WO2024069901A1 - Terminal, base station, wireless communication system, and wireless communication method - Google Patents

Terminal, base station, wireless communication system, and wireless communication method Download PDF

Info

Publication number
WO2024069901A1
WO2024069901A1 PCT/JP2022/036604 JP2022036604W WO2024069901A1 WO 2024069901 A1 WO2024069901 A1 WO 2024069901A1 JP 2022036604 W JP2022036604 W JP 2022036604W WO 2024069901 A1 WO2024069901 A1 WO 2024069901A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency range
capability information
information
wireless communication
base station
Prior art date
Application number
PCT/JP2022/036604
Other languages
French (fr)
Japanese (ja)
Inventor
浩樹 原田
尚哉 芝池
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2022/036604 priority Critical patent/WO2024069901A1/en
Publication of WO2024069901A1 publication Critical patent/WO2024069901A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • This disclosure relates to a terminal, base station, wireless communication system, and wireless communication method related to reporting UE Capability in the case of UAVs, etc.
  • the 3rd Generation Partnership Project (3GPP) is developing specifications for the 5th generation mobile communication system (5G, also known as New Radio (NR) or Next Generation (NG)) and is also developing specifications for the next generation, known as Beyond 5G, 5G Evolution or 6G.
  • 5G also known as New Radio (NR) or Next Generation (NG)
  • NG Next Generation
  • UAVs Unmanned/Uncrewed Aerial Vehicles
  • FR Frequency Range
  • UE beamforming capability information (UE Capability) is not specified for FR1
  • the network cannot determine whether the UE is capable of performing beamforming, and therefore, in the case of UAVs, etc., it is not possible to appropriately reduce interference with uplink signals.
  • the present disclosure has been made in light of these circumstances, and aims to provide a terminal, base station, wireless communication system, and wireless communication method that can appropriately reduce interference with uplink signals when UAVs and the like are used.
  • One aspect of the disclosure is a terminal that includes a transmitter that transmits an uplink signal in a network in which a first frequency range and a second frequency range higher than the first frequency range are assumed, and a controller that executes reporting of specific capability information related to beamforming for the first frequency range.
  • One aspect of the disclosure is a base station in a network in which a first frequency range and a second frequency range higher than the first frequency range are assumed, the base station comprising a receiver that receives an uplink signal, and a controller that assumes reporting specific capability information related to beamforming for the first frequency range.
  • One aspect of the disclosure is a wireless communication system comprising a terminal and a base station, the terminal comprising a transmitter that transmits an uplink signal in a network in which a first frequency range and a second frequency range higher than the first frequency range are assumed, and a controller that executes reporting of specific capability information related to beamforming for the first frequency range.
  • One aspect of the disclosure is a wireless communication method comprising the steps of transmitting an uplink signal in a network in which a first frequency range and a second frequency range higher than the first frequency range are assumed, and executing a report of specific capability information regarding beamforming for the first frequency range.
  • FIG. 1 is a schematic diagram showing the overall configuration of a wireless communication system 10.
  • FIG. 2 is a diagram illustrating the frequency ranges used in the wireless communication system 10.
  • FIG. 3 is a diagram showing an example of the configuration of a radio frame, a subframe, and a slot used in the radio communication system 10.
  • FIG. 4 is a functional block diagram of the UE 200.
  • Figure 5 is a functional block diagram of gNB100.
  • FIG. 6 is a diagram showing an operation example.
  • FIG. 7 is a diagram showing an example of the hardware configuration of gNB100 and UE200.
  • FIG. 8 is a diagram showing an example of the configuration of a vehicle 2001.
  • FIG. 1 is an overall schematic configuration diagram of a wireless communication system 10 according to an embodiment.
  • the wireless communication system 10 is a wireless communication system conforming to 5G New Radio (NR) and includes a Next Generation-Radio Access Network 20 (hereinafter, NG-RAN 20) and a terminal 200 (hereinafter, UE 200).
  • NR 5G New Radio
  • NG-RAN 20 Next Generation-Radio Access Network
  • UE 200 terminal 200
  • the wireless communication system 10 may be a wireless communication system conforming to a method called Beyond 5G, 5G Evolution, or 6G.
  • NG-RAN 20 includes radio base station 100A (hereinafter, gNB100A) to radio base station 100D (hereinafter, gNB100D).
  • gNB100A to gNB100D have cells C1 to C4, respectively.
  • the specific configuration of wireless communication system 10, including the number of gNBs and UEs, is not limited to the example shown in FIG. 1.
  • NG-RAN20 actually includes multiple NG-RAN Nodes, specifically gNBs (or ng-eNBs), and is connected to a 5G-compliant core network (5GC, not shown). Note that NG-RAN20 and 5GC may also be simply referred to as a "network.”
  • gNB100A to gNB100D are 5G-compliant radio base stations, and perform 5G-compliant radio communication with UE200.
  • gNB100A to gNB100D and UE200 are capable of supporting Massive MIMO (Multiple-Input Multiple-Output), which generates a more directional beam BM by controlling radio signals transmitted from multiple antenna elements, Carrier Aggregation (CA), which uses multiple component carriers (CC) by bundling them together, and Dual Connectivity (DC), which communicates simultaneously on two or more transport blocks between the UE and each of two NG-RAN Nodes.
  • Massive MIMO Multiple-Input Multiple-Output
  • CA Carrier Aggregation
  • CC component carriers
  • DC Dual Connectivity
  • UE200 may be a UE mounted on a small Unmanned Aerial Vehicle (UAV).
  • UAV Unmanned Aerial Vehicle
  • UE200 mounted on a UAV or a UAV may be referred to as an NR drone.
  • UE200 may be referred to as a normal UE, vehicle UE, IAB (Integrated Access and Backhaul) UE (including airborne IAB UE), HAPS (High Altitude Platform Station) UE, NTN (Non Terrestrial Network) UE, etc.
  • IAB Integrated Access and Backhaul
  • HAPS High Altitude Platform Station
  • NTN Non Terrestrial Network
  • the wireless communication system 10 supports multiple frequency ranges (FR).
  • Figure 2 shows the frequency ranges used in the wireless communication system 10.
  • the wireless communication system 10 supports FR1 and FR2.
  • the frequency bands of each FR are as follows:
  • FR1 may use a Sub-Carrier Spacing (SCS) of 15, 30 or 60 kHz and a bandwidth (BW) of 5 to 100 MHz.
  • SCS Sub-Carrier Spacing
  • BW bandwidth
  • FR2 is a higher frequency than FR1, and may use a SCS of 60 or 120 kHz (including 240 kHz) and a bandwidth (BW) of 50 to 400 MHz.
  • SCS may also be interpreted as numerology. Numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier spacing in the frequency domain.
  • the wireless communication system 10 also supports higher frequency bands than the FR2 frequency band. Specifically, the wireless communication system 10 supports frequency bands above 52.6 GHz up to 71 GHz or 114.25 GHz. For convenience, such high frequency bands may be referred to as "FR2x.”
  • Cyclic Prefix-Orthogonal Frequency Division Multiplexing CP-OFDM
  • DFT-S-OFDM Discrete Fourier Transform - Spread
  • SCS Sub-Carrier Spacing
  • FIG. 3 shows an example of the configuration of a radio frame, subframe, and slot used in the wireless communication system 10.
  • one slot is made up of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period).
  • the SCS is not limited to the interval (frequency) shown in Figure 3. For example, 480 kHz, 960 kHz, etc. may be used.
  • the number of symbols that make up one slot does not necessarily have to be 14 symbols (e.g., 28 or 56 symbols).
  • the number of slots per subframe may differ depending on the SCS.
  • time direction (t) shown in FIG. 3 may be called the time domain, the symbol period, or the symbol time.
  • the frequency direction may be called the frequency domain, the resource block, the subcarrier, the bandwidth part (BWP), etc.
  • DMRS is a type of reference signal and is prepared for various channels. Unless otherwise specified, the term may refer to a downlink data channel, specifically, a DMRS for a PDSCH (Physical Downlink Shared Channel). However, a DMRS for an uplink data channel, specifically, a PUSCH (Physical Uplink Shared Channel), may be interpreted as being the same as a DMRS for a PDSCH.
  • DMRS may be used for channel estimation in a device, e.g., UE 200, as part of coherent demodulation. DMRS may only be present in resource blocks (RBs) used for PDSCH transmission.
  • RBs resource blocks
  • DMRS may have multiple mapping types. Specifically, DMRS has mapping type A and mapping type B. In mapping type A, the first DMRS is placed in the second or third symbol of a slot. In mapping type A, the DMRS may be mapped relative to the slot boundary, regardless of where in the slot the actual data transmission starts. The reason for placing the first DMRS in the second or third symbol of a slot may be interpreted as being to place the first DMRS after the control resource sets (CORESET).
  • CORESET control resource sets
  • the first DMRS may be placed in the first symbol of the data allocation, i.e., the position of the DMRS may be given relative to where the data is placed, rather than relative to a slot boundary.
  • DMRS may have multiple types. Specifically, DMRS has Type 1 and Type 2. Type 1 and Type 2 differ in mapping in the frequency domain and the maximum number of orthogonal reference signals. Type 1 is a single-symbol DMRS that can output up to four orthogonal signals, and Type 2 is a double-symbol DMRS that can output up to eight orthogonal signals.
  • FIG. 4 is a functional block diagram of UE 200.
  • UE 200 includes a radio signal transmitting/receiving unit 210, an amplifier unit 220, a modulation/demodulation unit 230, a control signal/reference signal processing unit 240, an encoding/decoding unit 250, a data transmitting/receiving unit 260, and a control unit 270.
  • the radio signal transmission/reception unit 210 transmits and receives radio signals conforming to NR.
  • the radio signal transmission/reception unit 210 supports Massive MIMO, CA that uses a bundle of multiple CCs, and DC that simultaneously communicates between a UE and each of two NG-RAN nodes.
  • the wireless signal transceiver 210 may transmit an uplink channel (hereinafter, UL channel).
  • UL channel an uplink channel
  • the radio signal transceiver 210 may transmit a PUSCH to the network (gNB100).
  • the radio signal transceiver 210 may support repeated transmission (Repetition) of the PUSCH.
  • the UL channel may include a physical uplink shared channel (PUSCH) and a physical uplink control channel (PUCCH).
  • the shared channel may be referred to as a data channel.
  • Repetition type A may be interpreted as a form in which the PUSCH allocated within a slot is repeatedly transmitted. In other words, the PUSCH is 14 symbols or less and cannot be allocated across multiple slots (adjacent slots).
  • Repetition type B may be interpreted as repeated transmission of PUSCH where 15 or more PUSCH symbols may be assigned.
  • the specific period including two or more slots may be interpreted as a period related to the repetition of the PUSCH (or PUCCH).
  • the specific period may be indicated by the number of repetitions, or may be the time during which a specified number of repetitions are performed.
  • the radio signal transceiver 210 may repeatedly transmit the UL channel a specific number of times. Specifically, the radio signal transceiver 210 may repeatedly transmit the PUSCH (or PUCCH) multiple times.
  • the specific period and/or the specific number of times may be indicated by signaling from the network (which may be a higher layer than RRC or a lower layer such as DCI, same below), or may be preset in UE 200.
  • the wireless signal transceiver 210 constitutes a transmitter that transmits an uplink signal (hereinafter, UL signal) in a network in which a first frequency range (hereinafter, FR1) and a second frequency range (hereinafter, FR2) higher than the FR1 are assumed.
  • the UL signal may include a signal transmitted via a PUCCH or a PUSCH.
  • the amplifier section 220 is composed of a PA (Power Amplifier)/LNA (Low Noise Amplifier) etc.
  • the amplifier section 220 amplifies the signal output from the modem section 230 to a predetermined power level.
  • the amplifier section 220 also amplifies the RF signal output from the wireless signal transmission/reception section 210.
  • the modem unit 230 performs data modulation/demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB100 or other gNB).
  • the modem unit 230 may apply Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/Discrete Fourier Transform-Spread (DFT-S-OFDM).
  • CP-OFDM Cyclic Prefix-Orthogonal Frequency Division Multiplexing
  • DFT-S-OFDM Discrete Fourier Transform-Spread
  • DFT-S-OFDM may be used not only for the uplink (UL) but also for the downlink (DL).
  • the control signal/reference signal processing unit 240 performs processing related to various control signals transmitted and received by the UE 200, and processing related to various reference signals transmitted and received by the UE 200.
  • control signal/reference signal processor 240 receives various control signals, such as radio resource control layer (RRC) control signals, transmitted from the gNB 100 via a predetermined control channel.
  • RRC radio resource control layer
  • the control signal/reference signal processor 240 also transmits various control signals to the gNB 100 via a predetermined control channel.
  • the control signal/reference signal processing unit 240 performs processing using reference signals (RS) such as the Demodulation Reference Signal (DMRS) and the Phase Tracking Reference Signal (PTRS).
  • RS reference signals
  • DMRS Demodulation Reference Signal
  • PTRS Phase Tracking Reference Signal
  • DMRS is a known reference signal (pilot signal) between the base station and the terminal for each terminal, used to estimate the fading channel used for data demodulation.
  • PTRS is a terminal-specific reference signal intended to estimate phase noise, which is an issue in high frequency bands.
  • reference signals may also include Channel State Information-Reference Signal (CSI-RS), Sounding Reference Signal (SRS), and Positioning Reference Signal (PRS) for location information.
  • CSI-RS Channel State Information-Reference Signal
  • SRS Sounding Reference Signal
  • PRS Positioning Reference Signal
  • Control channels also include control channels and data channels.
  • Control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), RACH (Random Access Channel), Downlink Control Information (DCI) including Random Access Radio Network Temporary Identifier (RA-RNTI), and Physical Broadcast Channel (PBCH).
  • PDCCH Physical Downlink Control Channel
  • PUCCH Physical Uplink Control Channel
  • RACH Random Access Channel
  • DCI Downlink Control Information
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • PBCH Physical Broadcast Channel
  • data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel).
  • Data refers to data transmitted via a data channel.
  • a data channel may also be read as a shared channel.
  • the control signal/reference signal processing unit 240 may receive downlink control information (DCI).
  • DCI includes fields that store existing fields such as DCI Formats, Carrier indicator (CI), BWP indicator, FDRA (Frequency Domain Resource Assignment), TDRA (Time Domain Resource Assignment), MCS (Modulation and Coding Scheme), HPN (HARQ Process Number), NDI (New Data Indicator), and RV (Redundancy Version).
  • the value stored in the DCI Format field is an information element that specifies the format of the DCI.
  • the value stored in the CI field is an information element that specifies the CC to which the DCI applies.
  • the value stored in the BWP indicator field is an information element that specifies the BWP to which the DCI applies.
  • the BWP that can be specified by the BWP indicator is set by an information element (BandwidthPart-Config) included in the RRC message.
  • the value stored in the FDRA field is an information element that specifies the frequency domain resource to which the DCI applies.
  • the frequency domain resource is identified by the value stored in the FDRA field and the information element (RA Type) included in the RRC message.
  • the value stored in the TDRA field is an information element that specifies the time domain resource to which the DCI applies.
  • the time domain resource is identified by the value stored in the TDRA field and the information elements (pdsch-TimeDomainAllocationList, pusch-TimeDomainAllocationList) included in the RRC message.
  • the time domain resource may be identified by the value stored in the TDRA field and the default table.
  • the value stored in the MCS field is an information element that specifies the MCS to which the DCI applies.
  • the MCS is specified by the value stored in the MCS and the MCS table.
  • the MCS table may be specified by an RRC message or may be specified by RNTI scrambling.
  • the value stored in the HPN field is an information element that specifies the HARQ Process to which the DCI is applied.
  • the value stored in the NDI is an information element that specifies whether the data to which the DCI is applied is initial transmission data or not.
  • the value stored in the RV field is an information element that specifies the redundancy of the data to which the DCI is applied.
  • the encoding/decoding unit 250 performs data division/concatenation and channel coding/decoding for each predetermined communication destination (gNB100 or other gNB).
  • the encoding/decoding unit 250 divides the data output from the data transmission/reception unit 260 into pieces of a predetermined size, and performs channel coding on the divided data.
  • the encoding/decoding unit 250 also decodes the data output from the modem unit 230, and concatenates the decoded data.
  • the data transmission/reception unit 260 transmits and receives Protocol Data Units (PDUs) and Service Data Units (SDUs). Specifically, the data transmission/reception unit 260 performs assembly/disassembly of PDUs/SDUs in multiple layers (such as the Medium Access Control layer (MAC), Radio Link Control layer (RLC), and Packet Data Convergence Protocol layer (PDCP)). The data transmission/reception unit 260 also performs data error correction and retransmission control based on HARQ (Hybrid Automatic Repeat Request).
  • MAC Medium Access Control layer
  • RLC Radio Link Control layer
  • PDCP Packet Data Convergence Protocol layer
  • the data transmission/reception unit 260 also performs data error correction and retransmission control based on HARQ (Hybrid Automatic Repeat Request).
  • HARQ Hybrid Automatic Repeat Request
  • the control unit 270 controls each functional block constituting the UE 200.
  • the control unit 270 constitutes a control unit that executes reporting of specific capability information related to beamforming for the first frequency range (FR1).
  • the specific capability information is an example of UE Capability related to the functions or capabilities supported by the UE 200. Details of the specific capability information will be described later.
  • FIG. 5 is a functional block diagram of the gNB100. As shown in FIG. 5, the gNB100 has a receiving unit 110, a transmitting unit 120, and a control unit 130.
  • the receiving unit 110 receives various signals from the UE 200.
  • the receiving unit 110 may receive a UL signal via a UL channel such as a PUCCH or a PUSCH.
  • the receiving unit 110 constitutes a receiving unit that receives a UL signal in a network in which FR1 and FR2, which is higher than FR1, are assumed.
  • the transmitter 120 transmits various signals to the UE 200.
  • the transmitter 120 may transmit DL signals via a DL channel such as a PDCCH or a PDSCH.
  • the control unit 130 controls the gNB 100.
  • the control unit 130 constitutes a control unit that assumes reporting of specific capability information related to beamforming for FR1. Details of the specific capability information will be described later.
  • the UE 200 mounted on the UAV is in the air, and when the beam of the UE 200 is omnidirectional, the UL signal of the UE 200 has good visibility.
  • the UL signal of the UE 200 causes interference to the gNB 100A (cell C1), the gNB 100C (cell C3), and the gNB 100D (cell C4).
  • Release 18 considers reducing interference with neighboring cells (nearby sites) in FR1 by making the UAV's beam directional. Such consideration may be referred to as FR1 with directional antenna.
  • the inventors after careful consideration, have found that because the UE Capability for UE200's beamforming is not specified for FR1, the network cannot determine whether UE200 is capable of performing beamforming, and therefore, in the case of UAVs or the like, it is not possible to appropriately reduce interference with UL signals.
  • the UE 200 executes reporting of specific capability information related to beamforming for the FR 1.
  • the specific capability information is an example of UE Capability related to a function or capability supported by the UE 200.
  • step S11 UE 200 transmits specific capability information (UE Capability) regarding beamforming for FR1 to gNB 100.
  • UE Capability specific capability information
  • the gNB100 may determine the cell to which the UE200 will connect based on the specific capability information. In step S13, the gNB100 may transmit to the UE100 an RRC Reconfiguration regarding the cell determined in step S12.
  • the UE 200 may report, as the specific capability information, parameters corresponding to at least a portion of parameters of the capability information regarding beamforming defined for FR2.
  • At least some of the parameters of the beamforming capability information specified for FR2 may include beam correspondence, UL beam management, beam switch timing, etc.
  • the beam correspondence may include beamCorrespondenceCSI-RS indicating whether the UE200 supports beam correspondence based on CSI-RS.
  • the beam correspondence may include beamCorrespondenceSSB indicating whether the UE200 supports beam correspondence based on SSB.
  • the beam correspondence may include beamCorrespondenceWithoutUL-BeamSweeping indicating whether the UE200 supports beam correspondence that does not require UL beam sweeping.
  • UL beam management may include uplinkBeamManagement which defines support for beam management for UL signals (SRS).
  • SRS UL signals
  • the beam switch timing may include beamSwitchTiming, which indicates the minimum number of OFDM symbols between DCI and CSI-RS transmissions that will trigger aperiodic CSI-RS.
  • beam correspondence, UL beam management, and beam switch timing may be parameters specified in 3GPP TS38.306 V17.1.0 ⁇ 4.2.7.1 “BandCombinationList parameters”. It should be noted that in 3GPP TS38.306 V17.1.0, beam correspondence, UL beam management, and beam switch timing are parameters specified only for FR2.
  • the following options are possible as parameter aspects corresponding to at least some of the parameters of the capability information regarding beamforming defined for FR2.
  • the parameters defined for FR1 may be referred to as first parameters
  • the parameters defined for FR2 may be referred to as second parameters. Note that the definitions of the first and second parameters themselves may be the same.
  • the first parameter may be a separate parameter from the second parameter.
  • beam correspondence for FR1 may be a separate parameter from beam correspondence for FR2.
  • UL beam management for FR1 may be a separate parameter from UL beam management for FR2.
  • Beam switch timing for FR1 may be a separate parameter from beam switch timing for FR2. That is, reporting of UE capability for FR1 may be performed separately from reporting of UE capability for FR2.
  • the first parameter may be the same as the second parameter.
  • beam correspondence for FR2 may be applied to FR1 and specified as beam correspondence (FR1 and FR2).
  • UL beam management for FR2 may be applied to FR1 and specified as UL beam management (FR1 and FR2).
  • Beam switch timing for FR2 may be applied to FR1 and specified as beam switch timing (FR1 and FR2). That is, reporting of UE capability for FR1 may be performed together with reporting of UE capability for FR2.
  • the candidate value of the first parameter when one or more candidate values can be reported for the first parameter and the second parameter, the candidate value of the first parameter may be the same as the candidate value of the second parameter, or the candidate value of the first parameter may be different from the candidate value of the second parameter.
  • the candidate value of the first parameter may be a candidate value in which some candidate values are added to the candidate value of the second parameter, or a candidate value in which some candidate values are deleted from the candidate value of the second parameter.
  • the first parameter may be considered to be a parameter that implicitly indicates whether or not the UE 200 has a directional antenna.
  • the first parameter may be considered to be a parameter that implicitly indicates whether or not the UE 200 is capable of forming a directional beam.
  • the UE 200 may report capability information newly defined as capability information related to beamforming as specific capability information.
  • the specific capability information may include one or more parameters selected from whether UE200 has a directional antenna, whether UE200 is capable of forming a directional beam, the width (half width) of the antenna or beam of UE200, the gain of the antenna or beam of UE200, and the number of antenna elements of UE200.
  • the width (half width) of the antenna or beam of UE200 may include the maximum value of the beam width and may include the minimum value of the beam width
  • the gain of the antenna or beam of UE200 may include the maximum value of the gain and may include the minimum value of the gain.
  • Specific capability information is reported for at least FR1. Specific capability information may also be reported for FR2.
  • the type (granularity) of the specific capability information described in the operation example 1 or operation example 2 may be any of the following. Specifically, the specific capability information may be reported for each UE 200. The specific capability information may be reported for each FR. The specific capability information may be reported for each band. The specific capability information may be reported for each band combination. The specific capability information may be reported for each band and band combination. The specific capability information may be reported for each FCPC (Frequency Set Per Cell).
