WO2024067871A1 - 光源模块、光源模块的配套插座及光信号传输方法 - Google Patents

光源模块、光源模块的配套插座及光信号传输方法 Download PDF

Info

Publication number
WO2024067871A1
WO2024067871A1 PCT/CN2023/122962 CN2023122962W WO2024067871A1 WO 2024067871 A1 WO2024067871 A1 WO 2024067871A1 CN 2023122962 W CN2023122962 W CN 2023122962W WO 2024067871 A1 WO2024067871 A1 WO 2024067871A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
connector
source module
optical signal
optical
Prior art date
Application number
PCT/CN2023/122962
Other languages
English (en)
French (fr)
Inventor
刘敬伟
苏展
Original Assignee
锐捷网络股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 锐捷网络股份有限公司 filed Critical 锐捷网络股份有限公司
Publication of WO2024067871A1 publication Critical patent/WO2024067871A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems

Definitions

  • the present application relates to the field of communication technology, and in particular to a light source module, a matching socket of the light source module, and an optical signal transmission method.
  • the optoelectronic modulation part of the traditional pluggable optical module is realized by the optical engine inside the CPO switch or the NPO switch.
  • the light output of the pluggable light source module is input into the optical engine through the polarization-maintaining fiber.
  • the optical engine transmits the optical signal after optical modulation to the optical connector adapter through the single-mode fiber, and outputs the optical signal through the optical connector adapter.
  • Each exemplary embodiment of the present application discloses a light source module, a matching socket of the light source module, and an optical signal transmission method.
  • the present application proposes a light source module, including a housing, an optical signal transceiver connector, a light source connector, a light source, an electrical connector, and an optical connector adapter, wherein:
  • the housing has a receiving cavity inside
  • the optical signal transceiver connector and the light source connector are arranged outside the first side of the housing, the light source connector is used to output the light emitted by the light source to the switch, and the optical signal transceiver connector is used to transmit optical signals with the switch;
  • the electrical connector is arranged outside the first side, and the electrical connector is used to supply power to the light source module;
  • the optical connector adapter is arranged inside the second side of the shell and is connected to the optical signal transceiver connector inside the shell through an optical fiber; the second side is the side inside the shell opposite to the first side; the optical connector adapter is used to transmit optical signals with external devices.
  • the light source module further includes a beam splitter:
  • the optical splitter is arranged between the light source and the light source connector, and is used for performing optical splitting processing on the light emitted by the light source, and transmitting the multi-path light obtained after the optical splitting processing to the light source connector.
  • the light source module further includes a combiner and a splitter:
  • the combiner is disposed between the optical connector adapter and the optical signal transceiver connector, and is used to combine the optical signals output by the optical signal transceiver connector, and send the combined optical signals to the optical connector adapter;
  • the splitter is arranged between the optical connector adapter and the optical signal transceiver connector, and is used for separating the optical signal output by the optical connector adapter and sending the separated optical signal to the optical signal transceiver connector.
  • the light source module further includes a controller and a warning light:
  • the controller is used to receive matching information from the switch through the electrical connector, determine a matching result between the switch and the light source module according to the matching information, and determine a lighting mode of the warning light based on the matching result.
  • the optical signal transceiver connector and the light source connector are arranged side by side along a first direction outside the first side;
  • the electrical connector is stacked with the optical signal transceiver connector or the light source connector along the second direction outside the first side, and the optical signal transceiver connector, the light source connector and the electrical connector face the same direction;
  • the first direction is perpendicular to the second direction, and both the first direction and the second direction are perpendicular to a third direction, and the third direction is a direction in which the light source module is plugged into a matching socket of the light source module.
  • the optical signal transceiver connector is crimped or coupled to a single-mode optical fiber; the light source connector is crimped or coupled to a polarization-maintaining optical fiber.
  • a projection of the electrical connector in the second direction is longer in the third direction than a projection of the optical signal transceiver connector in the second direction.
  • the light source module further comprises a positioning sleeve and a positioning guide hole, wherein:
  • the electrical connector is used for primary positioning when the light source module is plugged into the matching socket
  • the positioning sleeve is located on the first side and is used for secondary positioning when the light source module is plugged into the matching socket;
  • the positioning guide hole is used for final positioning when the light source module is plugged into the matching socket.
  • the present application proposes a matching socket for a light source module, the matching socket being connected to a switch, the matching socket comprising an optical signal transceiver interface, a light source interface, an electrical connector and an electrical interface, wherein:
  • the optical signal transceiver interface and the light source interface are arranged on one side of the matching socket for plugging in the light source module;
  • the optical signal transceiver interface is connected to the light engine of the switch through an optical fiber, and is used to transmit optical signals with the light engine;
  • the light source interface is connected to the light engine through an optical fiber, and is used to transmit the light received from the light source module to the light engine;
  • the electrical connector is arranged on the matching socket for crimping one side of the circuit board of the switch, and is used to supply power to the matching socket based on the power provided by the circuit board;
  • the electrical interface is arranged inside the electrical connector and is used to connect to the electrical connector of the light source module.
  • the optical signal transceiver interface is crimped or coupled with the single-mode optical fiber, and the light source interface is crimped or coupled with the polarization-maintaining optical fiber; the optical signal transceiver interface is connected to the optical engine through the single-mode optical fiber, and the light source interface is connected to the optical engine through the polarization-maintaining optical fiber.
  • the optical signal transceiver interface and the light source interface are arranged in parallel along a first direction;
  • the electrical connector and the optical signal transceiver interface or the light source interface are stacked along the second direction and include a crimping pin pointing in the second direction, which is used for the matching socket to be crimped to the circuit board of the switch;
  • the light source interface, the optical signal transceiver interface, and the electrical interface are oriented in the same direction; the first direction is perpendicular to the second direction, and the first direction and the second direction are perpendicular to each other.
  • the directions are perpendicular to the direction in which the light source module is plugged into the matching socket.
  • the mating socket further comprises a positioning pin and two springs, wherein:
  • the positioning pin and the optical signal transceiver interface or the light source interface are stacked along the second direction, the optical signal transceiver interface and the light source interface are located between the positioning pin and the electrical connector, and one end of the positioning pin is connected to the electrical connector;
  • One end of the first spring of the two springs is connected to the positioning pin, and the other end is connected to the optical signal transceiver interface; one end of the second spring of the two springs is connected to the positioning pin, and the other end is connected to the light source interface.
  • the projection of the positioning pin in the second direction is longer than the projection of the optical signal transceiver interface or the light source interface in the second direction in the third direction; wherein the third direction is the direction in which the light source module is plugged into the matching socket.
  • the matching socket further includes a positioning guide pin:
  • the electrical interface is used for primary positioning when the light source module is plugged into the matching socket
  • the positioning pin is used for secondary positioning when the light source module is plugged into the matching socket
  • the positioning guide pin is used for final positioning when the light source module is plugged into the matching socket.
  • the present application proposes a method for transmitting an optical signal, comprising:
  • the optical connector adapter of the light source module receives a first optical signal from an external device
  • the optical connector adapter transmits the first optical signal to the switch through the optical signal transceiver connector of the light source module;
  • the light source connector of the light source module outputs the light emitted by the light source of the light source module to the switch; the light is used for photoelectric modulation of the switch;
  • the optical connector adapter When the optical connector adapter receives the second optical signal returned by the switch through the optical signal transceiver connector of the light source module, the second optical signal is sent to the external device.
  • the method before transmitting the first optical signal to the switch, the method further includes:
  • the wavelength splitter of the light source module separates the first optical signal to obtain at least two third optical signals
  • the optical signal transceiver connector transmits the at least two third optical signals to the switch.
  • the method before outputting the light emitted by the light source of the light source module to the switch, the method further includes:
  • the optical splitter of the light source module performs optical splitting processing on the light emitted by the light source to obtain multi-path light
  • the light source connector outputs the multiple paths of light to the switch.
  • the method further comprises:
  • the combiner of the light source module combines the at least two fourth optical signals to obtain the second optical signal
  • the optical connector adapter transmits the second optical signal to the external device.
  • each exemplary embodiment of the present application provides a light source module, including:
  • a housing wherein a receiving cavity is provided inside the housing
  • a light source located in the accommodating cavity and configured to emit light
  • a light source connector located at a first side of the accommodating cavity and extending out of the housing, and configured to receive and output light emitted by the light source to a communication device;
  • an optical signal transceiver connector located at the first side of the accommodating cavity and extending out of the housing, and configured to transmit optical signals with the communication device;
  • the optical connector adapter is located at the second side of the accommodating cavity and is configured to connect to the optical signal receiving The transmitting connector transmits the optical signal;
  • the second side is a side opposite to the first side of the accommodating cavity.
  • the light source module also includes: a polarization-maintaining optical fiber, one end of which is connected to the light source, and the other end of which is connected to the light source connector; and a single-polarization optical fiber, one end of which is connected to the optical connector adapter, and the other end of which is connected to the optical signal transceiver connector.
  • the optical signal transceiver connector and the light source connector are arranged side by side along a first direction on the first side, wherein the first direction is perpendicular to a plug-in direction of the light source module.
  • the light source module further includes: a beam splitter, located between the light source and the light source connector, configured to split the light emitted by the light source to obtain multi-path light.
  • a beam splitter located between the light source and the light source connector, configured to split the light emitted by the light source to obtain multi-path light.
  • the light source module further includes: a wavelength splitter, located between the optical connector adapter and the optical signal transceiver connector, configured to separate at least one optical signal output by the optical connector adapter and send the separated multiple optical signals to the optical signal transceiver connector.
  • a wavelength splitter located between the optical connector adapter and the optical signal transceiver connector, configured to separate at least one optical signal output by the optical connector adapter and send the separated multiple optical signals to the optical signal transceiver connector.
  • the light source module further includes: a combiner, located between the optical connector adapter and the optical signal transceiver connector, configured to combine multiple optical signals output by the optical signal transceiver connector and send at least one combined optical signal to the optical connector adapter.
  • a combiner located between the optical connector adapter and the optical signal transceiver connector, configured to combine multiple optical signals output by the optical signal transceiver connector and send at least one combined optical signal to the optical connector adapter.
  • the light source module also includes: an electrical connector, which is located on the first side of the accommodating cavity and extends out of the shell, and is configured to supply power to the light source module; wherein the electrical connector and the optical signal transceiver connector and/or the light source connector are stacked along a second direction, wherein the first direction is perpendicular to the second direction.
  • the length of the projection of the electrical connector on the projection plane formed by the second direction and the third direction is greater than the length of the projection of the optical signal transceiver connector or the light source connector on the projection plane, wherein the third direction is perpendicular to the first direction and the second direction, respectively.
  • the light source module further includes: a positioning sleeve located at the first side and configured to position the plugging position of the light source module when the light source module is plugged in.
  • the light source connector and/or the optical signal transceiver connector further includes: a positioning guide hole configured to locate the plugging position of the light source connector and/or the optical signal transceiver head when the light source module is plugged in.
  • the light source module also includes: a microcontroller, located in the accommodating cavity and connected to the electrical connector, configured to receive matching information from the communication device through the electrical connector; and a warning light, located on the second side and connected to the microcontroller, configured to indicate the matching status of the light source module with the communication device after being plugged in; wherein the microcontroller determines the matching result between the communication device and the light source module according to the matching information, and controls the lighting mode of the warning light based on the matching result.
  • a microcontroller located in the accommodating cavity and connected to the electrical connector, configured to receive matching information from the communication device through the electrical connector
  • a warning light located on the second side and connected to the microcontroller, configured to indicate the matching status of the light source module with the communication device after being plugged in; wherein the microcontroller determines the matching result between the communication device and the light source module according to the matching information, and controls the lighting mode of the warning light based on the matching result.
  • the optical connector adapter is an MPO connector or an SN connector.
  • the light source module further includes: a protective cover, located on the first side and extending from the housing to protect the optical signal transceiver connector and the light source connector.
  • each exemplary embodiment of the present application provides a matching socket of a light source module, which is respectively connected to a communication device and the light source module described in any of the aforementioned embodiments, wherein the matching socket includes:
  • the optical signal transceiver interface is located at one side of the matching socket for plugging the light source module and connected to the light engine of the communication device, and is configured to transmit and receive optical signals with the light engine. Lose;
  • the light source interface is located at a side of the matching socket for plugging the light source module and is connected to the light engine, and is configured to transmit the light received from the light source module to the light engine.
  • the optical signal transceiver interface is configured to be crimped or coupled to a single-mode optical fiber, and the light source interface is configured to be crimped or coupled to a polarization-maintaining optical fiber.
  • the matching socket also includes: an electrical connector, located on a side of the matching socket connected to the communication device, and configured to power the matching socket based on the electrical energy provided by the circuit board; and a positioning pin, configured to be stacked with the optical signal transceiver interface and/or the light source interface along a second direction perpendicular to the first direction, and one end of the positioning pin is connected to the electrical connector; wherein the optical signal transceiver interface and the light source interface are located between the positioning pin and the electrical connector.
  • the matching socket also includes: a first spring, one end of which is connected to the positioning pin, and the other end is connected to the optical signal transceiver interface; and a second spring, one end of which is connected to the positioning pin, and the other end is connected to the light source interface.
  • each exemplary embodiment of the present application provides a method for transmitting an optical signal, which is applied to the light source module according to any of the above embodiments, wherein the method includes:
  • the light source of the light source module sends light to the light source connector
  • the light source connector of the light source module outputs the light emitted by the light source to the communication device, wherein the light is subjected to photoelectric conversion processing in the communication device to generate a second optical signal;
  • the optical signal transceiver connector of the light source module receives the second optical signal returned by the communication device, and sends the second optical signal to the optical connector adapter;
