WO2024066696A1 - 一种热管理系统及电动汽车 - Google Patents

一种热管理系统及电动汽车 Download PDF

Info

Publication number
WO2024066696A1
WO2024066696A1 PCT/CN2023/108739 CN2023108739W WO2024066696A1 WO 2024066696 A1 WO2024066696 A1 WO 2024066696A1 CN 2023108739 W CN2023108739 W CN 2023108739W WO 2024066696 A1 WO2024066696 A1 WO 2024066696A1
Authority
WO
WIPO (PCT)
Prior art keywords
passage
inlet
port
outlet
condenser
Prior art date
Application number
PCT/CN2023/108739
Other languages
English (en)
French (fr)
Inventor
胡浩茫
李�浩
王金龙
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024066696A1 publication Critical patent/WO2024066696A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices

Definitions

  • the present application relates to the field of thermal management technology, and in particular to a thermal management system and an electric vehicle.
  • Electric vehicles have been increasingly used in the field of power electronics. Electric vehicles achieve endurance and driving by storing electrical energy, allowing users to charge their vehicles directly at home. Compared with traditional vehicles, electric vehicles are not only beneficial to environmental protection, but also do not require users to go to gas stations to refuel, which helps to improve the convenience of users' lives.
  • the air conditioning system is used to adjust the temperature and humidity in the car to provide passengers with a comfortable riding environment.
  • the compressor cannot work normally due to the low temperature and pressure of the cooling medium at the compressor inlet, making the air conditioning system unable to heat.
  • further research is needed on the thermal management of electric vehicles at this stage.
  • the present application provides a thermal management system and an electric vehicle to achieve a heating function in a low-temperature environment.
  • the present application provides a thermal management system.
  • the thermal management system includes a first valve body, a water pipeline, a cooler, a compressor and a heating unit. Specifically, the inlet and outlet of the water pipeline are respectively connected to the first valve body.
  • the cooler has a first passage and a second passage that are isolated from each other. The inlet of the first passage of the cooler is connected to the outlet of the compressor, and the outlet of the first passage of the cooler is connected to the inlet of the compressor to form a first liquid cooling circuit. The inlet of the second passage of the cooler and the outlet of the second passage of the cooler are respectively connected to the first valve body.
  • the first valve body can be configured to switch between different connection states.
  • Different connection states can include a second passage and a water pipeline connected to the cooler to form a first water circuit, so that the first water circuit and the first liquid cooling circuit are heat exchanged.
  • the heating unit can be arranged at the inlet of the first liquid cooling circuit, the second passage of the cooler or the water pipeline.
  • the heating unit can directly heat the first liquid cooling circuit where the compressor is located, or can also heat the second passage or water pipeline of the cooler to indirectly heat the compressor, thereby increasing the temperature and pressure inside the compressor, so that the compressor can start normally in a low temperature environment, thereby enabling the thermal management system to heat the passenger compartment of the electric vehicle.
  • the first valve body may include a first port, a second port, a fifth port, and a sixth port.
  • the thermal management system may further include a passenger compartment air conditioning box, a first condenser, and a first pump.
  • the inlet of the second passage of the cooler is connected to the fifth port of the first valve body, and the outlet of the second passage of the cooler is connected to the sixth port of the first valve body.
  • the first condenser has a first passage and a second passage that are isolated.
  • the first passage of the first condenser is located between the compressor and the first passage of the cooler, and the inlet of the first passage of the first condenser is connected to the outlet of the compressor, and the outlet of the first passage of the first condenser is connected to the inlet of the first passage of the cooler.
  • the passenger compartment air conditioning box has a first passage and a second passage that are isolated. The inlet of the first passage of the passenger compartment air conditioning box is connected to the outlet of the compressor, and the outlet of the first passage of the passenger compartment air conditioning box is connected to the inlet of the compressor to form a second liquid cooling circuit.
  • the water pipeline includes a first pipeline, and the first pipeline passes through the first pump, the second passage of the passenger compartment air conditioning box, and the second passage of the first condenser in sequence.
  • the inlet of the first pump is connected to the second port of the first valve body, and the outlet of the second passage of the first condenser is connected to the first port of the first valve body.
  • the second passage and the water pipeline connected to the cooler may specifically include connecting the second passage and the first pipeline of the cooler, that is, being connected.
  • different connection states may also include connecting the first pipeline so that the first pipeline forms a second water circuit through the first valve body to achieve self-circulation, so that the second water circuit can exchange heat with the first liquid cooling circuit through the passenger compartment air conditioning box.
  • first valve body may further include a third port and a fourth port.
  • the thermal management system may further include a second pump and a battery.
  • the water pipeline may further include a second pipeline. The second pipeline may pass through the second pump and the battery in sequence, wherein the inlet of the second pump is connected to the third port of the first valve body, the outlet of the second pump is connected to the inlet of the battery, and the outlet of the battery is connected to the fourth port of the first valve body.
  • the water pipeline may further include a second three-way valve, the second three-way valve having a first port, a second port and a third port, and the second three-way valve may divide the second pipeline into two branches.
  • the first port of the second three-way valve is connected to the outlet of the second pump, and the second The second port of the three-way valve is connected to the inlet of the battery, and the third port of the second three-way valve is connected to the fourth port of the first valve body.
  • the first pipeline and the second pipeline of the water pipeline can be connected through the first valve body, or can also be connected through other valve bodies.
  • the water pipeline can also include a first three-way valve.
  • the first three-way valve has a first port, a second port and a third port, the first port of the first three-way valve is connected to the inlet of the second passage of the first condenser, the second port of the first three-way valve is connected to the outlet of the first pump, and the third port of the first three-way valve is connected to the inlet of the second pump.
  • a third one-way valve may be provided between the inlet of the second pump and the inlet of the second passage of the first condenser, and the third one-way valve is used to unidirectionally connect the inlet of the second pump and the inlet of the second passage of the first condenser.
  • the first valve body when the first valve body is switched to the connection state of the second passage and the water pipeline connected to the cooler, it can specifically include the second passage and the second pipeline connected to the cooler.
  • the first valve body can also be switched to other connection states.
  • different connection states can also include connecting the first pipeline and the second pipeline respectively to form a third water circuit.
  • the first pipeline and the second pipeline can circulate separately, and the first pipeline and the second pipeline can be connected through the first three-way valve, so that the third water circuit is heat exchanged with the first liquid cooling circuit through the passenger compartment air conditioning box.
  • first pipeline and the second pipeline can be directly connected through the first valve body, that is, different connection states can also include connecting the first pipeline and the second pipeline to form a fourth water circuit, so that the fourth water circuit is heat exchanged with the first liquid cooling circuit through the passenger compartment air conditioning box.
  • the first valve body may further include a seventh port, an eighth port and a ninth port.
  • the thermal management system may further include a third pump and an electric drive device.
  • the water pipeline may further include a third pipeline, the third pipeline passes through the electric drive device and the third pump, wherein the inlet of the electric drive device is connected to the seventh port of the first valve body and/or the ninth port of the first valve body, the outlet of the electric drive device is connected to the inlet of the third pump, and the outlet of the third pump is connected to the eighth port of the first valve body.
  • the water pipeline may further include a third three-way valve, the third three-way valve having a first port, a second port and a third port.
  • the first port of the third three-way valve is connected to the seventh port of the first valve body or the ninth port of the first valve body V1.
  • the second port of the third three-way valve is connected to the inlet of the electric drive device, the third port of the third three-way valve is connected to the inlet of the heating unit, and the outlet of the heating unit is connected to the inlet of the third pump.
  • the water pipeline may also include a front cabin thermal management component, the inlet of the front cabin thermal management component may be connected to the seventh port of the first valve body, and the outlet of the front cabin thermal management component is connected to the inlet of the electric drive device.
  • the first valve body when switched to a state of connecting the second passage of the cooler and the water pipeline, it may specifically include connecting the second passage of the cooler and the third pipeline, so that the third pipeline exchanges heat with the first liquid cooling circuit through the second passage of the cooler.
  • the connected state may also include connecting the second passage of the cooler, the second pipeline and the third pipeline, so that the three pipelines are connected and circulated.
  • the first passage of the passenger compartment air conditioner may be provided with an evaporator, and the second passage of the passenger compartment air conditioner may be provided with a heater core.
  • the first passage of the passenger compartment air conditioner may be provided with an evaporator, and the second passage of the passenger compartment air conditioner may be provided with a second condenser.
  • the present application provides an electric vehicle.
  • the electric vehicle includes a controller and the thermal management system described in the first aspect.
  • the controller is connected to the first valve body of the thermal management system.
  • the controller is used to control the first valve body to switch to different connection states, so that the thermal management system operates in any mode of heating the passenger compartment alone, heating the battery alone, or heating the passenger compartment and the battery at the same time.
  • the electric vehicle can freely switch between any mode of heating the passenger compartment alone, heating the battery alone, or heating the passenger compartment and the battery at the same time, which helps to heat the passenger compartment in a low temperature environment and improve the user's driving experience.
  • the present application provides a thermal management system.
  • the thermal management system includes a thermal system loop, and a heater arranged in the thermal system loop.
  • the thermal system loop may include a compressor, a cooler, and a passenger compartment air-conditioning box.
  • the cooler has a first passage
  • the passenger compartment air-conditioning box has a first passage.
  • the inlet of the first passage of the cooler and the inlet of the first passage of the passenger compartment air-conditioning box are respectively connected to the outlet of the compressor.
  • the outlet of the first passage of the cooler and the outlet of the first passage of the passenger compartment air-conditioning box are respectively connected to the inlet of the compressor.
  • the thermal system loop is provided with a first cooling medium.
  • the first cooling medium circulates between the compressor and the first passage of the cooler, and between the compressor and the first passage of the passenger compartment air-conditioning box.
  • the heater is used to heat the first cooling medium.
  • the first cooling medium circulates between the compressor and the cooler to form a first loop; the first cooling medium circulates between the compressor and the first passage of the passenger compartment air conditioning box to form a second loop.
  • the heater can heat the first cooling medium in the thermal system loop, thereby increasing the temperature and pressure of the first cooling medium entering the compressor. In this way, even in a low temperature environment, the compressor can start normally, allowing the thermal management system to heat the passenger compartment of the electric vehicle.
  • the thermal system circuit may further include a first throttle valve.
  • the first throttle valve is connected between the outlet of the first passage of the passenger compartment air conditioning box and the inlet of the compressor, and is used to connect or close the outlet of the first passage of the passenger compartment air conditioning box and the inlet of the compressor.
  • the first throttle valve When the first throttle valve is opened, the outlet of the first passage of the passenger compartment air conditioning box is connected to the inlet of the compressor, that is, the first cooling medium can be simultaneously
  • the first throttle valve is closed, the outlet of the first passage of the passenger compartment air conditioning box and the inlet of the compressor are closed, that is, the first cooling medium circulates only in the first loop. In this way, the circulation flow path and flow rate of the first cooling medium can be controlled by controlling the first throttle valve.
  • the heater can be an independently set heating device, that is, it can be set separately in the thermal system loop.
  • the heater can be set between the cooler and the compressor, wherein the inlet of the heater is connected to the outlet of the first passage of the cooler, and the outlet of the heater is connected to the inlet of the compressor, so that the heater can heat the first cooling medium in the first loop.
  • the heater can also be set at the inlet of the compressor, wherein the inlet of the heater is connected to the outlet of the first passage of the cooler and the outlet of the first passage of the passenger compartment air-conditioning box, and the outlet of the heater is connected to the inlet of the compressor, so that the heater can heat the first cooling medium in the first loop and the second loop.
  • the heater may be provided in the compressor.
  • the heater may include a connected compressor motor and a motor controller.
  • the compressor may include a compressor body and a scroll disposed on the compressor body.
  • the compressor motor is connected to the scroll.
  • the compressor motor is used to provide a power source to the compressor. Since the compressor motor generates more heat in the inefficient mode than in the normal working state, the technical solution can utilize the excess heat generated by the compressor motor in the inefficient mode to heat the first cooling medium, thereby simplifying the structure of the thermal management system.
  • the thermal system loop may also include a first condenser, and the first condenser has a first passage.
  • the inlet of the first passage of the first condenser is connected to the outlet of the compressor, and the outlet of the first passage of the first condenser is connected to the inlet of the first passage of the cooler and the inlet of the first passage of the passenger compartment air conditioning box.
  • the first loop includes the compressor, the first passage of the first condenser, and the first passage of the cooler;
  • the second loop includes the compressor, the first passage of the first condenser, and the passenger compartment air conditioning box.
  • the first cooling medium flowing out of the outlet of the compressor is a high-temperature and high-pressure liquid, which is subjected to primary heat exchange through the first condenser.
  • the first cooling medium output by the first condenser is a high-temperature and high-pressure liquid, and the first cooling medium can then be divided into two parts, one part flows into the cooler for secondary heat exchange, and the other part flows into the passenger compartment air conditioning box through the throttle valve to achieve cooling of the passenger compartment.
  • the passenger compartment air conditioning box may also have a second passage, wherein the first passage of the passenger compartment air conditioning box is isolated from the second passage.
  • the first passage of the passenger compartment air conditioning box may be provided with an evaporator, and the second passage of the passenger compartment air conditioning box may be provided with a warm air core.
  • the first condenser may also have a second passage, and the first passage of the first condenser is isolated from the second passage.
  • the thermal management system may also include a first valve body.
  • the first valve body includes a first passage, and the first passage of the first valve body has a first port and a second port.
  • the thermal system loop may also include a first pump.
  • the second port of the first valve body is connected to the inlet of the first pump, the outlet of the first pump is connected to the inlet of the warm air core, the outlet of the warm air core is connected to the inlet of the second passage of the first condenser, and the outlet of the second passage of the first condenser is connected to the first port of the first valve body.
  • the thermal system loop is also provided with a second cooling medium, and the first pump is used to drive the second cooling medium to circulate in the third loop formed between the second passage of the first condenser and the warm air core. In this way, the heat exchanged by the second cooling medium in the first condenser can be blown out through the warm air core, thereby heating the air in the passenger compartment.
  • the thermal system loop may further include a first liquid storage tank.
  • the inlet of the first liquid storage tank is connected to the outlet of the first passage of the first condenser, and the outlet of the first liquid storage tank is connected to the inlet of the first passage of the cooler and the inlet of the evaporator.
  • the first liquid storage tank may store a certain amount of liquid cooling medium in the thermal system loop to ensure a certain annual leakage of the cooling medium.
  • the thermal system loop may also include a gas-liquid separator.
  • the inlet of the gas-liquid separator is connected to the outlet of the first passage of the cooler and the outlet of the evaporator, and the outlet of the gas-liquid separator is connected to the inlet of the compressor.
  • This design can not only use the gas-liquid separator to store liquid, but also use the gas-liquid separator to retain the liquid in the gas-liquid mixture and only allow the gas to flow into the compressor to improve the compression effect of the compressor.
  • the thermal system loop may also include a first liquid storage tank and a gas-liquid separator at the same time.
  • the passenger compartment air conditioning box may also have a second passage, wherein the first passage of the passenger compartment air conditioning box is isolated from the second passage of the passenger compartment air conditioning box.
  • the first passage of the passenger compartment air conditioning box is provided with an evaporator
  • the second passage of the passenger compartment air conditioning box is provided with a second condenser.
  • the inlet of the second condenser is connected to the outlet of the compressor, and the outlet of the second condenser is connected to the inlet of the first passage of the cooler and the inlet of the evaporator.
  • the first condenser also has a second passage, and the first passage of the first condenser is isolated from the second passage of the first condenser.
  • the thermal management system also includes a first valve body, the first valve body includes a first passage, and the first passage of the first valve body has a first port and a second port.
  • the thermal system loop also includes a first pump. The second port of the first valve body is connected to the inlet of the first pump, the outlet of the first pump is connected to the inlet of the second passage of the first condenser, and the outlet of the second passage of the first condenser is connected to the first port of the first valve body.
  • the thermal system loop is also provided with a second cooling medium, and the first pump is used to drive the second cooling medium to circulate in the second passage of the first condenser.
  • the first cooling medium flowing out of the outlet of the compressor can flow into the second condenser.
  • the low-temperature and low-pressure first cooling medium in the evaporator exchanges heat with the high-temperature and high-pressure first cooling medium in the second condenser, so that the passenger compartment The air blown out by the air conditioner can be maintained at a relatively suitable temperature.
  • the thermal system loop may further include a second liquid storage tank.
  • the inlet of the second liquid storage tank is connected to the outlet of the first passage of the first condenser and the outlet of the second condenser, and the outlet of the second liquid storage tank is connected to the inlet of the first passage of the cooler and the inlet of the evaporator.
  • the first liquid storage tank can store a certain amount of liquid cooling medium in the thermal system loop to ensure a certain annual leakage of the cooling medium.
  • a first one-way valve may be provided between the outlet of the first passage of the first condenser and the inlet of the second liquid storage tank, and the first one-way valve is used to connect the outlet of the first passage of the first condenser to the inlet of the second liquid storage tank in a one-way manner.
  • a second one-way valve is provided between the outlet of the second condenser and the inlet of the second liquid storage tank, and the second one-way valve is used to connect the outlet of the second condenser to the inlet of the second liquid storage tank in a one-way manner. In this way, by controlling the first one-way valve and the second one-way valve, the flow path of the first cooling medium in the thermal system circuit can be controlled.
  • the specific position of the heater is not limited.
  • the heater can be arranged between the first pump and the second passage of the first condenser. Specifically, the inlet of the heater is connected to the outlet of the first pump, and the outlet of the heater is connected to the inlet of the second passage of the first condenser. Alternatively, the inlet of the heater is connected to the outlet of the second passage of the first condenser, and the outlet of the heater is connected to the inlet of the first pump. In this way, the heater can directly heat the second cooling medium, and in the first condenser, the second cooling medium and the first cooling medium perform heat exchange to achieve heating of the first cooling medium.
  • the heater may also be disposed between the first condenser and the passenger compartment air conditioning box. Specifically, the inlet of the heater is connected to the outlet of the first passage of the first condenser, and the outlet of the heater is connected to the inlet of the first passage of the passenger compartment air conditioning box. In this way, the heater can directly heat the first cooling medium entering the first passage of the passenger compartment air conditioning box.
  • the heater may also be disposed between the first condenser and the compressor. Specifically, the inlet of the heater is connected to the outlet of the first passage of the first condenser, and the outlet of the heater is connected to the inlet of the compressor. In this way, a portion of the first cooling medium flowing out of the outlet of the first passage of the first condenser can flow directly into the inlet of the compressor, and the heater can directly heat this portion of the first cooling medium.
  • the thermal management system may also include a battery heat exchange circuit.
  • the battery heat exchange circuit may include a battery and a second pump.
  • the first valve body may also include a second passage and a third passage.
  • the second passage of the first valve body has a third port and a sixth port.
  • the third passage of the first valve body has a fourth port and a fifth port. Specifically, the third port of the first valve body is connected to the inlet of the second pump, the outlet of the second pump is connected to the inlet of the battery, and the outlet of the battery is connected to the fourth port of the first valve body.
  • the cooler also has a second passage, and the first passage of the cooler is isolated from the second passage of the cooler.
  • the fifth port of the first valve body is connected to the inlet of the second passage of the cooler, and the outlet of the second passage of the cooler is connected to the sixth port of the first valve body.
  • the second pump is used to drive the third cooling medium to circulate between the battery heat exchange circuit and the second passage of the cooler. In this way, by controlling the port of the first valve body, the battery heat exchange circuit can be connected or closed to the third loop of the thermal system circuit.
