WO2024069820A1 - 端末、無線通信方法及び基地局 - Google Patents

端末、無線通信方法及び基地局 Download PDF

Info

Publication number
WO2024069820A1
WO2024069820A1 PCT/JP2022/036304 JP2022036304W WO2024069820A1 WO 2024069820 A1 WO2024069820 A1 WO 2024069820A1 JP 2022036304 W JP2022036304 W JP 2022036304W WO 2024069820 A1 WO2024069820 A1 WO 2024069820A1
Authority
WO
WIPO (PCT)
Prior art keywords
trp
cell
information
cfra
rach
Prior art date
Application number
PCT/JP2022/036304
Other languages
English (en)
French (fr)
Inventor
祐輝 松村
聡 永田
ウェイチー スン
ジン ワン
ラン チン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2022/036304 priority Critical patent/WO2024069820A1/ja
Publication of WO2024069820A1 publication Critical patent/WO2024069820A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • This disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • Non-Patent Document 1 LTE-Advanced (3GPP Rel. 10-14) was specified for the purpose of achieving higher capacity and greater sophistication over LTE (Third Generation Partnership Project (3GPP (registered trademark)) Release (Rel.) 8, 9).
  • LTE 5th generation mobile communication system
  • 5G+ 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • NR New Radio
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • a terminal user terminal, User Equipment (UE)
  • UE User Equipment
  • the issue of how to control the UL transmission arises. If the UL transmission to each transmission/reception point is not appropriately controlled, the quality of communications using multiple transmission/reception points may deteriorate.
  • This disclosure has been made in consideration of these points, and one of its objectives is to provide a terminal, a wireless communication method, and a base station that are capable of communicating appropriately even when communicating using multiple transmission and reception points.
  • a terminal has a receiving unit that receives first information regarding a Contention Free Random Access (CFRA) resource corresponding to a first transmission/reception point (TRP) and second information regarding a CFRA resource corresponding to a second TRP, and a control unit that controls a CFRA procedure in the first TRP based on the first information and controls a CFRA procedure in the second TRP based on the second information.
  • CFRA Contention Free Random Access
  • communication can be performed appropriately even when multiple transmission points are used for communication.
  • FIGS. 1A to 1D are diagrams showing an example of a multi-TRP.
  • 2A and 2B are diagrams illustrating an example of inter-cell mobility.
  • FIG. 3 is a diagram showing an example of switching between a serving cell and an additional cell by L1/L2 signaling.
  • FIG. 4 is a diagram showing an example of configuration example 1-3 when a candidate cell is supported.
  • 5A to 5C are diagrams showing an example of switching between candidate cells/candidate cell groups by L1/L2 signaling in configuration examples 1-3 when candidate cells are supported.
  • FIG. 6 is a diagram showing an example of a timing advance group (TAG) to which cells included in a cell group belong.
  • Figure 7 shows an example of a MAC CE for a timing advance command.
  • FIG. TAG timing advance group
  • FIG. 8 is a diagram showing an example of an RRC information element related to option 1-2.
  • FIG. 9 is a diagram showing another example of an RRC information element related to option 1-2.
  • FIG. 10 is a diagram showing an example of RRC information elements related to options 1-3.
  • FIG. 11 is a diagram showing an example of a priority operation of the RACH according to option 2-2.
  • FIG. 12 is a diagram illustrating an example of a UL time synchronization request according to the third embodiment.
  • FIG. 13 is a diagram showing an example of priority operation of the RACH according to option 7-2.
  • FIG. 14 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 15 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
  • FIG. 15 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
  • FIG. 16 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • FIG. 17 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
  • FIG. 18 is a diagram illustrating an example of a vehicle according to an embodiment.
  • TCI transmission configuration indication state
  • the TCI state may represent that which applies to the downlink signal/channel.
  • the equivalent of the TCI state which applies to the uplink signal/channel may be expressed as a spatial relation.
  • TCI state is information about the Quasi-Co-Location (QCL) of signals/channels and may also be called spatial reception parameters, spatial relation information, etc. TCI state may be set in the UE on a per channel or per signal basis.
  • QCL Quasi-Co-Location
  • QCL is an index that indicates the statistical properties of a signal/channel. For example, if a signal/channel has a QCL relationship with another signal/channel, it may mean that it can be assumed that at least one of the Doppler shift, Doppler spread, average delay, delay spread, and spatial parameters (e.g., spatial Rx parameters) is identical between these different signals/channels (i.e., it is QCL with respect to at least one of these).
  • spatial parameters e.g., spatial Rx parameters
  • the spatial reception parameters may correspond to a reception beam (e.g., a reception analog beam) of the UE, and the beam may be identified based on a spatial QCL.
  • the QCL (or at least one element of the QCL) in this disclosure may be interpreted as sQCL (spatial QCL).
  • QCL types QCL types
  • QCL types A to D QCL types A to D
  • the parameters (which may be called QCL parameters) are as follows: QCL Type A (QCL-A): Doppler shift, Doppler spread, mean delay and delay spread, QCL type B (QCL-B): Doppler shift and Doppler spread, QCL type C (QCL-C): Doppler shift and mean delay; QCL Type D (QCL-D): Spatial reception parameters.
  • QCL Type A QCL-A
  • QCL-B Doppler shift and Doppler spread
  • QCL type C QCL type C
  • QCL Type D QCL Type D
  • the UE's assumption that a Control Resource Set (CORESET), channel or reference signal is in a particular QCL (e.g., QCL type D) relationship with another CORESET, channel or reference signal may be referred to as a QCL assumption.
  • CORESET Control Resource Set
  • QCL QCL type D
  • the UE may determine at least one of a transmit beam (Tx beam) and a receive beam (Rx beam) for a signal/channel based on the TCI condition or QCL assumption of the signal/channel.
  • Tx beam transmit beam
  • Rx beam receive beam
  • the TCI state may be, for example, information regarding the QCL between the target channel (in other words, the reference signal (RS) for that channel) and another signal (e.g., another RS).
  • the TCI state may be set (indicated) by higher layer signaling, physical layer signaling, or a combination of these.
  • target channel/RS target channel/reference signal
  • reference RS reference signal
  • the channel for which the TCI state or spatial relationship is set (specified) may be, for example, at least one of the following: a downlink shared channel (Physical Downlink Shared Channel (PDSCH)), a downlink control channel (Physical Downlink Control Channel (PDCCH)), an uplink shared channel (Physical Uplink Shared Channel (PUSCH)), and an uplink control channel (Physical Uplink Control Channel (PUCCH)).
  • PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • the RS that has a QCL relationship with the channel may be, for example, at least one of a synchronization signal block (SSB), a channel state information reference signal (CSI-RS), a sounding reference signal (SRS), a tracking CSI-RS (also called a tracking reference signal (TRS)), a QCL detection reference signal (also called a QRS), a demodulation reference signal (DMRS), etc.
  • SSB synchronization signal block
  • CSI-RS channel state information reference signal
  • SRS sounding reference signal
  • TRS tracking reference signal
  • QRS QCL detection reference signal
  • DMRS demodulation reference signal
  • An SSB is a signal block that includes at least one of a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), and a Physical Broadcast Channel (PBCH).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • An SSB may also be referred to as an SS/PBCH block.
  • An RS of QCL type X in a TCI state may refer to an RS that has a QCL type X relationship with a certain channel/signal (DMRS), and this RS may be called a QCL source of QCL type X in that TCI state.
  • DMRS channel/signal
  • Multi-TRP In NR, one or more transmission/reception points (TRPs) (multi-TRPs) are considered to perform DL transmission to a UE using one or more panels (multi-panels). It is also considered that a UE performs UL transmission to one or more TRPs.
  • TRPs transmission/reception points
  • multiple TRPs may correspond to the same cell identifier (cell identifier (ID)) or different cell IDs.
  • the cell ID may be a physical cell ID (e.g., PCI) or a virtual cell ID.
  • FIGS 1A-1D show examples of multi-TRP scenarios. In these examples, we assume, but are not limited to, that each TRP is capable of transmitting four different beams.
  • FIG. 1A shows an example of a case where only one TRP (TRP1 in this example) of the multi-TRP transmits to the UE (which may be called single mode, single TRP, etc.).
  • TRP1 transmits both a control signal (PDCCH) and a data signal (PDSCH) to the UE.
  • PDCCH control signal
  • PDSCH data signal
  • single TRP mode may refer to the mode when multi-TRP (mode) is not set.
  • FIG. 1B shows an example of a case where only one TRP (TRP1 in this example) of the multi-TRP transmits a control signal to the UE, and the multi-TRP transmits a data signal (which may be called a single master mode).
  • the UE receives each PDSCH transmitted from the multi-TRP based on one downlink control information (Downlink Control Information (DCI)).
  • DCI Downlink Control Information
  • FIG. 1C shows an example of a case where each of the multi-TRPs transmits a part of a control signal to the UE and the multi-TRP transmits a data signal (which may be called a master-slave mode).
  • TRP1 may transmit part 1 of the control signal (DCI) and TRP2 may transmit part 2 of the control signal (DCI).
  • Part 2 of the control signal may depend on part 1.
  • the UE receives each PDSCH transmitted from the multi-TRP based on these parts of DCI.
  • FIG. 1D shows an example of a case where each of the multi-TRPs transmits a separate control signal to the UE, and the multi-TRP transmits a data signal (which may be called a multi-master mode).
  • a first control signal (DCI) may be transmitted from TRP1
  • a second control signal (DCI) may be transmitted from TRP2.
  • the UE receives each PDSCH transmitted from the multi-TRP based on these DCIs.
  • the DCI may be called a single DCI (S-DCI, single PDCCH). Also, when multiple PDSCHs from a multi-TRP such as that shown in FIG. 1D are scheduled using multiple DCIs, these multiple DCIs may be called multiple DCIs (M-DCI, multiple PDCCHs).
  • Each TRP in a multi-TRP may transmit a different Transport Block (TB)/Code Word (CW)/different layer.
  • TB Transport Block
  • CW Code Word
  • each TRP in a multi-TRP may transmit the same TB/CW/layer.
  • Non-Coherent Joint Transmission is being considered as one form of multi-TRP transmission.
  • TRP1 modulates and maps a first codeword, and transmits a first PDSCH using a first number of layers (e.g., two layers) and a first precoding by layer mapping.
  • TRP2 modulates and maps a second codeword, and transmits a second PDSCH using a second number of layers (e.g., two layers) and a second precoding by layer mapping.
  • multiple PDSCHs (multi-PDSCHs) that are NCJTed may be defined as partially or completely overlapping with respect to at least one of the time and frequency domains.
  • the first PDSCH from the first TRP and the second PDSCH from the second TRP may overlap with each other in at least one of the time and frequency resources.
  • the first PDSCH and the second PDSCH may be assumed to be not quasi-co-located (QCL). Reception of multiple PDSCHs may be interpreted as simultaneous reception of PDSCHs that are not of a certain QCL type (e.g., QCL type D).
  • QCL type D e.g., QCL type D
  • PDSCH transport block (TB) or codeword (CW) repetition across multi-TRP is supported. It is considered that repetition methods (URLLC schemes, e.g., schemes 1, 2a, 2b, 3, 4) across multi-TRP in the frequency domain, layer (spatial) domain, or time domain are supported.
  • URLLC schemes e.g., schemes 1, 2a, 2b, 3, 4
  • multi-PDSCH from multi-TRP is space division multiplexed (SDM).
  • SDM space division multiplexed
  • FDM frequency division multiplexed
  • RV redundancy version
  • the RV may be the same or different for multi-TRP.
  • multiple PDSCHs from multiple TRPs are time division multiplexed (TDM).
  • TDM time division multiplexed
  • multiple PDSCHs from multiple TRPs are transmitted in one slot.
  • multiple PDSCHs from multiple TRPs are transmitted in different slots.
  • Such a multi-TRP scenario allows for more flexible transmission control using channels with better quality.
  • NCJT using multiple TRPs/panels may use high rank.
  • both single DCI single PDCCH, e.g., FIG. 1B
  • multiple DCI multiple PDCCH, e.g., FIG. 1D
  • the maximum number of TRPs may be 2.
  • TCI extension For single PDCCH design (mainly for ideal backhaul), TCI extension is being considered.
  • Each TCI code point in the DCI may correspond to TCI state 1 or 2.
  • the TCI field size may be the same as that of Rel. 15.
  • one TCI state without CORESETPoolIndex (also called TRP Info) is set for one CORESET.
  • a CORESET pool index is set for each CORESET.
  • TRPs transmission/reception points
  • MTRPs multi-TRPs
  • a UE performs UL transmission to one or more TRPs.
  • a UE may receive channels/signals from multiple cells/TRPs (see Figures 2A and 2B).
  • FIG. 2A shows an example of inter-cell mobility (e.g., Single-TRP inter-cell mobility) including non-serving cells.
  • the UE may be configured with one TRP (or single TRP) in each cell.
  • the UE receives channels/signals from the base station/TRP of cell #1, which is the serving cell, and the base station/TRP of cell #3, which is not the serving cell (non-serving cell). For example, this corresponds to a case where the UE switches/switches from cell #1 to cell #3 (e.g., fast cell switch).
  • the TRP of the serving cell may be called a primary TRP (e.g., pTRP).
  • the TRP of the non-serving cell may be called an additional TRP (aTRP).
  • the selection of the port (e.g., antenna port)/TRP may be performed dynamically.
  • the selection of the port (e.g., antenna port)/TRP may be performed based on the TCI state indicated or updated by the DCI/MAC CE.
  • a case is shown in which different physical cell ID (e.g., PCI) settings are supported for cell #1 and cell #3.
  • FIG. 2B shows an example of a multi-TRP scenario (e.g., multi-TRP inter-cell mobility when using multi-TRP).
  • the UE may be configured with multiple (e.g., two) TRPs (or different CORESET pool indices) in each cell.
  • the UE receives channels/signals from TRP#1 and TRP2.
  • the UE receives channels/signals from TRP#1 and TRP#2.
  • TRP#1 corresponds to physical cell ID (PCI)#1
  • TRP#2 corresponds to PCI#2.
  • the multi-TRP (TRP #1, #2) may be connected by an ideal/non-ideal backhaul to exchange information, data, etc.
  • Each TRP of the multi-TRP may transmit the same or different code words (CWs) and the same or different layers.
  • CWs code words
  • NJT non-coherent joint transmission
  • Figure 2B the case where NCJT is performed between TPRs corresponding to different PCIs is shown.
  • the same serving cell setting may be applied/set for TRP #1 and TRP #2.
  • the multiple PDSCHs (multi-PDSCHs) that are NCJTed may be defined as partially or completely overlapping in at least one of the time and frequency domains. That is, the first PDSCH from TRP#1 and the second PDSCH from TRP#2 may overlap in at least one of the time and frequency resources. The first PDSCH and the second PDSCH may be used to transmit the same TB or different TBs.
  • the first PDSCH and the second PDSCH may be assumed to be not quasi-co-located (QCL). Reception of multiple PDSCHs may be interpreted as simultaneous reception of PDSCHs that are not of a certain QCL type (e.g., QCL type D).
  • QCL type D e.g., QCL type D
  • Multiple PDSCHs from a multi-TRP may be scheduled using one DCI (single DCI (S-DCI), single PDCCH) (single master mode).
  • DCI single DCI
  • S-DCI single DCI
  • PDCCH single PDCCH
  • One DCI may be transmitted from one TRP of a multi-TRP.
  • a configuration that utilizes one DCI in a multi-TRP may be referred to as single DCI-based multi-TRP (mTRP/MTRP).
  • Multiple PDSCHs from a multi-TRP may be scheduled using multiple DCIs (multiple DCI (M-DCI), multiple PDCCHs) respectively (multiple master mode). Multiple DCIs may be transmitted respectively from a multi-TRP.
  • M-DCI multiple DCI
  • PDCCHs multiple PDCCHs
  • Multiple DCIs may be transmitted respectively from a multi-TRP.
  • a configuration that utilizes multiple DCIs in a multi-TRP may be called a multi-DCI-based multi-TRP (mTRP/MTRP).
  • CSI feedback may be referred to as separate feedback, separate CSI feedback, etc.
  • Separatate may be interchangeably read as “independent.”
  • Rel. 17 NR it is assumed that the MAC CE/DCI will support beam direction to a TCI state associated with a different PCI.
  • L1/L2 signaling e.g., DCI/MAC CE
  • serving cell switching e.g., instructing a change of serving cell to a cell with a different PCI
  • Figure 3 shows a case where the UE switches cells from a serving cell to an additional cell (also called a candidate cell or target cell) based on a cell switching instruction from the base station.
  • candidate cell In inter-cell mobility, it is also assumed that one or more candidate cells are configured/managed for each serving cell.
  • one or more candidate cells with limited information may be configured (Alt. 1). They may be configured in the same way as the inter-cell beam management (inter-cell BM) of existing systems (e.g., Rel. 17).
  • Inter-cell BM inter-cell beam management
  • a complete configuration (e.g., ServingCellConfig) of one or more candidate cells may be configured and associated with each serving cell (Alt. 2).
  • a carrier aggregation configuration framework e.g., CA configuration framework
  • CHO Conditional Handover
  • CPC Conditional PSCell Change
  • activation/deactivation of candidate cells may be controlled by MAC CE/DCI.
  • At least one of the following configuration examples 1 to 3 may be applied as the configuration of candidate cells (see Figure 4).
  • SpCell#0, SCell#1, and SCell#2 are configured as serving cells, and an example of the configuration/association of candidate cells (or additional cells) to serving cells/cell groups is shown.
  • the following configuration examples 1 to 3 are merely examples, and the number of cells, the association of each cell, etc. are not limited to these and may be changed as appropriate. Alternatively, other configuration examples may be supported/applied in addition to/instead of configuration examples 1 to 3.
  • one or more candidate cells are associated/configured with each serving cell (see Figure 4). Specifically, candidate cells #0-1, #0-2, and #0-3 are associated with SpCell #0, candidate cell #1-1 is associated with SCell #1, and candidate cells #2-1 and #2-2 are associated with SCell #2. Information regarding the associations may be configured/instructed to the UE by the base station via RRC/MAC CE/DCI.
  • a candidate cell is associated/configured with a MAC entity/MCG/SCG (see Figure 4). Specifically, a case where candidate cells #3-#8 are associated with a MAC entity/MCG/SCG is shown. In this case, candidate cells are not associated with each serving cell, but are configured with a MAC entity or a cell group (e.g., MCG/SCG). Information regarding the candidate cell configured for each cell may be configured/instructed to the UE by the base station via RRC/MAC CE/DCI.
  • one or more candidate cell groups may be configured (see FIG. 4). Specifically, a case is shown in which candidate cell group #1 having candidate cells #0-#2, candidate cell group #2 having candidate cells #0 and #1, and candidate cell group #3 having candidate cell #0 are configured.
  • a candidate cell group has one or more candidate cells.
  • a candidate cell included in a candidate cell group may be associated with at least one of the serving cells.
  • Information regarding the candidate cells may be configured/instructed to the UE by the base station via RRC/MAC CE/DCI.
  • L1 beam indication e.g., indication via the TCI status field of the DCI
  • TCI status associated with an additional PCI or additional cell
  • New L1/L2 signals e.g., DCI/MAC CE
  • DCI/MAC CE new L1/L2 signals
  • An implicit indication may mean, for example, that a CORESET is updated by the MAC CE to a TCI state associated with an additional PCI.
  • An explicit indication may mean that the cell switch is directly indicated by the DCI/MAC CE.
  • a specific candidate cell may be designated as a serving cell (or switching with the serving cell may be instructed) via L1/L2 signaling.
  • Figure 5A shows a case where candidate cell #0-2 becomes an SpCell of the MCG/SCG (SpCell #0 and candidate cell #0-2 are switched) via L1/L2 signaling. It also shows a case where candidate cell #2-1 becomes an SCell of the MCG/SCG (SCell #2 and candidate cell #2-1 are switched) via L1/L2 signaling.
  • a specific candidate cell may be designated as a serving cell (or switching to the serving cell may be instructed) via L1/L2 signaling.
  • Figure 5B shows a case where candidate cell #4 becomes the SpCell of the MCG/SCG (SpCell #0 and candidate cell #4 are switched) via L1/L2 signaling.
  • a specific candidate cell group (or one or more candidate cells included in the specific candidate cell group) may be changed/updated to a serving cell group via L1/L2 signaling.
  • FIG. 5C shows a case where candidate cell group #1 (or candidate cells #0-#2 included in candidate cell group #1) becomes the serving cell group (the serving cell group and candidate cell group #1 are switched) via L1/L2 signaling.
  • the distance between the UE and each TRP may be different.
  • the multiple TRPs may be included in the same cell (e.g., a serving cell).
  • one TRP among the multiple TRPs may correspond to a serving cell and the other TRPs may correspond to a non-serving cell. In this case, it is also assumed that the distance between each TRP and the UE may be different.
  • the transmission timing of UL (Uplink) channels and/or UL signals (UL channels/signals) is adjusted by the Timing Advance (TA).
  • TA Timing Advance
  • the reception timing of UL channels/signals from different user terminals is adjusted by the radio base station (TRP: Transmission and Reception Point, also known as gNB: gNodeB, etc.).
  • the UE may control the timing of UL transmission by applying a timing advance (multiple timing advances) for each pre-configured timing advance group (TAG: Timing Advance Group).
  • TAG Timing Advance Group
  • Timing Advance Groups classified by transmission timing are supported.
  • the UE may control the UL transmission timing for each TAG, assuming that the same TA offset (or TA value) is applied to each TAG.
  • the TA offset may be set independently for each TAG.
  • the UE can independently adjust the transmission timing of cells belonging to each TAG, allowing the radio base station to align the timing of receiving uplink signals from the UE even when multiple cells are used.
  • TAGs may be configured by higher layer parameters.
  • the same timing advance value may be applied to serving cells belonging to the same TAG.
  • the timing advance group that includes the SpCell of a MAC entity may be called the Primary Timing Advance Group (PTAG), and other TAGs may be called Secondary Timing Advance Groups (STAGs).
  • PTAG Primary Timing Advance Group
  • STAGs Secondary Timing Advance Groups
  • FIG. 6 shows a case where three TAGs are configured for a cell group including SpCell and SCell#1 to #4.
  • SpCell and SCell#1 belong to the first TAG (PTAG or TAG#0)
  • SCell#2 and SCell#3 belong to the second TAG (TAG#1)
  • SCell#4 belongs to the third TAG (TAG#2).
  • the timing advance command may be notified to the UE using a MAC control element (e.g., MAC CE).
  • the TA command is a command indicating the transmission timing value of the uplink channel and is included in the MAC control element.
  • the TA command is signaled from the radio base station to the UE at the MAC layer.
  • the UE controls a predetermined timer (e.g., TA timer) based on the reception of the TA command.
  • the MAC CE for the timing advance command may include a field for a timing advance group index (e.g., TAG ID) and a field for the timing advance command (see Figure 7).
  • TAG-IDs TAG-IDs
  • TAG-IDs TAG-IDs
  • different TRPs corresponding to a certain cell will share a common TAG.
  • a MAC CE for a TA command will be applied to only one TRP, or that a MAC CE for a TA command will be applied to multiple TRPs.
  • TRPs corresponding to different cells use different TAGs/share a common TAG.
  • TRPs corresponding to different cells use different TAGs/share a common TAG.
  • a time alignment timer (e.g., timeAlignmentTimer) may be configured for each TRP.
  • the time alignment timer may control the time at which the MAC entity considers a serving cell belonging to the associated TAG to be uplink time aligned.
  • the time alignment timer may be configured by the RRC to maintain UL time alignment.
  • a time alignment timer (e.g., timeAligusementTimer) may be maintained for UL time alignment.
  • the time alignment timer (e.g., timeAligusementTimer) is per TAG.
  • the UE receives a MAC CE (e.g., TAC MAC CE) for a timing advance command, it starts or restarts the time alignment timer associated with the indicated timing advance group (e.g., TAG), respectively.
  • the MAC entity receives the TAC MAC CE and applies a timing advance command for the indicated TAG or starts or restarts a time alignment timer associated with the indicated TAG if a predefined value (N TA ) is maintained between the indicated TAG, which may be the timing advance between DL and UL.
  • N TA a predefined value
  • TAG timing advance group
  • STAG secondary timing advance groups
  • Rel. 17 supports the application of a specific PTAG operation when a timing advance timer corresponding to a PTAG expires, and the application of a specific STAG operation when a timing advance timer corresponding to a STAG expires.
  • the following operations e.g., a specified PTAG operation/a specified STAG operation
  • the following operations e.g., a specified PTAG operation/a specified STAG operation
  • Predetermined PTAG Operation If a time alignment timer is associated with the PTAG, Flushes (discards) all HARQ buffers of all serving cells. - If configured, inform RRC to release PUCCH for all serving cells. - If set, notify RRC to release SRS. Clear all configured DL allocations and configured UL allocations. Clear the PUSCH resources for semi-persistent CSI reporting. - Allow all time alignment timers to expire while running. - Maintain NTAs for all TAGs.
  • Predetermined STAG Actions If a time alignment timer is associated with a STAG, then for all serving cells belonging to that STAG: Flush (discard) all HARQ buffers. - If configured, notify RRC to release PUCCH. - If set, notify RRC to release SRS. Clear all configured DL and UL allocations. Clear the PUSCH resources for semi-persistent CSI reporting. - Maintain the NTA of the TAG.
  • TRP control for each TRP/panel As described above, when communication is performed using multiple transmission/reception points (e.g., TRPs)/panels, it is also possible to control the timing advance (TA) for each TRP/panel.
  • TRPs transmission/reception points
  • TA timing advance
  • contention-based random access (CBRA)) and contention-free random access (CFRA)) are considered/determined on a TRP or TRP TA (TA per TRP) basis.
  • the UE controls UL transmission in each TRP based on the timing advance corresponding to each TRP (or the timing advance group to which each TRP belongs).
  • TRP index/TRP ID may be set/instructed to the UE from the base station using RRC/MAC CE/downlink control information.
  • the UE may receive related information regarding the timing advance corresponding to each TRP (e.g., information regarding the TA value/timing advance command/time alignment timer, etc.) from the base station.
  • Each embodiment of the present disclosure may be applied to at least one of intra-cell multi-TRP (Intra-cell M-TRP) and inter-cell multi-TRP (Inter-cell M-TRP).
  • Intrtra-cell M-TRP Intrtra-cell M-TRP
  • Inter-cell M-TRP Inter-cell M-TRP
  • multiple TRPs may be associated with the same cell ID.
  • the cell ID may be a physical cell ID (PCI).
  • multiple TRPs may be associated with different cell IDs (e.g., PCIs).
  • cell IDs e.g., PCIs
  • two TRPs may be interpreted as two TRPs associated with two PCIs, respectively.
  • each TRP may belong to a different TAG.
  • Multiple TRPs e.g., two TRPs
  • a TAG may contain multiple TRPs from multiple serving cells. All TRPs/serving cells in a TAG apply/maintain the same timing advance (TA)/same time alignment timer.
  • TA timing advance
  • a TAG may include one or more sub-TAGs.
  • two TRPs of a serving cell may belong to two sub-TAGs each and one TAG.
  • a sub-TAG may include multiple TRPs from multiple serving cells. All TRPs/serving cells in a sub-TAG apply/maintain the same timing advance (TA)/same time alignment timer.
  • TA timing advance
  • a TA may be applied for each TRP (or an instruction may be given on a TRP TA basis). For example, at least one of the following options may be applied:
  • a different TAG-ID may be set for each TRP, and a different MAC CE for TA command may be set for each TRP.
  • Each TAG may maintain a time alignment timer for UL time alignment.
  • Different TRPs may share a TAG.
  • a MAC CE for a TA command may only apply to one TRP.
  • the UE applies different TAs to other TRPs.
  • the UE may adjust the TA value for other TRPs (e.g., TRP#1) by a TA offset (TA_TRP_offset) based on the TA for TRP#0 (TA_TRP#0).
  • TRP#1 TA_TRP_offset
  • the MAC CE for the TA command may apply to multiple serving TRPs for the UE.
  • MAC CEs for TA commands received on a TRP/CW/PDSCH/DMRS port group may apply to the same TRP/CW/PDSCH/DMRS port group of the TAG.
  • Each TRP/CW/PDSCH/DMRS port group of the TAG maintains a time alignment timer for UL time alignment.
  • multiple timing advances will be supported in a multi-TRP (e.g., a multi-TRP using multiple DCI).
  • a multi-TRP e.g., two timing advances
  • multiple (e.g., two) timing advances may be supported for a multi-TRP (e.g., two TRPs) using multiple DCI.
  • the application of multiple timing advances to a multi-TRP may be supported in intra-cell/inter-cell multi-DCI multi-TRP scenarios, and may be supported in multiple frequency ranges (e.g., FR1 and FR2).
  • TRP TA TRP TA
  • the existing RACH procedure at any given time in the MAC entity, there is only one RACH procedure in progress. If the UE is triggered to perform multiple (e.g., two) RACH procedures, it is up to the UE implementation to decide how to handle this. In other words, there has been insufficient consideration given to the behavior when multiple (e.g., two) RACH procedures are triggered for multiple (e.g., two) TRPs.
  • the UE may trigger a RACH procedure for that one TRP.
  • the UE may request TRP synchronization for the other TRPs via other UL signals (e.g., Scheduling Request (SR)/MAC CE).
  • SR Scheduling Request
  • MAC CE MAC CE
  • timing advance commands indicated in a given MAC CE e.g., MAC RAR
  • the inventors therefore came up with a method to solve the above problem.
  • A/B and “at least one of A and B” may be interpreted as interchangeable. Also, in this disclosure, “A/B/C” may mean “at least one of A, B, and C.”
  • Radio Resource Control RRC
  • RRC parameters RRC parameters
  • RRC messages higher layer parameters, fields, information elements (IEs), settings, etc.
  • IEs information elements
  • CE Medium Access Control
  • update commands activation/deactivation commands, etc.
  • higher layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or any combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), etc.
  • the broadcast information may be, for example, a Master Information Block (MIB), a System Information Block (SIB), Remaining Minimum System Information (RMSI), Other System Information (OSI), etc.
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Remaining Minimum System Information
  • OSI System Information
  • the physical layer signaling may be, for example, Downlink Control Information (DCI), Uplink Control Information (UCI), etc.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • index identifier
  • indicator indicator
  • resource ID etc.
  • sequence list, set, group, cluster, subset, etc.
  • TRP
  • the spatial relationship information identifier (ID) (TCI state ID) and the spatial relationship information (TCI state) may be read as interchangeable.
  • ID spatial relationship information
  • TCI state and TCI may be read as interchangeable.
  • TRP CORESET pool index (CORESETPoolIndex)
  • CORESETPoolIndex ID related to TRP
  • TAG ID ID related to TRP
  • TCI state group ID related to TRP
  • TAG ID ID related to TRP
  • TCI state group ID related to TRP
  • TAG ID ID related to TRP
  • TCI state group ID related to TRP
  • TAG ID ID related to TRP
  • TCI state group TCI state group
  • spatial relationship group QCL source RS group
  • DL RS group DL RS group
  • path loss RS group path loss RS group
  • PCI for inter-cell multi-TRP
  • being associated with different TRPs being associated with different CORESET pool indices (CORESETPoolIndex), being associated with different TRP IDs, being associated with different IDs related to TRPs, being associated with different TAG IDs, being associated with different TCI state groups, being associated with different spatial relationship groups, being associated with different QCL source RS groups, being associated with different DL RS groups, being associated with different path loss RS groups, being associated with different PCIs (for inter-cell multi-TRP) may be read as interchangeable.
  • CORESETPoolIndex CORESET pool indices
  • Each embodiment of the present disclosure may be applied to at least one of intra-cell multi-TRP and inter-cell multi-TRP.
  • intra-cell multi-TRP may mean that the activated TCI states of multiple (e.g., two) TRPs are associated with the same PCI.
  • inter-cell multi-TRP may mean that the activated TCI states of multiple (e.g., two) TRPs are associated with different PCIs.
  • multiple (e.g., two) TRPs may mean multiple (e.g., two) TRPs associated with multiple (e.g., two) PCIs.
  • CFRA resources are provided in the RACH configuration (rach-ConfigDedicated).
  • CFRA resources associated with the SSB are explicitly provided in the RACH configuration (rach-ConfigDedicated) and at least one associated SSB is available whose RSRP (SS-RSRP) exceeds a certain threshold (rsrp-ThresholdSSB), the UE selects one SSB whose SS-RSRP exceeds a certain threshold (rsrp-ThresholdSSB).
  • the UE then sets a random access preamble index (ra-PreambleIndex) corresponding to the selected SSB.
  • ra-PreambleIndex a random access preamble index
  • the CFRA resource associated with the CSI-RS is explicitly provided in the RACH configuration (rach-ConfigDedicated) and at least one CSI-RS is available among the associated CSI-RSs whose RSRP (CSI-RSRP) exceeds a certain threshold (rsrp-ThresholdCSI-RS), the UE selects one CSI-RS whose CSI-RSRP exceeds a certain threshold (rsrp-ThresholdCSI-RS).
  • the UE then sets a random access preamble index (ra-PreambleIndex) corresponding to the selected CSI-RS.
  • ra-PreambleIndex a random access preamble index
  • the UE may receive information regarding the RACH resources corresponding to each TRP. The UE may then control the RACH procedure in each TRP based on the information.
  • the UE may determine one or more RACH resources according to certain rules/conditions.
  • the RACH resource may be a RACH resource in a CFRA for each TRP.
  • the RACH resource in a CFRA may be referred to as a CFRA resource.
  • the particular rule/condition may be at least one of options 1-1 to 1-3 below.
  • one (common) set (parameters) of CFRA resources may be configured in the RACH configuration (e.g., rach-ConfigDedicated).
  • the one (common) set may be, for example, at least one of a parameter indicating an SSB resource list (e.g., ssb-ResourceList), a parameter indicating a PRACH mask index for random access (RA) resource selection (e.g., ra-ssb-OccasionMaskIndex), a parameter indicating a CSI-RS resource list (e.g., csi-rs-ResourceList), and a parameter indicating a threshold for CSI-RS (e.g., rsrp-ThresholdCSI-RS).
  • a parameter indicating an SSB resource list e.g., ssb-ResourceList
  • a parameter indicating a PRACH mask index for random access (RA) resource selection e.g., ra-ssb-OccasionMaskIndex
  • a parameter indicating a CSI-RS resource list e.g., csi-rs-ResourceList
  • Each index related to the TRP may be associated with at least one of an SSB, a CSI-RS, a random access preamble index (e.g., ra-PreambleIndex), and a PRACH occasion.
  • a CSI-RS e.g., CSI-RS
  • a random access preamble index e.g., ra-PreambleIndex
  • the index for the TRP may be indicated by the PDCCH, or the index for the TRP may be associated with the CORESET/TCI state of the PDCCH.
  • the RA resource may be determined based on the SSB/CSI-RS/ra-PreambleIndex/PRACH occasion associated with the index related to the TRP (or may be selected from among the SSB/CSI-RS/ra-PreambleIndex/PRACH occasion).
  • the index related to the TRP may be indicated by the PDCCH or may be an index related to the TRP associated with the PDCCH.
  • the method for selecting random access resources from SSB/CSI-RS/ra-PreambleIndex/PRACH occasions may be the same as the rules in existing systems (e.g., Rel. 17 and earlier).
  • the random access resource may be determined based on (or selected from) the SSB/CSI-RS/ra-PreambleIndex/PRACH occasion associated with the TRP.
  • the method for selecting random access resources from SSB/CSI-RS/ra-PreambleIndex/PRACH occasions may be the same as the rules in existing systems (e.g., Rel. 17 and earlier).
  • a UE may be configured with multiple (e.g., two) sets (parameters) of CFRA resources in a RACH configuration (e.g., rach-ConfigDedicated) for multiple (e.g., two) TRPs.
  • a UE may be configured with parameters related to CFRA resources for a first TRP and parameters related to CFRA resources for a second TRP separately.
  • the set may be, for example, at least one of a parameter indicating an SSB resource list (e.g., ssb-ResourceList), a parameter indicating a PRACH mask index for random access (RA) resource selection (e.g., ra-ssb-OccasionMaskIndex), a parameter indicating a CSI-RS resource list (e.g., csi-rs-ResourceList), and a parameter indicating a threshold for CSI-RS (e.g., rsrp-ThresholdCSI-RS).
  • a parameter indicating an SSB resource list e.g., ssb-ResourceList
  • a parameter indicating a PRACH mask index for random access (RA) resource selection e.g., ra-ssb-OccasionMaskIndex
  • a parameter indicating a CSI-RS resource list e.g., csi-rs-ResourceList
  • the UE may be configured with at least one of the following parameters: a parameter indicating an SSB resource list (e.g., ssb-ResourceList), a parameter indicating a PRACH mask index for random access (RA) resource selection (e.g., ra-ssb-OccasionMaskIndex), a parameter indicating a CSI-RS resource list (e.g., csi-rs-ResourceList), and a parameter indicating a threshold for CSI-RS (e.g., rsrp-ThresholdCSI-RS).
  • a parameter indicating an SSB resource list e.g., ssb-ResourceList
  • a parameter indicating a PRACH mask index for random access (RA) resource selection e.g., ra-ssb-OccasionMaskIndex
  • a parameter indicating a CSI-RS resource list e.g., csi-rs-ResourceList
  • Figure 8 is a diagram showing an example of an RRC information element related to option 1-2.
  • CFRA resources are set separately for the first TRP and the second TRP.
  • Figure 8 is written using Abstract Syntax Notation One (ASN.1) notation (this is merely an example).
  • the parameters included in the SSB-related parameters (ssb) and CSI-RS-related parameters (csi-rs) in the parameters (resources) indicating the resources of the CFRA include parameters for the first TRP and parameters for the second TRP.
  • FIG. 8 shows ssb-ResourceList, ra-ssb-OccasionMaskIndex, csi-rs-ResourceList, and rsrp-ThresholdCSI-RS as parameters for the first TRP.
  • FIG. 8 also shows ssb-ResourceList-for TRP2-r18, ra-ssb-OccasionMaskIndex-for TRP2-r18, csi-rs-ResourceList-for TRP2-r18, and rsrp-ThresholdCSI-RS-for TRP2-r18 as parameters for the second TRP.
  • the UE determines the CFRA resource for the first TRP based on the parameters for the first TRP, and determines the CFRA resource for the second TRP based on the parameters for the second TRP.
  • Figure 9 is a diagram showing another example of RRC information elements related to option 1-2.
  • FIG 9 similar to Figure 8 above, an example is shown in which CFRA resources are set separately for the first TRP and the second TRP.
  • Figure 9 is written using Abstract Syntax Notation One (ASN.1) notation (this is merely one example).
  • parameters (resources) indicating the resources of the CFRA are specified for the first TRP and parameters for the second TRP.
  • resources is shown as a parameter for the first TRP
  • resources-for TRP2-r18 is shown as a parameter for the second TRP.
  • the UE determines the CFRA resource for the first TRP based on the parameters for the first TRP, and determines the CFRA resource for the second TRP based on the parameters for the second TRP.
  • multiple sets (parameters) of CFRA resources may be configured in the RACH configuration (e.g., rach-ConfigDedicated) for multiple PCIs.
  • Parameters related to CFRA may be set for each PCI.
  • the PCI may be, for example, at least one of the PCI of the serving cell and the PCI of a non-serving cell (additional PCI).
  • the CFRA-related parameters may be any parameters included in the CFRA parameters in the RACH configuration (e.g., rach-ConfigDedicated).