  • FCPC Frequency Set Per Cell
  • Operation example 4 The reporting of the specific capability information described in the operation example 1 or operation example 2 may be performed as follows.
  • UE 200 may always report UE Capability (specific capability information) related to beamforming.
  • the UE 200 may report UE Capability (specific capability information) regarding beamforming in bands that support UAV functionality.
  • UE200 when UE200 reports UE capability related to UAV function, it may also report UE capability related to beamforming (specific capability information). In other words, when UE200 supports UAV function in FR1, it may report UE capability related to UAV function and UE capability related to beamforming (specific capability information).
  • UE200 may report UE capability related to UAV functionality when reporting UE capability (specific capability information) related to beamforming.
  • UE200 may report UE capability related to UAV functionality and UE capability related to beamforming (specific capability information) when supporting the formation of directional beams.
  • UE capability relating to UAV functions may include whether UE200 is a UAV, the altitude supported by UE200, whether UAV-specific functions (e.g., the ability to report altitude, flight path, etc., the ability to transmit notifications for UAV identification, etc.) are supported, etc.
  • UAV-specific functions e.g., the ability to report altitude, flight path, etc., the ability to transmit notifications for UAV identification, etc.
  • the UE 200 transmits specific capability information (UE Capability) related to beamforming for FR1 to the gNB 100.
  • UE Capability specific capability information
  • the network side grasps whether the UE 200 is capable of performing beamforming, and it is possible to appropriately reduce interference with neighboring cells (neighboring sites) caused by UL signals.
  • NR has been mainly described, but the above disclosure is not limited thereto.
  • the above disclosure may be applied to LTE.
  • NG-RAN may be read as E-UTRAN
  • gNB may be read as eNB.
  • the above disclosure may be applied to a case where NR and LTE are mixed.
  • each functional block may be realized using one device that is physically or logically coupled, or may be realized using two or more devices that are physically or logically separated and connected directly or indirectly (e.g., using wires, wirelessly, etc.) and these multiple devices.
  • the functional blocks may be realized by combining the one device or the multiple devices with software.
  • Functions include, but are not limited to, judgement, determination, judgment, calculation, computation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, election, establishment, comparison, assumption, expectation, regard, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assignment.
  • a functional block (component) that performs the transmission function is called a transmitting unit or transmitter.
  • FIG. 7 is a diagram showing an example of the hardware configuration of the device.
  • the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, and a bus 1007.
  • apparatus can be interpreted as a circuit, device, unit, etc.
  • the hardware configuration of the apparatus may be configured to include one or more of the devices shown in the figure, or may be configured to exclude some of the devices.
  • Each functional block of the device (see Figure 4) is realized by any hardware element of the computer device, or a combination of the hardware elements.
  • each function of the device is realized by loading a specific software (program) onto hardware such as the processor 1001 and memory 1002, causing the processor 1001 to perform calculations, control communications by the communications device 1004, and control at least one of reading and writing data in the memory 1002 and storage 1003.
  • a specific software program
  • the processor 1001 for example, runs an operating system to control the entire computer.
  • the processor 1001 may be configured as a central processing unit (CPU) that includes an interface with peripheral devices, a control unit, an arithmetic unit, registers, etc.
  • CPU central processing unit
  • the processor 1001 also reads out programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • the programs used are those that cause a computer to execute at least some of the operations described in the above-mentioned embodiments.
  • the various processes described above may be executed by one processor 1001, or may be executed simultaneously or sequentially by two or more processors 1001.
  • the processor 1001 may be implemented by one or more chips.
  • the programs may be transmitted from a network via a telecommunications line.
  • Memory 1002 is a computer-readable recording medium and may be composed of, for example, at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), Random Access Memory (RAM), etc.
  • Memory 1002 may also be called a register, cache, main memory, etc.
  • Memory 1002 can store a program (program code), software module, etc. capable of executing a method according to one embodiment of the present disclosure.
  • Storage 1003 is a computer-readable recording medium, and may be, for example, at least one of an optical disk such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, a magneto-optical disk (e.g., a compact disk, a digital versatile disk, a Blu-ray (registered trademark) disk), a smart card, a flash memory (e.g., a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, etc.
  • Storage 1003 may also be referred to as an auxiliary storage device.
  • the above-mentioned recording medium may be, for example, a database, a server, or other suitable medium including at least one of memory 1002 and storage 1003.
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, etc.
  • the communication device 1004 may be configured to include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., to realize, for example, at least one of Frequency Division Duplex (FDD) and Time Division Duplex (TDD).
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the input device 1005 is an input device (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (e.g., a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may be integrated into one structure (e.g., a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between each device.
  • the device may be configured to include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA), and some or all of the functional blocks may be realized by the hardware.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • the processor 1001 may be implemented using at least one of these pieces of hardware.
  • the notification of information is not limited to the aspects/embodiments described in the present disclosure and may be performed using other methods.
  • the notification of information may be performed by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), higher layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB)), other signals, or a combination of these.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, etc.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 5th generation mobile communication system
  • 5G Future Radio Access
  • FAA New Radio
  • NR New Radio
  • W-CDMA registered trademark
  • GSM registered trademark
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth (registered trademark), or other suitable systems and next generation systems enhanced therefrom.
  • Multiple systems may also be applied in combination (e.g., a combination of at least one of LTE and LTE-A with 5G).
  • certain operations that are described as being performed by a base station may in some cases be performed by its upper node.
  • various operations performed for communication with a terminal may be performed by at least one of the base station and other network nodes other than the base station (such as, but not limited to, an MME or an S-GW).
  • the above example shows a case where there is one other network node other than the base station, it may also be a combination of multiple other network nodes (such as an MME and an S-GW).
  • Information, signals can be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). They may be input and output via multiple network nodes.
  • the input and output information may be stored in a specific location (e.g., memory) or may be managed using a management table.
  • the input and output information may be overwritten, updated, or appended.
  • the output information may be deleted.
  • the input information may be sent to another device.
  • the determination may be based on a value represented by one bit (0 or 1), a Boolean value (true or false), or a numerical comparison (e.g., a comparison with a predetermined value).
  • notification of specific information is not limited to being done explicitly, but may be done implicitly (e.g., not notifying the specific information).
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • software, instructions, information, etc. may be transmitted and received over a transmission medium.
  • a transmission medium For example, if software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave, etc.), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
  • wired technologies such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)
  • wireless technologies such as infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
  • the channel and the symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be called a carrier frequency, a cell, a frequency carrier, etc.
  • system and “network” are used interchangeably.
  • a radio resource may be indicated by an index.
  • the names used for the above-mentioned parameters are not limiting in any respect. Furthermore, the formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure.
  • the various channels (e.g., PUCCH, PDCCH, etc.) and information elements may be identified by any suitable names, and therefore the various names assigned to these various channels and information elements are not limiting in any respect.
  • Base station BS
  • wireless base station fixed station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • a base station can accommodate one or more (e.g., three) cells (also called sectors). If a base station accommodates multiple cells, the overall coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also provide communication services by a base station subsystem (e.g., a small indoor base station (Remote Radio Head: RRH)).
  • a base station subsystem e.g., a small indoor base station (Remote Radio Head: RRH)
  • cell refers to part or all of the coverage area of a base station and/or a base station subsystem that provides communication services within that coverage.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station may also be referred to by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, etc.
  • At least one of the base station and the mobile station may be a device mounted on a moving object, or the moving object itself, etc.
  • the moving object may be a vehicle (e.g., a car, an airplane, etc.), an unmanned moving object (e.g., a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned).
  • At least one of the base station and the mobile station may include a device that does not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be interpreted as a mobile station (user terminal, the same applies below).
  • each aspect/embodiment of the present disclosure may be applied to a configuration in which communication between a base station and a mobile station is replaced with communication between multiple mobile stations (which may be called, for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • the mobile station may be configured to have the functions of a base station.
  • terms such as "uplink” and "downlink” may be interpreted as terms corresponding to communication between terminals (for example, "side”).
  • the uplink channel, downlink channel, etc. may be interpreted as a side channel.
  • the mobile station in this disclosure may be interpreted as a base station.
  • the base station may be configured to have the functions of the mobile station.
  • a radio frame may be composed of one or more frames in the time domain. Each of the one or more frames in the time domain may be called a subframe.
  • a subframe may further be composed of one or more slots in the time domain.
  • a subframe may have a fixed time length (e.g., 1 ms) that is independent of numerology.
  • Numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel. Numerology may indicate, for example, at least one of the following: Subcarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, Transmission Time Interval (TTI), number of symbols per TTI, radio frame structure, a particular filtering operation performed by the transceiver in the frequency domain, a particular windowing operation performed by the transceiver in the time domain, etc.
  • SCS Subcarrier Spacing
  • TTI Transmission Time Interval
  • radio frame structure a particular filtering operation performed by the transceiver in the frequency domain, a particular windowing operation performed by the transceiver in the time domain, etc.
  • a slot may consist of one or more symbols in the time domain (e.g., Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.).
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may be a numerology-based unit of time.
  • a slot may include multiple minislots. Each minislot may consist of one or multiple symbols in the time domain. A minislot may also be called a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be called PDSCH (or PUSCH) mapping type A.
  • a PDSCH (or PUSCH) transmitted using a minislot may be called PDSCH (or PUSCH) mapping type B.
  • Radio frame, subframe, slot, minislot, and symbol all represent time units for transmitting signals. Radio frame, subframe, slot, minislot, and symbol may each be referred to by a different name that corresponds to the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • multiple consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI.
  • at least one of the subframe and the TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (e.g., 1-13 symbols), or a period longer than 1 ms.
  • the unit expressing the TTI may be called a slot, minislot, etc., instead of a subframe.
  • TTI refers to, for example, the smallest time unit for scheduling in wireless communication.
  • a base station schedules each user terminal by allocating radio resources (such as frequency bandwidth and transmission power that can be used by each user terminal) in TTI units.
  • radio resources such as frequency bandwidth and transmission power that can be used by each user terminal
  • the TTI may be a transmission time unit for a channel-coded data packet (transport block), a code block, a code word, etc., or may be a processing unit for scheduling, link adaptation, etc.
  • the time interval e.g., the number of symbols
  • the time interval in which a transport block, a code block, a code word, etc. is actually mapped may be shorter than the TTI.
  • one slot or one minislot when called a TTI, one or more TTIs (i.e., one or more slots or one or more minislots) may be the minimum time unit of scheduling.
  • the number of slots (minislots) that constitute the minimum time unit of scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI shorter than a normal TTI may be referred to as a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • a long TTI (e.g., a normal TTI, a subframe, etc.) may be interpreted as a TTI having a time length of more than 1 ms
  • a short TTI e.g., a shortened TTI, etc.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers included in an RB may be determined based on the numerology.
  • the time domain of an RB may include one or more symbols and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs may also be referred to as a physical resource block (PRB), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, an RB pair, etc.
  • PRB physical resource block
  • SCG sub-carrier group
  • REG resource element group
  • PRB pair an RB pair, etc.
  • a resource block may be composed of one or more resource elements (RE).
  • RE resource elements
  • one RE may be a radio resource area of one subcarrier and one symbol.
  • a Bandwidth Part which may also be referred to as a partial bandwidth, may represent a subset of contiguous common resource blocks (RBs) for a given numerology on a given carrier, where the common RBs may be identified by an index of the RB relative to a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be configured for a UE within one carrier.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots, and symbols are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of subcarriers included in an RB, as well as the number of symbols in a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • connection refers to any direct or indirect connection or coupling between two or more elements, and may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
  • the coupling or connection between elements may be physical, logical, or a combination thereof.
  • “connected” may be read as "access”.
  • two elements may be considered to be “connected” or “coupled” to each other using at least one of one or more wires, cables, and printed electrical connections, as well as electromagnetic energy having wavelengths in the radio frequency range, microwave range, and optical (both visible and invisible) range, as some non-limiting and non-exhaustive examples.
  • the reference signal may also be abbreviated as Reference Signal (RS) or referred to as a pilot depending on the applicable standard.
  • RS Reference Signal
  • the phrase “based on” does not mean “based only on,” unless expressly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to an element using a designation such as "first,” “second,” etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and a second element does not imply that only two elements may be employed therein or that the first element must precede the second element in some way.
  • determining may encompass a wide variety of actions.
  • Determining and “determining” may include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry (e.g., searching in a table, database, or other data structure), and considering ascertaining as “judging” or “determining.”
  • determining and “determining” may include receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, accessing (e.g., accessing data in memory), and considering ascertaining as “judging” or “determining.”
  • judgment” and “decision” can include considering resolving, selecting, choosing, establishing, comparing, etc., to have been “judged” or “decided.” In other words, “judgment” and “decision” can include considering some action to have been “judged” or “decided.” Additionally, “judgment (decision)” can be interpreted as “assuming,” “ex
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean “A and B are each different from C.”
  • Terms such as “separate” and “combined” may also be interpreted in the same way as “different.”
  • FIG. 8 shows an example of the configuration of a vehicle 2001.
  • the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, an axle 2009, an electronic control unit 2010, various sensors 2021-2029, an information service unit 2012, and a communication module 2013.
  • the drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
  • the steering unit 2003 includes at least a steering wheel (also called a handle) and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
  • a steering wheel also called a handle
  • the electronic control unit 2010 is composed of a microprocessor 2031, a memory (ROM, RAM) 2032, and a communication port (IO port) 2033. Signals are input to the electronic control unit 2010 from various sensors 2021 to 2027 provided in the vehicle.
  • the electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
  • Signals from the various sensors 2021 to 2028 include a current signal from a current sensor 2021 that senses the current of the motor, a rotation speed signal of the front and rear wheels acquired by a rotation speed sensor 2022, an air pressure signal of the front and rear wheels acquired by an air pressure sensor 2023, a vehicle speed signal acquired by a vehicle speed sensor 2024, an acceleration signal acquired by an acceleration sensor 2025, an accelerator pedal depression amount signal acquired by an accelerator pedal sensor 2029, a brake pedal depression amount signal acquired by a brake pedal sensor 2026, a shift lever operation signal acquired by a shift lever sensor 2027, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by an object detection sensor 2028.
  • the information service unit 2012 is composed of various devices, such as a car navigation system, an audio system, speakers, a television, and a radio, for providing various types of information such as driving information, traffic information, and entertainment information, and one or more ECUs for controlling these devices.
  • the information service unit 2012 uses information acquired from external devices via the communication module 2013, etc., to provide various types of multimedia information and multimedia services to the occupants of the vehicle 1.
  • the driving assistance system unit 2030 is composed of various devices that provide functions for preventing accidents and reducing the driving burden on the driver, such as a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (e.g., GNSS, etc.), map information (e.g., high definition (HD) map, autonomous vehicle (AV) map, etc.), a gyro system (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chip, and an AI processor, as well as one or more ECUs that control these devices.
  • the driving assistance system unit 2030 transmits and receives various information via the communication module 2013 to realize driving assistance functions or autonomous driving functions.
  • the communication module 2013 can communicate with the microprocessor 2031 and components of the vehicle 1 via the communication port.
  • the communication module 2013 transmits and receives data via the communication port 2033 between the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, axle 2009, microprocessor 2031 and memory (ROM, RAM) 2032 in electronic control unit 2010, and sensors 2021 to 2028, which are provided on the vehicle 2001.
  • the communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with an external device. For example, it transmits and receives various information to and from the external device via wireless communication.
  • the communication module 2013 may be located either inside or outside the electronic control unit 2010.
  • the external device may be, for example, a base station, a mobile station, etc.
  • the communication module 2013 transmits a current signal from the current sensor input to the electronic control unit 2010 to an external device via wireless communication.
  • the communication module 2013 also transmits to an external device via wireless communication the following signals input to the electronic control unit 2010: a front wheel or rear wheel rotation speed signal acquired by a rotation speed sensor 2022, a front wheel or rear wheel air pressure signal acquired by an air pressure sensor 2023, a vehicle speed signal acquired by a vehicle speed sensor 2024, an acceleration signal acquired by an acceleration sensor 2025, an accelerator pedal depression amount signal acquired by an accelerator pedal sensor 2029, a brake pedal depression amount signal acquired by a brake pedal sensor 2026, a shift lever operation signal acquired by a shift lever sensor 2027, and a detection signal for detecting an obstacle, a vehicle, a pedestrian, etc. acquired by an object detection sensor 2028.
  • the communication module 2013 receives various information (traffic information, signal information, vehicle distance information, etc.) transmitted from an external device, and displays it on an information service unit 2012 provided in the vehicle.
  • the communication module 2013 also stores the various information received from the external device in a memory 2032 that can be used by the microprocessor 2031.
  • the microprocessor 2031 may control the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, axles 2009, sensors 2021-2028, and the like provided in the vehicle 2001.
  • the first feature is a terminal that includes a transmitter that transmits an uplink signal in a network in which a first frequency range and a second frequency range higher than the first frequency range are assumed, and a control unit that executes a report of specific capability information related to beamforming for the first frequency range.
  • the second feature is that in the first feature, the control unit reports, as the specific capability information, parameters that correspond to at least a portion of the parameters of capability information related to beamforming defined for the second frequency range.
  • the third feature is that in the first feature, the control unit is a terminal that reports capability information newly defined as capability information related to beamforming as the specific capability information.
  • the fourth feature is a base station in a network in which a first frequency range and a second frequency range higher than the first frequency range are assumed, the base station comprising: a receiver that receives an uplink signal; and a controller that assumes reporting specific capability information related to beamforming for the first frequency range.
  • the fifth feature is a wireless communication system including a terminal and a base station, the terminal including a transmitter that transmits an uplink signal in a network in which a first frequency range and a second frequency range higher than the first frequency range are assumed, and a controller that executes reporting of specific capability information related to beamforming for the first frequency range.
  • the sixth feature is a wireless communication method comprising the steps of transmitting an uplink signal in a network in which a first frequency range and a second frequency range higher than the first frequency range are assumed, and executing a report of specific capability information related to beamforming for the first frequency range.
  • Wireless Communication Systems 20 NG-RAN 100 gNB 200UE 210 Wireless signal transmitting/receiving unit 220 Amplifier unit 230 Modulation/demodulation unit 240 Control signal/reference signal processing unit 250 Encoding/decoding unit 260 Data transmitting/receiving unit 270 Control unit 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus 2001 Vehicle 2002 Drive unit 2003 Steering unit 2004 Accelerator pedal 2005 Brake pedal 2006 Shift lever 2007 Left and right front wheels 2008 Left and right rear wheels 2009 Axle 2010 Electronic control unit 2012 Information service unit 2013 Communication module 2021 Current sensor 2022 Rotational speed sensor 2023 Air pressure sensor 2024 Vehicle speed sensor 2025 Acceleration sensor 2026 Brake pedal sensor 2027 Shift lever sensor 2028 Object detection sensor 2029 Accelerator pedal sensor 2030 Driving assistance system section 2031 Microprocessor 2032 Memory (ROM, RAM) 2033 communication port

