WO2024070004A1 - Wireless power transmission system, power transmission system, power reception system, power transmission device, power reception device, and space solar power generation satellite - Google Patents

Wireless power transmission system, power transmission system, power reception system, power transmission device, power reception device, and space solar power generation satellite Download PDF

Info

Publication number
WO2024070004A1
WO2024070004A1 PCT/JP2023/005518 JP2023005518W WO2024070004A1 WO 2024070004 A1 WO2024070004 A1 WO 2024070004A1 JP 2023005518 W JP2023005518 W JP 2023005518W WO 2024070004 A1 WO2024070004 A1 WO 2024070004A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
transmission
power transmission
wireless power
frequency
Prior art date
Application number
PCT/JP2023/005518
Other languages
French (fr)
Japanese (ja)
Inventor
直輝 長谷川
悠太 中本
昂 平川
Original Assignee
ソフトバンク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソフトバンク株式会社 filed Critical ソフトバンク株式会社
Publication of WO2024070004A1 publication Critical patent/WO2024070004A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/50Circuit arrangements or systems for wireless supply or distribution of electric power using additional energy repeaters between transmitting devices and receiving devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems

Definitions

  • the present invention relates to wireless power transmission (WPT).
  • Patent Document 1 discloses a power supply system that includes a power transmission system (power transmission device) in space that transmits electrical energy as a microwave beam, and a power receiving system (power receiving device) on the ground that receives the microwave beam transmitted from the power transmission system.
  • a power transmission system power transmission device
  • a power receiving system power receiving device
  • the system according to the first aspect of the present invention is a system for wireless power transmission.
  • This system is mounted on a floating body located at a predetermined altitude and includes a plurality of power transmitting devices that transmit transmission signals for wireless power transmission via electromagnetic waves of a predetermined frequency, and one or more power receiving devices that output electric power by phase-combining a plurality of received signals that receive the plurality of transmission signals transmitted from the plurality of power transmitting devices.
  • the power receiving device may transmit a pilot signal to the power transmitting devices, and the power transmitting devices may be time-synchronized with each other, and may determine the transmission timing of the transmission signal for wireless power transmission based on the reception result of the pilot signal received from the power receiving device so that the transmission signals for wireless power transmission transmitted from the power transmitting devices reach the power receiving device in phase.
  • the frequency of the electromagnetic waves may be 300 GHz or less.
  • the electromagnetic waves may be microwaves.
  • the electromagnetic waves may be beam-shaped electromagnetic waves formed to have a directionality from the power transmitting device to the power receiving device.
  • the float may be a HAPS, a balloon, or a drone located in the stratosphere.
  • the power receiving device may be located on land, sea or lake, or in space at a lower altitude than the power transmitting device.
  • the power transmission device is a power transmission device for wireless power transmission.
  • This power transmission device is mounted on a levitation body located at a predetermined altitude, and includes a transmission unit that transmits a transmission signal for wireless power transmission via electromagnetic waves of a predetermined frequency.
  • the power transmission device may include a synchronization processing unit that performs time synchronization with other power transmission devices that have a common power transmission target, and the transmission unit may determine the transmission timing of the transmission signal for wireless power transmission based on the reception result of a pilot signal received from the power receiving device so that the transmission signals for wireless power transmission transmitted from the multiple power transmission devices arrive at the power receiving device in the same phase.
  • the power transmission system includes a plurality of the power transmission devices.
  • the power receiving device is a power receiving device for wireless power transmission.
  • This power receiving device includes a receiving unit that receives transmission signals for wireless power transmission via electromagnetic waves of a predetermined frequency from a plurality of power transmitting devices each mounted on a levitation body located at a predetermined altitude, and a combining unit that combines a plurality of received signals in phase that have received the plurality of transmission signals.
  • the power receiving device may include a transmission unit that transmits pilot signals to the multiple power transmitting devices.
  • the system according to the second aspect of the present invention is a system for wireless power transmission.
  • This system includes a power transmitting device mounted on a floating body located at a predetermined altitude, which receives a transmission signal for wireless power transmission from an external device via electromagnetic waves of a first frequency, converts the frequency of the transmission signal for wireless power transmission to a second frequency lower than the first frequency, and transmits the transmission signal for wireless power transmission via electromagnetic waves of the second frequency, and a power receiving device which receives the transmission signal transmitted from the power transmitting device and outputs electric power.
  • the electromagnetic wave of the first frequency may be a millimeter wave, a terahertz wave, or a light wave
  • the electromagnetic wave of the second frequency may be a microwave
  • the electromagnetic waves of the first frequency may be beam-shaped electromagnetic waves formed to have a directivity from an external device toward the power transmitting device
  • the electromagnetic waves of the second frequency may be beam-shaped electromagnetic waves formed to have a directivity from the power transmitting device toward the power receiving device.
  • the external device may be a space solar power satellite located in space outside the atmosphere, and the floating body may be a HAPS, a balloon, or a drone located in the stratosphere.
  • the power receiving device may be located on land, sea or lake, or in space at a lower altitude than the power transmitting device.
  • the power transmission device is a power transmission device for wireless power transmission.
  • This power transmission device is mounted on a floating body located at a predetermined altitude, and includes a receiving unit that receives a transmission signal for wireless power transmission via electromagnetic waves of a first frequency, a converting unit that converts the frequency of the transmission signal for wireless power transmission to a second frequency that is lower than the first frequency, and a transmitting unit that transmits the transmission signal for wireless power transmission via electromagnetic waves of the second frequency.
  • the system according to the third aspect of the present invention is a system for wireless power transmission.
  • This system includes a space solar power generation satellite located at an altitude higher than the atmosphere and transmitting multiple wireless power transmission transmission signals in multiple beams via electromagnetic waves of a predetermined frequency, and multiple power receiving devices mounted on multiple floating bodies located at a predetermined altitude lower than the space solar power generation satellite and receiving each of the multiple wireless power transmission transmission signals transmitted in multiple beams from the space solar power generation satellite.
  • the electromagnetic waves may be millimeter waves, terahertz waves, or light waves.
  • the float may be a HAPS, a balloon, or a drone located in the stratosphere.
  • the space solar power satellite according to the third aspect of the present invention is located at an altitude higher than the atmosphere and includes a transmitter that transmits multiple transmission signals for wireless power transmission in multiple beams via electromagnetic waves of a predetermined frequency to multiple power receiving devices mounted on multiple floating bodies located at a predetermined altitude lower than the space solar power satellite.
  • the power receiving device is a power receiving device for wireless power transmission.
  • This power receiving device is mounted on each of a plurality of floating bodies located at a predetermined altitude lower than the space solar power generation satellite, and includes a receiving unit that receives a transmission signal for wireless power transmission transmitted from the space solar power generation satellite via electromagnetic waves of a predetermined frequency.
  • the wireless power transmission power receiving system includes a plurality of the power receiving devices.
  • the present invention enables stable wireless power transmission from a power transmitting device located at a high altitude to a power receiving device.
  • FIG. 1 is an explanatory diagram illustrating an example of a schematic configuration of a system according to a first embodiment.
  • FIG. 2 is a block diagram showing an example of a main configuration of a HAPS and a base station that configure the wireless power transmission (WPT) system of the first embodiment.
  • FIG. 3A is a graph showing a composite signal when the phase between the received signals at the base station due to the respective transmitted signals from multiple HAPSs is not aligned.
  • FIG. 3B is a graph showing a combined signal when the phases between the signals received at the base station due to the respective transmission signals from multiple HAPSs are matched (when phase combined).
  • FIG. 4 is an explanatory diagram showing an example of a method for combining phases so that the phases of a plurality of received signals are matched.
  • FIG. 5 is an explanatory diagram illustrating an example of a schematic configuration of a system according to the second embodiment.
  • FIG. 6 is a block diagram showing an example of a main configuration of a HAPS and a base station that configure a wireless power transmission (WPT) system according to the second embodiment.
  • FIG. 7 is an explanatory diagram illustrating an example of a schematic configuration of a system according to the third embodiment.
  • FIG. 8 is a block diagram showing an example of a main configuration of a HAPS constituting a wireless power transmission (WPT) system according to the third embodiment.
  • a wireless power transmission (WPT) system is a large-space distributed power supply system capable of stably supplying power from multiple power transmitting devices mounted on multiple floating bodies (e.g., HAPS, balloons, drones) located in a distributed manner in the stratosphere or other locations in the sky to power receiving devices located on the ground, sea, lakes, etc., or to power receiving devices mounted on drones located in low-altitude space.
  • multiple floating bodies e.g., HAPS, balloons, drones
  • FIG. 1 is an explanatory diagram showing an example of a schematic configuration of a system according to the first embodiment.
  • the system of the first embodiment is a system for wireless power transmission (WPT), and includes a plurality of power transmitting devices mounted on levitating bodies located at a predetermined altitude, and one or more power receiving devices. Each of the plurality of power transmitting devices transmits a transmission signal for wireless power transmission via electromagnetic waves of a predetermined frequency.
  • the one or more power receiving devices output power by phase-combining a plurality of received signals that are received from the plurality of power transmitting devices mounted on the respective levitating bodies.
  • the floating body is, for example, a HAPS, a balloon, or a drone.
  • a high-altitude platform station HAPS (also called a "high-altitude pseudo satellite") 10
  • HAPS 10 is equipped with a communication relay device, is located in an airspace at a predetermined altitude, and forms a three-dimensional cell (three-dimensional area) in a cell formation target airspace at the predetermined altitude.
  • the airspace in which HAPS 10 is located is, for example, a stratospheric airspace with an altitude of 11 km or more and 50 km or less.
  • This airspace may be an airspace with an altitude of 15 km or more and 25 km or less where the weather conditions are relatively stable, and may particularly be an airspace with an altitude of approximately 20 km.
  • the cell formation target airspace may be above the sea, a river, or a lake.
  • the relay communication device of HAPS10 forms a beam toward the ground for wireless communication with a terminal device, which is a mobile station.
  • the terminal device may be a communication terminal module built into a drone, which is an aircraft such as a small remote-controlled helicopter, or it may be a user device used by a user inside an airplane (aircraft).
  • the relay communication device of HAPS10 is connected to the core network of the mobile communication network via a feeder station, which is a relay station located on land, sea, or lake. Communication between HAPS10 and the feeder station may be performed by wireless communication using radio waves such as microwaves, or by optical communication using laser light, etc.
  • HAPS10 may autonomously control its own flight movement and processing at the relay communication station by executing a control program with a control unit configured as an internally built computer or the like. For example, HAPS10 may acquire its own current position information (e.g., GPS (Global Positioning System) position information), pre-stored position control information (e.g., flight schedule information), position information of other HAPS located in the vicinity, and the like, and autonomously control its flight movement and processing at the relay communication device based on that information.
  • GPS Global Positioning System
  • the flight movement of HAPS10 and the processing by the relay communication device may be controlled by a remote control device acting as a management device provided in a communication center of a mobile communication network or the like.
  • Communication between HAPS10 and the remote control device is performed by a HAPS control communication station which is a facility on land or sea.
  • the HAPS control communication station preferably uses an omnidirectional antenna so that it can accommodate multiple HAPS10, but a directional antenna may also be used.
  • a GCS Gate Control System
  • ground control station may be used as such a HAPS control communication station.
  • the wireless communication between HAPS10 and the HAPS control communication station requires high reliability and low latency, since it includes communication for controlling the flight movement of HAPS10 and cell optimization. Therefore, it is preferable to use a frequency band for the wireless communication between HAPS10 and the HAPS control communication station that is lower than the frequency band used for wireless communication via the feeder link of mobile communication between HAPS10 and the feeder station. For example, if a gigahertz (GHz) frequency band is used for the wireless communication between HAPS10 and the feeder station, a megahertz (MHz) frequency band is used for the wireless communication between HAPS10 and the HAPS control communication station.
  • GHz gigahertz
  • MHz megahertz
  • HAPS10 may incorporate a control communication terminal device (e.g., a mobile communication module) so that it can receive control information from the remote control device, and may be assigned terminal identification information (e.g., an IP address, a telephone number, etc.) so that it can be identified by the remote control device.
  • terminal identification information e.g., an IP address, a telephone number, etc.
  • the MAC address of the communication interface may be used to identify the control communication terminal device.
  • HAPS10 may also transmit information such as information regarding the flight movement of itself or surrounding HAPS, processing by relay communication devices, and observation data acquired by various sensors, etc., to a specified destination such as a remote control device.
  • the power receiving device is a power supply target that is supplied with power by wireless power transmission (WPT) from a power transmitting device on HAPS10, and is not particularly limited.
  • WPT wireless power transmission
  • it is a power receiving device located on the ground, sea or lake (e.g., a mobile communication base station, mobile station, or other facility device), or a power receiving device located in space at a low altitude lower than the position of HAPS10 (e.g., another HAPS, a balloon, a drone, an airplane (aircraft), or other floating object).
  • This embodiment is an example in which a mobile communication base station 20 installed on the ground is used as the power receiving device.
  • the base station 20 is equipped with, for example, multiple array antennas 210 having many antenna elements, and can communicate with multiple terminal devices (for example, UEs (mobile stations) for mobile communication and IoT devices, hereinafter also referred to as "UEs 20") using a massive MIMO (hereinafter also referred to as "mMIMO") transmission method.
  • mMIMO is a wireless transmission technology that realizes large-capacity, high-speed communication by transmitting and receiving data using the array antennas 210.
  • communication can be performed using a MU (Multi User)-MIMO transmission method that performs beamforming, which forms beams for each of the multiple UEs 20 in a time-division or simultaneous manner.
  • MU Multi User
  • communication can be performed by directing an appropriate beam to each UE 20 according to the communication environment of each UE 20, thereby improving the communication quality of the entire cell.
  • communication with multiple UEs 20 can be performed using the same wireless resources (time and frequency resources), thereby expanding the system capacity.
  • FIG. 2 is a block diagram showing an example of the main configuration of the HAPS 10 and the base station 20 that constitute the wireless power transmission (WPT) system of the first embodiment.
  • the HAPS 10 includes a communication relay device 100 as a power transmitting device and an antenna 110.
  • the antenna 110 is, for example, an array antenna having a large number of antenna elements. There may be a single antenna 110 or multiple antennas 110. For example, multiple antennas 110 may be arranged corresponding to multiple sector cells.
  • the communication relay device 100 includes a communication signal processing unit 120, a wireless processing unit 130, a power transmission control unit 140, and a NW communication unit 150.
  • the communication signal processing unit 120 processes signals such as control information transmitted and received between the base station 20.
  • the wireless processing unit 130 transmits a transmission signal generated by the communication signal processing unit 120 from the antenna 110 to the base station 20, and outputs a received signal received from the base station 20 via the antenna 110 to the communication signal processing unit 120.
  • the power transmission control unit 140 sends control information from the base station 20 to the communication signal processing unit 120, and generates a control signal (BF control signal) for wireless power transmission beamforming (WPT beamforming) of the array antenna 110 based on the control information and sends it to the wireless processing unit 130.
  • the communication signal processing unit 120 generates a downlink (DL) transmission signal including a WPT signal based on the control information received from the power transmission control unit 140 and sends it to the wireless processing unit 130.
  • DL downlink
  • the power transmission control unit 140 may transfer information received from the base station 20 to the NW communication unit 150, receive control information generated by the external platform 55 based on that information from the NW communication unit 150, and generate a downlink (DL) transmission signal including a WPT signal and a BF control signal based on the control information.
  • DL downlink
  • the NW communication unit 150 is connected to the communication network 50 via a wireless communication line, and can communicate with a cloud system, a server, etc. of the external platform 55.
  • the NW communication unit 150 can transmit communication data or information received from the base station 20 to the communication network 50 side, and can also receive communication data or information to be transmitted to the base station 20 from the communication network 50 side.
  • the NW communication unit 150 is a communication unit that communicates with, for example, a feeder station located on the ground.
  • HAPS10 may perform beamforming (BF) control to form individual beams for each base station 20 or for each target area to which multiple base stations 20 belong during downlink communication with the base stations 20, and may perform wireless power transmission for each base station 20 or for each target area.
  • the BF control for each base station 20 or for each target area may be performed by digital BF control in the frequency domain in the communication signal processing unit 120, or may be performed by analog BF control in the wireless processing unit 130.
  • the base station 20 includes an antenna 210, a wireless processing unit 220, a communication signal processing unit 230, a power output unit 240, and a battery 250.
  • the antenna 210 is, for example, composed of a plurality of array antennas having a large number of antenna elements.
  • the wireless processing unit 220 transmits information and transmission signals generated by the communication signal processing unit 230 from the antenna 210 to the HAPS 10, and outputs received signals received from the HAPS 10 via the antenna 210 to the communication signal processing unit 230.
  • the wireless processing unit 220 receives a transmission signal for wireless power transmission transmitted from HAPS10.
  • the power output unit 240 has, for example, a rectifier, and outputs the power of the received signal that receives the transmission signal for wireless power transmission from HAPS10 as received power for charging the battery.
  • the battery 250 can be charged by the received power output from the power output unit 240.
  • the wireless processing unit 220 may have a function to measure or acquire information related to power reception, such as power reception beam information (e.g., information on the direction and width of the power reception beam) and information on the direction of arrival of the WPT radio waves.
  • the power output unit 240 may have a function to measure the received power. At least one of the information related to power reception, such as power reception beam information, information on the direction of arrival of the WPT radio waves, information on the received power, and control information, can be included in the information to the HAPS 10.