  • the first valve body may further include a fourth passage and a fifth passage.
  • the fourth passage of the first valve body has a first port and a third port
  • the fifth passage of the first valve body has a second port and a fourth port.
  • the inlet of the second pump is connected to the inlet of the second passage of the first condenser.
  • a first three-way valve is provided between the inlet of the second passage of the first condenser and the outlet of the first pump.
  • the first three-way valve has a first port, a second port and a third port.
  • the first port of the first three-way valve is connected to the inlet of the second passage of the first condenser, the second port of the first three-way valve is connected to the outlet of the first pump, and the third port of the first three-way valve is connected to the inlet of the second pump.
  • a third one-way valve may be provided between the inlet of the second pump and the inlet of the second passage of the first condenser.
  • the third one-way valve is used to connect the inlet of the second pump and the inlet of the second passage of the first condenser in a one-way manner to prevent backflow of the cooling medium.
  • the present application provides an electric vehicle.
  • the electric vehicle includes a controller and the thermal management system of the third aspect.
  • the controller is connected to the thermal management system, and the controller is used to control the thermal management system to operate in a mode of heating the passenger compartment alone.
  • the electric vehicle can achieve a mode of heating the passenger compartment alone, which helps to heat the passenger compartment in a low temperature environment and improve the user's driving experience.
  • the thermal management system may further include a first valve body and a battery heat exchange circuit.
  • the controller may be connected to the first valve body.
  • the controller may be used to control the opening or closing of the port of the first valve body to achieve any of the following modes: a mode in which the passenger compartment is heated alone, a mode in which the battery is heated alone, and a mode in which the passenger compartment and the battery are heated simultaneously.
  • electric vehicles can freely switch between any of the modes of heating the passenger compartment alone, heating the battery alone, and heating the passenger compartment and the battery simultaneously, which helps electric vehicles meet the different needs of various users and improve the user's driving experience.
  • the present application provides a thermal management system.
  • the thermal management system may include a thermal system circuit, a first valve body, a battery heat exchanger, A circuit and a heater, wherein the heater is arranged in the battery heat exchange circuit.
  • the first valve body includes a second passage and a third passage.
  • the second passage of the first valve body has a third port and a sixth port.
  • the third passage of the first valve body has a fourth port and a fifth port.
  • the thermal system circuit includes a compressor and a cooler.
  • the cooler has a first passage and a second passage that are isolated from each other.
  • the inlet of the first passage of the cooler is connected to the outlet of the compressor, and the outlet of the first passage of the cooler is connected to the inlet of the compressor.
  • the inlet of the second passage of the cooler is connected to the fifth port of the first valve body, and the outlet of the second passage of the cooler is connected to the sixth port of the first valve body.
  • a first cooling medium is arranged in the thermal system circuit, and the first cooling medium circulates between the compressor and the first passage of the cooler.
  • the battery heat exchange circuit may include a second pump, a second three-way valve and a battery.
  • the second three-way valve has a first port, a second port and a third port.
  • the inlet of the second pump is connected to the third port of the first valve body
  • the outlet of the second pump is connected to the first port of the second three-way valve
  • the second port of the second three-way valve is connected to the inlet of the battery
  • the third port of the second three-way valve and the outlet of the battery are connected to the fourth port of the first valve body.
  • the second pump is used to drive the third cooling medium to circulate between the battery heat exchange loop and the second passage of the cooler.
  • the heater is used to heat the third cooling medium so that the third cooling medium can exchange heat with the first cooling medium in the cooler when circulating in the battery heat exchange loop, and heat the first cooling medium, thereby increasing the temperature and pressure of the first cooling medium entering the compressor. In this way, the compressor can start normally even in a low temperature environment, allowing the thermal management system to heat the passenger compartment of the electric vehicle.
  • the position of the heater is not limited.
  • the inlet of the heater can be connected to the third port of the second three-way valve, and the outlet of the heater can be connected to the fourth port of the first valve body.
  • the inlet of the heater can also be connected to the third port of the second three-way valve and the outlet of the battery, and the outlet of the heater can be connected to the fourth port of the first valve body.
  • the inlet of the heater can also be connected to the fifth port of the first valve body, and the outlet of the heater can be connected to the inlet of the second passage of the cooler.
  • the first valve body may further include a first passage.
  • the first passage of the first valve body has a first port and a second port.
  • the thermal system circuit may further include a first condenser, a passenger compartment air conditioning box, and a first pump.
  • the first condenser has a first passage and a second passage that are isolated from each other, and the passenger compartment air conditioning box includes an evaporator and a heater core.
  • the inlet of the first passage of the first condenser is connected to the outlet of the compressor, the outlet of the first passage of the first condenser is connected to the inlet of the first passage of the cooler and the inlet of the evaporator, and the outlet of the evaporator is connected to the inlet of the compressor.
  • the second port of the first valve body is connected to the inlet of the first pump, the outlet of the first pump is connected to the inlet of the heater core, the outlet of the heater core is connected to the inlet of the second passage of the first condenser, and the outlet of the second passage of the first condenser is connected to the first port of the first valve body.
  • the thermal system circuit is also provided with a second cooling medium, and the first pump is used to drive the second cooling medium to circulate between the second passage of the first condenser and the second passage of the passenger compartment air conditioning box. In this way, the heat exchanged by the second cooling medium in the first condenser can be blown out through the heater core, thereby heating the air in the passenger compartment.
  • the thermal system loop may further include a first liquid storage tank, the inlet of the first liquid storage tank being connected to the outlet of the first passage of the first condenser, and the outlet of the first liquid storage tank being connected to the inlet of the first passage of the cooler and the inlet of the evaporator.
  • the first liquid storage tank may store a certain amount of liquid cooling medium in the thermal system loop to ensure a certain annual leakage of the cooling medium.
  • the thermal system loop may also include a gas-liquid separator, the inlet of the gas-liquid separator is connected to the outlet of the first passage of the cooler and the outlet of the evaporator, and the outlet of the gas-liquid separator is connected to the inlet of the compressor.
  • This design can not only use the gas-liquid separator to store liquid, but also use the gas-liquid separator to retain the liquid in the gas-liquid mixture and only allow the gas to flow into the compressor to improve the compression effect of the compressor.
  • the thermal system loop may also include a first liquid storage tank and a gas-liquid separator at the same time.
  • the first valve body may also include a first passage.
  • the first passage of the first valve body has a first port and a second port.
  • the thermal system loop also includes a first condenser, a passenger compartment air conditioning box and a first pump.
  • the first condenser has a first passage and a second passage that are isolated from each other, and the passenger compartment air conditioning box includes an evaporator and a second condenser.
  • the outlet of the compressor is connected to the inlet of the first passage of the first condenser and the inlet of the second condenser, the outlet of the first passage of the first condenser is connected to the inlet of the first passage of the cooler and the inlet of the evaporator, the outlet of the second condenser is connected to the inlet of the first passage of the cooler and the inlet of the evaporator, and the outlet of the evaporator is connected to the inlet of the compressor.
  • the second port of the first valve body is connected to the inlet of the first pump, the outlet of the first pump is connected to the inlet of the second passage of the first condenser, and the outlet of the second passage of the first condenser is connected to the first port of the first valve body.
  • the thermal system loop is also provided with a second cooling medium, and the first pump is used to drive the second cooling medium to circulate in the second passage of the first condenser.
  • the first cooling medium flowing out of the outlet of the compressor can flow into the second condenser.
  • the low-temperature and low-pressure first cooling medium in the evaporator exchanges heat with the high-temperature and high-pressure first cooling medium in the second condenser, so that the air blown out of the passenger compartment air conditioning box can be maintained at a relatively suitable temperature.
  • the thermal system loop further includes a second liquid storage tank, the inlet of the second liquid storage tank is connected to the outlet of the first passage of the first condenser and the outlet of the second condenser, and the outlet of the second liquid storage tank is connected to the inlet of the first passage of the cooler and the inlet of the evaporator.
  • the first liquid storage tank can store a certain amount of liquid cooling medium in the thermal system loop to ensure a certain annual cooling medium. Leakage amount.
  • a first one-way valve is provided between the outlet of the first passage of the first condenser and the inlet of the second liquid storage tank, and the first one-way valve is used to connect the outlet of the first passage of the first condenser to the inlet of the second liquid storage tank in a one-way manner.
  • a second one-way valve is provided between the outlet of the second condenser and the inlet of the second liquid storage tank, and the second one-way valve is used to connect the outlet of the second condenser to the inlet of the second liquid storage tank in a one-way manner.
  • the present application provides an electric vehicle.
  • the electric vehicle includes a controller and the thermal management system of the fifth aspect described above.
  • the controller is connected to the first valve body of the thermal management system.
  • the controller is used to control the opening or closing of the port of the first valve body, so that the thermal management system operates in any mode of heating the passenger compartment alone, heating the battery alone, or heating the passenger compartment and the battery at the same time.
  • the electric vehicle can freely switch between any mode of heating the passenger compartment alone, heating the battery alone, or heating the passenger compartment and the battery at the same time, which helps to heat the passenger compartment in a low temperature environment and improve the user's driving experience.
  • the present application provides a thermal management system.
  • the thermal management system includes a thermal system loop, a first valve body, an electric drive heat dissipation loop and a heater, and the heater is arranged in the electric drive heat dissipation loop.
  • the first valve body includes a tenth passage, a ninth passage and a twelfth passage.
  • the tenth passage of the first valve body has a fifth port and an eighth port.
  • the ninth passage of the first valve body has a sixth port and a seventh port.
  • the twelfth passage of the first valve body has a sixth port and a ninth port.
  • the thermal system loop may include a compressor and a cooler.
  • the cooler has a first passage and a second passage that are isolated from each other.
  • the inlet of the first passage of the cooler is connected to the outlet of the compressor, and the outlet of the first passage of the cooler is connected to the inlet of the compressor.
  • the inlet of the second passage of the cooler is connected to the fifth port of the first valve body, and the outlet of the second passage of the cooler is connected to the sixth port of the first valve body.
  • the thermal system loop is provided with a first cooling medium, and the first cooling medium circulates between the compressor and the first passage of the cooler.
  • the electric drive heat dissipation loop includes an electric drive device, a third pump, a water tank and a third three-way valve.
  • the inlet of the electric drive device is connected to the seventh port of the first valve body and the ninth port of the first valve body, the outlet of the electric drive device is connected to the water tank and the inlet of the third pump, and the outlet of the heater is connected to the inlet of the third pump.
  • the third pump is used to drive the fourth cooling medium to circulate between the electric drive heat dissipation circuit and the cooler.
  • the third three-way valve has a first port, a second port and a third port. The second port of the third three-way valve is connected to the inlet of the electric drive device, and the third port of the third three-way valve is connected to the inlet of the heater.
  • the first port of the third three-way valve is connected to the ninth port of the first valve body, or the first port of the third three-way valve is connected to the seventh port of the first valve body.
  • the heater is used to heat the fourth cooling medium, so that the fourth cooling medium can exchange heat with the first cooling medium in the cooler when circulating between the electric drive heat dissipation circuit and the cooler, and heat the first cooling medium, thereby increasing the temperature and pressure of the first cooling medium entering the compressor. In this way, even in a low temperature environment, the compressor can start normally, so that the thermal management system can heat the passenger compartment of the electric vehicle.
  • the electric drive heat dissipation circuit may further include a front cabin thermal management component, the inlet of the front cabin thermal management component is connected to the seventh port of the first valve body, and the outlet of the front cabin thermal management component is connected to the inlet of the electric drive device.
  • the second port of the third three-way valve is connected to the inlet of the front cabin thermal management component, or the second port of the third three-way valve is connected to the outlet of the front cabin thermal management component and the inlet of the electric drive device.
  • the present application provides an electric vehicle.
  • the electric vehicle includes a controller and the thermal management system of the seventh aspect.
  • the controller is connected to the thermal management system, and the control device is used to control the opening or closing of the port of the first valve body so that the thermal management system operates in a mode of heating the passenger compartment alone.
  • the electric vehicle can achieve a mode of heating the passenger compartment alone, which helps to heat the passenger compartment in a low temperature environment and improve the user's driving experience.
  • FIG1 is a schematic diagram of a structure of a thermal management system according to a first embodiment of the present application
  • FIG2 is another schematic diagram of the structure of the thermal management system of the first embodiment of the present application.
  • FIG3 is another schematic diagram of the structure of the thermal management system of the first embodiment of the present application.
  • FIG4 is another schematic diagram of the structure of the thermal management system of the first embodiment of the present application.
  • FIG5 is a control schematic diagram of a compressor and a heater according to Embodiment 1 of the present application.
  • FIG6 is another schematic diagram of the structure of the thermal management system of the first embodiment of the present application.
  • FIG7 is another schematic diagram of the structure of the thermal management system of the first embodiment of the present application.
  • FIG8 is another schematic diagram of the structure of the thermal management system of the first embodiment of the present application.
  • FIG9 is another schematic diagram of the structure of the thermal management system of the first embodiment of the present application.
  • FIG10 is another schematic diagram of the structure of the thermal management system of the first embodiment of the present application.
  • FIG11 is another schematic diagram of the structure of the thermal management system of the first embodiment of the present application.
  • FIG12 is another schematic diagram of the structure of the thermal management system of the first embodiment of the present application.
  • FIG13 is another schematic diagram of the structure of the thermal management system of the first embodiment of the present application.
  • FIG14 is another schematic diagram of the structure of the thermal management system of the first embodiment of the present application.
  • FIG15 is a schematic diagram of the thermal management system of FIG6 during the low temperature startup stage
  • FIG16 is a schematic diagram of the thermal management system of FIG15 in a stable stage
  • FIG17 is a schematic diagram of the thermal management system of FIG15 in another stable stage
  • FIG18 is a schematic diagram of another thermal management system in a stable stage according to an embodiment of the present application.
  • FIG19 is a schematic diagram of the thermal management system in FIG10 in a stable stage
  • FIG20 is a schematic diagram of the thermal management system in FIG11 in a stable stage
  • FIG21 is a schematic diagram of the thermal management system in FIG12 in a stable stage
  • FIG22 is a schematic diagram of the thermal management system in FIG9 at a stable stage
  • FIG23 is a schematic diagram of heating the passenger compartment of the thermal management system in FIG9 when the refrigerant system fails;
  • FIG24 is a schematic diagram of passenger cabin heating and battery heating of the thermal management system in FIG9 in the case of a refrigerant system failure;
  • FIG25 is a schematic diagram of the thermal management system in FIG6 heating the passenger compartment under stable working conditions
  • FIG26 is a pressure-specific enthalpy diagram of the thermal management system of FIG25 ;
  • FIG27 is a schematic diagram of battery heating in the thermal management system of FIG6 under low temperature conditions
  • FIG28 is another schematic diagram of the thermal management system in FIG6 heating the battery under low temperature conditions
  • FIG29 is another schematic diagram of the thermal management system in FIG6 heating the battery under low temperature conditions
  • FIG30 is another schematic diagram of the thermal management system in FIG6 heating the battery under low temperature conditions
  • FIG31 is another schematic diagram of the thermal management system in FIG6 heating the battery under extremely low temperature conditions
  • FIG32 is another schematic diagram of the thermal management system in FIG6 heating the passenger compartment and the battery simultaneously under extremely low temperature conditions
  • FIG33 is a schematic diagram of the thermal management system of FIG8 during the low temperature startup stage
  • FIG34 is a schematic diagram of the thermal management system of FIG8 in a stable stage
  • FIG35 is another schematic diagram of the thermal management system of FIG8 in a stable stage
  • FIG36 is a schematic diagram of the thermal management system of FIG8 in a battery fast charging and heating mode
  • FIG37 is another schematic diagram of the thermal management system of FIG8 in a battery fast charging and heating mode
  • FIG38 is another schematic diagram of the thermal management system of FIG8 in a battery fast charging and heating mode
  • FIG39 is a schematic diagram of the thermal management system of FIG8 in a driving hybrid heating mode
  • FIG40 is another schematic diagram of the thermal management system of FIG8 in a driving hybrid heating mode
  • FIG41 is another schematic diagram of the thermal management system of FIG8 in a driving hybrid heating mode
  • FIG42 is another schematic diagram of the thermal management system of FIG8 in a driving hybrid heating mode
  • FIG43 is a schematic diagram of a cooling medium circulation mode of another thermal management system in an embodiment of the present application.
  • FIG44 is a schematic diagram of a cooling medium circulation mode of another thermal management system in an embodiment of the present application.
  • FIG45 is a schematic diagram of a cooling medium circulation mode of another thermal management system in an embodiment of the present application.
  • FIG46 is a schematic diagram of a cooling medium circulation mode of another thermal management system in an embodiment of the present application.
  • FIG47 is a schematic diagram of a structure of a thermal management system according to the second embodiment of the present application.
  • FIG48 is another schematic diagram of the structure of the thermal management system of the second embodiment of the present application.
  • FIG49 is another schematic diagram of the structure of the thermal management system of the second embodiment of the present application.
  • FIG50 is a schematic diagram of the thermal management system in FIG47 heating the passenger compartment in the event of a refrigerant system failure
  • FIG51 is a schematic diagram of the thermal management system in FIG47 heating the battery in the event of a refrigerant system failure
  • FIG52 is another schematic diagram of the structure of the thermal management system of the second embodiment of the present application.
  • FIG53 is another schematic diagram of the structure of the thermal management system of the second embodiment of the present application.
  • FIG54 is another schematic diagram of the structure of the thermal management system of the second embodiment of the present application.
  • FIG55 is a schematic diagram of the thermal management system in FIG54 heating the battery in the event of a refrigerant system failure
  • FIG56 is a schematic diagram of the thermal management system in FIG54 heating the passenger compartment in the event of a refrigerant loop failure
  • FIG57 is another schematic diagram of the structure of the thermal management system of the second embodiment of the present application.
  • FIG58 is another schematic diagram of the structure of the thermal management system of the second embodiment of the present application.
  • FIG59 is a schematic diagram of a structure of a thermal management system according to Embodiment 3 of the present application.
  • FIG60 is another schematic diagram of the structure of the thermal management system of the third embodiment of the present application.
  • FIG61 is another schematic diagram of the structure of the thermal management system of the third embodiment of the present application.
  • FIG62 is another schematic diagram of the structure of the thermal management system of the third embodiment of the present application.
  • Figure 63 is a structural schematic diagram of the thermal management system of Example 4 of the present application.
  • connection in this application refers to connection through a pipeline, that is, “connection” appearing below can be replaced by “connection through a pipeline”.
  • battery below can be understood as the pipeline where the battery is located.
  • FIG1 is a schematic diagram of the structure of a thermal management system of a first embodiment of the present application.
  • the thermal management system may include a thermal system loop and a heater arranged in the thermal system loop.
  • the thermal system loop may include a compressor, a cooler, and a passenger compartment air conditioning box.
  • the cooler has a first passage
  • the passenger compartment air conditioning box has a first passage.
  • the inlet Ca1 of the first passage of the cooler and the inlet Ha1 of the first passage of the passenger compartment air conditioning box are respectively connected to the outlet of the compressor.
  • the outlet Ca2 of the first passage of the cooler and the outlet Ha2 of the first passage of the passenger compartment air conditioning box are respectively connected to the inlet of the compressor.
  • the thermal system loop is provided with a first cooling medium.
  • the first cooling medium circulates between the compressor and the first passage of the cooler, and between the compressor and the first passage of the passenger compartment air conditioning box.
  • the heater is used to heat the first cooling medium.
  • the first cooling medium circulates between the compressor and the cooler to form a first loop L1; the first cooling medium circulates between the compressor and the first passage of the passenger compartment air conditioning box to form a second loop L2.
