second dummy trench structures 62 in the corresponding seventh well regions 78.
  • the multiple third contact regions 80 are formed in a one-to-many correspondence with each second dummy trench structure 62.
  • the multiple third contact regions 80 are formed at intervals along the corresponding second dummy trench structures 62.
  • the multiple third contact regions 80 are extended from the corresponding seventh well regions 78 along the wall surfaces of the corresponding second dummy trench structures 62 to the surface layer of the body region 17 and exposed from the active surface 8.
  • the multiple third contact regions 80 are each formed in a band shape extending in the first direction X in a plan view.
  • the length of the multiple third contact regions 80 in the first direction X is preferably equal to or greater than the seventh width W7 described above.
  • the length of the multiple third contact regions 80 is preferably greater than the distance between two adjacent third contact regions 80 in the first direction X.
  • the length of the multiple third contact regions 80 is preferably less than the distance between the first mesa portion 71 and the second mesa portion 72.
  • the length of the multiple third contact regions 80 is preferably approximately equal to the length of the multiple second contact regions 79 (first contact regions 38).
  • the multiple third contact regions 80 face the first dummy trench structure 61 in the second direction Y in the region on the third connection surface 10C side relative to the first mesa portion 71.
  • the multiple third contact regions 80 are formed at intervals along each second dummy trench structure 62 so that the first mesa portion 71 is located between two adjacent third contact regions 80. It is preferable that the multiple third contact regions 80 are formed at intervals in the first direction X from the first mesa portion 71 so as not to face the first mesa portion 71.
  • the distance between the first mesa portion 71 and the third contact region 80 is less than the length of the third contact region 80. It is preferable that the distance between the first mesa portion 71 and the third contact region 80 is less than the seventh width W7 described above. It is particularly preferable that the distance between the first mesa portion 71 and the third contact region 80 is less than the width of the first mesa portion 71 (the fifth interval I5).
  • the multiple third contact regions 80 include at least one (in this example, one) outermost third contact region 80 formed in the range between the first mesa portion 71 and the second mesa portion 72.
  • the outermost third contact region 80 faces the first trench resistor structure 42 in the second direction Y.
  • the outermost third contact region 80 is preferably formed at a distance in the first direction X from the first mesa portion 71 and the second mesa portion 72. In other words, the outermost third contact region 80 preferably faces the first trench resistor structure 42 in the second direction Y, but does not face the first dummy trench structure 61 in the second direction Y.
  • the distance between the second mesa portion 72 and the third contact region 80 is preferably less than the length of the third contact region 80.
  • the distance between the second mesa portion 72 and the third contact region 80 is preferably less than the aforementioned seventh width W7.
  • the distance between the second mesa portion 72 and the outermost third contact region 80 is less than the width (seventh interval I7) of the second mesa portion 72. It is preferable that the distance between the outermost second contact region 79 and the outermost third contact region 80 adjacent to each other across the second mesa portion 72 is approximately equal to the distance between two adjacent third contact regions 80 across the first mesa portion 71.
  • the multiple third contact regions 80 along one second dummy trench structure 62 face the multiple third contact regions 80 along the other second dummy trench structures 62 in the second direction Y. That is, in this embodiment, the multiple third contact regions 80 are arranged in a matrix with gaps in the first direction X and the second direction Y as a whole in a plan view. In this case, the multiple third contact regions 80 may be arranged in a matrix with the multiple second contact regions 79. The multiple third contact regions 80 may also be arranged in a matrix with the multiple first contact regions 38.
  • the third contact regions 80 along one second dummy trench structure 62 may be arranged offset in the first direction X so as to face the second direction Y in a region between the third contact regions 80 along the other second dummy trench structure 62.
  • the third contact regions 80 may be arranged in a staggered manner with intervals in the first direction X and the second direction Y as a whole in a plan view.
  • the third contact regions 80 may be arranged in a staggered manner together with the second contact regions 79.
  • the third contact regions 80 may also be arranged in a staggered manner together with the first contact regions 38.
  • the semiconductor device 1 includes a termination dummy structure 85 formed on the first main surface 3 (active surface 8) in the first termination region 15A.
  • the termination dummy structure 85 is incorporated in the active surface 8 (first termination region 15A) for one purpose of alleviating local electric field concentration in the vicinity of the gate resistor 40 and improving the breakdown voltage (e.g., breakdown voltage).
  • the presence or absence of the termination dummy structure 85 is optional, and a configuration not including the termination dummy structure 85 may be adopted.
  • the termination dummy structure 85 is disposed in a region on the first side surface 5A side (first connection surface 10A side) of the gate resistor 40.
  • the termination dummy structure 85 is formed at the end edge of the active surface 8.
  • the termination dummy structure 85 faces the gate resistor 40 and the dummy structure 55 in the second direction Y.
  • the termination dummy structure 85 faces the active region 12 across the gate resistor 40 in the second direction Y, faces the first peripheral region 14A across the first dummy structure 56 in the second direction Y, and faces the second peripheral region 14B across the second dummy structure 57 in the second direction Y.
  • Figure 24 is an enlarged plan view showing the layout of the termination dummy structure 85.
  • Figure 25 is a further enlarged plan view showing the layout of the termination dummy structure 85.
  • Figure 26 is a cross-sectional view taken along line XXVI-XXVI shown in Figure 25.
  • the termination dummy structure 85 includes at least one (in this embodiment, multiple) trench termination structures 86 formed in the first termination region 15A.
  • a source potential VS is applied to the multiple trench termination structures 86 as a second potential.
  • the multiple trench termination structures 86 are each formed in a band shape extending in the first direction X and are arranged at intervals in the second direction Y.
  • the multiple trench termination structures 86 face the first trench resistor structure 42 and the first dummy trench structure 61 in the second direction Y.
  • the multiple trench termination structures 86 are exposed from at least one of the third connection surface 10C and the fourth connection surface 10D.
  • the trench termination structure 86 penetrates both the third connection surface 10C and the fourth connection surface 10D and is exposed from both the third connection surface 10C and the fourth connection surface 10D.
  • the multiple trench termination structures 86 penetrate the body region 17 to reach the first semiconductor region 6.
  • the multiple trench termination structures 86 are formed at intervals from the bottom of the first semiconductor region 6 toward the active surface 8.
  • the trench termination structure 86 has an eighth width W8 in the second direction Y and an eighth depth D8 in the normal direction Z.
  • the eighth width W8 is preferably approximately equal to the fifth width W5 (second width W2) described above.
  • the eighth width W8 may be 0.1 ⁇ m or more and 3 ⁇ m or less.
  • the eighth width W8 is preferably 0.5 ⁇ m or more and 2 ⁇ m or less.
  • the eighth depth D8 is equal to or greater than the fourth depth D4 (first depth D1) described above. In this embodiment, the eighth depth D8 is greater than the fourth depth D4 (first depth D1). It is preferable that the eighth depth D8 is 1.5 to 3 times the fourth depth D4 (first depth D1). In this embodiment, the eighth depth D8 is approximately equal to the fifth depth D5 (second depth D2) described above. The eighth depth D8 is approximately equal to the outer circumferential depth DO of the outer circumferential surface 9.
  • the eighth depth D8 may be 0.5 ⁇ m to 5 ⁇ m. It is particularly preferable that the eighth depth D8 is 2.5 ⁇ m or less.
  • the multiple trench termination structures 86 are arranged at an eighth interval I8 from each other in the second direction Y.
  • the eighth interval I8 is preferably 0.5 to 2 times the eighth width W8. It is particularly preferable that the eighth interval I8 is less than the eighth width W8. It is preferable that the eighth width W8 is approximately equal to the aforementioned fourth interval I4 (first interval I1).
  • the eighth width W8 may be 0.1 ⁇ m to 2.5 ⁇ m. It is preferable that the eighth width W8 is 0.5 ⁇ m to 1.5 ⁇ m.
  • the innermost trench termination structure 86 on the gate resistor 40 side is disposed adjacent to the outermost first trench resistance structure 42 in the second direction Y, with the aforementioned fourth interval I4 between them. Also, in this embodiment, the innermost trench termination structure 86 is disposed adjacent to the outermost first dummy trench structure 61 in the second direction Y, with the aforementioned sixth interval I6 between them.
  • the trench termination structure 86 includes a termination trench 87, a termination insulating film 88, and a termination buried electrode 89.
  • the termination trench 87 is formed in the active surface 8 and defines the wall surface of the trench termination structure 86.
  • the side wall of the termination trench 87 is in communication with the third connection surface 10C.
  • the bottom wall of the termination trench 87 is in communication with the outer peripheral surface 9.
  • the termination insulating film 88 covers the wall surface of the termination trench 87 and is connected to the main surface insulating film 16 at the active surface 8.
  • the termination insulating film 88 is connected to the main surface insulating film 16 at the communicating portion of the third connection surface 10C and the communicating portion of the outer peripheral surface 9.
  • the termination insulating film 88 may include at least one of a silicon oxide film, a silicon nitride film, and a silicon oxynitride film.
  • the termination insulating film 88 has a single-layer structure made of a silicon oxide film. It is particularly preferable that the termination insulating film 88 includes a silicon oxide film made of an oxide of the chip 2.
  • the termination buried electrode 89 is embedded in the termination trench 87 with the termination insulating film 88 in between.
  • the termination buried electrode 89 may include conductive polysilicon.
  • the semiconductor device 1 includes a plurality of p-type eighth well regions 90 formed in the first termination region 15A in a region along the plurality of trench termination structures 86.
  • the eighth well regions 90 have a higher p-type impurity concentration than the body region 17.
  • the p-type impurity concentration of the eighth well regions 90 may be lower than the body region 17. It is preferable that the p-type impurity concentration of the eighth well regions 90 is approximately equal to the p-type impurity concentration of the second well region 36 (first well region 35).
  • the multiple eighth well regions 90 cover the wall surfaces of the corresponding trench termination structures 86 at intervals from the adjacent trench termination structures 86, and are electrically connected to the body region 17 at the surface portion of the active surface 8.
  • the multiple eighth well regions 90 extend in a band shape along the corresponding trench termination structures 86 in a plan view, and are exposed from the third connection surface 10C and the fourth connection surface 10D.
  • the multiple eighth well regions 90 are formed at intervals from the bottom of the first semiconductor region 6 toward the active surface 8, and face the second semiconductor region 7 across a portion of the first semiconductor region 6.
  • the bottoms of the multiple eighth well regions 90 are located on the bottom side of the first semiconductor region 6 relative to the depth position of the bottoms of the multiple first well regions 35.
  • the bottoms of the multiple eighth well regions 90 are formed at a depth approximately equal to the bottoms of the multiple second well regions 36.
  • the multiple eighth well regions 90 form pn junctions with the first semiconductor region 6.
  • the semiconductor device 1 includes a dummy structure 55 and a termination dummy structure 85 formed on the first main surface 3 (active surface 8) in the second termination region 15B.
  • the semiconductor device 1 does not include a gate resistor 40 in the second termination region 15B.
  • the dummy structure 55 on the second termination region 15B side is disposed in a region on the fourth side surface 5D side (fourth connection surface 10D side) of the active region 12, and faces the active region 12 and the peripheral region 14 in the second direction Y.
  • the dummy structure 55 on the second termination region 15B side includes multiple dummy trench structures 60 (multiple first dummy trench structures 61 and multiple second dummy trench structures 62), similar to the first dummy structure 56 on the first termination region 15A side.
  • the multiple dummy trench structures 60 on the second termination region 15B side penetrate both the third connection surface 10C and the fourth connection surface 10D, and are exposed from both the third connection surface 10C and the fourth connection surface 10D. Otherwise, the configuration of the dummy structure 55 on the second termination region 15B side is similar to the configuration of the dummy structure 55 (first dummy structure 56) on the first termination region 15A side.
  • the termination dummy structure 85 on the second termination region 15B side has a configuration similar to the configuration of the termination dummy structure 85 on the first termination region 15A side.
  • the description of the termination dummy structure 85 on the first termination region 15A side applies.
  • the semiconductor device 1 also includes a plurality of sixth well regions 77, a plurality of seventh well regions 78, a plurality of second contact regions 79, and a plurality of eighth well regions 90 in the second termination region 15B.
  • the explanations of the sixth well region 77, the seventh well region 78, the second contact region 79, and the eighth well region 90 on the second termination region 15B side are the same as those of the sixth well region 77, the seventh well region 78, the second contact region 79, and the eighth well region 90 on the first termination region 15A side.
  • the semiconductor device 1 includes a p-type outer well region 91 formed in the surface layer of the peripheral surface 9.
  • the outer well region 91 has a lower p-type impurity concentration than the first contact region 38.
  • the p-type impurity concentration of the outer well region 91 is higher than that of the body region 17.
  • the p-type impurity concentration of the outer well region 91 may be lower than that of the body region 17. It is preferable that the outer well region 91 has a p-type impurity concentration approximately equal to that of the first well region 35 (second well region 36).
  • the outer well region 91 is formed at a distance from the periphery of the outer peripheral surface 9 (first to fourth side surfaces 5A to 5D) toward the active surface 8 in a plan view, and extends in a band shape along the active surface 8.
  • the outer well region 91 is formed in a ring shape (specifically, a square ring shape) that surrounds the active surface 8 in a plan view.
  • the outer well region 91 extends from the surface layer of the outer peripheral surface 9 toward the surface layers of the first to fourth connection surfaces 10A to 10D, and covers the first to fourth connection surfaces 10A to 10D.
  • the outer well region 91 is electrically connected to the body region 17 at the surface portion of the active surface 8.
  • the outer well region 91 is connected to the second well region 36 at the third connection surface 10C (fourth connection surface 10D) and the communication portion of the first trench source structure 25.
  • the outer well region 91 is connected to the third well region 37 at the communication portion of the third connection surface 10C (fourth connection surface 10D) and the second trench source structure 30.
  • the outer well region 91 is connected to the sixth well region 77 at the third connection surface 10C (fourth connection surface 10D) and the communication portion of the first dummy trench structure 61.
  • the outer well region 91 is connected to the seventh well region 78 at the communication portion of the third connection surface 10C (fourth connection surface 10D) and the second dummy trench structure 62.
  • the outer well region 91 is connected to the eighth well region 90 at the communication portion of the third connection surface 10C (fourth connection surface 10D) and the trench termination structure 86.
  • the outer well region 91 is formed at a distance from the bottom of the first semiconductor region 6 toward the outer circumferential surface 9, and faces the second semiconductor region 7 across a portion of the first semiconductor region 6.
  • the outer well region 91 is located closer to the bottom of the first semiconductor region 6 than the bottom wall of the first trench source structure 25 (second trench resistor structure 43).
  • the bottom of the outer well region 91 is located closer to the bottom of the first semiconductor region 6 than the bottom of the first contact region 38. It is preferable that the bottom of the outer well region 91 is formed at a depth position approximately equal to the bottom of the second well region 36.
  • the outer well region 91 forms a pn junction with the first semiconductor region 6.
  • the semiconductor device 1 includes a p-type outer contact region 92 formed in a surface layer of the outer well region 91.
  • the outer contact region 92 has a higher p-type impurity concentration than the body region 17.
  • the p-type impurity concentration of the outer contact region 92 is higher than that of the outer well region 91. It is preferable that the p-type impurity concentration of the outer contact region 92 is approximately equal to the p-type impurity concentration of the first contact region 38 (second contact region 79).
  • the outer contact region 92 is formed in the surface layer of the outer well region 91 at a distance from the periphery of the active surface 8 (first to fourth connection surfaces 10A to 10D) and the periphery of the outer peripheral surface 9 (first to fourth side surfaces 5A to 5D) in a plan view, and is formed in a band shape extending along the active surface 8.
  • the outer contact region 92 is formed in a ring shape (specifically, a square ring shape) surrounding the active surface 8 in a plan view.
  • the outer contact region 92 is formed at a distance from the bottom of the outer well region 91 toward the outer peripheral surface 9, and faces the first semiconductor region 6 across a portion of the outer well region 91.
  • the outer contact region 92 is located closer to the bottom of the first semiconductor region 6 than the bottom wall of the first trench source structure 25 (second trench resistor structure 43). It is preferable that the bottom of the outer contact region 92 is formed at a depth position approximately equal to the bottom of the first contact region 38 (second contact region 79).
  • the semiconductor device 1 includes at least one (preferably 2 to 20) p-type field region 93 formed in the surface layer of the outer peripheral surface 9 in a region between the periphery of the outer peripheral surface 9 and the outer well region 91.
  • the semiconductor device 1 includes four field regions 93.
  • the multiple field regions 93 are formed in an electrically floating state and reduce the electric field within the chip 2 at the outer peripheral surface 9.
  • the number, width, depth, p-type impurity concentration, etc. of the field regions 93 are arbitrary and can take various values depending on the electric field to be relaxed.
  • the field regions 93 may have a lower p-type impurity concentration than the outer contact region 92.
  • the field regions 93 may have a higher p-type impurity concentration than the outer well region 91.
  • the field regions 93 may have a lower p-type impurity concentration than the outer well region 91.
  • the multiple field regions 93 are arranged at intervals from the outer well region 91 side to the peripheral edge side of the outer peripheral surface 9.
  • the multiple field regions 93 are formed in a band shape extending along the active surface 8 in a plan view.
  • the multiple field regions 93 are formed in a ring shape (specifically, a square ring shape) surrounding the active surface 8 in a plan view.
  • the multiple field regions 93 are formed at intervals from the bottom of the first semiconductor region 6 toward the outer circumferential surface 9, and face the second semiconductor region 7 across a portion of the first semiconductor region 6.
  • the multiple field regions 93 are located closer to the bottom of the first semiconductor region 6 than the bottom wall of the first trench source structure 25.
  • the bottoms of the multiple field regions 93 are located closer to the bottom of the first semiconductor region 6 than the bottom of the first contact region 38.
  • the bottoms of the multiple field regions 93 may be formed at a depth position approximately equal to the bottom of the second well region 36.
  • the semiconductor device 1 includes a sidewall wiring 95 formed on the outer peripheral surface 9 so as to cover at least one of the first to fourth connection surfaces 10A to 10D. Specifically, the sidewall wiring 95 is disposed on the main surface insulating film 16. The sidewall wiring 95 also functions as a sidewall structure that reduces the step formed between the active surface 8 and the outer peripheral surface 9.
  • the sidewall wiring 95 is preferably formed in a band shape extending along at least one of the third connection surface 10C and the fourth connection surface 10D.
  • the sidewall wiring 95 is formed in a ring shape (specifically, a square ring shape) extending along the first to fourth connection surfaces 10A to 10D so as to surround the active surface 8 in a plan view.
  • the portions of the sidewall wiring 95 that cover the four corners of the active surface 8 are formed in a curved shape toward the outer circumferential surface 9.
  • the sidewall wiring 95 includes a portion that extends in a film-like manner along the outer peripheral surface 9, and a portion that extends in a film-like manner along the first to fourth connection surfaces 10A to 10D.
  • the portion of the sidewall wiring 95 located on the outer peripheral surface 9 may cover the outer peripheral surface 9 in a region on the outer peripheral surface 9 side relative to the active surface 8.
  • the portion of the sidewall wiring 95 located on the outer peripheral surface 9 may have a thickness less than the thickness of the active plateau 11 (outer peripheral depth DO).
  • the sidewall wiring 95 faces the outer well region 91 on the outer peripheral surface 9, with the main surface insulating film 16 in between.
  • the sidewall wiring 95 may also face the outer contact region 92, with the main surface insulating film 16 in between.
  • the sidewall wiring 95 is formed at a distance from the field region 93 toward the active surface 8 in a plan view.
  • the sidewall wiring 95 faces the second well region 36, the third well region 37, the sixth well region 77, the seventh well region 78, the eighth well region 90, and the outer well region 91 at the first to fourth connection surfaces 10A to 10D, with the main surface insulating film 16 in between.
  • the sidewall wiring 95 also faces the body region 17, with the main surface insulating film 16 in between.
  • the sidewall wiring 95 covers the exposed portion of the first trench source structure 25, the exposed portion of the second trench source structure 30, the exposed portion of the first dummy trench structure 61, the exposed portion of the second dummy trench structure 62, and the exposed portion of the trench termination structure 86 at the first to fourth connection surfaces 10A to 10D.
  • the sidewall wiring 95 is electrically connected to the first trench source structure 25, the second trench source structure 30, the first dummy trench structure 61, the second dummy trench structure 62, and the trench termination structure 86.
  • the sidewall wiring 95 applies the source potential VS to the connection target from the outer peripheral surface 9 side.
  • the sidewall wiring 95 has an overlapping portion 96 that extends from at least one of the first to fourth connection surfaces 10A to 10D onto the edge of the active surface 8.
  • the overlapping portion 96 covers the active surface 8 in a film-like manner in a plan view, and is formed in a band shape extending along the edge of the active surface 8.
  • the overlapping portion 96 is formed in a ring shape (specifically, a square ring shape) that surrounds the inner part of the active surface 8 in a plan view.
  • the overlap portion 96 is electrically connected to the first trench source structure 25, the second trench source structure 30, the first dummy trench structure 61, the second dummy trench structure 62 and the trench termination structure 86 on the active surface 8.
  • the sidewall wiring 95 includes conductive polysilicon and is formed integrally with the first source buried electrode 28, the second source buried electrode 33, the first dummy buried electrode 65, the second dummy buried electrode 68, and the termination buried electrode 89.
  • the sidewall wiring 95 may be formed separately from the first source buried electrode 28, the second source buried electrode 33, the first dummy buried electrode 65, the second dummy buried electrode 68, and the termination buried electrode 89.
  • the semiconductor device 1 includes an interlayer insulating film 99 that covers the main surface insulating film 16.
  • the interlayer insulating film 99 covers the active surface 8, the outer peripheral surface 9, and the first to fourth connection surfaces 10A to 10D with the main surface insulating film 16 in between.
  • the interlayer insulating film 99 covers the trench gate structure 20, the first trench source structure 25, the second trench source structure 30, the first trench resistor structure 42, the second trench resistor structure 43, the first dummy trench structure 61, the second dummy trench structure 62, and the trench termination structure 86 on the active surface 8.
  • the interlayer insulating film 99 covers the resistive film 50 in the first termination region 15A, and covers the multiple trench resistance structures 41 with the resistive film 50 in between.
  • the interlayer insulating film 99 covers the outer well region 91, the outer contact region 92, and the multiple field regions 93 with the main surface insulating film 16 in between at the outer peripheral surface 9.
  • the interlayer insulating film 99 covers the sidewall wiring 95 at the first to fourth connection surfaces 10A to 10D.
  • the interlayer insulating film 99 is continuous with the first to fourth side surfaces 5A to 5D.
  • the wall portion of the interlayer insulating film 99 may be formed at a distance inward from the periphery of the outer peripheral surface 9, exposing the first semiconductor region 6 from the periphery of the outer peripheral surface 9.
  • the interlayer insulating film 99 may include at least one of a silicon oxide film, a silicon nitride film, and a silicon oxynitride film.
  • the interlayer insulating film 99 includes a silicon oxide film.
  • the semiconductor device 1 includes a gate electrode 100 disposed on an interlayer insulating film 99.
  • the gate electrode 100 has a resistance value lower than the resistance value of the gate resistor 40.
  • the gate electrode 100 has a resistance value lower than the resistance value of the trench resistor structure 41.
  • the gate electrode 100 also has a resistance value lower than the resistance value of the resistive film 50.
  • the gate electrode 100 is preferably thicker than the resistive film 50.
  • the gate electrode 100 is preferably thicker than the interlayer insulating film 99.
  • the gate electrode 100 may have a thickness of 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the thickness of the gate electrode 100 is preferably 1 ⁇ m or more and 5 ⁇ m or less.
  • the gate electrode 100 may include at least one of a Ti film, a TiN film, a W film, an Al film, a Cu film, an Al alloy film, a Cu alloy film, and a conductive polysilicon film.
  • the gate electrode 100 may include at least one of a pure Cu film (Cu film with a purity of 99% or more), a pure Al film (Al film with a purity of 99% or more), an AlCu alloy film, an AlSi alloy film, and an AlSiCu alloy film.
  • the gate electrode 100 has a layered structure including a Ti film and an Al alloy film (an AlSiCu alloy film in this embodiment) layered in this order from the chip 2 side.
  • the gate electrode 100 may be referred to as a "gate metal".
  • the gate electrode 100 includes a gate pad 101, a gate wiring 102, and a gate subpad 103.
  • a gate potential VG is applied to the gate pad 101 from the outside.
  • the gate pad 101 is disposed in a region along the center of the first connection surface 10A in a plan view.
  • the gate pad 101 is disposed on the inner portion of the active surface 8 at a distance from the periphery of the active surface 8, and is not disposed on the outer peripheral surface 9.
  • the gate pad 101 is disposed in a region that overlaps the active region 12 and the first termination region 15A in a plan view.
  • the gate pad 101 covers the multiple trench gate structures 20 and the multiple first trench source structures 25 in the active region 12 with the interlayer insulating film 99 in between.
  • the gate pad 101 is disposed in a region that overlaps the gate resistor 40 in a planar view.
  • the gate pad 101 is formed at a distance from the dummy structure 55 and the termination dummy structure 85 in a planar view.
  • the gate pad 101 may be disposed in a region that overlaps with either or both of the dummy structure 55 and the termination dummy structure 85 in a planar view.
  • the gate pad 101 is electrically connected to the gate resistor 40 through the interlayer insulating film 99 in the first termination region 15A. Specifically, the gate pad 101 is connected to the resistive film 50 through the interlayer insulating film 99. In this embodiment, the gate pad 101 is connected to the center of the resistive film 50 through the interlayer insulating film 99.
  • the gate pad 101 faces one or more (in this embodiment, multiple) trench resistance structures 41 across the resistive film 50. In this embodiment, the gate pad 101 faces multiple first trench resistance structures 42 and multiple second trench resistance structures 43 across the resistive film 50.
  • the gate pad 101 includes a pad body 104 and an extraction portion 105.
  • the pad body 104 is a portion to which a gate potential VG is applied from the outside.
  • the pad body 104 is disposed on a portion of the interlayer insulating film 99 that covers the active region 12, and faces the gate resistor 40 in the second direction Y in a plan view.
  • the pad body 104 covers the multiple trench gate structures 20 and the multiple first trench source structures 25 with the interlayer insulating film 99 in between.
  • the pad body 104 is formed to be wider than the gate resistor 40 (trench gate structure 20) in the first direction X.
  • the pad main body 104 is formed in a rectangular shape in a plan view. It is preferable that the pad main body 104 has a plan area that is 25% or less of the plan area of the first main surface 3. It is preferable that the plan area of the pad main body 104 is 10% or less of the plan area of the first main surface 3.
  • the draw-out portion 105 is a portion that electrically connects the pad body portion 104 to the gate resistor 40.
  • the draw-out portion 105 is drawn out in a strip shape from the pad body portion 104 onto a portion of the interlayer insulating film 99 that covers the gate resistor 40.
  • the draw-out portion 105 is formed narrower than the pad body portion 104 in the first direction X.
  • the draw-out portion 105 is formed narrower than the gate resistor 40 (trench gate structure 20) in the first direction X.
  • the lead-out portion 105 is connected to the gate resistor 40 via a first resistor opening 106 formed in the interlayer insulating film 99. Specifically, the lead-out portion 105 is connected to the resistive film 50 within the first resistor opening 106. In other words, the lead-out portion 105 is electrically connected to the multiple trench resistor structures 41 via the resistive film 50.
  • the pad main body 104 is electrically connected to the multiple trench resistance structures 41 and the resistive film 50 via the lead-out portion 105.
  • the lead-out portion 105 faces one or multiple (multiple in this embodiment) trench resistance structures 41 across the resistive film 50.
  • the lead-out portion 105 faces multiple first trench resistance structures 42 and multiple second trench resistance structures 43 across the resistive film 50.
  • the gate wiring 102 is selectively routed from the first termination region 15A toward the active region 12 so as to transmit the gate potential VG applied to the gate pad 101 to the multiple trench gate structures 20.
  • the gate wiring 102 is disposed on the inner portion of the active surface 8 at a distance from the periphery of the active surface 8, and is not disposed on the outer periphery 9.
  • the gate wiring 102 is disposed on the interlayer insulating film 99 at a distance from the gate pad 101 in the first termination region 15A.
  • the gate wiring 102 penetrates the interlayer insulating film 99 at a position different from the gate pad 101 and is electrically connected to the gate resistor 40.
  • the gate wiring 102 penetrates the interlayer insulating film 99 and is connected to the resistive film 50.
  • the gate wiring 102 is electrically connected to the gate pad 101 via the multiple trench resistor structures 41 and the resistive film 50.
  • the gate wiring 102 faces one or more (multiple in this embodiment) trench resistance structures 41 across the resistive film 50.
  • the gate wiring 102 faces a plurality of first trench resistance structures 42 and a plurality of second trench resistance structures 43 across the resistive film 50.
  • the gate wiring 102 extends in a line shape so as to intersect (specifically, perpendicular to) the multiple trench gate structures 20 in the active region 12, and is electrically connected to the multiple trench gate structures 20 by penetrating the interlayer insulating film 99.
  • the gate wiring 102 includes a first gate wiring 102A, a second gate wiring 102B, and a third gate wiring 102C.
  • the first gate wiring 102A is disposed in a region on the third connection surface 10C side of the gate pad 101, and extends in a line along the first connection surface 10A and the third connection surface 10C.
  • the first gate wiring 102A is electrically connected to the gate pad 101 via a gate resistor 40 in the first termination region 15A, and is electrically connected to a plurality of trench gate structures 20 in the active region 12.
  • the first gate wiring 102A extends in a line in the first direction X so as to cover the gate resistor 40 and the dummy structure 55 (first dummy structure 56) in the first termination region 15A.
  • the first gate wiring 102A is disposed on a portion of the interlayer insulating film 99 that covers the gate resistor 40, spaced apart from the gate pad 101.
  • the first gate wiring 102A is connected to the gate resistor 40 via a second resistor opening 107 formed in the interlayer insulating film 99 at a distance from the first resistor opening 106.
  • the first gate wiring 102A is connected to a region on one end side (the third connection surface 10C side) of the gate resistor 40 at a distance from the connection position of the gate pad 101.
  • the first gate wiring 102A is connected to the resistive film 50 within the second resistive opening 107. That is, the first gate wiring 102A is electrically connected to the multiple trench resistance structures 41 via the resistive film 50.
  • the first gate wiring 102A faces one or multiple (multiple in this embodiment) trench resistance structures 41 across the resistive film 50. In this embodiment, the first gate wiring 102A faces multiple first trench resistance structures 42 and multiple second trench resistance structures 43 across the resistive film 50.
  • the first gate wiring 102A extends in a line in the second direction Y so as to intersect (specifically, perpendicularly) with the multiple trench gate structures 20 in the active region 12.
  • the first gate wiring 102A is electrically connected to the multiple gate connection electrode films 39 via the multiple gate openings 108 formed in the interlayer insulating film 99.
  • the first gate wiring 102A is electrically connected to the multiple trench gate structures 20 via the multiple gate connection electrode films 39.
  • the portion of the first gate wiring 102A that extends in a line in the second direction Y in the active region 12 is an example of a "peripheral gate wiring" in this disclosure.
  • connection height position of the first gate wiring 102A to the gate connection electrode film 39 may be approximately equal to the connection height position of the first gate wiring 102A to the resistive film 50.
  • the connection height position of the first gate wiring 102A to the gate connection electrode film 39 may be located closer to the active surface 8 than the connection height position of the second gate wiring 102B to the resistive film 50.
  • the connection height position of the first gate wiring 102A to the gate connection electrode film 39 may be located higher than the connection height position of the second gate wiring 102B to the resistive film 50.
  • the second gate wiring 102B is disposed in a region on the fourth connection surface 10D side of the gate pad 101, and extends in a line along the first connection surface 10A and the fourth connection surface 10D.
  • the second gate wiring 102B is electrically connected to the gate pad 101 via the gate resistor 40 in the first termination region 15A, and is electrically connected to a plurality of trench gate structures 20 in the active region 12.
  • the second gate wiring 102B is electrically connected to a plurality of trench gate structures 20 electrically connected to the first gate wiring 102A.
  • the second gate wiring 102B extends in a line in the first direction X so as to cover the gate resistor 40 and the dummy structure 55 (second dummy structure 57) in the first termination region 15A.
  • the second gate wiring 102B is disposed on a portion of the interlayer insulating film 99 that covers the gate resistor 40, spaced apart from the gate pad 101.
  • the second gate wiring 102B is connected to the gate resistor 40 via a third resistor opening 109 formed in the interlayer insulating film 99 at a distance from the first resistor opening 106 and the second resistor opening 107.
  • the second gate wiring 102B is connected to a region on the other end side (the fourth connection surface 10D side) of the gate resistor 40 at a distance from the connection position of the gate pad 101.
  • the second gate wiring 102B is connected to the resistive film 50 within the third resistance opening 109. That is, the second gate wiring 102B is electrically connected to the multiple trench resistance structures 41 via the resistive film 50.
  • the second gate wiring 102B faces one or multiple (multiple in this embodiment) trench resistance structures 41 across the resistive film 50. In this embodiment, the second gate wiring 102B faces multiple first trench resistance structures 42 and multiple second trench resistance structures 43 across the resistive film 50.
  • the second gate wiring 102B extends in a line in the second direction Y so as to intersect (specifically, perpendicular to) the multiple trench gate structures 20 in the active region 12.
  • the second gate wiring 102B is electrically connected to the multiple gate connection electrode films 39 via the multiple gate openings 108 formed in the interlayer insulating film 99.
  • the second gate wiring 102B is electrically connected to the multiple trench gate structures 20 via the multiple gate connection electrode films 39.
  • connection height position of the second gate wiring 102B to the gate connection electrode film 39 may be approximately equal to the connection height position of the second gate wiring 102B to the resistive film 50.
  • connection height position of the second gate wiring 102B to the gate connection electrode film 39 may be located closer to the active surface 8 than the connection height position of the second gate wiring 102B to the resistive film 50.
  • connection height position of the second gate wiring 102B to the gate connection electrode film 39 may be located higher than the connection height position of the second gate wiring 102B to the resistive film 50.
  • the third gate wiring 102C is disposed in a region on the second connection surface 10B side of the gate pad 101, and extends in a line shape along the second direction Y in the region between the gate pad 101 and the second connection surface 10B.
  • the third gate wiring 102C is connected to the first gate wiring 102A and the second gate wiring 102B in the first termination region 15A, and is electrically connected to a plurality of trench gate structures 20 in the active region 12.
  • the third gate wiring 102C is electrically connected to the gate resistor 40 via the first gate wiring 102A, and is electrically connected to the gate resistor 40 via the second gate wiring 102B.
  • the portion of the first gate wiring 102A connected to the gate resistor 40 and the portion of the second gate wiring 102B connected to the gate resistor 40 may be considered as part of the third gate wiring 102C.
  • the third gate wiring 102C is electrically connected to a plurality of trench gate structures 20 electrically connected to the first gate wiring 102A and the second gate wiring 102B in the active region 12.
  • the third gate wiring 102C includes a line portion 110, a first branch portion 111, and a second branch portion 112.
  • the line portion 110 extends in a line shape along the second direction Y in the region between the gate pad 101 and the second connection surface 10B.
  • the line portion 110 has a first end portion on the gate pad 101 side and a second end portion on the second connection surface 10B side.
  • the first end portion is formed at a distance from the gate pad 101 to the second connection surface 10B side.
  • the second end portion is formed at a distance from the second connection surface 10B to the gate pad 101 side.
  • the line portion 110 is an example of a "central gate wiring" in this disclosure.
  • the line portion 110 is electrically connected to the multiple trench gate structures 20 via multiple gate openings 108 formed in the interlayer insulating film 99.
  • Multiple gate connection electrode films 39 may be formed to cover the inner portions of the multiple trench gate structures 20. In this case, the line portion 110 is electrically connected to the multiple trench gate structures 20 via the multiple gate connection electrode films 39.
  • connection height position of the line portion 110 to the gate connection electrode film 39 may be approximately equal to the connection height position of the first gate wiring 102A (second gate wiring 102B) to the resistive film 50.
  • connection height position of the line portion 110 to the gate connection electrode film 39 may be located closer to the active surface 8 than the connection height position of the second gate wiring 102B to the resistive film 50.
  • connection height position of the line portion 110 to the gate connection electrode film 39 may be located higher than the connection height position of the second gate wiring 102B to the resistive film 50.
  • the first branch portion 111 connects the line portion 110 and the first gate wiring 102A.
  • the first branch portion 111 is pulled out from the first end of the line portion 110 to one side (the third connection surface 10C side) and extends in a strip shape along the gate pad 101.
  • the first branch portion 111 is connected to a portion of the first gate wiring 102A that covers the dummy structure 55 (first dummy structure 56).
  • the first branch portion 111 may be connected to a portion of the first gate wiring 102A that covers the gate resistor 40. In a portion extending in the second direction Y, the first branch portion 111 is electrically connected to a plurality of trench gate structures 20 via a plurality of gate openings 108 formed in the interlayer insulating film 99. The first branch portion 111 may be electrically connected to a plurality of trench gate structures 20 via a plurality of gate connection electrode films 39.
  • the second branch portion 112 connects the line portion 110 and the second gate wiring 102B.
  • the second branch portion 112 is pulled out from the first end of the line portion 110 to the other side (the fourth connection surface 10D side) and extends in a band shape along the periphery of the gate pad 101.
  • the second branch portion 112 faces the first branch portion 111 across the gate pad 101 in the first direction X.
  • the second branch portion 112 is connected to a portion of the second gate wiring 102B that covers the dummy structure 55 (second dummy structure 57).
  • the second branch portion 112 may be connected to a portion of the second gate wiring 102B that covers the gate resistor 40. In a portion extending in the second direction Y, the second branch portion 112 is electrically connected to a plurality of trench gate structures 20 via a plurality of gate openings 108 formed in the interlayer insulating film 99. The second branch portion 112 may be electrically connected to a plurality of trench gate structures 20 via a plurality of gate connection electrode films 39.
  • the gate subpad 103 is disposed on the interlayer insulating film 99 so as to be electrically connected to the gate pad 101 via the gate resistor 40.
  • the gate subpad 103 is disposed at a distance from the gate pad 101 toward the third connection surface 10C, and faces the gate pad 101 in the first direction X.
  • the gate subpad 103 is disposed on a portion of the interlayer insulating film 99 that covers the active region 12, spaced apart from the first termination region 15A in a plan view.
  • the gate subpad 103 faces the dummy structure 55 (first dummy structure 56) in the second direction Y in a plan view.
  • the gate subpad 103 is formed narrower than the gate pad 101 and wider than the gate wiring 102.
  • the gate subpad 103 faces the multiple trench gate structures 20 and the multiple first trench source structures 25 across the interlayer insulating film 99.
  • the gate subpad 103 is electrically connected to the gate wiring 102.
  • the gate subpad 103 is connected to the third gate wiring 102C (first branch portion 111).
  • the gate subpad 103 only needs to be connected to at least one of the first to third gate wirings 102A to 102C, and the location of the gate subpad 103 is arbitrary.
  • FIG. 27 is an electrical circuit diagram showing the connection form of the gate electrode 100 and the gate resistor 40.
  • the trench gate structure 20 is shown by a circuit symbol indicating a MISFET.
  • the gate wiring 102 is electrically connected to the gate pad 101 via the gate resistor 40.
  • the gate resistor 40 includes a resistive parallel circuit 113 composed of a first resistor portion R1 and a second resistor portion R2.
  • the first resistor portion R1 is formed by a portion of the gate resistor 40 located between the connection portion of the gate pad 101 and the connection portion of the first gate wiring 102A.
  • the second resistor portion R2 is formed by a portion of the gate resistor 40 located between the connection portion of the gate pad 101 and the connection portion of the second gate wiring 102B.
  • the first gate wiring 102A is electrically connected to the gate pad 101 via the first resistance portion R1
  • the second gate wiring 102B is electrically connected to the gate pad 101 via the second resistance portion R2.
  • the resistance value of the first resistance portion R1 is adjusted by increasing or decreasing the distance between the connection portion of the gate pad 101 and the connection portion of the first gate wiring 102A.
  • the resistance value of the second resistor R2 is adjusted by increasing or decreasing the distance between the connection part of the gate pad 101 and the connection part of the second gate wiring 102B.
  • the resistance value of the second resistor R2 may be equal to or greater than the resistance value of the first resistor R1, may be less than the resistance value of the first resistor R1, or may be approximately equal to the resistance value of the first resistor R1.
  • the second gate wiring 102B is electrically connected to the trench gate structure 20 that is electrically connected to the first gate wiring 102A. Therefore, the second resistance portion R2 is connected in parallel to the first resistance portion R1, thereby forming a resistive parallel circuit 113.
  • the third gate wiring 102C is electrically connected to the trench gate structure 20 that is electrically connected to the first gate wiring 102A and the second gate wiring 102B.
  • one gate wiring 102 including the first to third gate wirings 102A to 102C is electrically connected to the resistive parallel circuit 113 and the trench gate structure 20.
  • the resistance value of the gate resistor 40 i.e., the resistance value between the gate pad 101 and the gate wiring 102 is indirectly measured by measuring the resistance value between the gate pad 101 and the gate subpad 103.
  • the gate resistor 40 suppresses surge currents by slowing down the switching speed during switching operations. In other words, the gate resistor 40 suppresses noise caused by surge currents. Because the gate resistor 40 is formed on the first main surface 3 (active surface 8), it is not externally connected to the semiconductor device 1. Therefore, by incorporating the gate resistor 40 into the first main surface 3, the number of components mounted on the circuit board is reduced.
  • the gate resistor 40 includes a trench resistor structure 41 embedded in the thickness direction of the chip 2, the area occupied by the gate resistor 40 relative to the first main surface 3 is limited. Therefore, the reduction in the area of the active region 12 caused by the introduction of the gate resistor 40 is suppressed. In particular, since the gate resistor 40 is disposed in the termination region 15, the reduction in the area of the active region 12 is appropriately suppressed.
  • the gate resistor 40 has a configuration similar to that of the active region 12. Therefore, the electrical influence of the gate resistor 40 on the active region 12 is suppressed, and the electrical influence of the active region 12 on the gate resistor 40 is suppressed. This suppresses fluctuations in the electrical characteristics on the active region 12 side, and suppresses fluctuations in the electrical characteristics on the gate resistor 40 side.
  • the gate resistor 40 does not necessarily have to have a resistive parallel circuit 113 including the first resistive portion R1 and the second resistive portion R2. Therefore, the gate resistor 40 may be composed of only the first resistive portion R1 or the second resistive portion R2. Such a configuration is achieved by changing the connection configuration of the gate wiring 102 to the gate resistor 40.
  • the gate wiring 102 (second gate wiring 102B) can be electrically disconnected from the gate resistor 40.
  • the gate wiring 102 (first gate wiring 102A) can be electrically disconnected from the gate resistor 40.
  • the gate wiring 102 does not need to include all of the first to third gate wirings 102A to 102C at the same time, but only needs to include at least one of the first to third gate wirings 102A to 102C.
  • the semiconductor device 1 includes a source electrode 120 disposed on an interlayer insulating film 99 at a distance from the gate electrode 100.
  • the source electrode 120 has a resistance value lower than that of the gate resistor 40.
  • the source electrode 120 is preferably thicker than the resistive film 50.
  • the source electrode 120 is preferably thicker than the interlayer insulating film 99.
  • the source electrode 120 may have a thickness of 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the thickness of the source electrode 120 is preferably 1 ⁇ m or more and 5 ⁇ m or less.
  • the thickness of the source electrode 120 is preferably approximately equal to the thickness of the gate electrode 100.
  • the source electrode 120 may include at least one of a Ti film, a TiN film, a W film, an Al film, a Cu film, an Al alloy film, a Cu alloy film, and a conductive polysilicon film.
  • the source electrode 120 may include at least one of a pure Cu film (Cu film with a purity of 99% or more), a pure Al film (Al film with a purity of 99% or more), an AlCu alloy film, an AlSi alloy film, and an AlSiCu alloy film.
  • the source electrode 120 has a layered structure including a Ti film and an Al alloy film (AlSiCu alloy film in this embodiment) layered in this order from the chip 2 side.
  • the source electrode 120 may be referred to as a "source metal".
  • the source electrode 120 includes a first source pad 121, a second source pad 122, a first source sub-pad 123, a second source sub-pad 124, and a source wiring 125.
  • a source potential VS for the main source is applied to the first source pad 121 from the outside.
  • the first source pad 121 is disposed in the region between the first gate wiring 102A and the third gate wiring 102C on the portion of the interlayer insulating film 99 that covers the active region 12.
  • the first source pad 121 covers the active region 12 at a distance from the peripheral region 14 and the termination region 15 in a plan view.
  • the first source pad 121 may be disposed in a region that overlaps with either or both of the peripheral region 14 and the termination region 15 in a plan view.
  • the first source pad 121 faces the multiple trench gate structures 20 across the interlayer insulating film 99.
  • the first source pad 121 is electrically connected to the multiple first trench source structures 25, the source region 18, and the multiple first contact regions 38 via multiple source openings 126 formed in the interlayer insulating film 99.
  • the first source pad 121 preferably has a planar area larger than the planar area of the gate pad 101.
  • the second source pad 122 is supplied with a source potential VS for the main source from the outside.
  • the second source pad 122 is disposed in the region between the second gate wiring 102B and the third gate wiring 102C on the portion of the interlayer insulating film 99 that covers the active region 12.
  • the second source pad 122 covers the active region 12 at a distance from the peripheral region 14 and the termination region 15 in a plan view.
  • the second source pad 122 may be disposed in a region that overlaps with either or both of the peripheral region 14 and the termination region 15 in a plan view.
  • the second source pad 122 faces the multiple trench gate structures 20 with the interlayer insulating film 99 interposed therebetween.
  • the second source pad 122 is electrically connected to the first trench source structures 25, the source region 18, and the first contact regions 38 through a plurality of source openings 126 formed in the interlayer insulating film 99.
  • the second source pad 122 preferably has a planar area larger than the planar area of the gate pad 101.
  • the first source subpad 123 is supplied with a source potential VS for source sensing from the outside.
  • the first source subpad 123 is disposed in the region between the gate pad 101 and the first gate wiring 102A (third connection surface 10C) on the portion of the interlayer insulating film 99 that covers the active region 12.
  • the first source subpad 123 has a planar area less than the planar area of the first source pad 121 and is formed integrally with the first source pad 121. It is preferable that the planar area of the first source subpad 123 is greater than the planar area of the gate subpad 103. It is particularly preferable that the planar area of the first source subpad 123 is greater than the planar area of the gate pad 101.
  • the first source subpad 123 covers the active region 12 at a distance from the peripheral region 14 and the termination region 15 in a plan view.
  • the first source subpad 123 may be disposed in a region that overlaps with either or both of the peripheral region 14 and the termination region 15 in a plan view.
  • the first source subpad 123 faces the multiple trench gate structures 20 across the interlayer insulating film 99.
  • the first source subpad 123 is electrically connected to the multiple first trench source structures 25, the source region 18, and the multiple first contact regions 38 via multiple source openings 126 formed in the interlayer insulating film 99.
  • the second source subpad 124 is supplied with a source potential VS for source sensing from the outside.
  • the second source subpad 124 is disposed in the region between the gate pad 101 and the second gate wiring 102B (fourth connection surface 10D) on the portion of the interlayer insulating film 99 that covers the active region 12.
  • the second source subpad 124 has a plan area less than the plan area of the second source pad 122 and is formed integrally with the second source pad 122. It is preferable that the plan area of the second source subpad 124 is greater than the plan area of the gate subpad 103. It is particularly preferable that the plan area of the second source subpad 124 is greater than the plan area of the gate pad 101.
  • the second source subpad 124 covers the active region 12 at a distance from the peripheral region 14 and the termination region 15 in a plan view.
  • the second source subpad 124 may be disposed in a region overlapping either or both of the peripheral region 14 and the termination region 15 in a plan view.
  • the second source subpad 124 faces the multiple trench gate structures 20 with the interlayer insulating film 99 in between.
  • the second source subpad 124 is electrically connected to the multiple first trench source structures 25, the source region 18, and the multiple first contact regions 38 via the multiple source openings 126 formed in the interlayer insulating film 99.
  • the total planar area of the first source pad 121, the second source pad 122, the first source sub-pad 123, and the second source sub-pad 124 is preferably 50% or more and 90% or less of the planar area of the first main surface 3. It is particularly preferable that the total planar area is 75% or more of the planar area of the first main surface 3.
  • the source wiring 125 transmits the source potential VS applied to the first source pad 121 and the second source pad 122 to other regions.
  • the source wiring 125 is drawn out from the first source pad 121 and the second source pad 122 so as to be located closer to the outer periphery region 13 than the gate wiring 102.
  • the source wiring 125 is drawn out from the active surface 8 side to the outer peripheral surface 9 side, passing through the first to fourth connection surfaces 10A to 10D.
  • the source wiring 125 is formed in a strip shape extending along the first to fourth connection surfaces 10A to 10D. In other words, the source wiring 125 faces the sidewall wiring 95 with the interlayer insulating film 99 in between.
  • the source wiring 125 is formed in a ring shape (specifically, a square ring shape) extending along the first to fourth connection surfaces 10A to 10D, and surrounds the gate wiring 102.
  • the source wiring 125 is electrically connected to the sidewall wiring 95 and the outer contact region 92 via an outer opening 127 formed in the interlayer insulating film 99.
  • the outer opening 127 is formed in a strip or ring shape extending along the sidewall wiring 95 and the outer contact region 92.
  • the source potential VS applied to the source wiring 125 is transmitted to the first trench source structure 25, the second trench source structure 30, the first dummy trench structure 61, the second dummy trench structure 62, and the trench termination structure 86 via the sidewall wiring 95.
  • the straight portion of the source wiring 125 that extends along the first side surface 5A is an example of a "first source wiring” in this disclosure.
  • the outer contact region 92 to which the straight portion of the source wiring 125 that extends along the first side surface 5A is electrically connected via the outer opening 127 is an example of a "first outer contact region" in this disclosure.
  • the straight portion of the source wiring 125 extending along the third side surface 5C and the straight portion extending along the fourth side surface 5D are an example of a "second source wiring" in this disclosure.
  • the outer contact region 92 to which the straight portion of the source wiring 125 extending along the third side surface 5C and the straight portion extending along the fourth side surface 5D are electrically connected via the outer opening 127 is an example of a "second outer contact region" in this disclosure.
  • the semiconductor device 1 includes an upper insulating film 130 that selectively covers the gate electrode 100, the source electrode 120, and the interlayer insulating film 99 on the first main surface 3.
  • the upper insulating film 130 includes a gate pad opening 131 that exposes the inner portion of the gate pad 101, and a gate subpad opening 132 that exposes the inner portion of the gate subpad 103.
  • the upper insulating film 130 covers the periphery of the gate pad 101, the periphery of the gate subpad 103, and the entire gate wiring 102.
  • the gate pad opening 131 is formed in a rectangular shape in a plan view.
  • the gate subpad opening 132 is formed in a rectangular shape in a plan view.
  • the gate subpad opening 132 has a plan area smaller than the plan area of the gate pad opening 131.
  • the upper insulating film 130 includes a first source pad opening 133 exposing the inner portion of the first source pad 121, a second source pad opening 134 exposing the inner portion of the second source pad 122, a first source subpad opening 135 exposing the inner portion of the first source subpad 123, and a second source subpad opening 136 exposing the inner portion of the second source subpad 124.
  • the upper insulating film 130 covers the periphery of the first source pad 121, the periphery of the second source pad 122, the periphery of the first source subpad 123, the periphery of the second source subpad 124, and the entire area of the source wiring 125.
  • the first source pad opening 133 is formed in a rectangular shape in a plan view.
  • the first source pad opening 133 has a plan area larger than the plan area of the gate subpad opening 132. It is preferable that the plan area of the first source pad opening 133 is larger than the plan area of the gate pad opening 131.
  • the second source pad opening 134 is formed in a rectangular shape in a plan view.
  • the second source pad opening 134 has a plan area larger than the plan area of the gate subpad opening 132. It is preferable that the plan area of the second source pad opening 134 is larger than the plan area of the gate pad opening 131. It is preferable that the plan area of the second source pad opening 134 is approximately equal to the plan area of the first source pad opening 133.
  • the first source subpad opening 135 is formed in a rectangular shape in a plan view.
  • the first source subpad opening 135 has a plan area smaller than the plan area of the first source pad opening 133.
  • the plan area of the first source subpad opening 135 is preferably larger than the plan area of the gate subpad opening 132.
  • the plan area of the first source subpad opening 135 is larger than the plan area of the gate pad opening 131.
  • the plan area of the first source subpad opening 135 may be smaller than the plan area of the gate pad opening 131.
  • the second source subpad opening 136 is formed in a rectangular shape in a plan view.
  • the second source subpad opening 136 has a plan area smaller than the plan area of the second source pad opening 134. It is preferable that the plan area of the second source subpad opening 136 is larger than the plan area of the gate subpad opening 132.
  • the plane area of the second source subpad opening 136 is larger than the plane area of the gate pad opening 131.
  • the plane area of the second source subpad opening 136 may be less than the plane area of the gate pad opening 131. It is preferable that the plane area of the second source subpad opening 136 is approximately equal to the plane area of the first source subpad opening 135.
  • the upper insulating film 130 is formed at a distance inward from the periphery of the chip 2 (first to fourth side surfaces 5A to 5D), and defines a dicing street 137 between the upper insulating film 130 and the periphery of the chip 2.
  • the dicing street 137 is formed in a band shape extending along the periphery of the chip 2 in a plan view.
  • the dicing street 137 is formed in a ring shape (specifically, a square ring) surrounding the active surface 8 in a plan view.
  • the dicing street 137 exposes the interlayer insulating film 99.
  • the dicing street 137 may also expose the outer peripheral surface 9.
  • the dicing street 137 may have a width of 1 ⁇ m or more and 200 ⁇ m or less.
  • the width of the dicing street 137 is the width in a direction perpendicular to the extension direction of the dicing street 137.
  • the width of the dicing street 137 is preferably 5 ⁇ m or more and 50 ⁇ m or less.
  • the upper insulating film 130 preferably has a thickness that exceeds the thickness of the gate electrode 100 and the thickness of the source electrode 120.
  • the thickness of the upper insulating film 130 is preferably less than the thickness of the chip 2.
  • the thickness of the upper insulating film 130 may be 3 ⁇ m or more and 35 ⁇ m or less.
  • the thickness of the upper insulating film 130 is preferably 25 ⁇ m or less.
  • the upper insulating film 130 has a layered structure including an inorganic insulating film 140 and an organic insulating film 141, which are layered in this order from the chip 2 side.
  • the upper insulating film 130 only needs to include at least one of the inorganic insulating film 140 and the organic insulating film 141, and does not necessarily need to include both the inorganic insulating film 140 and the organic insulating film 141 at the same time.
  • the inorganic insulating film 140 selectively covers the gate electrode 100, the source electrode 120 and the interlayer insulating film 99, and defines a portion of the gate pad opening 131, a portion of the gate subpad opening 132, a portion of the first source pad opening 133, a portion of the second source pad opening 134, a portion of the first source subpad opening 135, a portion of the second source subpad opening 136 and a portion of the dicing street 137.
  • the inorganic insulating film 140 may include at least one of a silicon oxide film, a silicon nitride film, and a silicon oxynitride film. It is preferable that the inorganic insulating film 140 includes an insulating material different from that of the interlayer insulating film 99. It is preferable that the inorganic insulating film 140 includes a silicon nitride film. It is preferable that the inorganic insulating film 140 has a thickness less than that of the interlayer insulating film 99. The thickness of the inorganic insulating film 140 may be 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the organic insulating film 141 selectively covers the inorganic insulating film 140 and defines a portion of the gate pad opening 131, a portion of the gate subpad opening 132, a portion of the first source pad opening 133, a portion of the second source pad opening 134, a portion of the first source subpad opening 135, a portion of the second source subpad opening 136, and a portion of the dicing street 137.
  • the organic insulating film 141 may expose the inorganic insulating film 140 on the wall surface of the gate pad opening 131.
  • the organic insulating film 141 may expose the inorganic insulating film 140 on the wall surface of the gate subpad opening 132.
  • the organic insulating film 141 may expose the inorganic insulating film 140 on the wall surface of the first source pad opening 133.
  • the organic insulating film 141 may expose the inorganic insulating film 140 on the wall surface of the second source pad opening 134.
  • the organic insulating film 141 may expose the inorganic insulating film 140 on the wall surface of the first source subpad opening 135.
  • the organic insulating film 141 may expose the inorganic insulating film 140 on the wall surface of the second source subpad opening 136.
  • the organic insulating film 141 may expose the inorganic insulating film 140 on the wall surface of the dicing street 137.
  • the organic insulating film 141 may cover the entire inorganic insulating film 140 so that the inorganic insulating film 140 is not exposed.
  • the organic insulating film 141 is preferably made of a resin film other than a thermosetting resin.
  • the organic insulating film 141 may be made of a translucent resin or a transparent resin.
  • the organic insulating film 141 may be made of a negative type or positive type photosensitive resin film.
  • the organic insulating film 141 is preferably made of a polyimide film, a polyamide film, or a polybenzoxazole film. In this embodiment, the organic insulating film 141 includes a polybenzoxazole film.
  • the organic insulating film 141 preferably has a thickness that exceeds the thickness of the inorganic insulating film 140.
  • the thickness of the organic insulating film 141 preferably exceeds the thickness of the interlayer insulating film 99. It is particularly preferable that the thickness of the organic insulating film 141 exceeds the thickness of the gate electrode 100 and the thickness of the source electrode 120.
  • the thickness of the organic insulating film 141 may be 3 ⁇ m or more and 30 ⁇ m or less.
  • the thickness of the organic insulating film 141 is preferably 20 ⁇ m or less.
  • the semiconductor device 1 includes a drain electrode 150 covering the second main surface 4.
  • the drain electrode 150 forms an ohmic contact with the second semiconductor region 7 exposed from the second main surface 4.
  • the drain electrode 150 may cover the entire second main surface 4 so as to be continuous with the periphery of the chip 2 (first to fourth side surfaces 5A to 5D).
  • the breakdown voltage that can be applied between the source electrode 120 and the drain electrode 150 (between the first main surface 3 and the second main surface 4) may be 500V or more and 3000V or less.
  • the resistive film 50 includes a portion 50a formed on the main surface insulating film 16, in other words, a portion 50a covering the main surface insulating film 16.
  • the gate connection electrode film 39 includes a portion 39b formed on the main surface insulating film 16, in other words, a portion 39b covering the main surface insulating film 16. The resistive film 50 and the gate connection electrode film 39 are electrically connected to the gate electrode 100.
  • gate connection conductive films 50a and 39b are examples of the "gate connection conductive film" of this disclosure.
  • p-type regions formed in the surface layer of the first semiconductor region 6, such as the p-type body region 17, the first well region 35, the second well region 36, the third well region 37, the fourth well region 75, the fifth well region 76, the sixth well region 77, and the outer well region 91 will be collectively referred to as the "p-type region.”
  • the "p-type region” is an example of the "first region” of this disclosure.
  • p-type contact regions that are formed on the surface layer of the "p-type region” and electrically connected to the source electrode 120, such as the first contact region 38 and the outer contact region 92, will be collectively referred to as p-type contact regions 38, 92.
  • the p-type contact regions 38, 92 are an example of a "contact region" in this disclosure.
  • the region where the source electrode 120 is bonded to the p-type contact region 38, 92 via the source opening 126 or the outer opening 127 will be collectively referred to as the "source/contact junction region.”
  • the "source/contact junction region” is the region of the p-type contact region 38, 92 where the source electrode 120 is bonded.
  • the distance through which the charging current ic flows within the "p-type region” should be shortened. In other words, the maximum distance between each position on the underside of the gate connection conductive film 50a, 39b and the "source/contact junction region" closest to it should be reduced.
  • the layout of the gate connection conductive films 50a, 39b, the "source/contact junction region”, etc. is designed so that the maximum distance between each position on the underside of the gate connection conductive films 50a, 39b and the "source/contact junction region" closest to it is 90 ⁇ m or less.
  • the layout of the gate connection conductive films 50a, 39b, the "source/contact junction region”, etc. so that the maximum distance between each position on the underside of the gate connection conductive films 50a, 39b and the "source/contact junction region” closest to it is 80 ⁇ m or less. Furthermore, it is even more preferable to design the layout of the gate connection conductive films 50a, 39b, the "source/contact junction region”, etc. so that the maximum distance between each position on the underside of the gate connection conductive films 50a, 39b and the "source/contact junction region” closest to it is 70 ⁇ m or less.
  • the layout in which the distance between the position on the underside of the gate connection conductive films 50a, 39b and the "source/contact junction region" closest to it is greatest in the semiconductor device 1 is present in the region E1 shown in FIG. 13.
  • FIG. 29 is a cross-sectional view taken along line XXIX-XXIX in FIG. 13.
  • the gate resistor 40 includes a resistive film 50. Therefore, the gate resistor 40 includes a gate connection conductive film 50a formed on the main surface insulating film 16.
  • the position where the minimum distance from each of all the "source/contact junction regions" in the semiconductor device 1 to that position is the largest is defined as the first position P1.
  • the position on the underside of the resistive film 50 (gate connection conductive film 50a) closest to the active region 12 side (pad body portion 104 side) is the first position P1.
  • the source wiring 125 includes a straight portion (hereinafter referred to as the "first source wiring 125") that extends along the trench resistor structure 41 (first side surface 5A) in the region opposite the active region 12 with respect to the gate resistor 40.
  • the region of the outer contact region 92 to which the "first source wiring 125" is connected and to which the "first source wiring 125" is bonded is referred to as the source/contact junction region 92A to which the "first source wiring 125" is bonded.
  • the source/contact junction region 92A to which the "first source wiring 125" is bonded is the region of the outer contact region 92 to which the "first source wiring 125" is bonded.
  • the source/contact junction region 92A to which the "first source wiring 125" is bonded includes the source/contact junction region 92A having the shortest distance to the first position P1 among all the “source/contact junction regions” in the semiconductor device 1.
  • the distance M1 between the source/contact junction region 92A closest to the first position P1 among the source/contact junction regions 92A to which the "first source wiring 125" is bonded and the first position P1 is about 68 ⁇ m, which is less than 70 ⁇ m.
  • the maximum distance between each position on the lower surface of the gate connection conductive films 50a, 39b and the "source/contact junction region" closest to it is less than 70 ⁇ m.
  • FIG. 11 is a cross-sectional view taken along line XI-XI shown in FIG. 6.
  • the first gate wiring 102A has a straight portion (hereinafter referred to as the "first peripheral gate wiring 102A") that extends along the first peripheral region 14A in the active region 12.
  • the "first peripheral gate wiring 102A” is an example of the “peripheral gate wiring” of the present disclosure.
  • a gate connection electrode film 39 is formed on the end of the trench gate structure 20 on the "first peripheral gate wiring 102A" side (first peripheral region 14A side), covering the gate buried electrode 23 and the main surface insulating film 16 and joining to the "first peripheral gate wiring 102A".
  • the gate connection electrode film 39 includes a gate connection conductive film 39b (see FIG. 9) formed on the main surface insulating film 16.
  • the source wiring 125 includes a straight portion (hereinafter referred to as the "second source wiring 125") that extends along the "first peripheral gate wiring 102A" (third side surface 5C) in the region opposite the active region 12 with respect to the "first peripheral gate wiring 102A.”
  • the "second source wiring 125" is an example of the “second source wiring” in this disclosure.
  • the second position P2 is the central position of the length in the first direction X of the gate connection electrode film 39 joined to the "first peripheral gate wiring 102A".
  • the region of the outer contact region 92 to which the "second source wiring 125" is connected, to which the "second source wiring 125" is bonded is referred to as the source/contact junction region 92B to which the "second source wiring 125" is bonded.
  • the source/contact junction region 92B to which the "second source wiring 125" is bonded is the region of the outer contact region 92 to which the "second source wiring 125" is bonded.
  • the source/contact junction region 92B to which the "second source wiring 125" is bonded includes the source/contact junction region 92B having the shortest distance to the second position P2 among all the “source/contact junction regions” in the semiconductor device 1.
  • the distance M2 between the source/contact junction region 92B closest to the second position P2 among the source/contact junction regions 92B to which the "second source wiring 125" is bonded and the second position P2 is approximately 29 ⁇ m.
  • the second peripheral gate wiring 102B has a straight line portion (hereinafter referred to as the "second peripheral gate wiring 102B") that extends along the second peripheral region 14B in the active region 12.
  • the "second peripheral gate wiring 102B" is an example of the "peripheral gate wiring" of the present disclosure.
  • a gate connection electrode film 39 is formed on the end of the trench gate structure 20 on the "second peripheral gate wiring 102B" side (second peripheral region 14B side), covering the gate buried electrode 23 and the main surface insulating film 16 and being joined to the "second peripheral gate wiring 102B".
  • the gate connection electrode film 39 joined to the "second peripheral gate wiring 102B" includes a gate connection conductive film 39b formed on the main surface insulating film 16, similar to the gate connection electrode film 39 joined to the "first peripheral gate wiring 102A".
  • the source wiring 125 includes a straight portion (hereinafter referred to as the "third source wiring 125") that extends along the "second peripheral gate wiring 102B" (fourth side surface 5D) in the region opposite the active region 12 relative to the "second peripheral gate wiring 102B.”
  • the "third source wiring 125" is an example of the "second source wiring” in this disclosure.
  • the fourth position is the center position of the length in the first direction X of the gate connection electrode film 39 joined to the "second peripheral gate wiring 102B".
  • the region of the outer contact region 92 to which the "third source wiring 125" is bonded is referred to as the "source/contact junction region” to which the "third source wiring 125" is bonded.
  • the "source/contact junction region” to which the "third source wiring 125" is bonded is the region of the outer contact region 92 to which the "third source wiring 125" is bonded.
  • the "source/contact junction region" to which the "third source wiring 125" is bonded includes the “source/contact junction region” that has the shortest distance to the fourth position among all the “source/contact junction regions” in the semiconductor device 1.
  • the distance between the fourth position and the "source/contact junction region" closest to the fourth position among the “source/contact junction regions” to which the "third source wiring 125" is bonded is approximately 29 ⁇ m.
  • FIG. 30 is an enlarged plan view showing a portion of region E3 in FIG. 13.
  • FIG. 31 is a cross-sectional view taken along line XXXI-XXXI in FIG. 30.
  • the third gate wiring 102C includes a line portion 110 that extends along the central region between the peripheral regions 14A and 14B on both sides of the active region 12.
  • the line portion 110 is an example of the "central gate wiring" of the present disclosure.
  • a gate connection electrode film 39 is formed in the portion of the trench gate structure 20 facing the line portion 110, covering the gate buried electrode 23 and the main surface insulating film 16 and being joined to the line portion 110.
  • the gate connection electrode film 39 includes a gate connection conductive film 39b formed on the main surface insulating film 16.
  • the source electrode 120 includes a first source pad 121 and a second source pad 122 arranged on both sides of the line portion 110 at a distance from the line portion 110 in the active region 12.
  • the first source pad 121 and the second source pad 122 are an example of a "source pad portion" in this disclosure.
  • the first source pad 121 and the second source pad 122 are electrically connected to the first trench source structure 25, the source region 18, and the first contact region 38 via the source opening 126.
  • the third position P3 is the center position of the length in the first direction X of the gate connection electrode film 39 joined to the line portion 110.
  • the region of the first contact region 38 to which the first source pad 121 is bonded is referred to as the source/contact junction region 38A to which the first source pad 121 is bonded.
  • the source/contact junction region 38A to which the first source pad 121 is bonded is the region of the first contact region 38 to which the first source pad 121 is bonded.
  • the region of the first contact region 38 to which the second source pad 122 is bonded is referred to as the source/contact junction region 38A to which the second source pad 122 is bonded.
  • the source/contact junction region 38A to which the second source pad 122 is bonded is the region of the first contact region 38 to which the second source pad 122 is bonded.
  • the source/contact junction region 38A to which at least one of the first source pad 121 and the second source pad 122 (in this embodiment, both the first source pad 121 and the second source pad 122) is bonded includes the source/contact junction region 38A that has the shortest distance to the third position P3 among all the "source/contact junction regions" in the semiconductor device 1.
  • FIG. 31 illustrates the source/contact junction region 38A to which the first source pad 121 is bonded, which has the shortest distance to the third position P3.
  • the source/contact junction region 38A to which the second source pad 122 is bonded, which has the shortest distance to the third position P3, is not illustrated.
  • the distance M3 between the source/contact junction region 38A closest to the third position P3 among the source/contact junction regions 38A to which the first source pad 121 is bonded and the third position P3 is approximately 32 ⁇ m. Also, the distance between the source/contact junction region 38A closest to the third position P3 among the source/contact junction regions 38A to which the second source pad 122 is bonded and the third position P3 is approximately 32 ⁇ m.
  • the layout of the gate connection conductive films 50a, 38b and the source/contact junction regions 38A, 92A, 92B is designed so that the maximum distance between each position on the underside of the gate connection conductive films 50a, 38b and the nearest source/contact junction regions 38A, 92A, 92B is 90 ⁇ m or less. This makes it possible to suppress damage to the main surface insulating film 16 caused by the voltage V DS /dt generated during switching of the MISFET, and therefore to suppress an increase in leakage current.
  • the semiconductor device 1 includes a chip 2, a gate resistor 40, a gate pad 101, and a gate wiring 102.
  • the chip 2 has a first main surface 3.
  • the gate resistor 40 includes a trench resistor structure 41 formed on the first main surface 3.
  • the gate pad 101 has a lower resistance value than the trench resistor structure 41, and is disposed on the first main surface 3 so as to be electrically connected to the trench resistor structure 41.
  • the gate wiring 102 has a lower resistance value than the trench resistor structure 41, and is disposed on the first main surface 3 so as to be electrically connected to the gate pad 101 via the trench resistor structure 41.
  • the trench resistance structure 41 is incorporated in the chip 2 in the region between the gate pad 101 and the gate wiring 102, so that the area occupied by the gate resistance 40 on the first main surface 3 can be limited.
  • the resistance value of the gate resistance 40 is adjusted by adjusting the depth and length of the trench resistance structure 41. Therefore, an increase in the area occupied by the gate resistance 40 on the first main surface 3 can be suppressed. Therefore, in a configuration including the gate resistance 40, a semiconductor device 1 can be provided that has a novel layout that contributes to miniaturization.
  • the gate pad 101 has a portion located directly above the trench resistance structure 41.
  • the gate resistor 40 is disposed in a region directly below the gate pad 101, so that an increase in the area occupied by the gate resistor 40 with respect to the first main surface 3 can be suppressed.
  • the gate wiring 102 has a portion located directly above the trench resistance structure 41. With this structure, it is preferable that the gate resistor 40 is disposed in a region directly below the gate wiring 102, so that an increase in the area occupied by the gate resistor 40 with respect to the first main surface 3 can be suppressed.
  • the trench resistance structure 41 does not contribute to channel control. With this structure, malfunctions caused by the trench resistance structure 41 can be appropriately suppressed. It is preferable that the gate resistance 40 includes a resistive film 50 that covers the trench resistance structure 41. With this structure, the resistance value of the gate resistance 40 can be adjusted by utilizing both the trench resistance structure 41 and the resistive film 50.
  • the gate pad 101 is electrically connected to the trench resistance structure 41 via the resistive film 50.
  • the gate pad 101 can be appropriately electrically connected to the trench resistance structure 41 by the resistive film 50. It is preferable that the gate pad 101 has a portion that faces the trench resistance structure 41 with the resistive film 50 in between.
  • the gate wiring 102 is preferably electrically connected to the trench resistance structure 41 via the resistive film 50.
  • the resistive film 50 can properly electrically connect the gate wiring 102 to the trench resistance structure 41.
  • the gate wiring 102 has a portion that faces the trench resistance structure 41 across the resistive film 50.
  • the resistive film 50 may have a portion covering the first main surface 3 and a portion covering the trench resistance structure 41.
  • the resistance value of the resistive film 50 can be adjusted by utilizing the region on the first main surface 3 and the region on the trench resistance structure 41.
  • the influence caused by the alignment error of the gate pad 101 with respect to the resistive film 50 and the influence caused by the alignment error of the gate wiring 102 can be reduced.
  • the gate pad 101 may have a portion facing the first main surface 3 across the resistive film 50.
  • the gate wiring 102 may have a portion facing the first main surface 3 across the resistive film 50.
  • the semiconductor device 1 may include an interlayer insulating film 99 that covers the resistive film 50.
  • the gate pad 101 penetrates the interlayer insulating film 99 and is connected to the resistive film 50.
  • the gate wiring 102 penetrates the interlayer insulating film 99 and is connected to the resistive film 50.
  • a plurality of trench resistance structures 41 are preferably formed on the first main surface 3. With this structure, the resistance value of the gate resistor 40 can be adjusted using the plurality of trench resistance structures 41.
  • the plurality of trench resistance structures 41 preferably include a first trench resistance structure 42 and a second trench resistance structure 43 that is deeper than the first trench resistance structure 42.
  • the resistance value of the gate resistor 40 can be adjusted by utilizing the first trench resistor structure 42 and the second trench 47 structure, which have different depths.
  • the second trench resistor structure 43 can increase the resistance of the gate resistor 40 in the thickness direction of the chip 2. Therefore, for example, when a resistive film 50 is provided, the film thickness of the resistive film 50 can also be reduced.
  • the semiconductor device 1 preferably includes an active region 12, a peripheral region 13, and a termination region 15.
  • the active region 12 is provided in an inner portion of the first main surface 3.
  • the peripheral region 13 is provided in a peripheral portion of the first main surface 3.
  • the termination region 15 is provided between the active region 12 and the peripheral region 13.
  • the trench resistor structure 41 is preferably formed in the termination region 15. With this layout, it is possible to appropriately suppress the reduction in the area of the active region 12 that accompanies the introduction of the gate resistor 40.
  • the gate pad 101 is electrically connected to the trench resistance structure 41 in the termination region 15. It is also preferable that the gate wiring 102 is electrically connected to the gate pad 101 via the trench resistance structure 41 in the termination region 15.
  • the semiconductor device 1 preferably includes a trench gate structure 20 formed on the first main surface 3 in the active region 12.
  • the gate wiring 102 is preferably electrically connected to the trench gate structure 20 in the active region 12.
  • a gate resistor 40 trench resistor structure 41
  • the semiconductor device 1 may include a first trench source structure 25 formed on the first main surface 3 adjacent to the trench gate structure 20 in the active region 12 and to which a source potential VS is applied.
  • the first trench source structure 25 may be formed deeper than the trench gate structure 20.
  • the multiple trench resistance structures 41 preferably include a first trench resistance structure 42 formed relatively shallow in correspondence with the trench gate structure 20, and a second trench resistance structure 43 formed relatively deep in correspondence with the first trench source structure 25.
  • the first trench resistor structure 42 has a depth approximately equal to that of the trench gate structure 20.
  • the second trench resistor structure 43 has a depth approximately equal to that of the first trench source structure 25.
  • the semiconductor device 1 preferably further includes a dummy trench structure 60 formed on the first main surface 3 so as to be adjacent to the trench resistance structure 41 in the termination region 15.
  • the dummy trench structure 60 preferably does not contribute to channel control. With this structure, malfunctions caused by the trench resistance structure 41 can be appropriately suppressed.
  • a source potential VS is applied to the dummy trench structure 60.
  • the electric field in the region near the trench resistance structure 41 can be alleviated by the dummy trench structure 60.
  • a plurality of dummy trench structures 60 are formed on the first main surface 3. With this structure, the electric field in the region near the trench resistance structure 41 in the termination region 15 can be alleviated by the plurality of dummy trench structures 60.
  • the multiple dummy trench structures 60 preferably include a first dummy trench structure 61 and a second dummy trench structure 62 that is deeper than the first dummy trench structure 61. With this structure, the electric field near the trench resistor structure 41 can be alleviated by the first dummy trench structure 61 and the second dummy trench structure 62.
  • This structure is particularly effective when a first trench source structure 25 that is deeper than the trench gate structure 20 is formed in the active region 12. This structure is also particularly effective when a second trench resistor structure 43 that is deeper than the first trench resistor structure 42 is formed in the termination region 15.
  • the semiconductor device 1 may include an active surface 8 formed on the inner side of the first main surface 3, an outer peripheral surface 9 formed on the periphery of the first main surface 3 so as to be recessed from the active surface 8 in the thickness direction of the chip 2, and an active plateau 11 defined on the first main surface 3 by first to fourth connection surfaces 10A to 10D connecting the active surface 8 and the outer peripheral surface 9.
  • the active region 12 is provided on the active surface 8
  • the outer peripheral region 13 is provided on the outer peripheral surface 9, and the termination region 15 is provided on the active surface 8.
  • the semiconductor device 1 preferably includes an n-type first semiconductor region 6 formed in a surface layer of the first main surface 3.
  • the trench resistor structure 41 is formed in the first main surface 3 so as to be located within the first semiconductor region 6.
  • the semiconductor device 1 preferably includes a p-type fourth well region 75 (fifth well region 76) formed in a region along the trench resistor structure 41 in the first semiconductor region 6 so as to form a pn junction with the first semiconductor region 6.
  • the breakdown voltage e.g., breakdown voltage
  • the depletion layer that spreads from the fourth well region 75 (fifth well region 76).
  • the semiconductor device 1 may include a gate subpad 103 arranged on the first main surface 3 so as to have a lower resistance value than the trench resistor structure 41 and to be electrically connected to the gate pad 101 via the trench resistor structure 41.
  • the resistance between the gate pad 101 and the gate wiring 102 can be indirectly measured by measuring the resistance between the gate pad 101 and the gate subpad 103. It is preferable that the gate subpad 103 is formed narrower than the gate pad 101 and wider than the gate wiring 102. The gate subpad 103 may be connected to the gate wiring 102.
  • the semiconductor device 1 may include a p-type outer well region 91 formed in the surface layer of the first main surface 3 in the peripheral region 13. With this structure, the outer well region 91 can reduce the electric field in the peripheral region 13.
  • the semiconductor device 1 may include at least one p-type field region 93 formed in the surface layer of the first main surface 3 in the peripheral region 13. With this structure, the field region 93 can reduce the electric field in the peripheral region 13.
  • the semiconductor device 1 includes a chip 2, a first trench resistance structure 42 (first groove structure), a first dummy trench structure 61 (second groove structure), a second trench resistance structure 43 (third groove structure), a second dummy trench structure 62 (fourth groove structure), a first mesa portion 71 and a second mesa portion 72.
  • the chip 2 has a first main surface 3.
  • the first trench resistance structure 42 is formed on the first main surface 3.
  • the first dummy trench structure 61 is formed on the first main surface 3 so as to be adjacent to the first trench resistance structure 42 in the first direction X.
  • the second trench resistance structure 43 is formed on the first main surface 3 so as to be adjacent to the first trench resistance structure 42 in a second direction Y perpendicular to the first direction X.
  • the second dummy trench structure 62 is formed on the first main surface 3 so as to be adjacent to the second trench resistance structure 43 in the first direction X.
  • the first mesa portion 71 is defined in the region between the first trench resistance structure 42 and the first dummy trench structure 61.
  • the second mesa portion 72 is defined in the region between the second trench resistance structure 43 and the second dummy trench structure 62, shifted in the first direction X with respect to the first mesa portion 71.
  • This structure makes it possible to prevent the electric field generated in the second mesa portion 72 from interfering with the electric field generated in the first mesa portion 71. This makes it possible to prevent electric field concentration in the first mesa portion 71 and electric field concentration in the second mesa portion 72. This makes it possible to provide a semiconductor device 1 having a novel layout that can improve the withstand voltage (e.g., breakdown voltage).
  • the withstand voltage e.g., breakdown voltage
  • Such a structure is particularly effective in the case where an electric field caused by a potential difference between the first dummy trench structure 61 and the first trench resistance structure 42 occurs in the first mesa portion 71, and an electric field caused by a potential difference between the second dummy trench structure 62 and the second trench resistance structure 43 occurs in the second mesa portion 72. Therefore, a potential different from that applied to the first dummy trench structure 61 and that applied to the first trench resistance structure 42 may be applied to the second dummy trench structure 62 and that applied to the second trench resistance structure 43.
  • a first potential may be applied to the first trench resistance structure 42 and the second trench resistance structure 43, and a second potential different from the first potential may be applied to the first dummy trench structure 61 and the second dummy trench structure 62.
  • the first potential may be a gate potential VG
  • the second potential may be a source potential VS.
  • the second dummy trench structure 62 is preferably formed on the first main surface 3 so as to be adjacent to the first dummy trench structure 61 in the second direction Y.
  • the second trench resistance structure 43 may be formed deeper than the first trench resistance structure 42.
  • the second dummy trench structure 62 is preferably formed deeper than the first dummy trench structure 61.
  • This structure can alleviate the bias in the electric field caused by the difference in depth between the first trench resistance structure 42 and the second trench resistance structure 43.
  • the first dummy trench structure 61 is formed to a depth approximately equal to that of the first trench resistance structure 42.
  • the second dummy trench structure 62 is formed to a depth approximately equal to that of the second trench resistance structure 43.
  • the semiconductor device 1 includes a main mesa portion 70 defined between the first trench resistor structure 42 and the second trench resistor structure 43.
  • the first mesa portion 71 and the second mesa portion 72 are connected to the main mesa portion 70.
  • the width in the first direction X of the first mesa portion 71 is 0.5 to 2 times the width in the second direction Y of the main mesa portion 70.
  • the width in the first direction X of the second mesa portion 72 is 0.5 to 2 times the width in the second direction Y of the main mesa portion 70.
  • the first trench resistor structure 42 preferably extends in a strip shape in the first direction X.
  • the second trench resistor structure 43 preferably extends in a strip shape in the first direction X.
  • the first dummy trench structure 61 preferably extends in a strip shape in the first direction X.
  • the second dummy trench structure 62 preferably extends in a strip shape in the first direction X.
  • the semiconductor device 1 may include an active surface 8 formed on the inner portion of the first main surface 3, an outer peripheral surface 9 formed on the periphery of the first main surface 3 so as to be recessed from the active surface 8 in the thickness direction of the chip 2, and an active plateau 11 defined on the first main surface 3 by first to fourth connection surfaces 10A to 10D connecting the active surface 8 and the outer peripheral surface 9.
  • the first trench resistor structure 42, the second trench resistor structure 43, the first dummy trench structure 61, and the second dummy trench structure 62 are preferably formed on the active surface 8.
  • the first trench resistor structure 42 and the second trench resistor structure 43 are preferably formed on the active surface 8 at a distance from the first to fourth connection surfaces 10A to 10D.
  • the first dummy trench structure 61 may be formed on the active surface 8 so as to be exposed from the third connection surface 10C (fourth connection surface 10D).
  • the second dummy trench structure 62 may be formed on the active surface 8 so as to be exposed from the third connection surface 10C (fourth connection surface 10D).
  • the semiconductor device 1 may include a sidewall structure disposed on the outer peripheral surface 9 so as to cover at least one of the first to fourth connection surfaces 10A to 10D.
  • the sidewall structure preferably comprises a sidewall wiring 95 electrically connected to the first dummy trench structure 61 and the second dummy trench structure 62.
  • the sidewall wiring 95 can apply a potential different from the potentials applied to the first trench resistance structure 42 and the second trench resistance structure 43 to the first dummy trench structure 61 and the second dummy trench structure 62 from the outer peripheral surface 9 side.
  • the semiconductor device 1 may include an n-type first semiconductor region 6 formed in a surface layer portion of the first main surface 3.
  • the semiconductor device 1 may include a p-type body region 17 formed in a surface layer portion of the first semiconductor region 6.
  • first trench resistance structure 42 and the second trench resistance structure 43 do not contribute to channel control. According to this structure, malfunctions caused by the first trench resistance structure 42 and the second trench resistance structure 43 can be appropriately suppressed. It is preferable that the first dummy trench structure 61 and the second dummy trench structure 62 do not contribute to channel control. According to this structure, it is possible to appropriately suppress malfunctions caused by the first dummy trench structure 61 and the second dummy trench structure 62.
  • the semiconductor device 1 may include a p-type second contact region 79 formed in a region along the second trench resistance structure 43 in the first semiconductor region 6.
  • the second contact region 79 is preferably formed in a region along the second trench resistance structure 43 and spaced apart from the second mesa portion 72.
  • the second contact region 79 is formed offset in the first direction X with respect to the first mesa portion 71. In this case, it is preferable that the second contact region 79 does not face the first mesa portion 71 in the second direction Y. With this structure, the electric field associated with the first mesa portion 71 and the electric field associated with the second mesa portion 72 can be appropriately alleviated.
  • the semiconductor device 1 may include a p-type third contact region 80 formed in a region along the second dummy trench structure 62 in the first semiconductor region 6.
  • the third contact region 80 is preferably formed in a region along the second dummy trench structure 62 with a gap therebetween from the second mesa portion 72. It is particularly preferable that the third contact region 80 is formed shifted in the first direction X with respect to the first mesa portion 71. In this case, it is preferable that the third contact region 80 does not face the first mesa portion 71 in the second direction Y.
  • the chip 2 preferably includes a single crystal of a wide band gap semiconductor.
  • a single crystal of a wide band gap semiconductor is effective in improving electrical characteristics.
  • the single crystal of a wide band gap semiconductor has a relatively high hardness, which suppresses deformation of the chip 2, while allowing the chip 2 to be thinned and the surface area of the chip 2 to be increased.
  • the chip 2 may have a first main surface 3 having an area of 1 mm square or more in a plan view.
  • the chip 2 may have a thickness of 200 ⁇ m or less. It is preferable that the chip 2 has a thickness of 100 ⁇ m or less in a cross-sectional view.
  • each of the above-described embodiments can be implemented in other forms.
  • a form in which the "first conductivity type” is “n-type” and the “second conductivity type” is “p-type” has been shown.
  • each of the above-described embodiments may also adopt a form in which the "first conductivity type” is “p-type” and the “second conductivity type” is "n-type”.
  • a specific configuration in this case can be obtained by replacing "n-type” with "p-type” and at the same time replacing "p-type” with "n-type” in the above description and the accompanying drawings.
  • an n-type second semiconductor region 7 is shown.
  • a p-type second semiconductor region 7 may be adopted.
  • an IGBT Insulated Gate Bipolar Transistor
  • the "source” of the MISFET is replaced with the "emitter” of the IGBT
  • the "drain” of the MISFET is replaced with the "collector” of the IGBT.
  • the p-type second semiconductor region 7 may be an impurity region containing p-type impurities introduced into the surface layer of the second main surface 4 of the chip 2 by ion implantation.
  • a chip (2) having a main surface (3) and made of a first conductivity type semiconductor; a first region (17, 35, 36, 37, 75, 77, 78, 91) of a second conductivity type selectively formed in a surface layer portion on the main surface (3) side of the chip (2); a trench gate structure (20) formed on said main surface (3); a trench source structure (25, 30) formed in said main surface (3); An insulating film (16) selectively formed on the main surface (3); an interlayer insulating film (99) disposed on the main surface (3) so as to cover the insulating film (16); a gate electrode (100) disposed on the interlayer insulating film (99) and applying a gate potential to the trench gate structure (20); a source electrode (120) disposed on the interlayer insulating film (99) and applying a source potential to the trench source structure (25, 30); a gate connection conductive film (50a, 39b) formed on the insulating film (16) and electrically connected to the gate electrode (100); a contact
  • the gate resistor (40) is disposed in the termination region (15);
  • the source electrode (120) includes a first source wiring (125) extending along the trench resistor structure (41) in a region opposite the active region (12) with respect to the gate resistor (40);
  • the semiconductor device according to A5 wherein, among the respective positions on the underside of the gate connection conductive film (50) included in the gate resistor (40), a position at which the minimum value of the distance from each of all of the source/contact junction regions (38A, 92A, 92B) to the position is the largest is defined as a first position (P1), and the source/contact junction region (92A) to which the first source wiring (125) is joined includes the source/contact junction region (92A) at which the distance to the first position (P1) is the smallest among all of the source/contact junction regions (38A, 92A, 92B).
  • the contact region (38, 92) includes a first outer contact region (92) to which the first source wiring (125) is electrically connected,
  • the semiconductor device according to A6, wherein the source/contact junction region (92A) to which the first source wiring (125) is joined is a region of the first outer contact region (92) to which the first source wiring (125) is joined.
  • the trench gate structure (20) includes a gate trench (21) formed in the main surface (3), a gate insulating film (22) formed on a wall surface of the gate trench (21) and connected to the insulating film (16), and a gate buried electrode (23) buried in the gate trench (21) with the gate insulating film (22) sandwiched therebetween, A plurality of gate connection electrode films (39) are formed on the gate buried electrode (23) to selectively cover the gate buried electrode (23) and the insulating film (16), The semiconductor device according to any one of A1 to A7, wherein the gate connection electrode film (39) includes the gate connection conductive film (39b).
  • the gate electrode (100) includes peripheral gate wiring (102A, 102B) extending along at least one of the peripheral regions (14) on both sides in the active region (12), the gate connection electrode film (39) is formed at an end of the trench gate structure (20) on the peripheral gate wiring (102A, 102B) side, the gate connection electrode film (39) covering the gate buried electrode (23) and the insulating film (16) and being joined to the peripheral gate wiring (102A, 102B);
  • the source electrode (120) includes a second source wiring (125) extending along the peripheral gate wiring (102A, 102B) in a region opposite to the active region (12) with respect to the peripheral gate wiring (102A, 102B);
  • the semiconductor device according to A9 wherein, among each position on the underside of the gate connection conductive film (39b) included in the gate connection electrode film (39) joined to the peripheral gate wiring (102A, 102B), a position at which the minimum value of the distance from each of all of the source/contact junction regions (38A, 92A, 92
  • the contact region (38, 92) includes a second outer contact region (92) to which the second source wiring (125) is electrically connected,
  • the semiconductor device according to A10, wherein the source/contact junction region (92B) to which the second source wiring (125) is joined is a region of the second outer contact region (92) to which the second source wiring (125) is joined.
  • the gate electrode (100) is formed in a central region between the peripheral regions (14) on both sides of the active region (12) and includes a central gate wiring (102C) extending along the peripheral regions (14); the gate connection electrode film (39) is formed in a portion of the trench gate structure (20) facing the central gate wiring (102C), the gate connection electrode film (39) covering the gate buried electrode (23) and the insulating film (16) and being joined to the central gate wiring (102C);
  • the source electrode (120) includes two source pad portions (121, 122) disposed on both sides of the central gate wiring (102C) at a distance from the central gate wiring (102C) in the active region (12);
  • the semiconductor device according to A9 wherein, among each position on the underside of the gate connection conductive film (39b) included in the gate connection electrode film (39) joined to the central gate wiring (102C), a position at which the minimum value of the distance from each of all of the source/contact junction regions (38A, 92A, 92B) to the position is the largest is defined
  • the contact region (38, 92) includes a first contact region (38) formed in a region along the trench source structure (25, 30) in the active region (12);
  • the semiconductor device according to A12, wherein the source/contact junction region (38A) to which the source pad portion (121, 122) is joined is a region of the first contact region (38) to which the source pad portion (121, 122) is joined.
  • the semiconductor device further includes a first surface portion (8) formed on the inner side of the main surface (3), a second surface portion (9) formed on the periphery of the main surface (3) so as to be recessed from the first surface portion (8) in the thickness direction of the chip (2), and an active plateau (11) defined on the main surface (3) by a connecting surface portion (10A-10D) connecting the first surface portion (8) and the second surface portion (9),
  • the active region (12) is provided on the first surface portion (8)
  • the outer circumferential region (13) is provided on the second surface portion (9)
  • the semiconductor device according to any one of A5 to A7, wherein the termination region (15) is provided on the first surface portion (8).
  • the semiconductor device further includes a first surface portion (8) formed on the inner side of the main surface (3), a second surface portion (9) formed on the periphery of the main surface (3) so as to be recessed from the first surface portion (8) in the thickness direction of the chip (2), and an active plateau (11) defined on the main surface (3) by a connecting surface portion (10A-10D) connecting the first surface portion (8) and the second surface portion (9),
  • the active region (12) is provided on the first surface portion (8)
  • the outer circumferential region (13) is provided on the second surface portion (9)
  • the semiconductor device according to any one of A9 to A13, wherein the peripheral regions (14) on both sides are provided on the first surface portion (8).
  • A16 The semiconductor device according to any one of A4 to A7, further including a gate subpad (103) arranged on the main surface (3) so as to have a resistance value lower than the trench resistor structure (41) and to be electrically connected to the gate pad (101) via the trench resistor structure (41).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

