WO2024069722A1 - 配管加熱システム、基板処理装置及び半導体装置の製造方法 - Google Patents

配管加熱システム、基板処理装置及び半導体装置の製造方法 Download PDF

Info

Publication number
WO2024069722A1
WO2024069722A1 PCT/JP2022/035794 JP2022035794W WO2024069722A1 WO 2024069722 A1 WO2024069722 A1 WO 2024069722A1 JP 2022035794 W JP2022035794 W JP 2022035794W WO 2024069722 A1 WO2024069722 A1 WO 2024069722A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
heating
heat storage
storage material
latent heat
Prior art date
Application number
PCT/JP2022/035794
Other languages
English (en)
French (fr)
Inventor
英人 山口
薫 山本
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to PCT/JP2022/035794 priority Critical patent/WO2024069722A1/ja
Priority to TW112123783A priority patent/TW202413706A/zh
Publication of WO2024069722A1 publication Critical patent/WO2024069722A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • This disclosure relates to a piping heating system, a substrate processing apparatus, and a method for manufacturing a semiconductor device.
  • Patent Documents 1 and 2 One step in the manufacturing process of semiconductor devices is the process of forming a film on a substrate (see, for example, Patent Documents 1 and 2). These documents describe a technique in which a gaseous process gas is introduced into a process chamber by heating piping so that it flows over the wafer (hereafter also referred to as substrate), but it is difficult to heat the piping evenly, and cold spots can occur.
  • This disclosure provides a technique for heating pipes evenly.
  • a latent heat storage material disposed on the outside of a pipe through which a fluid flows;
  • a heating unit disposed outside the latent heat storage material;
  • a power supply unit that supplies power to the heating unit;
  • a control unit configured to be able to control the power supply unit so that the heating unit heats the pipe so that the latent heat storage material is maintained at a phase change temperature;
  • the piping can be heated evenly.
  • FIG. 1 is a schematic vertical cross-sectional view of a vertical processing furnace of a substrate processing apparatus according to one embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating a functional configuration of a controller of the substrate processing apparatus according to one aspect of the present disclosure.
  • Fig. 3(A) is a cross-sectional view for explaining the configuration of a pipe heating system according to one embodiment of the present disclosure
  • Fig. 3(B) is a vertical cross-sectional view of Fig. 3(A).
  • Fig. 4(A) is a cross-sectional view for explaining the configuration of a pipe heating system according to one embodiment of the present disclosure
  • Fig. 4(B) is a vertical cross-sectional view of Fig. 4(A).
  • FIG. 1 is a schematic vertical cross-sectional view of a vertical processing furnace of a substrate processing apparatus according to one embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating a functional configuration of a controller of the substrate processing apparatus according to one aspect of
  • FIG. 5 is a block diagram illustrating a piping heating system according to one embodiment of the present disclosure.
  • Fig. 6(A) is a diagram showing the relationship between the power supply of the pipe heating system according to one embodiment of the present disclosure, the heat storage amount of the latent heat storage material, and the temperature inside the pipe.
  • Fig. 6(B) is a diagram explaining the timing of the power supply of the pipe heating system according to one embodiment of the present disclosure.
  • FIG. 7 is a diagram illustrating the timing of power supply to the pipe heating system in the second embodiment of the present disclosure.
  • Fig. 8(A) is a horizontal cross-sectional view for explaining the configuration of a pipe heating system according to a third embodiment of the present disclosure
  • Fig. 8(B) is a vertical cross-sectional view of Fig. 8(A).
  • FIG. 1 shows a schematic diagram of a case in which pipe heaters 100 serving as heating units are provided downstream of the valve 36 of the supply pipe 6, downstream of the valve 35 of the supply pipes 10 and 11, downstream of the valve 39 of the supply pipe 40, and the exhaust pipe 231.
  • the supply pipes 6, 10, 11, and 40 and the exhaust pipe 231 are each a pipe through which a fluid flows.
  • a reaction tube 203 is provided inside a heater 207 as a heating means as a processing vessel for processing wafers 200 as substrates.
  • the lower end opening of the reaction tube 203 is airtightly closed by a seal cap 219 as a lid via an O-ring 220 as an airtight member.
  • At least the heater 207, the reaction tube 203, a manifold 209 as a furnace opening, and the seal cap 219 form a processing furnace 202, and at least the reaction tube 203, the manifold 209, and the seal cap 219 form a processing chamber 201.
  • a boat 217 as a substrate holding means is installed on the seal cap 219 via a quartz cap 218, and is inserted into the processing chamber 201.
  • a plurality of wafers 200 to be batch-processed are horizontally stacked in multiple stages on the boat 217.
  • the heater 207 heats the wafers 200 inserted into the processing chamber 201 to a predetermined temperature.
  • the supply pipe 10 is connected from the upstream side of the gas flow to a gas supply source 4 that supplies a first processing gas as a processing gas, a flow controller (mass flow controller: MFC) 41 for controlling the flow rate, a valve 34 which is an on-off valve, and a nozzle 234, and the first processing gas is supplied into the processing chamber 201 via the nozzle 234.
  • the supply pipe 10, MFC 41, valve 34, and nozzle 234 constitute a first processing gas supply system.
  • the gas supply source 4 may be included in the first processing gas supply system.
  • the first processing gas supply system may also be referred to as a gas supply system.
  • a gas supply source 5, an MFC 32, a valve 35, and a nozzle 233 are connected to the supply pipe 11 from the upstream side of the gas flow, and the second process gas is supplied into the process chamber 201 via the nozzle 233.
  • the supply pipe 11, the MFC 32, the valve 35, and the nozzle 233 constitute a second process gas supply system.
  • the gas supply source 5 may be included in the second process gas supply system.
  • the second process gas supply system may also be referred to as a gas supply system.
  • a supply pipe 40 for supplying an inert gas is connected downstream of the valve 34 of the supply pipe 10.
  • the supply pipe 40 is provided with a valve 39.
  • a supply pipe 6 for supplying an inert gas is connected downstream of the valve 35 of the supply pipe 11.
  • the supply pipe 6 is provided with a valve 36.
  • An exhaust pipe 231 which is an exhaust pipe for exhausting gas, is connected to the processing chamber 201.
  • a pressure sensor 245, an APC valve 243, and a vacuum pump 246 are connected to the exhaust pipe 231 from the upstream side of the gas flow.
  • the exhaust pipe 231, the pressure sensor 245, and the APC valve 243 constitute a gas exhaust system.
  • the vacuum pump 246 may be included in the gas exhaust system.
  • the gas exhaust system may also be referred to as the exhaust system.
  • a nozzle 234 is installed from the bottom to the top of the reaction tube 203 along the loading direction of the wafers 200.
  • the nozzle 234 is provided with multiple gas supply holes for supplying gas.
  • the gas supply holes are opened at the midpoint between adjacent wafers 200, and gas is supplied to the surface of the wafers 200.
  • a nozzle 233 is similarly installed along the loading direction of the wafers 200 at a position about 120° around the inner circumference of the reaction tube 203 from the position of the nozzle 234. This nozzle 233 is also provided with multiple gas supply holes.
  • the nozzle 234 supplies the first processing gas from the supply pipe 10 and the inert gas from the supply pipe 40 into the processing chamber 201.
  • the nozzle 233 also supplies the second processing gas from the supply pipe 11 and the inert gas from the supply pipe 6 into the processing chamber 201. Processing gas is alternately supplied into the processing chamber 201 from the nozzle 234 and the nozzle 233 to form a film.
  • a boat 217 is provided on which multiple wafers 200 are placed at equal intervals in multiple stages, and this boat 217 can be moved in and out of the reaction tube 203 by a boat elevator (not shown).
  • a boat rotation mechanism 267 is provided as a rotation means for rotating the boat 217 to improve the uniformity of the processing, and the boat 217 held by the quartz cap 218 is rotated by rotating the boat rotation mechanism 267.
  • the controller 321 as a control unit (control means) will be described with reference to Fig. 2.
  • the controller 321 is configured as a computer including a CPU (Central Processing Unit) 321a, a RAM (Random Access Memory) 321b, a storage device 321c, and an I/O port 321d.
  • the RAM 321b, the storage device 321c, and the I/O port 321d are configured to be able to exchange data with the CPU 321a via an internal bus 321e.
  • An input/output device 322 configured as, for example, a touch panel, is connected to the controller 321.
  • the storage device 321c is composed of, for example, a flash memory, a HDD (Hard Disk Drive), etc.
  • the storage device 321c readably stores a control program that controls the operation of the substrate processing device 1, and a process recipe that describes the procedures and conditions for substrate processing described below.
  • the process recipe is a combination that causes the controller 321 to execute each procedure in the substrate processing step described below so that a predetermined result can be obtained.
  • the RAM 321b is configured as a memory area (work area) in which programs, data, etc. read by the CPU 321a are temporarily stored.
  • the I/O port 321d is connected to the above-mentioned MFCs 32, 33, 41, valves 34, 35, 36, 39, pressure sensor 245, APC valve 243, vacuum pump 246, heater 207, temperature sensor 263, rotation mechanism 267, and pipe heating system 400 described below.
  • the CPU 321a is configured to read and execute a control program from the storage device 321c, and to read a process recipe from the storage device 321c in response to input of an operation command from the input/output device 322, etc.
  • the CPU 321a is configured to control the flow rate adjustment of various gases by the MFCs 32, 33, and 41, the opening and closing of the valves 34, 35, 36, and 39, the opening and closing of the APC valve 243 and the pressure adjustment based on the pressure sensor 245 by the APC valve 243, the temperature adjustment of the heater 207 based on the temperature sensor 263, the start and stop of the vacuum pump 246, the rotation and rotation speed adjustment of the boat 217 by the rotation mechanism 267, the temperature adjustment of the pipe heater 100 in the pipe heating system 400, etc., in accordance with the contents of the read process recipe.
  • the controller 321 can be configured by installing the above-mentioned program stored in the external storage device 323 (e.g., semiconductor memory such as a USB memory or a memory card) into a computer.
  • the storage device 321c and the external storage device 323 are configured as computer-readable recording media. Hereinafter, these will be collectively referred to as recording media.
  • recording media When the term recording media is used in this specification, it may include only the storage device 321c alone, only the external storage device 323 alone, or both.
  • the program may be provided to the computer using a communication means such as the Internet or a dedicated line, without using the external storage device 323.
  • substrate used in this specification is synonymous with the term “wafer.”
  • the inside of the processing chamber 201 i.e., the space in which the wafer 200 exists, is evacuated (reduced pressure exhaust) by the vacuum pump 246 so that the inside of the processing chamber 201 is at a predetermined pressure (vacuum level).
  • the pressure inside the processing chamber 201 is measured by a pressure sensor 245, and the APC valve 243 is feedback-controlled based on the measured pressure information.
  • the vacuum pump 246 is kept in a constantly operating state at least until the processing of the wafer 200 is completed.
  • the wafers 200 in the processing chamber 201 are heated by the heater 207 so that they reach a predetermined temperature. At this time, the amount of electricity supplied to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the processing chamber 201 has a predetermined temperature distribution. Heating of the inside of the processing chamber 201 by the heater 207 continues at least until the processing of the wafers 200 is completed.
  • the pipe heating system 400 controls the supply pipe 10, the downstream side of the valve 35 of the supply pipe 11, the downstream side of the valve 39 of the supply pipe 40, the downstream side of the valve 36 of the supply pipe 6, and the exhaust pipe 231 so that each has a predetermined temperature distribution. Heating in each pipe by the pipe heating system 400 continues at least until processing of the wafer 200 is completed.
  • the rotation mechanism 267 starts to rotate the boat 217 and the wafers 200.
  • the rotation mechanism 267 rotates the boat 217, thereby rotating the wafers 200.
  • the rotation mechanism 267 continues to rotate the boat 217 and the wafers 200 at least until the processing of the wafers 200 is completed.
  • the processing temperature means the temperature of the wafer 200 or the temperature inside the processing chamber 201
  • the processing pressure means the pressure inside the processing chamber 201
  • the processing time means the time the processing continues.
  • Step 1 the valve 34 is opened to flow a first process gas from the gas supply source 4 into the supply pipe 10.