  • the optical connector adapter transmits the second optical signal to the external device.
  • the method before sending the second optical signal to the external device, the method further includes: receiving at least two fourth optical signals returned by the communication device at the optical signal transceiver connector; and the combiner of the light source module combines the at least two fourth optical signals to obtain the second optical signal.
  • the method before the light source connector of the light source module outputs the light emitted by the light source to the communication device, the method further includes: the spectrometer of the light source module splits the light emitted by the light source to obtain multi-path light; and the light source connector outputs the multi-path light to the communication device.
  • the light source module provided by each exemplary embodiment of the present application integrates a light source and an optical connector adapter, realizing a pluggable light source module.
  • a light source connector and an optical signal transceiver connector are respectively arranged on the side of the light source module that is plugged into the communication device, thereby solving the problem of low optical fiber crimping yield caused by the different types of optical fibers used for the light source and optical signal transmission, thereby reducing the difficulty and cost of the optical fiber crimping process in the pluggable light source module.
  • FIG1 is a schematic diagram of a system architecture provided in an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a pluggable light source module provided in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of the structure of an optical connector adapter provided in an embodiment of the present application.
  • FIG. 4A is a top view of a switch system provided in accordance with an embodiment of the present application.
  • FIG. 4B is a front view of the switch system provided by the embodiment shown in FIG. 4A .
  • FIG. 5A is a front view of a light source module provided in an embodiment of the present application.
  • FIG. 5B is a cross-sectional view of the light source module provided by the embodiment shown in FIG. 5A .
  • FIG. 5C is a side view of the light source module provided by the embodiment shown in FIG. 5A .
  • FIG. 6A is a front view of a light source module provided in another embodiment of the present application.
  • FIG. 6B is a cross-sectional view of the light source module provided by the embodiment shown in FIG. 6A .
  • FIG. 6C is a side view of the light source module provided by the embodiment shown in FIG. 6A .
  • FIG. 6D is a schematic diagram of a process of combining optical signals by the combiner provided in the embodiment shown in FIG. 6A .
  • FIG. 6E is a schematic diagram of a process of separating and processing an optical signal by a wavelength splitter provided in the embodiment shown in FIG. 6A .
  • FIG. 7A is a front view of a light source module provided in yet another embodiment of the present application.
  • FIG. 7B is a cross-sectional view of the light source module provided by the embodiment shown in FIG. 7A .
  • FIG. 7C is a side view of the light source module provided by the embodiment shown in FIG. 7A .
  • FIG. 8A is a front view of a light source module provided in yet another embodiment of the present application.
  • FIG. 8B is a cross-sectional view of the light source module provided by the embodiment shown in FIG. 8A .
  • FIG. 8C is a side view of the light source module provided by the embodiment shown in FIG. 8A .
  • FIG. 9A is a front view of a matching socket provided in one embodiment of the present application.
  • FIG. 9B is a cross-sectional view of the matching socket provided in the embodiment shown in FIG. 9A .
  • FIG. 9C is a side view of the matching socket provided in the embodiment shown in FIG. 9A .
  • FIG. 9D is a schematic diagram of the plugging process between the light source module and the matching socket provided by the embodiment shown in FIG. 9A .
  • FIG. 9E is a front view of the matching socket provided in the embodiment shown in FIG. 9A being crimped onto a circuit board of a switch.
  • FIG. 9F is a side view of the matching socket provided in the embodiment shown in FIG. 9A being crimped onto a circuit board of a switch.
  • FIG. 10A is a top view of a switch system provided in accordance with an embodiment of the present application.
  • FIG. 10B is a front view of the switch system provided by the embodiment shown in FIG. 10A .
  • FIG. 10C is a side view of the switch system provided by the embodiment shown in FIG. 10A .
  • FIG. 11 is a schematic diagram of a transmission process of an optical signal provided in an embodiment of the present application.
  • FIG. 12A is a front view of a light source module provided in yet another embodiment of the present application.
  • FIG. 12B is a cross-sectional view of the light source module provided by the embodiment shown in FIG. 12A .
  • FIG. 12C is a side view of the light source module provided by the embodiment shown in FIG. 12A .
  • FIG13A is a front view of a matching socket provided in an embodiment of the present application, wherein the matching socket is crimped to a circuit board of a switch.
  • FIG. 13B is a side view of the matching socket crimped to the circuit board of the switch provided by the embodiment shown in FIG. 13A .
  • FIG. 14A is a front view of a light source module provided in yet another embodiment of the present application.
  • FIG. 14B is a cross-sectional view of the light source module provided by the embodiment shown in FIG. 14A .
  • FIG. 14C is a side view of the light source module provided by the embodiment shown in FIG. 14A .
  • FIG. 15A is a front view of a light source module provided in yet another embodiment of the present application.
  • FIG. 15B is a cross-sectional view of the light source module provided by the embodiment shown in FIG. 15A .
  • FIG. 15C is a side view of the light source module provided by the embodiment shown in FIG. 15A .
  • first and second are only used to distinguish the same or similar elements, and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of this application, unless otherwise specified, the meaning of "plurality” is two or more.
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two components.
  • installed e.g., it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two components.
  • the CPO switch needs to be configured with a pluggable light source module and an optical connector adapter. This does not allow plug-and-play and has poor maintainability.
  • the presence of the optical connector adapter also limits the heat dissipation of the pluggable light source module, reducing the service life of the pluggable light source module.
  • FIG1 a system architecture diagram provided in the embodiment of the present application is shown, wherein the system includes: a switch as a communication device, a light source module, a supporting socket of the light source module, and an external device.
  • the switch shown in FIG. 1 may be a Co-Packaged Optics (CPO) switch or a Near-Packaged Optics (NPO) switch, which may include a switch chip for specific data processing, and may also include an optical engine for realizing optoelectronic modulation functions.
  • the matching socket of the light source module is configured to be connected to the switch, for example, it may be configured to be connected to the switch by crimping.
  • the light source module and the matching socket may be connected to each other by plugging.
  • the light source module may be used to realize the transmission of optical signals between the switch and external devices, and to provide a light source for the switch for optoelectronic modulation.
  • the external device shown in FIG. 1 may be any communication device to which the light source module is connected via an optical fiber.
  • the present application is for external devices.
  • the implementation method is not limited.
  • FIG. 2 the structural schematic diagram of the pluggable light source module for CPO or NPO switches can be seen in Figure 2, wherein (a) in Figure 2 is a front view of the pluggable light source module proposed in the conventional technology, and (b) in Figure 2 is a cross-sectional view of the pluggable light source module proposed in the conventional technology along the A-A direction (top view) of the pluggable light source module in (a) in Figure 2. (c) in Figure 2 is a side view (including a left view and a right view) of the pluggable light source module proposed in the conventional technology.
  • the light source module proposed in the conventional technology includes structures such as a light source, a microcontroller, a memory, a light source connector, and an electrical connector, and the light source connector and the electrical connector are on the same side of the light source module.
  • the light source module does not include an optical connector for transmitting optical signals.
  • An optical connector refers to a connector for transmitting optical signals, and may include an optical signal transceiver connector and an optical connector adapter.
  • FIG3 (a) is a front view of the optical connector adapter
  • FIG3 (b) is a top view of the optical connector adapter
  • FIG3 (c) is a side view (including a right view) of the optical connector adapter.
  • FIG. 4A a top view of a system in which a conventional light source module 420 and a conventional optical connector adapter 410 are connected to a switch is exemplarily shown
  • FIG. 4B shows a front view of the system.
  • the light source module 420 can be connected to the light engine 430 through, for example, a polarization-maintaining optical fiber
  • the optical connector adapter 410 can be connected to the light engine 430 through a single-polarization optical fiber.
  • the optical connector adapter 410 is located only on the upper side of the light source module 420, the heat dissipation on the upper side of the conventional light source module 420 is limited, thereby reducing the service life of the light source module 420, and plug-and-play cannot be achieved (i.e., "pluggable” cannot be achieved), and the user experience is poor.
  • a single-polarization fiber is a fiber that can only transmit light in a specific polarization direction, while light in other polarization directions does not meet the waveguide conditions or has strong optical losses.
  • Polarization-maintaining fiber introduces birefringence to keep the birefringence at each axial position in the fiber unchanged, thereby maintaining the polarization state of the incident light. That is, polarization-maintaining fiber can transmit light in any polarization state, but when the polarization direction of the light is adjusted to be parallel to the birefringence axis, this fiber can maintain this linear polarization state.
  • Each exemplary embodiment of the present application proposes a light source module and a matching socket, wherein the light source module integrates a light source and an optical connector adapter, which meets the plug-and-play (i.e., pluggable) usage requirements.
  • the optical fibers used for the light source and the optical signal transmission are different, the yield of the interface will decrease if a unified crimping method is used, so the light source and the optical signal are transmitted through different optical ports, which can also reduce the process difficulty and cost.
  • the light source module, the matching socket of the light source module and the optical signal transmission method proposed in each exemplary embodiment of the present application are described in detail below.
  • Figures 5A to 5C are schematic diagrams of the structure of a light source module provided in an embodiment of the present application.
  • Figure 5A is a front view of a light source module provided in an embodiment of the present application
  • Figure 5B is a cross-sectional view of the light source module provided in the embodiment of Figure 5A along the B-B direction (top view) shown in Figure 5A
  • Figure 5C is a side view (including a left view and a right view) of the light source module provided in the embodiment of Figure 5A.
  • the light source module includes an optical signal transceiver connector 500 , a light source connector 501 , an electrical connector 502 , a light source 503 , a microcontroller 505 , a memory 506 , an optical connector adapter 510 and a housing 511 .
  • the housing 511 has a receiving cavity inside, and the optical signal transceiver connector 500 and the light source connector 501 are arranged on a first side of the housing 511 and extend toward the outside of the housing 511 along a third direction. out.
  • the optical signal transceiver connector 500 and the light source connector 501 can be arranged in parallel along the first direction.
  • the electrical connector 502 is arranged on the first side of the housing 511 and extends outward from the housing 511 along the third direction.
  • the electrical connector 502 can be stacked with the optical signal transceiver connector 500 or the light source connector 501 along the second direction.
  • optical signal transceiver connector 500 and the light source connector 501 can also be arranged in other ways, for example, arranged in parallel along the second direction. As long as the optical signal transceiver connector 500 and the light source connector 501 are both arranged on the light source module, the present application does not specifically limit the arrangement of the optical signal transceiver connector 500 and the light source connector 501.
  • the electrical connector 502, the optical signal transceiver connector 500, and the light source connector 501 may be oriented in the same direction.
  • the light source 503 may be composed of one or more lasers, and is used to output single-channel or multi-channel light to the light source connector 501.
  • the optical connector adapter 510 is disposed on the second side of the accommodating cavity of the housing 511, and the second side is the side opposite to the first side of the housing 511.
  • the optical connector adapter 510 is connected to the optical signal transceiver connector 500 inside the housing 511 through an optical fiber.
  • the light source module provided by this exemplary embodiment integrates the optical signal transmission device in the light source module, so that the power consumption of the light source module meets the power consumption lower than the heat dissipation tolerance and the plug-and-play of the light source module is achieved.
  • the optical signal transceiver connector 500 can be crimped or coupled to a single-mode optical fiber, and the light source connector 501 can be crimped or coupled to a polarization-maintaining optical fiber.
  • the projection length of the electrical connector 502 on the projection plane formed by the second direction and the third direction can be set to be greater than the projection length of the optical signal transceiver connector 500 on the projection plane, that is, the distance the electrical connector 502 extends in the third direction is greater than the distance the optical signal transceiver connector 500 extends in the third direction.
  • the third direction can be shown in FIG. 5A, and the third direction is the direction in which the light source module is plugged into the matching socket.
  • the electrical connector 502 since the distance that the electrical connector 502 extends in the third direction is greater than the distance that the optical signal transceiver connector 500 extends in the third direction, when the light source module is plugged into the matching socket, the electrical connector 502 is in contact with the communication device more than the optical signal transceiver connector 500 and the light source head 501, so that the communication device can control the voltage within a safe range before the optical signal transceiver connector 500 and the light source head 501 are fully plugged into the communication device, thereby ensuring the safety of the optical signal transceiver connector 500 and the light source head 501 when they are plugged in.
  • the electrical connector 502 may be a "Gold Finger", and its specific pin types include but are not limited to: power supply, ground wire, two-wire serial bus (Inter-Integrated Circuit, I2C) communication connector, light source reset control pin, light source low power control pin, etc.
  • the electrical connector 502 can be used to transmit signals such as light source presence signal and light source interruption or alarm signal.
  • the electrical connector 502 is located at the first side of the accommodating cavity and extends out of the housing 511, and is configured to supply power to the light source module.
  • the electrical connector 502 is stacked with the optical signal transceiver connector 500 and/or the light source connector 501 along the second direction, wherein the first direction is perpendicular to the second direction.
  • the housing 511 may extend along the third direction to form a protective cover to protect the optical signal transceiver connector 500 and the light source connector 501.
  • the protective cover may be an anti-knock dust cover 5111.
  • the anti-knock dust cover 5111 may be used to provide anti-knock protection and dust protection to the portions of the optical signal transceiver connector 500 and the light source connector 501 that extend out from the first side of the housing 511.
  • the light source module may further include a positioning sleeve 512 , which may be used to position the light source module when it is plugged into a matching socket, thereby facilitating the plugging.
  • the optical signal transceiver connector 500 may include a positioning guide hole 5003, and alternatively or additionally, the light source module 501 may include a positioning guide hole 5011.
  • the positioning guide holes 5003 and 5011 are used to position the light source module when it is plugged into the matching socket, so as to facilitate the plugging.
  • the light source 503 can emit multiple light paths or a single light path.
  • the multiple light paths or the single light path are transmitted to the light source connector 501 through, for example, a polarization-maintaining optical fiber 5012, and then output to the optical engine of the switch.
  • the optical engine generates an optical signal after performing photoelectric modulation on the received light, and transmits the generated optical signal to the optical signal transceiver connector 500 through a single-mode optical fiber.
  • the optical signal transceiver connector 500 transmits the received optical signal to the optical connector adapter 510 through a single-mode optical fiber 5001 disposed in a housing cavity of a housing 511. After receiving the optical signal, the optical connector adapter 510 can send the optical signal to a corresponding external device through an optical fiber.
  • the optical connector adapter 510 can receive an optical signal from an external device, and transmit it to the optical signal transceiver connector 500 through the single-mode optical fiber 5001 disposed inside the housing 511, and the optical signal transceiver connector 500 transmits the optical signal to the optical engine of the switch through the single-mode optical fiber 5001.
  • the optical engine can demodulate the received optical signal and transmit the demodulated electrical signal to the switch chip for service processing.
  • FIG6A to 6C are schematic diagrams of the structure of a light source module provided in another embodiment of the present application.
  • FIG6A is a front view of a light source module provided in another embodiment of the present application
  • FIG6B is a cross-sectional view of the light source module shown in FIG6A along the B-B direction shown in FIG6A
  • FIG6C is a side view (including a left view and a right view) of the light source module shown in FIG6A.
  • the light source module may include structures such as an optical signal transceiver connector 500, a light source connector 501, an electrical connector 502, a light source 503, a microcontroller 505, a memory 506, an optical connector adapter 510 and a shell 511. Please refer to the light source module shown in Figures 5A to 5C and will not be repeated here.