A semiconductor device comprising: a chip having a main surface and made of a semiconductor of a first conduction type; a first region of a second conduction type selectivity formed in a main-surface-side surface-layer portion of the chip; an insulating film selectively formed on the main surface; an interlayer dielectric film disposed over the main surface so as to cover the insulating film; a gate electrode and a source electrode which have been disposed over the interlayer dielectric film; a gate-connection electroconductive film formed on the insulating film and electrically connected to the gate electrode; and a contact region of the second conduction type which has been selectively formed in a surface-layer portion of the first region and to which the source electrode is electrically connected. When an area of the contact region to which the source electrode has been bonded is referred to as a source/contact junction region, then the distance between the position of each of portions of the lower surface of the gate-connection electroconductive film and the source/contact junction region located nearest thereto has a maximum value of 90 μm or less.

Description

半導体装置Semiconductor Device
 本発明は、半導体装置に関する。 The present invention relates to a semiconductor device.
 特許文献1は、半導体層と、半導体層の表面に選択的に形成されたゲート絶縁膜と、ゲート絶縁膜上に形成された内蔵抵抗と、半導体層の表面に内蔵抵抗を覆うように形成された層間膜と、層間膜上に形成され、内蔵抵抗に電気的に接続されたゲートメタルと、層間絶縁膜上に形成され、内蔵抵抗を介してゲートメタルに電気的に接続されたゲートフィンガーとを含む半導体装置を開示している。 Patent document 1 discloses a semiconductor device including a semiconductor layer, a gate insulating film selectively formed on the surface of the semiconductor layer, a built-in resistor formed on the gate insulating film, an interlayer film formed on the surface of the semiconductor layer so as to cover the built-in resistor, a gate metal formed on the interlayer film and electrically connected to the built-in resistor, and a gate finger formed on the interlayer insulating film and electrically connected to the gate metal via the built-in resistor.
国際公開第2015/080162号International Publication No. 2015/080162
 特許文献1に記載の半導体装置では、スイッチング時に発生する比較的大きなソース/ドレイン間電圧VDS/dtに起因して、半導体層と内蔵抵抗との間に介在するゲート絶縁膜が損傷し、リーク電流が増加するおそれがある。 In the semiconductor device described in Patent Document 1, a relatively large source-drain voltage V DS /dt generated during switching may damage the gate insulating film between the semiconductor layer and the built-in resistor, resulting in an increase in leakage current.
 本開示の一実施形態の目的は、リーク電流を抑制できる半導体装置を提供することである。 The objective of one embodiment of the present disclosure is to provide a semiconductor device that can suppress leakage current.
 本開示の一実施形態は、主面を有し、第1導電型の半導体からなるチップと、前記チップの前記主面側の表層部に選択的に形成された第2導電型の第1領域と、前記主面に形成されたトレンチゲート構造と、前記主面に形成されたトレンチソース構造と、前記チップの前記主面上に選択的に形成された絶縁膜と、前記絶縁膜上に選択的に配置された層間絶縁膜と、前記層間絶縁膜上に配置され、前記トレンチゲート構造にゲート電位を付与するゲート電極と、前記層間絶縁膜上に配置され、前記トレンチソース構造にソース電位を付与するソース電極と、前記絶縁膜上に形成され、前記ゲート電極に電気的に接続されたゲート接続導電膜と、前記第1領域の表層部に選択的に形成され、前記ソース電極が電気的に接続される第2導電型のコンタクト領域とを含み、前記コンタクト領域のうち前記ソース電極が接合されている領域をソース/コンタクト接合領域とすると、前記ゲート接続導電膜の下面の各位置とそれに最も近い前記ソース/コンタクト接合領域の距離の最大値が90μm以下である、半導体装置を提供する。 An embodiment of the present disclosure provides a semiconductor device including a chip having a main surface and made of a semiconductor of a first conductivity type, a first region of a second conductivity type selectively formed on a surface layer portion of the main surface side of the chip, a trench gate structure formed on the main surface, a trench source structure formed on the main surface, an insulating film selectively formed on the main surface of the chip, an interlayer insulating film selectively arranged on the insulating film, a gate electrode arranged on the interlayer insulating film and applying a gate potential to the trench gate structure, a source electrode arranged on the interlayer insulating film and applying a source potential to the trench source structure, a gate connection conductive film formed on the insulating film and electrically connected to the gate electrode, and a contact region of a second conductivity type selectively formed on a surface layer portion of the first region and electrically connected to the source electrode, where the region of the contact region to which the source electrode is joined is defined as a source/contact junction region, and the maximum distance between each position on the underside of the gate connection conductive film and the source/contact junction region closest to it is 90 μm or less.
 この構成では、リーク電流を抑制できる。 This configuration helps to suppress leakage current.
 上述のまたはさらに他の目的、特徴および効果は、添付図面の参照によって説明される実施形態により明らかにされる。 The above and other objects, features and advantages will become apparent from the embodiments described with reference to the accompanying drawings.
図1は、一実施形態に係る半導体装置を示す平面図である。FIG. 1 is a plan view showing a semiconductor device according to an embodiment. 図2は、図1に示すII-II線に沿う断面図である。FIG. 2 is a cross-sectional view taken along the line II-II shown in FIG. 図3は、ゲート電極およびソース電極のレイアウトを示す平面図である。FIG. 3 is a plan view showing the layout of the gate electrodes and source electrodes. 図4は、第1主面のレイアウトを示す平面図である。FIG. 4 is a plan view showing the layout of the first main surface. 図5は、活性領域のレイアウトを示す拡大平面図である。FIG. 5 is an enlarged plan view showing the layout of the active regions. 図6は、周縁領域のレイアウトを示す拡大平面図である。FIG. 6 is an enlarged plan view showing the layout of the peripheral region. 図7は、図5に示すVII-VII線に沿う断面図である。FIG. 7 is a cross-sectional view taken along line VII-VII shown in FIG. 図8は、図5に示すVIII-VIII線に沿う断面図である。FIG. 8 is a cross-sectional view taken along line VIII-VIII shown in FIG. 図9は、図6に示すIX-IX線に沿う断面図である。FIG. 9 is a cross-sectional view taken along line IX-IX shown in FIG. 図10は、図6に示すX-X線に沿う断面図である。FIG. 10 is a cross-sectional view taken along line X-X shown in FIG. 図11は、図6に示すXI-XI線に沿う断面図である。FIG. 11 is a cross-sectional view taken along the line XI-XI shown in FIG. 図12は、図6に示すXII-XII線に沿う断面図である。FIG. 12 is a cross-sectional view taken along line XII-XII shown in FIG. 図13は、終端領域のレイアウトを示す拡大平面図である。FIG. 13 is an enlarged plan view showing the layout of the termination region. 図14は、ゲート抵抗のレイアウトを示す拡大平面図である。FIG. 14 is an enlarged plan view showing the layout of the gate resistors. 図15は、ゲート抵抗の内方部を示す拡大平面図である。FIG. 15 is an enlarged plan view showing the inner part of the gate resistor. 図16は、ゲート抵抗の周縁部を示す拡大平面図である。FIG. 16 is an enlarged plan view showing the periphery of the gate resistor. 図17は、図15に示すXVII-XVII線に沿う断面図である。17 is a cross-sectional view taken along line XVII-XVII shown in FIG. 図18は、図15に示すXVIII-XVIII線に沿う断面図である。18 is a cross-sectional view taken along line XVIII-XVIII shown in FIG. 15. FIG. 図19は、図16に示すXIX-XIX線に沿う断面図である。FIG. 19 is a cross-sectional view taken along line XIX-XIX shown in FIG. 図20は、図16に示すXX-XX線に沿う断面図である。FIG. 20 is a cross-sectional view taken along the line XX-XX shown in FIG. 図21は、図16に示すXXI-XXI線に沿う断面図である。21 is a cross-sectional view taken along line XXI-XXI shown in FIG. 16. FIG. 図22は、図16に示すXXII-XXII線に沿う断面図である。22 is a cross-sectional view taken along line XXII-XXII shown in FIG. 16. FIG. 図23は、ゲート抵抗の一要部を示す拡大平面図である。FIG. 23 is an enlarged plan view showing a main part of the gate resistor. 図24は、終端ダミー構造のレイアウトを示す拡大平面図である。FIG. 24 is an enlarged plan view showing the layout of the termination dummy structure. 図25は、終端ダミー構造のレイアウトを示す更なる拡大平面図である。FIG. 25 is a further enlarged plan view showing the layout of the termination dummy structure. 図26は、図25に示すXXVI-XXVI線に沿う断面図である。26 is a cross-sectional view taken along line XXVI-XXVI shown in FIG. 25. FIG. 図27は、ゲート電極およびゲート抵抗の接続形態を示す電気回路図である。FIG. 27 is an electrical circuit diagram showing a connection form of the gate electrode and the gate resistor. 図28は、外周領域の構造を示す断面図である。FIG. 28 is a cross-sectional view showing the structure of the outer periphery region. 図29は、図13のXXIX-XXIX線に沿う断面図である。FIG. 29 is a cross-sectional view taken along line XXIX-XXIX in FIG. 図30は、図13の領域E3の一部を拡大して示す拡大平面図である。FIG. 30 is an enlarged plan view showing a part of the region E3 in FIG. 図31は、図30のXXXI-XXXI線に沿う断面図である。31 is a cross-sectional view taken along line XXXI-XXXI in FIG. 30. FIG.
 以下、添付図面を参照して、実施形態が詳細に説明される。添付図面は、模式図であり、厳密に図示されたものではなく、縮尺等は必ずしも一致しない。また、添付図面の間で対応する構造には同一の参照符号が付され、重複する説明は省略または簡略化される。説明が省略または簡略化された構造については、省略または簡略化される前になされた説明が適用される。 Below, the embodiments will be described in detail with reference to the attached drawings. The attached drawings are schematic diagrams, are not strictly illustrated, and are not necessarily to scale. Corresponding structures in the attached drawings are given the same reference symbols, and duplicated explanations have been omitted or simplified. For structures whose explanations have been omitted or simplified, the explanation given before the omission or simplification applies.
 比較対象(comparison target)が存する説明において「ほぼ(substantially)等しい」の文言が使用される場合、この文言は、比較対象の数値(形態)と等しい数値(形態)を含む他、比較対象の数値(形態)を基準とする±10%の範囲の数値誤差(形態誤差)も含む。実施形態では「第1」、「第2」、「第3」等の文言が使用されるが、これらは説明順序を明確にするために各構造の名称に付された記号であり、各構造の名称を限定する趣旨で付されていない。 When the phrase "substantially equal" is used in a description in which a comparison target exists, this phrase includes a numerical value (shape) equal to the numerical value (shape) of the comparison target, as well as a numerical error (shape error) within a range of ±10% based on the numerical value (shape) of the comparison target. In the embodiments, the words "first," "second," "third," etc. are used, but these are symbols added to the names of each structure to clarify the order of explanation, and are not added with the intention of limiting the names of each structure.
 図1は、一実施形態に係る半導体装置1を示す平面図である。図2は、図1に示すII-II線に沿う断面図である。図3は、ゲート電極100およびソース電極120のレイアウトを示す平面図である。図4は、第1主面3のレイアウトを示す平面図である。図1~図4を参照して、半導体装置1は、MISFET(Metal Insulator Semiconductor Field Effect Transistor)を含む半導体スイッチング装置である。 FIG. 1 is a plan view showing a semiconductor device 1 according to one embodiment. FIG. 2 is a cross-sectional view taken along line II-II shown in FIG. 1. FIG. 3 is a plan view showing the layout of a gate electrode 100 and a source electrode 120. FIG. 4 is a plan view showing the layout of a first main surface 3. With reference to FIGS. 1 to 4, the semiconductor device 1 is a semiconductor switching device including a MISFET (Metal Insulator Semiconductor Field Effect Transistor).
 半導体装置1は、この形態(this embodiment)では、ワイドバンドギャップ半導体の単結晶を含み、六面体形状(具体的には直方体形状)に形成されたチップ2を含む。つまり、半導体装置1は、「ワイドバンドギャップ半導体装置」である。チップ2は、「半導体チップ」または「ワイドバンドギャップ半導体チップ」と称されてもよい。ワイドバンドギャップ半導体は、Si(シリコン)のバンドギャップを超えるバンドギャップを有する半導体である。GaN(窒化ガリウム)、SiC(炭化シリコン)およびC(ダイアモンド)が、ワイドバンドギャップ半導体として例示される。 In this embodiment, the semiconductor device 1 includes a chip 2 that includes a single crystal of a wide bandgap semiconductor and is formed in a hexahedral shape (specifically, a rectangular parallelepiped shape). In other words, the semiconductor device 1 is a "wide bandgap semiconductor device." The chip 2 may also be referred to as a "semiconductor chip" or a "wide bandgap semiconductor chip." A wide bandgap semiconductor is a semiconductor that has a bandgap that exceeds the bandgap of Si (silicon). Examples of wide bandgap semiconductors include GaN (gallium nitride), SiC (silicon carbide), and C (diamond).
 チップ2は、この形態では、ワイドバンドギャップ半導体の一例として六方晶のSiC単結晶を含む「SiCチップ」である。つまり、半導体装置1は、「SiC半導体装置」である。半導体装置1は、「SiC-MISFET」と称されてもよい。六方晶のSiC単結晶は、2H(Hexagonal)-SiC単結晶、4H-SiC単結晶、6H-SiC単結晶等を含む複数種のポリタイプを有している。この形態では、チップ2が4H-SiC単結晶を含む例が示されるが、チップ2は他のポリタイプを含んでいてもよい。 In this embodiment, the chip 2 is a "SiC chip" that includes hexagonal SiC single crystal as an example of a wide band gap semiconductor. In other words, the semiconductor device 1 is a "SiC semiconductor device." The semiconductor device 1 may also be referred to as a "SiC-MISFET." The hexagonal SiC single crystal has multiple polytypes including 2H (Hexagonal)-SiC single crystal, 4H-SiC single crystal, 6H-SiC single crystal, and the like. In this embodiment, an example is shown in which the chip 2 includes 4H-SiC single crystal, but the chip 2 may include other polytypes.
 チップ2は、一方側の第1主面3、他方側の第2主面4、ならびに、第1主面3および第2主面4を接続する第1~第4側面5A~5Dを有している。第1主面3および第2主面4は、それらの法線方向Zから見た平面視(以下、単に「平面視」という。)において四角形状に形成されている。法線方向Zは、チップ2の厚さ方向でもある。第1主面3および第2主面4は、SiC単結晶のc面によって形成されていることが好ましい。 The chip 2 has a first main surface 3 on one side, a second main surface 4 on the other side, and first to fourth side surfaces 5A to 5D connecting the first main surface 3 and the second main surface 4. The first main surface 3 and the second main surface 4 are formed in a quadrangular shape when viewed in a plan view from their normal direction Z (hereinafter simply referred to as "plan view"). The normal direction Z is also the thickness direction of the chip 2. The first main surface 3 and the second main surface 4 are preferably formed by the c-plane of a SiC single crystal.
 この場合、第1主面3はSiC単結晶のシリコン面((0001)面)によって形成され、第2主面4はSiC単結晶のカーボン面((000ー1)面)によって形成されていることが好ましい。第1主面3および第2主面4は、c面に対して所定のオフ方向に所定の角度で傾斜したオフ角を有していてもよい。オフ方向は、SiC単結晶のa軸方向([11-20]方向)であることが好ましい。オフ角は、0°を超えて10°以下であってもよい。オフ角は、5°以下であることが好ましい。 In this case, it is preferable that the first main surface 3 is formed by the silicon surface ((0001) surface) of the SiC single crystal, and the second main surface 4 is formed by the carbon surface ((000-1) surface) of the SiC single crystal. The first main surface 3 and the second main surface 4 may have an off angle inclined at a predetermined angle in a predetermined off direction with respect to the c-plane. The off direction is preferably the a-axis direction ([11-20] direction) of the SiC single crystal. The off angle may be greater than 0° and less than or equal to 10°. The off angle is preferably less than or equal to 5°.
 第1側面5Aおよび第2側面5Bは、第1主面3に沿う第1方向Xに延び、第1方向Xに交差(具体的には直交)する第2方向Yに対向している。第3側面5Cおよび第4側面5Dは、第2方向Yに延び、第1方向Xに対向している。第1方向XがSiC単結晶のm軸方向([1-100]方向)であり、第2方向YがSiC単結晶のa軸方向であってもよい。むろん、第1方向XがSiC単結晶のa軸方向であり、第2方向YがSiC単結晶のm軸方向であってもよい。 The first side surface 5A and the second side surface 5B extend in a first direction X along the first main surface 3 and face a second direction Y that intersects (specifically, perpendicular to) the first direction X. The third side surface 5C and the fourth side surface 5D extend in the second direction Y and face the first direction X. The first direction X may be the m-axis direction ([1-100] direction) of the SiC single crystal, and the second direction Y may be the a-axis direction of the SiC single crystal. Of course, the first direction X may be the a-axis direction of the SiC single crystal, and the second direction Y may be the m-axis direction of the SiC single crystal.
 チップ2は、5μm以上200μm以下の厚さを有していてもよい。チップ2の厚さは、150μm以下、100μm以下、80μm以下、50μm以下または40μm以下であってもよい。第1~第4側面5A~5Dは、平面視において0.5mm以上10mm以下の長さを有していてもよい。第1~第4側面5A~5Dの長さは、1mm以上であることが好ましい。 The chip 2 may have a thickness of 5 μm or more and 200 μm or less. The thickness of the chip 2 may be 150 μm or less, 100 μm or less, 80 μm or less, 50 μm or less, or 40 μm or less. The first to fourth sides 5A to 5D may have a length of 0.5 mm or more and 10 mm or less in a plan view. It is preferable that the length of the first to fourth sides 5A to 5D is 1 mm or more.
 第1~第4側面5A~5Dの長さは、2mm以上であることが特に好ましい。つまり、チップ2は、1mm角以上(好ましくは2mm角以上)の平面積を有し、断面視において100μm以下(好ましくは50μm以下)の厚さを有していることが好ましい。第1~第4側面5A~5Dの長さは、この形態では、4mm以上6mm以下の範囲に設定されている。 It is particularly preferable that the length of the first to fourth side surfaces 5A to 5D is 2 mm or more. In other words, it is preferable that the chip 2 has a planar area of 1 mm square or more (preferably 2 mm square or more) and a thickness of 100 μm or less (preferably 50 μm or less) in a cross-sectional view. In this embodiment, the length of the first to fourth side surfaces 5A to 5D is set in the range of 4 mm or more and 6 mm or less.
 半導体装置1は、チップ2内において第1主面3側の領域(表層部)に形成されたn型の第1半導体領域6を含む。第1半導体領域6は、第1主面3に沿って延びる層状に形成され、第1主面3および第1~第4側面5A~5Dから露出している。第1半導体領域6は、この形態では、エピタキシャル層(具体的にはSiCエピタキシャル層)からなる。第1半導体領域6は、1μm以上50μm以下の厚さを有していてもよい。第1半導体領域6の厚さは、3μm以上30μm以下であることが好ましい。第1半導体領域6の厚さは、5μm以上25μm以下であることが特に好ましい。 The semiconductor device 1 includes an n-type first semiconductor region 6 formed in a region (surface layer) on the first main surface 3 side of the chip 2. The first semiconductor region 6 is formed in a layer extending along the first main surface 3, and is exposed from the first main surface 3 and the first to fourth side surfaces 5A to 5D. In this embodiment, the first semiconductor region 6 is made of an epitaxial layer (specifically, a SiC epitaxial layer). The first semiconductor region 6 may have a thickness of 1 μm or more and 50 μm or less. The thickness of the first semiconductor region 6 is preferably 3 μm or more and 30 μm or less. It is particularly preferable that the thickness of the first semiconductor region 6 is 5 μm or more and 25 μm or less.
 半導体装置1は、チップ2内において第2主面4側の領域(表層部)に形成されたn型の第2半導体領域7を含む。第2半導体領域7は、第2主面4に沿って延びる層状に形成され、第2主面4および第1~第4側面5A~5Dから露出している。第2半導体領域7は、第1半導体領域6よりも高いn型不純物濃度を有し、第1半導体領域6に電気的に接続されている。 The semiconductor device 1 includes an n-type second semiconductor region 7 formed in a region (surface layer) on the second main surface 4 side within the chip 2. The second semiconductor region 7 is formed in a layer extending along the second main surface 4, and is exposed from the second main surface 4 and the first to fourth side surfaces 5A to 5D. The second semiconductor region 7 has a higher n-type impurity concentration than the first semiconductor region 6, and is electrically connected to the first semiconductor region 6.
 第2半導体領域7は、この形態では、半導体基板(具体的にはSiC半導体基板)からなる。つまり、チップ2は、半導体基板およびエピタキシャル層を含む積層構造を有している。第2半導体領域7は、1μm以上200μm以下の厚さを有していてもよい。第2半導体領域7の厚さは、150μm以下、100μm以下、50μm以下または40μm以下であってもよい。第2半導体領域7の厚さは、5μm以上であってもよい。第2半導体領域7の厚さは、10μm以上であることが好ましい。第2半導体領域7は、この形態では、第1半導体領域6の厚さを超える厚さを有している。 In this embodiment, the second semiconductor region 7 is made of a semiconductor substrate (specifically, a SiC semiconductor substrate). That is, the chip 2 has a layered structure including a semiconductor substrate and an epitaxial layer. The second semiconductor region 7 may have a thickness of 1 μm or more and 200 μm or less. The thickness of the second semiconductor region 7 may be 150 μm or less, 100 μm or less, 50 μm or less, or 40 μm or less. The thickness of the second semiconductor region 7 may be 5 μm or more. The thickness of the second semiconductor region 7 is preferably 10 μm or more. In this embodiment, the second semiconductor region 7 has a thickness that exceeds the thickness of the first semiconductor region 6.
 半導体装置1は、第1主面3に形成された活性面8(active surface)、外周面9(outer surface)および第1~第4接続面10A~10D(connecting surface)を含む。活性面8、外周面9および第1~第4接続面10A~10Dは、第1主面3において活性台地11を区画している。活性面8が「第1面部」と称され、外周面9が「第2面部」と称され、第1~第4接続面10A~10Dが「接続面部」と称されてもよい。活性面8、外周面9および第1~第4接続面10A~10D(つまり活性台地11)は、チップ2(第1主面3)の構成要素と見なされてもよい。 The semiconductor device 1 includes an active surface 8, an outer surface 9, and first to fourth connecting surfaces 10A-10D formed on the first main surface 3. The active surface 8, the outer surface 9, and the first to fourth connecting surfaces 10A-10D define an active plateau 11 on the first main surface 3. The active surface 8 may be referred to as the "first surface portion," the outer surface 9 as the "second surface portion," and the first to fourth connecting surfaces 10A-10D as the "connecting surface portion." The active surface 8, the outer surface 9, and the first to fourth connecting surfaces 10A-10D (i.e., the active plateau 11) may be considered as components of the chip 2 (first main surface 3).
 活性面8は、第1主面3の周縁(第1~第4側面5A~5D)から内方に間隔を空けて形成されている。活性面8は、第1方向Xおよび第2方向Yに延びる平坦面を有している。活性面8は、この形態では、c面(Si面)によって形成されている。活性面8は、この形態では、平面視において第1~第4側面5A~5Dに平行な4辺を有する四角形状に形成されている。 The active surface 8 is formed at a distance inward from the periphery (first to fourth side surfaces 5A to 5D) of the first main surface 3. The active surface 8 has a flat surface extending in the first direction X and the second direction Y. In this embodiment, the active surface 8 is formed by a c-plane (Si-plane). In this embodiment, the active surface 8 is formed in a quadrangle shape having four sides parallel to the first to fourth side surfaces 5A to 5D in a plan view.
 外周面9は、活性面8外に位置し、活性面8からチップ2の厚さ方向(第2主面4側)に窪んでいる。具体的には、外周面9は、第1半導体領域6を露出させるように第1半導体領域6の厚さ未満の深さで窪んでいる。外周面9は、平面視において活性面8に沿って帯状に延び、活性面8を取り囲む環状(具体的には四角環状)に形成されている。 The outer peripheral surface 9 is located outside the active surface 8 and is recessed from the active surface 8 in the thickness direction of the chip 2 (towards the second main surface 4). Specifically, the outer peripheral surface 9 is recessed to a depth less than the thickness of the first semiconductor region 6 so as to expose the first semiconductor region 6. The outer peripheral surface 9 extends in a band shape along the active surface 8 in a plan view and is formed in a ring shape (specifically a square ring shape) surrounding the active surface 8.
 外周面9は、第1方向Xおよび第2方向Yに延びる平坦面を有し、活性面8に対してほぼ平行に形成されている。外周面9は、この形態では、c面(Si面)によって形成されている。外周面9は、第1~第4側面5A~5Dに連なっている。外周面9は、外周深さDOを有している。外周深さDOは、0.5μm以上5μm以下であってもよい。外周深さDOは、2.5μm以下であることが好ましい。 The outer peripheral surface 9 has a flat surface extending in the first direction X and the second direction Y, and is formed approximately parallel to the active surface 8. In this embodiment, the outer peripheral surface 9 is formed by a c-plane (Si-plane). The outer peripheral surface 9 is continuous with the first to fourth side surfaces 5A to 5D. The outer peripheral surface 9 has a outer peripheral depth DO. The outer peripheral depth DO may be 0.5 μm or more and 5 μm or less. It is preferable that the outer peripheral depth DO is 2.5 μm or less.
 第1~第4接続面10A~10Dは、法線方向Zに延び、活性面8および外周面9を接続している。第1接続面10Aは第1側面5A側に位置し、第2接続面10Bは第2側面5B側に位置し、第3接続面10Cは第3側面5C側に位置し、第4接続面10Dは第4側面5D側に位置している。第1接続面10Aおよび第2接続面10Bは、第1方向Xに延び、第2方向Yに対向している。第3接続面10Cおよび第4接続面10Dは、第2方向Yに延び、第1方向Xに対向している。 The first to fourth connection surfaces 10A to 10D extend in the normal direction Z and connect the active surface 8 and the outer peripheral surface 9. The first connection surface 10A is located on the first side surface 5A side, the second connection surface 10B is located on the second side surface 5B side, the third connection surface 10C is located on the third side surface 5C side, and the fourth connection surface 10D is located on the fourth side surface 5D side. The first connection surface 10A and the second connection surface 10B extend in the first direction X and face the second direction Y. The third connection surface 10C and the fourth connection surface 10D extend in the second direction Y and face the first direction X.
 第1~第4接続面10A~10Dは、四角柱状の活性台地11が区画されるように活性面8および外周面9の間をほぼ垂直に延びていてもよい。第1~第4接続面10A~10Dは、四角錘台状の活性台地11が区画されるように活性面8から外周面9に向かって斜め下り傾斜していてもよい。このように、半導体装置1は、第1主面3において第1半導体領域6に突状に区画された活性台地11を含む。活性台地11は、第1半導体領域6のみに形成され、第2半導体領域7には形成されていない。 The first to fourth connection surfaces 10A to 10D may extend approximately vertically between the active surface 8 and the outer peripheral surface 9 so as to define a square-prism-shaped active plateau 11. The first to fourth connection surfaces 10A to 10D may be inclined downward from the active surface 8 toward the outer peripheral surface 9 so as to define a square-prism-shaped active plateau 11. In this way, the semiconductor device 1 includes an active plateau 11 that is defined in a protruding shape in the first semiconductor region 6 on the first main surface 3. The active plateau 11 is formed only in the first semiconductor region 6, and is not formed in the second semiconductor region 7.
 図4を参照して、半導体装置1は、活性領域12、外周領域13、周縁領域14および終端領域15を含む。活性領域12は、活性面8に設けられている。具体的には、活性領域12は、活性面8の周縁(第1~第4接続面10A~10D)から間隔を空けて活性面8の内方部に設けられている。活性領域12は、この形態では、平面視において第1~第4側面5A~5Dに平行な4辺を有する四角形状に設けられている。外周領域13は、外周面9に設けられている。外周領域13は、この形態では、平面視において活性面8(活性台地11)を取り囲む環状(具体的に四角環状)に設けられている。 Referring to FIG. 4, the semiconductor device 1 includes an active region 12, an outer peripheral region 13, a peripheral region 14, and a termination region 15. The active region 12 is provided on the active surface 8. Specifically, the active region 12 is provided in the inner portion of the active surface 8 at a distance from the peripheral edge (first to fourth connection surfaces 10A to 10D) of the active surface 8. In this embodiment, the active region 12 is provided in a quadrangle shape having four sides parallel to the first to fourth side surfaces 5A to 5D in a plan view. The outer peripheral region 13 is provided on the outer peripheral surface 9. In this embodiment, the outer peripheral region 13 is provided in a ring shape (specifically a quadrangular ring shape) surrounding the active surface 8 (active plateau 11) in a plan view.
 周縁領域14は、活性領域12および外周領域13の間の領域において活性面8に設けられている。周縁領域14は、第1方向Xの両サイドから活性領域12を挟み込むように設けられ、第2方向Yに帯状に延びている。周縁領域14は、第1周縁領域14Aおよび第2周縁領域14Bを含む。第1周縁領域14Aは活性領域12に対して第3側面5C側(第3接続面10C側)に設けられ、第2周縁領域14Bは活性領域12に対して第4側面5D側(第4接続面10D側)に設けられている。 The peripheral region 14 is provided on the active surface 8 in the region between the active region 12 and the outer peripheral region 13. The peripheral region 14 is provided to sandwich the active region 12 from both sides in the first direction X, and extends in a strip shape in the second direction Y. The peripheral region 14 includes a first peripheral region 14A and a second peripheral region 14B. The first peripheral region 14A is provided on the third side surface 5C side (third connection surface 10C side) of the active region 12, and the second peripheral region 14B is provided on the fourth side surface 5D side (fourth connection surface 10D side) of the active region 12.
 終端領域15は、活性領域12および外周領域13の間の領域において活性面8に設けられている。終端領域15は、第2方向Yの両サイドから活性領域12を挟み込むように設けられ、第1方向Xに帯状に延びている。終端領域15は、第1終端領域15Aおよび第2終端領域15Bを含む。第1終端領域15Aは活性領域12に対して第1側面5A側(第1接続面10A側)に設けられ、第2終端領域15Bは活性領域12に対して第2側面5B側(第2接続面10B側)に設けられている。 The termination region 15 is provided on the active surface 8 in the region between the active region 12 and the peripheral region 13. The termination region 15 is provided to sandwich the active region 12 from both sides in the second direction Y, and extends in a strip shape in the first direction X. The termination region 15 includes a first termination region 15A and a second termination region 15B. The first termination region 15A is provided on the first side surface 5A side (first connection surface 10A side) of the active region 12, and the second termination region 15B is provided on the second side surface 5B side (second connection surface 10B side) of the active region 12.
 半導体装置1は、第1主面3を被覆する主面絶縁膜16を含む。主面絶縁膜16は、活性面8、外周面9および第1~第4接続面10A~10Dを選択的に被覆している。主面絶縁膜16は、酸化シリコン膜、窒化シリコン膜および酸窒化シリコン膜のうちの少なくとも1つを含んでいてもよい。 The semiconductor device 1 includes a main surface insulating film 16 that covers the first main surface 3. The main surface insulating film 16 selectively covers the active surface 8, the outer peripheral surface 9, and the first to fourth connection surfaces 10A to 10D. The main surface insulating film 16 may include at least one of a silicon oxide film, a silicon nitride film, and a silicon oxynitride film.
 主面絶縁膜16は、この形態では、酸化シリコン膜からなる単層構造を有している。主面絶縁膜16は、チップ2の酸化物からなる酸化シリコン膜を含むことが特に好ましい。主面絶縁膜16は、この形態では、第1~第4側面5A~5Dに連なっている。むろん、主面絶縁膜16の壁部は、外周面9の周縁から内方に間隔を空けて形成され、外周面9の周縁部から第1半導体領域6を露出させていてもよい。 In this embodiment, the main surface insulating film 16 has a single-layer structure made of a silicon oxide film. It is particularly preferable that the main surface insulating film 16 includes a silicon oxide film made of an oxide of the chip 2. In this embodiment, the main surface insulating film 16 is continuous with the first to fourth side surfaces 5A to 5D. Of course, the wall portion of the main surface insulating film 16 may be formed at a distance inward from the periphery of the outer peripheral surface 9, exposing the first semiconductor region 6 from the periphery of the outer peripheral surface 9.
 図5は、活性領域12のレイアウトを示す拡大平面図である。図6は、周縁領域14のレイアウトを示す拡大平面図である。図7は、図5に示すVII-VII線に沿う断面図である。図8は、図5に示すVIII-VIII線に沿う断面図である。図9は、図6に示すIX-IX線に沿う断面図である。図10は、図6に示すX-X線に沿う断面図である。図11は、図6に示すXI-XI線に沿う断面図である。図12は、図6に示すXII-XII線に沿う断面図である。 FIG. 5 is an enlarged plan view showing the layout of the active region 12. FIG. 6 is an enlarged plan view showing the layout of the peripheral region 14. FIG. 7 is a cross-sectional view taken along line VII-VII shown in FIG. 5. FIG. 8 is a cross-sectional view taken along line VIII-VIII shown in FIG. 5. FIG. 9 is a cross-sectional view taken along line IX-IX shown in FIG. 6. FIG. 10 is a cross-sectional view taken along line X-X shown in FIG. 6. FIG. 11 is a cross-sectional view taken along line XI-XI shown in FIG. 6. FIG. 12 is a cross-sectional view taken along line XII-XII shown in FIG. 6.
 図6では、第1周縁領域14A側のレイアウトが示されている。第2周縁領域14B側のレイアウトは第1周縁領域14A側のレイアウトとほぼ同様であるため、以下では、第1周縁領域14A側のレイアウトが主に説明される。第2周縁領域14B側のレイアウトは、以下の説明において「第3接続面10C」を「第4接続面10D」に置き換えることによって得られる。 In FIG. 6, the layout on the first peripheral region 14A side is shown. Since the layout on the second peripheral region 14B side is almost the same as the layout on the first peripheral region 14A side, the layout on the first peripheral region 14A side will be mainly described below. The layout on the second peripheral region 14B side can be obtained by replacing "third connection surface 10C" with "fourth connection surface 10D" in the following description.
 図5~図12を参照して、半導体装置1は、第1主面3(活性面8)の表層部に形成されたp型(第2導電型)のボディ領域17を含む。ボディ領域17は、第1半導体領域6の底部から活性面8側に間隔を空けて形成されている。ボディ領域17は、活性面8に沿って延びる層状に形成されている。ボディ領域17は、活性面8の全域に形成され、第1~第4接続面10A~10Dから露出していてもよい。 Referring to Figures 5 to 12, the semiconductor device 1 includes a p-type (second conductivity type) body region 17 formed in a surface layer portion of the first main surface 3 (active surface 8). The body region 17 is formed at a distance from the bottom of the first semiconductor region 6 toward the active surface 8. The body region 17 is formed in a layer extending along the active surface 8. The body region 17 is formed over the entire active surface 8, and may be exposed from the first to fourth connection surfaces 10A to 10D.
 半導体装置1は、活性領域12において第1主面3(活性面8)の表層部に形成されたn型のソース領域18を含む。具体的には、ソース領域18は、ボディ領域17の底部から活性面8側に間隔を空けてボディ領域17の表層部に形成されている。ソース領域18は、周縁領域14および終端領域15には形成されていない。 The semiconductor device 1 includes an n-type source region 18 formed in a surface layer portion of the first main surface 3 (active surface 8) in the active region 12. Specifically, the source region 18 is formed in the surface layer portion of the body region 17 with a gap from the bottom of the body region 17 toward the active surface 8. The source region 18 is not formed in the peripheral region 14 or the termination region 15.
 むろん、ソース領域18は、チャネルの制御に影響を与えない範囲において、周縁領域14および終端領域15に形成されていてもよい。ソース領域18は、第1半導体領域6よりも高いn型不純物濃度を有している。ソース領域18は、ボディ領域17内において第1半導体領域6とMISFETのチャネルを形成する。 Of course, the source region 18 may be formed in the peripheral region 14 and the termination region 15 to the extent that it does not affect the control of the channel. The source region 18 has a higher n-type impurity concentration than the first semiconductor region 6. The source region 18 forms a channel of the MISFET together with the first semiconductor region 6 in the body region 17.
 半導体装置1は、活性領域12において第1主面3(活性面8)に形成された複数のトレンチゲート構造20を含む。複数のトレンチゲート構造20には、第1電位としてのゲート電位VGが付与される。複数のトレンチゲート構造20は、ボディ領域17内におけるチャネルの反転および非反転を制御する。複数のトレンチゲート構造20は、平面視において第1方向Xに延びる帯状にそれぞれ形成され、第2方向Yに間隔を空けて配列されている。 The semiconductor device 1 includes a plurality of trench gate structures 20 formed on the first main surface 3 (active surface 8) in the active region 12. A gate potential VG is applied to the plurality of trench gate structures 20 as a first potential. The plurality of trench gate structures 20 control the inversion and non-inversion of the channel in the body region 17. The plurality of trench gate structures 20 are each formed in a band shape extending in the first direction X in a plan view, and are arranged at intervals in the second direction Y.
 複数のトレンチゲート構造20は、この形態では、活性面8の周縁から間隔を空けて活性面8の内方部に配置されている。具体的には、複数のトレンチゲート構造20は、第1~第4接続面10A~10Dから第1方向Xおよび第2方向Yに間隔を空けて配置されている。 In this embodiment, the multiple trench gate structures 20 are arranged inward of the active surface 8 at intervals from the periphery of the active surface 8. Specifically, the multiple trench gate structures 20 are arranged at intervals in the first direction X and the second direction Y from the first to fourth connection surfaces 10A to 10D.
 複数のトレンチゲート構造20は、活性面8の内方部に活性領域12を区画すると同時に、活性面8の周縁と共に周縁領域14および終端領域15を区画している。複数のトレンチゲート構造20は、第1半導体領域6に至るようにボディ領域17およびソース領域18を貫通している。複数のトレンチゲート構造20は、第1半導体領域6の底部から活性面8側に間隔を空けて形成されている。 The multiple trench gate structures 20 define an active region 12 in the inner part of the active surface 8, and at the same time define a peripheral region 14 and a termination region 15 together with the periphery of the active surface 8. The multiple trench gate structures 20 penetrate the body region 17 and the source region 18 to reach the first semiconductor region 6. The multiple trench gate structures 20 are formed at intervals from the bottom of the first semiconductor region 6 toward the active surface 8.
 以下、1つのトレンチゲート構造20が説明される。トレンチゲート構造20は、第2方向Yに第1幅W1を有し、法線方向Zに第1深さD1を有している。第1幅W1は、0.1μm以上3μm以下であってもよい。第1幅W1は、0.5μm以上2μm以下であることが好ましい。第1深さD1は、外周面9の外周深さDO未満である。第1深さD1は、0.1μm以上3μm以下であってもよい。第1深さD1は、0.5μm以上1.5μm以下であることが好ましい。 Below, one trench gate structure 20 is described. The trench gate structure 20 has a first width W1 in the second direction Y and a first depth D1 in the normal direction Z. The first width W1 may be 0.1 μm or more and 3 μm or less. The first width W1 is preferably 0.5 μm or more and 2 μm or less. The first depth D1 is less than the outer circumferential depth DO of the outer circumferential surface 9. The first depth D1 may be 0.1 μm or more and 3 μm or less. The first depth D1 is preferably 0.5 μm or more and 1.5 μm or less.
 トレンチゲート構造20は、ゲートトレンチ21、ゲート絶縁膜22およびゲート埋設電極23を含む。ゲートトレンチ21は、活性面8に形成され、トレンチゲート構造20の壁面を区画している。ゲート絶縁膜22は、ゲートトレンチ21の壁面を被覆し、活性面8において主面絶縁膜16に接続されている。ゲート絶縁膜22は、酸化シリコン膜、窒化シリコン膜および酸窒化シリコン膜のうちの少なくとも1つを含んでいてもよい。 The trench gate structure 20 includes a gate trench 21, a gate insulating film 22, and a gate buried electrode 23. The gate trench 21 is formed in the active surface 8 and defines the wall surface of the trench gate structure 20. The gate insulating film 22 covers the wall surface of the gate trench 21 and is connected to the main surface insulating film 16 at the active surface 8. The gate insulating film 22 may include at least one of a silicon oxide film, a silicon nitride film, and a silicon oxynitride film.
 ゲート絶縁膜22は、この形態では、酸化シリコン膜からなる単層構造を有している。ゲート絶縁膜22は、チップ2の酸化物からなる酸化シリコン膜を含むことが特に好ましい。ゲート埋設電極23は、ゲート絶縁膜22を挟んでゲートトレンチ21に埋設され、ゲート絶縁膜22を挟んでチャネルに対向している。ゲート埋設電極23は、導電性ポリシリコンを含んでいてもよい。 In this embodiment, the gate insulating film 22 has a single-layer structure made of a silicon oxide film. It is particularly preferable that the gate insulating film 22 contains a silicon oxide film made of an oxide of the chip 2. The gate buried electrode 23 is buried in the gate trench 21 with the gate insulating film 22 in between, and faces the channel with the gate insulating film 22 in between. The gate buried electrode 23 may contain conductive polysilicon.
 半導体装置1は、活性領域12において第1主面3(活性面8)に形成された複数の第1トレンチソース構造25を含む。複数の第1トレンチソース構造25には、第1電位とは異なる第2電位としてのソース電位VSが付与される。ソース電位VSは、動作基準となる基準電位(たとえばグランド電位)であってもよい。 The semiconductor device 1 includes a plurality of first trench source structures 25 formed in the first main surface 3 (active surface 8) in the active region 12. A source potential VS is applied to the plurality of first trench source structures 25 as a second potential different from the first potential. The source potential VS may be a reference potential (e.g., ground potential) that serves as an operating reference.
 複数の第1トレンチソース構造25は、隣り合う2つのトレンチゲート構造20の間の領域にそれぞれ配置されている。複数の第1トレンチソース構造25は、平面視において第2方向Yに複数のトレンチゲート構造20と交互に配列され、第1方向Xに延びる帯状にそれぞれ形成されている。複数の第1トレンチソース構造25は、この形態では、活性領域12から周縁領域14に引き出されている。複数の第1トレンチソース構造25は、第3接続面10Cおよび第4接続面10Dのうちの少なくとも一方から露出している。 The multiple first trench source structures 25 are each disposed in a region between two adjacent trench gate structures 20. The multiple first trench source structures 25 are arranged alternately with the multiple trench gate structures 20 in the second direction Y in a plan view, and are each formed in a strip shape extending in the first direction X. In this embodiment, the multiple first trench source structures 25 are drawn out from the active region 12 to the peripheral region 14. The multiple first trench source structures 25 are exposed from at least one of the third connection surface 10C and the fourth connection surface 10D.
 複数の第1トレンチソース構造25は、この形態では、第3接続面10Cおよび第4接続面10Dの双方を貫通し、第3接続面10Cおよび第4接続面10Dの双方から露出している。複数の第1トレンチソース構造25は、活性領域12において第2方向Yにトレンチゲート構造20に対向し、周縁領域14において第2方向Yにトレンチゲート構造20に対向していない。 In this embodiment, the multiple first trench source structures 25 penetrate both the third connection surface 10C and the fourth connection surface 10D and are exposed from both the third connection surface 10C and the fourth connection surface 10D. The multiple first trench source structures 25 face the trench gate structure 20 in the second direction Y in the active region 12, and do not face the trench gate structure 20 in the second direction Y in the peripheral region 14.
 複数の第1トレンチソース構造25は、第1半導体領域6に至るように活性領域12においてボディ領域17およびソース領域18を貫通し、周縁領域14においてボディ領域17を貫通している。複数の第1トレンチソース構造25は、第1半導体領域6の底部から活性面8側に間隔を空けて形成されている。 The multiple first trench source structures 25 penetrate the body region 17 and source region 18 in the active region 12 to reach the first semiconductor region 6, and penetrate the body region 17 in the peripheral region 14. The multiple first trench source structures 25 are formed at intervals from the bottom of the first semiconductor region 6 toward the active surface 8.
 以下、1つの第1トレンチソース構造25が説明される。第1トレンチソース構造25は、第2方向Yに第2幅W2を有し、法線方向Zに第2深さD2を有している。第2幅W2は、第1幅W1とほぼ等しいことが好ましい。第2幅W2は、0.1μm以上3μm以下であってもよい。第2幅W2は、0.5μm以上2μm以下であることが好ましい。 Below, one first trench source structure 25 is described. The first trench source structure 25 has a second width W2 in the second direction Y and a second depth D2 in the normal direction Z. The second width W2 is preferably approximately equal to the first width W1. The second width W2 may be 0.1 μm or more and 3 μm or less. The second width W2 is preferably 0.5 μm or more and 2 μm or less.
 第2深さD2は、第1深さD1以上である。第2深さD2は、この形態では、第1深さD1よりも大きい。第2深さD2は、第1深さD1の1.5倍以上3倍以下であることが好ましい。第2深さD2は、この形態では、外周面9の外周深さDOとほぼ等しい。第2深さD2は、0.5μm以上5μm以下であってもよい。第2深さD2は、2.5μm以下であることが特に好ましい。 The second depth D2 is equal to or greater than the first depth D1. In this embodiment, the second depth D2 is greater than the first depth D1. It is preferable that the second depth D2 is 1.5 to 3 times the first depth D1. In this embodiment, the second depth D2 is approximately equal to the outer circumferential depth DO of the outer circumferential surface 9. The second depth D2 may be 0.5 μm to 5 μm. It is particularly preferable that the second depth D2 is 2.5 μm or less.
 第1トレンチソース構造25は、第2方向Yにトレンチゲート構造20から第1間隔I1を空けて配置されている。第1間隔I1は、第1幅W1(第2幅W2)の0.5倍以上2倍以下であることが好ましい。第1間隔I1は、第1幅W1(第2幅W2)未満であることが特に好ましい。第1間隔I1は、0.1μm以上2.5μm以下であってもよい。第1間隔I1は、0.5μm以上1.5μm以下であることが好ましい。 The first trench source structure 25 is disposed in the second direction Y at a first distance I1 from the trench gate structure 20. It is preferable that the first distance I1 is 0.5 to 2 times the first width W1 (second width W2). It is particularly preferable that the first distance I1 is less than the first width W1 (second width W2). The first distance I1 may be 0.1 μm to 2.5 μm. It is preferable that the first distance I1 is 0.5 μm to 1.5 μm.
 第1トレンチソース構造25は、第1ソーストレンチ26、第1ソース絶縁膜27および第1ソース埋設電極28を含む。第1ソーストレンチ26は、活性面8に形成され、第1トレンチソース構造25の壁面を区画している。第1ソーストレンチ26の側壁は、第3接続面10Cおよび第4接続面10Dに連通している。第1ソーストレンチ26の底壁は、外周面9に連通している。 The first trench source structure 25 includes a first source trench 26, a first source insulating film 27, and a first source buried electrode 28. The first source trench 26 is formed in the active surface 8 and defines the wall surface of the first trench source structure 25. The sidewall of the first source trench 26 is in communication with the third connection surface 10C and the fourth connection surface 10D. The bottom wall of the first source trench 26 is in communication with the outer peripheral surface 9.
 第1ソース絶縁膜27は、第1ソーストレンチ26の壁面を被覆し、活性面8において主面絶縁膜16に接続されている。第1ソース絶縁膜27は、第3接続面10Cの連通部、第4接続面10Dの連通部および外周面9の連通部において主面絶縁膜16に接続されている。第1ソース絶縁膜27は、酸化シリコン膜、窒化シリコン膜および酸窒化シリコン膜のうちの少なくとも1つを含んでいてもよい。 The first source insulating film 27 covers the wall surface of the first source trench 26 and is connected to the main surface insulating film 16 at the active surface 8. The first source insulating film 27 is connected to the main surface insulating film 16 at the communicating portion of the third connection surface 10C, the communicating portion of the fourth connection surface 10D, and the communicating portion of the outer peripheral surface 9. The first source insulating film 27 may include at least one of a silicon oxide film, a silicon nitride film, and a silicon oxynitride film.
 第1ソース絶縁膜27は、この形態では、酸化シリコン膜からなる単層構造を有している。第1ソース絶縁膜27は、チップ2の酸化物からなる酸化シリコン膜を含むことが特に好ましい。第1ソース埋設電極28は、第1ソース絶縁膜27を挟んで第1ソーストレンチ26に埋設されている。第1ソース埋設電極28は、導電性ポリシリコンを含んでいてもよい。 In this embodiment, the first source insulating film 27 has a single-layer structure made of a silicon oxide film. It is particularly preferable that the first source insulating film 27 includes a silicon oxide film made of an oxide of the chip 2. The first source buried electrode 28 is buried in the first source trench 26 with the first source insulating film 27 in between. The first source buried electrode 28 may include conductive polysilicon.
 半導体装置1は、周縁領域14において第1主面3(活性面8)に形成された複数の第2トレンチソース構造30を含む。複数の第2トレンチソース構造30には、ソース電位VSが付与される。複数の第2トレンチソース構造30は、活性面8の周縁(第3接続面10C)および複数のトレンチゲート構造20の間の領域に配置されている。複数の第2トレンチソース構造30は、第2方向Yに隣り合う2つの第1トレンチソース構造25の間の領域に配置され、第1方向Xに複数のトレンチゲート構造20に1対1の対応関係で対向している。 The semiconductor device 1 includes a plurality of second trench source structures 30 formed in the first main surface 3 (active surface 8) in the peripheral region 14. A source potential VS is applied to the plurality of second trench source structures 30. The plurality of second trench source structures 30 are arranged in a region between the periphery (third connection surface 10C) of the active surface 8 and the plurality of trench gate structures 20. The plurality of second trench source structures 30 are arranged in a region between two first trench source structures 25 adjacent to each other in the second direction Y, and face the plurality of trench gate structures 20 in a one-to-one correspondence in the first direction X.
 複数の第2トレンチソース構造30は、平面視において第1方向Xに延びる帯状にそれぞれ形成されている。複数の第2トレンチソース構造30は、この形態では、第3接続面10Cを貫通し、第3接続面10Cから露出している。複数の第2トレンチソース構造30は、第1半導体領域6に至るようにボディ領域17を貫通している。複数の第2トレンチソース構造30は、第1半導体領域6の底部から活性面8側に間隔を空けて形成されている。 The multiple second trench source structures 30 are each formed in a band shape extending in the first direction X in a plan view. In this embodiment, the multiple second trench source structures 30 penetrate the third connection surface 10C and are exposed from the third connection surface 10C. The multiple second trench source structures 30 penetrate the body region 17 to reach the first semiconductor region 6. The multiple second trench source structures 30 are formed at intervals from the bottom of the first semiconductor region 6 toward the active surface 8.
 以下、1つの第2トレンチソース構造30が説明される。第2トレンチソース構造30は、第2方向Yに第3幅W3を有し、法線方向Zに第3深さD3を有している。第3幅W3は、トレンチゲート構造20の第1幅W1とほぼ等しいことが好ましい。第3幅W3は、第1トレンチソース構造25の第2幅W2とほぼ等しいことが好ましい。第3幅W3は、0.1μm以上3μm以下であってもよい。第3幅W3は、0.5μm以上2μm以下であることが好ましい。 Below, one second trench source structure 30 is described. The second trench source structure 30 has a third width W3 in the second direction Y and a third depth D3 in the normal direction Z. The third width W3 is preferably approximately equal to the first width W1 of the trench gate structure 20. The third width W3 is preferably approximately equal to the second width W2 of the first trench source structure 25. The third width W3 may be 0.1 μm or more and 3 μm or less. The third width W3 is preferably 0.5 μm or more and 2 μm or less.
 第3深さD3は、トレンチゲート構造20の第1深さD1以上である。第3深さD3は、この形態では、第1深さD1よりも大きい。第3深さD3は、第1深さD1の1.5倍以上3倍以下であることが好ましい。第3深さD3は、この形態では、第1トレンチソース構造25の第2深さD2とほぼ等しい。第3深さD3は、外周面9の外周深さDOとほぼ等しい。第3深さD3は、0.5μm以上5μm以下であってもよい。第3深さD3は、2.5μm以下であることが特に好ましい。 The third depth D3 is equal to or greater than the first depth D1 of the trench gate structure 20. In this embodiment, the third depth D3 is greater than the first depth D1. It is preferable that the third depth D3 is equal to or greater than 1.5 times and equal to or less than 3 times the first depth D1. In this embodiment, the third depth D3 is approximately equal to the second depth D2 of the first trench source structure 25. The third depth D3 is approximately equal to the outer circumferential depth DO of the outer circumferential surface 9. The third depth D3 may be equal to or greater than 0.5 μm and equal to or less than 5 μm. It is particularly preferable that the third depth D3 is equal to or less than 2.5 μm.
 第2トレンチソース構造30は、第2方向Yに第1トレンチソース構造25から第2間隔I2を空けて配置されている。第2間隔I2は、第2幅W2(第3幅W3)の0.5倍以上2倍以下であることが好ましい。第2間隔I2は、第2幅W2(第3幅W3)未満であることが特に好ましい。第2間隔I2は、第1間隔I1とほぼ等しいことが好ましい。第2間隔I2は、0.1μm以上2.5μm以下であってもよい。第2間隔I2は、0.5μm以上1.5μm以下であることが好ましい。 The second trench source structure 30 is disposed in the second direction Y at a second distance I2 from the first trench source structure 25. The second distance I2 is preferably 0.5 to 2 times the second width W2 (third width W3). It is particularly preferable that the second distance I2 is less than the second width W2 (third width W3). It is preferable that the second distance I2 is approximately equal to the first distance I1. The second distance I2 may be 0.1 μm to 2.5 μm. It is preferable that the second distance I2 is 0.5 μm to 1.5 μm.
 第2トレンチソース構造30は、第1方向Xにトレンチゲート構造20から第3間隔I3を空けて配置されている。第3間隔I3は、第1幅W1(第3幅W3)の0.5倍以上2倍以下であることが好ましい。第3間隔I3は、第1間隔I1(第2間隔I2)の0.5倍以上2倍以下であることが好ましい。第3間隔I3は、第1間隔I1(第2間隔I2)の1.5倍以下であることが特に好ましい。第3間隔I3は、第1間隔I1(第2間隔I2)とほぼ等しくてもよい。第3間隔I3は、0.1μm以上2.5μm以下であってもよい。第3間隔I3は、0.5μm以上1.5μm以下であることが好ましい。 The second trench source structure 30 is disposed in the first direction X at a third interval I3 from the trench gate structure 20. The third interval I3 is preferably 0.5 to 2 times the first width W1 (third width W3). The third interval I3 is preferably 0.5 to 2 times the first interval I1 (second interval I2). It is particularly preferable that the third interval I3 is 1.5 times or less the first interval I1 (second interval I2). The third interval I3 may be approximately equal to the first interval I1 (second interval I2). The third interval I3 may be 0.1 μm to 2.5 μm. It is preferable that the third interval I3 is 0.5 μm to 1.5 μm.
 第2トレンチソース構造30は、第2ソーストレンチ31、第2ソース絶縁膜32および第2ソース埋設電極33を含む。第2ソーストレンチ31は、活性面8に形成され、第2トレンチソース構造30の壁面を区画している。第2ソーストレンチ31の側壁は、第3接続面10Cに連通している。第2ソーストレンチ31の底壁は、外周面9に連通している。 The second trench source structure 30 includes a second source trench 31, a second source insulating film 32, and a second source buried electrode 33. The second source trench 31 is formed in the active surface 8 and defines the wall surface of the second trench source structure 30. The side wall of the second source trench 31 is connected to the third connection surface 10C. The bottom wall of the second source trench 31 is connected to the outer peripheral surface 9.
 第2ソース絶縁膜32は、第2ソーストレンチ31の壁面を被覆し、活性面8において主面絶縁膜16に接続されている。第2ソース絶縁膜32は、第3接続面10Cの連通部および外周面9の連通部において主面絶縁膜16に接続されている。第2ソース絶縁膜32は、酸化シリコン膜、窒化シリコン膜および酸窒化シリコン膜のうちの少なくとも1つを含んでいてもよい。 The second source insulating film 32 covers the wall surface of the second source trench 31 and is connected to the main surface insulating film 16 at the active surface 8. The second source insulating film 32 is connected to the main surface insulating film 16 at the communicating portion of the third connection surface 10C and the communicating portion of the outer peripheral surface 9. The second source insulating film 32 may include at least one of a silicon oxide film, a silicon nitride film, and a silicon oxynitride film.
 第2ソース絶縁膜32は、この形態では、酸化シリコン膜からなる単層構造を有している。第2ソース絶縁膜32は、チップ2の酸化物からなる酸化シリコン膜を含むことが特に好ましい。第2ソース埋設電極33は、第2ソース絶縁膜32を挟んで第2ソーストレンチ31に埋設されている。第2ソース埋設電極33は、導電性ポリシリコンを含んでいてもよい。 In this embodiment, the second source insulating film 32 has a single-layer structure made of a silicon oxide film. It is particularly preferable that the second source insulating film 32 includes a silicon oxide film made of an oxide of the chip 2. The second source buried electrode 33 is buried in the second source trench 31 with the second source insulating film 32 in between. The second source buried electrode 33 may include conductive polysilicon.
 半導体装置1は、活性領域12において複数のトレンチゲート構造20に沿う領域に形成されたp型の複数の第1ウェル領域35を含む。第1ウェル領域35は、この形態では、ボディ領域17よりも高いp型不純物濃度を有している。むろん、第1ウェル領域35のp型不純物濃度は、ボディ領域17よりも低くてもよい。 The semiconductor device 1 includes a plurality of p-type first well regions 35 formed in the active region 12 in a region along the plurality of trench gate structures 20. In this embodiment, the first well regions 35 have a higher p-type impurity concentration than the body region 17. Of course, the p-type impurity concentration of the first well regions 35 may be lower than that of the body region 17.
 複数の第1ウェル領域35は、それと隣り合う第1トレンチソース構造25から間隔を空けて対応するトレンチゲート構造20の壁面を被覆し、活性面8の表層部においてボディ領域17に電気的に接続されている。複数の第1ウェル領域35は、第1半導体領域6の底部から活性面8側に間隔を空けて形成され、第1半導体領域6の一部を挟んで第2半導体領域7に対向している。複数の第1ウェル領域35は、第1半導体領域6とpn接合部を形成している。 The multiple first well regions 35 cover the wall surfaces of the corresponding trench gate structures 20 at intervals from the adjacent first trench source structures 25, and are electrically connected to the body region 17 at the surface portion of the active surface 8. The multiple first well regions 35 are formed at intervals from the bottom of the first semiconductor region 6 toward the active surface 8, and face the second semiconductor region 7 with a part of the first semiconductor region 6 in between. The multiple first well regions 35 form pn junctions with the first semiconductor region 6.
 半導体装置1は、活性領域12および周縁領域14において複数の第1トレンチソース構造25に沿う領域に形成されたp型の複数の第2ウェル領域36を含む。第2ウェル領域36は、この形態では、ボディ領域17よりも高いp型不純物濃度を有している。むろん、第2ウェル領域36のp型不純物濃度は、ボディ領域17よりも低くてもよい。第2ウェル領域36のp型不純物濃度は、第1ウェル領域35のp型不純物濃度とほぼ等しいことが好ましい。 The semiconductor device 1 includes a plurality of p-type second well regions 36 formed in the active region 12 and the peripheral region 14 in regions along the plurality of first trench source structures 25. In this embodiment, the second well regions 36 have a higher p-type impurity concentration than the body region 17. Of course, the p-type impurity concentration of the second well regions 36 may be lower than the body region 17. It is preferable that the p-type impurity concentration of the second well regions 36 is approximately equal to the p-type impurity concentration of the first well region 35.
 複数の第2ウェル領域36は、それと隣り合うトレンチゲート構造20から間隔を空けて対応する第1トレンチソース構造25の壁面を被覆し、活性面8の表層部においてボディ領域17に電気的に接続されている。複数の第2ウェル領域36は、活性領域12および周縁領域14において対応する第1トレンチソース構造25の壁面を被覆し、第3接続面10Cおよび第4接続面10Dから露出している。 The second well regions 36 cover the walls of the corresponding first trench source structures 25 at intervals from the adjacent trench gate structures 20 and are electrically connected to the body region 17 at the surface portion of the active surface 8. The second well regions 36 cover the walls of the corresponding first trench source structures 25 in the active region 12 and the peripheral region 14 and are exposed from the third connection surface 10C and the fourth connection surface 10D.
 複数の第2ウェル領域36は、第1半導体領域6の底部から活性面8側に間隔を空けて形成され、第1半導体領域6の一部を挟んで第2半導体領域7に対向している。複数の第2ウェル領域36の底部は、複数の第1ウェル領域35の底部の深さ位置に対して第1半導体領域6の底部側に位置している。複数の第2ウェル領域36は、第1半導体領域6とpn接合部を形成している。 The multiple second well regions 36 are formed at intervals from the bottom of the first semiconductor region 6 toward the active surface 8, and face the second semiconductor region 7 across a portion of the first semiconductor region 6. The bottoms of the multiple second well regions 36 are located on the bottom side of the first semiconductor region 6 relative to the depth positions of the bottoms of the multiple first well regions 35. The multiple second well regions 36 form pn junctions with the first semiconductor region 6.
 半導体装置1は、周縁領域14において複数の第2トレンチソース構造30に沿う領域に形成されたp型の複数の第3ウェル領域37を含む。第3ウェル領域37は、この形態では、ボディ領域17よりも高いp型不純物濃度を有している。むろん、第3ウェル領域37のp型不純物濃度は、ボディ領域17よりも低くてもよい。第3ウェル領域37のp型不純物濃度は、第1ウェル領域35(第2ウェル領域36)のp型不純物濃度とほぼ等しいことが好ましい。 The semiconductor device 1 includes a plurality of p-type third well regions 37 formed in the peripheral region 14 in a region along the plurality of second trench source structures 30. In this embodiment, the third well region 37 has a higher p-type impurity concentration than the body region 17. Of course, the p-type impurity concentration of the third well region 37 may be lower than the body region 17. It is preferable that the p-type impurity concentration of the third well region 37 is approximately equal to the p-type impurity concentration of the first well region 35 (second well region 36).
 複数の第3ウェル領域37は、それと隣り合うトレンチゲート構造20およびそれと隣り合う第1トレンチソース構造25から間隔を空けて対応する第2トレンチソース構造30の壁面を被覆し、活性面8の表層部においてボディ領域17に電気的に接続されている。むろん、第3ウェル領域37は、トレンチゲート構造20および第2トレンチソース構造30の間の領域において第1ウェル領域35と一体化していてもよい。複数の第3ウェル領域37は、第3接続面10Cから露出している。 The multiple third well regions 37 cover the walls of the corresponding second trench source structures 30 at intervals from the adjacent trench gate structures 20 and the adjacent first trench source structures 25, and are electrically connected to the body region 17 in the surface portion of the active surface 8. Of course, the third well regions 37 may be integrated with the first well region 35 in the region between the trench gate structures 20 and the second trench source structures 30. The multiple third well regions 37 are exposed from the third connection surface 10C.
 複数の第3ウェル領域37は、第1半導体領域6の底部から活性面8側に間隔を空けて形成され、第1半導体領域6の一部を挟んで第2半導体領域7に対向している。複数の第3ウェル領域37の底部は、複数の第1ウェル領域35の底部の深さ位置に対して第1半導体領域6の底部側に位置している。複数の第3ウェル領域37の底部は、複数の第2ウェル領域36の底部とほぼ等しい深さに形成されている。複数の第3ウェル領域37は、第1半導体領域6とpn接合部を形成している。 The multiple third well regions 37 are formed at intervals from the bottom of the first semiconductor region 6 toward the active surface 8, and face the second semiconductor region 7 across a portion of the first semiconductor region 6. The bottoms of the multiple third well regions 37 are located on the bottom side of the first semiconductor region 6 relative to the depth position of the bottoms of the multiple first well regions 35. The bottoms of the multiple third well regions 37 are formed at approximately the same depth as the bottoms of the multiple second well regions 36. The multiple third well regions 37 form pn junctions with the first semiconductor region 6.
 半導体装置1は、活性領域12において複数の第1トレンチソース構造25に沿う領域に形成されたp型の複数の第1コンタクト領域38を含む。第1コンタクト領域38は、ボディ領域17よりも高いp型不純物濃度を有している。第1コンタクト領域38のp型不純物濃度は、この形態では、第2ウェル領域36よりも高い。 The semiconductor device 1 includes a plurality of first contact regions 38 of p-type formed in the active region 12 in a region along the plurality of first trench source structures 25. The first contact regions 38 have a higher p-type impurity concentration than the body region 17. In this embodiment, the p-type impurity concentration of the first contact regions 38 is higher than that of the second well region 36.
 複数の第1コンタクト領域38は、対応する第2ウェル領域36内において対応する第1トレンチソース構造25の壁面を被覆している。複数の第1コンタクト領域38は、各第1トレンチソース構造25に対して1対多の対応関係で形成されている。複数の第1コンタクト領域38は、対応する第1トレンチソース構造25に沿って間隔を空けて形成されている。 The multiple first contact regions 38 cover the wall surfaces of the corresponding first trench source structures 25 in the corresponding second well regions 36. The multiple first contact regions 38 are formed in a one-to-many correspondence with each first trench source structure 25. The multiple first contact regions 38 are formed at intervals along the corresponding first trench source structures 25.
 複数の第1コンタクト領域38は、対応する第2ウェル領域36内から対応する第1トレンチソース構造25の壁面に沿ってボディ領域17の表層部に引き出され、活性面8から露出している。複数の第1コンタクト領域38は、活性領域12に形成され、周縁領域14には形成されていない。つまり、複数の第1コンタクト領域38は、第2方向Yにトレンチゲート構造20に対向し、第2方向Yに第2トレンチソース構造30に対向していない。第1コンタクト領域38は、第3ウェル領域37内に形成されていない。 The multiple first contact regions 38 are pulled out from within the corresponding second well region 36 along the wall surface of the corresponding first trench source structure 25 to the surface layer of the body region 17 and exposed from the active surface 8. The multiple first contact regions 38 are formed in the active region 12 and are not formed in the peripheral region 14. In other words, the multiple first contact regions 38 face the trench gate structure 20 in the second direction Y, but do not face the second trench source structure 30 in the second direction Y. The first contact regions 38 are not formed in the third well region 37.
 複数の第1コンタクト領域38は、この形態では、平面視において第1方向Xに延びる帯状にそれぞれ形成されている。複数の第1コンタクト領域38の第1方向Xの長さは、第1トレンチソース構造25の第2幅W2以上であることが好ましい。複数の第1コンタクト領域38の長さは、第1方向Xに隣り合う2つの第1コンタクト領域38の間の距離よりも大きいことが好ましい。 In this embodiment, the multiple first contact regions 38 are each formed in a band shape extending in the first direction X in a plan view. The length of the multiple first contact regions 38 in the first direction X is preferably equal to or greater than the second width W2 of the first trench source structure 25. The length of the multiple first contact regions 38 is preferably greater than the distance between two adjacent first contact regions 38 in the first direction X.
 1つの第1トレンチソース構造25に沿う複数の第1コンタクト領域38は、他の第1トレンチソース構造25に沿う複数の第1コンタクト領域38に第2方向Yに対向している。つまり、複数の第1コンタクト領域38は、この形態では、平面視において全体として第1方向Xおよび第2方向Yに間隔を空けて行列状に配列されている。 The first contact regions 38 along one first trench source structure 25 face the first contact regions 38 along the other first trench source structure 25 in the second direction Y. In other words, in this embodiment, the first contact regions 38 are arranged in a matrix shape with gaps in between in the first direction X and the second direction Y as a whole when viewed in a plan view.
 1つの第1トレンチソース構造25に沿う複数の第1コンタクト領域38は、他の第1トレンチソース構造25に沿う複数の第1コンタクト領域38の間の領域に第2方向Yに対向するように第1方向Xにずれて配列されていてもよい。つまり、複数の第1コンタクト領域38は、平面視において全体として第1方向Xおよび第2方向Yに間隔を空けて千鳥状に配列されていてもよい。 The first contact regions 38 along one first trench source structure 25 may be arranged offset in the first direction X so as to face the second direction Y in a region between the first contact regions 38 along another first trench source structure 25. In other words, the first contact regions 38 may be arranged in a staggered manner with gaps in the first direction X and the second direction Y as a whole in a plan view.
 半導体装置1は、活性領域12において第1主面3(活性面8)の上で複数のトレンチゲート構造20の端部をそれぞれ被覆する複数のゲート接続電極膜39を含む。複数のゲート接続電極膜39は、具体的には、主面絶縁膜16の上に配置されている。複数のゲート接続電極膜39は、複数のトレンチゲート構造20の内方部、複数の第1トレンチソース構造25および複数の第2トレンチソース構造30から間隔を空けて対応するトレンチゲート構造20の端部をそれぞれ被覆している。 The semiconductor device 1 includes a plurality of gate connection electrode films 39 that cover the ends of the plurality of trench gate structures 20 on the first main surface 3 (active surface 8) in the active region 12. Specifically, the plurality of gate connection electrode films 39 are disposed on the main surface insulating film 16. The plurality of gate connection electrode films 39 cover the inner portions of the plurality of trench gate structures 20 and the ends of the corresponding trench gate structures 20 at intervals from the plurality of first trench source structures 25 and the plurality of second trench source structures 30.
 複数のゲート接続電極膜39は、平面視において第2方向Yに複数の第1トレンチソース構造25と交互に配列されている。複数のゲート接続電極膜39は、この形態では、第1方向Xに延びる帯状にそれぞれ形成されている。複数のゲート接続電極膜39は、平面視において第2方向Yに複数の第2トレンチソース構造30に対向していない。以下、1つのゲート接続電極膜39が説明される。 The multiple gate connection electrode films 39 are arranged alternately with the multiple first trench source structures 25 in the second direction Y in a planar view. In this embodiment, the multiple gate connection electrode films 39 are each formed in a strip shape extending in the first direction X. The multiple gate connection electrode films 39 do not face the multiple second trench source structures 30 in the second direction Y in a planar view. Below, one gate connection electrode film 39 will be described.
 ゲート接続電極膜39は、対応するトレンチゲート構造20を被覆する部分において対応するゲート埋設電極23に接続されている。ゲート接続電極膜39は、この形態では、対応するゲート埋設電極23と一体的に形成されている。つまり、ゲート接続電極膜39は、ゲート埋設電極23の一部が活性面8(主面絶縁膜16)の上に膜状に引き出された部分からなる。むろん、ゲート接続電極膜39は、ゲート埋設電極23とは別体的に形成されていてもよい。 The gate connection electrode film 39 is connected to the corresponding gate buried electrode 23 in the portion covering the corresponding trench gate structure 20. In this embodiment, the gate connection electrode film 39 is formed integrally with the corresponding gate buried electrode 23. In other words, the gate connection electrode film 39 is made up of a portion of the gate buried electrode 23 that is pulled out in the form of a film onto the active surface 8 (main surface insulating film 16). Of course, the gate connection electrode film 39 may be formed separately from the gate buried electrode 23.
 ゲート接続電極膜39は、活性面8に沿って延びる電極面39aを有している。ゲート接続電極膜39は、この形態では、断面視において活性面8から電極面39aに向けて先細り形状(四角錐台状)に形成されている。電極面39aは、第2方向Yに関してトレンチゲート構造20よりも幅広に形成されていることが好ましい。つまり、電極面39aは、法線方向Zにトレンチゲート構造20に対向する部分、および、法線方向Zにトレンチゲート構造20外の領域(つまり主面絶縁膜16)に対向する部分を有していることが好ましい。 The gate connection electrode film 39 has an electrode surface 39a extending along the active surface 8. In this embodiment, the gate connection electrode film 39 is formed in a tapered shape (quadratic pyramid shape) from the active surface 8 towards the electrode surface 39a in a cross-sectional view. The electrode surface 39a is preferably formed to be wider than the trench gate structure 20 in the second direction Y. In other words, the electrode surface 39a preferably has a portion facing the trench gate structure 20 in the normal direction Z, and a portion facing the area outside the trench gate structure 20 (i.e., the main surface insulating film 16) in the normal direction Z.
 ゲート接続電極膜39は、この形態では、導電性ポリシリコンを含む。ゲート接続電極膜39は、電極厚さTEを有している。電極厚さTEは、トレンチゲート構造20の第1幅W1(第1トレンチソース構造25の第2幅W2)の0.5倍以上であることが好ましい。電極厚さTEは、外周面9の外周深さDO以下であることが好ましい。電極厚さTEは、第1トレンチソース構造25の第2深さD2以下であることが好ましい。電極厚さTEは、第2深さD2(外周深さDO)未満であること特に好ましい。 In this embodiment, the gate connection electrode film 39 includes conductive polysilicon. The gate connection electrode film 39 has an electrode thickness TE. The electrode thickness TE is preferably 0.5 times or more the first width W1 of the trench gate structure 20 (the second width W2 of the first trench source structure 25). The electrode thickness TE is preferably equal to or less than the peripheral depth DO of the peripheral surface 9. The electrode thickness TE is preferably equal to or less than the second depth D2 of the first trench source structure 25. It is particularly preferable that the electrode thickness TE is less than the second depth D2 (peripheral depth DO).
