WO2024069777A1 - Analytical device and program - Google Patents

Analytical device and program Download PDF

Info

Publication number
WO2024069777A1
WO2024069777A1 PCT/JP2022/036056 JP2022036056W WO2024069777A1 WO 2024069777 A1 WO2024069777 A1 WO 2024069777A1 JP 2022036056 W JP2022036056 W JP 2022036056W WO 2024069777 A1 WO2024069777 A1 WO 2024069777A1
Authority
WO
WIPO (PCT)
Prior art keywords
increase
propeller
torque coefficient
ship
hull
Prior art date
Application number
PCT/JP2022/036056
Other languages
French (fr)
Japanese (ja)
Inventor
徹郎 柳田
Original Assignee
日本郵船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本郵船株式会社 filed Critical 日本郵船株式会社
Priority to PCT/JP2022/036056 priority Critical patent/WO2024069777A1/en
Publication of WO2024069777A1 publication Critical patent/WO2024069777A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B79/00Monitoring properties or operating parameters of vessels in operation
    • B63B79/30Monitoring properties or operating parameters of vessels in operation for diagnosing, testing or predicting the integrity or performance of vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B81/00Repairing or maintaining vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H25/38Rudders

Definitions

  • the present invention relates to a technology for analyzing the causes of deterioration in ship performance.
  • Patent Document 1 Technology for evaluating hull fouling is known (for example, Patent Document 1).
  • Factors that can cause a ship's performance to decline include those caused by the surface condition of the propeller and those caused by the surface condition of the hull. Depending on the cause of the ship's performance decline, the maintenance method may differ. However, with conventional technology, it was not possible to distinguish and evaluate whether the cause of the ship's performance decline was caused by the surface condition of the propeller or the surface condition of the hull.
  • the purpose of this invention is to make it possible to distinguish and evaluate whether the cause of a decline in ship performance is due to the surface condition of the propeller or the surface condition of the hull.
  • One aspect of the present invention provides an analysis device that includes a first determination means for determining an increase in a first torque coefficient of the propeller caused by a change in the overall surface condition including the ship's hull and propeller, a first acquisition means for acquiring a value indicating the surface condition of the propeller, a second determination means for determining an increase in a second torque coefficient of the propeller caused by a change in the surface condition of the propeller using the value, a third determination means for determining an increase in a third torque coefficient of the propeller caused by a change in the surface condition of the hull using the increase in the first torque coefficient and the increase in the second torque coefficient, and an output means for outputting the increase in the second torque coefficient and the increase in the third torque coefficient.
  • the third determination means may determine the difference between the increase in the first torque coefficient and the increase in the second torque coefficient as the increase in the third torque coefficient.
  • the first determination means may determine the increase in the first torque coefficient using the torque and rotation speed of the propeller measured while the ship is sailing.
  • the analysis device may further include a storage means for storing correspondence information indicating a correspondence between the increase in the second torque coefficient of at least one propeller obtained from the past performance of at least one ship and the effect obtained by maintenance of the at least one propeller, and a generation means for generating effect information indicating the effect obtained by maintenance of the propeller according to the increase in the second torque coefficient based on the correspondence information, and the output means may output the generated effect information.
  • the analysis device may further include a storage means for storing correspondence information indicating a correspondence between the increase in the third torque coefficient of at least one propeller obtained from the past performance of at least one ship and the effect obtained by maintenance of the hull of the at least one ship, and a generation means for generating effect information indicating the effect obtained by maintenance of the hull according to the increase in the third torque coefficient based on the correspondence information, and the output means may output the generated effect information.
  • the analysis device further includes a storage means for storing first correlation information indicating a correlation between past first voyage conditions of at least one ship and an increase in the second torque coefficient of at least one propeller actually caused by navigation in accordance with the first voyage conditions of the at least one ship, and second correlation information indicating a correlation between the first voyage conditions and an increase in the third torque coefficient of the at least one propeller actually caused by navigation in accordance with the first voyage conditions of the at least one ship, a second acquisition means for acquiring second voyage conditions planned for the ship, and an estimation means for estimating, based on the first correlation information and the second correlation information, the increase in the second torque coefficient and the increase in the third torque coefficient of the propeller when the ship navigates in accordance with the second voyage conditions, respectively, and the output means may further output the estimated increase in the second torque coefficient and the estimated increase in the third torque coefficient.
  • Another aspect of the present invention provides a program for causing a computer to execute the steps of: determining an increase in a first torque coefficient of the propeller caused by a change in the overall surface condition including the ship's hull and the propeller; acquiring a value indicating the surface condition of the propeller; using the value to determine an increase in a second torque coefficient of the propeller caused by a change in the surface condition of the propeller; using the increase in the first torque coefficient and the increase in the second torque coefficient to determine an increase in a third torque coefficient of the propeller caused by a change in the surface condition of the hull; and outputting the increase in the second torque coefficient and the increase in the third torque coefficient.
  • the present invention makes it possible to distinguish and evaluate whether the cause of a decline in ship performance is due to the surface condition of the propeller or the surface condition of the hull.
  • FIG. 1 illustrates an example of an analysis system according to an embodiment.
  • FIG. 2 illustrates an example of a configuration of a server device.
  • FIG. 2 is a diagram showing an example of the relationship between the surface roughness of a propeller and the performance of the propeller.
  • FIG. 4 is a diagram showing an example of a first table and a second table.
  • 13 is a flowchart showing an example of the operation of a server device for analyzing a deterioration in ship performance.
  • 11 is a sequence chart showing an example of an operation for analyzing a correlation between navigation conditions and an increase amount of a torque coefficient.
  • 10 is a flowchart showing an example of an operation for estimating a deterioration in performance of a vessel.
  • Configuration Fig. 1 is a diagram showing an example of an analysis system 1 according to an embodiment.
  • the analysis system 1 analyzes whether the cause of the performance degradation of the ship 11 is due to the surface condition of the propeller 110 or the surface condition of the hull.
  • the "hull” here refers to the outer hull structure of the ship 11 and does not include the propeller 110.
  • the surface condition includes surface roughness and fouling. This fouling refers to the attachment of biological deposits called biofilms, barnacles, and the like.
  • the increase in the torque coefficient is used as an index value indicating the deterioration of the performance of the ship 11.
  • the performance of the ship 11 is shown by a performance curve showing the relationship between the rotation speed, horsepower, and fuel consumption.
  • Q Kq x ⁇ n ⁇ 2 x D ⁇ 5
  • the horsepower and fuel consumption which are the product of the torque and the rotation speed, also increase.
  • Q is the torque of the main shaft
  • Kq is the total torque coefficient
  • is the density of seawater
  • n is the rotation speed of the main engine
  • D is the propeller diameter.
  • T Kt x ⁇ n ⁇ 2 x D ⁇ 4.
  • T the thrust
  • Kt the thrust coefficient
  • the density of seawater
  • n the rotation speed of the main engine
  • D the propeller diameter.
  • the analysis system 1 includes a terminal device 10 and a server device 40.
  • the terminal device 10 is mounted on a ship 11.
  • the terminal device 10 and the server device 40 are connected to a network 52.
  • the network 52 includes, for example, a communication satellite 50 and the Internet. Note that although only a single ship 11 is shown in FIG. 1, multiple ships 11 may be included.
  • the ship 11 has a propeller 110 and is propelled by the rotation of the propeller 110.
  • the ship 11 is provided with various sensors (not shown).
  • the various sensors include a tachometer, a torque sensor, a speedometer, a positioning sensor, and a thermometer (all not shown).
  • the tachometer measures the rotation speed of the main engine of the ship 11, i.e., the rotation speed of the propeller 110.
  • the torque sensor measures the torque of the main shaft of the propeller 110.
  • the speedometer measures the speed of the ship 11.
  • the positioning sensor measures the position of the ship 11 at a predetermined time interval.
  • the positioning sensor is, for example, a GNSS (Global Navigation Satellite System) receiver.
  • GNSS Global Navigation Satellite System
  • the route of the ship 11 is obtained by connecting the positions of the ship 11 measured by the positioning sensor in a chronological order.
  • the thermometer measures seawater temperature.
  • the terminal device 10 acquires the output of various sensors and transmits the acquired output or information obtained from this output to the server device 40 via the network 52.
  • FIG. 2 is a diagram showing an example of the configuration of the server device 40.
  • the server device 40 is installed on land.
  • the server device 40 separately determines and outputs the increase in the total torque coefficient including the propeller 110 and the hull, the increase in the torque coefficient of the propeller 110, and the increase in the torque coefficient of the hull.
  • the server device 40 is an example of an "analysis device” according to the present invention.
  • the server device 40 comprises a processor 41, a memory 42, a storage 43, a communication IF (Interface) 44, an input unit 45, and a display unit 46. Each unit of the server device 40 is connected via a bus.
  • the processor 41 executes a program to control each part of the server device 40 and perform various calculations.
  • the processor 41 includes, for example, one or more CPUs (Central Processing Units).
  • the memory 42 is used by the processor 41 to perform various processes.
  • the memory 42 includes, for example, a ROM (Read Only Memory) and a RAM (Random Access Memory).
  • the storage 43 stores various data used by the processor 41. This data includes a first table 431 and a second table 432.
  • the storage 43 includes, for example, a HHD (Hard Disk Drive) or an SSD (Solid State Drive).
  • the storage 43 is an example of a "storage means" according to the present invention.
  • the memory 42 or the storage 43 stores a program for realizing the functions of the server device 40.
  • the communication IF 44 performs data communication with other devices according to a predetermined communication standard.
  • the input unit 45 inputs a signal according to a user's operation to the processor 41.
  • the input unit 45 includes, for example, a keyboard and a mouse.
  • the display unit 46 displays various information.
  • the display unit 46 includes, for example, a liquid crystal display.
  • the display unit 46 is an example of the "output means" according to the present invention.
  • the server device 40 functions as a first acquisition means 411, a first determination means 412, a second determination means 413, a third determination means 414, a generation means 415, a second acquisition means 416, an analysis means 417, an estimation means 418, and a display control means 419. These functions are realized by the processor 41 executing a program stored in the memory 42 or the storage 43.
  • the first acquisition means 411 acquires the main engine RPM, main shaft torque, and ship speed measured while the ship 11 is sailing from the terminal device 10. Specifically, the first acquisition means 411 transmits an acquisition request for this information to the terminal device 10. In response to this acquisition request, the terminal device 10 transmits to the server device 40 the RPM measured by the rotation measuring meter while sailing, the torque measured by the torque sensor, and the ship speed measured by the ship speed meter. The first acquisition means 411 receives the RPM, torque, and ship speed transmitted from the terminal device 10.
  • the first acquisition means 411 also acquires the surface roughness of the propeller 110 after the ship 11 has sailed. This surface roughness is determined by inspecting the propeller 110 while the ship 11 is moored. For example, a diver may determine the surface roughness of the propeller 110 using a lubricant gauge. Alternatively, an underwater drone may determine the surface roughness of the propeller 110 using a measuring device. The surface roughness of the propeller 110 determined in this manner is added to the voyage record of the ship 11.
  • the first acquisition means 411 may acquire the surface roughness of the propeller 110 included in the voyage record from the terminal device 10 in a manner similar to that described above. Alternatively, a user may input the surface roughness of the propeller 110 using the input unit 45, and the first acquisition means 411 may acquire the surface roughness input by the user.
  • the first determination means 412 determines the increase in the torque coefficient of the propeller 110 (hereinafter referred to as the "total torque coefficient") caused by a change in the overall surface condition including the propeller 110 and the hull of the ship 11.
  • the total torque coefficient is an example of the "first torque coefficient" according to the present invention.
  • the first determination means 412 calculates the total torque coefficient using the main engine rotation speed and main shaft torque acquired by the first acquisition means 411. The total torque coefficient is calculated by the following formula (1).
  • Kq Q/ ⁇ n ⁇ 2D ⁇ 5 ⁇ (1)
  • Q is the torque of the main shaft
  • is the density of seawater
  • n is the rotation speed of the main engine
  • D is the propeller diameter.
  • the rotation speed of the main engine may be the average value of the rotation speed of the main engine acquired by the first acquisition means 411, or may be the last measured value.
  • the torque of the main shaft may be the average value of the torque of the main shaft acquired by the first acquisition means 411, or may be the last measured value.
  • the density of seawater is a constant.
  • the propeller diameter is a constant for each ship 11.
  • the first determination means 412 calculates the increase in the total torque coefficient calculated this time relative to the total torque coefficient at a reference point in time, such as before sailing.
  • the total torque coefficient at this reference point in time is calculated in advance using, for example, the initial value of the rotation speed of the main engine of the ship 11 and the initial value of the torque of the propeller 110, and is stored in the storage 43.
  • the second determination means 413 determines the amount of increase in the torque coefficient of the propeller 110 (hereinafter referred to as the "propeller-derived torque coefficient") caused by a change in the surface condition of the propeller 110 of the ship 11.
  • the propeller-derived torque coefficient is an example of the "second torque coefficient” according to the present invention.
  • the second determination means 413 determines the propeller-derived torque coefficient using the surface roughness of the propeller 110 acquired by the first acquisition means 411.
  • the propeller-derived torque coefficient is found based on the relationship between the surface roughness of the propeller 110 and the performance of the propeller 110.
  • FIG. 3 is a diagram showing an example of the relationship between the surface roughness of the propeller 110 and the performance of the propeller 110.
  • the vertical axis indicates the torque coefficient
  • the horizontal axis indicates the advance coefficient.
  • surface roughness A is the smallest, and the surface roughness increases in the order of A, B, C, D, and E.
  • the torque coefficient increases in the order of A, B, C, D, and E.
  • the advance coefficient is constant, as the surface roughness increases.
  • experimental values obtained from tank tests or calculated values obtained from CFD (Computational Fluid Dynamics) numerical calculations are used in the initial state.
  • the graph shown in FIG. 3 is created using these experimental values or calculated values.
  • each data constituting the graph may be overwritten and updated with the actual measured values.
  • the advance coefficient is calculated by the following formula (2).
  • J Va/(n ⁇ D) ... (2)
  • J is the advance coefficient
  • Va is the propeller advance speed
  • n is the main engine RPM
  • D is the propeller diameter.
  • the main engine RPM may be the average value of the main engine RPMs acquired by the first acquisition means 411, or may be the last measured value.
  • the propeller diameter is a constant for each ship 11.
  • the propeller advance speed is calculated by the following formula (3).
  • Va Vs ⁇ (1-w) ... (3)
  • Va is the propeller forward speed
  • Vs is the ship speed
  • 1-w is the wake coefficient.
  • the ship speed may be the average value of the ship speeds acquired by the first acquisition means 411, or may be the last measured value.
  • the wake coefficient may be a constant, or may be obtained by other methods such as a method based on a tank test of a model ship, a method using an estimation chart, or a method using an approximate calculation formula. Note that as the surface roughness increases, the thrust coefficient decreases, so that in order to obtain the required ship speed, it is necessary to increase the rotation speed of the main engine.
  • the forward speed may be obtained by taking this factor into account.
  • the second determination means 413 determines the torque coefficient corresponding to the forward advance coefficient and the surface roughness of the propeller 110 acquired by the first acquisition means 411 as the propeller-derived torque coefficient in the graph shown in Figure 3.
  • the second determination means 413 may determine the propeller-derived torque coefficient corresponding to the surface roughness of the propeller 110 acquired by the first acquisition means 411 based on a performance database indicating the correspondence between the surface roughness of the propeller 110 and the propeller-derived torque coefficient.
  • This performance database is created based on the past performance of at least one ship 11 and is stored in the storage 43.
  • the second determination means 413 calculates the increase in the propeller-derived torque coefficient calculated this time relative to the propeller-derived torque coefficient at a reference point in time, such as before sailing.
  • the propeller-derived torque coefficient at this reference point in time is determined in advance using, for example, an initial value of the surface roughness of the propeller 110, an initial value of the RPM of the main engine of the ship 11, and an initial value of the ship speed of the ship 11, and is stored in the storage 43.
  • the third determination means 414 determines the increase in the torque coefficient of the propeller 110 (hereinafter referred to as the "hull-derived torque coefficient") caused by a change in the surface condition of the hull of the ship 11.
  • the hull-derived torque coefficient is an example of the "third torque coefficient" according to the present invention.
  • the third determination means 414 calculates the increase in the hull-derived torque coefficient using the increase in the total torque coefficient determined by the first determination means 412 and the increase in the propeller-derived torque coefficient determined by the second determination means 413.
  • the increase in the hull-derived torque coefficient is the difference between the increase in the total torque coefficient and the increase in the propeller-derived torque coefficient, and is calculated by the following formula (4).
  • ⁇ Kq_C ⁇ Kq_A- ⁇ Kq_B ⁇ (4)
  • ⁇ Kq_C is the increase in the hull-derived torque coefficient
  • ⁇ Kq_A is the increase in the total torque coefficient
  • ⁇ Kq_B is the increase in the propeller-derived torque coefficient.
  • the generating means 415 generates effect information indicating the effect obtained when the maintenance of the propeller 110 is performed according to the increase in the propeller-derived torque coefficient, based on the first table 431 stored in the storage 43.
  • the generating means 415 also generates effect information indicating the effect obtained when the maintenance of the hull is performed according to the increase in the hull-derived torque coefficient, based on the second table 432 stored in the storage 43.
  • the first table 431 is a diagram showing an example of the first table 431 and the second table 432.
  • the first table 431 shows the correspondence relationship between the increase in the propeller-derived torque coefficient and the effect obtained by the maintenance of the propeller 110 for each type of ship 11.
  • the first table 431 is an example of the "correspondence information" according to the present invention.
  • the first table 431 stores the type of ship 11, the increase in the propeller-derived torque coefficient, and the maintenance effect information in association with each other.
  • the increase in the propeller-derived torque coefficient and the maintenance effect information are obtained from the past performance of at least one ship 11.
  • the maintenance effect information is, for example, a value indicating the proportion of the fuel consumption amount reduced by the maintenance.
  • the maintenance effect information may also be the amount of fuel consumption reduced by the maintenance converted into the price of heavy oil.