  • the light source module proposed in FIG. 6A to FIG. 6C additionally includes a wavelength splitter 508 and a wavelength combiner 509.
  • the wavelength combiner 509 is used to combine multiple optical signals of different wavelengths and transmit them through one optical fiber, while the wavelength splitter 508 is used in the opposite way, which is to separate at least one optical signal transmitted in one optical fiber into more optical signals according to wavelength.
  • the demultiplexer 508 may be disposed inside the housing 511, between the optical connector adapter 510 and the optical signal transceiver connector 500, and is used to separate at least one optical signal transmitted from the optical connector adapter 510 to the optical signal transceiver connector 500 into more optical signals according to wavelength.
  • the combiner 509 may also be disposed inside the housing 511, between the optical connector adapter 510 and the optical signal transceiver connector 500, and is used to combine multiple optical signals transmitted from the optical signal transceiver connector 500 to the optical connector adapter 510 into one optical signal.
  • the light source 503 when sending light, can emit multiple light channels or a single light channel, and output it to the optical engine of the switch through the light source connector 501.
  • the optical engine generates multiple optical signals, such as 16 optical signals, after performing photoelectric modulation on the received light, and transmits the generated 16 optical signals to the optical signal transceiver connector 500 through a single-mode optical fiber.
  • the optical signal transceiver connector 500 transmits the 16 optical signals to the combiner 509 for optical signal merging processing.
  • the combiner 509 can combine the 16 optical signals into 4 optical signals and transmit them to the optical connector adapter 510.
  • Figure 6D is a schematic diagram of the process of combining optical signals by a combiner provided in an embodiment of the present application.
  • the optical connector adapter 510 may transmit at least one optical signal received from the external device to the splitter 508.
  • the optical signal received by the optical connector adapter 510 is a 4-way optical signal.
  • 508 can separate the 4 optical signals according to wavelengths, for example, separating the 4 optical signals to obtain 16 optical signals.
  • the splitter 508 can transmit the separated 16 optical signals to the optical signal transceiver connector 500.
  • FIG6E is a schematic diagram of a process of separating and processing optical signals by a splitter 508 provided in an embodiment of the present application.
  • FIG7A to 7C are schematic diagrams of the structure of a light source module provided in another embodiment of the present application.
  • FIG7A is a front view of a light source module provided in another embodiment of the present application
  • FIG7B is a cross-sectional view of the light source module of the embodiment shown in FIG7A along the B-B direction shown in FIG7A
  • FIG7C is a side view (including a left view and a right view) of the light source module of the embodiment shown in FIG7A.
  • the structures of the light source module such as the optical signal transceiver connector 500, the light source connector 501, the electrical connector 502, the light source 503, the microcontroller 505, the memory 506, the optical connector adapter 510 and the housing 511, can be referred to the embodiments shown in FIGS. 5A to 5C above, and will not be described in detail here.
  • the light source modules proposed in the embodiments shown in FIGS. 7A to 7C may additionally or alternatively include an alarm device, such as an alarm light 513, an alarm buzzer, etc.
  • the alarm light 513 may be arranged on the second side of the accommodating cavity of the housing 511.
  • the alarm device is controlled by the microcontroller 505, and can receive matching information from the switch through the electrical connector 502 of the light source module.
  • the matching information is used to indicate whether the switch matches the light source module.
  • the microcontroller 505 controls, for example, the display mode of the alarm light 513 that can be observed from the outside of the side where the switch and the light source connector adapter 510 are located, or controls the buzzing mode of the alarm buzzer.
  • the microcontroller 505 can receive matching information of the switch and the light source module through the electrical connector 502. Based on the matching information, it can be determined whether the switch matches the light source module, and the lighting rule of the alarm light 513 can be adjusted according to the matching result of the switch and the light source module. For example, when the switch and the light source module do not match, the alarm light 513 can be controlled to be always on to prompt the operation and maintenance personnel to replace the light source module.
  • FIG. 7C only introduces the example of including three warning lights.
  • the optical connector adapter 510 is a Multi Push On (MPO) connector.
  • MPO Multi Push On
  • FIG8A to 8C are schematic diagrams of the structure of a light source module provided in another embodiment of the present application.
  • FIG8A is a front view of a light source module provided in another embodiment of the present application
  • FIG8B is a cross-sectional view of the light source module shown in FIG8A along the B-B direction shown in FIG8A
  • FIG8C is a side view (including a left view and a right view) of the light source module of the embodiment shown in FIG8A.
  • the structures of the light source module such as the optical signal transceiver connector 500, the light source connector 501, the electrical connector 502, the light source 503, the microcontroller 505, the memory 506, the optical connector adapter 510 and the housing 511, can be referred to the embodiments shown in Figures 5A to 5C, and will not be repeated here.
  • the light source module also includes a warning light 513.
  • the warning light 513 is arranged on the second side inside the housing 511 and is controlled by the microcontroller 505. It should be noted that the present application does not limit the number of warning lights included in the light source module, and Figure 8C only introduces the example of including three warning lights.
  • optical connector adapter 510 uses SENKO's Connector.
  • the light source connector 501 may be provided in plurality to enhance the power of the light output.
  • a plurality of light sources may be provided in the accommodating cavity, and each light source is connected to one of the plurality of light source connectors 501 .
  • the use of multiple light sources and light source connectors can increase the number of optical channels of the light source module. Under the requirement of the same number of optical channels, the density requirement of the optical connection port of the switch can also be reduced.
  • the present application also proposes a matching socket for a light source module.
  • a matching socket proposed in an embodiment of the present application is exemplarily shown.
  • Figure 9A is a front view of the matching socket proposed in the present application
  • Figure 9B is a cross-sectional view of the matching socket shown in Figure 9A along the C-C direction shown in Figure 9A
  • Figure 9C is a side view (right view) of the matching socket shown in Figure 9A.
  • the matching socket proposed in the present application includes an optical signal transceiver interface 900 , a light source interface 901 , an electrical connector 902 , and an electrical interface located in the electrical connector 902 .
  • the optical signal transceiver interface 900 may include two positioning guide pins 9001, and the light source interface 901 may also include two positioning guide pins 9011.
  • the optical signal transceiver interface 900 corresponds to the optical signal transceiver connector 500 of the light source module, and couples or crimps the single-mode optical fiber.
  • the light source interface 901 corresponds to the light source connector 501 of the light source module, and couples or crimps the polarization-maintaining optical fiber.
  • the matching socket may further include two springs 903 and a positioning pin 904.
  • the positioning pin 904 is stacked with the optical signal transceiver interface 900 and/or the light source interface 901 along the second direction.
  • the optical signal transceiver interface 900 and the light source interface 901 are located between the positioning pin 904 and the electrical connector 902 in the second direction, and the positioning pin 904 is connected to the electrical connector 902.
  • One end of the first spring 903a of the two springs 903 is connected to the positioning pin 904, and the other end is connected to the optical signal transceiver interface 900, and one end of the second spring 903b of the two springs 903 is connected to the positioning pin 904, and the other end is connected to the light source interface 901.
  • the first spring 903a can provide elastic force to the optical signal transceiver interface 900 to strengthen the connection between the optical signal transceiver interface 900 and the optical signal transceiver connector 500 of the light source module after plugging.
  • the second spring 903 b can provide elastic force to the light source interface 901 to strengthen the connection between the light source interface 901 and the light source connector 501 of the light source module.
  • FIG. 9D shows the plug-in process of the light source module and the matching socket.
  • the primary positioning can be first performed based on the electrical interface in the electrical connector 502 of the light source module and the electrical connector 902 of the matching socket.
  • the secondary positioning can be performed based on the positioning sleeve 512 of the light source module and the positioning pin 904 of the matching socket.
  • the final positioning can be performed based on the positioning guide hole 5011 of the light source module and the positioning guide pin 9011 of the matching socket, and based on the positioning guide hole 5003 of the light source module and the positioning guide pin 9001 of the matching socket.
  • FIG. 9D (d) shows the light source module and the matching socket after the positioning plug-in is completed.
  • the light source module can be further pushed forward after the plug-in is completed to compress the spring 903 in the matching socket.
  • the bottom of the electrical connector 902 further includes a crimping positioning pin 9021 for positioning when the matching socket is crimped to the circuit board of the switch.
  • the bottom of the electrical connector 902 further includes a crimping pin 9022 for realizing the crimping of the matching socket to the circuit board of the switch.
  • FIG. 9E which exemplarily shows a front view of the matching socket crimped to the circuit board of the switch.
  • FIG. 9F which exemplarily shows a side view after the matching socket is crimped to the circuit board of the switch.
  • FIGS 10A to 10C are schematic diagrams of a switch system provided in an embodiment of the present application.
  • Figure 10A is a top view of the system
  • Figure 10B is a front view of the system
  • Figure 10C is a side view of the system.
  • the system proposed in the present application includes a switch chip, a light engine, an optical fiber, a fiber optic transfer box, a matching socket, and a light source module.
  • the fiber optic transfer box is also called a fiber optic terminal box. One end can be connected to an optical cable and the other end can be connected to a pigtail.
  • Figures 10A to 10C are only used as an example, and the present application does not specifically limit the number of light engines, optical fibers, matching sockets, and light source modules included in the system.
  • Figures 10A to 10C exemplarily illustrate It displays 32 light source modules divided into two layers, A and B, and the corresponding matching sockets.
  • Figures 10A to 10C show schematic diagrams of the system, and the transmission process of the optical signal is specifically introduced below in conjunction with the system exemplified in Figures 10A to 10C.
  • Figure 11 exemplarily shows the transmission process of the optical signal.
  • the optical signal transmission process shown in FIG. 11 is as follows.
  • the light source 503 outputs light (for example, it can be 4-way light, represented as CW ⁇ 4), and CW ⁇ 4 is interconnected through the light source connector 501, the light source interface 901 of the matching socket, and the pigtail, and is transmitted to the optical engine after the optical fiber adapter box adjusts the line sequence.
  • light for example, it can be 4-way light, represented as CW ⁇ 4
  • CW ⁇ 4 is interconnected through the light source connector 501, the light source interface 901 of the matching socket, and the pigtail, and is transmitted to the optical engine after the optical fiber adapter box adjusts the line sequence.
  • the optical engine may first determine whether the type of modulator matches before performing electro-optical modulation on CW ⁇ 4. For example, if the modulator is a 4-channel modulator, CW ⁇ 4 may be modulated directly; if the modulator is a 16-channel modulator, CW ⁇ 4 may be split first and then electro-optical modulation may be performed.
  • the optical transceiver chip in the optical engine can split CW ⁇ 4 and then input it into the modulator for modulation.
  • the modulated output optical signal (taking the modulator as 16 channels as an example, the output 16 optical signals are represented as TX ⁇ 16) is returned to the optical fiber adapter box through the optical fiber to adjust the line sequence, and then interconnected to the optical signal transceiver interface 900 of the matching socket, and then to the optical signal transceiver connector 500 of the light source module.
  • TX ⁇ 16 can be transmitted to the optical connector adapter 510 through the optical signal transceiver connector 500, and TX ⁇ 16 can be sent to the external device through the optical connector adapter 510.
  • the receiving process of the optical signal shown in FIG11 is as follows.
  • the optical connector adapter 510 receives an optical signal from an external device (for example, when the received optical signal is 16 channels, it is represented as RX ⁇ 16), and the optical connector adapter 510 transmits RX ⁇ 16 to the optical signal transceiver connector 500 through the optical fiber inside the light source module. After passing through the optical signal transceiver interface 900 of the matching socket and its interconnected pigtails, RX ⁇ 16 is transmitted to the optical adapter box to adjust the line sequence, and finally transmitted to the optical engine.
  • RX ⁇ 16 After passing through the optical signal transceiver interface 900 of the matching socket and its interconnected pigtails, RX ⁇ 16 is transmitted to the optical adapter box to adjust the line sequence, and finally transmitted to the optical engine.
  • the system may further include a line card of a switch for providing power to the optical engine.
  • the light source modules and matching sockets introduced in the above exemplary embodiments can meet the requirements of switches with a 400G transmission rate.
  • the present application also proposes a light source module that can increase the transmission rate of optical signals by setting a splitter.
  • FIG12A to 12C are schematic diagrams of the structure of a light source module provided in another embodiment of the present application.
  • FIG12A is a front view of the light source module provided in this embodiment
  • FIG12B is a cross-sectional view of the light source module of the embodiment shown in FIG12A along the B-B direction shown in FIG12A
  • FIG12C is a side view (including a left view and a right view) of the light source module of the embodiment shown in FIG12A.
  • the structures of the optical signal transceiver connector 500, the light source connector 501, the electrical connector 502, the light source 503, the microcontroller 505, the memory 506, the optical connector adapter 510 and the housing 511 included in the light source module can refer to the above-mentioned exemplary embodiments, and will not be repeated here.
  • the light source module also includes a spectrometer 504.
  • the spectrometer 504 is arranged between the light source 503 and the light source connector 501, and is used to perform spectroscopic processing on the light emitted by the light source 503, and transmit the multi-path light obtained after the spectroscopic processing to the light source connector 501.
  • the power of the light source can be adjusted according to the splitting ratio of the splitter, so that the light power requirement can still be met after the splitting.
  • the exemplary embodiment of the present application further proposes adding an air duct between the two layers of matching sockets crimped onto the switch circuit board to enhance the heat dissipation capacity of the light source module.
  • FIG. 13A a positive image of the matching socket after the air duct is added and crimped onto the switch circuit board is shown.
  • FIG. 13B a side view of the switch circuit board after the matching socket is crimped onto the switch circuit board after the air duct is added is shown.
  • a double-layer matching socket is provided, and an air duct 907 is provided between the upper matching socket 905 and the lower matching socket 906, and the air duct 907 is configured to dissipate heat between the upper matching socket 905 and the lower matching socket 906. Additionally, the air duct 907 may also accommodate a heat dissipation component of the lower matching socket 906, so as to improve the heat dissipation performance of the lower matching socket 906 when the light source module is inserted.
  • Figures 14A to 14C an exemplary embodiment of the present application provides a schematic diagram of a system.
  • Figure 14A is a top view of the system
  • Figure 14B is a front view of the system
  • Figure 14C is a side view of the system.
  • the system proposed in this embodiment includes a switch chip, a light engine, an optical fiber, a fiber optic adapter box, a matching socket, and a light source module.
  • Figures 14A to 14C are only used as an example, and the present application does not specifically limit the number of light engines, optical fibers, matching sockets, and light source modules included in the system.
  • Figures 14A to 14C exemplarily show a total of 64 light source modules and corresponding matching sockets divided into four layers.
  • the present application also proposes a method of mixing the pluggable light source module proposed in the present application with a traditional pluggable light module or a linear pluggable light module in the traditional technology.
  • Figure 15A is a top view of the system
  • Figure 15B is a front view of the system
  • Figure 15C is a side view of the system.
  • the pluggable light source module proposed in the present application included in the system can adopt the light source module proposed in any of the above embodiments.
  • FIG. 15C columns 1 to 4 and columns 13 to 16 use the pluggable light source modules provided in the embodiment of the present application.
  • Figure 15B shows a connection diagram of connecting any one of columns 1 to 4 and columns 13 to 16 using the light source modules provided by the present application to a communication device.
  • the 8 light source modules in each column are divided into two groups, and each group consists of 4 light source modules.
  • Each group of light source modules is connected to a fiber optic transfer box via an optical fiber to adjust the line sequence. Both fiber optic transfer boxes are simultaneously connected to an optical engine of the switch.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本申请公开了一种光源模块,包括:壳体,壳体内部设有容纳腔;光源,位于容纳腔内且配置为发出光;光源接头,位于容纳腔的第一侧并伸出壳体,且配置为接收并向通信设备输出光源发出的光;光信号收发接头,位于容纳腔的第一侧并伸出所述壳体,且配置为与通信设备进行光信号的传输;以及光连接器适配器,位于容纳腔的第二侧,配置为与光信号收发接头进行光信号的传输;其中,第二侧为与容纳腔的第一侧相对的一侧。本申请还公开了一种配套插座及光信号传输方法。