Abstract

This terminal comprises: a transmission unit that transmits an uplink signal in a network in which a first frequency range and a second frequency range higher than the first frequency range are anticipated; and a control unit that executes reporting of specific capability information relating to beamforming for the first frequency range.

Description

端末、基地局、無線通信システム及び無線通信方法Terminal, base station, wireless communication system, and wireless communication method
 本開示は、UAVなどを想定した場合においてUE Capabilityの報告に関連する端末、基地局、無線通信システム及び無線通信方法に関する。 This disclosure relates to a terminal, base station, wireless communication system, and wireless communication method related to reporting UE Capability in the case of UAVs, etc.
 3rd Generation Partnership Project(3GPP)は、5th generation mobile communication system(5G、New Radio(NR)またはNext Generation(NG)とも呼ばれる)を仕様化し、さらに、Beyond 5G、5G Evolution或いは6Gと呼ばれる次世代の仕様化も進めている。 The 3rd Generation Partnership Project (3GPP) is developing specifications for the 5th generation mobile communication system (5G, also known as New Radio (NR) or Next Generation (NG)) and is also developing specifications for the next generation, known as Beyond 5G, 5G Evolution or 6G.
 Release 18では、FR(Frequency Range)1において、小型の無人航空機(UAV; Unmanned/Uncrewed Aerial Vehicles)の上りリンク信号の干渉を低減するために、UAVのビームに指向性を持たせることが検討されている(非特許文献1参照)。なお、UAVは、UE(User Equipment)と同様の無線通信モジュールを搭載しており、UEの一種であると考えてもよい。 In Release 18, in order to reduce interference of uplink signals from small unmanned aerial vehicles (UAVs; Unmanned/Uncrewed Aerial Vehicles) in FR (Frequency Range) 1, it is being considered to make the beam of UAVs directional (see Non-Patent Document 1). Note that UAVs are equipped with wireless communication modules similar to UEs (User Equipment), and can be considered a type of UE.
 上述した背景下において、発明者等は、鋭意検討の結果、UEのビームフォーミングに関する能力情報(UE Capability)がFR1について規定されていないことから、UEがビームフォーミングを実行可能であるか否かをネットワーク側において把握することができず、UAVなどを想定した場合において、上りリンク信号の干渉を適切に低減することができないことを見出した。 Under the above background, the inventors, after careful consideration, have found that because UE beamforming capability information (UE Capability) is not specified for FR1, the network cannot determine whether the UE is capable of performing beamforming, and therefore, in the case of UAVs, etc., it is not possible to appropriately reduce interference with uplink signals.
 そこで、本開示は、このような状況に鑑みてなされたものであり、UAVなどを想定した場合において、上りリンク信号の干渉を適切に低減し得る端末、基地局、無線通信システム及び無線通信方法を提供することを目的とする。 The present disclosure has been made in light of these circumstances, and aims to provide a terminal, base station, wireless communication system, and wireless communication method that can appropriately reduce interference with uplink signals when UAVs and the like are used.
 開示の一態様は、第1周波数レンジ及び前記第1周波数レンジよりも高い第2周波数レンジが想定されるネットワークにおいて、上りリンク信号を送信する送信部と、前記第1周波数レンジについてビームフォーミングに関する特定能力情報の報告を実行する制御部と、を備える、端末である。 One aspect of the disclosure is a terminal that includes a transmitter that transmits an uplink signal in a network in which a first frequency range and a second frequency range higher than the first frequency range are assumed, and a controller that executes reporting of specific capability information related to beamforming for the first frequency range.
 開示の一態様は、第1周波数レンジ及び前記第1周波数レンジよりも高い第2周波数レンジが想定されるネットワークにおいて、上りリンク信号を受信する受信部と、前記第1周波数レンジについてビームフォーミングに関する特定能力情報の報告を想定する制御部と、を備える、基地局である。 One aspect of the disclosure is a base station in a network in which a first frequency range and a second frequency range higher than the first frequency range are assumed, the base station comprising a receiver that receives an uplink signal, and a controller that assumes reporting specific capability information related to beamforming for the first frequency range.
 開示の一態様は、端末及び基地局を備え、前記端末は、第1周波数レンジ及び前記第1周波数レンジよりも高い第2周波数レンジが想定されるネットワークにおいて、上りリンク信号を送信する送信部と、前記第1周波数レンジについてビームフォーミングに関する特定能力情報の報告を実行する制御部と、を備える、無線通信システムである。 One aspect of the disclosure is a wireless communication system comprising a terminal and a base station, the terminal comprising a transmitter that transmits an uplink signal in a network in which a first frequency range and a second frequency range higher than the first frequency range are assumed, and a controller that executes reporting of specific capability information related to beamforming for the first frequency range.
 開示の一態様は、第1周波数レンジ及び前記第1周波数レンジよりも高い第2周波数レンジが想定されるネットワークにおいて、上りリンク信号を送信するステップと、前記第1周波数レンジについてビームフォーミングに関する特定能力情報の報告を実行するステップと、を備える、無線通信方法である。 One aspect of the disclosure is a wireless communication method comprising the steps of transmitting an uplink signal in a network in which a first frequency range and a second frequency range higher than the first frequency range are assumed, and executing a report of specific capability information regarding beamforming for the first frequency range.
図1は、無線通信システム10の全体概略構成図である。FIG. 1 is a schematic diagram showing the overall configuration of a wireless communication system 10. 図2は、無線通信システム10において用いられる周波数レンジを示す図である。FIG. 2 is a diagram illustrating the frequency ranges used in the wireless communication system 10. 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す図である。FIG. 3 is a diagram showing an example of the configuration of a radio frame, a subframe, and a slot used in the radio communication system 10. 図4は、UE200の機能ブロック構成図である。FIG. 4 is a functional block diagram of the UE 200. 図5は、gNB100の機能ブロック構成図である。Figure 5 is a functional block diagram of gNB100. 図6は、動作例を示す図である。FIG. 6 is a diagram showing an operation example. 図7は、gNB100及びUE200のハードウェア構成の一例を示す図である。FIG. 7 is a diagram showing an example of the hardware configuration of gNB100 and UE200. 図8は、車両2001の構成例を示す図である。FIG. 8 is a diagram showing an example of the configuration of a vehicle 2001.
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。 The following describes the embodiments with reference to the drawings. Note that identical or similar symbols are used for identical functions and configurations, and descriptions thereof will be omitted as appropriate.
 [実施形態]
 (1)無線通信システムの全体概略構成
 図1は、実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network 20(以下、NG-RAN20、及び端末200(以下、UE200)を含む。
[Embodiment]
(1) Overall Schematic Configuration of Wireless Communication System Fig. 1 is an overall schematic configuration diagram of a wireless communication system 10 according to an embodiment. The wireless communication system 10 is a wireless communication system conforming to 5G New Radio (NR) and includes a Next Generation-Radio Access Network 20 (hereinafter, NG-RAN 20) and a terminal 200 (hereinafter, UE 200).
 なお、無線通信システム10は、Beyond 5G、5G Evolution或いは6Gと呼ばれる方式に従った無線通信システムでもよい。 The wireless communication system 10 may be a wireless communication system conforming to a method called Beyond 5G, 5G Evolution, or 6G.
 NG-RAN20は、無線基地局100A(以下、gNB100A)~無線基地局100D(以下、gNB100D)を含む。gNB100A~gNB100Dは、それぞれ、セルC1~セルC4を有する。なお、gNB及びUEの数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。 NG-RAN 20 includes radio base station 100A (hereinafter, gNB100A) to radio base station 100D (hereinafter, gNB100D). gNB100A to gNB100D have cells C1 to C4, respectively. Note that the specific configuration of wireless communication system 10, including the number of gNBs and UEs, is not limited to the example shown in FIG. 1.
 NG-RAN20は、実際には複数のNG-RAN Node、具体的には、gNB(又はng-eNB)を含み、5Gに従ったコアネットワーク(5GC、不図示)と接続される。なお、NG-RAN20及び5GCは、単に「ネットワーク」と表現されてもよい。 NG-RAN20 actually includes multiple NG-RAN Nodes, specifically gNBs (or ng-eNBs), and is connected to a 5G-compliant core network (5GC, not shown). Note that NG-RAN20 and 5GC may also be simply referred to as a "network."
 gNB100A~gNB100Dは、5Gに従った無線基地局であり、UE200と5Gに従った無線通信を実行する。gNB100A~gNB100D及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームBMを生成するMassive MIMO(Multiple-Input Multiple-Output)、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時2以上のトランスポートブロックに通信を行うデュアルコネクティビティ(DC)などに対応することができる。 gNB100A to gNB100D are 5G-compliant radio base stations, and perform 5G-compliant radio communication with UE200. gNB100A to gNB100D and UE200 are capable of supporting Massive MIMO (Multiple-Input Multiple-Output), which generates a more directional beam BM by controlling radio signals transmitted from multiple antenna elements, Carrier Aggregation (CA), which uses multiple component carriers (CC) by bundling them together, and Dual Connectivity (DC), which communicates simultaneously on two or more transport blocks between the UE and each of two NG-RAN Nodes.
 UE200は、小型の無人航空機(UAV; Unmanned/Uncrewed Aerial Vehicles)に搭載されたUEであってもよい。UAVに搭載されるUE200又はUAVは、NR droneと称されてもよい。UE200は、通常UE、vehicle UE、IAB(Integrated Access and Backhaul) UE(空中のIAB UEを含む)、HAPS (High Altitude Platform Station) UE、NTN(Non Terrestrial Network) UEなどと称されてもよい。 UE200 may be a UE mounted on a small Unmanned Aerial Vehicle (UAV). UE200 mounted on a UAV or a UAV may be referred to as an NR drone. UE200 may be referred to as a normal UE, vehicle UE, IAB (Integrated Access and Backhaul) UE (including airborne IAB UE), HAPS (High Altitude Platform Station) UE, NTN (Non Terrestrial Network) UE, etc.
 また、無線通信システム10は、複数の周波数レンジ(FR)に対応する。図2は、無線通信システム10において用いられる周波数レンジを示す。 Furthermore, the wireless communication system 10 supports multiple frequency ranges (FR). Figure 2 shows the frequency ranges used in the wireless communication system 10.
 図2に示すように、無線通信システム10は、FR1及びFR2に対応する。各FRの周波数帯は、次のとおりである。 As shown in FIG. 2, the wireless communication system 10 supports FR1 and FR2. The frequency bands of each FR are as follows:
 ・FR1:410 MHz~7.125 GHz
 ・FR2:24.25 GHz~52.6 GHz
 FR1では、15, 30又は60kHzのSub-Carrier Spacing(SCS)が用いられ、5~100MHzの帯域幅(BW)が用いられてもよい。FR2は、FR1よりも高周波数であり、60又は120kHz(240kHzが含まれてもよい)のSCSが用いられ、50~400MHzの帯域幅(BW)が用いられてもよい。
・FR1: 410 MHz to 7.125 GHz
・FR2: 24.25 GHz to 52.6 GHz
FR1 may use a Sub-Carrier Spacing (SCS) of 15, 30 or 60 kHz and a bandwidth (BW) of 5 to 100 MHz. FR2 is a higher frequency than FR1, and may use a SCS of 60 or 120 kHz (including 240 kHz) and a bandwidth (BW) of 50 to 400 MHz.
 なお、SCSは、numerologyと解釈されてもよい。numerologyは、3GPP TS38.300において定義されており、周波数ドメインにおける一つのサブキャリア間隔と対応する。 Note that SCS may also be interpreted as numerology. Numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier spacing in the frequency domain.
 さらに、無線通信システム10は、FR2の周波数帯よりも高周波数帯にも対応する。具体的には、無線通信システム10は、52.6GHzを超え、71GHzまたは114.25GHzまでの周波数帯に対応する。このような高周波数帯は、便宜上「FR2x」と呼ばれてもよい。 Furthermore, the wireless communication system 10 also supports higher frequency bands than the FR2 frequency band. Specifically, the wireless communication system 10 supports frequency bands above 52.6 GHz up to 71 GHz or 114.25 GHz. For convenience, such high frequency bands may be referred to as "FR2x."
 高周波数帯では位相雑音の影響が大きくなる問題を解決するため、52.6GHzを超える帯域を用いる場合、より大きなSub-Carrier Spacing(SCS)を有するCyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)を適用してもよい。 To solve the problem of phase noise becoming more significant at higher frequencies, Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/Discrete Fourier Transform - Spread (DFT-S-OFDM) with larger Sub-Carrier Spacing (SCS) may be applied when using bands above 52.6 GHz.
 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す。 FIG. 3 shows an example of the configuration of a radio frame, subframe, and slot used in the wireless communication system 10.
 図3に示すように、1スロットは、14シンボルで構成され、SCSが大きく(広く)なる程、シンボル期間(及びスロット期間)は短くなる。SCSは、図3に示す間隔(周波数)に限定されない。例えば、480kHz、960kHzなどが用いられてもよい。 As shown in Figure 3, one slot is made up of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period). The SCS is not limited to the interval (frequency) shown in Figure 3. For example, 480 kHz, 960 kHz, etc. may be used.
 また、1スロットを構成するシンボル数は、必ずしも14シンボルでなくてもよい(例えば、28、56シンボル)。さらに、サブフレーム当たりのスロット数は、SCSによって異なっていてよい。 Also, the number of symbols that make up one slot does not necessarily have to be 14 symbols (e.g., 28 or 56 symbols). Furthermore, the number of slots per subframe may differ depending on the SCS.
 なお、図3に示す時間方向(t)は、時間領域、シンボル期間又はシンボル時間などと呼ばれてもよい。また、周波数方向は、周波数領域、リソースブロック、サブキャリア、バンド幅部分(BWP: Bandwidth part)などと呼ばれてもよい。 Note that the time direction (t) shown in FIG. 3 may be called the time domain, the symbol period, or the symbol time. The frequency direction may be called the frequency domain, the resource block, the subcarrier, the bandwidth part (BWP), etc.
 DMRSは、参照信号の一種であり、各種チャネル用に準備される。ここでは、特に断りがない限り、下りデータチャネル、具体的には、PDSCH(Physical Downlink Shared Channel)用のDMRSを意味してよい。但し、上りデータチャネル、具体的には、PUSCH(Physical Uplink Shared Channel)用のDMRSは、PDSCH用のDMRSと同様と解釈されてもよい。 DMRS is a type of reference signal and is prepared for various channels. Unless otherwise specified, the term may refer to a downlink data channel, specifically, a DMRS for a PDSCH (Physical Downlink Shared Channel). However, a DMRS for an uplink data channel, specifically, a PUSCH (Physical Uplink Shared Channel), may be interpreted as being the same as a DMRS for a PDSCH.
 DMRSは、デバイス、例えば、コヒーレント復調の一部分として、UE200におけるチャネル推定に用い得る。DMRSは、PDSCH送信に使用されるリソースブロック(RB)のみに存在してよい。 DMRS may be used for channel estimation in a device, e.g., UE 200, as part of coherent demodulation. DMRS may only be present in resource blocks (RBs) used for PDSCH transmission.
 DMRSは、複数のマッピングタイプを有してよい。具体的には、DMRSは、マッピングタイプA及びマッピングタイプBを有する。マッピングタイプAでは、最初のDMRSは、スロットの2又は3番目のシンボルに配置される。マッピングタイプAでは、DMRSは、実際のデータ送信がスロットのどこで開始されるかに関係なく、スロット境界を基準にしてマッピングされてよい。最初のDMRSがスロットの2又は3番目のシンボルに配置される理由は、制御リソースセット(CORESET:control resource sets)の後に最初のDMRSを配置するためと解釈されてもよい。 DMRS may have multiple mapping types. Specifically, DMRS has mapping type A and mapping type B. In mapping type A, the first DMRS is placed in the second or third symbol of a slot. In mapping type A, the DMRS may be mapped relative to the slot boundary, regardless of where in the slot the actual data transmission starts. The reason for placing the first DMRS in the second or third symbol of a slot may be interpreted as being to place the first DMRS after the control resource sets (CORESET).
 マッピングタイプBでは、最初のDMRSがデータ割り当ての最初のシンボルに配置されてよい。すなわち、DMRSの位置は、スロット境界に対してではなく、データが配置されている場所に対して相対的に与えられてよい。 In mapping type B, the first DMRS may be placed in the first symbol of the data allocation, i.e., the position of the DMRS may be given relative to where the data is placed, rather than relative to a slot boundary.
 また、DMRSは、複数の種類(Type)を有してよい。具体的には、DMRSは、Type 1及びType 2を有する。Type 1とType 2とは、周波数領域におけるマッピング及び直交参照信号(orthogonal reference signals)の最大数が異なる。Type 1は、単一シンボル(single-symbol)DMRSで最大4本の直交信号を出力でき、Type 2は、二重シンボル(double-symbol)DMRSで最大8本の直交信号を出力できる。 DMRS may have multiple types. Specifically, DMRS has Type 1 and Type 2. Type 1 and Type 2 differ in mapping in the frequency domain and the maximum number of orthogonal reference signals. Type 1 is a single-symbol DMRS that can output up to four orthogonal signals, and Type 2 is a double-symbol DMRS that can output up to eight orthogonal signals.
 (2)無線通信システムの機能ブロック構成
 以下において、無線通信システム10の機能ブロック構成について説明する。
(2) Functional Block Configuration of Wireless Communication System The functional block configuration of the wireless communication system 10 will be described below.
 第1に、UE200の機能ブロック構成について説明する。 First, we will explain the functional block configuration of UE200.
 図4は、UE200の機能ブロック構成図である。図4に示すように、UE200は、無線信号送受信部210、アンプ部220、変復調部230、制御信号・参照信号処理部240、符号化/復号部250、データ送受信部260及び制御部270を備える。 FIG. 4 is a functional block diagram of UE 200. As shown in FIG. 4, UE 200 includes a radio signal transmitting/receiving unit 210, an amplifier unit 220, a modulation/demodulation unit 230, a control signal/reference signal processing unit 240, an encoding/decoding unit 250, a data transmitting/receiving unit 260, and a control unit 270.
 無線信号送受信部210は、NRに従った無線信号を送受信する。無線信号送受信部210は、Massive MIMO、複数のCCを束ねて用いるCA、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うDCなどに対応する。 The radio signal transmission/reception unit 210 transmits and receives radio signals conforming to NR. The radio signal transmission/reception unit 210 supports Massive MIMO, CA that uses a bundle of multiple CCs, and DC that simultaneously communicates between a UE and each of two NG-RAN nodes.