  • the CFRA-related parameters may be, for example, at least one (or all) of a parameter indicating an RA opportunity for the CFRA (e.g., occasions), a parameter indicating a setting of a random access opportunity for the CFRA (e.g., rach-ConfigGeneric), a parameter indicating the number of SSBs per RACH opportunity (e.g., ssb-perRACH-Occasion), a parameter indicating a resource for the CFRA (e.g., resources), a parameter indicating an SSB resource list (e.g., ssb-ResourceList), a parameter indicating a PRACH mask index for RA resource selection (e.g., ra-ssb-OccasionMaskIndex), a parameter indicating a CSI-RS resource list (e.g., csi
  • Options 1-3 may be applied to inter-cell multi-TRP (inter-cell M-TRP). Options 1-3 may also be applied in mobility (specified in Rel. 18).
  • inter-cell M-TRP (specified in Rel. 17), up to seven additional PCIs are configured and the TCI state of different PCIs can be changed in the MAC CE. For this reason, it is desirable to be able to configure the RACH of multiple (e.g., all) PCIs through RRC signaling.
  • Figure 10 is a diagram showing an example of RRC information elements related to options 1-3.
  • CFRA resources are set separately for each PCI.
  • Figure 10 is written using Abstract Syntax Notation One (ASN.1) notation (this is merely an example).
  • a CFRA-related parameter (CFRA) corresponding to the PCI of the serving cell a CFRA-related parameter (CFRA-for non serving cell 1-r18) corresponding to the PCI of the first non serving cell, and a CFRA-related parameter (CFRA-for non serving cell N-r18) corresponding to the PCI of the Nth non serving cell (N is any integer) are shown.
  • CFRA CFRA-related parameter
  • N a CFRA-related parameter corresponding to the PCI of the serving cell
  • N is any integer
  • the UE may determine the CFRA resources based on the RACH settings corresponding to the PCI.
  • FIG. 10 shows a parameter (CFRA-for non serving cell N-r18) related to the CFRA corresponding to the PCI of the Nth (N is any integer) non serving cell as an example, but parameters related to the CFRA corresponding to the PCI of the second, third, ... non serving cells may be specified.
  • N is any integer
  • a CFRA may be triggered for one TRP.
  • a CFRA may be triggered for one TRP, which may mean, for example, that one TRP of a serving cell is in a "non-synchronized" state and/or that a CFRA is triggered to establish time alignment for one TRP of a serving cell.
  • the UE may select/determine the random access resource from among the SSB/CSI-RS/ra-PreambleIndex/PRACH Occasion associated with that TRP and provided in the RACH configuration (e.g., rach-ConfigDedicated).
  • a TRP being "asynchronous" may mean that a time alignment timer associated with the TRP (e.g., a timeAlignmentTimer, or a timeAlignmentTimer associated with the TAG to which the TRP belongs) has expired.
  • a time alignment timer associated with the TRP e.g., a timeAlignmentTimer, or a timeAlignmentTimer associated with the TAG to which the TRP belongs
  • the CFRA resource for each TRP can be appropriately determined.
  • Second Embodiment In the existing RACH procedure, at any given time in the MAC entity, there is one ongoing RACH procedure. If the UE is triggered to multiple (e.g., two) RACH procedures, it is up to the UE implementation how to handle it.
  • a new (second) RACH procedure may be triggered in a MAC entity while a (first) RACH procedure is ongoing.
  • the UE may receive a configuration for the new RACH procedure to be triggered.
  • the first and second RACH procedures may be associated with different TRPs.
  • multiple (two) RACH procedures associated with different TRPs may mean at least one of the following: - PDCCH orders for multiple RACH procedures each indicate a different TRP. - PDCCH orders for multiple RACH procedures are associated with different TRPs. - RACH resources (e.g., SSB/CSI-RS/preamble index/PRACH occasion) of multiple RACH procedures are associated with different TRPs. - Multiple RACH procedures are triggered due to "non-synchronized" states of different TRPs. - Multiple RACH procedures are triggered to establish time alignment for different TRPs.
  • the UE may follow at least one of options 2-1 and 2-2 below.
  • the UE may decide whether to continue the first RACH procedure or to initiate a second RACH procedure.
  • the decision may be up to the UE implementation.
  • the UE may decide whether to continue the first RACH procedure or to start the second RACH procedure based on certain rules/conditions.
  • the UE may prioritize RACH procedures associated with a particular TRP.
  • Option 2-2 can be broadly divided into the following options 2-2-1 to 2-2-4.
  • a particular TRP may be, for example, a TRP with a particular TRP ID.
  • the particular TRP ID may be, for example, the lowest (or highest) TRP ID.
  • the particular TRP ID may be, for example, a TRP ID whose value is 0 (or 1).
  • a particular TRP may be, for example, a TRP associated with a particular PCI.
  • the particular PCI may be, for example, the PCI of the serving cell or any additional PCI.
  • a particular TRP may be, for example, a TRP associated with a particular TAG.
  • the particular TAG may be, for example, a PTAG or a STAG.
  • Each TRP may be assigned an index related to priority.
  • the UE may prioritize RACH procedures associated with a particular TRP based on a priority index.
  • the particular TRP may be, for example, a TRP to which a higher (or lower) priority index is set.
  • a higher priority index value may indicate a higher priority
  • a lower priority index value may indicate a higher priority.
  • prioritizing a RACH procedure associated with a particular TRP may mean that in a MAC entity, if a higher priority RACH procedure is already in progress and a lower priority RACH procedure is newly triggered, the UE continues the ongoing higher priority RACH procedure.
  • prioritizing a RACH procedure associated with a particular TRP may mean that, in a MAC entity, if a lower priority RACH procedure is already in progress and a new higher priority RACH procedure is triggered, the UE stops the ongoing lower priority RACH procedure and starts a new higher priority RACH procedure.
  • FIG. 11 is a diagram showing an example of the priority operation of the RACH related to option 2-2.
  • the example shown in FIG. 11 shows a case where a RACH procedure for a first TRP (TRP#1) is in progress and another RACH procedure for a second TRP (TRP#2) is triggered in the middle of the procedure.
  • TRP#1 a RACH procedure for a first TRP
  • TRP#2 another RACH procedure for a second TRP
  • TRP#1 if TRP#1 is prioritized, the ongoing RACH procedure for TRP#1 is maintained and other RACH procedures for TRP#2 are not handled by the UE.
  • the RACH procedures can be processed appropriately.
  • the UE may trigger a RACH procedure for that one TRP.
  • the UE may request TRP synchronization for the other TRPs via other UL signals (e.g., Scheduling Request (SR)/MAC CE).
  • SR Scheduling Request
  • MAC CE MAC CE
  • the particular UL signal may be, for example, a Scheduling Request (SR)/MAC CE.
  • SR Scheduling Request
  • the UE may send the request to the NW if certain conditions are met.
  • the particular condition may be based, for example, on at least one of the (UL) synchronization status per TRP and the establishment of time alignment per TRP.
  • the UE may request UL time synchronization of the TRP using a specific UL signal. Also, if the UE determines that it is necessary to establish time alignment of (at least) one TRP of the serving cell, the UE may request UL time synchronization of the TRP using a specific UL signal.
  • the UE may be configured with (dedicated) SR/PUCCH resources for the TRP UL time synchronization request.
  • the (dedicated) SR/PUCCH resource may be configured per TRP/TAG.
  • the particular UL signal is a MAC CE
  • at least one of the following information may be included in the MAC CE: - TRP index for asynchronous TRPs. • Cell index of asynchronous TRP. - TAG index of asynchronous TRP.
  • a TRP being asynchronous may mean that a time alignment timer (e.g., timeAlignmentTimer) associated with the TRP expires.
  • a time alignment timer e.g., timeAlignmentTimer
  • the UE may or may not receive a response signal to the request using a specific DL signal (e.g., PDCCH/PDSCH).
  • a specific DL signal e.g., PDCCH/PDSCH
  • the UE may assume/determine that the target TRP will be in "synchronized" state after a certain period of time has elapsed after sending the UL time synchronization request.
  • the UE may also assume/judge that the target TRP will be in a "synchronized" state after a certain period of time has elapsed after receiving a response signal to the request.
  • the specific period may be specified in advance in the specifications, may be notified to the UE by higher layer signaling (RRC/MAC CE), may be instructed to the UE by DCI, or may be determined based on reported UE capability information.
  • RRC/MAC CE higher layer signaling
  • FIG. 12 is a diagram showing an example of a UL time synchronization request according to the third embodiment.
  • the UE determines that (at least) one TRP of the serving cell is "asynchronous," the UE transmits a UL time synchronization request to the NW.
  • the third embodiment may only be applied in the cases described below: - One TRP among the multiple TRPs of the serving cell is asynchronous and the other TRPs are synchronous (i.e., if all of the multiple TRPs are asynchronous, the UE may trigger RACH without applying this embodiment).
  • An asynchronous TRP belongs to a specific cell (e.g., SCell).
  • An asynchronous TRP belongs to a specific TAG (e.g., STAG).
  • Asynchronous TRP belongs to a specific cell (e.g., a non-serving cell (a cell associated with the PCI of a non-serving cell)).
  • the third embodiment may be applied in at least one of the following cases: when the UE wants (or needs) to establish time alignment of one TRP of a cell; when the UE determines that it is "asynchronous” with respect to at least one TRP of a cell; and when the UE determines that it is "synchronous" with respect to one TRP of a cell and "asynchronous" with respect to another TRP.
  • a request for UL time synchronization in response to TRP asynchronous operation can be appropriately transmitted.
  • the fourth embodiment describes a method for determining a TRP to which a timing advance command (TAC (e.g., one TAC)) indicated by a random access response (RAR) is applied when the TAC is applied to one TRP of a serving cell.
  • TAC timing advance command
  • RAR random access response
  • the UE may receive a TAC in the RAR for a serving cell with multi-TRP configured. If two TAs for the multi-TRP are supported, the UE may apply the TAC indicated in the RAR to any of the TRPs of the serving cell.
  • the TRP (e.g., one TRP) to which the TAC indicated in the RAR applies may be determined based on at least one of options 4-1 to 4-3 below.
  • a TRP index may be associated with a particular CORESET/TCI state.
  • the particular CORESET/TCI state may be the CORESET/TCI state of the PDCCH that schedules the RAR.
  • the TAC contained in the RAR may be applied to the TRP of the TRP index associated with a particular CORESET/TCI state.
  • a PDCCH that schedules an RAR may refer to a PDCCH that transmits a DCI format (DCI format 1_0) in which the CRC is scrambled by the corresponding RA-RNTI within a window controlled by higher layers that the UE attempts to detect in response to a PRACH transmission.
  • DCI format 1_0 DCI format 1_0
  • a TRP index may be associated with a particular TCI state.
  • the particular TCI state may be the TCI state of the PDSCH transmitting the RAR.
  • the TAC contained in the RAR may be applied to the TRP of the TRP index associated with a particular TCI state.
  • the TRP to which the TAC applies may be predefined in the specifications.
  • the UE may determine that the TAC applies to a TRP associated with a particular TAG.
  • the particular TAG may be a TAG with a lower (or higher) TAG ID.
  • the particular TAG may be the PTAG (or the STAG).
  • the above options to be applied may be determined based on the type of RACH. For example, different options among the above options may be applied to the RACH triggered by the PDCCH order and the RACH triggered by the UE, or a common option may be applied.
  • applying a TAC to a TRP may mean applying the TAC to a TAG associated with that TRP.
  • the TAC in the MAC RAR may apply to multiple (two, both) TRPs.
  • the TAC in the MAC RAR may apply to one TRP determined by at least one of the above options.
  • the TRP to which the TAC is applied can be appropriately determined.
  • the MAC entity determines that the time alignment timer (timeAlignmentTimer) associated with that SCell has expired.
  • the MAC entity does not perform UL transmissions other than the transmission of the random access preamble and message A (MSG A) in the serving cell.
  • MSG A random access preamble and message A
  • the UE may determine that a time alignment timer (e.g., timeAlignmentTimer) associated with the TRP of the serving cell has expired.
  • a time alignment timer e.g., timeAlignmentTimer
  • the first condition may be, for example, when the MAC entity stops UL transmission of the SCell because at least one of the maximum UL transmission timing difference between the TAGs of the MAC entity and the maximum UL transmission timing difference between the TAGs of any MAC entity of the UE is exceeded.
  • the serving cell may be, for example, a PCell/PSCell/SCell.
  • the UE may decide not to perform a particular UL transmission associated with one TRP of the serving cell.
  • the second condition may be that the time alignment timer associated with the TAG to which the serving cell's TRP belongs is not running and a configured grant-based small data transmission (CG-SDT) procedure is not in progress.
  • CG-SDT grant-based small data transmission
  • the particular UL transmission may be an UL transmission other than the transmission of a random access preamble and a message A (MSG A).
  • the fifth embodiment even when using multi-TRP and TA for each TRP, it is possible to extend the existing specification operation and control UL transmission appropriately.
  • the UE may be configured with inter-cell multi-TRP.
  • the UE may receive information regarding the RACH resources corresponding to each candidate cell. The UE may then control the RACH procedure in each candidate cell based on the information.
  • the UE may determine one or more RACH resources according to certain rules/conditions.
  • the RACH resource may be a RACH resource in the CFRA for each candidate cell.
  • the particular rule/condition may be at least one of options 6-1 and 6-2 below.
  • one (common) set (parameters) of CFRA resources may be configured in the RACH configuration (e.g., rach-ConfigDedicated).
  • the one (common) set (parameters) of CFRA resources may be a set (parameters) for multiple (e.g., all) cells including the serving cell and one or more candidate cells.
  • the one (common) set may be, for example, at least one of a parameter indicating an SSB resource list (e.g., ssb-ResourceList), a parameter indicating a PRACH mask index for random access (RA) resource selection (e.g., ra-ssb-OccasionMaskIndex), a parameter indicating a CSI-RS resource list (e.g., csi-rs-ResourceList), and a parameter indicating a threshold for CSI-RS (e.g., rsrp-ThresholdCSI-RS).
  • a parameter indicating an SSB resource list e.g., ssb-ResourceList
  • a parameter indicating a PRACH mask index for random access (RA) resource selection e.g., ra-ssb-OccasionMaskIndex
  • a parameter indicating a CSI-RS resource list e.g., csi-rs-ResourceList
  • Each cell index may be associated with at least one of an SSB, a CSI-RS, a random access preamble index (e.g., ra-PreambleIndex), and a PRACH opportunity.
  • a CSI-RS e.g., CSI-RS
  • a random access preamble index e.g., ra-PreambleIndex
  • a UE may be configured with multiple sets (parameters) of CFRA resources in the RACH configuration (e.g., rach-ConfigDedicated) for multiple candidate cells.
  • Parameters related to CFRA may be set for each candidate cell.
  • the CFRA-related parameters may be any parameters included in the CFRA parameters in the RACH configuration (e.g., rach-ConfigDedicated).
  • the CFRA-related parameters may be, for example, at least one (or all) of a parameter indicating an RA opportunity for the CFRA (e.g., occasions), a parameter indicating a setting of a random access opportunity for the CFRA (e.g., rach-ConfigGeneric), a parameter indicating the number of SSBs per RACH opportunity (e.g., ssb-perRACH-Occasion), a parameter indicating a resource for the CFRA (e.g., resources), a parameter indicating an SSB resource list (e.g., ssb-ResourceList), a parameter indicating a PRACH mask index for RA resource selection (e.g., ra-ssb-OccasionMaskIndex), a parameter indicating a CSI-RS resource list (e.g., csi
  • a candidate cell may be a cell related to the serving cell/additional cell or may be the same/different cell as the serving cell.
  • a CFRA may be triggered for one cell.
  • a CFRA may be triggered for one cell, which may mean, for example, that the cell (including the serving cell/additional cell) is in a "non-synchronized" state and/or that a CFRA is triggered to establish time alignment for the cell (including the serving cell/additional cell).
  • the UE may select/determine the random access resource from among the SSB/CSI-RS/ra-PreambleIndex/PRACH occasions associated with that cell and provided in the RACH configuration (e.g., rach-ConfigDedicated).
  • the RACH configuration e.g., rach-ConfigDedicated
  • a cell being "unsynchronized” may mean that a time alignment timer associated with the cell (e.g., timeAlignmentTimer, or the timeAlignmentTimer associated with the TAG to which the cell belongs) has expired.
  • a time alignment timer associated with the cell e.g., timeAlignmentTimer, or the timeAlignmentTimer associated with the TAG to which the cell belongs
  • Seventh embodiment modification of the second embodiment
  • the seventh embodiment an example in which the second embodiment is applied to inter-cell mobility will be described. Specifically, the operation (extended function) of a UE when multiple RACH procedures are triggered will be described.
  • the UE may be configured with inter-cell multi-TRP.
  • a new (second) RACH procedure may be triggered in a MAC entity while a (first) RACH procedure is ongoing.
  • the first and second RACH procedures may be associated with different cells (e.g., serving/additional cells).
  • multiple RACH procedures associated with different cells may mean at least one of the following: - PDCCH orders for multiple RACH procedures each indicate a different cell. - PDCCH orders of multiple RACH procedures are associated with different cells. - RACH resources (e.g. SSB/CSI-RS/preamble index/PRACH occasion) of multiple RACH procedures are associated with different cells. - Multiple RACH procedures are triggered due to "non-synchronized" conditions in different cells. - Multiple RACH procedures are triggered to establish time alignment for different cells.
  • the UE may follow at least one of options 7-1 and 7-2 below.
  • the UE may decide whether to continue the first RACH procedure or to initiate a second RACH procedure.
  • the decision may be up to the UE implementation.
  • the UE may decide whether to continue the first RACH procedure or to start the second RACH procedure based on certain rules/conditions.
  • the UE may prioritize RACH procedures associated with a particular cell.
  • Option 7-2 can be broadly divided into the following options 7-2-1 to 7-2-4.
  • a particular cell may be, for example, a cell having a particular cell index.
  • the cell index may be, for example, the lowest (or highest) cell index.
  • the particular cell may be, for example, a serving cell.
  • the UE may prioritize the RACH procedure associated with the serving cell.
  • the UE may prioritize the RACH procedure for the TRP associated with the serving cell.
  • a particular cell may be, for example, a cell associated with a particular TAG.
  • the particular TAG may be, for example, a PTAG or a STAG.
  • the UE may prioritize the RACH procedure for cells associated with a particular TAG.
  • the UE may prioritize the RACH procedure for TRPs related to cells associated with a particular TAG.
  • Each cell may be assigned an index related to its priority.
  • the UE may prioritize RACH procedures associated with a particular cell based on a priority index.
  • the particular cell may be, for example, a cell to which a higher (or lower) priority index is set.
  • a higher priority index value may indicate a higher priority
  • a lower priority index value may indicate a higher priority.
  • prioritizing a RACH procedure associated with a particular cell may mean that in a MAC entity, if a higher priority RACH procedure is already in progress and a lower priority RACH procedure is newly triggered, the UE continues the ongoing higher priority RACH procedure.
  • prioritizing a RACH procedure associated with a particular cell may mean that, in a MAC entity, if a lower priority RACH procedure is already in progress and a new higher priority RACH procedure is triggered, the UE stops the ongoing lower priority RACH procedure and starts a new higher priority RACH procedure.
  • FIG. 13 is a diagram showing an example of the priority operation of the RACH according to option 7-2.
  • the example shown in FIG. 13 shows a case in which a RACH procedure for a first cell (cell #1) is in progress and another RACH procedure for a second cell (cell #2) is triggered in the middle of the procedure.
  • the RACH procedures can be processed appropriately.
  • the UE may be configured with inter-cell multi-TRP.
  • the UE may request UL time synchronization of a cell (e.g., a cell including a serving cell/additional cell) from the NW (e.g., a base station) using a specific UL signal.
  • a cell e.g., a cell including a serving cell/additional cell
  • NW e.g., a base station
  • the UE may request UL time synchronization of the TRP from the network (NW, e.g., base station) using a specific UL signal if certain conditions are met.
  • NW e.g., base station
  • the case where the particular condition is satisfied may be based on, for example, at least one of the (UL) synchronization status for each TRP and the establishment of time alignment for each TRP.
  • the UE may request UL time synchronization of the TRP using a specific UL signal. Also, if the UE determines that it is necessary to establish time alignment of one TRP of a cell, the UE may request UL time synchronization of the TRP using a specific UL signal.
  • the particular UL signal may be, for example, a Scheduling Request (SR)/MAC CE.
  • SR Scheduling Request
  • the UE may send the request to the NW if certain conditions are met.
  • the particular condition may be based, for example, on at least one of the following: per-cell (UL) synchronization status and the establishment of per-cell time alignment.
  • UL per-cell
  • the particular condition may be, for example, when the cell (synchronization status) is "asynchronous."
  • the UE may request UL time synchronization of the cell using a specific UL signal.
  • the UE may be configured with (dedicated) SR/PUCCH resources for requesting UL time synchronization of the cell.
  • the (dedicated) SR/PUCCH resource may be configured per cell/TAG.
  • the particular UL signal is a MAC CE
  • at least one of the following information may be included in the MAC CE: ⁇ The cell index of the asynchronous cell. - The TAG index associated with the unsynchronized cell.
  • a cell being asynchronous may mean that a time alignment timer (e.g., timeAlignmentTimer) associated with the cell or the TAG of the cell has expired.
  • a time alignment timer e.g., timeAlignmentTimer
  • the UE may or may not receive a response signal to the request using a specific DL signal (e.g., PDCCH/PDSCH).
  • a specific DL signal e.g., PDCCH/PDSCH
  • the UE may assume/determine that the target TRP will be in "synchronized" state after a certain period of time has elapsed after sending the UL time synchronization request.
  • the UE may also assume/judge that the target TRP will be in a "synchronized" state after a certain period of time has elapsed after receiving a response signal to the request.
  • the specific period may be specified in advance in the specifications, may be notified to the UE by higher layer signaling (RRC/MAC CE), may be instructed to the UE by DCI, or may be determined based on reported UE capability information.
  • RRC/MAC CE higher layer signaling
  • the eighth embodiment may be applied only in cases where the unsynchronized cell is a specific cell (e.g., a non-serving cell).
  • any information may be notified to the UE (from a network (NW) (e.g., a base station (BS))) (in other words, any information is received from the BS by the UE) using physical layer signaling (e.g., DCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel (e.g., PDCCH, PDSCH, reference signal), or a combination thereof.
  • NW network
  • BS base station
  • the MAC CE may be identified by including a new Logical Channel ID (LCID) in the MAC subheader that is not specified in existing standards.
  • LCID Logical Channel ID
  • the notification When the notification is made by a DCI, the notification may be made by a specific field of the DCI, a Radio Network Temporary Identifier (RNTI) used to scramble Cyclic Redundancy Check (CRC) bits assigned to the DCI, the format of the DCI, etc.
  • RNTI Radio Network Temporary Identifier
  • CRC Cyclic Redundancy Check
  • notification of any information to the UE in the above-mentioned embodiments may be performed periodically, semi-persistently, or aperiodically.
  • notification of any information from the UE (to the NW) may be performed using physical layer signaling (e.g., UCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel (e.g., PUCCH, PUSCH, PRACH, reference signal), or a combination thereof.
  • physical layer signaling e.g., UCI
  • higher layer signaling e.g., RRC signaling, MAC CE
  • a specific signal/channel e.g., PUCCH, PUSCH, PRACH, reference signal
  • the MAC CE may be identified by including a new LCID in the MAC subheader that is not specified in existing standards.
  • the notification may be transmitted using PUCCH or PUSCH.
  • notification of any information from the UE may be performed periodically, semi-persistently, or aperiodically.
  • At least one of the above-mentioned embodiments may be applied when a specific condition is satisfied, which may be specified in a standard or may be notified to a UE/BS using higher layer signaling/physical layer signaling.
  • At least one of the above-described embodiments may be applied only to UEs that have reported or support a particular UE capability.
  • the specific UE capabilities may indicate at least one of the following: Supporting specific processing/operations/control/information for at least one of the above embodiments; Supporting multiple (e.g., two) TAs for multi-TRP; Supporting multiple (e.g., two) TAs for intra-cell M-TRP; Supporting multiple (e.g., two) TAs for inter-cell M-TRP; Supporting L1/L2 inter-cell mobility.
  • the above-mentioned specific UE capabilities may be capabilities that are applied across all frequencies (commonly regardless of frequency), capabilities per frequency (e.g., one or a combination of a cell, band, band combination, BWP, component carrier, etc.), capabilities per frequency range (e.g., Frequency Range 1 (FR1), FR2, FR3, FR4, FR5, FR2-1, FR2-2), capabilities per subcarrier spacing (SubCarrier Spacing (SCS)), or capabilities per Feature Set (FS) or Feature Set Per Component-carrier (FSPC).
  • FR1 Frequency Range 1
  • FR2 FR2, FR3, FR4, FR5, FR2-1, FR2-2
  • SCS subcarrier Spacing
  • FS Feature Set
  • FSPC Feature Set Per Component-carrier
  • the specific UE capabilities may be capabilities that are applied across all duplexing methods (commonly regardless of the duplexing method), or may be capabilities for each duplexing method (e.g., Time Division Duplex (TDD) and Frequency Division Duplex (FDD)).
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the UE configures/activates/triggers specific information related to the above-mentioned embodiments (or performs the operations of the above-mentioned embodiments) by higher layer signaling/physical layer signaling.
  • the specific information may be information indicating the activation of multiple TAs for multi-TRP, information indicating the activation of multiple TAs for intra-cell multi-TRP, information indicating the activation of multiple TAs for inter-cell multi-TRP, information indicating the activation of L1/L2 inter-cell mobility, any RRC parameter for a specific release (e.g., Rel. 18/19), etc.
  • the UE may, for example, apply Rel. 15/16 operations.
  • Appendix A With respect to one embodiment of the present disclosure, the following invention is noted.
  • Appendix A-1 A receiving unit that receives first information on a resource of a Contention Free Random Access (CFRA) corresponding to a first transmission/reception point (TRP) and second information on a resource of the CFRA corresponding to a second TRP;
  • Appendix A-2 The terminal according to Appendix A-1, wherein the first information and the second information are common information.
  • Appendix A-3 The terminal according to Appendix A-1 or Appendix A-2, wherein the first information and the second information are different pieces of information each relating to a different TRP.
  • Appendix A-4 the first information corresponds to a first cell, the second information corresponds to a second cell;
  • the control unit is a terminal according to any one of Supplementary Note A-1 to Supplementary Note A-3 that controls a CFRA procedure in an inter-cell multi-TRP.
  • a receiving unit that receives a setting for a second random access channel (RACH) procedure corresponding to a second transmission/reception point (TRP) when a first RACH procedure corresponding to a first transmission/reception point (TRP) is set;
  • a terminal having a control unit that determines, based on a specific condition, whether to maintain the first RACH procedure or to stop the first RACH procedure and start the second RACH procedure.
  • RACH random access channel
  • Appendix B-2 The terminal described in Appendix B-1, in which the control unit determines whether to maintain the first RACH procedure or to stop the first RACH procedure and start the second RACH procedure based on an ID related to a specific TRP.
  • Appendix B-3 The control unit determines whether to maintain the first RACH procedure or to stop the first RACH procedure and start the second RACH procedure based on a TRP associated with a specific physical cell ID.
  • Appendix B-4 The control unit determines whether to maintain the first RACH procedure or to stop the first RACH procedure and start the second RACH procedure based on a TRP associated with a specific timing advance group.
  • Appendix C-1 A transmitter that transmits a UL time synchronization request for a transmission/reception point (TRP) using a specific uplink (UL) signal based on at least one of a synchronization status for each transmission/reception point (TRP) and an establishment of time alignment for each TRP; A terminal having a control unit that determines that multiple TRPs are synchronized after a specific period of time has elapsed after transmitting the UL signal.
  • the specific UL signal is a scheduling request; The terminal according to Appendix C-1, wherein the control unit determines resources for the scheduling request for each TRP or for each timing advance group.
  • the particular UL signal is a Medium Access Control (MAC) control element;
  • MAC Medium Access Control
  • the MAC control element includes at least one of an index relating to a TRP of an asynchronous TRP, a cell index of the asynchronous TRP, and an index of a timing advance group of the asynchronous TRP.
  • the control unit further controls reception of a timing advance command (TAC) included in a random access response (RAR); A terminal described in any of Supplementary Notes C-1 to C-3, which determines the TRP to which the TAC is applied based on at least one of a control resource set or Transmission Configuration Indication (TCI) state associated with a physical downlink control channel that schedules the TAC, a TCI state of a physical downlink shared channel that transmits the RAR, and a specific timing advance group.
  • TAC timing advance command
  • RAR random access response
  • TCI Transmission Configuration Indication
  • Appendix D A receiving unit that receives a configuration of an inter-cell multi-transmission/reception point (TRP) and receives first information regarding a resource of a Contention Free Random Access (CFRA) corresponding to a first candidate cell and second information regarding a resource of the CFRA corresponding to a second candidate cell; A terminal having a control unit that controls a CFRA procedure in the first candidate cell based on the first information and controls a CFRA procedure in the second candidate cell based on the second information.
  • TRP inter-cell multi-transmission/reception point
  • CFRA Contention Free Random Access
  • a terminal having a control unit that controls a CFRA procedure in the first candidate cell based on the first information and controls a CFRA procedure in the second candidate cell based on the second information.
  • the receiving unit further receives a setting for a second random access channel (RACH) procedure corresponding to the second TRP when a first RACH procedure corresponding to the first TRP is set;
  • the control unit further determines, based on a specific condition, whether to maintain the first RACH procedure or to stop the first RACH procedure and start the second RACH procedure.
  • Appendix D-4 The terminal according to any one of Supplementary Note D-1 to Supplementary Note D-3, wherein the control unit controls transmission of a UL time synchronization request for a cell based on a synchronization status of the cell.
  • Wired communication system A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
  • communication is performed using any one of the wireless communication methods according to the above embodiments of the present disclosure or a combination of these.
  • FIG. 14 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 (which may simply be referred to as system 1) may be a system that realizes communication using Long Term Evolution (LTE) specified by the Third Generation Partnership Project (3GPP), 5th generation mobile communication system New Radio (5G NR), or the like.
  • LTE Long Term Evolution
  • 3GPP Third Generation Partnership Project
  • 5G NR 5th generation mobile communication system New Radio
  • the wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC may include dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E-UTRA Dual Connectivity (NE-DC)), etc.
  • RATs Radio Access Technologies
  • MR-DC may include dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E-UTRA Dual Connectivity (NE-DC)), etc.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E-UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN).
  • the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 may support dual connectivity between multiple base stations within the same RAT (e.g., dual connectivity in which both the MN and SN are NR base stations (gNBs) (NR-NR Dual Connectivity (NN-DC))).
  • dual connectivity in which both the MN and SN are NR base stations (gNBs) (NR-NR Dual Connectivity (NN-DC))).
  • gNBs NR base stations
  • N-DC Dual Connectivity
  • the wireless communication system 1 may include a base station 11 that forms a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) that are arranged within the macrocell C1 and form a small cell C2 that is narrower than the macrocell C1.
  • a user terminal 20 may be located within at least one of the cells. The arrangement and number of each cell and user terminal 20 are not limited to the embodiment shown in the figure. Hereinafter, when there is no need to distinguish between the base stations 11 and 12, they will be collectively referred to as base station 10.
  • the user terminal 20 may be connected to at least one of the multiple base stations 10.
  • the user terminal 20 may utilize at least one of carrier aggregation (CA) using multiple component carriers (CC) and dual connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • Macro cell C1 may be included in FR1
  • small cell C2 may be included in FR2.
  • FR1 may be a frequency band below 6 GHz (sub-6 GHz)
  • FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
  • the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the multiple base stations 10 may be connected by wire (e.g., optical fiber conforming to the Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (e.g., NR communication).
  • wire e.g., optical fiber conforming to the Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication e.g., NR communication
  • base station 11 which corresponds to the upper station
  • IAB Integrated Access Backhaul
  • base station 12 which corresponds to a relay station
  • the base station 10 may be connected to the core network 30 directly or via another base station 10.
  • the core network 30 may include at least one of, for example, an Evolved Packet Core (EPC), a 5G Core Network (5GCN), a Next Generation Core (NGC), etc.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the core network 30 may include network functions (Network Functions (NF)) such as, for example, a User Plane Function (UPF), an Access and Mobility management Function (AMF), a Session Management Function (SMF), a Unified Data Management (UDM), an Application Function (AF), a Data Network (DN), a Location Management Function (LMF), and Operation, Administration and Maintenance (Management) (OAM).
  • NF Network Functions
  • UPF User Plane Function
  • AMF Access and Mobility management Function
  • SMF Session Management Function
  • UDM Unified Data Management
  • AF Application Function
  • DN Data Network
  • LMF Location Management Function
  • OAM Operation, Administration and Maintenance
  • the user terminal 20 may be a terminal that supports at least one of the communication methods such as LTE, LTE-A, and 5G.
  • a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the radio access method may also be called a waveform.
  • other radio access methods e.g., other single-carrier transmission methods, other multi-carrier transmission methods
  • a downlink shared channel (Physical Downlink Shared Channel (PDSCH)) shared by each user terminal 20, a broadcast channel (Physical Broadcast Channel (PBCH)), a downlink control channel (Physical Downlink Control Channel (PDCCH)), etc. may be used as the downlink channel.
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • an uplink shared channel (Physical Uplink Shared Channel (PUSCH)) shared by each user terminal 20, an uplink control channel (Physical Uplink Control Channel (PUCCH)), a random access channel (Physical Random Access Channel (PRACH)), etc. may be used as an uplink channel.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • SIB System Information Block
  • PDSCH User data, upper layer control information, System Information Block (SIB), etc.
  • SIB System Information Block
  • PUSCH User data, upper layer control information, etc.
  • MIB Master Information Block
  • PBCH Physical Broadcast Channel
  • Lower layer control information may be transmitted by the PDCCH.
  • the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information for at least one of the PDSCH and the PUSCH.
  • DCI Downlink Control Information
  • the DCI for scheduling the PDSCH may be called a DL assignment or DL DCI
  • the DCI for scheduling the PUSCH may be called a UL grant or UL DCI.
  • the PDSCH may be interpreted as DL data
  • the PUSCH may be interpreted as UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH.
  • the CORESET corresponds to the resources to search for DCI.
  • the search space corresponds to the search region and search method of PDCCH candidates.
  • One CORESET may be associated with one or multiple search spaces. The UE may monitor the CORESET associated with a search space based on the search space configuration.
  • a search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that the terms “search space,” “search space set,” “search space setting,” “search space set setting,” “CORESET,” “CORESET setting,” etc. in this disclosure may be read as interchangeable.
  • the PUCCH may transmit uplink control information (UCI) including at least one of channel state information (CSI), delivery confirmation information (which may be called, for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and a scheduling request (SR).
  • UCI uplink control information
  • CSI channel state information
  • HARQ-ACK Hybrid Automatic Repeat reQuest ACKnowledgement
  • ACK/NACK ACK/NACK
  • SR scheduling request
  • the PRACH may transmit a random access preamble for establishing a connection with a cell.
  • downlink, uplink, etc. may be expressed without adding "link.”
  • various channels may be expressed without adding "Physical” to the beginning.
  • a synchronization signal (SS), a downlink reference signal (DL-RS), etc. may be transmitted.
  • a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DMRS), a positioning reference signal (PRS), a phase tracking reference signal (PTRS), etc. may be transmitted.
  • the synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS).
  • a signal block including an SS (PSS, SSS) and a PBCH (and a DMRS for PBCH) may be called an SS/PBCH block, an SS Block (SSB), etc.
  • the SS, SSB, etc. may also be called a reference signal.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS uplink reference signal
  • DMRS may also be called a user equipment-specific reference signal (UE-specific Reference Signal).
  • the base station 15 is a diagram showing an example of a configuration of a base station according to an embodiment.
  • the base station 10 includes a control unit 110, a transceiver unit 120, a transceiver antenna 130, and a transmission line interface 140.
  • the control unit 110, the transceiver unit 120, the transceiver antenna 130, and the transmission line interface 140 may each be provided in one or more units.