  • the generating means 415 reads out the maintenance effect information associated with the type of ship 11 and the increase in the propeller-derived torque coefficient determined by the second determining means 413 from the second table 4
  • the second table 432 shows the correspondence between the increase in the hull-derived torque coefficient and the effect obtained by the maintenance of the hull for each type of ship 11.
  • the second table 432 is an example of the "correspondence information" according to the present invention.
  • the second table 432 stores the type of ship 11, the increase in the hull-derived torque coefficient, and the effect information of the maintenance in association with each other.
  • the increase in the hull-derived torque coefficient and the effect information of the maintenance are obtained from the past performance of at least one ship 11.
  • the effect information of the maintenance may be a value indicating the proportion of the fuel consumption reduced by the maintenance, or may be the amount of fuel consumption reduced by the maintenance converted into the price of heavy oil.
  • the generating means 415 reads out the effect information associated with the type of ship 11 and the increase in the hull-derived torque coefficient determined by the third determining means 414 from the second table 432.
  • the second acquisition means 416 acquires actual navigation conditions of at least one ship 11 and planned navigation conditions of the ship 11.
  • the actual navigation conditions are navigation conditions when at least one ship 11 has sailed in the past.
  • the second acquisition means 416 receives the actual navigation conditions from the terminal device 10 by sending an acquisition request for the actual navigation conditions to the terminal device 10, similar to the first acquisition means 411 described above.
  • the actual navigation conditions are an example of the "first navigation conditions” according to the present invention.
  • the planned navigation conditions are navigation conditions planned for the ship 11.
  • the planned navigation conditions are an example of the "second navigation conditions" according to the present invention.
  • the second acquisition means 416 may acquire the planned navigation conditions from the terminal device 10 by the same method as described above, or may acquire the planned navigation conditions input in response to a user's operation using the input unit 45.
  • the analysis means 417 analyzes the correlation between the actual sailing conditions acquired by the second acquisition means 416 and the increase in the propeller-derived torque coefficient determined by the second determination means 413.
  • the analysis means 417 also analyzes the correlation between the actual sailing conditions acquired by the second acquisition means 416 and the increase in the hull-derived torque coefficient determined by the third determination means 414.
  • the increase in the propeller-derived torque coefficient and the increase in the hull-derived torque coefficient determined by the second determination means 413 and the third determination means 414 are the actual increase in the propeller-derived torque coefficient and the increase in the hull-derived torque coefficient affected by past sailing in accordance with the actual sailing conditions in at least one ship 11, respectively.
  • Each correlation may be formulated.
  • the analysis of the correlation may be performed using AI (Artificial Intelligence).
  • the estimation means 418 estimates the increase in the propeller-derived torque coefficient when the ship 11 navigates according to the planned navigation conditions acquired by the second acquisition means 416, based on the correlation between the actual navigation conditions and the increase in the propeller-derived torque coefficient.
  • the estimation means 418 also estimates the increase in the hull-derived torque coefficient when the ship 11 navigates according to the planned navigation conditions acquired by the second acquisition means 416, based on the correlation between the actual navigation conditions and the increase in the hull-derived torque coefficient.
  • the estimation method of the estimation means 418 may be, for example, a method of estimating the increase in the propeller-derived torque coefficient or the increase in the hull-derived torque coefficient that is correlated with the actual navigation conditions that are most similar to the planned navigation conditions in the correlation.
  • the display control means 419 causes the display unit 46 to display the increase in the total torque coefficient, the increase in the propeller-derived torque coefficient, and the increase in the hull-derived torque coefficient determined by the first determination means 412, the second determination means 413, and the third determination means 414, as well as the maintenance effect information generated by the generation means 415.
  • the display control means 419 also causes the display unit 46 to display the increase in the propeller-derived torque coefficient and the increase in the hull-derived torque coefficient estimated by the estimation means 418.
  • FIG. 5 is a flowchart showing an example of an operation of the server device 40 for analyzing the performance degradation of the ship 11. This operation is started in response to a user's operation using the input unit 45, for example, while the ship 11 is moored at a quay after sailing.
  • step S101 the first acquisition means 411 acquires the main engine RPM, the torque of the main shaft of the propeller 110, and the ship speed measured while the ship 11 is sailing from the terminal device 10.
  • the first acquisition means 411 receives this information from the terminal device 10 by sending an acquisition request for this information to the terminal device 10.
  • step S102 the first determination means 412 determines the increase in the total torque coefficient.
  • the first determination means 412 calculates the total torque coefficient by substituting the main engine rotation speed and torque acquired in step S101 into the above-mentioned formula (1).
  • the first determination means 412 calculates the increase in the total torque coefficient calculated this time relative to the total torque coefficient at a reference point, such as before sailing.
  • step S103 the first acquisition means 411 acquires the surface roughness of the propeller 110 after sailing.
  • the first acquisition means 411 receives the surface roughness of the propeller 110 from the terminal device 10 by transmitting a request to acquire the surface roughness of the propeller 110 to the terminal device 10.
  • the user may input the surface roughness using the input unit 45, and the first acquisition means 411 may acquire the surface roughness input by the user.
  • step S104 the second determination means 413 determines the increase in the propeller-derived torque coefficient.
  • the second determination means 413 calculates the forward speed by substituting the ship speed acquired in step S101 into the above-mentioned formula (3).
  • the second determination means 413 calculates the forward speed and the main engine RPM acquired in step S101 into the above-mentioned formula (4) to calculate the forward coefficient.
  • the second determination means 413 determines the torque coefficient corresponding to this forward coefficient and the surface roughness of the propeller 110 acquired in step S103 as the propeller-derived torque coefficient based on the graph shown in FIG. 3.
  • the second determination means 413 calculates the increase in the propeller-derived torque coefficient calculated this time relative to the propeller-derived torque coefficient at a reference point, such as before sailing.
  • step S105 the third determination means 414 determines the increase in the hull-derived torque coefficient.
  • the third determination means 414 substitutes the increase in the total torque coefficient and the increase in the propeller-derived torque coefficient determined in steps S102 and S104 into the above-mentioned formula (4) to calculate the increase in the hull-derived torque coefficient.
  • step S106 the first determination means 412, the second determination means 413, and the third determination means 414 store in the storage 43 the increase in the total torque coefficient, the increase in the propeller-derived torque coefficient, and the increase in the hull-derived torque coefficient determined in steps S102, S104, and S105, respectively.
  • step S107 the generating means 415 generates effect information indicating the effect of performing maintenance.
  • the type of the vessel 11 is type X
  • the increase in the propeller-derived torque coefficient determined in step S103 is ⁇ 1
  • the increase in the hull-derived torque coefficient determined in step S105 is ⁇ 2.
  • the generating means 415 reads out effect information associated with type X and the increase in the propeller-derived torque coefficient ⁇ 1 from the first table 431.
  • the generating means 415 also reads out effect information associated with type X and the increase in the propeller-derived torque coefficient ⁇ 2 from the second table 432.
  • step S108 the display control means 419 causes the display unit 46 to display the increase in the total torque coefficient, the increase in the propeller-derived torque coefficient, and the increase in the hull-derived torque coefficient stored in the storage 43, as well as the maintenance effect information generated in step S107.
  • the user can see the degree of performance degradation of the vessel 11 by looking at the increase in the total torque coefficient. In addition, the user can see whether the cause of the performance degradation of the vessel 11 is due to the surface condition of the propeller 110, the surface condition of the hull, or both, by looking at the increase in the propeller-derived torque coefficient and the increase in the hull-derived torque coefficient. Therefore, the user can perform appropriate maintenance according to the cause of the performance degradation of the vessel 11, such as performing only maintenance of the propeller 110 if the cause of the performance degradation of the vessel 11 is due to the surface condition of the propeller 110. In addition, the user can see the effect of performing maintenance of the propeller 110 or the hull by looking at the maintenance effect information. Therefore, the user may prioritize the maintenance of the propeller 110 or the hull, whichever is more effective.
  • the operation shown in FIG. 5 is repeated, for example, for multiple ships 11, each time an inspection of each ship 11 is performed. It is preferable to inspect the ship 11 each time it is moored at a quay after a voyage, but there are cases where inspection cannot always be performed before or after a voyage. Therefore, inspection of the ship 11 may be performed at a specified timing, such as when it is moored at a quay after a specified period of time has passed or when it is moored at a specific quay. In this way, the storage 43 accumulates the increase in the total torque coefficient, the increase in the propeller-derived torque coefficient, and the increase in the hull-derived torque coefficient for multiple ships 11.
  • FIG. 6 is a sequence chart showing an example of an operation for analyzing the correlation between sailing conditions and the increase in torque coefficient.
  • the performance degradation of the ship 11 is affected by the sailing conditions of the ship 11. Therefore, by analyzing the increase in the total torque coefficient, the increase in the propeller-derived torque coefficient, and the increase in the hull-derived torque coefficient of at least one ship 11 obtained by the operation for analyzing the performance degradation of the ship 11 described above, and the actual sailing conditions of the ship 11, the correlation between them can be found.
  • This operation may be started each time the operation for analyzing the performance degradation of the ship 11 described above for one ship 11 is completed, or may be started at a specified timing, or may be started when the user performs an operation using the input unit 45 to instruct the operation for analyzing the correlation.
  • step S201 the second acquisition means 416 of the server device 40 acquires actual sailing conditions from the terminal device 10 of the ship 11 that is the subject of analysis in the operation of analyzing the performance degradation of the ship 11 described above. Specifically, the second acquisition means 416 of the server device 40 receives the actual sailing conditions from the terminal device 10 by sending an acquisition request for the actual sailing conditions to the terminal device 10.
  • the actual sailing conditions include, for example, the ship speed, route, and seawater temperature of the ship 11.
  • step S202 the second acquisition means 416 of the server device 40 stores the actual sailing conditions received from the terminal device 10 in the storage 43.
  • step S203 the analysis means 417 of the server device 40 uses the actual navigation conditions, the increase in the propeller-derived torque coefficient, and the increase in the hull-derived torque coefficient stored in the storage 43 to analyze the correlation between the actual navigation conditions of the ship 11 and each of the increase in the propeller-derived torque coefficient and the increase in the hull-derived torque coefficient when the ship 11 navigates in accordance with the actual navigation conditions.
  • step S204 the analysis means 417 of the server device 40 stores the analysis results of step S203 in the storage 43.
  • the storage 43 stores first correlation information indicating the correlation between the actual navigation conditions and the increase in the propeller-derived torque coefficient, and second correlation information indicating the correlation between the actual navigation conditions and the increase in the hull-derived torque coefficient.
  • FIG. 7 is a flowchart showing an example of an operation for estimating the performance degradation of the ship 11. It is not always possible to inspect the propeller 110 every time the ship 11 is moored to a quay. If the propeller 110 is not inspected, the surface roughness of the propeller 110 cannot be determined, and the increase in the propeller-derived torque coefficient cannot be obtained, making it impossible to analyze the performance degradation of the ship 11. In such a case, an operation for estimating the performance degradation of the ship 11 is performed. This operation is started, for example, when the user performs an operation using the input unit 45 to instruct an operation for estimating the performance degradation of the ship 11 before the ship 11 sets sail.
  • step S301 the second acquisition means 416 of the server device 40 acquires the planned voyage conditions of the ship 11.
  • the planned voyage conditions may be acquired from the terminal device 10 of the ship 11, or may be input in response to a user's operation using the input unit 45.
  • step S302 the estimation means 418 of the server device 40 estimates the increase in the propeller-derived torque coefficient when the ship 11 navigates in accordance with the planned navigation conditions based on the first correlation information stored in the storage 43. For example, the estimation means 418 estimates the increase in the propeller-derived torque coefficient that is correlated with the actual navigation conditions that are most similar to the planned navigation conditions in the correlation indicated by this first correlation information.
  • step S303 the estimation means 418 of the server device 40 estimates the increase in the hull-derived torque coefficient when the ship 11 navigates in accordance with the planned navigation conditions based on the second correlation information stored in the storage 43. For example, the estimation means 418 estimates the increase in the hull-derived torque coefficient that is correlated with the actual navigation conditions that are most similar to the planned navigation conditions in the correlation indicated by this second correlation information.
  • step S304 the display control means 419 of the server device 40 causes the display unit 46 to display the increase in the propeller-derived torque coefficient and the increase in the hull-derived torque coefficient estimated in steps S302-S303.
  • This allows the user to know the increase in the propeller-derived torque coefficient and the increase in the hull-derived torque coefficient when the ship 11 is sailing in accordance with the planned sailing conditions. Therefore, the user can perform appropriate maintenance according to the estimated increase in the propeller-derived torque coefficient and the increase in the hull-derived torque coefficient after the ship 11 has sailed in accordance with the planned sailing conditions.
  • the increase in the propeller-derived torque coefficient and the increase in the hull-derived torque coefficient are determined and displayed separately, so that the user can distinguish and evaluate whether the cause of the performance degradation of the ship 11 is due to the surface condition of the propeller 110 or the surface condition of the hull.
  • the user can perform appropriate maintenance according to the cause of the performance degradation of the ship 11.
  • the maintenance effect information is displayed, the user can clearly recognize the effect of performing maintenance, and the motivation to perform maintenance can be increased.
  • the increase in the propeller-derived torque of the propeller 110 and the increase in the hull-derived torque are estimated separately when the ship 11 navigates according to the scheduled navigation conditions, so that they can be distinguished and evaluated.
  • appropriate maintenance can be performed according to the increase in the propeller-derived torque of the propeller 110 and the increase in the hull-derived torque.
  • the surface roughness of the propeller 110 is an example of a value indicating the surface condition of the propeller 110, and is not limited to this.
  • the value indicating the surface condition of the propeller 110 may be the degree of contamination of the propeller 110. This degree of contamination indicates the degree of contamination caused by living organisms attached to the surface of the propeller 110.
  • the degree of contamination of the propeller 110 is used instead of the surface roughness of the propeller 110.
  • the second determination means 413 determines the amount of increase in the propeller-derived torque based on the relationship between the degree of contamination of the propeller 110 and the performance of the propeller 110.
  • the method according to this modified example can also determine the amount of increase in the propeller-derived torque.
  • maintenance effect information may be generated and displayed in the same manner as in the operation of analyzing the performance degradation of the ship 11 shown in FIG. 5.
  • the generating means 415 according to this modified example generates effect information indicating the effect obtained when the maintenance of the propeller 110 is performed according to the increase in the propeller-derived torque coefficient estimated by the estimating means 418, based on the first table 431 stored in the storage 43.
  • the generating means 415 according to this modified example generates effect information indicating the effect obtained when the maintenance of the hull is performed according to the increase in the hull-derived torque coefficient estimated by the estimating means 418, based on the second table 432 stored in the storage 43.
  • the display control means 419 causes the display unit 46 to display the maintenance effect information generated by the generating means 415 in addition to the increase in the propeller-derived torque coefficient and the increase in the hull-derived torque coefficient estimated by the estimating means 418.
  • the user can recognize the effect of performing maintenance according to the increase in the propeller-derived torque of the propeller 110 and the increase in the hull-derived torque estimated by the estimation means 418.
  • the increase in the total torque coefficient may be estimated in addition to the increase in the propeller-derived torque coefficient and the increase in the hull-derived torque coefficient.
  • the analysis means 417 according to this modification further analyzes the correlation between the actual sailing conditions and the increase in the total torque coefficient.
  • the storage 43 further stores third correlation information indicating this correlation.
  • the estimation means 418 further estimates the increase in the total torque coefficient based on this third correlation information.
  • the display control means 419 causes the display unit 46 to display the increase in the total torque coefficient estimated by the estimation means 418 in addition to the increase in the propeller-derived torque coefficient and the increase in the hull-derived torque coefficient estimated by the estimation means 418. According to this modification, even if the propeller 110 cannot be inspected, the user can recognize the degree of performance degradation of the ship 11.
  • the display of the increase in each torque coefficient and the maintenance effect information is an example of outputting this information, and is not limited to this.
  • the server device 40 may be equipped with a speaker, and audio indicating this information may be output from the speaker. Furthermore, this information may be transmitted from the communication IF 44 to an external device.
  • the speaker or communication IF 44 is an example of an "output means" according to the present invention. Even with the configuration according to this modified example, the user can distinguish and evaluate whether the cause of the performance degradation of the vessel 11 is due to the surface condition of the propeller 110 or the surface condition of the hull.
  • the configurations of the analysis system 1, the terminal device 10, and the server device 40 are merely examples, and are not limited to these.
  • the functions of one device may be distributed among multiple devices, or the functions of multiple devices may be collectively carried out by one device.
  • the operations of the analysis system 1, the terminal device 10, and the server device 40 are merely examples, and are not limited to these.
  • the order of the processing steps of the analysis system 1, the terminal device 10, and the server device 40 may be changed, or some of the processing steps may be omitted, as long as there is no contradiction.
  • Another embodiment of the present invention may provide a method having processing steps performed in the analysis system 1, the terminal device 10, and the server device 40. Furthermore, yet another embodiment of the present invention may provide a program executed in the terminal device 10 or the server device 40. This program may be provided by being stored in a computer-readable recording medium, or may be provided by downloading via the Internet, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Navigation (AREA)