 ここで、無線信号送受信部210は、上りリンクチャネル(以下、ULチャネル)を送信してよい。 Here, the wireless signal transceiver 210 may transmit an uplink channel (hereinafter, UL channel).
 具体的には、無線信号送受信部210は、PUSCHをネットワーク(gNB100)に向けて送信してよい。無線信号送受信部210は、PUSCHの繰り返し送信(Repetition)をサポートしてよい。ULチャネルには、物理上りリンク共有チャネル(PUSCH)及び物理上りリンク制御チャネル(PUCCH)が含まれてよい。共有チャネルは、データチャネルと呼ばれてもよい。 Specifically, the radio signal transceiver 210 may transmit a PUSCH to the network (gNB100). The radio signal transceiver 210 may support repeated transmission (Repetition) of the PUSCH. The UL channel may include a physical uplink shared channel (PUSCH) and a physical uplink control channel (PUCCH). The shared channel may be referred to as a data channel.
 PUSCHの繰り返し送信は、複数の種類が規定されてよい。具体的には、Repetition type A及びRepetition type Bが規定されてよい。Repetition type Aは、スロット内に割り当てられたPUSCHが繰り返し送信される形態と解釈されてよい。つまり、PUSCHは、14シンボル以下であり、複数スロット(隣接スロット)に跨がって割り当てられる可能性はない。 Multiple types of repeated transmission of PUSCH may be specified. Specifically, Repetition type A and Repetition type B may be specified. Repetition type A may be interpreted as a form in which the PUSCH allocated within a slot is repeatedly transmitted. In other words, the PUSCH is 14 symbols or less and cannot be allocated across multiple slots (adjacent slots).
 一方、Repetition type Bは、15シンボル以上のPUSCHが割り当てられる可能性があるPUSCHの繰り返し送信と解釈されてよい。 On the other hand, Repetition type B may be interpreted as repeated transmission of PUSCH where 15 or more PUSCH symbols may be assigned.
 2以上のスロットを含む特定期間とは、PUSCH(またはPUCCH)のRepetitionに関する期間と解釈されてよい。例えば、特定期間とは、Repetitionの数によって示されてもよいし、規定された数のRepetitionが実行される時間であってもよい。 The specific period including two or more slots may be interpreted as a period related to the repetition of the PUSCH (or PUCCH). For example, the specific period may be indicated by the number of repetitions, or may be the time during which a specified number of repetitions are performed.
 或いは、無線信号送受信部210は、ULチャネルを特定回数、繰り返し送信してもよい。具体的には、無線信号送受信部210は、PUSCH(またはPUCCH)を、複数回数、繰り返し送信してよい。 Alternatively, the radio signal transceiver 210 may repeatedly transmit the UL channel a specific number of times. Specifically, the radio signal transceiver 210 may repeatedly transmit the PUSCH (or PUCCH) multiple times.
 特定期間及び/または特定回数は、ネットワークからのシグナリング(RRCの上位レイヤでもよいし、DCIなどの下位レイヤでもよい、以下同)によって指示されてもよいし、UE200に予め設定されていてもよい。 The specific period and/or the specific number of times may be indicated by signaling from the network (which may be a higher layer than RRC or a lower layer such as DCI, same below), or may be preset in UE 200.
 実施形態では、無線信号送受信部210は、第1周波数レンジ(以下、FR1)及び前記FR1よりも高い第2周波数レンジ(以下、FR2)が想定されるネットワークにおいて、上りリンク信号(以下、UL信号)を送信する送信部を構成する。UL信号は、PUCCH又はPUSCHを介して送信される信号を含んでもよい。 In the embodiment, the wireless signal transceiver 210 constitutes a transmitter that transmits an uplink signal (hereinafter, UL signal) in a network in which a first frequency range (hereinafter, FR1) and a second frequency range (hereinafter, FR2) higher than the FR1 are assumed. The UL signal may include a signal transmitted via a PUCCH or a PUSCH.
 アンプ部220は、PA (Power Amplifier)/LNA (Low Noise Amplifier)などによって構成される。アンプ部220は、変復調部230から出力された信号を所定の電力レベルに増幅する。また、アンプ部220は、無線信号送受信部210から出力されたRF信号を増幅する。 The amplifier section 220 is composed of a PA (Power Amplifier)/LNA (Low Noise Amplifier) etc. The amplifier section 220 amplifies the signal output from the modem section 230 to a predetermined power level. The amplifier section 220 also amplifies the RF signal output from the wireless signal transmission/reception section 210.
 変復調部230は、所定の通信先(gNB100又は他のgNB)毎に、データ変調/復調、送信電力設定及びリソースブロック割当などを実行する。変復調部230では、Cyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)が適用されてもよい。また、DFT-S-OFDMは、上りリンク(UL)だけでなく、下りリンク(DL)にも用いられてもよい。 The modem unit 230 performs data modulation/demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB100 or other gNB). The modem unit 230 may apply Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/Discrete Fourier Transform-Spread (DFT-S-OFDM). Furthermore, DFT-S-OFDM may be used not only for the uplink (UL) but also for the downlink (DL).
 制御信号・参照信号処理部240は、UE200が送受信する各種の制御信号に関する処理、及びUE200が送受信する各種の参照信号に関する処理を実行する。 The control signal/reference signal processing unit 240 performs processing related to various control signals transmitted and received by the UE 200, and processing related to various reference signals transmitted and received by the UE 200.
 具体的には、制御信号・参照信号処理部240は、gNB100から所定の制御チャネルを介して送信される各種の制御信号、例えば、無線リソース制御レイヤ(RRC)の制御信号を受信する。また、制御信号・参照信号処理部240は、gNB100に向けて、所定の制御チャネルを介して各種の制御信号を送信する。 Specifically, the control signal/reference signal processor 240 receives various control signals, such as radio resource control layer (RRC) control signals, transmitted from the gNB 100 via a predetermined control channel. The control signal/reference signal processor 240 also transmits various control signals to the gNB 100 via a predetermined control channel.
 制御信号・参照信号処理部240は、Demodulation Reference Signal(DMRS)、及びPhase Tracking Reference Signal (PTRS)などの参照信号(RS)を用いた処理を実行する。 The control signal/reference signal processing unit 240 performs processing using reference signals (RS) such as the Demodulation Reference Signal (DMRS) and the Phase Tracking Reference Signal (PTRS).
 DMRSは、データ復調に用いるフェージングチャネルを推定するための端末個別の基地局~端末間において既知の参照信号(パイロット信号)である。PTRSは、高い周波数帯で課題となる位相雑音の推定を目的した端末個別の参照信号である。 DMRS is a known reference signal (pilot signal) between the base station and the terminal for each terminal, used to estimate the fading channel used for data demodulation. PTRS is a terminal-specific reference signal intended to estimate phase noise, which is an issue in high frequency bands.
 なお、参照信号には、DMRS及びPTRS以外に、Channel State Information-Reference Signal(CSI-RS)、Sounding Reference Signal(SRS)、及び位置情報用のPositioning Reference Signal(PRS)が含まれてもよい。 In addition to DMRS and PTRS, reference signals may also include Channel State Information-Reference Signal (CSI-RS), Sounding Reference Signal (SRS), and Positioning Reference Signal (PRS) for location information.
 また、チャネルには、制御チャネルとデータチャネルとが含まれる。制御チャネルには、PDCCH(Physical Downlink Control Channel)、PUCCH(Physical Uplink Control Channel)、RACH(Random Access Channel)、Random Access Radio Network Temporary Identifier(RA-RNTI)を含むDownlink Control Information (DCI))、及びPhysical Broadcast Channel(PBCH)などが含まれる。 Channels also include control channels and data channels. Control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), RACH (Random Access Channel), Downlink Control Information (DCI) including Random Access Radio Network Temporary Identifier (RA-RNTI), and Physical Broadcast Channel (PBCH).
 また、データチャネルには、PDSCH(Physical Downlink Shared Channel)、及びPUSCH(Physical Uplink Shared Channel)などが含まれる。データとは、データチャネルを介して送信されるデータを意味する。データチャネルは、共有チャネルと読み替えられてもよい。 In addition, data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel). Data refers to data transmitted via a data channel. A data channel may also be read as a shared channel.
 ここで、制御信号・参照信号処理部240は、下りリンク制御情報(DCI)を受信してもよい。DCIは、既存のフィールドとして、DCI Formats、Carrier indicator(CI)、BWP indicator、FDRA(Frequency Domain Resource Assignment)、TDRA(Time Domain Resource Assignment)、MCS(Modulation and Coding Scheme)、HPN(HARQ Process Number)、NDI(New Data Indicator)、RV(Redundancy Version)などを格納するフィールドを含む。 Here, the control signal/reference signal processing unit 240 may receive downlink control information (DCI). The DCI includes fields that store existing fields such as DCI Formats, Carrier indicator (CI), BWP indicator, FDRA (Frequency Domain Resource Assignment), TDRA (Time Domain Resource Assignment), MCS (Modulation and Coding Scheme), HPN (HARQ Process Number), NDI (New Data Indicator), and RV (Redundancy Version).
 DCI Formatフィールドに格納される値は、DCIのフォーマットを指定する情報要素である。CIフィールドに格納される値は、DCIが適用されるCCを指定する情報要素である。BWP indicatorフィールドに格納される値は、DCIが適用されるBWPを指定する情報要素である。BWP indicatorによって指定され得るBWPは、RRCメッセージに含まれる情報要素(BandwidthPart-Config)によって設定される。FDRAフィールドに格納される値は、DCIが適用される周波数ドメインリソースを指定する情報要素である。周波数ドメインリソースは、FDRAフィールドに格納される値及びRRCメッセージに含まれる情報要素(RA Type)によって特定される。TDRAフィールドに格納される値は、DCIが適用される時間ドメインリソースを指定する情報要素である。時間ドメインリソースは、TDRAフィールドに格納される値及びRRCメッセージに含まれる情報要素(pdsch-TimeDomainAllocationList、pusch-TimeDomainAllocationList)によって特定される。時間ドメインリソースは、TDRAフィールドに格納される値及びデフォルトテーブルによって特定されてもよい。MCSフィールドに格納される値は、DCIが適用されるMCSを指定する情報要素である。MCSは、MCSに格納される値及びMCSテーブルによって特定される。MCSテーブルは、RRCメッセージによって指定されてもよく、RNTIスクランブリングによって特定されてもよい。HPNフィールドに格納される値は、DCIが適用されるHARQ Processを指定する情報要素である。NDIに格納される値は、DCIが適用されるデータが初送データであるか否かを特定するための情報要素である。RVフィールドに格納される値は、DCIが適用されるデータの冗長性を指定する情報要素である。 The value stored in the DCI Format field is an information element that specifies the format of the DCI. The value stored in the CI field is an information element that specifies the CC to which the DCI applies. The value stored in the BWP indicator field is an information element that specifies the BWP to which the DCI applies. The BWP that can be specified by the BWP indicator is set by an information element (BandwidthPart-Config) included in the RRC message. The value stored in the FDRA field is an information element that specifies the frequency domain resource to which the DCI applies. The frequency domain resource is identified by the value stored in the FDRA field and the information element (RA Type) included in the RRC message. The value stored in the TDRA field is an information element that specifies the time domain resource to which the DCI applies. The time domain resource is identified by the value stored in the TDRA field and the information elements (pdsch-TimeDomainAllocationList, pusch-TimeDomainAllocationList) included in the RRC message. The time domain resource may be identified by the value stored in the TDRA field and the default table. The value stored in the MCS field is an information element that specifies the MCS to which the DCI applies. The MCS is specified by the value stored in the MCS and the MCS table. The MCS table may be specified by an RRC message or may be specified by RNTI scrambling. The value stored in the HPN field is an information element that specifies the HARQ Process to which the DCI is applied. The value stored in the NDI is an information element that specifies whether the data to which the DCI is applied is initial transmission data or not. The value stored in the RV field is an information element that specifies the redundancy of the data to which the DCI is applied.
 符号化/復号部250は、所定の通信先(gNB100又は他のgNB)毎に、データの分割/連結及びチャネルコーディング/復号などを実行する。 The encoding/decoding unit 250 performs data division/concatenation and channel coding/decoding for each predetermined communication destination (gNB100 or other gNB).
 具体的には、符号化/復号部250は、データ送受信部260から出力されたデータを所定のサイズに分割し、分割されたデータに対してチャネルコーディングを実行する。また、符号化/復号部250は、変復調部230から出力されたデータを復号し、復号したデータを連結する。 Specifically, the encoding/decoding unit 250 divides the data output from the data transmission/reception unit 260 into pieces of a predetermined size, and performs channel coding on the divided data. The encoding/decoding unit 250 also decodes the data output from the modem unit 230, and concatenates the decoded data.
 データ送受信部260は、Protocol Data Unit (PDU)ならびにService Data Unit (SDU)の送受信を実行する。具体的には、データ送受信部260は、複数のレイヤ(媒体アクセス制御レイヤ(MAC)、無線リンク制御レイヤ(RLC)、及びパケット・データ・コンバージェンス・プロトコル・レイヤ(PDCP)など)におけるPDU/SDUの組み立て/分解などを実行する。また、データ送受信部260は、HARQ(Hybrid Automatic Repeat Request)に基づいて、データの誤り訂正及び再送制御を実行する。 The data transmission/reception unit 260 transmits and receives Protocol Data Units (PDUs) and Service Data Units (SDUs). Specifically, the data transmission/reception unit 260 performs assembly/disassembly of PDUs/SDUs in multiple layers (such as the Medium Access Control layer (MAC), Radio Link Control layer (RLC), and Packet Data Convergence Protocol layer (PDCP)). The data transmission/reception unit 260 also performs data error correction and retransmission control based on HARQ (Hybrid Automatic Repeat Request).
 制御部270は、UE200を構成する各機能ブロックを制御する。実施形態では、制御部270は、第1周波数レンジ(FR1)についてビームフォーミングに関する特定能力情報の報告を実行する制御部を構成する。特定能力情報は、UE200がサポートする機能又は能力に関するUE Capabilityの一例である。特定能力情報の詳細については後述する。 The control unit 270 controls each functional block constituting the UE 200. In the embodiment, the control unit 270 constitutes a control unit that executes reporting of specific capability information related to beamforming for the first frequency range (FR1). The specific capability information is an example of UE Capability related to the functions or capabilities supported by the UE 200. Details of the specific capability information will be described later.
 第2に、gNB100の機能ブロック構成について説明する。 Secondly, we will explain the functional block configuration of the gNB100.
 図5は、gNB100の機能ブロック構成図である。図5に示すように、gNB100は、受信部110、送信部120及び制御部130を有する。 FIG. 5 is a functional block diagram of the gNB100. As shown in FIG. 5, the gNB100 has a receiving unit 110, a transmitting unit 120, and a control unit 130.
 受信部110は、UE200から各種信号を受信する。受信部110は、PUCCH又はPUSCHなどのULチャネルを介してUL信号を受信してもよい。実施形態では、受信部110は、FR1及びFR1よりも高いFR2が想定されるネットワークにおいて、UL信号を受信する受信部を構成する。 The receiving unit 110 receives various signals from the UE 200. The receiving unit 110 may receive a UL signal via a UL channel such as a PUCCH or a PUSCH. In the embodiment, the receiving unit 110 constitutes a receiving unit that receives a UL signal in a network in which FR1 and FR2, which is higher than FR1, are assumed.
 送信部120は、UE200に各種信号を送信する。送信部120は、PDCCH又はPDSCHなどのDLチャネルを介してDL信号を送信してもよい。 The transmitter 120 transmits various signals to the UE 200. The transmitter 120 may transmit DL signals via a DL channel such as a PDCCH or a PDSCH.
 制御部130は、gNB100を制御する。実施形態では、制御部130は、FR1についてビームフォーミングに関する特定能力情報の報告を想定する制御部を構成する。特定能力情報の詳細については後述する。 The control unit 130 controls the gNB 100. In the embodiment, the control unit 130 constitutes a control unit that assumes reporting of specific capability information related to beamforming for FR1. Details of the specific capability information will be described later.
 (3)課題
 以下において、課題について説明する。図1に示したように、UAVに搭載されるUE200が空中に存在するケースが想定され、UE200のビームが無指向性である場合には、UE200のUL信号の見通しが良い。例えば、UE200がgNB100B(セルC2)に接続されている場合において、UE200のUL信号は、gNB100A(セルC1)、gNB100C(セルC3)及びgNB100D(セルC4)に対して干渉を与える。
(3) Issues The issues are described below. As shown in Fig. 1, it is assumed that the UE 200 mounted on the UAV is in the air, and when the beam of the UE 200 is omnidirectional, the UL signal of the UE 200 has good visibility. For example, when the UE 200 is connected to the gNB 100B (cell C2), the UL signal of the UE 200 causes interference to the gNB 100A (cell C1), the gNB 100C (cell C3), and the gNB 100D (cell C4).
 従って、Release 18では、FR1において、UAVのビームに指向性を持たせることによって、周辺セル(周辺サイト)への干渉を低減することが検討されている。このような検討は、FR1 with directional antennaと称されてもよい。 Accordingly, Release 18 considers reducing interference with neighboring cells (nearby sites) in FR1 by making the UAV's beam directional. Such consideration may be referred to as FR1 with directional antenna.
 上述した背景下において、発明者等は、鋭意検討の結果、UE200のビームフォーミングに関するUE CapabilityがFR1について規定されていないことから、UE200がビームフォーミングを実行可能であるか否かをネットワーク側において把握することができず、UAVなどを想定した場合において、UL信号の干渉を適切に低減することができないことを見出した。 Under the above background, the inventors, after careful consideration, have found that because the UE Capability for UE200's beamforming is not specified for FR1, the network cannot determine whether UE200 is capable of performing beamforming, and therefore, in the case of UAVs or the like, it is not possible to appropriately reduce interference with UL signals.
 (4)動作例
 上述した課題を解決するために、UE200は、FR1についてビームフォーミングに関する特定能力情報の報告を実行する。特定能力情報は、UE200がサポートする機能又は能力に関するUE Capabilityの一例である。
(4) Operation Example In order to solve the above-mentioned problem, the UE 200 executes reporting of specific capability information related to beamforming for the FR 1. The specific capability information is an example of UE Capability related to a function or capability supported by the UE 200.