  • the frequency of the electromagnetic waves of the transmission signal for wireless power transmission sent from HAPS 10 to base station 20 is preferably 300 GHz or less, and is more preferably microwaves.
  • electromagnetic waves, particularly microwaves, which are less susceptible to the influence of the atmosphere, are preferred.
  • the system obtains power (total power) from a composite signal that combines received signals generated at the base station 20 with transmission signals for wireless power transmission from multiple HAPS 10.
  • FIG. 4 is an explanatory diagram showing an example of a method for combining phases so that the phases of a plurality of received signals are matched.
  • Examples of methods for synthesizing phases so that the phases of multiple received signals are a method for adjusting the phase of a transmission signal for wireless power transmission transmitted from multiple HAPS 10-0, 10-1, ..., 10-n, and a method for adjusting the phase of multiple received signals received by the base station 20.
  • the latter phase adjustment method requires equipment changes and setting changes to existing base stations 20 that are not compatible with this system, and when phase adjustment is performed at the power-receiving base station 20, the transmission power is reduced by the amount of power consumption required for the phase adjustment, so the former phase adjustment method is preferable.
  • the former phase adjustment method is adopted, which adjusts the phase of the transmission signal for wireless power transmission transmitted from multiple HAPS 10-0, 10-1, ... 10-n.
  • input phases ⁇ 1, ⁇ 2, ... ⁇ n that compensate for the transmission signal path difference between multiple HAPS 10-0, 10-1, ... 10-n are added to the transmission signals of HAPS 10-1, ... 10-n other than the reference HAPS 10-0, so that the received signals at the base station 20 are in phase.
  • a specific phase adjustment method may, for example, adjust the phase of a transmission signal for wireless power transmission transmitted from multiple HAPS 10-0, 10-1, ... 10-n based on feedback information regarding wireless power transmission from base station 20.
  • multiple HAPS 10-0, 10-1, ... 10-n receive and acquire feedback information regarding wireless power transmission from base station 20 via a communication UL established between each HAPS and base station 20.
  • the feedback information may include, for example, power receiving device information regarding power reception at base station 20 (also referred to as "WPT power receiving information,” "WPT terminal information,” or "WPT information").
  • the power receiving device information may include, for example, at least one of the following information: request information requesting wireless power transmission (WPT request), identification information for identifying the base station 20, location information of the base station 20, received power information at the base station 20, power receiving beam information at the base station 20 (e.g., information on the direction, width, etc. of the power receiving beam), information on the direction of arrival of the WPT radio waves at the base station 20, remaining battery charge information in the base station 20, and approval information approving wireless power transmission.
  • WPT request request information requesting wireless power transmission
  • identification information for identifying the base station 20 location information of the base station 20, received power information at the base station 20, power receiving beam information at the base station 20 (e.g., information on the direction, width, etc. of the power receiving beam), information on the direction of arrival of the WPT radio waves at the base station 20, remaining battery charge information in the base station 20, and approval information approving wireless power transmission.
  • Feedback information (FB information) from the base station 20 received by the array antenna 110 of HAPS10 is sent to the communication control unit 115 of the communication relay device 100.
  • the communication control unit 115 generates control information based on the feedback information from the base station 20, and based on the control information, generates a downlink (DL) transmission signal including a wireless power transmission signal (WPT signal) and a control signal (BF control signal) for wireless power transmission beamforming (WPT beamforming) of the array antenna 110 of HAPS10, and sends them to the array antenna 110.
  • DL downlink
  • WPT signal wireless power transmission signal
  • BF control signal control signal for wireless power transmission beamforming
  • the array antenna 110 forms a wireless power transmission beam (WPT beam) in the direction of the base station 20 based on the BF control signal, and transmits a downlink (DL) transmission signal (phase-adjusted transmission signal) including a WPT signal via a portion of the wireless resources of the downlink (DL).
  • WPT beam wireless power transmission beam
  • DL downlink
  • DL downlink
  • the communication control unit 115 of HAPS10 may transfer feedback information received from the base station 20 to a cloud system or server of the external platform 55, receive control information generated by the external platform 55 based on the feedback information, and generate a downlink (DL) transmission signal including a WPT signal and a BF control signal based on the control information.
  • DL downlink
  • the feedback information regarding wireless power transmission from the base station 20 may be control information that specifies the phase of the transmission signal for each HAPS 10. In this case, however, the base station 20 executes a process for determining the phase of the transmission signal transmitted from each HAPS 10.
  • a pilot signal is transmitted from the base station 20 to multiple HAPS 10-0, 10-1, ... 10-n that are time-synchronized with each other, and the multiple HAPS 10-0, 10-1, ... 10-n determine the transmission timing of the transmission signal based on the reception result of the pilot signal from the base station 20 so that the transmission signals for wireless power transmission arrive at the base station 20 in the same phase.
  • the power transmission control unit 140 functions as a synchronization processing unit that performs time synchronization with other HAPSs that share the same power transmission target (base station 20), and performs time synchronization using, for example, PTP (Precision Time Protocol) or the like. Furthermore, the power transmission control unit 140, together with the wireless processing unit 130 and antenna 110, etc., constitutes a transmission unit that transmits a transmission signal for wireless power transmission via electromagnetic waves of a predetermined frequency.
  • the power transmission control unit 140 can ascertain the difference in transmission signal path length from the reference HAPS10-0 based on the reception time of the pilot signal, and therefore determines input phases ⁇ 1, ⁇ 2, ..., ⁇ n to compensate for this difference, and sends control information for the transmission timing of the transmission signal to which the determined input phases have been added to the wireless processing unit 130.
  • the wireless processing unit 130 transmits a transmission signal for wireless power transmission (a transmission signal after phase adjustment) from the antenna 110 to the base station 20 with a transmission timing based on that control information.
  • the transmission signals P In e j ⁇ , P In e j ⁇ - ⁇ 1 , ..., P In e j ⁇ - ⁇ n input to the antennas 110 of the multiple HAPS 10-0, 10-1, ..., 10-n have the same phase P r e j ⁇ when received by the base station 20. Therefore, as shown in Fig. 3B, the phase-combined received signal (combined signal) P rInc is maximized, and highly efficient and stable wireless power transmission (WPT) is realized.
  • WPT wireless power transmission
  • a wireless power transmission (WPT) system is a large-space distributed power supply system capable of stably supplying power from a Space Solar Power Satellite (SSPS) to a power receiving device located on the ground, sea, lake, etc., or a power receiving device mounted on a drone located in low-altitude space, by relaying power from the Space Solar Power Satellite (SSPS) through a plurality of power transmitting devices mounted on a plurality of floating bodies (e.g., HAPS, balloons, drones) located in a distributed manner in the stratosphere, etc.
  • SSPS Space Solar Power Satellite
  • FIG. 5 is an explanatory diagram showing an example of a schematic configuration of a system according to the second embodiment.
  • the system of the second embodiment is a system for wireless power transmission (WPT), and includes one or more power transmitting devices mounted on a levitation body located at a predetermined altitude, and a power receiving device that receives a transmission signal transmitted from the power transmitting device and outputs electric power.
  • the one or more power transmitting devices receive a transmission signal for wireless power transmission transmitted from an external device via electromagnetic waves of a first frequency, convert the frequency of the transmission signal for wireless power transmission to a second frequency lower than the first frequency, and transmit the transmission signal for wireless power transmission via the electromagnetic waves of the second frequency.
  • the floating body is an example of HAPS10 located in the stratosphere, but may be a balloon or a drone, as in the above-mentioned embodiment 1.
  • the receiving device is also an example of a terrestrial base station 20, as in the above-mentioned embodiment 1.
  • the transmission signal for wireless power transmission transmitted by HAPS10 in this embodiment 2 to the base station 20 is a transmission signal for wireless power transmission transmitted from an external device, the frequency of which is converted to a lower frequency.
  • this external device include a power transmission device mounted on another floating body (e.g., another HAPS), a power transmission device located on the ground, sea or lake, and a power transmission device located at a higher altitude than HAPS10 (e.g., a space solar power generation satellite).
  • the external device is an example of a space solar power generation satellite 30 located at an altitude higher than the atmosphere.
  • the space solar power generation satellite 30 is equipped with a solar power generation device, and transmits power output from the solar power generation device to a HAPS 10 in the stratosphere via wireless power transmission, and the power is then transmitted from the HAPS 10 to a ground base station 20, which is a power receiving device, via wireless power transmission.
  • FIG. 6 is a block diagram showing an example of the main configuration of the HAPS 10 and the base station 20 that constitute the wireless power transmission (WPT) system of the second embodiment.
  • the HAPS 10 includes an antenna 111 as a receiving unit that receives a transmission signal for wireless power transmission from the space solar power satellite 30 transmitted via electromagnetic waves of a first frequency, and a frequency conversion unit 160 as a conversion unit that converts the frequency of the transmission signal for wireless power transmission received by the antenna 111 to a lower second frequency.
  • the antenna 111 is, for example, an array antenna having a large number of antenna elements. There may be a single antenna 111 or multiple antennas.
  • the frequency conversion unit 160 provided in the communication relay device 100 of the HAPS 10 converts the frequency (first frequency) of the transmission signal for wireless power transmission received from the space solar power generation satellite 30 via the antenna 111 to a lower second frequency, and sends the frequency-converted transmission signal to the wireless processing unit 130.
  • the wireless processing unit 130 transmits the transmission signal for wireless power transmission sent from the frequency conversion unit 160 from the antenna 110 to the base station 20.
  • the frequency of the electromagnetic waves of the transmission signal for wireless power transmission transmitted from the space solar power generation satellite 30 to the HAPS 10 is preferably higher than microwaves, and more preferably millimeter waves, terahertz waves, or light waves. Since the influence of the atmosphere is small between the space solar power generation satellite 30, which is located at an altitude higher than the atmosphere, and the HAPS 10, which is located in the stratosphere, the electromagnetic waves of the transmission signal for wireless power transmission are preferably high-frequency, particularly millimeter waves, terahertz waves, or light waves.
  • the transmission signal for wireless power transmission transmitted from the HAPS 10, which is located in the stratosphere, to the ground base station 20 is greatly influenced by the atmosphere, so as described above, it is preferable that the electromagnetic waves, particularly microwaves, are less influenced by the atmosphere.
  • wireless power transmission when transmitting power generated by a space solar power generation satellite 30 to a ground base station 20 wirelessly, wireless power transmission (WPT) is achieved by passing the power through a HAPS 10 located in the stratosphere. That is, in areas with little atmospheric influence, the transmission signal for wireless power transmission is transmitted via higher frequency electromagnetic waves, and in areas with great atmospheric influence, the transmission signal for wireless power transmission is transmitted via lower frequency electromagnetic waves, thereby achieving highly efficient and stable wireless power transmission (WPT).
  • WPT wireless power transmission
  • the electromagnetic waves of the transmission signal for wireless power transmission sent from the space solar power satellite 30 to the HAPS 10 are electromagnetic waves in a beam shape formed to have directivity from the space solar power satellite 30 toward the HAPS 10. This makes it possible to achieve more efficient wireless power transmission.
  • electromagnetic waves for example, electromagnetic waves whose beam shape has been shaped by beamforming technology can be used.
  • the space solar power satellite 30 transmits transmission signals for wireless power transmission to multiple HAPS 10, it is preferable to transmit the multiple transmission signals to each HAPS 10 in a multi-beam manner. This makes it possible to achieve more efficient wireless power transmission to each HAPS 10.
  • wireless power transmission is performed from multiple HAPS 10 to the base station 20. Therefore, as in the above-described embodiment 1, it is preferable to adopt a configuration that performs phase synthesis so that the phases of multiple received signals received from the transmission signals for wireless power transmission sent from the multiple HAPS 10 are consistent. However, in this embodiment 2, it is not necessarily necessary to adopt this configuration.
  • a wireless power transmission (WPT) system is a large-space distributed power supply system capable of stably supplying power from a space solar power satellite (SSPS) to a plurality of floating bodies (e.g., HAPS, balloons, drones) located in a distributed manner in the stratosphere or the like.
  • SSPS space solar power satellite
  • FIG. 7 is an explanatory diagram showing an example of a schematic configuration of a system according to the third embodiment.
  • the system of the third embodiment is a system for wireless power transmission (WPT), and includes a space solar power generation satellite 30 located at an altitude higher than the atmosphere, and a plurality of power receiving devices mounted on each of a plurality of floating bodies located at a predetermined altitude lower than the space solar power generation satellite.
  • the space solar power generation satellite 30 transmits a plurality of transmission signals for wireless power transmission in multiple beams via electromagnetic waves of a predetermined frequency.
  • the multiple power receiving devices receive each of the plurality of transmission signals for wireless power transmission transmitted in multiple beams from the space solar power generation satellite 30.
  • the space solar power satellite 30 is located at an altitude higher than the atmosphere, is equipped with a solar power generation device, and transmits power output from the solar power generation device to the HAPS 10 in the stratosphere by wireless power transmission.
  • the receiving device in this embodiment 3 is the HAPS 10, which is a floating body, and the power transmission target of this system is the HAPS 10. Therefore, the HAPS 10 in this embodiment 3 does not have a function (such as the power transmission control unit 140) for wireless power transmission to the terrestrial base station 20, but may have a function for wireless power transmission to the terrestrial base station 20.
  • the floating body on which the power receiving device to be transmitted is mounted is an example of a HAPS10 located in the stratosphere, but it may also be a balloon or drone located in the stratosphere, as in the first and second embodiments described above.
  • FIG. 8 is a block diagram showing an example of a main configuration of a HAPS 10 constituting a wireless power transmission (WPT) system according to the third embodiment.
  • the HAPS 10 of the present embodiment 3 differs from the above-mentioned embodiment 2 in that it does not include functions (such as a power transmission control unit 140 and a frequency conversion unit 160) for wirelessly transmitting power to a ground base station 20.
  • the HAPS 10 of the present embodiment 3 also differs from the above-mentioned embodiment 2 in that it includes a wireless processing unit 170, a power output unit 180, and a battery 190.
  • the wireless processing unit 170 receives the transmission signal for wireless power transmission transmitted from the space solar power satellite 30 via the antenna 111 and sends it to the power output unit 180.
  • the power output unit 180 has, for example, a rectifier, and outputs the power of the received signal that receives the transmission signal for wireless power transmission from the space solar power satellite 30 as received power for charging the battery.
  • the battery 190 can be charged by the received power output from the power output unit 180.
  • the frequency of the electromagnetic waves of the transmission signal for wireless power transmission transmitted from the space solar power generation satellite 30 to the HAPS 10 is preferably higher than microwaves, and more preferably millimeter waves, terahertz waves, or light waves. Since the influence of the atmosphere is small between the space solar power generation satellite 30, which is located at an altitude higher than the atmosphere, and the HAPS 10, which is located in the stratosphere, the electromagnetic waves of the transmission signal for wireless power transmission are preferably high-frequency, particularly millimeter waves, terahertz waves, or light waves.
  • the space solar power satellite 30 transmits transmission signals for wireless power transmission to multiple HAPS 10
  • the multiple transmission signals are transmitted to each HAPS 10 as multiple beams. This allows for more efficient wireless power transmission to each HAPS 10.
  • Such multiple beams can be realized, for example, by forming the beam shape using beam forming technology.
  • multiple transmission signals for wireless power transmission are transmitted in multiple beams from the space solar power generation satellite 30, and the multiple transmission signals transmitted in multiple beams are received by multiple HAPS 10s located in different locations in the stratosphere, etc. This makes it possible to realize highly efficient and stable wireless power transmission (WPT).
  • WPT wireless power transmission
  • the present invention can stabilize wireless power transmission from a transmission device located at a high altitude to a receiving device located on the ground, sea, lake, or in space at a low altitude, thereby contributing to the achievement of Goal 9 of the Sustainable Development Goals (SDGs), which is to "build resilient infrastructure, promote industry, innovation and infrastructure.”
  • SDGs Sustainable Development Goals
  • processing steps described in this specification and components of the wireless power transmission system, power transmission system, power receiving system, power transmitting device, power receiving device, levitation body, terminal device, space solar power satellite, etc. can be implemented by various means.
  • these steps and components may be implemented by hardware, firmware, software, or a combination thereof.
  • the processing units and other means used to realize the above steps and components in an entity may be implemented in one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processors (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, electronic devices, other electronic units designed to perform the functions described herein, computers, or combinations thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processors
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, electronic devices, other electronic units designed to perform the functions described herein, computers, or combinations thereof.
  • the means such as processing units used to realize the above components may be implemented with programs (e.g., code such as procedures, functions, modules, instructions, etc.) that perform the functions described herein.
  • programs e.g., code such as procedures, functions, modules, instructions, etc.
  • any computer/processor readable medium tangibly embodying firmware and/or software code may be used to implement the means such as processing units used to realize the above steps and components described herein.
  • the firmware and/or software code may be stored in a memory and executed by a computer or processor, for example in a control device.
  • the memory may be implemented inside the computer or processor or external to the processor.
  • the firmware and/or software code may also be stored in a computer or processor readable medium, such as, for example, random access memory (RAM), read only memory (ROM), non-volatile random access memory (NVRAM), programmable read only memory (PROM), electrically erasable programmable read only memory (EEPROM), flash memory, floppy disk, compact disk (CD), digital versatile disk (DVD), magnetic or optical data storage device, etc.
  • RAM random access memory
  • ROM read only memory
  • NVRAM non-volatile random access memory
  • PROM programmable read only memory
  • EEPROM electrically erasable programmable read only memory
  • flash memory floppy disk, compact disk (CD), digital versatile disk (DVD), magnetic or optical data storage device, etc.
  • CD compact disk
  • DVD digital versatile disk
  • magnetic or optical data storage device etc.
  • the code may be executed by one or more computers or processors and may cause the computers or processors to perform certain aspects of the functionality described herein.
  • the medium may also be a non-transitory recording medium.
  • the program code may be in any format as long as it can be read and executed by a computer, processor, or other device or machine, and the format is not limited to a specific format.
  • the program code may be any of source code, object code, and binary code, or may be a mixture of two or more of these codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