 電極厚さTEは、トレンチゲート構造20の第1深さD1以下であることが好ましい。電極厚さTEは、第1深さD1未満であることが特に好ましい。電極厚さTEは、0.05μm以上2.5μm以下であってもよい。電極厚さTEは、0.5μm以上1.5μm以下であることが好ましい。むろん、電極厚さTEは、第1深さD1よりも大きくてもよい。また、電極厚さTEは、外周深さDO(第2深さD2)以上であってもよい。 The electrode thickness TE is preferably equal to or less than the first depth D1 of the trench gate structure 20. It is particularly preferable that the electrode thickness TE is less than the first depth D1. The electrode thickness TE may be 0.05 μm or more and 2.5 μm or less. It is preferable that the electrode thickness TE is 0.5 μm or more and 1.5 μm or less. Of course, the electrode thickness TE may be greater than the first depth D1. Also, the electrode thickness TE may be greater than the outer periphery depth DO (second depth D2).
 図13は、終端領域15(第1終端領域15A)のレイアウトを示す拡大平面図である。図14は、ゲート抵抗40のレイアウトを示す拡大平面図である。図15は、ゲート抵抗40の内方部を示す拡大平面図である。図16は、ゲート抵抗40の周縁部を示す拡大平面図である。 FIG. 13 is an enlarged plan view showing the layout of the termination region 15 (first termination region 15A). FIG. 14 is an enlarged plan view showing the layout of the gate resistor 40. FIG. 15 is an enlarged plan view showing the inner part of the gate resistor 40. FIG. 16 is an enlarged plan view showing the peripheral part of the gate resistor 40.
 図17は、図15に示すXVII-XVII線に沿う断面図である。図18は、図15に示すXVIII-XVIII線に沿う断面図である。図19は、図16に示すXIX-XIX線に沿う断面図である。図20は、図16に示すXX-XX線に沿う断面図である。図21は、図16に示すXXI-XXI線に沿う断面図である。図22は、図16に示すXXII-XXII線に沿う断面図である。図23は、ゲート抵抗40の一要部を示す拡大平面図である。 FIG. 17 is a cross-sectional view taken along line XVII-XVII shown in FIG. 15. FIG. 18 is a cross-sectional view taken along line XVIII-XVIII shown in FIG. 15. FIG. 19 is a cross-sectional view taken along line XIX-XIX shown in FIG. 16. FIG. 20 is a cross-sectional view taken along line XX-XX shown in FIG. 16. FIG. 21 is a cross-sectional view taken along line XXI-XXI shown in FIG. 16. FIG. 22 is a cross-sectional view taken along line XXII-XXII shown in FIG. 16. FIG. 23 is an enlarged plan view showing a main portion of gate resistor 40.
 図13~図23を参照して、半導体装置1は、第1終端領域15Aにおいて第1主面3(活性面8)に形成されたゲート抵抗40を含む。ゲート抵抗40は、MISFETのゲート(トレンチゲート構造20)に電気的に接続される抵抗としてチップ2(第1終端領域15A)に組み込まれている。 Referring to Figures 13 to 23, the semiconductor device 1 includes a gate resistor 40 formed on the first main surface 3 (active surface 8) in the first termination region 15A. The gate resistor 40 is incorporated in the chip 2 (first termination region 15A) as a resistor electrically connected to the gate (trench gate structure 20) of the MISFET.
 ゲート抵抗40は、活性領域12に対して第1側面5A側(第1接続面10A側)の領域に配置され、第2方向Yに活性領域12に対向している。ゲート抵抗40は、第2方向Yに周縁領域14に対向しないように周縁領域14から第1方向Xに間隔を空けて配置されている。ゲート抵抗40は、この形態では、第1側面5A(第1接続面10A)の中央部および活性領域12の間に配置されている。 The gate resistor 40 is disposed in a region on the first side surface 5A side (first connection surface 10A side) of the active region 12, and faces the active region 12 in the second direction Y. The gate resistor 40 is disposed at a distance from the peripheral region 14 in the first direction X so as not to face the peripheral region 14 in the second direction Y. In this embodiment, the gate resistor 40 is disposed between the center of the first side surface 5A (first connection surface 10A) and the active region 12.
 ゲート抵抗40は、第1終端領域15Aにおいて第1主面3(活性面8)に形成された少なくとも1つ(この形態では複数)のトレンチ抵抗構造41を含む。複数のトレンチ抵抗構造41には、第1電位としてのゲート電位VGが付与されるが、チャネルの制御には寄与しない。 The gate resistor 40 includes at least one (in this embodiment, multiple) trench resistor structures 41 formed on the first main surface 3 (active surface 8) in the first termination region 15A. A gate potential VG is applied as a first potential to the multiple trench resistor structures 41, but they do not contribute to channel control.
 複数のトレンチ抵抗構造41は、第1方向Xに延びる帯状にそれぞれ形成され、第2方向Yに間隔を空けて配列されている。複数のトレンチ抵抗構造41は、第1半導体領域6に至るようにボディ領域17を貫通している。複数のトレンチ抵抗構造41は、第1半導体領域6の底部から活性面8側に間隔を空けて形成されている。 The multiple trench resistance structures 41 are each formed in a band shape extending in the first direction X, and are arranged at intervals in the second direction Y. The multiple trench resistance structures 41 penetrate the body region 17 to reach the first semiconductor region 6. The multiple trench resistance structures 41 are formed at intervals from the bottom of the first semiconductor region 6 toward the active surface 8.
 複数のトレンチ抵抗構造41は、この形態では、複数の第1トレンチ抵抗構造42および複数の第2トレンチ抵抗構造43を含む。複数の第1トレンチ抵抗構造42は、第1終端領域15Aにおいて活性面8の周縁から間隔を空けて活性面8に形成されている。複数の第1トレンチ抵抗構造42は、第1方向Xに延びる帯状にそれぞれ形成され、第2方向Yに間隔を空けて配列されている。 In this embodiment, the multiple trench resistance structures 41 include multiple first trench resistance structures 42 and multiple second trench resistance structures 43. The multiple first trench resistance structures 42 are formed on the active surface 8 at intervals from the periphery of the active surface 8 in the first termination region 15A. The multiple first trench resistance structures 42 are each formed in a band shape extending in the first direction X, and are arranged at intervals in the second direction Y.
 複数の第1トレンチ抵抗構造42は、第2方向Yに第1トレンチソース構造25に対向している。複数の第1トレンチ抵抗構造42は、第2方向Yに第2トレンチソース構造30に対向しないように第2トレンチソース構造30から第1方向Xに間隔を空けて配置されている。複数の第1トレンチ抵抗構造42は、第1半導体領域6に至るようにボディ領域17を貫通している。複数の第1トレンチ抵抗構造42は、第1半導体領域6の底部から活性面8側に間隔を空けて形成されている。 The multiple first trench resistance structures 42 face the first trench source structure 25 in the second direction Y. The multiple first trench resistance structures 42 are arranged at intervals from the second trench source structure 30 in the first direction X so as not to face the second trench source structure 30 in the second direction Y. The multiple first trench resistance structures 42 penetrate the body region 17 to reach the first semiconductor region 6. The multiple first trench resistance structures 42 are formed at intervals from the bottom of the first semiconductor region 6 toward the active surface 8.
 以下、1つの第1トレンチ抵抗構造42が説明される。第1トレンチ抵抗構造42は、第1方向Xに第1抵抗長L1を有している。第1抵抗長L1は、任意であり、達成すべき抵抗値に応じて適宜徴される。第1トレンチ抵抗構造42は、第2方向Yに第4幅W4を有し、法線方向Zに第4深さD4を有している。第4幅W4は、トレンチゲート構造20の第1幅W1とほぼ等しいことが好ましい。第4幅W4は、0.1μm以上3μm以下であってもよい。第4幅W4は、0.5μm以上2μm以下であることが好ましい。 Below, one first trench resistor structure 42 will be described. The first trench resistor structure 42 has a first resistor length L1 in the first direction X. The first resistor length L1 is arbitrary and is appropriately determined according to the resistance value to be achieved. The first trench resistor structure 42 has a fourth width W4 in the second direction Y and a fourth depth D4 in the normal direction Z. It is preferable that the fourth width W4 is approximately equal to the first width W1 of the trench gate structure 20. The fourth width W4 may be 0.1 μm or more and 3 μm or less. It is preferable that the fourth width W4 is 0.5 μm or more and 2 μm or less.
 第4深さD4は、第1トレンチソース構造25の第2深さD2未満である。第4深さD4は、外周面9の外周深さDO未満である。第4深さD4は、トレンチゲート構造20の第1深さD1とほぼ等しいことが好ましい。第4深さD4は、0.1μm以上3μm以下であってもよい。第4深さD4は、0.5μm以上1.5μm以下であることが好ましい。 The fourth depth D4 is less than the second depth D2 of the first trench source structure 25. The fourth depth D4 is less than the outer circumferential depth DO of the outer circumferential surface 9. It is preferable that the fourth depth D4 is approximately equal to the first depth D1 of the trench gate structure 20. The fourth depth D4 may be greater than or equal to 0.1 μm and less than or equal to 3 μm. It is preferable that the fourth depth D4 is greater than or equal to 0.5 μm and less than or equal to 1.5 μm.
 活性領域12側の最内の第1トレンチ抵抗構造42は、この形態では、第2方向Yに最外の第1トレンチソース構造25に隣り合うように最外の第1トレンチソース構造25から前述の第1間隔I1を空けて配置されている。最内の第1トレンチ抵抗構造42は、この形態では、第2方向Yに最外の第2トレンチソース構造30に隣り合わないように最外の第2トレンチソース構造30から第1方向Xに間隔を空けて配置されている。 In this embodiment, the innermost first trench resistance structure 42 on the active region 12 side is disposed at the aforementioned first interval I1 from the outermost first trench source structure 25 so as to be adjacent to the outermost first trench source structure 25 in the second direction Y. In this embodiment, the innermost first trench resistance structure 42 is disposed at an interval in the first direction X from the outermost second trench source structure 30 so as not to be adjacent to the outermost second trench source structure 30 in the second direction Y.
 第1トレンチ抵抗構造42は、第1トレンチ44、第1絶縁膜45および第1埋設電極46を含む。第1埋設電極46は、「第1埋設抵抗」と称されてもよい。第1トレンチ44は、活性面8に形成され、第1トレンチ抵抗構造42の壁面を区画している。第1絶縁膜45は、第1トレンチ44の壁面を被覆し、活性面8において主面絶縁膜16に接続されている。第1絶縁膜45は、酸化シリコン膜、窒化シリコン膜および酸窒化シリコン膜のうちの少なくとも1つを含んでいてもよい。 The first trench resistance structure 42 includes a first trench 44, a first insulating film 45, and a first buried electrode 46. The first buried electrode 46 may be referred to as a "first buried resistor." The first trench 44 is formed in the active surface 8 and defines the wall surface of the first trench resistance structure 42. The first insulating film 45 covers the wall surface of the first trench 44 and is connected to the main surface insulating film 16 at the active surface 8. The first insulating film 45 may include at least one of a silicon oxide film, a silicon nitride film, and a silicon oxynitride film.
 第1絶縁膜45は、この形態では、酸化シリコン膜からなる単層構造を有している。第1絶縁膜45は、チップ2の酸化物からなる酸化シリコン膜を含むことが特に好ましい。第1埋設電極46は、第1絶縁膜45を挟んで第1トレンチ44に埋設されている。第1埋設電極46は、導電性ポリシリコンを含んでいてもよい。 In this embodiment, the first insulating film 45 has a single-layer structure made of a silicon oxide film. It is particularly preferable that the first insulating film 45 includes a silicon oxide film made of an oxide of the chip 2. The first buried electrode 46 is buried in the first trench 44 with the first insulating film 45 in between. The first buried electrode 46 may include conductive polysilicon.
 複数の第2トレンチ抵抗構造43は、第1終端領域15Aにおいて活性面8の周縁から間隔を空けて活性面8に形成されている。複数の第2トレンチ抵抗構造43は、隣り合う2つの第1トレンチ抵抗構造42の間の領域にそれぞれ配置されている。複数の第2トレンチ抵抗構造43は、第2方向Yに複数の第1トレンチ抵抗構造42と交互に配列されている。複数の第2トレンチ抵抗構造43は、平面視において第1方向Xに延びる帯状にそれぞれ形成されている。 The multiple second trench resistance structures 43 are formed on the active surface 8 at intervals from the periphery of the active surface 8 in the first termination region 15A. The multiple second trench resistance structures 43 are each disposed in a region between two adjacent first trench resistance structures 42. The multiple second trench resistance structures 43 are arranged alternately with the multiple first trench resistance structures 42 in the second direction Y. The multiple second trench resistance structures 43 are each formed in a band shape extending in the first direction X in a plan view.
 複数の第2トレンチ抵抗構造43は、第2方向Yにトレンチゲート構造20および第1トレンチソース構造25に対向している。複数の第2トレンチ抵抗構造43は、第2方向Yに第2トレンチソース構造30に対向しないように第2トレンチソース構造30から第1方向Xに間隔を空けて配置されている。複数の第2トレンチ抵抗構造43は、第1半導体領域6に至るようにボディ領域17を貫通している。複数の第2トレンチ抵抗構造43は、第1半導体領域6の底部から活性面8側に間隔を空けて形成されている。 The multiple second trench resistance structures 43 face the trench gate structure 20 and the first trench source structure 25 in the second direction Y. The multiple second trench resistance structures 43 are arranged at intervals from the second trench source structure 30 in the first direction X so as not to face the second trench source structure 30 in the second direction Y. The multiple second trench resistance structures 43 penetrate the body region 17 to reach the first semiconductor region 6. The multiple second trench resistance structures 43 are formed at intervals from the bottom of the first semiconductor region 6 toward the active surface 8.
 以下、1つの第2トレンチ抵抗構造43が説明される。第2トレンチ抵抗構造43は、第1方向Xに第2抵抗長L2を有している。第2抵抗長L2は、任意であり、達成すべき抵抗値に応じて適宜徴される。第2抵抗長L2は、この形態では、第1トレンチ抵抗構造42の第1抵抗長L1未満である。つまり、第2トレンチ抵抗構造43の両端部は、第1トレンチ抵抗構造42の両端部よりも内方にセットバックされている。むろん、第2抵抗長L2は、第1抵抗長L1とほぼ等しくてもよい。また、第2抵抗長L2は、第1抵抗長L1よりも大きくてもよい。 Below, one second trench resistance structure 43 will be described. The second trench resistance structure 43 has a second resistance length L2 in the first direction X. The second resistance length L2 is arbitrary and is appropriately determined according to the resistance value to be achieved. In this embodiment, the second resistance length L2 is less than the first resistance length L1 of the first trench resistance structure 42. In other words, both ends of the second trench resistance structure 43 are set back inward from both ends of the first trench resistance structure 42. Of course, the second resistance length L2 may be approximately equal to the first resistance length L1. Also, the second resistance length L2 may be greater than the first resistance length L1.
 第2トレンチ抵抗構造43は、第2方向Yに第5幅W5を有し、法線方向Zに第5深さD5を有している。第5幅W5は、第1トレンチ抵抗構造42の第4幅W4とほぼ等しいことが好ましい。第5幅W5は、第1トレンチソース構造25の第2幅W2(トレンチゲート構造20の第1幅W1)とほぼ等しいことが好ましい。第5幅W5は、0.1μm以上3μm以下であってもよい。第5幅W5は、0.5μm以上2μm以下であることが好ましい。 The second trench resistor structure 43 has a fifth width W5 in the second direction Y and a fifth depth D5 in the normal direction Z. The fifth width W5 is preferably approximately equal to the fourth width W4 of the first trench resistor structure 42. The fifth width W5 is preferably approximately equal to the second width W2 of the first trench source structure 25 (the first width W1 of the trench gate structure 20). The fifth width W5 may be 0.1 μm or more and 3 μm or less. The fifth width W5 is preferably 0.5 μm or more and 2 μm or less.
 第5深さD5は、第1トレンチ抵抗構造42の第4深さD4(トレンチゲート構造20の第1深さD1)以上である。第5深さD5は、この形態では、第4深さD4(第1深さD1)よりも大きい。第5深さD5は、第4深さD4(第1深さD1)の1.5倍以上3倍以下であることが好ましい。第5深さD5は、第1トレンチソース構造25の第2深さD2とほぼ等しいことが好ましい。第5深さD5は、外周面9の外周深さDOとほぼ等しい。第5深さD5は、0.5μm以上5μm以下であってもよい。第5深さD5は、2.5μm以下であることが特に好ましい。 The fifth depth D5 is equal to or greater than the fourth depth D4 of the first trench resistor structure 42 (the first depth D1 of the trench gate structure 20). In this embodiment, the fifth depth D5 is greater than the fourth depth D4 (the first depth D1). The fifth depth D5 is preferably equal to or greater than 1.5 times and equal to or less than 3 times the fourth depth D4 (the first depth D1). The fifth depth D5 is preferably approximately equal to the second depth D2 of the first trench source structure 25. The fifth depth D5 is approximately equal to the outer circumferential depth DO of the outer circumferential surface 9. The fifth depth D5 may be equal to or greater than 0.5 μm and equal to or less than 5 μm. It is particularly preferable that the fifth depth D5 is equal to or less than 2.5 μm.
 第2トレンチ抵抗構造43は、第2方向Yに第1トレンチ抵抗構造42から第4間隔I4を空けて配置されている。第4間隔I4は、第4幅W4(第5幅W5)の0.5倍以上2倍以下であることが好ましい。第4間隔I4は、第4幅W4(第5幅W5)未満であることが特に好ましい。第4間隔I4は、トレンチゲート構造20および第1トレンチソース構造25の間の第1間隔I1とほぼ等しいことが好ましい。第4間隔I4は、0.1μm以上2.5μm以下であってもよい。第4間隔I4は、0.5μm以上1.5μm以下であることが好ましい。 The second trench resistance structure 43 is disposed in the second direction Y at a fourth interval I4 from the first trench resistance structure 42. The fourth interval I4 is preferably 0.5 to 2 times the fourth width W4 (fifth width W5). It is particularly preferable that the fourth interval I4 is less than the fourth width W4 (fifth width W5). It is preferable that the fourth interval I4 is approximately equal to the first interval I1 between the trench gate structure 20 and the first trench source structure 25. The fourth interval I4 may be 0.1 μm to 2.5 μm. It is preferable that the fourth interval I4 is 0.5 μm to 1.5 μm.
 第2トレンチ抵抗構造43は、第2トレンチ47、第2絶縁膜48および第2埋設電極49を含む。第2埋設電極49は、「第2埋設抵抗」と称されてもよい。第2トレンチ47は、活性面8に形成され、第2トレンチ抵抗構造43の壁面を区画している。第2絶縁膜48は、第2トレンチ47の壁面を被覆し、活性面8において主面絶縁膜16に接続されている。第2絶縁膜48は、酸化シリコン膜、窒化シリコン膜および酸窒化シリコン膜のうちの少なくとも1つを含んでいてもよい。 The second trench resistance structure 43 includes a second trench 47, a second insulating film 48, and a second buried electrode 49. The second buried electrode 49 may be referred to as a "second buried resistor." The second trench 47 is formed in the active surface 8 and defines the wall surface of the second trench resistance structure 43. The second insulating film 48 covers the wall surface of the second trench 47 and is connected to the main surface insulating film 16 at the active surface 8. The second insulating film 48 may include at least one of a silicon oxide film, a silicon nitride film, and a silicon oxynitride film.
 第2絶縁膜48は、この形態では、酸化シリコン膜からなる単層構造を有している。第2絶縁膜48は、チップ2の酸化物からなる酸化シリコン膜を含むことが特に好ましい。第2埋設電極49は、第2絶縁膜48を挟んで第2トレンチ47に埋設されている。第2埋設電極49は、導電性ポリシリコンを含んでいてもよい。 In this embodiment, the second insulating film 48 has a single-layer structure made of a silicon oxide film. It is particularly preferable that the second insulating film 48 includes a silicon oxide film made of an oxide of the chip 2. The second buried electrode 49 is buried in the second trench 47 with the second insulating film 48 in between. The second buried electrode 49 may include conductive polysilicon.
 ゲート抵抗40は、第1主面3(活性面8)の上において、少なくとも1つ(この形態では複数)のトレンチ抵抗構造41を、被覆する抵抗膜50を含む。抵抗膜50は、導電性ポリシリコン膜および合金結晶膜のうちの少なくとも1つを含む。合金結晶膜は、金属元素および非金属元素によって構成された合金結晶を含む。合金結晶膜は、CrSi膜、CrSiN膜、CrSiO膜、TaN膜およびTiN膜のうちの少なくとも1つを含んでいてもよい。抵抗膜50は、この形態では、導電性ポリシリコンを含む。 The gate resistor 40 includes a resistive film 50 covering at least one (in this embodiment, multiple) trench resistor structures 41 on the first main surface 3 (active surface 8). The resistive film 50 includes at least one of a conductive polysilicon film and an alloy crystal film. The alloy crystal film includes alloy crystals composed of a metal element and a nonmetal element. The alloy crystal film may include at least one of a CrSi film, a CrSiN film, a CrSiO film, a TaN film, and a TiN film. In this embodiment, the resistive film 50 includes conductive polysilicon.
 抵抗膜50は、主面絶縁膜16の上に配置され、活性面8を被覆する部分および複数のトレンチ抵抗構造41を被覆する部分を有している。抵抗膜50は、この形態では、複数のトレンチ抵抗構造41の短手方向(第2方向Y)に関して全てのトレンチ抵抗構造41を被覆している。抵抗膜50は、複数のトレンチ抵抗構造41を被覆する部分において第1埋設電極46および第2埋設電極49に接続されている。 The resistive film 50 is disposed on the main surface insulating film 16, and has a portion covering the active surface 8 and a portion covering the multiple trench resistance structures 41. In this form, the resistive film 50 covers all of the multiple trench resistance structures 41 in the short direction (second direction Y) of the multiple trench resistance structures 41. The resistive film 50 is connected to the first buried electrode 46 and the second buried electrode 49 in the portion covering the multiple trench resistance structures 41.
 抵抗膜50は、この形態では、第1埋設電極46および第2埋設電極49と一体的に形成されている。つまり、抵抗膜50は、第1埋設電極46の一部および第2埋設電極49の一部が活性面8(主面絶縁膜16)の上に膜状に引き出された部分からなる。むろん、抵抗膜50は、第1埋設電極46および第2埋設電極49とは別体的に形成されていてもよい。 In this embodiment, the resistive film 50 is formed integrally with the first buried electrode 46 and the second buried electrode 49. In other words, the resistive film 50 is made up of a portion of the first buried electrode 46 and a portion of the second buried electrode 49 that are pulled out in a film shape onto the active surface 8 (main surface insulating film 16). Of course, the resistive film 50 may be formed separately from the first buried electrode 46 and the second buried electrode 49.
 抵抗膜50は、第2方向Yにトレンチゲート構造20および第1トレンチソース構造25に対向している。抵抗膜50は、第2方向Yに第2トレンチソース構造30に対向しないように第2トレンチソース構造30から第1方向Xに間隔を空けて配置されている。抵抗膜50は、この形態では、平面視において第1方向Xに延びる帯状に形成されている。抵抗膜50の平面形状は任意であり、達成すべき抵抗値に応じて適宜調整される。 The resistive film 50 faces the trench gate structure 20 and the first trench source structure 25 in the second direction Y. The resistive film 50 is spaced apart from the second trench source structure 30 in the first direction X so as not to face the second trench source structure 30 in the second direction Y. In this embodiment, the resistive film 50 is formed in a band shape extending in the first direction X in a plan view. The planar shape of the resistive film 50 is arbitrary and is adjusted appropriately according to the resistance value to be achieved.
 抵抗膜50は、第1方向Xに第1トレンチ抵抗構造42の第1抵抗長L1および第2トレンチ抵抗構造43の第2抵抗長L2よりも短い第3抵抗長L3を有していることが好ましい。この場合、抵抗膜50は、複数のトレンチ抵抗構造41の長手方向(第1方向X)に関して、複数のトレンチ抵抗構造41の両端部から内方に間隔を空けて複数のトレンチ抵抗構造41の内方部を被覆していることが好ましい。つまり、抵抗膜50は、複数の第1トレンチ抵抗構造42の両端部および複数の第2トレンチ抵抗構造43の両端部を露出させていることが好ましい。 The resistive film 50 preferably has a third resistance length L3 in the first direction X that is shorter than the first resistance length L1 of the first trench resistance structure 42 and the second resistance length L2 of the second trench resistance structure 43. In this case, the resistive film 50 preferably covers the inner portions of the multiple trench resistance structures 41 with a gap inward from both ends of the multiple trench resistance structures 41 in the longitudinal direction (first direction X) of the multiple trench resistance structures 41. In other words, the resistive film 50 preferably exposes both ends of the multiple first trench resistance structures 42 and both ends of the multiple second trench resistance structures 43.
 抵抗膜50を複数のトレンチ抵抗構造41の両端部に対して内方側にセットバックさせることにより、複数のトレンチ抵抗構造41の両端部よりも活性面8の周縁側の領域において抵抗膜50が第1主面3に対向することを抑制できる。したがって、複数のトレンチ抵抗構造41の両端部外の領域において、第1主面3および抵抗膜50の間に不所望な電位差(電界)が形成されることが抑制される。 By setting back the resistive film 50 inward from both ends of the multiple trench resistance structures 41, it is possible to prevent the resistive film 50 from facing the first main surface 3 in the area closer to the periphery of the active surface 8 than both ends of the multiple trench resistance structures 41. Therefore, in the area outside both ends of the multiple trench resistance structures 41, the formation of an undesirable potential difference (electric field) between the first main surface 3 and the resistive film 50 is prevented.
 むろん、抵抗膜50は、複数のトレンチ抵抗構造41の全域を被覆していてもよい。つまり、第3抵抗長L3は、第1抵抗長L1よりも大きくてもよい。また、抵抗膜50は、複数の第1トレンチ抵抗構造42の両端部を露出させ、複数の第2トレンチ抵抗構造43の両端部を被覆していてもよい。つまり、第3抵抗長L3は、第1抵抗長L1よりも小さく、第2抵抗長L2よりも大きくてもよい。 Of course, the resistive film 50 may cover the entire area of the multiple trench resistance structures 41. That is, the third resistance length L3 may be greater than the first resistance length L1. The resistive film 50 may also expose both ends of the multiple first trench resistance structures 42 and cover both ends of the multiple second trench resistance structures 43. That is, the third resistance length L3 may be smaller than the first resistance length L1 and greater than the second resistance length L2.
 抵抗膜50は、法線方向Zに抵抗厚さTRを有している。抵抗厚さTRは、達成すべき抵抗値に応じて適宜調整される。つまり、抵抗膜50の抵抗値は、抵抗厚さTRの増減および第3抵抗長L3の増減によって調節される。抵抗厚さTRは、前述の第4幅W4(第5幅W5)の0.5倍以上であることが好ましい。 The resistive film 50 has a resistive thickness TR in the normal direction Z. The resistive thickness TR is adjusted as appropriate according to the resistance value to be achieved. In other words, the resistance value of the resistive film 50 is adjusted by increasing or decreasing the resistive thickness TR and increasing or decreasing the third resistive length L3. It is preferable that the resistive thickness TR be 0.5 or more times the aforementioned fourth width W4 (fifth width W5).
 この条件を満たす抵抗厚さTRによれば、CVD法によって第1トレンチ44および第2トレンチ47を埋めて第1主面3(活性面8)を被覆する導電性ポリシリコン膜を形成する場合、当該導電性ポリシリコン膜の一部を利用して第1埋設電極46、第2埋設電極49および抵抗膜50を形成できる。抵抗厚さTRは、前述の外周深さDO以下であることが好ましい。抵抗厚さTRは、前述の第5深さD5(前述の第2深さD2)以下であることが好ましい。 If the resistor thickness TR satisfies this condition, when a conductive polysilicon film is formed by CVD to fill the first trench 44 and the second trench 47 and cover the first main surface 3 (active surface 8), the first buried electrode 46, the second buried electrode 49, and the resistor film 50 can be formed using a portion of the conductive polysilicon film. It is preferable that the resistor thickness TR is equal to or less than the aforementioned outer periphery depth DO. It is preferable that the resistor thickness TR is equal to or less than the aforementioned fifth depth D5 (the aforementioned second depth D2).
 抵抗厚さTRは、第5深さD5未満であること特に好ましい。抵抗厚さTRは、前述の第4深さD4(第1深さD1)以下であることが好ましい。抵抗厚さTRは、第4深さD4未満であることが特に好ましい。抵抗厚さTRは、前述の電極厚さTEとほぼ等しいことが好ましい。抵抗厚さTRは、0.05μm以上2.5μm以下であってもよい。抵抗厚さTRは、0.5μm以上1.5μm以下であることが好ましい。 It is particularly preferred that the resistor thickness TR is less than the fifth depth D5. It is preferred that the resistor thickness TR is less than the aforementioned fourth depth D4 (first depth D1). It is particularly preferred that the resistor thickness TR is less than the fourth depth D4. It is preferred that the resistor thickness TR is approximately equal to the aforementioned electrode thickness TE. The resistor thickness TR may be 0.05 μm or more and 2.5 μm or less. It is preferred that the resistor thickness TR is 0.5 μm or more and 1.5 μm or less.
 むろん、抵抗厚さTRは、第4深さD4よりも大きくてもよい。また、抵抗厚さTRは、外周深さDO(第5深さD5)以上であってもよい。また、抵抗膜50が合金結晶膜からなる場合、抵抗厚さTRは第4深さD4未満であってもよい。この場合、抵抗厚さTRは、0.1nm以上100nmであってもよい。 Of course, the resistor thickness TR may be greater than the fourth depth D4. Also, the resistor thickness TR may be greater than or equal to the outer circumferential depth DO (fifth depth D5). Also, when the resistor film 50 is made of an alloy crystal film, the resistor thickness TR may be less than the fourth depth D4. In this case, the resistor thickness TR may be greater than or equal to 0.1 nm and less than or equal to 100 nm.
 図13~図23を参照して、半導体装置1は、第1終端領域15Aにおいて第1主面3(活性面8)に形成されたダミー構造55を含む。ダミー構造55は、ゲート抵抗40の近傍における局所的な電界集中を緩和し、耐圧(たとえばブレークダウン電圧)を向上させることを1つの目的として活性面8(第1終端領域15A)に組み込まれている。ダミー構造55の有無は任意であり、ダミー構造55を備えない形態が採用されてもよい。 Referring to Figures 13 to 23, the semiconductor device 1 includes a dummy structure 55 formed on the first main surface 3 (active surface 8) in the first termination region 15A. The dummy structure 55 is incorporated in the active surface 8 (first termination region 15A) for one purpose, which is to reduce localized electric field concentration in the vicinity of the gate resistor 40 and improve the breakdown voltage (e.g., breakdown voltage). The presence or absence of the dummy structure 55 is optional, and a configuration without the dummy structure 55 may be adopted.
 ダミー構造55は、第1ダミー構造56および第2ダミー構造57を含む。第1ダミー構造56は、ゲート抵抗40に対して第3側面5C側(第3接続面10C側)の領域に配置されている。第1ダミー構造56は、第1方向Xにゲート抵抗40に対向し、第2方向Yに活性領域12および第1周縁領域14Aに対向している。第2ダミー構造57は、ゲート抵抗40に対して第4側面5D側(第4接続面10D側)の領域に配置されている。 The dummy structure 55 includes a first dummy structure 56 and a second dummy structure 57. The first dummy structure 56 is arranged in a region on the third side surface 5C side (third connection surface 10C side) of the gate resistor 40. The first dummy structure 56 faces the gate resistor 40 in the first direction X, and faces the active region 12 and the first peripheral region 14A in the second direction Y. The second dummy structure 57 is arranged in a region on the fourth side surface 5D side (fourth connection surface 10D side) of the gate resistor 40.
 第2ダミー構造57は、第1方向Xにゲート抵抗40を挟んで第1ダミー構造56に対向し、第2方向Yに活性領域12および第2周縁領域14Bに対向している。第2ダミー構造57のレイアウトは第1ダミー構造56のレイアウトとほぼ同様であるため、以下では第1ダミー構造56の構成が説明される。第2ダミー構造57のレイアウトは、以下の説明において「第3接続面10C」を「第4接続面10D」に置き換えることによって得られる。 The second dummy structure 57 faces the first dummy structure 56 across the gate resistor 40 in the first direction X, and faces the active region 12 and the second peripheral region 14B in the second direction Y. Since the layout of the second dummy structure 57 is substantially similar to the layout of the first dummy structure 56, the configuration of the first dummy structure 56 will be described below. The layout of the second dummy structure 57 can be obtained by replacing "third connection surface 10C" with "fourth connection surface 10D" in the following description.
 第1ダミー構造56は、第1終端領域15Aにおいて第1主面3(活性面8)に形成された少なくとも1つ(この形態では複数)のダミートレンチ構造60を含む。複数のダミートレンチ構造60には、第2電位としてのソース電位VSが付与される。複数のダミートレンチ構造60は、第1方向Xに延びる帯状にそれぞれ形成され、第2方向Yに間隔を空けて配列されている。 The first dummy structure 56 includes at least one (in this embodiment, multiple) dummy trench structures 60 formed in the first main surface 3 (active surface 8) in the first termination region 15A. A source potential VS is applied to the multiple dummy trench structures 60 as a second potential. The multiple dummy trench structures 60 are each formed in a band shape extending in the first direction X, and are arranged at intervals in the second direction Y.
 複数のダミートレンチ構造60は、第1方向Xに複数のトレンチ抵抗構造41に1対1の対応関係で対向している。複数のダミートレンチ構造60は、第2方向Yに第1トレンチソース構造25および第2トレンチソース構造30に対向している。複数のダミートレンチ構造60は、第1半導体領域6に至るようにボディ領域17を貫通している。複数のダミートレンチ構造60は、この形態では、第3接続面10Cを貫通し、第3接続面10Cから露出している。複数のトレンチゲート構造20は、第1半導体領域6の底部から活性面8側に間隔を空けて形成されている。 The multiple dummy trench structures 60 face the multiple trench resistor structures 41 in a one-to-one correspondence in the first direction X. The multiple dummy trench structures 60 face the first trench source structure 25 and the second trench source structure 30 in the second direction Y. The multiple dummy trench structures 60 penetrate the body region 17 to reach the first semiconductor region 6. In this embodiment, the multiple dummy trench structures 60 penetrate the third connection surface 10C and are exposed from the third connection surface 10C. The multiple trench gate structures 20 are formed at intervals from the bottom of the first semiconductor region 6 toward the active surface 8.
 複数のダミートレンチ構造60は、この形態では、複数の第1ダミートレンチ構造61および複数の第2ダミートレンチ構造62を含む。複数の第1ダミートレンチ構造61は、活性面8の周縁および複数の第1トレンチ抵抗構造42の間の領域に配置されている。複数の第1ダミートレンチ構造61は、第1方向Xに延びる帯状にそれぞれ形成され、第2方向Yに間隔を空けて配列されている。 In this embodiment, the multiple dummy trench structures 60 include multiple first dummy trench structures 61 and multiple second dummy trench structures 62. The multiple first dummy trench structures 61 are arranged in the region between the periphery of the active surface 8 and the multiple first trench resistance structures 42. The multiple first dummy trench structures 61 are each formed in a band shape extending in the first direction X, and are arranged at intervals in the second direction Y.
 複数の第1ダミートレンチ構造61は、第1方向Xに複数の第1トレンチ抵抗構造42に1対1の対応関係で対向している。つまり、ゲート電位VGが印加される第1トレンチ抵抗構造42およびソース電位VSが印加される第1ダミートレンチ構造61が第1方向Xに対向している。複数の第1ダミートレンチ構造61は、第2方向Yに第1トレンチソース構造25および第2トレンチソース構造30に対向している。 The multiple first dummy trench structures 61 face the multiple first trench resistance structures 42 in a one-to-one correspondence in the first direction X. In other words, the first trench resistance structure 42 to which the gate potential VG is applied and the first dummy trench structure 61 to which the source potential VS is applied face each other in the first direction X. The multiple first dummy trench structures 61 face the first trench source structure 25 and the second trench source structure 30 in the second direction Y.
 複数の第1ダミートレンチ構造61は、この形態では、第3接続面10Cを貫通し、第3接続面10Cから露出している。複数の第1ダミートレンチ構造61は、第1半導体領域6に至るようにボディ領域17を貫通している。複数の第1ダミートレンチ構造61は、第1半導体領域6の底部から活性面8側に間隔を空けて形成されている。 In this embodiment, the multiple first dummy trench structures 61 penetrate the third connection surface 10C and are exposed from the third connection surface 10C. The multiple first dummy trench structures 61 penetrate the body region 17 to reach the first semiconductor region 6. The multiple first dummy trench structures 61 are formed at intervals from the bottom of the first semiconductor region 6 toward the active surface 8.
 以下、1つの第1ダミートレンチ構造61が説明される。第1ダミートレンチ構造61は、第2方向Yに第6幅W6を有し、法線方向Zに第6深さD6を有している。第6幅W6は、第1トレンチ抵抗構造42の第4幅W4とほぼ等しいことが好ましい。第6幅W6は、トレンチゲート構造20の第1幅W1とほぼ等しいことが好ましい。第6幅W6は、0.1μm以上3μm以下であってもよい。第6幅W6は、0.5μm以上2μm以下であることが好ましい。 Below, one first dummy trench structure 61 is described. The first dummy trench structure 61 has a sixth width W6 in the second direction Y and a sixth depth D6 in the normal direction Z. The sixth width W6 is preferably approximately equal to the fourth width W4 of the first trench resistor structure 42. The sixth width W6 is preferably approximately equal to the first width W1 of the trench gate structure 20. The sixth width W6 may be 0.1 μm or more and 3 μm or less. The sixth width W6 is preferably 0.5 μm or more and 2 μm or less.
 第6深さD6は、第2トレンチ抵抗構造43の第5深さD5(第1トレンチソース構造25の第2深さD2)未満である。第6深さD6は、外周面9の外周深さDO未満である。第6深さD6は、第1トレンチ抵抗構造42の第4深さD4(トレンチゲート構造20の第1深さD1)とほぼ等しいことが好ましい。第6深さD6は、0.1μm以上3μm以下であってもよい。第6深さD6は、0.5μm以上1.5μm以下であることが好ましい。 The sixth depth D6 is less than the fifth depth D5 of the second trench resistance structure 43 (the second depth D2 of the first trench source structure 25). The sixth depth D6 is less than the outer circumferential depth DO of the outer circumferential surface 9. It is preferable that the sixth depth D6 is approximately equal to the fourth depth D4 of the first trench resistance structure 42 (the first depth D1 of the trench gate structure 20). The sixth depth D6 may be 0.1 μm or more and 3 μm or less. It is preferable that the sixth depth D6 is 0.5 μm or more and 1.5 μm or less.
 第1ダミートレンチ構造61は、第1方向Xに第1トレンチ抵抗構造42から第5間隔I5を空けて配置されている。第5間隔I5は、第4幅W4(第6幅W6)の0.5倍以上2倍以下であることが好ましい。第5間隔I5は、第1トレンチ抵抗構造42および第2トレンチ抵抗構造43の間の第4間隔I4の0.5倍以上2倍以下であることが好ましい。第5間隔I5は、第4間隔I4の1.5倍以下であることが特に好ましい。第5間隔I5は、第4間隔I4とほぼ等しくてもよい。第5間隔I5は、0.1μm以上2.5μm以下であってもよい。第5間隔I5は、0.5μm以上1.5μm以下であることが好ましい。 The first dummy trench structure 61 is disposed in the first direction X at a fifth interval I5 from the first trench resistance structure 42. The fifth interval I5 is preferably 0.5 to 2 times the fourth width W4 (sixth width W6). The fifth interval I5 is preferably 0.5 to 2 times the fourth interval I4 between the first trench resistance structure 42 and the second trench resistance structure 43. It is particularly preferable that the fifth interval I5 is 1.5 times or less than the fourth interval I4. The fifth interval I5 may be approximately equal to the fourth interval I4. The fifth interval I5 may be 0.1 μm to 2.5 μm. It is preferable that the fifth interval I5 is 0.5 μm to 1.5 μm.
 活性領域12側の最内の第1ダミートレンチ構造61は、この形態では、第2方向Yに最外の第1トレンチソース構造25に隣り合うように最外の第1トレンチソース構造25から前述の第1間隔I1を空けて配置されている。 In this embodiment, the innermost first dummy trench structure 61 on the active region 12 side is arranged adjacent to the outermost first trench source structure 25 in the second direction Y, with the aforementioned first distance I1 from the outermost first trench source structure 25.
 第1ダミートレンチ構造61は、第1ダミートレンチ63、第1ダミー絶縁膜64および第1ダミー埋設電極65を含む。第1ダミートレンチ63は、活性面8に形成され、第1ダミートレンチ構造61の壁面を区画している。第1ダミートレンチ63の側壁および底壁は、第3接続面10Cに連通している。 The first dummy trench structure 61 includes a first dummy trench 63, a first dummy insulating film 64, and a first dummy buried electrode 65. The first dummy trench 63 is formed in the active surface 8 and defines the wall surface of the first dummy trench structure 61. The sidewall and bottom wall of the first dummy trench 63 are connected to the third connection surface 10C.
 第1ダミー絶縁膜64は、第1ダミートレンチ63の壁面を被覆し、活性面8において主面絶縁膜16に接続されている。第1ダミー絶縁膜64は、第3接続面10Cの連通部において主面絶縁膜16に接続されている。第1ダミー絶縁膜64は、酸化シリコン膜、窒化シリコン膜および酸窒化シリコン膜のうちの少なくとも1つを含んでいてもよい。 The first dummy insulating film 64 covers the wall surface of the first dummy trench 63 and is connected to the main surface insulating film 16 at the active surface 8. The first dummy insulating film 64 is connected to the main surface insulating film 16 at the communicating portion of the third connection surface 10C. The first dummy insulating film 64 may include at least one of a silicon oxide film, a silicon nitride film, and a silicon oxynitride film.
 第1ダミー絶縁膜64は、この形態では、酸化シリコン膜からなる単層構造を有している。第1ダミー絶縁膜64は、チップ2の酸化物からなる酸化シリコン膜を含むことが特に好ましい。第1ダミー埋設電極65は、第1ダミー絶縁膜64を挟んで第1ダミートレンチ63に埋設されている。第1ダミー埋設電極65は、導電性ポリシリコンを含んでいてもよい。 In this embodiment, the first dummy insulating film 64 has a single-layer structure made of a silicon oxide film. It is particularly preferable that the first dummy insulating film 64 includes a silicon oxide film made of an oxide of the chip 2. The first dummy buried electrode 65 is buried in the first dummy trench 63 with the first dummy insulating film 64 in between. The first dummy buried electrode 65 may include conductive polysilicon.
 複数の第2ダミートレンチ構造62は、活性面8の周縁および複数の第2トレンチ抵抗構造43の間の領域に配置されている。複数の第2ダミートレンチ構造62は、第2方向Yに隣り合う2つの第1ダミートレンチ構造61の間の領域に配置されている。複数の第2ダミートレンチ構造62は、第2方向Yに複数の第1ダミートレンチ構造61と交互に配列され、第1方向Xに複数の第2トレンチ抵抗構造43に1対1の対応関係で対向している。 The multiple second dummy trench structures 62 are arranged in the region between the periphery of the active surface 8 and the multiple second trench resistance structures 43. The multiple second dummy trench structures 62 are arranged in the region between two first dummy trench structures 61 adjacent in the second direction Y. The multiple second dummy trench structures 62 are arranged alternately with the multiple first dummy trench structures 61 in the second direction Y, and face the multiple second trench resistance structures 43 in a one-to-one correspondence in the first direction X.
 つまり、ゲート電位VGが印加される第2トレンチ抵抗構造43およびソース電位VSが印加される第2ダミートレンチ構造62が第1方向Xに対向している。複数の第2ダミートレンチ構造62は、平面視において第1方向Xに延びる帯状にそれぞれ形成されている。 In other words, the second trench resistance structure 43 to which the gate potential VG is applied and the second dummy trench structure 62 to which the source potential VS is applied face each other in the first direction X. The multiple second dummy trench structures 62 are each formed in a band shape extending in the first direction X in a plan view.
 複数の第2ダミートレンチ構造62は、第2方向Yに第1トレンチソース構造25および第2トレンチソース構造30に対向している。複数の第2ダミートレンチ構造62は、複数の第1トレンチ抵抗構造42の端部に対して複数の第2トレンチ抵抗構造43の端部側に引き出された部分を有している。 The second dummy trench structures 62 face the first trench source structure 25 and the second trench source structure 30 in the second direction Y. The second dummy trench structures 62 have portions that are extended toward the ends of the second trench resistance structures 43 relative to the ends of the first trench resistance structures 42.
 具体的には、複数の第2ダミートレンチ構造62は、第1トレンチ抵抗構造42および第1ダミートレンチ構造61の間の領域に対して複数の第2トレンチ抵抗構造43の端部側に引き出されている。これにより、複数の第2ダミートレンチ構造62の端部は、第2方向Yに第1トレンチ抵抗構造42に対向している。つまり、複数の第2ダミートレンチ構造62は、第2方向Yに第1トレンチ抵抗構造42に対向する部分を有し、第2方向Yに第1ダミートレンチ構造61に対向する部分を有している。 Specifically, the multiple second dummy trench structures 62 are pulled out toward the ends of the multiple second trench resistance structures 43 with respect to the region between the first trench resistance structure 42 and the first dummy trench structure 61. As a result, the ends of the multiple second dummy trench structures 62 face the first trench resistance structure 42 in the second direction Y. In other words, the multiple second dummy trench structures 62 have a portion facing the first trench resistance structure 42 in the second direction Y, and a portion facing the first dummy trench structure 61 in the second direction Y.
 複数の第2ダミートレンチ構造62は、この形態では、第3接続面10Cを貫通し、第3接続面10Cから露出している。複数の第2ダミートレンチ構造62は、第1半導体領域6に至るようにボディ領域17を貫通している。複数の第2ダミートレンチ構造62は、第1半導体領域6の底部から活性面8側に間隔を空けて形成されている。 In this embodiment, the multiple second dummy trench structures 62 penetrate the third connection surface 10C and are exposed from the third connection surface 10C. The multiple second dummy trench structures 62 penetrate the body region 17 to reach the first semiconductor region 6. The multiple second dummy trench structures 62 are formed at intervals from the bottom of the first semiconductor region 6 toward the active surface 8.
 以下、1つの第2ダミートレンチ構造62が説明される。第2ダミートレンチ構造62は、第2方向Yに第7幅W7を有し、法線方向Zに第7深さD7を有している。第7幅W7は、第2トレンチ抵抗構造43の第5幅W5とほぼ等しいことが好ましい。第7幅W7は、第1トレンチソース構造25の第2幅W2(トレンチゲート構造20の第1幅W1)とほぼ等しいことが好ましい。第7幅W7は、0.1μm以上3μm以下であってもよい。第7幅W7は、0.5μm以上2μm以下であることが好ましい。 Below, one second dummy trench structure 62 is described. The second dummy trench structure 62 has a seventh width W7 in the second direction Y and a seventh depth D7 in the normal direction Z. The seventh width W7 is preferably approximately equal to the fifth width W5 of the second trench resistor structure 43. The seventh width W7 is preferably approximately equal to the second width W2 of the first trench source structure 25 (the first width W1 of the trench gate structure 20). The seventh width W7 may be 0.1 μm or more and 3 μm or less. The seventh width W7 is preferably 0.5 μm or more and 2 μm or less.
 第7深さD7は、第1ダミートレンチ構造61の第6深さD6(第1トレンチ抵抗構造42の第4深さD4)以上である。第7深さD7は、この形態では、第6深さD6(第4深さD4)よりも大きい。第7深さD7は、第6深さD6(第4深さD4)の1.5倍以上3倍以下であることが好ましい。 The seventh depth D7 is equal to or greater than the sixth depth D6 of the first dummy trench structure 61 (the fourth depth D4 of the first trench resistor structure 42). In this embodiment, the seventh depth D7 is greater than the sixth depth D6 (the fourth depth D4). It is preferable that the seventh depth D7 is greater than or equal to 1.5 times and less than or equal to 3 times the sixth depth D6 (the fourth depth D4).
 第7深さD7は、第2トレンチ抵抗構造43の第5深さD5(第1トレンチソース構造25の第2深さD2)とほぼ等しいことが好ましい。第7深さD7は、この形態では、外周面9の外周深さDOとほぼ等しい。第7深さD7は、0.5μm以上5μm以下であってもよい。第7深さD7は、2.5μm以下であることが特に好ましい。 The seventh depth D7 is preferably approximately equal to the fifth depth D5 of the second trench resistor structure 43 (the second depth D2 of the first trench source structure 25). In this embodiment, the seventh depth D7 is approximately equal to the outer circumferential depth DO of the outer circumferential surface 9. The seventh depth D7 may be 0.5 μm or more and 5 μm or less. It is particularly preferable that the seventh depth D7 is 2.5 μm or less.
 第2ダミートレンチ構造62は、第2方向Yに第1ダミートレンチ構造61から第6間隔I6を空けて配置されている。第6間隔I6は、第6幅W6(第7幅W7)の0.5倍以上2倍以下であることが好ましい。第6間隔I6は、第6幅W6(第7幅W7)未満であることが特に好ましい。 The second dummy trench structure 62 is disposed at a sixth interval I6 from the first dummy trench structure 61 in the second direction Y. The sixth interval I6 is preferably 0.5 to 2 times the sixth width W6 (seventh width W7). It is particularly preferable that the sixth interval I6 is less than the sixth width W6 (seventh width W7).
 第6間隔I6は、第1トレンチ抵抗構造42および第2トレンチ抵抗構造43の間の第4間隔I4とほぼ等しいことが好ましい。第6間隔I6は、トレンチゲート構造20および第1トレンチソース構造25の間の第1間隔I1とほぼ等しいことが好ましい。第6間隔I6は、0.1μm以上2.5μm以下であってもよい。第6間隔I6は、0.5μm以上1.5μm以下であることが好ましい。 The sixth interval I6 is preferably approximately equal to the fourth interval I4 between the first trench resistor structure 42 and the second trench resistor structure 43. The sixth interval I6 is preferably approximately equal to the first interval I1 between the trench gate structure 20 and the first trench source structure 25. The sixth interval I6 may be 0.1 μm or more and 2.5 μm or less. The sixth interval I6 is preferably 0.5 μm or more and 1.5 μm or less.
 第2ダミートレンチ構造62は、第1方向Xに第2トレンチ抵抗構造43から第7間隔I7を空けて配置されている。第7間隔I7は、第6幅W6(第7幅W7)の0.5倍以上2倍以下であることが好ましい。第7間隔I7は、第6幅W6(第7幅W7)の0.5倍以上2倍以下であることが好ましい。 The second dummy trench structure 62 is disposed in the first direction X at a seventh interval I7 from the second trench resistor structure 43. The seventh interval I7 is preferably 0.5 to 2 times the sixth width W6 (seventh width W7). The seventh interval I7 is preferably 0.5 to 2 times the sixth width W6 (seventh width W7).
 第7間隔I7は、第6間隔I6(第4間隔I4)の1.5倍以下であることが特に好ましい。第7間隔I7は、前述の第5間隔I5とほぼ等しいことが好ましい。第7間隔I7は、第6間隔I6(第4間隔I4)とほぼ等しくてもよい。第7間隔I7は、0.1μm以上2.5μm以下であってもよい。第7間隔I7は、0.5μm以上1.5μm以下であることが好ましい。 It is particularly preferable that the seventh interval I7 is 1.5 times or less the sixth interval I6 (fourth interval I4). It is preferable that the seventh interval I7 is approximately equal to the aforementioned fifth interval I5. The seventh interval I7 may be approximately equal to the sixth interval I6 (fourth interval I4). The seventh interval I7 may be 0.1 μm or more and 2.5 μm or less. It is preferable that the seventh interval I7 is 0.5 μm or more and 1.5 μm or less.
 第2ダミートレンチ構造62は、第2ダミートレンチ66、第2ダミー絶縁膜67および第2ダミー埋設電極68を含む。第2ダミートレンチ66は、活性面8に形成され、第2ダミートレンチ構造62の壁面を区画している。第2ダミートレンチ66の側壁は、第3接続面10Cに連通している。また、第2ダミートレンチ66の底壁は、外周面9に連通している。 The second dummy trench structure 62 includes a second dummy trench 66, a second dummy insulating film 67, and a second dummy buried electrode 68. The second dummy trench 66 is formed in the active surface 8 and defines the wall surface of the second dummy trench structure 62. The side wall of the second dummy trench 66 is connected to the third connection surface 10C. In addition, the bottom wall of the second dummy trench 66 is connected to the outer peripheral surface 9.
 第2ダミー絶縁膜67は、第2ダミートレンチ66の壁面を被覆し、活性面8において主面絶縁膜16に接続されている。第2ダミー絶縁膜67は、第3接続面10Cの連通部および外周面9の連通部において主面絶縁膜16に接続されている。第2ダミー絶縁膜67は、酸化シリコン膜、窒化シリコン膜および酸窒化シリコン膜のうちの少なくとも1つを含んでいてもよい。 The second dummy insulating film 67 covers the wall surface of the second dummy trench 66 and is connected to the main surface insulating film 16 at the active surface 8. The second dummy insulating film 67 is connected to the main surface insulating film 16 at the communicating portion of the third connection surface 10C and the communicating portion of the outer peripheral surface 9. The second dummy insulating film 67 may include at least one of a silicon oxide film, a silicon nitride film, and a silicon oxynitride film.
 第2ダミー絶縁膜67は、この形態では、酸化シリコン膜からなる単層構造を有している。第2ダミー絶縁膜67は、チップ2の酸化物からなる酸化シリコン膜を含むことが特に好ましい。第2ダミー埋設電極68は、第2ダミー絶縁膜67を挟んで第2ダミートレンチ66に埋設されている。第2ダミー埋設電極68は、導電性ポリシリコンを含んでいてもよい。 In this embodiment, the second dummy insulating film 67 has a single-layer structure made of a silicon oxide film. It is particularly preferable that the second dummy insulating film 67 includes a silicon oxide film made of an oxide of the chip 2. The second dummy buried electrode 68 is buried in the second dummy trench 66 with the second dummy insulating film 67 in between. The second dummy buried electrode 68 may include conductive polysilicon.
 図16および図23を参照して、半導体装置1は、複数のメインメサ部70、複数の第1メサ部71および複数の第2メサ部72を含む。各メインメサ部70は、第1トレンチ抵抗構造42および第2トレンチ抵抗構造43の間の領域、ならびに、第1ダミートレンチ構造61および第2ダミートレンチ構造62の間の領域に区画されている。各メインメサ部70は、第1方向Xに帯状に延びている。各メインメサ部70の第2方向Yの幅は、前述の第4間隔I4および第6間隔I6によって規定される。 16 and 23, the semiconductor device 1 includes a plurality of main mesa portions 70, a plurality of first mesa portions 71, and a plurality of second mesa portions 72. Each main mesa portion 70 is partitioned into a region between the first trench resistance structure 42 and the second trench resistance structure 43, and a region between the first dummy trench structure 61 and the second dummy trench structure 62. Each main mesa portion 70 extends in a strip shape in the first direction X. The width of each main mesa portion 70 in the second direction Y is determined by the aforementioned fourth interval I4 and sixth interval I6.
 各第1メサ部71は、第1トレンチ抵抗構造42および第1ダミートレンチ構造61の間の領域に区画され、メインメサ部70に接続されている。各第1メサ部71は、第1方向Xにゲート電位VGおよびソース電位VSの間の電圧降下が生じる領域である。各第1メサ部71の第1方向Xの幅は、前述の第5間隔I5によって規定される。 Each first mesa portion 71 is partitioned into an area between the first trench resistor structure 42 and the first dummy trench structure 61, and is connected to the main mesa portion 70. Each first mesa portion 71 is an area in which a voltage drop occurs between the gate potential VG and the source potential VS in the first direction X. The width of each first mesa portion 71 in the first direction X is determined by the fifth interval I5 described above.
 各第1メサ部71は、この形態では、第2方向Yに第2ダミートレンチ構造62に対向し、第2方向Yに第2トレンチ抵抗構造43に対向しないように、第2トレンチ抵抗構造43の端部に対して第2ダミートレンチ構造62側にずれている。各第1メサ部71は、抵抗膜50の周縁から第1方向Xに間隔を空けて形成され、法線方向Zに抵抗膜50に対向していない。 In this embodiment, each first mesa portion 71 faces the second dummy trench structure 62 in the second direction Y, but is shifted toward the second dummy trench structure 62 with respect to the end of the second trench resistance structure 43 so as not to face the second trench resistance structure 43 in the second direction Y. Each first mesa portion 71 is formed at a distance from the periphery of the resistance film 50 in the first direction X, and does not face the resistance film 50 in the normal direction Z.
 したがって、各第1メサ部71に対する抵抗膜50の電気的な干渉が抑制され、抵抗膜50に対する各第1メサ部71の電気的な干渉が抑制されている。むろん、複数のトレンチ抵抗構造41よりも幅広な抵抗膜50が形成された場合、各第1メサ部71は法線方向Zに抵抗膜50に対向していてもよい。 Therefore, electrical interference of the resistive film 50 with each first mesa portion 71 is suppressed, and electrical interference of each first mesa portion 71 with the resistive film 50 is suppressed. Of course, if a resistive film 50 wider than the multiple trench resistance structures 41 is formed, each first mesa portion 71 may face the resistive film 50 in the normal direction Z.
 各第1メサ部71は、平面視において1つのメインメサ部70とT字状のメサを区画している。別視点において、各第1メサ部71は、平面視において2つのメインメサ部70とH字状のメサを区画している。複数の第1メサ部71は、この形態では、第2方向Yに沿って同一直線上に形成されている。むろん、複数の第1メサ部71は、第2方向Yに沿って同一直線上に位置しないように第1方向Xに互いにずれて形成されていてもよい。 Each first mesa portion 71 defines one main mesa portion 70 and a T-shaped mesa in plan view. From another perspective, each first mesa portion 71 defines two main mesa portions 70 and an H-shaped mesa in plan view. In this embodiment, the multiple first mesa portions 71 are formed on the same straight line along the second direction Y. Of course, the multiple first mesa portions 71 may be formed offset from each other in the first direction X so as not to be positioned on the same straight line along the second direction Y.
 各第2メサ部72は、第2トレンチ抵抗構造43および第2ダミートレンチ構造62の間の領域に区画され、メインメサ部70に接続されている。各第2メサ部72は、第1方向Xにゲート電位VGおよびソース電位VSの間の電圧降下が生じる領域である。各第2メサ部72の第1方向Xの幅は、前述の第7間隔I7によって規定される。 Each second mesa portion 72 is partitioned into an area between the second trench resistor structure 43 and the second dummy trench structure 62, and is connected to the main mesa portion 70. Each second mesa portion 72 is an area in which a voltage drop occurs between the gate potential VG and the source potential VS in the first direction X. The width of each second mesa portion 72 in the first direction X is determined by the seventh interval I7 described above.
 各第2メサ部72は、第2方向Yに第1メサ部71に対向しないように、第1メサ部71から第1方向Xに間隔を空けて形成されている。各第2メサ部72は、この形態では、第2方向Yに第1トレンチ抵抗構造42に対向し、第2方向Yに第1ダミートレンチ構造61に対向しないように、第1ダミートレンチ構造61の端部に対して第1トレンチ抵抗構造42側にずれている。 Each second mesa portion 72 is formed at a distance from the first mesa portion 71 in the first direction X so as not to face the first mesa portion 71 in the second direction Y. In this embodiment, each second mesa portion 72 faces the first trench resistance structure 42 in the second direction Y, and is shifted toward the first trench resistance structure 42 with respect to the end of the first dummy trench structure 61 so as not to face the first dummy trench structure 61 in the second direction Y.
 各第2メサ部72は、平面視において抵抗膜50の周縁から第1方向Xに間隔を空けて形成され、法線方向Zに抵抗膜50に対向していない。したがって、各第2メサ部72に対する抵抗膜50の電気的な干渉が抑制され、抵抗膜50に対する各第2メサ部72の電気的な干渉が抑制されている。むろん、複数のトレンチ抵抗構造41よりも幅広な抵抗膜50が形成された場合、各第2メサ部72は法線方向Zに抵抗膜50に対向していてもよい。 Each second mesa portion 72 is formed at a distance from the periphery of the resistive film 50 in the first direction X in a plan view, and does not face the resistive film 50 in the normal direction Z. Therefore, electrical interference of the resistive film 50 with each second mesa portion 72 is suppressed, and electrical interference of each second mesa portion 72 with the resistive film 50 is suppressed. Of course, if a resistive film 50 wider than the multiple trench resistance structures 41 is formed, each second mesa portion 72 may face the resistive film 50 in the normal direction Z.
 各第2メサ部72は、平面視において1つのメインメサ部70とT字状のメサを区画している。別視点において、各第2メサ部72は、平面視において2つのメインメサ部70とH字状のメサを区画している。複数の第2メサ部72は、この形態では、第2方向Yに沿って同一直線上に形成されている。 Each second mesa portion 72 defines one main mesa portion 70 and a T-shaped mesa in plan view. From another perspective, each second mesa portion 72 defines two main mesa portions 70 and an H-shaped mesa in plan view. In this embodiment, the multiple second mesa portions 72 are formed on the same straight line along the second direction Y.
 むろん、複数の第2メサ部72は、第2方向Yに沿って同一直線上に位置しないように第1方向Xに互いにずれて形成されていてもよい。この場合においても、複数の第2メサ部72は、第2方向Yに第1メサ部71に対向しないように、第1メサ部71から第1方向Xに間隔を空けて形成される。 Of course, the multiple second mesa portions 72 may be formed offset from each other in the first direction X so as not to be positioned on the same straight line along the second direction Y. Even in this case, the multiple second mesa portions 72 are formed at intervals from the first mesa portion 71 in the first direction X so as not to face the first mesa portion 71 in the second direction Y.
 半導体装置1は、第1終端領域15Aにおいて複数の第1トレンチ抵抗構造42に沿う領域に形成されたp型の複数の第4ウェル領域75を含む。第4ウェル領域75は、この形態では、ボディ領域17よりも高いp型不純物濃度を有している。むろん、第4ウェル領域75のp型不純物濃度は、ボディ領域17よりも低くてもよい。第4ウェル領域75のp型不純物濃度は、第1ウェル領域35のp型不純物濃度とほぼ等しいことが好ましい。 The semiconductor device 1 includes a plurality of fourth well regions 75 of p-type formed in a region along the plurality of first trench resistance structures 42 in the first termination region 15A. In this embodiment, the fourth well region 75 has a higher p-type impurity concentration than the body region 17. Of course, the p-type impurity concentration of the fourth well region 75 may be lower than the body region 17. It is preferable that the p-type impurity concentration of the fourth well region 75 is approximately equal to the p-type impurity concentration of the first well region 35.
 複数の第4ウェル領域75は、第2トレンチ抵抗構造43、第1ダミートレンチ構造61および第2ダミートレンチ構造62から間隔を空けて対応する第1トレンチ抵抗構造42の壁面を被覆し、活性面8の表層部においてボディ領域17に電気的に接続されている。 The multiple fourth well regions 75 cover the wall surfaces of the corresponding first trench resistance structures 42 at intervals from the second trench resistance structure 43, the first dummy trench structure 61, and the second dummy trench structure 62, and are electrically connected to the body region 17 in the surface portion of the active surface 8.
 各第4ウェル領域75は、各第1メサ部71内において各第1トレンチ抵抗構造42の壁面を被覆する部分を含み、第1方向Xに各第1ダミートレンチ構造61に対向している。各第4ウェル領域75は、この形態では、第2方向Yに第2トレンチ抵抗構造43に対向する部分を有し、第2方向Yに第2ダミートレンチ構造62に対向する部分を有している。 Each fourth well region 75 includes a portion that covers the wall surface of each first trench resistance structure 42 in each first mesa portion 71, and faces each first dummy trench structure 61 in the first direction X. In this embodiment, each fourth well region 75 has a portion that faces the second trench resistance structure 43 in the second direction Y, and a portion that faces the second dummy trench structure 62 in the second direction Y.
 複数の第4ウェル領域75は、第1半導体領域6の底部から活性面8側に間隔を空けて形成され、第1半導体領域6の一部を挟んで第2半導体領域7に対向している。複数の第4ウェル領域75の底部は、複数の第2ウェル領域36の底部の深さ位置に対して活性面8側に位置している。複数の第4ウェル領域75の底部は、複数の第1ウェル領域35の底部とほぼ等しい深さに形成されている。複数の第4ウェル領域75は、第1半導体領域6とpn接合部を形成している。 The multiple fourth well regions 75 are formed at intervals from the bottom of the first semiconductor region 6 toward the active surface 8, and face the second semiconductor region 7 across a portion of the first semiconductor region 6. The bottoms of the multiple fourth well regions 75 are located on the active surface 8 side relative to the depth position of the bottoms of the multiple second well regions 36. The bottoms of the multiple fourth well regions 75 are formed at approximately the same depth as the bottoms of the multiple first well regions 35. The multiple fourth well regions 75 form pn junctions with the first semiconductor region 6.
 半導体装置1は、第1終端領域15Aにおいて複数の第2トレンチ抵抗構造43に沿う領域に形成されたp型の複数の第5ウェル領域76を含む。第5ウェル領域76は、この形態では、ボディ領域17よりも高いp型不純物濃度を有している。むろん、第5ウェル領域76のp型不純物濃度は、ボディ領域17よりも低くてもよい。第5ウェル領域76のp型不純物濃度は、複数の第4ウェル領域75(第2ウェル領域36)のp型不純物濃度とほぼ等しいことが好ましい。 The semiconductor device 1 includes a plurality of p-type fifth well regions 76 formed in a region along the plurality of second trench resistance structures 43 in the first termination region 15A. In this embodiment, the fifth well region 76 has a higher p-type impurity concentration than the body region 17. Of course, the p-type impurity concentration of the fifth well region 76 may be lower than the body region 17. It is preferable that the p-type impurity concentration of the fifth well region 76 is approximately equal to the p-type impurity concentration of the plurality of fourth well regions 75 (second well region 36).
 複数の第5ウェル領域76は、第1トレンチ抵抗構造42、第1ダミートレンチ構造61および第2ダミートレンチ構造62から間隔を空けて対応する第2トレンチ抵抗構造43の壁面を被覆し、活性面8の表層部においてボディ領域17に電気的に接続されている。各第5ウェル領域76は、各第2メサ部72内において各第2トレンチ抵抗構造43の壁面を被覆する部分を含み、第1方向Xに第2ダミートレンチ構造62に対向している。各第5ウェル領域76は、この形態では、第2方向Yに第1トレンチ抵抗構造42に対向し、第2方向Yに第1ダミートレンチ構造61に対向していない。 The plurality of fifth well regions 76 cover the wall surfaces of the corresponding second trench resistance structures 43 at intervals from the first trench resistance structure 42, the first dummy trench structure 61, and the second dummy trench structure 62, and are electrically connected to the body region 17 at the surface portion of the active surface 8. Each fifth well region 76 includes a portion that covers the wall surface of each second trench resistance structure 43 in each second mesa portion 72, and faces the second dummy trench structure 62 in the first direction X. In this embodiment, each fifth well region 76 faces the first trench resistance structure 42 in the second direction Y, but does not face the first dummy trench structure 61 in the second direction Y.
 複数の第5ウェル領域76は、第1半導体領域6の底部から活性面8側に間隔を空けて形成され、第1半導体領域6の一部を挟んで第2半導体領域7に対向している。複数の第5ウェル領域76の底部は、複数の第4ウェル領域75(第1ウェル領域35)の底部の深さ位置に対して第1半導体領域6の底部側に位置している。複数の第5ウェル領域76の底部は、複数の第2ウェル領域36の底部とほぼ等しい深さに形成されている。複数の第5ウェル領域76は、第1半導体領域6とpn接合部を形成している。 The multiple fifth well regions 76 are formed at intervals from the bottom of the first semiconductor region 6 toward the active surface 8, and face the second semiconductor region 7 across a portion of the first semiconductor region 6. The bottoms of the multiple fifth well regions 76 are located on the bottom side of the first semiconductor region 6 relative to the depth position of the bottoms of the multiple fourth well regions 75 (first well regions 35). The bottoms of the multiple fifth well regions 76 are formed at a depth approximately equal to the bottoms of the multiple second well regions 36. The multiple fifth well regions 76 form pn junctions with the first semiconductor region 6.
 半導体装置1は、第1終端領域15Aにおいて複数の第1ダミートレンチ構造61に沿う領域に形成されたp型の複数の第6ウェル領域77を含む。第6ウェル領域77は、この形態では、ボディ領域17よりも高いp型不純物濃度を有している。むろん、第6ウェル領域77のp型不純物濃度は、ボディ領域17よりも低くてもよい。第6ウェル領域77のp型不純物濃度は、第4ウェル領域75(第1ウェル領域35)のp型不純物濃度とほぼ等しいことが好ましい。 The semiconductor device 1 includes a plurality of sixth well regions 77 of p-type formed in a region along the plurality of first dummy trench structures 61 in the first termination region 15A. In this embodiment, the sixth well region 77 has a higher p-type impurity concentration than the body region 17. Of course, the p-type impurity concentration of the sixth well region 77 may be lower than the body region 17. It is preferable that the p-type impurity concentration of the sixth well region 77 is approximately equal to the p-type impurity concentration of the fourth well region 75 (first well region 35).
 複数の第6ウェル領域77は、第1トレンチ抵抗構造42、第2トレンチ抵抗構造43および第2ダミートレンチ構造62から間隔を空けて対応する第1ダミートレンチ構造61の壁面を被覆し、活性面8の表層部においてボディ領域17に電気的に接続されている。各第6ウェル領域77は、各第1メサ部71内において各第1ダミートレンチ構造61の壁面を被覆する部分を含み、第1方向Xに第1トレンチ抵抗構造42に対向している。 The sixth well regions 77 cover the walls of the corresponding first dummy trench structures 61 at intervals from the first trench resistance structure 42, the second trench resistance structure 43, and the second dummy trench structure 62, and are electrically connected to the body region 17 at the surface portion of the active surface 8. Each sixth well region 77 includes a portion that covers the wall of each first dummy trench structure 61 in each first mesa portion 71, and faces the first trench resistance structure 42 in the first direction X.
 各第6ウェル領域77は、各第1メサ部71内において各第4ウェル領域75から間隔を空けて形成されていてもよいし、各第4ウェル領域75と一体化していてもよい。各第6ウェル領域77は、第2方向Yに第2ダミートレンチ構造62に対向し、第2方向Yに第2トレンチ抵抗構造43に対向していない。 Each sixth well region 77 may be formed in each first mesa portion 71 at a distance from each fourth well region 75, or may be integrated with each fourth well region 75. Each sixth well region 77 faces the second dummy trench structure 62 in the second direction Y, but does not face the second trench resistor structure 43 in the second direction Y.
 複数の第6ウェル領域77は、第1半導体領域6の底部から活性面8側に間隔を空けて形成され、第1半導体領域6の一部を挟んで第2半導体領域7に対向している。複数の第6ウェル領域77の底部は、複数の第5ウェル領域76(第2ウェル領域36)の底部の深さ位置に対して活性面8側に位置している。複数の第6ウェル領域77の底部は、複数の第4ウェル領域75(第1ウェル領域35)の底部とほぼ等しい深さに形成されている。複数の第6ウェル領域77は、第1半導体領域6とpn接合部を形成している。 The multiple sixth well regions 77 are formed at intervals from the bottom of the first semiconductor region 6 toward the active surface 8, and face the second semiconductor region 7 across a portion of the first semiconductor region 6. The bottoms of the multiple sixth well regions 77 are located on the active surface 8 side relative to the depth position of the bottoms of the multiple fifth well regions 76 (second well regions 36). The bottoms of the multiple sixth well regions 77 are formed at a depth approximately equal to the bottoms of the multiple fourth well regions 75 (first well regions 35). The multiple sixth well regions 77 form pn junctions with the first semiconductor region 6.
 半導体装置1は、第1終端領域15Aにおいて複数の第2ダミートレンチ構造62に沿う領域に形成されたp型の複数の第7ウェル領域78を含む。第7ウェル領域78は、この形態では、ボディ領域17よりも高いp型不純物濃度を有している。むろん、第7ウェル領域78のp型不純物濃度は、ボディ領域17よりも低くてもよい。第7ウェル領域78のp型不純物濃度は、第5ウェル領域76(第2ウェル領域36)のp型不純物濃度とほぼ等しいことが好ましい。 The semiconductor device 1 includes a plurality of p-type seventh well regions 78 formed in a region along the plurality of second dummy trench structures 62 in the first termination region 15A. In this embodiment, the seventh well regions 78 have a higher p-type impurity concentration than the body region 17. Of course, the p-type impurity concentration of the seventh well regions 78 may be lower than the body region 17. It is preferable that the p-type impurity concentration of the seventh well regions 78 is approximately equal to the p-type impurity concentration of the fifth well region 76 (second well region 36).
 複数の第7ウェル領域78は、第1トレンチ抵抗構造42、第2トレンチ抵抗構造43および第1ダミートレンチ構造61から間隔を空けて対応する第2ダミートレンチ構造62の壁面を被覆し、活性面8の表層部においてボディ領域17に電気的に接続されている。各第7ウェル領域78は、各第2メサ部72内において各第2ダミートレンチ構造62の壁面を被覆する部分を含み、第1方向Xに第2トレンチ抵抗構造43に対向している。 The seventh well regions 78 cover the walls of the corresponding second dummy trench structures 62 at intervals from the first trench resistance structure 42, the second trench resistance structure 43, and the first dummy trench structure 61, and are electrically connected to the body region 17 at the surface portion of the active surface 8. Each seventh well region 78 includes a portion that covers the wall of each second dummy trench structure 62 in each second mesa portion 72, and faces the second trench resistance structure 43 in the first direction X.
 各第7ウェル領域78は、各第2メサ部72内において各第5ウェル領域76から間隔を空けて形成されていてもよいし、各第5ウェル領域76と一体化していてもよい。各第7ウェル領域78は、第2方向Yに第1ダミートレンチ構造61に対向する部分を有し、第2方向Yに第1トレンチ抵抗構造42に対向する部分を有している。 Each seventh well region 78 may be formed in each second mesa portion 72 at a distance from each fifth well region 76, or may be integrated with each fifth well region 76. Each seventh well region 78 has a portion facing the first dummy trench structure 61 in the second direction Y, and a portion facing the first trench resistor structure 42 in the second direction Y.
 複数の第7ウェル領域78は、第1半導体領域6の底部から活性面8側に間隔を空けて形成され、第1半導体領域6の一部を挟んで第2半導体領域7に対向している。複数の第7ウェル領域78の底部は、複数の第6ウェル領域77(第4ウェル領域75)の底部の深さ位置に対して第1半導体領域6の底部側に位置している。複数の第7ウェル領域78の底部は、複数の第5ウェル領域76(第2ウェル領域36)の底部とほぼ等しい深さに形成されている。複数の第7ウェル領域78は、第1半導体領域6とpn接合部を形成している。 The multiple seventh well regions 78 are formed at intervals from the bottom of the first semiconductor region 6 toward the active surface 8, and face the second semiconductor region 7 across a portion of the first semiconductor region 6. The bottoms of the multiple seventh well regions 78 are located on the bottom side of the first semiconductor region 6 relative to the depth position of the bottoms of the multiple sixth well regions 77 (fourth well regions 75). The bottoms of the multiple seventh well regions 78 are formed at a depth approximately equal to the bottoms of the multiple fifth well regions 76 (second well regions 36). The multiple seventh well regions 78 form pn junctions with the first semiconductor region 6.
 半導体装置1は、第1終端領域15Aにおいて複数の第2トレンチ抵抗構造43に沿う領域に形成されたp型の複数の第2コンタクト領域79を含む。第2コンタクト領域79は、ボディ領域17よりも高いp型不純物濃度を有している。第2コンタクト領域79のp型不純物濃度は、第5ウェル領域76よりも高い。第2コンタクト領域79のp型不純物濃度は、第1コンタクト領域38のp型不純物濃度とほぼ等しいことが好ましい。 The semiconductor device 1 includes a plurality of second contact regions 79 of p-type formed in a region along the plurality of second trench resistance structures 43 in the first termination region 15A. The second contact regions 79 have a higher p-type impurity concentration than the body region 17. The p-type impurity concentration of the second contact regions 79 is higher than the fifth well region 76. It is preferable that the p-type impurity concentration of the second contact regions 79 is approximately equal to the p-type impurity concentration of the first contact region 38.