Description

光源模块、光源模块的配套插座及光信号传输方法
本申请要求于2022年09月28日提交中国专利局、申请号为202211188064.X、申请名称为“一种光源模块、光源模块的配套插座及光信号传输方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种光源模块、光源模块的配套插座及光信号传输方法。
背景技术
目前,由于传统的应用于通信设备(例如,交换机)的可插拔光模块的功耗问题以及散热问题,导致传统的可插拔光模块的架构无法满足数据中心的发展。因此,传统技术中已知提出了一种用于数据中心的光电共封(Co-Packaged Optics,CPO)或近封装光学(Near-Packaged Optics,NPO)交换机所适用的可插拔光源模块。
传统的可插拔光模块中的光电调制部分通过CPO交换机内部或NPO交换机内部的光引擎实现。可插拔光源模块的出光通过保偏光纤输入到光引擎中。光引擎将光调制后的输出的光信号通过单模光纤传输到光连接器适配器,并通过光连接器适配器将光信号输出。
发明内容
本申请各示例性实施例公开了一种光源模块、光源模块的配套插座及光信号传输方法。
第一方面,本申请提出了一种光源模块,包括壳体、光信号收发接头、光源接头、光源、电接头、光连接器适配器,其中:
所述壳体内部具有容纳腔;
所述光信号收发接头和所述光源接头设置在所述壳体的第一侧的外部,所述光源接头用于向交换机输出所述光源发出的光,所述光信号收发接头用于与所述交换机进行光信号的传输;
所述电接头设置在所述第一侧的外部,所述电接头用于为光源模块供电;
所述光连接器适配器设置在所述壳体的第二侧的内部,与所述光信号收发接头在所述壳体的内部通过光纤连接;所述第二侧为所述壳体内部与所述第一侧相反的一侧;所述光连接器适配器用于与外部设备进行光信号的传输。
在一些实施例中,所述光源模块还包括分光器:
所述分光器设置于所述光源与所述光源接头之间,用于对所述光源发出的光进行分光处理,并向所述光源接头传输分光处理后得到的多路光。
在一些实施例中,所述光源模块还包括合波器和分波器:
所述合波器设置于所述光连接器适配器和所述光信号收发接头之间,用于对所述光信号收发接头输出的光信号进行合并,并向所述光连接器适配器发送合并后的光信号;
所述分波器设置于所述光连接器适配器和所述光信号收发接头之间,用于对所述光连接器适配器输出的光信号进行分离,并向所述光信号收发接头发送分离后的光信号。
在一些实施例中,所述光源模块还包括控制器和告警灯:
所述控制器用于通过所述电接头接收来自所述交换机的匹配信息,根据所述匹配信息确定所述交换机与所述光源模块匹配结果,并基于所述匹配结果确定所述告警灯的亮灯方式。
在一些实施例中,所述光信号收发接头和所述光源接头在所述第一侧的外部沿第一方向并列设置;
所述电接头在所述第一侧的外部与所述光信号收发接头或所述光源接头沿第二方向层叠设置,且所述光信号收发接头、所述光源接头和所述电接头的朝向同一方向;
其中,所述第一方向与所述第二方向垂直,所述第一方向和所述第二方向均垂直于第三方向,所述第三方向为所述光源模块与所述光源模块的配套插座进行插接的方向。
在一些实施例中,所述光信号收发接头压接或耦合单模光纤;所述光源接头压接或耦合保偏光纤。
在一些实施例中,所述电接头在所述第二方向上的投影在第三方向上长于所述光信号收发接头在所述第二方向上的投影。
在一些实施例中,所述光源模块还包括定位护套和定位引导孔,其中:
所述电接头用于所述光源模块与所述配套插座进行插接时进行初级定位;
所述定位护套位于所述第一侧,用于所述光源模块与所述配套插座进行插接时进行次级定位;
所述定位引导孔用于所述光源模块与所述配套插座进行插接时进行末级定位。
第二方面,本申请提出了一种光源模块的配套插座,所述配套插座连接交换机,所述配套插座包括光信号收发接口、光源接口、电连接器和电接口,其中:
所述光信号收发接口和所述光源接口设置于所述配套插座上用于插接光源模块的一侧;所述光信号收发接口通过光纤连接所述交换机的光引擎,用于与所述光引擎进行光信号的传输;所述光源接口通过光纤连接所述光引擎,用于将接收到的来自所述光源模块的光传输至所述光引擎;
所述电连接器设置于所述配套插座上用于压接所述交换机的电路板的一侧,用于基于所述电路板提供的电能为所述配套插座供电;
所述电接口设置于所述电连接器内部,用于与所述光源模块的电接头连接在一些实施例中,所述光信号收发接口压接或耦合单模光纤,所述光源接口压接或耦合保偏光纤;所述光信号收发接口通过单模光纤与所述光引擎连接,所述光源接口通过保偏光纤与所述光引擎连接。
在一些实施例中,所述光信号收发接口和所述光源接口沿第一方向并列设置;
所述电连接器与所述光信号收发接口或所述光源接口沿第二方向层叠设置且包括指向为第二方向的压接针,用于所述配套插座压接于所述交换机的电路板;
其中,所述光源接口、所述光信号收发接口和所述电接口的朝向为同一方向;所述第一方向与所述第二方向垂直,所述第一方向和所述第二方 向均垂直于所述光源模块与所述配套插座进行插接的方向。
在一些实施例中,所述配套插座还包括定位销和两个弹簧,其中:
所述定位销与所述光信号收发接口或所述光源接口沿第二方向层叠设置,所述光信号收发接口和所述光源接口位于所述定位销和所述电连接器之间,且所述定位销的一端连接于所述电连接器;
所述两个弹簧中的第一弹簧的一端连接于所述定位销,另一端连接于所述光信号收发接口;所述两个弹簧中的第二弹簧的一端连接于所述定位销,另一端连接于所述光源接口。
在一些实施例中,所述定位稍在第二方向上的投影在第三方向上长于所述光信号收发接口或所述光源接口在第二方向上的投影;其中第三方向为所述光源模块与所述配套插座进行插接的方向。
在一些实施例中,所述配套插座还包括定位导引针:
所述电接口用于光源模块与所述配套插座进行插接时进行初级定位;
所述定位销用于所述光源模块与所述配套插座进行插接时进行次级定位;
所述定位导引针用于所述光源模块与所述配套插座进行插接时进行末级定位。
第三方面,本申请提出了一种光信号的传输方法,包括:
所述光源模块的光连接器适配器接收来自外部设备的第一光信号;
所述光连接器适配器将所述第一光信号通过所述光源模块的光信号收发接头传输至交换机;
所述光源模块的光源接头向所述交换机输出所述光源模块的光源发出的光;所述光用于所述交换机进行光电调制;
在所述光连接器适配器通过所述光源模块的光信号收发接头接收到所述交换机返回的第二光信号时,向所述外部设备发送所述第二光信号。
在一些实施例中,在将所述第一光信号传输至交换机之前,所述方法还包括:
所述光源模块的分波器分离所述第一光信号得到至少两个第三光信号;
所述光信号收发接头向所述交换机传输所述至少两个第三光信号。
在一些实施例中,在向所述交换机输出所述光源模块的光源发出的光之前,所述方法还包括:
所述光源模块的分光器对所述光源发出的光进行分光处理得到多路光;
所述光源接头向所述交换机输出所述多路光。
在一些实施例中,所述方法还包括:
在所述光信号收发接头接收到所述交换机返回的至少两个第四光信号时,所述光源模块的合波器将所述至少两个第四光信号合并得到所述第二光信号;
所述光连接器适配器向所述外部设备发送所述第二光信号。
第四方面,本申请各示例性实施例提供一种光源模块,包括:
壳体,所述壳体内部设有容纳腔;
光源,位于所述容纳腔内且配置为发出光;
光源接头,位于所述容纳腔的第一侧并伸出所述壳体,且配置为接收并向通信设备输出所述光源发出的光;
光信号收发接头,位于所述容纳腔的所述第一侧并伸出所述壳体,且配置为与所述通信设备进行光信号的传输;以及
光连接器适配器,位于所述容纳腔的第二侧,配置为与所述光信号收 发接头进行光信号的传输;
其中,所述第二侧为与所述容纳腔的所述第一侧相对的一侧。
在一些实施例中,所述光源模块还包括:保偏光纤,所述保偏光纤的一端连接于所述光源,所述保偏光纤的另一端连接于所述光源接头;以及单偏光纤,所述单偏光纤的一端连接于所述光连接器适配器,所述单偏光纤的另一端连接于所述光信号收发接头。
在一些实施例中,所述光信号收发接头和所述光源接头在所述第一侧沿第一方向并列设置,其中,所述第一方向垂直于所述光源模块的插接方向。
在一些实施例中,所述光源模块还包括:分光器,位于所述光源与所述光源接头之间,配置为对所述光源发出的光进行分光以得到多路光。
在一些实施例中,所述光源模块还包括:分波器,位于所述光连接器适配器和所述光信号收发接头之间,配置为对所述光连接器适配器输出的至少一路光信号进行分离,并向所述光信号收发接头发送分离后的多路光信号。
在一些实施例中,所述光源模块还包括:合波器,位于所述光连接器适配器和所述光信号收发接头之间,配置为对所述光信号收发接头输出的多路光信号进行合并,并向所述光连接器适配器发送合并后的至少一路光信号。
在一些实施例中,所述光源模块还包括:电接头,位于所述容纳腔的第一侧且伸出所述壳体,且配置为为所述光源模块供电;其中,所述电接头与所述光信号收发接头和/或所述光源接头沿第二方向层叠设置,其中,所述第一方向与所述第二方向垂直。
在一些实施例中,所述电接头在所述第二方向和第三方向形成的投影平面上的投影的长度大于所述光信号收发接头或所述光源接头在所述投影平面上的投影的长度,其中,所述第三方向分别垂直于所述第一方向和所述第二方向。
在一些实施例中,所述光源模块还包括:定位护套,位于所述第一侧,且配置为在插接所述光源模块时定位所述光源模块的插接位置。
在一些实施例中,所述光源接头和/或所述光信号收发接头,还包括:定位引导孔,配置为在插接所述光源模块时定位所述光源接头和/或所述光信号收发机头的插接位置。
在一些实施例中,所述光源模块还包括:微控制器,位于所述容纳腔内且连接于所述电接头,配置为通过所述电接头接收来自所述通信设备的匹配信息;以及告警灯,位于所述第二侧且连接于所述微控制器,配置为指示所述光源模块插接后与所述通信设备的匹配状态;其中,所述微控制器根据所述匹配信息确定所述通信设备与所述光源模块的匹配结果,并基于所述匹配结果控制所述告警灯的亮灯方式。
在一些实施例中,所述光连接器适配器为MPO连接器或SN连接器。
在一些实施例中,所述光源模块还包括:保护罩,位于所述第一侧并从所述壳体伸出,以保护所述光信号收发接头和所述光源接头。
第五方面,本申请各示例性实施例提供一种光源模块的配套插座,分别连接于通信设备和前述任一项实施例所述的光源模块,其中,所述配套插座包括:
光信号收发接口,位于所述配套插座的用于插接所述光源模块的一侧并连接于所述通信设备的光引擎,且配置为与所述光引擎进行光信号的传 输;以及
光源接口,位于所述配套插座的用于插接所述光源模块的一侧并连接于所述光引擎,且配置为将接收到的来自所述光源模块的光传输至所述光引擎。
在一些实施例中,所述光信号收发接口配置为压接或耦合单模光纤,所述光源接口配置为压接或耦合保偏光纤。
在一些实施例中,所述配套插座还包括:电连接器,位于所述配套插座的连接所述通信设备的一侧,且配置为基于电路板提供的电能为所述配套插座供电;以及定位销,配置为与所述光信号收发接口和/或所述光源接口沿与所述第一方向垂直的第二方向层叠,且所述定位销的一端连接于所述电连接器;其中,所述光信号收发接口和所述光源接口位于所述定位销和所述电连接器之间。
在一些实施例中,所述配套插座还包括:第一弹簧,所述第一弹簧的一端连接于所述定位销,另一端连接于所述光信号收发接口;以及第二弹簧,所述第二弹簧的一端连接于所述定位销,另一端连接于所述光源接口。
第六方面,本申请各示例性实施例提供一种光信号的传输方法,应用于根据前述任一项实施例所述的光源模块,其中,所述方法包括:
所述光源模块的所述光源向所述光源接头发送光;