Provided is a system that makes it possible to stably wirelessly transmit power from a power transmission device positioned at a high altitude to a power reception device. The system comprises: a plurality of power transmission devices 100 that are mounted on floating bodies 10 positioned at predetermined altitudes and transmit transmission signals for wireless power transmission via an electromagnetic wave having a predetermined frequency; and one or a plurality of power reception devices 20 that combine a plurality of reception signals in phase, said reception signals being obtained by receiving the plurality of transmission signals transmitted from the plurality of power transmission devices, and output the power. The frequency of the electromagnetic wave may be less than or equal to 300 [GHz], and the electromagnetic wave may be a microwave. The electromagnetic wave may have a beam shape formed so as to have a directivity directed to the power reception device from the power transmission device. The floating bodies may be HAPSs positioned in the stratosphere, balloons, or drones. The power reception device may be positioned on the ground, on the sea, or on a lake, or may be positioned in a space having a lower altitude than the power transmission device.

Description

無線電力伝送システム、送電システム、受電システム、送電装置、受電装置及び宇宙太陽光発電衛星Wireless power transmission system, power transmission system, power receiving system, power transmitting device, power receiving device, and space solar power generation satellite
 本発明は、無線電力伝送(WPT)に関する。 The present invention relates to wireless power transmission (WPT).
 従来、電磁波を利用して電力を伝送するシステムが知られている。例えば、特許文献1には、電気エネルギーをマイクロ波ビームとして送信する宇宙空間の送電システム(送電装置)と、送電システムから送信されたマイクロ波ビームを受信する地上の受電システム(受電装置)と、を備えた電力供給システムが開示されている。  Systems that transmit power using electromagnetic waves are known in the past. For example, Patent Document 1 discloses a power supply system that includes a power transmission system (power transmission device) in space that transmits electrical energy as a microwave beam, and a power receiving system (power receiving device) on the ground that receives the microwave beam transmitted from the power transmission system.
特開2008-259392号公報JP 2008-259392 A
 従来の電磁波を利用して電力を伝送するシステムにおいて、高高度に位置する送電装置から地上、海上、湖上又は低高度の空間に位置する受電装置への安定した無線電力伝送を実現したい、という課題がある。 In conventional systems that use electromagnetic waves to transmit power, there is a need to achieve stable wireless power transmission from a power transmission device located at high altitude to a power receiving device located on the ground, sea, or lake, or in space at a low altitude.
 本発明の第1態様に係るシステムは、無線電力伝送を行うシステムである。このシステムは、所定高度に位置する浮揚体に搭載され、所定周波数の電磁波を介して無線電力伝送用の送信信号を送信する複数の送電装置と、前記複数の送電装置から送信された前記複数の送信信号を受信した複数の受信信号を位相合成して電力を出力する一又は複数の受電装置と、を備える。 The system according to the first aspect of the present invention is a system for wireless power transmission. This system is mounted on a floating body located at a predetermined altitude and includes a plurality of power transmitting devices that transmit transmission signals for wireless power transmission via electromagnetic waves of a predetermined frequency, and one or more power receiving devices that output electric power by phase-combining a plurality of received signals that receive the plurality of transmission signals transmitted from the plurality of power transmitting devices.
 第1態様に係るシステムにおいて、前記受電装置は、前記複数の送電装置にパイロット信号を送信し、前記複数の送電装置は、互いに時刻同期され、前記複数の送電装置から送信された複数の無線電力伝送用の送信信号が前記受電装置に同位相で到達するように、前記受電装置から受信した前記パイロット信号の受信結果に基づいて前記無線電力伝送用の送信信号の送信タイミングを決定してもよい。 In the system according to the first aspect, the power receiving device may transmit a pilot signal to the power transmitting devices, and the power transmitting devices may be time-synchronized with each other, and may determine the transmission timing of the transmission signal for wireless power transmission based on the reception result of the pilot signal received from the power receiving device so that the transmission signals for wireless power transmission transmitted from the power transmitting devices reach the power receiving device in phase.
 第1態様に係るシステムにおいて、前記電磁波の周波数は、300[GHz]以下であってもよい。 In the system according to the first aspect, the frequency of the electromagnetic waves may be 300 GHz or less.
 第1態様に係るシステムにおいて、前記電磁波は、マイクロ波であってもよい。 In the system according to the first aspect, the electromagnetic waves may be microwaves.
 第1態様に係るシステムにおいて、前記電磁波は、前記送電装置から前記受電装置に向かう指向性を有するように形成されたビーム形状の電磁波であってもよい。 In the system according to the first aspect, the electromagnetic waves may be beam-shaped electromagnetic waves formed to have a directionality from the power transmitting device to the power receiving device.
 第1態様に係るシステムにおいて、前記浮揚体は、成層圏に位置するHAPS、気球又はドローンであってもよい。 In the system according to the first aspect, the float may be a HAPS, a balloon, or a drone located in the stratosphere.
 第1態様に係るシステムにおいて、前記受電装置は、地上、海上若しくは湖上に位置する、又は、前記送電装置よりも低い低高度の空間に位置するものであってもよい。 In the system according to the first aspect, the power receiving device may be located on land, sea or lake, or in space at a lower altitude than the power transmitting device.
 本発明の第1態様に係る送電装置は、無線電力伝送の送電装置である。この送電装置は、所定高度に位置する浮揚体に搭載され、所定周波数の電磁波を介して無線電力伝送用の送信信号を送信する送信部を備える。 The power transmission device according to the first aspect of the present invention is a power transmission device for wireless power transmission. This power transmission device is mounted on a levitation body located at a predetermined altitude, and includes a transmission unit that transmits a transmission signal for wireless power transmission via electromagnetic waves of a predetermined frequency.
 第1態様に係る送電装置において、送電対象が共通の他の送電装置との間で時刻同期を行う同期処理部を備え、前記送信部は、前記複数の送電装置から送信された複数の無線電力伝送用の送信信号が前記受電装置に同位相で到達するように、前記受電装置から受信したパイロット信号の受信結果に基づいて前記無線電力伝送用の送信信号の送信タイミングを決定してもよい。 The power transmission device according to the first aspect may include a synchronization processing unit that performs time synchronization with other power transmission devices that have a common power transmission target, and the transmission unit may determine the transmission timing of the transmission signal for wireless power transmission based on the reception result of a pilot signal received from the power receiving device so that the transmission signals for wireless power transmission transmitted from the multiple power transmission devices arrive at the power receiving device in the same phase.
 本発明の第1態様に係る送電システムは、前記送電装置を複数備える。 The power transmission system according to the first aspect of the present invention includes a plurality of the power transmission devices.
 本発明の第1態様に係る受電装置は、無線電力伝送の受電装置である。この受電装置は、所定高度に位置する浮揚体にそれぞれ搭載された複数の送電装置から、所定周波数の電磁波を介して無線電力伝送用の送信信号を受信する受信部と、前記複数の送信信号を受信した複数の受信信号を同位相で合成する合成部と、を備える。 The power receiving device according to the first aspect of the present invention is a power receiving device for wireless power transmission. This power receiving device includes a receiving unit that receives transmission signals for wireless power transmission via electromagnetic waves of a predetermined frequency from a plurality of power transmitting devices each mounted on a levitation body located at a predetermined altitude, and a combining unit that combines a plurality of received signals in phase that have received the plurality of transmission signals.
 第1態様に係る受電装置において、前記複数の送電装置にパイロット信号を送信する送信部を備えてもよい。 The power receiving device according to the first aspect may include a transmission unit that transmits pilot signals to the multiple power transmitting devices.
 本発明の第2態様に係るシステムは、無線電力伝送を行うシステムである。このシステムは、所定高度に位置する浮揚体に搭載され、外部装置から第1周波数の電磁波を介して無線電力伝送用の送信信号を受信し、前記無線電力伝送用の送信信号の周波数を前記第1周波数よりも低い第2周波数に変換し、前記第2周波数の電磁波を介して前記無線電力伝送用の送信信号を送信する送電装置と、前記送電装置から送信された前記送信信号を受信して電力を出力する受電装置と、を備える。 The system according to the second aspect of the present invention is a system for wireless power transmission. This system includes a power transmitting device mounted on a floating body located at a predetermined altitude, which receives a transmission signal for wireless power transmission from an external device via electromagnetic waves of a first frequency, converts the frequency of the transmission signal for wireless power transmission to a second frequency lower than the first frequency, and transmits the transmission signal for wireless power transmission via electromagnetic waves of the second frequency, and a power receiving device which receives the transmission signal transmitted from the power transmitting device and outputs electric power.
 第2態様に係るシステムにおいて、前記第1周波数の電磁波は、ミリ波、テラヘルツ波又は光波であり、前記第2周波数の電磁波は、マイクロ波であってもよい。 In the system according to the second aspect, the electromagnetic wave of the first frequency may be a millimeter wave, a terahertz wave, or a light wave, and the electromagnetic wave of the second frequency may be a microwave.
 第2態様に係るシステムにおいて、前記第1周波数の電磁波は、外部装置から前記送電装置に向かう指向性を有するように形成されたビーム形状の電磁波であり、前記第2周波数の電磁波は、前記送電装置から前記受電装置に向かう指向性を有するように形成されたビーム形状の電磁波であってもよい。 In the system according to the second aspect, the electromagnetic waves of the first frequency may be beam-shaped electromagnetic waves formed to have a directivity from an external device toward the power transmitting device, and the electromagnetic waves of the second frequency may be beam-shaped electromagnetic waves formed to have a directivity from the power transmitting device toward the power receiving device.
 第2態様に係るシステムにおいて、前記外部装置は、大気圏の外側の空間に位置する宇宙太陽光発電衛星であり、前記浮揚体は、成層圏に位置するHAPS、気球又はドローンであってもよい。 In the system according to the second aspect, the external device may be a space solar power satellite located in space outside the atmosphere, and the floating body may be a HAPS, a balloon, or a drone located in the stratosphere.
 第2態様に係るシステムにおいて、前記受電装置は、地上、海上若しくは湖上に位置する、又は、前記送電装置よりも低い低高度の空間に位置するものであってもよい。 In the system according to the second aspect, the power receiving device may be located on land, sea or lake, or in space at a lower altitude than the power transmitting device.
 本発明に第2態様に係る送電装置は、無線電力伝送の送電装置である。この送電装置は、所定高度に位置する浮揚体に搭載され、第1周波数の電磁波を介して無線電力伝送用の送信信号を受信する受信部と、前記無線電力伝送用の送信信号の周波数を前記第1周波数よりも低い第2周波数に変換する変換部と、前記第2周波数の電磁波を介して前記無線電力伝送用の送信信号を送信する送信部と、を備える。 The power transmission device according to the second aspect of the present invention is a power transmission device for wireless power transmission. This power transmission device is mounted on a floating body located at a predetermined altitude, and includes a receiving unit that receives a transmission signal for wireless power transmission via electromagnetic waves of a first frequency, a converting unit that converts the frequency of the transmission signal for wireless power transmission to a second frequency that is lower than the first frequency, and a transmitting unit that transmits the transmission signal for wireless power transmission via electromagnetic waves of the second frequency.
 本発明の第3態様に係るシステムは、無線電力伝送を行うシステムである。このシステムは、は、大気圏よりも高い高度に位置し、所定周波数の電磁波を介して複数の無線電力伝送用の送信信号をマルチビームで送信する宇宙太陽光発電衛星と、前記宇宙太陽光発電衛星よりも低い所定高度に位置する複数の浮揚体のそれぞれに搭載され、前記宇宙太陽光発電衛星からマルチビームで送信された前記複数の無線電力伝送用の送信信号のそれぞれを受信する複数の受電装置と、を備える。 The system according to the third aspect of the present invention is a system for wireless power transmission. This system includes a space solar power generation satellite located at an altitude higher than the atmosphere and transmitting multiple wireless power transmission transmission signals in multiple beams via electromagnetic waves of a predetermined frequency, and multiple power receiving devices mounted on multiple floating bodies located at a predetermined altitude lower than the space solar power generation satellite and receiving each of the multiple wireless power transmission transmission signals transmitted in multiple beams from the space solar power generation satellite.
 第3態様に係るシステムにおいて、前記電磁波は、ミリ波、テラヘルツ波、または光波であってもよい。 In the system according to the third aspect, the electromagnetic waves may be millimeter waves, terahertz waves, or light waves.
 第3態様に係るシステムにおいて、前記浮揚体は、成層圏に位置するHAPS、気球又はドローンであってもよい。 In the system according to the third aspect, the float may be a HAPS, a balloon, or a drone located in the stratosphere.
 本発明の第3態様に係る宇宙太陽光発電衛星は、大気圏よりも高い高度に位置し、当該宇宙太陽光発電衛星よりも低い所定高度に位置する複数の浮揚体のそれぞれに搭載された複数の受電装置に、所定周波数の電磁波を介して複数の無線電力伝送用の送信信号をマルチビームで送信する送信部を備える。 The space solar power satellite according to the third aspect of the present invention is located at an altitude higher than the atmosphere and includes a transmitter that transmits multiple transmission signals for wireless power transmission in multiple beams via electromagnetic waves of a predetermined frequency to multiple power receiving devices mounted on multiple floating bodies located at a predetermined altitude lower than the space solar power satellite.
 本発明の第3態様に係る受電装置は、無線電力伝送の受電装置である。この受電装置は、宇宙太陽光発電衛星よりも低い所定高度に位置する複数の浮揚体のそれぞれに搭載され、所定周波数の電磁波を介して前記宇宙太陽光発電衛星から送信された無線電力伝送用の送信信号を受信する受信部を備える。 The power receiving device according to the third aspect of the present invention is a power receiving device for wireless power transmission. This power receiving device is mounted on each of a plurality of floating bodies located at a predetermined altitude lower than the space solar power generation satellite, and includes a receiving unit that receives a transmission signal for wireless power transmission transmitted from the space solar power generation satellite via electromagnetic waves of a predetermined frequency.
 本発明の第3態様に係る無線電力伝送の受電システムは、前記受電装置を複数備える。 The wireless power transmission power receiving system according to the third aspect of the present invention includes a plurality of the power receiving devices.
 本発明によれば、高高度に位置する送電装置から受電装置への安定した無線電力伝送が可能になる。 The present invention enables stable wireless power transmission from a power transmitting device located at a high altitude to a power receiving device.
図1は、実施形態1に係るシステムの概略構成の一例を示す説明図である。FIG. 1 is an explanatory diagram illustrating an example of a schematic configuration of a system according to a first embodiment. 図2は、実施形態1の無線電力伝送(WPT)システムを構成するHAPS及び基地局の主要構成の一例を示すブロック図である。FIG. 2 is a block diagram showing an example of a main configuration of a HAPS and a base station that configure the wireless power transmission (WPT) system of the first embodiment. 図3Aは、複数のHAPSからの各送信信号による基地局の受信信号間の位相が整合されていないときの合成信号を示すグラフである。FIG. 3A is a graph showing a composite signal when the phase between the received signals at the base station due to the respective transmitted signals from multiple HAPSs is not aligned. 図3Bは、複数のHAPSからの各送信信号による基地局の受信信号間の位相が整合されているとき(位相合成されているとき)の合成信号を示すグラフである。FIG. 3B is a graph showing a combined signal when the phases between the signals received at the base station due to the respective transmission signals from multiple HAPSs are matched (when phase combined). 図4は、複数の受信信号間の位相が整合するように位相合成する方法の一例を示す説明図である。FIG. 4 is an explanatory diagram showing an example of a method for combining phases so that the phases of a plurality of received signals are matched. 図5は、実施形態2に係るシステムの概略構成の一例を示す説明図である。FIG. 5 is an explanatory diagram illustrating an example of a schematic configuration of a system according to the second embodiment. 図6は、実施形態2の無線電力伝送(WPT)システムを構成するHAPS及び基地局の主要構成の一例を示すブロック図である。FIG. 6 is a block diagram showing an example of a main configuration of a HAPS and a base station that configure a wireless power transmission (WPT) system according to the second embodiment. 図7は、実施形態3に係るシステムの概略構成の一例を示す説明図である。FIG. 7 is an explanatory diagram illustrating an example of a schematic configuration of a system according to the third embodiment. 図8は、実施形態3の無線電力伝送(WPT)システムを構成するHAPSの主要構成の一例を示すブロック図である。FIG. 8 is a block diagram showing an example of a main configuration of a HAPS constituting a wireless power transmission (WPT) system according to the third embodiment.
 以下、図面を参照して本発明の実施形態について説明する。 Below, an embodiment of the present invention will be described with reference to the drawings.
〔実施形態1〕
 本書に記載された一実施形態に係る無線電力伝送(WPT)システムは、上空の成層圏などに分散して位置する複数の浮揚体(例えばHAPS、気球、ドローン)に搭載された複数の送電装置から地上、海上、湖上などに位置する受電装置や低高度の空間に位置するドローンなどに搭載された受電装置に安定して給電可能な大空間分散給電システムである。
[Embodiment 1]
A wireless power transmission (WPT) system according to one embodiment described in this specification is a large-space distributed power supply system capable of stably supplying power from multiple power transmitting devices mounted on multiple floating bodies (e.g., HAPS, balloons, drones) located in a distributed manner in the stratosphere or other locations in the sky to power receiving devices located on the ground, sea, lakes, etc., or to power receiving devices mounted on drones located in low-altitude space.
 図1は、本実施形態1に係るシステムの概略構成の一例を示す説明図である。
 本実施形態1のシステムは、無線電力伝送(WPT)を行うシステムであり、所定高度に位置する浮揚体にそれぞれ搭載される複数の送電装置と、一又は複数の受電装置と、を備える。複数の送電装置は、いずれも、所定周波数の電磁波を介して無線電力伝送用の送信信号を送信する。また、一又は複数の受電装置は、各浮揚体に搭載された複数の送電装置から送信される複数の送信信号を受信した複数の受信信号を位相合成して電力を出力する。
FIG. 1 is an explanatory diagram showing an example of a schematic configuration of a system according to the first embodiment.
The system of the first embodiment is a system for wireless power transmission (WPT), and includes a plurality of power transmitting devices mounted on levitating bodies located at a predetermined altitude, and one or more power receiving devices. Each of the plurality of power transmitting devices transmits a transmission signal for wireless power transmission via electromagnetic waves of a predetermined frequency. The one or more power receiving devices output power by phase-combining a plurality of received signals that are received from the plurality of power transmitting devices mounted on the respective levitating bodies.