  • the flow rate of the first process gas is adjusted by the MFC 41, and the first process gas is supplied into the process chamber 201 through the valve 34 and the nozzle 234, and is exhausted from the exhaust pipe 231.
  • the first process gas is supplied to the wafer 200.
  • the valve 39 is simultaneously opened to flow an inert gas such as nitrogen (N 2 ) gas into the supply pipe 10 through the supply pipe 40.
  • the inert gas is supplied into the process chamber 201 together with the first process gas, and is exhausted from the exhaust pipe 231.
  • valve 34 is closed and the supply of the first process gas is stopped.
  • APC valve 243 is left open and the inside of the process chamber 201 is evacuated by vacuum pump 246, and the first process gas remaining in the process chamber 201, either unreacted or having contributed to the formation of the first layer, is discharged from the inside of the process chamber 201.
  • valve 39 is left open to maintain the supply of inert gas into the process chamber 201.
  • the inert gas acts as a purge gas, which can enhance the effect of discharging the gas remaining in the process chamber 201 from the inside of the process chamber 201.
  • Step 2 After step 1 is completed, a second process gas is supplied to the wafer 200 in the process chamber 201, i.e., to the first layer formed on the wafer 200.
  • the second process gas is activated by heat and supplied to the wafer 200.
  • the valves 35 and 36 are controlled to open and close in the same manner as the valves 34 and 39 in step 1. Specifically, the valve 35 is opened to allow the second process gas to flow from the gas supply source 5 into the supply pipe 11. The flow rate of the second process gas is adjusted by the MFC 32, and the second process gas is supplied into the process chamber 201 through the valve 35 and the nozzle 233, and is exhausted from the exhaust pipe 231. At this time, the second process gas is supplied to the wafer 200. At this time, the valve 36 is simultaneously opened to allow the inert gas to flow into the supply pipe 11 through the supply pipe 6. The inert gas is supplied into the process chamber 201 together with the second process gas, and is exhausted from the exhaust pipe 231. The second process gas supplied to the wafer 200 reacts with at least a part of the first layer formed on the wafer 200 in step 1. As a result, the first layer is changed (modified) into the second layer.
  • valve 35 is closed and the supply of the second process gas is stopped. Then, by a process procedure similar to that of step 1, the second process gas and reaction by-products remaining in the process chamber 201 that have not reacted or that have contributed to the formation of the second layer are exhausted from the process chamber 201. At this time, like step 1, it is not necessary to completely exhaust the gases remaining in the process chamber 201.
  • the valves 36 and 39 are opened, and the inert gas is supplied from the supply pipes 11 and 10 through the supply pipes 6 and 40 into the processing chamber 201, and exhausted from the exhaust pipe 231.
  • the inert gas acts as a purge gas. This purges the processing chamber 201, and the gas and reaction by-products remaining in the processing chamber 201 are removed from the processing chamber 201 (purge). Thereafter, the atmosphere in the processing chamber 201 is replaced with the inert gas (inert gas replacement), and the pressure in the processing chamber 201 is returned to normal pressure (return to atmospheric pressure).
  • the seal cap 219 is lowered by the boat elevator to open the bottom end of the reaction tube 203. Then, the processed wafers 200 supported by the boat 217 are transferred from the bottom end of the reaction tube 203 to the outside of the reaction tube 203. The processed wafers 200 are removed from the boat 217.
  • pipe heaters 100 are attached downstream of valve 36 on supply pipe 6, downstream of valve 35 on supply pipe 10 and supply pipe 11, downstream of valve 39 on supply pipe 40, and around exhaust pipe 231.
  • the pipe heater 100 attached to supply pipe 10 will be described, but the pipe heaters 100 attached downstream of valve 36 on supply pipe 6, downstream of valve 35 on supply pipe 11, downstream of valve 39 on supply pipe 40, and exhaust pipe 231 have the same configuration.
  • the supply pipe 10 is a cylindrical pipe through which the fluid process gas passes, and is made of a metal material such as steel.
  • the supply pipe 10 is also made up of multiple pipes connected in series in the longitudinal direction.
  • the pipe heater 100 is constructed by packaging a resistance heating element in a heat insulating material.
  • the pipe heater 100 is, for example, in a sheet form and can be used to match the shape of the pipe.
  • the pipe heater 100 can also be divided, for example, in the longitudinal direction, and installed for each pipe.
  • the pipe heater 100 is provided on the outside of the supply pipe 10 via a phase change material (PCM) 401, which is a latent heat storage material. That is, the PCM 401 is provided so as to cover the outside of the supply pipe 10, and the pipe heater 100 is wrapped around the cylindrical supply pipe 10 via the PCM 401. This allows the inside of the supply pipe 10 to be heated while blocking heat radiation to the outside.
  • PCM phase change material
  • PCM401 is a heat storage material that uses latent heat and undergoes a phase change (also called a phase transition), and is also called a heat storage latent heat material, latent heat material, or heat storage material.
  • PCM401 has the property of undergoing a phase change, storing heat when undergoing a phase change, and maintaining a constant temperature during the phase change, with no temperature change.
  • a phase change is a change in the phase, which is the state of a substance such as a solid or liquid. Phase changes are not limited to those related to atoms or molecules, and include cases where a metal changes into an insulator, and phase changes utilizing electrons can also be used.
  • the PCM 401 is provided to cover the supply pipe 10 and is disposed outside the supply pipe 10.
  • the PCM 401 is selected according to the type of processing gas flowing through the supply pipe 10, the temperature at which the supply pipe 10 is to be maintained, and the structure of the supply pipe 10. By appropriately selecting the PCM 401 corresponding to the processing conditions, the processing gas flowing through the supply pipe 10 can be heated evenly, and the processing gas flowing through the supply pipe 10 can be introduced into the processing chamber 201 without undergoing a phase change.
  • the phase change temperature of the PCM 401 is set to be equal to or higher than the vaporization temperature of the process gas, which is a gaseous fluid flowing through the supply pipe 10. This allows the temperature inside the supply pipe 10 to be heated to a temperature equal to or higher than the vaporization temperature of the process gas, so that the process gas flowing through the supply pipe 10 can be introduced into the process chamber 201 at a temperature at which it will not re-liquefy or re-solidify, and without undergoing a phase change.
  • the process gas flowing through the supply pipe 10 can be introduced into the process chamber 201 at a temperature at which it will not re-liquefy or re-solidify, and without undergoing a phase change.
  • the pipe heater 100 is arranged so that at least a portion of the pipe heater 100 is in contact with the PCM 401, and is arranged outside the PCM 401.
  • the pipe heater 100 is configured to have multiple contact points with the PCM 401.
  • the pipe heater 100 may be configured to have multiple combinations of the pipe heater 100 and the PCM 401.
  • the PCM 401 can be efficiently heated. Furthermore, by adjusting the phase change temperature of the PCM 401 at the location where each piping heater 100 is located, the temperature can be adjusted according to the location of the piping.
  • the pipe heater 100 is wrapped around the outside of the supply pipe 10, forming a space.
  • the PCM 401 is then filled into the space between the supply pipe 10 and the pipe heater 100 via an insertion port 402 that is provided in the pipe heater 100 and connects the front and back sides of the pipe heater 100.
  • the PCM 401 is filled in a liquid state while being heated and pressurized to above the melting point of the PCM 401.
  • the pipe heater 100 is used by wrapping it around the supply pipe 10 with the PCM 401 sandwiched between them. In other words, the pipe heater 100 is used by tightly covering the periphery of the supply pipe 10 with the PCM 401 interposed therebetween.
  • FIG. 5 is a block diagram for explaining the configuration of a pipe heating system 400 used in the above-mentioned substrate processing apparatus 1.
  • the heating operation of supply pipes 10-1 and 10-2 that constitute supply pipe 10 will be explained as an example.
  • the supply pipes 10-1 and 10-2 are connected continuously in the longitudinal direction.
  • Pipe heaters 100-1 and 100-2 are provided around the supply pipes 10-1 and 10-2, respectively, via PCM 401.
  • Thyristors (Silicon Controlled Rectifiers, hereafter abbreviated as SCR) 403-1 and 403-2 are connected to the pipe heaters 100-1 and 100-2 as power supply units that supply power to the pipe heaters 100-1 and 100-2, respectively.
  • An AC power source 610 which is an alternating current power source, is connected to the SCRs 403-1 and 403-2.
  • AC power supply 610 supplies power at a predetermined effective voltage, for example 100V.
  • SCRs 403-1 and 403-2 are inserted in series into a circuit including AC power supply 610 and pipe heaters 100-1 and 100-2, respectively.
  • AC power supply 610 supplies power to pipe heaters 100-1 and 100-2 via SCRs 403-1 and 403-2, respectively.
  • Pipe heaters 100-1 and 100-2 are electrically connected in parallel to AC power supply 610.
  • Thermocouples 404-1 and 404-2 are provided as sensors inside the PCM 401 and outside the supply pipes 10-1 and 10-2. In other words, the thermocouples 404-1 and 404-2 are provided between the supply pipes 10-1 and 10-2 and the PCM 401, respectively. The thermocouples 404-1 and 404-2 detect the temperature of the PCM 401 inside the corresponding pipe heaters 100-1 and 100-2, respectively.
  • Thermocouples 404-1 and 404-2 are connected to temperature regulators 405-1 and 405-2, respectively, which act as switching units.
  • Temperature regulators 405-1 and 405-2 are connected to SCRs 403-1 and 403-2, respectively.
  • N supply pipes 10 (N is an integer equal to or greater than 2) are provided, each supply pipe 10 is provided with a pipe heater 100, and each of the N pipe heaters 100 is provided with an SCR 403, a thermocouple 404, and a temperature regulator 405.
  • Each temperature regulator 405 transmits a control pulse to the corresponding SCR 403 according to the amount of heat stored in the PCM 401.
  • the SCR 403 When the SCR 403 receives the control pulse signal, it switches the power supply to the corresponding pipe heater 100 on or off. This allows each temperature regulator 405 to turn on or off the power supply to each pipe heater 100 before the temperature of the PCM 401 deviates from the phase change temperature.
  • the controller 321 is configured to be able to control the temperature regulator 405 to switch the corresponding piping heater 100 on or off before the temperature of the PCM 401 detected by the thermocouple 404 deviates from the phase change temperature.
  • the properties of the PCM401 are utilized to maintain the temperature of the supply pipe 10 at the phase change temperature of the PCM401, and the supply pipe 10 is heated evenly by the PCM401.
  • the controller 321 is configured to be able to control the corresponding SCR 403 so that each supply pipe 10 is heated by each pipe heater 100 so that the PCM 401 is maintained at the phase change temperature.
  • the controller 321 compares the amount of heat stored in the PCM 401 at the phase change temperature with a preset lower or upper limit of the amount of heat stored (i.e., a first threshold value) to determine whether to turn on or off each pipe heater 100.
  • a first threshold value is the amount of heat that keeps the PCM 401 at the phase change temperature, and is a value that allows for a range for the amount of heat that deviates from the phase change temperature.
  • the amount of heat stored in the PCM 401 varies depending on the type of PCM 401, processing conditions, etc.
  • the first threshold is stored in the storage device 321c and the external storage device 323, and is calculated by the CPU 321a.
  • Figure 6 (A) shows the relationship between the on/off signal of the pipe heater 100, the amount of heat stored in the PCM 401, and the temperature inside the supply pipe 10.
  • the SCR 403 starts supplying power to the corresponding pipe heater 100 in response to a control pulse of an on signal from the temperature regulator 405. Then, before the amount of heat stored in the PCM 401 reaches the upper limit, the SCR 403 stops supplying power to the corresponding pipe heater 100 in response to a control pulse of an off signal from the temperature regulator 405.
  • the temperature inside the supply pipe 10 can be maintained at the phase change temperature of the PCM 401.
  • each temperature regulator 405 switches the power supply to the pipe heater 100 by the SCR 403 on or off using a control pulse of an on signal or off signal depending on the phase change temperature residence time, which is the time elapsed since the PCM 401 became the phase change temperature. This makes it possible to turn on or off the power supply to each pipe heater 100 before the temperature of the PCM 401 deviates from the phase change temperature.