  • this example mainly shows the functional blocks of the characteristic parts of this embodiment, and the base station 10 may also be assumed to have other functional blocks necessary for wireless communication. Some of the processing of each part described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be configured from a controller, a control circuit, etc., which are described based on a common understanding in the technical field to which this disclosure pertains.
  • the control unit 110 may control signal generation, scheduling (e.g., resource allocation, mapping), etc.
  • the control unit 110 may control transmission and reception using the transceiver unit 120, the transceiver antenna 130, and the transmission path interface 140, measurement, etc.
  • the control unit 110 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transceiver unit 120.
  • the control unit 110 may perform call processing of communication channels (setting, release, etc.), status management of the base station 10, management of radio resources, etc.
  • the transceiver unit 120 may include a baseband unit 121, a radio frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transceiver unit 120 may be composed of a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transceiver circuit, etc., which are described based on a common understanding in the technical field to which the present disclosure relates.
  • the transceiver unit 120 may be configured as an integrated transceiver unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the reception unit may be composed of a reception processing unit 1212, an RF unit 122, and a measurement unit 123.
  • the transmitting/receiving antenna 130 can be configured as an antenna described based on common understanding in the technical field to which this disclosure pertains, such as an array antenna.
  • the transceiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transceiver 120 may receive the above-mentioned uplink channel, uplink reference signal, etc.
  • the transceiver 120 may form at least one of the transmit beam and the receive beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), etc.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transceiver 120 may perform Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (e.g., RLC retransmission control), Medium Access Control (MAC) layer processing (e.g., HARQ retransmission control), etc., on data and control information obtained from the control unit 110, and generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control HARQ retransmission control
  • the transceiver 120 may perform transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, Discrete Fourier Transform (DFT) processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
  • transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, Discrete Fourier Transform (DFT) processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
  • channel coding which may include error correction coding
  • DFT Discrete Fourier Transform
  • IFFT Inverse Fast Fourier Transform
  • the transceiver unit 120 may perform modulation, filtering, amplification, etc., on the baseband signal to a radio frequency band, and transmit the radio frequency band signal via the transceiver antenna 130.
  • the transceiver unit 120 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transceiver antenna 130.
  • the transceiver 120 may apply reception processing such as analog-to-digital conversion, Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal, and acquire user data, etc.
  • reception processing such as analog-to-digital conversion, Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal, and acquire user data, etc.
  • FFT Fast Fourier Transform
  • IDFT Inverse Discrete Fourier Transform
  • the transceiver 120 may perform measurements on the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurements, Channel State Information (CSI) measurements, etc. based on the received signal.
  • the measurement unit 123 may measure received power (e.g., Reference Signal Received Power (RSRP)), received quality (e.g., Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)), signal strength (e.g., Received Signal Strength Indicator (RSSI)), propagation path information (e.g., CSI), etc.
  • RSRP Reference Signal Received Power
  • RSSI Received Signal Strength Indicator
  • the measurement results may be output to the control unit 110.
  • the transmission path interface 140 may transmit and receive signals (backhaul signaling) between devices included in the core network 30 (e.g., network nodes providing NF), other base stations 10, etc., and may acquire and transmit user data (user plane data), control plane data, etc. for the user terminal 20.
  • devices included in the core network 30 e.g., network nodes providing NF
  • other base stations 10, etc. may acquire and transmit user data (user plane data), control plane data, etc. for the user terminal 20.
  • the transmitter and receiver of the base station 10 in this disclosure may be configured with at least one of the transmitter/receiver 120, the transmitter/receiver antenna 130, and the transmission path interface 140.
  • the transceiver unit 120 may transmit first information regarding a Contention Free Random Access (CFRA) resource corresponding to a first transceiver point (TRP) and second information regarding a CFRA resource corresponding to a second TRP.
  • the control unit 110 may use the first information to instruct a CFRA procedure in the first TRP and use the second information to instruct a CFRA procedure in the second TRP (first embodiment).
  • CFRA Contention Free Random Access
  • the transceiver unit 120 may transmit settings for a second random access channel (RACH) procedure corresponding to a second TRP when a first RACH procedure corresponding to a first transmission/reception point (TRP) is set.
  • the control unit 110 may use specific conditions to instruct the first RACH procedure to be maintained, or to stop the first RACH procedure and start the second RACH procedure (second embodiment).
  • the transceiver unit 120 may receive a UL time synchronization request for a transceiver point (TRP) using a specific uplink (UL) signal transmitted based on at least one of the synchronization status for each transceiver point (TRP) and the establishment of time alignment for each TRP.
  • the control unit 110 may control the synchronization of multiple TRPs after a specific period of time has elapsed after receiving the UL signal (third embodiment).
  • the transceiver unit 120 may transmit an inter-cell multi-transmission/reception point (TRP) configuration, and transmit first information regarding a Contention Free Random Access (CFRA) resource corresponding to a first candidate cell and second information regarding a CFRA resource corresponding to a second candidate cell.
  • the control unit 110 may use the first information to instruct a CFRA procedure in the first candidate cell, and may use the second information to instruct a CFRA procedure in the second candidate cell (sixth embodiment).
  • the user terminal 16 is a diagram showing an example of the configuration of a user terminal according to an embodiment.
  • the user terminal 20 includes a control unit 210, a transceiver unit 220, and a transceiver antenna 230. Note that the control unit 210, the transceiver unit 220, and the transceiver antenna 230 may each include one or more.
  • this example mainly shows the functional blocks of the characteristic parts of this embodiment, and the user terminal 20 may also be assumed to have other functional blocks necessary for wireless communication. Some of the processing of each part described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be configured from a controller, a control circuit, etc., which are described based on a common understanding in the technical field to which this disclosure pertains.
  • the control unit 210 may control signal generation, mapping, etc.
  • the control unit 210 may control transmission and reception using the transceiver unit 220 and the transceiver antenna 230, measurement, etc.
  • the control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transceiver unit 220.
  • the transceiver unit 220 may include a baseband unit 221, an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transceiver unit 220 may be composed of a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transceiver circuit, etc., which are described based on a common understanding in the technical field to which the present disclosure relates.
  • the transceiver unit 220 may be configured as an integrated transceiver unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
  • the reception unit may be composed of a reception processing unit 2212, an RF unit 222, and a measurement unit 223.
  • the transmitting/receiving antenna 230 can be configured as an antenna described based on common understanding in the technical field to which this disclosure pertains, such as an array antenna.
  • the transceiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transceiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, etc.
  • the transceiver 220 may form at least one of the transmit beam and receive beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), etc.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transceiver 220 may perform PDCP layer processing, RLC layer processing (e.g., RLC retransmission control), MAC layer processing (e.g., HARQ retransmission control), etc. on the data and control information acquired from the controller 210, and generate a bit string to be transmitted.
  • RLC layer processing e.g., RLC retransmission control
  • MAC layer processing e.g., HARQ retransmission control
  • the transceiver 220 may perform transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), IFFT processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
  • transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), IFFT processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
  • Whether or not to apply DFT processing may be based on the settings of transform precoding.
  • the transceiver unit 220 transmission processing unit 2211
  • the transceiver unit 220 may perform DFT processing as the above-mentioned transmission processing in order to transmit the channel using a DFT-s-OFDM waveform, and when transform precoding is not enabled, it is not necessary to perform DFT processing as the above-mentioned transmission processing.
  • the transceiver unit 220 may perform modulation, filtering, amplification, etc., on the baseband signal to a radio frequency band, and transmit the radio frequency band signal via the transceiver antenna 230.
  • the transceiver unit 220 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transceiver antenna 230.
  • the transceiver 220 may apply reception processing such as analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal to acquire user data, etc.
  • reception processing such as analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal to acquire user data, etc.
  • the transceiver 220 may perform measurements on the received signal. For example, the measurement unit 223 may perform RRM measurements, CSI measurements, etc. based on the received signal.
  • the measurement unit 223 may measure received power (e.g., RSRP), received quality (e.g., RSRQ, SINR, SNR), signal strength (e.g., RSSI), propagation path information (e.g., CSI), etc.
  • the measurement results may be output to the control unit 210.
  • the transmitting unit and receiving unit of the user terminal 20 in this disclosure may be configured by at least one of the transmitting/receiving unit 220 and the transmitting/receiving antenna 230.
  • the transceiver unit 220 may receive first information regarding Contention Free Random Access (CFRA) resources corresponding to a first transceiver point (TRP) and second information regarding CFRA resources corresponding to a second TRP.
  • the control unit 210 may control the CFRA procedure in the first TRP based on the first information, and control the CFRA procedure in the second TRP based on the second information (first embodiment).
  • CFRA Contention Free Random Access
  • the first information and the second information may be common information (first embodiment).
  • the first information and the second information may be different pieces of information each relating to a different TRP (first embodiment).
  • the first information may correspond to a first cell, and the second information may correspond to a second cell.
  • the control unit 210 may control a CFRA procedure in an inter-cell multi-TRP (first embodiment).
  • the transceiver unit 220 may receive a setting for a second random access channel (RACH) procedure corresponding to a second TRP when a first RACH procedure corresponding to a first transmission/reception point (TRP) is set.
  • the control unit 210 may determine whether to maintain the first RACH procedure or to stop the first RACH procedure and start the second RACH procedure based on a specific condition (second embodiment).
  • the control unit 210 may determine whether to maintain the first RACH procedure or to stop the first RACH procedure and start the second RACH procedure based on the ID for a specific TRP (second embodiment).
  • the control unit 210 may determine whether to maintain the first RACH procedure or to stop the first RACH procedure and start the second RACH procedure based on the TRP associated with a specific physical cell ID (second embodiment).
  • the control unit 210 may determine whether to maintain the first RACH procedure or to stop the first RACH procedure and start the second RACH procedure based on the TRP associated with a particular timing advance group (second embodiment).
  • the transceiver unit 220 may transmit a UL time synchronization request for a TRP using a specific uplink (UL) signal based on at least one of the synchronization status for each transceiver point (TRP) and the establishment of time alignment for each TRP.
  • the control unit 210 may determine that multiple TRPs are synchronized after a specific period of time has elapsed after transmitting the UL signal (third embodiment).
  • the specific UL signal may be a scheduling request, and the control unit 210 may determine resources for the scheduling request for each TRP or for each timing advance group (third embodiment).
  • the particular UL signal may be a Medium Access Control (MAC) control element
  • the MAC control element may include at least one of a TRP-related index of the asynchronous TRP, a cell index of the asynchronous TRP, and a timing advance group index of the asynchronous TRP (third embodiment).
  • MAC Medium Access Control
  • the control unit 210 may further control reception of a timing advance command (TAC) included in a random access response (RAR).
  • TAC timing advance command
  • RAR random access response
  • the control unit 210 may determine the TRP to which the TAC is applied based on at least one of a control resource set or a Transmission Configuration Indication (TCI) state associated with a physical downlink control channel that schedules the TAC, a TCI state of a physical downlink shared channel that transmits the RAR, and a specific timing advance group (fourth embodiment).
  • TCI Transmission Configuration Indication
  • the transceiver unit 220 may receive an inter-cell multi-transmission/reception point (TRP) configuration, and may receive first information regarding Contention Free Random Access (CFRA) resources corresponding to a first candidate cell and second information regarding CFRA resources corresponding to a second candidate cell.
  • the control unit 210 may control a CFRA procedure in the first candidate cell based on the first information, and control a CFRA procedure in the second candidate cell based on the second information (sixth embodiment).
  • the first information and the second information may be common information or may be separate information each relating to a different candidate cell (sixth embodiment).
  • the transceiver unit 220 may further receive a setting for a second random access channel (RACH) procedure corresponding to the second TRP when a first RACH procedure corresponding to the first TRP is set.
  • the control unit 210 may further determine whether to maintain the first RACH procedure or to stop the first RACH procedure and start the second RACH procedure based on a specific condition (seventh embodiment).
  • the control unit 210 may control the transmission of a UL time synchronization request for a cell based on the synchronization status of the cell (eighth embodiment).
  • each functional block may be realized using one device that is physically or logically coupled, or may be realized using two or more devices that are physically or logically separated and directly or indirectly connected (for example, using wires, wirelessly, etc.).
  • the functional blocks may be realized by combining the one device or the multiple devices with software.
  • the functions include, but are not limited to, judgement, determination, judgment, calculation, computation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, election, establishment, comparison, assumption, expectation, deeming, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assignment.
  • a functional block (component) that performs the transmission function may be called a transmitting unit, a transmitter, and the like. In either case, as mentioned above, there are no particular limitations on the method of realization.
  • a base station, a user terminal, etc. in one embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 17 is a diagram showing an example of the hardware configuration of a base station and a user terminal according to one embodiment.
  • the above-mentioned base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc.
  • the terms apparatus, circuit, device, section, unit, etc. may be interpreted as interchangeable.
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figures, or may be configured to exclude some of the devices.
  • processor 1001 may be implemented by one or more chips.
  • the functions of the base station 10 and the user terminal 20 are realized, for example, by loading specific software (programs) onto hardware such as the processor 1001 and memory 1002, causing the processor 1001 to perform calculations, control communications via the communication device 1004, and control at least one of the reading and writing of data in the memory 1002 and storage 1003.
  • the processor 1001 for example, runs an operating system to control the entire computer.
  • the processor 1001 may be configured as a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, etc.
  • CPU central processing unit
  • control unit 110 210
  • transmission/reception unit 120 220
  • etc. may be realized by the processor 1001.
  • the processor 1001 also reads out programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • the programs used are those that cause a computer to execute at least some of the operations described in the above embodiments.
  • the control unit 110 (210) may be realized by a control program stored in the memory 1002 and running on the processor 1001, and similar implementations may be made for other functional blocks.
  • Memory 1002 is a computer-readable recording medium and may be composed of at least one of, for example, Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. Memory 1002 may also be called a register, cache, main memory, etc. Memory 1002 can store executable programs (program codes), software modules, etc. for implementing a wireless communication method according to one embodiment of the present disclosure.
  • ROM Read Only Memory
  • EPROM Erasable Programmable ROM
  • EEPROM Electrically EPROM
  • RAM Random Access Memory
  • Memory 1002 may also be called a register, cache, main memory, etc.
  • Memory 1002 can store executable programs (program codes), software modules, etc. for implementing a wireless communication method according to one embodiment of the present disclosure.
  • Storage 1003 is a computer-readable recording medium and may be composed of at least one of a flexible disk, a floppy disk, a magneto-optical disk (e.g., a compact disk (Compact Disc ROM (CD-ROM)), a digital versatile disk, a Blu-ray disk), a removable disk, a hard disk drive, a smart card, a flash memory device (e.g., a card, a stick, a key drive), a magnetic stripe, a database, a server, or other suitable storage medium.
  • Storage 1003 may also be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, etc.
  • the communication device 1004 may be configured to include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc. to realize at least one of, for example, Frequency Division Duplex (FDD) and Time Division Duplex (TDD).
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the above-mentioned transmitting/receiving unit 120 (220), transmitting/receiving antenna 130 (230), etc. may be realized by the communication device 1004.
  • the transmitting/receiving unit 120 (220) may be implemented as a transmitting unit 120a (220a) and a receiving unit 120b (220b) that are physically or logically separated.
  • the input device 1005 is an input device (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (e.g., a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may be integrated into one structure (e.g., a touch panel).
  • each device such as the processor 1001 and memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between each device.
  • the base station 10 and the user terminal 20 may be configured to include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA), and some or all of the functional blocks may be realized using the hardware.
  • the processor 1001 may be implemented using at least one of these pieces of hardware.
  • a channel, a symbol, and a signal may be read as mutually interchangeable.
  • a signal may also be a message.
  • a reference signal may be abbreviated as RS, and may be called a pilot, a pilot signal, or the like depending on the applied standard.
  • a component carrier may also be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting a radio frame may be called a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • a subframe may have a fixed time length (e.g., 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter that is applied to at least one of the transmission and reception of a signal or channel.
  • the numerology may indicate, for example, at least one of the following: SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, Transmission Time Interval (TTI), number of symbols per TTI, radio frame configuration, a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • SCS SubCarrier Spacing
  • TTI Transmission Time Interval
  • radio frame configuration a specific filtering process performed by the transceiver in the frequency domain
  • a specific windowing process performed by the transceiver in the time domain etc.
  • a slot may consist of one or more symbols in the time domain (such as Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.).
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may also be a time unit based on numerology.
  • a slot may include multiple minislots. Each minislot may consist of one or multiple symbols in the time domain. A minislot may also be called a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be called PDSCH (PUSCH) mapping type A.
  • a PDSCH (or PUSCH) transmitted using a minislot may be called PDSCH (PUSCH) mapping type B.
  • a radio frame, a subframe, a slot, a minislot, and a symbol all represent time units when transmitting a signal.
  • a different name may be used for a radio frame, a subframe, a slot, a minislot, and a symbol, respectively.
  • the time units such as a frame, a subframe, a slot, a minislot, and a symbol in this disclosure may be read as interchangeable.
  • one subframe may be called a TTI
  • multiple consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI.
  • at least one of the subframe and the TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (e.g., 1-13 symbols), or a period longer than 1 ms.
  • the unit representing the TTI may be called a slot, minislot, etc., instead of a subframe.
  • TTI refers to, for example, the smallest time unit for scheduling in wireless communication.
  • a base station schedules each user terminal by allocating radio resources (such as frequency bandwidth and transmission power that can be used by each user terminal) in TTI units.
  • radio resources such as frequency bandwidth and transmission power that can be used by each user terminal
  • the TTI may be a transmission time unit for a channel-coded data packet (transport block), a code block, a code word, etc., or may be a processing unit for scheduling, link adaptation, etc.
  • the time interval e.g., the number of symbols
  • the time interval in which a transport block, a code block, a code word, etc. is actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit of scheduling.
  • the number of slots (minislots) that constitute the minimum time unit of scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • a TTI shorter than a normal TTI may be called a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • a long TTI (e.g., a normal TTI, a subframe, etc.) may be interpreted as a TTI having a time length of more than 1 ms
  • a short TTI e.g., a shortened TTI, etc.
  • TTI length shorter than the TTI length of a long TTI and equal to or greater than 1 ms.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of numerology, and may be, for example, 12.
  • the number of subcarriers included in an RB may be determined based on numerology.
  • an RB may include one or more symbols in the time domain and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs may be referred to as a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, an RB pair, etc.
  • PRB Physical RB
  • SCG sub-carrier Group
  • REG resource element group
  • PRB pair an RB pair, etc.
  • a resource block may be composed of one or more resource elements (REs).
  • REs resource elements
  • one RE may be a radio resource area of one subcarrier and one symbol.
  • a Bandwidth Part which may also be referred to as a partial bandwidth, may represent a subset of contiguous common resource blocks (RBs) for a given numerology on a given carrier, where the common RBs may be identified by an index of the RB relative to a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within the BWP.
  • the BWP may include a UL BWP (BWP for UL) and a DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be configured for a UE within one carrier.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots, and symbols are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of subcarriers included in an RB, as well as the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
  • the information, parameters, etc. described in this disclosure may be represented using absolute values, may be represented using relative values from a predetermined value, or may be represented using other corresponding information.
  • a radio resource may be indicated by a predetermined index.
  • the names used for parameters and the like in this disclosure are not limiting in any respect. Furthermore, the formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure.
  • the various channels (PUCCH, PDCCH, etc.) and information elements may be identified by any suitable names, and therefore the various names assigned to these various channels and information elements are not limiting in any respect.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
  • information, signals, etc. may be output from a higher layer to a lower layer and/or from a lower layer to a higher layer.
  • Information, signals, etc. may be input/output via multiple network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (e.g., memory) or may be managed using a management table. Input/output information, signals, etc. may be overwritten, updated, or added to. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to another device.
  • a specific location e.g., memory
  • Input/output information, signals, etc. may be overwritten, updated, or added to.
  • Output information, signals, etc. may be deleted.
  • Input information, signals, etc. may be transmitted to another device.
  • the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
  • the notification of information in this disclosure may be performed by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), higher layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB)), etc.), Medium Access Control (MAC) signaling), other signals, or a combination of these.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc.
  • the RRC signaling may be called an RRC message, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, etc.
  • the MAC signaling may be notified, for example, using a MAC Control Element (CE).
  • CE MAC Control Element
  • notification of specified information is not limited to explicit notification, but may be implicit (e.g., by not notifying the specified information or by notifying other information).
  • the determination may be based on a value represented by a single bit (0 or 1), a Boolean value represented by true or false, or a comparison of numerical values (e.g., with a predetermined value).
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • Software, instructions, information, etc. may also be transmitted and received via a transmission medium.
  • a transmission medium For example, if the software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave, etc.), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
  • wired technologies such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)
  • wireless technologies such as infrared, microwave, etc.
  • Network may refer to the devices included in the network (e.g., base stations).
  • precoding "precoder,” “weight (precoding weight),” “Quasi-Co-Location (QCL),” “Transmission Configuration Indication state (TCI state),” "spatial relation,” “spatial domain filter,” “transmit power,” “phase rotation,” “antenna port,” “antenna port group,” “layer,” “number of layers,” “rank,” “resource,” “resource set,” “resource group,” “beam,” “beam width,” “beam angle,” “antenna,” “antenna element,” and “panel” may be used interchangeably.
  • Base Station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, etc.
  • a base station can accommodate one or more (e.g., three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also provide communication services by a base station subsystem (e.g., a small base station for indoor use (Remote Radio Head (RRH))).
  • RRH Remote Radio Head
  • the term "cell” or “sector” refers to a part or the entire coverage area of at least one of the base station and base station subsystems that provide communication services in this coverage.
  • a base station transmitting information to a terminal may be interpreted as the base station instructing the terminal to control/operate based on the information.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station may also be referred to as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc.
  • at least one of the base station and the mobile station may be a device mounted on a moving object, the moving object itself, etc.
  • the moving body in question refers to an object that can move, and the moving speed is arbitrary, and of course includes the case where the moving body is stationary.
  • the moving body in question includes, but is not limited to, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, handcarts, rickshaws, ships and other watercraft, airplanes, rockets, artificial satellites, drones, multicopters, quadcopters, balloons, and objects mounted on these.
  • the moving body in question may also be a moving body that moves autonomously based on an operating command.
  • the moving object may be a vehicle (e.g., a car, an airplane, etc.), an unmanned moving object (e.g., a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned).
  • a vehicle e.g., a car, an airplane, etc.
  • an unmanned moving object e.g., a drone, an autonomous vehicle, etc.
  • a robot manned or unmanned
  • at least one of the base station and the mobile station may also include devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • FIG. 18 is a diagram showing an example of a vehicle according to an embodiment.
  • the vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (including a current sensor 50, an RPM sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58), an information service unit 59, and a communication module 60.
  • various sensors including a current sensor 50, an RPM sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58
  • an information service unit 59 including a communication module 60.
  • the drive unit 41 is composed of at least one of an engine, a motor, and a hybrid of an engine and a motor, for example.
  • the steering unit 42 includes at least a steering wheel (also called a handlebar), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
  • the electronic control unit 49 is composed of a microprocessor 61, memory (ROM, RAM) 62, and a communication port (e.g., an Input/Output (IO) port) 63. Signals are input to the electronic control unit 49 from various sensors 50-58 provided in the vehicle.
  • the electronic control unit 49 may also be called an Electronic Control Unit (ECU).
  • ECU Electronic Control Unit
  • Signals from the various sensors 50-58 include a current signal from a current sensor 50 that senses the motor current, a rotation speed signal of the front wheels 46/rear wheels 47 acquired by a rotation speed sensor 51, an air pressure signal of the front wheels 46/rear wheels 47 acquired by an air pressure sensor 52, a vehicle speed signal acquired by a vehicle speed sensor 53, an acceleration signal acquired by an acceleration sensor 54, a depression amount signal of the accelerator pedal 43 acquired by an accelerator pedal sensor 55, a depression amount signal of the brake pedal 44 acquired by a brake pedal sensor 56, an operation signal of the shift lever 45 acquired by a shift lever sensor 57, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by an object detection sensor 58.
  • the information service unit 59 is composed of various devices, such as a car navigation system, audio system, speakers, displays, televisions, and radios, for providing (outputting) various information such as driving information, traffic information, and entertainment information, and one or more ECUs that control these devices.
  • the information service unit 59 uses information acquired from external devices via the communication module 60, etc., to provide various information/services (e.g., multimedia information/multimedia services) to the occupants of the vehicle 40.
  • various information/services e.g., multimedia information/multimedia services
  • the information service unit 59 may include input devices (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accept input from the outside, and may also include output devices (e.g., a display, a speaker, an LED lamp, a touch panel, etc.) that perform output to the outside.
  • input devices e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.
  • output devices e.g., a display, a speaker, an LED lamp, a touch panel, etc.
  • the driving assistance system unit 64 is composed of various devices that provide functions for preventing accidents and reducing the driver's driving load, such as a millimeter wave radar, a Light Detection and Ranging (LiDAR), a camera, a positioning locator (e.g., a Global Navigation Satellite System (GNSS)), map information (e.g., a High Definition (HD) map, an Autonomous Vehicle (AV) map, etc.), a gyro system (e.g., an Inertial Measurement Unit (IMU), an Inertial Navigation System (INS), etc.), an Artificial Intelligence (AI) chip, and an AI processor, and one or more ECUs that control these devices.
  • the driving assistance system unit 64 also transmits and receives various information via the communication module 60 to realize a driving assistance function or an autonomous driving function.
  • the communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63.
  • the communication module 60 transmits and receives data (information) via the communication port 63 between the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, left and right rear wheels 47, axles 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and the various sensors 50-58 that are provided on the vehicle 40.
  • the communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with an external device. For example, it transmits and receives various information to and from the external device via wireless communication.
  • the communication module 60 may be located either inside or outside the electronic control unit 49.
  • the external device may be, for example, the above-mentioned base station 10 or user terminal 20.
  • the communication module 60 may also be, for example, at least one of the above-mentioned base station 10 and user terminal 20 (it may function as at least one of the base station 10 and user terminal 20).
  • the communication module 60 may transmit at least one of the signals from the various sensors 50-58 described above input to the electronic control unit 49, information obtained based on the signals, and information based on input from the outside (user) obtained via the information service unit 59 to an external device via wireless communication.
  • the electronic control unit 49, the various sensors 50-58, the information service unit 59, etc. may be referred to as input units that accept input.
  • the PUSCH transmitted by the communication module 60 may include information based on the above input.
  • the communication module 60 receives various information (traffic information, signal information, vehicle distance information, etc.) transmitted from an external device and displays it on an information service unit 59 provided in the vehicle.
  • the information service unit 59 may also be called an output unit that outputs information (for example, outputs information to a device such as a display or speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 60).
  • the communication module 60 also stores various information received from external devices in memory 62 that can be used by the microprocessor 61. Based on the information stored in memory 62, the microprocessor 61 may control the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, left and right rear wheels 47, axles 48, various sensors 50-58, and the like provided on the vehicle 40.
  • the base station in the present disclosure may be read as a user terminal.
  • each aspect/embodiment of the present disclosure may be applied to a configuration in which communication between a base station and a user terminal is replaced with communication between multiple user terminals (which may be called, for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • the user terminal 20 may be configured to have the functions of the base station 10 described above.
  • terms such as "uplink” and "downlink” may be read as terms corresponding to terminal-to-terminal communication (for example, "sidelink").
  • the uplink channel, downlink channel, etc. may be read as the sidelink channel.
  • the user terminal in this disclosure may be interpreted as a base station.
  • the base station 10 may be configured to have the functions of the user terminal 20 described above.
  • operations that are described as being performed by a base station may in some cases be performed by its upper node.
  • a network that includes one or more network nodes having base stations, it is clear that various operations performed for communication with terminals may be performed by the base station, one or more network nodes other than the base station (such as, but not limited to, a Mobility Management Entity (MME) or a Serving-Gateway (S-GW)), or a combination of these.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect/embodiment described in this disclosure may be used alone, in combination, or switched between depending on the implementation.
  • the processing procedures, sequences, flow charts, etc. of each aspect/embodiment described in this disclosure may be rearranged as long as there is no inconsistency.
  • the methods described in this disclosure present elements of various steps using an exemplary order, and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4th generation mobile communication system 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG x is, for example, an integer or decimal
  • Future Radio Access FX
  • GSM Global System for Mobile communications
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods, as well as next-generation systems that are expanded, modified,
  • the phrase “based on” does not mean “based only on,” unless expressly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using designations such as “first,” “second,” etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in some way.
  • determining may encompass a wide variety of actions. For example, “determining” may be considered to be judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry (e.g., looking in a table, database, or other data structure), ascertaining, etc.
  • Determining may also be considered to mean “determining” receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, accessing (e.g., accessing data in a memory), etc.
  • “Judgment” may also be considered to mean “deciding” to resolve, select, choose, establish, compare, etc.
  • judgment may also be considered to mean “deciding” to take some kind of action.
  • the "maximum transmit power" referred to in this disclosure may mean the maximum value of transmit power, may mean the nominal UE maximum transmit power, or may mean the rated UE maximum transmit power.
  • connection and “coupled,” or any variation thereof, refer to any direct or indirect connection or coupling between two or more elements, and may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, "connected” may be read as "accessed.”
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean “A and B are each different from C.”
  • Terms such as “separate” and “combined” may also be interpreted in the same way as “different.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示の一態様に係る端末は、第1の送受信ポイント(TRP)に対応するContention Free Random Access(CFRA)のリソースに関する第1の情報と、第2のTRPに対応するCFRAのリソースに関する第2の情報と、を受信する受信部と、前記第1の情報に基づいて前記第1のTRPにおけるCFRA手順を制御し、前記第2の情報に基づいて前記第2のTRPにおけるCFRA手順を制御する制御部と、を有する。本開示の一態様によれば、複数の送信ポイントを利用して通信を行う場合であっても通信を適切に行うことができる。