 浮揚体は、例えば、HAPS、気球又はドローンである。本実施形態は、浮揚体として、高高度プラットフォーム局であるHAPS(「高高度疑似衛星」ともいう。)10を用いる例である。HAPS10は、通信中継装置を搭載し、所定高度の空域に位置して、所定高度のセル形成目標空域に3次元セル(3次元エリア)を形成する。HAPS10の位置する空域は、例えば、高度が11[km]以上及び50[km]以下の成層圏の空域である。この空域は、気象条件が比較的安定している高度15[km]以上25[km]以下の空域であってもよく、特に高度がほぼ20[km]の空域であってもよい。セル形成目標空域は、海、川又は湖の上空であってもよい。 The floating body is, for example, a HAPS, a balloon, or a drone. In this embodiment, a high-altitude platform station, HAPS (also called a "high-altitude pseudo satellite") 10, is used as the floating body. HAPS 10 is equipped with a communication relay device, is located in an airspace at a predetermined altitude, and forms a three-dimensional cell (three-dimensional area) in a cell formation target airspace at the predetermined altitude. The airspace in which HAPS 10 is located is, for example, a stratospheric airspace with an altitude of 11 km or more and 50 km or less. This airspace may be an airspace with an altitude of 15 km or more and 25 km or less where the weather conditions are relatively stable, and may particularly be an airspace with an altitude of approximately 20 km. The cell formation target airspace may be above the sea, a river, or a lake.
 HAPS10の中継通信装置は、移動局である端末装置と無線通信するためのビームを地面に向けて形成する。端末装置は、遠隔操縦可能な小型のヘリコプター等の航空機であるドローンに組み込まれた通信端末モジュールでもよいし、飛行機(航空機)の中でユーザが使用するユーザ装置であってもよい。 The relay communication device of HAPS10 forms a beam toward the ground for wireless communication with a terminal device, which is a mobile station. The terminal device may be a communication terminal module built into a drone, which is an aircraft such as a small remote-controlled helicopter, or it may be a user device used by a user inside an airplane (aircraft).
 また、HAPS10の中継通信装置は、地上、海上若しくは湖上に位置する中継局であるフィーダ局を介して、移動通信網のコアネットワークに接続されている。HAPS10とフィーダ局との間の通信は、マイクロ波などの電波による無線通信で行ってもよいし、レーザ光などを用いた光通信で行ってもよい。 The relay communication device of HAPS10 is connected to the core network of the mobile communication network via a feeder station, which is a relay station located on land, sea, or lake. Communication between HAPS10 and the feeder station may be performed by wireless communication using radio waves such as microwaves, or by optical communication using laser light, etc.
 HAPS10は、それぞれ、内部に組み込まれたコンピュータ等で構成された制御部が制御プログラムを実行することにより、自身の飛行移動や中継通信局での処理を自律制御してもよい。例えば、HAPS10は、自身の現在位置情報(例えばGPS(グローバル・ポジショニング・システム)位置情報)、予め記憶した位置制御情報(例えば、飛行スケジュール情報)、周辺に位置する他のHAPSの位置情報などを取得し、それらの情報に基づいて飛行移動や中継通信装置での処理を自律制御してもよい。 HAPS10 may autonomously control its own flight movement and processing at the relay communication station by executing a control program with a control unit configured as an internally built computer or the like. For example, HAPS10 may acquire its own current position information (e.g., GPS (Global Positioning System) position information), pre-stored position control information (e.g., flight schedule information), position information of other HAPS located in the vicinity, and the like, and autonomously control its flight movement and processing at the relay communication device based on that information.
 また、HAPS10での飛行移動や中継通信装置での処理は、移動通信網の通信センター等に設けられた管理装置としての遠隔制御装置によって制御できるようにしてもよい。HAPS10と遠隔制御装置との間の通信は、地上又は海上などの施設であるHAPS制御用通信局によって行う。HAPS制御用通信局は、複数のHAPS10に対応できるように無指向性アンテナを用いたものが好ましいが、指向性アンテナを用いてもよい。このようなHAPS制御用通信局としては、GCS(Ground Control System)(地上制御局)を利用することができる。 Furthermore, the flight movement of HAPS10 and the processing by the relay communication device may be controlled by a remote control device acting as a management device provided in a communication center of a mobile communication network or the like. Communication between HAPS10 and the remote control device is performed by a HAPS control communication station which is a facility on land or sea. The HAPS control communication station preferably uses an omnidirectional antenna so that it can accommodate multiple HAPS10, but a directional antenna may also be used. A GCS (Ground Control System) (ground control station) may be used as such a HAPS control communication station.
 HAPS10とHAPS制御用通信局との間の無線通信は、HAPS10の飛行移動やセル最適化などを制御するための通信を含むため、高い信頼性と低遅延性が求められる。したがって、HAPS10とHAPS制御用通信局との間の無線通信には、HAPS10とフィーダ局との間で行われる移動通信のフィーダリンクを介した無線通信で用いる周波数帯域よりも低い周波数帯域を用いるのが好ましい。例えば、HAPS10とフィーダ局との間で行われる無線通信にギガヘルツ(GHz)帯の周波数帯域を用いる場合、HAPS10とHAPS制御用通信局との間の無線通信にはメガヘルツ(MHz)帯の周波数帯域を用いる。 The wireless communication between HAPS10 and the HAPS control communication station requires high reliability and low latency, since it includes communication for controlling the flight movement of HAPS10 and cell optimization. Therefore, it is preferable to use a frequency band for the wireless communication between HAPS10 and the HAPS control communication station that is lower than the frequency band used for wireless communication via the feeder link of mobile communication between HAPS10 and the feeder station. For example, if a gigahertz (GHz) frequency band is used for the wireless communication between HAPS10 and the feeder station, a megahertz (MHz) frequency band is used for the wireless communication between HAPS10 and the HAPS control communication station.
 また、遠隔制御装置によって制御する場合、HAPS10は、遠隔制御装置からの制御情報を受信できるように制御用通信端末装置(例えば、移動通信モジュール)が組み込まれ、遠隔制御装置から識別できるように端末識別情報(例えば、IPアドレス、電話番号など)が割り当てられるようにしてもよい。制御用通信端末装置の識別には通信インターフェースのMACアドレスを用いてもよい。また、HAPS10は、自身又は周辺のHAPSの飛行移動や中継通信装置での処理に関する情報や各種センサなどで取得した観測データなどの情報を、遠隔制御装置等の所定の送信先に送信するようにしてもよい。 Furthermore, when controlled by a remote control device, HAPS10 may incorporate a control communication terminal device (e.g., a mobile communication module) so that it can receive control information from the remote control device, and may be assigned terminal identification information (e.g., an IP address, a telephone number, etc.) so that it can be identified by the remote control device. The MAC address of the communication interface may be used to identify the control communication terminal device. HAPS10 may also transmit information such as information regarding the flight movement of itself or surrounding HAPS, processing by relay communication devices, and observation data acquired by various sensors, etc., to a specified destination such as a remote control device.
 受電装置は、HAPS10上の送電装置からの無線電力伝送(WPT)により給電される給電対象であり、特に限定されるものではない。本実施形態では、例えば、地上、海上若しくは湖上に位置する受電装置(例えば、移動通信の基地局、移動局、その他の設備装置)、又は、HAPS10の位置よりも低い低高度の空間に位置する受電装置(例えば、他のHAPS、気球、ドローン、飛行機(航空機)、その他の浮揚体)である。本実施形態は、地上に設置されている移動通信の基地局20を受電装置とした例である。 The power receiving device is a power supply target that is supplied with power by wireless power transmission (WPT) from a power transmitting device on HAPS10, and is not particularly limited. In this embodiment, for example, it is a power receiving device located on the ground, sea or lake (e.g., a mobile communication base station, mobile station, or other facility device), or a power receiving device located in space at a low altitude lower than the position of HAPS10 (e.g., another HAPS, a balloon, a drone, an airplane (aircraft), or other floating object). This embodiment is an example in which a mobile communication base station 20 installed on the ground is used as the power receiving device.
 基地局20は、例えば、多数のアンテナ素子を有する複数のアレーアンテナ210を備え、複数の端末装置(例えば、移動通信のUE(移動局)やIoTデバイス。以下「UE20」ともいう。)との間でmassive MIMO(以下「mMIMO」ともいう。)伝送方式の通信を行うことができる。mMIMOは、アレーアンテナ210を用いてデータ送受信を行うことにより大容量・高速通信を実現する無線伝送技術である。また、複数のUE20のそれぞれに対して時分割で又は同時にビームを形成するビームフォーミングを行うMU(Multi User)-MIMO伝送方式で通信を行うことができる。多素子のアレーアンテナを用いてMU-MIMO伝送を行うことにより、各UE20の通信環境に応じてUE20ごとに適切なビームを向けて通信できるため、セル全体の通信品質を改善できる。また、同一の無線リソース(時間・周波数リソース)を用いて複数のUE20との通信ができるため、システム容量を拡大することができる。 The base station 20 is equipped with, for example, multiple array antennas 210 having many antenna elements, and can communicate with multiple terminal devices (for example, UEs (mobile stations) for mobile communication and IoT devices, hereinafter also referred to as "UEs 20") using a massive MIMO (hereinafter also referred to as "mMIMO") transmission method. mMIMO is a wireless transmission technology that realizes large-capacity, high-speed communication by transmitting and receiving data using the array antennas 210. In addition, communication can be performed using a MU (Multi User)-MIMO transmission method that performs beamforming, which forms beams for each of the multiple UEs 20 in a time-division or simultaneous manner. By performing MU-MIMO transmission using a multi-element array antenna, communication can be performed by directing an appropriate beam to each UE 20 according to the communication environment of each UE 20, thereby improving the communication quality of the entire cell. In addition, communication with multiple UEs 20 can be performed using the same wireless resources (time and frequency resources), thereby expanding the system capacity.
 図2は、本実施形態1の無線電力伝送(WPT)システムを構成するHAPS10及び基地局20の主要構成の一例を示すブロック図である。
 HAPS10は、送電装置としての通信中継装置100とアンテナ110とを備える。アンテナ110は、例えば、多数のアンテナ素子を有するアレーアンテナである。アンテナ110は単数でもよいし複数であってもよい。例えば、アンテナ110は複数のセクタセルに対応させて複数配置してもよい。
FIG. 2 is a block diagram showing an example of the main configuration of the HAPS 10 and the base station 20 that constitute the wireless power transmission (WPT) system of the first embodiment.
The HAPS 10 includes a communication relay device 100 as a power transmitting device and an antenna 110. The antenna 110 is, for example, an array antenna having a large number of antenna elements. There may be a single antenna 110 or multiple antennas 110. For example, multiple antennas 110 may be arranged corresponding to multiple sector cells.
 通信中継装置100は、通信信号処理部120と、無線処理部130と、電力伝送制御部140と、NW通信部150と、を備える。通信信号処理部120は、基地局20との間で送受信される制御情報等の信号を処理する。無線処理部130は、通信信号処理部120で生成した送信信号をアンテナ110から基地局20に送信したり、基地局20からアンテナ110を介して受信した受信信号を通信信号処理部120に出力したりする。 The communication relay device 100 includes a communication signal processing unit 120, a wireless processing unit 130, a power transmission control unit 140, and a NW communication unit 150. The communication signal processing unit 120 processes signals such as control information transmitted and received between the base station 20. The wireless processing unit 130 transmits a transmission signal generated by the communication signal processing unit 120 from the antenna 110 to the base station 20, and outputs a received signal received from the base station 20 via the antenna 110 to the communication signal processing unit 120.
 電力伝送制御部140は、基地局20からの制御情報を通信信号処理部120に送ったり、その制御情報に基づいてアレーアンテナ110の無線電力伝送用ビームフォーミング(WPTビームフォーミング)の制御信号(BF制御信号)を生成して無線処理部130に送ったりする。通信信号処理部120は、電力伝送制御部140から受けた制御情報に基づいて、WPT信号を含む下りリンク(DL)の送信信号を生成して無線処理部130に送る。 The power transmission control unit 140 sends control information from the base station 20 to the communication signal processing unit 120, and generates a control signal (BF control signal) for wireless power transmission beamforming (WPT beamforming) of the array antenna 110 based on the control information and sends it to the wireless processing unit 130. The communication signal processing unit 120 generates a downlink (DL) transmission signal including a WPT signal based on the control information received from the power transmission control unit 140 and sends it to the wireless processing unit 130.
 電力伝送制御部140は、基地局20からの受信した情報をNW通信部150に転送し、その情報に基づいて外部プラットフォーム55で生成された制御情報をNW通信部150から受信し、その制御情報に基づいて、WPT信号を含む下りリンク(DL)の送信信号とBF制御信号とを生成してもよい。 The power transmission control unit 140 may transfer information received from the base station 20 to the NW communication unit 150, receive control information generated by the external platform 55 based on that information from the NW communication unit 150, and generate a downlink (DL) transmission signal including a WPT signal and a BF control signal based on the control information.
 NW通信部150は、無線通信回線を介して通信ネットワーク50に接続され、外部プラットフォーム55のクラウドシステム、サーバなどと通信することができる。NW通信部150は、基地局20から受信した通信データ又は情報を通信ネットワーク50側に送信したり、基地局20に送信する通信データ又は情報を通信ネットワーク50側から受信したりすることもできる。NW通信部150は、例えば、地上などに位置するフィーダ局と通信する通信部である。 The NW communication unit 150 is connected to the communication network 50 via a wireless communication line, and can communicate with a cloud system, a server, etc. of the external platform 55. The NW communication unit 150 can transmit communication data or information received from the base station 20 to the communication network 50 side, and can also receive communication data or information to be transmitted to the base station 20 from the communication network 50 side. The NW communication unit 150 is a communication unit that communicates with, for example, a feeder station located on the ground.
 HAPS10は、基地局20に対する下りリンクの通信の際に、基地局20毎に又は複数の基地局20が属するターゲットエリア毎に、個別のビームを形成するビームフォーミング(BF)制御を行い、基地局20毎に又はターゲットエリア毎に無線電力伝送を行ってもよい。基地局20毎又はターゲットエリア毎のBF制御は、通信信号処理部120における周波数領域のデジタルBF制御で行ってもよいし、無線処理部130におけるアナログBF制御で行ってもよい。 HAPS10 may perform beamforming (BF) control to form individual beams for each base station 20 or for each target area to which multiple base stations 20 belong during downlink communication with the base stations 20, and may perform wireless power transmission for each base station 20 or for each target area. The BF control for each base station 20 or for each target area may be performed by digital BF control in the frequency domain in the communication signal processing unit 120, or may be performed by analog BF control in the wireless processing unit 130.
 図2において、基地局20は、アンテナ210と、無線処理部220と、通信信号処理部230と、電力出力部240と、電池250と、を備える。アンテナ210は、例えば、多数のアンテナ素子を有する複数のアレーアンテナで構成される。無線処理部220は、通信信号処理部230で生成した情報や送信信号をアンテナ210からHAPS10に送信したり、HAPS10からアンテナ210を介して受信した受信信号を通信信号処理部230に出力したりする。 In FIG. 2, the base station 20 includes an antenna 210, a wireless processing unit 220, a communication signal processing unit 230, a power output unit 240, and a battery 250. The antenna 210 is, for example, composed of a plurality of array antennas having a large number of antenna elements. The wireless processing unit 220 transmits information and transmission signals generated by the communication signal processing unit 230 from the antenna 210 to the HAPS 10, and outputs received signals received from the HAPS 10 via the antenna 210 to the communication signal processing unit 230.
 本実施形態において、無線処理部220は、HAPS10から送信された無線電力伝送用の送信信号を受信する。電力出力部240は、例えば整流器を有し、HAPS10からの無線電力伝送用の送信信号を受信した受信信号の電力を、電池充電用の受電電力として出力する。電力出力部240から出力された受電電力により、電池250を充電することができる。 In this embodiment, the wireless processing unit 220 receives a transmission signal for wireless power transmission transmitted from HAPS10. The power output unit 240 has, for example, a rectifier, and outputs the power of the received signal that receives the transmission signal for wireless power transmission from HAPS10 as received power for charging the battery. The battery 250 can be charged by the received power output from the power output unit 240.
 無線処理部220は、受電ビーム情報(例えば、受電ビームの方向、幅などの情報)、WPT電波の到来方向の情報などの受電に関する情報を測定又は取得する機能を有してもよい。電力出力部240は、受電電力を測定する機能を有してもよい。受電ビーム情報、WPT電波の到来方向の情報などの受電に関する情報、受電電力の情報、制御情報の少なくとも1つは、HAPS10への情報に含めることができる。 The wireless processing unit 220 may have a function to measure or acquire information related to power reception, such as power reception beam information (e.g., information on the direction and width of the power reception beam) and information on the direction of arrival of the WPT radio waves. The power output unit 240 may have a function to measure the received power. At least one of the information related to power reception, such as power reception beam information, information on the direction of arrival of the WPT radio waves, information on the received power, and control information, can be included in the information to the HAPS 10.
 HAPS10から基地局20に送信される無線電力伝送用の送信信号の電磁波の周波数は、300[GHz]以下であるのが好ましく、マイクロ波であるのがより好ましい。本実施形態では、成層圏に位置するHAPS10から地上の基地局20に無線電力伝送用の送信信号を送信することから、大気の影響を受けにくい電磁波、特にマイクロ波であるのが好ましい。 The frequency of the electromagnetic waves of the transmission signal for wireless power transmission sent from HAPS 10 to base station 20 is preferably 300 GHz or less, and is more preferably microwaves. In this embodiment, since the transmission signal for wireless power transmission is sent from HAPS 10, which is located in the stratosphere, to base station 20 on the ground, electromagnetic waves, particularly microwaves, which are less susceptible to the influence of the atmosphere, are preferred.
 ここで、HAPS10から基地局20へ無線電力伝送(WPT)を行う場合、単体のHAPS10からの無線電力伝送では十分な受電電力を確保することが難しい。そのため、本実施形態では、複数のHAPS10からの無線電力伝送用の送信信号により基地局20で生成される受信信号を合成した合成信号から電力(合計電力)を得るシステムとなっている。 When wireless power transmission (WPT) is performed from the HAPS 10 to the base station 20, it is difficult to ensure sufficient received power with wireless power transmission from a single HAPS 10. Therefore, in this embodiment, the system obtains power (total power) from a composite signal that combines received signals generated at the base station 20 with transmission signals for wireless power transmission from multiple HAPS 10.