  • the controller 321 controls the corresponding SCR 403 so that each supply pipe 10 is heated by each pipe heater 100 and the PCM 401 is maintained at the phase change temperature.
  • the controller 321 compares the phase change temperature residence time with a preset second threshold value to determine whether to turn on or off the corresponding pipe heater 100.
  • the second threshold value is the time during which the PCM 401 is maintained at the phase change temperature, and is a value that allows for a certain amount of time for deviation from the phase change temperature.
  • the second threshold value differs depending on the type of PCM401, the processing conditions, etc.
  • the second threshold value is set to, for example, 5% less than the time during which the actual phase change temperature of PCM401 is maintained.
  • the second threshold value is stored in the storage device 321c or the external storage device 323.
  • Figure 6 (B) shows the relationship between the on/off control of the pipe heater 100 and the temperature inside the supply pipe 10.
  • the SCR 403 stops the power supply to the corresponding pipe heater 100 in response to a control pulse of an off signal from the temperature regulator 405 ((b) in FIG. 6B). Then, when the power supply is stopped and the residence time at the phase change temperature of the PCM 401 reaches the second threshold, the SCR 403 starts the power supply to the corresponding pipe heater 100 in response to a control pulse of an on signal from the temperature regulator 405 ((c) in FIG. 6B). This allows the temperature inside the supply pipe 10 to be maintained at the phase change temperature of the PCM 401.
  • the PCM 401 changes phase from a low-temperature phase (e.g., solid) to a high-temperature phase (e.g., liquid), and the temperature of the PCM 401 maintains the phase-change temperature. Therefore, the temperature of the supply pipe 10 inside the PCM 401 is maintained at the phase-change temperature.
  • the power supply to the pipe heater 100 is off, the heat held by the PCM 401 is mainly dissipated to the inner supply pipe 10, and slightly to the outer pipe heater 100.
  • the PCM 401 changes phase from a high-temperature phase (e.g., liquid) to a low-temperature phase (e.g., solid), and the temperature of the PCM 401 maintains the phase-change temperature. Therefore, the temperature of the supply pipe 10 inside the PCM 401 is controlled to the phase-change temperature.
  • a high-temperature phase e.g., liquid
  • a low-temperature phase e.g., solid
  • parameters such as the first threshold value, which is the lower and upper limits of the heat storage amount at which the PCM401 deviates from the phase change temperature, and the second threshold value, which is the time during which the PCM401 is maintained at the phase change temperature, are stored in advance in the storage device 321c and the external storage device 323. Then, by using the heat storage amount of the PCM401 or the time during which the PCM401 remains at the phase change temperature, the supply pipe 10 can be heated by the PCM401 while maintaining the phase change temperature before the temperature of the PCM401 deviates from the phase change temperature, and therefore the supply pipe 10 can be heated evenly at a constant temperature.
  • At least one or more of the following effects (a) to (c) can be obtained.
  • the latent heat storage material can be attached to the pipe regardless of the shape or structure of the pipe, and the pipe can be heated evenly.
  • piping heating system in this embodiment is configured similarly to the substrate processing apparatus shown in Fig. 1, and elements that are substantially the same as those described in Fig. 1 are denoted by the same reference numerals and description thereof will be omitted.
  • This embodiment differs from the above embodiment in the operation of the temperature regulator 405 .
  • the temperature regulator 405 switches the power supply to the pipe heater 100 by the SCR 403 on or off by a control pulse of an on signal or an off signal depending on the temperature detected by the corresponding thermocouple 404.
  • the controller 321 is configured to be able to control the temperature of the PCM 401 based on the temperature detected by each thermocouple 404. In other words, by comparing the phase change temperature of the PCM 401 with the temperature detected by each thermocouple 404, in other words by matching them, each supply pipe 10 is heated to a constant temperature.
  • the controller 321 is configured to be able to control each temperature regulator 405 to switch on or off the supply of power to the corresponding pipe heater 100 when the temperature detected by each thermocouple 404 deviates from the phase change temperature of the PCM 401. This allows the temperature of the PCM 401 to be adjusted to the phase change temperature.
  • the temperature regulator 405 compares the temperature detected by the corresponding thermocouple 404 with the set temperature.
  • the temperature regulator 405 is configured to control the supply of power to the pipe heater 100 to be on or off so that the temperature detected by the thermocouple 404 approaches the phase change temperature of the PCM 401.
  • an off threshold is used which turns off the supply of power to the pipe heater 100 when the temperature of the PCM 401 deviates from the phase change temperature
  • an on threshold is used which turns on the supply of power to the pipe heater 100 when the temperature of the PCM 401 falls below the phase change temperature.
  • the heat held by the PCM 401 is mainly dissipated to the inner supply pipe 10 and slightly to the outer pipe heater 100, and the PCM 401 changes phase from a high-temperature phase (e.g., liquid) to a low-temperature phase (e.g., solid). If the time when the power supply to the pipe heater 100 is off continues, the PCM 401 all becomes a low-temperature phase, the heat accumulated in the PCM 401 disappears, the temperature moves out of the phase change temperature, and the temperature starts to decrease while remaining in the low-temperature phase ((e) in FIG. 7).
  • a high-temperature phase e.g., liquid
  • a low-temperature phase e.g., solid
  • the SCR 403 starts supplying power to the corresponding pipe heater 100 due to the control pulse of the on-signal of the temperature regulator 405. That is, the power supply to the pipe heater 100 is turned on, and heating of the pipe starts ((a) in FIG. 7). Then, while the power supply to the pipe heater 100 is on, heat is absorbed by the PCM 401, and the PCM 401 undergoes a phase change from a low-temperature phase (e.g., solid) to a high-temperature phase (e.g., liquid), and during that time, the temperature of the PCM 401 maintains the phase change temperature ((b) in FIG. 7).
  • a low-temperature phase e.g., solid
  • a high-temperature phase e.g., liquid
  • the PCM 401 becomes entirely in the high-temperature phase, and the PCM 401 cannot store any more heat. Then, the temperature of the PCM 401 deviates from the phase change temperature and starts to rise while remaining in the high-temperature phase ((c) in FIG. 7). Then, when the temperature of the PCM 401 exceeds the off threshold of the pipe heater 100, the SCR 403 stops the power supply to the corresponding pipe heater 100 by the control pulse of the off signal of the temperature regulator 405. When the power supply to the pipe heater 100 is stopped, the PCM 401 releases heat and undergoes a phase change from the high-temperature phase (liquid) to the low-temperature phase (solid). During this time, the temperature of the PCM 401 maintains the phase change temperature ((d) in Figure 7). As a result, the temperature inside the supply pipe 10 can be maintained at the phase change temperature of the PCM 401.
  • the controller 321 may detect the occurrence of a phase change in the PCM 401 and control each temperature regulator 405 to switch each pipe heater 100 on or off before the temperature deviates from the phase change temperature.
  • the supply pipe 10 is heated by the PCM 401 using the properties of the PCM 401 without the temperature of the PCM 401 deviating from the phase change temperature, so that the supply pipe 10 can be heated at a constant temperature (e.g., the phase change temperature).
  • piping heating system in this embodiment is also configured similarly to the substrate processing apparatus 1 shown in Fig. 1.
  • the pipe heating system uses a double-walled pipe consisting of a first pipe 701 and a second pipe 702 instead of the supply pipe 10.
  • a second pipe 702 is provided outside the first pipe 701 via a PCM 401.
  • a pipe heater 100 is provided outside the second pipe 702.
  • the inside of the second pipe 702 is filled with PCM 401, and the PCM 401 is disposed between the first pipe 701 and the second pipe 702.
  • First pipes 701-1 and 701-2 constituting first pipe 701 are connected continuously in the longitudinal direction.
  • Second pipes 702-1 and 702-2 constituting second pipe 702 are provided around first pipes 701-1 and 701-2, respectively, via PCM 401.
  • Pipe heaters 100-1 and 100-2 are provided on the outside of second pipes 702-1 and 702-2, respectively. In other words, multiple pipe heaters 100-1 and 100-2 are provided in the longitudinal direction, and pipe heaters 100-1 and 100-2 are provided so as to cover second pipes 702-1 and 702-2, respectively. In other words, pipe heater 100 is provided separately for each second pipe.
  • SCRs 403-01 and 403-2 are connected to the pipe heaters 100-1 and 100-2, respectively, to supply power to the pipe heaters 100-1 and 100-2.
  • the controller 321 controls the SCRs 403-1 and 403-2 to heat the first pipes 701-1 and 701-2 and the second pipes 702-1 and 702-2 using the pipe heaters 100-1 and 100-2 so that the PCM 401 is maintained at the phase change temperature.
  • SCRs 403-1 and 403-2 are each connected to an AC power source 610.
  • the AC power source 610 supplies power to the pipe heaters 100-1 and 100-2 via SCRs 403-1 and 403-2.
  • Thermocouples 404-1 and 404-2 are provided inside the PCM 401 and outside the first pipes 701-1 and 701-2, respectively. In other words, the thermocouples 404-1 and 404-2 are provided between the first pipes 701-1 and 701-2, respectively, and the PCM 401. The thermocouples 404-1 and 404-2 detect the temperatures of the PCM 401 inside the corresponding pipe heaters 100-1 and 100-2, respectively.
  • Thermocouples 404-1 and 404-2 are connected to temperature regulators 405-1 and 405-2, respectively, which act as switching units.
  • Temperature regulators 405-1 and 405-2 are connected to SCRs 403-1 and 403-2, respectively.
  • the properties of the PCM 401 can be used to maintain the temperature of the supply pipe 10 at the phase change temperature of the PCM 401, and the supply pipe 10 can be heated evenly by the PCM 401.
  • the pipe heater 100 is provided downstream of the valve 36 of the supply pipe 6, downstream of the valve 35 of the supply pipe 10 and the supply pipe 11, downstream of the valve 39 of the supply pipe 40, and the exhaust pipe 231.
  • the present disclosure is not limited to this and may be applied to other pipes, and may be applied to at least one of the downstream of the valve 36 of the supply pipe 6, downstream of the valve 35 of the supply pipe 10 and the supply pipe 11, downstream of the valve 39 of the supply pipe 40, and the exhaust pipe 231.
  • a piping heater 100 is provided for each pipe, but the present disclosure is not limited to this, and there may be only one piping heater 100.
  • the pipe heater 100 is controlled to be on and off, but the present disclosure is not limited to this and can also be applied to feedback control, feedforward control, and PID control.
  • the temperature regulator 405 may be configured to continuously variably control the amount of current supplied to the pipe heater 100 so that the temperature detected by the thermocouple 404 approaches the phase change temperature of the PCM 401.
  • an alloy containing tin (Sn) or vanadium dioxide ( VO2 type) can be used as the PCM 401.
  • an alloy containing Sn can be used by changing the composition ratio of, for example, indium (In), silver (Ag), copper (Cu), etc. in the alloy containing Sn.
  • a film formation process is described as a process performed by a substrate processing apparatus, but the present disclosure is not limited to this, and can be applied not only to semiconductor manufacturing apparatus but also to apparatuses that process glass substrates, such as LCD devices.
  • Film formation processes include, for example, CVD, PVD, processes for forming oxide films, nitride films, or both, and processes for forming films containing metals.
  • the present disclosure can be similarly applied to processes such as annealing, oxidation, nitridation, and diffusion.
  • an example of forming a film using a batch-type substrate processing apparatus that processes multiple substrates at a time has been described.
  • the present disclosure is not limited to the above-mentioned embodiment, and can be suitably applied, for example, to a case where a film is formed using a single-wafer substrate processing apparatus that processes one or several substrates at a time.
  • an example of forming a film using a substrate processing apparatus having a hot-wall type processing furnace has been described.
  • the present disclosure is not limited to the above-mentioned embodiment, and can be suitably applied, for example, to a case where a film is formed using a substrate processing apparatus having a cold-wall type processing furnace.
  • each process can be performed using the same process procedures and conditions as in the above-mentioned embodiment, and the same effects as in the above-mentioned embodiment can be obtained.
  • the heating object is a pipe used in a substrate processing apparatus, but the present disclosure is not limited to this and can be applied to any case where a pipe is heated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