Description

端末、無線通信方法及び基地局
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP(登録商標)) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 将来の無線通信システム(例えば、Rel.17/5Gより後の無線通信システム)では、サービングセルにおいて複数の送受信ポイント(例えば、マルチTRP(Multi-TRP(MTRP)))を利用した通信を制御すること、又は、非サービングセル(non-serving cell)を含む複数セル間モビリティ(inter-cell mobility)に基づいて通信を制御することが想定される。
 しかし、端末(ユーザ端末(user terminal)、User Equipment(UE))が複数の送受信ポイントに対してUL送信を行う場合、UL送信の制御(例えば、タイミングアドバンスの制御等)をどのように行うかが問題となる。各送受信ポイントへのUL送信が適切に制御されない場合、複数の送受信ポイントを利用した通信の品質が劣化するおそれがある。
 本開示はかかる点に鑑みてなされたものであり、複数の送受信ポイントを利用して通信を行う場合であっても通信を適切に行うことが可能な端末、無線通信方法及び基地局を提供することを目的の一つとする。
 本開示の一態様に係る端末は、第1の送受信ポイント(TRP)に対応するContention Free Random Access(CFRA)のリソースに関する第1の情報と、第2のTRPに対応するCFRAのリソースに関する第2の情報と、を受信する受信部と、前記第1の情報に基づいて前記第1のTRPにおけるCFRA手順を制御し、前記第2の情報に基づいて前記第2のTRPにおけるCFRA手順を制御する制御部と、を有する。
 本開示の一態様によれば、複数の送信ポイントを利用して通信を行う場合であっても通信を適切に行うことができる。
図1A-図1Dは、マルチTRPの一例を示す図である。 図2A及び図2Bは、セル間モビリティの一例を示す図である。 図3は、L1/L2シグナリングによるサービングセルと追加セル間の切り替えの一例を示す図である。 図4は、候補セルがサポートされる場合の設定例1-3の一例を示す図である。 図5A-図5Cは、候補セルがサポートされる場合の設定例1-3においてL1/L2シグナリングによる候補セル/候補セルグループの切り替えが行われる場合の一例を示す図である。 図6は、セルグループに含まれるセルが属するタイミングアドバンスグループ(TAG)の一例を示す図である。 図7は、タイミングアドバンスコマンド用のMAC CEの一例を示す図である。 図8は、オプション1-2に係るRRC情報要素の一例を示す図である。 図9は、オプション1-2に係るRRC情報要素の他の例を示す図である。 図10は、オプション1-3に係るRRC情報要素の一例を示す図である。 図11は、オプション2-2に係るRACHの優先動作の一例を示す図である。 図12は、第3の実施形態に係るUL時間同期要求の一例を示す図である。 図13は、オプション7-2に係るRACHの優先動作の一例を示す図である。 図14は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図15は、一実施形態に係る基地局の構成の一例を示す図である。 図16は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図17は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。 図18は、一実施形態に係る車両の一例を示す図である。
(TCI、空間関係、QCL)
 NRでは、送信設定指示状態(Transmission Configuration Indication state(TCI状態))に基づいて、信号及びチャネルの少なくとも一方(信号/チャネルと表現する)のUEにおける受信処理(例えば、受信、デマッピング、復調、復号の少なくとも1つ)、送信処理(例えば、送信、マッピング、プリコーディング、変調、符号化の少なくとも1つ)を制御することが検討されている。
 TCI状態は下りリンクの信号/チャネルに適用されるものを表してもよい。上りリンクの信号/チャネルに適用されるTCI状態に相当するものは、空間関係(spatial relation)と表現されてもよい。
 TCI状態とは、信号/チャネルの疑似コロケーション(Quasi-Co-Location(QCL))に関する情報であり、空間受信パラメータ、空間関係情報(Spatial Relation Information)などと呼ばれてもよい。TCI状態は、チャネルごと又は信号ごとにUEに設定されてもよい。
 QCLとは、信号/チャネルの統計的性質を示す指標である。例えば、ある信号/チャネルと他の信号/チャネルがQCLの関係である場合、これらの異なる複数の信号/チャネル間において、ドップラーシフト(Doppler shift)、ドップラースプレッド(Doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(spatial parameter)(例えば、空間受信パラメータ(spatial Rx parameter))の少なくとも1つが同一である(これらの少なくとも1つに関してQCLである)と仮定できることを意味してもよい。
 なお、空間受信パラメータは、UEの受信ビーム(例えば、受信アナログビーム)に対応してもよく、空間的QCLに基づいてビームが特定されてもよい。本開示におけるQCL(又はQCLの少なくとも1つの要素)は、sQCL(spatial QCL)で読み替えられてもよい。
 QCLは、複数のタイプ(QCLタイプ)が規定されてもよい。例えば、同一であると仮定できるパラメータ(又はパラメータセット)が異なる4つのQCLタイプA-Dが設けられてもよく、以下に当該パラメータ(QCLパラメータと呼ばれてもよい)について示す:
 ・QCLタイプA(QCL-A):ドップラーシフト、ドップラースプレッド、平均遅延及び遅延スプレッド、
 ・QCLタイプB(QCL-B):ドップラーシフト及びドップラースプレッド、
 ・QCLタイプC(QCL-C):ドップラーシフト及び平均遅延、
 ・QCLタイプD(QCL-D):空間受信パラメータ。
 ある制御リソースセット(Control Resource Set(CORESET))、チャネル又は参照信号が、別のCORESET、チャネル又は参照信号と特定のQCL(例えば、QCLタイプD)の関係にあるとUEが想定することは、QCL想定(QCL assumption)と呼ばれてもよい。
 UEは、信号/チャネルのTCI状態又はQCL想定に基づいて、当該信号/チャネルの送信ビーム(Txビーム)及び受信ビーム(Rxビーム)の少なくとも1つを決定してもよい。
 TCI状態は、例えば、対象となるチャネル(言い換えると、当該チャネル用の参照信号(Reference Signal(RS)))と、別の信号(例えば、別のRS)とのQCLに関する情報であってもよい。TCI状態は、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせによって設定(指示)されてもよい。
 なお、TCI状態の適用対象となるチャネル/信号は、ターゲットチャネル/参照信号(target channel/RS)、単にターゲットなどと呼ばれてもよく、上記別の信号はリファレンス参照信号(reference RS)、ソースRS(source RS)、単にリファレンスなどと呼ばれてもよい。
 TCI状態又は空間関係が設定(指定)されるチャネルは、例えば、下りリンク共有チャネル(Physical Downlink Shared Channel(PDSCH))、下りリンク制御チャネル(Physical Downlink Control Channel(PDCCH))、上りリンク共有チャネル(Physical Uplink Shared Channel(PUSCH))、上りリンク制御チャネル(Physical Uplink Control Channel(PUCCH))の少なくとも1つであってもよい。
 また、当該チャネルとQCL関係となるRSは、例えば、同期信号ブロック(Synchronization Signal Block(SSB))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、測定用参照信号(Sounding Reference Signal(SRS))、トラッキング用CSI-RS(Tracking Reference Signal(TRS)とも呼ぶ)、QCL検出用参照信号(QRSとも呼ぶ)、復調用参照信号(DeModulation Reference Signal(DMRS))、などの少なくとも1つであってもよい。
 SSBは、プライマリ同期信号(Primary Synchronization Signal(PSS))、セカンダリ同期信号(Secondary Synchronization Signal(SSS))及びブロードキャストチャネル(Physical Broadcast Channel(PBCH))の少なくとも1つを含む信号ブロックである。SSBは、SS/PBCHブロックと呼ばれてもよい。
 TCI状態のQCLタイプXのRSは、あるチャネル/信号(のDMRS)とQCLタイプXの関係にあるRSを意味してもよく、このRSは当該TCI状態のQCLタイプXのQCLソースと呼ばれてもよい。
(マルチTRP)
 NRでは、1つ又は複数の送受信ポイント(Transmission/Reception Point(TRP))(マルチTRP)が、1つ又は複数のパネル(マルチパネル)を用いて、UEに対してDL送信を行うことが検討されている。また、UEが、1つ又は複数のTRPに対してUL送信を行うことが検討されている。
 なお、複数のTRPは、同じセル識別子(セルIdentifier(ID))に対応してもよいし、異なるセルIDに対応してもよい。当該セルIDは、物理セルID(例えば、PCI)でもよいし、仮想セルIDでもよい。
 図1A-1Dは、マルチTRPシナリオの一例を示す図である。これらの例において、各TRPは4つの異なるビームを送信可能であると想定するが、これに限られない。
 図1Aは、マルチTRPのうち1つのTRP(本例ではTRP1)のみがUEに対して送信を行うケース(シングルモード、シングルTRPなどと呼ばれてもよい)の一例を示す。この場合、TRP1は、UEに制御信号(PDCCH)及びデータ信号(PDSCH)の両方を送信する。
 本開示において、シングルTRPモードは、マルチTRP(モード)が設定されない場合のモードを意味してもよい。
 図1Bは、マルチTRPのうち1つのTRP(本例ではTRP1)のみがUEに対して制御信号を送信し、当該マルチTRPがデータ信号を送信するケース(シングルマスタモードと呼ばれてもよい)の一例を示す。UEは、1つの下り制御情報(Downlink Control Information(DCI))に基づいて、当該マルチTRPから送信される各PDSCHを受信する。
 図1Cは、マルチTRPのそれぞれがUEに対して制御信号の一部を送信し、当該マルチTRPがデータ信号を送信するケース(マスタスレーブモードと呼ばれてもよい)の一例を示す。TRP1では制御信号(DCI)のパート1が送信され、TRP2では制御信号(DCI)のパート2が送信されてもよい。制御信号のパート2はパート1に依存してもよい。UEは、これらのDCIのパートに基づいて、当該マルチTRPから送信される各PDSCHを受信する。
 図1Dは、マルチTRPのそれぞれがUEに対して別々の制御信号を送信し、当該マルチTRPがデータ信号を送信するケース(マルチマスタモードと呼ばれてもよい)の一例を示す。TRP1では第1の制御信号(DCI)が送信され、TRP2では第2の制御信号(DCI)が送信されてもよい。UEは、これらのDCIに基づいて、当該マルチTRPから送信される各PDSCHを受信する。
 図1BのようなマルチTRPからの複数のPDSCH(マルチPDSCH(multiple PDSCH)と呼ばれてもよい)を、1つのDCIを用いてスケジュールする場合、当該DCIは、シングルDCI(S-DCI、シングルPDCCH)と呼ばれてもよい。また、図1DのようなマルチTRPからの複数のPDSCHを、複数のDCIを用いてそれぞれスケジュールする場合、これらの複数のDCIは、マルチDCI(M-DCI、マルチPDCCH(multiple PDCCH))と呼ばれてもよい。
 マルチTRPの各TRPからは、それぞれ異なるトランスポートブロック(Transport Block(TB))/コードワード(Code Word(CW))/異なるレイヤが送信されてもよい。あるいは、マルチTRPの各TRPからは、同一のTB/CW/レイヤが送信されてもよい。
 マルチTRP送信の一形態として、ノンコヒーレントジョイント送信(Non-Coherent Joint Transmission(NCJT))が検討されている。NCJTにおいて、例えば、TRP1は、第1のコードワードを変調マッピングし、レイヤマッピングして第1の数のレイヤ(例えば2レイヤ)を第1のプリコーディングを用いて第1のPDSCHを送信する。また、TRP2は、第2のコードワードを変調マッピングし、レイヤマッピングして第2の数のレイヤ(例えば2レイヤ)を第2のプリコーディングを用いて第2のPDSCHを送信する。
 なお、NCJTされる複数のPDSCH(マルチPDSCH)は、時間及び周波数ドメインの少なくとも一方に関して部分的に又は完全に重複すると定義されてもよい。つまり、第1のTRPからの第1のPDSCHと、第2のTRPからの第2のPDSCHと、は時間及び周波数リソースの少なくとも一方が重複してもよい。
 これらの第1のPDSCH及び第2のPDSCHは、疑似コロケーション(Quasi-Co-Location(QCL))関係にない(not quasi-co-located)と想定されてもよい。マルチPDSCHの受信は、あるQCLタイプ(例えば、QCLタイプD)でないPDSCHの同時受信で読み替えられてもよい。
 マルチTRPに対するURLLCにおいて、マルチTRPにまたがるPDSCH(トランスポートブロック(TB)又はコードワード(CW))繰り返し(repetition)がサポートされることが検討されている。周波数ドメイン又はレイヤ(空間)ドメイン又は時間ドメイン上でマルチTRPにまたがる繰り返し方式(URLLCスキーム、例えば、スキーム1、2a、2b、3、4)がサポートされることが検討されている。スキーム1において、マルチTRPからのマルチPDSCHは、空間分割多重(space division multiplexing(SDM))される。スキーム2a、2bにおいて、マルチTRPからのPDSCHは、周波数分割多重(frequency division multiplexing(FDM))される。スキーム2aにおいては、マルチTRPに対して冗長バージョン(redundancy version(RV))は同じである。スキーム2bにおいては、マルチTRPに対してRVは同じであってもよいし、異なってもよい。スキーム3、4において、マルチTRPからのマルチPDSCHは、時間分割多重(time division multiplexing(TDM))される。スキーム3において、マルチTRPからのマルチPDSCHは、1つのスロット内で送信される。スキーム4において、マルチTRPからのマルチPDSCHは、異なるスロット内で送信される。
 このようなマルチTRPシナリオによれば、品質の良いチャネルを用いたより柔軟な送信制御が可能である。
 マルチTRP/パネルを用いるNCJTは、高ランクを用いる可能性がある。複数TRPの間の理想的(ideal)及び非理想的(non-ideal)のバックホール(backhaul)をサポートするために、シングルDCI(シングルPDCCH、例えば、図1B)及びマルチDCI(マルチPDCCH、例えば、図1D)の両方がサポートされてもよい。シングルDCI及びマルチDCIの両方に対し、TRPの最大数が2であってもよい。
 シングルPDCCH設計(主に理想バックホール用)に対し、TCIの拡張が検討されている。DCI内の各TCIコードポイントは1又は2のTCI状態に対応してもよい。TCIフィールドサイズはRel.15のものと同じであってもよい。
 Rel.15で規定されるPDCCH/CORESETについて、CORESETプールインデックス(CORESETPoolIndex)(TRP情報(TRP Info)と呼ばれてもよい)なしの1つのTCI状態が、1つのCORESETに設定される。
 Rel.16で規定されるPDCCH/CORESETのエンハンスメントについて、マルチDCIに基づくマルチTRPでは、各CORESETに対して、CORESETプールインデックスが設定される。
(セル間モビリティ)
 NRでは、1つ又は複数の送受信ポイント(Transmission/Reception Point(TRP))(マルチTRP(Multi-TRP(MTRP)))が、UEに対してDL送信を行うことが検討されている。また、UEが、1つ又は複数のTRPに対してUL送信を行うことが検討されている。
 UEは、セル間モビリティ(例えば、L1/L2 inter cell mobility)において、複数のセル/TRPからのチャネル/信号を受信することが考えられる(図2A、図2B参照)。
 図2Aは、ノンサービングセルを含むセル間モビリティ(例えば、Single-TRP inter-cell mobility)の一例を示している。UEは、各セルにおいて1つのTRP(又は、シングルTRP)が設定されてもよい。ここでは、UEは、サービングセルとなるセル#1の基地局/TRPと、サービングセルでない(非サービングセル/Non-serving cellとなる)セル#3の基地局/TRPとからチャネル/信号を受信する場合を示している。例えば、UEがセル#1からセル#3にスイッチ/切り替えする場合(例えば、fast cell switch)に相当する。サービングセルのTRPは、プライマリTRP(例えば、pTRP)と呼ばれてもよい。非サービングセルのTRPは、追加TRP(aTRP)と呼ばれてもよい。
 この場合、ポート(例えば、アンテナポート)/TRPの選択又がダイナミックに行われてもよい。ポート(例えば、アンテナポート)/TRPの選択又は、DCI/MAC CEにより指示又はアップデートされるTCI状態に基づいて行われてもよい。ここでは、セル#1とセル#3に対して、異なる物理セルID(例えば、PCI)の設定がサポートされる場合を示している。
 図2Bは、マルチTRPシナリオ(例えば、マルチTRPを利用する場合のセル間モビリティ(Multi-TRP inter-cell mobility))の一例を示している。UEは、各セルにおいて複数(例えば、2個)のTRP(又は、異なるCORESETプールインデックス)が設定されてもよい。ここでは、UEは、TRP#1とTRP2からチャネル/信号を受信する場合を示している。また、ここでは、TRP#1が物理セルID(PCI)#1に対応し、TRP#2がPCI#2に対応する場合を示している。
 マルチTRP(TRP#1、#2)は、理想的(ideal)/非理想的(non-ideal)のバックホール(backhaul)によって接続され、情報、データなどがやり取りされてもよい。マルチTRPの各TRPからは、それぞれ同一又は異なるコードワード(Code Word(CW))と、同一又は異なるレイヤが送信されてもよい。マルチTRP送信の一形態として、図2Bに示すように、ノンコヒーレントジョイント送信(Non-Coherent Joint Transmission(NCJT))が用いられてもよい。ここでは、異なるPCIに対応するTPR間でNCJTが行われる場合を示している。なお、TRP#1とTRP#2に対して、同じサービングセル設定が適用/設定されてもよい。
 NCJTされる複数のPDSCH(マルチPDSCH)は、時間及び周波数ドメインの少なくとも一方に関して部分的に又は完全に重複すると定義されてもよい。つまり、TRP#1からの第1のPDSCHと、TRP#2からの第2のPDSCHと、は時間及び周波数リソースの少なくとも一方が重複してもよい。第1のPDSCHと第2のPDSCHは、同じTBの送信に利用されてもよいし、異なるTBの送信に利用されてもよい。
 これらの第1のPDSCH及び第2のPDSCHは、疑似コロケーション(Quasi-Co-Location(QCL))関係にない(not quasi-co-located)と想定されてもよい。マルチPDSCHの受信は、あるQCLタイプ(例えば、QCLタイプD)でないPDSCHの同時受信で読み替えられてもよい。
 マルチTRPからの複数のPDSCH(マルチPDSCH(multiple PDSCH)と呼ばれてもよい)が、1つのDCI(シングルDCI(S-DCI)、シングルPDCCH)を用いてスケジュールされてもよい(シングルマスタモード)。1つのDCIは、マルチTRPの1つのTRPから送信されてもよい。マルチTRPにおいて1つのDCIを利用する構成は、シングルDCIベースのマルチTRP(mTRP/MTRP)と呼ばれてもよい。
 マルチTRPからの複数のPDSCHが、複数のDCI(マルチDCI(M-DCI)、マルチPDCCH(multiple PDCCH))を用いてそれぞれスケジュールされてもよい(マルチマスタモード)。複数のDCIは、マルチTRPからそれぞれ送信されてもよい。マルチTRPにおいて複数のDCIを利用する構成は、マルチDCIベースのマルチTRP(mTRP/MTRP)と呼ばれてもよい。
 UEは、異なるTRPに対して、それぞれのTRPに関する別々のCSI報告(CSIレポート)を送信すると想定してもよい。このようなCSIフィードバックは、セパレートフィードバック、セパレートCSIフィードバックなどと呼ばれてもよい。本開示において、「セパレート」は、「独立した(independent)」と互いに読み替えられてもよい。
 Rel.17 NRでは、MAC CE/DCIにより、異なるPCIに関連付けられたTCI状態へのビーム指示がサポートされることが想定される。一方で、Rel.18 NR以降では、L1/L2シグナリング(例えば、DCI/MAC CE)により、サービングセル切り替え(例えば、異なるPCIを有するセルへのサービングセルの変更指示)がサポートされることが想定される(図3参照)。
 図3では、基地局からのセル切り替え指示に基づいて、UEがサービングセルから追加セル(又は、候補セル、ターゲットセルとも呼ぶ)へセルの切り替えを行う場合を示している。
(候補セル)
 セル間モビリティにおいて、サービングセル毎に1又は複数の候補セルが設定/管理されることも想定される。
 例えば、所定の上位レイヤパラメータ(例えば、ServingCellConfig)において、情報が制限された(例えば、一部のパラメータのみUEに通知された)1以上の候補セルが設定されてもよい(Alt.1)。既存システム(例えば、Rel.17)のセル間ビームマネジメント(inter-cell BM)と同様に設定されてもよい。
 あるいは、1以上の候補セルの完全な設定(例えば、ServingCellConfig)が設定され、当該候補セルが各サービングセルと関連付けられてもよい(Alt.2)。例えば、キャリアアグリゲーション設定のフレームワーク(例えば、CA configuration framework)、又はCHO(Conditional Handover)/CPC(Conditional PSCell Change)設定のフレームワークが再利用されてもよい。
 Alt.1/2において、MAC CE/DCIにより、候補セルのアクティベーション/ディアクティベーションが制御されてもよい。
 候補セルの設定として、以下の設定例1~設定例3の少なくとも一つが適用されてもよい(図4参照)。ここでは、サービングセルとして、SpCell#0、SCell#1、SCell#2が設定され、サービングセル/セルグループに対する候補セル(又は、追加セル)の設定/関連づけの一例を示す。以下の設定例1から設定例3は、一例であり、セル数、各セルの関連づけ等は、これに限られず適宜変更されてもよい。あるいは、設定例1から設定例3に加えて/代えて他の設定例がサポート/適用されてもよい。
 設定例1では、各サービングセルに対して、1以上の候補セルがそれぞれ関連付けられる/設定される場合を示している(図4参照)。具体的には、SpCell#0に対して候補セル#0-1、#0-2、#0-3が関連付けられ、SCell#1に対して候補セル#1-1が関連付けられ、SCell#2に対して候補セル#2-1、#2-2が関連づけられる場合を示している。当該関連づけに関する情報は、RRC/MAC CE/DCIにより基地局からUEに設定/指示されてもよい。
 設定例2では、MACエンティティ/MCG/SCGに対して、候補セルが関連付けられる/設定される場合を示している(図4参照)。具体的には、MACエンティティ/MCG/SCGに対して、候補セル#3-#8が関連付けられる場合を示している。この場合、各サービングセルに対して候補セルが関連付けられるのではなく、MACエンティティ又はセルグループ(例えば、MCG/SCG)に対して候補セルが設定される。各セルに設定される候補セルに関する情報は、RRC/MAC CE/DCIにより基地局からUEに設定/指示されてもよい。
 設定例3では、1以上の候補セルグループが設定されてもよい(図4参照)。具体的には、候補セル#0-#2を有する候補セルグループ#1、候補セル#0、#1を有する候補セルグループ#2、候補セル#0を有する候補セルグループ#3が設定される場合を示している。候補セルグループは、1以上の候補セルを有している。候補セルグループに含まれる候補セルは、サービングセルの少なくとも一つに関連付けられてもよい。候補セルに関する情報は、RRC/MAC CE/DCIにより基地局からUEに設定/指示されてもよい。
 既存システム(例えば、Rel.17)では、追加PCI(又は、追加セル)に関連するTCI状態へのL1ビーム指示(例えば、DCIのTCI状態フィールドによる指示)がサポートされる。
 Rel.18以降では、サービングセルの切り替え(例えば、serving cell switch)を指示する新規のL1/L2信号(例えば、DCI/MAC CE)がサポートされることが想定される。当該指示として、暗示的な指示と明示的な指示の少なくとも一つがサポートされることが想定される。暗示的な指示は、例えば、あるCORESETが、MAC CEにより追加のPCIに関連づけられたTCI状態に更新されることを意味してもよい。明示的な指示は、DCI/MAC CEによりセルの切り替えが直接指示されることを意味してもよい。
 例えば、候補セルの設定例1において、L1/L2シグナリングを介して、所定の候補セルがサービングセルに指定(又は、サービングセルとの切り替えが指示)されてもよい。図5Aでは、L1/L2シグナリングにより、候補セル#0-2がMCG/SCGのSpCellとなる(SpCell#0と候補セル#0-2が切り替えられる)場合を示している。また、L1/L2シグナリングにより、候補セル#2-1がMCG/SCGのSCellとなる(SCell#2と候補セル#2-1が切り替えられる)場合を示している。
 あるいは、候補セルの設定例2において、L1/L2シグナリングを介して、所定の候補セルがサービングセルに指定(又は、サービングセルとの切り替えが指示)されてもよい。図5Bでは、L1/L2シグナリングにより、候補セル#4がMCG/SCGのSpCellとなる(SpCell#0と候補セル#4が切り替えられる)場合を示している。
 あるいは、候補セルの設定例3において、L1/L2シグナリングを介して、所定の候補セルグループ(又は、当該所定の候補セルグループに含まれる1以上の候補セル)がサービングセルグループに変更/更新されてもよい。図5Cでは、L1/L2シグナリングにより、候補セルグループ#1(又は、候補セルグループ#1に含まれる候補セル#0-#2)がサービングセルグループとなる(サービングセルグループと候補セルグループ#1が切り替えられる)場合を示している。
(タイミングアドバンスグループ)
 複数のTRPを利用する場合にはUEと各TRP間との距離がそれぞれ異なるケースも生じる。複数のTRPは、同じセル(例えば、サービングセル)に含まれてもよい。あるいは、複数のTRPのうち、あるTRPがサービングセルに相当し、他のTRPが非サービングセルに相当してもよい。この場合、各TRPとUE間の距離が異なることも想定される。
 既存システムでは、UL(Uplink)チャネル及び/又はUL信号(ULチャネル/信号)の送信タイミングは、タイミングアドバンス(TA:Timing Advance)によって調整される。異なるユーザ端末(UE:User Terminal)からのULチャネル/信号の受信タイミングは、無線基地局(TRP:Transmission and Reception Point、gNB:gNodeB等ともいう)側で調整される。
 UEは、あらかじめ設定されたタイミングアドバンスグループ(TAG:Timing Advance Group)毎に、タイミングアドバンス(マルチプルタイミングアドバンス)を適用してUL送信のタイミング制御を行ってもよい。
 マルチプルタイミングアドバンスを適用する場合、送信タイミングで分類されるタイミングアドバンスグループ(TAG:Timing Advance Group)をサポートする。UEは、TAG毎に同じTAオフセット(又は、TA値)が適用されると想定して各TAGにおけるUL送信タイミングを制御してもよい。つまり、TAオフセットは、TAG毎にそれぞれ独立して設定されてもよい。
 マルチプルタイミングアドバンスを適用する場合、UEが各TAGに属するセルの送信タイミングを独立に調整することにより、複数のセルを利用する場合であっても、無線基地局においてUEからの上りリンク信号受信タイミングを合わせることができる。
 TAG(例えば、同じTAGに属するサービングセル)は、上位レイヤパラメータにより設定されてもよい。同じTAGに属するサービングセルに対して、同じタイミングアドバンス値が適用されてもよい。MACエンティティのSpCellを含むタイミングアドバンスグループはプライマリタイミングアドバンスグループ(PTAG)と呼ばれ、それ以外のTAGはセカンダリタイミングアドバンスグループ(STAG)と呼ばれてもよい。