 ところが、複数のHAPS10から送信される無線電力伝送用の送信信号を受信した複数の受信信号間の位相が整合されていないと、電力伝送効率が低下し、高効率な無線電力伝送(WPT)を実現することができない。すなわち、複数のHAPS10からの各送信信号による基地局20の受信信号PrIn1,PrIn2間の位相が、図3Aに示すように整合されていない場合、図3Bに示すように整合されている場合(位相合成されている場合)と比較して、得られる合計電力PrIncが小さいものとなる。 However, if the phases of the multiple received signals that are transmitted from the multiple HAPS 10 and are used for wireless power transmission are not aligned, the power transmission efficiency decreases and highly efficient wireless power transmission (WPT) cannot be achieved. In other words, when the phases of the received signals P rIn1 and P rIn2 at the base station 20 based on the transmission signals from the multiple HAPS 10 are not aligned as shown in Fig. 3A, the total power P rInc obtained is smaller than when they are aligned (phase combined) as shown in Fig. 3B.
 そこで、本実施形態では、複数のHAPS10から送信された無線電力伝送用の送信信号を受信した複数の受信信号間の位相が整合するように位相合成して電力を得るものとし、高効率で安定した無線電力伝送(WPT)を実現している。 In this embodiment, therefore, power is obtained by phase-combining the transmission signals for wireless power transmission sent from multiple HAPS10 so that the phases of the multiple received signals are consistent, thereby achieving highly efficient and stable wireless power transmission (WPT).
 図4は、複数の受信信号間の位相が整合するように位相合成する方法の一例を示す説明図である。
 複数の受信信号間の位相が整合するように位相合成する方法としては、例えば、複数のHAPS10-0,10-1,・・・10-nから送信される無線電力伝送用の送信信号の位相を調整する方法と、基地局20で受信した複数の受信信号の位相を調整する方法とが挙げられる。ただし、後者の位相調整方法では、本システムに対応していない既存の基地局20への設備変更、設定変更が必要となること、受電する側の基地局20で位相調整を行うと当該位相調整に要する電力消費の分だけ伝送電力が目減りすることなどを考慮すると、前者の位相調整方法が好ましい。
FIG. 4 is an explanatory diagram showing an example of a method for combining phases so that the phases of a plurality of received signals are matched.
Examples of methods for synthesizing phases so that the phases of multiple received signals are a method for adjusting the phase of a transmission signal for wireless power transmission transmitted from multiple HAPS 10-0, 10-1, ..., 10-n, and a method for adjusting the phase of multiple received signals received by the base station 20. However, the latter phase adjustment method requires equipment changes and setting changes to existing base stations 20 that are not compatible with this system, and when phase adjustment is performed at the power-receiving base station 20, the transmission power is reduced by the amount of power consumption required for the phase adjustment, so the former phase adjustment method is preferable.
 そのため、本実施形態では、図4に示すように、複数のHAPS10-0,10-1,・・・10-nから送信される無線電力伝送用の送信信号の位相を調整する前者の位相調整方法を採用する。すなわち、複数のHAPS10-0,10-1,・・・10-n間における送信信号経路差を補償するような入力位相Δφ1,Δφ2,・・・,Δφnを、基準となるHAPS10-0以外のHAPS10-1,・・・10-nの送信信号に付加し、基地局20での受信信号が同相になるようにする。 Therefore, in this embodiment, as shown in Figure 4, the former phase adjustment method is adopted, which adjusts the phase of the transmission signal for wireless power transmission transmitted from multiple HAPS 10-0, 10-1, ... 10-n. In other words, input phases Δφ1, Δφ2, ... Δφn that compensate for the transmission signal path difference between multiple HAPS 10-0, 10-1, ... 10-n are added to the transmission signals of HAPS 10-1, ... 10-n other than the reference HAPS 10-0, so that the received signals at the base station 20 are in phase.
 具体的な位相調整方法としては、例えば、基地局20からの無線電力伝送に関するフィードバック情報に基づき、複数のHAPS10-0,10-1,・・・10-nから送信される無線電力伝送用の送信信号の位相を調整してもよい。例えば、複数のHAPS10-0,10-1,・・・10-nは、各HAPSと基地局20との間に構築される通信ULを介して、基地局20からの無線電力伝送に関するフィードバック情報を受信して取得する。フィードバック情報は、例えば、基地局20における受電に関する受電装置情報(「WPT受電情報」、「WPT端末情報」、「WPT情報」ともいう。)を含んでもよい。受電装置情報は、例えば、無線電力伝送を要求する要求情報(WPT要求)、基地局20を識別可能な識別情報、基地局20の位置情報、基地局20における受信電力情報、基地局20における受電ビーム情報(例えば、受電ビームの方向、幅などの情報)、基地局20におけるWPT電波の到来方向の情報、基地局20に備える電池の残量情報及び無線電力伝送を承認する承認情報の少なくとも1つの情報を含んでもよい。 A specific phase adjustment method may, for example, adjust the phase of a transmission signal for wireless power transmission transmitted from multiple HAPS 10-0, 10-1, ... 10-n based on feedback information regarding wireless power transmission from base station 20. For example, multiple HAPS 10-0, 10-1, ... 10-n receive and acquire feedback information regarding wireless power transmission from base station 20 via a communication UL established between each HAPS and base station 20. The feedback information may include, for example, power receiving device information regarding power reception at base station 20 (also referred to as "WPT power receiving information," "WPT terminal information," or "WPT information"). The power receiving device information may include, for example, at least one of the following information: request information requesting wireless power transmission (WPT request), identification information for identifying the base station 20, location information of the base station 20, received power information at the base station 20, power receiving beam information at the base station 20 (e.g., information on the direction, width, etc. of the power receiving beam), information on the direction of arrival of the WPT radio waves at the base station 20, remaining battery charge information in the base station 20, and approval information approving wireless power transmission.
 HAPS10のアレーアンテナ110で受信した基地局20からのフィードバック情報(FB情報)は、通信中継装置100の通信制御部115に送られる。通信制御部115は、基地局20からのフィードバック情報に基づいて制御情報を生成し、その制御情報に基づいて、無線電力伝送用信号(WPT信号)を含む下りリンク(DL)の送信信号と、HAPS10のアレーアンテナ110の無線電力伝送用ビームフォーミング(WPTビームフォーミング)の制御信号(BF制御信号)とを生成してアレーアンテナ110に送る。アレーアンテナ110は、BF制御信号に基づいて基地局20の方向に無線電力伝送用ビーム(WPTビーム)を形成し、そのWPTビームにより、下りリンク(DL)の無線リソースの一部を介してWPT信号を含む下りリンク(DL)の送信信号(調整位相された送信信号)を送信する。 Feedback information (FB information) from the base station 20 received by the array antenna 110 of HAPS10 is sent to the communication control unit 115 of the communication relay device 100. The communication control unit 115 generates control information based on the feedback information from the base station 20, and based on the control information, generates a downlink (DL) transmission signal including a wireless power transmission signal (WPT signal) and a control signal (BF control signal) for wireless power transmission beamforming (WPT beamforming) of the array antenna 110 of HAPS10, and sends them to the array antenna 110. The array antenna 110 forms a wireless power transmission beam (WPT beam) in the direction of the base station 20 based on the BF control signal, and transmits a downlink (DL) transmission signal (phase-adjusted transmission signal) including a WPT signal via a portion of the wireless resources of the downlink (DL).
 HAPS10の通信制御部115は、基地局20から受信したフィードバック情報を外部プラットフォーム55のクラウドシステムやサーバ等に転送し、フィードバック情報に基づいて外部プラットフォーム55で生成された制御情報を受信し、その制御情報に基づいて、WPT信号を含む下りリンク(DL)の送信信号とBF制御信号とを生成してもよい。 The communication control unit 115 of HAPS10 may transfer feedback information received from the base station 20 to a cloud system or server of the external platform 55, receive control information generated by the external platform 55 based on the feedback information, and generate a downlink (DL) transmission signal including a WPT signal and a BF control signal based on the control information.
 また、基地局20からの無線電力伝送に関するフィードバック情報は、各HAPS10に対する送信信号の位相を指定する制御情報であってもよい。ただし、この場合、基地局20側で、各HAPS10から送信される送信信号の位相を決定する処理を実行することになる。 Furthermore, the feedback information regarding wireless power transmission from the base station 20 may be control information that specifies the phase of the transmission signal for each HAPS 10. In this case, however, the base station 20 executes a process for determining the phase of the transmission signal transmitted from each HAPS 10.
 本実施形態の位相調整方法では、互いに時刻同期されている複数のHAPS10-0,10-1,・・・10-nに対して基地局20からパイロット信号を送信し、複数のHAPS10-0,10-1,・・・10-nは、それぞれの無線電力伝送用の送信信号が基地局20に同位相で到達するように、基地局20からのパイロット信号の受信結果に基づいて当該送信信号の送信タイミングを決定する。 In the phase adjustment method of this embodiment, a pilot signal is transmitted from the base station 20 to multiple HAPS 10-0, 10-1, ... 10-n that are time-synchronized with each other, and the multiple HAPS 10-0, 10-1, ... 10-n determine the transmission timing of the transmission signal based on the reception result of the pilot signal from the base station 20 so that the transmission signals for wireless power transmission arrive at the base station 20 in the same phase.
 具体的には、基地局20から送信されるパイロット信号は、各HAPS10-0,10-1,・・・10-nのアンテナ110に受信されると、各HAPSの無線処理部130から通信信号処理部120を介して電力伝送制御部140へ送られる。電力伝送制御部140は、送電対象(基地局20)が共通の他のHAPSとの間で時刻同期を行う同期処理部として機能し、例えば、PTP(Precision Time Protocol)等による時刻同期を行う。また、電力伝送制御部140は、無線処理部130やアンテナ110などとともに、所定周波数の電磁波を介して無線電力伝送用の送信信号を送信する送信部を構成する。 Specifically, when the pilot signal transmitted from the base station 20 is received by the antenna 110 of each HAPS 10-0, 10-1, ... 10-n, it is sent from the wireless processing unit 130 of each HAPS via the communication signal processing unit 120 to the power transmission control unit 140. The power transmission control unit 140 functions as a synchronization processing unit that performs time synchronization with other HAPSs that share the same power transmission target (base station 20), and performs time synchronization using, for example, PTP (Precision Time Protocol) or the like. Furthermore, the power transmission control unit 140, together with the wireless processing unit 130 and antenna 110, etc., constitutes a transmission unit that transmits a transmission signal for wireless power transmission via electromagnetic waves of a predetermined frequency.
 電力伝送制御部140は、パイロット信号の受信時刻により、基準となるHAPS10-0との送信信号経路長の差を把握できるので、この差を補償するための入力位相Δφ1,Δφ2,・・・,Δφnを決定し、決定した入力位相が付加された送信信号の送信タイミングの制御情報を無線処理部130に送る。これにより、無線処理部130は、その制御情報に基づく送信タイミングで、無線電力伝送用の送信信号(位相調整後の送信信号)をアンテナ110から基地局20に送信する。 The power transmission control unit 140 can ascertain the difference in transmission signal path length from the reference HAPS10-0 based on the reception time of the pilot signal, and therefore determines input phases Δφ1, Δφ2, ..., Δφn to compensate for this difference, and sends control information for the transmission timing of the transmission signal to which the determined input phases have been added to the wireless processing unit 130. As a result, the wireless processing unit 130 transmits a transmission signal for wireless power transmission (a transmission signal after phase adjustment) from the antenna 110 to the base station 20 with a transmission timing based on that control information.
 その結果、図4に示すように、複数のHAPS10-0,10-1,・・・10-nのアンテナ110に入力される送信信号PInjφ,PInjφ-Δφ1,・・・,PInjφ-Δφnは、基地局20で受信される時点の位相が同相Pjφになる。よって、図3Bに示すように、位相合成された受信信号(合成信号)PrIncが最大化され、高効率で安定した無線電力伝送(WPT)が実現される。 4, the transmission signals P In e , P In e jφ-Δφ1 , ..., P In e jφ-Δφn input to the antennas 110 of the multiple HAPS 10-0, 10-1, ..., 10-n have the same phase P r e when received by the base station 20. Therefore, as shown in Fig. 3B, the phase-combined received signal (combined signal) P rInc is maximized, and highly efficient and stable wireless power transmission (WPT) is realized.
〔実施形態2〕
 他の実施形態に係る無線電力伝送(WPT)システムは、宇宙太陽光発電衛星(SSPS:Space Soler Power Satellite)から、成層圏などに分散して位置する複数の浮揚体(例えばHAPS、気球、ドローン)に搭載された複数の送電装置を中継して、地上、海上、湖上などに位置する受電装置や低高度の空間に位置するドローンなどに搭載された受電装置に安定して給電可能な大空間分散給電システムである。
[Embodiment 2]
A wireless power transmission (WPT) system according to another embodiment is a large-space distributed power supply system capable of stably supplying power from a Space Solar Power Satellite (SSPS) to a power receiving device located on the ground, sea, lake, etc., or a power receiving device mounted on a drone located in low-altitude space, by relaying power from the Space Solar Power Satellite (SSPS) through a plurality of power transmitting devices mounted on a plurality of floating bodies (e.g., HAPS, balloons, drones) located in a distributed manner in the stratosphere, etc.
 なお、以下の説明では、上述した実施形態1と重複する説明は適宜省略し、上述した実施形態1とは異なる点を中心に説明する。 In the following explanation, explanations that overlap with the above-mentioned embodiment 1 will be omitted as appropriate, and the explanation will focus on the points that are different from the above-mentioned embodiment 1.
 図5は、本実施形態2に係るシステムの概略構成の一例を示す説明図である。
 本実施形態2のシステムは、無線電力伝送(WPT)を行うシステムであり、所定高度に位置する浮揚体に搭載される一又は複数の送電装置と、この送電装置から送信された送信信号を受信して電力を出力する受電装置と、を備える。一又は複数の送電装置は、第1周波数の電磁波を介して外部装置から送信される無線電力伝送用の送信信号を受信し、前記無線電力伝送用の送信信号の周波数を前記第1周波数よりも低い第2周波数に変換し、前記第2周波数の電磁波を介して前記無線電力伝送用の送信信号を送信する。
FIG. 5 is an explanatory diagram showing an example of a schematic configuration of a system according to the second embodiment.
The system of the second embodiment is a system for wireless power transmission (WPT), and includes one or more power transmitting devices mounted on a levitation body located at a predetermined altitude, and a power receiving device that receives a transmission signal transmitted from the power transmitting device and outputs electric power. The one or more power transmitting devices receive a transmission signal for wireless power transmission transmitted from an external device via electromagnetic waves of a first frequency, convert the frequency of the transmission signal for wireless power transmission to a second frequency lower than the first frequency, and transmit the transmission signal for wireless power transmission via the electromagnetic waves of the second frequency.
 浮揚体は、本実施形態2でも、成層圏に位置するHAPS10の例であるが、上述した実施形態1と同様、気球又はドローンなどであってもよい。受信装置も、上述した実施形態1と同様、地上の基地局20の例である。ただし、本実施形態2のHAPS10が基地局20へ送信する無線電力伝送用の送信信号は、外部装置から送信される無線電力伝送用の送信信号の周波数を低い周波数に変換したものである。この外部装置としては、他の浮揚体(例えば他のHAPS)に搭載される送電装置、地上、海上若しくは湖上などに位置する送電装置、HAPS10よりも高高度に位置する送電装置(例えば宇宙太陽光発電衛星など)などが挙げられる。 In this embodiment 2, the floating body is an example of HAPS10 located in the stratosphere, but may be a balloon or a drone, as in the above-mentioned embodiment 1. The receiving device is also an example of a terrestrial base station 20, as in the above-mentioned embodiment 1. However, the transmission signal for wireless power transmission transmitted by HAPS10 in this embodiment 2 to the base station 20 is a transmission signal for wireless power transmission transmitted from an external device, the frequency of which is converted to a lower frequency. Examples of this external device include a power transmission device mounted on another floating body (e.g., another HAPS), a power transmission device located on the ground, sea or lake, and a power transmission device located at a higher altitude than HAPS10 (e.g., a space solar power generation satellite).
 本実施形態は、外部装置が、大気圏よりも高い高度に位置する宇宙太陽光発電衛星30の例である。宇宙太陽光発電衛星30は、太陽光発電装置を搭載し、太陽光発電装置から出力される電力を無線電力伝送により成層圏のHAPS10へ伝送し、このHAPS10から無線電力伝送により受電装置である地上の基地局20へ電力を伝送する。 In this embodiment, the external device is an example of a space solar power generation satellite 30 located at an altitude higher than the atmosphere. The space solar power generation satellite 30 is equipped with a solar power generation device, and transmits power output from the solar power generation device to a HAPS 10 in the stratosphere via wireless power transmission, and the power is then transmitted from the HAPS 10 to a ground base station 20, which is a power receiving device, via wireless power transmission.
 図6は、本実施形態2の無線電力伝送(WPT)システムを構成するHAPS10及び基地局20の主要構成の一例を示すブロック図である。
 HAPS10は、上述した実施形態1で備える構成のほか、第1周波数の電磁波を介して送信される宇宙太陽光発電衛星30から無線電力伝送用の送信信号を受信する受信部としてのアンテナ111と、アンテナ111で受信した無線電力伝送用の送信信号の周波数をより低い第2周波数に変換する変換部としての周波数変換部160と、を備える。
FIG. 6 is a block diagram showing an example of the main configuration of the HAPS 10 and the base station 20 that constitute the wireless power transmission (WPT) system of the second embodiment.
In addition to the configuration provided in the above-described first embodiment, the HAPS 10 includes an antenna 111 as a receiving unit that receives a transmission signal for wireless power transmission from the space solar power satellite 30 transmitted via electromagnetic waves of a first frequency, and a frequency conversion unit 160 as a conversion unit that converts the frequency of the transmission signal for wireless power transmission received by the antenna 111 to a lower second frequency.
 アンテナ111は、例えば、多数のアンテナ素子を有するアレーアンテナである。アンテナ111は単数でもよいし複数であってもよい。HAPS10の通信中継装置100に設けられる周波数変換部160は、宇宙太陽光発電衛星30からアンテナ111を介して受信した無線電力伝送用の送信信号の周波数(第1周波数)をより低い第2周波数に変換し、周波数変換後の送信信号を無線処理部130に送る。無線処理部130は、周波数変換部160から送られてくる無線電力伝送用の送信信号をアンテナ110から基地局20に送信する。 The antenna 111 is, for example, an array antenna having a large number of antenna elements. There may be a single antenna 111 or multiple antennas. The frequency conversion unit 160 provided in the communication relay device 100 of the HAPS 10 converts the frequency (first frequency) of the transmission signal for wireless power transmission received from the space solar power generation satellite 30 via the antenna 111 to a lower second frequency, and sends the frequency-converted transmission signal to the wireless processing unit 130. The wireless processing unit 130 transmits the transmission signal for wireless power transmission sent from the frequency conversion unit 160 from the antenna 110 to the base station 20.