配管を均等に加熱する技術を提供する。 流体が流れる配管の外側に配置される潜熱蓄熱材と、前記潜熱蓄熱材の外側に配置される加熱部と、前記加熱部に電力を供給する電力供給部と、前記潜熱蓄熱材が相変化温度に維持されるように、前記加熱部により前記配管が加熱されるように前記電力供給部を制御することが可能なように構成される制御部と、を有する。

Description

配管加熱システム、基板処理装置及び半導体装置の製造方法
 本開示は、配管加熱システム、基板処理装置及び半導体装置の製造方法に関する。
 半導体装置の製造工程の一工程として、基板上に膜を形成する処理が行われることがある(例えば特許文献1、2参照)。これらの文献には、配管を加熱することにより、気体状の処理ガスを処理室に導入しウエハ(以後、基板ともいう)上を流れるようにする技術が記載されているが、配管を均等に加熱するのは難しく、コールドスポットが生じることがある。
特開2017-076781号公報 特開2018-053299号公報
 本開示は、配管を均等に加熱する技術を提供する。
 本開示の一態様によれば、
 流体が流れる配管の外側に配置される潜熱蓄熱材と、
 前記潜熱蓄熱材の外側に配置される加熱部と、
 前記加熱部に電力を供給する電力供給部と、
 前記潜熱蓄熱材が相変化温度に維持されるように、前記加熱部により前記配管が加熱されるように前記電力供給部を制御することが可能なように構成される制御部と、
 を有する技術が提供される。
 本開示によれば、配管を均等に加熱することができる。
図1は、本開示の一態様における基板処理装置の縦型処理炉の概略を示す縦断面図である。 図2は、本開示の一態様における基板処理装置のコントローラの機能構成を説明する図である。 図3(A)は、本開示の一態様における配管加熱システムの構成を説明するための横断面図である。図3(B)は、図3(A)の縦断面図である。 図4(A)は、本開示の一態様における配管加熱システムの構成を説明するための横断面図である。図4(B)は、図4(A)の縦断面図である。 図5は、本開示の一態様における配管加熱システムを説明するためのブロック図である。 図6(A)は、本開示の一態様における配管加熱システムの電力供給と、潜熱蓄熱材の蓄熱量と、管内温度との関係を示す図である。図6(B)は、本開示の一態様における配管加熱システムの電力供給のタイミングを説明する図である。 図7は、本開示の第二態様における配管加熱システムの電力供給のタイミングを説明する図である。 図8(A)は、本開示の第三態様における配管加熱システムの構成を説明するための横断面図である。図8(B)は、図8(A)の縦断面図である。
 以下、本開示の一態様について、主に、図1~図8を参照しつつ説明する。なお、以下の説明において用いられる図面は、いずれも模式的なものであり、図面に示される、各要素の寸法の関係、各要素の比率等は、現実のものとは必ずしも一致していない。また、複数の図面の相互間においても、各要素の寸法の関係、各要素の比率等は必ずしも一致していない。
 (1)基板処理装置の構成
 本開示の一態様における基板処理装置1について図1を用いて説明する。図1は、供給配管6のバルブ36の下流側、供給配管10、供給配管11のバルブ35の下流側、供給配管40のバルブ39の下流側、排気配管231に、加熱部である配管ヒータ100が設けられる場合の概略図を示している。供給配管6,10,11,40及び排気配管231は、それぞれ流体が流れる配管である。
 (処理炉)
 図1に示すように、加熱手段であるヒータ207の内側に、基板であるウエハ200を処理する処理容器として反応管203が設けられている。この反応管203の下端開口は蓋体であるシールキャップ219により気密部材であるOリング220を介して気密に閉塞されている。少なくとも、ヒータ207、反応管203、炉口部としてのマニホールド209、シールキャップ219により処理炉202を形成し、少なくとも反応管203、マニホールド209およびシールキャップ219により処理室201を形成している。シールキャップ219には石英キャップ218を介して基板保持手段であるボート217が設置され、処理室201内に挿入される。ボート217にはバッチ処理される複数のウエハ200が水平に多段に積載される。ヒータ207は処理室201に挿入されたウエハ200を所定の温度に加熱する。
 供給配管10には、ガス流上流側から、処理ガスとしての第1の処理ガスを供給するガス供給源4、流量を制御するための流量制御器(マスフローコントローラ:MFC)41、開閉弁であるバルブ34、ノズル234が接続され、ノズル234を介して、処理室201内に第1の処理ガスが供給される。供給配管10、MFC41、バルブ34、ノズル234により第1の処理ガス供給系を構成する。ガス供給源4を第1の処理ガス供給系に含めても良い。また、第1の処理ガス供給系をガス供給系と称することもできる。
 供給配管11には、ガス流上流側から、処理ガスとしての第2の処理ガスを供給するガス供給源5、MFC32、バルブ35、ノズル233が接続され、ノズル233を介して、処理室201内に第2の処理ガスが供給される。供給配管11、MFC32、バルブ35、ノズル233により第2の処理ガス供給系を構成する。ガス供給源5を第2の処理ガス供給系に含めても良い。また、第2の処理ガス供給系をガス供給系と称することもできる。
 供給配管10のバルブ34の下流側には、不活性ガスを供給するための供給配管40が接続されている。供給配管40には、バルブ39が設けられている。また、供給配管11のバルブ35の下流側には、不活性ガスを供給するための供給配管6が接続されている。供給配管6には、バルブ36が設けられている。
 処理室201には、ガスを排気する排気管である排気配管231が接続されている。排気配管231には、ガス流上流側から、圧力センサ245、APCバルブ243、真空ポンプ246が接続されている。排気配管231、圧力センサ245、APCバルブ243によりガス排気系を構成する。真空ポンプ246を、ガス排気系に含めても良い。また、ガス排気系を排気系と称することもできる。
 反応管203の下部から上部にわたりウエハ200の積載方向に沿って、ノズル234が設置されている。そしてノズル234にはガスを供給するための複数のガス供給孔が設けられている。このガス供給孔は隣接するウエハ200とウエハ200の中間位置に開けられ、ウエハ200表面にガスが供給される。ノズル234の位置より反応管203の内周を120°程度回った位置に、ウエハ200の積載方向に沿ってノズル233が同様に設置されている。このノズル233にも同様に複数のガス供給孔が設けられている。ノズル234は処理室201内に供給配管10からの第1の処理ガス及び供給配管40からの不活性ガスを供給する。また、ノズル233は処理室201内に供給配管11からの第2の処理ガス及び供給配管6からの不活性ガスを供給する。ノズル234及びノズル233から交互に処理室201内に処理ガスが供給されて成膜が行われる。
 反応管203内には複数枚のウエハ200を多段に同一間隔で載置するボート217が設けられており、このボート217は図示しないボートエレベータにより反応管203内に出入りできるようになっている。また、処理の均一性を向上するためにボート217を回転するための回転手段であるボート回転機構267が設けてあり、ボート回転機構267を回転することにより石英キャップ218に保持されたボート217を回転するようになっている。
 (制御部)
 制御部(制御手段)としてのコントローラ321について図2を用いて説明する。コントローラ321は、CPU(Central Processing Unit)321a、RAM(Random Access Memory)321b、記憶装置321c、I/Oポート321dを備えたコンピュータとして構成されている。RAM321b、記憶装置321c、I/Oポート321dは、内部バス321eを介して、CPU321aとデータ交換可能なように構成されている。コントローラ321には、例えばタッチパネル等として構成された入出力装置322が接続されている。
 記憶装置321cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成される。記憶装置321c内には、基板処理装置1の動作を制御する制御プログラムや、後述する基板処理の手順や条件などが記載されたプロセスレシピ等が、読み出し可能に格納されている。なお、プロセスレシピは、後述する基板処理工程における各手順をコントローラ321に実行させ、所定の結果を得ることが出来るように組み合わされたものである。また、RAM321bは、CPU321aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
 I/Oポート321dは、上述のMFC32,33,41、バルブ34,35,36,39、圧力センサ245、APCバルブ243、真空ポンプ246、ヒータ207、温度センサ263、回転機構267、後述する配管加熱システム400等に接続されている。
 CPU321aは、記憶装置321cから制御プログラムを読み出して実行すると共に、入出力装置322からの操作コマンドの入力等に応じて記憶装置321cからプロセスレシピを読み出すように構成されている。そして、CPU321aは、読み出したプロセスレシピの内容に沿うように、MFC32,33,41による各種ガスの流量調整動作、バルブ34,35,36,39の開閉動作、APCバルブ243の開閉動作及びAPCバルブ243による圧力センサ245に基づく圧力調整動作、温度センサ263に基づくヒータ207の温度調整動作、真空ポンプ246の起動および停止、回転機構267によるボート217の回転および回転速度調節動作、配管加熱システム400における配管ヒータ100の温度調整動作等を制御するように構成されている。
 なお、コントローラ321は、外部記憶装置(例えば、USBメモリやメモリカード等の半導体メモリ)323に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。記憶装置321cや外部記憶装置323は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置321c単体のみを含む場合、外部記憶装置323単体のみを含む場合、または、その両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置323を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