所述光源模块的所述光源接头向所述通信设备输出所述光源发出的所述光,其中,所述光在所述通信设备中进行光电转换处理后生成第二光信号;
所述光源模块的所述光信号收发接头接收所述通信设备返回的第二光信号,并将所述第二光信号发送至所述光连接器适配器;以及
所述光连接器适配器向所述外部设备发送所述第二光信号。
在一些实施例中,在所述向所述外部设备发送所述第二光信号之前,所述方法还包括:在所述光信号收发接头接收所述通信设备返回的至少两个第四光信号;以及所述光源模块的合波器将所述至少两个第四光信号合并得到所述第二光信号。
在一些实施例中,在所述光源模块的所述光源接头向所述通信设备输出所述光源发出的所述光之前,所述方法还包括:所述光源模块的分光器对所述光源发出的所述光进行分光以得到多路光;以及所述光源接头向所述通信设备输出所述多路光。
本申请各示例性实施例提供的光源模块,集成了光源及光连接器适配器,实现了可插拔的光源模块,同时,在光源模块的与通信设备插接的一侧分别设置光源接头和光信号收发接头,解决了由于光源和光信号传输所采用的光纤类型不同所导致的光纤压接良率低的问题,从而降低了可插拔光源模块内的光纤压接工艺难度和成本。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1为本申请一实施例提供的一种系统架构示意图。
图2为本申请一实施例提供的一种可插拔光源模块的结构示意图。
图3为本申请一实施例提供的一种光连接器适配器的结构示意图。
图4A为本申请一实施例提供的一种交换机系统的俯视图。
图4B为图4A所示实施例提供的交换机系统的主视图。
图5A为本申请一实施例提供的一种光源模块的主视图。
图5B为图5A所示实施例提供的光源模块的剖面图。
图5C为图5A所示实施例提供的光源模块的侧视图。
图6A为本申请另一实施例提供的光源模块的主视图。
图6B为图6A所示实施例提供的光源模块的剖面图。
图6C为图6A所示实施例提供的光源模块的侧视图。
图6D为图6A所示实施例提供的合波器对光信号进行合并处理的过程示意图。
图6E为图6A所示实施例提供的分波器对光信号进行分离处理的过程示意图。
图7A为本申请又一实施例提供的光源模块的主视图。
图7B为图7A所示实施例提供的光源模块的剖面图。
图7C为图7A所示实施例提供的光源模块的侧视图。
图8A为本申请又一实施例提供的光源模块的主视图。
图8B为图8A所示实施例提供的光源模块的剖面图。
图8C为图8A所示实施例提供的光源模块的侧视图。
图9A为本申请一实施例提供的一种配套插座的主视图。
图9B为图9A所示实施例提供的配套插座的剖视图。
图9C为图9A所示实施例提供的配套插座的侧视图。
图9D为图9A所示实施例提供的光源模块与配套插座插接过程示意图。
图9E为图9A所示实施例提供的配套插座压接于交换机的电路板的正视图。
图9F为图9A所示实施例提供的配套插座压接于交换机的电路板的侧视图。
图10A为本申请一实施例提供的一种交换机系统的俯视图。
图10B为图10A所示实施例提供的交换机系统的正视图。
图10C为图10A所示实施例提供的交换机系统的侧视图。
图11为本申请一实施例提供的一种光信号的传输过程示意图。
图12A为本申请又一实施例提供的光源模块的主视图。
图12B为图12A所示实施例提供的光源模块的剖面图。
图12C为图12A所示实施例提供的光源模块的侧视图。
图13A为本申请一实施例提供的一种配套插座的正视图,该配套插座压接于交换机的电路板。
图13B为图13A所示实施例提供的压接于交换机的电路板的配套插座的侧视图。
图14A为本申请又一实施例提供的光源模块的主视图。
图14B为图14A所示实施例提供的光源模块的剖面图。
图14C为图14A所示实施例提供的光源模块的侧视图。
图15A为本申请又一实施例提供的光源模块的主视图。
图15B为图15A所示实施例提供的光源模块的剖面图。
图15C为图15A所示实施例提供的光源模块的侧视图。
附图标记:
410-传统的光信号收发接头,420-传统的光源模块,430-光引擎,500-
光信号收发接头,5001-单偏光纤,5003-定位引导孔,501-光源接头,5011-定位引导孔,5012-保偏光纤,502-电接头,503-光源,504-分光器,505- 微控制器,506-存储器,508-分波器,509-合波器,510-光连接器适配器,511-壳体,5111-防磕防尘罩,512-定位护套,513-告警灯,900-光信号收发接口,9001-定位导引针,901-光源接口,9011-定位导引针,902-电连接器,9021-压接定位销,9022-压接针,903-弹簧,903a-第一弹簧,903b-第二弹簧,904-定位销,905-上层配套插座,906-下层配套插座,907-风道。
具体实施方式
为了使本技术领域的人员更好地理解本申请中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
术语“第一”、“第二”仅用于区分相同或相似元件的目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
另外,需要说明的是,本申请实施例提供的各个图示中各部件尺寸比例不反映真实的尺寸比例,只是为了表达清楚各部件之间的相对位置关系。
如前所述,为了保证信号的输入输出,CPO交换机需要配置的结构包括可插拔光源模块和光连接器适配器。这样无法实现即插即用,可维护性差。此外,光连接器适配器的存在还限制了可插拔光源模块的散热,降低了可插拔光源模块的使用寿命。
为了方便理解,首先介绍本申请实施例提供的光源模块、光源模块的配套插座和光信号的传输方法的应用场景。参见图1,为本申请实施例提供的一种系统架构图,其中,所述系统包括:作为通信设备的交换机、光源模块、光源模块的配套插座和外部设备。
图1中示出的交换机可以为光电共封(Co-Packaged Optics,CPO)交换机或者近封装光学(Near-Packaged Optics,NPO)交换机,其内部可以包括交换机芯片用于具体的数据处理,还可以包括光引擎用于实现光电调制功能。光源模块的配套插座设置为连接于交换机,例如,可以设置为通过压接的方式连接于交换机。光源模块与配套插座可以通过插接的方式彼此连接。光源模块可以用于实现交换机与外部设备进行光信号的传输,以及用于为交换机提供光源,用于交换机进行光电调制。图1中示出的外部设备可以为光源模块通过光纤连接的任一通信设备,本申请对于外部设备 的实现方式不作限定。
目前,用于CPO或者NPO交换机的可插拔光源模块的结构示意图可以参见图2,其中图2中的(a)为传统技术中提出的可插拔光源模块的主视图,图2中的(b)为图2中的(a)中可插拔光源模块沿A-A方向(俯视图)的、传统技术中提出的可插拔光源模块的剖面图。图2中的(c)为传统技术中提出的可插拔光源模块的侧视图(包括左视图和右视图)。如图2所示,传统技术中提出的光源模块中包括光源、微控制器、存储器、光源接头和电接头等结构,且光源接头与电接头处于光源模块的同一侧。在图2所示实施例中,光源模块不包含用于传输光信号的光接头。光接头指用于进行光信号传输的接头,可以包括光信号收发接头和光连接器适配器。
因此,为了保证交换机的正常输入输出业务,传统技术中提出了在光源模块之外,还需要配置独立的光连接器适配器。传统技术中的光连接器适配器的结构示意图可以参见图3。图3中的(a)为光连接器适配器主视图,图3中的(b)为光连接器适配器的俯视图,图3中的(c)为光连接器适配器的侧视图(包括右视图)。
为了便于理解传统技术的方案,参见图4A,示例性地展示了传统光源模块420和传统光连接器适配器410连接交换机(Switch)的系统的俯视图,图4B展示了系统的主视图。如图所示,光源模块420可以通过例如保偏光纤和光引擎430连接,而光连接器适配器410可以通过单偏光纤与光引擎430连接。然而,由于光连接器适配器410位于仅靠光源模块420上侧的位置,因此限制了传统的光源模块420上侧的散热,从而降低光源模块420的使用寿命,并且无法实现即插即用(即无法实现“可插拔”),用户的使用体验较差。
可以理解,单偏光纤(Zing fiber)是一种只能传输特定偏振方向上的光,而其它偏振方向的光不满足导波条件或者具有很强的光学损耗。保偏光纤(Polarization-maintaining fiber),通过引入双折射,使光纤中轴向各位置的双折射保持不变,实现对入射光偏振态的保持,即,保偏光纤可以传输任何偏振态的光,但是当光的偏振方向调节到与双折射轴平行时,这种光纤可以保持这种线偏振态。
本申请各示例性实施例提出了一种光源模块和配套插座,其中光源模块中集成了光源和光连接器适配器,符合即插即用(即,可插拔)的使用要求。此外,由于光源和光信号传输所采用的光纤不同,采用统一压接的方式接口的良率会下降,因此光源和光信号通过不同的光口传输,也可以降低工艺难度和成本。
下面,具体介绍本申请各示例性实施例提出的光源模块、光源模块的配套插座和光信号的传输方法。
图5A至图5C为本申请实施例提供的一种光源模块的结构示意图。图5A为本申请一实施例提供的光源模块的主视图,图5B为图5A实施例提供的光源模块的、沿图5A所示的B-B方向(俯视图)的剖面图。图5C为图5A实施例提供的光源模块的侧视图(包括左视图和右视图)。
在图5A至图5C所示实施例中,光源模块包括光信号收发接头500、光源接头501、电接头502、光源503、微控制器505、存储器506、光连接器适配器510和壳体511。
如图5A所示,壳体511内部具有容纳腔,光信号收发接头500和光源接头501设置于壳体511的第一侧,并沿第三方向向壳体511的外部伸 出。
如图5B所示,光信号收发接头500和光源接头501可以沿第一方向并列设置。电接头502设置在壳体511的第一侧并沿第三方向向壳体511的外部伸出。如图5C所示,电接头502可以与光信号收发接头500或光源接头501沿第二方向层叠设置。
可以理解,光信号收发接头500和光源接头501也可以以其他方式进行排布,例如,沿第二方向并列设置,只要光信号收发接头500和光源接头501均设置在光源模块上即可,本申请对光信号收发接头500和光源接头501的排布方式不作特别限定。
如图5B所示,电接头502、光信号收发接头500和光源接头501的朝向可以为同一方向。光源503可以由一个或多个激光器组成,用于输出单通道或多通道的光至光源接头501。光连接器适配器510设置在壳体511的容纳腔内的第二侧,第二侧为相对于壳体511的第一侧相反的一侧。光连接器适配器510与光信号收发接头500在壳体511内部通过光纤连接。
本示例性实施例提供的光源模块,将光信号传输设备集成在光源模块中,从而使光源模块的功耗满足低于散热容限的功耗的同时,实现光源模块的即插即用。
光信号收发接头500可以压接或者耦合单模光纤,光源接头501可以压接或者耦合保偏光纤。
可替换地或额外地,电接头502在第二方向和第三方向形成的投影平面上的投影长度可以设置为大于光信号收发接头500在该投影平面上的投影长度,即,电接头502在第三方向上伸出的距离大于光信号收发接头500在第三方向上伸出的距离。第三方向可以参见图5A所示,第三方向即为光源模块与配套插座进行插接的方向。
在本实施例中,由于电接头502在第三方向上伸出的距离大于光信号收发接头500在第三方向上伸出的距离,因此,当光源模块插接入配套插座时,电接头502比光信号收发接头500和光源机头501与通信设备接触,从而使得通信设备能在光信号收发接头500和光源机头501于通信设备完全插接前,将电压控制在安全范围内,保证光信号收发接头500和光源机头501插接时的安全性。