  • the heater can heat the first cooling medium in the thermal system loop, thereby increasing the temperature and pressure of the first cooling medium entering the compressor. In this way, even in a low temperature environment, the compressor can start normally, allowing the thermal management system to heat the passenger compartment of the electric vehicle.
  • the above-mentioned thermal system loop may also include a first throttle valve E1.
  • the first throttle valve E1 is connected between the outlet Ha2 of the first passage of the passenger compartment air-conditioning box and the inlet of the compressor, and is used to connect or close the outlet Ha2 of the first passage of the passenger compartment air-conditioning box and the inlet of the compressor.
  • the outlet Ha2 of the first passage of the passenger compartment air-conditioning box is connected to the inlet of the compressor, that is, the first cooling medium can circulate in the first loop L1 and the second loop L2 at the same time.
  • the outlet Ha2 of the first passage of the passenger compartment air-conditioning box is closed to the inlet of the compressor, that is, the first cooling medium circulates only in the first loop L1. In this way, the circulation flow path and flow rate of the first cooling medium can be controlled by controlling the first throttle valve E1.
  • the heater can heat the first cooling medium in the first loop L1 alone, or can heat the first cooling medium in the second loop L2 alone, or can also heat the first cooling medium in the first loop L1 and the second loop L2 at the same time. Therefore, the specific position of the heater is not limited.
  • the heater can be arranged between the cooler and the compressor, wherein the inlet of the heater is connected to the outlet Ca2 of the first passage of the cooler, and the outlet of the heater is connected to the inlet of the compressor, so that the heater can heat the first cooling medium in the first loop L1.
  • Figure 2 is another structural schematic diagram of the thermal management system of the first embodiment of the present application.
  • the heater can also be directly arranged at the inlet of the compressor, wherein the inlet of the heater is connected to the outlet Ca2 of the first passage of the cooler and the outlet Ha2 of the first passage of the passenger compartment air conditioning box, and the outlet of the heater is connected to the inlet of the compressor, so that the heater can heat the second cooling medium in the first loop L1 and the second loop L2.
  • Figure 3 is another structural schematic diagram of the thermal management system of the first embodiment of the present application.
  • the inlet of the heater is connected to the outlet Ca2 of the first passage of the cooler and the outlet Ha2 of the first passage of the passenger compartment air conditioner, the outlet of the heater is connected to the inlet of the compressor, and a contact is provided between the inlet Ca1 of the first passage of the cooler and the inlet of the heater.
  • a branch is provided.
  • the branch may be provided with a first valve, and by controlling the first valve, the first cooling medium circulating in the first loop L1 can be divided into two parts, one part passes through the first passage of the cooler, and the other part flows directly into the heater through the first valve.
  • Figure 4 is another structural schematic diagram of the thermal management system of Example 1 of the present application. As shown in Figure 4, in another optional embodiment, compared with the thermal management system in Figure 3, the heater can also be set in the branch.
  • the heater may be an independent heating device, that is, it may be separately arranged in the thermal system circuit.
  • the heater may be arranged in the compressor.
  • the heater may include a connected compressor motor and a motor controller.
  • the compressor may include a compressor body and a scroll arranged on the compressor body. Among them, the compressor motor is connected to the scroll. The compressor motor is used to provide a power source to the compressor. Since the compressor motor generates more heat in the low-efficiency mode than in the normal working state, the technical solution can utilize the heat generated by the compressor motor in the low-efficiency mode to heat the first cooling medium, thereby simplifying the structure of the thermal management system.
  • FIG5 is a control schematic diagram of a compressor and a heater in the first embodiment of the present application.
  • the controllers of the compressor and the heater can be integrated together.
  • the compressor body shown in FIG5 is provided with a compressor motor.
  • the motor controller in the compressor and the high-voltage controller of the heater can be integrated into a single first controller.
  • the first controller can be cooled by water or air, and the first controller can directly drive the compressor motor through a three-phase line.
  • the first controller is connected to the heater with a high-voltage input (the high-voltage input can include, for example, switch regulation, gear adjustment or power pulse width modulation (PWM) regulation), and the temperature inside the heater can also be sampled, which will not be described one by one here.
  • the high-voltage controller of the heater can be integrated into the motor control in the compressor to form a second controller.
  • the difference between the second controller and the first controller is that the second controller is integrated with the compressor and is cooled by the suction end of the compressor refrigerant.
  • the connection of the second controller to the heater can include a high-voltage input (the high-voltage input can include, for example, switch regulation, gear adjustment or power pulse width modulation regulation) or a temperature sampling inside the heater.
  • the input end of the second controller may include a low voltage input (including a control signal, PWM, a Local Interconnect Network (LIN) or a Controller Area Network (CAN) bus, etc.) and a high voltage input.
  • the thermal system loop may also include a first condenser, which has a first passage.
  • the inlet Wa1 of the first passage of the first condenser is connected to the outlet of the compressor, and the outlet Wa2 of the first passage of the first condenser is connected to the inlet Ca1 of the first passage of the cooler and the inlet Ha1 of the first passage of the passenger compartment air conditioning box.
  • the first loop L1 includes the compressor, the first passage of the first condenser, and the first passage of the cooler;
  • the second loop L2 includes the compressor, the first passage of the first condenser, and the passenger compartment air conditioning box.
  • the first cooling medium flowing out of the outlet of the compressor is a high-temperature and high-pressure gas, which is first heat exchanged through the first condenser.
  • the first cooling medium output by the first condenser is a high-temperature and high-pressure liquid.
  • the first cooling medium can then be divided into two parts, one part flows into the cooler for secondary heat exchange, and the other part enters the passenger compartment air conditioning box. After heat exchange in the passenger compartment air conditioning box, it becomes a low-temperature and low-pressure gas-liquid two-phase medium, and can absorb the heat of the passenger compartment to achieve cooling of the passenger compartment.
  • FIG6 is another structural schematic diagram of the thermal management system of the first embodiment of the present application.
  • the passenger compartment air conditioning box may also have a second passage, wherein the first passage of the passenger compartment air conditioning box is isolated from the second passage.
  • the first passage of the passenger compartment air conditioning box may be provided with an evaporator, and the second passage of the passenger compartment air conditioning box may be provided with a warm air core.
  • the first condenser may also have a second passage, and the first passage of the first condenser is isolated from the second passage.
  • the thermal management system may also include a first valve body V1.
  • the first valve body V1 includes a first passage, and the first passage has a first port 1 and a second port 2.
  • the thermal system circuit may also include a first pump B1.
  • the second port 2 of the first valve body V1 is connected to the inlet of the first pump B1, the outlet of the first pump B1 is connected to the inlet Hb1 of the warm air core, the outlet Hb2 of the warm air core is connected to the inlet Wb1 of the second passage of the first condenser, and the outlet Wb2 of the second passage of the first condenser is connected to the first port 1 of the first valve body V1.
  • the thermal system circuit is also provided with a second cooling medium, and the first pump B1 is used to drive the second cooling medium to circulate in the third loop L3 formed between the second passage of the first condenser and the heater core. In this way, the heat exchanged by the second cooling medium in the first condenser can be blown out through the heater core, thereby heating the air in the passenger compartment.
  • the thermal system loop of the above embodiment may further include a first liquid storage tank.
  • the inlet of the first liquid storage tank is connected to the outlet Wa2 of the first passage of the first condenser, and the outlet of the first liquid storage tank is connected to the inlet Ca1 of the first passage of the cooler and the inlet Ha1 of the evaporator.
  • the first liquid storage tank can store a certain amount of liquid cooling medium in the thermal system loop to ensure a certain annual leakage of the cooling medium.
  • FIG7 is another schematic diagram of the structure of the thermal management system of the first embodiment of the present application.
  • the thermal system circuit may also include a gas-liquid separator.
  • the inlet of the gas-liquid separator is connected to the outlet Ca2 of the first passage of the cooler and the outlet Ha2 of the evaporator, and the outlet of the gas-liquid separator is connected to the inlet of the compressor.
  • This design can not only use the gas-liquid separator to realize the function of storing liquid, but also use the gas-liquid separator to retain the liquid in the gas-liquid mixture and only let the gas flow into the compressor to improve the compression effect of the compressor.
  • FIG8 is another schematic diagram of the structure of the thermal management system of the first embodiment of the present application.
  • the passenger compartment air conditioning box may also have a second passage, wherein the first passage of the passenger compartment air conditioning box is isolated from the second passage of the passenger compartment air conditioning box.
  • the first passage of the air conditioner is provided with an evaporator
  • the second passage of the passenger compartment air conditioner is provided with a second condenser.
  • the inlet Hb1 of the second condenser is connected to the outlet of the compressor, and the outlet Hb2 of the second condenser is connected to the inlet Ca1 of the first passage of the cooler and the inlet Ha1 of the evaporator.
  • the first condenser also has a second passage, and the first passage of the first condenser is isolated from the second passage of the first condenser.
  • the thermal management system also includes a first valve body V1, the first valve body V1 includes a first passage, and the first passage of the first valve body V1 has a first port 1 and a second port 2.
  • the thermal system loop also includes a first pump B1.
  • the second port 2 of the first valve body V1 is connected to the inlet of the first pump B1, the outlet of the first pump B1 is connected to the inlet Wb1 of the second passage of the first condenser, and the outlet Wb2 of the second passage of the first condenser is connected to the first port 1 of the first valve body V1.
  • the thermal system loop is also provided with a second cooling medium, and the first pump B1 is used to drive the second cooling medium to circulate in the second passage of the first condenser.
  • the first cooling medium flowing out of the outlet of the compressor can flow into the second condenser.
  • the second condenser is used to heat the passenger compartment.
  • the first cooling medium flows out from the outlet of the compressor and becomes a high-temperature and high-pressure liquid, which can then enter the cooler through the throttle valve, and then become a low-temperature and low-pressure gaseous cooling medium after being heated by the heater and enter the compressor.
  • the thermal system loop may further include a second liquid storage tank.
  • the inlet of the second liquid storage tank is connected to the outlet Wa2 of the first passage of the first condenser and the outlet Hb2 of the second condenser, and the outlet of the second liquid storage tank is connected to the inlet Ca1 of the first passage of the cooler and the inlet Ha1 of the evaporator.
  • the second liquid storage tank can store the excess liquid cooling medium in the first passage of the cold first condenser to ensure the annual leakage in the first loop.
  • a first one-way valve CV1 may be provided between the outlet Wa2 of the first passage of the first condenser and the inlet of the second liquid storage tank, and the first one-way valve CV1 is used to connect the outlet Wa2 of the first passage of the first condenser to the inlet of the second liquid storage tank in a one-way manner.
  • a second one-way valve CV2 is provided between the outlet Hb2 of the second condenser and the inlet of the second liquid storage tank, and the second one-way valve CV2 is used to connect the outlet Hb2 of the second condenser to the inlet of the second liquid storage tank in a one-way manner. In this way, by controlling the first one-way valve CV1 and the second one-way valve CV2, the flow path of the first cooling medium in the thermal system circuit can be controlled.
  • the heater can also be set at any position in the third loop L3.
  • Figure 9 is another structural schematic diagram of the thermal management system of the first embodiment of the present application. As shown in Figure 9, in an optional embodiment, the heater can be set between the first pump B1 and the second passage of the passenger compartment air-conditioning box. Specifically, the inlet of the heater is connected to the outlet of the first pump B1, and the outlet of the heater is connected to the inlet Hb1 of the second passage of the passenger compartment air-conditioning box.
  • the heater can directly heat the second cooling medium, and the heated second cooling medium enters the second pump B2, and enters the second passage of the cooler after passing through the second three-way valve, thereby performing heat exchange with the first cooling medium in the cooler to achieve heating of the first cooling medium.
  • the heater can also be set between the second passage of the passenger compartment air-conditioning box and the second passage of the first condenser, or it can also be set between the second passage of the first condenser and the first pump B1.
  • FIG. 10 is another structural schematic diagram of the thermal management system of the first embodiment of the present application.
  • the heater may also be arranged between the first condenser and the passenger compartment air conditioning box. Specifically, the inlet of the heater is connected to the outlet Wa2 of the first passage of the first condenser, and the outlet of the heater is connected to the inlet Ha1 of the first passage of the passenger compartment air conditioning box. In this way, the heater can directly heat the first cooling medium entering the first passage of the passenger compartment air conditioning box.
  • FIG. 11 is another structural schematic diagram of the thermal management system of the first embodiment of the present application
  • FIG. 12 is another structural schematic diagram of the thermal management system of the first embodiment of the present application. As shown in FIG. 11 and FIG.
  • the heater may also be arranged between the first condenser and the compressor. Specifically, the inlet of the heater is connected to the outlet Wa2 of the first passage of the first condenser, and the outlet of the heater is connected to the inlet of the compressor. In this way, a part of the first cooling medium flowing out of the outlet Wa2 of the first passage of the first condenser can flow directly into the inlet of the compressor, and the heater can directly heat this part of the first cooling medium.
  • the heater is a heating device independently arranged in the loop. Of course, without changing the thermal system circuit, the heater can be set on the compressor. Specifically, the heater may include a connected compressor motor and a motor controller.
  • the compressor may include a compressor body and a scroll arranged on the compressor body. Among them, the compressor motor is connected to the scroll. The compressor motor is used to provide a power source to the compressor. Since the excess heat generated by the compressor motor in the inefficient mode is more than that in the normal working state, the technical solution can utilize the excess heat generated by the compressor motor in the inefficient mode to heat the first cooling medium, thereby simplifying the structure of the thermal management system.
  • the thermal management system may further include a battery heat exchange circuit.
  • the battery heat exchange circuit may include a battery and a second pump B2.
  • the first valve body V1 may further include a second passage and a third passage.
  • the second passage of the first valve body V1 has a third port 3 and a sixth port 6, and the third passage of the first valve body V1 has a fourth port 4 and a fifth port 5.
  • the third port 3 of the first valve body V1 is connected to the inlet of the second pump B2
  • the outlet of the second pump B2 is connected to the inlet of the battery
  • the outlet of the battery is connected to the fourth port 4 of the first valve body V1.
  • the cooler also has a second passage, and the first passage of the cooler is isolated from the second passage of the cooler.
  • the fifth port 5 of the first valve body V1 is connected to the inlet Cb1 of the second passage of the cooler, and the outlet Cb2 of the second passage of the cooler is connected to the sixth port 6 of the first valve body V1.
  • the second pump B2 is used to drive the third cooling medium to circulate between the battery heat exchange circuit and the second passage of the cooler.
  • the passage By controlling the port of the first valve body V1, the battery heat exchange circuit can be connected or closed with the third loop L3 of the thermal system circuit.
  • the third cooling medium and the second cooling medium can be the same refrigerant.
  • the first valve body V1 may further include a fourth passage and a fifth passage.
  • the fourth passage of the first valve body V1 has a first port 1 and a third port 3, and the fifth passage of the first valve body V1 has a second port 2 and a fourth port 4.
  • the battery heat exchange circuit is connected to the third loop L3 of the thermal system circuit.
  • the inlet of the second pump B2 is connected to the inlet Wb1 of the second passage of the first condenser.
  • a first three-way valve is provided between the inlet Wb1 of the second passage of the first condenser and the outlet of the first pump B1.
  • the first three-way valve has a first port, a second port and a third port. The first port of the first three-way valve is connected to the inlet Wb1 of the second passage of the first condenser, the second port of the first three-way valve is connected to the outlet of the first pump B1, and the third port of the first three-way valve is connected to the inlet of the second pump B2.
  • the connection between the second port of the first three-way valve and the outlet of the first pump B1 may include direct connection and indirect connection.
  • the second port of the first three-way valve is directly connected to the outlet of the first pump B1.
  • the second port of the first three-way valve is connected to the outlet Hb2 of the second passage of the passenger compartment air conditioning box, and the inlet Hb1 of the second passage of the passenger compartment air conditioning box is connected to the outlet of the first pump B1.
  • FIG. 13 is another structural schematic diagram of the thermal management system of the first embodiment of the present application.
  • the first port of the first three-way valve is connected to the outlet of the battery
  • the second port of the first three-way valve is connected to the fourth port 4 of the first valve body V1
  • the third port of the first three-way valve is connected to the inlet of the second pump B2.
  • the heater heats the second cooling medium.
  • the second cooling medium flows out from the second passage of the first condenser, passes through the first port 1 and the third port 3 of the first valve body V1, and flows to the inlet of the second pump B2.
  • FIG. 14 is another structural schematic diagram of the thermal management system of the first embodiment of the present application.
  • the first port of the first three-way valve is connected to the third port 3 of the first valve body V1
  • the second port of the first three-way valve is connected to the outlet Wb2 of the second passage of the first condenser
  • the third port of the first three-way valve is connected to the inlet of the second pump B2.
  • a third one-way valve may be provided between the inlet of the second pump B2 and the inlet Wb1 of the second passage of the first condenser.
  • the third one-way valve is used to connect the inlet of the second pump B2 and the inlet Wb1 of the second passage of the first condenser in a one-way manner to prevent backflow of the cooling medium.
  • the present application also provides an electric vehicle.
  • the electric vehicle includes a controller and the thermal management system in the above-mentioned embodiment 1.
  • the controller is connected to the thermal management system, and the controller is used to control the thermal management system to operate in a mode of heating the passenger compartment alone.
  • the electric vehicle can realize a mode of heating the passenger compartment alone, which helps to heat the passenger compartment in a low temperature environment and improve the user's driving experience.
  • the controller can be connected to the first valve body V1.
  • the controller can be used to control the conduction or closing of the port of the first valve body V1 to achieve any of the following modes: a mode of heating the passenger compartment alone, a mode of heating the battery alone, and a mode of heating the passenger compartment and the battery at the same time.
  • electric vehicles can freely switch between any of the modes of heating the passenger compartment alone, heating the battery alone, and heating the passenger compartment and the battery at the same time, which helps electric vehicles meet the different needs of various users and improve the user's driving experience.
  • the thermal management system may include a low-temperature startup phase and a stabilization phase.
  • FIG 15 is a schematic diagram of the thermal management system of Figure 6 during the low-temperature startup stage.
  • the heater can heat the first cooling medium flowing out of the outlet Ca2 of the first passage of the cooler, and the compressor starts at a lower speed.
  • the temperature of the passenger compartment gradually rises.
  • the compressor can gradually increase the speed.
  • a separate heating mode for the passenger compartment can be achieved.
  • the inefficient mode of the compressor can also be used to generate a heat source.
  • the heater may include a connected compressor motor and a motor controller.
  • the compressor may include a compressor body and a scroll disposed on the compressor body.
  • the compressor motor is connected to the scroll.
  • the compressor motor is used to provide a power source to the compressor. Since the compressor motor generates more heat in the inefficient mode than in the normal working state, the technical solution can use the excess heat generated by the compressor motor in the inefficient mode to heat the first cooling medium, thereby Simplify the structure of the thermal management system.
  • FIG16 is a schematic diagram of the thermal management system of FIG15 in a stable stage.
  • the passenger compartment can start the full internal circulation.
  • the first cooling medium flowing out of the outlet of the compressor enters the inlet Wa1 of the first passage of the first condenser, and then flows out from the outlet Wa2 of the first passage of the first condenser. After that, the first cooling medium enters the inlet Ha1 of the evaporator after being throttled by the throttle valve.
  • the first cooling medium flowing out of the outlet Ha2 of the evaporator enters the inlet of the compressor after passing through the first throttle valve E1.