 (2)基板処理工程
 次に、上述の基板処理装置1を用い、半導体装置(デバイス)の製造工程の一工程として、基板上に膜を形成する処理(以下、成膜処理ともいう)のシーケンス例について説明する。ここでは、ウエハ200に対して、第1の処理ガスと第2の処理ガスとを交互に供給することで、ウエハ200上に膜を形成する例について説明する。なお、以下の説明において、基板処理装置1を構成する各部の動作はコントローラ321により制御される。
 また、本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。
 (ウエハチャージおよびボートロード)
 複数枚のウエハ200がボート217に装填されると、ボート217は、図示しないボートエレベータによって処理室201内に搬入される。このとき、シールキャップ219は、Oリング220を介して反応管203の下端を気密に閉塞(シール)した状態となる。
 (圧力調整および温度調整)
 処理室201内、すなわち、ウエハ200が存在する空間が所定の圧力(真空度)となるように、真空ポンプ246によって真空排気(減圧排気)される。この際、処理室201内の圧力は、圧力センサ245で測定され、この測定された圧力情報に基づきAPCバルブ243が、フィードバック制御される。真空ポンプ246は、少なくともウエハ200に対する処理が終了するまでの間は常時作動させた状態を維持する。
 また、処理室201内のウエハ200が所定の温度となるように、ヒータ207によって加熱される。この際、処理室201が所定の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電具合がフィードバック制御される。ヒータ207による処理室201内の加熱は、少なくともウエハ200に対する処理が終了するまでの間は継続して行われる。
 また、供給配管10、供給配管11のバルブ35の下流側、供給配管40のバルブ39の下流側、供給配管6のバルブ36の下流側、排気配管231がそれぞれ所定の温度分布となるように配管加熱システム400により制御される。配管加熱システム400による各配管内の加熱は、少なくともウエハ200に対する処理が終了するまでの間は継続して行われる。
 また、回転機構267によるボート217およびウエハ200の回転を開始する。回転機構267により、ボート217が回転されることで、ウエハ200が回転される。回転機構267によるボート217およびウエハ200の回転は、少なくとも、ウエハ200に対する処理が終了するまでの間は継続して行われる。
 (基板処理)
 処理室201内の温度が予め設定された処理温度に安定すると、次の2つのステップ、すなわち、ステップ1~2を順次実行する。本明細書における処理温度とはウエハ200の温度または処理室201内の温度のことを意味し、処理圧力とは処理室201内の圧力のことを意味する。また、処理時間とは、その処理を継続する時間を意味する。これらは、以下の説明においても同様である。
 [ステップ1]
 このステップでは、バルブ34を開き、ガス供給源4から供給配管10内へ第1の処理ガスを流す。第1の処理ガスは、MFC41により流量調整され、バルブ34、ノズル234を介して処理室201内へ供給され、排気配管231から排気される。このとき、ウエハ200に対して第1の処理ガスが供給されることとなる。このとき、同時にバルブ39を開き、供給配管40を介して供給配管10内へ窒素(N)ガス等の不活性ガスを流す。不活性ガスは、第1の処理ガスと一緒に処理室201内へ供給され、排気配管231から排気される。ウエハ200に対して第1の処理ガスを供給することにより、ウエハ200の最表面上に、第1の層が形成される。
 第1の層が形成された後、バルブ34を閉じ、第1の処理ガスの供給を停止する。このとき、APCバルブ243は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくは第1の層の形成に寄与した後の第1の処理ガスを処理室201内から排出する。このとき、バルブ39を開いたままとして、不活性ガスの処理室201内への供給を維持する。不活性ガスはパージガスとして作用し、これにより、処理室201内に残留するガスを処理室201内から排出する効果を高めることができる。
 [ステップ2]
 ステップ1が終了した後、処理室201内のウエハ200、すなわち、ウエハ200上に形成された第1の層に対して第2の処理ガスを供給する。第2の処理ガスは熱で活性化されてウエハ200に対して供給されることとなる。
 このステップでは、バルブ35,36の開閉制御を、ステップ1におけるバルブ34,39の開閉制御と同様の手順で行う。具体的には、バルブ35を開き、ガス供給源5から供給配管11内へ第2の処理ガスを流す。第2の処理ガスは、MFC32により流量調整され、バルブ35、ノズル233を介して処理室201内へ供給され、排気配管231から排気される。このとき、ウエハ200に対して第2の処理ガスが供給されることとなる。このとき、同時にバルブ36を開き、供給配管6を介して供給配管11内へ不活性ガスを流す。不活性ガスは、第2の処理ガスと一緒に処理室201内へ供給され、排気配管231から排気される。ウエハ200に対して供給された第2の処理ガスは、ステップ1でウエハ200上に形成された第1の層の少なくとも一部と反応する。これにより第1の層は、第2の層へと変化させられる(改質される)。
 第2の層が形成された後、バルブ35を閉じ、第2の処理ガスの供給を停止する。そして、ステップ1と同様の処理手順により、処理室201内に残留する未反応もしくは第2の層の形成に寄与した後の第2の処理ガスや反応副生成物を処理室201内から排出する。このとき、処理室201内に残留するガス等を完全に排出しなくてもよい点は、ステップ1と同様である。
 (所定回数実施)
 上述した2つのステップを非同時に、すなわち、同期させることなく行うサイクルを所定回数(n回)行うことにより、ウエハ200上に、所定膜厚の膜を形成することができる。
 (パージおよび大気圧復帰)
 基板処理が完了した後、バルブ36、39を開き、供給配管6、40を介し供給配管11、10から不活性ガスを処理室201内へ供給し、排気配管231から排気する。不活性ガスはパージガスとして作用する。これにより、処理室201内がパージされ、処理室201内に残留するガスや反応副生成物が処理室201内から除去される(パージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰)。
 (ボートアンロードおよびウエハディスチャージ)
 ボートエレベータによりシールキャップ219が下降され、反応管203の下端が開口される。そして、処理済のウエハ200が、ボート217に支持された状態で、反応管203の下端から反応管203の外部に搬出される。処理済のウエハ200は、ボート217より取出される。
(3)配管加熱システムの構成
 次に、上述の基板処理装置1に用いる配管加熱システム400の詳細について、図3~図6を用いて説明する。
 上述したように、供給配管6のバルブ36の下流側、供給配管10、供給配管11のバルブ35の下流側、供給配管40のバルブ39の下流側、排気配管231の周囲には、配管ヒータ100が取り付けられる。以下において、供給配管10に取り付ける配管ヒータ100を用いて説明するが、供給配管6のバルブ36の下流側、供給配管11のバルブ35の下流側、供給配管40のバルブ39の下流側、排気配管231に取り付ける配管ヒータ100についても同様の構成である。
 供給配管10は、内部に流体である処理ガスを通す円筒状の配管で、例えば鉄鋼等の金属部材で構成されている。また、供給配管10は、長手方向に連続して接続された複数の配管により構成されている。
 配管ヒータ100は、抵抗発熱体を断熱材で梱包して構成されている。配管ヒータ100は、例えばシート状で、配管の形状に合わせて用いることができる。また、配管ヒータ100は、例えば長手方向に分割して用いることが可能であって、配管毎に設置することができる。
 配管ヒータ100は、潜熱蓄熱材である相変化材(Phase Change Material、以下、PCMと略する)401を介して供給配管10の外側に設けられる。すなわち、PCM401は、供給配管10の外側を覆うようにして設けられ、配管ヒータ100は、PCM401を介して、円筒状の供給配管10に巻き付けられる。これにより、供給配管10の内部を加熱しつつ、外側への放熱を遮断するように構成されている。
 ここで、PCM401は、相変化(相転移ともいう)を行う、潜熱を利用した蓄熱材であって、蓄熱潜熱材、潜熱材、蓄熱材ともいう。PCM401は、相変化し、相変化する際に蓄熱し、相変化している間は一定の温度であって、温度が変化しない性質を有する。相変化とは、固体や液体などの物質の状態である相が変化することをいう。相変化は、原子や分子に関わるものに限らず、金属が絶縁体に変化する場合等も相変化に含まれ、電子の相変化を利用したものも用いることができる。
 PCM401は、供給配管10を覆うように設けられ、供給配管10の外側に配置される。PCM401は、供給配管10内を流れる処理ガスの種類、供給配管10を維持したい温度、供給配管10の構造に応じて選定される。処理条件に対応するPCM401を適切に選定することにより、供給配管10内を流れる処理ガスを均等に加熱することができ、供給配管10内を流れる処理ガスを相変化させることなく処理室201へ導入させることができる。
 具体的には、PCM401の相変化温度が、供給配管10内を流れる気体状の流体である処理ガスの気化温度以上に設定される。これにより、供給配管10内の温度を処理ガスの気化温度以上に加熱することができるため、供給配管10を流れる処理ガスが、再液化、再固化しない温度で、相変化されずに処理室201に導入させることができる。