电接头502可以为“金手指(Gold Finger)”,其具体的管脚类型包括但不限于:电源、地线及两线式串行总线(Inter-Integrated Circuit,I2C)通信接头、光源复位控制管脚、光源低功耗控制管脚等类型。电接头502可以用于传输光源在位信号和光源中断或告警信号等信号。
在本实施例中,电接头502位于所述容纳腔的第一侧且伸出所述壳体511,且配置为为光源模块供电。电接头502与光信号收发接头500和/或光源接头501沿第二方向层叠设置,其中,所述第一方向与所述第二方向垂直。
额外地或可替换地,壳体511可以沿第三方向延伸,构成保护罩以保护光信号收发接头500和光源接头501。例如,如图6A所示,保护罩可以为防磕防尘罩5111。防磕防尘罩5111可以用于对位于壳体511第一侧的伸出的光信号收发接头500和光源接头501的部分提供防磕保护和防尘保护。
可替换地或额外地,图5C所示实施例中,光源模块还可以包括定位护套512,可以用于在光源模块与配套插座进行插接时起到定位作用,便于插接。
可替换地或额外地,光信号收发接头500中可以包括定位引导孔5003,以及可替换地或额外地,光源模块501中可以包括定位引导孔5011。定位引导孔5003、5011用于在光源模块与配套插座进行插接时起到定位作用,便于插接。
在一种可能实现的方式中,光源503可以发出多路光或者单路光。多路光或者单路光通过例如保偏光纤5012传输至光源接头501,并进而输出至交换机的光引擎。光引擎在对接收到的光进行光电调制后生成光信号,通过单模光纤将生成的光信号传输至光信号收发接头500。进一步地,光信号收发接头500将接收到的光信号通过设置于壳体511的容纳腔内的单模光纤5001传输至光连接器适配器510。光连接器适配器510在接收到光信号之后,可以将光信号通过光纤发送至相应的外部设备。
可替换地或额外地,光连接器适配器510可以接收来自外部设备的光信号,通过设置于壳体511内部的单模光纤5001传输至光信号收发接头500,光信号收发接头500通过单模光纤5001将光信号传输至交换机的光引擎。光引擎可以对接收到的光信号进行解调,将解调得到电信号传输至交换机芯片进行业务处理。
图6A至图6C为本申请另一实施例提供的光源模块的结构示意图。图6A为本申请另一实施例提供的光源模块的主视图,图6B为图6A所示的沿图6A所示的B-B方向的光源模块的剖面图,图6C为图6A所示的光源模块的侧视图(包括左视图和右视图)。
可替换地或额外地,如6A至图6C所示,光源模块可以包括的光信号收发接头500、光源接头501、电接头502、光源503、微控制器505、存储器506、光连接器适配器510和壳体511等结构,可以参见图5A至图5C所示的光源模块,在此不再赘述。
相较于图5A至图5C中提出的光源模块,图6A至图6C提出的光源模块中,额外地还包括分波器508和合波器509。合波器509的作用是将不同波长的多个光信号合并在一起经由一根光纤传输,分波器508的作用与之相反,将一根光纤中传输的至少一路光信号按照波长分离成更多路的光信号。
分波器508可以设置于壳体511内部,位于光连接器适配器510和光信号收发接头500之间,用于将从光连接器适配器510传输至光信号收发接头500的至少一路光信号按照波长分离成更多路的光信号。合波器509也可以设置于壳体511内部,位于光连接器适配器510和光信号收发接头500之间,用于将从光信号收发接头500传输至光连接器适配器510的多个光信号合并在为一个光信号。
在具体实施时,一种可能的情况下,在发送光时,光源503可以发出多路光或者单路光,通过光源接头501输出至交换机的光引擎。光引擎在对接收到的光进行光电调制后生成多路光信号,比如16路光信号,通过单模光纤将生成的16路光信号传输至光信号收发接头500。进一步地,光信号收发接头500将16路光信号传输至合波器509进行光信号的合并处理。举例来说,合波器509可以将16路光信号合并为4路光信号,并传输至光连接器适配器510。图6D为本申请实施例提供的一种合波器对光信号进行合并处理的过程示意图。
额外地,在光连接器适配器510接收外部设备发送的光信号时,光连接器适配器510可以将从外部设备接收到的至少一路光信号传输至分波器508。例如,光连接器适配器510接收到的光信号为4路光信号。分波器 508可以将4路光信号按照波长进行分离,例如,将4路光信号分离得到16路光信号。分波器508可以将分离得到的16路光信号传输至光信号收发接头500。示例性地,图6E为本申请实施例提供的一种分波器508对光信号进行分离处理的过程示意图。
图7A至图7C为本申请又一实施例提供的光源模块的结构示意图。图7A为本申请又一实施例提供的光源模块的主视图,图7B为图7A所示实施例沿图7A所示的B-B方向的光源模块的剖面图,图7C为图7A所示实施例的光源模块的侧视图(包括左视图和右视图)。
如图7A至图7C所示,光源模块可以包括的光信号收发接头500、光源接头501、电接头502、光源503、微控制器505、存储器506、光连接器适配器510和壳体511等结构可以参见上述图5A至图5C所示实施例,在此不再赘述。相较于前述各示例性实施例中提出的光源模块,图7A至图7C所示实施例中提出的光源模块,额外地或可替换地,还可以包括告警装置,例如,告警灯513、告警蜂鸣器等。例如,告警灯513可以设置于壳体511的容纳腔的第二侧。
额外地或可替换地,告警装置受控于微控制器505,并可从光源模块的电接头502接收来自交换机的匹配信息。该匹配信息用于指示交换机与光源模块是否匹配。微控制器505根据匹配信息,控制例如交换机和光源连接器适配器510所在侧的外部能够观测到的告警灯513的显示方式,或者控制告警蜂鸣器的蜂鸣方式。可选地,微控制器505可以通过电接头502接收交换机和光源模块的匹配信息。基于匹配信息可以确定交换机与光源模块是否匹配,并根据交换机与光源模块的匹配结果调整告警灯513的亮灯规则。例如,可以在交换机与光源模块不匹配时,控制告警灯513常亮,以提示运维人员进行光源模块的更换。
需要说明的是,本申请实施例对于光源模块中包括的告警灯513的数量不做限定,图7C仅以包含三个告警灯为例进行介绍。
需要说明的是,本实施例中,如图7C所示,光连接器适配器510为Multi Push On(MPO)连接器。
图8A至图8C为本申请又一实施例提供的光源模块的结构示意图。图8A为本申请又一实施例提供的光源模块的主视图,图8B为图8A所示的光源模块的沿图8A所示的B-B方向的剖面图,图8C为图8A所示实施例的光源模块的侧视图(包括左视图和右视图)。
如图8A至图8C所示,光源模块包括的光信号收发接头500、光源接头501、电接头502、光源503、微控制器505、存储器506、光连接器适配器510和壳体511等结构可以参见图5A至图5C所示实施例,在此不再赘述。相较于前述各示例性实施例中提出的光源模块,参见图8A至图8C,光源模块中还包括告警灯513。其中,告警灯513设置于壳体511内部的第二侧,受控于微控制器505。需要说明的是,本申请对于光源模块中包括的告警灯的数量不做限定,图8C仅以包含三个告警灯为例进行介绍。
图8A至图8C所示实施例与图7A至图7C所示实施例的不同之处在于,光连接器适配器510采用了SENKO公司的连接器。
在另一实施例中,可替换地,光源接头501可以设置为多个,以增强出光的功率。例如,可以在容纳腔内设置多个光源,每个光源分别连接于多个光源接头501中的一个。
采用多光源及光源接头出光,可以增大光源模块的光通道的数量,在同等光通道数量的要求下,也可以降低交换机光连接端口的密度需求。
本申请还提出了一种光源模块的配套插座。参见图9A至图9C,示例性地展示了本申请实施例提出的一种配套插座。图9A为本申请提出的配套插座的主视图,图9B为图9A所示的配套插座的沿图9A所示的C-C方向的剖面图,图9C为图9A所示的配套插座的侧视图(右视图)。
本申请提出的配套插座包括光信号收发接口900、光源接口901、电连接器902以及位于电连接器902中的电接口。
额外地或可替换地,光信号收发接口900可以包括两个定位导引针9001,光源接口901也可以包括两个定位导引针9011。光信号收发接口900与光源模块的光信号收发接头500对应,耦合或压接单模光纤。光源接口901与光源模块的光源接头501对应,耦合或压接保偏光纤。
额外地或可替换地,,配套插座还可以包括两个弹簧903和定位销904。定位销904与光信号收发接口900和/或所述光源接口901沿第二方向层叠设置。光信号收发接口900和所述光源接口901在第二方向上位于所述定位销904和所述电连接器902之间,且定位销904连接于所述电连接器902。两个弹簧903中的第一弹簧903a的一端连接于定位销904,另一端连接于光信号收发接口900,两个弹簧903中的第二弹簧903b的一端连接于定位销904,另一端连接于光源接口901。由于定位稍904为配套插座中的固定结构,因此第一弹簧903a可以提供弹力给光信号收发接口900,以加强插接后的光信号收发接口900与光源模块的光信号收发接头500之间的连接。第二弹簧903b可以提供弹力给光源接口901,以加强光源接口901与光源模块的光源接头501之间的连接。
为了便于理解插接的过程,参见图9D,图9D示出了光源模块与配套插座插接过程。参见图9D中的(a),在进行插接时,可以首先基于光源模块的电接头502与配套插座的电连接器902中的电接口进行初级定位。参见图9D中的(b),可以基于光源模块的定位护套512与配套插座的定位稍904进行次级定位。参见图9D中的(c),可以基于光源模块的定位引导孔5011和配套插座的定位导引针9011,以及基于光源模块的定位引导孔5003和配套插座的定位导引针9001进行末级定位。参见图9D中的(d),图9D的(d)示出了基于定位插接完成的光源模块和配套插座。参见图9D中的(e),可以在插接完成后继续推进光源模块,以使配套插座中的弹簧903压缩。
参见图9A或图9C,额外地或可替换地,电连接器902的底部还包括压接定位销9021,用于在配套插座压接于交换机的电路板时进行定位。电连接器902的底部还包括压接针9022用于实现配套插座压接于交换机的电路板。为了便于理解,参见图9E,图9E示例性地展示了配套插座压接于交换机的电路板的正视图。参见图9F,图9F示例性地展示了配套插座压接于交换机的电路板之后的侧视图。
下面,对光源模块插接配套插座以及配套插座压接于交换机均完成后的系统进行介绍。参见图10A至图10C,为本申请一实施例提供的一种交换机系统的示意图。图10A为系统的俯视图,图10B为系统的正视图,图10C为系统的侧视图。本申请提出的系统中包括交换机芯片、光引擎、光纤、光纤转接盒、配套插座和光源模块。光纤转接盒又称为光纤终端盒,一端可以连接光缆,另一端连接尾纤,可以用于将一条光缆拆分成多条光纤,以及提供光纤与光纤的熔接或者光纤与尾纤的熔接。需要说明的是,图10A至图10C仅作为一种示例,本申请对于系统中包括的光引擎、光纤、配套插座和光源模块的数量均不作具体限定。图10A至图10C中示例性地 展示了分为A、B两层共32个光源模块以及对应的配套插座。
图10A至图10C展示了系统的示意图,下面结合图10A至图10C示例的系统对光信号的传输过程进行具体介绍。参见图11,图11示例性地展示了光信号的传输过程。
图11示出的光信号的发送过程如下。
光源503输出光(例如可以为4路光,表示为CW×4),CW×4通过光源接头501、配套插座的光源接口901以及尾纤互联,待光纤转接盒调整线序,再传输至光引擎中。