  • the throttle valve at the inlet Ha1 of the evaporator can control the superheat of the first cooling medium at the outlet Ha2 of the evaporator, and the first throttle valve E1 can control the outlet temperature of the evaporator through the flow rate of the first cooling medium, so that the outlet temperature is maintained within a predetermined temperature range, thereby preventing the evaporator from frosting.
  • the compressor can control the outlet temperature of the passenger compartment air conditioner, thereby controlling the temperature in the passenger compartment.
  • the second pump B2 can not work, so that the battery heat exchange circuit does not participate in the heat exchange in the thermal system circuit.
  • the internal circulation of the passenger compartment can make the air blown out by the passenger compartment air-conditioning box come entirely from inside the passenger compartment, without using mixed air inside and outside the cabin. This can not only reduce the starting load of the electric vehicle and the energy consumption of the thermal management system, but also improve the fogging phenomenon in the passenger compartment under low temperature conditions.
  • FIG17 is a schematic diagram of the thermal management system of FIG15 in another stable stage.
  • the first cooling medium flowing out of the outlet of the compressor enters the inlet Wa1 of the first passage of the first condenser, and then flows out from the outlet Wa2 of the first passage of the first condenser.
  • the first cooling medium is divided into two circulations, one of which enters the inlet Ha1 of the evaporator after being throttled by the throttle valve.
  • the first cooling medium flowing out of the outlet Ha2 of the evaporator enters the inlet of the compressor after passing through the first throttle valve E1; the other throttle valve enters the first passage of the cooler after throttling, and enters the compressor after passing through the heater.
  • the throttle valve at the inlet Ca1 of the first passage of the cooler can control the suction superheat of the compressor, or control the outlet superheat of the heater.
  • the throttle valve at the inlet Ca1 of the first passage of the cooler and the throttle valve at the inlet Ha1 of the evaporator can use different throttle valves.
  • the throttle valve at the inlet Ha1 of the evaporator can control the superheat of the first cooling medium at the outlet Ha2 of the evaporator, and the first throttle valve E1 can control the outlet air temperature of the evaporator through the flow rate of the first cooling medium, so that the outlet air temperature is maintained within a predetermined temperature range, thereby preventing the evaporator from frosting.
  • the compressor can control the outlet air temperature of the passenger compartment air conditioner, thereby controlling the temperature in the passenger compartment.
  • the battery heat exchange circuit may not participate in the heat exchange in the thermal system circuit.
  • the thermal management system can operate in a mode of heating the passenger compartment alone.
  • FIG 18 is a schematic diagram of another thermal management system in the stable stage in an embodiment of the present application.
  • the heater is arranged between the confluence point and the inlet of the compressor.
  • Figure 19 is a schematic diagram of the thermal management system in Figure 10 in the stable stage. As shown in Figure 19, the heater is arranged between the throttle valve at the inlet Ha1 of the evaporator and the inlet of the evaporator. In the stable stage, the thermal management system in Figures 18 and 19 can operate in a mode of heating the passenger compartment alone.
  • Figure 20 is a schematic diagram of the thermal management system in Figure 11 in the stable stage.
  • the heater is arranged in a branch between the first liquid storage tank and the compressor.
  • the first cooling medium flowing out of the first liquid storage tank can flow into the branch, and after passing through the throttle valve and the heater, it flows into the compressor.
  • Figure 21 is a schematic diagram of the thermal management system in Figure 12 in the stable stage.
  • the heater is arranged between the confluence point and the inlet of the compressor.
  • the inlet of the heater is connected to the outlet of the first liquid storage tank through a throttle valve.
  • Figure 22 is a schematic diagram of the thermal management system in Figure 9 in the stable stage. As shown in Figure 22, the heater is arranged between the outlet of the first pump B1 and the inlet Hb1 of the heater core. In the stable stage, the thermal management system in Figures 20, 21 and 22 can operate in a mode of heating the passenger compartment and the battery at the same time. It should be noted that the bold straight lines, bold dotted lines and bold dashed lines in Figures 20, 21 and 22 only represent the circulation path of the cooling medium, and do not limit the connection relationship between the components.
  • a full cold cycle can be opened for the passenger compartment, so that the heat of the heater is transferred to the cooler, so that the compressor starts quickly, and the air conditioning box at the back can gradually become a full hot cycle.
  • the heater is started, and the hot second cooling medium flowing out of the heater enters the heater core.
  • the second cooling medium flows out of the heater core and enters the three-way valve.
  • One path enters the battery heat exchange circuit from d13 through the junction P2, and the other path enters the inlet Wb1 of the second passage of the first condenser through P1 from d12, and then flows out from the outlet Wb2 of the second passage of the first condenser, and then passes through the first port 1 and the second port 2 of the first valve body V1, and enters the first pump B1.
  • the second cooling medium enters the battery heat exchange circuit from P2, and enters the second pump B2 with the third cooling medium, and then passes through the second three-way valve to enter the junction PT, and then passes from the junction PT through the fourth of the first valve body V1.
  • Port 4 and the fifth port 5 enter the inlet Cb1 of the second passage of the cooler.
  • the cooling medium flowing out of the outlet Cb2 of the second passage of the cooler passes through the sixth port 6 and the third port 3 of the first valve body V1, and then is divided into two paths, one of which passes through the one-way valve to enter P1, and the other passes through P2 to enter the second pump B2.
  • the hot second cooling medium flowing out of the heater can enter the warm air core, and the second cooling medium flows out of the warm air core and enters the first three-way valve.
  • the first port d11 of the first three-way valve is fully connected with the third port d13, and the second port d12 is closed.
  • the hot second cooling medium enters P2 through the third port d13 of the first three-way valve, enters PT through the second three-way valve after passing through the second pump B2, and then enters the fourth port 4 of the first valve body V1, and then enters the inlet Cb1 of the second passage of the cooler through the fifth port 5 of the first valve body V1.
  • the cooling medium flowing out of the outlet Cb2 of the second passage of the cooler passes through the sixth port 6 and the third port 3 of the first valve body V1, and finally enters P1 through the one-way valve.
  • the second cooling medium and the third cooling medium are the same medium.
  • FIG23 is a schematic diagram of the passenger compartment heating of the thermal management system in FIG9 when the refrigerant system fails.
  • the thermal management system can still operate in a mode of heating the passenger compartment alone. Specifically, when the air conditioning box is turned on in full heat mode, the heater can directly heat the second cooling medium, and the heated second cooling medium passes through the warm air core, so that the wind blown out of the passenger compartment air conditioning box is hot air, thereby heating the passenger compartment.
  • FIG24 is a schematic diagram of passenger compartment heating and battery heating in the case of a refrigerant system failure in the thermal management system in FIG9 .
  • the thermal management system can still operate in a mode of heating the passenger compartment and the battery at the same time.
  • the heater can directly heat the second cooling medium, and the heated second cooling medium passes through the warm air core, so that the wind blown out of the passenger compartment air conditioning box is hot air, thereby heating the passenger compartment.
  • the second cooling medium flowing out of the warm air core passes through the second passage of the first condenser, and then enters the battery heat exchange circuit through the first port 1 and the third port 3 of the first valve body V1, and enters the battery after passing through the second pump B2 and the second three-way valve, and then enters the fourth port 4 and the second port 2 of the first valve body V1 through the PT, and reaches the third loop of the thermal system circuit, thereby achieving heating of the battery.
  • the passenger compartment air conditioning box can be operated in full cold mode, so that the heat in the warm air core cannot be dissipated, and the single battery heating mode can be achieved.
  • FIG25 is a schematic diagram of the passenger compartment heating of the thermal management system in FIG6 under stable working conditions.
  • the heating mode is in a stable state.
  • the temperature of the electric drive heat dissipation circuit or the temperature of the fourth cooling medium of the electric drive heat dissipation circuit is not lower than a certain temperature.
  • the thermal management system can heat the passenger compartment using the circuit mode of FIG25. Specifically, under stable working conditions, the electric drive heat dissipation circuit is in a circulation mode above a certain temperature.
  • the refrigerant loop flow direction is: the first cooling medium from the compressor enters the first condenser, and the first cooling medium is divided into two paths after coming out of the first condenser.
  • One path enters the throttle valve of the inlet Ha1 of the evaporator for throttling, enters the evaporator, and the first cooling medium enters the first throttle valve E1 after coming out of the evaporator; the other path is the throttle valve of the inlet Ca1 of the first passage entering the cooler and then enters the cooler.
  • the first cooling medium enters the heater after coming out of the cooler, and then merges with the first cooling medium coming out of the first throttle valve E1 and enters the inlet of the compressor.
  • the passenger compartment air conditioning box adopts the internal circulation mode at this time, and the direction of the warm air liquid cooling circuit is: the second cooling medium from the first pump B1 enters the warm air core in the passenger compartment air conditioning box, and then enters the second passage of the first condenser into the three-way valve, and the second cooling medium enters the first port 1 of the first valve body V1 after coming out of the first condenser, and then returns to the first pump B1 from the second port 2.
  • the first valve body V1 is not limited to the nine-way valve, as long as the second cooling medium from the first condenser enters the first pump B1.
  • the direction is: the fourth cooling medium flowing out of the outlet of the electric drive device enters the third pump B3 and then enters the eighth port 8 of the first valve body V1, and then flows out from the fifth port 5 and enters the second passage of the cooler, and then enters the sixth port 6 of the first valve body V1 through Tp2.
  • Tp2 it is determined whether to enter the radiator of the front cabin thermal management component through the seventh port 7 or directly enter the electric drive device through the ninth port 9.
  • the throttle valve at the inlet Ca1 of the first passage of the cooler can control the cooling medium state at the outlet of the heater, and the throttle valve at the inlet Ha1 of the evaporator can directly control the outlet state of the evaporator.
  • the first throttle valve E1 can control the suction pressure of the compressor to a certain state to balance the pressure of the heat source in the passenger compartment and the electric drive (or battery) heat source.
  • the above cycle can be called a "secondary heat pump" cycle.
  • the low-temperature heat source can be the residual heat of the passenger compartment and the electric drive (or battery), respectively. In this way, the evaporator is working, and the passenger compartment can adopt a full internal circulation, that is, no fresh air is introduced from outside the vehicle. This can prevent the risk of defogger in the passenger compartment and reduce the load on the passenger compartment.
  • the low-pressure side heat source can also use the residual heat of the electric drive cooling circuit to reduce the total energy consumption of the thermal management system as a whole.
  • the heater when the temperature of the passenger compartment reaches a certain value, and the water temperature of the electric drive or the battery reaches a certain value, the heater may not be turned on at this time.
  • There are two low-temperature heat sources for the entire heat pump system one is the room temperature environment of the passenger compartment, and the other is the waste heat of the electric drive or the battery.
  • the first throttle valve E1 is used to balance the pressures of the two.
  • Figure 26 is a pressure-specific enthalpy diagram of the thermal management system of Figure 25.
  • the thermal management system uses R134a refrigerant as the first cooling medium, and the pressure-specific enthalpy of the thermal management system is simulated.
  • the condensed refrigerant is divided into two parts: one part passes through the expansion valve on the battery side and undergoes an isenthalpic throttling process (3-5). After that, the low-temperature and low-pressure refrigerant absorbs the heat of the coolant in the cooler.
  • the heat of the coolant can come from the outside air, electric drive or battery, and the temperature is further increased after passing through the heater (if the heater is turned on).
  • the heater can also be turned on, so that the heater only serves as a passage; the other part of the refrigerant passes through the expansion valve of the passenger compartment air conditioning box and undergoes an isenthalpic throttling process (3-4). After that, the low-temperature and low-pressure refrigerant exchanges heat with the air (4-6).
  • the refrigerant flowing out of the evaporator is reduced in pressure after passing through the first throttle valve E1 (i.e., the suction throttle valve), and is mixed with the refrigerant flowing out of the cooler outlet.
  • the state changes to a low pressure and high superheat state (1), it enters the compressor for compression and completes a cycle.
  • the air side can use internal circulation.
  • the flowing air first passes through the evaporator (refrigerant side 4-6) and then the humidity and temperature are reduced, which is the process of cooling and dehumidification. Then it passes through the heater core and exchanges heat with the high-temperature coolant in the heater core, and the temperature is raised to achieve the effect of heating.
  • This embodiment can adopt full internal circulation, so that no fresh air enters the passenger compartment, which can reduce the heat load required by the passenger compartment; at the same time, the evaporator is turned on to play an anti-fogging role.
  • the low-temperature heat source such as air, electric drive or battery
  • the first throttle valve E1 is used to balance the pressure at the evaporator (the second low-temperature heat source).
  • the low-temperature heat source such as air, electric drive or battery
  • the first throttle valve E1 is used to balance the pressure at the evaporator (the second low-temperature heat source).
  • FIG27 is a schematic diagram of battery heating in the thermal management system of FIG6 at low temperature
  • FIG28 is another schematic diagram of battery heating in the thermal management system of FIG6 at low temperature
  • FIG29 is another schematic diagram of battery heating in the thermal management system of FIG6 at low temperature
  • FIG30 is another schematic diagram of battery heating in the thermal management system of FIG6 at low temperature.
  • the thermal management system can operate in a mode of heating the battery alone, or in a mode of heating the passenger compartment and the battery at the same time.
  • the thermal management system can operate in the mode shown in FIG27. Specifically, the heater is turned on, and the compressor can be turned on subsequently or at the same time.
  • the high-temperature second cooling medium flowing out of the outlet Wb2 of the second passage of the first condenser enters the first port 1 of the first valve body V1, then flows out from the second port 2 and enters the first pump B1, and then enters the warm air core.
  • the second cooling medium flowing out of the outlet Hb2 of the warm air core is divided into two paths after passing through the three-way valve, one of which enters the confluence point P1 and the other enters the battery heat exchange circuit.
  • the third cooling medium of the battery heat exchange circuit can enter the one-way valve from the third port 3 of the first valve body V1 and flow into the confluence point P1, and then enter the second passage of the first condenser.
  • the modes of Figures 28, 29 and 30 can be used for operation, and the passenger compartment adopts the internal circulation mode.
  • the thermal management system shown in Figures 28 and 29 can operate in a mode of heating the passenger compartment and the battery at the same time.
  • the thermal management system can absorb heat from the passenger compartment to achieve dehumidification of the passenger compartment, thereby preventing fogging.
  • FIG 31 is another schematic diagram of the battery heating of the thermal management system in Figure 6 under extremely low temperature conditions.
  • the thermal management system can operate in a battery heating mode.
  • the first cooling medium from the compressor enters the first condenser and the first liquid storage tank. After the first cooling medium comes out of the first liquid storage tank, it enters the throttle valve at the inlet Ca1 of the first passage of the cooler. After throttling, it enters the cooler and then enters the heater.
  • the first cooling medium enters the compressor after being heated by the heater.
  • the third pump B3 Due to the extremely low ambient temperature, the third pump B3 does not operate or operates at a lower speed.
  • the fourth cooling medium from the electric drive device enters the eighth port 8 of the first valve body V1 after entering the third pump B3, and then enters the second passage of the cooler through the fifth port 5 of the first valve body V1. After the fourth cooling medium comes out of the cooler, it enters the sixth port 6 of the first valve body V1, and finally comes out from the seventh port 7 or the ninth port 9 of the first valve body V1 and returns to the electric drive heat dissipation circuit.
  • the third cooling medium enters the first port 1 of the first valve body V1 after being heated by the first condenser, then enters the third port 3 of the first valve body V1 and enters the battery through the second pump B2, enters the fourth port 4 of the first valve body V1 from the battery, then enters the second port 2 of the first valve body V1 and enters the heater core through the first pump B1, and the second cooling medium enters the second passage of the first condenser.
  • FIG32 is another schematic diagram of the thermal management system in FIG6 heating the passenger compartment and the battery at the same time under extremely low temperature conditions. As shown in FIG32, the thermal management system can operate in a mode in which the passenger compartment and the battery are heated at the same time.
  • a part of the first cooling medium can come out of the first liquid storage tank and enter the throttle valve, enter the evaporator, enter the first throttle valve E1, and merge with another part of the first cooling medium coming out of the heater to enter the compressor.
  • the passenger compartment air conditioner can operate in a full internal circulation mode.
  • the second cooling medium coming out of the first condenser enters the first port 1 of the first valve body V1, then enters the first pump B1 after coming out of the second port 2 of the first valve body V1, and then enters the heater core.
  • the second cooling medium enters the three-way valve after coming out of the heater core.
  • the second cooling medium is divided into two paths, one path enters the battery heat exchange circuit from P2, and the other path passes through P1 to enter the first condenser.
  • the third cooling medium coming out of the second pump B2 enters the battery, and then the third cooling medium enters the fourth port 4 of the first valve body V1 after coming out of the battery, and then passes through the third port 3 of the first valve body V1.
  • the third cooling medium is divided into two paths, one path passes through the one-way valve to enter P1, and the other path passes through P2 to enter the second pump B2.
  • the thermal management system may include a low-temperature startup phase and a stabilization phase.
  • FIG 33 is a schematic diagram of the thermal management system of Figure 8 during the low-temperature startup stage.
  • the solenoid valve V2 for adjusting the opening can be opened and V3 can be closed.
  • the high-temperature first cooling medium from the compressor enters the second condenser, and then passes through the one-way valve CV2 into the second liquid storage tank and then passes through the throttle valve and enters the cooler.
  • the first cooling medium passes through Pt1 and enters the compressor.
  • the passenger compartment can be heated separately.
  • FIG 34 is a schematic diagram of the thermal management system of Figure 8 in a stable stage.
  • the first cooling medium discharged from the compressor passes through the opened solenoid valve V2, enters the second condenser, and then passes through the one-way valve CV2 to enter the second liquid storage tank.
  • the first cooling medium coming out of the second liquid storage tank enters the evaporator through the throttle valve, and then enters the compressor through the first throttle valve E1.
  • the first throttle valve E1 can be a throttle valve that opens to the inner diameter of the pipeline.
  • FIG 35 is another schematic diagram of the thermal management system of Figure 8 in a stable stage.
  • the refrigerant coming out of the compressor passes through the solenoid valve V2, enters the second condenser to dissipate heat, and then passes through the one-way valve CV2 to enter the second liquid storage tank, and then is divided into two paths, one path passes through the throttle valve and enters the evaporator, and then passes through the first throttle valve E1; the other path comes out of the second liquid storage tank, passes through the throttle valve and enters the cooler, and then enters the heater for heating.
  • the first cooling medium comes out of the heater, it merges with the first cooling medium coming out of the first throttle valve E1 and then enters the compressor.
  • FIG. 36 is a schematic diagram of the thermal management system of Figure 8 in the battery fast charging and heating mode. As shown in Figure 36, the thermal management system can operate in a battery heating mode. Among them, the solenoid valve V3 with adjustable opening is fully opened, and the solenoid valve V2 with adjustable opening is fully closed.
  • the first cooling medium coming out of the compressor passes through V3 and enters the first passage of the first condenser, then passes through the one-way valve CV1 and the throttle valve, enters the cooler, and then enters the heater to be heated, and then enters the compressor to complete a cycle.
  • the second cooling medium coming out of the second passage of the first condenser enters the first port 1 of the first valve body V1 and enters the second pump B2 from the third port 3. Then the cooling medium enters the fourth port 4 of the first valve body V1 after coming out of the battery, and then flows out from the second port 2 of the first valve body V1, and enters the inlet Wb1 of the second passage of the first condenser after passing through the first pump B1.
  • FIG37 is another schematic diagram of the thermal management system of FIG8 in the battery fast charging and heating mode.
  • the thermal management system can operate in a mode where the passenger compartment and the battery are heated simultaneously.