 既存システム(例えば、Rel.16 NR)では、セルグループ(例えば、MCG/SCG)毎に最大4個のTAGの設定がサポートされる(図6参照)。図6では、SpCellとSCell#1~#4を含むセルグループに対して、3個のTAGが設定される場合を示している。ここでは、SpCellとSCell#1が第1のTAG(PTAG又はTAG#0)に属し、SCell#2とSCell#3が第2のTAG(TAG#1)に属し、SCell#4が第3のTAG(TAG#2)に属する場合を示している。
 タイミングアドバンスコマンド(TA command)がMAC制御要素(例えば、MAC CE)を利用してUEに通知されてもよい。TAコマンドは、上りチャネルの送信タイミング値を示すコマンドであり、MAC制御要素に含まれる。TAコマンドは、無線基地局からUEに対してMACレイヤでシグナリングされる。UEは、TAコマンドの受信に基づいて所定タイマ(例えば、TAタイマ)を制御する。
 タイミングアドバンスコマンド用のMAC CE(TAC MAC CE)は、タイミングアドバンスグループインデックス(例えば、TAG ID)用のフィールドと、タイミングアドバンスコマンド用のフィールドと、を含む構成であってもよい(図7参照)。
 一方で、将来の無線通信システムでは、あるセル(又はCC)に対応する1以上のTRPに対して異なるTAG(又は、TAG-ID)が設定されるケースが想定される。あるいは、あるセルに対応する異なるTRPが共通のTAGをシェアするケースも想定される。あるいは、TAコマンド用のMAC CEが1つのTRPのみに適用されるケース、又はTAコマンド用のMAC CEが複数のTRPに適用されるケースも想定される。
 あるいは、異なるセルにそれぞれ対応するTRPが異なるTAGを利用する/共通のTAGをシェアするケースも想定される。例えば、インターセルモビリティにおいて、サービングセル(又は、サービングセルのTRP)と非サービングセル(又は、非サービングセルのTRP)に対して、共通/異なるタイミングアドバンスに基づいてUL送信を制御することも想定される。
 このように、Rel.18以降のMIMOでは、マルチDCIを利用したマルチTRP動作において、2つのTRPに対する2つのタイミングアドバンス(TA)をサポートすることも想定される。
 TRP単位でTAGが設定/制御される場合、タイムアライメントタイマ(例えば、timeAlignmentTimer)がTRP毎に設定されてもよい。タイムアライメントタイマは、MACエンティティが、関連づけられたTAGに属するサービングセルがアップリンク時間調整(例えば、uplink time aligned)されているとみなす時間を制御してもよい。例えば、ULタイムアライメントを維持(例えば、maintenance)するためにタイムアライメントタイマがRRCにより設定されてもよい。
 タイムアライメントタイマ(例えば、timeAlignementTimer)は、ULタイムアライメントに対して維持されてもよい。Rel.17において、タイムアライメントタイマー(例えば、timeAlignementTimer)は、TAG毎に対応する。UEは、タイミングアドバンスコマンド用のMAC CE(例えば、TAC MAC CE)を受信した場合、指示されたタイミングアドバンスグループ(例えば、TAG)にそれぞれ関連するタイムアライメントタイマを開始又は再開(リスタート)する。
 MACエンティティは、TAC MAC CEを受信し、かつ指示されたTAGとの間で所定値(NTA)が維持されている場合、指示されたTAGに対するタイミングアドバンスコマンドを適用する、あるいは、指示されたTAGに関連するタイムアライメントタイマを開始又は再起動(リスタート)する。所定値(NTA)は、DLとUL間のタイミングアドバンスであってもよい。
 タイムアライメントタイマが満了(expire)した場合の動作は、PTAGとSTAGでそれぞれ別々に定義されてもよい。なお、MACエンティティのSpCellを含むタイミングアドバンスグループ(TAG)をプライマリタイミングアドバンスグループ(PTAG)と呼び、それ以外のTAGをセカンダリタイミングアドバンスグループ(STAG)と呼んでもよい。
 例えば、Rel.17において、PTAGに対応するタイミングアドバンスタイマが満了した場合、所定のPTAG用動作が適用され、STAGに対応するタイミングアドバンスタイマが満了した場合、所定のSTAG用動作が適用されることがサポートされている。
 例えば、タイムアライメントタイマが満了した場合、以下の動作(例えば、所定のPTAG用動作/所定のSTAG用動作)が行われてもよい。
[所定のPTAG用動作]
 タイムアライメントタイマがPTAGと関連づけられている場合、
・全てのサービングセルの全てのHARQバッファをフラッシュ(廃棄)する。
・もし設定されている場合、全てのサービングセルに対してPUCCHをリリースするようにRRCに通知する。
・もし設定されている場合、SRSをリリースするようにRRCに通知する。
・設定されたDL割当てと設定されたUL割当てを全てクリアする。
・セミパーシステントCSI報告用のPUSCHリソースをクリアする。
・ランニング中のタイムアライメントタイマを全て満了させる。
・全てのTAGのNTAを維持する。
[所定のSTAG用動作]
 タイムアライメントタイマがSTAGと関連づけられている場合、当該TAGに属する全てのサービングセルに対して、
・全てのHARQバッファをフラッシュ(廃棄)する。
・もし設定されている場合、PUCCHをリリースするようにRRCに通知する。
・もし設定されている場合、SRSをリリースするようにRRCに通知する。
・設定されたDLの割当てとULの割当てを全てクリアする。
・セミパーシステントCSI報告用のPUSCHリソースをクリアする。
・当該TAGのNTAを維持する。
(TRP/パネル単位のTA制御)
 上述したように、複数の送受信ポイント(例えば、TRP)/パネルを利用して通信を行う場合、TRPごと/パネルごとにタイミングアドバンス(TA)を制御することも想定される。
 Rel.18以降のNRでは、PDCCHオーダによってトリガされるRACH、及び、UEによってトリガされるRACHについて、衝突型ランダムアクセス(Contention based Random Access(CBRA))及び非衝突型ランダムアクセス(Contention Free Random Access(CFRA))が、TRP単位又はTRP TA(TRPごとのTA)単位で考慮/決定されることが考えられる。
 TRP毎に(又は、TRP単位で)タイミングアドバンスの適用/設定がサポートされる場合、UEは、各TRPに対応するタイミングアドバンス(又は、各TRPが属するタイミングアドバンスグループ)に基づいて、各TRPにおけるUL送信を制御する。
 各サービングセルに対応するTRPに関する情報(例えば、TRPインデックス/TRP ID)は、RRC/MAC CE/下り制御情報を利用して基地局からUEに設定/指示されてもよい。UEは、各TRPに対応するタイミングアドバンスに関する関連情報(例えば、TA値/タイミングアドバンスコマンド/タイムアライメントタイマ等に関する情報)を基地局から受信してもよい。
 本開示の各実施形態は、セル内マルチTRP(Intra-cell M-TRP)とセル間マルチTRP(Inter-cell M-TRP)の少なくとも一方において適用されてもよい。
 セル内マルチTRPにおいて、複数のTRP(又は、複数のTRPのアクティブ化されたTCI状態)は、同じセルIDに関連づけられてもよい。セルIDは、物理セルID(PCI)であってもよい。
 セル間マルチTRPにおいて、複数のTRP(又は、複数のTRPのアクティブ化されたTCI状態)は、異なるセルID(例えば、PCI)に関連づけられてもよい。例えば、セル間マルチTRPにおいて、2つのTRPは、それぞれ2つのPCIに関連づけられた2つのTRPと読み替えられてもよい。
 TRP毎に(又は、TRP単位で)タイミングアドバンスの適用/設定がサポートされる場合、各TRPが異なるTAGに属してもよい。サービングセルの複数のTRP(例えば、2つのTRP)がそれぞれ2つのTAGに属してもよい。TAGは、複数のサービングセルからの複数のTRPを含んでもよい。TAG内の全てのTRP/サービングセルは、同じタイミングアドバンス(TA)/同じタイムアライメントタイマを適用/維持する。
 本開示において、TAGに1以上のサブTAGが含まれてもよい。例えば、サービングセルの2つのTRPがそれぞれ2つのサブTAGに属すると共に、1つのTAGに属してもよい。サブTAGは、複数のサービングセルからの複数のTRPを含んでもよい。サブTAG内の全てのTRP/サービングセルは、同じタイミングアドバンス(TA)/同じタイムアライメントタイマを適用/維持する。
 例えば、TRP毎にTAがそれぞれ適用され(又は、TRP TA単位の指示が行われ)てもよい。例えば、以下のオプションの少なくとも一つが適用されてもよい。
[オプション1]
 TRP毎に異なるTAG-IDを設定し、TRP毎に異なるTAコマンド用MAC CEを設定してもよい。各TAGは、ULタイムアライメント用にタイムアライメントタイマを維持してもよい。
[オプション2]
 異なるTRPがTAGを共有してもよい。TAコマンド用MAC CEは1つのTRPにのみ適用されてもよい。UEは、他のTRPに対して異なるTAを適用する。例えば、UEは、TRP#0用のTA(TA_TRP#0)に基づいて、TAオフセット(TA_TRP_offset)により他のTRP(例えば、TRP#1)用のTA値を調整してもよい。
 この場合、複数のTRPのULタイムアライメントに対して1つのタイムアライメントタイマだけが存在してもよい。これは、複数のTRPのULタイムアライメントが同時に維持又は失われることを意味してもよい。
[オプション3]
 TAGを1つにしてもよい。TAコマンド用MAC CEは、UEに対する複数のサービングTRPに適用されてもよい。
[オプション4]
 TAGを1つにしてもよい。TRP/CW/PDSCH/DMRSポートグループで受信したTAコマンド用MAC CEは、TAGの同じTRP/CW/PDSCH/DMRSポートグループに適用されてもよい。TAGの各TRP/CW/PDSCH/DMRSポートグループは、ULタイムアライメント用のタイムアライメントタイマを維持する。
 このように、Rel.18以降では、マルチTRP(例えば、マルチDCIを利用したマルチTRP)において、複数のタイミングアドバンスがサポートされることも想定される。例えば、マルチDCIを利用したマルチTRP(例えば、2つのTRP)に対して複数(例えば、2つ)のタイミングアドバンスがサポートされてもよい。また、マルチTRPに対する複数のタイミングアドバンスの適用は、セル内/セル間マルチDCIマルチTRPシナリオでサポートされてもよいし、複数の周波数レンジ(例えば、FR1とFR2)においてサポートされてもよい。
 ところで、上述のようなマルチTRPにおけるTRP(TRP TA)ごとのRACH手順において、検討が十分でないケースがある。
 例えば、CFRAの場合、TRPごとのRACHリソースの設定/決定方法について検討が十分でない。
 また、既存のRACH手順では、MACエンティティの任意の時点において、進行中のRACH手順は1つである。UEが複数(例えば、2つ)のRACH手順をトリガされる場合、それをどのように処理するのかがUEの実装次第である。つまり、複数(例えば、2つ)のTRP向けに複数(例えば、2つ)のRACH手順がトリガされる場合の動作について検討が十分でない。
 また、UEがセルの1つのTRPのタイムアラインメントを確立したい場合、又は、UEがセルの1つのTRPについて「非同期」であると判断した場合、UEが当該1つのTRPに対して、RACH手順をトリガすることが考えられる。
 セルの他のTRPが同期していることを考慮すると、UEが、当該他のTRPに対して他のUL信号(例えば、スケジューリング要求(SR)/MAC CE)を介してTRPの同期を要求することが考えられる。
 しかしながら、当該TRPの同期に関する要求に係る動作について検討が十分でない。
 また、TRP単位のタイミングアドバンスの適用/設定がサポートされる場合、所定のMAC CE(例えば、MAC RAR)で指示されるタイミングアドバンスコマンドの適用をどのように制御するかについて検討が十分でない。
 また、複数(例えば、2つ)のTAGに属する1つのセルの複数(例えば、2つ)のTRPの場合、既存システムにおける動作の拡張が必要になると考えられるが、その検討が十分でない。
 また、セル間モビリティにおいてTRPごとのRACH手順を導入するための検討が十分でない。
 上述した検討が不十分である場合、複数のTRPを利用した通信の品質が劣化し、通信スループットの向上を抑制するおそれがある。
 そこで、本発明者らは、上記課題を解決する方法を着想した。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 本開示において、「A/B」及び「A及びBの少なくとも一方」は、互いに読み替えられてもよい。また、本開示において、「A/B/C」は、「A、B及びCの少なくとも1つ」を意味してもよい。
 本開示において、通知、アクティベート、ディアクティベート、指示(又は指定(indicate))、選択(select)、設定(configure)、更新(update)、決定(determine)などは、互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できるなどは、互いに読み替えられてもよい。
 本開示において、無線リソース制御(Radio Resource Control(RRC))、RRCパラメータ、RRCメッセージ、上位レイヤパラメータ、フィールド、情報要素(Information Element(IE))、設定などは、互いに読み替えられてもよい。本開示において、Medium Access Control制御要素(MAC Control Element(CE))、更新コマンド、アクティベーション/ディアクティベーションコマンドなどは、互いに読み替えられてもよい。
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 本開示において、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
 本開示において、物理レイヤシグナリングは、例えば、下りリンク制御情報(Downlink Control Information(DCI))、上りリンク制御情報(Uplink Control Information(UCI))などであってもよい。
 本開示において、インデックス、識別子(Identifier(ID))、インディケーター、リソースIDなどは、互いに読み替えられてもよい。本開示において、シーケンス、リスト、セット、グループ、群、クラスター、サブセットなどは、互いに読み替えられてもよい。
 本開示において、パネル、UEパネル、パネルグループ、ビーム、ビームグループ、プリコーダ、Uplink(UL)送信エンティティ、送受信ポイント(Transmission/Reception Point(TRP))、基地局、空間関係情報(Spatial Relation Information(SRI))、空間関係、SRSリソースインディケーター(SRS Resource Indicator(SRI))、制御リソースセット(COntrol REsource SET(CORESET))、Physical Downlink Shared Channel(PDSCH)、コードワード(Codeword(CW))、トランスポートブロック(Transport Block(TB))、参照信号(Reference Signal(RS))、アンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)、アンテナポートグループ(例えば、DMRSポートグループ)、グループ(例えば、空間関係グループ、符号分割多重(Code Division Multiplexing(CDM))グループ、参照信号グループ、CORESETグループ、Physical Uplink Control Channel(PUCCH)グループ、PUCCHリソースグループ)、リソース(例えば、参照信号リソース、SRSリソース)、リソースセット(例えば、参照信号リソースセット)、CORESETプール、下りリンクのTransmission Configuration Indication state(TCI状態)(DL TCI状態)、上りリンクのTCI状態(UL TCI状態)、統一されたTCI状態(unified TCI state)、共通TCI状態(common TCI state)、擬似コロケーション(Quasi-Co-Location(QCL))、QCL想定などは、互いに読み替えられてもよい。
 また、空間関係情報Identifier(ID)(TCI状態ID)と空間関係情報(TCI状態)は、互いに読み替えられてもよい。「空間関係情報」は、「空間関係情報のセット」、「1つ又は複数の空間関係情報」などと互いに読み替えられてもよい。TCI状態及びTCIは、互いに読み替えられてもよい。
 本開示において、TRP、CORESETプールインデックス(CORESETPoolIndex)、TRP ID、TRPに関するID、TAG ID、TCI状態のグループ、空間関係のグループ、QCLソースRSのグループ、DL RSのグループ、パスロスRSのグループ、(セル間マルチTRP用の)PCI、は互いに読み替えられてもよい。
 本開示において、異なるTRPに関連付けられること、異なるCORESETプールインデックス(CORESETPoolIndex)に関連付けられること、異なるTRP IDに関連付けられること、異なるTRPに関するIDに関連付けられること、異なるTAG IDに関連付けられること、異なるTCI状態のグループに関連付けられること、異なる空間関係のグループに関連付けられること、異なるQCLソースRSのグループに関連付けられること、異なるDL RSのグループに関連付けられること、異なるパスロスRSのグループに関連付けられること、異なる(セル間マルチTRP用の)PCIに関連付けられること、は互いに読み替えられてもよい。
 本開示の各実施形態は、セル内(intra-cell)マルチTRP及びセル間(inter-cell)マルチTRPの少なくとも一方に適用されてもよい。
 本開示において、セル内(intra-cell)マルチTRPは、複数(例えば、2つ)のTRPのアクティベートされるTCI状態(activated TCI states)が、同じPCIに関連付けられることを意味してもよい。
 本開示において、セル間(inter-cell)マルチTRPは、複数(例えば、2つ)のTRPのアクティベートされるTCI状態(activated TCI states)が、異なるPCIに関連付けられることを意味してもよい。
 本開示において、セル間(inter-cell)マルチTRPの場合、複数(例えば、2つ)のTRPは、複数(例えば、2つ)のPCIに関連付けられる複数(例えば、2つ)のTRPを意味してもよい。
(無線通信方法)
<第1の実施形態>
 CFRAの場合、TRPごとのRACHリソースの設定/決定方法について検討が十分でない。
 既存システム(Rel.17まで)では、CFRAのリソースは、RACHの設定(rach-ConfigDedicated)において提供される。
 SSBに関連付けられるCFRAリソースが、RACHの設定(rach-ConfigDedicated)で明示的に提供され、関連するSSBのうち、SSBのRSRP(SS-RSRP)が特定の閾値(rsrp-ThresholdSSB)を超えるSSBが少なくとも1つ利用可能である場合、UEは、SS-RSRPが特定の閾値(rsrp-ThresholdSSB)を超える1つのSSBを選択する。
 次いで、UEは、当該選択されたSSBに対応するランダムアクセスプリアンブルインデックス(ra-PreambleIndex)を設定する。
 また、CSI-RSに関連付けられるCFRAリソースが、RACHの設定(rach-ConfigDedicated)で明示的に提供され、関連するCSI-RSのうち、CSI-RSのRSRP(CSI-RSRP)が特定の閾値(rsrp-ThresholdCSI-RS)を超えるCSI-RSが少なくとも1つ利用可能である場合、UEは、CSI-RSRPが特定の閾値(rsrp-ThresholdCSI-RS)を超える1つのCSI-RSを選択する。
 次いで、UEは、当該選択されたCSI-RSに対応するランダムアクセスプリアンブルインデックス(ra-PreambleIndex)を設定する。
 以下第1の実施形態では、TRPごとのRACHリソースの設定/決定方法について説明する。
 UEは、各TRPに対応するRACHリソースに関する情報を受信してもよい。次いで、UEは、当該情報に基づいて、各TRPにおけるRACH手順を制御してもよい。
 UEは、特定のルール/条件に従って、1つ又は複数のRACHリソースを決定してもよい。
 当該RACHリソースは、TRPごとのCFRAにおけるRACHリソースであってもよい。本開示において、CFRAにおけるRACHリソースは、CFRAリソースと呼ばれてもよい。
 当該特定のルール/条件は、下記オプション1-1から1-3の少なくとも1つであってもよい。
《オプション1-1》
 UEに対し、RACH設定(例えば、rach-ConfigDedicated)においてCFRAリソースの1つ(共通)のセット(パラメータ)が設定されてもよい。
 当該1つ(共通)のセットとは、例えば、SSBリソースリストを示すパラメータ(例えば、ssb-ResourceList)、ランダムアクセス(RA)リソース選択用のPRACHマスクインデックスを示すパラメータ(例えば、ra-ssb-OccasionMaskIndex)、CSI-RSリソースリストを示すパラメータ(例えば、csi-rs-ResourceList)、CSI-RSに関する閾値を示すパラメータ(例えば、rsrp-ThresholdCSI-RS)の少なくとも1つであってもよい。
 TRPに関するインデックスのそれぞれに、SSB、CSI-RS、ランダムアクセスプリアンブルインデックス(例えば、ra-PreambleIndex)及び、PRACH機会(occasion)の少なくとも1つが関連付けられてもよい。
[オプション1-1-1]
 PDCCH(又は、PDCCHオーダ)によりトリガされるCFRAについて、TRPに関するインデックスは、当該PDCCHにより指示されてもよい。あるいは、TRPに関するインデックスは、当該PDCCHのCORESET/TCI状態に関連づけられてもよい。
 RAリソースは、TRPに関するインデックスに関連づけられたSSB/CSI-RS/ra-PreambleIndex/PRACHオケージョンに基づいて決定されてもよい(又は、SSB/CSI-RS/ra-PreambleIndex/PRACHオケージョンの中から選択されてもよい)。TRPに関するインデックスは、PDCCHにより指示されてもよいし、PDCCHに関連づけられたTRPに関するインデックスであってもよい。
 SSB/CSI-RS/ra-PreambleIndex/PRACHオケージョンの中からランダムアクセスリソースを選択する方法は、既存システム(例えば、Rel.17以前)におけるルールが適用されてもよい。
[オプション1-1-2]
 特定のイベント/条件によりトリガされるCFRAについて、ランダムアクセスリソースは、TRPに関連づけられたSSB/CSI-RS/ra-PreambleIndex/PRACHオケージョンに基づいて決定されてもよい(又は、SSB/CSI-RS/ra-PreambleIndex/PRACHオケージョンの中から選択されてもよい)。
 SSB/CSI-RS/ra-PreambleIndex/PRACHオケージョンの中からランダムアクセスリソースを選択する方法は、既存システム(例えば、Rel.17以前)におけるルールが適用されてもよい。
《オプション1-2》
 UEに対し、複数(例えば、2つ)のTRP用に、RACH設定(例えば、rach-ConfigDedicated)においてCFRAリソースの複数(例えば、2つ)のセット(パラメータ)が設定されてもよい。言い換えれば、UEに対し、第1のTRPに関するCFRAリソースに関するパラメータと、第2のTRPに関するCFRAリソースに関するパラメータと、が別々に設定されてもよい。
 当該セットとは、例えば、SSBリソースリストを示すパラメータ(例えば、ssb-ResourceList)、ランダムアクセス(RA)リソース選択用のPRACHマスクインデックスを示すパラメータ(例えば、ra-ssb-OccasionMaskIndex)、CSI-RSリソースリストを示すパラメータ(例えば、csi-rs-ResourceList)、CSI-RSに関する閾値を示すパラメータ(例えば、rsrp-ThresholdCSI-RS)の少なくとも1つであってもよい。
 UEは、TRPごとに、SSBリソースリストを示すパラメータ(例えば、ssb-ResourceList)、ランダムアクセス(RA)リソース選択用のPRACHマスクインデックスを示すパラメータ(例えば、ra-ssb-OccasionMaskIndex)、CSI-RSリソースリストを示すパラメータ(例えば、csi-rs-ResourceList)、CSI-RSに関する閾値を示すパラメータ(例えば、rsrp-ThresholdCSI-RS)の少なくとも1つが設定されてもよい。
 図8は、オプション1-2に係るRRC情報要素の一例を示す図である。図8に示す例では、CFRAリソースについて、第1のTRPと第2のTRPとで別々に設定される例を示している。なお、図8は、Abstract Syntax Notation One(ASN.1)記法を用いて記載されている(あくまで一例である)。
 図8に示す例では、CFRAのリソースを示すパラメータ(resources)内のSSBに関するパラメータ(ssb)とCSI-RSに関するパラメータ(csi-rs)とに含まれるパラメータが、第1のTRP用のパラメータと、第2のTRP用のパラメータとを含む。
 具体的には、図8には、第1のTRP用のパラメータとして、ssb-ResourceList、ra-ssb-OccasionMaskIndex、csi-rs-ResourceList、rsrp-ThresholdCSI-RS、が示される。また、図8には、第2のTRP用のパラメータとして、ssb-ResourceList-for TRP2-r18、ra-ssb-OccasionMaskIndex-for TRP2-r18、csi-rs-ResourceList-for TRP2-r18、rsrp-ThresholdCSI-RS-for TRP2-r18、が示される。
 UEは、第1のTRP用のパラメータに基づき第1のTRP用のCFRAリソースを判断し、第2のTRP用のパラメータに基づき第2のTRP用のCFRAリソースを判断する。
 なお、図8に示すパラメータの名称はあくまで一例であり、これに限られない。
 図9は、オプション1-2に係るRRC情報要素の他の例を示す図である。図9に示す例では、上記図8と同様に、CFRAリソースについて、第1のTRPと第2のTRPとで別々に設定される例を示している。なお、図9は、Abstract Syntax Notation One(ASN.1)記法を用いて記載されている(あくまで一例である)。
 図9に示す例では、CFRAのリソースを示すパラメータ(resources)について、第1のTRP用のパラメータと、第2のTRP用のパラメータとが規定される。
 具体的には、図9には、第1のTRP用のパラメータとして、resourcesが示され、第2のTRP用のパラメータとして、resources-for TRP2-r18が示される。
 なお、図9に示すパラメータの名称はあくまで一例であり、これに限られない。
 UEは、第1のTRP用のパラメータに基づき第1のTRP用のCFRAリソースを判断し、第2のTRP用のパラメータに基づき第2のTRP用のCFRAリソースを判断する。
《オプション1-3》
 UEに対し、複数のPCI用に、RACH設定(例えば、rach-ConfigDedicated)においてCFRAリソースの複数のセット(パラメータ)が設定されてもよい。
 CFRAに関するパラメータが、PCIごとに設定されてもよい。当該PCIは、例えば、サービングセルのPCI、及び、非サービングセルのPCI(追加PCI)、の少なくとも1つであってもよい。
 CFRAに関するパラメータは、RACH設定(例えば、rach-ConfigDedicated)内のCFRAパラメータに含まれる任意のパラメータであってもよい。CFRAに関するパラメータは、例えば、CFRAのRA機会を示すパラメータ(例えば、occasions)、CFRAのランダムアクセス機会の設定を示すパラメータ(例えば、rach-ConfigGeneric)、RACH機会ごとのSSB数を示すパラメータ(例えば、ssb-perRACH-Occasion)、CFRAのリソースを示すパラメータ(例えば、resources)、SSBリソースリストを示すパラメータ(例えば、ssb-ResourceList)、RAリソース選択用のPRACHマスクインデックスを示すパラメータ(例えば、ra-ssb-OccasionMaskIndex)、CSI-RSリソースリストを示すパラメータ(例えば、csi-rs-ResourceList)、CSI-RSに関する閾値を示すパラメータ(例えば、rsrp-ThresholdCSI-RS)の少なくとも1つ(又は、全て)であってもよい。
 オプション1-3は、セル間マルチTRP(inter-cell M-TRP)に適用されてもよい。また、オプション1-3は、(Rel.18で規定される)モビリティにおいて適用されてもよい。
 (Rel.17で規定される)セル間マルチTRP(inter-cell M-TRP)では、最大で7つの追加PCIが設定され、MAC CEで異なるPCIのTCI状態が変更されうる。このため、複数(例えば、全て)のPCIのRACHに関する設定をRRCシグナリングで行うことができることが望ましい。