 例えば、図6に示すように、ステップS11において、UE200は、FR1についてビームフォーミングに関する特定能力情報(UE Capability)をgNB100に送信する。 For example, as shown in FIG. 6, in step S11, UE 200 transmits specific capability information (UE Capability) regarding beamforming for FR1 to gNB 100.
 特に限定されるものではないが、ステップS12において、gNB100は、特定能力情報に基づいて、UE200が接続するセルを決定してもよい。ステップS13において、gNB100は、ステップS12で決定したセルに関するRRC ReconfigurationをUE100に送信してもよい。 Although not particularly limited, in step S12, the gNB100 may determine the cell to which the UE200 will connect based on the specific capability information. In step S13, the gNB100 may transmit to the UE100 an RRC Reconfiguration regarding the cell determined in step S12.
 ここで、特定能力情報の報告としては、以下に示す動作例が考えられる。 Here, the following are some examples of operations that can be considered for reporting specific capability information.
 (4.1)動作例1
 動作例1では、UE200は、FR2について規定されたビームフォーミングに関する能力情報の少なくとも一部のパラメータと対応するパラメータを特定能力情報として報告してもよい。
(4.1) Operation example 1
In the first operation example, the UE 200 may report, as the specific capability information, parameters corresponding to at least a portion of parameters of the capability information regarding beamforming defined for FR2.
 FR2について規定されたビームフォーミングに関する能力情報の少なくとも一部のパラメータは、beam correspondence、UL beam management、beam switch timingなどを含んでもよい。 At least some of the parameters of the beamforming capability information specified for FR2 may include beam correspondence, UL beam management, beam switch timing, etc.
 beam correspondenceは、CSI-RSに基づいたbeam correspondenceをUE200がサポートするか否かを示すbeamCorrespondenceCSI-RSを含んでもよい。beam correspondenceは、SSBに基づいたbeam correspondenceをUE200がサポートするか否かを示すbeamCorrespondenceSSBを含んでもよい。beam correspondenceは、UL beamのスイーピングを必要としないbeam correspondenceをUE200がサポートするか否かを示すbeamCorrespondenceWithoutUL-BeamSweepingを含んでもよい。 The beam correspondence may include beamCorrespondenceCSI-RS indicating whether the UE200 supports beam correspondence based on CSI-RS. The beam correspondence may include beamCorrespondenceSSB indicating whether the UE200 supports beam correspondence based on SSB. The beam correspondence may include beamCorrespondenceWithoutUL-BeamSweeping indicating whether the UE200 supports beam correspondence that does not require UL beam sweeping.
 UL beam managementは、UL信号(SRS)に関するbeam managementのサポートを定義するuplinkBeamManagementを含んでもよい。 UL beam management may include uplinkBeamManagement which defines support for beam management for UL signals (SRS).
 beam switch timingは、aperiodic CSI-RSをトリガーするDCIとCSI-RSの送信との間のOFDMシンボルの最小数を示すbeamSwitchTimingを含んでもよい。 The beam switch timing may include beamSwitchTiming, which indicates the minimum number of OFDM symbols between DCI and CSI-RS transmissions that will trigger aperiodic CSI-RS.
 beam correspondence、UL beam management、beam switch timingは、3GPP TS38.306 V17.1.0 §4.2.7.1 “BandCombinationList parameters”に規定されたパラメータであってもよい。3GPP TS38.306 V17.1.0において、beam correspondence、UL beam management、beam switch timingは、FR2についてのみ規定されたパラメータであることに留意すべきである。 beam correspondence, UL beam management, and beam switch timing may be parameters specified in 3GPP TS38.306 V17.1.0 §4.2.7.1 “BandCombinationList parameters”. It should be noted that in 3GPP TS38.306 V17.1.0, beam correspondence, UL beam management, and beam switch timing are parameters specified only for FR2.
 ここで、FR2について規定されたビームフォーミングに関する能力情報の少なくとも一部のパラメータと対応するパラメータの態様としては、以下に示すオプションが考えられる。以下において、FR1について規定するパラメータ及びFR2について規定するパラメータを区別するために、FR1について規定するパラメータを第1パラメータと称し、FR2について規定するパラメータを第2パラメータと称してもよい。なお、第1パラメータ及び第2パラメータの定義そのものは同じであってもよい。 Here, the following options are possible as parameter aspects corresponding to at least some of the parameters of the capability information regarding beamforming defined for FR2. In the following, in order to distinguish between the parameters defined for FR1 and the parameters defined for FR2, the parameters defined for FR1 may be referred to as first parameters, and the parameters defined for FR2 may be referred to as second parameters. Note that the definitions of the first and second parameters themselves may be the same.
 オプション1では、第1パラメータは、第2パラメータとは別のパラメータである態様であってもよい。例えば、FR1用のbeam correspondenceは、FR2用のbeam correspondenceと別のパラメータであってもよい。FR1用のUL beam managementは、FR2用のUL beam managementと別のパラメータであってもよい。FR1用のbeam switch timingは、FR2用のbeam switch timingと別のパラメータであってもよい。すなわち、FR1に関するUE Capabilityの報告は、FR2に関するUE Capabilityの報告と別に実行されてもよい。 In option 1, the first parameter may be a separate parameter from the second parameter. For example, beam correspondence for FR1 may be a separate parameter from beam correspondence for FR2. UL beam management for FR1 may be a separate parameter from UL beam management for FR2. Beam switch timing for FR1 may be a separate parameter from beam switch timing for FR2. That is, reporting of UE capability for FR1 may be performed separately from reporting of UE capability for FR2.
 オプション2では、第1パラメータは、第2パラメータをそのまま用いる態様であってもよい。例えば、FR2用のbeam correspondenceがFR1に適用され、beam correspondence(FR1 and FR2)と規定されてもよい。FR2用のUL beam managementがFR1に適用され、UL beam management(FR1 and FR2)と規定されてもよい。FR2用のbeam switch timingがFR1に適用され、beam switch timing(FR1 and FR2)と規定されてもよい。すなわち、FR1に関するUE Capabilityの報告は、FR2に関するUE Capabilityの報告とともに実行されてもよい。 In option 2, the first parameter may be the same as the second parameter. For example, beam correspondence for FR2 may be applied to FR1 and specified as beam correspondence (FR1 and FR2). UL beam management for FR2 may be applied to FR1 and specified as UL beam management (FR1 and FR2). Beam switch timing for FR2 may be applied to FR1 and specified as beam switch timing (FR1 and FR2). That is, reporting of UE capability for FR1 may be performed together with reporting of UE capability for FR2.
 上述したオプション1又はオプション2において、第1パラメータ及び第2パラメータとして1以上の候補値を報告可能である場合に、第1パラメータの候補値は、第2パラメータの候補値と同じであってもよく、第1パラメータの候補値は、第2パラメータの候補値と異なってもよい。第1パラメータの候補値は、第2パラメータの候補値に対して一部の候補値が追加された候補値であってもよく、第2パラメータの候補値から一部の候補値が削除された候補値であってもよい。 In the above-mentioned Option 1 or Option 2, when one or more candidate values can be reported for the first parameter and the second parameter, the candidate value of the first parameter may be the same as the candidate value of the second parameter, or the candidate value of the first parameter may be different from the candidate value of the second parameter. The candidate value of the first parameter may be a candidate value in which some candidate values are added to the candidate value of the second parameter, or a candidate value in which some candidate values are deleted from the candidate value of the second parameter.
 上述したオプション1又はオプション2において、第1パラメータは、UE200が指向性アンテナを有するか否かを暗黙的に示すパラメータであると考えてもよい。第1パラメータは、UE200が指向性ビームを形成可能であるか否かを暗黙的に示すパラメータであると考えてもよい。 In the above-mentioned option 1 or option 2, the first parameter may be considered to be a parameter that implicitly indicates whether or not the UE 200 has a directional antenna. The first parameter may be considered to be a parameter that implicitly indicates whether or not the UE 200 is capable of forming a directional beam.
 (4.2)動作例2
 動作例2では、UE200は、ビームフォーミングに関する能力情報として新たに定義される能力情報を特定能力情報として報告してもよい。
(4.2) Operation example 2
In the second operation example, the UE 200 may report capability information newly defined as capability information related to beamforming as specific capability information.
 特定能力情報は、UE200が指向性アンテナを有するか否か、UE200が指向性ビームを形成可能であるか否か、UE200のアンテナ又はビームの幅(半値幅)、UE200のアンテナ又はビームのゲイン、UE200のアンテナ素子数の中から選択された1以上のパラメータを含んでもよい。 The specific capability information may include one or more parameters selected from whether UE200 has a directional antenna, whether UE200 is capable of forming a directional beam, the width (half width) of the antenna or beam of UE200, the gain of the antenna or beam of UE200, and the number of antenna elements of UE200.
 ここで、UE200のアンテナ又はビームの幅(半値幅)は、ビーム幅の最大値を含んでもよく、ビーム幅の最小値を含んでもよいUE200のアンテナ又はビームのゲインは、ゲインの最大値を含んでもよく、ゲインの最小値を含んでもよい。 Here, the width (half width) of the antenna or beam of UE200 may include the maximum value of the beam width and may include the minimum value of the beam width, and the gain of the antenna or beam of UE200 may include the maximum value of the gain and may include the minimum value of the gain.
 特定能力情報は、少なくともFR1について報告される。特定能力情報は、FR2について報告されてもよい。 Specific capability information is reported for at least FR1. Specific capability information may also be reported for FR2.
 (4.3)動作例3
 動作例1又は動作例2で説明した特定能力情報のType(granularity)は、以下に示すいずれかであってもよい。具体的には、特定能力情報は、UE200毎に報告されてもよい。特定能力情報は、FR毎に報告されてもよい。特定能力情報は、バンド毎に報告されてもよい。特定能力情報は、バンドコンビネーション毎に報告されてもよい。特定能力情報は、バンド及びバンドコンビネーション毎に報告されてもよい。特定能力情報は、FCPC(Frequency Set Per Cell)毎に報告されてもよい。
(4.3) Operation example 3
The type (granularity) of the specific capability information described in the operation example 1 or operation example 2 may be any of the following. Specifically, the specific capability information may be reported for each UE 200. The specific capability information may be reported for each FR. The specific capability information may be reported for each band. The specific capability information may be reported for each band combination. The specific capability information may be reported for each band and band combination. The specific capability information may be reported for each FCPC (Frequency Set Per Cell).
 (4.4)動作例4
 動作例1又は動作例2で説明した特定能力情報の報告は、以下に示すように実行されてもよい。
(4.4) Operation example 4
The reporting of the specific capability information described in the operation example 1 or operation example 2 may be performed as follows.
 オプション1では、UE200は、ビームフォーミングに関するUE Capability(特定能力情報)を必ず報告してもよい。 In option 1, UE 200 may always report UE Capability (specific capability information) related to beamforming.
 オプション2では、UE200は、UAV機能をサポートするバンドにおいて、ビームフォーミングに関するUE Capability(特定能力情報)を報告してもよい。 In option 2, the UE 200 may report UE Capability (specific capability information) regarding beamforming in bands that support UAV functionality.
 オプション3では、UE200は、UAV機能に関するUE capabilityを報告する場合に、ビームフォーミングに関するUE Capability(特定能力情報)を報告してもよい。言い換えると、UE200は、FR1においてUAV機能をサポートする場合に、UAV機能に関するUE capability及びビームフォーミングに関するUE Capability(特定能力情報)を報告してもよい。 In option 3, when UE200 reports UE capability related to UAV function, it may also report UE capability related to beamforming (specific capability information). In other words, when UE200 supports UAV function in FR1, it may report UE capability related to UAV function and UE capability related to beamforming (specific capability information).
 オプション4では、UE200は、ビームフォーミングに関するUE Capability(特定能力情報)を報告する場合に、UAV機能に関するUE capabilityを報告してもよい。言い換えると、UE200は、指向性ビームの形成をサポートする場合に、UAV機能に関するUE capability及びビームフォーミングに関するUE Capability(特定能力情報)を報告してもよい。 In option 4, UE200 may report UE capability related to UAV functionality when reporting UE capability (specific capability information) related to beamforming. In other words, UE200 may report UE capability related to UAV functionality and UE capability related to beamforming (specific capability information) when supporting the formation of directional beams.
 特に限定されるものではないが、UAV機能に関するUE capabilityは、UE200がUAVであるか否か、UE200がサポートする高度、UAV特有の機能(例えば、高度や飛行経路などの報告能力、UAV identificationのための報知送信能力など)のサポート有無などを含んでもよい。 Although not particularly limited, UE capability relating to UAV functions may include whether UE200 is a UAV, the altitude supported by UE200, whether UAV-specific functions (e.g., the ability to report altitude, flight path, etc., the ability to transmit notifications for UAV identification, etc.) are supported, etc.
 (5)作用及び効果
 実施形態では、UE200は、FR1についてビームフォーミングに関する特定能力情報(UE Capability)をgNB100に送信する。このような構成によれば、FR1におけるUAVを想定した場合において、UE200がビームフォーミングを実行可能であるか否かなどをネットワーク側において把握することができ、UL信号による周辺セル(周辺サイト)への干渉を適切に低減することができる。
(5) Actions and Effects In the embodiment, the UE 200 transmits specific capability information (UE Capability) related to beamforming for FR1 to the gNB 100. According to such a configuration, in the case where a UAV is assumed in FR1, it is possible for the network side to grasp whether the UE 200 is capable of performing beamforming, and it is possible to appropriately reduce interference with neighboring cells (neighboring sites) caused by UL signals.
 (6)その他の実施形態
 以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
(6) Other Embodiments The contents of the present invention have been described above in accordance with the embodiments. However, the present invention is not limited to these descriptions, and it will be obvious to those skilled in the art that various modifications and improvements are possible.
 上述した開示では、NRについて主として説明したが、上述した開示はこれに限定されるものではない。上述した開示はLTEに適用されてもよい。このようなケースにおいて、NG-RANは、E-UTRANと読み替えられてもよく、gNBは、eNBと読み替えられてもよい。上述した開示は、NR及びLTEが混在するケースに適用されてもよい。 In the above disclosure, NR has been mainly described, but the above disclosure is not limited thereto. The above disclosure may be applied to LTE. In such a case, NG-RAN may be read as E-UTRAN, and gNB may be read as eNB. The above disclosure may be applied to a case where NR and LTE are mixed.
 上述した実施形態の説明に用いたブロック構成図(図4及び図5)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 The block diagrams (FIGS. 4 and 5) used to explain the above-mentioned embodiments show functional blocks. These functional blocks (components) are realized by any combination of at least one of hardware and software. Furthermore, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one device that is physically or logically coupled, or may be realized using two or more devices that are physically or logically separated and connected directly or indirectly (e.g., using wires, wirelessly, etc.) and these multiple devices. The functional blocks may be realized by combining the one device or the multiple devices with software.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼ばれる。何れも、上述したとおり、実現方法は特に限定されない。 Functions include, but are not limited to, judgement, determination, judgment, calculation, computation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, election, establishment, comparison, assumption, expectation, regard, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assignment. For example, a functional block (component) that performs the transmission function is called a transmitting unit or transmitter. As mentioned above, there are no particular limitations on the method of realization for any of these.
 さらに、上述したgNB100及びUE200(当該装置)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図7は、当該装置のハードウェア構成の一例を示す図である。図7に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。 Furthermore, the above-mentioned gNB100 and UE200 (the device) may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 7 is a diagram showing an example of the hardware configuration of the device. As shown in FIG. 7, the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, and a bus 1007.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the term "apparatus" can be interpreted as a circuit, device, unit, etc. The hardware configuration of the apparatus may be configured to include one or more of the devices shown in the figure, or may be configured to exclude some of the devices.
 当該装置の各機能ブロック(図4参照)は、当該コンピュータ装置の何れかのハードウェア要素、又は当該ハードウェア要素の組み合わせによって実現される。 Each functional block of the device (see Figure 4) is realized by any hardware element of the computer device, or a combination of the hardware elements.