Abstract

An analytical device (40) comprises: a first determining means (412) for determining an amount of increase in a first torque coefficient of a propeller caused by a change in an entire surface state including a hull of a ship and the propeller; a first acquiring means (411) for acquiring a value indicating the surface state of the propeller; a second determining means (413) for determining, using this value, an amount of increase in a second torque coefficient of the propeller caused by a change in the surface state of the propeller; a third determining means (414) for determining, using the amount of increase in the first torque coefficient and the amount of increase in the second torque coefficient, an amount of increase in a third torque coefficient of the propeller caused by a change in the surface state of the hull; and an output means (46) for outputting the amount of increase in the second torque coefficient, and the amount of increase in the third torque coefficient.

Description

分析装置及びプログラムAnalytical device and program
 本発明は、船舶の性能低下の要因を分析する技術に関する。 The present invention relates to a technology for analyzing the causes of deterioration in ship performance.
 船体の汚損を評価する技術が知られている(例えば特許文献1)。 Technology for evaluating hull fouling is known (for example, Patent Document 1).
特開2018-27740号公報JP 2018-27740 A
 船舶の性能低下の要因には、プロペラの表面状態に起因するものと、船体の表面状態に起因するものとが含まれる。船舶の性能低下の要因によっては、メンテナンス方法が異なる場合がある。しかし、従来技術では、船舶の性能低下の要因がプロペラの表面状態に起因するものか船体の表面状態に起因するものかを区別して評価することができなかった。 Factors that can cause a ship's performance to decline include those caused by the surface condition of the propeller and those caused by the surface condition of the hull. Depending on the cause of the ship's performance decline, the maintenance method may differ. However, with conventional technology, it was not possible to distinguish and evaluate whether the cause of the ship's performance decline was caused by the surface condition of the propeller or the surface condition of the hull.
 本発明は、船舶の性能低下の要因がプロペラの表面状態に起因するものか船体の表面状態に起因するものかを区別して評価できるようにすることを目的とする。 The purpose of this invention is to make it possible to distinguish and evaluate whether the cause of a decline in ship performance is due to the surface condition of the propeller or the surface condition of the hull.
 本発明の一態様は、船舶の船体とプロペラとを含む全体の表面状態の変化により生じる前記プロペラの第1トルク係数の増加量を決定する第1決定手段と、前記プロペラの表面状態を示す値を取得する第1取得手段と、前記値を用いて、前記プロペラの表面状態の変化により生じる前記プロペラの第2トルク係数の増加量を決定する第2決定手段と、前記第1トルク係数の増加量及び前記第2トルク係数の増加量を用いて、前記船体の表面状態の変化により生じる前記プロペラの第3トルク係数の増加量を決定する第3決定手段と、前記第2トルク係数の増加量及び前記第3トルク係数の増加量を出力する出力手段とを備える分析装置を提供する。 One aspect of the present invention provides an analysis device that includes a first determination means for determining an increase in a first torque coefficient of the propeller caused by a change in the overall surface condition including the ship's hull and propeller, a first acquisition means for acquiring a value indicating the surface condition of the propeller, a second determination means for determining an increase in a second torque coefficient of the propeller caused by a change in the surface condition of the propeller using the value, a third determination means for determining an increase in a third torque coefficient of the propeller caused by a change in the surface condition of the hull using the increase in the first torque coefficient and the increase in the second torque coefficient, and an output means for outputting the increase in the second torque coefficient and the increase in the third torque coefficient.
 前記第3決定手段は、前記第1トルク係数の増加量と前記第2トルク係数の増加量との差を前記第3トルク係数の増加量として決定してもよい。 The third determination means may determine the difference between the increase in the first torque coefficient and the increase in the second torque coefficient as the increase in the third torque coefficient.
 前記第1決定手段は、前記船舶の航行中に計測された前記プロペラのトルク及び回転数を用いて前記第1トルク係数の増加量を決定してもよい。 The first determination means may determine the increase in the first torque coefficient using the torque and rotation speed of the propeller measured while the ship is sailing.
 前記分析装置は、少なくとも一の船舶の過去の実績から得られる、少なくとも一のプロペラの前記第2トルク係数の増加量と、前記少なくとも一のプロペラのメンテナンスにより得られた効果との対応関係を示す対応情報を記憶する記憶手段と、前記対応情報に基づいて、前記第2トルク係数の増加量に応じた前記プロペラのメンテナンスにより得られる効果を示す効果情報を生成する生成手段とをさらに備え、前記出力手段は、前記生成された効果情報を出力してもよい。 The analysis device may further include a storage means for storing correspondence information indicating a correspondence between the increase in the second torque coefficient of at least one propeller obtained from the past performance of at least one ship and the effect obtained by maintenance of the at least one propeller, and a generation means for generating effect information indicating the effect obtained by maintenance of the propeller according to the increase in the second torque coefficient based on the correspondence information, and the output means may output the generated effect information.
 前記分析装置は、少なくとも一の船舶の過去の実績から得られる、少なくとも一のプロペラの前記第3トルク係数の増加量と、前記少なくとも一の船舶の船体のメンテナンスにより得られた効果との対応関係を示す対応情報を記憶する記憶手段と、前記対応情報に基づいて、前記第3トルク係数の増加量に応じた前記船体のメンテナンスにより得られる効果を示す効果情報を生成する生成手段とをさらに備え、前記出力手段は、前記生成された効果情報を出力してもよい。 The analysis device may further include a storage means for storing correspondence information indicating a correspondence between the increase in the third torque coefficient of at least one propeller obtained from the past performance of at least one ship and the effect obtained by maintenance of the hull of the at least one ship, and a generation means for generating effect information indicating the effect obtained by maintenance of the hull according to the increase in the third torque coefficient based on the correspondence information, and the output means may output the generated effect information.
 前記分析装置は、少なくとも一の船舶の過去の第1航海条件と、前記少なくとも一の船舶において前記第1航海条件に従った航行により実際に生じた少なくとも一のプロペラの前記第2トルク係数の増加量との相関関係を示す第1相関情報、及び前記第1航海条件と、前記少なくとも一の船舶において前記第1航海条件に従った航行により実際に生じた前記少なくとも一のプロペラの前記第3トルク係数の増加量との相関関係を示す第2相関情報を記憶する記憶手段と、前記船舶について予定される第2航海条件を取得する第2取得手段と、前記第1相関情報及び前記第2相関情報に基づいて、前記船舶が前記第2航海条件に従って航行したときの前記プロペラの前記第2トルク係数の増加量及び前記第3トルク係数の増加量をそれぞれ推定する推定手段とをさらに備え、前記出力手段は、さらに前記推定された第2トルク係数の増加量及び前記推定された第3トルク係数の増加量を出力してもよい。 The analysis device further includes a storage means for storing first correlation information indicating a correlation between past first voyage conditions of at least one ship and an increase in the second torque coefficient of at least one propeller actually caused by navigation in accordance with the first voyage conditions of the at least one ship, and second correlation information indicating a correlation between the first voyage conditions and an increase in the third torque coefficient of the at least one propeller actually caused by navigation in accordance with the first voyage conditions of the at least one ship, a second acquisition means for acquiring second voyage conditions planned for the ship, and an estimation means for estimating, based on the first correlation information and the second correlation information, the increase in the second torque coefficient and the increase in the third torque coefficient of the propeller when the ship navigates in accordance with the second voyage conditions, respectively, and the output means may further output the estimated increase in the second torque coefficient and the estimated increase in the third torque coefficient.
 また、本発明の別の態様は、コンピュータに、船舶の船体とプロペラとを含む全体の表面状態の変化により生じる前記プロペラの第1トルク係数の増加量を決定するステップと、前記プロペラの表面状態を示す値を取得するステップと、前記値を用いて、前記プロペラの表面状態の変化により生じる前記プロペラの第2トルク係数の増加量を決定するステップと、前記第1トルク係数の増加量及び前記第2トルク係数の増加量を用いて、前記船体の表面状態の変化により生じる前記プロペラの第3トルク係数の増加量を決定するステップと、前記第2トルク係数の増加量及び前記第3トルク係数の増加量を出力するステップとを実行させるためのプログラムを提供する。 Another aspect of the present invention provides a program for causing a computer to execute the steps of: determining an increase in a first torque coefficient of the propeller caused by a change in the overall surface condition including the ship's hull and the propeller; acquiring a value indicating the surface condition of the propeller; using the value to determine an increase in a second torque coefficient of the propeller caused by a change in the surface condition of the propeller; using the increase in the first torque coefficient and the increase in the second torque coefficient to determine an increase in a third torque coefficient of the propeller caused by a change in the surface condition of the hull; and outputting the increase in the second torque coefficient and the increase in the third torque coefficient.
 本発明によれば、船舶の性能低下の要因がプロペラの表面状態に起因するものか船体の表面状態に起因するものかを区別して評価することができる。 The present invention makes it possible to distinguish and evaluate whether the cause of a decline in ship performance is due to the surface condition of the propeller or the surface condition of the hull.
一実施形態に係る分析システムの一例を示す図である。FIG. 1 illustrates an example of an analysis system according to an embodiment. サーバ装置の構成の一例を示す図である。FIG. 2 illustrates an example of a configuration of a server device. プロペラの表面粗度とプロペラの性能との関係の一例を示す図である。FIG. 2 is a diagram showing an example of the relationship between the surface roughness of a propeller and the performance of the propeller. 第1テーブル及び第2テーブルの一例を示す図である。FIG. 4 is a diagram showing an example of a first table and a second table. 船舶の性能低下を分析するサーバ装置の動作の一例を示すフローチャートである。13 is a flowchart showing an example of the operation of a server device for analyzing a deterioration in ship performance. 航海条件とトルク係数の増加量との相関関係を分析する動作の一例を示すシーケンスチャートである。11 is a sequence chart showing an example of an operation for analyzing a correlation between navigation conditions and an increase amount of a torque coefficient. 船舶の性能低下を推定する動作の一例を示すフローチャートである。10 is a flowchart showing an example of an operation for estimating a deterioration in performance of a vessel.
構成
 図1は、一実施形態に係る分析システム1の一例を示す図である。分析システム1は、船舶11の性能低下の要因がプロペラ110の表面状態に起因するものか、船体の表面状態に起因するものかを分析する。ここでいう「船体」とは、船舶11の外殻構造体をいい、プロペラ110は含まない。表面状態には、表面粗度と汚損とが含まれる。この汚損とは、バイオフィルムと呼ばれる生物由来の付着物やフジツボなどが付着することをいう。
Configuration Fig. 1 is a diagram showing an example of an analysis system 1 according to an embodiment. The analysis system 1 analyzes whether the cause of the performance degradation of the ship 11 is due to the surface condition of the propeller 110 or the surface condition of the hull. The "hull" here refers to the outer hull structure of the ship 11 and does not include the propeller 110. The surface condition includes surface roughness and fouling. This fouling refers to the attachment of biological deposits called biofilms, barnacles, and the like.
 この実施形態では、船舶11の性能低下を示す指標値として、トルク係数の増加量が用いられる。船舶11の性能は、回転数と馬力と燃費との関係を示す性能曲線により示される。この性能曲線によれば、同一回転数を前提とすると、プロペラ110のトルク係数が増加すると、Q=Kq×ρn^2×D^5の関係よりトルクが増大し、ゆえにトルクと回転数の積である馬力および燃費も増大する。ここにおいて、Qは主軸のトルク、Kqはトータルトルク係数、ρは海水密度、nは主機の回転数、Dはプロペラ直径である。さらには、実務上、船速を維持するためにはスラストを一定に保持することが求められるが、プロペラ表面状態の悪化のためトルク係数が増大している場合には、スラスト係数の低下も生じていることから、T=Kt×ρn^2×D^4の関係により回転数を上げる必要がある。ここにおいて、Tはスラスト、Ktはスラスト係数、ρは海水密度、nは主機の回転数、Dはプロペラ直径である。この効果もあいまってトルク、馬力、燃費は増大する。このように、プロペラ110のトルク係数が増加すると、船舶11の性能は低下する。そのため、トルク係数の増加量は船舶11の性能低下を示す指標値となる。 In this embodiment, the increase in the torque coefficient is used as an index value indicating the deterioration of the performance of the ship 11. The performance of the ship 11 is shown by a performance curve showing the relationship between the rotation speed, horsepower, and fuel consumption. According to this performance curve, assuming the same rotation speed, when the torque coefficient of the propeller 110 increases, the torque increases according to the relationship Q = Kq x ρn^2 x D^5, and therefore the horsepower and fuel consumption, which are the product of the torque and the rotation speed, also increase. Here, Q is the torque of the main shaft, Kq is the total torque coefficient, ρ is the density of seawater, n is the rotation speed of the main engine, and D is the propeller diameter. Furthermore, in practice, it is required to keep the thrust constant in order to maintain the ship speed, but when the torque coefficient increases due to the deterioration of the propeller surface condition, the thrust coefficient also decreases, so it is necessary to increase the rotation speed according to the relationship T = Kt x ρn^2 x D^4. Here, T is the thrust, Kt is the thrust coefficient, ρ is the density of seawater, n is the rotation speed of the main engine, and D is the propeller diameter. This effect also increases torque, horsepower, and fuel efficiency. In this way, when the torque coefficient of the propeller 110 increases, the performance of the vessel 11 decreases. Therefore, the increase in the torque coefficient is an index value that indicates the decrease in performance of the vessel 11.
 分析システム1は、端末装置10と、サーバ装置40とを備える。端末装置10は、船舶11に搭載される。端末装置10及びサーバ装置40は、ネットワーク52に接続されている。ネットワーク52は、例えば通信衛星50及びインターネットを含む。なお、図1では、単一の船舶11だけが示されているが、複数の船舶11が含まれてもよい。 The analysis system 1 includes a terminal device 10 and a server device 40. The terminal device 10 is mounted on a ship 11. The terminal device 10 and the server device 40 are connected to a network 52. The network 52 includes, for example, a communication satellite 50 and the Internet. Note that although only a single ship 11 is shown in FIG. 1, multiple ships 11 may be included.
 船舶11は、プロペラ110を有し、プロペラ110の回転により推進する。船舶11には、上述した端末装置10の他に、各種のセンサ(図示略)が設けられる。各種のセンサには、回転計測計、トルクセンサ、船速計、測位センサ、及び温度計(いずれも図示略)が含まれる。回転計測計は、船舶11の主機の回転数、すなわちプロペラ110の回転数を計測する。トルクセンサは、プロペラ110の主軸のトルクを計測する。船速計は、船舶11の船速を計測する。測位センサは、所定の時間間隔で船舶11の位置を測定する。測位センサは、例えばGNSS(Global Navigation Satellite System)受信機である。測位センサにより測定された船舶11の位置を時系列に沿って結ぶことにより、船舶11の航路が得られる。温度計は、海水温を計測する。端末装置10は、各種のセンサの出力を取得し、取得した出力又はこの出力から得られる情報をネットワーク52を介してサーバ装置40に送信する。 The ship 11 has a propeller 110 and is propelled by the rotation of the propeller 110. In addition to the terminal device 10 described above, the ship 11 is provided with various sensors (not shown). The various sensors include a tachometer, a torque sensor, a speedometer, a positioning sensor, and a thermometer (all not shown). The tachometer measures the rotation speed of the main engine of the ship 11, i.e., the rotation speed of the propeller 110. The torque sensor measures the torque of the main shaft of the propeller 110. The speedometer measures the speed of the ship 11. The positioning sensor measures the position of the ship 11 at a predetermined time interval. The positioning sensor is, for example, a GNSS (Global Navigation Satellite System) receiver. The route of the ship 11 is obtained by connecting the positions of the ship 11 measured by the positioning sensor in a chronological order. The thermometer measures seawater temperature. The terminal device 10 acquires the output of various sensors and transmits the acquired output or information obtained from this output to the server device 40 via the network 52.
 図2は、サーバ装置40の構成の一例を示す図である。サーバ装置40は、陸上に設置される。サーバ装置40は、プロペラ110と船体とを含むトータルのトルク係数の増加量と、プロペラ110のトルク係数の増加量と、船体のトルク係数の増加量とを別々に決定し出力する。サーバ装置40は、本発明に係る「分析装置」の一例である。サーバ装置40は、プロセッサ41と、メモリ42と、ストレージ43と、通信IF(Interface)44と、入力部45と、表示部46とを備える。サーバ装置40の各部は、バスを介して接続されている。 FIG. 2 is a diagram showing an example of the configuration of the server device 40. The server device 40 is installed on land. The server device 40 separately determines and outputs the increase in the total torque coefficient including the propeller 110 and the hull, the increase in the torque coefficient of the propeller 110, and the increase in the torque coefficient of the hull. The server device 40 is an example of an "analysis device" according to the present invention. The server device 40 comprises a processor 41, a memory 42, a storage 43, a communication IF (Interface) 44, an input unit 45, and a display unit 46. Each unit of the server device 40 is connected via a bus.