 複数の第2コンタクト領域79は、対応する第5ウェル領域76内において対応する第2トレンチ抵抗構造43の壁面を被覆している。複数の第2コンタクト領域79は、各第2トレンチ抵抗構造43に対して1対多の対応関係で形成されている。複数の第2コンタクト領域79は、対応する第2トレンチ抵抗構造43に沿って間隔を空けて形成されている。複数の第2コンタクト領域79は、対応する第5ウェル領域76内から対応する第2トレンチ抵抗構造43の壁面に沿ってボディ領域17の表層部に引き出され、活性面8から露出している。 The second contact regions 79 cover the wall surfaces of the corresponding second trench resistance structures 43 in the corresponding fifth well regions 76. The second contact regions 79 are formed in a one-to-many correspondence with each second trench resistance structure 43. The second contact regions 79 are formed at intervals along the corresponding second trench resistance structures 43. The second contact regions 79 are extended from the corresponding fifth well regions 76 along the wall surfaces of the corresponding second trench resistance structures 43 to the surface layer of the body region 17 and exposed from the active surface 8.
 複数の第2コンタクト領域79は、この形態では、平面視において第1方向Xに延びる帯状にそれぞれ形成されている。複数の第2コンタクト領域79の第1方向Xの長さは、第2トレンチ抵抗構造43の第5幅W5以上であることが好ましい。複数の第2コンタクト領域79の長さは、第1方向Xに隣り合う2つの第2コンタクト領域79の間の距離よりも大きいことが好ましい。複数の第2コンタクト領域79の長さは、第1メサ部71および第2メサ部72の間の距離未満であることが好ましい。複数の第2コンタクト領域79の長さは、複数の第1コンタクト領域38の長さとほぼ等しいことが好ましい。 In this embodiment, the multiple second contact regions 79 are each formed in a band shape extending in the first direction X in a plan view. The length of the multiple second contact regions 79 in the first direction X is preferably equal to or greater than the fifth width W5 of the second trench resistance structure 43. The length of the multiple second contact regions 79 is preferably greater than the distance between two adjacent second contact regions 79 in the first direction X. The length of the multiple second contact regions 79 is preferably less than the distance between the first mesa portion 71 and the second mesa portion 72. The length of the multiple second contact regions 79 is preferably approximately equal to the length of the multiple first contact regions 38.
 複数の第2コンタクト領域79は、各第2トレンチ抵抗構造43の端部に沿う領域を被覆する最外の第2コンタクト領域79を含む。最外の第2コンタクト領域79は、第2メサ部72から間隔を空けて形成されていることが好ましい。つまり、最外の第2コンタクト領域79は、第2方向Yに第1トレンチ抵抗構造42に対向し、第2方向Yに第1ダミートレンチ構造61に対向していないことが好ましい。 The multiple second contact regions 79 include an outermost second contact region 79 that covers an area along the end of each second trench resistance structure 43. The outermost second contact region 79 is preferably formed at a distance from the second mesa portion 72. In other words, the outermost second contact region 79 preferably faces the first trench resistance structure 42 in the second direction Y, but does not face the first dummy trench structure 61 in the second direction Y.
 たとえば、第1方向Xに関して、第2メサ部72および最外の第2コンタクト領域79の間の距離は、第2コンタクト領域79の長さ未満であってもよい。第2メサ部72および最外の第2コンタクト領域79の間の距離は、第2トレンチ抵抗構造43の第5幅W5未満であってもよい。第2メサ部72および最外の第2コンタクト領域79の間の距離は、第2メサ部72の幅(第7間隔I7)未満であることが特に好ましい。 For example, with respect to the first direction X, the distance between the second mesa portion 72 and the outermost second contact region 79 may be less than the length of the second contact region 79. The distance between the second mesa portion 72 and the outermost second contact region 79 may be less than the fifth width W5 of the second trench resistor structure 43. It is particularly preferable that the distance between the second mesa portion 72 and the outermost second contact region 79 is less than the width (seventh interval I7) of the second mesa portion 72.
 1つの第2トレンチ抵抗構造43に沿う複数の第2コンタクト領域79は、他の第2トレンチ抵抗構造43に沿う複数の第2コンタクト領域79に第2方向Yに対向している。つまり、複数の第2コンタクト領域79は、この形態では、平面視において全体として第1方向Xおよび第2方向Yに間隔を空けて行列状に配列されている。複数の第2コンタクト領域79は、第2方向Yに複数の第1コンタクト領域38に対向していてもよい。この場合、複数の第2コンタクト領域79は、複数の第1コンタクト領域38と共に行列状に配列されていてもよい。 The second contact regions 79 along one second trench resistance structure 43 face the second contact regions 79 along the other second trench resistance structures 43 in the second direction Y. That is, in this embodiment, the second contact regions 79 are arranged in a matrix with gaps in the first direction X and the second direction Y as a whole in a plan view. The second contact regions 79 may face the first contact regions 38 in the second direction Y. In this case, the second contact regions 79 may be arranged in a matrix with the first contact regions 38.
 1つの第2トレンチ抵抗構造43に沿う複数の第2コンタクト領域79は、他の第2トレンチ抵抗構造43に沿う複数の第2コンタクト領域79の間の領域に第2方向Yに対向するように第1方向Xにずれて配列されていてもよい。つまり、複数の第2コンタクト領域79は、平面視において全体として第1方向Xおよび第2方向Yに間隔を空けて千鳥状に配列されていてもよい。複数の第2コンタクト領域79は、第2方向Yに複数の第1コンタクト領域38の間の領域に対向していてもよい。この場合、複数の第2コンタクト領域79は、複数の第1コンタクト領域38と共に千鳥状に配列されていてもよい。 The second contact regions 79 along one second trench resistance structure 43 may be arranged offset in the first direction X so as to face the regions between the second contact regions 79 along the other second trench resistance structures 43 in the second direction Y. In other words, the second contact regions 79 may be arranged in a staggered manner with gaps in the first direction X and the second direction Y as a whole in a plan view. The second contact regions 79 may face the regions between the first contact regions 38 in the second direction Y. In this case, the second contact regions 79 may be arranged in a staggered manner together with the first contact regions 38.
 半導体装置1は、第1終端領域15Aにおいて複数の第2ダミートレンチ構造62に沿う領域に形成されたp型の複数の第3コンタクト領域80を含む。第3コンタクト領域80は、ボディ領域17よりも高いp型不純物濃度を有している。第3コンタクト領域80のp型不純物濃度は、第7ウェル領域78よりも高い。第3コンタクト領域80のp型不純物濃度は、第2コンタクト領域79(第1コンタクト領域38)のp型不純物濃度とほぼ等しいことが好ましい。 The semiconductor device 1 includes a plurality of p-type third contact regions 80 formed in a region along the plurality of second dummy trench structures 62 in the first termination region 15A. The third contact regions 80 have a higher p-type impurity concentration than the body region 17. The p-type impurity concentration of the third contact regions 80 is higher than the seventh well region 78. It is preferable that the p-type impurity concentration of the third contact regions 80 is approximately equal to the p-type impurity concentration of the second contact region 79 (first contact region 38).
 複数の第3コンタクト領域80は、対応する第7ウェル領域78内において対応する第2ダミートレンチ構造62の壁面を被覆している。複数の第3コンタクト領域80は、各第2ダミートレンチ構造62に対して1対多の対応関係で形成されている。複数の第3コンタクト領域80は、対応する第2ダミートレンチ構造62に沿って間隔を空けて形成されている。複数の第3コンタクト領域80は、対応する第7ウェル領域78内から対応する第2ダミートレンチ構造62の壁面に沿ってボディ領域17の表層部に引き出され、活性面8から露出している。 The multiple third contact regions 80 cover the wall surfaces of the corresponding second dummy trench structures 62 in the corresponding seventh well regions 78. The multiple third contact regions 80 are formed in a one-to-many correspondence with each second dummy trench structure 62. The multiple third contact regions 80 are formed at intervals along the corresponding second dummy trench structures 62. The multiple third contact regions 80 are extended from the corresponding seventh well regions 78 along the wall surfaces of the corresponding second dummy trench structures 62 to the surface layer of the body region 17 and exposed from the active surface 8.
 複数の第3コンタクト領域80は、この形態では、平面視において第1方向Xに延びる帯状にそれぞれ形成されている。複数の第3コンタクト領域80の第1方向Xの長さは、前述の第7幅W7以上であることが好ましい。複数の第3コンタクト領域80の長さは、第1方向Xに隣り合う2つの第3コンタクト領域80の間の距離よりも大きいことが好ましい。複数の第3コンタクト領域80の長さは、第1メサ部71および第2メサ部72の間の距離未満であることが好ましい。複数の第3コンタクト領域80の長さは、複数の第2コンタクト領域79(第1コンタクト領域38)の長さとほぼ等しいことが好ましい。 In this embodiment, the multiple third contact regions 80 are each formed in a band shape extending in the first direction X in a plan view. The length of the multiple third contact regions 80 in the first direction X is preferably equal to or greater than the seventh width W7 described above. The length of the multiple third contact regions 80 is preferably greater than the distance between two adjacent third contact regions 80 in the first direction X. The length of the multiple third contact regions 80 is preferably less than the distance between the first mesa portion 71 and the second mesa portion 72. The length of the multiple third contact regions 80 is preferably approximately equal to the length of the multiple second contact regions 79 (first contact regions 38).
 複数の第3コンタクト領域80は、第1メサ部71に対して第3接続面10C側の領域において、第2方向Yに第1ダミートレンチ構造61に対向している。複数の第3コンタクト領域80は、互いに隣り合う2つの第3コンタクト領域80の間に第1メサ部71が位置するように各第2ダミートレンチ構造62に沿って間隔を空けて形成されている。複数の第3コンタクト領域80は、第1メサ部71に対向しないように第1メサ部71から第1方向Xに間隔を空けて形成されていることが好ましい。 The multiple third contact regions 80 face the first dummy trench structure 61 in the second direction Y in the region on the third connection surface 10C side relative to the first mesa portion 71. The multiple third contact regions 80 are formed at intervals along each second dummy trench structure 62 so that the first mesa portion 71 is located between two adjacent third contact regions 80. It is preferable that the multiple third contact regions 80 are formed at intervals in the first direction X from the first mesa portion 71 so as not to face the first mesa portion 71.
 たとえば、第1方向Xに関して、第1メサ部71および第3コンタクト領域80の間の距離は、第3コンタクト領域80の長さ未満であることが好ましい。第1メサ部71および第3コンタクト領域80の間の距離は、前述の第7幅W7未満であることが好ましい。第1メサ部71および第3コンタクト領域80の間の距離は、第1メサ部71の幅(第5間隔I5)未満であることが特に好ましい。 For example, in the first direction X, it is preferable that the distance between the first mesa portion 71 and the third contact region 80 is less than the length of the third contact region 80. It is preferable that the distance between the first mesa portion 71 and the third contact region 80 is less than the seventh width W7 described above. It is particularly preferable that the distance between the first mesa portion 71 and the third contact region 80 is less than the width of the first mesa portion 71 (the fifth interval I5).
 複数の第3コンタクト領域80は、第1メサ部71および第2メサ部72の間の範囲に形成された少なくとも1つ(この例では1つ)の最外の第3コンタクト領域80を含む。最外の第3コンタクト領域80は、第2方向Yに第1トレンチ抵抗構造42に対向している。最外の第3コンタクト領域80は、最外の第2コンタクト領域79と共に第2メサ部72を挟み込んでいる。 The multiple third contact regions 80 include at least one (in this example, one) outermost third contact region 80 formed in the range between the first mesa portion 71 and the second mesa portion 72. The outermost third contact region 80 faces the first trench resistor structure 42 in the second direction Y. The outermost third contact region 80, together with the outermost second contact region 79, sandwiches the second mesa portion 72.
 最外の第3コンタクト領域80は、第1メサ部71および第2メサ部72から第1方向Xに間隔を空けて形成されていることが好ましい。つまり、最外の第3コンタクト領域80は、第2方向Yに第1トレンチ抵抗構造42に対向し、第2方向Yに第1ダミートレンチ構造61に対向していないことが好ましい。 The outermost third contact region 80 is preferably formed at a distance in the first direction X from the first mesa portion 71 and the second mesa portion 72. In other words, the outermost third contact region 80 preferably faces the first trench resistor structure 42 in the second direction Y, but does not face the first dummy trench structure 61 in the second direction Y.
 たとえば、第1方向Xに関して、第2メサ部72および第3コンタクト領域80の間の距離は、第3コンタクト領域80の長さ未満であることが好ましい。第2メサ部72および第3コンタクト領域80の間の距離は、前述の第7幅W7未満であることが好ましい。 For example, in the first direction X, the distance between the second mesa portion 72 and the third contact region 80 is preferably less than the length of the third contact region 80. The distance between the second mesa portion 72 and the third contact region 80 is preferably less than the aforementioned seventh width W7.
 第2メサ部72および最外の第3コンタクト領域80の間の距離は、第2メサ部72の幅(第7間隔I7)未満であることが特に好ましい。第2メサ部72を挟んで隣り合う最外の第2コンタクト領域79および最外の第3コンタクト領域80の間の距離は、第1メサ部71を挟んで隣り合う2つの第3コンタクト領域80の間の距離とほぼ等しいことが好ましい。 It is particularly preferable that the distance between the second mesa portion 72 and the outermost third contact region 80 is less than the width (seventh interval I7) of the second mesa portion 72. It is preferable that the distance between the outermost second contact region 79 and the outermost third contact region 80 adjacent to each other across the second mesa portion 72 is approximately equal to the distance between two adjacent third contact regions 80 across the first mesa portion 71.
 1つの第2ダミートレンチ構造62に沿う複数の第3コンタクト領域80は、他の第2ダミートレンチ構造62に沿う複数の第3コンタクト領域80に第2方向Yに対向している。つまり、複数の第3コンタクト領域80は、この形態では、平面視において全体として第1方向Xおよび第2方向Yに間隔を空けて行列状に配列されている。この場合、複数の第3コンタクト領域80は、複数の第2コンタクト領域79と共に行列状に配列されていてもよい。また、複数の第3コンタクト領域80は、複数の第1コンタクト領域38と共に行列状に配列されていてもよい。 The multiple third contact regions 80 along one second dummy trench structure 62 face the multiple third contact regions 80 along the other second dummy trench structures 62 in the second direction Y. That is, in this embodiment, the multiple third contact regions 80 are arranged in a matrix with gaps in the first direction X and the second direction Y as a whole in a plan view. In this case, the multiple third contact regions 80 may be arranged in a matrix with the multiple second contact regions 79. The multiple third contact regions 80 may also be arranged in a matrix with the multiple first contact regions 38.
 1つの第2ダミートレンチ構造62に沿う複数の第3コンタクト領域80は、他の第2ダミートレンチ構造62に沿う複数の第3コンタクト領域80の間の領域に第2方向Yに対向するように第1方向Xにずれて配列されていてもよい。つまり、複数の第3コンタクト領域80は、平面視において全体として第1方向Xおよび第2方向Yに間隔を空けて千鳥状に配列されていてもよい。この場合、複数の第3コンタクト領域80は、複数の第2コンタクト領域79と共に千鳥状に配列されていてもよい。また、複数の第3コンタクト領域80は、複数の第1コンタクト領域38と共に千鳥状に配列されていてもよい。 The third contact regions 80 along one second dummy trench structure 62 may be arranged offset in the first direction X so as to face the second direction Y in a region between the third contact regions 80 along the other second dummy trench structure 62. In other words, the third contact regions 80 may be arranged in a staggered manner with intervals in the first direction X and the second direction Y as a whole in a plan view. In this case, the third contact regions 80 may be arranged in a staggered manner together with the second contact regions 79. The third contact regions 80 may also be arranged in a staggered manner together with the first contact regions 38.
 図13を参照して、半導体装置1は、第1終端領域15Aにおいて第1主面3(活性面8)に形成された終端ダミー構造85を含む。終端ダミー構造85は、ゲート抵抗40の近傍における局所的な電界集中を緩和し、耐圧(たとえばブレークダウン電圧)を向上させることを1つの目的として活性面8(第1終端領域15A)に組み込まれている。終端ダミー構造85の有無は任意であり、終端ダミー構造85を備えない形態が採用されてもよい。 Referring to FIG. 13, the semiconductor device 1 includes a termination dummy structure 85 formed on the first main surface 3 (active surface 8) in the first termination region 15A. The termination dummy structure 85 is incorporated in the active surface 8 (first termination region 15A) for one purpose of alleviating local electric field concentration in the vicinity of the gate resistor 40 and improving the breakdown voltage (e.g., breakdown voltage). The presence or absence of the termination dummy structure 85 is optional, and a configuration not including the termination dummy structure 85 may be adopted.
 終端ダミー構造85は、ゲート抵抗40に対して第1側面5A側(第1接続面10A側)の領域に配置されている。終端ダミー構造85は、活性面8の終縁部に形成されている。終端ダミー構造85は、第2方向Yにゲート抵抗40およびダミー構造55に対向している。終端ダミー構造85は、第2方向Yにゲート抵抗40を挟んで活性領域12に対向し、第2方向Yに第1ダミー構造56を挟んで第1周縁領域14Aに対向し、第2方向Yに第2ダミー構造57を挟んで第2周縁領域14Bに対向している。 The termination dummy structure 85 is disposed in a region on the first side surface 5A side (first connection surface 10A side) of the gate resistor 40. The termination dummy structure 85 is formed at the end edge of the active surface 8. The termination dummy structure 85 faces the gate resistor 40 and the dummy structure 55 in the second direction Y. The termination dummy structure 85 faces the active region 12 across the gate resistor 40 in the second direction Y, faces the first peripheral region 14A across the first dummy structure 56 in the second direction Y, and faces the second peripheral region 14B across the second dummy structure 57 in the second direction Y.
 以下、図24~図26を参照して、終端ダミー構造85が具体的に説明される。図24は、終端ダミー構造85のレイアウトを示す拡大平面図である。図25は、終端ダミー構造85のレイアウトを示す更なる拡大平面図である。図26は、図25に示すXXVI-XXVI線に沿う断面図である。 Below, the termination dummy structure 85 will be described in detail with reference to Figures 24 to 26. Figure 24 is an enlarged plan view showing the layout of the termination dummy structure 85. Figure 25 is a further enlarged plan view showing the layout of the termination dummy structure 85. Figure 26 is a cross-sectional view taken along line XXVI-XXVI shown in Figure 25.
 図24~図26を参照して、終端ダミー構造85は、第1終端領域15Aに形成された少なくとも1つ(この形態では複数)のトレンチ終端構造86を含む。複数のトレンチ終端構造86には、第2電位としてのソース電位VSが付与される。複数のトレンチ終端構造86は、第1方向Xに延びる帯状にそれぞれ形成され、第2方向Yに間隔を空けて配列されている。複数のトレンチ終端構造86は、第2方向Yに第1トレンチ抵抗構造42および第1ダミートレンチ構造61に対向している。 Referring to Figures 24 to 26, the termination dummy structure 85 includes at least one (in this embodiment, multiple) trench termination structures 86 formed in the first termination region 15A. A source potential VS is applied to the multiple trench termination structures 86 as a second potential. The multiple trench termination structures 86 are each formed in a band shape extending in the first direction X and are arranged at intervals in the second direction Y. The multiple trench termination structures 86 face the first trench resistor structure 42 and the first dummy trench structure 61 in the second direction Y.
 複数のトレンチ終端構造86は、第3接続面10Cおよび第4接続面10Dのうちの少なくとも一方から露出している。トレンチ終端構造86は、この形態では、第3接続面10Cおよび第4接続面10Dの双方を貫通し、第3接続面10Cおよび第4接続面10Dの双方から露出している。複数のトレンチ終端構造86は、第1半導体領域6に至るようにボディ領域17を貫通している。複数のトレンチ終端構造86は、第1半導体領域6の底部から活性面8側に間隔を空けて形成されている。 The multiple trench termination structures 86 are exposed from at least one of the third connection surface 10C and the fourth connection surface 10D. In this embodiment, the trench termination structure 86 penetrates both the third connection surface 10C and the fourth connection surface 10D and is exposed from both the third connection surface 10C and the fourth connection surface 10D. The multiple trench termination structures 86 penetrate the body region 17 to reach the first semiconductor region 6. The multiple trench termination structures 86 are formed at intervals from the bottom of the first semiconductor region 6 toward the active surface 8.
 以下、1つのトレンチ終端構造86が説明される。トレンチ終端構造86は、第2方向Yに第8幅W8を有し、法線方向Zに第8深さD8を有している。第8幅W8は、前述の第5幅W5(第2幅W2)とほぼ等しいことが好ましい。第8幅W8は、0.1μm以上3μm以下であってもよい。第8幅W8は、0.5μm以上2μm以下であることが好ましい。 Below, one trench termination structure 86 is described. The trench termination structure 86 has an eighth width W8 in the second direction Y and an eighth depth D8 in the normal direction Z. The eighth width W8 is preferably approximately equal to the fifth width W5 (second width W2) described above. The eighth width W8 may be 0.1 μm or more and 3 μm or less. The eighth width W8 is preferably 0.5 μm or more and 2 μm or less.
 第8深さD8は、前述の第4深さD4(第1深さD1)以上である。第8深さD8は、この形態では、第4深さD4(第1深さD1)よりも大きい。第8深さD8は、第4深さD4(第1深さD1)の1.5倍以上3倍以下であることが好ましい。第8深さD8は、この形態では、前述の第5深さD5(第2深さD2)とほぼ等しい。第8深さD8は、外周面9の外周深さDOとほぼ等しい。第8深さD8は、0.5μm以上5μm以下であってもよい。第8深さD8は、2.5μm以下であることが特に好ましい。 The eighth depth D8 is equal to or greater than the fourth depth D4 (first depth D1) described above. In this embodiment, the eighth depth D8 is greater than the fourth depth D4 (first depth D1). It is preferable that the eighth depth D8 is 1.5 to 3 times the fourth depth D4 (first depth D1). In this embodiment, the eighth depth D8 is approximately equal to the fifth depth D5 (second depth D2) described above. The eighth depth D8 is approximately equal to the outer circumferential depth DO of the outer circumferential surface 9. The eighth depth D8 may be 0.5 μm to 5 μm. It is particularly preferable that the eighth depth D8 is 2.5 μm or less.
 複数のトレンチ終端構造86は、第2方向Yに互いに第8間隔I8を空けて配置されている。第8間隔I8は、第8幅W8の0.5倍以上2倍以下であることが好ましい。第8間隔I8は、第8幅W8未満であることが特に好ましい。第8幅W8は、前述の第4間隔I4(第1間隔I1)とほぼ等しいことが好ましい。第8幅W8は、0.1μm以上2.5μm以下であってもよい。第8幅W8は、0.5μm以上1.5μm以下であることが好ましい。 The multiple trench termination structures 86 are arranged at an eighth interval I8 from each other in the second direction Y. The eighth interval I8 is preferably 0.5 to 2 times the eighth width W8. It is particularly preferable that the eighth interval I8 is less than the eighth width W8. It is preferable that the eighth width W8 is approximately equal to the aforementioned fourth interval I4 (first interval I1). The eighth width W8 may be 0.1 μm to 2.5 μm. It is preferable that the eighth width W8 is 0.5 μm to 1.5 μm.
 ゲート抵抗40側の最内のトレンチ終端構造86は、この形態では、第2方向Yに最外の第1トレンチ抵抗構造42に隣り合うように最外の第1トレンチ抵抗構造42から前述の第4間隔I4を空けて配置されている。また、最内のトレンチ終端構造86は、この形態では、第2方向Yに最外の第1ダミートレンチ構造61に隣り合うように最外の第1ダミートレンチ構造61から前述の第6間隔I6を空けて配置されている。 In this embodiment, the innermost trench termination structure 86 on the gate resistor 40 side is disposed adjacent to the outermost first trench resistance structure 42 in the second direction Y, with the aforementioned fourth interval I4 between them. Also, in this embodiment, the innermost trench termination structure 86 is disposed adjacent to the outermost first dummy trench structure 61 in the second direction Y, with the aforementioned sixth interval I6 between them.
 トレンチ終端構造86は、終端トレンチ87、終端絶縁膜88および終端埋設電極89を含む。終端トレンチ87は、活性面8に形成され、トレンチ終端構造86の壁面を区画している。終端トレンチ87の側壁は、第3接続面10Cに連通している。終端トレンチ87の底壁は、外周面9に連通している。 The trench termination structure 86 includes a termination trench 87, a termination insulating film 88, and a termination buried electrode 89. The termination trench 87 is formed in the active surface 8 and defines the wall surface of the trench termination structure 86. The side wall of the termination trench 87 is in communication with the third connection surface 10C. The bottom wall of the termination trench 87 is in communication with the outer peripheral surface 9.
 終端絶縁膜88は、終端トレンチ87の壁面を被覆し、活性面8において主面絶縁膜16に接続されている。終端絶縁膜88は、第3接続面10Cの連通部および外周面9の連通部において主面絶縁膜16に接続されている。終端絶縁膜88は、酸化シリコン膜、窒化シリコン膜および酸窒化シリコン膜のうちの少なくとも1つを含んでいてもよい。 The termination insulating film 88 covers the wall surface of the termination trench 87 and is connected to the main surface insulating film 16 at the active surface 8. The termination insulating film 88 is connected to the main surface insulating film 16 at the communicating portion of the third connection surface 10C and the communicating portion of the outer peripheral surface 9. The termination insulating film 88 may include at least one of a silicon oxide film, a silicon nitride film, and a silicon oxynitride film.
 終端絶縁膜88は、この形態では、酸化シリコン膜からなる単層構造を有している。終端絶縁膜88は、チップ2の酸化物からなる酸化シリコン膜を含むことが特に好ましい。終端埋設電極89は、終端絶縁膜88を挟んで終端トレンチ87に埋設されている。終端埋設電極89は、導電性ポリシリコンを含んでいてもよい。 In this embodiment, the termination insulating film 88 has a single-layer structure made of a silicon oxide film. It is particularly preferable that the termination insulating film 88 includes a silicon oxide film made of an oxide of the chip 2. The termination buried electrode 89 is embedded in the termination trench 87 with the termination insulating film 88 in between. The termination buried electrode 89 may include conductive polysilicon.
 半導体装置1は、第1終端領域15Aにおいて複数のトレンチ終端構造86に沿う領域に形成されたp型の複数の第8ウェル領域90を含む。第8ウェル領域90は、この形態では、ボディ領域17よりも高いp型不純物濃度を有している。むろん、第8ウェル領域90のp型不純物濃度は、ボディ領域17よりも低くてもよい。第8ウェル領域90のp型不純物濃度は、第2ウェル領域36(第1ウェル領域35)のp型不純物濃度とほぼ等しいことが好ましい。 The semiconductor device 1 includes a plurality of p-type eighth well regions 90 formed in the first termination region 15A in a region along the plurality of trench termination structures 86. In this embodiment, the eighth well regions 90 have a higher p-type impurity concentration than the body region 17. Of course, the p-type impurity concentration of the eighth well regions 90 may be lower than the body region 17. It is preferable that the p-type impurity concentration of the eighth well regions 90 is approximately equal to the p-type impurity concentration of the second well region 36 (first well region 35).
 複数の第8ウェル領域90は、隣り合うトレンチ終端構造86から間隔を空けて対応するトレンチ終端構造86の壁面を被覆し、活性面8の表層部においてボディ領域17に電気的に接続されている。複数の第8ウェル領域90は、平面視において対応するトレンチ終端構造86に沿って帯状に延び、第3接続面10Cおよび第4接続面10Dから露出している。 The multiple eighth well regions 90 cover the wall surfaces of the corresponding trench termination structures 86 at intervals from the adjacent trench termination structures 86, and are electrically connected to the body region 17 at the surface portion of the active surface 8. The multiple eighth well regions 90 extend in a band shape along the corresponding trench termination structures 86 in a plan view, and are exposed from the third connection surface 10C and the fourth connection surface 10D.
 複数の第8ウェル領域90は、第1半導体領域6の底部から活性面8側に間隔を空けて形成され、第1半導体領域6の一部を挟んで第2半導体領域7に対向している。複数の第8ウェル領域90の底部は、複数の第1ウェル領域35の底部の深さ位置に対して第1半導体領域6の底部側に位置している。複数の第8ウェル領域90の底部は、複数の第2ウェル領域36の底部とほぼ等しい深さに形成されている。複数の第8ウェル領域90は、第1半導体領域6とpn接合部を形成している。 The multiple eighth well regions 90 are formed at intervals from the bottom of the first semiconductor region 6 toward the active surface 8, and face the second semiconductor region 7 across a portion of the first semiconductor region 6. The bottoms of the multiple eighth well regions 90 are located on the bottom side of the first semiconductor region 6 relative to the depth position of the bottoms of the multiple first well regions 35. The bottoms of the multiple eighth well regions 90 are formed at a depth approximately equal to the bottoms of the multiple second well regions 36. The multiple eighth well regions 90 form pn junctions with the first semiconductor region 6.
 図4を再度参照して、半導体装置1は、第2終端領域15Bにおいて第1主面3(活性面8)に形成されたダミー構造55および終端ダミー構造85を含む。半導体装置1は、第2終端領域15Bにおいてゲート抵抗40を含まない。第2終端領域15B側のダミー構造55は、活性領域12に対して第4側面5D側(第4接続面10D側)の領域に配置され、第2方向Yに活性領域12および周縁領域14に対向している。 Referring again to FIG. 4, the semiconductor device 1 includes a dummy structure 55 and a termination dummy structure 85 formed on the first main surface 3 (active surface 8) in the second termination region 15B. The semiconductor device 1 does not include a gate resistor 40 in the second termination region 15B. The dummy structure 55 on the second termination region 15B side is disposed in a region on the fourth side surface 5D side (fourth connection surface 10D side) of the active region 12, and faces the active region 12 and the peripheral region 14 in the second direction Y.
 第2終端領域15B側のダミー構造55は、第1終端領域15A側の第1ダミー構造56と同様、複数のダミートレンチ構造60(複数の第1ダミートレンチ構造61および複数の第2ダミートレンチ構造62)を含む。第2終端領域15B側の複数のダミートレンチ構造60は、第3接続面10Cおよび第4接続面10Dの双方を貫通し、第3接続面10Cおよび第4接続面10Dの双方から露出している。その他、第2終端領域15B側のダミー構造55の構成は、第1終端領域15A側のダミー構造55(第1ダミー構造56)の構成と同様である。 The dummy structure 55 on the second termination region 15B side includes multiple dummy trench structures 60 (multiple first dummy trench structures 61 and multiple second dummy trench structures 62), similar to the first dummy structure 56 on the first termination region 15A side. The multiple dummy trench structures 60 on the second termination region 15B side penetrate both the third connection surface 10C and the fourth connection surface 10D, and are exposed from both the third connection surface 10C and the fourth connection surface 10D. Otherwise, the configuration of the dummy structure 55 on the second termination region 15B side is similar to the configuration of the dummy structure 55 (first dummy structure 56) on the first termination region 15A side.
 第2終端領域15B側の終端ダミー構造85は、第1終端領域15A側の終端ダミー構造85の構成と同様の構成を有している。第2終端領域15B側の終端ダミー構造85の他の説明については第1終端領域15A側の終端ダミー構造85の説明が適用される。 The termination dummy structure 85 on the second termination region 15B side has a configuration similar to the configuration of the termination dummy structure 85 on the first termination region 15A side. For other descriptions of the termination dummy structure 85 on the second termination region 15B side, the description of the termination dummy structure 85 on the first termination region 15A side applies.
 具体的な図示は省略されるが、半導体装置1は、第2終端領域15Bにおいても複数の第6ウェル領域77、複数の第7ウェル領域78、複数の第2コンタクト領域79および複数の第8ウェル領域90を含む。第2終端領域15B側の第6ウェル領域77、第7ウェル領域78、第2コンタクト領域79および第8ウェル領域90の説明については、第1終端領域15A側の第6ウェル領域77、第7ウェル領域78、第2コンタクト領域79および第8ウェル領域90の説明が適用される。 Although specific illustrations are omitted, the semiconductor device 1 also includes a plurality of sixth well regions 77, a plurality of seventh well regions 78, a plurality of second contact regions 79, and a plurality of eighth well regions 90 in the second termination region 15B. The explanations of the sixth well region 77, the seventh well region 78, the second contact region 79, and the eighth well region 90 on the second termination region 15B side are the same as those of the sixth well region 77, the seventh well region 78, the second contact region 79, and the eighth well region 90 on the first termination region 15A side.
 次に、図28の断面図を参照して、外周領域13の構造が説明される。図28を参照して、半導体装置1は、外周面9の表層部に形成されたp型のアウターウェル領域91を含む。アウターウェル領域91は、第1コンタクト領域38よりも低いp型不純物濃度を有している。 Next, the structure of the peripheral region 13 will be described with reference to the cross-sectional view of FIG. 28. Referring to FIG. 28, the semiconductor device 1 includes a p-type outer well region 91 formed in the surface layer of the peripheral surface 9. The outer well region 91 has a lower p-type impurity concentration than the first contact region 38.
 アウターウェル領域91のp型不純物濃度は、この形態では、ボディ領域17よりも高い。むろん、アウターウェル領域91のp型不純物濃度は、ボディ領域17よりも低くてもよい。アウターウェル領域91は、第1ウェル領域35(第2ウェル領域36)とほぼ等しいp型不純物濃度を有していることが好ましい。 In this embodiment, the p-type impurity concentration of the outer well region 91 is higher than that of the body region 17. Of course, the p-type impurity concentration of the outer well region 91 may be lower than that of the body region 17. It is preferable that the outer well region 91 has a p-type impurity concentration approximately equal to that of the first well region 35 (second well region 36).
 アウターウェル領域91は、平面視において外周面9の周縁(第1~第4側面5A~5D)から活性面8側に間隔を空けて形成され、活性面8に沿って帯状に延びている。アウターウェル領域91は、この形態では、平面視において活性面8を取り囲む環状(具体的には四角環状)に形成されている。アウターウェル領域91は、外周面9の表層部から第1~第4接続面10A~10Dの表層部に向けて延び、第1~第4接続面10A~10Dを被覆している。 The outer well region 91 is formed at a distance from the periphery of the outer peripheral surface 9 (first to fourth side surfaces 5A to 5D) toward the active surface 8 in a plan view, and extends in a band shape along the active surface 8. In this embodiment, the outer well region 91 is formed in a ring shape (specifically, a square ring shape) that surrounds the active surface 8 in a plan view. The outer well region 91 extends from the surface layer of the outer peripheral surface 9 toward the surface layers of the first to fourth connection surfaces 10A to 10D, and covers the first to fourth connection surfaces 10A to 10D.
 アウターウェル領域91は、活性面8の表層部においてボディ領域17に電気的に接続されている。アウターウェル領域91は、第3接続面10C(第4接続面10D)および第1トレンチソース構造25の連通部において第2ウェル領域36に接続されている。アウターウェル領域91は、第3接続面10C(第4接続面10D)および第2トレンチソース構造30の連通部において第3ウェル領域37に接続されている。 The outer well region 91 is electrically connected to the body region 17 at the surface portion of the active surface 8. The outer well region 91 is connected to the second well region 36 at the third connection surface 10C (fourth connection surface 10D) and the communication portion of the first trench source structure 25. The outer well region 91 is connected to the third well region 37 at the communication portion of the third connection surface 10C (fourth connection surface 10D) and the second trench source structure 30.
 アウターウェル領域91は、第3接続面10C(第4接続面10D)および第1ダミートレンチ構造61の連通部において第6ウェル領域77に接続されている。アウターウェル領域91は、第3接続面10C(第4接続面10D)および第2ダミートレンチ構造62の連通部において第7ウェル領域78に接続されている。アウターウェル領域91は、第3接続面10C(第4接続面10D)およびトレンチ終端構造86の連通部において第8ウェル領域90に接続されている。 The outer well region 91 is connected to the sixth well region 77 at the third connection surface 10C (fourth connection surface 10D) and the communication portion of the first dummy trench structure 61. The outer well region 91 is connected to the seventh well region 78 at the communication portion of the third connection surface 10C (fourth connection surface 10D) and the second dummy trench structure 62. The outer well region 91 is connected to the eighth well region 90 at the communication portion of the third connection surface 10C (fourth connection surface 10D) and the trench termination structure 86.
 アウターウェル領域91は、第1半導体領域6の底部から外周面9側に間隔を空けて形成され、第1半導体領域6の一部を挟んで第2半導体領域7に対向している。アウターウェル領域91は、第1トレンチソース構造25(第2トレンチ抵抗構造43)の底壁よりも第1半導体領域6の底部側に位置している。アウターウェル領域91の底部は、第1コンタクト領域38の底部よりも第1半導体領域6の底部側に位置している。アウターウェル領域91の底部は、第2ウェル領域36の底部とほぼ等しい深さ位置に形成されていることが好ましい。アウターウェル領域91は、第1半導体領域6とpn接合部を形成している。 The outer well region 91 is formed at a distance from the bottom of the first semiconductor region 6 toward the outer circumferential surface 9, and faces the second semiconductor region 7 across a portion of the first semiconductor region 6. The outer well region 91 is located closer to the bottom of the first semiconductor region 6 than the bottom wall of the first trench source structure 25 (second trench resistor structure 43). The bottom of the outer well region 91 is located closer to the bottom of the first semiconductor region 6 than the bottom of the first contact region 38. It is preferable that the bottom of the outer well region 91 is formed at a depth position approximately equal to the bottom of the second well region 36. The outer well region 91 forms a pn junction with the first semiconductor region 6.
 半導体装置1は、アウターウェル領域91の表層部に形成されたp型のアウターコンタクト領域92を含む。アウターコンタクト領域92は、ボディ領域17よりも高いp型不純物濃度を有している。アウターコンタクト領域92のp型不純物濃度は、アウターウェル領域91よりも高い。アウターコンタクト領域92のp型不純物濃度は、第1コンタクト領域38(第2コンタクト領域79)のp型不純物濃度とほぼ等しいことが好ましい。 The semiconductor device 1 includes a p-type outer contact region 92 formed in a surface layer of the outer well region 91. The outer contact region 92 has a higher p-type impurity concentration than the body region 17. The p-type impurity concentration of the outer contact region 92 is higher than that of the outer well region 91. It is preferable that the p-type impurity concentration of the outer contact region 92 is approximately equal to the p-type impurity concentration of the first contact region 38 (second contact region 79).
 アウターコンタクト領域92は、平面視において活性面8の周縁(第1~第4接続面10A~10D)および外周面9の周縁(第1~第4側面5A~5D)から間隔を空けてアウターウェル領域91の表層部に形成され、活性面8に沿って延びる帯状に形成されている。アウターコンタクト領域92は、この形態では、平面視において活性面8を取り囲む環状(具体的には四角環状)に形成されている。 The outer contact region 92 is formed in the surface layer of the outer well region 91 at a distance from the periphery of the active surface 8 (first to fourth connection surfaces 10A to 10D) and the periphery of the outer peripheral surface 9 (first to fourth side surfaces 5A to 5D) in a plan view, and is formed in a band shape extending along the active surface 8. In this embodiment, the outer contact region 92 is formed in a ring shape (specifically, a square ring shape) surrounding the active surface 8 in a plan view.
 アウターコンタクト領域92は、アウターウェル領域91の底部から外周面9側に間隔を空けて形成され、アウターウェル領域91の一部を挟んで第1半導体領域6に対向している。アウターコンタクト領域92は、第1トレンチソース構造25(第2トレンチ抵抗構造43)の底壁よりも第1半導体領域6の底部側に位置している。アウターコンタクト領域92の底部は、第1コンタクト領域38(第2コンタクト領域79)の底部とほぼ等しい深さ位置に形成されていることが好ましい。 The outer contact region 92 is formed at a distance from the bottom of the outer well region 91 toward the outer peripheral surface 9, and faces the first semiconductor region 6 across a portion of the outer well region 91. The outer contact region 92 is located closer to the bottom of the first semiconductor region 6 than the bottom wall of the first trench source structure 25 (second trench resistor structure 43). It is preferable that the bottom of the outer contact region 92 is formed at a depth position approximately equal to the bottom of the first contact region 38 (second contact region 79).
 半導体装置1は、外周面9の表層部において外周面9の周縁およびアウターウェル領域91の間の領域に形成された少なくとも1つ(好ましくは2個以上20個以下)のp型のフィールド領域93を含む。半導体装置1は、この形態では、4個のフィールド領域93を含む。複数のフィールド領域93は、電気的に浮遊状態に形成され、外周面9においてチップ2内の電界を緩和する。 The semiconductor device 1 includes at least one (preferably 2 to 20) p-type field region 93 formed in the surface layer of the outer peripheral surface 9 in a region between the periphery of the outer peripheral surface 9 and the outer well region 91. In this embodiment, the semiconductor device 1 includes four field regions 93. The multiple field regions 93 are formed in an electrically floating state and reduce the electric field within the chip 2 at the outer peripheral surface 9.
 フィールド領域93の個数、幅、深さ、p型不純物濃度等は任意であり、緩和すべき電界に応じて種々の値を取り得る。フィールド領域93は、アウターコンタクト領域92よりも低いp型不純物濃度を有していてもよい。フィールド領域93は、アウターウェル領域91よりも高いp型不純物濃度を有していてもよい。フィールド領域93は、アウターウェル領域91よりも低いp型不純物濃度を有していてもよい。 The number, width, depth, p-type impurity concentration, etc. of the field regions 93 are arbitrary and can take various values depending on the electric field to be relaxed. The field regions 93 may have a lower p-type impurity concentration than the outer contact region 92. The field regions 93 may have a higher p-type impurity concentration than the outer well region 91. The field regions 93 may have a lower p-type impurity concentration than the outer well region 91.
 複数のフィールド領域93は、アウターウェル領域91側から外周面9の周縁側に間隔を空けて配列されている。複数のフィールド領域93は、平面視において活性面8に沿って延びる帯状に形成されている。複数のフィールド領域93は、この形態では、平面視において活性面8を取り囲む環状(具体的には四角環状)に形成されている。 The multiple field regions 93 are arranged at intervals from the outer well region 91 side to the peripheral edge side of the outer peripheral surface 9. The multiple field regions 93 are formed in a band shape extending along the active surface 8 in a plan view. In this embodiment, the multiple field regions 93 are formed in a ring shape (specifically, a square ring shape) surrounding the active surface 8 in a plan view.
 複数のフィールド領域93は、第1半導体領域6の底部から外周面9側に間隔を空けて形成され、第1半導体領域6の一部を挟んで第2半導体領域7に対向している。複数のフィールド領域93は、第1トレンチソース構造25の底壁よりも第1半導体領域6の底部側に位置している。複数のフィールド領域93の底部は、第1コンタクト領域38の底部よりも第1半導体領域6の底部側に位置している。複数のフィールド領域93の底部は、第2ウェル領域36の底部とほぼ等しい深さ位置に形成されていてもよい。 The multiple field regions 93 are formed at intervals from the bottom of the first semiconductor region 6 toward the outer circumferential surface 9, and face the second semiconductor region 7 across a portion of the first semiconductor region 6. The multiple field regions 93 are located closer to the bottom of the first semiconductor region 6 than the bottom wall of the first trench source structure 25. The bottoms of the multiple field regions 93 are located closer to the bottom of the first semiconductor region 6 than the bottom of the first contact region 38. The bottoms of the multiple field regions 93 may be formed at a depth position approximately equal to the bottom of the second well region 36.
 半導体装置1は、第1~第4接続面10A~10Dのうちの少なくとも1つを被覆するように外周面9の上に形成されたサイドウォール配線95を含む。サイドウォール配線95は、具体的には、主面絶縁膜16の上に配置されている。サイドウォール配線95は、活性面8および外周面9の間に形成された段差を緩和するサイドウォール構造としても機能する。 The semiconductor device 1 includes a sidewall wiring 95 formed on the outer peripheral surface 9 so as to cover at least one of the first to fourth connection surfaces 10A to 10D. Specifically, the sidewall wiring 95 is disposed on the main surface insulating film 16. The sidewall wiring 95 also functions as a sidewall structure that reduces the step formed between the active surface 8 and the outer peripheral surface 9.
 サイドウォール配線95は、少なくとも第3接続面10Cおよび第4接続面10Dのいずれか一方に沿って延びる帯状に形成されていることが好ましい。サイドウォール配線95は、この形態では、平面視において活性面8を取り囲むように第1~第4接続面10A~10Dに沿って延びる環状(具体的には四角環状)に形成されている。サイドウォール配線95のうち活性面8の四隅を被覆する部分は、外周面9側に向かう湾曲状に形成されている。 The sidewall wiring 95 is preferably formed in a band shape extending along at least one of the third connection surface 10C and the fourth connection surface 10D. In this embodiment, the sidewall wiring 95 is formed in a ring shape (specifically, a square ring shape) extending along the first to fourth connection surfaces 10A to 10D so as to surround the active surface 8 in a plan view. The portions of the sidewall wiring 95 that cover the four corners of the active surface 8 are formed in a curved shape toward the outer circumferential surface 9.
 サイドウォール配線95は、外周面9に沿って膜状に延びる部分、および、第1~第4接続面10A~10Dに沿って膜状に延びる部分を含む。サイドウォール配線95のうち外周面9の上に位置する部分は、活性面8に対して外周面9側の領域において外周面9を被覆していてもよい。サイドウォール配線95のうち外周面9の上に位置する部分は、活性台地11の厚さ(外周深さDO)未満の厚さを有していてもよい。 The sidewall wiring 95 includes a portion that extends in a film-like manner along the outer peripheral surface 9, and a portion that extends in a film-like manner along the first to fourth connection surfaces 10A to 10D. The portion of the sidewall wiring 95 located on the outer peripheral surface 9 may cover the outer peripheral surface 9 in a region on the outer peripheral surface 9 side relative to the active surface 8. The portion of the sidewall wiring 95 located on the outer peripheral surface 9 may have a thickness less than the thickness of the active plateau 11 (outer peripheral depth DO).
 サイドウォール配線95は、外周面9において主面絶縁膜16を挟んでアウターウェル領域91に対向している。サイドウォール配線95は、主面絶縁膜16を挟んでアウターコンタクト領域92に対向していてもよい。サイドウォール配線95は、この形態では、平面視においてフィールド領域93から活性面8側に間隔を空けて形成されている。 The sidewall wiring 95 faces the outer well region 91 on the outer peripheral surface 9, with the main surface insulating film 16 in between. The sidewall wiring 95 may also face the outer contact region 92, with the main surface insulating film 16 in between. In this embodiment, the sidewall wiring 95 is formed at a distance from the field region 93 toward the active surface 8 in a plan view.
 サイドウォール配線95は、第1~第4接続面10A~10Dにおいて主面絶縁膜16を挟んで第2ウェル領域36、第3ウェル領域37、第6ウェル領域77、第7ウェル領域78、第8ウェル領域90およびアウターウェル領域91に対向している。サイドウォール配線95は、この形態では、主面絶縁膜16を挟んでボディ領域17にも対向している。 The sidewall wiring 95 faces the second well region 36, the third well region 37, the sixth well region 77, the seventh well region 78, the eighth well region 90, and the outer well region 91 at the first to fourth connection surfaces 10A to 10D, with the main surface insulating film 16 in between. In this embodiment, the sidewall wiring 95 also faces the body region 17, with the main surface insulating film 16 in between.
 サイドウォール配線95は、第1~第4接続面10A~10Dにおいて第1トレンチソース構造25の露出部、第2トレンチソース構造30の露出部、第1ダミートレンチ構造61の露出部、第2ダミートレンチ構造62の露出部およびトレンチ終端構造86の露出部を被覆している。 The sidewall wiring 95 covers the exposed portion of the first trench source structure 25, the exposed portion of the second trench source structure 30, the exposed portion of the first dummy trench structure 61, the exposed portion of the second dummy trench structure 62, and the exposed portion of the trench termination structure 86 at the first to fourth connection surfaces 10A to 10D.
 これにより、サイドウォール配線95は、第1トレンチソース構造25、第2トレンチソース構造30、第1ダミートレンチ構造61、第2ダミートレンチ構造62およびトレンチ終端構造86に電気的に接続されている。つまり、サイドウォール配線95は、外周面9側から接続対象にソース電位VSを付与する。 As a result, the sidewall wiring 95 is electrically connected to the first trench source structure 25, the second trench source structure 30, the first dummy trench structure 61, the second dummy trench structure 62, and the trench termination structure 86. In other words, the sidewall wiring 95 applies the source potential VS to the connection target from the outer peripheral surface 9 side.
 サイドウォール配線95は、第1~第4接続面10A~10Dのうちの少なくとも1つから活性面8の縁部の上に乗り上げたオーバラップ部96を有している。オーバラップ部96は、平面視において活性面8を膜状に被覆し、活性面8の縁部に沿って延びる帯状に形成されている。オーバラップ部96は、この形態では、平面視において活性面8の内方部を取り囲む環状(具体的には四角環状)に形成されている。 The sidewall wiring 95 has an overlapping portion 96 that extends from at least one of the first to fourth connection surfaces 10A to 10D onto the edge of the active surface 8. The overlapping portion 96 covers the active surface 8 in a film-like manner in a plan view, and is formed in a band shape extending along the edge of the active surface 8. In this form, the overlapping portion 96 is formed in a ring shape (specifically, a square ring shape) that surrounds the inner part of the active surface 8 in a plan view.
 オーバラップ部96は、活性面8の上おいて第1トレンチソース構造25、第2トレンチソース構造30、第1ダミートレンチ構造61、第2ダミートレンチ構造62およびトレンチ終端構造86に電気的に接続されている。 The overlap portion 96 is electrically connected to the first trench source structure 25, the second trench source structure 30, the first dummy trench structure 61, the second dummy trench structure 62 and the trench termination structure 86 on the active surface 8.
 サイドウォール配線95は、この形態では、導電性ポリシリコンを含み、第1ソース埋設電極28、第2ソース埋設電極33、第1ダミー埋設電極65、第2ダミー埋設電極68および終端埋設電極89と一体的に形成されている。むろん、サイドウォール配線95は、第1ソース埋設電極28、第2ソース埋設電極33、第1ダミー埋設電極65、第2ダミー埋設電極68および終端埋設電極89とは別体的に形成されていてもよい。 In this embodiment, the sidewall wiring 95 includes conductive polysilicon and is formed integrally with the first source buried electrode 28, the second source buried electrode 33, the first dummy buried electrode 65, the second dummy buried electrode 68, and the termination buried electrode 89. Of course, the sidewall wiring 95 may be formed separately from the first source buried electrode 28, the second source buried electrode 33, the first dummy buried electrode 65, the second dummy buried electrode 68, and the termination buried electrode 89.
 半導体装置1は、主面絶縁膜16を被覆する層間絶縁膜99を含む。層間絶縁膜99は、主面絶縁膜16を挟んで活性面8、外周面9および第1~第4接続面10A~10Dを被覆している。層間絶縁膜99は、活性面8においてトレンチゲート構造20、第1トレンチソース構造25、第2トレンチソース構造30、第1トレンチ抵抗構造42、第2トレンチ抵抗構造43、第1ダミートレンチ構造61、第2ダミートレンチ構造62およびトレンチ終端構造86を被覆している。 The semiconductor device 1 includes an interlayer insulating film 99 that covers the main surface insulating film 16. The interlayer insulating film 99 covers the active surface 8, the outer peripheral surface 9, and the first to fourth connection surfaces 10A to 10D with the main surface insulating film 16 in between. The interlayer insulating film 99 covers the trench gate structure 20, the first trench source structure 25, the second trench source structure 30, the first trench resistor structure 42, the second trench resistor structure 43, the first dummy trench structure 61, the second dummy trench structure 62, and the trench termination structure 86 on the active surface 8.
 層間絶縁膜99は、第1終端領域15Aにおいて抵抗膜50を被覆し、抵抗膜50を挟んで複数のトレンチ抵抗構造41を被覆している。層間絶縁膜99は、外周面9において主面絶縁膜16を挟んでアウターウェル領域91、アウターコンタクト領域92および複数のフィールド領域93を被覆している。層間絶縁膜99は、第1~第4接続面10A~10Dにおいてサイドウォール配線95を被覆している。 The interlayer insulating film 99 covers the resistive film 50 in the first termination region 15A, and covers the multiple trench resistance structures 41 with the resistive film 50 in between. The interlayer insulating film 99 covers the outer well region 91, the outer contact region 92, and the multiple field regions 93 with the main surface insulating film 16 in between at the outer peripheral surface 9. The interlayer insulating film 99 covers the sidewall wiring 95 at the first to fourth connection surfaces 10A to 10D.
 層間絶縁膜99は、この形態では、第1~第4側面5A~5Dに連なっている。むろん、層間絶縁膜99の壁部は、外周面9の周縁から内方に間隔を空けて形成され、外周面9の周縁部から第1半導体領域6を露出させていてもよい。層間絶縁膜99は、酸化シリコン膜、窒化シリコン膜および酸窒化シリコン膜のうちの少なくとも1つを含んでいてもよい。層間絶縁膜99は、この形態では、酸化シリコン膜を含む。 In this embodiment, the interlayer insulating film 99 is continuous with the first to fourth side surfaces 5A to 5D. Of course, the wall portion of the interlayer insulating film 99 may be formed at a distance inward from the periphery of the outer peripheral surface 9, exposing the first semiconductor region 6 from the periphery of the outer peripheral surface 9. The interlayer insulating film 99 may include at least one of a silicon oxide film, a silicon nitride film, and a silicon oxynitride film. In this embodiment, the interlayer insulating film 99 includes a silicon oxide film.
 図1~図13を参照して、半導体装置1は、層間絶縁膜99の上に配置されたゲート電極100を含む。ゲート電極100は、ゲート抵抗40の抵抗値よりも低い抵抗値を有している。具体的には、ゲート電極100は、トレンチ抵抗構造41の抵抗値よりも低い抵抗値を有している。また、ゲート電極100は、抵抗膜50の抵抗値よりも低い抵抗値を有している。 Referring to Figures 1 to 13, the semiconductor device 1 includes a gate electrode 100 disposed on an interlayer insulating film 99. The gate electrode 100 has a resistance value lower than the resistance value of the gate resistor 40. Specifically, the gate electrode 100 has a resistance value lower than the resistance value of the trench resistor structure 41. The gate electrode 100 also has a resistance value lower than the resistance value of the resistive film 50.
 ゲート電極100は、抵抗膜50よりも厚いことが好ましい。ゲート電極100は、層間絶縁膜99よりも厚いことが好ましい。ゲート電極100は、0.5μm以上10μm以下の厚さを有していてもよい。ゲート電極100の厚さは、1μm以上5μm以下であることが好ましい。 The gate electrode 100 is preferably thicker than the resistive film 50. The gate electrode 100 is preferably thicker than the interlayer insulating film 99. The gate electrode 100 may have a thickness of 0.5 μm or more and 10 μm or less. The thickness of the gate electrode 100 is preferably 1 μm or more and 5 μm or less.
 ゲート電極100は、Ti膜、TiN膜、W膜、Al膜、Cu膜、Al合金膜、Cu合金膜および導電性ポリシリコン膜のうちの少なくとも1種を含んでいてもよい。ゲート電極100は、純Cu膜(純度が99%以上のCu膜)、純Al膜(純度が99%以上のAl膜)、AlCu合金膜、AlSi合金膜、および、AlSiCu合金膜のうちの少なくとも1つを含んでいてもよい。ゲート電極100は、この形態では、チップ2側からこの順に積層されたTi膜およびAl合金膜(この形態ではAlSiCu合金膜)を含む積層構造を有している。ゲート電極100は、「ゲートメタル」と称されてもよい。 The gate electrode 100 may include at least one of a Ti film, a TiN film, a W film, an Al film, a Cu film, an Al alloy film, a Cu alloy film, and a conductive polysilicon film. The gate electrode 100 may include at least one of a pure Cu film (Cu film with a purity of 99% or more), a pure Al film (Al film with a purity of 99% or more), an AlCu alloy film, an AlSi alloy film, and an AlSiCu alloy film. In this embodiment, the gate electrode 100 has a layered structure including a Ti film and an Al alloy film (an AlSiCu alloy film in this embodiment) layered in this order from the chip 2 side. The gate electrode 100 may be referred to as a "gate metal".
 ゲート電極100は、この形態では、ゲートパッド101、ゲート配線102およびゲートサブパッド103を含む。ゲートパッド101には、外部からゲート電位VGが付与される。ゲートパッド101は、この形態では、平面視において第1接続面10Aの中央部に沿う領域に配置されている。 In this embodiment, the gate electrode 100 includes a gate pad 101, a gate wiring 102, and a gate subpad 103. A gate potential VG is applied to the gate pad 101 from the outside. In this embodiment, the gate pad 101 is disposed in a region along the center of the first connection surface 10A in a plan view.
 ゲートパッド101は、この形態では、活性面8の周縁から間隔を空けて活性面8の内方部の上に配置され、外周面9の上に配置されていない。ゲートパッド101は、平面視において活性領域12および第1終端領域15Aに重なる領域に配置されている。ゲートパッド101は、活性領域12において層間絶縁膜99を挟んで複数のトレンチゲート構造20および複数の第1トレンチソース構造25を被覆している。 In this embodiment, the gate pad 101 is disposed on the inner portion of the active surface 8 at a distance from the periphery of the active surface 8, and is not disposed on the outer peripheral surface 9. The gate pad 101 is disposed in a region that overlaps the active region 12 and the first termination region 15A in a plan view. The gate pad 101 covers the multiple trench gate structures 20 and the multiple first trench source structures 25 in the active region 12 with the interlayer insulating film 99 in between.
 ゲートパッド101は、平面視においてゲート抵抗40に重なる領域に配置されている。ゲートパッド101は、この形態では、平面視においてダミー構造55および終端ダミー構造85から間隔を空けて形成されている。むろん、ゲートパッド101は、平面視においてダミー構造55および終端ダミー構造85のいずれか一方または双方に重なる領域に配置されていてもよい。 The gate pad 101 is disposed in a region that overlaps the gate resistor 40 in a planar view. In this embodiment, the gate pad 101 is formed at a distance from the dummy structure 55 and the termination dummy structure 85 in a planar view. Of course, the gate pad 101 may be disposed in a region that overlaps with either or both of the dummy structure 55 and the termination dummy structure 85 in a planar view.
 ゲートパッド101は、第1終端領域15Aにおいて層間絶縁膜99を貫通してゲート抵抗40に電気的に接続されている。具体的には、ゲートパッド101は、層間絶縁膜99を貫通して抵抗膜50に接続されている。ゲートパッド101は、この形態では、層間絶縁膜99を貫通して抵抗膜50の中央部に接続されている。 The gate pad 101 is electrically connected to the gate resistor 40 through the interlayer insulating film 99 in the first termination region 15A. Specifically, the gate pad 101 is connected to the resistive film 50 through the interlayer insulating film 99. In this embodiment, the gate pad 101 is connected to the center of the resistive film 50 through the interlayer insulating film 99.
 ゲートパッド101は、抵抗膜50を挟んで1つまたは複数(この形態では複数)のトレンチ抵抗構造41に対向している。ゲートパッド101は、この形態では、抵抗膜50を挟んで複数の第1トレンチ抵抗構造42および複数の第2トレンチ抵抗構造43に対向している。 The gate pad 101 faces one or more (in this embodiment, multiple) trench resistance structures 41 across the resistive film 50. In this embodiment, the gate pad 101 faces multiple first trench resistance structures 42 and multiple second trench resistance structures 43 across the resistive film 50.
 ゲートパッド101は、この形態では、パッド本体部104および引き出し部105を含む。パッド本体部104は、外部からゲート電位VGが付与される部分である。パッド本体部104は、この形態では、層間絶縁膜99のうち活性領域12を被覆する部分の上に配置され、平面視において第2方向Yにゲート抵抗40に対向している。 In this embodiment, the gate pad 101 includes a pad body 104 and an extraction portion 105. The pad body 104 is a portion to which a gate potential VG is applied from the outside. In this embodiment, the pad body 104 is disposed on a portion of the interlayer insulating film 99 that covers the active region 12, and faces the gate resistor 40 in the second direction Y in a plan view.
 パッド本体部104は、層間絶縁膜99を挟んで複数のトレンチゲート構造20および複数の第1トレンチソース構造25を被覆している。パッド本体部104は、この形態では、第1方向Xに関してゲート抵抗40(トレンチゲート構造20)よりも幅広に形成されている。 The pad body 104 covers the multiple trench gate structures 20 and the multiple first trench source structures 25 with the interlayer insulating film 99 in between. In this embodiment, the pad body 104 is formed to be wider than the gate resistor 40 (trench gate structure 20) in the first direction X.
 パッド本体部104は、この形態では、平面視において四角形状に形成されている。パッド本体部104は、第1主面3の平面積の25%以下の平面積を有していることが好ましい。パッド本体部104の平面積は、第1主面3の平面積の10%以下であることが好ましい。 In this embodiment, the pad main body 104 is formed in a rectangular shape in a plan view. It is preferable that the pad main body 104 has a plan area that is 25% or less of the plan area of the first main surface 3. It is preferable that the plan area of the pad main body 104 is 10% or less of the plan area of the first main surface 3.
 引き出し部105は、パッド本体部104をゲート抵抗40に電気的に接続する部分である。引き出し部105は、パッド本体部104から層間絶縁膜99のうちゲート抵抗40を被覆する部分の上に帯状に引き出されている。引き出し部105は、この形態では、第1方向Xに関してパッド本体部104よりも幅狭に形成されている。具体的には、引き出し部105は、第1方向Xに関してゲート抵抗40(トレンチゲート構造20)よりも幅狭に形成されている。 The draw-out portion 105 is a portion that electrically connects the pad body portion 104 to the gate resistor 40. The draw-out portion 105 is drawn out in a strip shape from the pad body portion 104 onto a portion of the interlayer insulating film 99 that covers the gate resistor 40. In this embodiment, the draw-out portion 105 is formed narrower than the pad body portion 104 in the first direction X. Specifically, the draw-out portion 105 is formed narrower than the gate resistor 40 (trench gate structure 20) in the first direction X.
 引き出し部105は、層間絶縁膜99に形成された第1抵抗開口106を介してゲート抵抗40に接続されている。具体的には、引き出し部105は、第1抵抗開口106内において抵抗膜50に接続されている。つまり、引き出し部105は、抵抗膜50を介して複数のトレンチ抵抗構造41に電気的に接続されている。 The lead-out portion 105 is connected to the gate resistor 40 via a first resistor opening 106 formed in the interlayer insulating film 99. Specifically, the lead-out portion 105 is connected to the resistive film 50 within the first resistor opening 106. In other words, the lead-out portion 105 is electrically connected to the multiple trench resistor structures 41 via the resistive film 50.
 これにより、パッド本体部104は、引き出し部105を介して複数のトレンチ抵抗構造41および抵抗膜50に電気的に接続されている。引き出し部105は、抵抗膜50を挟んで1つまたは複数(この形態では複数)のトレンチ抵抗構造41に対向している。引き出し部105は、この形態では、抵抗膜50を挟んで複数の第1トレンチ抵抗構造42および複数の第2トレンチ抵抗構造43に対向している。 As a result, the pad main body 104 is electrically connected to the multiple trench resistance structures 41 and the resistive film 50 via the lead-out portion 105. The lead-out portion 105 faces one or multiple (multiple in this embodiment) trench resistance structures 41 across the resistive film 50. In this embodiment, the lead-out portion 105 faces multiple first trench resistance structures 42 and multiple second trench resistance structures 43 across the resistive film 50.
 ゲート配線102は、ゲートパッド101に付与されたゲート電位VGを複数のトレンチゲート構造20に伝達するように第1終端領域15Aから活性領域12に向けて選択的に引き回されている。ゲート配線102は、この形態では、活性面8の周縁から間隔を空けて活性面8の内方部の上に配置され、外周面9の上に配置されていない。 The gate wiring 102 is selectively routed from the first termination region 15A toward the active region 12 so as to transmit the gate potential VG applied to the gate pad 101 to the multiple trench gate structures 20. In this embodiment, the gate wiring 102 is disposed on the inner portion of the active surface 8 at a distance from the periphery of the active surface 8, and is not disposed on the outer periphery 9.
 ゲート配線102は、この形態では、第1終端領域15Aにおいてゲートパッド101から間隔を空けて層間絶縁膜99の上に配置されている。ゲート配線102は、ゲートパッド101とは異なる位置で層間絶縁膜99を貫通してゲート抵抗40に電気的に接続されている。具体的には、ゲート配線102は、層間絶縁膜99を貫通して抵抗膜50に接続されている。これにより、ゲート配線102は、複数のトレンチ抵抗構造41および抵抗膜50を介してゲートパッド101に電気的に接続されている。 In this embodiment, the gate wiring 102 is disposed on the interlayer insulating film 99 at a distance from the gate pad 101 in the first termination region 15A. The gate wiring 102 penetrates the interlayer insulating film 99 at a position different from the gate pad 101 and is electrically connected to the gate resistor 40. Specifically, the gate wiring 102 penetrates the interlayer insulating film 99 and is connected to the resistive film 50. As a result, the gate wiring 102 is electrically connected to the gate pad 101 via the multiple trench resistor structures 41 and the resistive film 50.
 ゲート配線102は、抵抗膜50を挟んで1つまたは複数(この形態では複数)のトレンチ抵抗構造41に対向している。ゲート配線102は、この形態では、抵抗膜50を挟んで複数の第1トレンチ抵抗構造42および複数の第2トレンチ抵抗構造43に対向している。ゲート配線102は、活性領域12において複数のトレンチゲート構造20に交差(具体的には直交)するようにライン状に延び、層間絶縁膜99を貫通して複数のトレンチゲート構造20に電気的に接続されている。 The gate wiring 102 faces one or more (multiple in this embodiment) trench resistance structures 41 across the resistive film 50. In this embodiment, the gate wiring 102 faces a plurality of first trench resistance structures 42 and a plurality of second trench resistance structures 43 across the resistive film 50. The gate wiring 102 extends in a line shape so as to intersect (specifically, perpendicular to) the multiple trench gate structures 20 in the active region 12, and is electrically connected to the multiple trench gate structures 20 by penetrating the interlayer insulating film 99.
 ゲート配線102は、この形態では、第1ゲート配線102A、第2ゲート配線102Bおよび第3ゲート配線102Cを含む。第1ゲート配線102Aは、ゲートパッド101に対して第3接続面10C側の領域に配置され、第1接続面10Aおよび第3接続面10Cに沿ってライン状に延びている。第1ゲート配線102Aは、第1終端領域15Aにおいてゲート抵抗40を介してゲートパッド101に電気的に接続され、活性領域12において複数のトレンチゲート構造20に電気的に接続されている。 In this embodiment, the gate wiring 102 includes a first gate wiring 102A, a second gate wiring 102B, and a third gate wiring 102C. The first gate wiring 102A is disposed in a region on the third connection surface 10C side of the gate pad 101, and extends in a line along the first connection surface 10A and the third connection surface 10C. The first gate wiring 102A is electrically connected to the gate pad 101 via a gate resistor 40 in the first termination region 15A, and is electrically connected to a plurality of trench gate structures 20 in the active region 12.
 具体的には、第1ゲート配線102Aは、第1終端領域15Aにおいてゲート抵抗40およびダミー構造55(第1ダミー構造56)を被覆するように第1方向Xにライン状に延びている。第1ゲート配線102Aは、ゲートパッド101から間隔を空けて層間絶縁膜99のうちゲート抵抗40を被覆する部分の上に配置されている。 Specifically, the first gate wiring 102A extends in a line in the first direction X so as to cover the gate resistor 40 and the dummy structure 55 (first dummy structure 56) in the first termination region 15A. The first gate wiring 102A is disposed on a portion of the interlayer insulating film 99 that covers the gate resistor 40, spaced apart from the gate pad 101.
 第1ゲート配線102Aは、第1抵抗開口106から間隔を空けて層間絶縁膜99に形成された第2抵抗開口107を介してゲート抵抗40に接続されている。第1ゲート配線102Aは、ゲートパッド101の接続位置から間隔を空けてゲート抵抗40の一端部側(第3接続面10C側)の領域に接続されている。 The first gate wiring 102A is connected to the gate resistor 40 via a second resistor opening 107 formed in the interlayer insulating film 99 at a distance from the first resistor opening 106. The first gate wiring 102A is connected to a region on one end side (the third connection surface 10C side) of the gate resistor 40 at a distance from the connection position of the gate pad 101.
 第1ゲート配線102Aは、第2抵抗開口107内において抵抗膜50に接続されている。つまり、第1ゲート配線102Aは、抵抗膜50を介して複数のトレンチ抵抗構造41に電気的に接続されている。第1ゲート配線102Aは、抵抗膜50を挟んで1つまたは複数(この形態では複数)のトレンチ抵抗構造41に対向している。第1ゲート配線102Aは、この形態では、抵抗膜50を挟んで複数の第1トレンチ抵抗構造42および複数の第2トレンチ抵抗構造43に対向している。 The first gate wiring 102A is connected to the resistive film 50 within the second resistive opening 107. That is, the first gate wiring 102A is electrically connected to the multiple trench resistance structures 41 via the resistive film 50. The first gate wiring 102A faces one or multiple (multiple in this embodiment) trench resistance structures 41 across the resistive film 50. In this embodiment, the first gate wiring 102A faces multiple first trench resistance structures 42 and multiple second trench resistance structures 43 across the resistive film 50.
 第1ゲート配線102Aは、活性領域12において複数のトレンチゲート構造20に交差(具体的には直交)するように第2方向Yにライン状に延びている。第1ゲート配線102Aは、層間絶縁膜99に形成された複数のゲート開口108を介して複数のゲート接続電極膜39に電気的に接続されている。これにより、第1ゲート配線102Aは、複数のゲート接続電極膜39を介して複数のトレンチゲート構造20に電気的に接続されている。第1ゲート配線102Aのうち、活性領域12において第2方向Yにライン状に延びている部分は、本開示における「周縁ゲート配線」の一例である。 The first gate wiring 102A extends in a line in the second direction Y so as to intersect (specifically, perpendicularly) with the multiple trench gate structures 20 in the active region 12. The first gate wiring 102A is electrically connected to the multiple gate connection electrode films 39 via the multiple gate openings 108 formed in the interlayer insulating film 99. As a result, the first gate wiring 102A is electrically connected to the multiple trench gate structures 20 via the multiple gate connection electrode films 39. The portion of the first gate wiring 102A that extends in a line in the second direction Y in the active region 12 is an example of a "peripheral gate wiring" in this disclosure.
 ゲート接続電極膜39に対する第1ゲート配線102Aの接続高さ位置は、抵抗膜50に対する第1ゲート配線102Aの接続高さ位置とほぼ等しくてもよい。むろん、ゲート接続電極膜39に対する第1ゲート配線102Aの接続高さ位置は、抵抗膜50に対する第2ゲート配線102Bの接続高さ位置よりも活性面8側に位置していてもよい。また、ゲート接続電極膜39に対する第1ゲート配線102Aの接続高さ位置は、抵抗膜50に対する第2ゲート配線102Bの接続高さ位置よりも上方に位置していてもよい。 The connection height position of the first gate wiring 102A to the gate connection electrode film 39 may be approximately equal to the connection height position of the first gate wiring 102A to the resistive film 50. Of course, the connection height position of the first gate wiring 102A to the gate connection electrode film 39 may be located closer to the active surface 8 than the connection height position of the second gate wiring 102B to the resistive film 50. Also, the connection height position of the first gate wiring 102A to the gate connection electrode film 39 may be located higher than the connection height position of the second gate wiring 102B to the resistive film 50.
 第2ゲート配線102Bは、ゲートパッド101に対して第4接続面10D側の領域に配置され、第1接続面10Aおよび第4接続面10Dに沿ってライン状に延びている。第2ゲート配線102Bは、第1終端領域15Aにおいてゲート抵抗40を介してゲートパッド101に電気的に接続され、活性領域12において複数のトレンチゲート構造20に電気的に接続されている。第2ゲート配線102Bは、この形態では、第1ゲート配線102Aに電気的に接続された複数のトレンチゲート構造20に電気的に接続されている。 The second gate wiring 102B is disposed in a region on the fourth connection surface 10D side of the gate pad 101, and extends in a line along the first connection surface 10A and the fourth connection surface 10D. The second gate wiring 102B is electrically connected to the gate pad 101 via the gate resistor 40 in the first termination region 15A, and is electrically connected to a plurality of trench gate structures 20 in the active region 12. In this embodiment, the second gate wiring 102B is electrically connected to a plurality of trench gate structures 20 electrically connected to the first gate wiring 102A.
 具体的には、第2ゲート配線102Bは、第1終端領域15Aにおいてゲート抵抗40およびダミー構造55(第2ダミー構造57)を被覆するように第1方向Xにライン状に延びている。第2ゲート配線102Bは、ゲートパッド101から間隔を空けて層間絶縁膜99のうちゲート抵抗40を被覆する部分の上に配置されている。 Specifically, the second gate wiring 102B extends in a line in the first direction X so as to cover the gate resistor 40 and the dummy structure 55 (second dummy structure 57) in the first termination region 15A. The second gate wiring 102B is disposed on a portion of the interlayer insulating film 99 that covers the gate resistor 40, spaced apart from the gate pad 101.
 第2ゲート配線102Bは、第1抵抗開口106および第2抵抗開口107から間隔を空けて層間絶縁膜99に形成された第3抵抗開口109を介してゲート抵抗40に接続されている。第2ゲート配線102Bは、ゲートパッド101の接続位置から間隔を空けてゲート抵抗40の他端部側(第4接続面10D側)の領域に接続されている。 The second gate wiring 102B is connected to the gate resistor 40 via a third resistor opening 109 formed in the interlayer insulating film 99 at a distance from the first resistor opening 106 and the second resistor opening 107. The second gate wiring 102B is connected to a region on the other end side (the fourth connection surface 10D side) of the gate resistor 40 at a distance from the connection position of the gate pad 101.