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Furthermore, each function of the device is realized by loading a specific software (program) onto hardware such as the processor 1001 and memory 1002, causing the processor 1001 to perform calculations, control communications by the communications device 1004, and control at least one of reading and writing data in the memory 1002 and storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。 The processor 1001, for example, runs an operating system to control the entire computer. The processor 1001 may be configured as a central processing unit (CPU) that includes an interface with peripheral devices, a control unit, an arithmetic unit, registers, etc.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 The processor 1001 also reads out programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. The programs used are those that cause a computer to execute at least some of the operations described in the above-mentioned embodiments. Furthermore, the various processes described above may be executed by one processor 1001, or may be executed simultaneously or sequentially by two or more processors 1001. The processor 1001 may be implemented by one or more chips. The programs may be transmitted from a network via a telecommunications line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 Memory 1002 is a computer-readable recording medium and may be composed of, for example, at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), Random Access Memory (RAM), etc. Memory 1002 may also be called a register, cache, main memory, etc. Memory 1002 can store a program (program code), software module, etc. capable of executing a method according to one embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 Storage 1003 is a computer-readable recording medium, and may be, for example, at least one of an optical disk such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, a magneto-optical disk (e.g., a compact disk, a digital versatile disk, a Blu-ray (registered trademark) disk), a smart card, a flash memory (e.g., a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, etc. Storage 1003 may also be referred to as an auxiliary storage device. The above-mentioned recording medium may be, for example, a database, a server, or other suitable medium including at least one of memory 1002 and storage 1003.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。 The communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, etc.
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。 The communication device 1004 may be configured to include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., to realize, for example, at least one of Frequency Division Duplex (FDD) and Time Division Duplex (TDD).
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (e.g., a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may be integrated into one structure (e.g., a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Furthermore, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses between each device.
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Furthermore, the device may be configured to include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA), and some or all of the functional blocks may be realized by the hardware. For example, the processor 1001 may be implemented using at least one of these pieces of hardware.
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 Furthermore, the notification of information is not limited to the aspects/embodiments described in the present disclosure and may be performed using other methods. For example, the notification of information may be performed by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), higher layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB)), other signals, or a combination of these. Furthermore, the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, etc.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in this disclosure may be applied to at least one of systems utilizing Long Term Evolution (LTE), LTE-Advanced (LTE-A), SUPER 3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system (5G), Future Radio Access (FRA), New Radio (NR), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth (registered trademark), or other suitable systems and next generation systems enhanced therefrom. Multiple systems may also be applied in combination (e.g., a combination of at least one of LTE and LTE-A with 5G).
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The processing steps, sequences, flow charts, etc. of each aspect/embodiment described in this disclosure may be reordered unless inconsistent. For example, the methods described in this disclosure present elements of various steps using an example order and are not limited to the particular order presented.
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In this disclosure, certain operations that are described as being performed by a base station may in some cases be performed by its upper node. In a network consisting of one or more network nodes having a base station, it is clear that various operations performed for communication with a terminal may be performed by at least one of the base station and other network nodes other than the base station (such as, but not limited to, an MME or an S-GW). Although the above example shows a case where there is one other network node other than the base station, it may also be a combination of multiple other network nodes (such as an MME and an S-GW).
 情報、信号(情報等)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information, signals (information, etc.) can be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). They may be input and output via multiple network nodes.
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、又は追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。 The input and output information may be stored in a specific location (e.g., memory) or may be managed using a management table. The input and output information may be overwritten, updated, or appended. The output information may be deleted. The input information may be sent to another device.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be based on a value represented by one bit (0 or 1), a Boolean value (true or false), or a numerical comparison (e.g., a comparison with a predetermined value).
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect/embodiment described in this disclosure may be used alone, in combination, or switched depending on the execution. In addition, notification of specific information (e.g., notification that "X is the case") is not limited to being done explicitly, but may be done implicitly (e.g., not notifying the specific information).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received over a transmission medium. For example, if software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave, etc.), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 Note that the terms explained in this disclosure and the terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, at least one of the channel and the symbol may be a signal (signaling). Also, the signal may be a message. Also, the component carrier (CC) may be called a carrier frequency, a cell, a frequency carrier, etc.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 As used in this disclosure, the terms "system" and "network" are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in this disclosure may be represented using absolute values, may be represented using relative values from a predetermined value, or may be represented using other corresponding information. For example, a radio resource may be indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the above-mentioned parameters are not limiting in any respect. Furthermore, the formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure. The various channels (e.g., PUCCH, PDCCH, etc.) and information elements may be identified by any suitable names, and therefore the various names assigned to these various channels and information elements are not limiting in any respect.
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, terms such as "base station (BS)", "wireless base station", "fixed station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", "access point", "transmission point", "reception point", "transmission/reception point", "cell", "sector", "cell group", "carrier", and "component carrier" may be used interchangeably. Base stations may also be referred to by terms such as macrocell, small cell, femtocell, and picocell.
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。 A base station can accommodate one or more (e.g., three) cells (also called sectors). If a base station accommodates multiple cells, the overall coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also provide communication services by a base station subsystem (e.g., a small indoor base station (Remote Radio Head: RRH)).
 「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 The term "cell" or "sector" refers to part or all of the coverage area of a base station and/or a base station subsystem that provides communication services within that coverage.
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, the terms "Mobile Station (MS)", "user terminal", "User Equipment (UE)", "terminal", etc. may be used interchangeably.
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station may also be referred to by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, etc. At least one of the base station and the mobile station may be a device mounted on a moving object, or the moving object itself, etc. The moving object may be a vehicle (e.g., a car, an airplane, etc.), an unmanned moving object (e.g., a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned). At least one of the base station and the mobile station may include a device that does not necessarily move during communication operations. For example, at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Furthermore, the base station in the present disclosure may be interpreted as a mobile station (user terminal, the same applies below). For example, each aspect/embodiment of the present disclosure may be applied to a configuration in which communication between a base station and a mobile station is replaced with communication between multiple mobile stations (which may be called, for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). In this case, the mobile station may be configured to have the functions of a base station. Furthermore, terms such as "uplink" and "downlink" may be interpreted as terms corresponding to communication between terminals (for example, "side"). For example, the uplink channel, downlink channel, etc. may be interpreted as a side channel.
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。 Similarly, the mobile station in this disclosure may be interpreted as a base station. In this case, the base station may be configured to have the functions of the mobile station.
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。 A radio frame may be composed of one or more frames in the time domain. Each of the one or more frames in the time domain may be called a subframe.
 サブフレームはさらに時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A subframe may further be composed of one or more slots in the time domain. A subframe may have a fixed time length (e.g., 1 ms) that is independent of numerology.
 ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel. Numerology may indicate, for example, at least one of the following: Subcarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, Transmission Time Interval (TTI), number of symbols per TTI, radio frame structure, a particular filtering operation performed by the transceiver in the frequency domain, a particular windowing operation performed by the transceiver in the time domain, etc.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may consist of one or more symbols in the time domain (e.g., Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.). A slot may be a numerology-based unit of time.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。 A slot may include multiple minislots. Each minislot may consist of one or multiple symbols in the time domain. A minislot may also be called a subslot. A minislot may consist of fewer symbols than a slot. A PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be called PDSCH (or PUSCH) mapping type A. A PDSCH (or PUSCH) transmitted using a minislot may be called PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 Radio frame, subframe, slot, minislot, and symbol all represent time units for transmitting signals. Radio frame, subframe, slot, minislot, and symbol may each be referred to by a different name that corresponds to the radio frame, subframe, slot, minislot, and symbol.
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a transmission time interval (TTI), multiple consecutive subframes may be called a TTI, or one slot or one minislot may be called a TTI. In other words, at least one of the subframe and the TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (e.g., 1-13 symbols), or a period longer than 1 ms. Note that the unit expressing the TTI may be called a slot, minislot, etc., instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the smallest time unit for scheduling in wireless communication. For example, in an LTE system, a base station schedules each user terminal by allocating radio resources (such as frequency bandwidth and transmission power that can be used by each user terminal) in TTI units. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit for a channel-coded data packet (transport block), a code block, a code word, etc., or may be a processing unit for scheduling, link adaptation, etc. When a TTI is given, the time interval (e.g., the number of symbols) in which a transport block, a code block, a code word, etc. is actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 In addition, when one slot or one minislot is called a TTI, one or more TTIs (i.e., one or more slots or one or more minislots) may be the minimum time unit of scheduling. In addition, the number of slots (minislots) that constitute the minimum time unit of scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI shorter than a normal TTI may be referred to as a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that a long TTI (e.g., a normal TTI, a subframe, etc.) may be interpreted as a TTI having a time length of more than 1 ms, and a short TTI (e.g., a shortened TTI, etc.) may be interpreted as a TTI having a TTI length of 1 ms or more but less than the TTI length of a long TTI.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain. The number of subcarriers included in an RB may be the same regardless of the numerology, and may be, for example, 12. The number of subcarriers included in an RB may be determined based on the numerology.
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。 Furthermore, the time domain of an RB may include one or more symbols and may be one slot, one minislot, one subframe, or one TTI in length. One TTI, one subframe, etc. may each be composed of one or more resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。 In addition, one or more RBs may also be referred to as a physical resource block (PRB), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, an RB pair, etc.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Furthermore, a resource block may be composed of one or more resource elements (RE). For example, one RE may be a radio resource area of one subcarrier and one symbol.
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A Bandwidth Part (BWP), which may also be referred to as a partial bandwidth, may represent a subset of contiguous common resource blocks (RBs) for a given numerology on a given carrier, where the common RBs may be identified by an index of the RB relative to a common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP). One or more BWPs may be configured for a UE within one carrier.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP. Note that "cell," "carrier," etc. in this disclosure may be read as "BWP."