 プロセッサ41は、プログラムを実行することによりサーバ装置40の各部を制御及び各種の演算を行う。プロセッサ41には、例えば1又は複数のCPU(Central Processing Unit)が含まれる。メモリ42は、プロセッサ41が各種の処理を行うのに用いられる。メモリ42には、例えばROM(Read Only Memory)及びRAM(Random Access Memory)が含まれる。ストレージ43は、プロセッサ41により用いられる各種のデータを記憶する。このデータには、第1テーブル431と、第2テーブル432とが含まれる。ストレージ43には、例えばHHD(Hard Disk Drive)又はSSD(Solid State Drive)が含まれる。ストレージ43は、本発明に係る「記憶手段」の一例である。また、メモリ42又はストレージ43には、サーバ装置40の機能を実現させるためのプログラムが記憶される。通信IF44は、所定の通信規格に従って他の装置とデータ通信を行う。入力部45は、ユーザの操作に応じた信号をプロセッサ41に入力する。入力部45には、例えばキーボード及びマウスが含まれる。表示部46は、各種の情報を表示する。表示部46には、例えば液晶ディスプレイが含まれる。表示部46は、本発明に係る「出力手段」の一例である。 The processor 41 executes a program to control each part of the server device 40 and perform various calculations. The processor 41 includes, for example, one or more CPUs (Central Processing Units). The memory 42 is used by the processor 41 to perform various processes. The memory 42 includes, for example, a ROM (Read Only Memory) and a RAM (Random Access Memory). The storage 43 stores various data used by the processor 41. This data includes a first table 431 and a second table 432. The storage 43 includes, for example, a HHD (Hard Disk Drive) or an SSD (Solid State Drive). The storage 43 is an example of a "storage means" according to the present invention. In addition, the memory 42 or the storage 43 stores a program for realizing the functions of the server device 40. The communication IF 44 performs data communication with other devices according to a predetermined communication standard. The input unit 45 inputs a signal according to a user's operation to the processor 41. The input unit 45 includes, for example, a keyboard and a mouse. The display unit 46 displays various information. The display unit 46 includes, for example, a liquid crystal display. The display unit 46 is an example of the "output means" according to the present invention.
 サーバ装置40は、第1取得手段411と、第1決定手段412と、第2決定手段413と、第3決定手段414と、生成手段415と、第2取得手段416と、分析手段417と、推定手段418と、表示制御手段419として機能する。これらの機能は、プロセッサ41がメモリ42又はストレージ43に記憶されたプログラムを実行することにより実現される。 The server device 40 functions as a first acquisition means 411, a first determination means 412, a second determination means 413, a third determination means 414, a generation means 415, a second acquisition means 416, an analysis means 417, an estimation means 418, and a display control means 419. These functions are realized by the processor 41 executing a program stored in the memory 42 or the storage 43.
 第1取得手段411は、端末装置10から船舶11の航行中に計測された主機の回転数、主軸のトルク、及び船速を取得する。具体的には、第1取得手段411は、これらの情報の取得要求を端末装置10に送信する。端末装置10は、この取得要求に応じて、航行中に回転計測計により計測された回転数、トルクセンサにより計測されたトルク、及び船速計により計測された船速をサーバ装置40に送信する。第1取得手段411は、端末装置10から送信された回転数、トルク、及び船速を受信する。 The first acquisition means 411 acquires the main engine RPM, main shaft torque, and ship speed measured while the ship 11 is sailing from the terminal device 10. Specifically, the first acquisition means 411 transmits an acquisition request for this information to the terminal device 10. In response to this acquisition request, the terminal device 10 transmits to the server device 40 the RPM measured by the rotation measuring meter while sailing, the torque measured by the torque sensor, and the ship speed measured by the ship speed meter. The first acquisition means 411 receives the RPM, torque, and ship speed transmitted from the terminal device 10.
 また、第1取得手段411は、船舶11の航行後のプロペラ110の表面粗度を取得する。この表面粗度は、船舶11の係留中にプロペラ110の点検を行うことにより判定される。例えば潜水夫がルバードゲージを用いてプロペラ110の表面粗度を判定してもよい。或いは、水中ドローンが測定器を用いてプロペラ110表面粗度を判定してもよい。このようにして判定されたプロペラ110の表面粗度は、船舶11の航海記録に追加される。第1取得手段411は、上述と同様の方法により、端末装置10から航海記録に含まれるプロペラ110の表面粗度を取得してもよい。或いは、ユーザが入力部45を用いてプロペラ110の表面粗度を入力し、第1取得手段411がユーザにより入力された表面粗度を取得してもよい。 The first acquisition means 411 also acquires the surface roughness of the propeller 110 after the ship 11 has sailed. This surface roughness is determined by inspecting the propeller 110 while the ship 11 is moored. For example, a diver may determine the surface roughness of the propeller 110 using a lubricant gauge. Alternatively, an underwater drone may determine the surface roughness of the propeller 110 using a measuring device. The surface roughness of the propeller 110 determined in this manner is added to the voyage record of the ship 11. The first acquisition means 411 may acquire the surface roughness of the propeller 110 included in the voyage record from the terminal device 10 in a manner similar to that described above. Alternatively, a user may input the surface roughness of the propeller 110 using the input unit 45, and the first acquisition means 411 may acquire the surface roughness input by the user.
 第1決定手段412は、船舶11のプロペラ110と船体とを含む全体の表面状態の変化により生じるプロペラ110のトルク係数(以下、「トータルトルク係数」という。)の増加量を決定する。トータルトルク係数は、本発明に係る「第1トルク係数」の一例である。まず、第1決定手段412は、第1取得手段411により取得された主機の回転数及び主軸のトルクを用いてトータルトルク係数を算出する。トータルトルク係数は、下記の数式(1)によって求められる。 The first determination means 412 determines the increase in the torque coefficient of the propeller 110 (hereinafter referred to as the "total torque coefficient") caused by a change in the overall surface condition including the propeller 110 and the hull of the ship 11. The total torque coefficient is an example of the "first torque coefficient" according to the present invention. First, the first determination means 412 calculates the total torque coefficient using the main engine rotation speed and main shaft torque acquired by the first acquisition means 411. The total torque coefficient is calculated by the following formula (1).
Kq=Q/ρn^2D^5・・・(1)
 数式(1)において、Kqはトータルトルク係数、Qは主軸のトルク、ρは海水密度、nは主機の回転数、Dはプロペラ直径である。主機の回転数は、第1取得手段411により取得された主機の回転数の平均値であってもよいし、最後に計測された値であってもよい。同様に、主軸のトルクは、第1取得手段411により取得された主軸のトルクの平均値であってもよいし、最後に計測された値であってもよい。海水密度は定数である。プロペラ直径は船舶11毎に定数である。
Kq=Q/ρn^2D^5・・・(1)
In formula (1), Kq is the total torque coefficient, Q is the torque of the main shaft, ρ is the density of seawater, n is the rotation speed of the main engine, and D is the propeller diameter. The rotation speed of the main engine may be the average value of the rotation speed of the main engine acquired by the first acquisition means 411, or may be the last measured value. Similarly, the torque of the main shaft may be the average value of the torque of the main shaft acquired by the first acquisition means 411, or may be the last measured value. The density of seawater is a constant. The propeller diameter is a constant for each ship 11.
 続いて、第1決定手段412は、航行前等の基準時点におけるトータルトルク係数に対する今回算出されたトータルトルク係数の増加量を算出する。この基準時点におけるトータルトルク係数は、例えば船舶11の主機の回転数の初期値とプロペラ110のトルクの初期値とを用いて予め算出され、ストレージ43に記憶される。 Then, the first determination means 412 calculates the increase in the total torque coefficient calculated this time relative to the total torque coefficient at a reference point in time, such as before sailing. The total torque coefficient at this reference point in time is calculated in advance using, for example, the initial value of the rotation speed of the main engine of the ship 11 and the initial value of the torque of the propeller 110, and is stored in the storage 43.
 第2決定手段413は、船舶11のプロペラ110の表面状態の変化により生じるプロペラ110のトルク係数(以下、「プロペラ由来トルク係数」という。)の増加量を決定する。プロペラ由来トルク係数は、本発明に係る「第2トルク係数」の一例である。まず、第2決定手段413は、第1取得手段411により取得されたプロペラ110の表面粗度を用いて、プロペラ由来トルク係数を決定する。プロペラ由来トルク係数は、プロペラ110の表面粗度とプロペラ110の性能との関係に基づいて求められる。 The second determination means 413 determines the amount of increase in the torque coefficient of the propeller 110 (hereinafter referred to as the "propeller-derived torque coefficient") caused by a change in the surface condition of the propeller 110 of the ship 11. The propeller-derived torque coefficient is an example of the "second torque coefficient" according to the present invention. First, the second determination means 413 determines the propeller-derived torque coefficient using the surface roughness of the propeller 110 acquired by the first acquisition means 411. The propeller-derived torque coefficient is found based on the relationship between the surface roughness of the propeller 110 and the performance of the propeller 110.
 図3は、プロペラ110の表面粗度とプロペラ110の性能との関係の一例を示す図である。図3に示すグラフにおいて、縦軸はトルク係数、横軸は前進係数を示す。表面粗度A~Eは、表面粗度Aが最も小さく、表面粗度A、B、C、D、Eの順に大きくなる。このグラフによれば、前進係数が一定の場合、表面粗度が増えると、トルク係数も増える。なお、グラフを構成するトルク係数、前進係数、及び表面粗度は、初期状態においては水槽試験から得られる実験値又はCFD(Computational Fluid Dynamics)数値計算から得られる計算値が用いられる。図3に示されるグラフは、これらの実験値又は計算値を用いて作成される。また、少なくとも一の船舶11の航行により実測値が得られると、グラフを構成する各データは、実測値により上書き更新されてもよい。前進係数は、以下の数式(2)によって求められる。 3 is a diagram showing an example of the relationship between the surface roughness of the propeller 110 and the performance of the propeller 110. In the graph shown in FIG. 3, the vertical axis indicates the torque coefficient, and the horizontal axis indicates the advance coefficient. Among the surface roughnesses A to E, surface roughness A is the smallest, and the surface roughness increases in the order of A, B, C, D, and E. According to this graph, when the advance coefficient is constant, as the surface roughness increases, the torque coefficient also increases. Note that, for the torque coefficient, advance coefficient, and surface roughness constituting the graph, experimental values obtained from tank tests or calculated values obtained from CFD (Computational Fluid Dynamics) numerical calculations are used in the initial state. The graph shown in FIG. 3 is created using these experimental values or calculated values. In addition, when actual measured values are obtained by the navigation of at least one ship 11, each data constituting the graph may be overwritten and updated with the actual measured values. The advance coefficient is calculated by the following formula (2).
J=Va/(n×D)・・・(2)
 数式(2)において、Jは前進係数、Vaはプロペラ前進速度、nは主機の回転数、Dはプロペラ直径である。主機の回転数は、第1取得手段411により取得された主機の回転数の平均値であってもよいし、最後に計測された値であってもよい。プロペラ直径は船舶11毎に定数である。プロペラ前進速度は、以下の数式(3)によって求められる。
J = Va/(n × D) ... (2)
In formula (2), J is the advance coefficient, Va is the propeller advance speed, n is the main engine RPM, and D is the propeller diameter. The main engine RPM may be the average value of the main engine RPMs acquired by the first acquisition means 411, or may be the last measured value. The propeller diameter is a constant for each ship 11. The propeller advance speed is calculated by the following formula (3).
Va=Vs×(1-w)・・・(3)
 数式(3)において、Vaはプロペラ前進速度、Vsは船速、1-wは伴流係数である。船速は、第1取得手段411により取得された船速の平均値であってもよいし、最後に計測された値であってもよい。伴流係数は定数であってもよいし、模型船の水槽試験による方法、推定図表を用いた方法、又は略算式を用いた方法等の他の方法により求められてもよい。なお、表面粗度が大きくなると、スラスト係数が低下するため、所要の船速を得るためには、主機の回転数を増加させる必要がある。前進速度は、この要素を加味して求められてもよい。
Va = Vs × (1-w) ... (3)
In formula (3), Va is the propeller forward speed, Vs is the ship speed, and 1-w is the wake coefficient. The ship speed may be the average value of the ship speeds acquired by the first acquisition means 411, or may be the last measured value. The wake coefficient may be a constant, or may be obtained by other methods such as a method based on a tank test of a model ship, a method using an estimation chart, or a method using an approximate calculation formula. Note that as the surface roughness increases, the thrust coefficient decreases, so that in order to obtain the required ship speed, it is necessary to increase the rotation speed of the main engine. The forward speed may be obtained by taking this factor into account.
 数式(2)及び数式(3)により前進係数が求められると、第2決定手段413は、図3に示されるグラフにおいて、この前進係数と、第1取得手段411により取得されたプロペラ110の表面粗度とに対応するトルク係数をプロペラ由来トルク係数として決定する。 Once the forward advance coefficient is calculated using formulas (2) and (3), the second determination means 413 determines the torque coefficient corresponding to the forward advance coefficient and the surface roughness of the propeller 110 acquired by the first acquisition means 411 as the propeller-derived torque coefficient in the graph shown in Figure 3.
 別の例として、第2決定手段413は、プロペラ110の表面粗度とプロペラ由来トルク係数との対応関係を示す実績データベースに基づいて、第1取得手段411により取得されたプロペラ110の表面粗度に対応するプロペラ由来トルク係数を決定してもよい。この実績データベースは、少なくとも一の船舶11の過去の実績に基づいて作成され、ストレージ43に記憶される。 As another example, the second determination means 413 may determine the propeller-derived torque coefficient corresponding to the surface roughness of the propeller 110 acquired by the first acquisition means 411 based on a performance database indicating the correspondence between the surface roughness of the propeller 110 and the propeller-derived torque coefficient. This performance database is created based on the past performance of at least one ship 11 and is stored in the storage 43.
 続いて、第2決定手段413は、航行前等の基準時点におけるプロペラ由来トルク係数に対する今回算出されたプロペラ由来トルク係数の増加量を算出する。この基準時点におけるプロペラ由来トルク係数は、例えばプロペラ110の表面粗度の初期値、船舶11の主機の回転数の初期値、及び船舶11の船速の初期値を用いて予め決定され、ストレージ43に記憶される。 Then, the second determination means 413 calculates the increase in the propeller-derived torque coefficient calculated this time relative to the propeller-derived torque coefficient at a reference point in time, such as before sailing. The propeller-derived torque coefficient at this reference point in time is determined in advance using, for example, an initial value of the surface roughness of the propeller 110, an initial value of the RPM of the main engine of the ship 11, and an initial value of the ship speed of the ship 11, and is stored in the storage 43.
 第3決定手段414は、船舶11の船体の表面状態の変化により生じるプロペラ110のトルク係数(以下、「船体由来トルク係数」という。)の増加量を決定する。船体由来トルク係数は、本発明に係る「第3トルク係数」の一例である。具体的には、第3決定手段414は、第1決定手段412により決定されたトータルトルク係数の増加量と、第2決定手段413により決定されたプロペラ由来トルク係数の増加量とを用いて、船体由来トルク係数の増加量を算出する。船体由来トルク係数の増加量は、トータルトルク係数の増加量とプロペラ由来トルク係数の増加量との差であり、下記の数式(4)によって求められる。 The third determination means 414 determines the increase in the torque coefficient of the propeller 110 (hereinafter referred to as the "hull-derived torque coefficient") caused by a change in the surface condition of the hull of the ship 11. The hull-derived torque coefficient is an example of the "third torque coefficient" according to the present invention. Specifically, the third determination means 414 calculates the increase in the hull-derived torque coefficient using the increase in the total torque coefficient determined by the first determination means 412 and the increase in the propeller-derived torque coefficient determined by the second determination means 413. The increase in the hull-derived torque coefficient is the difference between the increase in the total torque coefficient and the increase in the propeller-derived torque coefficient, and is calculated by the following formula (4).
ΔKq_C=ΔKq_A-ΔKq_B・・・(4)
 数式(4)において、ΔKq_Cは船体由来トルク係数の増加量、ΔKq_Aはトータルトルク係数の増加量、ΔKq_Bはプロペラ由来トルク係数の増加量である。
ΔKq_C=ΔKq_A-ΔKq_B・・・(4)
In equation (4), ΔKq_C is the increase in the hull-derived torque coefficient, ΔKq_A is the increase in the total torque coefficient, and ΔKq_B is the increase in the propeller-derived torque coefficient.
 生成手段415は、ストレージ43に記憶された第1テーブル431に基づいて、プロペラ由来トルク係数の増加量に応じてプロペラ110のメンテナンスが行われた場合に得られる効果を示す効果情報を生成する。また、生成手段415は、ストレージ43に記憶された第2テーブル432に基づいて、船体由来トルク係数の増加量に応じて船体のメンテナンスが行われた場合に得られる効果を示す効果情報を生成する。 The generating means 415 generates effect information indicating the effect obtained when the maintenance of the propeller 110 is performed according to the increase in the propeller-derived torque coefficient, based on the first table 431 stored in the storage 43. The generating means 415 also generates effect information indicating the effect obtained when the maintenance of the hull is performed according to the increase in the hull-derived torque coefficient, based on the second table 432 stored in the storage 43.
 図4は、第1テーブル431及び第2テーブル432の一例を示す図である。第1テーブル431は、船舶11のタイプ毎に、プロペラ由来トルク係数の増加量とプロペラ110のメンテナンスにより得られる効果との対応関係を示す。第1テーブル431は、本発明に係る「対応情報」の一例である。第1テーブル431には、船舶11のタイプと、プロペラ由来トルク係数の増加量と、メンテナンスの効果情報とが関連付けて格納される。このプロペラ由来トルク係数の増加量及びメンテナンスの効果情報は、少なくとも一の船舶11の過去の実績から得られる。メンテナンスの効果情報は、例えばメンテナンスにより削減される燃料消費量の割合を示す値である。また、メンテナンスの効果情報は、メンテナンスにより削減される燃料消費量を重油価格に換算したものであってもよい。生成手段415は、第2テーブル432において、船舶11のタイプと、第2決定手段413により決定されたプロペラ由来トルク係数の増加量とに関連付けられたメンテナンスの効果情報を第2テーブル432から読み出す。 4 is a diagram showing an example of the first table 431 and the second table 432. The first table 431 shows the correspondence relationship between the increase in the propeller-derived torque coefficient and the effect obtained by the maintenance of the propeller 110 for each type of ship 11. The first table 431 is an example of the "correspondence information" according to the present invention. The first table 431 stores the type of ship 11, the increase in the propeller-derived torque coefficient, and the maintenance effect information in association with each other. The increase in the propeller-derived torque coefficient and the maintenance effect information are obtained from the past performance of at least one ship 11. The maintenance effect information is, for example, a value indicating the proportion of the fuel consumption amount reduced by the maintenance. The maintenance effect information may also be the amount of fuel consumption reduced by the maintenance converted into the price of heavy oil. The generating means 415 reads out the maintenance effect information associated with the type of ship 11 and the increase in the propeller-derived torque coefficient determined by the second determining means 413 from the second table 432.