 また、配管ヒータ100は、PCM401と少なくとも一部が接触するように配置され、PCM401の外側に配置される。好ましくは、配管ヒータ100は、PCM401との接触点を複数設けるように構成される。また、配管ヒータ100とPCM401との組合せが複数設けられるように構成してもよい。
 このようにして、PCM401を効率よく加熱することができる。そして、各配管ヒータ100が配置されている箇所のPCM401の相変化温度をそれぞれ調節することにより、配管の場所に応じて温度を調節することができる。
 具体的には、例えば図4(A)及び図4(B)に示すように、配管ヒータ100を、供給配管10の外側に空間を形成して巻き付ける。そして、PCM401は、配管ヒータ100に設けられた配管ヒータ100の表面と裏面とを連通する挿入口402を介して、供給配管10と配管ヒータ100の間の空間に充填して用いる。PCM401は、PCM401の融点以上に加熱かつ加圧しながら液体の状態で充填する。
 このようにして、配管ヒータ100は、供給配管10に対して、PCM401を間に挟むようにして巻き付けて用いられる。言い換えれば、配管ヒータ100は、供給配管10の周囲をPCM401を介して覆うように密着させて用いる。
 図5は、上述の基板処理装置1に用いる配管加熱システム400の構成を説明するためのブロック図である。以下において、供給配管10を構成する供給配管10-1と供給配管10-2の加熱動作を例にして説明する。
 供給配管10-1、10-2は、長手方向に連続して接続されている。供給配管10-1、10-2の周囲には、それぞれPCM401を介して配管ヒータ100-1、100-2が設けられている。配管ヒータ100-1、100-2には、それぞれの配管ヒータ100-1、100-2に電力を供給する電力供給部としてのサイリスタ(Silicon Controlled Rectifier、以下、SCRと略する)403-1、403-2が接続されている。SCR403-1、403-2には、交流電源であるAC電源610が接続されている。
 AC電源610は、所定の実効電圧、例えば100Vで電力を供給する。SCR403-1、403-2は、それぞれAC電源610と配管ヒータ100-1、100-2を含む回路に直列に挿入されている。AC電源610はSCR403-1、403-2を介してそれぞれの配管ヒータ100-1、100-2に電力を供給する。配管ヒータ100-1と配管ヒータ100-2は、AC電源610に対して、電気的に並列に接続されている。
 PCM401の内側であって、供給配管10-1、10-2の外側には、センサとしての熱電対404-1、404-2がそれぞれ設けられる。言い換えれば、熱電対404-1、404-2は、それぞれ供給配管10-1、10-2とPCM401の間に設けられている。熱電対404-1、404-2は、それぞれ対応する配管ヒータ100-1、100-2の内側のPCM401の温度を検出する。
 熱電対404-1、404-2は、切替部としての温度調節器405-1、405-2にそれぞれ接続される。
 温度調節器405-1、405-2は、それぞれSCR403-1、403-2に接続される。
 すなわち、供給配管10はN(Nは2以上の整数)個設けられ、供給配管10のそれぞれに配管ヒータ100が設けられ、N個の配管ヒータ100のそれぞれに、SCR403と、熱電対404と、温度調節器405が設けられている。
 各温度調節器405は、PCM401の蓄熱量に応じて、対応するSCR403に制御パルスを送信する。SCR403は、制御パルス信号を受信すると、対応する配管ヒータ100への電力供給をオン又はオフに切り替える。これにより、各温度調節器405は、PCM401の温度が相変化温度から外れる前に各配管ヒータ100への電力供給をそれぞれオン又はオフにすることが可能となる。
 すなわち、コントローラ321は、熱電対404により検出されるPCM401の温度が、相変化温度から外れる前に、対応する配管ヒータ100をオン又はオフに切り替えるように温度調節器405を制御可能に構成されている。
 つまり、PCM401の性質を利用して、供給配管10の温度をPCM401の相変化温度に保持するようにし、かつPCM401により供給配管10を均等に加熱するように構成されている。
 すなわち、コントローラ321は、PCM401が相変化温度に維持されるように、各配管ヒータ100により各供給配管10が加熱されるように対応するSCR403をそれぞれ制御することが可能なように構成されている。
 具体的には、コントローラ321は、相変化温度中のPCM401に蓄積される蓄熱量と、予め設定された蓄熱量の下限値又は上限値(すなわち第1の閾値)とを比較して、各配管ヒータ100をオンさせるのか、オフさせるのかを判定する。ここで、第1の閾値は、PCM401が相変化温度に維持される熱量であって、相変化温度から外れる熱量に幅を持たせた値である。
 PCM401の蓄熱量は、PCM401の種類や、処理条件等により異なる。第1の閾値は、記憶装置321c、外部記憶装置323に記憶され、CPU321aにより算出される。
 図6(A)は、配管ヒータ100のオンオフ信号と、PCM401に蓄積される熱量である蓄熱量と、供給配管10の管内温度との関係を示す図である。
 図6(A)に示すように、PCM401の蓄熱量が、下限値に達する前に、温度調節器405のオン信号の制御パルスにより、SCR403は、対応する配管ヒータ100への電力供給を開始する。そして、PCM401の蓄熱量が、上限値に達する前に、温度調節器405のオフ信号の制御パルスにより、SCR403は、対応する配管ヒータ100への電力供給を停止する。よって、供給配管10内の温度を、PCM401の相変化温度に保持することができる。
 また、各温度調節器405は、PCM401が相変化温度となってからの経過時間である相変化温度滞在時間に応じて、オン信号又はオフ信号の制御パルスにより、SCR403による配管ヒータ100への電力供給をオン又はオフに切り替える。これにより、PCM401の温度が相変化温度から外れる前に各配管ヒータ100への電力供給をそれぞれオン又はオフにすることが可能となる。
 すなわち、上述したPCM401の蓄熱量を用いて各配管ヒータ100への電力供給を切り替える場合と同様に、コントローラ321は、PCM401が相変化温度に維持されるように、各配管ヒータ100により各供給配管10が加熱されるように対応するSCR403をそれぞれ制御する。
 すなわち、コントローラ321は、相変化温度滞在時間と、予め設定された第2の閾値とを比較して、対応する配管ヒータ100をオンさせるのか、オフさせるのかを判定する。ここで、第2の閾値は、PCM401が相変化温度に維持される時間であって、相変化温度から外れる時間に幅を持たせた値である。
 第2の閾値は、PCM401の種類や、処理条件等により異なる。第2の閾値として、実際のPCM401の相変化温度が維持される時間に、例えば5%を減じた時間に設定する。第2の閾値は、記憶装置321cや外部記憶装置323に記憶されている。
 図6(B)は、配管ヒータ100のオンオフ制御と、供給配管10の管内温度との関係を示す図である。
 図6(B)に示すように、電力供給が開始され、加熱が開始されて、PCM401の温度が一定(図6(B)中の(a))になってから相変化温度滞在時間が第2の閾値に達したら、温度調節器405のオフ信号の制御パルスにより、SCR403は、対応する配管ヒータ100への電力供給を停止する(図6(B)中の(b))。そして、電力供給を停止して、PCM401の相変化温度滞在時間が第2の閾値に達したら、温度調節器405のオン信号の制御パルスにより、SCR403は、対応する配管ヒータ100への電力供給を開始する(図6(B)中の(c))。これにより、供給配管10内の温度を、PCM401の相変化温度に保持することができる。
 ここで、配管ヒータ100への電力供給がオンになっている間は、PCM401に熱が吸収され、PCM401が低温相(例えば固体)から高温相(例えば液体)へ相変化し、PCM401の温度は相変化温度を維持する。そのため、PCM401の内側の供給配管10の温度は相変化温度に維持される。これに対して配管ヒータ100への電力供給がオフになっている間は、PCM401が保持する熱は、主に内側の供給配管10に、わずかに外側の配管ヒータ100へ放熱される。このとき、PCM401は高温相(例えば液体)から低温相(例えば固体)へ相変化し、PCM401の温度は相変化温度を維持する。そのため、PCM401の内側の供給配管10の温度は相変化温度に制御される。
 上述したように、PCM401が相変化する温度から外れる蓄熱量の下限値と上限値である第1の閾値や、PCM401が相変化温度に維持される時間である第2の閾値等のパラメータが予め記憶装置321cや外部記憶装置323に記憶されている。そして、PCM401の蓄熱量又はPCM401の相変化温度滞在時間を用いることにより、PCM401の温度が相変化温度から外れる前に、相変化温度を維持した状態で、PCM401により供給配管10を加熱することができるため、供給配管10を一定の温度で均等に加熱することができる。
 <本態様における効果>
 本態様によれば、以下に示す(a)~(c)のうち、少なくとも一つ、又は複数の効果が得られる。
(a)配管ヒータにより潜熱蓄熱材を介して配管を加熱することができるため、配管を一定の温度で均等に加熱することができる。
(b)配管内を均等に加熱させることにより、配管内を流れるガスの再液化や再固化を抑制し、処理室にパーティクルを含むガスが供給されることを防ぐことができる。よって、基板の処理品質の低下が抑えられる。
(c)配管の形状、構造に限らず、潜熱蓄熱材を配管に密着させることができ、配管を均等に加熱することができる。
(第2態様)
 次に、配管加熱システムの他の態様について、図7を用いて説明する。なお、本態様における配管加熱システムは、図1に示す基板処理装置と同様に構成されており、図1で説明した要素と実質的に同一の要素には同一の符号を付し、その説明を省略する。
 本態様は、上述した態様と温度調節器405の動作が異なる。
 本態様では、温度調節器405は、対応する熱電対404により検出された温度に応じて、オン信号又はオフ信号の制御パルスにより、SCR403による配管ヒータ100への電力供給をオン又はオフに切り替える。