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。 The above-mentioned structures of radio frames, subframes, slots, minislots, and symbols are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of subcarriers included in an RB, as well as the number of symbols in a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 The terms "connected" and "coupled", or any variation thereof, refer to any direct or indirect connection or coupling between two or more elements, and may include the presence of one or more intermediate elements between two elements that are "connected" or "coupled" to each other. The coupling or connection between elements may be physical, logical, or a combination thereof. For example, "connected" may be read as "access". As used in this disclosure, two elements may be considered to be "connected" or "coupled" to each other using at least one of one or more wires, cables, and printed electrical connections, as well as electromagnetic energy having wavelengths in the radio frequency range, microwave range, and optical (both visible and invisible) range, as some non-limiting and non-exhaustive examples.
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal may also be abbreviated as Reference Signal (RS) or referred to as a pilot depending on the applicable standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used in this disclosure, the phrase "based on" does not mean "based only on," unless expressly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 The "means" in the configuration of each of the above devices may be replaced with "part," "circuit," "device," etc.
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to an element using a designation such as "first," "second," etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and a second element does not imply that only two elements may be employed therein or that the first element must precede the second element in some way.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 When the terms "include," "including," and variations thereof are used in this disclosure, these terms are intended to be inclusive, similar to the term "comprising." Additionally, the term "or," as used in this disclosure, is not intended to be an exclusive or.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, where articles have been added through translation, such as a, an, and the in English, this disclosure may include that the noun following these articles is in the plural form.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 As used in this disclosure, the terms "determining" and "determining" may encompass a wide variety of actions. "Determining" and "determining" may include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry (e.g., searching in a table, database, or other data structure), and considering ascertaining as "judging" or "determining." Also, "determining" and "determining" may include receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, accessing (e.g., accessing data in memory), and considering ascertaining as "judging" or "determining." Additionally, "judgment" and "decision" can include considering resolving, selecting, choosing, establishing, comparing, etc., to have been "judged" or "decided." In other words, "judgment" and "decision" can include considering some action to have been "judged" or "decided." Additionally, "judgment (decision)" can be interpreted as "assuming," "expecting," "considering," etc.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In this disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may also mean "A and B are each different from C." Terms such as "separate" and "combined" may also be interpreted in the same way as "different."
 図8は、車両2001の構成例を示す。図8に示すように、車両2001は、駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、左右の前輪2007、左右の後輪2008、車軸2009、電子制御部2010、各種センサ2021~2029、情報サービス部2012と通信モジュール2013を備える。 FIG. 8 shows an example of the configuration of a vehicle 2001. As shown in FIG. 8, the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, an axle 2009, an electronic control unit 2010, various sensors 2021-2029, an information service unit 2012, and a communication module 2013.
 駆動部2002は、例えば、エンジン、モータ、エンジンとモータのハイブリッドで構成される。 The drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
 操舵部2003は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪及び後輪の少なくとも一方を操舵するように構成される。 The steering unit 2003 includes at least a steering wheel (also called a handle) and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
 電子制御部2010は、マイクロプロセッサ2031、メモリ(ROM、RAM)2032、通信ポート(IOポート)2033で構成される。電子制御部2010には、車両に備えられた各種センサ2021~2027からの信号が入力される。電子制御部2010は、ECU(Electronic Control Unit)と呼んでもよい。 The electronic control unit 2010 is composed of a microprocessor 2031, a memory (ROM, RAM) 2032, and a communication port (IO port) 2033. Signals are input to the electronic control unit 2010 from various sensors 2021 to 2027 provided in the vehicle. The electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
 各種センサ2021~2028からの信号としては、モータの電流をセンシングする電流センサ2021からの電流信号、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。 Signals from the various sensors 2021 to 2028 include a current signal from a current sensor 2021 that senses the current of the motor, a rotation speed signal of the front and rear wheels acquired by a rotation speed sensor 2022, an air pressure signal of the front and rear wheels acquired by an air pressure sensor 2023, a vehicle speed signal acquired by a vehicle speed sensor 2024, an acceleration signal acquired by an acceleration sensor 2025, an accelerator pedal depression amount signal acquired by an accelerator pedal sensor 2029, a brake pedal depression amount signal acquired by a brake pedal sensor 2026, a shift lever operation signal acquired by a shift lever sensor 2027, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by an object detection sensor 2028.
 情報サービス部2012は、カーナビゲーションシステム、オーディオシステム、スピーカ、テレビ、ラジオといった、運転情報、交通情報、エンターテイメント情報等の各種情報を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部2012は、外部装置から通信モジュール2013等を介して取得した情報を利用して、車両1の乗員に各種マルチメディア情報及びマルチメディアサービスを提供する。 The information service unit 2012 is composed of various devices, such as a car navigation system, an audio system, speakers, a television, and a radio, for providing various types of information such as driving information, traffic information, and entertainment information, and one or more ECUs for controlling these devices. The information service unit 2012 uses information acquired from external devices via the communication module 2013, etc., to provide various types of multimedia information and multimedia services to the occupants of the vehicle 1.
 運転支援システム部2030は、ミリ波レーダ、LiDAR(Light Detection and Ranging)、カメラ、測位ロケータ(例えば、GNSSなど)、地図情報(例えば、高精細(HD)マップ、自動運転車(AV)マップなど)、ジャイロシステム(例えば、IMU(Inertial Measurement Unit)、INS(Inertial Navigation System)など)、AI(Artificial Intelligence)チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部2030は、通信モジュール2013を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。 The driving assistance system unit 2030 is composed of various devices that provide functions for preventing accidents and reducing the driving burden on the driver, such as a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (e.g., GNSS, etc.), map information (e.g., high definition (HD) map, autonomous vehicle (AV) map, etc.), a gyro system (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chip, and an AI processor, as well as one or more ECUs that control these devices. In addition, the driving assistance system unit 2030 transmits and receives various information via the communication module 2013 to realize driving assistance functions or autonomous driving functions.
 通信モジュール2013は通信ポートを介して、マイクロプロセッサ2031及び車両1の構成要素と通信することができる。例えば、通信モジュール2013は通信ポート2033を介して、車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、左右の前輪2007、左右の後輪2008、車軸2009、電子制御部2010内のマイクロプロセッサ2031及びメモリ(ROM、RAM)2032、センサ2021~2028との間でデータを送受信する。 The communication module 2013 can communicate with the microprocessor 2031 and components of the vehicle 1 via the communication port. For example, the communication module 2013 transmits and receives data via the communication port 2033 between the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, axle 2009, microprocessor 2031 and memory (ROM, RAM) 2032 in electronic control unit 2010, and sensors 2021 to 2028, which are provided on the vehicle 2001.
 通信モジュール2013は、電子制御部2010のマイクロプロセッサ2031によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール2013は、電子制御部2010の内部と外部のどちらにあってもよい。外部装置は、例えば、基地局、移動局等であってもよい。 The communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with an external device. For example, it transmits and receives various information to and from the external device via wireless communication. The communication module 2013 may be located either inside or outside the electronic control unit 2010. The external device may be, for example, a base station, a mobile station, etc.
 通信モジュール2013は、電子制御部2010に入力された電流センサからの電流信号を、無線通信を介して外部装置へ送信する。また、通信モジュール2013は、電子制御部2010に入力された、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者などを検出するための検出信号などについても無線通信を介して外部装置へ送信する。 The communication module 2013 transmits a current signal from the current sensor input to the electronic control unit 2010 to an external device via wireless communication. The communication module 2013 also transmits to an external device via wireless communication the following signals input to the electronic control unit 2010: a front wheel or rear wheel rotation speed signal acquired by a rotation speed sensor 2022, a front wheel or rear wheel air pressure signal acquired by an air pressure sensor 2023, a vehicle speed signal acquired by a vehicle speed sensor 2024, an acceleration signal acquired by an acceleration sensor 2025, an accelerator pedal depression amount signal acquired by an accelerator pedal sensor 2029, a brake pedal depression amount signal acquired by a brake pedal sensor 2026, a shift lever operation signal acquired by a shift lever sensor 2027, and a detection signal for detecting an obstacle, a vehicle, a pedestrian, etc. acquired by an object detection sensor 2028.
 通信モジュール2013は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部2012へ表示する。また、通信モジュール2013は、外部装置から受信した種々の情報をマイクロプロセッサ2031によって利用可能なメモリ2032へ記憶する。メモリ2032に記憶された情報に基づいて、マイクロプロセッサ2031が車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、左右の前輪2007、左右の後輪2008、車軸2009、センサ2021~2028などの制御を行ってもよい。 The communication module 2013 receives various information (traffic information, signal information, vehicle distance information, etc.) transmitted from an external device, and displays it on an information service unit 2012 provided in the vehicle. The communication module 2013 also stores the various information received from the external device in a memory 2032 that can be used by the microprocessor 2031. Based on the information stored in the memory 2032, the microprocessor 2031 may control the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, axles 2009, sensors 2021-2028, and the like provided in the vehicle 2001.
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。  Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described herein. The present disclosure can be implemented in modified and altered forms without departing from the spirit and scope of the present disclosure as defined by the claims. Therefore, the description of the present disclosure is intended as an illustrative example and does not have any limiting meaning with respect to the present disclosure.
 (付記)
 上述した開示は、以下のように表現されてもよい。
(Additional Note)
The above disclosure may be expressed as follows:
 第1の特徴は、第1周波数レンジ及び前記第1周波数レンジよりも高い第2周波数レンジが想定されるネットワークにおいて、上りリンク信号を送信する送信部と、前記第1周波数レンジについてビームフォーミングに関する特定能力情報の報告を実行する制御部と、を備える、端末である。 The first feature is a terminal that includes a transmitter that transmits an uplink signal in a network in which a first frequency range and a second frequency range higher than the first frequency range are assumed, and a control unit that executes a report of specific capability information related to beamforming for the first frequency range.
 第2の特徴は、第1の特徴において、前記制御部は、前記第2周波数レンジについて規定されたビームフォーミングに関する能力情報の少なくとも一部のパラメータと対応するパラメータを前記特定能力情報として報告する、端末である。 The second feature is that in the first feature, the control unit reports, as the specific capability information, parameters that correspond to at least a portion of the parameters of capability information related to beamforming defined for the second frequency range.
 第3の特徴は、第1の特徴において、前記制御部は、ビームフォーミングに関する能力情報として新たに定義される能力情報を前記特定能力情報として報告する、端末である。 The third feature is that in the first feature, the control unit is a terminal that reports capability information newly defined as capability information related to beamforming as the specific capability information.
 第4の特徴は、第1周波数レンジ及び前記第1周波数レンジよりも高い第2周波数レンジが想定されるネットワークにおいて、上りリンク信号を受信する受信部と、前記第1周波数レンジについてビームフォーミングに関する特定能力情報の報告を想定する制御部と、を備える、基地局である。 The fourth feature is a base station in a network in which a first frequency range and a second frequency range higher than the first frequency range are assumed, the base station comprising: a receiver that receives an uplink signal; and a controller that assumes reporting specific capability information related to beamforming for the first frequency range.
 第5の特徴は、端末及び基地局を備え、前記端末は、第1周波数レンジ及び前記第1周波数レンジよりも高い第2周波数レンジが想定されるネットワークにおいて、上りリンク信号を送信する送信部と、前記第1周波数レンジについてビームフォーミングに関する特定能力情報の報告を実行する制御部と、を備える、無線通信システムである。 The fifth feature is a wireless communication system including a terminal and a base station, the terminal including a transmitter that transmits an uplink signal in a network in which a first frequency range and a second frequency range higher than the first frequency range are assumed, and a controller that executes reporting of specific capability information related to beamforming for the first frequency range.
 第6の特徴は、第1周波数レンジ及び前記第1周波数レンジよりも高い第2周波数レンジが想定されるネットワークにおいて、上りリンク信号を送信するステップと、前記第1周波数レンジについてビームフォーミングに関する特定能力情報の報告を実行するステップと、を備える、無線通信方法である。 The sixth feature is a wireless communication method comprising the steps of transmitting an uplink signal in a network in which a first frequency range and a second frequency range higher than the first frequency range are assumed, and executing a report of specific capability information related to beamforming for the first frequency range.
 10 無線通信システム
 20 NG-RAN
 100 gNB
 200 UE
 210 無線信号送受信部
 220 アンプ部
 230 変復調部
 240 制御信号・参照信号処理部
 250 符号化/復号部
 260 データ送受信部
 270 制御部
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス
 2001 車両
 2002 駆動部
 2003 操舵部
 2004 アクセルペダル
 2005 ブレーキペダル
 2006 シフトレバー
 2007 左右の前輪
 2008 左右の後輪
 2009 車軸
 2010 電子制御部
 2012 情報サービス部
 2013 通信モジュール
 2021 電流センサ
 2022 回転数センサ
 2023 空気圧センサ
 2024 車速センサ
 2025 加速度センサ
 2026 ブレーキペダルセンサ
 2027 シフトレバーセンサ
 2028 物体検出センサ
 2029 アクセルペダルセンサ
 2030 運転支援システム部
 2031 マイクロプロセッサ
 2032 メモリ(ROM, RAM)
 2033 通信ポート
10 Wireless Communication Systems 20 NG-RAN
100 gNB
200UE
210 Wireless signal transmitting/receiving unit 220 Amplifier unit 230 Modulation/demodulation unit 240 Control signal/reference signal processing unit 250 Encoding/decoding unit 260 Data transmitting/receiving unit 270 Control unit 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus 2001 Vehicle 2002 Drive unit 2003 Steering unit 2004 Accelerator pedal 2005 Brake pedal 2006 Shift lever 2007 Left and right front wheels 2008 Left and right rear wheels 2009 Axle 2010 Electronic control unit 2012 Information service unit 2013 Communication module 2021 Current sensor 2022 Rotational speed sensor 2023 Air pressure sensor 2024 Vehicle speed sensor 2025 Acceleration sensor 2026 Brake pedal sensor 2027 Shift lever sensor 2028 Object detection sensor 2029 Accelerator pedal sensor 2030 Driving assistance system section 2031 Microprocessor 2032 Memory (ROM, RAM)
2033 communication port