 第2ゲート配線102Bは、第3抵抗開口109内において抵抗膜50に接続されている。つまり、第2ゲート配線102Bは、抵抗膜50を介して複数のトレンチ抵抗構造41に電気的に接続されている。第2ゲート配線102Bは、抵抗膜50を挟んで1つまたは複数(この形態では複数)のトレンチ抵抗構造41に対向している。第2ゲート配線102Bは、この形態では、抵抗膜50を挟んで複数の第1トレンチ抵抗構造42および複数の第2トレンチ抵抗構造43に対向している。 The second gate wiring 102B is connected to the resistive film 50 within the third resistance opening 109. That is, the second gate wiring 102B is electrically connected to the multiple trench resistance structures 41 via the resistive film 50. The second gate wiring 102B faces one or multiple (multiple in this embodiment) trench resistance structures 41 across the resistive film 50. In this embodiment, the second gate wiring 102B faces multiple first trench resistance structures 42 and multiple second trench resistance structures 43 across the resistive film 50.
 第2ゲート配線102Bは、活性領域12において複数のトレンチゲート構造20に交差(具体的には直交)するように第2方向Yにライン状に延びている。第2ゲート配線102Bは、層間絶縁膜99に形成された複数のゲート開口108を介して複数のゲート接続電極膜39に電気的に接続されている。これにより、第2ゲート配線102Bは、複数のゲート接続電極膜39を介して複数のトレンチゲート構造20に電気的に接続されている。 The second gate wiring 102B extends in a line in the second direction Y so as to intersect (specifically, perpendicular to) the multiple trench gate structures 20 in the active region 12. The second gate wiring 102B is electrically connected to the multiple gate connection electrode films 39 via the multiple gate openings 108 formed in the interlayer insulating film 99. As a result, the second gate wiring 102B is electrically connected to the multiple trench gate structures 20 via the multiple gate connection electrode films 39.
 ゲート接続電極膜39に対する第2ゲート配線102Bの接続高さ位置は、抵抗膜50に対する第2ゲート配線102Bの接続高さ位置とほぼ等しくてもよい。むろん、ゲート接続電極膜39に対する第2ゲート配線102Bの接続高さ位置は、抵抗膜50に対する第2ゲート配線102Bの接続高さ位置よりも活性面8側に位置していてもよい。また、ゲート接続電極膜39に対する第2ゲート配線102Bの接続高さ位置は、抵抗膜50に対する第2ゲート配線102Bの接続高さ位置よりも上方に位置していてもよい。 The connection height position of the second gate wiring 102B to the gate connection electrode film 39 may be approximately equal to the connection height position of the second gate wiring 102B to the resistive film 50. Of course, the connection height position of the second gate wiring 102B to the gate connection electrode film 39 may be located closer to the active surface 8 than the connection height position of the second gate wiring 102B to the resistive film 50. Also, the connection height position of the second gate wiring 102B to the gate connection electrode film 39 may be located higher than the connection height position of the second gate wiring 102B to the resistive film 50.
 第3ゲート配線102Cは、ゲートパッド101に対して第2接続面10B側の領域に配置され、ゲートパッド101および第2接続面10Bの間の領域を第2方向Yに沿ってライン状に延びている。第3ゲート配線102Cは、この形態では、第1終端領域15Aにおいて第1ゲート配線102Aおよび第2ゲート配線102Bに接続され、活性領域12において複数のトレンチゲート構造20に電気的に接続されている。 The third gate wiring 102C is disposed in a region on the second connection surface 10B side of the gate pad 101, and extends in a line shape along the second direction Y in the region between the gate pad 101 and the second connection surface 10B. In this embodiment, the third gate wiring 102C is connected to the first gate wiring 102A and the second gate wiring 102B in the first termination region 15A, and is electrically connected to a plurality of trench gate structures 20 in the active region 12.
 つまり、第3ゲート配線102Cは、第1ゲート配線102Aを介してゲート抵抗40に電気的に接続され、第2ゲート配線102Bを介してゲート抵抗40に電気的に接続されている。第1ゲート配線102Aのうちゲート抵抗40に接続された部分および第2ゲート配線102Bのうちゲート抵抗40に接続された部分は、第3ゲート配線102Cの一部とみなされてもよい。第3ゲート配線102Cは、この形態では、活性領域12において第1ゲート配線102Aおよび第2ゲート配線102Bに電気的に接続された複数のトレンチゲート構造20に電気的に接続されている。 In other words, the third gate wiring 102C is electrically connected to the gate resistor 40 via the first gate wiring 102A, and is electrically connected to the gate resistor 40 via the second gate wiring 102B. The portion of the first gate wiring 102A connected to the gate resistor 40 and the portion of the second gate wiring 102B connected to the gate resistor 40 may be considered as part of the third gate wiring 102C. In this embodiment, the third gate wiring 102C is electrically connected to a plurality of trench gate structures 20 electrically connected to the first gate wiring 102A and the second gate wiring 102B in the active region 12.
 第3ゲート配線102Cは、ライン部110、第1分岐部111および第2分岐部112を含む。ライン部110は、ゲートパッド101および第2接続面10Bの間の領域を第2方向Yに沿ってライン状に延びている。ライン部110は、ゲートパッド101側の第1端部および第2接続面10B側の第2端部を有している。第1端部は、ゲートパッド101から第2接続面10B側に間隔を空けて形成されている。第2端部は、第2接続面10Bからゲートパッド101側に間隔を空けて形成されている。ライン部110は、本開示における「中央ゲート配線」の一例である。 The third gate wiring 102C includes a line portion 110, a first branch portion 111, and a second branch portion 112. The line portion 110 extends in a line shape along the second direction Y in the region between the gate pad 101 and the second connection surface 10B. The line portion 110 has a first end portion on the gate pad 101 side and a second end portion on the second connection surface 10B side. The first end portion is formed at a distance from the gate pad 101 to the second connection surface 10B side. The second end portion is formed at a distance from the second connection surface 10B to the gate pad 101 side. The line portion 110 is an example of a "central gate wiring" in this disclosure.
 ライン部110は、層間絶縁膜99に形成された複数のゲート開口108を介して複数のトレンチゲート構造20に電気的に接続されている。複数のトレンチゲート構造20の内方部を被覆する複数のゲート接続電極膜39が形成されていてもよい。この場合、ライン部110は、複数のゲート接続電極膜39を介して複数のトレンチゲート構造20に電気的に接続される。 The line portion 110 is electrically connected to the multiple trench gate structures 20 via multiple gate openings 108 formed in the interlayer insulating film 99. Multiple gate connection electrode films 39 may be formed to cover the inner portions of the multiple trench gate structures 20. In this case, the line portion 110 is electrically connected to the multiple trench gate structures 20 via the multiple gate connection electrode films 39.
 この場合、ゲート接続電極膜39に対するライン部110の接続高さ位置は、抵抗膜50に対する第1ゲート配線102A(第2ゲート配線102B)の接続高さ位置とほぼ等しくてもよい。むろん、ゲート接続電極膜39に対するライン部110の接続高さ位置は、抵抗膜50に対する第2ゲート配線102Bの接続高さ位置よりも活性面8側に位置していてもよい。また、ゲート接続電極膜39に対するライン部110の接続高さ位置は、抵抗膜50に対する第2ゲート配線102Bの接続高さ位置よりも上方に位置していてもよい。 In this case, the connection height position of the line portion 110 to the gate connection electrode film 39 may be approximately equal to the connection height position of the first gate wiring 102A (second gate wiring 102B) to the resistive film 50. Of course, the connection height position of the line portion 110 to the gate connection electrode film 39 may be located closer to the active surface 8 than the connection height position of the second gate wiring 102B to the resistive film 50. Also, the connection height position of the line portion 110 to the gate connection electrode film 39 may be located higher than the connection height position of the second gate wiring 102B to the resistive film 50.
 第1分岐部111は、ライン部110および第1ゲート配線102Aを接続している。第1分岐部111は、ライン部110の第1端部から一方側(第3接続面10C側)に引き出され、ゲートパッド101に沿って帯状に延びている。第1分岐部111は、第1ゲート配線102Aのうちダミー構造55(第1ダミー構造56)を被覆する部分に接続されている。 The first branch portion 111 connects the line portion 110 and the first gate wiring 102A. The first branch portion 111 is pulled out from the first end of the line portion 110 to one side (the third connection surface 10C side) and extends in a strip shape along the gate pad 101. The first branch portion 111 is connected to a portion of the first gate wiring 102A that covers the dummy structure 55 (first dummy structure 56).
 むろん、第1分岐部111は、第1ゲート配線102Aのうちゲート抵抗40を被覆する部分に接続されていてもよい。第1分岐部111は、第2方向Yに延びる部分において、層間絶縁膜99に形成された複数のゲート開口108を介して複数のトレンチゲート構造20に電気的に接続されている。第1分岐部111は、複数のゲート接続電極膜39を介して複数のトレンチゲート構造20に電気的に接続されてもよい。 Of course, the first branch portion 111 may be connected to a portion of the first gate wiring 102A that covers the gate resistor 40. In a portion extending in the second direction Y, the first branch portion 111 is electrically connected to a plurality of trench gate structures 20 via a plurality of gate openings 108 formed in the interlayer insulating film 99. The first branch portion 111 may be electrically connected to a plurality of trench gate structures 20 via a plurality of gate connection electrode films 39.
 第2分岐部112は、ライン部110および第2ゲート配線102Bを接続している。第2分岐部112は、ライン部110の第1端部から他方側(第4接続面10D側)に引き出され、ゲートパッド101の周縁に沿って帯状に延びている。第2分岐部112は、第1方向Xにゲートパッド101を挟んで第1分岐部111に対向している。第2分岐部112は、第2ゲート配線102Bのうちダミー構造55(第2ダミー構造57)を被覆する部分に接続されている。 The second branch portion 112 connects the line portion 110 and the second gate wiring 102B. The second branch portion 112 is pulled out from the first end of the line portion 110 to the other side (the fourth connection surface 10D side) and extends in a band shape along the periphery of the gate pad 101. The second branch portion 112 faces the first branch portion 111 across the gate pad 101 in the first direction X. The second branch portion 112 is connected to a portion of the second gate wiring 102B that covers the dummy structure 55 (second dummy structure 57).
 むろん、第2分岐部112は、第2ゲート配線102Bのうちゲート抵抗40を被覆する部分に接続されていてもよい。第2分岐部112は、第2方向Yに延びる部分において、層間絶縁膜99に形成された複数のゲート開口108を介して複数のトレンチゲート構造20に電気的に接続されている。第2分岐部112は、複数のゲート接続電極膜39を介して複数のトレンチゲート構造20に電気的に接続されてもよい。 Of course, the second branch portion 112 may be connected to a portion of the second gate wiring 102B that covers the gate resistor 40. In a portion extending in the second direction Y, the second branch portion 112 is electrically connected to a plurality of trench gate structures 20 via a plurality of gate openings 108 formed in the interlayer insulating film 99. The second branch portion 112 may be electrically connected to a plurality of trench gate structures 20 via a plurality of gate connection electrode films 39.
 ゲートサブパッド103は、ゲート抵抗40を介してゲートパッド101に電気的に接続されるように層間絶縁膜99の上に配置されている。ゲートサブパッド103は、この形態では、ゲートパッド101から第3接続面10C側に間隔を空けて配置され、第1方向Xにゲートパッド101に対向している。 The gate subpad 103 is disposed on the interlayer insulating film 99 so as to be electrically connected to the gate pad 101 via the gate resistor 40. In this embodiment, the gate subpad 103 is disposed at a distance from the gate pad 101 toward the third connection surface 10C, and faces the gate pad 101 in the first direction X.
 ゲートサブパッド103は、平面視において第1終端領域15Aから間隔を空けて層間絶縁膜99のうち活性領域12を被覆する部分の上に配置されている。ゲートサブパッド103は、平面視において第2方向Yにダミー構造55(第1ダミー構造56)に対向している。 The gate subpad 103 is disposed on a portion of the interlayer insulating film 99 that covers the active region 12, spaced apart from the first termination region 15A in a plan view. The gate subpad 103 faces the dummy structure 55 (first dummy structure 56) in the second direction Y in a plan view.
 ゲートサブパッド103は、ゲートパッド101よりも幅狭に形成され、ゲート配線102よりも幅広に形成されている。ゲートサブパッド103は、層間絶縁膜99を挟んで複数のトレンチゲート構造20および複数の第1トレンチソース構造25に対向している。ゲートサブパッド103は、この形態では、ゲート配線102に電気的に接続されている。ゲートサブパッド103は、この形態では、第3ゲート配線102C(第1分岐部111)に接続されている。ゲートサブパッド103は、第1~第3ゲート配線102A~102Cの少なくとも1つに接続されていればよく、ゲートサブパッド103の配置箇所は任意である。 The gate subpad 103 is formed narrower than the gate pad 101 and wider than the gate wiring 102. The gate subpad 103 faces the multiple trench gate structures 20 and the multiple first trench source structures 25 across the interlayer insulating film 99. In this embodiment, the gate subpad 103 is electrically connected to the gate wiring 102. In this embodiment, the gate subpad 103 is connected to the third gate wiring 102C (first branch portion 111). The gate subpad 103 only needs to be connected to at least one of the first to third gate wirings 102A to 102C, and the location of the gate subpad 103 is arbitrary.
 以下、図13に加えて図27を参照して、ゲート電極100およびゲート抵抗40の接続形態が説明される。図27は、ゲート電極100およびゲート抵抗40の接続形態を示す電気回路図である。図27では、トレンチゲート構造20がMISFETを示す回路記号によって示されている。 Below, the connection form of the gate electrode 100 and the gate resistor 40 will be described with reference to FIG. 27 in addition to FIG. 13. FIG. 27 is an electrical circuit diagram showing the connection form of the gate electrode 100 and the gate resistor 40. In FIG. 27, the trench gate structure 20 is shown by a circuit symbol indicating a MISFET.
 図13および図27を参照して、ゲート配線102は、ゲート抵抗40を介してゲートパッド101に電気的に接続されている。ゲート抵抗40は、この形態では、第1抵抗部R1および第2抵抗部R2によって構成された抵抗並列回路113を含む。第1抵抗部R1は、ゲート抵抗40のうちゲートパッド101の接続部および第1ゲート配線102Aの接続部の間に位置する部分によって形成されている。一方、第2抵抗部R2は、ゲート抵抗40のうちゲートパッド101の接続部および第2ゲート配線102Bの接続部の間に位置する部分によって形成されている。 Referring to Figures 13 and 27, the gate wiring 102 is electrically connected to the gate pad 101 via the gate resistor 40. In this embodiment, the gate resistor 40 includes a resistive parallel circuit 113 composed of a first resistor portion R1 and a second resistor portion R2. The first resistor portion R1 is formed by a portion of the gate resistor 40 located between the connection portion of the gate pad 101 and the connection portion of the first gate wiring 102A. On the other hand, the second resistor portion R2 is formed by a portion of the gate resistor 40 located between the connection portion of the gate pad 101 and the connection portion of the second gate wiring 102B.
 つまり、第1ゲート配線102Aは第1抵抗部R1を介してゲートパッド101に電気的に接続され、第2ゲート配線102Bは第2抵抗部R2を介してゲートパッド101に電気的に接続されている。第1抵抗部R1の抵抗値は、ゲートパッド101の接続部および第1ゲート配線102Aの接続部の間の距離を増減させることにより調節される。 In other words, the first gate wiring 102A is electrically connected to the gate pad 101 via the first resistance portion R1, and the second gate wiring 102B is electrically connected to the gate pad 101 via the second resistance portion R2. The resistance value of the first resistance portion R1 is adjusted by increasing or decreasing the distance between the connection portion of the gate pad 101 and the connection portion of the first gate wiring 102A.
 第2抵抗部R2の抵抗値は、ゲートパッド101の接続部および第2ゲート配線102Bの接続部の間の距離を増減させることにより調節される。第2抵抗部R2の抵抗値は、第1抵抗部R1の抵抗値以上であってもよいし、第1抵抗部R1の抵抗値未満であってもよいし、第1抵抗部R1の抵抗値とほぼ等しくてもよい。 The resistance value of the second resistor R2 is adjusted by increasing or decreasing the distance between the connection part of the gate pad 101 and the connection part of the second gate wiring 102B. The resistance value of the second resistor R2 may be equal to or greater than the resistance value of the first resistor R1, may be less than the resistance value of the first resistor R1, or may be approximately equal to the resistance value of the first resistor R1.
 第2ゲート配線102Bは、この形態では、第1ゲート配線102Aに電気的に接続されたトレンチゲート構造20に電気的に接続されている。したがって、第2抵抗部R2が第1抵抗部R1に対して並列接続され、これによって抵抗並列回路113が形成される。この形態では、第3ゲート配線102Cが、第1ゲート配線102Aおよび第2ゲート配線102Bに電気的に接続されたトレンチゲート構造20に電気的に接続されている。 In this embodiment, the second gate wiring 102B is electrically connected to the trench gate structure 20 that is electrically connected to the first gate wiring 102A. Therefore, the second resistance portion R2 is connected in parallel to the first resistance portion R1, thereby forming a resistive parallel circuit 113. In this embodiment, the third gate wiring 102C is electrically connected to the trench gate structure 20 that is electrically connected to the first gate wiring 102A and the second gate wiring 102B.
 したがって、第1~第3ゲート配線102A~102Cを含む1つのゲート配線102が、抵抗並列回路113およびトレンチゲート構造20に電気的に接続されている。ゲート抵抗40の抵抗値(つまり、ゲートパッド101およびゲート配線102の間の抵抗値)は、ゲートパッド101およびゲートサブパッド103の間の抵抗値を測定することによって間接的に測定される。 Therefore, one gate wiring 102 including the first to third gate wirings 102A to 102C is electrically connected to the resistive parallel circuit 113 and the trench gate structure 20. The resistance value of the gate resistor 40 (i.e., the resistance value between the gate pad 101 and the gate wiring 102) is indirectly measured by measuring the resistance value between the gate pad 101 and the gate subpad 103.
 ゲート抵抗40は、スイッチング動作時におけるスイッチング速度を遅延させて、サージ電流を抑制する。つまり、ゲート抵抗40は、サージ電流に起因するノイズを抑制する。ゲート抵抗40は、第1主面3(活性面8)に形成されているため、半導体装置1に外付け接続されない。したがって、ゲート抵抗40が第1主面3に組み込まれることによって、回路基板に実装される部品点数が削減される。 The gate resistor 40 suppresses surge currents by slowing down the switching speed during switching operations. In other words, the gate resistor 40 suppresses noise caused by surge currents. Because the gate resistor 40 is formed on the first main surface 3 (active surface 8), it is not externally connected to the semiconductor device 1. Therefore, by incorporating the gate resistor 40 into the first main surface 3, the number of components mounted on the circuit board is reduced.
 ゲート抵抗40はチップ2の厚さ方向に組み込まれたトレンチ抵抗構造41を含むため、第1主面3に対するゲート抵抗40の専有面積は限定的になる。したがって、ゲート抵抗40の導入に起因する活性領域12の面積の縮小は抑制される。特に、ゲート抵抗40は終端領域15に配置されているため、活性領域12の面積の縮小が適切に抑制される。 Since the gate resistor 40 includes a trench resistor structure 41 embedded in the thickness direction of the chip 2, the area occupied by the gate resistor 40 relative to the first main surface 3 is limited. Therefore, the reduction in the area of the active region 12 caused by the introduction of the gate resistor 40 is suppressed. In particular, since the gate resistor 40 is disposed in the termination region 15, the reduction in the area of the active region 12 is appropriately suppressed.
 ゲート抵抗40は、この形態では、活性領域12側の構成と同様の構成を有している。したがって、活性領域12に対するゲート抵抗40の電気的な影響が抑制され、ゲート抵抗40に対する活性領域12の電気的な影響が抑制される。これにより、活性領域12側の電気的特性の変動が抑制され、ゲート抵抗40側の電気的特性の変動が抑制される。 In this embodiment, the gate resistor 40 has a configuration similar to that of the active region 12. Therefore, the electrical influence of the gate resistor 40 on the active region 12 is suppressed, and the electrical influence of the active region 12 on the gate resistor 40 is suppressed. This suppresses fluctuations in the electrical characteristics on the active region 12 side, and suppresses fluctuations in the electrical characteristics on the gate resistor 40 side.
 ゲート抵抗40は、必ずしも第1抵抗部R1および第2抵抗部R2を含む抵抗並列回路113を有している必要はない。したがって、ゲート抵抗40は、第1抵抗部R1または第2抵抗部R2のみによって構成されていてもよい。このような形態は、ゲート抵抗40に対するゲート配線102の接続形態を変更することによって達成される。 The gate resistor 40 does not necessarily have to have a resistive parallel circuit 113 including the first resistive portion R1 and the second resistive portion R2. Therefore, the gate resistor 40 may be composed of only the first resistive portion R1 or the second resistive portion R2. Such a configuration is achieved by changing the connection configuration of the gate wiring 102 to the gate resistor 40.
 たとえば、ゲート抵抗40が第1抵抗部R1のみからなる場合には、ゲート配線102(第2ゲート配線102B)をゲート抵抗40から電気的に切り離せばよい。また、ゲート抵抗40が第2抵抗部R2のみからなる場合には、ゲート配線102(第1ゲート配線102A)をゲート抵抗40から電気的に切り離せばよい。ゲート配線102は、第1~第3ゲート配線102A~102Cの全てを同時に含む必要はなく、第1~第3ゲート配線102A~102Cのうちの少なくとも1つを含んでいればよい。 For example, if the gate resistor 40 consists only of the first resistance portion R1, the gate wiring 102 (second gate wiring 102B) can be electrically disconnected from the gate resistor 40. Also, if the gate resistor 40 consists only of the second resistance portion R2, the gate wiring 102 (first gate wiring 102A) can be electrically disconnected from the gate resistor 40. The gate wiring 102 does not need to include all of the first to third gate wirings 102A to 102C at the same time, but only needs to include at least one of the first to third gate wirings 102A to 102C.
 図1~図13を参照して、半導体装置1は、ゲート電極100から間隔を空けて層間絶縁膜99の上に配置されたソース電極120を含む。ソース電極120は、ゲート抵抗40の抵抗値よりも低い抵抗値を有している。ソース電極120は、抵抗膜50よりも厚いことが好ましい。ソース電極120は、層間絶縁膜99よりも厚いことが好ましい。ソース電極120は、0.5μm以上10μm以下の厚さを有していてもよい。ソース電極120の厚さは、1μm以上5μm以下であることが好ましい。ソース電極120の厚さは、ゲート電極100の厚さとほぼ等しいことが好ましい。 Referring to Figures 1 to 13, the semiconductor device 1 includes a source electrode 120 disposed on an interlayer insulating film 99 at a distance from the gate electrode 100. The source electrode 120 has a resistance value lower than that of the gate resistor 40. The source electrode 120 is preferably thicker than the resistive film 50. The source electrode 120 is preferably thicker than the interlayer insulating film 99. The source electrode 120 may have a thickness of 0.5 μm or more and 10 μm or less. The thickness of the source electrode 120 is preferably 1 μm or more and 5 μm or less. The thickness of the source electrode 120 is preferably approximately equal to the thickness of the gate electrode 100.
 ソース電極120は、Ti膜、TiN膜、W膜、Al膜、Cu膜、Al合金膜、Cu合金膜および導電性ポリシリコン膜のうちの少なくとも1種を含んでいてもよい。ソース電極120は、純Cu膜(純度が99%以上のCu膜)、純Al膜(純度が99%以上のAl膜)、AlCu合金膜、AlSi合金膜、および、AlSiCu合金膜のうちの少なくとも1つを含んでいてもよい。ソース電極120は、この形態では、チップ2側からこの順に積層されたTi膜およびAl合金膜(この形態ではAlSiCu合金膜)を含む積層構造を有している。ソース電極120は、「ソースメタル」と称されてもよい。 The source electrode 120 may include at least one of a Ti film, a TiN film, a W film, an Al film, a Cu film, an Al alloy film, a Cu alloy film, and a conductive polysilicon film. The source electrode 120 may include at least one of a pure Cu film (Cu film with a purity of 99% or more), a pure Al film (Al film with a purity of 99% or more), an AlCu alloy film, an AlSi alloy film, and an AlSiCu alloy film. In this embodiment, the source electrode 120 has a layered structure including a Ti film and an Al alloy film (AlSiCu alloy film in this embodiment) layered in this order from the chip 2 side. The source electrode 120 may be referred to as a "source metal".
 ソース電極120は、この形態では、第1ソースパッド121、第2ソースパッド122、第1ソースサブパッド123、第2ソースサブパッド124およびソース配線125を含む。第1ソースパッド121には、外部からメインソース用のソース電位VSが付与される。第1ソースパッド121は、層間絶縁膜99のうち活性領域12を被覆する部分の上において、第1ゲート配線102Aおよび第3ゲート配線102Cの間の領域に配置されている。 In this embodiment, the source electrode 120 includes a first source pad 121, a second source pad 122, a first source sub-pad 123, a second source sub-pad 124, and a source wiring 125. A source potential VS for the main source is applied to the first source pad 121 from the outside. The first source pad 121 is disposed in the region between the first gate wiring 102A and the third gate wiring 102C on the portion of the interlayer insulating film 99 that covers the active region 12.
 第1ソースパッド121は、この形態では、平面視において周縁領域14および終端領域15から間隔を空けて活性領域12を被覆している。むろん、第1ソースパッド121は、平面視において周縁領域14および終端領域15のいずれか一方または双方に重なる領域に配置されていてもよい。 In this embodiment, the first source pad 121 covers the active region 12 at a distance from the peripheral region 14 and the termination region 15 in a plan view. Of course, the first source pad 121 may be disposed in a region that overlaps with either or both of the peripheral region 14 and the termination region 15 in a plan view.
 第1ソースパッド121は、層間絶縁膜99を挟んで複数のトレンチゲート構造20に対向している。第1ソースパッド121は、層間絶縁膜99に形成された複数のソース開口126を介して複数の第1トレンチソース構造25、ソース領域18および複数の第1コンタクト領域38に電気的に接続されている。第1ソースパッド121は、ゲートパッド101の平面積よりも大きい平面積を有していることが好ましい。 The first source pad 121 faces the multiple trench gate structures 20 across the interlayer insulating film 99. The first source pad 121 is electrically connected to the multiple first trench source structures 25, the source region 18, and the multiple first contact regions 38 via multiple source openings 126 formed in the interlayer insulating film 99. The first source pad 121 preferably has a planar area larger than the planar area of the gate pad 101.
 第2ソースパッド122には、外部からメインソース用のソース電位VSが付与される。第2ソースパッド122は、層間絶縁膜99のうち活性領域12を被覆する部分の上において、第2ゲート配線102Bおよび第3ゲート配線102Cの間の領域に配置されている。 The second source pad 122 is supplied with a source potential VS for the main source from the outside. The second source pad 122 is disposed in the region between the second gate wiring 102B and the third gate wiring 102C on the portion of the interlayer insulating film 99 that covers the active region 12.
 第2ソースパッド122は、この形態では、平面視において周縁領域14および終端領域15から間隔を空けて活性領域12を被覆している。むろん、第2ソースパッド122は、平面視において周縁領域14および終端領域15のいずれか一方または双方に重なる領域に配置されていてもよい。第2ソースパッド122は、層間絶縁膜99を挟んで複数のトレンチゲート構造20に対向している。 In this embodiment, the second source pad 122 covers the active region 12 at a distance from the peripheral region 14 and the termination region 15 in a plan view. Of course, the second source pad 122 may be disposed in a region that overlaps with either or both of the peripheral region 14 and the termination region 15 in a plan view. The second source pad 122 faces the multiple trench gate structures 20 with the interlayer insulating film 99 interposed therebetween.
 第2ソースパッド122は、層間絶縁膜99に形成された複数のソース開口126を介して複数の第1トレンチソース構造25、ソース領域18および複数の第1コンタクト領域38に電気的に接続されている。第2ソースパッド122は、ゲートパッド101の平面積よりも大きい平面積を有していることが好ましい。 The second source pad 122 is electrically connected to the first trench source structures 25, the source region 18, and the first contact regions 38 through a plurality of source openings 126 formed in the interlayer insulating film 99. The second source pad 122 preferably has a planar area larger than the planar area of the gate pad 101.
 第1ソースサブパッド123には、外部からソースセンス用のソース電位VSが付与される。第1ソースサブパッド123は、この形態では、層間絶縁膜99のうち活性領域12を被覆する部分の上において、ゲートパッド101および第1ゲート配線102A(第3接続面10C)の間の領域に配置されている。 The first source subpad 123 is supplied with a source potential VS for source sensing from the outside. In this embodiment, the first source subpad 123 is disposed in the region between the gate pad 101 and the first gate wiring 102A (third connection surface 10C) on the portion of the interlayer insulating film 99 that covers the active region 12.
 第1ソースサブパッド123は、第1ソースパッド121の平面積未満の平面積を有し、第1ソースパッド121と一体的に形成されている。第1ソースサブパッド123の平面積は、ゲートサブパッド103の平面積よりも大きいことが好ましい。第1ソースサブパッド123の平面積は、ゲートパッド101の平面積よりも大きいことが特に好ましい。 The first source subpad 123 has a planar area less than the planar area of the first source pad 121 and is formed integrally with the first source pad 121. It is preferable that the planar area of the first source subpad 123 is greater than the planar area of the gate subpad 103. It is particularly preferable that the planar area of the first source subpad 123 is greater than the planar area of the gate pad 101.
 第1ソースサブパッド123は、平面視において周縁領域14および終端領域15から間隔を空けて活性領域12を被覆している。むろん、第1ソースサブパッド123は、平面視において周縁領域14および終端領域15のいずれか一方または双方に重なる領域に配置されていてもよい。 The first source subpad 123 covers the active region 12 at a distance from the peripheral region 14 and the termination region 15 in a plan view. Of course, the first source subpad 123 may be disposed in a region that overlaps with either or both of the peripheral region 14 and the termination region 15 in a plan view.
 第1ソースサブパッド123は、層間絶縁膜99を挟んで複数のトレンチゲート構造20に対向している。第1ソースサブパッド123は、層間絶縁膜99に形成された複数のソース開口126を介して複数の第1トレンチソース構造25、ソース領域18および複数の第1コンタクト領域38に電気的に接続されている。 The first source subpad 123 faces the multiple trench gate structures 20 across the interlayer insulating film 99. The first source subpad 123 is electrically connected to the multiple first trench source structures 25, the source region 18, and the multiple first contact regions 38 via multiple source openings 126 formed in the interlayer insulating film 99.
 第2ソースサブパッド124には、外部からソースセンス用のソース電位VSが付与される。第2ソースサブパッド124は、この形態では、層間絶縁膜99のうち活性領域12を被覆する部分の上において、ゲートパッド101および第2ゲート配線102B(第4接続面10D)の間の領域に配置されている。 The second source subpad 124 is supplied with a source potential VS for source sensing from the outside. In this embodiment, the second source subpad 124 is disposed in the region between the gate pad 101 and the second gate wiring 102B (fourth connection surface 10D) on the portion of the interlayer insulating film 99 that covers the active region 12.
 第2ソースサブパッド124は、この形態では、第2ソースパッド122の平面積未満の平面積を有し、第2ソースパッド122と一体的に形成されている。第2ソースサブパッド124の平面積は、ゲートサブパッド103の平面積よりも大きいことが好ましい。第2ソースサブパッド124の平面積は、ゲートパッド101の平面積よりも大きいことが特に好ましい。 In this embodiment, the second source subpad 124 has a plan area less than the plan area of the second source pad 122 and is formed integrally with the second source pad 122. It is preferable that the plan area of the second source subpad 124 is greater than the plan area of the gate subpad 103. It is particularly preferable that the plan area of the second source subpad 124 is greater than the plan area of the gate pad 101.
 第2ソースサブパッド124は、平面視において周縁領域14および終端領域15から間隔を空けて活性領域12を被覆している。むろん、第2ソースサブパッド124は、平面視において周縁領域14および終端領域15のいずれか一方または双方に重なる領域に配置されていてもよい。第2ソースサブパッド124は、層間絶縁膜99を挟んで複数のトレンチゲート構造20に対向している。第2ソースサブパッド124は、層間絶縁膜99に形成された複数のソース開口126を介して複数の第1トレンチソース構造25、ソース領域18および複数の第1コンタクト領域38に電気的に接続されている。 The second source subpad 124 covers the active region 12 at a distance from the peripheral region 14 and the termination region 15 in a plan view. Of course, the second source subpad 124 may be disposed in a region overlapping either or both of the peripheral region 14 and the termination region 15 in a plan view. The second source subpad 124 faces the multiple trench gate structures 20 with the interlayer insulating film 99 in between. The second source subpad 124 is electrically connected to the multiple first trench source structures 25, the source region 18, and the multiple first contact regions 38 via the multiple source openings 126 formed in the interlayer insulating film 99.
 第1ソースパッド121、第2ソースパッド122、第1ソースサブパッド123、第2ソースサブパッド124の総平面積は、第1主面3の平面積の50%以上90%以下であることが好ましい。総平面積は、第1主面3の平面積の75%以上であることが特に好ましい。 The total planar area of the first source pad 121, the second source pad 122, the first source sub-pad 123, and the second source sub-pad 124 is preferably 50% or more and 90% or less of the planar area of the first main surface 3. It is particularly preferable that the total planar area is 75% or more of the planar area of the first main surface 3.
 ソース配線125は、第1ソースパッド121および第2ソースパッド122に付与されたソース電位VSを他の領域に伝達する。ソース配線125は、この形態では、ゲート配線102よりも外周領域13側に位置するように第1ソースパッド121および第2ソースパッド122から引き出されている。 The source wiring 125 transmits the source potential VS applied to the first source pad 121 and the second source pad 122 to other regions. In this embodiment, the source wiring 125 is drawn out from the first source pad 121 and the second source pad 122 so as to be located closer to the outer periphery region 13 than the gate wiring 102.
 ソース配線125は、活性面8側から第1~第4接続面10A~10Dを通過して外周面9側に引き出されている。ソース配線125は、第1~第4接続面10A~10Dに沿って延びる帯状に形成されている。つまり、ソース配線125は、層間絶縁膜99を挟んでサイドウォール配線95に対向している。ソース配線125は、この形態では、第1~第4接続面10A~10Dに沿って延びる環状(具体的には四角環状)に形成され、ゲート配線102を取り囲んでいる。 The source wiring 125 is drawn out from the active surface 8 side to the outer peripheral surface 9 side, passing through the first to fourth connection surfaces 10A to 10D. The source wiring 125 is formed in a strip shape extending along the first to fourth connection surfaces 10A to 10D. In other words, the source wiring 125 faces the sidewall wiring 95 with the interlayer insulating film 99 in between. In this embodiment, the source wiring 125 is formed in a ring shape (specifically, a square ring shape) extending along the first to fourth connection surfaces 10A to 10D, and surrounds the gate wiring 102.
 ソース配線125は、層間絶縁膜99に形成されたアウター開口127を介してサイドウォール配線95およびアウターコンタクト領域92に電気的に接続されている。アウター開口127は、サイドウォール配線95およびアウターコンタクト領域92に沿って延びる帯状または環状に形成されている。ソース配線125に付与されたソース電位VSは、サイドウォール配線95を介して第1トレンチソース構造25、第2トレンチソース構造30、第1ダミートレンチ構造61、第2ダミートレンチ構造62およびトレンチ終端構造86に伝達される。 The source wiring 125 is electrically connected to the sidewall wiring 95 and the outer contact region 92 via an outer opening 127 formed in the interlayer insulating film 99. The outer opening 127 is formed in a strip or ring shape extending along the sidewall wiring 95 and the outer contact region 92. The source potential VS applied to the source wiring 125 is transmitted to the first trench source structure 25, the second trench source structure 30, the first dummy trench structure 61, the second dummy trench structure 62, and the trench termination structure 86 via the sidewall wiring 95.
 ソース配線125のうち第1側面5Aに沿って延びた直線部分は、本開示における「第1ソース配線」の一例である。ソース配線125のうち第1側面5Aに沿って延びた直線部分がアウター開口127を介して電気的に接続されているアウターコンタクト領域92は、本開示における「第1アウターコンタクト領域」の一例である。 The straight portion of the source wiring 125 that extends along the first side surface 5A is an example of a "first source wiring" in this disclosure. The outer contact region 92 to which the straight portion of the source wiring 125 that extends along the first side surface 5A is electrically connected via the outer opening 127 is an example of a "first outer contact region" in this disclosure.
 ソース配線125のうち第3側面5Cに沿って延びた直線部分および第4側面5Dに沿って延びた直線部分は、本開示における「第2ソース配線」の一例である。ソース配線125のうち第3側面5Cに沿って延びた直線部分および第4側面5Dに沿って延びた直線部分がアウター開口127を介して電気的に接続されているアウターコンタクト領域92は、本開示における「第2アウターコンタクト領域」の一例である。 The straight portion of the source wiring 125 extending along the third side surface 5C and the straight portion extending along the fourth side surface 5D are an example of a "second source wiring" in this disclosure. The outer contact region 92 to which the straight portion of the source wiring 125 extending along the third side surface 5C and the straight portion extending along the fourth side surface 5D are electrically connected via the outer opening 127 is an example of a "second outer contact region" in this disclosure.
 半導体装置1は、第1主面3の上でゲート電極100、ソース電極120および層間絶縁膜99を選択的に被覆するアッパー絶縁膜130を含む。アッパー絶縁膜130は、ゲートパッド101の内方部を露出させるゲートパッド開口131およびゲートサブパッド103の内方部を露出させるゲートサブパッド開口132を含む。 The semiconductor device 1 includes an upper insulating film 130 that selectively covers the gate electrode 100, the source electrode 120, and the interlayer insulating film 99 on the first main surface 3. The upper insulating film 130 includes a gate pad opening 131 that exposes the inner portion of the gate pad 101, and a gate subpad opening 132 that exposes the inner portion of the gate subpad 103.
 アッパー絶縁膜130は、ゲートパッド101の周縁部、ゲートサブパッド103の周縁部およびゲート配線102の全域を被覆している。ゲートパッド開口131は、平面視において四角形状に形成されている。ゲートサブパッド開口132は、平面視において四角形状に形成されている。ゲートサブパッド開口132は、ゲートパッド開口131の平面積よりも小さい平面積を有している。 The upper insulating film 130 covers the periphery of the gate pad 101, the periphery of the gate subpad 103, and the entire gate wiring 102. The gate pad opening 131 is formed in a rectangular shape in a plan view. The gate subpad opening 132 is formed in a rectangular shape in a plan view. The gate subpad opening 132 has a plan area smaller than the plan area of the gate pad opening 131.
 アッパー絶縁膜130は、第1ソースパッド121の内方部を露出させる第1ソースパッド開口133、第2ソースパッド122の内方部を露出させる第2ソースパッド開口134、第1ソースサブパッド123の内方部を露出させる第1ソースサブパッド開口135、および、第2ソースサブパッド124の内方部を露出させる第2ソースサブパッド開口136を含む。アッパー絶縁膜130は、第1ソースパッド121の周縁部、第2ソースパッド122の周縁部、第1ソースサブパッド123の周縁部、第2ソースサブパッド124の周縁部およびソース配線125の全域を被覆している。 The upper insulating film 130 includes a first source pad opening 133 exposing the inner portion of the first source pad 121, a second source pad opening 134 exposing the inner portion of the second source pad 122, a first source subpad opening 135 exposing the inner portion of the first source subpad 123, and a second source subpad opening 136 exposing the inner portion of the second source subpad 124. The upper insulating film 130 covers the periphery of the first source pad 121, the periphery of the second source pad 122, the periphery of the first source subpad 123, the periphery of the second source subpad 124, and the entire area of the source wiring 125.
 第1ソースパッド開口133は、平面視において四角形状に形成されている。第1ソースパッド開口133は、ゲートサブパッド開口132の平面積よりも大きい平面積を有している。第1ソースパッド開口133の平面積は、ゲートパッド開口131の平面積よりも大きいことが好ましい。 The first source pad opening 133 is formed in a rectangular shape in a plan view. The first source pad opening 133 has a plan area larger than the plan area of the gate subpad opening 132. It is preferable that the plan area of the first source pad opening 133 is larger than the plan area of the gate pad opening 131.
 第2ソースパッド開口134は、平面視において四角形状に形成されている。第2ソースパッド開口134は、ゲートサブパッド開口132の平面積よりも大きい平面積を有している。第2ソースパッド開口134の平面積は、ゲートパッド開口131の平面積よりも大きいことが好ましい。第2ソースパッド開口134の平面積は、第1ソースパッド開口133の平面積とほぼ等しいことが好ましい。 The second source pad opening 134 is formed in a rectangular shape in a plan view. The second source pad opening 134 has a plan area larger than the plan area of the gate subpad opening 132. It is preferable that the plan area of the second source pad opening 134 is larger than the plan area of the gate pad opening 131. It is preferable that the plan area of the second source pad opening 134 is approximately equal to the plan area of the first source pad opening 133.
 第1ソースサブパッド開口135は、平面視において四角形状に形成されている。第1ソースサブパッド開口135は、第1ソースパッド開口133の平面積よりも小さい平面積を有している。第1ソースサブパッド開口135の平面積は、ゲートサブパッド開口132の平面積よりも大きいことが好ましい。第1ソースサブパッド開口135の平面積は、この形態では、ゲートパッド開口131の平面積よりも大きい。むろん、第1ソースサブパッド開口135の平面積は、ゲートパッド開口131の平面積未満であってもよい。 The first source subpad opening 135 is formed in a rectangular shape in a plan view. The first source subpad opening 135 has a plan area smaller than the plan area of the first source pad opening 133. The plan area of the first source subpad opening 135 is preferably larger than the plan area of the gate subpad opening 132. In this embodiment, the plan area of the first source subpad opening 135 is larger than the plan area of the gate pad opening 131. Of course, the plan area of the first source subpad opening 135 may be smaller than the plan area of the gate pad opening 131.
 第2ソースサブパッド開口136は、平面視において四角形状に形成されている。第2ソースサブパッド開口136は、第2ソースパッド開口134の平面積よりも小さい平面積を有している。第2ソースサブパッド開口136の平面積は、ゲートサブパッド開口132の平面積よりも大きいことが好ましい。 The second source subpad opening 136 is formed in a rectangular shape in a plan view. The second source subpad opening 136 has a plan area smaller than the plan area of the second source pad opening 134. It is preferable that the plan area of the second source subpad opening 136 is larger than the plan area of the gate subpad opening 132.
 第2ソースサブパッド開口136の平面積は、この形態では、ゲートパッド開口131の平面積よりも大きい。むろん、第2ソースサブパッド開口136の平面積は、ゲートパッド開口131の平面積未満であってもよい。第2ソースサブパッド開口136の平面積は、第1ソースサブパッド開口135の平面積とほぼ等しいことが好ましい。 In this embodiment, the plane area of the second source subpad opening 136 is larger than the plane area of the gate pad opening 131. Of course, the plane area of the second source subpad opening 136 may be less than the plane area of the gate pad opening 131. It is preferable that the plane area of the second source subpad opening 136 is approximately equal to the plane area of the first source subpad opening 135.
 アッパー絶縁膜130は、チップ2の周縁(第1~第4側面5A~5D)から内方に間隔を空けて形成され、チップ2の周縁との間でダイシングストリート137を区画している。ダイシングストリート137は、平面視においてチップ2の周縁に沿って延びる帯状に形成されている。ダイシングストリート137は、この形態では、平面視において活性面8を取り囲む環状(具体的には四角環状)に形成されている。ダイシングストリート137は、この形態では、層間絶縁膜99を露出させている。 The upper insulating film 130 is formed at a distance inward from the periphery of the chip 2 (first to fourth side surfaces 5A to 5D), and defines a dicing street 137 between the upper insulating film 130 and the periphery of the chip 2. The dicing street 137 is formed in a band shape extending along the periphery of the chip 2 in a plan view. In this embodiment, the dicing street 137 is formed in a ring shape (specifically, a square ring) surrounding the active surface 8 in a plan view. In this embodiment, the dicing street 137 exposes the interlayer insulating film 99.
 むろん、主面絶縁膜16および層間絶縁膜99が外周面9を露出させている場合、ダイシングストリート137は、外周面9を露出させていてもよい。ダイシングストリート137は、1μm以上200μm以下の幅を有していてもよい。ダイシングストリート137の幅は、ダイシングストリート137の延在方向に直交する方向の幅である。ダイシングストリート137の幅は、5μm以上50μm以下であることが好ましい。 Of course, if the main surface insulating film 16 and the interlayer insulating film 99 expose the outer peripheral surface 9, the dicing street 137 may also expose the outer peripheral surface 9. The dicing street 137 may have a width of 1 μm or more and 200 μm or less. The width of the dicing street 137 is the width in a direction perpendicular to the extension direction of the dicing street 137. The width of the dicing street 137 is preferably 5 μm or more and 50 μm or less.
 アッパー絶縁膜130は、ゲート電極100の厚さおよびソース電極120の厚さを超える厚さを有していることが好ましい。アッパー絶縁膜130の厚さは、チップ2の厚さ未満であることが好ましい。アッパー絶縁膜130の厚さは、3μm以上35μm以下であってもよい。アッパー絶縁膜130の厚さは、25μm以下であることが好ましい。 The upper insulating film 130 preferably has a thickness that exceeds the thickness of the gate electrode 100 and the thickness of the source electrode 120. The thickness of the upper insulating film 130 is preferably less than the thickness of the chip 2. The thickness of the upper insulating film 130 may be 3 μm or more and 35 μm or less. The thickness of the upper insulating film 130 is preferably 25 μm or less.
 アッパー絶縁膜130は、この形態では、チップ2側からこの順に積層された無機絶縁膜140および有機絶縁膜141を含む積層構造を有している。アッパー絶縁膜130は、無機絶縁膜140および有機絶縁膜141のうちの少なくとも1つを含んでいればよく、必ずしも無機絶縁膜140および有機絶縁膜141を同時に含む必要はない。 In this embodiment, the upper insulating film 130 has a layered structure including an inorganic insulating film 140 and an organic insulating film 141, which are layered in this order from the chip 2 side. The upper insulating film 130 only needs to include at least one of the inorganic insulating film 140 and the organic insulating film 141, and does not necessarily need to include both the inorganic insulating film 140 and the organic insulating film 141 at the same time.
 無機絶縁膜140は、ゲート電極100、ソース電極120および層間絶縁膜99を選択的に被覆し、ゲートパッド開口131の一部、ゲートサブパッド開口132の一部、第1ソースパッド開口133の一部、第2ソースパッド開口134の一部、第1ソースサブパッド開口135の一部、第2ソースサブパッド開口136の一部およびダイシングストリート137の一部を区画している。 The inorganic insulating film 140 selectively covers the gate electrode 100, the source electrode 120 and the interlayer insulating film 99, and defines a portion of the gate pad opening 131, a portion of the gate subpad opening 132, a portion of the first source pad opening 133, a portion of the second source pad opening 134, a portion of the first source subpad opening 135, a portion of the second source subpad opening 136 and a portion of the dicing street 137.
 無機絶縁膜140は、酸化シリコン膜、窒化シリコン膜および酸窒化シリコン膜のうちの少なくとも1つを含んでいてもよい。無機絶縁膜140は、層間絶縁膜99とは異なる絶縁材料を含むことが好ましい。無機絶縁膜140は、窒化シリコン膜を含むことが好ましい。無機絶縁膜140は、層間絶縁膜99の厚さ未満の厚さを有していることが好ましい。無機絶縁膜140の厚さは、0.1μm以上5μm以下であってもよい。 The inorganic insulating film 140 may include at least one of a silicon oxide film, a silicon nitride film, and a silicon oxynitride film. It is preferable that the inorganic insulating film 140 includes an insulating material different from that of the interlayer insulating film 99. It is preferable that the inorganic insulating film 140 includes a silicon nitride film. It is preferable that the inorganic insulating film 140 has a thickness less than that of the interlayer insulating film 99. The thickness of the inorganic insulating film 140 may be 0.1 μm or more and 5 μm or less.
 有機絶縁膜141は、無機絶縁膜140を選択的に被覆し、ゲートパッド開口131の一部、ゲートサブパッド開口132の一部、第1ソースパッド開口133の一部、第2ソースパッド開口134の一部、第1ソースサブパッド開口135の一部、第2ソースサブパッド開口136の一部およびダイシングストリート137の一部を区画している。 The organic insulating film 141 selectively covers the inorganic insulating film 140 and defines a portion of the gate pad opening 131, a portion of the gate subpad opening 132, a portion of the first source pad opening 133, a portion of the second source pad opening 134, a portion of the first source subpad opening 135, a portion of the second source subpad opening 136, and a portion of the dicing street 137.
 有機絶縁膜141は、ゲートパッド開口131の壁面において無機絶縁膜140を露出させていてもよい。有機絶縁膜141は、ゲートサブパッド開口132の壁面において無機絶縁膜140を露出させていてもよい。有機絶縁膜141は、第1ソースパッド開口133の壁面において無機絶縁膜140を露出させていてもよい。有機絶縁膜141は、第2ソースパッド開口134の壁面において無機絶縁膜140を露出させていてもよい。 The organic insulating film 141 may expose the inorganic insulating film 140 on the wall surface of the gate pad opening 131. The organic insulating film 141 may expose the inorganic insulating film 140 on the wall surface of the gate subpad opening 132. The organic insulating film 141 may expose the inorganic insulating film 140 on the wall surface of the first source pad opening 133. The organic insulating film 141 may expose the inorganic insulating film 140 on the wall surface of the second source pad opening 134.
 有機絶縁膜141は、第1ソースサブパッド開口135の壁面において無機絶縁膜140を露出させていてもよい。有機絶縁膜141は、第2ソースサブパッド開口136の壁面において無機絶縁膜140を露出させていてもよい。有機絶縁膜141は、ダイシングストリート137の壁面において無機絶縁膜140を露出させていてもよい。むろん、有機絶縁膜141は、無機絶縁膜140を露出させないように無機絶縁膜140の全域を被覆していてもよい。 The organic insulating film 141 may expose the inorganic insulating film 140 on the wall surface of the first source subpad opening 135. The organic insulating film 141 may expose the inorganic insulating film 140 on the wall surface of the second source subpad opening 136. The organic insulating film 141 may expose the inorganic insulating film 140 on the wall surface of the dicing street 137. Of course, the organic insulating film 141 may cover the entire inorganic insulating film 140 so that the inorganic insulating film 140 is not exposed.
 有機絶縁膜141は、熱硬化性樹脂以外の樹脂膜からなることが好ましい。有機絶縁膜141は、透光性樹脂または透明樹脂からなっていてもよい。有機絶縁膜141は、ネガティブタイプまたはポジティブタイプの感光性樹脂膜からなっていてもよい。有機絶縁膜141は、ポリイミド膜、ポリアミド膜またはポリベンゾオキサゾール膜からなることが好ましい。有機絶縁膜141は、この形態では、ポリベンゾオキサゾール膜を含む。 The organic insulating film 141 is preferably made of a resin film other than a thermosetting resin. The organic insulating film 141 may be made of a translucent resin or a transparent resin. The organic insulating film 141 may be made of a negative type or positive type photosensitive resin film. The organic insulating film 141 is preferably made of a polyimide film, a polyamide film, or a polybenzoxazole film. In this embodiment, the organic insulating film 141 includes a polybenzoxazole film.
 有機絶縁膜141は、無機絶縁膜140の厚さを超える厚さを有していることが好ましい。有機絶縁膜141の厚さは、層間絶縁膜99の厚さを超えていることが好ましい。有機絶縁膜141の厚さは、ゲート電極100の厚さおよびソース電極120の厚さを超えていることが特に好ましい。有機絶縁膜141の厚さは、3μm以上30μm以下であってもよい。有機絶縁膜141の厚さは、20μm以下であることが好ましい。 The organic insulating film 141 preferably has a thickness that exceeds the thickness of the inorganic insulating film 140. The thickness of the organic insulating film 141 preferably exceeds the thickness of the interlayer insulating film 99. It is particularly preferable that the thickness of the organic insulating film 141 exceeds the thickness of the gate electrode 100 and the thickness of the source electrode 120. The thickness of the organic insulating film 141 may be 3 μm or more and 30 μm or less. The thickness of the organic insulating film 141 is preferably 20 μm or less.
 半導体装置1は、第2主面4を被覆するドレイン電極150を含む。ドレイン電極150は、第2主面4から露出した第2半導体領域7とオーミック接触を形成している。ドレイン電極150は、チップ2の周縁(第1~第4側面5A~5D)に連なるように第2主面4の全域を被覆していてもよい。ソース電極120およびドレイン電極150の間(第1主面3および第2主面4の間)に印加可能なブレークダウン電圧は、500V以上3000V以下であってもよい。 The semiconductor device 1 includes a drain electrode 150 covering the second main surface 4. The drain electrode 150 forms an ohmic contact with the second semiconductor region 7 exposed from the second main surface 4. The drain electrode 150 may cover the entire second main surface 4 so as to be continuous with the periphery of the chip 2 (first to fourth side surfaces 5A to 5D). The breakdown voltage that can be applied between the source electrode 120 and the drain electrode 150 (between the first main surface 3 and the second main surface 4) may be 500V or more and 3000V or less.
 この半導体装置1では、図17および図18に示すように、抵抗膜50は、主面絶縁膜16上に形成されている部分50a、言い換えれば、主面絶縁膜16を覆っている部分50aを含んでいる。また、図9に示すように、ゲート接続電極膜39は、主面絶縁膜16上に形成されている部分39b、言い換えれば、主面絶縁膜16を覆っている部分39bを含んでいる。抵抗膜50およびゲート接続電極膜39は、ゲート電極100に電気的に接続されている。 In this semiconductor device 1, as shown in Figures 17 and 18, the resistive film 50 includes a portion 50a formed on the main surface insulating film 16, in other words, a portion 50a covering the main surface insulating film 16. Also, as shown in Figure 9, the gate connection electrode film 39 includes a portion 39b formed on the main surface insulating film 16, in other words, a portion 39b covering the main surface insulating film 16. The resistive film 50 and the gate connection electrode film 39 are electrically connected to the gate electrode 100.
 以下において、抵抗膜50における主面絶縁膜16上に形成されている部分50aおよびゲート接続電極膜39における主面絶縁膜16上に形成されている部分39bのように、主面絶縁膜16上に形成されかつゲート電極100に電気的に接続されている導電性膜を、ゲート接続導電膜50a,39bということにする。ゲート接続導電膜50a,39bは、本開示の「ゲート接続導電膜」の一例である。 Hereinafter, conductive films formed on the main surface insulating film 16 and electrically connected to the gate electrode 100, such as the portion 50a of the resistive film 50 formed on the main surface insulating film 16 and the portion 39b of the gate connection electrode film 39 formed on the main surface insulating film 16, will be referred to as gate connection conductive films 50a and 39b. The gate connection conductive films 50a and 39b are examples of the "gate connection conductive film" of this disclosure.
 また、以下において、p型のボディ領域17、第1ウェル領域35、第2ウェル領域36、第3ウェル領域37、第4ウェル領域75、第5ウェル領域76、第6ウェル領域77およびアウターウェル領域91のように、第1半導体領域6の表層部に形成されたp型領域を、総称して「p型領域」ということにする。「p型領域」は、本開示の「第1領域」の一例である。 Furthermore, in the following, p-type regions formed in the surface layer of the first semiconductor region 6, such as the p-type body region 17, the first well region 35, the second well region 36, the third well region 37, the fourth well region 75, the fifth well region 76, the sixth well region 77, and the outer well region 91, will be collectively referred to as the "p-type region." The "p-type region" is an example of the "first region" of this disclosure.
 また、以下において、第1コンタクト領域38およびアウターコンタクト領域92のように、「p型領域」の表層部に形成されかつソース電極120に電気的に接続されるp型のコンタクト領域を、総称してp型コンタクト領域38,92ということにする。p型コンタクト領域38,92は、本開示の「コンタクト領域」の一例である。 Furthermore, in the following description, p-type contact regions that are formed on the surface layer of the "p-type region" and electrically connected to the source electrode 120, such as the first contact region 38 and the outer contact region 92, will be collectively referred to as p- type contact regions 38, 92. The p- type contact regions 38, 92 are an example of a "contact region" in this disclosure.
 また、以下において、ソース開口126またはアウター開口127を介してp型コンタクト領域38,92にソース電極120が接合されている領域を、総称して「ソース/コンタクト接合領域」ということにする。「ソース/コンタクト接合領域」は、p型コンタクト領域38,92のうちソース電極120が接合されている領域である。 Furthermore, in the following description, the region where the source electrode 120 is bonded to the p- type contact region 38, 92 via the source opening 126 or the outer opening 127 will be collectively referred to as the "source/contact junction region." The "source/contact junction region" is the region of the p- type contact region 38, 92 where the source electrode 120 is bonded.
 半導体装置(MISFET)1のスイッチング時には、ソース電極120とドレイン電極150との間に比較的大きな電圧VDS/dtが印加される。そうすると、ソース電極120とドレイン電極150との間に、空乏層容量Cに起因する充電電流ic(=C*VDS/dt)が流れる。この充電電流icは、例えば、「ソース/コンタクト接合領域」から、その近傍にあるゲート接続導電膜50a,39bの下方の「p型領域」を当該ゲート接続導電膜50a,39bに沿って流れた後、ドレイン電極150に流れる。このような充電電流icが流れると、「p型領域」の抵抗成分によって電圧降下が発生し、この電圧降下によって、「p型領域」とゲート接続導電膜50a,39bとの間に電位差が発生する。「p型領域」とゲート接続導電膜50a,39bとの間の電位差により、それらの間に介在する主面絶縁膜16に電界が印加される。この電界により、主面絶縁膜16が損傷し、リーク電流が増加するおそれがある。 When the semiconductor device (MISFET) 1 is switched, a relatively large voltage V DS /dt is applied between the source electrode 120 and the drain electrode 150. Then, a charging current ic (=C*V DS /dt) caused by the depletion layer capacitance C flows between the source electrode 120 and the drain electrode 150. This charging current ic flows, for example, from the "source/contact junction region" through the "p-type region" below the gate connection conductive films 50a and 39b in the vicinity of the "source/contact junction region" along the gate connection conductive films 50a and 39b, and then flows to the drain electrode 150. When such a charging current ic flows, a voltage drop occurs due to the resistance component of the "p-type region", and this voltage drop generates a potential difference between the "p-type region" and the gate connection conductive films 50a and 39b. Due to the potential difference between the "p-type region" and the gate connection conductive films 50a and 39b, an electric field is applied to the main surface insulating film 16 interposed therebetween. This electric field may damage the main surface insulating film 16, increasing the leakage current.
 「p型領域」とゲート接続導電膜50a,39bとの間の電位差を小さくするためには、「p型領域」内を充電電流icが流れる距離を短くすればよい。つまり、ゲート接続導電膜50a,39bの下面の各位置とそれに最も近い「ソース/コンタクト接合領域」との距離の最大値を小さくすればよい。 In order to reduce the potential difference between the "p-type region" and the gate connection conductive film 50a, 39b, the distance through which the charging current ic flows within the "p-type region" should be shortened. In other words, the maximum distance between each position on the underside of the gate connection conductive film 50a, 39b and the "source/contact junction region" closest to it should be reduced.
 この形態では、ゲート接続導電膜50a,39bの下面の各位置とそれに最も近い「ソース/コンタクト接合領域」との距離の最大値が90μm以下となるように、ゲート接続導電膜50a,39b、「ソース/コンタクト接合領域」等のレイアウトが設計されている。 In this embodiment, the layout of the gate connection conductive films 50a, 39b, the "source/contact junction region", etc. is designed so that the maximum distance between each position on the underside of the gate connection conductive films 50a, 39b and the "source/contact junction region" closest to it is 90 μm or less.
 なお、ゲート接続導電膜50a,39bの下面の各位置とそれに最も近い「ソース/コンタクト接合領域」との距離の最大値が80μm以下となるように、ゲート接続導電膜50a,39b、「ソース/コンタクト接合領域」等のレイアウトを設計することが好ましい。さらに、ゲート接続導電膜50a,39bの下面の各位置とそれに最も近い「ソース/コンタクト接合領域」との距離の最大値が70μm以下となるように、ゲート接続導電膜50a,39b、「ソース/コンタクト接合領域」等のレイアウトを設計することがより好ましい。 It is preferable to design the layout of the gate connection conductive films 50a, 39b, the "source/contact junction region", etc. so that the maximum distance between each position on the underside of the gate connection conductive films 50a, 39b and the "source/contact junction region" closest to it is 80 μm or less. Furthermore, it is even more preferable to design the layout of the gate connection conductive films 50a, 39b, the "source/contact junction region", etc. so that the maximum distance between each position on the underside of the gate connection conductive films 50a, 39b and the "source/contact junction region" closest to it is 70 μm or less.
 この形態では、半導体装置1において、ゲート接続導電膜50a,39bの下面内の位置とそれに最も近い「ソース/コンタクト接合領域」との距離が最も大きくなるレイアウトは、図13に示す領域E1内に存在する。 In this embodiment, the layout in which the distance between the position on the underside of the gate connection conductive films 50a, 39b and the "source/contact junction region" closest to it is greatest in the semiconductor device 1 is present in the region E1 shown in FIG. 13.
 図13に示す領域E1のレイアウトの詳細は、前述の図14、図17および図26の他、図29に示されている。図29は、図13のXXIX-XXIX線に沿う断面図である。 Details of the layout of region E1 shown in FIG. 13 are shown in FIG. 29 in addition to the aforementioned FIG. 14, FIG. 17, and FIG. 26. FIG. 29 is a cross-sectional view taken along line XXIX-XXIX in FIG. 13.
 図14および図17を参照して、ゲート抵抗40は、抵抗膜50を含んでいる。したがって、ゲート抵抗40は、主面絶縁膜16上に形成されたゲート接続導電膜50aを含んでいる。 Referring to FIG. 14 and FIG. 17, the gate resistor 40 includes a resistive film 50. Therefore, the gate resistor 40 includes a gate connection conductive film 50a formed on the main surface insulating film 16.
 図29を参照して、ゲート接続導電膜50aの下面の各位置のうち、半導体装置1内の全ての「ソース/コンタクト接合領域」それぞれからその位置までの距離の最小値が最大となる位置を第1位置P1とする。この形態では、抵抗膜50(ゲート接続導電膜50a)の下面における活性領域12側(パッド本体部104側)に最も近い位置が第1位置P1である。 Referring to FIG. 29, among the positions on the underside of the gate connection conductive film 50a, the position where the minimum distance from each of all the "source/contact junction regions" in the semiconductor device 1 to that position is the largest is defined as the first position P1. In this embodiment, the position on the underside of the resistive film 50 (gate connection conductive film 50a) closest to the active region 12 side (pad body portion 104 side) is the first position P1.
 ソース配線125は、ゲート抵抗40に対して活性領域12とは反対側の領域において、トレンチ抵抗構造41(第1側面5A)に沿って延びた直線部分(以下、「第1ソース配線125」という。)を含む。 The source wiring 125 includes a straight portion (hereinafter referred to as the "first source wiring 125") that extends along the trench resistor structure 41 (first side surface 5A) in the region opposite the active region 12 with respect to the gate resistor 40.
 「第1ソース配線125」が接続されているアウターコンタクト領域92のうち、「第1ソース配線125」が接合されている領域を、「第1ソース配線125」が接合されているソース/コンタクト接合領域92Aということにする。言い換えれば、「第1ソース配線125」が接合されているソース/コンタクト接合領域92Aは、アウターコンタクト領域92のうち「第1ソース配線125」が接合されている領域である。 The region of the outer contact region 92 to which the "first source wiring 125" is connected and to which the "first source wiring 125" is bonded is referred to as the source/contact junction region 92A to which the "first source wiring 125" is bonded. In other words, the source/contact junction region 92A to which the "first source wiring 125" is bonded is the region of the outer contact region 92 to which the "first source wiring 125" is bonded.
 図29に示すように、「第1ソース配線125」が接合されているソース/コンタクト接合領域92Aは、半導体装置1内の全ての「ソース/コンタクト接合領域」のうち第1位置P1までの距離が最も小さくなるソース/コンタクト接合領域92Aを含んでいる。この形態では、「第1ソース配線125」が接合されているソース/コンタクト接合領域92Aのうち第1位置P1に最も近いソース/コンタクト接合領域92Aと、第1位置P1との間の距離M1は、68μm程度であり、70μm以下である。つまり、この形態では、ゲート接続導電膜50a,39bの下面の各位置とそれに最も近い「ソース/コンタクト接合領域」との距離の最大値は、70μm以下である。 As shown in FIG. 29, the source/contact junction region 92A to which the "first source wiring 125" is bonded includes the source/contact junction region 92A having the shortest distance to the first position P1 among all the "source/contact junction regions" in the semiconductor device 1. In this embodiment, the distance M1 between the source/contact junction region 92A closest to the first position P1 among the source/contact junction regions 92A to which the "first source wiring 125" is bonded and the first position P1 is about 68 μm, which is less than 70 μm. In other words, in this embodiment, the maximum distance between each position on the lower surface of the gate connection conductive films 50a, 39b and the "source/contact junction region" closest to it is less than 70 μm.
 ゲート接続電極膜39に含まれているゲート接続導電膜39bの下面内の位置とそれに最も近い「ソース/コンタクト接合領域」との距離が最大値または最大値に近い値となるレイアウトは、例えば、図3に示す領域E2内および図13に示す領域E3内に存在する。 Layouts in which the distance between a position on the underside of the gate connection conductive film 39b included in the gate connection electrode film 39 and the closest "source/contact junction region" is at or near the maximum value exist, for example, in region E2 shown in FIG. 3 and region E3 shown in FIG. 13.
 図3に示す領域E2内のレイアウトの詳細は、前述の図6、図9、図10および図11に示されている。図11は、図6に示すXI-XI線に沿う断面図である。 Details of the layout within region E2 shown in FIG. 3 are shown in the above-mentioned FIGS. 6, 9, 10, and 11. FIG. 11 is a cross-sectional view taken along line XI-XI shown in FIG. 6.
 図6および図11を参照して、第1ゲート配線102Aは、活性領域12において第1周縁領域14Aに沿って延びた直線部分(以下、「第1周縁ゲート配線102A」という。)を有している。「第1周縁ゲート配線102A」は、本開示の「周縁ゲート配線」の一例である。 6 and 11, the first gate wiring 102A has a straight portion (hereinafter referred to as the "first peripheral gate wiring 102A") that extends along the first peripheral region 14A in the active region 12. The "first peripheral gate wiring 102A" is an example of the "peripheral gate wiring" of the present disclosure.
 トレンチゲート構造20の「第1周縁ゲート配線102A」側(第1周縁領域14A側)の端部に、ゲート埋設電極23および主面絶縁膜16を被覆しかつ「第1周縁ゲート配線102A」に接合されるゲート接続電極膜39が形成されている。ゲート接続電極膜39は、主面絶縁膜16上に形成されたゲート接続導電膜39b(図9参照)を含んでいる。 A gate connection electrode film 39 is formed on the end of the trench gate structure 20 on the "first peripheral gate wiring 102A" side (first peripheral region 14A side), covering the gate buried electrode 23 and the main surface insulating film 16 and joining to the "first peripheral gate wiring 102A". The gate connection electrode film 39 includes a gate connection conductive film 39b (see FIG. 9) formed on the main surface insulating film 16.
 ソース配線125は、「第1周縁ゲート配線102A」に対して活性領域12とは反対側の領域において、「第1周縁ゲート配線102A」(第3側面5C)に沿って延びた直線部分(以下、「第2ソース配線125」という。)を含む。「第2ソース配線125」は、本開示における「第2ソース配線」の一例である。 The source wiring 125 includes a straight portion (hereinafter referred to as the "second source wiring 125") that extends along the "first peripheral gate wiring 102A" (third side surface 5C) in the region opposite the active region 12 with respect to the "first peripheral gate wiring 102A." The "second source wiring 125" is an example of the "second source wiring" in this disclosure.
 「第1周縁ゲート配線102A」に接合されるゲート接続電極膜39に含まれるゲート接続導電膜39bの下面の各位置のうち、半導体装置1内の全ての「ソース/コンタクト接合領域」それぞれからその位置までの距離の最小値が最大となる位置を第2位置P2とする。この形態では、第2位置P2は、「第1周縁ゲート配線102A」に接合されるゲート接続電極膜39における第1方向Xの長さ中央位置である。 Among the positions on the underside of the gate connection conductive film 39b included in the gate connection electrode film 39 joined to the "first peripheral gate wiring 102A", the position where the minimum value of the distance from each of all the "source/contact junction regions" in the semiconductor device 1 to that position is the largest is defined as the second position P2. In this embodiment, the second position P2 is the central position of the length in the first direction X of the gate connection electrode film 39 joined to the "first peripheral gate wiring 102A".
 図11を参照して、「第2ソース配線125」が接続されているアウターコンタクト領域92のうち、「第2ソース配線125」が接合されている領域を、「第2ソース配線125」が接合されているソース/コンタクト接合領域92Bということにする。言い換えれば、「第2ソース配線125」が接合されているソース/コンタクト接合領域92Bは、アウターコンタクト領域92のうち、「第2ソース配線125」が接合されている領域である。 Referring to FIG. 11, the region of the outer contact region 92 to which the "second source wiring 125" is connected, to which the "second source wiring 125" is bonded, is referred to as the source/contact junction region 92B to which the "second source wiring 125" is bonded. In other words, the source/contact junction region 92B to which the "second source wiring 125" is bonded is the region of the outer contact region 92 to which the "second source wiring 125" is bonded.
 図11に示すように、「第2ソース配線125」が接合されているソース/コンタクト接合領域92Bは、半導体装置1内の全ての「ソース/コンタクト接合領域」のうち第2位置P2までの距離が最も小さくなるソース/コンタクト接合領域92Bを含んでいる。この形態では、「第2ソース配線125」が接合されているソース/コンタクト接合領域92Bのうち第2位置P2に最も近いソース/コンタクト接合領域92Bと、第2位置P2との距離M2は、29μm程度である。 As shown in FIG. 11, the source/contact junction region 92B to which the "second source wiring 125" is bonded includes the source/contact junction region 92B having the shortest distance to the second position P2 among all the "source/contact junction regions" in the semiconductor device 1. In this embodiment, the distance M2 between the source/contact junction region 92B closest to the second position P2 among the source/contact junction regions 92B to which the "second source wiring 125" is bonded and the second position P2 is approximately 29 μm.
 なお、第2周縁領域14B側には、半導体装置1の第1方向Xの中心を通り第2方向Yに延びた直線に対して、領域E2内のレイアウトと線対称の関係にあるレイアウトが存在する。具体的には、第2ゲート配線102Bは、活性領域12において第2周縁領域14Bに沿って延びた直線部分(以下、「第2周縁ゲート配線102B」という。)を有している。「第2周縁ゲート配線102B」は、本開示の「周縁ゲート配線」の一例である。 Incidentally, on the second peripheral region 14B side, there is a layout that is in a linear symmetrical relationship with the layout in region E2 with respect to a straight line that passes through the center of the semiconductor device 1 in the first direction X and extends in the second direction Y. Specifically, the second gate wiring 102B has a straight line portion (hereinafter referred to as the "second peripheral gate wiring 102B") that extends along the second peripheral region 14B in the active region 12. The "second peripheral gate wiring 102B" is an example of the "peripheral gate wiring" of the present disclosure.
 トレンチゲート構造20の「第2周縁ゲート配線102B」側(第2周縁領域14B側)の端部に、ゲート埋設電極23および主面絶縁膜16を被覆しかつ「第2周縁ゲート配線102B」に接合されるゲート接続電極膜39が形成されている。図示されていないが、「第2周縁ゲート配線102B」に接合されるゲート接続電極膜39は、「第1周縁ゲート配線102A」に接合されるゲート接続電極膜39と同様に、主面絶縁膜16上に形成されたゲート接続導電膜39bを含んでいる。 A gate connection electrode film 39 is formed on the end of the trench gate structure 20 on the "second peripheral gate wiring 102B" side (second peripheral region 14B side), covering the gate buried electrode 23 and the main surface insulating film 16 and being joined to the "second peripheral gate wiring 102B". Although not shown, the gate connection electrode film 39 joined to the "second peripheral gate wiring 102B" includes a gate connection conductive film 39b formed on the main surface insulating film 16, similar to the gate connection electrode film 39 joined to the "first peripheral gate wiring 102A".
 ソース配線125は、「第2周縁ゲート配線102B」に対して活性領域12とは反対側の領域において、「第2周縁ゲート配線102B」(第4側面5D)に沿って延びた直線部分(以下、「第3ソース配線125」という。)を含む。「第3ソース配線125」は、本開示における「第2ソース配線」の一例である。 The source wiring 125 includes a straight portion (hereinafter referred to as the "third source wiring 125") that extends along the "second peripheral gate wiring 102B" (fourth side surface 5D) in the region opposite the active region 12 relative to the "second peripheral gate wiring 102B." The "third source wiring 125" is an example of the "second source wiring" in this disclosure.
 「第2周縁ゲート配線102B」に接合されるゲート接続電極膜39に含まれるゲート接続導電膜39bの下面の各位置のうち、半導体装置1内の全ての「ソース/コンタクト接合領域」それぞれからその位置までの距離の最小値が最大となる位置を第4位置とする。この形態では、第4位置は、「第2周縁ゲート配線102B」に接合されるゲート接続電極膜39における第1方向Xの長さ中央位置である。 Among the positions on the underside of the gate connection conductive film 39b included in the gate connection electrode film 39 joined to the "second peripheral gate wiring 102B", the position where the minimum value of the distance from each of all the "source/contact junction regions" in the semiconductor device 1 to that position is the largest is defined as the fourth position. In this embodiment, the fourth position is the center position of the length in the first direction X of the gate connection electrode film 39 joined to the "second peripheral gate wiring 102B".