 本実施形態において、宇宙太陽光発電衛星30からHAPS10に送信される無線電力伝送用の送信信号の電磁波の周波数は、マイクロ波よりも高い周波数であるのが好ましく、ミリ波、テラヘルツ波又は光波であるのがより好ましい。大気圏よりも高い高度に位置する宇宙太陽光発電衛星30と成層圏に位置するHAPS10との間では大気の影響が小さいため、無線電力伝送用の送信信号の電磁波は、高周波数のもの、特にミリ波、テラヘルツ波又は光波であるのがよい。一方で、成層圏に位置するHAPS10から地上の基地局20に送信される無線電力伝送用の送信信号については、大気の影響が大きいため、上述したとおり、大気の影響を受けにくい電磁波、特にマイクロ波であるのが好ましい。 In this embodiment, the frequency of the electromagnetic waves of the transmission signal for wireless power transmission transmitted from the space solar power generation satellite 30 to the HAPS 10 is preferably higher than microwaves, and more preferably millimeter waves, terahertz waves, or light waves. Since the influence of the atmosphere is small between the space solar power generation satellite 30, which is located at an altitude higher than the atmosphere, and the HAPS 10, which is located in the stratosphere, the electromagnetic waves of the transmission signal for wireless power transmission are preferably high-frequency, particularly millimeter waves, terahertz waves, or light waves. On the other hand, the transmission signal for wireless power transmission transmitted from the HAPS 10, which is located in the stratosphere, to the ground base station 20 is greatly influenced by the atmosphere, so as described above, it is preferable that the electromagnetic waves, particularly microwaves, are less influenced by the atmosphere.
 本実施形態では、宇宙太陽光発電衛星30で発電される電力を地上の基地局20に無線電力伝送するにあたり、成層圏に位置するHAPS10を経由させることで、無線電力伝送(WPT)を実現している。すなわち、大気の影響の少ないエリアでの無線電力伝送では、より高周波数の電磁波を介して無線電力伝送用の送信信号を送信し、大気の影響の大きいエリアでの無線電力伝送では、より低周波数の電磁波を介して無線電力伝送用の送信信号を送信することで、高効率で安定した無線電力伝送(WPT)を実現している。 In this embodiment, when transmitting power generated by a space solar power generation satellite 30 to a ground base station 20 wirelessly, wireless power transmission (WPT) is achieved by passing the power through a HAPS 10 located in the stratosphere. That is, in areas with little atmospheric influence, the transmission signal for wireless power transmission is transmitted via higher frequency electromagnetic waves, and in areas with great atmospheric influence, the transmission signal for wireless power transmission is transmitted via lower frequency electromagnetic waves, thereby achieving highly efficient and stable wireless power transmission (WPT).
 また、宇宙太陽光発電衛星30からHAPS10に送信される無線電力伝送用の送信信号の電磁波は、宇宙太陽光発電衛星30からHAPS10に向かう指向性を有するように形成されたビーム形状の電磁波であるのが好ましい。これにより、より高効率な無線電力伝送を実現することができる。このような電磁波には、例えば、ビーム形状をビームフォーミング技術により成形された電磁波を用いることができる。 In addition, it is preferable that the electromagnetic waves of the transmission signal for wireless power transmission sent from the space solar power satellite 30 to the HAPS 10 are electromagnetic waves in a beam shape formed to have directivity from the space solar power satellite 30 toward the HAPS 10. This makes it possible to achieve more efficient wireless power transmission. For such electromagnetic waves, for example, electromagnetic waves whose beam shape has been shaped by beamforming technology can be used.
 特に、本実施形態では、宇宙太陽光発電衛星30から複数のHAPS10に対して無線電力伝送用の送信信号を送信することから、各HAPS10へ送信される複数の送信信号をマルチビームで送信するのがよい。これによれば、各HAPS10に対し、より高効率な無線電力伝送を実現することができる。 In particular, in this embodiment, since the space solar power satellite 30 transmits transmission signals for wireless power transmission to multiple HAPS 10, it is preferable to transmit the multiple transmission signals to each HAPS 10 in a multi-beam manner. This makes it possible to achieve more efficient wireless power transmission to each HAPS 10.
 本実施形態においても、上述した実施形態1と同様、複数のHAPS10から基地局20への無線電力伝送を行う。そのため、上述した実施形態1と同じく、複数のHAPS10から送信された無線電力伝送用の送信信号を受信した複数の受信信号間の位相が整合するように位相合成する構成を採用するのが好ましい。ただし、本実施形態2において、この構成は必ずしも採用する必要はない。 In this embodiment, as in the above-described embodiment 1, wireless power transmission is performed from multiple HAPS 10 to the base station 20. Therefore, as in the above-described embodiment 1, it is preferable to adopt a configuration that performs phase synthesis so that the phases of multiple received signals received from the transmission signals for wireless power transmission sent from the multiple HAPS 10 are consistent. However, in this embodiment 2, it is not necessarily necessary to adopt this configuration.
〔実施形態3〕
 更に他の実施形態に係る無線電力伝送(WPT)システムは、宇宙太陽光発電衛星(SSPS)から、成層圏などに分散して位置する複数の浮揚体(例えばHAPS、気球、ドローン)に安定して給電可能な大空間分散給電システムである。
[Embodiment 3]
A wireless power transmission (WPT) system according to yet another embodiment is a large-space distributed power supply system capable of stably supplying power from a space solar power satellite (SSPS) to a plurality of floating bodies (e.g., HAPS, balloons, drones) located in a distributed manner in the stratosphere or the like.
 なお、以下の説明では、上述した実施形態1及び2と重複する説明は適宜省略し、上述した実施形態1及び2とは異なる点を中心に説明する。 In the following explanation, explanations that overlap with the above-mentioned embodiments 1 and 2 will be omitted as appropriate, and the explanation will focus on the points that are different from the above-mentioned embodiments 1 and 2.
 図7は、本実施形態3に係るシステムの概略構成の一例を示す説明図である。
 本実施形態3のシステムは、無線電力伝送(WPT)を行うシステムであり、大気圏よりも高い高度に位置する宇宙太陽光発電衛星30と、宇宙太陽光発電衛星よりも低い所定高度に位置する複数の浮揚体のそれぞれに搭載される複数の受電装置と、を備える。宇宙太陽光発電衛星30は、所定周波数の電磁波を介して複数の無線電力伝送用の送信信号をマルチビームで送信する。複数の受電装置は、宇宙太陽光発電衛星30からマルチビームで送信された当該複数の無線電力伝送用の送信信号のそれぞれを受信する。
FIG. 7 is an explanatory diagram showing an example of a schematic configuration of a system according to the third embodiment.
The system of the third embodiment is a system for wireless power transmission (WPT), and includes a space solar power generation satellite 30 located at an altitude higher than the atmosphere, and a plurality of power receiving devices mounted on each of a plurality of floating bodies located at a predetermined altitude lower than the space solar power generation satellite. The space solar power generation satellite 30 transmits a plurality of transmission signals for wireless power transmission in multiple beams via electromagnetic waves of a predetermined frequency. The multiple power receiving devices receive each of the plurality of transmission signals for wireless power transmission transmitted in multiple beams from the space solar power generation satellite 30.
 宇宙太陽光発電衛星30は、本実施形態3でも、上述した実施形態2と同様、大気圏よりも高い高度に位置し、太陽光発電装置を搭載していて、太陽光発電装置から出力される電力を無線電力伝送により成層圏のHAPS10へ伝送する。本実施形態3の受信装置は、浮揚体であるHAPS10であり、本システムの送電対象がHAPS10ということになる。したがって、本実施形態3のHAPS10は、地上の基地局20に無線電力伝送するための機能(電力伝送制御部140等)を備えていないが、地上の基地局20に無線電力伝送するための機能を備えていてもよい。 In this embodiment 3, as in the above-mentioned embodiment 2, the space solar power satellite 30 is located at an altitude higher than the atmosphere, is equipped with a solar power generation device, and transmits power output from the solar power generation device to the HAPS 10 in the stratosphere by wireless power transmission. The receiving device in this embodiment 3 is the HAPS 10, which is a floating body, and the power transmission target of this system is the HAPS 10. Therefore, the HAPS 10 in this embodiment 3 does not have a function (such as the power transmission control unit 140) for wireless power transmission to the terrestrial base station 20, but may have a function for wireless power transmission to the terrestrial base station 20.
 送電対象である受電装置が搭載される浮揚体は、本実施形態3でも、成層圏に位置するHAPS10の例であるが、上述した実施形態1や実施形態2と同様、成層圏に位置する気球又はドローンなどであってもよい。 In this third embodiment, the floating body on which the power receiving device to be transmitted is mounted is an example of a HAPS10 located in the stratosphere, but it may also be a balloon or drone located in the stratosphere, as in the first and second embodiments described above.
 図8は、本実施形態3の無線電力伝送(WPT)システムを構成するHAPS10の主要構成の一例を示すブロック図である。
 本実施形態3のHAPS10は、地上の基地局20に無線電力伝送するための機能(電力伝送制御部140、周波数変換部160等)を備えていない点で、上述した実施形態2とは異なっている。また、本実施形態3のHAPS10は、無線処理部170と、電力出力部180と、電池190と、を備える点でも、上述した実施形態2とは異なっている。
FIG. 8 is a block diagram showing an example of a main configuration of a HAPS 10 constituting a wireless power transmission (WPT) system according to the third embodiment.
The HAPS 10 of the present embodiment 3 differs from the above-mentioned embodiment 2 in that it does not include functions (such as a power transmission control unit 140 and a frequency conversion unit 160) for wirelessly transmitting power to a ground base station 20. The HAPS 10 of the present embodiment 3 also differs from the above-mentioned embodiment 2 in that it includes a wireless processing unit 170, a power output unit 180, and a battery 190.
 無線処理部170は、宇宙太陽光発電衛星30から送信される無線電力伝送用の送信信号をアンテナ111を介して受信し、電力出力部180へ送る。電力出力部180は、例えば整流器を有し、宇宙太陽光発電衛星30からの無線電力伝送用の送信信号を受信した受信信号の電力を、電池充電用の受電電力として出力する。電力出力部180から出力された受電電力により、電池190を充電することができる。 The wireless processing unit 170 receives the transmission signal for wireless power transmission transmitted from the space solar power satellite 30 via the antenna 111 and sends it to the power output unit 180. The power output unit 180 has, for example, a rectifier, and outputs the power of the received signal that receives the transmission signal for wireless power transmission from the space solar power satellite 30 as received power for charging the battery. The battery 190 can be charged by the received power output from the power output unit 180.
 本実施形態においても、上述した実施形態2と同様、宇宙太陽光発電衛星30からHAPS10に送信される無線電力伝送用の送信信号の電磁波の周波数は、マイクロ波よりも高い周波数であるのが好ましく、ミリ波、テラヘルツ波又は光波であるのがより好ましい。大気圏よりも高い高度に位置する宇宙太陽光発電衛星30と成層圏に位置するHAPS10との間では大気の影響が小さいため、無線電力伝送用の送信信号の電磁波は、高周波数のもの、特にミリ波、テラヘルツ波または光波であるのがよい。 In this embodiment, as in the above-described embodiment 2, the frequency of the electromagnetic waves of the transmission signal for wireless power transmission transmitted from the space solar power generation satellite 30 to the HAPS 10 is preferably higher than microwaves, and more preferably millimeter waves, terahertz waves, or light waves. Since the influence of the atmosphere is small between the space solar power generation satellite 30, which is located at an altitude higher than the atmosphere, and the HAPS 10, which is located in the stratosphere, the electromagnetic waves of the transmission signal for wireless power transmission are preferably high-frequency, particularly millimeter waves, terahertz waves, or light waves.
 また、本実施形態では、宇宙太陽光発電衛星30から複数のHAPS10に対して無線電力伝送用の送信信号を送信することから、各HAPS10へ送信される複数の送信信号をマルチビームで送信する。これにより、各HAPS10に対し、より高効率な無線電力伝送を実現することができる。このようなマルチビームは、例えば、ビーム形状をビームフォーミング技術により成形することにより実現できる。 In addition, in this embodiment, since the space solar power satellite 30 transmits transmission signals for wireless power transmission to multiple HAPS 10, the multiple transmission signals are transmitted to each HAPS 10 as multiple beams. This allows for more efficient wireless power transmission to each HAPS 10. Such multiple beams can be realized, for example, by forming the beam shape using beam forming technology.
 本実施形態によれば、宇宙太陽光発電衛星30から複数の無線電力伝送用の送信信号をマルチビームで送信し、マルチビームで送信された複数の送信信号が成層圏などに分散して位置する複数のHAPS10にそれぞれ受信される。これにより、高効率で安定した無線電力伝送(WPT)を実現することができる。 According to this embodiment, multiple transmission signals for wireless power transmission are transmitted in multiple beams from the space solar power generation satellite 30, and the multiple transmission signals transmitted in multiple beams are received by multiple HAPS 10s located in different locations in the stratosphere, etc. This makes it possible to realize highly efficient and stable wireless power transmission (WPT).
 以上、本実施形態1~3によれば、高高度に位置する送電装置から受電装置への安定した無線電力伝送が可能になる。
 また、本発明は、高高度に位置する送電装置から地上、海上、湖上又は低高度の空間に位置する受電装置への無線電力伝送の安定化を図ることができるため、持続可能な開発目標(SDGs)の目標9「産業と技術革新の基盤をつくろう」の達成に貢献できる。
As described above, according to the first to third embodiments, stable wireless power transmission from a power transmitting device located at a high altitude to a power receiving device is possible.
In addition, the present invention can stabilize wireless power transmission from a transmission device located at a high altitude to a receiving device located on the ground, sea, lake, or in space at a low altitude, thereby contributing to the achievement of Goal 9 of the Sustainable Development Goals (SDGs), which is to "build resilient infrastructure, promote industry, innovation and infrastructure."
 なお、本明細書で説明された処理工程並びに無線電力伝送システム、送電システム、受電システム、送電装置、受電装置、浮揚体、端末装置、宇宙太陽光発電衛星などの構成要素は、様々な手段によって実装することができる。例えば、これらの工程及び構成要素は、ハードウェア、ファームウェア、ソフトウェア、又は、それらの組み合わせで実装されてもよい。 The processing steps described in this specification and components of the wireless power transmission system, power transmission system, power receiving system, power transmitting device, power receiving device, levitation body, terminal device, space solar power satellite, etc. can be implemented by various means. For example, these steps and components may be implemented by hardware, firmware, software, or a combination thereof.
 ハードウェア実装については、実体(例えば、各種の送信機、受信機、レクテナ装置、無線通信装置、Node B、端末、ハードディスクドライブ装置、又は、光ディスクドライブ装置)において上記工程及び構成要素を実現するために用いられる処理ユニット等の手段は、1つ又は複数の、特定用途向けIC(ASIC)、デジタルシグナルプロセッサ(DSP)、デジタル信号処理装置(DSPD)、プログラマブル・ロジック・デバイス(PLD)、フィールド・プログラマブル・ゲート・アレイ(FPGA)、プロセッサ、コントローラ、マイクロコントローラ、マイクロプロセッサ、電子デバイス、本明細書で説明された機能を実行するようにデザインされた他の電子ユニット、コンピュータ、又は、それらの組み合わせの中に実装されてもよい。 With regard to hardware implementation, the processing units and other means used to realize the above steps and components in an entity (e.g., various transmitters, receivers, rectenna devices, wireless communication devices, Node Bs, terminals, hard disk drive devices, or optical disk drive devices) may be implemented in one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processors (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, electronic devices, other electronic units designed to perform the functions described herein, computers, or combinations thereof.
 また、ファームウェア及び/又はソフトウェア実装については、上記構成要素を実現するために用いられる処理ユニット等の手段は、本明細書で説明された機能を実行するプログラム(例えば、プロシージャ、関数、モジュール、インストラクション、などのコード)で実装されてもよい。一般に、ファームウェア及び/又はソフトウェアのコードを明確に具体化する任意のコンピュータ/プロセッサ読み取り可能な媒体が、本明細書で説明された上記工程及び構成要素を実現するために用いられる処理ユニット等の手段の実装に利用されてもよい。例えば、ファームウェア及び/又はソフトウェアコードは、例えば制御装置において、メモリに記憶され、コンピュータやプロセッサにより実行されてもよい。そのメモリは、コンピュータやプロセッサの内部に実装されてもよいし、又は、プロセッサの外部に実装されてもよい。また、ファームウェア及び/又はソフトウェアコードは、例えば、ランダムアクセスメモリ(RAM)、リードオンリーメモリ(ROM)、不揮発性ランダムアクセスメモリ(NVRAM)、プログラマブルリードオンリーメモリ(PROM)、電気的消去可能PROM(EEPROM)、フラッシュメモリ、フロッピー(登録商標)ディスク、コンパクトディスク(CD)、デジタルバーサタイルディスク(DVD)、磁気又は光データ記憶装置、などのような、コンピュータやプロセッサで読み取り可能な媒体に記憶されてもよい。そのコードは、1又は複数のコンピュータやプロセッサにより実行されてもよく、また、コンピュータやプロセッサに、本明細書で説明された機能性のある態様を実行させてもよい。 Additionally, for firmware and/or software implementations, the means such as processing units used to realize the above components may be implemented with programs (e.g., code such as procedures, functions, modules, instructions, etc.) that perform the functions described herein. In general, any computer/processor readable medium tangibly embodying firmware and/or software code may be used to implement the means such as processing units used to realize the above steps and components described herein. For example, the firmware and/or software code may be stored in a memory and executed by a computer or processor, for example in a control device. The memory may be implemented inside the computer or processor or external to the processor. The firmware and/or software code may also be stored in a computer or processor readable medium, such as, for example, random access memory (RAM), read only memory (ROM), non-volatile random access memory (NVRAM), programmable read only memory (PROM), electrically erasable programmable read only memory (EEPROM), flash memory, floppy disk, compact disk (CD), digital versatile disk (DVD), magnetic or optical data storage device, etc. The code may be executed by one or more computers or processors and may cause the computers or processors to perform certain aspects of the functionality described herein.
 また、前記媒体は非一時的な記録媒体であってもよい。また、前記プログラムのコードは、コンピュータ、プロセッサ、又は他のデバイス若しくは装置機械で読み込んで実行可能であればよく、その形式は特定の形式に限定されない。例えば、前記プログラムのコードは、ソースコード、オブジェクトコード及びバイナリコードのいずれでもよく、また、それらのコードの2以上が混在したものであってもよい。 The medium may also be a non-transitory recording medium. The program code may be in any format as long as it can be read and executed by a computer, processor, or other device or machine, and the format is not limited to a specific format. For example, the program code may be any of source code, object code, and binary code, or may be a mixture of two or more of these codes.
 また、本明細書で開示された実施形態の説明は、当業者が本開示を製造又は使用するのを可能にするために提供される。本開示に対するさまざまな修正は当業者には容易に明白になり、本明細書で定義される一般的原理は、本開示の趣旨又は範囲から逸脱することなく、他のバリエーションに適用可能である。それゆえ、本開示は、本明細書で説明される例及びデザインに限定されるものではなく、本明細書で開示された原理及び新規な特徴に合致する最も広い範囲に認められるべきである。 Furthermore, the description of the embodiments disclosed herein is provided to enable any person skilled in the art to make or use the present disclosure. Various modifications to the present disclosure will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other variations without departing from the spirit or scope of the present disclosure. Thus, the present disclosure is not intended to be limited to the examples and designs described herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
10    :HAPS
20    :基地局
30    :宇宙太陽光発電衛星
50    :通信ネットワーク
55    :外部プラットフォーム
100   :通信中継装置
110,111:アンテナ
115   :通信制御部
120   :通信信号処理部
130   :無線処理部
140   :電力伝送制御部
150   :NW通信部
160   :周波数変換部
170   :無線処理部
180   :電力出力部
190   :電池
210   :アンテナ
220   :無線処理部
230   :通信信号処理部
240   :電力出力部
250   :電池
10: H.A.P.S.
20: Base station 30: Space solar power satellite 50: Communication network 55: External platform 100: Communication relay device 110, 111: Antenna 115: Communication control unit 120: Communication signal processing unit 130: Wireless processing unit 140: Power transmission control unit 150: NW communication unit 160: Frequency conversion unit 170: Wireless processing unit 180: Power output unit 190: Battery 210: Antenna 220: Wireless processing unit 230: Communication signal processing unit 240: Power output unit 250: Battery