  • the first cooling medium is divided into two paths from the compressor, one path passes through the solenoid valve V2 to enter the second condenser and passes through the one-way valve V3 to enter the liquid storage tank; the other path passes through the solenoid valve V3 to enter the first condenser and passes through the one-way valve V4 to enter the second liquid storage tank.
  • the first cooling medium comes out of the first liquid storage tank, it is divided into two paths, one path enters the cooler and enters the heater after throttling through the throttle valve, and the other path enters the evaporator after throttling through the throttle valve.
  • the first cooling medium comes out of the evaporator, it enters the first throttle valve E1.
  • the first cooling medium coming out of the first throttle valve E1 is mixed with the first cooling medium coming out of the heater and then enters the compressor.
  • the passenger compartment air conditioner can be fully circulated to reduce the load on the passenger compartment.
  • the throttle valve at the inlet Ha1 of the evaporator or the first throttle valve E1 can also be closed, so that there is only one path for the first cooling medium coming out of the second liquid storage tank, that is, the throttle valve at the inlet Ca1 of the first passage entering the cooler.
  • the passenger compartment needs to use part/all of the external circulation to reduce the risk of fogging in the vehicle.
  • the second cooling medium coming out of the second passage of the first condenser enters the first port 1 of the first valve body V1, and enters the first pump B1 after coming out of the second port 2 of the first valve body V1, and then enters the three-way valve TV1.
  • the three-way valve TV1 divides the second cooling medium into two paths, one entering the battery heat exchange circuit from P2, and the other passing through P1 to enter the second passage of the first condenser.
  • the third cooling medium coming out of the second pump B2 enters the battery, and the third cooling medium enters the fourth port 4 of the first valve body V1 after coming out of the battery, and flows out from the third port 3 of the first valve body V1, and is divided into two paths at P3, one passing through the one-way valve CV3 to enter P1, and the other passing through P2 to enter the second pump B2.
  • FIG38 is another schematic diagram of the thermal management system of FIG8 in the battery fast charging and heating mode.
  • the thermal management system can also be implemented in other circulation modes.
  • the battery heat exchange circuit is the same as the circulation mode shown in FIG36, that is, the second cooling medium flowing out of the second passage of the first condenser heats the battery.
  • the air outlet temperature of the passenger compartment air conditioning box and the inlet water temperature of the battery are controlled by controlling V2 and V3 of the adjustable solenoid valve opening. This means that the pipeline between the three-way valve TV1 and P2, and the pipeline from P1 to P3 can be omitted.
  • FIG 39 is a schematic diagram of the thermal management system of Figure 8 in the hybrid heating mode during driving.
  • the thermal management system is now in the start-up stage of operation.
  • the compressor is started, and the first cooling medium coming out of the compressor is divided into two paths.
  • One path passes through V2 to enter the second condenser, and then passes through the one-way valve CV2 to enter the second liquid storage tank.
  • the other path passes through V3 to enter the first passage of the first condenser, and then passes through the one-way valve CV1 to enter the second liquid storage tank.
  • the first cooling medium coming out of the second liquid storage tank passes through the throttle valve and enters the cooler, and then enters the inlet of the compressor after being heated in the heater.
  • the first pump B1 and the second pump B2 do not run or run at a lower speed, so that the pressure on the low-pressure side of the compressor is quickly increased to a certain pressure, so that the thermal management system can operate stably, and the second pump B2 or the third pump B3 runs at a normal speed.
  • the second cooling medium is heated from the second passage of the first condenser and enters the first pump B1 through the first valve body V1, and is divided into two paths in the three-way valve TV1, one from the three-way valve TV1 Enter P2 and merge with the battery heat exchange circuit, and the other from the three-way valve TV1 Enter the inlet Wb2 of the second passage of the first condenser through the point P1.
  • the third cooling medium from the second pump B2 enters the battery, heats the battery, and enters the inlet Cb1 of the second passage of the cooler through the first valve body V1.
  • FIG40 is another schematic diagram of the thermal management system of FIG8 in the driving hybrid heating mode
  • FIG41 is another schematic diagram of the thermal management system of FIG8 in the driving hybrid heating mode
  • FIG42 is another schematic diagram of the thermal management system of FIG8 in the driving hybrid heating mode.
  • the circulation mode of the battery heat exchange circuit in FIG40 and FIG41 is the same, and for the thermal system circuit, the first cooling medium enters the throttle valve after coming out of the second liquid storage tank and then enters the evaporator, and then passes through the first throttle valve E1 (throttling or not throttling) to enter the compressor suction inlet.
  • the throttle valve at the inlet Ca1 of the first passage of the cooler is closed, and the heater is also closed. At this time, no cooling medium enters the cooler and the heater.
  • the thermal system loop is the same as the cycle shown in FIG41, and for the electric drive heat dissipation loop, the fourth cooling medium from the electric drive device enters the first valve body V1 through the third pump B3 and enters the inlet Cb1 of the second passage of the cooler, and enters the first valve body V1 after exiting the outlet Cb2 of the second passage of the cooler.
  • the fourth cooling medium can directly enter the electric drive device through the ninth port 9 of the first valve body V1, or can also enter the front-end thermal management component through the seventh port 7 of the first valve body V1, and then enter the electric drive device.
  • the third cooling medium from the second pump B2 enters the battery, enters the first valve body V1 after exiting the battery, and then exits the first valve body V1 and is divided into two paths, one path passes through the one-way valve CV3 to enter the P1 point and merge with the thermal system loop, and the other path passes through P2 to enter the third pump B3.
  • the throttle valve at the inlet Ca1 of the first passage of the cooler can be opened, and the electric drive heat dissipation loop can also be used as a low-temperature heat source for the thermal system loop.
  • FIG 43 is a schematic diagram of a cooling medium circulation mode of another thermal management system in an embodiment of the present application
  • Figure 44 is a schematic diagram of a cooling medium circulation mode of another thermal management system in an embodiment of the present application
  • Figure 45 is a schematic diagram of a cooling medium circulation mode of another thermal management system in an embodiment of the present application
  • Figure 46 is a schematic diagram of a cooling medium circulation mode of another thermal management system in an embodiment of the present application.
  • the heater can be set at the inlet of the compressor.
  • the heater can be set between the throttle valve and the evaporator.
  • the second liquid storage tank is connected to the throttle valve in the heater branch, and the throttle valve is connected to the heater.
  • the heater in Figure 46 is set between the compressor and the junction.
  • the heater can directly heat the first cooling medium, thereby blowing heat into the passenger compartment through the passenger compartment air conditioning box.
  • the heater can be set on the compressor.
  • the heater may include a connected compressor motor and a motor controller.
  • the compressor may include a compressor body and a scroll disposed on the compressor body. Among them, the compressor motor is connected to the scroll. The compressor motor is used to provide a power source to the compressor.
  • the technical solution can use the excess heat generated by the compressor motor in the low-efficiency mode to heat the first cooling medium, thereby simplifying the structure of the thermal management system.
  • FIG47 is a schematic diagram of a structure of a thermal management system of the second embodiment of the present application.
  • the thermal management system may include a thermal system circuit, a first valve body V1, a battery heat exchange circuit and a heater, and the heater is arranged in the battery heat exchange circuit.
  • the first valve body V1 includes a second passage and a third passage.
  • the second passage of the first valve body V1 has a third port 3 and a sixth port 6, and the third passage of the first valve body V1 has a fourth port 4 and a fifth port 5.
  • the thermal system circuit includes a compressor and a cooler.
  • the cooler has a first passage and a second passage that are isolated from each other.
  • the inlet Ca1 of the first passage of the cooler is connected to the outlet of the compressor, and the outlet Ca2 of the first passage of the cooler is connected to the inlet of the compressor.
  • the inlet Cb1 of the second passage of the cooler is connected to the fifth port 5 of the first valve body V1, and the outlet Cb2 of the second passage of the cooler is connected to the sixth port 6 of the first valve body V1.
  • a first cooling medium is arranged in the thermal system circuit, and the first cooling medium circulates between the compressor and the first passage of the cooler.
  • the battery heat exchange circuit may include a second pump B2, a second three-way valve and a battery.
  • the second three-way valve has a first port, a second port and a third port.
  • the inlet of the second pump B2 is connected to the first valve body
  • the outlet of the second pump B2 is connected to the first port of the second three-way valve
  • the second port of the second three-way valve is connected to the inlet of the battery
  • the third port of the second three-way valve and the outlet of the battery are connected to the fourth port 4 of the first valve body V1.
  • the second pump B2 is used to drive the third cooling medium to circulate between the battery heat exchange circuit and the second passage of the cooler.
  • the heater is used to heat the third cooling medium, so that the third cooling medium can exchange heat with the first cooling medium in the cooler when circulating in the battery heat exchange loop, and heat the first cooling medium, thereby increasing the temperature and pressure of the first cooling medium entering the compressor.
  • the compressor can start normally, allowing the thermal management system to heat the passenger compartment of the electric vehicle.
  • the position of the heater is not limited.
  • the inlet of the heater can be connected to the third port of the second three-way valve, and the outlet of the heater can be connected to the fourth port 4 of the first valve body V1.
  • Figure 48 is another structural schematic diagram of the thermal management system of Example 2 of the present application.
  • the inlet of the heater can also be connected to the third port of the second three-way valve and the outlet of the battery, and the outlet of the heater can be connected to the fourth port 4 of the first valve body V1.
  • Figure 49 is another structural schematic diagram of the thermal management system of Example 2 of the present application.
  • the inlet of the heater can also be connected to the fifth port 5 of the first valve body V1, and the outlet of the heater can be connected to the inlet Cb1 of the second passage of the cooler.
  • the outlet of the second pump B2 is connected to the second three-way valve.
  • the second three-way valve includes two outlets, one of which is connected to the inlet of the battery and the other is connected to the heater.
  • the outlet of the heater is connected to the junction PT, and is connected to the fourth port 4 of the first valve body V1 through the junction PT.
  • the thermal management system in FIG47 is in the operation mode of the startup phase.
  • the third cooling medium heated by the heater passes through the first valve body V1 and enters the inlet Cb1 of the second passage of the cooler, and is heated in the cooler, and then flows out from the outlet Cb2 of the second passage of the cooler, passes through the first valve body V1 and enters the second pump B2. At this time, the third cooling medium may not pass through the battery.
  • the first cooling medium flowing out of the compressor enters the first condenser, then enters the first liquid storage tank, and enters the throttle valve of the cooler from the first liquid storage tank, and then returns to the compressor after the cooler absorbs the heat of the third cooling medium.
  • the second cooling medium is heated in the first condenser and then flows out, enters the first pump B1 after passing through the first valve body V1, then enters the second passage of the passenger compartment air conditioning box, and finally returns to the first condenser.
  • FIG50 is a schematic diagram of the thermal management system in FIG47 heating the passenger compartment when the refrigerant system fails.
  • the thermal management system can still heat the passenger compartment.
  • the thermal management system can operate in heating mode.
  • the third cooling medium enters the heater and is heated and enters the PT, then enters the first pump B1 through the first valve body V1, and enters the second passage of the passenger compartment air-conditioning box from the first pump B1.
  • the third cooling medium comes out of the second passage of the passenger compartment air-conditioning box and passes through the first three-way valve, and then enters the inlet Wb2 of the second passage of the first condenser. Then it comes out from the outlet Wb2 of the second passage of the first condenser and enters the second pump B2 through the first valve body V1. The third cooling medium coming out of the second pump B2 enters the second three-way valve. In this way, the heat of the heater can be used for heating the passenger compartment.
  • FIG51 is a schematic diagram of the thermal management system in FIG47 heating the battery when the refrigerant system fails.
  • the thermal management system can still heat the battery.
  • the third cooling medium is divided into two paths after passing through the second pump B2. One path enters the PT after being heated by the heater, and the other path passes through the battery and enters the fourth port 4 of the first valve body V1 at the confluence point PT, then enters the second path of the cooler through the first valve body V1, and then flows back to the second pump B2 through the first valve body V1.
  • the circulation modes shown in Figures 48 and 49 are similar, and the outlet of the second pump B2 is connected to the second three-way valve.
  • the second three-way valve includes two outlets, one of which is connected to the inlet of the battery, and the other is connected to the junction point PT, and the outlet of the battery is connected to the fourth port 4 of the first valve body V1 through the PT point.
  • the heater in Figure 48 is arranged between the junction point PT and the fourth port 4 of the first valve body V1
  • the heater in Figure 49 is arranged between the inlet Cb1 of the second passage of the cooler and the fifth port 5 of the first valve body V1.
  • the first valve body V1 may further include a first passage.
  • the first passage of the first valve body V1 includes a first port 1 and a second port 2.
  • the thermal system loop may further include a first condenser, a passenger compartment air conditioning box, and a first pump B1.
  • the first condenser has a first passage and a second passage that are isolated from each other, and the passenger compartment air conditioning box includes an evaporator and a first warm air core.
  • the inlet Wa1 of the first passage of the first condenser is connected to the outlet of the compressor, the outlet Wa2 of the first passage of the first condenser is connected to the inlet Ca1 of the first passage of the cooler and the inlet Ha1 of the evaporator, and the outlet Ha2 of the evaporator is connected to the inlet of the compressor.
  • the second port 2 of the first valve body V1 is connected to the inlet of the first pump B1, the outlet of the first pump B1 is connected to the inlet Hb1 of the first warm air core, the outlet Hb2 of the first warm air core is connected to the inlet Wb1 of the second passage of the first condenser, and the outlet Wb2 of the second passage of the first condenser is connected to the first port 1 of the first valve body V1.
  • the thermal system loop is also provided with a second cooling medium, and the first pump B1 is used to drive the second cooling medium to circulate between the second passage of the first condenser and the second passage of the passenger compartment air conditioning box. In this way, the heat exchanged by the second cooling medium in the first condenser can be The air is blown out from the first warm air core, thereby heating the air in the passenger compartment.
  • the thermal system loop may further include a first liquid storage tank, the inlet of the first liquid storage tank is connected to the outlet Wa2 of the first passage of the first condenser, and the outlet of the first liquid storage tank is connected to the inlet Ca1 of the first passage of the cooler and the inlet Ha1 of the evaporator.
  • the first liquid storage tank can store a certain amount of liquid cooling medium in the thermal system loop to ensure a certain annual leakage of the cooling medium.
  • FIG52 is another structural schematic diagram of the thermal management system of the second embodiment of the present application.
  • the thermal system circuit may also include a gas-liquid separator, the inlet of the gas-liquid separator is connected to the outlet Ca2 of the first passage of the cooler and the outlet Ha2 of the evaporator, and the outlet of the gas-liquid separator is connected to the inlet of the compressor.
  • This design can not only use the gas-liquid separator to realize the function of storing liquid, but also use the gas-liquid separator to retain the liquid in the gas-liquid mixture and only let the gas flow into the compressor to improve the compression effect of the compressor.
  • FIG53 is another structural schematic diagram of the thermal management system of the second embodiment of the present application.
  • the first valve body V1 may also include a first passage.
  • the first passage of the first valve body V1 has a first port 1 and a second port 2.
  • the thermal system loop also includes a first condenser, a passenger compartment air conditioning box, and a first pump B1.
  • the first condenser has a first passage and a second passage that are isolated from each other, and the passenger compartment air conditioning box includes an evaporator and a second condenser.
  • the outlet of the compressor is connected to the inlet Wa1 of the first passage of the first condenser and the inlet Hb1 of the second condenser
  • the outlet Wa2 of the first passage of the first condenser is connected to the inlet Ca1 of the first passage of the cooler and the inlet Ha1 of the evaporator
  • the outlet Hb2 of the second condenser is connected to the inlet Ca1 of the first passage of the cooler and the inlet Ha1 of the evaporator
  • the outlet Ha2 of the evaporator is connected to the inlet of the compressor.
  • the second port 2 of the first valve body V1 is connected to the inlet of the first pump B1, the outlet of the first pump B1 is connected to the inlet Wb1 of the second passage of the first condenser, and the outlet Wb2 of the second passage of the first condenser is connected to the first port 1 of the first valve body V1.
  • the heat system circuit is also provided with a second cooling medium, and the first pump B1 is used to drive the second cooling medium to circulate in the second passage of the first condenser. When the first condenser stops working, the first cooling medium flowing out of the outlet of the compressor can flow into the second condenser.
  • the low-temperature and low-pressure first cooling medium in the evaporator exchanges heat with the high-temperature and high-pressure first cooling medium in the second condenser, so that the air blown out of the passenger compartment air conditioner can be maintained at a relatively suitable temperature.
  • FIG. 54 is another schematic diagram of the structure of the thermal management system of the second embodiment of the present application.
  • the passenger compartment air conditioning box may further include a second warm air core.
  • the inlet of the second warm air core is connected to the outlet of the first pump, and the outlet of the second warm air core is connected to the inlet of the second passage of the first condenser.
  • FIG. 55 is a schematic diagram of the thermal management system in FIG. 54 heating the battery in the case of a refrigerant system failure.
  • the heater heats the third cooling medium in the battery heat exchange circuit, thereby heating the battery.
  • FIG. 56 is a schematic diagram of the thermal management system in FIG.
  • the heater heats the third cooling medium in the battery heat exchange circuit.
  • the third cooling medium enters the first pump B1 after passing through the fourth port 4 and the second port 2 of the first valve body V1.
  • the third cooling medium (i.e., the second cooling medium) flowing out of the first pump B1 passes through the second warm air core.
  • the second warm air core blows the heat of the fourth cooling medium to the passenger compartment, thereby heating the passenger compartment.
  • the thermal system loop further includes a second liquid storage tank, the inlet of which is connected to the outlet Wa2 of the first passage of the first condenser and the outlet Hb2 of the second condenser, and the outlet of the second liquid storage tank is connected to the inlet Ca1 of the first passage of the cooler and the inlet Ha1 of the evaporator.
  • the first liquid storage tank can store a certain amount of liquid cooling medium in the thermal system loop to ensure a certain annual leakage of the cooling medium.
  • a first one-way valve CV1 is provided between the outlet Wa2 of the first passage of the first condenser and the inlet of the second liquid storage tank, and the first one-way valve CV1 is used to connect the outlet Wa2 of the first passage of the first condenser to the inlet of the second liquid storage tank in a one-way manner.
  • a second one-way valve CV2 is provided between the outlet Hb2 of the second condenser and the inlet of the second liquid storage tank, and the second one-way valve CV2 is used to connect the outlet Hb2 of the second condenser to the inlet of the second liquid storage tank in a one-way manner. In this way, by controlling the first one-way valve CV1 and the second one-way valve CV2, the flow path of the first cooling medium in the thermal system circuit can be controlled.
  • the position of the heater in the battery heat exchange circuit is not specifically limited.
  • the inlet of the heater can be connected to the third port of the second three-way valve, and the outlet of the heater can be connected to the fourth port 4 of the first valve body V1.
  • FIG57 is another structural schematic diagram of the thermal management system of the second embodiment of the present application.
  • the inlet of the heater can also be connected to the third port of the second three-way valve and the outlet of the battery, and the outlet of the heater can be connected to the fourth port 4 of the first valve body V1.
  • FIG58 is another structural schematic diagram of the thermal management system of the second embodiment of the present application.
  • the inlet of the heater can also be connected to the fifth port 5 of the first valve body V1, and the outlet of the heater can be connected to the inlet Cb1 of the second passage of the cooler.
  • the present application also provides an electric vehicle.
  • the electric vehicle includes a controller and a thermal management system of the above embodiment.
  • the controller is connected to a first valve body V1 of the thermal management system.
  • the controller is used to control the opening or closing of the port of the first valve body V1.