 「第3ソース配線125」が接合されているアウターコンタクト領域92のうち、「第3ソース配線125」が接合されている領域を、「第3ソース配線125」が接合されている「ソース/コンタクト接合領域」ということにする。言い換えれば、「第3ソース配線125」が接合されている「ソース/コンタクト接合領域」は、アウターコンタクト領域92のうち、「第3ソース配線125」が接合されている領域である。 The region of the outer contact region 92 to which the "third source wiring 125" is bonded is referred to as the "source/contact junction region" to which the "third source wiring 125" is bonded. In other words, the "source/contact junction region" to which the "third source wiring 125" is bonded is the region of the outer contact region 92 to which the "third source wiring 125" is bonded.
 「第3ソース配線125」が接合されている「ソース/コンタクト接合領域」は、半導体装置1内の全ての「ソース/コンタクト接合領域」のうち第4位置までの距離が最も小さくなる「ソース/コンタクト接合領域」を含んでいる。この形態では、「第3ソース配線125」が接合されている「ソース/コンタクト接合領域」のうち第4位置に最も近い「ソース/コンタクト接合領域」と、第4位置との距離は、29μm程度である。 The "source/contact junction region" to which the "third source wiring 125" is bonded includes the "source/contact junction region" that has the shortest distance to the fourth position among all the "source/contact junction regions" in the semiconductor device 1. In this embodiment, the distance between the fourth position and the "source/contact junction region" closest to the fourth position among the "source/contact junction regions" to which the "third source wiring 125" is bonded is approximately 29 μm.
 図13に示す領域E3内のレイアウトの詳細は、図30および図31に示されている。図30は、図13の領域E3の一部を拡大して示す拡大平面図である。図31は、図30のXXXI-XXXI線に沿う断面図である。 Details of the layout within region E3 shown in FIG. 13 are shown in FIG. 30 and FIG. 31. FIG. 30 is an enlarged plan view showing a portion of region E3 in FIG. 13. FIG. 31 is a cross-sectional view taken along line XXXI-XXXI in FIG. 30.
 図30および図31を参照して、第3ゲート配線102Cは、活性領域12において両側の周縁領域14A,14Bの間の中央領域に沿って延びたライン部110を含んでいる。ライン部110は、本開示の「中央ゲート配線」の一例である。 30 and 31, the third gate wiring 102C includes a line portion 110 that extends along the central region between the peripheral regions 14A and 14B on both sides of the active region 12. The line portion 110 is an example of the "central gate wiring" of the present disclosure.
 トレンチゲート構造20におけるライン部110に対向する部分に、ゲート埋設電極23および主面絶縁膜16を被覆しかつライン部110に接合されるゲート接続電極膜39が形成されている。ゲート接続電極膜39は、主面絶縁膜16上に形成されたゲート接続導電膜39bを含んでいる。 A gate connection electrode film 39 is formed in the portion of the trench gate structure 20 facing the line portion 110, covering the gate buried electrode 23 and the main surface insulating film 16 and being joined to the line portion 110. The gate connection electrode film 39 includes a gate connection conductive film 39b formed on the main surface insulating film 16.
 ソース電極120は、活性領域12において、ライン部110の両側にライン部110から間隔を空けて配置された第1ソースパッド121および第2ソースパッド122を含む。第1ソースパッド121および第2ソースパッド122は、本開示における「ソースパッド部」の一例である。第1ソースパッド121および第2ソースパッド122は、ソース開口126を介して、第1トレンチソース構造25、ソース領域18および第1コンタクト領域38に電気的に接続されている。 The source electrode 120 includes a first source pad 121 and a second source pad 122 arranged on both sides of the line portion 110 at a distance from the line portion 110 in the active region 12. The first source pad 121 and the second source pad 122 are an example of a "source pad portion" in this disclosure. The first source pad 121 and the second source pad 122 are electrically connected to the first trench source structure 25, the source region 18, and the first contact region 38 via the source opening 126.
 ライン部110に接合されるゲート接続電極膜39に含まれるゲート接続導電膜39bの下面の各位置のうち、半導体装置1内の全ての「ソース/コンタクト接合領域」それぞれからその位置までの距離の最小値が最大となる位置を第3位置P3とする。この形態では、第3位置P3は、ライン部110に接合されるゲート接続電極膜39における第1方向Xの長さ中央位置である。 Among the positions on the underside of the gate connection conductive film 39b included in the gate connection electrode film 39 joined to the line portion 110, the position where the minimum value of the distance from each of all the "source/contact junction regions" in the semiconductor device 1 to that position is the largest is defined as the third position P3. In this embodiment, the third position P3 is the center position of the length in the first direction X of the gate connection electrode film 39 joined to the line portion 110.
 第1ソースパッド121が接合されている第1コンタクト領域38のうち第1ソースパッド121が接合されている領域を、第1ソースパッド121が接合されているソース/コンタクト接合領域38Aということにする。言い換えれば、第1ソースパッド121が接合されているソース/コンタクト接合領域38Aは、第1コンタクト領域38のうち、第1ソースパッド121が接合されている領域である。 The region of the first contact region 38 to which the first source pad 121 is bonded is referred to as the source/contact junction region 38A to which the first source pad 121 is bonded. In other words, the source/contact junction region 38A to which the first source pad 121 is bonded is the region of the first contact region 38 to which the first source pad 121 is bonded.
 第2ソースパッド122が接合されている第1コンタクト領域38のうち第2ソースパッド122が接合されている領域を、第2ソースパッド122が接合されているソース/コンタクト接合領域38Aということにする。言い換えれば、第2ソースパッド122が接合されているソース/コンタクト接合領域38Aは、第1コンタクト領域38のうち、第2ソースパッド122が接合されている領域である。 The region of the first contact region 38 to which the second source pad 122 is bonded is referred to as the source/contact junction region 38A to which the second source pad 122 is bonded. In other words, the source/contact junction region 38A to which the second source pad 122 is bonded is the region of the first contact region 38 to which the second source pad 122 is bonded.
 第1ソースパッド121および第2ソースパッド122のうち少なくとも一方(この形態では第1ソースパッド121および第2ソースパッド122の両方)が接合されているソース/コンタクト接合領域38Aは、半導体装置1内の全ての「ソース/コンタクト接合領域」のうち第3位置P3までの距離が最も小さくなるソース/コンタクト接合領域38Aを含んでいる。 The source/contact junction region 38A to which at least one of the first source pad 121 and the second source pad 122 (in this embodiment, both the first source pad 121 and the second source pad 122) is bonded includes the source/contact junction region 38A that has the shortest distance to the third position P3 among all the "source/contact junction regions" in the semiconductor device 1.
 図31には、第1ソースパッド121が接合されているソース/コンタクト接合領域38Aのうち、第3位置P3までの距離が最も小さくなるソース/コンタクト接合領域38Aが図示されている。一方、第2ソースパッド122が接合されているソース/コンタクト接合領域38Aのうち、第3位置P3までの距離が最も小さくなるソース/コンタクト接合領域38Aは図示されていない。 FIG. 31 illustrates the source/contact junction region 38A to which the first source pad 121 is bonded, which has the shortest distance to the third position P3. On the other hand, the source/contact junction region 38A to which the second source pad 122 is bonded, which has the shortest distance to the third position P3, is not illustrated.
 この形態では、第1ソースパッド121が接合されるソース/コンタクト接合領域38Aのうち第3位置P3に最も近いソース/コンタクト接合領域38Aと、第3位置P3との距離M3は、32μm程度である。また、第2ソースパッド122が接合されるソース/コンタクト接合領域38Aのうち第3位置P3に最も近いソース/コンタクト接合領域38Aと、第3位置P3との距離は、32μm程度である。 In this embodiment, the distance M3 between the source/contact junction region 38A closest to the third position P3 among the source/contact junction regions 38A to which the first source pad 121 is bonded and the third position P3 is approximately 32 μm. Also, the distance between the source/contact junction region 38A closest to the third position P3 among the source/contact junction regions 38A to which the second source pad 122 is bonded and the third position P3 is approximately 32 μm.
 この半導体装置1では、ゲート接続導電膜50a,38bの下面の各位置とそれに最も近いソース/コンタクト接合領域38A,92A,92Bとの距離の最大値が90μm以下となるように、ゲート接続導電膜50a,38bおよびソース/コンタクト接合領域38A,92A,92Bのレイアウトが設計されている。これにより、MISFETのスイッチング時に発生する電圧VDS/dtに起因する主面絶縁膜16の損傷を抑制できるので、リーク電流の増加を抑制できる。 In this semiconductor device 1, the layout of the gate connection conductive films 50a, 38b and the source/ contact junction regions 38A, 92A, 92B is designed so that the maximum distance between each position on the underside of the gate connection conductive films 50a, 38b and the nearest source/ contact junction regions 38A, 92A, 92B is 90 μm or less. This makes it possible to suppress damage to the main surface insulating film 16 caused by the voltage V DS /dt generated during switching of the MISFET, and therefore to suppress an increase in leakage current.
 半導体装置1は、チップ2、ゲート抵抗40、ゲートパッド101およびゲート配線102を含む。チップ2は、第1主面3を有している。ゲート抵抗40は、第1主面3に形成されたトレンチ抵抗構造41を含む。ゲートパッド101は、トレンチ抵抗構造41よりも低い抵抗値を有し、トレンチ抵抗構造41に電気的に接続されるように第1主面3の上に配置されている。ゲート配線102は、トレンチ抵抗構造41よりも低い抵抗値を有し、トレンチ抵抗構造41を介してゲートパッド101に電気的に接続されるように第1主面3の上に配置されている。 The semiconductor device 1 includes a chip 2, a gate resistor 40, a gate pad 101, and a gate wiring 102. The chip 2 has a first main surface 3. The gate resistor 40 includes a trench resistor structure 41 formed on the first main surface 3. The gate pad 101 has a lower resistance value than the trench resistor structure 41, and is disposed on the first main surface 3 so as to be electrically connected to the trench resistor structure 41. The gate wiring 102 has a lower resistance value than the trench resistor structure 41, and is disposed on the first main surface 3 so as to be electrically connected to the gate pad 101 via the trench resistor structure 41.
 この構造によれば、ゲートパッド101およびゲート配線102の間の領域においてトレンチ抵抗構造41がチップ2内に組み込まれているため、第1主面3に対するゲート抵抗40の専有面積を制限できる。ゲート抵抗40の抵抗値は、トレンチ抵抗構造41の深さや長さを調整することによって調節される。したがって、第1主面3に対するゲート抵抗40の専有面積の増加を抑制できる。よって、ゲート抵抗40を備えた構成において、小型化に寄与する新規なレイアウトを有する半導体装置1を提供できる。 With this structure, the trench resistance structure 41 is incorporated in the chip 2 in the region between the gate pad 101 and the gate wiring 102, so that the area occupied by the gate resistance 40 on the first main surface 3 can be limited. The resistance value of the gate resistance 40 is adjusted by adjusting the depth and length of the trench resistance structure 41. Therefore, an increase in the area occupied by the gate resistance 40 on the first main surface 3 can be suppressed. Therefore, in a configuration including the gate resistance 40, a semiconductor device 1 can be provided that has a novel layout that contributes to miniaturization.
 このような構造において、ゲートパッド101は、トレンチ抵抗構造41の直上に位置する部分を有していることが好ましい。この構造によれば、ゲートパッド101の直下の領域にゲート抵抗40が配置されるため、第1主面3に対するゲート抵抗40の専有面積の増加を抑制できる。また、ゲート配線102は、トレンチ抵抗構造41の直上に位置する部分を有していることが好ましい。この構造によれば、ゲート配線102の直下の領域にゲート抵抗40が配置されるため、第1主面3に対するゲート抵抗40の専有面積の増加を抑制できる。 In such a structure, it is preferable that the gate pad 101 has a portion located directly above the trench resistance structure 41. With this structure, the gate resistor 40 is disposed in a region directly below the gate pad 101, so that an increase in the area occupied by the gate resistor 40 with respect to the first main surface 3 can be suppressed. It is also preferable that the gate wiring 102 has a portion located directly above the trench resistance structure 41. With this structure, it is preferable that the gate resistor 40 is disposed in a region directly below the gate wiring 102, so that an increase in the area occupied by the gate resistor 40 with respect to the first main surface 3 can be suppressed.
 トレンチ抵抗構造41は、チャネルの制御に寄与しないことが好ましい。この構造によれば、トレンチ抵抗構造41に起因する誤動作を適切に抑制できる。ゲート抵抗40は、トレンチ抵抗構造41を被覆する抵抗膜50を含むことが好ましい。この構造によれば、トレンチ抵抗構造41および抵抗膜50の双方を利用してゲート抵抗40の抵抗値を調節できる。 It is preferable that the trench resistance structure 41 does not contribute to channel control. With this structure, malfunctions caused by the trench resistance structure 41 can be appropriately suppressed. It is preferable that the gate resistance 40 includes a resistive film 50 that covers the trench resistance structure 41. With this structure, the resistance value of the gate resistance 40 can be adjusted by utilizing both the trench resistance structure 41 and the resistive film 50.
 この場合、ゲートパッド101は、抵抗膜50を介してトレンチ抵抗構造41に電気的に接続されることが好ましい。この構造によれば、抵抗膜50によってゲートパッド101をトレンチ抵抗構造41に適切に電気的に接続させることができる。ゲートパッド101は、抵抗膜50を挟んでトレンチ抵抗構造41に対向する部分を有していることが好ましい。 In this case, it is preferable that the gate pad 101 is electrically connected to the trench resistance structure 41 via the resistive film 50. With this structure, the gate pad 101 can be appropriately electrically connected to the trench resistance structure 41 by the resistive film 50. It is preferable that the gate pad 101 has a portion that faces the trench resistance structure 41 with the resistive film 50 in between.
 ゲート配線102は、抵抗膜50を介してトレンチ抵抗構造41に電気的に接続されることが好ましい。この構造によれば、抵抗膜50によってゲート配線102をトレンチ抵抗構造41に適切に電気的に接続させることができる。この場合、ゲート配線102は、抵抗膜50を挟んでトレンチ抵抗構造41に対向する部分を有していることが好ましい。 The gate wiring 102 is preferably electrically connected to the trench resistance structure 41 via the resistive film 50. With this structure, the resistive film 50 can properly electrically connect the gate wiring 102 to the trench resistance structure 41. In this case, it is preferable that the gate wiring 102 has a portion that faces the trench resistance structure 41 across the resistive film 50.
 抵抗膜50は、第1主面3を被覆する部分、および、トレンチ抵抗構造41を被覆する部分を有していてもよい。この構造によれば、第1主面3上の領域およびトレンチ抵抗構造41上の領域を利用して抵抗膜50の抵抗値を調節できる。また、抵抗膜50に対するゲートパッド101のアライメント誤差に起因する影響、および、ゲート配線102のアライメント誤差に起因する影響を低減できる。この場合、ゲートパッド101は、抵抗膜50を挟んで第1主面3に対向する部分を有していてもよい。また、ゲート配線102は、抵抗膜50を挟んで第1主面3に対向する部分を有していてもよい。 The resistive film 50 may have a portion covering the first main surface 3 and a portion covering the trench resistance structure 41. With this structure, the resistance value of the resistive film 50 can be adjusted by utilizing the region on the first main surface 3 and the region on the trench resistance structure 41. Also, the influence caused by the alignment error of the gate pad 101 with respect to the resistive film 50 and the influence caused by the alignment error of the gate wiring 102 can be reduced. In this case, the gate pad 101 may have a portion facing the first main surface 3 across the resistive film 50. Also, the gate wiring 102 may have a portion facing the first main surface 3 across the resistive film 50.
 半導体装置1は、抵抗膜50を被覆する層間絶縁膜99を含んでいてもよい。この場合、ゲートパッド101は、層間絶縁膜99を貫通して抵抗膜50に接続されることが好ましい。また、ゲート配線102は、層間絶縁膜99を貫通して抵抗膜50に接続されることが好ましい。 The semiconductor device 1 may include an interlayer insulating film 99 that covers the resistive film 50. In this case, it is preferable that the gate pad 101 penetrates the interlayer insulating film 99 and is connected to the resistive film 50. It is also preferable that the gate wiring 102 penetrates the interlayer insulating film 99 and is connected to the resistive film 50.
 複数のトレンチ抵抗構造41が、第1主面3に形成されていることが好ましい。この構造によれば、複数のトレンチ抵抗構造41を利用してゲート抵抗40の抵抗値を調節できる。複数のトレンチ抵抗構造41は、第1トレンチ抵抗構造42、および、第1トレンチ抵抗構造42よりも深い第2トレンチ抵抗構造43を含むことが好ましい。 A plurality of trench resistance structures 41 are preferably formed on the first main surface 3. With this structure, the resistance value of the gate resistor 40 can be adjusted using the plurality of trench resistance structures 41. The plurality of trench resistance structures 41 preferably include a first trench resistance structure 42 and a second trench resistance structure 43 that is deeper than the first trench resistance structure 42.
 この構造によれば、互いに異なる深さを有する第1トレンチ抵抗構造42および第2トレンチ47構造を利用してゲート抵抗40の抵抗値を調節できる。特に、第2トレンチ抵抗構造43によればチップ2の厚さ方向にゲート抵抗40の高抵抗化を図ることができる。したがって、たとえば、抵抗膜50が設けられる場合には、抵抗膜50の膜厚を削減することもできる。 With this structure, the resistance value of the gate resistor 40 can be adjusted by utilizing the first trench resistor structure 42 and the second trench 47 structure, which have different depths. In particular, the second trench resistor structure 43 can increase the resistance of the gate resistor 40 in the thickness direction of the chip 2. Therefore, for example, when a resistive film 50 is provided, the film thickness of the resistive film 50 can also be reduced.
 半導体装置1は、活性領域12、外周領域13および終端領域15を含むことが好ましい。活性領域12は、第1主面3の内方部に設けられる。外周領域13は、第1主面3の周縁部に設けられる。終端領域15は、活性領域12および外周領域13の間に設けられる。このようなレイアウトにおいて、トレンチ抵抗構造41は、終端領域15に形成されることが好ましい。このレイアウトによれば、ゲート抵抗40の導入に伴う活性領域12の面積の縮小を適切に抑制できる。 The semiconductor device 1 preferably includes an active region 12, a peripheral region 13, and a termination region 15. The active region 12 is provided in an inner portion of the first main surface 3. The peripheral region 13 is provided in a peripheral portion of the first main surface 3. The termination region 15 is provided between the active region 12 and the peripheral region 13. In such a layout, the trench resistor structure 41 is preferably formed in the termination region 15. With this layout, it is possible to appropriately suppress the reduction in the area of the active region 12 that accompanies the introduction of the gate resistor 40.
 この場合、ゲートパッド101は、終端領域15においてトレンチ抵抗構造41に電気的に接続されることが好ましい。また、ゲート配線102は、終端領域15においてトレンチ抵抗構造41を介してゲートパッド101に電気的に接続されることが好ましい。 In this case, it is preferable that the gate pad 101 is electrically connected to the trench resistance structure 41 in the termination region 15. It is also preferable that the gate wiring 102 is electrically connected to the gate pad 101 via the trench resistance structure 41 in the termination region 15.
 半導体装置1は、活性領域12において第1主面3に形成されたトレンチゲート構造20を含むことが好ましい。この場合、ゲート配線102は、活性領域12においてトレンチゲート構造20に電気的に接続されることが好ましい。この構造によれば、ゲートパッド101およびトレンチゲート構造20の間にゲート抵抗40(トレンチ抵抗構造41)を電気的に介在させることができる。 The semiconductor device 1 preferably includes a trench gate structure 20 formed on the first main surface 3 in the active region 12. In this case, the gate wiring 102 is preferably electrically connected to the trench gate structure 20 in the active region 12. With this structure, a gate resistor 40 (trench resistor structure 41) can be electrically interposed between the gate pad 101 and the trench gate structure 20.
 半導体装置1は、活性領域12においてトレンチゲート構造20に隣り合うように第1主面3に形成され、ソース電位VSが付与される第1トレンチソース構造25を含んでいてもよい。この場合、第1トレンチソース構造25は、トレンチゲート構造20よりも深く形成されていてもよい。このような構造において、複数のトレンチ抵抗構造41は、トレンチゲート構造20に対応して比較的浅く形成された第1トレンチ抵抗構造42、および、第1トレンチソース構造25に対応して比較的深く形成された第2トレンチ抵抗構造43を含むことが好ましい。 The semiconductor device 1 may include a first trench source structure 25 formed on the first main surface 3 adjacent to the trench gate structure 20 in the active region 12 and to which a source potential VS is applied. In this case, the first trench source structure 25 may be formed deeper than the trench gate structure 20. In such a structure, the multiple trench resistance structures 41 preferably include a first trench resistance structure 42 formed relatively shallow in correspondence with the trench gate structure 20, and a second trench resistance structure 43 formed relatively deep in correspondence with the first trench source structure 25.
 この構造によれば、活性領域12および終端領域15の間で対応する構造が形成されるため、活性領域12および終端領域15の間で電界の偏りを抑制できる。したがって、活性領域12に対するゲート抵抗40の電気的な影響が抑制され、ゲート抵抗40に対する活性領域12の電気的な影響が抑制される。この場合、第1トレンチ抵抗構造42は、トレンチゲート構造20とほぼ等しい深さを有していることが好ましい。また、第2トレンチ抵抗構造43は、第1トレンチソース構造25とほぼ等しい深さを有していることが好ましい。 With this structure, a corresponding structure is formed between the active region 12 and the termination region 15, so that the bias of the electric field between the active region 12 and the termination region 15 can be suppressed. Therefore, the electrical influence of the gate resistor 40 on the active region 12 is suppressed, and the electrical influence of the active region 12 on the gate resistor 40 is suppressed. In this case, it is preferable that the first trench resistor structure 42 has a depth approximately equal to that of the trench gate structure 20. Also, it is preferable that the second trench resistor structure 43 has a depth approximately equal to that of the first trench source structure 25.
 半導体装置1は、終端領域15においてトレンチ抵抗構造41に隣り合うように第1主面3に形成され、ダミートレンチ構造60をさらに含むことが好ましい。ダミートレンチ構造60は、チャネルの制御に寄与しないことが好ましい。この構造によれば、トレンチ抵抗構造41に起因する誤動作を適切に抑制できる。 The semiconductor device 1 preferably further includes a dummy trench structure 60 formed on the first main surface 3 so as to be adjacent to the trench resistance structure 41 in the termination region 15. The dummy trench structure 60 preferably does not contribute to channel control. With this structure, malfunctions caused by the trench resistance structure 41 can be appropriately suppressed.
 ダミートレンチ構造60には、ソース電位VSが付与されることが好ましい。この構造によれば、トレンチ抵抗構造41の近傍の領域における電界をダミートレンチ構造60によって緩和できる。この場合、複数のダミートレンチ構造60が第1主面3に形成されていることが好ましい。この構造によれば、終端領域15においてトレンチ抵抗構造41の近傍の電界を複数のダミートレンチ構造60によって緩和できる。 It is preferable that a source potential VS is applied to the dummy trench structure 60. With this structure, the electric field in the region near the trench resistance structure 41 can be alleviated by the dummy trench structure 60. In this case, it is preferable that a plurality of dummy trench structures 60 are formed on the first main surface 3. With this structure, the electric field in the region near the trench resistance structure 41 in the termination region 15 can be alleviated by the plurality of dummy trench structures 60.
 複数のダミートレンチ構造60は、第1ダミートレンチ構造61、および、第1ダミートレンチ構造61よりも深い第2ダミートレンチ構造62を含むことが好ましい。この構造によれば、トレンチ抵抗構造41の近傍の電界を第1ダミートレンチ構造61および第2ダミートレンチ構造62によって緩和できる。 The multiple dummy trench structures 60 preferably include a first dummy trench structure 61 and a second dummy trench structure 62 that is deeper than the first dummy trench structure 61. With this structure, the electric field near the trench resistor structure 41 can be alleviated by the first dummy trench structure 61 and the second dummy trench structure 62.
 このような構造は、活性領域12においてトレンチゲート構造20よりも深い第1トレンチソース構造25が形成されている場合に特に有効である。また、このような構造は、終端領域15において第1トレンチ抵抗構造42よりも深い第2トレンチ抵抗構造43が形成されている場合に特に有効である。 This structure is particularly effective when a first trench source structure 25 that is deeper than the trench gate structure 20 is formed in the active region 12. This structure is also particularly effective when a second trench resistor structure 43 that is deeper than the first trench resistor structure 42 is formed in the termination region 15.
 半導体装置1は、第1主面3の内方部に形成された活性面8、活性面8からチップ2の厚さ方向に窪むように第1主面3の周縁部に形成された外周面9、ならびに、活性面8および外周面9を接続する第1~第4接続面10A~10Dによって第1主面3に区画された活性台地11を含んでいてもよい。この場合、活性領域12は活性面8に設けられ、外周領域13は外周面9に設けられ、終端領域15は、活性面8に設けられる。 The semiconductor device 1 may include an active surface 8 formed on the inner side of the first main surface 3, an outer peripheral surface 9 formed on the periphery of the first main surface 3 so as to be recessed from the active surface 8 in the thickness direction of the chip 2, and an active plateau 11 defined on the first main surface 3 by first to fourth connection surfaces 10A to 10D connecting the active surface 8 and the outer peripheral surface 9. In this case, the active region 12 is provided on the active surface 8, the outer peripheral region 13 is provided on the outer peripheral surface 9, and the termination region 15 is provided on the active surface 8.
 半導体装置1は、第1主面3の表層部に形成されたn型の第1半導体領域6を含むことが好ましい。この場合、トレンチ抵抗構造41は、第1半導体領域6内に位置するように第1主面3に形成される。 The semiconductor device 1 preferably includes an n-type first semiconductor region 6 formed in a surface layer of the first main surface 3. In this case, the trench resistor structure 41 is formed in the first main surface 3 so as to be located within the first semiconductor region 6.
 このような構造において、半導体装置1は、第1半導体領域6とpn接合部を形成するように第1半導体領域6内においてトレンチ抵抗構造41に沿う領域に形成されたp型の第4ウェル領域75(第5ウェル領域76)を含むことが好ましい。この構造によれば、第4ウェル領域75(第5ウェル領域76)を起点に拡がる空乏層によって耐圧(たとえばブレークダウン電圧)を向上できる。 In such a structure, the semiconductor device 1 preferably includes a p-type fourth well region 75 (fifth well region 76) formed in a region along the trench resistor structure 41 in the first semiconductor region 6 so as to form a pn junction with the first semiconductor region 6. With this structure, the breakdown voltage (e.g., breakdown voltage) can be improved by the depletion layer that spreads from the fourth well region 75 (fifth well region 76).
 半導体装置1は、トレンチ抵抗構造41よりも低い抵抗値を有し、トレンチ抵抗構造41を介してゲートパッド101に電気的に接続されるように第1主面3の上に配置されたゲートサブパッド103を含んでいてもよい。 The semiconductor device 1 may include a gate subpad 103 arranged on the first main surface 3 so as to have a lower resistance value than the trench resistor structure 41 and to be electrically connected to the gate pad 101 via the trench resistor structure 41.
 この構造によれば、ゲートパッド101およびゲートサブパッド103の間の抵抗値を測定することによって、ゲートパッド101およびゲート配線102の間の抵抗値を間接的に測定できる。ゲートサブパッド103は、ゲートパッド101よりも幅狭に形成され、ゲート配線102よりも幅広に形成されていることが好ましい。ゲートサブパッド103は、ゲート配線102に接続されていてもよい。 With this structure, the resistance between the gate pad 101 and the gate wiring 102 can be indirectly measured by measuring the resistance between the gate pad 101 and the gate subpad 103. It is preferable that the gate subpad 103 is formed narrower than the gate pad 101 and wider than the gate wiring 102. The gate subpad 103 may be connected to the gate wiring 102.
 半導体装置1は、外周領域13において第1主面3の表層部に形成されたp型のアウターウェル領域91を含んでいてもよい。この構造によれば、アウターウェル領域91によって外周領域13の電界を緩和できる。半導体装置1は、外周領域13において第1主面3の表層部に形成された少なくとも1つのp型のフィールド領域93を含んでいてもよい。この構造によれば、フィールド領域93によって外周領域13の電界を緩和できる。 The semiconductor device 1 may include a p-type outer well region 91 formed in the surface layer of the first main surface 3 in the peripheral region 13. With this structure, the outer well region 91 can reduce the electric field in the peripheral region 13. The semiconductor device 1 may include at least one p-type field region 93 formed in the surface layer of the first main surface 3 in the peripheral region 13. With this structure, the field region 93 can reduce the electric field in the peripheral region 13.
 別視点において、半導体装置1は、チップ2、第1トレンチ抵抗構造42(第1溝構造)、第1ダミートレンチ構造61(第2溝構造)、第2トレンチ抵抗構造43(第3溝構造)、第2ダミートレンチ構造62(第4溝構造)、第1メサ部71および第2メサ部72を含む。チップ2は、第1主面3を有している。第1トレンチ抵抗構造42は、第1主面3に形成されている。第1ダミートレンチ構造61は、第1方向Xに第1トレンチ抵抗構造42に隣り合うように第1主面3に形成されている。 From another perspective, the semiconductor device 1 includes a chip 2, a first trench resistance structure 42 (first groove structure), a first dummy trench structure 61 (second groove structure), a second trench resistance structure 43 (third groove structure), a second dummy trench structure 62 (fourth groove structure), a first mesa portion 71 and a second mesa portion 72. The chip 2 has a first main surface 3. The first trench resistance structure 42 is formed on the first main surface 3. The first dummy trench structure 61 is formed on the first main surface 3 so as to be adjacent to the first trench resistance structure 42 in the first direction X.
 第2トレンチ抵抗構造43は、第1方向Xに直交する第2方向Yに第1トレンチ抵抗構造42に隣り合うように第1主面3に形成されている。第2ダミートレンチ構造62は、第1方向Xに第2トレンチ抵抗構造43に隣り合うように第1主面3に形成されている。第1メサ部71は、第1トレンチ抵抗構造42および第1ダミートレンチ構造61の間の領域に区画されている。第2メサ部72は、第2トレンチ抵抗構造43および第2ダミートレンチ構造62の間の領域において第1メサ部71に対して第1方向Xにずれて区画されている。 The second trench resistance structure 43 is formed on the first main surface 3 so as to be adjacent to the first trench resistance structure 42 in a second direction Y perpendicular to the first direction X. The second dummy trench structure 62 is formed on the first main surface 3 so as to be adjacent to the second trench resistance structure 43 in the first direction X. The first mesa portion 71 is defined in the region between the first trench resistance structure 42 and the first dummy trench structure 61. The second mesa portion 72 is defined in the region between the second trench resistance structure 43 and the second dummy trench structure 62, shifted in the first direction X with respect to the first mesa portion 71.
 この構造によれば、第2メサ部72に生じる電界が第1メサ部71に生じる電界に干渉することを抑制できる。これにより、第1メサ部71に対する電界集中および第2メサ部72に対する電界集中を抑制できる。よって、耐圧(たとえばブレークダウン電圧)を向上できる新規なレイアウトを有する半導体装置1を提供できる。 This structure makes it possible to prevent the electric field generated in the second mesa portion 72 from interfering with the electric field generated in the first mesa portion 71. This makes it possible to prevent electric field concentration in the first mesa portion 71 and electric field concentration in the second mesa portion 72. This makes it possible to provide a semiconductor device 1 having a novel layout that can improve the withstand voltage (e.g., breakdown voltage).
 このような構造は、第1ダミートレンチ構造61および第1トレンチ抵抗構造42の間の電位差に起因する電界が第1メサ部71に生じ、第2ダミートレンチ構造62および第2トレンチ抵抗構造43の間の電位差に起因する電界が第2メサ部72に生じる場合において特に有効である。したがって、第1ダミートレンチ構造61には第1トレンチ抵抗構造42とは異なる電位が印加され、第2ダミートレンチ構造62には第2トレンチ抵抗構造43とは異なる電位が印加されてもよい。 Such a structure is particularly effective in the case where an electric field caused by a potential difference between the first dummy trench structure 61 and the first trench resistance structure 42 occurs in the first mesa portion 71, and an electric field caused by a potential difference between the second dummy trench structure 62 and the second trench resistance structure 43 occurs in the second mesa portion 72. Therefore, a potential different from that applied to the first dummy trench structure 61 and that applied to the first trench resistance structure 42 may be applied to the second dummy trench structure 62 and that applied to the second trench resistance structure 43.
 第1トレンチ抵抗構造42および第2トレンチ抵抗構造43には第1電位が印加され、第1ダミートレンチ構造61および第2ダミートレンチ構造62には第1電位とは異なる第2電位が印加されてもよい。第1電位はゲート電位VGであってもよく、第2電位はソース電位VSであってもよい。 A first potential may be applied to the first trench resistance structure 42 and the second trench resistance structure 43, and a second potential different from the first potential may be applied to the first dummy trench structure 61 and the second dummy trench structure 62. The first potential may be a gate potential VG, and the second potential may be a source potential VS.
 第2ダミートレンチ構造62は、第2方向Yに第1ダミートレンチ構造61に隣り合うように第1主面3に形成されていることが好ましい。第2トレンチ抵抗構造43は、第1トレンチ抵抗構造42よりも深く形成されていてもよい。この場合、第2ダミートレンチ構造62は、第1ダミートレンチ構造61よりも深く形成されていることが好ましい。 The second dummy trench structure 62 is preferably formed on the first main surface 3 so as to be adjacent to the first dummy trench structure 61 in the second direction Y. The second trench resistance structure 43 may be formed deeper than the first trench resistance structure 42. In this case, the second dummy trench structure 62 is preferably formed deeper than the first dummy trench structure 61.
 この構造によれば、第1トレンチ抵抗構造42および第2トレンチ抵抗構造43の間の深度の違いに起因した電界の偏りを緩和できる。この場合、第1ダミートレンチ構造61は、第1トレンチ抵抗構造42とほぼ等しい深さで形成されていることが好ましい。また、第2ダミートレンチ構造62は、第2トレンチ抵抗構造43とほぼ等しい深さで形成されていることが好ましい。 This structure can alleviate the bias in the electric field caused by the difference in depth between the first trench resistance structure 42 and the second trench resistance structure 43. In this case, it is preferable that the first dummy trench structure 61 is formed to a depth approximately equal to that of the first trench resistance structure 42. It is also preferable that the second dummy trench structure 62 is formed to a depth approximately equal to that of the second trench resistance structure 43.
 半導体装置1は、第1トレンチ抵抗構造42および第2トレンチ抵抗構造43の間に区画されたメインメサ部70を含む。この場合、第1メサ部71および第2メサ部72は、メインメサ部70に接続される。第1メサ部71の第1方向Xの幅は、メインメサ部70の第2方向Yの幅の0.5倍以上2倍以下であることが好ましい。また、第2メサ部72の第1方向Xの幅は、メインメサ部70の第2方向Yの幅の0.5倍以上2倍以下であることが好ましい。 The semiconductor device 1 includes a main mesa portion 70 defined between the first trench resistor structure 42 and the second trench resistor structure 43. In this case, the first mesa portion 71 and the second mesa portion 72 are connected to the main mesa portion 70. It is preferable that the width in the first direction X of the first mesa portion 71 is 0.5 to 2 times the width in the second direction Y of the main mesa portion 70. It is also preferable that the width in the first direction X of the second mesa portion 72 is 0.5 to 2 times the width in the second direction Y of the main mesa portion 70.
 第1トレンチ抵抗構造42は、第1方向Xに帯状に延びていることが好ましい。第2トレンチ抵抗構造43は、第1方向Xに帯状に延びていることが好ましい。第1ダミートレンチ構造61は、第1方向Xに帯状に延びていることが好ましい。第2ダミートレンチ構造62は、第1方向Xに帯状に延びていることが好ましい。 The first trench resistor structure 42 preferably extends in a strip shape in the first direction X. The second trench resistor structure 43 preferably extends in a strip shape in the first direction X. The first dummy trench structure 61 preferably extends in a strip shape in the first direction X. The second dummy trench structure 62 preferably extends in a strip shape in the first direction X.
 半導体装置1は、第1主面3の内方部に形成された活性面8、活性面8からチップ2の厚さ方向に窪むように第1主面3の周縁部に形成された外周面9、ならびに、活性面8および外周面9を接続する第1~第4接続面10A~10Dによって第1主面3に区画された活性台地11を含んでいてもよい。この場合、第1トレンチ抵抗構造42、第2トレンチ抵抗構造43、第1ダミートレンチ構造61および第2ダミートレンチ構造62は、活性面8に形成されていることが好ましい。 The semiconductor device 1 may include an active surface 8 formed on the inner portion of the first main surface 3, an outer peripheral surface 9 formed on the periphery of the first main surface 3 so as to be recessed from the active surface 8 in the thickness direction of the chip 2, and an active plateau 11 defined on the first main surface 3 by first to fourth connection surfaces 10A to 10D connecting the active surface 8 and the outer peripheral surface 9. In this case, the first trench resistor structure 42, the second trench resistor structure 43, the first dummy trench structure 61, and the second dummy trench structure 62 are preferably formed on the active surface 8.
 第1トレンチ抵抗構造42および第2トレンチ抵抗構造43は、第1~第4接続面10A~10Dから間隔を空けて活性面8に形成されていることが好ましい。第1ダミートレンチ構造61は、第3接続面10C(第4接続面10D)から露出するように活性面8に形成されていてもよい。また、第2ダミートレンチ構造62は、第3接続面10C(第4接続面10D)から露出するように活性面8に形成されていてもよい。 The first trench resistor structure 42 and the second trench resistor structure 43 are preferably formed on the active surface 8 at a distance from the first to fourth connection surfaces 10A to 10D. The first dummy trench structure 61 may be formed on the active surface 8 so as to be exposed from the third connection surface 10C (fourth connection surface 10D). The second dummy trench structure 62 may be formed on the active surface 8 so as to be exposed from the third connection surface 10C (fourth connection surface 10D).
 半導体装置1は、第1~第4接続面10A~10Dの少なくとも1つを被覆するように外周面9の上に配置されたサイドウォール構造を含んでいてもよい。この場合、サイドウォール構造は、第1ダミートレンチ構造61および第2ダミートレンチ構造62に電気的に接続されたサイドウォール配線95からなることが好ましい。この構造によれば、サイドウォール配線95によって、第1トレンチ抵抗構造42および第2トレンチ抵抗構造43に対する電位とは異なる電位を外周面9側から第1ダミートレンチ構造61および第2ダミートレンチ構造62に付与できる。 The semiconductor device 1 may include a sidewall structure disposed on the outer peripheral surface 9 so as to cover at least one of the first to fourth connection surfaces 10A to 10D. In this case, the sidewall structure preferably comprises a sidewall wiring 95 electrically connected to the first dummy trench structure 61 and the second dummy trench structure 62. With this structure, the sidewall wiring 95 can apply a potential different from the potentials applied to the first trench resistance structure 42 and the second trench resistance structure 43 to the first dummy trench structure 61 and the second dummy trench structure 62 from the outer peripheral surface 9 side.
 半導体装置1は、第1主面3の表層部に形成されたn型の第1半導体領域6を含んでいてもよい。半導体装置1は、第1半導体領域6の表層部に形成されたp型のボディ領域17を含んでいてもよい。この場合、第1トレンチ抵抗構造42、第2トレンチ抵抗構造43、第1ダミートレンチ構造61および第2ダミートレンチ構造62は、第1半導体領域6に至るようにボディ領域17を貫通していることが好ましい。 The semiconductor device 1 may include an n-type first semiconductor region 6 formed in a surface layer portion of the first main surface 3. The semiconductor device 1 may include a p-type body region 17 formed in a surface layer portion of the first semiconductor region 6. In this case, it is preferable that the first trench resistance structure 42, the second trench resistance structure 43, the first dummy trench structure 61, and the second dummy trench structure 62 penetrate the body region 17 to reach the first semiconductor region 6.
 第1トレンチ抵抗構造42および第2トレンチ抵抗構造43は、チャネルの制御に寄与しないことが好ましい。この構造によれば、この構造によれば、第1トレンチ抵抗構造42および第2トレンチ抵抗構造43に起因する誤動作を適切に抑制できる。第1ダミートレンチ構造61および第2ダミートレンチ構造62は、チャネルの制御に寄与しないことが好ましい。この構造によれば、この構造によれば、第1ダミートレンチ構造61および第2ダミートレンチ構造62に起因する誤動作を適切に抑制できる。 It is preferable that the first trench resistance structure 42 and the second trench resistance structure 43 do not contribute to channel control. According to this structure, malfunctions caused by the first trench resistance structure 42 and the second trench resistance structure 43 can be appropriately suppressed. It is preferable that the first dummy trench structure 61 and the second dummy trench structure 62 do not contribute to channel control. According to this structure, it is possible to appropriately suppress malfunctions caused by the first dummy trench structure 61 and the second dummy trench structure 62.
 半導体装置1は、第1半導体領域6内において第2トレンチ抵抗構造43に沿う領域に形成されたp型の第2コンタクト領域79を含んでいてもよい。この場合、第2コンタクト領域79は、第2メサ部72から間隔を空けて第2トレンチ抵抗構造43に沿う領域に形成されていることが好ましい。 The semiconductor device 1 may include a p-type second contact region 79 formed in a region along the second trench resistance structure 43 in the first semiconductor region 6. In this case, the second contact region 79 is preferably formed in a region along the second trench resistance structure 43 and spaced apart from the second mesa portion 72.
 第2コンタクト領域79は、第1メサ部71に対して第1方向Xにずれて形成されていることが特に好ましい。この場合、第2コンタクト領域79は、第2方向Yに第1メサ部71に対向しないことが好ましい。この構造によれば、第1メサ部71に係る電界および第2メサ部72に係る電界を適切に緩和できる。 It is particularly preferable that the second contact region 79 is formed offset in the first direction X with respect to the first mesa portion 71. In this case, it is preferable that the second contact region 79 does not face the first mesa portion 71 in the second direction Y. With this structure, the electric field associated with the first mesa portion 71 and the electric field associated with the second mesa portion 72 can be appropriately alleviated.
 半導体装置1は、第1半導体領域6内において第2ダミートレンチ構造62に沿う領域に形成されたp型の第3コンタクト領域80を含んでいてもよい。この場合、第3コンタクト領域80は、第2メサ部72から間隔を空けて第2ダミートレンチ構造62に沿う領域に形成されていることが好ましい。第3コンタクト領域80は、第1メサ部71に対して第1方向Xにずれて形成されていることが特に好ましい。この場合、第3コンタクト領域80は、第2方向Yに第1メサ部71に対向しないことが好ましい。 The semiconductor device 1 may include a p-type third contact region 80 formed in a region along the second dummy trench structure 62 in the first semiconductor region 6. In this case, the third contact region 80 is preferably formed in a region along the second dummy trench structure 62 with a gap therebetween from the second mesa portion 72. It is particularly preferable that the third contact region 80 is formed shifted in the first direction X with respect to the first mesa portion 71. In this case, it is preferable that the third contact region 80 does not face the first mesa portion 71 in the second direction Y.
 チップ2は、ワイドバンドギャップ半導体の単結晶を含むことが好ましい。ワイドバンドギャップ半導体の単結晶は、電気的特性を向上させる上で有効である。また、ワイドバンドギャップ半導体の単結晶によれば、比較的高い硬度によってチップ2の変形を抑制しながら、チップ2の薄化およびチップ2の平面積の増加を達成できる。 The chip 2 preferably includes a single crystal of a wide band gap semiconductor. A single crystal of a wide band gap semiconductor is effective in improving electrical characteristics. Furthermore, the single crystal of a wide band gap semiconductor has a relatively high hardness, which suppresses deformation of the chip 2, while allowing the chip 2 to be thinned and the surface area of the chip 2 to be increased.
 チップ2の薄化およびチップ2の平面積の拡張は、電気的特性を向上させる上でも有効である。たとえば、チップ2は、平面視において1mm角以上の面積を有する第1主面3を有していてもよい。たとえば、チップ2は、200μm以下の厚さを有していてもよい。チップ2は、断面視において100μm以下の厚さを有していることが好ましい。 Thinning the chip 2 and expanding the planar area of the chip 2 are also effective in improving electrical characteristics. For example, the chip 2 may have a first main surface 3 having an area of 1 mm square or more in a plan view. For example, the chip 2 may have a thickness of 200 μm or less. It is preferable that the chip 2 has a thickness of 100 μm or less in a cross-sectional view.
 前述の実施形態はさらに他の形態で実施できる。前述の各実施形態では、「第1導電型」が「n型」であり、「第2導電型」が「p型」である形態が示された。しかし、前述の各実施形態において、「第1導電型」が「p型」であり、「第2導電型」が「n型」である形態が採用されてもよい。この場合の具体的な構成は、前述の説明および添付図面において、「n型」を「p型」に置き換えると同時に、「p型」を「n型」に置き換えることによって得られる。 The above-described embodiments can be implemented in other forms. In each of the above-described embodiments, a form in which the "first conductivity type" is "n-type" and the "second conductivity type" is "p-type" has been shown. However, each of the above-described embodiments may also adopt a form in which the "first conductivity type" is "p-type" and the "second conductivity type" is "n-type". A specific configuration in this case can be obtained by replacing "n-type" with "p-type" and at the same time replacing "p-type" with "n-type" in the above description and the accompanying drawings.
 前述の実施形態では、n型の第2半導体領域7が示された。しかし、p型の第2半導体領域7が採用されてもよい。この場合、MISFETに代えてIGBT(Insulated Gate Bipolar Transistor)が形成される。この場合、前述の説明において、MISFETの「ソース」がIGBTの「エミッタ」に置き換えられ、MISFETの「ドレイン」がIGBTの「コレクタ」に置き換えられる。p型の第2半導体領域7はイオン注入法によってチップ2の第2主面4の表層部に導入されたp型不純物を含む不純物領域であってもよい。 In the above embodiment, an n-type second semiconductor region 7 is shown. However, a p-type second semiconductor region 7 may be adopted. In this case, an IGBT (Insulated Gate Bipolar Transistor) is formed instead of the MISFET. In this case, in the above explanation, the "source" of the MISFET is replaced with the "emitter" of the IGBT, and the "drain" of the MISFET is replaced with the "collector" of the IGBT. The p-type second semiconductor region 7 may be an impurity region containing p-type impurities introduced into the surface layer of the second main surface 4 of the chip 2 by ion implantation.
 以下、この明細書および図面から抽出される特徴例が示される。以下、括弧内の英数字等は前述の実施形態における対応構成要素等を表すが、各項目(Clause)の範囲を実施形態に限定する趣旨ではない。以下の項目に係る「半導体装置」は、必要に応じて「ワイドバンドギャップ半導体装置」、「SiC半導体装置」、「半導体スイッチング装置」、「SiC-MISFET」等に置き換えられてもよい。 Below are examples of features extracted from this specification and drawings. Below, alphanumeric characters in parentheses indicate corresponding components in the above-mentioned embodiments, but are not intended to limit the scope of each clause to the embodiments. The "semiconductor device" in the following clauses may be replaced with "wide bandgap semiconductor device," "SiC semiconductor device," "semiconductor switching device," "SiC-MISFET," etc., as necessary.
 [A1] 主面(3)を有し、第1導電型の半導体からなるチップ(2)と、
 前記チップ(2)の前記主面(3)側の表層部に選択的に形成された第2導電型の第1領域(17,35,36,37,75,77,78,91)と、
 前記主面(3)に形成されたトレンチゲート構造(20)と、
 前記主面(3)に形成されたトレンチソース構造(25,30)と、
 前記主面(3)上に選択的に形成された絶縁膜(16)と、
 前記主面(3)上に前記絶縁膜(16)を覆うように配置された層間絶縁膜(99)と、
 前記層間絶縁膜(99)上に配置され、前記トレンチゲート構造(20)にゲート電位を付与するゲート電極(100)と、
 前記層間絶縁膜(99)上に配置され、前記トレンチソース構造(25,30)にソース電位を付与するソース電極(120)と、
 前記絶縁膜(16)上に形成され、前記ゲート電極(100)に電気的に接続されたゲート接続導電膜(50a,39b)と、
 前記第1領域の表層部に選択的に形成され、前記ソース電極(120)が電気的に接続される第2導電型のコンタクト領域(38,92)とを含み、
 前記コンタクト領域(38,92)のうち前記ソース電極(120)が接合されている領域をソース/コンタクト接合領域(38A,92A,92B)とすると、
 前記ゲート接続導電膜(50a,39b)の下面の各位置とそれに最も近い前記ソース/コンタクト接合領域(38A,92A,92B)の距離の最大値が90μm以下である、半導体装置。
[A1] A chip (2) having a main surface (3) and made of a first conductivity type semiconductor;
a first region (17, 35, 36, 37, 75, 77, 78, 91) of a second conductivity type selectively formed in a surface layer portion on the main surface (3) side of the chip (2);
a trench gate structure (20) formed on said main surface (3);
a trench source structure (25, 30) formed in said main surface (3);
An insulating film (16) selectively formed on the main surface (3);
an interlayer insulating film (99) disposed on the main surface (3) so as to cover the insulating film (16);
a gate electrode (100) disposed on the interlayer insulating film (99) and applying a gate potential to the trench gate structure (20);
a source electrode (120) disposed on the interlayer insulating film (99) and applying a source potential to the trench source structure (25, 30);
a gate connection conductive film (50a, 39b) formed on the insulating film (16) and electrically connected to the gate electrode (100);
a contact region (38, 92) of a second conductivity type selectively formed in a surface layer portion of the first region and electrically connected to the source electrode (120);
If the region of the contact region (38, 92) to which the source electrode (120) is joined is defined as a source/contact junction region (38A, 92A, 92B),
The semiconductor device has a maximum distance between each position on the lower surface of the gate connection conductive film (50a, 39b) and the source/contact junction region (38A, 92A, 92B) closest thereto of 90 μm or less.
 [A2] 前記ゲート接続導電膜(50a,39b)の下面の各位置とそれに最も近い前記ソース/コンタクト接合領域(38A,92A,92B)の距離の最大値が80μm以下である、A1に記載の半導体装置。 [A2] The semiconductor device described in A1, in which the maximum distance between each position on the underside of the gate connection conductive film (50a, 39b) and the source/contact junction region (38A, 92A, 92B) closest thereto is 80 μm or less.
 [A3] 前記ゲート接続導電膜(50a,39b)の下面の各位置とそれに最も近い前記ソース/コンタクト接合領域(38A,92A,92B)の距離の最大値が70μm以下である、A1に記載の半導体装置。 [A3] The semiconductor device described in A1, in which the maximum distance between each position on the underside of the gate connection conductive film (50a, 39b) and the source/contact junction region (38A, 92A, 92B) closest thereto is 70 μm or less.
 [A4] 前記主面(3)に形成されたトレンチ抵抗構造(41)を含むゲート抵抗(40)を含み、
 前記ゲート電極(100)は、前記トレンチ抵抗構造(41)よりも低い抵抗値を有し、前記トレンチ抵抗構造(41)に電気的に接続されたゲートパッド(101)と、前記トレンチ抵抗構造(41)よりも低い抵抗値を有し、前記トレンチ抵抗構造(41)を介して前記ゲートパッド(101)に電気的に接続されるゲート配線(102)とを含み、
 前記ゲート抵抗(40)が前記ゲート接続導電膜(50a)を含む、A1~A3のいずれかに記載の半導体装置。
[A4] A gate resistor (40) including a trench resistor structure (41) formed on the main surface (3),
the gate electrode (100) has a resistance value lower than that of the trench resistance structure (41) and includes a gate pad (101) electrically connected to the trench resistance structure (41), and a gate wiring (102) has a resistance value lower than that of the trench resistance structure (41) and is electrically connected to the gate pad (101) via the trench resistance structure (41);
The semiconductor device according to any one of A1 to A3, wherein the gate resistor (40) includes the gate connection conductive film (50a).
 [A5] 前記主面(3)の内方部に設けられた活性領域(12)と、
 前記主面(3)の周縁部に設けられた外周領域(13)と、
 前記活性領域(12)および前記外周領域(13)の間に設けられた終端領域(15)とを含み、
 前記トレンチ抵抗構造(41)は、前記終端領域(15)において前記主面(3)に形成され、
 前記ゲートパッド(101)は、前記終端領域(15)において前記トレンチ抵抗構造(41)に電気的に接続され、
 前記ゲート配線(102)は、前記終端領域(15)において前記トレンチ抵抗構造(41)を介して前記ゲートパッド(101)に電気的に接続されている、A4に記載の半導体装置。
[A5] an active region (12) provided in an inner portion of the main surface (3);
An outer peripheral region (13) provided on the peripheral edge of the main surface (3);
a termination region (15) provided between the active region (12) and the peripheral region (13);
the trench resistor structure (41) is formed in the main surface (3) in the termination region (15);
the gate pad (101) is electrically connected to the trench resistor structure (41) in the termination region (15);
The semiconductor device according to A4, wherein the gate wiring (102) is electrically connected to the gate pad (101) via the trench resistor structure (41) in the termination region (15).
 [A6] 前記ゲート抵抗(40)は、前記終端領域(15)に配置されており、
 前記ソース電極(120)は、前記ゲート抵抗(40)に対して前記活性領域(12)とは反対側の領域において、前記トレンチ抵抗構造(41)に沿って延びた第1ソース配線(125)を含み、
 前記ゲート抵抗(40)に含まれている前記ゲート接続導電膜(50)の下面の各位置のうち、全ての前記ソース/コンタクト接合領域(38A,92A,92B)それぞれからその位置までの距離の最小値が最大となる位置を第1位置(P1)とすると、前記第1ソース配線(125)が接合される前記ソース/コンタクト接合領域(92A)は、前記全ての前記ソース/コンタクト接合領域(38A,92A,92B)のうち前記第1位置(P1)までの距離が最も小さくなる前記ソース/コンタクト接合領域(92A)を含む、A5に記載の半導体装置。
[A6] The gate resistor (40) is disposed in the termination region (15);
The source electrode (120) includes a first source wiring (125) extending along the trench resistor structure (41) in a region opposite the active region (12) with respect to the gate resistor (40);
The semiconductor device according to A5, wherein, among the respective positions on the underside of the gate connection conductive film (50) included in the gate resistor (40), a position at which the minimum value of the distance from each of all of the source/contact junction regions (38A, 92A, 92B) to the position is the largest is defined as a first position (P1), and the source/contact junction region (92A) to which the first source wiring (125) is joined includes the source/contact junction region (92A) at which the distance to the first position (P1) is the smallest among all of the source/contact junction regions (38A, 92A, 92B).
 [A7] 前記コンタクト領域(38,92)は、前記第1ソース配線(125)が電気的に接続される第1アウターコンタクト領域(92)を含み、
 前記第1ソース配線(125)が接合される前記ソース/コンタクト接合領域(92A)は、前記第1アウターコンタクト領域(92)のうち、前記第1ソース配線(125)が接合されている領域である、A6に記載の半導体装置。
[A7] The contact region (38, 92) includes a first outer contact region (92) to which the first source wiring (125) is electrically connected,
The semiconductor device according to A6, wherein the source/contact junction region (92A) to which the first source wiring (125) is joined is a region of the first outer contact region (92) to which the first source wiring (125) is joined.
 [A8] 前記トレンチゲート構造(20)が、前記主面(3)に形成されたゲートトレンチ(21)と、前記ゲートトレンチ(21)の壁面に形成され、前記絶縁膜(16)に接続されたゲート絶縁膜(22)と、前記ゲート絶縁膜(22)を挟んで前記ゲートトレンチ(21)に埋設されたゲート埋設電極(23)とを含み、
 前記ゲート埋設電極(23)上には、選択的に前記ゲート埋設電極(23)および前記絶縁膜(16)を被覆する複数のゲート接続電極膜(39)が形成されており、
 前記ゲート接続電極膜(39)が前記ゲート接続導電膜(39b)を含む、A1~A7のいずれかに記載の半導体装置。
[A8] The trench gate structure (20) includes a gate trench (21) formed in the main surface (3), a gate insulating film (22) formed on a wall surface of the gate trench (21) and connected to the insulating film (16), and a gate buried electrode (23) buried in the gate trench (21) with the gate insulating film (22) sandwiched therebetween,
A plurality of gate connection electrode films (39) are formed on the gate buried electrode (23) to selectively cover the gate buried electrode (23) and the insulating film (16),
The semiconductor device according to any one of A1 to A7, wherein the gate connection electrode film (39) includes the gate connection conductive film (39b).
 [A9] 前記主面(3)の内方部に設けられた活性領域(12)と、
 前記主面(3)の周縁部に設けられた外周領域(13)と、
 前記活性領域(12)および前記外周領域(13)の間に設けられた両側の周縁領域(14)とを含み、
 前記トレンチゲート構造(20)は、前記活性領域(12)において前記主面(3)に形成され、
 前記ゲート電極(100)は、前記活性領域(12)において前記トレンチゲート構造(20)に電気的に接続されている、A8に記載の半導体装置。
[A9] an active region (12) provided in an inner portion of the main surface (3);
An outer peripheral region (13) provided on the peripheral edge of the main surface (3);
and a peripheral region (14) on both sides provided between the active region (12) and the outer periphery region (13),
The trench gate structure (20) is formed on the main surface (3) in the active region (12);
The semiconductor device according to A8, wherein the gate electrode (100) is electrically connected to the trench gate structure (20) in the active region (12).
 [A10] 前記ゲート電極(100)は、前記活性領域(12)において、前記両側の周縁領域(14)のうちの少なくとも一方の周縁領域(14)に沿って延びた周縁ゲート配線(102A,102B)を含み、
 前記トレンチゲート構造(20)の周縁ゲート配線(102A,102B)側の端部に、前記ゲート埋設電極(23)および前記絶縁膜(16)を被覆しかつ前記周縁ゲート配線(102A,102B)に接合される前記ゲート接続電極膜(39)が形成されており、
 前記ソース電極(120)は、前記周縁ゲート配線(102A,102B)に対して前記活性領域(12)とは反対側の領域において、前記周縁ゲート配線(102A,102B)に沿って延びた第2ソース配線(125)を含み、
 前記周縁ゲート配線(102A,102B)に接合される前記ゲート接続電極膜(39)に含まれる前記ゲート接続導電膜(39b)の下面の各位置のうち、全ての前記ソース/コンタクト接合領域(38A,92A,92B)それぞれからその位置までの距離の最小値が最大となる位置を第2位置(P2)とすると、前記第2ソース配線(125)が接合される前記ソース/コンタクト接合領域(92B)は、前記全ての前記ソース/コンタクト接合領域(38A,92A,92B)のうち前記第2位置(P2)までの距離が最も小さくなる前記ソース/コンタクト接合領域(92B)を含む、A9に記載の半導体装置。
[A10] The gate electrode (100) includes peripheral gate wiring (102A, 102B) extending along at least one of the peripheral regions (14) on both sides in the active region (12),
the gate connection electrode film (39) is formed at an end of the trench gate structure (20) on the peripheral gate wiring (102A, 102B) side, the gate connection electrode film (39) covering the gate buried electrode (23) and the insulating film (16) and being joined to the peripheral gate wiring (102A, 102B);
The source electrode (120) includes a second source wiring (125) extending along the peripheral gate wiring (102A, 102B) in a region opposite to the active region (12) with respect to the peripheral gate wiring (102A, 102B);
The semiconductor device according to A9, wherein, among each position on the underside of the gate connection conductive film (39b) included in the gate connection electrode film (39) joined to the peripheral gate wiring (102A, 102B), a position at which the minimum value of the distance from each of all of the source/contact junction regions (38A, 92A, 92B) to the position is the largest is defined as a second position (P2), and the source/contact junction region (92B) to which the second source wiring (125) is joined includes the source/contact junction region (92B) at which the distance to the second position (P2) is the smallest among all of the source/contact junction regions (38A, 92A, 92B).
 [A11] 前記コンタクト領域(38,92)は、前記第2ソース配線(125)が電気的に接続される第2アウターコンタクト領域(92)を含み、
 前記第2ソース配線(125)が接合される前記ソース/コンタクト接合領域(92B)は、前記第2アウターコンタクト領域(92)のうち、前記第2ソース配線(125)が接合されている領域である、A10に記載の半導体装置。
[A11] The contact region (38, 92) includes a second outer contact region (92) to which the second source wiring (125) is electrically connected,
The semiconductor device according to A10, wherein the source/contact junction region (92B) to which the second source wiring (125) is joined is a region of the second outer contact region (92) to which the second source wiring (125) is joined.
 [A12]
 前記ゲート電極(100)は、前記活性領域(12)における前記両側の周縁領域(14)の間の中央領域に形成され、前記周縁領域(14)に沿って延びた中央ゲート配線(102C)を含み、
 前記トレンチゲート構造(20)における前記中央ゲート配線(102C)に対向する部分に、前記ゲート埋設電極(23)および前記絶縁膜(16)を被覆しかつ前記中央ゲート配線(102C)に接合される前記ゲート接続電極膜(39)が形成されており、
 前記ソース電極(120)は、前記活性領域(12)において、前記中央ゲート配線(102C)の両側に前記中央ゲート配線(102C)から間隔を空けて配置された2つのソースパッド部(121,122)を含み、
 前記中央ゲート配線(102C)に接合される前記ゲート接続電極膜(39)に含まれる前記ゲート接続導電膜(39b)の下面の各位置のうち、全ての前記ソース/コンタクト接合領域(38A,92A,92B)それぞれからその位置までの距離の最小値が最大となる位置を第3位置(P3)とすると、前記2つのソースパッド部(121,122)の少なくとも一方が接合される前記ソース/コンタクト接合領域(38A)は、前記全ての前記ソース/コンタクト接合領域(38A,92A,92B)のうち前記第3位置(P3)までの距離が最も小さくなる前記ソース/コンタクト接合領域(38A)を含む、A9に記載の半導体装置。
[A12]
The gate electrode (100) is formed in a central region between the peripheral regions (14) on both sides of the active region (12) and includes a central gate wiring (102C) extending along the peripheral regions (14);
the gate connection electrode film (39) is formed in a portion of the trench gate structure (20) facing the central gate wiring (102C), the gate connection electrode film (39) covering the gate buried electrode (23) and the insulating film (16) and being joined to the central gate wiring (102C);
The source electrode (120) includes two source pad portions (121, 122) disposed on both sides of the central gate wiring (102C) at a distance from the central gate wiring (102C) in the active region (12);
The semiconductor device according to A9, wherein, among each position on the underside of the gate connection conductive film (39b) included in the gate connection electrode film (39) joined to the central gate wiring (102C), a position at which the minimum value of the distance from each of all of the source/contact junction regions (38A, 92A, 92B) to the position is the largest is defined as a third position (P3), and the source/contact junction region (38A) to which at least one of the two source pad portions (121, 122) is joined includes the source/contact junction region (38A) at which the distance to the third position (P3) is the smallest among all of the source/contact junction regions (38A, 92A, 92B).
 [A13] 前記コンタクト領域(38,92)が、活性領域(12)において前記トレンチソース構造(25,30)に沿う領域に形成された第1コンタクト領域(38)を含み、
 前記ソースパッド部(121,122)が接合される前記ソース/コンタクト接合領域(38A)は、前記第1コンタクト領域(38)のうち前記ソースパッド部(121,122)が接合されている領域である、A12に記載の半導体装置。
[A13] The contact region (38, 92) includes a first contact region (38) formed in a region along the trench source structure (25, 30) in the active region (12);
The semiconductor device according to A12, wherein the source/contact junction region (38A) to which the source pad portion (121, 122) is joined is a region of the first contact region (38) to which the source pad portion (121, 122) is joined.
 [A14] 前記主面(3)の内方部に形成された第1面部(8)、前記第1面部(8)から前記チップ(2)の厚さ方向に窪むように前記主面(3)の周縁部に形成された第2面部(9)、ならびに、前記第1面部(8)および前記第2面部(9)を接続する接続面部(10A~10D)によって前記主面(3)に区画された活性台地(11)をさらに含み、
 前記活性領域(12)は、前記第1面部(8)に設けられ、
 前記外周領域(13)は、前記第2面部(9)に設けられ、
 前記終端領域(15)は、前記第1面部(8)に設けられている、A5~A7のいずれかに記載の半導体装置。
[A14] The semiconductor device further includes a first surface portion (8) formed on the inner side of the main surface (3), a second surface portion (9) formed on the periphery of the main surface (3) so as to be recessed from the first surface portion (8) in the thickness direction of the chip (2), and an active plateau (11) defined on the main surface (3) by a connecting surface portion (10A-10D) connecting the first surface portion (8) and the second surface portion (9),
The active region (12) is provided on the first surface portion (8),
The outer circumferential region (13) is provided on the second surface portion (9),
The semiconductor device according to any one of A5 to A7, wherein the termination region (15) is provided on the first surface portion (8).
 [A15] 前記主面(3)の内方部に形成された第1面部(8)、前記第1面部(8)から前記チップ(2)の厚さ方向に窪むように前記主面(3)の周縁部に形成された第2面部(9)、ならびに、前記第1面部(8)および前記第2面部(9)を接続する接続面部(10A~10D)によって前記主面(3)に区画された活性台地(11)をさらに含み、
 前記活性領域(12)は、前記第1面部(8)に設けられ、
 前記外周領域(13)は、前記第2面部(9)に設けられ、
 前記両側の周縁領域(14)は、前記第1面部(8)に設けられている、A9~A13のいずれかに記載の半導体装置。
[A15] The semiconductor device further includes a first surface portion (8) formed on the inner side of the main surface (3), a second surface portion (9) formed on the periphery of the main surface (3) so as to be recessed from the first surface portion (8) in the thickness direction of the chip (2), and an active plateau (11) defined on the main surface (3) by a connecting surface portion (10A-10D) connecting the first surface portion (8) and the second surface portion (9),
The active region (12) is provided on the first surface portion (8),
The outer circumferential region (13) is provided on the second surface portion (9),
The semiconductor device according to any one of A9 to A13, wherein the peripheral regions (14) on both sides are provided on the first surface portion (8).
 [A16] 前記トレンチ抵抗構造(41)よりも低い抵抗値を有し、前記トレンチ抵抗構造(41)を介して前記ゲートパッド(101)に電気的に接続されるように前記主面(3)の上に配置されたゲートサブパッド(103)をさらに含む、A4~A7のいずれかに記載の半導体装置。 [A16] The semiconductor device according to any one of A4 to A7, further including a gate subpad (103) arranged on the main surface (3) so as to have a resistance value lower than the trench resistor structure (41) and to be electrically connected to the gate pad (101) via the trench resistor structure (41).
 [A17] 前記ゲートサブパッド(103)は、前記ゲートパッド(101)よりも幅狭に形成され、前記ゲート配線(102)よりも幅広に形成されている、A16に記載の半導体装置。 [A17] The semiconductor device described in A16, in which the gate subpad (103) is formed narrower than the gate pad (101) and wider than the gate wiring (102).
 以上、実施形態について詳細に説明してきたが、これらは技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の範囲は添付の請求の範囲によって限定される。 The above describes the embodiments in detail, but these are merely specific examples used to clarify the technical content, and the present invention should not be interpreted as being limited to these specific examples, and the scope of the present invention is limited by the appended claims.
 この出願は、2022年9月29日に日本国特許庁に提出された特願2022-157163号に対応しており、それらの出願の全開示はここに引用により組み込まれるものとする。 This application corresponds to Patent Application No. 2022-157163 filed with the Japan Patent Office on September 29, 2022, the entire disclosures of which are incorporated herein by reference.
1   半導体装置
2   チップ
3   第1主面
4   第2主面
5A~5D 第1~第4側面
6   第1半導体領域
8   活性面(第1面部)
9   外周面(第2面部)
10A 第1接続面(接続面部)
10B 第2接続面(接続面部)
10C 第3接続面(接続面部)
10D 第4接続面(接続面部)
11  活性台地
12  活性領域
13  外周領域
14  周縁領域
14A 第1周縁領域
14B 第2周縁領域
15  終端領域
15A 第1終端領域
15B 第2終端領域
16  主面絶縁膜
17  ボディ領域
18  ソース領域
20  トレンチゲート構造
21  ゲートトレンチ
22  ゲート絶縁膜
23  ゲート埋設電極
25  第1トレンチソース構造
26  第1ソーストレンチ
27  第1ソース絶縁膜
28  第1ソース埋設電極
30  第2トレンチソース構造
31  第2ソーストレンチ
32  第2ソース絶縁膜
33  第2ソース埋設電極
35  第1ウェル領域(トレンチゲート構造)
36  第2ウェル領域(第1トレンチソース構造)
37  第3ウェル領域(第2トレンチソース構造)
38  第1コンタクト領域(p型)
38A ソース/コンタクト接合領域
39  ゲート接続電極膜
39a 電極面
39b ゲート接続導電膜
40  ゲート抵抗
41  トレンチ抵抗構造
42  第1トレンチ抵抗構造(第1溝構造)
43  第2トレンチ抵抗構造(第3溝構造)
44  第1トレンチ
45  第1絶縁膜
46  第1埋設電極
47  第2トレンチ
48  第2絶縁膜
49  第2埋設電極
50  抵抗膜
50a ゲート接続導電膜
55  ダミー構造
56  第1ダミー構造
57  第2ダミー構造
60  ダミートレンチ構造
61  第1ダミートレンチ構造(第2溝構造)
62  第2ダミートレンチ構造(第4溝構造)
63  第1ダミートレンチ
64  第1ダミー絶縁膜
65  第1ダミー埋設電極
66  第2ダミートレンチ
67  第2ダミー絶縁膜
68  第2ダミー埋設電極
70  メインメサ部
71  第1メサ部
72  第2メサ部
75  第4ウェル領域
76  第5ウェル領域
77  第6ウェル領域
78  第7ウェル領域
79  第2コンタクト領域
80  第3コンタクト領域
85  終端ダミー構造
86  トレンチ終端構造
87  終端トレンチ
88  終端絶縁膜
89  終端埋設電極
90  第8ウェル領域
91  アウターウェル領域(p型)
92  アウターコンタクト領域(p型)
92A,92B ソース/コンタクト接合領域
93  フィールド領域(p型)
95  サイドウォール配線
99  層間絶縁膜
100 ゲート電極
101 ゲートパッド
102 ゲート配線
102A 第1ゲート配線
102B 第2ゲート配線
102C 第3ゲート配線
103 ゲートサブパッド
104 パッド本体部
105 引き出し部
106 第1抵抗開口
107 第2抵抗開口
108 ゲート開口
109 第3抵抗開口
110 ライン部
111 第1分岐部
112 第2分岐部
120 ソース電極
121 第1ソースパッド
122 第2ソースパッド
123 第1ソースサブパッド
124 第2ソースサブパッド
125 ソース配線
126 ソース開口
127 アウター開口
130 アッパー絶縁膜
131 ゲートパッド開口
132 ゲートサブパッド開口
133 第1ソースパッド開口
134 第1ソースサブパッド開口
135 第2ソースパッド開口
136 第2ソースサブパッド開口
137  ダイシングストリート
140 無機絶縁膜
141 有機絶縁膜
150 ドレイン電極
X   第1方向
Y   第2方向
1 Semiconductor device 2 Chip 3 First main surface 4 Second main surfaces 5A to 5D First to fourth side surfaces 6 First semiconductor region 8 Active surface (first surface portion)
9 Outer circumferential surface (second surface)
10A First Connection Surface (Connection Surface Portion)
10B Second connection surface (connection surface portion)
10C third connection surface (connection surface portion)
10D Fourth connection surface (connection surface portion)
11 Active plateau 12 Active region 13 Outer peripheral region 14 Peripheral region 14A First peripheral region 14B Second peripheral region 15 Termination region 15A First termination region 15B Second termination region 16 Main surface insulating film 17 Body region 18 Source region 20 Trench gate structure 21 Gate trench 22 Gate insulating film 23 Gate buried electrode 25 First trench source structure 26 First source trench 27 First source insulating film 28 First source buried electrode 30 Second trench source structure 31 Second source trench 32 Second source insulating film 33 Second source buried electrode 35 First well region (trench gate structure)
36 Second well region (first trench source structure)
37 Third well region (second trench source structure)
38 First contact region (p + type)
38A: source/contact junction region 39: gate connection electrode film 39a: electrode surface 39b: gate connection conductive film 40: gate resistor 41: trench resistor structure 42: first trench resistor structure (first groove structure)
43 Second trench resistor structure (third trench structure)
44 First trench 45 First insulating film 46 First buried electrode 47 Second trench 48 Second insulating film 49 Second buried electrode 50 Resistance film 50a Gate connection conductive film 55 Dummy structure 56 First dummy structure 57 Second dummy structure 60 Dummy trench structure 61 First dummy trench structure (second groove structure)
62 Second dummy trench structure (fourth trench structure)
63 First dummy trench 64 First dummy insulating film 65 First dummy buried electrode 66 Second dummy trench 67 Second dummy insulating film 68 Second dummy buried electrode 70 Main mesa portion 71 First mesa portion 72 Second mesa portion 75 Fourth well region 76 Fifth well region 77 Sixth well region 78 Seventh well region 79 Second contact region 80 Third contact region 85 Termination dummy structure 86 Trench termination structure 87 Termination trench 88 Termination insulating film 89 Termination buried electrode 90 Eighth well region 91 Outer well region (p-type)
92 Outer contact region (p-type)
92A, 92B Source/contact junction region 93 Field region (p-type)
95 Sidewall wiring 99 Interlayer insulating film 100 Gate electrode 101 Gate pad 102 Gate wiring 102A First gate wiring 102B Second gate wiring 102C Third gate wiring 103 Gate subpad 104 Pad main body 105 Lead-out portion 106 First resistor opening 107 Second resistor opening 108 Gate opening 109 Third resistor opening 110 Line portion 111 First branch portion 112 Second branch portion 120 Source electrode 121 First source pad 122 Second source pad 123 First source subpad 124 Second source subpad 125 Source wiring 126 Source opening 127 Outer opening 130 Upper insulating film 131 Gate pad opening 132 Gate subpad opening 133 First source pad opening 134 First source subpad opening 135 Second source pad opening 136 Second source subpad opening 137 Dicing street 140 Inorganic insulating film 141 Organic insulating film 150 Drain electrode X First direction Y Second direction