额外地或可替换地,光引擎在对CW×4进行光电调制之前,可以首先确定调制器的类型是否匹配。例如,若调制器为4通道调制器,则可以直接对CW×4进行调制,若调制器为16通道调制器,则可以先对CW×4进行分光处理再进行光电调制。
具体地,光引擎在进行光电调制时,可以由光引擎中的光收发芯片对CW×4进行分光处理,再输入到调制器中进行调制。调制后输出的光信号(以调制器为16通道为例,输出的16路光信号表示为TX×16)通过光纤返回至光纤转接盒调整线序,然后互联到配套插座的光信号收发接口900,再到光源模块的光信号收发接头500。最后,可以通过光信号收发接头500将TX×16传输到光连接器适配器510,通过光连接器适配器510向外部设备发送TX×16。
图11示出的光信号的接收过程如下。
光连接器适配器510接收来自外部设备的光信号(例如,接收的光信号为16通道时,表示为RX×16),光连接器适配器510通过光源模块内部的光纤将RX×16传输至光信号收发接头500。在通过配套插座的光信号收发接口900及其互联的尾纤,RX×16被传输到光线转接盒以调整线序,最后传输至光引擎。
可选地,图11中未示出的是,系统中还可以包括交换机的线卡,用于为光引擎提供电能。
以上各示例性实施例介绍的光源模块以及配套插座可以满足400G传输速率的交换机,为了支持更大的传输速率,本申请还提出了可以通过设置分光器来增加光信号的传输速率的光源模块。
图12A至图12C为本申请又一实施例提供的光源模块的结构示意图。图12A为本实施例提供的光源模块的主视图,图12B为图12A所示实施例的光源模块的沿图12A所示的B-B方向的剖面图,图12C为图12A所示实施例的光源模块的侧视图(包括左视图和右视图)。
可选地,如图12A至图12C所示,光源模块包括的光信号收发接头500、光源接头501、电接头502、光源503、微控制器505、存储器506、光连接器适配器510和壳体511等结构可以参见上述各示例性实施例,在此不再赘述。相较于前述各示例性实施例的光源模块,参见图12A至图12C,光源模块还包括分光器504。其中分光器504设置于光源503和光源接头501之间,用于对光源503发出的光进行分光处理,并向光源接头501传输分光处理后得到的多路光。
在具体实施时,可以根据分光器分光的比例调整光源的功率,得到分光后仍能满足光功率的需求。
额外地或可替换地,本申请示例性实施例还提出了在压接于交换机电路版的两层配套插座之间增加风道,以增强光源模块的散热能力。例如,参见图13A,展示了加入风道后配套插座压接于交换机的电路板之后的正 视图。参见图13B,示例性地展示了加入风道后配套插座压接于交换机的电路板之后的侧视图。
具体地,如图13A和13B所示,提供了一种双层配套插座,在上层配套插座905和下层配套插座906之间设有风道907,所述风道907配置为对上层配套插座905和下层配套插座906之间进行散热。额外地,风道907中还可以容纳下层配套插座906的散热组件,提高下层配套插座906在光源模块插入时的散热性能。
示例性地,下面对基于图12A至图12C提出的光源模块构建的交换机系统进行介绍。参见图14A至图14C,本申请示例性实施例提供了一种系统的示意图。图14A为系统的俯视图,图14B为系统的正视图,图14C为系统的侧视图。本实施例提出的系统中包括交换机芯片、光引擎、光纤、光纤转接盒、配套插座和光源模块。需要说明的是,图14A至图14C仅作为一种示例,本申请对于系统中包括的光引擎、光纤、配套插座和光源模块的数量均不作具体限定。图14A至图14C中示例性地展示了分为四层共64个光源模块以及对应的配套插座。
本申请还提出了可以将本申请提出的可插拔的光源模块与传统的可插拔光模块或者传统技术中的线性可插拔光模块混合使用的方式。
参照图15A至图15C,若共有128个光源模块,则可以使用64个本申请提出的光源模块,64个传统的可插拔光模块(或线性可插拔光模块)。图15A为系统的俯视图,图15B为系统的主视图,图15C为系统的侧视图。需要说明的是,系统中包括的本申请提出的可插拔光源模块可以采用上述任一实施例中提出的光源模块。
具体地,参照图15C,第1至4列及第13至16列采用本申请实施例所提供的可插拔光源模块。结合图15C参照图15B,图15B示出了采用本申请提供的光源模块的第1至4列及第13至16列中任意一列与通信设备连接的连接示意图。本实施例中,每1列的8个光源模块分成两组,每组由4个光源模块组成。每组光源模块分别通过光纤连接于一个光纤转接盒以调整线序。两个光纤转接盒均同时连接于交换机的一个光引擎上。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种光源模块,包括:
    壳体,所述壳体内部设有容纳腔;
    光源,位于所述容纳腔内且配置为发出光;
    光源接头,位于所述容纳腔的第一侧并伸出所述壳体,且配置为接收并向通信设备输出所述光源发出的光;
    光信号收发接头,位于所述容纳腔的所述第一侧并伸出所述壳体,且配置为与所述通信设备进行光信号的传输;以及
    光连接器适配器,位于所述容纳腔的第二侧,配置为与所述光信号收发接头进行光信号的传输;
    其中,所述第二侧为与所述容纳腔的所述第一侧相对的一侧。
  2. 根据权利要求1所述的光源模块,其中,所述光源模块还包括:
    保偏光纤,所述保偏光纤的一端连接于所述光源,所述保偏光纤的另一端连接于所述光源接头;以及
    单偏光纤,所述单偏光纤的一端连接于所述光连接器适配器,所述单偏光纤的另一端连接于所述光信号收发接头。
  3. 根据权利要求1或2所述的光源模块,其中,所述光信号收发接头和所述光源接头在所述第一侧沿第一方向并列设置,其中,所述第一方向垂直于所述光源模块的插接方向。
  4. 根据权利要求1至3中任一项所述的光源模块,其中,所述光源模块还包括:
    分光器,位于所述光源与所述光源接头之间,配置为对所述光源发出的光进行分光以得到多路光。
  5. 根据权利要求1至4中任一项所述的光源模块,其中,所述光源模块还包括:
    分波器,位于所述光连接器适配器和所述光信号收发接头之间,配置为对所述光连接器适配器输出的至少一路光信号进行分离,并向所述光信号收发接头发送分离后的多路光信号。
  6. 根据权利要求1至5中任一项所述的光源模块,其中,所述光源模块还包括:
    合波器,位于所述光连接器适配器和所述光信号收发接头之间,配置为对所述光信号收发接头输出的多路光信号进行合并,并向所述光连接器适配器发送合并后的至少一路光信号。
  7. 根据权利要求1至6中任一项所述的光源模块,其中,所述光源模块还包括:
    电接头,位于所述容纳腔的第一侧且伸出所述壳体,且配置为为所述光源模块供电;
    其中,所述电接头与所述光信号收发接头和/或所述光源接头沿第二方向层叠设置,其中,所述第一方向与所述第二方向垂直。
  8. 根据权利要求7所述的光源模块,其中,所述电接头在所述第二方向和第三方向形成的投影平面上的投影的长度大于所述光信号收发接头或所述光源接头在所述投影平面上的投影的长度,其中,所述第三方向分别垂直于所述第一方向和所述第二方向。
  9. 根据权利要求1至8中任一项所述的光源模块,其中,所述光源模块还包括:
    定位护套,位于所述第一侧,且配置为在插接所述光源模块时定位所述光源模块的插接位置。
  10. 根据权利要求1至9中任一项所述的光源模块,其中,所述光源接头和/或所述光信号收发接头,还包括:
    定位引导孔,配置为在插接所述光源模块时定位所述光源接头和/或所述光信号收发机头的插接位置。
  11. 根据权利要求1至10中任一项所述的光源模块,其中,所述光源模块还包括:
    微控制器,位于所述容纳腔内且连接于所述电接头,配置为通过所述电接头接收来自所述通信设备的匹配信息;以及
    告警灯,位于所述第二侧且连接于所述微控制器,配置为指示所述光源模块插接后与所述通信设备的匹配状态;
    其中,所述微控制器根据所述匹配信息确定所述通信设备与所述光源模块的匹配结果,并基于所述匹配结果控制所述告警灯的亮灯方式。
  12. 根据权利要求1至11中任一项所述的光源模块,其中,所述光连接器适配器为MPO连接器或SN连接器。
  13. 根据权利要求1至12中任一项所述的光源模块,其中,所述光源模块还包括:
    保护罩,位于所述第一侧并从所述壳体伸出,以保护所述光信号收发接头和所述光源接头。
  14. 一种光源模块的配套插座,分别连接于通信设备和权利要求1至13中任一项所述的光源模块,其中,所述配套插座包括:
    光信号收发接口,位于所述配套插座的用于插接所述光源模块的一侧并连接于所述通信设备的光引擎,且配置为与所述光引擎进行光信号的传输;以及
    光源接口,位于所述配套插座的用于插接所述光源模块的一侧并连接于所述光引擎,且配置为将接收到的来自所述光源模块的光传输至所述光引擎。
  15. 根据权利要求14所述的配套插座,其中,所述光信号收发接口配置为压接或耦合单模光纤,所述光源接口配置为压接或耦合保偏光纤。
  16. 根据权利要求14或15所述的配套插座,其中,所述配套插座还包括:
    电连接器,位于所述配套插座的连接所述通信设备的一侧,且配置为基于电路板提供的电能为所述配套插座供电;以及
    定位销,配置为与所述光信号收发接口和/或所述光源接口沿与所述第一方向垂直的第二方向层叠,且所述定位销的一端连接于所述电连接器;
    其中,所述光信号收发接口和所述光源接口位于所述定位销和所述电连接器之间。
  17. 根据权利要求16所述的配套插座,其中,所述配套插座还包括:
    第一弹簧,所述第一弹簧的一端连接于所述定位销,另一端连接于所述光信号收发接口;以及
    第二弹簧,所述第二弹簧的一端连接于所述定位销,另一端连接于所述光源接口。
  18. 一种光信号的传输方法,应用于根据权利要求1至13中任一项所述的光源模块,其中,所述方法包括:
    所述光源模块的所述光源向所述光源接头发送光;
    所述光源模块的所述光源接头向所述通信设备输出所述光源发出的所述 光,其中,所述光在所述通信设备中进行光电转换处理后生成第二光信号;
    所述光源模块的所述光信号收发接头接收所述通信设备返回的第二光信号,并将所述第二光信号发送至所述光连接器适配器;以及
    所述光连接器适配器向所述外部设备发送所述第二光信号。
  19. 根据权利要求18所述的方法,其中,在所述向所述外部设备发送所述第二光信号之前,所述方法还包括:
    在所述光信号收发接头接收所述通信设备返回的至少两个第四光信号;以及
    所述光源模块的合波器将所述至少两个第四光信号合并得到所述第二光信号。
  20. 根据权利要求18或19所述的方法,其中,在所述光源模块的所述光源接头向所述通信设备输出所述光源发出的所述光之前,所述方法还包括:
    所述光源模块的分光器对所述光源发出的所述光进行分光以得到多路光;以及
    所述光源接头向所述通信设备输出所述多路光。
PCT/CN2023/122962 2022-09-28 2023-09-28 光源模块、光源模块的配套插座及光信号传输方法 WO2024067871A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211188064.X 2022-09-28
CN202211188064.XA CN117834029A (zh) 2022-09-28 2022-09-28 一种光源模块、光源模块的配套插座及光信号传输方法