 コントローラ321は、各熱電対404により検出される温度に基づいて、PCM401の温度を制御することが可能なように構成される。つまり、PCM401の相変化温度と、各熱電対404により検出される温度を照合することにより、言い換えれば一致させることにより、各供給配管10を一定の温度で加熱する。
 つまり、コントローラ321は、各熱電対404により検出される温度がPCM401の相変化温度から外れたとき、対応する配管ヒータ100に供給する電力の供給をオン又はオフに切り替えるように各温度調節器405を制御可能に構成されている。これにより、PCM401の温度を相変化温度に調整することができる。
 具体的には、温度調節器405は、対応する熱電対404による検知温度と設定温度と比較する。そして、熱電対404の検知温度をPCM401の相変化温度に近づけるように、配管ヒータ100に供給する電力の供給をオン又はオフに制御するよう構成されている。ここで、設定温度として、PCM401の温度が、相変化温度から外れた場合に、配管ヒータ100への電力の供給をオフにするオフ用閾値と、PCM401の温度が、相変化温度を下回った場合に、配管ヒータ100への電力の供給をオンにするオン用閾値を用いる。
 図7に示すように、配管ヒータ100への電力供給がオフとなっている間は、PCM401が保持する熱は、主に内側の供給配管10へ、僅かに外側の配管ヒータ100へ放熱され、PCM401が高温相(例えば液体)から低温相(例えば固体)へ相変化する。さらに配管ヒータ100への電力供給がオフとなっている時間が継続すると、PCM401は全て低温相となり、PCM401に蓄積されていた熱がなくなり、相変化温度から外れ、低温相のまま温度が低下し始める(図7中の(e))。そして、PCM401の温度が、配管ヒータ100のオン用閾値を下回ると、温度調節器405のオン信号の制御パルスにより、SCR403は、対応する配管ヒータ100への電力供給を開始する。すなわち、配管ヒータ100への電力供給がオンとなり、配管の加熱が開始される(図7中の(a))。そして、配管ヒータ100の電力供給がオンになっている間、PCM401に熱が吸収され、PCM401が低温相(例えば固体)から高温相(例えば液体)へ相変化し、その間、PCM401の温度は相変化温度を維持する(図7中の(b))。さらに配管ヒータ100への電力供給がオンとなっている時間が継続すると、PCM401が全て高温相となり、PCM401がそれ以上の熱を蓄積できなくなる。そして、PCM401の温度が、相変化温度を外れ、高温相のまま温度が上昇し始める(図7中の(c))。そして、配管ヒータ100のオフ用閾値を超えると、温度調節器405のオフ信号の制御パルスにより、SCR403は、対応する配管ヒータ100への電力供給を停止する。配管ヒータ100への電力供給が停止されると、PCM401が放熱され、高温相(液体)から低温相(固体)へ相変化する。その間PCM401の温度は相変化温度を維持する(図7中の(d))。以上により、供給配管10内の温度を、PCM401の相変化温度に保持することができる。
 本態様においても、上述の態様と同様の効果が得られる。
 なお、PCM401の相変化の発生を検知する検知部を備え、コントローラ321が、PCM401の相変化の発生を検知することにより、相変化温度から外れる前に、各配管ヒータ100をオン又はオフに切り替えるように各温度調節器405を制御するようにしても良い。このようにして、潜熱蓄熱材の相変化の検知により、対応する配管ヒータ100のオン又はオフを切り替えることにより、PCM401の温度が相変化温度から外れることなく、PCM401の性質を利用してPCM401により供給配管10を加熱しているため、供給配管10を一定の温度(例えば相変化温度)で加熱することができる。
(第3態様)
 次に、配管加熱システムのさらに他の態様について、図8(A)及び図8(B)を用いて説明する。なお、本態様における配管加熱システムも、図1に示す基板処理装置1と同様に構成されている。
 本態様における配管加熱システムは、供給配管10の代わりに、第1配管701と第2配管702から構成される2重構造の二重管を用いる。
 第1配管701の内側には、第1の処理ガス等の流体が流れる。第1配管701の外側には、PCM401を介して第2配管702が設けられる。第2配管702の外側には、配管ヒータ100が設けられる。
 すなわち、第2配管702の内側には、PCM401が充填され、第1配管701と第2配管702との間に、PCM401が配置される。
 第1配管701を構成する第1配管701-1、701-2は、長手方向に連続して接続されている。第1配管701-1、701-2の周囲には、それぞれPCM401を介して第2配管702を構成する第2配管702-1、702-2が設けられている。そして、第2配管702-1,702-2の外側に、それぞれ配管ヒータ100-1、100-2が設けられている。すなわち、長手方向に複数の配管ヒータ100-1、100-2が設けられ、配管ヒータ100-1、100-2は、それぞれ第2配管702-1、702-2を覆うように設けられる。すなわち、配管ヒータ100は、第2配管毎に分離されて設けられる。
 各配管ヒータ100-1、100-2には、各配管ヒータ100-1、100-2に電力を供給するSCR403-01、403-2が接続されている。
 そして、コントローラ321は、PCM401が相変化温度に維持されるように、配管ヒータ100-1、100-2により第1配管701-1、701-2及び前記第2配管702-1、702-2を加熱させるようにSCR403-1、403-2を制御する。
 SCR403-1、403-2は、それぞれAC電源610に接続される。AC電源610はSCR403-1、403-2を介してそれぞれの配管ヒータ100-1、100-2に電力を供給する。
 PCM401の内側であって、第1配管701-1、701-2の外側には、熱電対404-1、404-2がそれぞれ設けられる。言い換えれば、熱電対404-1、404-2は、それぞれ第1配管701-1、701-2とPCM401の間に設けられている。熱電対404-1、404-2は、それぞれ対応する配管ヒータ100-1、100-2の内側のPCM401の温度を検出する。
 熱電対404-1、404-2は、切替部としての温度調節器405-1、405-2にそれぞれ接続される。
 温度調節器405-1、405-2は、それぞれSCR403-1、403-2に接続される。
 本態様においても、上述の態様と同様の効果が得られる。すなわち、上述した態様における配管加熱システムと同様に、PCM401の性質を利用して、供給配管10の温度をPCM401の相変化温度に保持することができ、かつPCM401により供給配管10を均等に加熱することができる。
 以上、本開示の一態様を具体的に説明したが、本開示は上述の態様に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
 上述の態様では、供給配管6のバルブ36の下流側、供給配管10、供給配管11のバルブ35の下流側、供給配管40のバルブ39の下流側、排気配管231に、配管ヒータ100を設けた場合を用いて説明したが、本開示はこれに限定されるものではなく、その他の配管に適用してもよく、供給配管6のバルブ36の下流側、供給配管10、供給配管11のバルブ35の下流側、供給配管40のバルブ39の下流側、排気配管231の少なくともいずれかに適用してもよい。
 また、上述の態様では、配管ヒータ100を配管毎に設けるように構成しているが、本開示はこれに限定されるものではなく、配管ヒータ100は一つであってもよい。
 また、上述の態様では、配管ヒータ100をオンオフ制御する場合を用いて説明したが、本開示はこれに限定されるものではなく、フィードバック制御、フィードフォワード制御、PID制御にも適用可能である。
 また、SCR403の代わりに電力調節器等を用いて、温度調節器405が、熱電対404の検知温度をPCM401の相変化温度に近づけるように、配管ヒータ100への通電量を連続的に可変制御するよう構成してもよい。
 なお、PCM401として、例えば錫(Sn)を含む合金や二酸化バナジウム(VO系)等を用いることができ、例えばSnを含む合金として、Snを含む合金中の、例えばインジウム(In)、銀(Ag)、銅(Cu)等の組成比を変更して用いることができる。
 また、上述の態様では、基板処理装置が行う処理として成膜処理を用いて説明したが、本開示はこれに限定されるものではなく、半導体製造装置だけでなくLCD装置のようなガラス基板を処理する装置でも適用できる。また、成膜処理には、例えば、CVD、PVD、酸化膜、窒化膜、またはその両方を形成する処理、金属を含む膜を形成する処理等を含む。更に、アニール処理、酸化処理、窒化処理、拡散処理等の処理を行う場合であっても同様に適用可能である。
 また、上述の態様では、一度に複数枚の基板を処理するバッチ式の基板処理装置を用いて膜を形成する例について説明した。本開示は上述の態様に限定されず、例えば、一度に1枚または数枚の基板を処理する枚葉式の基板処理装置を用いて膜を形成する場合にも、好適に適用することができる。また、上述の態様では、ホットウォール型の処理炉を有する基板処理装置を用いて膜を形成する例について説明した。本開示は上述の態様に限定されず、コールドウォール型の処理炉を有する基板処理装置を用いて膜を形成する場合にも、好適に適用することができる。
 これらの基板処理装置を用いる場合においても、上述の態様と同様な処理手順、処理条件にて各処理を行うことができ、上述の態様と同様の効果が得られる。
 また、上述の態様では、加熱対象物として基板処理装置に用いる配管を加熱する場合を用いて説明したが、本開示はこれに限定されるものではなく、配管を加熱する場合に適用可能である。
 以上、本開示の種々の典型的な態様を説明してきたが、本開示はそれらの態様に限定されず、適宜組み合わせて用いることもできる。
6、10、11、40  供給配管
231  排気配管
100  配管ヒータ(加熱部)
321  コントローラ(制御部)
401  PCM(潜熱蓄熱材)
403  SCR(電力供給部)