Claims (17)

  1.  主面を有し、第1導電型の半導体からなるチップと、
     前記チップの前記主面側の表層部に選択的に形成された第2導電型の第1領域と、
     前記主面に形成されたトレンチゲート構造と、
     前記主面に形成されたトレンチソース構造と、
     前記主面上に選択的に形成された絶縁膜と、
     前記主面上に前記絶縁膜を覆うように配置された層間絶縁膜と、
     前記層間絶縁膜上に配置され、前記トレンチゲート構造にゲート電位を付与するゲート電極と、
     前記層間絶縁膜上に配置され、前記トレンチソース構造にソース電位を付与するソース電極と、
     前記絶縁膜上に形成され、前記ゲート電極に電気的に接続されたゲート接続導電膜と、
     前記第1領域の表層部に選択的に形成され、前記ソース電極が電気的に接続される第2導電型のコンタクト領域とを含み、
     前記コンタクト領域のうち前記ソース電極が接合されている領域をソース/コンタクト接合領域とすると、
     前記ゲート接続導電膜の下面の各位置とそれに最も近い前記ソース/コンタクト接合領域の距離の最大値が90μm以下である、半導体装置。
    A chip having a main surface and made of a first conductivity type semiconductor;
    a first region of a second conductivity type selectively formed in a surface layer portion on the main surface side of the chip;
    a trench gate structure formed on the main surface;
    a trench source structure formed in the major surface;
    an insulating film selectively formed on the main surface;
    an interlayer insulating film disposed on the main surface so as to cover the insulating film;
    a gate electrode disposed on the interlayer insulating film and configured to apply a gate potential to the trench gate structure;
    a source electrode disposed on the interlayer insulating film and configured to apply a source potential to the trench source structure;
    a gate connection conductive film formed on the insulating film and electrically connected to the gate electrode;
    a contact region of a second conductivity type selectively formed in a surface layer portion of the first region and electrically connected to the source electrode;
    If a region of the contact region to which the source electrode is joined is defined as a source/contact junction region,
    The semiconductor device has a maximum distance between each position on the lower surface of the gate connecting conductive film and the source/contact junction region closest thereto of 90 μm or less.
  2.  前記ゲート接続導電膜の下面の各位置とそれに最も近い前記ソース/コンタクト接合領域の距離の最大値が80μm以下である、請求項1に記載の半導体装置。 The semiconductor device according to claim 1, wherein the maximum distance between each position on the underside of the gate connection conductive film and the source/contact junction region closest thereto is 80 μm or less.
  3.  前記ゲート接続導電膜の下面の各位置とそれに最も近い前記ソース/コンタクト接合領域の距離の最大値が70μm以下である、請求項1に記載の半導体装置。 The semiconductor device according to claim 1, wherein the maximum distance between each position on the underside of the gate connection conductive film and the source/contact junction region closest thereto is 70 μm or less.
  4.  前記主面に形成されたトレンチ抵抗構造を含むゲート抵抗を含み、
     前記ゲート電極は、前記トレンチ抵抗構造よりも低い抵抗値を有し、前記トレンチ抵抗構造に電気的に接続されたゲートパッドと、前記トレンチ抵抗構造よりも低い抵抗値を有し、前記トレンチ抵抗構造を介して前記ゲートパッドに電気的に接続されるゲート配線とを含み、
     前記ゲート抵抗が前記ゲート接続導電膜を含む、請求項1~3のいずれか一項に記載の半導体装置。
    a gate resistor including a trench resistor structure formed on the major surface;
    the gate electrode includes a gate pad having a resistance value lower than that of the trench resistance structure and electrically connected to the trench resistance structure, and a gate wiring having a resistance value lower than that of the trench resistance structure and electrically connected to the gate pad via the trench resistance structure;
    4. The semiconductor device according to claim 1, wherein the gate resistor includes the gate connection conductive film.
  5.  前記主面の内方部に設けられた活性領域と、
     前記主面の周縁部に設けられた外周領域と、
     前記活性領域および前記外周領域の間に設けられた終端領域とを含み、
     前記トレンチ抵抗構造は、前記終端領域において前記主面に形成され、
     前記ゲートパッドは、前記終端領域において前記トレンチ抵抗構造に電気的に接続され、
     前記ゲート配線は、前記終端領域において前記トレンチ抵抗構造を介して前記ゲートパッドに電気的に接続されている、請求項4に記載の半導体装置。
    an active region provided in an inner portion of the main surface;
    an outer peripheral region provided on a peripheral portion of the main surface;
    a termination region disposed between the active region and the periphery region;
    the trench resistor structure is formed in the major surface in the termination region;
    the gate pad is electrically connected to the trench resistor structure in the termination region;
    The semiconductor device according to claim 4 , wherein said gate wiring is electrically connected to said gate pad via said trench resistor structure in said termination region.
  6.  前記ゲート抵抗は、前記終端領域に配置されており、
     前記ソース電極は、前記ゲート抵抗に対して前記活性領域とは反対側の領域において、前記トレンチ抵抗構造に沿って延びた第1ソース配線を含み、
     前記ゲート抵抗に含まれている前記ゲート接続導電膜の下面の各位置のうち、全ての前記ソース/コンタクト接合領域それぞれからその位置までの距離の最小値が最大となる位置を第1位置とすると、前記第1ソース配線が接合される前記ソース/コンタクト接合領域は、前記全ての前記ソース/コンタクト接合領域のうち前記第1位置までの距離が最も小さくなる前記ソース/コンタクト接合領域を含む、請求項5に記載の半導体装置。
    the gate resistor is disposed in the termination region;
    the source electrode includes a first source wiring extending along the trench resistor structure in a region opposite to the active region with respect to the gate resistor;
    6. The semiconductor device according to claim 5, wherein, among the positions on the underside of the gate connection conductive film included in the gate resistor, a position at which a minimum value of a distance from each of the source/contact junction regions to the position is maximum is defined as a first position, and the source/contact junction region to which the first source wiring is joined includes the source/contact junction region at which a distance to the first position is smallest among all the source/contact junction regions.
  7.  前記コンタクト領域は、前記第1ソース配線が電気的に接続される第1アウターコンタクト領域を含み、
     前記第1ソース配線が接合される前記ソース/コンタクト接合領域は、前記第1アウターコンタクト領域のうち、前記第1ソース配線が接合されている領域である、請求項6に記載の半導体装置。
    the contact region includes a first outer contact region to which the first source line is electrically connected;
    7. The semiconductor device according to claim 6, wherein the source/contact junction region to which the first source wiring is joined is a region of the first outer contact region to which the first source wiring is joined.
  8.  前記トレンチゲート構造が、前記主面に形成されたゲートトレンチと、前記ゲートトレンチの壁面に形成され、前記絶縁膜に接続されたゲート絶縁膜と、前記ゲート絶縁膜を挟んで前記ゲートトレンチに埋設されたゲート埋設電極とを含み、
     前記ゲート埋設電極上には、選択的に前記ゲート埋設電極および前記絶縁膜を被覆する複数のゲート接続電極膜が形成されており、
     前記ゲート接続電極膜が前記ゲート接続導電膜を含む、請求項1~3のいずれか一項に記載の半導体装置。
    the trench gate structure includes a gate trench formed in the main surface, a gate insulating film formed on a wall surface of the gate trench and connected to the insulating film, and a gate buried electrode buried in the gate trench with the gate insulating film sandwiched therebetween;
    a plurality of gate connection electrode films are formed on the gate buried electrode, the gate connection electrode films selectively covering the gate buried electrode and the insulating film;
    4. The semiconductor device according to claim 1, wherein the gate connection electrode film includes the gate connection conductive film.
  9.  前記主面の内方部に設けられた活性領域と、
     前記主面の周縁部に設けられた外周領域と、
     前記活性領域および前記外周領域の間に設けられた両側の周縁領域とを含み、
     前記トレンチゲート構造は、前記活性領域において前記主面に形成され、
     前記ゲート配線は、前記活性領域において前記トレンチゲート構造に電気的に接続されている、請求項8に記載の半導体装置。
    an active region provided in an inner portion of the main surface;
    an outer peripheral region provided on a peripheral portion of the main surface;
    and a peripheral region on each side between the active region and the peripheral region,
    the trench gate structure is formed in the major surface in the active region;
    The semiconductor device according to claim 8 , wherein the gate wiring is electrically connected to the trench gate structure in the active region.
  10.  前記ゲート電極は、前記活性領域において、前記両側の周縁領域のうちの少なくとも一方の周縁領域に沿って延びた周縁ゲート配線を含み、
     前記トレンチゲート構造の周縁ゲート配線側の端部に、前記ゲート埋設電極および前記絶縁膜を被覆しかつ前記周縁ゲート配線に接合される前記ゲート接続電極膜が形成されており、
     前記ソース電極は、前記周縁ゲート配線に対して前記活性領域とは反対側の領域において、前記周縁ゲート配線に沿って延びた第2ソース配線を含み、
     前記周縁ゲート配線に接合される前記ゲート接続電極膜に含まれる前記ゲート接続導電膜の下面の各位置のうち、全ての前記ソース/コンタクト接合領域それぞれからその位置までの距離の最小値が最大となる位置を第2位置とすると、前記第2ソース配線が接合される前記ソース/コンタクト接合領域は、前記全ての前記ソース/コンタクト接合領域のうち前記第2位置までの距離が最も小さくなる前記ソース/コンタクト接合領域を含む、請求項9に記載の半導体装置。
    the gate electrode includes a peripheral gate wiring extending along at least one of the peripheral regions on both sides in the active region;
    the gate connection electrode film is formed on an end of the trench gate structure on a peripheral gate wiring side, the gate connection electrode film covering the gate buried electrode and the insulating film and being joined to the peripheral gate wiring;
    the source electrode includes a second source wiring extending along the peripheral gate wiring in a region opposite to the active region with respect to the peripheral gate wiring;
    10. The semiconductor device according to claim 9, wherein, among each position on the underside of the gate connection conductive film included in the gate connection electrode film joined to the peripheral gate wiring, a position at which a minimum value of a distance from each of the source/contact junction regions to the position is maximum is defined as a second position, and the source/contact junction region to which the second source wiring is joined includes the source/contact junction region at which a distance to the second position is smallest among all the source/contact junction regions.
  11.  前記コンタクト領域は、前記第2ソース配線が電気的に接続される第2アウターコンタクト領域を含み、
     前記第2ソース配線が接合される前記ソース/コンタクト接合領域は、前記第2アウターコンタクト領域のうち、前記第2ソース配線が接合されている領域である、請求項10に記載の半導体装置。
    the contact region includes a second outer contact region to which the second source line is electrically connected;
    11. The semiconductor device according to claim 10, wherein the source/contact junction region to which the second source wiring is joined is a region of the second outer contact region to which the second source wiring is joined.
  12.  前記ゲート電極は、前記活性領域における前記両側の周縁領域の間の中央領域に形成され、前記周縁領域に沿って延びた中央ゲート配線を含み、
     前記トレンチゲート構造における前記中央ゲート配線に対向する部分に、前記ゲート埋設電極および前記絶縁膜を被覆しかつ前記中央ゲート配線に接合される前記ゲート接続電極膜が形成されており、
     前記ソース電極は、前記活性領域において、前記中央ゲート配線の両側に前記中央ゲート配線から間隔を空けて配置された2つのソースパッド部を含み、
     前記中央ゲート配線に接合される前記ゲート接続電極膜に含まれる前記ゲート接続導電膜の下面の各位置のうち、全ての前記ソース/コンタクト接合領域それぞれからその位置までの距離の最小値が最大となる位置を第3位置とすると、前記2つのソースパッド部の少なくとも一方が接合される前記ソース/コンタクト接合領域は、前記全ての前記ソース/コンタクト接合領域のうち前記第3位置までの距離が最も小さくなる前記ソース/コンタクト接合領域を含む、請求項9に記載の半導体装置。
    the gate electrode is formed in a central region between the two peripheral regions in the active region and includes a central gate wiring extending along the peripheral regions;
    the gate connection electrode film is formed in a portion of the trench gate structure facing the central gate wiring, the gate connection electrode film covering the gate buried electrode and the insulating film and being joined to the central gate wiring;
    the source electrode includes two source pad portions disposed on both sides of the central gate wiring at a distance from the central gate wiring in the active region;
    10. The semiconductor device according to claim 9, wherein, among each position on the underside of the gate connection conductive film included in the gate connection electrode film joined to the central gate wiring, a position at which the minimum value of the distance from each of all the source/contact junction regions to the position is the largest is defined as a third position, and the source/contact junction region to which at least one of the two source pad portions is joined includes the source/contact junction region at which the distance to the third position is the smallest among all the source/contact junction regions.
  13.  前記コンタクト領域が、活性領域において前記トレンチソース構造に沿う領域に形成された第1コンタクト領域を含み、
     前記ソースパッド部が接合される前記ソース/コンタクト接合領域は、前記第1コンタクト領域のうち前記ソースパッド部が接合されている領域である、請求項12に記載の半導体装置。
    the contact region includes a first contact region formed in an active region along the trench source structure;
    13. The semiconductor device according to claim 12, wherein the source/contact junction region to which the source pad portion is joined is a region of the first contact region to which the source pad portion is joined.
  14.  前記主面の内方部に形成された第1面部、前記第1面部から前記チップの厚さ方向に窪むように前記主面の周縁部に形成された第2面部、ならびに、前記第1面部および前記第2面部を接続する接続面部によって前記主面に区画された活性台地をさらに含み、
     前記活性領域は、前記第1面部に設けられ、
     前記外周領域は、前記第2面部に設けられ、
     前記終端領域は、前記第1面部に設けられている、請求項5に記載の半導体装置。
    the first surface portion is formed on an inner portion of the main surface, a second surface portion is formed on a peripheral portion of the main surface so as to be recessed from the first surface portion in a thickness direction of the chip, and an active plateau is defined on the main surface by a connecting surface portion connecting the first surface portion and the second surface portion,
    The active region is provided on the first surface portion,
    The outer circumferential region is provided on the second surface portion,
    The semiconductor device according to claim 5 , wherein said termination region is provided on said first surface portion.
  15.  前記主面の内方部に形成された第1面部、前記第1面部から前記チップの厚さ方向に窪むように前記主面の周縁部に形成された第2面部、ならびに、前記第1面部および前記第2面部を接続する接続面部によって前記主面に区画された活性台地をさらに含み、
     前記活性領域は、前記第1面部に設けられ、
     前記外周領域は、前記第2面部に設けられ、
     前記両側の周縁領域は、前記第1面部に設けられている、請求項9に記載の半導体装置。
    the first surface portion is formed on an inner portion of the main surface, a second surface portion is formed on a peripheral portion of the main surface so as to be recessed from the first surface portion in a thickness direction of the chip, and an active plateau is defined on the main surface by a connecting surface portion connecting the first surface portion and the second surface portion,
    The active region is provided on the first surface portion,
    The outer circumferential region is provided on the second surface portion,
    The semiconductor device according to claim 9 , wherein said peripheral regions on both sides are provided on said first surface portion.
  16.  前記トレンチ抵抗構造よりも低い抵抗値を有し、前記トレンチ抵抗構造を介して前記ゲートパッドに電気的に接続されるように前記主面の上に配置されたゲートサブパッドをさらに含む、請求項4に記載の半導体装置。 The semiconductor device according to claim 4, further comprising a gate subpad arranged on the main surface so as to have a resistance value lower than that of the trench resistor structure and to be electrically connected to the gate pad via the trench resistor structure.
  17.  前記ゲートサブパッドは、前記ゲートパッドよりも幅狭に形成され、前記ゲート配線よりも幅広に形成されている、請求項16に記載の半導体装置。 The semiconductor device according to claim 16, wherein the gate subpad is narrower than the gate pad and wider than the gate wiring.
PCT/JP2023/027048 2022-09-29 2023-07-24 Semiconductor device WO2024070164A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-157163 2022-09-29
JP2022157163 2022-09-29