Claims (6)

  1.  第1周波数レンジ及び前記第1周波数レンジよりも高い第2周波数レンジが想定されるネットワークにおいて、上りリンク信号を送信する送信部と、
     前記第1周波数レンジについてビームフォーミングに関する特定能力情報の報告を実行する制御部と、を備える、端末。
    A transmitter that transmits an uplink signal in a network in which a first frequency range and a second frequency range higher than the first frequency range are assumed;
    A terminal comprising: a control unit that performs reporting of specific capability information regarding beamforming for the first frequency range.
  2.  前記制御部は、前記第2周波数レンジについて規定されたビームフォーミングに関する能力情報の少なくとも一部のパラメータと対応するパラメータを前記特定能力情報として報告する、請求項1に記載の端末。 The terminal according to claim 1, wherein the control unit reports, as the specific capability information, parameters corresponding to at least some of the parameters of capability information related to beamforming defined for the second frequency range.
  3.  前記制御部は、ビームフォーミングに関する能力情報として新たに定義される能力情報を前記特定能力情報として報告する、請求項1に記載の端末。 The terminal according to claim 1, wherein the control unit reports capability information newly defined as capability information related to beamforming as the specific capability information.
  4.  第1周波数レンジ及び前記第1周波数レンジよりも高い第2周波数レンジが想定されるネットワークにおいて、上りリンク信号を受信する受信部と、
     前記第1周波数レンジについてビームフォーミングに関する特定能力情報の報告を想定する制御部と、を備える、基地局。
    A receiver that receives an uplink signal in a network in which a first frequency range and a second frequency range higher than the first frequency range are assumed;
    A base station comprising: a control unit that assumes reporting of specific capability information regarding beamforming for the first frequency range.
  5.  端末及び基地局を備え、
     前記端末は、
      第1周波数レンジ及び前記第1周波数レンジよりも高い第2周波数レンジが想定されるネットワークにおいて、上りリンク信号を送信する送信部と、
      前記第1周波数レンジについてビームフォーミングに関する特定能力情報の報告を実行する制御部と、を備える、無線通信システム。
    A terminal and a base station,
    The terminal includes:
    A transmitter that transmits an uplink signal in a network in which a first frequency range and a second frequency range higher than the first frequency range are assumed;
    A wireless communication system comprising: a control unit that executes reporting of specific capability information regarding beamforming for the first frequency range.
  6.  第1周波数レンジ及び前記第1周波数レンジよりも高い第2周波数レンジが想定されるネットワークにおいて、上りリンク信号を送信するステップと、
     前記第1周波数レンジについてビームフォーミングに関する特定能力情報の報告を実行するステップと、を備える、無線通信方法。
    transmitting an uplink signal in a network in which a first frequency range and a second frequency range higher than the first frequency range are assumed;
    and performing reporting of specific capability information regarding beamforming for the first frequency range.
PCT/JP2022/036604 2022-09-29 2022-09-29 Terminal, base station, wireless communication system, and wireless communication method WO2024069901A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/036604 WO2024069901A1 (en) 2022-09-29 2022-09-29 Terminal, base station, wireless communication system, and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/036604 WO2024069901A1 (en) 2022-09-29 2022-09-29 Terminal, base station, wireless communication system, and wireless communication method

Publications (1)

Publication Number Publication Date
WO2024069901A1 true WO2024069901A1 (en) 2024-04-04

Family

ID=90476916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036604 WO2024069901A1 (en) 2022-09-29 2022-09-29 Terminal, base station, wireless communication system, and wireless communication method

Country Status (1)

Country Link
WO (1) WO2024069901A1 (en)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Remaining issues on Rel-15 UE features", 3GPP TSG RAN WG1 MEETING #94BIS R1-1810707, 29 September 2018 (2018-09-29), XP051518111 *
NOKIA. NOKIA SHANGHAI BELL: "Revised WID: NR Support for UAV (Uncrewed Aerial Vehicles) [online]", 3GPP TSG RAN MEETING #97E RP-222171, 5 September 2022 (2022-09-05) *
NTT DOCOMO, INC.: "Discussion on UE capability and RRC signaling for UAV beamforming", 3GPP TSG RAN WG1 #110BIS-E R1-2209928, 30 September 2022 (2022-09-30), XP052259401 *

Similar Documents

Publication Publication Date Title
WO2023162085A1 (en) Communication device and radio communication method
WO2023112180A1 (en) Terminal, base station, radio communication system, and radio communication method
WO2024069901A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2023067750A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2024100735A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2024095494A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2024100731A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2024095483A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2023135637A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2024024096A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2024075299A1 (en) Terminal
WO2024024100A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2024024098A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2024100741A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2024095489A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2024029078A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2024034094A1 (en) Terminal and wireless communication method
WO2024069900A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2023067778A1 (en) Terminal, base station, radio communication system, and radio communication method
WO2024034093A1 (en) Terminal and wireless communication method
WO2023063397A1 (en) Terminal, wireless communication system, and wireless communication method
WO2023127150A1 (en) Terminal, base station, radio communication system, and radio communication method
WO2023210009A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2024100901A1 (en) Base station
WO2023242928A1 (en) Terminal, base station, radio communication system, and radio communication method