  • the thermal management system operates in any of the following modes: passenger compartment heating alone, battery heating alone, or passenger compartment and battery heating at the same time.
  • electric vehicles can freely switch between passenger compartment heating alone, battery heating alone, or passenger compartment and battery heating at the same time, which helps to heat the passenger compartment in low temperature environments and improve the user's driving experience.
  • FIG59 is a schematic diagram of a structure of a thermal management system of the third embodiment of the present application.
  • the thermal management system includes a thermal system circuit, a first valve body V1, an electric drive heat dissipation circuit and a heater, and the heater is arranged in the electric drive heat dissipation circuit.
  • the first valve body V1 includes a tenth passage, a ninth passage and a twelfth passage.
  • the tenth passage of the first valve body V1 has a fifth port 5 and an eighth port 8.
  • the ninth passage of the first valve body V1 has a sixth port 6 and a seventh port 7.
  • the twelfth passage of the first valve body V1 has a sixth port 6 and a ninth port 9.
  • the thermal system circuit may include a compressor and a cooler.
  • the cooler has a first passage and a second passage that are isolated from each other.
  • the inlet Ca1 of the first passage of the cooler is connected to the outlet of the compressor, and the outlet Ca2 of the first passage of the cooler is connected to the inlet of the compressor.
  • the inlet Cb1 of the second passage of the cooler is connected to the fifth port 5 of the first valve body V1, and the outlet Cb2 of the second passage of the cooler is connected to the sixth port 6 of the first valve body V1.
  • the thermal system circuit is provided with a first cooling medium, and the first cooling medium circulates between the compressor and the first passage of the cooler.
  • the electric drive heat dissipation circuit includes an electric drive device, a third pump B3, a water tank and a third three-way valve.
  • the inlet of the electric drive device is connected to the seventh port 7 of the first valve body V1 and the ninth port 9 of the first valve body V1, the outlet of the electric drive device is connected to the water tank and the inlet of the third pump B3, and the outlet of the heater is connected to the inlet of the third pump B3.
  • the third pump B3 is used to drive the fourth cooling medium to circulate between the electric drive heat dissipation circuit and the cooler.
  • the third three-way valve has a first port, a second port and a third port.
  • the second port of the third three-way valve is connected to the inlet of the electric drive device, and the third port of the third three-way valve is connected to the inlet of the heater.
  • the first port of the third three-way valve is connected to the ninth port 9 of the first valve body V1, or the first port of the third three-way valve is connected to the seventh port 7 of the first valve body V1.
  • the heater is used to heat the fourth cooling medium, so that the fourth cooling medium can exchange heat with the first cooling medium in the cooler when circulating between the electric drive heat dissipation circuit and the cooler, and heat the first cooling medium, thereby increasing the temperature and pressure of the first cooling medium entering the compressor. In this way, the compressor can start normally even in low temperature environments, allowing the thermal management system to heat the passenger compartment of the electric vehicle.
  • the electric drive heat dissipation circuit may further include a front cabin thermal management component, the inlet of the front cabin thermal management component is connected to the seventh port 7 of the first valve body V1, and the outlet of the front cabin thermal management component is connected to the inlet of the electric drive device.
  • Figure 60 is another structural schematic diagram of the thermal management system of Example 3 of the present application. As shown in Figures 59 and 60, the second port of the third three-way valve can be connected to the inlet of the front cabin thermal management component.
  • Figure 61 is another structural schematic diagram of the thermal management system of Example 3 of the present application
  • Figure 62 is another structural schematic diagram of the thermal management system of Example 3 of the present application. As shown in Figures 61 and 62, in another optional embodiment, the second port of the third three-way valve is connected to the outlet of the front cabin thermal management component and the inlet of the electric drive device.
  • the specific architecture of the thermal system loop and the battery heat exchange loop may be the same as that of the first and second embodiments.
  • the thermal system loop may specifically include a compressor, a cooler, a first condenser, and a passenger compartment air conditioning box.
  • the cooler has a first passage and a second passage that are isolated.
  • the first condenser has a first passage and a second passage that are isolated.
  • the passenger compartment air conditioning box has a first passage and a second passage that are isolated.
  • the first passage of the passenger compartment air conditioning box is provided with an evaporator, and the second passage is provided with a warm air core.
  • the thermal system loop may also include a first pump B1.
  • the second port 2 of the first valve body V1 is connected to the inlet of the first pump B1, the outlet of the first pump B1 is connected to the inlet Hb1 of the warm air core, the outlet Hb2 of the warm air core is connected to the inlet Wb1 of the second passage of the first condenser, and the outlet Wb2 of the second passage of the first condenser is connected to the first port 1 of the first valve body V1.
  • the thermal system loop is also provided with a second cooling medium, and the first pump B1 is used to drive the second cooling medium to circulate in the third loop L3 formed between the second passage of the first condenser and the warm air core. In this way, the heat exchanged by the second cooling medium in the first condenser can be blown out through the heater core, thereby heating the air in the passenger compartment.
  • the thermal system loop of the above embodiment may also include a first liquid storage tank.
  • the inlet of the first liquid storage tank is connected to the outlet Wa2 of the first passage of the first condenser, and the outlet of the first liquid storage tank is connected to the inlet Ca1 of the first passage of the cooler and the inlet Ha1 of the evaporator.
  • the first liquid storage tank can store a certain amount of liquid cooling medium in the thermal system loop to ensure a certain annual leakage of the cooling medium.
  • the thermal system loop may also include a gas-liquid separator.
  • the inlet of the gas-liquid separator is connected to the outlet Ca2 of the first passage of the cooler and the outlet Ha2 of the evaporator, and the outlet of the gas-liquid separator is connected to the inlet of the compressor.
  • This design can not only use the gas-liquid separator to realize the function of storing liquid, but also use the gas-liquid separator to retain the liquid in the gas-liquid mixture and only allow the gas to flow into the compressor to improve the compression effect of the compressor.
  • the heat system circuit may specifically include a compressor, a cooler, a first condenser, and a passenger compartment air conditioning box.
  • the cooler has a first passage and a second passage that are isolated from each other.
  • the first condenser has a first passage and a second passage that are isolated from each other.
  • the passenger compartment air conditioning box has a first passage and a second passage that are isolated from each other.
  • the first passage of the passenger compartment air conditioning box is provided with an evaporator, and the second The passage is provided with a second condenser.
  • the inlet Hb1 of the second condenser is connected to the outlet of the compressor, and the outlet Hb2 of the second condenser is connected to the inlet Ca1 of the first passage of the cooler and the inlet Ha1 of the evaporator.
  • the first passage of the first condenser is isolated from the second passage of the first condenser.
  • the thermal system loop also includes a first pump B1.
  • the second port 2 of the first valve body V1 is connected to the inlet of the first pump B1, the outlet of the first pump B1 is connected to the inlet Wb1 of the second passage of the first condenser, and the outlet Wb2 of the second passage of the first condenser is connected to the first port 1 of the first valve body V1.
  • the thermal system loop is also provided with a second cooling medium, and the first pump B1 is used to drive the second cooling medium to circulate between the second passage of the first condenser and the second passage of the passenger compartment air conditioning box.
  • the first cooling medium flowing out of the outlet of the compressor can flow into the second condenser.
  • the low-temperature and low-pressure first cooling medium in the evaporator and the high-temperature and high-pressure first cooling medium in the second condenser perform heat exchange, so that the air blown out of the passenger compartment air conditioning box can be maintained at a relatively suitable temperature.
  • the thermal system loop may further include a second liquid storage tank.
  • the inlet of the second liquid storage tank is connected to the outlet Wa2 of the first passage of the first condenser and the outlet Hb2 of the second condenser, and the outlet of the second liquid storage tank is connected to the inlet Ca1 of the first passage of the cooler and the inlet Ha1 of the evaporator.
  • the second liquid storage tank can store the excess liquid cooling medium in the first passage of the cold first condenser to ensure the annual leakage in the first loop.
  • a first one-way valve CV1 may be provided between the outlet Wa2 of the first passage of the first condenser and the inlet of the second liquid storage tank, and the first one-way valve CV1 is used to connect the outlet Wa2 of the first passage of the first condenser to the inlet of the second liquid storage tank in a one-way manner.
  • a second one-way valve CV2 is provided between the outlet Hb2 of the second condenser and the inlet of the second liquid storage tank, and the second one-way valve CV2 is used to connect the outlet Hb2 of the second condenser to the inlet of the second liquid storage tank in a one-way manner. In this way, by controlling the first one-way valve CV1 and the second one-way valve CV2, the flow path of the first cooling medium in the thermal system circuit can be controlled.
  • the present application also provides an electric vehicle.
  • the electric vehicle includes a controller and a thermal management system of the above embodiment.
  • the controller is connected to the thermal management system, and the control device is used to control the opening or closing of the port of the first valve body V1, so that the thermal management system operates in a mode of heating the passenger compartment alone.
  • the electric vehicle can realize a mode of heating the passenger compartment alone, which helps to heat the passenger compartment in a low temperature environment and improve the user's driving experience.
  • FIG63 is a structural schematic diagram of a thermal management system of Embodiment 4 of the present application.
  • the thermal management system includes a first valve body V1, a water pipeline, a cooler, a compressor, and a heating unit.
  • the inlet and outlet of the water pipeline are respectively connected to the first valve body V1.
  • the cooler has a first passage and a second passage that are isolated from each other.
  • the inlet Ca1 of the first passage of the cooler is connected to the outlet of the compressor, and the outlet Ca2 of the first passage of the cooler is connected to the inlet of the compressor to form a first liquid cooling circuit.
  • the inlet Cb1 of the second passage of the cooler and the outlet Cb2 of the second passage of the cooler are respectively connected to the first valve body V1.
  • the first valve body V1 can be configured to switch between different connection states. Different connection states can include a second passage and a water pipeline connected to the cooler to form a first water circuit, so that the first water circuit is heat exchanged with the first liquid cooling circuit.
  • the heating unit can be arranged at the inlet Cb1 of the first liquid cooling circuit, the second passage of the cooler, or the water pipeline. In the above-mentioned thermal management system, the heating unit can directly heat the first liquid cooling circuit where the compressor is located, or can also heat the second passage or water pipeline of the cooler to indirectly heat the compressor, thereby increasing the temperature and pressure inside the compressor, so that the compressor can start normally in a low temperature environment, thereby enabling the thermal management system to heat the passenger compartment of the electric vehicle.
  • the first valve body V1 may include a first port 1, a second port 2, a fifth port 5, and a sixth port 6.
  • the thermal management system may further include a passenger compartment air conditioning box, a first condenser, and a first pump B1.
  • the inlet Cb1 of the second passage of the cooler is connected to the fifth port 5 of the first valve body V1, and the outlet Cb2 of the second passage of the cooler is connected to the sixth port 6 of the first valve body V1.
  • the first condenser has a first passage and a second passage that are isolated.
  • the first passage of the first condenser is located between the compressor and the first passage of the cooler, and the inlet Wa1 of the first passage of the first condenser is connected to the outlet of the compressor, and the outlet Wa2 of the first passage of the first condenser is connected to the inlet Ca1 of the first passage of the cooler.
  • the passenger compartment air conditioning box has a first passage and a second passage that are isolated.
  • the inlet Ha1 of the first passage of the passenger compartment air conditioning box is connected to the outlet of the compressor, and the outlet Ha2 of the first passage of the passenger compartment air conditioning box is connected to the inlet of the compressor to form a second liquid cooling circuit.
  • the water pipeline includes a first pipeline, and the first pipeline passes through the first pump B1, the second passage of the passenger compartment air conditioning box, and the second passage of the first condenser in sequence.
  • the inlet of the first pump B1 is connected to the second port 2 of the first valve body V1
  • the outlet Wb2 of the second passage of the first condenser is connected to the first port 1 of the first valve body V1 .
  • the second passage and the water pipeline connected to the cooler may specifically include connecting the second passage and the first pipeline of the cooler, that is, being connected.
  • different connection states may also include connecting the first pipeline so that the first pipeline forms a second water circuit through the first valve body V1 to achieve self-circulation, so that the second water circuit can exchange heat with the first liquid cooling circuit through the passenger compartment air conditioning box.
  • first valve body V1 may further include a third port 3 and a fourth port 4.
  • the thermal management system may further include a second pump B2 and a battery.
  • the water pipeline may also include a second pipeline. The second pipeline may pass through the second pump B2 and the battery in sequence, wherein the inlet of the second pump B2 is connected to the third port 3 of the first valve body V1, the outlet of the second pump B2 is connected to the inlet of the battery, and the outlet of the battery is connected to the fourth port 4 of the first valve body V1.
  • the water pipeline may further include a second three-way valve, the second three-way valve having a first port, a second port and a third port, and the second three-way valve may divide the second pipeline into two branches.
  • the first port of the second three-way valve is connected to the outlet of the second pump B2
  • the second port of the second three-way valve is connected to the inlet of the battery
  • the third port of the second three-way valve is connected to the fourth port 4 of the first valve body V1.
  • the first pipeline and the second pipeline of the water pipeline can be connected through the first valve body V1, or can also be connected through other valve bodies.
  • the water pipeline can also include a first three-way valve.
  • the first three-way valve has a first port, a second port and a third port.
  • the first port of the first three-way valve is connected to the inlet Wb1 of the second passage of the first condenser
  • the second port of the first three-way valve is connected to the outlet of the first pump B1
  • the third port of the first three-way valve is connected to the inlet of the second pump B2.
  • a third one-way valve may be provided between the inlet of the second pump B2 and the inlet Wb1 of the second passage of the first condenser to connect the inlet of the second pump B2 and the inlet Wb1 of the second passage of the first condenser in a one-way manner.
  • the first valve body V1 when the first valve body V1 is switched to the connection state of the second passage and the water pipeline of the cooler, it can specifically include the second passage and the second pipeline of the cooler.
  • the first valve body V1 can also be switched to other connection states.
  • different connection states can also include connecting the first pipeline and the second pipeline respectively to form a third water circuit.
  • the first pipeline and the second pipeline can circulate separately, and the first pipeline and the second pipeline can be connected through the first three-way valve, so that the third water circuit is heat exchanged with the first liquid cooling circuit through the passenger compartment air conditioning box.
  • first pipeline and the second pipeline can be directly connected through the first valve body V1
  • different connection states can also include connecting the first pipeline and the second pipeline to form a fourth water circuit, so that the fourth water circuit is heat exchanged with the first liquid cooling circuit through the passenger compartment air conditioning box.
  • the first valve body V1 may further include a seventh port 7, an eighth port 8 and a ninth port 9.
  • the thermal management system may further include a third pump B3 and an electric drive device.
  • the water pipeline may further include a third pipeline, the third pipeline passes through the electric drive device and the third pump B3, wherein the inlet of the electric drive device is connected to the seventh port 7 of the first valve body V1 and/or the ninth port 9 of the first valve body V1, the outlet of the electric drive device is connected to the inlet of the third pump B3, and the outlet of the third pump B3 is connected to the eighth port 8 of the first valve body V1.
  • the water pipeline may further include a third three-way valve, the third three-way valve having a first port, a second port and a third port.
  • the first port of the third three-way valve is connected to the seventh port 7 of the first valve body V1 or the ninth port 9 of the first valve body V1.
  • the second port of the third three-way valve is connected to the inlet of the electric drive device, the third port of the third three-way valve is connected to the inlet of the heating unit, and the outlet of the heating unit is connected to the inlet of the third pump B3.
  • the water pipeline may also include a front cabin thermal management component, the inlet of the front cabin thermal management component may be connected to the seventh port 7 of the first valve body V1, and the outlet of the front cabin thermal management component is connected to the inlet of the electric drive device.
  • the first valve body V1 when the first valve body V1 is switched to a state of connecting the second passage of the cooler and the water pipeline, it may specifically include connecting the second passage of the cooler and the third pipeline, so that the third pipeline exchanges heat with the first liquid cooling circuit through the second passage of the cooler.
  • the connected state may also include connecting the second passage of the cooler, the second pipeline and the third pipeline, so that the three pipelines are connected and circulated.
  • the first passage of the passenger compartment air conditioner may be provided with an evaporator, and the second passage of the passenger compartment air conditioner may be provided with a heater core.
  • the first passage of the passenger compartment air conditioner may be provided with an evaporator, and the second passage of the passenger compartment air conditioner may be provided with a second condenser.
  • the present application provides an electric vehicle.
  • the electric vehicle includes a controller and the thermal management system in the above-mentioned embodiment 4.
  • the controller is connected to the first valve body V1 of the thermal management system.
  • the controller is used to control the first valve body V1 to switch to different connection states, so that the thermal management system operates in any mode of heating the passenger compartment alone, heating the battery alone, and heating the passenger compartment and the battery at the same time.
  • the electric vehicle can realize the free switching of any mode of heating the passenger compartment alone, heating the battery alone, and heating the passenger compartment and the battery at the same time, which helps to heat the passenger compartment in a low temperature environment and improve the user's driving experience.
  • the following takes the example that the heating unit is disposed in the first liquid cooling circuit, the second liquid cooling circuit or the first pipeline to explain the switching of the first valve body V1 between different communication states.
  • the heating unit may include a heater separately arranged at the outlet Ca2 of the first passage of the cooler, and heats the first cooling medium flowing out of the outlet Ca2 of the first passage of the cooler, while the compressor starts at a lower speed.
  • the temperature of the passenger compartment gradually rises.
  • the heating unit may also include a connected compressor motor and a motor controller.
  • the compressor may include A compressor body and a scroll arranged on the compressor body, wherein the compressor motor is connected to the scroll.
  • the temperature of the passenger compartment gradually rises.
  • the first valve body V1 can be switched from the connected state of M11 to a connected state of the stable stage (M12).
  • the connected state of the first valve body V1 in the stable stage (M12) can be the same as the connected state of the low-temperature starting stage (M11).
  • the heating unit can be arranged at the outlet Ca2 of the first passage of the cooler, or at the inlet of the compressor, or at the inlet Ha1 of the first passage of the passenger compartment air conditioner.
  • the first valve body V1 can be switched from the connected state of M11 to another connected state of the stable stage (M12). That is, the first port 1 and the second port 2, the third port 3 and the sixth port 6, the fourth port 4 and the fifth port 5, and the seventh port 7 and the eighth port 8 of the first valve body V1 are connected respectively.
  • the heating unit may be provided between the inlet of the compressor and the outlet Wa2 of the first passage of the first condenser, or at the inlet of the compressor, or between the first pump B1 and the inlet Hb1 of the second passage of the passenger compartment air conditioner.
  • the heating unit can be disposed between the first pump B1 and the inlet Hb1 of the second passage of the passenger compartment air conditioning box.
  • the first valve body V1 can be switched to connect the first port 1 and the second port 2; or, as shown in FIG24, the first valve body V1 can also be switched to connect the first port 1 and the third port 3, and the second port 2 and the fourth port, respectively.
  • the heating mode is in a stable state.
  • the first valve body V1 can be switched to respectively connect the first port 1 and the second port 2, the fifth port 5 and the eighth port 8, and the sixth port 6 and the seventh port 7.
  • the heating unit can be arranged at the outlet Ca2 of the first passage of the cooler.
  • the first valve body V1 can be switched to connect the first port 1 and the second port 2, the third port 3 and the sixth port 6, the fourth port 4 and the fifth port 5, and the seventh port 7 and the eighth port 8, respectively; or, as shown in Figure 30, the first valve body V1 can also be switched to connect the first port 1 and the second port 2, the third port 3 and the fourth port 4, the fifth port 5 and the eighth port 8, and the sixth port 6 and the seventh port 7, respectively.