Claims (24)

  1.  無線電力伝送を行うシステムであって、
     所定高度に位置する浮揚体に搭載され、所定周波数の電磁波を介して無線電力伝送用の送信信号を送信する複数の送電装置と、
     前記複数の送電装置から送信された前記複数の送信信号を受信した複数の受信信号を位相合成して電力を出力する一又は複数の受電装置と、
    を備える、ことを特徴とするシステム。
    A system for wireless power transmission,
    A plurality of power transmitting devices are mounted on a levitation body located at a predetermined altitude and transmit a transmission signal for wireless power transmission via an electromagnetic wave of a predetermined frequency;
    one or more power receiving devices that receive the plurality of transmission signals transmitted from the plurality of power transmitting devices and output power by phase-combining a plurality of reception signals;
    A system comprising:
  2.  請求項1のシステムにおいて、
     前記受電装置は、前記複数の送電装置にパイロット信号を送信し、
     前記複数の送電装置は、
      互いに時刻同期され、
      前記複数の送電装置から送信された複数の無線電力伝送用の送信信号が前記受電装置に同位相で到達するように、前記受電装置から受信した前記パイロット信号の受信結果に基づいて前記無線電力伝送用の送信信号の送信タイミングを決定する、
    ことを特徴とするシステム。
    2. The system of claim 1,
    The power receiving device transmits a pilot signal to the plurality of power transmitting devices,
    The plurality of power transmitting devices are
    They are time-synchronized with each other,
    determining a transmission timing of the transmission signals for wireless power transmission based on a reception result of the pilot signal received from the power receiving device so that the transmission signals for wireless power transmission transmitted from the plurality of power transmitting devices arrive at the power receiving device in the same phase;
    A system characterized by:
  3.  請求項1のシステムにおいて、
     前記電磁波の周波数は、300[GHz]以下である、
    ことを特徴とするシステム。
    2. The system of claim 1,
    The frequency of the electromagnetic wave is 300 [GHz] or less.
    A system characterized by:
  4.  請求項3のシステムにおいて、
     前記電磁波は、マイクロ波である、
    ことを特徴とするシステム。
    In the system of claim 3,
    The electromagnetic wave is a microwave.
    A system characterized by:
  5.  請求項3のシステムにおいて、
     前記電磁波は、前記送電装置から前記受電装置に向かう指向性を有するように形成されたビーム形状の電磁波である、
    ことを特徴とするシステム。
    In the system of claim 3,
    The electromagnetic wave is a beam-shaped electromagnetic wave formed to have directivity from the power transmitting device to the power receiving device.
    A system characterized by:
  6.  請求項1のシステムにおいて、
     前記浮揚体は、成層圏に位置するHAPS、気球又はドローンである、
    ことを特徴とするシステム。
    2. The system of claim 1,
    The float is a HAPS, a balloon or a drone located in the stratosphere;
    A system characterized by:
  7.  請求項1のシステムにおいて、
     前記受電装置は、地上、海上若しくは湖上に位置する、又は、前記送電装置よりも低い低高度の空間に位置する、
    ことを特徴とするシステム。
    2. The system of claim 1,
    The power receiving device is located on land, sea or lake, or in a space at a low altitude lower than the power transmitting device.
    A system characterized by:
  8.  無線電力伝送の送電装置であって、
     所定高度に位置する浮揚体に搭載され、
     所定周波数の電磁波を介して無線電力伝送用の送信信号を送信する送信部を備える、
    ことを特徴とする送電装置。
    A wireless power transmission device,
    It is mounted on a floating body located at a predetermined altitude,
    A transmitter that transmits a transmission signal for wireless power transmission via electromagnetic waves of a predetermined frequency.
    A power transmitting device comprising:
  9.  請求項8の送電装置において、
     送電対象が共通の他の送電装置との間で時刻同期を行う同期処理部を備え、
     前記送信部は、前記複数の送電装置から送信された複数の無線電力伝送用の送信信号が前記受電装置に同位相で到達するように、前記受電装置から受信したパイロット信号の受信結果に基づいて前記無線電力伝送用の送信信号の送信タイミングを決定する、
    ことを特徴とする送電装置。
    The power transmitting device according to claim 8,
    A synchronization processing unit that performs time synchronization with another power transmission device having a common power transmission target,
    the transmitting unit determines a transmission timing of the transmission signals for wireless power transmission based on a reception result of a pilot signal received from the power receiving device so that the transmission signals for wireless power transmission transmitted from the multiple power transmitting devices arrive at the power receiving device in the same phase.
    A power transmitting device comprising:
  10.  複数の送電装置を備える無線電力伝送の送電システムであって、
     前記複数の送電装置はそれぞれ、請求項8の送電装置である、
    ことを特徴とする送電システム。
    A wireless power transmission system including a plurality of power transmission devices,
    Each of the plurality of power transmission devices is the power transmission device according to claim 8.
    A power transmission system comprising:
  11.  無線電力伝送の受電装置であって、
     所定高度に位置する浮揚体にそれぞれ搭載された複数の送電装置から、所定周波数の電磁波を介して無線電力伝送用の送信信号を受信する受信部と、
     前記複数の送信信号を受信した複数の受信信号を同位相で合成する合成部と、
    を備える、ことを特徴とする受電装置。
    A wireless power transmission receiving device,
    a receiving unit that receives a transmission signal for wireless power transmission via an electromagnetic wave of a predetermined frequency from a plurality of power transmitting devices respectively mounted on a levitation body located at a predetermined altitude;
    a combining unit that combines a plurality of received signals that have received the plurality of transmission signals in phase;
    A power receiving device comprising:
  12.  請求項11の受電装置において、
     前記複数の送電装置にパイロット信号を送信する送信部を備える、
    ことを特徴とする受電装置。
    The power receiving device according to claim 11,
    A transmitter that transmits a pilot signal to the plurality of power transmitting devices.
    A power receiving device comprising:
  13.  無線電力伝送を行うシステムであって、
     所定高度に位置する浮揚体に搭載され、外部装置から第1周波数の電磁波を介して無線電力伝送用の送信信号を受信し、前記無線電力伝送用の送信信号の周波数を前記第1周波数よりも低い第2周波数に変換し、前記第2周波数の電磁波を介して前記無線電力伝送用の送信信号を送信する送電装置と、
     前記送電装置から送信された前記送信信号を受信して電力を出力する受電装置と、
    を備える、ことを特徴とするシステム。
    A system for wireless power transmission,
    a power transmitting device that is mounted on a levitation body located at a predetermined altitude, receives a transmission signal for wireless power transmission from an external device via electromagnetic waves of a first frequency, converts the frequency of the transmission signal for wireless power transmission to a second frequency that is lower than the first frequency, and transmits the transmission signal for wireless power transmission via electromagnetic waves of the second frequency;
    a power receiving device that receives the transmission signal transmitted from the power transmitting device and outputs power;
    A system comprising:
  14.  請求項13のシステムにおいて、
     前記第1周波数の電磁波は、ミリ波、テラヘルツ波又は光波であり、
     前記第2周波数の電磁波は、マイクロ波である、
    ことを特徴とするシステム。
    14. The system of claim 13,
    the electromagnetic wave of the first frequency is a millimeter wave, a terahertz wave, or a light wave,
    The electromagnetic wave of the second frequency is a microwave.
    A system characterized by:
  15.  請求項13のシステムにおいて、
     前記第1周波数の電磁波は、外部装置から前記送電装置に向かう指向性を有するように形成されたビーム形状の電磁波である、
     前記第2周波数の電磁波は、前記送電装置から前記受電装置に向かう指向性を有するように形成されたビーム形状の電磁波である、
    ことを特徴とするシステム。
    14. The system of claim 13,
    The electromagnetic wave of the first frequency is a beam-shaped electromagnetic wave formed to have directivity from an external device to the power transmitting device.
    The electromagnetic wave of the second frequency is a beam-shaped electromagnetic wave formed to have directivity from the power transmitting device to the power receiving device.
    A system characterized by:
  16.  請求項13のシステムにおいて、
     前記外部装置は、大気圏の外側の空間に位置する宇宙太陽光発電衛星であり、
     前記浮揚体は、成層圏に位置するHAPS、気球又はドローンである、
    ことを特徴とするシステム。
    14. The system of claim 13,
    the external device is a space solar power satellite located in space outside the atmosphere;
    The float is a HAPS, a balloon or a drone located in the stratosphere;
    A system characterized by:
  17.  請求項13のシステムにおいて、
     前記受電装置は、地上、海上若しくは湖上に位置する、又は、前記送電装置よりも低い低高度の空間に位置する、
    ことを特徴とするシステム。
    14. The system of claim 13,
    The power receiving device is located on land, sea or lake, or in a space at a low altitude lower than the power transmitting device.
    A system characterized by:
  18.  無線電力伝送の送電装置であって、
     所定高度に位置する浮揚体に搭載され、
     第1周波数の電磁波を介して無線電力伝送用の送信信号を受信する受信部と、
     前記無線電力伝送用の送信信号の周波数を前記第1周波数よりも低い第2周波数に変換する変換部と、
     前記第2周波数の電磁波を介して前記無線電力伝送用の送信信号を送信する送信部と、
    を備えることを特徴とする送電装置。
    A wireless power transmission device,
    It is mounted on a floating body located at a predetermined altitude,
    a receiving unit that receives a transmission signal for wireless power transmission via an electromagnetic wave of a first frequency;
    a conversion unit that converts a frequency of the transmission signal for wireless power transmission into a second frequency that is lower than the first frequency;
    a transmitting unit that transmits a transmission signal for wireless power transmission via an electromagnetic wave of the second frequency;
    A power transmitting device comprising:
  19.  無線電力伝送を行うシステムであって、
     大気圏よりも高い高度に位置し、所定周波数の電磁波を介して複数の無線電力伝送用の送信信号をマルチビームで送信する宇宙太陽光発電衛星と、
     前記宇宙太陽光発電衛星よりも低い所定高度に位置する複数の浮揚体のそれぞれに搭載され、前記宇宙太陽光発電衛星からマルチビームで送信された前記複数の無線電力伝送用の送信信号のそれぞれを受信する複数の受電装置と、
    を備える、ことを特徴とするシステム。
    A system for wireless power transmission,
    a space solar power generation satellite that is located at an altitude higher than the atmosphere and transmits a plurality of transmission signals for wireless power transmission in multiple beams via electromagnetic waves of a predetermined frequency;
    a plurality of power receiving devices mounted on a plurality of floating bodies located at a predetermined altitude lower than the space solar power generation satellite, the plurality of power receiving devices receiving the plurality of transmission signals for wireless power transmission transmitted by multi-beams from the space solar power generation satellite;
    A system comprising:
  20.  請求項19のシステムにおいて、
     前記電磁波は、ミリ波、テラヘルツ波又は光波である、
    ことを特徴とするシステム。
    20. The system of claim 19,
    The electromagnetic wave is a millimeter wave, a terahertz wave, or a light wave.
    A system characterized by:
  21.  請求項19のシステムにおいて、
     前記浮揚体は、成層圏に位置するHAPS、気球又はドローンである、
    ことを特徴とするシステム。
    20. The system of claim 19,
    The float is a HAPS, a balloon or a drone located in the stratosphere;
    A system characterized by:
  22.  宇宙太陽光発電衛星であって、
     大気圏よりも高い高度に位置し、
     当該宇宙太陽光発電衛星よりも低い所定高度に位置する複数の浮揚体のそれぞれに搭載された複数の受電装置に、所定周波数の電磁波を介して複数の無線電力伝送用の送信信号をマルチビームで送信する送信部を備える、
    ことを特徴とする宇宙太陽光発電衛星。
    A space solar power satellite,
    Located at an altitude higher than the atmosphere,
    a transmitter that transmits a plurality of transmission signals for wireless power transmission in a multi-beam manner via electromagnetic waves of a predetermined frequency to a plurality of power receiving devices mounted on a plurality of floating bodies located at a predetermined altitude lower than the space solar power generation satellite;
    A space solar power satellite.
  23.  無線電力伝送の受電装置であって、
     宇宙太陽光発電衛星よりも低い所定高度に位置する複数の浮揚体のそれぞれに搭載され、
     所定周波数の電磁波を介して前記宇宙太陽光発電衛星から送信された無線電力伝送用の送信信号を受信する受信部を備える、
    ことを特徴とする受電装置。
    A wireless power transmission receiving device,
    The satellite is mounted on each of a plurality of floating bodies located at a predetermined altitude lower than the space solar power satellite,
    a receiving unit that receives a transmission signal for wireless power transmission transmitted from the space solar power generation satellite via an electromagnetic wave of a predetermined frequency;
    A power receiving device comprising:
  24.  複数の受電装置を備える無線電力伝送の受電システムであって、
     前記複数の受電装置はそれぞれ、請求項23の受電装置である、
    ことを特徴とする受電システム。
    A wireless power transmission power receiving system including a plurality of power receiving devices,
    Each of the plurality of power receiving devices is a power receiving device according to claim 23.
    A power receiving system comprising:
PCT/JP2023/005518 2022-09-30 2023-02-16 Wireless power transmission system, power transmission system, power reception system, power transmission device, power reception device, and space solar power generation satellite WO2024070004A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022158858A JP7369844B1 (en) 2022-09-30 2022-09-30 Wireless power transmission system, power transmission system, power receiving system, power transmitting device, power receiving device, and space solar power generation satellite
JP2022-158858 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024070004A1 true WO2024070004A1 (en) 2024-04-04