 第2テーブル432は、船舶11のタイプ毎に、船体由来トルク係数の増加量と船体のメンテナンスにより得られる効果との対応関係を示す。第2テーブル432は、本発明に係る「対応情報」の一例である。第2テーブル432には、船舶11のタイプと、船体由来トルク係数の増加量と、メンテナンスの効果情報とが関連付けて格納される。第1テーブル431と同様に、この船体由来トルク係数の増加量及びメンテナンスの効果情報は、少なくとも一の船舶11の過去の実績から得られる。また、メンテナンスの効果情報は、第1テーブル431と同様に、メンテナンスにより削減される燃料消費量の割合を示す値であってもよいし、メンテナンスにより削減される燃料消費量を重油価格に換算したものであってもよい。生成手段415は、第2テーブル432において、船舶11のタイプと、第3決定手段414により決定された船体由来トルク係数の増加量とに関連付けられた効果情報を第2テーブル432から読み出す。 The second table 432 shows the correspondence between the increase in the hull-derived torque coefficient and the effect obtained by the maintenance of the hull for each type of ship 11. The second table 432 is an example of the "correspondence information" according to the present invention. The second table 432 stores the type of ship 11, the increase in the hull-derived torque coefficient, and the effect information of the maintenance in association with each other. As with the first table 431, the increase in the hull-derived torque coefficient and the effect information of the maintenance are obtained from the past performance of at least one ship 11. As with the first table 431, the effect information of the maintenance may be a value indicating the proportion of the fuel consumption reduced by the maintenance, or may be the amount of fuel consumption reduced by the maintenance converted into the price of heavy oil. The generating means 415 reads out the effect information associated with the type of ship 11 and the increase in the hull-derived torque coefficient determined by the third determining means 414 from the second table 432.
 第2取得手段416は、少なくとも一の船舶11の実績航海条件と、船舶11の予定航海条件とを取得する。実績航海条件は、少なくとも一の船舶11が過去に航行したときの航海条件である。第2取得手段416は、上述した第1取得手段411と同様に、端末装置10に実績航海条件の取得要求を送信することにより、端末装置10から実績航海条件を受信する。実績航海条件は、本発明に係る「第1航海条件」の一例である。予定航海条件は、船舶11について予定される航海条件である。予定航海条件は、本発明に係る「第2航海条件」の一例である。第2取得手段416は、上述と同様の方法により、端末装置10から予定航海条件を取得してもよいし、入力部45を用いたユーザの操作に応じて入力された予定航海条件を取得してもよい。 The second acquisition means 416 acquires actual navigation conditions of at least one ship 11 and planned navigation conditions of the ship 11. The actual navigation conditions are navigation conditions when at least one ship 11 has sailed in the past. The second acquisition means 416 receives the actual navigation conditions from the terminal device 10 by sending an acquisition request for the actual navigation conditions to the terminal device 10, similar to the first acquisition means 411 described above. The actual navigation conditions are an example of the "first navigation conditions" according to the present invention. The planned navigation conditions are navigation conditions planned for the ship 11. The planned navigation conditions are an example of the "second navigation conditions" according to the present invention. The second acquisition means 416 may acquire the planned navigation conditions from the terminal device 10 by the same method as described above, or may acquire the planned navigation conditions input in response to a user's operation using the input unit 45.
 分析手段417は、第2取得手段416により取得された実績航海条件と第2決定手段413により決定されたプロペラ由来トルク係数の増加量との相関関係を分析する。また、分析手段417は、第2取得手段416により取得された実績航海条件と第3決定手段414により決定された船体由来トルク係数の増加量との相関関係を分析する。第2決定手段413及び第3決定手段414により決定されたプロペラ由来トルク係数の増加量及び船体由来トルク係数の増加量は、それぞれ、少なくとも一の船舶11において実績航海条件に従った過去の航行により影響を受けた実際のプロペラ由来トルク係数の増加量及び船体由来トルク係数の増加量である。各相関関係は定式化されてもよい。また、相関関係の分析は、AI(Artificial Intelligence)を用いて行われてもよい。 The analysis means 417 analyzes the correlation between the actual sailing conditions acquired by the second acquisition means 416 and the increase in the propeller-derived torque coefficient determined by the second determination means 413. The analysis means 417 also analyzes the correlation between the actual sailing conditions acquired by the second acquisition means 416 and the increase in the hull-derived torque coefficient determined by the third determination means 414. The increase in the propeller-derived torque coefficient and the increase in the hull-derived torque coefficient determined by the second determination means 413 and the third determination means 414 are the actual increase in the propeller-derived torque coefficient and the increase in the hull-derived torque coefficient affected by past sailing in accordance with the actual sailing conditions in at least one ship 11, respectively. Each correlation may be formulated. Furthermore, the analysis of the correlation may be performed using AI (Artificial Intelligence).
 推定手段418は、実績航海条件とプロペラ由来トルク係数の増加量との相関関係に基づいて、船舶11が第2取得手段416により取得された予定航海条件に従って航行したときのプロペラ由来トルク係数の増加量を推定する。また、推定手段418は、実績航海条件と船体由来トルク係数の増加量との相関関係に基づいて、船舶11が第2取得手段416により取得された予定航海条件に従って航行したときの船体由来トルク係数の増加量を推定する。推定手段418の推定方法としては、例えば相関関係において、予定航海条件と最も類似する実績航海条件と相関を有するプロペラ由来トルク係数の増加量又は船体由来トルク係数の増加量を推定するという方法であってもよい。 The estimation means 418 estimates the increase in the propeller-derived torque coefficient when the ship 11 navigates according to the planned navigation conditions acquired by the second acquisition means 416, based on the correlation between the actual navigation conditions and the increase in the propeller-derived torque coefficient. The estimation means 418 also estimates the increase in the hull-derived torque coefficient when the ship 11 navigates according to the planned navigation conditions acquired by the second acquisition means 416, based on the correlation between the actual navigation conditions and the increase in the hull-derived torque coefficient. The estimation method of the estimation means 418 may be, for example, a method of estimating the increase in the propeller-derived torque coefficient or the increase in the hull-derived torque coefficient that is correlated with the actual navigation conditions that are most similar to the planned navigation conditions in the correlation.
 表示制御手段419は、第1決定手段412、第2決定手段413、及び第3決定手段414により決定されたトータルトルク係数の増加量、プロペラ由来トルク係数の増加量、及び船体由来トルク係数の増加量と、生成手段415により生成されたメンテナンスの効果情報とを表示部46に表示させる。また、表示制御手段419は、推定手段418により推定されたプロペラ由来トルク係数の増加量及び船体由来トルク係数の増加量を表示部46に表示させる。 The display control means 419 causes the display unit 46 to display the increase in the total torque coefficient, the increase in the propeller-derived torque coefficient, and the increase in the hull-derived torque coefficient determined by the first determination means 412, the second determination means 413, and the third determination means 414, as well as the maintenance effect information generated by the generation means 415. The display control means 419 also causes the display unit 46 to display the increase in the propeller-derived torque coefficient and the increase in the hull-derived torque coefficient estimated by the estimation means 418.
動作
 図5は、船舶11の性能低下を分析するサーバ装置40の動作の一例を示すフローチャートである。この動作は、例えば船舶11が航行後に岸壁に係留されている間に、入力部45を用いたユーザの操作に応じて開始される。
5 is a flowchart showing an example of an operation of the server device 40 for analyzing the performance degradation of the ship 11. This operation is started in response to a user's operation using the input unit 45, for example, while the ship 11 is moored at a quay after sailing.
 ステップS101において、第1取得手段411は、端末装置10から船舶11の航行中に計測された主機の回転数、プロペラ110の主軸のトルク、及び船速を取得する。第1取得手段411は、これらの情報の取得要求を端末装置10に送信することにより、端末装置10からこれらの情報を受信する。 In step S101, the first acquisition means 411 acquires the main engine RPM, the torque of the main shaft of the propeller 110, and the ship speed measured while the ship 11 is sailing from the terminal device 10. The first acquisition means 411 receives this information from the terminal device 10 by sending an acquisition request for this information to the terminal device 10.
 ステップS102において、第1決定手段412は、トータルトルク係数の増加量を決定する。まず、第1決定手段412は、ステップS101において取得された主機の回転数及びトルクを上述した数式(1)に代入して、トータルトルク係数を算出する。続いて、第1決定手段412は、航行前等の基準時点におけるトータルトルク係数に対する今回算出されたトータルトルク係数の増加量を算出する。 In step S102, the first determination means 412 determines the increase in the total torque coefficient. First, the first determination means 412 calculates the total torque coefficient by substituting the main engine rotation speed and torque acquired in step S101 into the above-mentioned formula (1). Next, the first determination means 412 calculates the increase in the total torque coefficient calculated this time relative to the total torque coefficient at a reference point, such as before sailing.
 ステップS103において、第1取得手段411は、航行後のプロペラ110の表面粗度を取得する。第1取得手段411は、プロペラ110の表面粗度の取得要求を端末装置10に送信することにより、端末装置10からプロペラ110の表面粗度を受信する。或いは、ユーザが入力部45を用いて表面粗度を入力し、第1取得手段411は、ユーザにより入力された表面粗度を取得してもよい。 In step S103, the first acquisition means 411 acquires the surface roughness of the propeller 110 after sailing. The first acquisition means 411 receives the surface roughness of the propeller 110 from the terminal device 10 by transmitting a request to acquire the surface roughness of the propeller 110 to the terminal device 10. Alternatively, the user may input the surface roughness using the input unit 45, and the first acquisition means 411 may acquire the surface roughness input by the user.
 ステップS104において、第2決定手段413は、プロペラ由来トルク係数の増加量を決定する。まず、第2決定手段413は、ステップS101において取得された船速を上述した数式(3)に代入して前進速度を算出する。次に、第2決定手段413は、この前進速度とステップS101において取得された主機の回転数とを上述した数式(4)に代入して前進係数を算出する。さらに、第2決定手段413は、図3に示されるグラフに基づいて、この前進係数とステップS103において取得されたプロペラ110の表面粗度とに対応するトルク係数をプロペラ由来トルク係数として決定する。そして、第2決定手段413は、航行前等の基準時点におけるプロペラ由来トルク係数に対する今回算出されたプロペラ由来トルク係数の増加量を算出する。 In step S104, the second determination means 413 determines the increase in the propeller-derived torque coefficient. First, the second determination means 413 calculates the forward speed by substituting the ship speed acquired in step S101 into the above-mentioned formula (3). Next, the second determination means 413 calculates the forward speed and the main engine RPM acquired in step S101 into the above-mentioned formula (4) to calculate the forward coefficient. Furthermore, the second determination means 413 determines the torque coefficient corresponding to this forward coefficient and the surface roughness of the propeller 110 acquired in step S103 as the propeller-derived torque coefficient based on the graph shown in FIG. 3. Then, the second determination means 413 calculates the increase in the propeller-derived torque coefficient calculated this time relative to the propeller-derived torque coefficient at a reference point, such as before sailing.
 ステップS105において、第3決定手段414は、船体由来トルク係数の増加量を決定する。第3決定手段414は、ステップS102及びS104において決定されたトータルトルク係数の増加量及びプロペラ由来トルク係数の増加量を上述した数式(4)に代入して、船体由来トルク係数の増加量を算出する。 In step S105, the third determination means 414 determines the increase in the hull-derived torque coefficient. The third determination means 414 substitutes the increase in the total torque coefficient and the increase in the propeller-derived torque coefficient determined in steps S102 and S104 into the above-mentioned formula (4) to calculate the increase in the hull-derived torque coefficient.
 ステップS106において、第1決定手段412、第2決定手段413、及び第3決定手段414は、それぞれ、ステップS102、S104、及びS105において決定されたトータルトルク係数の増加量、プロペラ由来トルク係数の増加量、及び船体由来トルク係数の増加量をストレージ43に記憶させる。 In step S106, the first determination means 412, the second determination means 413, and the third determination means 414 store in the storage 43 the increase in the total torque coefficient, the increase in the propeller-derived torque coefficient, and the increase in the hull-derived torque coefficient determined in steps S102, S104, and S105, respectively.
 ステップS107において、生成手段415は、メンテナンスを行った場合の効果を示す効果情報を生成する。例えば船舶11のタイプがタイプXであり、ステップS103において決定されたプロペラ由来トルク係数の増加量がΔ1であり、ステップS105において決定された船体由来トルク係数の増加量がΔ2である場合を想定する。この場合、生成手段415は、第1テーブル431において、タイプXとプロペラ由来トルク係数の増加量Δ1とに関連付けられた効果情報を第1テーブル431から読み出す。また、生成手段415は、第2テーブル432において、タイプXとプロペラ由来トルク係数の増加量Δ2とに関連付けられた効果情報を第2テーブル432から読み出す。 In step S107, the generating means 415 generates effect information indicating the effect of performing maintenance. For example, assume that the type of the vessel 11 is type X, the increase in the propeller-derived torque coefficient determined in step S103 is Δ1, and the increase in the hull-derived torque coefficient determined in step S105 is Δ2. In this case, the generating means 415 reads out effect information associated with type X and the increase in the propeller-derived torque coefficient Δ1 from the first table 431. The generating means 415 also reads out effect information associated with type X and the increase in the propeller-derived torque coefficient Δ2 from the second table 432.
 ステップS108において、表示制御手段419は、ストレージ43に記憶されたトータルトルク係数の増加量、プロペラ由来トルク係数の増加量、船体由来トルク係数の増加量と、ステップS107において生成されたメンテナンスの効果情報とを表示部46に表示させる。 In step S108, the display control means 419 causes the display unit 46 to display the increase in the total torque coefficient, the increase in the propeller-derived torque coefficient, and the increase in the hull-derived torque coefficient stored in the storage 43, as well as the maintenance effect information generated in step S107.
 ユーザは、トータルトルク係数の増加量を見ることにより、船舶11の性能低下の程度が分かる。また、ユーザは、プロペラ由来トルク係数の増加量と船体由来トルク係数の増加量を見ることにより、船舶11の性能低下の要因が、プロペラ110の表面状態に起因するものか、船体の表面状態に起因するものか、それらの両方に起因するものかが分かる。したがって、ユーザは、船舶11の性能低下の要因がプロペラ110の表面状態に起因するものである場合にはプロペラ110のメンテナンスだけを実施する等、船舶11の性能低下の要因に応じた適切なメンテナンスを行うことができる。また、ユーザは、メンテナンスの効果情報を見ることにより、プロペラ110又は船体のメンテナンスを行った場合の効果が分かる。したがって、ユーザは、プロペラ110のメンテナンスと船体のメンテナンスとのうち、効果が大きいメンテナンスを優先して行ってもよい。 The user can see the degree of performance degradation of the vessel 11 by looking at the increase in the total torque coefficient. In addition, the user can see whether the cause of the performance degradation of the vessel 11 is due to the surface condition of the propeller 110, the surface condition of the hull, or both, by looking at the increase in the propeller-derived torque coefficient and the increase in the hull-derived torque coefficient. Therefore, the user can perform appropriate maintenance according to the cause of the performance degradation of the vessel 11, such as performing only maintenance of the propeller 110 if the cause of the performance degradation of the vessel 11 is due to the surface condition of the propeller 110. In addition, the user can see the effect of performing maintenance of the propeller 110 or the hull by looking at the maintenance effect information. Therefore, the user may prioritize the maintenance of the propeller 110 or the hull, whichever is more effective.
 図5に示される動作は、例えば複数の船舶11について各船舶11の点検が行われる度に繰り返し行われる。この船舶11の点検は、航行後に岸壁に係留される度に行われるのが好ましいが、必ずしも航海の前後において点検を実施することができない場合がある。そのため、船舶11の点検は、所定の期間経過後に岸壁に係留された時や特定の岸壁に係留された時等の所定のタイミングで行われてもよい。これにより、ストレージ43には、複数の船舶11についてトータルトルク係数の増加量、プロペラ由来トルク係数の増加量、船体由来トルク係数の増加量が蓄積される。 The operation shown in FIG. 5 is repeated, for example, for multiple ships 11, each time an inspection of each ship 11 is performed. It is preferable to inspect the ship 11 each time it is moored at a quay after a voyage, but there are cases where inspection cannot always be performed before or after a voyage. Therefore, inspection of the ship 11 may be performed at a specified timing, such as when it is moored at a quay after a specified period of time has passed or when it is moored at a specific quay. In this way, the storage 43 accumulates the increase in the total torque coefficient, the increase in the propeller-derived torque coefficient, and the increase in the hull-derived torque coefficient for multiple ships 11.
 図6は、航海条件とトルク係数の増加量との相関関係を分析する動作の一例を示すシーケンスチャートである。船舶11の性能低下は、船舶11の航海条件により影響を受ける。そのため、上述した船舶11の性能低下を分析する動作により得られた少なくとも一の船舶11のトータルトルク係数の増加量、プロペラ由来トルク係数の増加量、船体由来トルク係数の増加量と、その船舶11の実績航海条件とを分析することにより、これらの相関関係が分かる。この動作は、一の船舶11について上述した船舶11の性能低下を分析する動作が完了する度に開始されてもよいし、所定のタイミングで開始されてもよいし、ユーザが入力部45を用いて相関関係を分析する動作を指示する操作を行ったことを契機に開始されてもよい。 FIG. 6 is a sequence chart showing an example of an operation for analyzing the correlation between sailing conditions and the increase in torque coefficient. The performance degradation of the ship 11 is affected by the sailing conditions of the ship 11. Therefore, by analyzing the increase in the total torque coefficient, the increase in the propeller-derived torque coefficient, and the increase in the hull-derived torque coefficient of at least one ship 11 obtained by the operation for analyzing the performance degradation of the ship 11 described above, and the actual sailing conditions of the ship 11, the correlation between them can be found. This operation may be started each time the operation for analyzing the performance degradation of the ship 11 described above for one ship 11 is completed, or may be started at a specified timing, or may be started when the user performs an operation using the input unit 45 to instruct the operation for analyzing the correlation.