Claims (21)

  1.  流体が流れる配管の外側に配置される潜熱蓄熱材と、
     前記潜熱蓄熱材の外側に配置される加熱部と、
     前記加熱部に電力を供給する電力供給部と、
     前記潜熱蓄熱材が相変化温度に維持されるように、前記加熱部により前記配管が加熱されるように前記電力供給部を制御することが可能なように構成される制御部と、
     を有する配管加熱システム。
  2.  前記潜熱蓄熱材は、前記配管を覆うように設けられ、
     前記加熱部は前記潜熱蓄熱材と少なくとも一部が接触するように接続される請求項1に記載の配管加熱システム。
  3.  前記加熱部と前記潜熱蓄熱材との接触点を複数設けるように構成される請求項2に記載の配管加熱システム。
  4.  前記加熱部と前記潜熱蓄熱材との組合せを複数設けるように構成される請求項2に記載の配管加熱システム。
  5.  前記潜熱蓄熱材の温度を検出するセンサを更に有し、
     前記制御部は、前記センサにより検出される温度に基づいて、前記潜熱蓄熱材の温度を制御することが可能なように構成される請求項1に記載の配管加熱システム。
  6.  前記加熱部をオン又はオフに切り替える切替部を更に有し、
     前記制御部は、前記センサにより検出される温度が前記相変化温度から外れる前に、前記加熱部をオン又はオフに切り替えるように前記切替部を制御可能に構成されている請求項5に記載の配管加熱システム。
  7.  前記制御部は、前記相変化温度中の前記潜熱蓄熱材に蓄積される熱量と、予め設定された第1の閾値とを比較して、前記加熱部をオン又はオフの切替を判定するように構成されている請求項1に記載の配管加熱システム。
  8.  前記第1の閾値は、前記潜熱蓄熱材が相変化温度に維持される熱量である請求項7に記載の配管加熱システム。
  9.  前記制御部は、前記潜熱蓄熱材が相変化温度となってからの経過時間である相変化温度滞在時間と、予め設定された第2の閾値とを比較して、前記加熱部をオン又はオフの切替を判定するように構成されている請求項1に記載の配管加熱システム。
  10.  前記第2の閾値は、前記潜熱蓄熱材が相変化温度に維持される時間である請求項9に記載の配管加熱システム。
  11.  前記加熱部をオン又はオフに切り替える切替部を更に有し、
     前記制御部は、前記相変化温度から外れる前に、前記加熱部をオン又はオフに切り替えるように前記切替部を制御可能に構成されている請求項1に記載の配管加熱システム。
  12.  前記潜熱蓄熱材の相変化温度は、前記配管内を流れる気体状の流体の気化温度以上に設定される請求項1に記載の配管加熱システム。
  13.  前記潜熱蓄熱材は、前記配管内を流れる流体の種類、前記配管を維持したい温度、前記配管の構造に応じて選定される、請求項1に記載の配管加熱システム。
  14.  前記加熱部をオン又はオフに切り替える切替部を更に有し、
     前記制御部は、前記センサにより検出される温度が前記相変化温度から外れたとき、前記加熱部をオン又はオフに切り替えるように前記切替部を制御可能に構成されている請求項5記載の配管加熱システム。
  15.  内側に流体が流れる第1配管と、
     前記第1配管の外側に設けられる第2配管と、
     前記第1配管と前記第2配管との間に配置される潜熱蓄熱材と、
     前記第2配管を覆うように設けられる加熱部と、
     前記加熱部に電力を供給する電力供給部と、
     前記潜熱蓄熱材の相変化温度に維持されるように、前記加熱部により前記第1配管及び前記第2配管を加熱させるように前記電力供給部を制御することが可能なように構成される制御部と、
     を有する配管加熱システム。
  16.  前記第2配管には、前記潜熱蓄熱材が充填されている請求項15に記載の配管加熱システム。
  17.  前記加熱部を複数有し、
     前記第2配管は、前記加熱部毎に分離されている請求項16に記載の配管加熱システム。
  18.  基板を処理する処理室に処理ガスを供給する配管と、
     前記配管の外側に配置される潜熱蓄熱材と、
     前記潜熱蓄熱材の外側に配置され、前記配管を加熱する加熱部と、
     前記加熱部に電力を供給する電力供給部と、
     前記潜熱蓄熱材が相変化温度に維持されるように、前記加熱部により前記配管が加熱されるように前記電力供給部を制御することが可能なように構成される制御部と、
     を有する基板処理装置。
  19.  基板を処理する処理室に処理ガスを供する第1配管と、
     前記第1配管の外側に設けられる第2配管と、
     前記第1配管と前記第2配管との間に配置される潜熱蓄熱材と、
     前記第2配管を覆うように設けられる加熱部と、
     前記加熱部に電力を供給する電力供給部と、
     前記潜熱蓄熱材の相変化温度に維持されるように、前記加熱部により前記第1配管及び前記第2配管を加熱させるように前記電力供給部を制御することが可能なように構成される制御部と、
     を有する基板処理装置。
  20.  処理ガスが流れる配管の外側に配置される潜熱蓄熱材の外側に配置される加熱部に電力を供給して、前記潜熱蓄熱材が相変化温度に維持されるように、前記配管が加熱されることにより前記処理ガスを加熱しつつ、処理室に配置される基板を処理する工程を有する半導体装置の製造方法。
  21.  処理ガスが流れる第1配管と前記第1配管の外側に設けられる第2配管との間に配置される潜熱蓄熱材が相変化温度に維持されるように、前記第2配管を覆うように設けられる加熱部に電力を供給して、前記第1配管が加熱されることにより前記処理ガスを加熱しつつ、処理室に配置される基板を処理する工程を有する半導体装置の製造方法。
PCT/JP2022/035794 2022-09-26 2022-09-26 配管加熱システム、基板処理装置及び半導体装置の製造方法 WO2024069722A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/035794 WO2024069722A1 (ja) 2022-09-26 2022-09-26 配管加熱システム、基板処理装置及び半導体装置の製造方法
TW112123783A TW202413706A (zh) 2022-09-26 2023-06-27 配管加熱系統、基板處理裝置及半導體裝置之製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/035794 WO2024069722A1 (ja) 2022-09-26 2022-09-26 配管加熱システム、基板処理装置及び半導体装置の製造方法

Publications (1)

Publication Number Publication Date
WO2024069722A1 true WO2024069722A1 (ja) 2024-04-04

Family

ID=90476613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035794 WO2024069722A1 (ja) 2022-09-26 2022-09-26 配管加熱システム、基板処理装置及び半導体装置の製造方法

Country Status (2)

Country Link
TW (1) TW202413706A (ja)
WO (1) WO2024069722A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09321035A (ja) * 1996-05-28 1997-12-12 Sony Corp 薄膜形成原料輸送方法及び薄膜形成原料輸送装置
WO2010079599A1 (ja) * 2009-01-08 2010-07-15 東芝三菱電機産業システム株式会社 流体搬送装置
JP2012059784A (ja) * 2010-09-06 2012-03-22 Tokyo Univ Of Science 半導体薄膜製造装置及び窒化物半導体の製造方法
JP2017076781A (ja) * 2015-10-16 2017-04-20 株式会社日立国際電気 加熱部、基板処理装置、及び半導体装置の製造方法
JP2017198407A (ja) * 2016-04-28 2017-11-02 株式会社デンソー 冷凍サイクル装置
JP2021141167A (ja) * 2020-03-04 2021-09-16 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法及びプログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09321035A (ja) * 1996-05-28 1997-12-12 Sony Corp 薄膜形成原料輸送方法及び薄膜形成原料輸送装置
WO2010079599A1 (ja) * 2009-01-08 2010-07-15 東芝三菱電機産業システム株式会社 流体搬送装置
JP2012059784A (ja) * 2010-09-06 2012-03-22 Tokyo Univ Of Science 半導体薄膜製造装置及び窒化物半導体の製造方法
JP2017076781A (ja) * 2015-10-16 2017-04-20 株式会社日立国際電気 加熱部、基板処理装置、及び半導体装置の製造方法
JP2017198407A (ja) * 2016-04-28 2017-11-02 株式会社デンソー 冷凍サイクル装置
JP2021141167A (ja) * 2020-03-04 2021-09-16 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法及びプログラム

Also Published As

Publication number Publication date
TW202413706A (zh) 2024-04-01

Similar Documents

Publication Publication Date Title
US11222796B2 (en) Substrate processing apparatus
US10854483B2 (en) High pressure steam anneal processing apparatus
JP5734081B2 (ja) 基板処理装置、基板処理装置の温度制御方法、及び基板処理装置の加熱方法
KR101264786B1 (ko) 고유전체막을 형성하기 위한 종형 열처리 장치와 그 구성 부품 및, 보온통
US9587313B2 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and non-transitory computer-readable recording medium
WO2019036157A1 (en) HIGH PRESSURE AND HIGH TEMPERATURE RECOVERY CHAMBER
TWI304617B (ja)
US8417394B2 (en) Substrate processing apparatus, semiconductor device manufacturing method and temperature controlling method
KR102076643B1 (ko) 기판 처리 장치 및 반도체 장치의 제조 방법
JP2018049853A (ja) 基板処理装置、半導体装置の製造方法および記録媒体
JP2020017757A (ja) 基板処理装置、反応容器および半導体装置の製造方法
US20220157628A1 (en) Substrate processing apparatus, substrate suppport and method of manufacturing semiconductor device
US20200340116A1 (en) Heat treatment apparatus, heat treatment method, and film forming method
US20180087709A1 (en) Substrate processing apparatus and heat insulating pipe structure
US20240344194A1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
US20240093361A1 (en) Vaporizer, processing apparatus and method of manufacturing semiconductor device
US20070251935A1 (en) Vacuum thermal annealer
JP6164775B2 (ja) 半導体デバイスの製造方法、基板処理装置およびプログラム
WO2024069722A1 (ja) 配管加熱システム、基板処理装置及び半導体装置の製造方法
US20160237568A1 (en) Substrate processing apparatus and non-transitory computer readable recording medium
JP2008172204A (ja) 基板処理装置、半導体装置の製造方法、および加熱装置
US7211514B2 (en) Heat-processing method for semiconductor process under a vacuum pressure
JP4880408B2 (ja) 基板処理装置、基板処理方法、半導体装置の製造方法、メインコントローラおよびプログラム
JP4553227B2 (ja) 熱処理方法
KR102133547B1 (ko) 기판 처리 장치, 이음부 및 반도체 장치의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960786

Country of ref document: EP

Kind code of ref document: A1