 図10は、オプション1-3に係るRRC情報要素の一例を示す図である。図10に示す例では、CFRAリソースについて、PCIごとに別々に設定される例を示している。なお、図10は、Abstract Syntax Notation One(ASN.1)記法を用いて記載されている(あくまで一例である)。
 図10に示す例では、サービングセルのPCIに対応するCFRAに関するパラメータ(CFRA)と、第1の非サービングセルのPCIに対応するCFRAに関するパラメータ(CFRA-for non serving cell 1-r18)、第N(Nは任意の整数)の非サービングセルのPCIに対応するCFRAに関するパラメータ(CFRA-for non serving cell N-r18)が示される。これらのパラメータは、それぞれ、上述のCFRAに関するパラメータの少なくとも1つ(又は、全て)を含んでもよい。
 UEは、PCIに対応するRACH設定に基づいて、CFRAリソースを判断してもよい。
 なお、図10に示すパラメータの名称はあくまで一例であり、これに限られない。また、図10には、第N(Nは任意の整数)の非サービングセルのPCIに対応するCFRAに関するパラメータ(CFRA-for non serving cell N-r18)を一例として示したが、第2、3、…の非サービングセルのPCIに対応するCFRAに関するパラメータが規定されてもよい。
 第1の実施形態において、1つのTRPに対してCFRAがトリガされてもよい。1つのTRPに対してCFRAがトリガされることは、例えば、サービングセルの1つのTRPが「非同期(non-synchronized)」状態であること、サービングセルの1つのTRP用のタイムアラインメントを確立するために(CFRAが)トリガされること、の少なくとも一方を意味してもよい。
 1つのTRPに対してCFRAがトリガされる場合、UEは、当該TRPに関連付けられ、かつ、RACH設定(例えば、rach-ConfigDedicated)内で提供されるSSB/CSI-RS/ra-PreambleIndex/PRACHオケージョンの中から、ランダムアクセスリソースを選択/決定してもよい。
 本開示において、TRPが「非同期」であることは、TRPに関連するタイムアラインメントタイマ(例えば、timeAlignmentTimer、又は、TRPが属するTAGに関連するtimeAlignmentTimer)が満了したことを意味してもよい。
 以上第1の実施形態によれば、TRPごとのCFRAリソースを適切に決定することができる。
<第2の実施形態>
 既存のRACH手順では、MACエンティティの任意の時点において、進行中のRACH手順は1つである。UEが複数(例えば、2つ)のRACH手順をトリガされる場合、それをどのように処理するのかはUEの実装次第である。
 つまり、複数(例えば、2つ)のTRP向けに複数(例えば、2つ)のRACH手順がトリガされる場合の動作について検討が十分でない。
 以下第2の実施形態では、複数のRACH手順がトリガされる場合のUEの動作(拡張機能)について説明する。
 MACエンティティにおいて、ある(第1の)RACH手順が進行している間に、新たな(第2の)RACH手順がトリガされてもよい。UEは、当該トリガされる新たなRACH手順の設定を受信してもよい。当該第1のRACH手順と第2のRACH手順は、それぞれ異なるTRPと関連付けられてもよい。
 本開示において、複数(2つ)のRACH手順がそれぞれ異なるTRPに関連付けられることは、以下の少なくとも1つを意味してもよい:
 ・複数のRACH手順のPDCCHオーダがそれぞれ異なるTRPを示すこと。
 ・複数のRACH手順のPDCCHオーダがそれぞれ異なるTRPに関連付けられること。
 ・複数のRACH手順のRACHリソース(例えば、SSB/CSI-RS/プリアンブルインデックス/PRACHオケージョン)がそれぞれ異なるTRPに関連付けられること。
 ・異なるTRPの「非同期(non-synchronized)」状態によって、複数のRACH手順がトリガされること。
 ・異なるTRP用のタイムアラインメントを確立するために複数のRACH手順がトリガされること。
 UEは、以下のオプション2-1及び2-2の少なくとも1つに従ってもよい。
《オプション2-1》
 UEは、第1のRACH手順を継続するか、第2のRACH手順を開始するか、を判断してもよい。
 当該判断は、UEの実装次第であってもよい。この場合、UEは、特定のルール/条件に基づいて、第1のRACH手順を継続するか、第2のRACH手順を開始するか、を判断してもよい。
《オプション2-2》
 UEは、特定のTRPに関連付くRACH手順を優先(prioritize)してもよい。
 オプション2-2は、以下の選択肢2-2-1から2-2-4に大別される。
[選択肢2-2-1]
 特定のTRPは、例えば、特定のTRP IDのTRPであってもよい。
 当該特定のTRP IDは、例えば、最低(又は、最大)のTRP IDであってもよい。
 当該特定のTRP IDは、例えば、値が0(又は、1)のTRP IDであってもよい。
[選択肢2-2-2]
 特定のTRPは、例えば、特定のPCIに関連付けられるTRPであってもよい。
 当該特定のPCIは、例えば、サービングセルのPCIであってもよいし、任意の追加PCIであってもよい。
[選択肢2-2-3]
 特定のTRPは、例えば、特定のTAGに関連付けられるTRPであってもよい。
 当該特定のTAGは、例えば、PTAGであってもよいし、STAGであってもよい。
[選択肢2-2-4]
 各TRPに、優先度に関するインデックスが設定されてもよい。
 UEは、優先度に関するインデックスに基づいて、特定のTRPに関連付くRACH手順を優先(prioritize)してもよい。
 当該特定のTRPは、例えば、より高い(又は、より低い)優先度インデックスが設定されるTRPであってもよい。より高い値の優先度インデックスが、より高い優先度を示してもよいし、より低い値の優先度インデックスが、より高い優先度を示してもよい。
 本開示において、特定のTRPに関連付くRACH手順を優先(prioritize)することは、MACエンティティにおいて、より高い優先度のRACH手順がすでに進行しており、かつ、より低い優先度のRACH手順が新たにトリガされる場合に、UEが進行しているより高い優先度のRACH手順を継続することを意味してもよい。
 本開示において、特定のTRPに関連付くRACH手順を優先(prioritize)することは、MACエンティティにおいて、より低い優先度のRACH手順がすでに進行しており、かつ、より高い優先度のRACH手順が新たにトリガされる場合に、UEが進行しているより低い優先度のRACH手順を停止し、新たにより高い優先度のRACH手順を開始することを意味してもよい。
 図11は、オプション2-2に係るRACHの優先動作の一例を示す図である。図11に示す例では、第1のTRP(TRP#1)に対するRACH手順が進行中であり、その途中で第2のTRP(TRP#2)に対する他のRACH手順がトリガされるケースを示している。
 図11に示す例において、TRP#1が優先される場合、進行中のTRP#1に対するRACH手順が維持され、TRP#2に対する他のRACH手順はUEにおいて扱われない。
 図11に示す例において、TRP#2が優先される場合、進行中のTRP#1に対するRACH手順が停止され、UEは、新たにTRP#2に対する他のRACH手順を開始する。
 以上第2の実施形態によれば、複数のRACH手順がトリガされる場合であっても、適切にRACH手順の処理を行うことができる。
<第3の実施形態>
 UEがセルの1つのTRPのタイムアラインメントを確立したい場合、又は、UEがセルの1つのTRPについて「非同期」であると判断した場合、UEが当該1つのTRPに対して、RACH手順をトリガすることが考えられる。
 セルの他のTRPが同期していることを考慮すると、UEが、当該他のTRPに対して他のUL信号(例えば、スケジューリング要求(SR)/MAC CE)を介してTRPの同期を要求することが考えられる。
 しかしながら、当該TRPの同期に関する要求に係る動作について検討が十分でない。
 以下第3の実施形態では、当該TRPの同期に関する要求に係る動作について説明する。
 当該特定のUL信号は、例えば、スケジューリング要求(SR)/MAC CEであってもよい。
 UEは、特定の条件が満たされる場合、当該要求をNWに送信してもよい。
 当該特定の条件は、例えば、TRPごとの(ULの)同期ステータス、及び、TRPごとのタイムアラインメントの確立、の少なくとも1つに基づいてもよい。
 例えば、UEは、サービングセルの(少なくとも)1つのTRPについて「非同期」であると判断した場合、特定のUL信号を用いてTRPのUL時間同期(UL time synchronization)を要求してもよい。また、例えば、サービングセルの(少なくとも)1つのTRPのタイムアラインメントの確立が必要であると判断した場合、特定のUL信号を用いてTRPのUL時間同期を要求してもよい。
 当該特定のUL信号がSRである場合、UEに対し、TRPのUL時間同期の要求用の(固有の(dedicated))SR/PUCCHリソースが設定されてもよい。
 当該(固有の(dedicated))SR/PUCCHリソースは、TRPごと/TAGごとに設定されてもよい。
 当該特定のUL信号がMAC CEである場合、以下の少なくとも1つの情報が当該MAC CEに含まれてもよい:
 ・非同期のTRPのTRPインデックス。
 ・非同期のTRPのセルインデックス。
 ・非同期のTRPのTAGインデックス。
 本開示において、TRPが非同期であることは、当該TRPに関連付くタイムアラインメントタイマ(例えば、timeAlignmentTimer)が満了(expire)することを意味してもよい。
 UEは、UL時間同期要求の送信後、特定のDL信号(例えば、PDCCH/PDSCH)を用いて当該要求に対する応答信号を受信してもよいし、受信しなくてもよい。
 UEは、UL時間同期要求の送信後、特定の期間の経過後に、対象となるTRPが「同期」状態となると想定/判断してもよい。
 また、UEは、当該要求に対する応答信号の受信後特定の期間の経過後に、対象となるTRPが「同期」状態となると想定/判断してもよい。
 なお、当該特定の期間は、予め仕様で規定されてもよいし、上位レイヤシグナリング(RRC/MAC CE)でUEに通知されてもよいし、DCIでUEに指示されてもよいし、報告されるUE能力情報に基づいて決定されてもよい。
 図12は、第3の実施形態に係るUL時間同期要求の一例を示す図である。図12に示す例において、サービングセルの(少なくとも)1つのTRPが「非同期」であると判断した場合、UEは、NWに対し、UL時間同期要求を送信する。
 第3の実施形態は、以下に記載されるケースにおいてのみ適用されてもよい:
 ・サービングセルの複数のTRPのうちの1つのTRPが非同期であり、他のTRPが同期されている(すなわち、複数のTRPのいずれもが非同期である場合、UEは本実施形態を適用せずにRACHがトリガされうる)。
 ・非同期のTRPが特定のセル(例えば、SCell)に属する。
 ・非同期のTRPが特定のTAG(例えば、STAG)に属する。
 ・(セル内マルチTRPの場合、)非同期のTRPが特定のセル(例えば、非サービングセル(非サービングセルのPCIに関連付くセル))に属する。
 第3の実施形態は、UEがセルの1つのTRPのタイムアラインメントを確立したい(する必要がある)場合、UEがセルの少なくとも1つのTRPについて「非同期」であると判断した場合、及び、UEがセル1つのTRPについて「同期」であると判断し、他のTRPについて「非同期」であると判断した場合、の少なくとも1つにおいて適用されてもよい。
 以上第3の実施形態によれば、TRPの非同期に対するUL時間同期の要求を適切に送信することができる。
<第4の実施形態>
 第4の実施形態は、ランダムアクセスレスポンス(RAR)により指示されるタイミングアドバンスコマンド(TAC(例えば、1つのTAC))がサービングセルの1つのTRPに適用される場合、当該TACが適用される1つのTRPの決定方法について説明する。
 UEは、マルチTRPが設定されたサービングセルについてRARによりTACを受信してもよい。当該マルチTRPに対する2つのTAがサポートされる場合、UEは、RARで指示されるTACを、サービングセルのいずれかのTRPに適用してもよい。
 RARで指示されるTACを適用するTRP(例えば、1つのTRP)は、以下のオプション4-1から4-3の少なくとも1つに基づいて決定されてもよい。
《オプション4-1》
 TRPインデックスが、特定のCORESET/TCI状態と関連付けられてもよい。
 当該特定のCORESET/TCI状態は、RARをスケジュールするPDCCHのCORESET/TCI状態であってもよい。
 RARに含まれるTACが、特定のCORESET/TCI状態と関連付けられるTRPインデックスのTRPに適用されてもよい。
 なお、本開示において、RARをスケジュールするPDCCHは、PRACH送信に応答して、UEが検出を試みる、上位レイヤによって制御されるウィンドウ内で対応するRA-RNTIによってCRCがスクランブルされるDCIフォーマット(DCIフォーマット1_0)を伝送するPDCCHを意味してもよい。
《オプション4-2》
 TRPインデックスが、特定のTCI状態と関連付けられてもよい。
 当該特定のTCI状態は、RARを伝送するPDSCHのTCI状態であってもよい。
 RARに含まれるTACが、特定のTCI状態と関連付けられるTRPインデックスのTRPに適用されてもよい。
《オプション4-3》
 TACが適用されるTRPは、予め仕様で定義されてもよい。
 例えば、UEは、TACを特定のTAGに関連するTRPに適用すると判断してもよい。
 例えば、当該特定のTAGは、より低い(又は、より高い)TAG IDのTAGであってもよい。
 例えば、あるTRPがPTAGと関連付けられ、別のTRPがSTAGと関連付けられる場合、当該特定のTAGは、PTAG(又は、STAG)であってもよい。
 RACHの種別に基づいて、適用される上記オプションが決定されてもよい。例えば、PDCCHオーダによってトリガされるRACHと、UEによってトリガされるRACHとのそれぞれに対し、上記オプションのうちの異なるオプションが適用されてもよいし、共通のオプションが適用されてもよい。
 本開示において、1つのTRPにTACを適用することは、当該TRPに関連付けられるTAGにTACを適用することを意味してもよい。
 また、UEによってトリガされるRACHの場合、MAC RAR内のTACは、複数(2つ、両方)のTRPに適用されてもよい。PDCCHオーダによってトリガされるRACHの場合、MAC RAR内のTACは、上記オプションの少なくとも1つによって決定される1つのTRPに適用されてもよい。
 以上第4の実施形態によれば、TACが適用されるTRPを適切に決定することができる。
<第5の実施形態>
 既存システムでは、MACエンティティのTAG間の最大UL送信タイミング差、又は、UEのいずれかのMACエンティティのTAG間の最大UL送信タイミング差を超えたことにより、MACエンティティがSCellのUL送信を停止した場合、MACエンティティは、当該SCellに関連するタイムアラインメントタイマ(timeAlignmentTimer)が満了したと判断する。
 また、既存システムでは、サービングセルが属するTAGに関連するタイムアラインメントタイマが動作しておらず、コンフィギュアドグラントベースのSmall Data Transmission(CG-SDT)手順が進行中でない場合には、MACエンティティは、サービングセルにおける、ランダムアクセスプリアンブル及びメッセージA(MSG A)の送信以外のUL送信を行わない。
 このような既存システムにおける動作は、セルごとに設定される。しかしながら、複数(例えば、2つ)のTAGに属する1つのセルの複数(例えば、2つ)のTRPの場合、これらの動作の拡張が必要になると考えられるが、その検討が十分でない。
 以下第5の実施形態では、上記動作をマルチTRPかつTRPごとのTAに関する動作への拡張を説明する。
 第1の条件が満たされる場合、UE(MACエンティティ)はサービングセルのTRPに関連するタイムアラインメントタイマ(例えば、timeAlignmentTimer)が満了したと判断してもよい。
 当該第1の条件は、例えば、MACエンティティのTAG間の最大UL送信タイミング差、及び、UEのいずれかのMACエンティティのTAG間の最大UL送信タイミング差の少なくとも一方を超えたことにより、MACエンティティがSCellのUL送信を停止した場合、であってもよい。
 上記サービングセルは、例えば、PCell/PSCell/SCellであってもよい。
 第2の条件が満たされる場合、UE(MACエンティティ)は、サービングセルの1つのTRP関連する、特定のUL送信を行わないと判断してもよい。
 当該第2の条件は、当該サービングセルのTRPが属するTAGに関連するタイムアラインメントタイマが動作しておらず、かつ、コンフィギュアドグラントベースのSmall Data Transmission(CG-SDT)手順が進行中でない場合であってもよい。
 当該特定のUL送信は、ランダムアクセスプリアンブル及びメッセージA(MSG A)の送信以外のUL送信であってもよい。
 以上第5の実施形態によれば、マルチTRPかつTRPごとのTAを利用する場合であっても、既存の仕様動作を拡張して適切なUL送信の制御を行うことができる。
<第6の実施形態(第1の実施形態の変形例)>
 以下第6の実施形態は、上記第1の実施形態を、セル間モビリティに適用する例を説明する。具体的には、候補セルごとのRACHリソースの設定/決定方法について説明する。
 UEは、セル間マルチTRPを設定されてもよい。
 UEは、各候補セルに対応するRACHリソースに関する情報を受信してもよい。次いで、UEは、当該情報に基づいて、各候補セルにおけるRACH手順を制御してもよい。
 UEは、特定のルール/条件に従って、1つ又は複数のRACHリソースを決定してもよい。
 当該RACHリソースは、候補セルごとのCFRAにおけるRACHリソースであってもよい。
 当該特定のルール/条件は、下記オプション6-1及び6-2の少なくとも1つであってもよい。
《オプション6-1》
 UEに対し、RACH設定(例えば、rach-ConfigDedicated)においてCFRAリソースの1つ(共通)のセット(パラメータ)が設定されてもよい。
 当該CFRAリソースの1つ(共通)のセット(パラメータ)は、サービングセル及び1又は複数の候補セルを含む複数(例えば、全て)のセル用のセット(パラメータ)であってもよい。
 当該1つ(共通)のセットとは、例えば、SSBリソースリストを示すパラメータ(例えば、ssb-ResourceList)、ランダムアクセス(RA)リソース選択用のPRACHマスクインデックスを示すパラメータ(例えば、ra-ssb-OccasionMaskIndex)、CSI-RSリソースリストを示すパラメータ(例えば、csi-rs-ResourceList)、CSI-RSに関する閾値を示すパラメータ(例えば、rsrp-ThresholdCSI-RS)の少なくとも1つであってもよい。
 セルインデックスのそれぞれに、SSB、CSI-RS、ランダムアクセスプリアンブルインデックス(例えば、ra-PreambleIndex)及び、PRACH機会(occasion)の少なくとも1つが関連付けられてもよい。
《オプション6-2》
 UEに対し、複数の候補セル用に、RACH設定(例えば、rach-ConfigDedicated)においてCFRAリソースの複数のセット(パラメータ)が設定されてもよい。
 CFRAに関するパラメータが、候補セルごとに設定されてもよい。
 CFRAに関するパラメータは、RACH設定(例えば、rach-ConfigDedicated)内のCFRAパラメータに含まれる任意のパラメータであってもよい。CFRAに関するパラメータは、例えば、CFRAのRA機会を示すパラメータ(例えば、occasions)、CFRAのランダムアクセス機会の設定を示すパラメータ(例えば、rach-ConfigGeneric)、RACH機会ごとのSSB数を示すパラメータ(例えば、ssb-perRACH-Occasion)、CFRAのリソースを示すパラメータ(例えば、resources)、SSBリソースリストを示すパラメータ(例えば、ssb-ResourceList)、RAリソース選択用のPRACHマスクインデックスを示すパラメータ(例えば、ra-ssb-OccasionMaskIndex)、CSI-RSリソースリストを示すパラメータ(例えば、csi-rs-ResourceList)、CSI-RSに関する閾値を示すパラメータ(例えば、rsrp-ThresholdCSI-RS)の少なくとも1つ(又は、全て)であってもよい。
 本開示において、候補セルは、サービングセル/追加セルに関連するセルであってもよいし、サービングセルと同じ/異なるセルであってもよい。
 第6の実施形態において、1つのセルに対してCFRAがトリガされてもよい。1つのセルに対してCFRAがトリガされることは、例えば、セル(サービングセル/追加セルを含む)が「非同期(non-synchronized)」状態であること、セル(サービングセル/追加セルを含む)用のタイムアラインメントを確立するために(CFRAが)トリガされること、の少なくとも一方を意味してもよい。
 1つのセルに対してCFRAがトリガされる場合、UEは、当該セルに関連付けられ、かつ、RACH設定(例えば、rach-ConfigDedicated)内で提供されるSSB/CSI-RS/ra-PreambleIndex/PRACHオケージョンの中から、ランダムアクセスリソースを選択/決定してもよい。
 本開示において、セルが「非同期」であることは、当該セルに関連するタイムアラインメントタイマ(例えば、timeAlignmentTimer、又は、当該セルが属するTAGに関連するtimeAlignmentTimer)が満了したことを意味してもよい。
 以上第6の実施形態によれば、セル間モビリティにおけるセルごとのCFRAリソースを適切に決定することができる。
<第7の実施形態(第2の実施形態の変形例)>
 以下第7の実施形態は、上記第2の実施形態を、セル間モビリティに適用する例を説明する。具体的には、複数のRACH手順がトリガされる場合のUEの動作(拡張機能)について説明する。
 UEは、セル間マルチTRPを設定されてもよい。
 MACエンティティにおいて、ある(第1の)RACH手順が進行している間に、新たな(第2の)RACH手順がトリガされてもよい。当該第1のRACH手順と第2のRACH手順は、それぞれ異なるセル(例えば、サービングセル/追加セルを含むセル)と関連付けられてもよい。
 本開示において、複数のRACH手順がそれぞれ異なるセルに関連付けられることは、以下の少なくとも1つを意味してもよい:
 ・複数のRACH手順のPDCCHオーダがそれぞれ異なるセルを示すこと。
 ・複数のRACH手順のPDCCHオーダがそれぞれ異なるセルに関連付けられること。
 ・複数のRACH手順のRACHリソース(例えば、SSB/CSI-RS/プリアンブルインデックス/PRACHオケージョン)がそれぞれ異なるセルに関連付けられること。
 ・異なるセルの「非同期(non-synchronized)」状態によって、複数のRACH手順がトリガされること。
 ・異なるセル用のタイムアラインメントを確立するために複数のRACH手順がトリガされること。
 UEは、以下のオプション7-1及び7-2の少なくとも1つに従ってもよい。
《オプション7-1》
 UEは、第1のRACH手順を継続するか、第2のRACH手順を開始するか、を判断してもよい。
 当該判断は、UEの実装次第であってもよい。この場合、UEは、特定のルール/条件に基づいて、第1のRACH手順を継続するか、第2のRACH手順を開始するか、を判断してもよい。
《オプション7-2》
 UEは、特定のセルに関連付くRACH手順を優先(prioritize)してもよい。
 オプション7-2は、以下の選択肢7-2-1から7-2-4に大別される。
[選択肢7-2-1]
 特定のセルは、例えば、特定のセルインデックスを有するセルであってもよい。
 当該セルインデックスは、例えば、最低(又は、最大)のセルインデックスであってもよい。
[選択肢7-2-2]
 特定のセルは、例えば、サービングセルであってもよい。
 UEは、サービングセルに関連付くRACH手順を優先してもよい。
 UEは、サービングセルに関連付くTRPのRACH手順を優先してもよい。
[選択肢7-2-3]
 特定のセルは、例えば、特定のTAGに関連付けられるセルであってもよい。
 当該特定のTAGは、例えば、PTAGであってもよいし、STAGであってもよい。
 UEは、特定のTAGに関連付けられるセルのRACH手順を優先してもよい。
 UEは、特定のTAGに関連付けられるセルに関連するTRPのRACH手順を優先してもよい。
[選択肢7-2-4]
 各セルに、優先度に関するインデックスが設定されてもよい。
 UEは、優先度に関するインデックスに基づいて、特定のセルに関連付くRACH手順を優先(prioritize)してもよい。
 当該特定のセルは、例えば、より高い(又は、より低い)優先度インデックスが設定されるセルであってもよい。より高い値の優先度インデックスが、より高い優先度を示してもよいし、より低い値の優先度インデックスが、より高い優先度を示してもよい。
 本開示において、特定のセルに関連付くRACH手順を優先(prioritize)することは、MACエンティティにおいて、より高い優先度のRACH手順がすでに進行しており、かつ、より低い優先度のRACH手順が新たにトリガされる場合に、UEが進行しているより高い優先度のRACH手順を継続することを意味してもよい。
 本開示において、特定のセルに関連付くRACH手順を優先(prioritize)することは、MACエンティティにおいて、より低い優先度のRACH手順がすでに進行しており、かつ、より高い優先度のRACH手順が新たにトリガされる場合に、UEが進行しているより低い優先度のRACH手順を停止し、新たにより高い優先度のRACH手順を開始することを意味してもよい。
 図13は、オプション7-2に係るRACHの優先動作の一例を示す図である。図13に示す例では、第1のセル(セル#1)に対するRACH手順が進行中であり、その途中で第2のセル(セル#2)に対する他のRACH手順がトリガされるケースを示している。
 図13に示す例において、セル#1が優先される場合、進行中のセル#1に対するRACH手順が維持され、セル#2に対する他のRACH手順はUEにおいて扱われない。
 図13に示す例において、セル#2が優先される場合、進行中のセル#1に対するRACH手順が停止され、UEは、新たにセル#2に対する他のRACH手順を開始する。
 以上第7の実施形態によれば、複数のRACH手順がトリガされる場合であっても、適切にRACH手順の処理を行うことができる。
<第8の実施形態(第3の実施形態の変形例)>
 以下第8の実施形態は、上記第3の実施形態を、セル間モビリティに適用する例を説明する。具体的には、セル(例えば、サービングセル/追加セルを含むセル)の同期に関する要求に係る動作について説明する。
 UEは、セル間マルチTRPを設定されてもよい。
 UEは、NW(例えば、基地局)に、特定のUL信号を用いてセル(例えば、サービングセル/追加セルを含むセル)のUL時間同期(UL time synchronization)を要求してもよい。
 UEは、特定の条件が満たされる場合、ネットワーク(NW、例えば、基地局)に、特定のUL信号を用いてTRPのUL時間同期(UL time synchronization)を要求してもよい。
 当該特定の条件が満たされる場合とは、例えば、TRPごとの(ULの)同期ステータス、及び、TRPごとのタイムアラインメントの確立、の少なくとも1つに基づいてもよい。
 例えば、UEは、セルの1つのTRPについて「非同期」であると判断した場合、特定のUL信号を用いてTRPのUL時間同期(UL time synchronization)を要求してもよい。また、例えば、セルの1つのTRPのタイムアラインメントの確立が必要であると判断した場合、特定のUL信号を用いてTRPのUL時間同期(UL time synchronization)を要求してもよい。
 当該特定のUL信号は、例えば、スケジューリング要求(SR)/MAC CEであってもよい。
 UEは、特定の条件が満たされる場合、当該要求をNWに送信してもよい。
 当該特定の条件は、例えば、セルごとの(ULの)同期ステータス、及び、セルごとのタイムアラインメントの確立、の少なくとも1つに基づいてもよい。
 当該特定の条件は、例えば、セル(の同期ステータス)が「非同期」であるときであってもよい。
 例えば、UEは、セルについて「非同期」であると判断した場合、特定のUL信号を用いてセルのUL時間同期を要求してもよい。
 当該特定のUL信号がSRである場合、UEに対し、セルのUL時間同期の要求用の(固有の(dedicated))SR/PUCCHリソースが設定されてもよい。
 当該(固有の(dedicated))SR/PUCCHリソースは、セルごと/TAGごとに設定されてもよい。
 当該特定のUL信号がMAC CEである場合、以下の少なくとも1つの情報が当該MAC CEに含まれてもよい:
 ・非同期のセルのセルインデックス。
 ・非同期のセルに関連するTAGインデックス。
 本開示において、セルが非同期であることは、当該セル又は当該セルのTAGに関連付くタイムアラインメントタイマ(例えば、timeAlignmentTimer)が満了(expire)することを意味してもよい。
 UEは、UL時間同期要求の送信後、特定のDL信号(例えば、PDCCH/PDSCH)を用いて当該要求に対する応答信号を受信してもよいし、受信しなくてもよい。
 UEは、UL時間同期要求の送信後、特定の期間の経過後に、対象となるTRPが「同期」状態となると想定/判断してもよい。
 また、UEは、当該要求に対する応答信号の受信後特定の期間の経過後に、対象となるTRPが「同期」状態となると想定/判断してもよい。