 ステップS201において、サーバ装置40の第2取得手段416は、上述した船舶11の性能低下を分析する動作において分析の対象となる船舶11の端末装置10から実績航海条件を取得する。具体的には、サーバ装置40の第2取得手段416は、実績航海条件の取得要求を端末装置10に送信することにより、端末装置10から実績航海条件を受信する。この実績航海条件には、例えば船舶11の船速と、航路と、海水温とが含まれる。ステップS202において、サーバ装置40の第2取得手段416は、端末装置10から受信した実績航海条件をストレージ43に記憶させる。 In step S201, the second acquisition means 416 of the server device 40 acquires actual sailing conditions from the terminal device 10 of the ship 11 that is the subject of analysis in the operation of analyzing the performance degradation of the ship 11 described above. Specifically, the second acquisition means 416 of the server device 40 receives the actual sailing conditions from the terminal device 10 by sending an acquisition request for the actual sailing conditions to the terminal device 10. The actual sailing conditions include, for example, the ship speed, route, and seawater temperature of the ship 11. In step S202, the second acquisition means 416 of the server device 40 stores the actual sailing conditions received from the terminal device 10 in the storage 43.
 ステップS203において、サーバ装置40の分析手段417は、ストレージ43に記憶された実績航海条件、プロペラ由来トルク係数の増加量、及び船体由来トルク係数の増加量を用いて、船舶11の実績航海条件と、船舶11が実績航海条件に従って航行したときのプロペラ由来トルク係数の増加量及び船体由来トルク係数の増加量の各々との相関関係を分析する。 In step S203, the analysis means 417 of the server device 40 uses the actual navigation conditions, the increase in the propeller-derived torque coefficient, and the increase in the hull-derived torque coefficient stored in the storage 43 to analyze the correlation between the actual navigation conditions of the ship 11 and each of the increase in the propeller-derived torque coefficient and the increase in the hull-derived torque coefficient when the ship 11 navigates in accordance with the actual navigation conditions.
 ステップS204において、サーバ装置40の分析手段417は、ステップS203の分析結果をストレージ43に記憶させる。これにより、ストレージ43には、実績航海条件とプロペラ由来トルク係数の増加量との相関関係を示す第1相関情報、及び実績航海条件と船体由来トルク係数の増加量との相関関係を示す第2相関情報が記憶される。 In step S204, the analysis means 417 of the server device 40 stores the analysis results of step S203 in the storage 43. As a result, the storage 43 stores first correlation information indicating the correlation between the actual navigation conditions and the increase in the propeller-derived torque coefficient, and second correlation information indicating the correlation between the actual navigation conditions and the increase in the hull-derived torque coefficient.
 図7は、船舶11の性能低下を推定する動作の一例を示すフローチャートである。プロペラ110の点検は、船舶11が岸壁に係留される度に毎回必ず実施できるわけではない。プロペラ110の点検が行われないと、プロペラ110の表面粗度が判定されず、プロペラ由来トルク係数の増加量が得られないため、船舶11の性能低下を分析することができない。そこで、このような場合には、船舶11の性能低下を推定する動作が行われる。この動作は、例えば船舶11の航行前に、ユーザが入力部45を用いて船舶11の低能低下を推定する動作を指示する操作を行ったことを契機に開始される。 FIG. 7 is a flowchart showing an example of an operation for estimating the performance degradation of the ship 11. It is not always possible to inspect the propeller 110 every time the ship 11 is moored to a quay. If the propeller 110 is not inspected, the surface roughness of the propeller 110 cannot be determined, and the increase in the propeller-derived torque coefficient cannot be obtained, making it impossible to analyze the performance degradation of the ship 11. In such a case, an operation for estimating the performance degradation of the ship 11 is performed. This operation is started, for example, when the user performs an operation using the input unit 45 to instruct an operation for estimating the performance degradation of the ship 11 before the ship 11 sets sail.
 ステップS301において、サーバ装置40の第2取得手段416は、船舶11の予定航海条件を取得する。この予定航海条件は、船舶11の端末装置10から取得されてもよいし、入力部45を用いたユーザの操作に応じて入力されてもよい。 In step S301, the second acquisition means 416 of the server device 40 acquires the planned voyage conditions of the ship 11. The planned voyage conditions may be acquired from the terminal device 10 of the ship 11, or may be input in response to a user's operation using the input unit 45.
 ステップS302において、サーバ装置40の推定手段418は、ストレージ43に記憶された第1相関情報に基づいて、船舶11が予定航海条件に従って航行したときのプロペラ由来トルク係数の増加量を推定する。例えば推定手段418は、この第1相関情報により示される相関関係において、予定航海条件と最も類似する実績航海条件と相関を有するプロペラ由来トルク係数の増加量を推定する。 In step S302, the estimation means 418 of the server device 40 estimates the increase in the propeller-derived torque coefficient when the ship 11 navigates in accordance with the planned navigation conditions based on the first correlation information stored in the storage 43. For example, the estimation means 418 estimates the increase in the propeller-derived torque coefficient that is correlated with the actual navigation conditions that are most similar to the planned navigation conditions in the correlation indicated by this first correlation information.
 ステップS303において、サーバ装置40の推定手段418は、ストレージ43に記憶された第2相関情報に基づいて、船舶11が予定航海条件に従って航行したときの船体由来トルク係数の増加量を推定する。例えば推定手段418は、この第2相関情報により示される相関関係において、予定航海条件と最も類似する実績航海条件と相関を有する船体由来トルク係数の増加量を推定する。 In step S303, the estimation means 418 of the server device 40 estimates the increase in the hull-derived torque coefficient when the ship 11 navigates in accordance with the planned navigation conditions based on the second correlation information stored in the storage 43. For example, the estimation means 418 estimates the increase in the hull-derived torque coefficient that is correlated with the actual navigation conditions that are most similar to the planned navigation conditions in the correlation indicated by this second correlation information.
 ステップS304において、サーバ装置40の表示制御手段419は、ステップS302~S303において推定されたプロペラ由来トルク係数の増加量及び船体由来トルク係数の増加量を表示部46に表示させる。これにより、ユーザは、船舶11が予定航海条件に従って航行したときのプロペラ由来トルク係数の増加量及び船体由来トルク係数の増加量が分かる。したがって、ユーザは、船舶11が予定航海条件に従って航行した後に、推定されたプロペラ由来トルク係数の増加量及び船体由来トルク係数の増加量に応じて適切なメンテナンスを行うことができる。 In step S304, the display control means 419 of the server device 40 causes the display unit 46 to display the increase in the propeller-derived torque coefficient and the increase in the hull-derived torque coefficient estimated in steps S302-S303. This allows the user to know the increase in the propeller-derived torque coefficient and the increase in the hull-derived torque coefficient when the ship 11 is sailing in accordance with the planned sailing conditions. Therefore, the user can perform appropriate maintenance according to the estimated increase in the propeller-derived torque coefficient and the increase in the hull-derived torque coefficient after the ship 11 has sailed in accordance with the planned sailing conditions.
 以上説明した実施形態によれば、プロペラ由来トルク係数の増加量と船体由来トルク係数の増加量とが別々に決定及び表示されるため、ユーザは、船舶11の性能低下の要因がプロペラ110の表面状態に起因するものか船体の表面状態に起因するものかを区別して評価することができる。その結果、ユーザは、船舶11の性能低下の要因に応じた適切なメンテナンスを行うことができる。また、メンテナンスの効果情報が表示されるため、ユーザは、メンテナンスを行うことによる効果を明確に認識することができ、メンテナンスを実施する動機付けを高めることができる。さらに、プロペラ110の表面粗度の判定を行うためのプロペラ110の点検を行うことができない場合にも、船舶11が予定航海条件に従って航行したときのプロペラ110のプロペラ由来トルクの増加量と船体由来トルクの増加量とが別々に推定されるため、これらを区別して評価することができる。これにより、プロペラ110の点検を行うことができない場合にも、プロペラ110のプロペラ由来トルクの増加量及び船体由来トルクの増加量に応じた適切なメンテナンスを行うことができる。 According to the embodiment described above, the increase in the propeller-derived torque coefficient and the increase in the hull-derived torque coefficient are determined and displayed separately, so that the user can distinguish and evaluate whether the cause of the performance degradation of the ship 11 is due to the surface condition of the propeller 110 or the surface condition of the hull. As a result, the user can perform appropriate maintenance according to the cause of the performance degradation of the ship 11. In addition, since the maintenance effect information is displayed, the user can clearly recognize the effect of performing maintenance, and the motivation to perform maintenance can be increased. Furthermore, even if the propeller 110 cannot be inspected to determine the surface roughness of the propeller 110, the increase in the propeller-derived torque of the propeller 110 and the increase in the hull-derived torque are estimated separately when the ship 11 navigates according to the scheduled navigation conditions, so that they can be distinguished and evaluated. As a result, even if the propeller 110 cannot be inspected, appropriate maintenance can be performed according to the increase in the propeller-derived torque of the propeller 110 and the increase in the hull-derived torque.
変形例
 上述した実施形態は本発明の一例であり、本発明はこの実施形態に限定されない。上述した実施形態は以下の変形例のように変形されてもよい。また、以下の2以上の変形例が組み合わせて実施されてもよい。
The above-described embodiment is an example of the present invention, and the present invention is not limited to this embodiment. The above-described embodiment may be modified as in the following modifications. In addition, two or more of the following modifications may be implemented in combination.
 上述した実施形態において、プロペラ110の表面粗度は、プロペラ110の表面状態を示す値の一例であり、これに限定されない。例えばプロペラ110の表面状態を示す値は、プロペラ110の汚損度であってもよい。この汚損度は、プロペラ110の表面に付着した生物由来の汚損の度合いを示す。この変形例では、プロペラ110の表面粗度に代えて、プロペラ110の汚損度が用いられる。この変形例に係る第2決定手段413は、プロペラ110の汚損度とプロペラ110の性能との関係に基づいて、プロペラ由来トルクの増加量を決定する。この変形例に係る方法によっても、プロペラ由来トルクの増加量を決定することができる。 In the above-described embodiment, the surface roughness of the propeller 110 is an example of a value indicating the surface condition of the propeller 110, and is not limited to this. For example, the value indicating the surface condition of the propeller 110 may be the degree of contamination of the propeller 110. This degree of contamination indicates the degree of contamination caused by living organisms attached to the surface of the propeller 110. In this modified example, the degree of contamination of the propeller 110 is used instead of the surface roughness of the propeller 110. The second determination means 413 according to this modified example determines the amount of increase in the propeller-derived torque based on the relationship between the degree of contamination of the propeller 110 and the performance of the propeller 110. The method according to this modified example can also determine the amount of increase in the propeller-derived torque.
 上述した実施形態において、図7に示される船舶11の性能低下を推定する動作においても、図5に示される船舶11の性能低下を分析する動作と同様に、メンテナンスの効果情報が生成され表示されてもよい。この変形例に係る生成手段415は、ストレージ43に記憶された第1テーブル431に基づいて、推定手段418により推定されたプロペラ由来トルク係数の増加量に応じてプロペラ110のメンテナンスが行われた場合に得られる効果を示す効果情報を生成する。また、この変形例に係る生成手段415は、ストレージ43に記憶された第2テーブル432に基づいて、推定手段418により推定された船体由来トルク係数の増加量に応じて船体のメンテナンスが行われた場合に得られる効果を示す効果情報を生成する。表示制御手段419は、推定手段418により推定されたプロペラ由来トルク係数の増加量及び船体由来トルク係数の増加量に加えて、生成手段415により生成されたメンテナンスの効果情報を表示部46に表示させる。この変形例によれば、ユーザは、推定手段418により推定されたプロペラ110のプロペラ由来トルクの増加量及び船体由来トルクの増加量に応じたメンテナンスを行った場合の効果を認識することができる。 In the above-described embodiment, in the operation of estimating the performance degradation of the ship 11 shown in FIG. 7, maintenance effect information may be generated and displayed in the same manner as in the operation of analyzing the performance degradation of the ship 11 shown in FIG. 5. The generating means 415 according to this modified example generates effect information indicating the effect obtained when the maintenance of the propeller 110 is performed according to the increase in the propeller-derived torque coefficient estimated by the estimating means 418, based on the first table 431 stored in the storage 43. The generating means 415 according to this modified example generates effect information indicating the effect obtained when the maintenance of the hull is performed according to the increase in the hull-derived torque coefficient estimated by the estimating means 418, based on the second table 432 stored in the storage 43. The display control means 419 causes the display unit 46 to display the maintenance effect information generated by the generating means 415 in addition to the increase in the propeller-derived torque coefficient and the increase in the hull-derived torque coefficient estimated by the estimating means 418. According to this modified example, the user can recognize the effect of performing maintenance according to the increase in the propeller-derived torque of the propeller 110 and the increase in the hull-derived torque estimated by the estimation means 418.
 上述した実施形態において、プロペラ由来トルク係数の増加量及び船体由来トルク係数の増加量に加えて、トータルトルク係数の増加量が推定されてもよい。この変形例に係る分析手段417は、さらに、実績航海条件とトータルトルク係数の増加量との相関関係を分析する。ストレージ43には、さらに、この相関関係を示す第3相関情報が記憶される。推定手段418は、さらに、この第3相関情報に基づいてトータルトルク係数の増加量を推定する。表示制御手段419は、推定手段418により推定されたプロペラ由来トルク係数の増加量及び船体由来トルク係数の増加量に加えて、推定手段418により推定されたトータルトルク係数の増加量を表示部46に表示させる。この変形例によれば、プロペラ110の点検を行うことができない場合にも、ユーザは船舶11の性能低下の程度を認識することができる。 In the above-described embodiment, the increase in the total torque coefficient may be estimated in addition to the increase in the propeller-derived torque coefficient and the increase in the hull-derived torque coefficient. The analysis means 417 according to this modification further analyzes the correlation between the actual sailing conditions and the increase in the total torque coefficient. The storage 43 further stores third correlation information indicating this correlation. The estimation means 418 further estimates the increase in the total torque coefficient based on this third correlation information. The display control means 419 causes the display unit 46 to display the increase in the total torque coefficient estimated by the estimation means 418 in addition to the increase in the propeller-derived torque coefficient and the increase in the hull-derived torque coefficient estimated by the estimation means 418. According to this modification, even if the propeller 110 cannot be inspected, the user can recognize the degree of performance degradation of the ship 11.
 上述した実施形態において、各トルク係数の増加量及びメンテナンスの効果情報の表示は、これらの情報の出力の一例であり、これに限定されない。例えばサーバ装置40がスピーカを備え、これらの情報を示す音声がスピーカから出力されてもよい。また、これらの情報が通信IF44から外部装置に送信されてもよい。スピーカ又は通信IF44は、本発明に係る「出力手段」の一例である。この変形例に係る構成であっても、ユーザは、船舶11の性能低下の要因がプロペラ110の表面状態に起因するものか船体の表面状態に起因するものかを区別して評価することができる。 In the above-described embodiment, the display of the increase in each torque coefficient and the maintenance effect information is an example of outputting this information, and is not limited to this. For example, the server device 40 may be equipped with a speaker, and audio indicating this information may be output from the speaker. Furthermore, this information may be transmitted from the communication IF 44 to an external device. The speaker or communication IF 44 is an example of an "output means" according to the present invention. Even with the configuration according to this modified example, the user can distinguish and evaluate whether the cause of the performance degradation of the vessel 11 is due to the surface condition of the propeller 110 or the surface condition of the hull.
 上述した実施形態において、分析システム1、端末装置10、及びサーバ装置40の構成は一例であり、これに限定されない。一の装置の機能を複数の装置が分散して有してもよいし、複数の装置の機能を一の装置がまとめて有していてもよい。 In the above-described embodiment, the configurations of the analysis system 1, the terminal device 10, and the server device 40 are merely examples, and are not limited to these. The functions of one device may be distributed among multiple devices, or the functions of multiple devices may be collectively carried out by one device.
 上述した実施形態において、分析システム1、端末装置10、及びサーバ装置40の動作は一例であり、これに限定されない。分析システム1、端末装置10、及びサーバ装置40の処理手順は、矛盾の無い限り、順序が入れ替えられてもよいし、一部の処理手順が省略されてもよい。 In the above-described embodiment, the operations of the analysis system 1, the terminal device 10, and the server device 40 are merely examples, and are not limited to these. The order of the processing steps of the analysis system 1, the terminal device 10, and the server device 40 may be changed, or some of the processing steps may be omitted, as long as there is no contradiction.
 本発明の別の形態は、分析システム1、端末装置10、及びサーバ装置40において行われる処理のステップを有する方法を提供してもよい。また、本発明のさらに別の形態は、端末装置10又はサーバ装置40において実行されるプログラムを提供してもよい。このプログラムは、コンピュータが読み取り可能な記録媒体に記憶されて提供されてもよいし、インターネット等を介したダウンロードによって提供されてもよい。 Another embodiment of the present invention may provide a method having processing steps performed in the analysis system 1, the terminal device 10, and the server device 40. Furthermore, yet another embodiment of the present invention may provide a program executed in the terminal device 10 or the server device 40. This program may be provided by being stored in a computer-readable recording medium, or may be provided by downloading via the Internet, etc.
1:分析システム、10:端末装置、11:船舶、40:サーバ装置、41:プロセッサ、42:メモリ、43:ストレージ、44:通信IF、45:入力部、46:表示部、50:通信衛星、52:ネットワーク、110:プロペラ、411:第1取得手段、412:第1決定手段、413:第2決定手段、414:第3決定手段、415:生成手段、416:第2取得手段、417:分析手段、418:推定手段、419:表示制御手段 1: Analysis system, 10: Terminal device, 11: Ship, 40: Server device, 41: Processor, 42: Memory, 43: Storage, 44: Communication IF, 45: Input unit, 46: Display unit, 50: Communication satellite, 52: Network, 110: Propeller, 411: First acquisition means, 412: First determination means, 413: Second determination means, 414: Third determination means, 415: Generation means, 416: Second acquisition means, 417: Analysis means, 418: Estimation means, 419: Display control means