  • the first valve body V1 can be switched to connect the first port 1 and the third port 3, and the second port 2 and the fourth port 4 respectively; or, as shown in Figure 32, the first valve body V1 can be switched to connect the first port 1 and the second port 2, and the third port 3 and the fourth port 4 respectively.
  • the first valve body V1 can also switch to a low-temperature start-up stage (M21) state, that is, no two ports are connected.
  • the heating unit is arranged at the outlet Ca2 of the first passage of the cooler. Open the solenoid valve V2 and close V3.
  • the high-temperature first cooling medium from the compressor enters the second condenser, and then passes through the one-way valve CV2 into the second liquid storage tank and then passes through the throttle valve and enters the cooler. After being heated by the heater, the first cooling medium passes through Pt1 and enters the compressor.
  • the thermal management system reaches a stable stage (M22). At this time, the state of the first valve body V1 remains unchanged.
  • the first valve body V1 can be switched to connect the first port 1 and the third port 3, and the second port 2 and the fourth port 4, respectively; or, as shown in Figure 37, the first valve body V1 can be switched to connect the first port 1 and the second port 2, and the third port 3 and the fourth port 4, respectively.
  • the thermal management system can also perform heating.
  • the first valve body V1 can be switched to respectively connect the first port 1 and the second port 2, the third port 3 and the sixth port 6, and the fourth port 4 and the fifth port 5.
  • the first valve body V1 can be switched to respectively connect the first port 1 and the second port 2, and the third port 3 and the fourth port 4.
  • the passenger compartment can also be heated in the stable stage.
  • the first valve body V1 can be switched to not connect any two ports.
  • the following takes the example that the heating unit is disposed in the second pipeline to explain the switching of the first valve body V1 between different communication states.
  • the first valve body V1 can be switched to respectively connect the first port 1 and the third port 3, and the second port 2 and the fourth port 4.
  • the first valve body V1 can be switched to respectively connect the first port 1 and the second port 2, the third port 3 and the sixth port 6, and the fourth port 4 and the fifth port 5.
  • the thermal management system can heat the passenger compartment.
  • the first valve body V1 can be switched to connect the first port 1 and the third port 3, and the fourth port 4 and the fifth port 5, respectively.
  • the thermal management system can heat the battery.
  • the first valve body V1 can be switched to connect the third port 3 and the sixth port 6, and the fourth port 4 and the fifth port 5, respectively.
  • the first valve body V1 can be switched to not connect any two ports.
  • the first cooling medium flowing out of the outlet of the compressor can flow into the second condenser.
  • the low-temperature and low-pressure first cooling medium in the evaporator exchanges heat with the high-temperature and high-pressure first cooling medium in the second condenser, so that the air blown out of the passenger compartment air conditioner can be maintained at a relatively suitable temperature.
  • the heater heats the third cooling medium in the battery heat exchange circuit, thereby heating the battery.
  • the first valve body V1 can be switched to connect the third port 3 and the sixth port 6, and the fourth port 4 and the fifth port 5 respectively.
  • the thermal management system can heat the passenger compartment.
  • the first valve body V1 can be switched to connect the first port 1 and the third port 3, and the second port 2 and the fourth port 4, respectively.
  • the following takes the case where the heating unit is disposed in the third pipeline as an example to explain the switching of the first valve body V1 between different communication states.
  • the thermal management system can heat the passenger compartment of the electric vehicle.
  • the first valve body V1 can be switched to connect the first port 1 and the second port 2, the fifth port 5 and the eighth port 8, and the sixth port 6 and the seventh port 7, respectively.
  • the first valve body V1 can be switched to connect the sixth port 6 and the seventh port 7, and the fifth port 5 and the eighth port 8, respectively, or connect the sixth port 6 and the seventh port 7, the sixth port 6 and the ninth port 9, and the fifth port 5 and the eighth port 8, respectively.
  • the first valve body V1 can be switched to connect the first port 1 and the second port 2, the fifth port 5 and the eighth port 8, and the sixth port 6 and the ninth port 9, respectively.
  • the first valve body V1 can be switched to connect the fifth port 5 and the eighth port 8, and the sixth port 6 and the ninth port 9, respectively.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

一种热管理系统,包括热系统回路、电池换热回路、电驱散热回路和加热器,其中加热器可以设置在热系统回路、电池换热回路、电驱散热回路中的任一回路。加热器用于对热系统回路中流经压缩机的第一冷却介质进行加热,从而提高进入压缩机的第一冷却介质的温度和压力。一种电动汽车,包括控制器以及该种热管理系统。如此设置在低温环境下,压缩机也能够正常启动,使热管理系统能够对电动汽车的乘员舱进行制热。

Description

一种热管理系统及电动汽车
相关申请的交叉引用
本申请要求在2022年9月30日提交中华人民共和国知识产权局、申请号为202211217086.4、发明名称为“一种热管理系统及电动汽车”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及热管理技术领域,尤其涉及一种热管理系统及电动汽车。
背景技术
近年来,电动汽车在电力电子领域得到了越来越广泛的应用。电动汽车通过储存电能来实现续航和驾驶,使用户可以直接在家即可实现充电等操作。相比于传统汽车来说,电动汽车不仅有利于保护环境,还不需要用户到加油站加油,有助于提高用户生活的便捷度。
空调系统作为电动汽车中重要的组成部分,用以调节车厢内的温度和湿度,为乘客提供舒适的乘车环境。然而,在零下18摄氏度或更低温度的环境下,由于压缩机进口的冷却介质温度和压力过低,导致压缩机无法正常工作,使空调系统无法制暖。鉴于此,现阶段对于电动汽车的热管理方面还需要进一步的研究。
发明内容
本申请提供一种热管理系统及电动汽车,以实现低温环境的加热功能。
第一方面,本申请提供了一种热管理系统。热管理系统包括第一阀体、水管路、冷却器、压缩机和加热单元。具体的,水管路的进口和出口分别与第一阀体连接。冷却器具有相隔离的第一通路和第二通路。冷却器的第一通路的进口与压缩机的出口连接,冷却器的第一通路的出口与压缩机的进口连接,以形成第一液冷回路。冷却器的第二通路的进口和冷却器的第二通路的出口分别与第一阀体连接。第一阀体可以被配置为在不同的连通状态之间切换。不同的连通状态可以包括连通冷却器的第二通路和水管路,以形成第一水回路,使第一水回路与第一液冷回路热交换。加热单元可以设置在第一液冷回路、冷却器的第二通路的进口处或水管路。在上述热管理系统中,加热单元可以对压缩机所在的第一液冷回路进行直接加热,或者也可以对冷却器的第二通路或水管路进行加热,以对压缩机进行间接加热,从而可以提高压缩机内的温度和压力,使得在低温环境下,压缩机也能够正常启动,进而使热管理系统能够对电动汽车的乘员舱进行制热。
具体的,第一阀体可以包括第一端口、第二端口、第五端口和第六端口。热管理系统还可以包括乘员舱空调箱、第一冷凝器和第一泵。冷却器的第二通路的进口与第一阀体的第五端口连接,冷却器的第二通路的出口与第一阀体的第六端口连接。第一冷凝器具有相隔离的第一通路和第二通路。第一冷凝器的第一通路位于压缩机与冷却器的第一通路之间,并且第一冷凝器的第一通路的进口与压缩机的出口连接,第一冷凝器的第一通路的出口与冷却器的第一通路的进口连接。乘员舱空调箱具有相隔离的第一通路和第二通路。乘员舱空调箱的第一通路的进口与压缩机的出口连接,乘员舱空调箱的第一通路的出口与压缩机的进口连接,以形成第二液冷回路。水管路包括第一管路,第一管路依次经过第一泵、乘员舱空调箱的第二通路、第一冷凝器的第二通路。第一泵的进口与第一阀体的第二端口连接,第一冷凝器的第二通路的出口与第一阀体的第一端口连接。
在上述实施例中,连通冷却器的第二通路和水管路具体可以包括连通冷却器的第二通路和第一管路,即连通。另外,不同的连通状态还可以包括连通第一管路,以使第一管路通过第一阀体形成第二水回路,实现自循环,使第二水回路可以通过乘员舱空调箱与第一液冷回路热交换。
此外,第一阀体还可以包括第三端口和第四端。热管理系统还可以包括第二泵和电池。除了第一管路之外,水管路还可以包括第二管路。第二管路可以依次经过第二泵和电池,其中,第二泵的进口与第一阀体的第三端口连接,第二泵的出口与电池的进口连接,电池的出口与第一阀体的第四端口连接。
在上述实施例中,水管路还可以包括第二三通阀,第二三通阀具有第一端口、第二端口和第三端口,第二三通阀可以将第二管路分成两个支路。具体的,第二三通阀的第一端口与第二泵的出口连接,第二 三通阀的第二端口与电池的进口连接,第二三通阀的第三端口与第一阀体的第四端口连接。
在本申请中,水管路的第一管路和第二管路可以通过第一阀体连通,或者也可以通过其他阀体连通。例如,在一个具体的实施例中,水管路还可以包括第一三通阀。第一三通阀具有第一端口、第二端口和第三端口,第一三通阀的第一端口与第一冷凝器的第二通路的进口连接,第一三通阀的第二端口与第一泵的出口连接,第一三通阀的第三端口与第二泵的进口连接。
此外,在上述实施例中,第二泵的进口与第一冷凝器的第二通路的进口之间可以设置有第三单向阀。第三单向阀用于将第二泵的进口与第一冷凝器的第二通路的进口单向导通。
在上述实施例中,当第一阀体切换至连通冷却器的第二通路和水管路的连通状态时,具体可以包括连通冷却器的第二通路和第二管路。当然,第一阀体也可以切换至其他的连通状态。例如,不同的连通状态还可以包括分别连通第一管路和第二管路,以形成第三水回路。在该连通状态中,第一管路和第二管路可以各自循环,并且可以通过第一三通阀连通第一管路和第二管路,使第三水回路通过乘员舱空调箱与第一液冷回路热交换。或者,第一管路和第二管路可以通过第一阀体直接连通,也就是说,不同的连通状态还可以包括连通第一管路和第二管路,以形成第四水回路,使第四水回路通过乘员舱空调箱与第一液冷回路热交换。
上述第一阀体还可以包括第七端口、第八端口和第九端口。热管理系统还可以包括第三泵和电驱装置。水管路还可以包括第三管路,第三管路经过电驱装置和第三泵,其中,电驱装置的进口与第一阀体的第七端口和/或第一阀体的第九端口连接,电驱装置的出口与第三泵的进口连接,第三泵的出口与第一阀体的第八端口连接。
在上述实施例中,当加热单元设置于第三管路时,水管路还可以包括第三三通阀,第三三通阀具有第一端口、第二端口和第三端口。第三三通阀的第一端口与第一阀体的第七端口连接或第一阀体V1的第九端口连接。第三三通阀的第二端口与电驱装置的进口连接,第三三通阀的第三端口与加热单元的进口连接,加热单元的出口与第三泵的进口连接。
此外,水管路还可以包括前舱热管理组件,前舱热管理组件的进口可以与第一阀体的第七端口连接,前舱热管理组件的出口与电驱装置的进口连接。
在上述实施例中,当第一阀体切换至连通冷却器的第二通路和水管路的状态时,具体可以包括连通冷却器的第二通路和第三管路,使第三管路通过冷却器的第二通路与第一液冷回路热交换。或者,该连通状态也可以包括连通冷却器的第二通路、第二管路和第三管路,使该三个管路实现连通并循环。
在该实施例四中,乘员舱空调箱的第一通路可以设置有蒸发器,乘员舱空调箱的第二通路可以设置有暖风芯体。或者,乘员舱空调箱的第一通路可以设置有蒸发器,乘员舱空调箱的第二通路可以设置有第二冷凝器。
第二方面,本申请提供了一种电动汽车。电动汽车包括控制器、以及上述第一方面中的热管理系统。控制器与热管理系统的第一阀体连接。控制器用于控制第一阀体切换至不同的连通状态,使热管理系统以乘员舱单独制热、电池单独制热、乘员舱和电池同时制热中的任一模式运行。通过该设计,电动汽车能够实现乘员舱单独制热、电池单独制热、乘员舱和电池同时制热中的任一模式的自由切换,有助于在低温环境下制热乘员舱,提高用户的驾驶体验。
第三方面,本申请提供了一种热管理系统。热管理系统包括热系统回路,以及设置在热系统回路的加热器。具体的,热系统回路可以包括压缩机、冷却器和乘员舱空调箱。其中,冷却器具有第一通路,乘员舱空调箱具有第一通路。冷却器的第一通路的进口和乘员舱空调箱的第一通路的进口分别与压缩机的出口连接。冷却器的第一通路的出口和乘员舱空调箱的第一通路的出口分别与压缩机的进口连接。另外,热系统回路设置有第一冷却介质。第一冷却介质在压缩机与冷却器的第一通路之间、以及压缩机与乘员舱空调箱的第一通路之间循环流动。加热器用于加热第一冷却介质。
在上述热管理系统中,第一冷却介质在压缩机与冷却器之间循环流动,形成第一环路;第一冷却介质在压缩机与乘员舱空调箱的第一通路之间循环流动,形成第二环路。当热管理系统进行制热时,加热器可以对热系统回路中的第一冷却介质进行加热,从而提高进入压缩机的第一冷却介质的温度和压力。如此,即使在低温环境下,压缩机也能够正常启动,使热管理系统能够对电动汽车的乘员舱进行制热。
上述热系统回路还可以包括第一节流阀。第一节流阀连接于乘员舱空调箱的第一通路的出口与压缩机的进口之间,并且用于导通或关闭乘员舱空调箱的第一通路的出口与压缩机的进口。当第一节流阀开启时,乘员舱空调箱的第一通路的出口与压缩机的进口导通,也就是说,第一冷却介质可以同时在第一 环路和第二环路中循环流动。当第一节流阀关闭时,乘员舱空调箱的第一通路的出口与压缩机的进口关闭,也就是说,第一冷却介质仅在第一环路中循环流动。这样,通过控制第一节流阀可以控制第一冷却介质的循环流动路径以及流量。
具体设置热系统回路时,加热器可以为独立设置的加热装置,即可以单独地设置在热系统回路中。具体的,加热器可以设置在冷却器与压缩机之间,其中,加热器的进口与冷却器的第一通路的出口连接,加热器的出口与压缩机的进口连接,使加热器可以对第一环路中的第一冷却介质进行加热。或者,加热器也可以设置于压缩机的进口,其中,加热器的进口连接于冷却器的第一通路的出口和乘员舱空调箱的第一通路的出口,加热器的出口与压缩机的进口连接,使加热器可以对第一环路和第二环路中的第一冷却介质进行加热。
或者,在另一技术方案中,加热器可以设置于压缩机。具体的,加热器可以包括相连接的压缩机电机以及电机控制器。压缩机可以包括压缩机本体以及设置在压缩机本体的涡盘。其中,压缩机电机与涡盘连接。压缩机电机用于向压缩机提供动力源。由于压缩机电机在低效模式下产生的热量比正常工作状态下更多,因此该技术方案可以利用压缩机电机在低效模式产生的多余热量来对第一冷却介质进行加热,从而可以简化热管理系统的结构。