 なお、当該特定の期間は、予め仕様で規定されてもよいし、上位レイヤシグナリング(RRC/MAC CE)でUEに通知されてもよいし、DCIでUEに指示されてもよいし、報告されるUE能力情報に基づいて決定されてもよい。
 第8の実施形態は、非同期のセルが特定のセル(例えば、非サービングセル)であるケースにおいてのみ適用されてもよい。
 以上第8の実施形態によれば、セル間モビリティにおけるセルの非同期に対するUL時間同期の要求を適切に送信することができる。
<補足>
[UEへの情報の通知]
 上述の実施形態における(ネットワーク(Network(NW))(例えば、基地局(Base Station(BS)))から)UEへの任意の情報の通知(言い換えると、UEにおけるBSからの任意の情報の受信)は、物理レイヤシグナリング(例えば、DCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル(例えば、PDCCH、PDSCH、参照信号)、又はこれらの組み合わせを用いて行われてもよい。
 上記通知がMAC CEによって行われる場合、当該MAC CEは、既存の規格では規定されていない新たな論理チャネルID(Logical Channel ID(LCID))がMACサブヘッダに含まれることによって識別されてもよい。
 上記通知がDCIによって行われる場合、上記通知は、当該DCIの特定のフィールド、当該DCIに付与される巡回冗長検査(Cyclic Redundancy Check(CRC))ビットのスクランブルに用いられる無線ネットワーク一時識別子(Radio Network Temporary Identifier(RNTI))、当該DCIのフォーマットなどによって行われてもよい。
 また、上述の実施形態におけるUEへの任意の情報の通知は、周期的、セミパーシステント又は非周期的に行われてもよい。
[UEからの情報の通知]
 上述の実施形態におけるUEから(NWへ)の任意の情報の通知(言い換えると、UEにおけるBSへの任意の情報の送信/報告)は、物理レイヤシグナリング(例えば、UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル(例えば、PUCCH、PUSCH、PRACH、参照信号)、又はこれらの組み合わせを用いて行われてもよい。
 上記通知がMAC CEによって行われる場合、当該MAC CEは、既存の規格では規定されていない新たなLCIDがMACサブヘッダに含まれることによって識別されてもよい。
 上記通知がUCIによって行われる場合、上記通知は、PUCCH又はPUSCHを用いて送信されてもよい。
 また、上述の実施形態におけるUEからの任意の情報の通知は、周期的、セミパーシステント又は非周期的に行われてもよい。
[各実施形態の適用について]
 上述の実施形態の少なくとも1つは、特定の条件を満たす場合に適用されてもよい。当該特定の条件は、規格において規定されてもよいし、上位レイヤシグナリング/物理レイヤシグナリングを用いてUE/BSに通知されてもよい。
 上述の実施形態の少なくとも1つは、特定のUE能力(UE capability)を報告した又は当該特定のUE能力をサポートするUEに対してのみ適用されてもよい。
 当該特定のUE能力は、以下の少なくとも1つを示してもよい:
 ・上記実施形態の少なくとも1つについての特定の処理/動作/制御/情報をサポートすること、
 ・マルチTRP用の複数(例えば、2つ)のTAをサポートすること、
 ・セル内マルチTRP(intra-cell M-TRP)用の複数(例えば、2つ)のTAをサポートすること、
 ・セル間マルチTRP(inter-cell M-TRP)用の複数(例えば、2つ)のTAをサポートすること、
 ・L1/L2セル間モビリティをサポートすること。
 また、上記特定のUE能力は、全周波数にわたって(周波数に関わらず共通に)適用される能力であってもよいし、周波数(例えば、セル、バンド、バンドコンビネーション、BWP、コンポーネントキャリアなどの1つ又はこれらの組み合わせ)ごとの能力であってもよいし、周波数レンジ(例えば、Frequency Range 1(FR1)、FR2、FR3、FR4、FR5、FR2-1、FR2-2)ごとの能力であってもよいし、サブキャリア間隔(SubCarrier Spacing(SCS))ごとの能力であってもよいし、Feature Set(FS)又はFeature Set Per Component-carrier(FSPC)ごとの能力であってもよい。
 また、上記特定のUE能力は、全複信方式にわたって(複信方式に関わらず共通に)適用される能力であってもよいし、複信方式(例えば、時分割複信(Time Division Duplex(TDD))、周波数分割複信(Frequency Division Duplex(FDD)))ごとの能力であってもよい。
 また、上述の実施形態の少なくとも1つは、UEが上位レイヤシグナリング/物理レイヤシグナリングによって、上述の実施形態に関連する特定の情報(又は上述の実施形態の動作を実施すること)を設定/アクティベート/トリガされた場合に適用されてもよい。例えば、当該特定の情報は、マルチTRP用の複数のTAを有効化することを示す情報、セル内マルチTRP用の複数のTAを有効化することを示す情報、セル間マルチTRP用の複数のTAを有効化することを示す情報、L1/L2セル間モビリティを有効化することを示す情報、特定のリリース(例えば、Rel.18/19)向けの任意のRRCパラメータなどであってもよい。
 UEは、上記特定のUE能力の少なくとも1つをサポートしない又は上記特定の情報を設定されない場合、例えばRel.15/16の動作を適用してもよい。
(付記A)
 本開示の一実施形態に関して、以下の発明を付記する。
[付記A-1]
 第1の送受信ポイント(TRP)に対応するContention Free Random Access(CFRA)のリソースに関する第1の情報と、第2のTRPに対応するCFRAのリソースに関する第2の情報と、を受信する受信部と、
 前記第1の情報に基づいて前記第1のTRPにおけるCFRA手順を制御し、前記第2の情報に基づいて前記第2のTRPにおけるCFRA手順を制御する制御部と、を有する端末。
[付記A-2]
 前記第1の情報及び前記第2の情報は、共通の情報である付記A-1に記載の端末。
[付記A-3]
 前記第1の情報及び前記第2の情報は、それぞれ別々のTRPに関連する別々の情報である付記A-1又は付記A-2に記載の端末。
[付記A-4]
 前記第1の情報は第1のセルに対応し、前記第2の情報は第2のセルに対応し、
 前記制御部は、セル間マルチTRPにおけるCFRA手順を制御する付記A-1から付記A-3のいずれかに記載の端末。
(付記B)
 本開示の一実施形態に関して、以下の発明を付記する。
[付記B-1]
 第1の送受信ポイント(TRP)に対応する第1のランダムアクセスチャネル(RACH)手順が設定されているときに、第2のTRPに対応する第2のRACH手順に関する設定を受信する受信部と、
 特定の条件に基づいて、前記第1のRACH手順を維持すること、又は、前記第1のRACH手順を停止し前記第2のRACH手順を開始すること、を判断する制御部と、を有する端末。
[付記B-2]
 前記制御部は、特定のTRPに関するIDに基づいて、前記第1のRACH手順を維持すること、又は、前記第1のRACH手順を停止し前記第2のRACH手順を開始すること、を判断する付記B-1に記載の端末。
[付記B-3]
 前記制御部は、特定の物理セルIDに関連するTRPに基づいて、前記第1のRACH手順を維持すること、又は、前記第1のRACH手順を停止し前記第2のRACH手順を開始すること、を判断する付記B-1又は付記B-2に記載の端末。
[付記B-4]
 前記制御部は、特定のタイミングアドバンスグループに関連するTRPに基づいて、前記第1のRACH手順を維持すること、又は、前記第1のRACH手順を停止し前記第2のRACH手順を開始すること、を判断する付記B-1から付記B-3のいずれかに記載の端末。
(付記C)
 本開示の一実施形態に関して、以下の発明を付記する。
[付記C-1]
 送受信ポイント(TRP)ごとの同期ステータス、及び、前記TRPごとのタイムアラインメントの確立、の少なくとも一方に基づいて、特定の上りリンク(UL)信号を用いてTRPに関するUL時間同期要求を送信する送信部と、
 前記UL信号の送信後、特定の期間経過後に複数のTRPが同期されていると判断する制御部と、を有する端末。
[付記C-2]
 前記特定のUL信号は、スケジューリング要求であり、
 前記制御部は、前記TRPごと、又は、タイミングアドバンスグループごとの前記スケジューリング要求のためのリソースを決定する付記C-1に記載の端末。
[付記C-3]
 前記特定のUL信号は、Medium Access Control(MAC)制御要素であり、
 前記MAC制御要素は、非同期のTRPのTRPに関するインデックス、前記非同期のTRPのセルインデックス、及び、前記非同期のTRPのタイミングアドバンスグループのインデックスの少なくとも1つを含む付記C-1又は付記C-2に記載の端末。
[付記C-4]
 前記制御部は、さらに、ランダムアクセスレスポンス(RAR)に含まれるタイミングアドバンスコマンド(TAC)の受信を制御し、
 前記TACをスケジュールする物理下りリンク制御チャネルに関連する制御リソースセット又Transmission Configuration Indication(TCI)状態、前記RARを伝送する物理下りリンク共有チャネルのTCI状態、及び、特定のタイミングアドバンスグループの少なくとも1つに基づいて、前記TACを適用するTRPを判断する、付記C-1から付記C-3のいずれかに記載の端末。
(付記D)
 本開示の一実施形態に関して、以下の発明を付記する。
[付記D-1]
 セル間マルチ送受信ポイント(TRP)の設定を受信し、第1の候補セルに対応するContention Free Random Access(CFRA)のリソースに関する第1の情報と、第2の候補セルに対応するCFRAのリソースに関する第2の情報と、を受信する受信部と、
 前記第1の情報に基づいて前記第1の候補セルにおけるCFRA手順を制御し、前記第2の情報に基づいて前記第2の候補セルにおけるCFRA手順を制御する制御部と、を有する端末。
[付記D-2]
 前記第1の情報及び前記第2の情報は、共通の情報である、又は、それぞれ別々の候補セルに関連する別々の情報である、付記D-1に記載の端末。
[付記D-3]
 前記受信部は、さらに、前記第1のTRPに対応する第1のランダムアクセスチャネル(RACH)手順が設定されているときに、前記第2のTRPに対応する第2のRACH手順に関する設定を受信し、
 前記制御部は、さらに、特定の条件に基づいて、前記第1のRACH手順を維持すること、又は、前記第1のRACH手順を停止し前記第2のRACH手順を開始すること、を判断する付記D-1又は付記D-2に記載の端末。
[付記D-4]
 前記制御部は、セルの同期ステータスに基づいてセルに関するUL時間同期要求の送信を制御する付記D-1から付記D-3のいずれかに記載の端末。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図14は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1(単にシステム1と呼ばれてもよい)は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 コアネットワーク30は、例えば、User Plane Function(UPF)、Access and Mobility management Function(AMF)、Session Management Function(SMF)、Unified Data Management(UDM)、Application Function(AF)、Data Network(DN)、Location Management Function(LMF)、保守運用管理(Operation、Administration and Maintenance(Management)(OAM))などのネットワーク機能(Network Functions(NF))を含んでもよい。なお、1つのネットワークノードによって複数の機能が提供されてもよい。また、DNを介して外部ネットワーク(例えば、インターネット)との通信が行われてもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図15は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置(例えば、NFを提供するネットワークノード)、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 送受信部120は、第1の送受信ポイント(TRP)に対応するContention Free Random Access(CFRA)のリソースに関する第1の情報と、第2のTRPに対応するCFRAのリソースに関する第2の情報と、を送信してもよい。制御部110は、前記第1の情報を用いて前記第1のTRPにおけるCFRA手順を指示し、前記第2の情報を用いて前記第2のTRPにおけるCFRA手順を指示してもよい(第1の実施形態)。
 送受信部120は、第1の送受信ポイント(TRP)に対応する第1のランダムアクセスチャネル(RACH)手順が設定されているときに、第2のTRPに対応する第2のRACH手順に関する設定を送信してもよい。制御部110は、特定の条件を用いて、前記第1のRACH手順を維持すること、又は、前記第1のRACH手順を停止し前記第2のRACH手順を開始すること、を指示してもよい(第2の実施形態)。
 送受信部120は、送受信ポイント(TRP)ごとの同期ステータス、及び、前記TRPごとのタイムアラインメントの確立、の少なくとも一方に基づいて送信される、特定の上りリンク(UL)信号を用いてTRPに関するUL時間同期要求を受信してもよい。制御部110は、前記UL信号の受信後、特定の期間経過後に複数のTRPの同期を行うよう制御してもよい(第3の実施形態)。
 送受信部120は、セル間マルチ送受信ポイント(TRP)の設定を送信し、第1の候補セルに対応するContention Free Random Access(CFRA)のリソースに関する第1の情報と、第2の候補セルに対応するCFRAのリソースに関する第2の情報と、を送信してもよい。制御部110は、前記第1の情報を用いて前記第1の候補セルにおけるCFRA手順を指示し、前記第2の情報を用いて前記第2の候補セルにおけるCFRA手順を指示してもよい(第6の実施形態)。
(ユーザ端末)
 図16は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
 送受信部220は、第1の送受信ポイント(TRP)に対応するContention Free Random Access(CFRA)のリソースに関する第1の情報と、第2のTRPに対応するCFRAのリソースに関する第2の情報と、を受信してもよい。制御部210は、前記第1の情報に基づいて前記第1のTRPにおけるCFRA手順を制御し、前記第2の情報に基づいて前記第2のTRPにおけるCFRA手順を制御してもよい(第1の実施形態)。
 前記第1の情報及び前記第2の情報は、共通の情報であってもよい(第1の実施形態)。
 前記第1の情報及び前記第2の情報は、それぞれ別々のTRPに関連する別々の情報であってもよい(第1の実施形態)。
 前記第1の情報は第1のセルに対応してもよく、前記第2の情報は第2のセルに対応してもよい。制御部210は、セル間マルチTRPにおけるCFRA手順を制御してもよい(第1の実施形態)。
 送受信部220は、第1の送受信ポイント(TRP)に対応する第1のランダムアクセスチャネル(RACH)手順が設定されているときに、第2のTRPに対応する第2のRACH手順に関する設定を受信してもよい。制御部210は、特定の条件に基づいて、前記第1のRACH手順を維持すること、又は、前記第1のRACH手順を停止し前記第2のRACH手順を開始すること、を判断してもよい(第2の実施形態)。
 制御部210は、特定のTRPに関するIDに基づいて、前記第1のRACH手順を維持すること、又は、前記第1のRACH手順を停止し前記第2のRACH手順を開始すること、を判断してもよい(第2の実施形態)。
 制御部210は、特定の物理セルIDに関連するTRPに基づいて、前記第1のRACH手順を維持すること、又は、前記第1のRACH手順を停止し前記第2のRACH手順を開始すること、を判断してもよい(第2の実施形態)。
 制御部210は、特定のタイミングアドバンスグループに関連するTRPに基づいて、前記第1のRACH手順を維持すること、又は、前記第1のRACH手順を停止し前記第2のRACH手順を開始すること、を判断してもよい(第2の実施形態)。
 送受信部220は、送受信ポイント(TRP)ごとの同期ステータス、及び、前記TRPごとのタイムアラインメントの確立、の少なくとも一方に基づいて、特定の上りリンク(UL)信号を用いてTRPに関するUL時間同期要求を送信してもよい。制御部210は、前記UL信号の送信後、特定の期間経過後に複数のTRPが同期されていると判断してもよい(第3の実施形態)。
 前記特定のUL信号は、スケジューリング要求であり、制御部210は、前記TRPごと、又は、タイミングアドバンスグループごとの前記スケジューリング要求のためのリソースを決定してもよい(第3の実施形態)。
 前記特定のUL信号は、Medium Access Control(MAC)制御要素であり、前記MAC制御要素は、非同期のTRPのTRPに関するインデックス、前記非同期のTRPのセルインデックス、及び、前記非同期のTRPのタイミングアドバンスグループのインデックスの少なくとも1つを含んでもよい(第3の実施形態)。
 制御部210は、さらに、ランダムアクセスレスポンス(RAR)に含まれるタイミングアドバンスコマンド(TAC)の受信を制御してもよい。制御部210は、前記TACをスケジュールする物理下りリンク制御チャネルに関連する制御リソースセット又Transmission Configuration Indication(TCI)状態、前記RARを伝送する物理下りリンク共有チャネルのTCI状態、及び、特定のタイミングアドバンスグループの少なくとも1つに基づいて、前記TACを適用するTRPを判断してもよい(第4の実施形態)。
 送受信部220は、セル間マルチ送受信ポイント(TRP)の設定を受信し、第1の候補セルに対応するContention Free Random Access(CFRA)のリソースに関する第1の情報と、第2の候補セルに対応するCFRAのリソースに関する第2の情報と、を受信してもよい。制御部210は、前記第1の情報に基づいて前記第1の候補セルにおけるCFRA手順を制御し、前記第2の情報に基づいて前記第2の候補セルにおけるCFRA手順を制御してもよい(第6の実施形態)。
 前記第1の情報及び前記第2の情報は、共通の情報であってもよいし、それぞれ別々の候補セルに関連する別々の情報であってもよい(第6の実施形態)。
 送受信部220は、さらに、前記第1のTRPに対応する第1のランダムアクセスチャネル(RACH)手順が設定されているときに、前記第2のTRPに対応する第2のRACH手順に関する設定を受信してもよい。制御部210は、さらに、特定の条件に基づいて、前記第1のRACH手順を維持すること、又は、前記第1のRACH手順を停止し前記第2のRACH手順を開始すること、を判断してもよい(第7の実施形態)。
 制御部210は、セルの同期ステータスに基づいてセルに関するUL時間同期要求の送信を制御してもよい(第8の実施形態)。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図17は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示において、基地局が端末に情報を送信することは、当該基地局が当該端末に対して、当該情報に基づく制御/動作を指示することと、互いに読み替えられてもよい。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体(moving object)に搭載されたデバイス、移動体自体などであってもよい。
 当該移動体は、移動可能な物体をいい、移動速度は任意であり、移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン、マルチコプター、クアッドコプター、気球及びこれらに搭載される物を含み、またこれらに限られない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。
 当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 図18は、一実施形態に係る車両の一例を示す図である。車両40は、駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49、各種センサ(電流センサ50、回転数センサ51、空気圧センサ52、車速センサ53、加速度センサ54、アクセルペダルセンサ55、ブレーキペダルセンサ56、シフトレバーセンサ57、及び物体検知センサ58を含む)、情報サービス部59と通信モジュール60を備える。
 駆動部41は、例えば、エンジン、モータ、エンジンとモータのハイブリッドの少なくとも1つで構成される。操舵部42は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪46及び後輪47の少なくとも一方を操舵するように構成される。
 電子制御部49は、マイクロプロセッサ61、メモリ(ROM、RAM)62、通信ポート(例えば、入出力(Input/Output(IO))ポート)63で構成される。電子制御部49には、車両に備えられた各種センサ50-58からの信号が入力される。電子制御部49は、Electronic Control Unit(ECU)と呼ばれてもよい。
 各種センサ50-58からの信号としては、モータの電流をセンシングする電流センサ50からの電流信号、回転数センサ51によって取得された前輪46/後輪47の回転数信号、空気圧センサ52によって取得された前輪46/後輪47の空気圧信号、車速センサ53によって取得された車速信号、加速度センサ54によって取得された加速度信号、アクセルペダルセンサ55によって取得されたアクセルペダル43の踏み込み量信号、ブレーキペダルセンサ56によって取得されたブレーキペダル44の踏み込み量信号、シフトレバーセンサ57によって取得されたシフトレバー45の操作信号、物体検知センサ58によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。
 情報サービス部59は、カーナビゲーションシステム、オーディオシステム、スピーカー、ディスプレイ、テレビ、ラジオ、といった、運転情報、交通情報、エンターテイメント情報などの各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部59は、外部装置から通信モジュール60などを介して取得した情報を利用して、車両40の乗員に各種情報/サービス(例えば、マルチメディア情報/マルチメディアサービス)を提供する。
 情報サービス部59は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。
 運転支援システム部64は、ミリ波レーダ、Light Detection and Ranging(LiDAR)、カメラ、測位ロケータ(例えば、Global Navigation Satellite System(GNSS)など)、地図情報(例えば、高精細(High Definition(HD))マップ、自動運転車(Autonomous Vehicle(AV))マップなど)、ジャイロシステム(例えば、慣性計測装置(Inertial Measurement Unit(IMU))、慣性航法装置(Inertial Navigation System(INS))など)、人工知能(Artificial Intelligence(AI))チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部64は、通信モジュール60を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。
 通信モジュール60は、通信ポート63を介して、マイクロプロセッサ61及び車両40の構成要素と通信することができる。例えば、通信モジュール60は通信ポート63を介して、車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49内のマイクロプロセッサ61及びメモリ(ROM、RAM)62、各種センサ50-58との間でデータ(情報)を送受信する。
 通信モジュール60は、電子制御部49のマイクロプロセッサ61によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール60は、電子制御部49の内部と外部のどちらにあってもよい。外部装置は、例えば、上述の基地局10、ユーザ端末20などであってもよい。また、通信モジュール60は、例えば、上述の基地局10及びユーザ端末20の少なくとも1つであってもよい(基地局10及びユーザ端末20の少なくとも1つとして機能してもよい)。
 通信モジュール60は、電子制御部49に入力された上述の各種センサ50-58からの信号、当該信号に基づいて得られる情報、及び情報サービス部59を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部49、各種センサ50-58、情報サービス部59などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール60によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。
 通信モジュール60は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部59へ表示する。情報サービス部59は、情報を出力する(例えば、通信モジュール60によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。
 また、通信モジュール60は、外部装置から受信した種々の情報をマイクロプロセッサ61によって利用可能なメモリ62へ記憶する。メモリ62に記憶された情報に基づいて、マイクロプロセッサ61が車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、各種センサ50-58などの制御を行ってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張、修正、作成又は規定された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示において、「以下」、「未満」、「以上」、「より多い」、「と等しい」などは、互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」、などを意味する文言は、原級、比較級及び最上級に限らず互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」などを意味する文言は、「i番目に」(iは任意の整数)を付けた表現として、原級、比較級及び最上級に限らず互いに読み替えられてもよい(例えば、「最高」は「i番目に最高」と互いに読み替えられてもよい)。
 本開示において、「の(of)」、「のための(for)」、「に関する(regarding)」、「に関係する(related to)」、「に関連付けられる(associated with)」などは、互いに読み替えられてもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  第1の送受信ポイント(TRP)に対応するContention Free Random Access(CFRA)のリソースに関する第1の情報と、第2のTRPに対応するCFRAのリソースに関する第2の情報と、を受信する受信部と、
     前記第1の情報に基づいて前記第1のTRPにおけるCFRA手順を制御し、前記第2の情報に基づいて前記第2のTRPにおけるCFRA手順を制御する制御部と、を有する端末。
  2.  前記第1の情報及び前記第2の情報は、共通の情報である請求項1に記載の端末。
  3.  前記第1の情報及び前記第2の情報は、それぞれ別々のTRPに関連する別々の情報である請求項1に記載の端末。
  4.  前記第1の情報は第1のセルに対応し、前記第2の情報は第2のセルに対応し、
     前記制御部は、セル間マルチTRPにおけるCFRA手順を制御する請求項1に記載の端末。
  5.  第1の送受信ポイント(TRP)に対応するContention Free Random Access(CFRA)のリソースに関する第1の情報と、第2のTRPに対応するCFRAのリソースに関する第2の情報と、を受信するステップと、
     前記第1の情報に基づいて前記第1のTRPにおけるCFRA手順を制御し、前記第2の情報に基づいて前記第2のTRPにおけるCFRA手順を制御するステップと、を有する端末の無線通信方法。
  6.  第1の送受信ポイント(TRP)に対応するContention Free Random Access(CFRA)のリソースに関する第1の情報と、第2のTRPに対応するCFRAのリソースに関する第2の情報と、を送信する送信部と、
     前記第1の情報を用いて前記第1のTRPにおけるCFRA手順を指示し、前記第2の情報を用いて前記第2のTRPにおけるCFRA手順を指示する制御部と、を有する基地局。
PCT/JP2022/036304 2022-09-28 2022-09-28 端末、無線通信方法及び基地局 WO2024069820A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/036304 WO2024069820A1 (ja) 2022-09-28 2022-09-28 端末、無線通信方法及び基地局