Claims (7)

  1.  船舶の船体とプロペラとを含む全体の表面状態の変化により生じる前記プロペラの第1トルク係数の増加量を決定する第1決定手段と、
     前記プロペラの表面状態を示す値を取得する第1取得手段と、
     前記値を用いて、前記プロペラの表面状態の変化により生じる前記プロペラの第2トルク係数の増加量を決定する第2決定手段と、
     前記第1トルク係数の増加量及び前記第2トルク係数の増加量を用いて、前記船体の表面状態の変化により生じる前記プロペラの第3トルク係数の増加量を決定する第3決定手段と、
     前記第2トルク係数の増加量及び前記第3トルク係数の増加量を出力する出力手段と
     を備える分析装置。
    a first determination means for determining an increase in a first torque coefficient of the propeller caused by a change in an overall surface condition including a hull and a propeller of the vessel;
    A first acquisition means for acquiring a value indicating a surface condition of the propeller;
    second determining means for determining an increase in a second torque coefficient of the propeller caused by a change in the surface condition of the propeller using the value;
    a third determination means for determining an increase in a third torque coefficient of the propeller caused by a change in the surface condition of the hull, using the increase in the first torque coefficient and the increase in the second torque coefficient;
    and an output unit that outputs the increase in the second torque coefficient and the increase in the third torque coefficient.
  2.  前記第3決定手段は、前記第1トルク係数の増加量と前記第2トルク係数の増加量との差を前記第3トルク係数の増加量として決定する
     請求項1に記載の分析装置。
    The analyzer according to claim 1 , wherein the third determination means determines the difference between the increase in the first torque coefficient and the increase in the second torque coefficient as the increase in the third torque coefficient.
  3.  前記第1決定手段は、前記船舶の航行中に計測された前記プロペラのトルク及び回転数を用いて前記第1トルク係数の増加量を決定する
     請求項1に記載の分析装置。
    The analysis device according to claim 1 , wherein the first determination means determines the increase amount of the first torque coefficient by using a torque and a rotation speed of the propeller measured while the ship is sailing.
  4.  少なくとも一の船舶の過去の実績から得られる、少なくとも一のプロペラの前記第2トルク係数の増加量と、前記少なくとも一のプロペラのメンテナンスにより得られた効果との対応関係を示す対応情報を記憶する記憶手段と、
     前記対応情報に基づいて、前記第2トルク係数の増加量に応じた前記プロペラのメンテナンスにより得られる効果を示す効果情報を生成する生成手段とをさらに備え、
     前記出力手段は、前記生成された効果情報を出力する
     請求項1に記載の分析装置。
    a storage means for storing correspondence information indicating a correspondence relationship between an increase in the second torque coefficient of at least one propeller, the increase being obtained from past performance of at least one ship, and an effect obtained by maintenance of the at least one propeller;
    a generation unit that generates effect information indicating an effect obtained by the maintenance of the propeller according to an increase amount of the second torque coefficient based on the correspondence information,
    The analysis device according to claim 1 , wherein the output means outputs the generated effect information.
  5.  少なくとも一の船舶の過去の実績から得られる、少なくとも一のプロペラの前記第3トルク係数の増加量と、前記少なくとも一の船舶の船体のメンテナンスにより得られた効果との対応関係を示す対応情報を記憶する記憶手段と、
     前記対応情報に基づいて、前記第3トルク係数の増加量に応じた前記船体のメンテナンスにより得られる効果を示す効果情報を生成する生成手段とをさらに備え、
     前記出力手段は、前記生成された効果情報を出力する
     請求項1に記載の分析装置。
    a storage means for storing correspondence information indicating a correspondence relationship between an increase in the third torque coefficient of at least one propeller, the increase being obtained from past performance of at least one ship, and an effect obtained by maintenance of the hull of the at least one ship;
    a generation unit that generates effect information indicating an effect obtained by the maintenance of the hull in accordance with the increase amount of the third torque coefficient based on the correspondence information,
    The analysis device according to claim 1 , wherein the output means outputs the generated effect information.
  6.  少なくとも一の船舶の過去の第1航海条件と、前記少なくとも一の船舶において前記第1航海条件に従った航行により実際に生じた少なくとも一のプロペラの前記第2トルク係数の増加量との相関関係を示す第1相関情報、及び前記第1航海条件と、前記少なくとも一の船舶において前記第1航海条件に従った航行により実際に生じた前記少なくとも一のプロペラの前記第3トルク係数の増加量との相関関係を示す第2相関情報を記憶する記憶手段と、
     前記船舶について予定される第2航海条件を取得する第2取得手段と、
     前記第1相関情報及び前記第2相関情報に基づいて、前記船舶が前記第2航海条件に従って航行したときの前記プロペラの前記第2トルク係数の増加量及び前記第3トルク係数の増加量をそれぞれ推定する推定手段とをさらに備え、
     前記出力手段は、さらに前記推定された第2トルク係数の増加量及び前記推定された第3トルク係数の増加量を出力する
     請求項1に記載の分析装置。
    a storage means for storing first correlation information indicating a correlation between past first voyage conditions of at least one ship and an increase in the second torque coefficient of at least one propeller actually caused by navigation in accordance with the first voyage conditions of the at least one ship, and second correlation information indicating a correlation between the first voyage conditions and an increase in the third torque coefficient of the at least one propeller actually caused by navigation in accordance with the first voyage conditions of the at least one ship;
    A second acquisition means for acquiring second voyage conditions scheduled for the ship;
    an estimation means for estimating an increase in the second torque coefficient and an increase in the third torque coefficient of the propeller when the ship navigates in accordance with the second navigation condition, based on the first correlation information and the second correlation information,
    The analysis device according to claim 1 , wherein the output means further outputs the estimated increase in the second torque coefficient and the estimated increase in the third torque coefficient.
  7.  コンピュータに、
     船舶の船体とプロペラとを含む全体の表面状態の変化により生じる前記プロペラの第1トルク係数の増加量を決定するステップと、
     前記プロペラの表面状態を示す値を取得するステップと、
     前記値を用いて、前記プロペラの表面状態の変化により生じる前記プロペラの第2トルク係数の増加量を決定するステップと、
     前記第1トルク係数の増加量及び前記第2トルク係数の増加量を用いて、前記船体の表面状態の変化により生じる前記プロペラの第3トルク係数の増加量を決定するステップと、
     前記第2トルク係数の増加量及び前記第3トルク係数の増加量を出力するステップと
     を実行させるためのプログラム。
    On the computer,
    determining an increase in a first torque coefficient of the propeller caused by a change in an overall surface condition including a hull and a propeller of the vessel;
    obtaining a value indicative of a surface condition of the propeller;
    using the value to determine an increase in a second torque coefficient for the propeller caused by a change in surface condition of the propeller; and
    determining an increase in a third torque coefficient of the propeller caused by a change in the surface condition of the hull using the first torque coefficient increase and the second torque coefficient increase;
    and outputting the increase amount of the second torque coefficient and the increase amount of the third torque coefficient.
PCT/JP2022/036056 2022-09-28 2022-09-28 Analytical device and program WO2024069777A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/036056 WO2024069777A1 (en) 2022-09-28 2022-09-28 Analytical device and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/036056 WO2024069777A1 (en) 2022-09-28 2022-09-28 Analytical device and program