Publications (1)

Publication Number Publication Date
WO2024067871A1 true WO2024067871A1 (zh) 2024-04-04

Family

ID=90476445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/122962 WO2024067871A1 (zh) 2022-09-28 2023-09-28 光源模块、光源模块的配套插座及光信号传输方法

Country Status (2)

Country Link
CN (1) CN117834029A (zh)
WO (1) WO2024067871A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130272643A1 (en) * 2012-04-11 2013-10-17 Cisco Technology, Inc. Silicon Photonics Structures with Pluggable Light Sources
CN110768743A (zh) * 2019-09-26 2020-02-07 武汉光迅科技股份有限公司 一种光模块
CN112817098A (zh) * 2019-11-18 2021-05-18 青岛海信宽带多媒体技术有限公司 一种光模块
CN113917631A (zh) * 2021-10-20 2022-01-11 东莞立讯技术有限公司 共封装集成光电模块及共封装光电交换芯片结构
CN114079509A (zh) * 2020-08-20 2022-02-22 华为技术有限公司 光源模块和光通信设备
CN114690348A (zh) * 2020-12-14 2022-07-01 广达电脑股份有限公司 光纤布线组合件以及共封装光学交换器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130272643A1 (en) * 2012-04-11 2013-10-17 Cisco Technology, Inc. Silicon Photonics Structures with Pluggable Light Sources
CN110768743A (zh) * 2019-09-26 2020-02-07 武汉光迅科技股份有限公司 一种光模块
CN112817098A (zh) * 2019-11-18 2021-05-18 青岛海信宽带多媒体技术有限公司 一种光模块
CN114079509A (zh) * 2020-08-20 2022-02-22 华为技术有限公司 光源模块和光通信设备
CN114690348A (zh) * 2020-12-14 2022-07-01 广达电脑股份有限公司 光纤布线组合件以及共封装光学交换器
CN113917631A (zh) * 2021-10-20 2022-01-11 东莞立讯技术有限公司 共封装集成光电模块及共封装光电交换芯片结构

Also Published As

Publication number Publication date
CN117834029A (zh) 2024-04-05

Similar Documents

Publication Publication Date Title
US11121776B2 (en) Faceplate pluggable remote laser source and system incorporating same
US8727793B2 (en) Optical module design in an SFP form factor to support increased rates of data transmission
US7494287B2 (en) Integrated optical fiber and electro-optical converter
TWI557456B (zh) 光電收發器模組及主動光纖纜線
US7798820B2 (en) Communications module edge connector having multiple communication interface pads
US6951426B2 (en) Pad architecture for backwards compatibility for bi-directional transceiver module
US11165509B1 (en) Method for co-packaging light engine chiplets on switch substrate
WO2022037114A1 (zh) 复合模块、复合缆组件及其制造方法
CN111147130B (zh) 光源备份方法、装置以及系统
JP2008090232A (ja) 光送受信器
US20230119332A1 (en) Usb connector for fiber optic cable and related usb extender
WO2011035696A1 (zh) 一种光模块
WO2020088507A1 (zh) 可插拔光源模块
CN108696316A (zh) 光通信模块及其使用的光调制器
US9429724B2 (en) Stackable interface modules for customized network functions
WO2022001216A1 (zh) 一种转换器以及传输系统
CN213302590U (zh) 光模块
US20220385023A1 (en) Optical fiber amplifier compatible with small form-factor pluggables (sfp+) package
WO2024067871A1 (zh) 光源模块、光源模块的配套插座及光信号传输方法
TW201608293A (zh) 雙向光傳輸次組件
CN114488425B (zh) 一种光模块
WO2023104198A1 (zh) 合分波装置、光电合封交换机系统
CN219802341U (zh) 一种波分复用装置
CN114488426A (zh) 一种光模块
CN118265936A (zh) 光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871095

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023871095

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023871095

Country of ref document: EP

Effective date: 20240515