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/036304 WO2024069820A1 (ja) 2022-09-28 2022-09-28 端末、無線通信方法及び基地局

Publications (1)

Publication Number Publication Date
WO2024069820A1 true WO2024069820A1 (ja) 2024-04-04

Family

ID=90476854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036304 WO2024069820A1 (ja) 2022-09-28 2022-09-28 端末、無線通信方法及び基地局

Country Status (1)

Country Link
WO (1) WO2024069820A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020031884A1 (ja) * 2018-08-07 2020-02-13 三菱電機株式会社 通信システム、通信端末および基地局
US20220225419A1 (en) * 2021-01-13 2022-07-14 Lg Electronics Inc. Method and apparatus for transmitting/receiving wireless signal in wireless communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020031884A1 (ja) * 2018-08-07 2020-02-13 三菱電機株式会社 通信システム、通信端末および基地局
US20220225419A1 (en) * 2021-01-13 2022-07-14 Lg Electronics Inc. Method and apparatus for transmitting/receiving wireless signal in wireless communication system

Similar Documents

Publication Publication Date Title
WO2024069820A1 (ja) 端末、無線通信方法及び基地局
WO2024069823A1 (ja) 端末、無線通信方法及び基地局
WO2024069821A1 (ja) 端末、無線通信方法及び基地局
WO2024069822A1 (ja) 端末、無線通信方法及び基地局
WO2024080025A1 (ja) 端末、無線通信方法及び基地局
WO2024080024A1 (ja) 端末、無線通信方法及び基地局
WO2024106365A1 (ja) 端末、無線通信方法及び基地局
WO2024106364A1 (ja) 端末、無線通信方法及び基地局
WO2024075273A1 (ja) 端末、無線通信方法及び基地局
WO2024095481A1 (ja) 端末、無線通信方法及び基地局
WO2024095480A1 (ja) 端末、無線通信方法及び基地局
WO2024100733A1 (ja) 端末、無線通信方法及び基地局
WO2024095416A1 (ja) 端末、無線通信方法及び基地局
WO2024069968A1 (ja) 端末、無線通信方法及び基地局
WO2024095414A1 (ja) 端末、無線通信方法及び基地局
WO2024095417A1 (ja) 端末、無線通信方法及び基地局
WO2024095477A1 (ja) 端末、無線通信方法及び基地局
WO2024095415A1 (ja) 端末、無線通信方法及び基地局
WO2024095478A1 (ja) 端末、無線通信方法及び基地局
WO2024085128A1 (ja) 端末、無線通信方法及び基地局
WO2024057525A1 (ja) 端末、無線通信方法及び基地局
WO2024085129A1 (ja) 端末、無線通信方法及び基地局
WO2024057522A1 (ja) 端末、無線通信方法及び基地局
WO2024057523A1 (ja) 端末、無線通信方法及び基地局
WO2024057524A1 (ja) 端末、無線通信方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960882

Country of ref document: EP

Kind code of ref document: A1