Publications (1)

Publication Number Publication Date
WO2024069777A1 true WO2024069777A1 (en) 2024-04-04

Family

ID=90476671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036056 WO2024069777A1 (en) 2022-09-28 2022-09-28 Analytical device and program

Country Status (1)

Country Link
WO (1) WO2024069777A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180304969A1 (en) * 2015-11-26 2018-10-25 Wärtsilä Finland Oy Marine vessel performance diagnostics
CN108846207A (en) * 2018-06-15 2018-11-20 哈尔滨工程大学 A kind of ship movement prediction device and its forecasting procedure based on Non-linear Model Identification
JP2019010983A (en) * 2017-06-30 2019-01-24 川崎重工業株式会社 Ship performance analysis system and ship performance analysis method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180304969A1 (en) * 2015-11-26 2018-10-25 Wärtsilä Finland Oy Marine vessel performance diagnostics
JP2019010983A (en) * 2017-06-30 2019-01-24 川崎重工業株式会社 Ship performance analysis system and ship performance analysis method
CN108846207A (en) * 2018-06-15 2018-11-20 哈尔滨工程大学 A kind of ship movement prediction device and its forecasting procedure based on Non-linear Model Identification

Similar Documents

Publication Publication Date Title
EP3330171B1 (en) Apparatus for predicting a power consumption of a maritime vessel
US8761975B2 (en) Method and apparatus for real-time polars
Lang et al. A semi-empirical model for ship speed loss prediction at head sea and its validation by full-scale measurements
KR102390265B1 (en) Estimation Method for Aging Effects of Ship, Estimation System for Aging Effects of Ship, Calculation System for Optimum Ocean Route, and Operation Support System of Ship
CN111046491A (en) Method and device for estimating oil consumption of large ship diesel engine
KR102340167B1 (en) Methods and systems for optimizing the operation of ships
JP4928823B2 (en) Ship performance evaluation system, navigation information file creation method and program
JP7502287B2 (en) System and method for controlling a vessel
Lang et al. A practical speed loss prediction model at arbitrary wave heading for ship voyage optimization
JP2018027740A (en) Hull fouling evaluation device and hull fouling evaluation program
Carchen et al. Four KPIs for the assessment of biofouling effect on ship performance
WO2024069777A1 (en) Analytical device and program
CN113853480B (en) Main engine monitoring method, main engine monitoring system, main engine state prediction system and navigation condition prediction system for ship
JP6807237B2 (en) Information processing equipment and programs
KR20190135215A (en) System and method for calculating eeoi and computer-readable recording medium thereof
Gupta et al. Streamlined semi-automatic data processing framework for ship performance analysis
JP6138334B2 (en) Apparatus, program, recording medium and method for determining normality / abnormality of apparatus with load
WO2023054039A1 (en) Performance evaluation method, performance evaluation program, and performance evaluation system through actual ship monitoring analysis of ship
JP6846896B2 (en) Analysis of ship propulsion performance
JP2004212331A (en) Acoustic noise monitoring system for vessel, and program
JP6282753B2 (en) Estimated value calculating device, estimated value calculating method, program, and recording medium
Gupta et al. Data processing framework for ship performance analysis
JP7189764B2 (en) Ship performance estimation device and ship performance estimation program
WO2024069775A1 (en) Evaluation system, evaluation method, and program
CN117805877B (en) Marine positioning method and device, electronic equipment and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960841

Country of ref document: EP

Kind code of ref document: A1