Family

ID=88418643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005518 WO2024070004A1 (en) 2022-09-30 2023-02-16 Wireless power transmission system, power transmission system, power reception system, power transmission device, power reception device, and space solar power generation satellite

Country Status (2)

Country Link
JP (1) JP7369844B1 (en)
WO (1) WO2024070004A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004266929A (en) * 2003-02-28 2004-09-24 Mitsubishi Electric Corp Solar energy collection/transmission system
JP2005319853A (en) * 2004-05-07 2005-11-17 Mitsubishi Electric Corp Satellite and earth station
JP2011142708A (en) * 2010-01-05 2011-07-21 Mitsubishi Electric Corp Wireless power transmission system, power transmission apparatus, and rectenna base station

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022058853A (en) * 2022-02-02 2022-04-12 克弥 西沢 Aerial structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004266929A (en) * 2003-02-28 2004-09-24 Mitsubishi Electric Corp Solar energy collection/transmission system
JP2005319853A (en) * 2004-05-07 2005-11-17 Mitsubishi Electric Corp Satellite and earth station
JP2011142708A (en) * 2010-01-05 2011-07-21 Mitsubishi Electric Corp Wireless power transmission system, power transmission apparatus, and rectenna base station

Also Published As

Publication number Publication date
JP7369844B1 (en) 2023-10-26
JP2024052265A (en) 2024-04-11

Similar Documents

Publication Publication Date Title
US9571180B2 (en) Unmanned aerial vehicle (UAV) beam forming and pointing toward ground coverage area cells for broadband access
US10530429B2 (en) Process and apparatus for communicating with a user antenna
US11962390B2 (en) Methods, apparatus and system for extended wireless communications
US10135510B2 (en) Means of improving data transfer
JP7372179B2 (en) Components of broadband antenna systems in rotorcraft
WO2020202817A1 (en) Multi-feeder link configuration in haps communication system and control therefor
WO2019012894A1 (en) 3d-compatible directional optical antenna
US20220069449A1 (en) Unmanned aerial vehicle antenna configurations
Miura et al. Preliminary flight test program on telecom and broadcasting using high altitude platform stations
WO2019235324A1 (en) Effective use of radio wave resource used for feeder link for haps, and cell optimization for haps
US10659146B2 (en) Methods and apparatus for airborne synthetic antennas
WO2019235329A1 (en) Cell optimization using remote control over flight control communication circuit for haps
WO2021084592A1 (en) Information processing device, communication device, information processing method, communication method, information processing program, and communication program
WO2019135369A1 (en) Site-to-site transmission/propagation delay correction during application of site diversity in haps feeder link
US11876293B1 (en) Array wall slot antenna for phased array calibration
WO2019151055A1 (en) System for wireless supply of power to aerial vehicle
US11575204B1 (en) Interleaved phased array antennas
WO2024070004A1 (en) Wireless power transmission system, power transmission system, power reception system, power transmission device, power reception device, and space solar power generation satellite
WO2021002044A1 (en) Interference detection and interference control for forward-link communication in feeder link in haps communication system
US11462828B1 (en) Peripheral antenna placement for calibration for a phased array antenna
US11641067B1 (en) Passive antenna elements used to fill gaps in a paneltzed phased array antenna
US11296409B1 (en) Embedded antenna for calibration for a phased array antenna
Albagory An adaptive bidirectional multibeam high-altitude platforms aeronautical telecommunication network using dual concentric conical arrays
AU2019475036B2 (en) Technique for controlling an airborne antenna system
JP2017092814A (en) Antenna array, base station, wireless communication system, and communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871253

Country of ref document: EP

Kind code of ref document: A1