Publications (1)

Publication Number Publication Date
WO2024070164A1 true WO2024070164A1 (en) 2024-04-04

Family

ID=90477061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027048 WO2024070164A1 (en) 2022-09-29 2023-07-24 Semiconductor device

Country Status (1)

Country Link
WO (1) WO2024070164A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047438A1 (en) * 2014-09-26 2016-03-31 三菱電機株式会社 Semiconductor device
WO2019106948A1 (en) * 2017-11-30 2019-06-06 住友電気工業株式会社 Gate insulation-type transistor
WO2020031971A1 (en) * 2018-08-07 2020-02-13 ローム株式会社 SiC SEMICONDUCTOR DEVICE
JP2020150179A (en) * 2019-03-14 2020-09-17 富士電機株式会社 Semiconductor device
JP2021077914A (en) * 2013-08-28 2021-05-20 ローム株式会社 Semiconductor device
WO2022024812A1 (en) * 2020-07-31 2022-02-03 ローム株式会社 SiC SEMICONDUCTOR DEVICE

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021077914A (en) * 2013-08-28 2021-05-20 ローム株式会社 Semiconductor device
WO2016047438A1 (en) * 2014-09-26 2016-03-31 三菱電機株式会社 Semiconductor device
WO2019106948A1 (en) * 2017-11-30 2019-06-06 住友電気工業株式会社 Gate insulation-type transistor
WO2020031971A1 (en) * 2018-08-07 2020-02-13 ローム株式会社 SiC SEMICONDUCTOR DEVICE
JP2020150179A (en) * 2019-03-14 2020-09-17 富士電機株式会社 Semiconductor device
WO2022024812A1 (en) * 2020-07-31 2022-02-03 ローム株式会社 SiC SEMICONDUCTOR DEVICE

Similar Documents

Publication Publication Date Title
JP7234713B2 (en) semiconductor equipment
JP5712231B2 (en) Semiconductor device
KR20110098788A (en) Trench-based power semiconductor devices with increased breakdown voltage characteristics
EP3007231B1 (en) Semiconductor device
JP2024073195A (en) Semiconductor Device
US11158713B2 (en) Semiconductor device
JPWO2019186853A1 (en) Wide-gap semiconductor device
WO2024070164A1 (en) Semiconductor device
US11043557B2 (en) Semiconductor device
JP7507756B2 (en) Semiconductor Device
WO2023189054A1 (en) Semiconductor device
WO2023189053A1 (en) Semiconductor device
WO2024101130A1 (en) Semiconductor device
WO2023013200A1 (en) Semiconductor device
WO2021261397A1 (en) Semiconductor device
WO2023223590A1 (en) Semiconductor chip
WO2024204491A1 (en) Semiconductor device
WO2024203121A1 (en) Semiconductor device
WO2024203120A1 (en) Semiconductor device
US20230091984A1 (en) Nitride semiconductor device
WO2024101006A1 (en) Semiconductor device
US11923451B2 (en) Semiconductor device
WO2024203119A1 (en) Semiconductor device
WO2024101129A1 (en) Semiconductor device
US20240304682A1 (en) Semiconductor device and method of manufacturing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871407

Country of ref document: EP

Kind code of ref document: A1