在本申请的技术方案中,热系统回路还可以包括第一冷凝器,第一冷凝器具有第一通路。第一冷凝器的第一通路的进口与压缩机的出口连接,第一冷凝器的第一通路的出口连接于冷却器的第一通路的进口和乘员舱空调箱的第一通路的进口。此时,第一环路包括压缩机、第一冷凝器的第一通路、以及冷却器的第一通路;第二环路包括压缩机、第一冷凝器的第一通路、以及乘员舱空调箱。在该技术方案中,从压缩机的出口流出的第一冷却介质为高温高压的液体,通过第一冷凝器进行初次换热。第一冷凝器输出的第一冷却介质为高温高压的液体,该第一冷却介质随后可以分为两部分,一部分流入冷却器进行二次换热,另一部分经过节流阀流入乘员舱空调箱,实现对乘员舱的降温。
在一技术方案中,上述乘员舱空调箱还可以具有第二通路,其中,乘员舱空调箱的第一通路与第二通路相隔离。具体的,乘员舱空调箱的第一通路可以设置有蒸发器,乘员舱空调箱的第二通路可以设置有暖风芯体。第一冷凝器还可以具有第二通路,第一冷凝器的第一通路与第二通路相隔离。另外,热管理系统还可以包括第一阀体。第一阀体包括第一通路,第一阀体的第一通路具有第一端口和第二端口。热系统回路还可以包括第一泵。第一阀体的第二端口与第一泵的进口连接,第一泵的出口与暖风芯体的进口连接,暖风芯体的出口与第一冷凝器的第二通路的进口连接,第一冷凝器的第二通路的出口与第一阀体的第一端口连接。热系统回路还设置有第二冷却介质,第一泵用于驱动第二冷却介质在第一冷凝器的第二通路与暖风芯体之间形成的第三环路中循环流动。这种方式可以将第二冷却介质在第一冷凝器中交换的热量,经由暖风芯体吹出,从而对乘员舱的空气进行升温。
在一个可选的技术方案中,上述热系统回路还可以包括第一储液罐。第一储液罐的进口连接于第一冷凝器的第一通路的出口,第一储液罐的出口连接于冷却器的第一通路的进口和蒸发器的进口。第一储液罐可以储存热系统回路中的一定量的液态冷却介质,以确保冷却介质一定的年泄露量。
在另一个可选的技术方案中,热系统回路也可以包括气液分离器。气液分离器的进口连接于冷却器的第一通路的出口与蒸发器的出口,气液分离器的出口与压缩机的进口连接。该设计不仅可以使用气液分离器实现存储液体的功能,还能使用气液分离器将气液混合体中的液体留下,而只让气体流入压缩机,以提高压缩机的压缩效果。当然,在一个可选的技术方案中,热系统回路也可以同时包括第一储液罐和气液分离器。
在另一技术方案中,乘员舱空调箱也可以具有第二通路,其中,乘员舱空调箱的第一通路与乘员舱空调箱的第二通路相隔离。具体的,乘员舱空调箱的第一通路设置有蒸发器,乘员舱空调箱的第二通路设置有第二冷凝器。第二冷凝器的进口与压缩机的出口连接,第二冷凝器的出口连接于冷却器的第一通路的进口和蒸发器的进口。第一冷凝器还具有第二通路,第一冷凝器的第一通路与第一冷凝器的第二通路相隔离。另外,热管理系统还包括第一阀体,第一阀体包括第一通路,第一阀体的第一通路具有第一端口和第二端口。热系统回路还包括第一泵。第一阀体的第二端口与第一泵的进口连接,第一泵的出口与第一冷凝器的第二通路的进口连接,第一冷凝器的第二通路的出口与第一阀体的第一端口连接。热系统回路还设置有第二冷却介质,第一泵用于驱动第二冷却介质在第一冷凝器的第二通路循环流动。当第一冷凝器停止工作时,从压缩机的出口流出的第一冷却介质可以流入第二冷凝器。在乘员舱空调箱中,蒸发器中的低温低压的第一冷却介质与第二冷凝器中的高温高压的第一冷却介质进行热交换,使乘员舱 空调箱吹出的风可以维持在相对适宜的温度。
在一个可选的技术方案中,上述热系统回路还可以包括第二储液罐。第二储液罐的进口连接于第一冷凝器的第一通路的出口和第二冷凝器的出口,第二储液罐的出口连接于冷却器的第一通路的进口和蒸发器的进口。如此,第一储液罐可以储存热系统回路中的一定量的液态冷却介质,以确保冷却介质一定的年泄露量。
上述第一冷凝器的第一通路的出口与第二储液罐的进口之间还可以设置有第一单向阀,第一单向阀用于将第一冷凝器的第一通路的出口与第二储液罐的进口单向导通。第二冷凝器的出口与第二储液罐的进口之间设置有第二单向阀,第二单向阀用于将第二冷凝器的出口与第二储液罐的进口单向导通。这样,通过控制第一单向阀和第二单向阀,可以控制第一冷却介质在热系统回路的流动路径。
在上述技术方案中,加热器的具体位置不限。在一个可选的技术方案中,加热器可以设置在第一泵与第一冷凝器的第二通路之间。具体的,加热器的进口与第一泵的出口连接,加热器的出口与第一冷凝器的第二通路的进口连接。或者,加热器的进口与第一冷凝器的第二通路的出口连接,加热器的出口与第一泵的进口连接。这种方式可以使加热器对第二冷却介质直接加热,并且在第一冷凝器中,第二冷却介质与第一冷却介质进行热交换,实现对第一冷却介质的加热。
在另一个可选的技术方案中,加热器也可以设置在第一冷凝器与乘员舱空调箱之间。具体的,加热器的进口与第一冷凝器的第一通路的出口连接,加热器的出口与乘员舱空调箱的第一通路的进口连接。如此,加热器可以直接对进入乘员舱空调箱的第一通路的第一冷却介质进行加热。或者,在另一个可选的技术方案中,加热器也可以设置于第一冷凝器与压缩机之间。具体的,加热器的进口与第一冷凝器的第一通路的出口连接,加热器的出口与压缩机的进口连接。这种方式可以将从第一冷凝器的第一通路的出口流出的第一冷却介质中的一部分直接流入压缩机的进口,并且加热器可以对这部分第一冷却介质直接加热。
在本申请的技术方案中,热管理系统还可以包括电池换热回路。电池换热回路可以包括电池和第二泵。第一阀体还可以包括第二通路和第三通路。第一阀体的第二通路具有第三端口和第六端口。第一阀体的第三通路具有第四端口和第五端口。具体的,第一阀体的第三端口与第二泵的进口连接,第二泵的出口与电池的进口连接,电池的出口与第一阀体的第四端口连接。冷却器还具有第二通路,冷却器的第一通路与冷却器的第二通路相隔离。第一阀体的第五端口与冷却器的第二通路的进口连接,冷却器的第二通路的出口与第一阀体的第六端口连接。第二泵用于驱动第三冷却介质在电池换热回路与冷却器的第二通路之间循环流动。如此,通过控制第一阀体的端口,可以使电池换热回路与热系统回路的第三环路连通或关闭。
上述第一阀体还可以包括第四通路和第五通路。第一阀体的第四通路具有第一端口和第三端口,第一阀体的第五通路具有第二端口和第四端口。当第一阀体的第四通路和第五通路导通时,电池换热回路与乘员舱回路的第三环路连通。
上述第二泵的进口与第一冷凝器的第二通路的进口连接。第一冷凝器的第二通路的进口与第一泵的出口之间设置有第一三通阀,第一三通阀具有第一端口、第二端口和第三端口,第一三通阀的第一端口与第一冷凝器的第二通路的进口连接,第一三通阀的第二端口与第一泵的出口连接,第一三通阀的第三端口与第二泵的进口连接。通过控制第一三通阀的端口导通或关闭,可以控制从第一泵流出的冷却介质分别流入第一冷凝器和第二泵的流量。
在一个可选的技术方案中,第二泵的进口与第一冷凝器的第二通路的进口之间可以设置有第三单向阀,第三单向阀用于将第二泵的进口与第一冷凝器的第二通路的进口单向导通,避免冷却介质倒流。
第四方面,本申请提供了一种电动汽车。电动汽车包括控制器和上述第三方面的热管理系统。控制器与热管理系统连接,控制器用于控制热管理系统以乘员舱单独制热的模式运行。通过该设计,电动汽车能够实现乘员舱单独制热的模式,有助于在低温环境下制热乘员舱,提高用户的驾驶体验。
在一个可选的技术方案中,热管理系统还可以包括第一阀体和电池换热回路。控制器可以与第一阀体连接。控制器可以用于控制第一阀体的端口的导通或关闭,实现如下模式中的任一模式:乘员舱单独制热的模式、电池单独制热的模式、乘员舱和电池同时制热的模式。通过该设计,电动汽车能够实现乘员舱单独制热、电池单独制热、乘员舱和电池同时制热中的任一模式的自由切换,有助于使电动汽车能满足各种用户的不同需求,提高用户的驾驶体验。
第五方面,本申请提供了一种热管理系统。热管理系统可以包括热系统回路、第一阀体、电池换热 回路和加热器,加热器设置于电池换热回路。其中,第一阀体包括第二通路和第三通路。第一阀体的第二通路具有第三端口和第六端口。第一阀体的第三通路具有第四端口和第五端口。另外,热系统回路包括压缩机和冷却器。冷却器具有相隔离的第一通路和第二通路。具体的,冷却器的第一通路的进口与压缩机的出口连接,冷却器的第一通路的出口与压缩机的进口连接。冷却器的第二通路的进口与第一阀体的第五端口连接,冷却器的第二通路的出口与第一阀体的第六端口连接。热系统回路中设置有第一冷却介质,第一冷却介质在压缩机与冷却器的第一通路之间循环流动。此外,电池换热回路可以包括第二泵、第二三通阀和电池。第二三通阀具有第一端口、第二端口和第三端口。其中,第二泵的进口与第一阀体的第三端口连接,第二泵的出口与第二三通阀的第一端口连接,第二三通阀的第二端口与电池的进口连接,第二三通阀的第三端口和电池的出口连接于第一阀体的第四端口。第二泵用于驱动第三冷却介质在电池换热回路与冷却器的第二通路之间循环流动。在该热管理系统中,加热器用于加热第三冷却介质,使第三冷却介质在电池换热回路中循环流动时能够在冷却器中与第一冷却介质热交换,并加热第一冷却介质,从而可以提高进入压缩机的第一冷却介质的温度和压力。如此,即使在低温环境下,压缩机也能够正常启动,使热管理系统能够对电动汽车的乘员舱进行制热。
具体设置加热器时,加热器的位置不作限制。在一个可选的技术方案中,加热器的进口可以与第二三通阀的第三端口连接,加热器的出口可以与第一阀体的第四端口连接。在另一个可选的技术方案中,加热器的进口也可以连接于第二三通阀的第三端口和电池的出口,加热器的出口可以与第一阀体的第四端口连接。在另一个可选的技术方案中,加热器的进口也可以与第一阀体的第五端口连接,加热器的出口可以与冷却器的第二通路的进口连接。
在上述技术方案中,第一阀体还可以包括第一通路。第一阀体的第一通路具有第一端口和第二端口。热系统回路还可以包括第一冷凝器、乘员舱空调箱和第一泵。第一冷凝器具有相隔离的第一通路和第二通路,乘员舱空调箱包括蒸发器和暖风芯体。第一冷凝器的第一通路的进口与压缩机的出口连接,第一冷凝器的第一通路的出口连接于冷却器的第一通路的进口和蒸发器的进口,蒸发器的出口与压缩机的进口连接。第一阀体的第二端口与第一泵的进口连接,第一泵的出口与暖风芯体的进口连接,暖风芯体的出口与第一冷凝器的第二通路的进口连接,第一冷凝器的第二通路的出口与第一阀体的第一端口连接。热系统回路还设置有第二冷却介质,第一泵用于驱动第二冷却介质在第一冷凝器的第二通路与乘员舱空调箱的第二通路之间循环流动。这种方式可以将第二冷却介质在第一冷凝器中交换的热量,经由暖风芯体吹出,从而对乘员舱的空气进行升温。
在一个可选的技术方案中,上述热系统回路还可以包括第一储液罐,第一储液罐的进口连接于第一冷凝器的第一通路的出口,第一储液罐的出口连接于冷却器的第一通路的进口和蒸发器的进口。第一储液罐可以储存热系统回路中的一定量的液态冷却介质,以确保冷却介质一定的年泄露量。
在另一个可选的技术方案中,热系统回路也可以包括气液分离器,气液分离器的进口连接于冷却器的第一通路的出口与蒸发器的出口,气液分离器的出口与压缩机的进口连接。该设计不仅可以使用气液分离器实现存储液体的功能,还能使用气液分离器将气液混合体中的液体留下,而只让气体流入压缩机,以提高压缩机的压缩效果。当然,在一个可选的技术方案中,热系统回路也可以同时包括第一储液罐和气液分离器。
在本申请的技术方案中,第一阀体也可以包括第一通路。第一阀体的第一通路具有第一端口和第二端口。热系统回路还包括第一冷凝器、乘员舱空调箱和第一泵。第一冷凝器具有相隔离的第一通路和第二通路,乘员舱空调箱包括蒸发器和第二冷凝器。压缩机的出口连接于第一冷凝器的第一通路的进口与第二冷凝器的进口,第一冷凝器的第一通路的出口连接于冷却器的第一通路的进口和蒸发器的进口,第二冷凝器的出口连接于冷却器的第一通路的进口和蒸发器的进口,蒸发器的出口与压缩机的进口连接。第一阀体的第二端口与第一泵的进口连接,第一泵的出口与第一冷凝器的第二通路的进口连接,第一冷凝器的第二通路的出口与第一阀体的第一端口连接。热系统回路还设置有第二冷却介质,第一泵用于驱动第二冷却介质在第一冷凝器的第二通路中循环流动。当第一冷凝器停止工作时,从压缩机的出口流出的第一冷却介质可以流入第二冷凝器。在乘员舱空调箱中,蒸发器中的低温低压的第一冷却介质与第二冷凝器中的高温高压的第一冷却介质进行热交换,使乘员舱空调箱吹出的风可以维持在相对适宜的温度。
在一个可选的技术方案中,上述热系统回路还包括第二储液罐,第二储液罐的进口连接于第一冷凝器的第一通路的出口和第二冷凝器的出口,第二储液罐的出口连接于冷却器的第一通路的进口和蒸发器的进口。如此,第一储液罐可以储存热系统回路中的一定量的液态冷却介质,以确保冷却介质一定的年 泄露量。
上述第一冷凝器的第一通路的出口与第二储液罐的进口之间设置有第一单向阀,第一单向阀用于将第一冷凝器的第一通路的出口与第二储液罐的进口单向导通。第二冷凝器的出口与第二储液罐的进口之间设置有第二单向阀,第二单向阀用于将第二冷凝器的出口与第二储液罐的进口单向导通。这样,通过控制第一单向阀和第二单向阀,可以控制第一冷却介质在热系统回路的流动路径。
第六方面,本申请提供了一种电动汽车。电动汽车包括控制器和上述第五方面的热管理系统。其中,控制器与热管理系统的第一阀体连接。控制器用于控制第一阀体的端口的导通或关闭,使热管理系统以乘员舱单独制热、电池单独制热、乘员舱和电池同时制热中的任一模式运行。通过该设计,电动汽车能够实现乘员舱单独制热、电池单独制热、乘员舱和电池同时制热中的任一模式的自由切换,有助于在低温环境下制热乘员舱,提高用户的驾驶体验。
第七方面,本申请提供了一种热管理系统。热管理系统包括热系统回路、第一阀体、电驱散热回路和加热器,加热器设置于电驱散热回路。具体的,第一阀体包括第十通路、第九通路和第十二通路。第一阀体的第十通路具有第五端口和第八端口。第一阀体的第九通路具有第六端口和第七端口。第一阀体的第十二通路具有第六端口和第九端口。热系统回路可以包括压缩机和冷却器。冷却器具有相隔离的第一通路和第二通路。冷却器的第一通路的进口与压缩机的出口连接,冷却器的第一通路的出口与压缩机的进口连接。冷却器的第二通路的进口与第一阀体的第五端口连接,冷却器的第二通路的出口与第一阀体的第六端口连接。热系统回路设置有第一冷却介质,第一冷却介质在压缩机与冷却器的第一通路之间循环流动。电驱散热回路包括电驱装置、第三泵、水箱和第三三通阀。电驱装置的进口连接于第一阀体的第七端口和第一阀体的第九端口,电驱装置的出口连接于水箱和第三泵的进口,加热器的出口与第三泵的进口连接。第三泵用于驱动第四冷却介质在电驱散热回路与冷却器之间循环流动。第三三通阀具有第一端口、第二端口和第三端口。第三三通阀的第二端口与电驱装置的进口连接,第三三通阀的第三端口与加热器的进口连接。第三三通阀的第一端口与第一阀体的第九端口连接,或者,第三三通阀的第一端口与第一阀体的第七端口连接。在该热管理系统中,热器用于加热第四冷却介质,使第四冷却介质在电驱散热回路与冷却器之间循环流动时能够在冷却器中与第一冷却介质热交换,并加热第一冷却介质,从而可以提高进入压缩机的第一冷却介质的温度和压力。如此,即使在低温环境下,压缩机也能够正常启动,使热管理系统能够对电动汽车的乘员舱进行制热。
在一个可选的技术方案中,电驱散热回路还可以包括前舱热管理组件,前舱热管理组件的进口与第一阀体的第七端口连接,前舱热管理组件的出口与电驱装置的进口连接。第三三通阀的第二端口与前舱热管理组件的进口连接,或者,第三三通阀的第二端口连接于前舱热管理组件的出口与电驱装置的进口。
第八方面,本申请提供了一种电动汽车。电动汽车包括控制器和上述第七方面的热管理系统。其中,控制器与热管理系统连接,控制装置用于控制第一阀体的端口的导通或关闭,使热管理系统以乘员舱单独制热的模式运行。通过该设计,电动汽车能够实现乘员舱单独制热的模式,有助于在低温环境下制热乘员舱,提高用户的驾驶体验。
附图说明
图1为本申请实施例一的热管理系统的一种结构示意图;
图2为本申请实施例一的热管理系统的另一种结构示意图;
图3为本申请实施例一的热管理系统的另一种结构示意图;
图4为本申请实施例一的热管理系统的另一种结构示意图;
图5为本申请实施例一的压缩机与加热器的控制示意图;
图6为本申请实施例一的热管理系统的另一种结构示意图;
图7为本申请实施例一的热管理系统的另一种结构示意图;
图8为本申请实施例一的热管理系统的另一种结构示意图;
图9为本申请实施例一的热管理系统的另一种结构示意图;
图10为本申请实施例一的热管理系统的另一种结构示意图;
图11为本申请实施例一的热管理系统的另一种结构示意图;
图12为本申请实施例一的热管理系统的另一种结构示意图;
图13为本申请实施例一的热管理系统的另一种结构示意图;
图14为本申请实施例一的热管理系统的另一种结构示意图;
图15为图6的热管理系统在低温启动阶段的示意图;
图16为图15的热管理系统在一种稳定阶段的示意图;
图17为图15的热管理系统在另一种稳定阶段的示意图;
图18为本申请实施例中另一热管理系统在稳定阶段的示意图;
图19为图10中热管理系统在稳定阶段的示意图;
图20为图11中热管理系统在稳定阶段的示意图;
图21为图12中热管理系统在稳定阶段的示意图;
图22为图9中热管理系统在稳定阶段的示意图;
图23为图9中热管理系统在冷媒系统故障情况下的乘员舱制热的示意图;
图24为图9中热管理系统在冷媒系统故障情况下的乘员舱制热和电池加热的示意图;
图25为图6中热管理系统在稳定工况下的乘员舱制热的示意图;
图26为图25的热管理系统的压力-比焓图;
图27为图6中热管理系统在低温情况下的电池制热的一种示意图;
图28为图6中热管理系统在低温情况下的电池制热的另一种示意图;
图29为图6中热管理系统在低温情况下的电池制热的另一种示意图;
图30为图6中热管理系统在低温情况下的电池制热的另一种示意图;
图31为图6中热管理系统在极低温情况下的电池制热的另一种示意图;
图32为图6中热管理系统在极低温情况下对乘员舱和电池同时制热的另一种示意图;
图33为图8的热管理系统在低温启动阶段的示意图;
图34为图8的热管理系统在稳定阶段的一种示意图;
图35为图8的热管理系统在稳定阶段的另一种示意图;
图36为图8的热管理系统在电池快充加热模式的一种示意图;
图37为图8的热管理系统在电池快充加热模式的另一种示意图;
图38为图8的热管理系统在电池快充加热模式的另一种示意图;
图39为图8的热管理系统在行车混合加热模式的一种示意图;
图40为图8的热管理系统在行车混合加热模式的另一种示意图;
图41为图8的热管理系统在行车混合加热模式的另一种示意图;
图42为图8的热管理系统在行车混合加热模式的另一种示意图;
图43为本申请实施例中另一热管理系统的冷却介质循环模式的示意图;
图44为本申请实施例中另一热管理系统的冷却介质循环模式的示意图;
图45为本申请实施例中另一热管理系统的冷却介质循环模式的示意图;
图46为本申请实施例中另一热管理系统的冷却介质循环模式的示意图;
图47为本申请实施例二的热管理系统的一种结构示意图;
图48为本申请实施例二的热管理系统的另一种结构示意图;
图49为本申请实施例二的热管理系统的另一种结构示意图;
图50为图47中热管理系统在冷媒系统故障情况下对乘员舱制热的示意图;
图51为图47中热管理系统在冷媒系统故障情况下对电池制热的示意图;
图52为本申请实施例二的热管理系统的另一种结构示意图;
图53为本申请实施例二的热管理系统的另一种结构示意图;
图54为本申请实施例二的热管理系统的另一种结构示意图;
图55为图54中热管理系统在冷媒系统故障情况下对电池制热的示意图;
图56为图54中热管理系统在制冷剂环路失效情况下对乘员舱制热的示意图;
图57为本申请实施例二的热管理系统的另一种结构示意图;
图58为本申请实施例二的热管理系统的另一种结构示意图;
图59为本申请实施例三的热管理系统的一种结构示意图;
图60为本申请实施例三的热管理系统的另一种结构示意图;
图61为本申请实施例三的热管理系统的另一种结构示意图;
图62为本申请实施例三的热管理系统的另一种结构示意图;
图63为本申请实施例四的热管理系统的一种结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在另一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
需要说明的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。此外,本申请中的“连接”均是指通过管道连接,即下文中所出现的“连接”均可以替换为“通过管道连接”。且,下文中的“电池”可以理解为电池所在的管路。
实施例一
图1为本申请实施例一的热管理系统的一种结构示意图。如图1所示,热管理系统可以包括热系统回路和设置在热系统回路的加热器。具体的,热系统回路可以包括压缩机、冷却器和乘员舱空调箱。其中,冷却器具有第一通路,乘员舱空调箱具有第一通路。冷却器的第一通路的进口Ca1和乘员舱空调箱的第一通路的进口Ha1分别与压缩机的出口连接。冷却器的第一通路的出口Ca2和乘员舱空调箱的第一通路的出口Ha2分别与压缩机的进口连接。另外,热系统回路设置有第一冷却介质。第一冷却介质在压缩机与冷却器的第一通路之间、以及压缩机与乘员舱空调箱的第一通路之间循环流动。加热器用于加热第一冷却介质。
在实施例一的热管理系统中,第一冷却介质在压缩机与冷却器之间循环流动,形成第一环路L1;第一冷却介质在压缩机与乘员舱空调箱的第一通路之间循环流动,形成第二环路L2。当热管理系统进行制热时,加热器可以对热系统回路中的第一冷却介质进行加热,从而提高进入压缩机的第一冷却介质的温度和压力。如此,即使在低温环境下,压缩机也能够正常启动,使热管理系统能够对电动汽车的乘员舱进行制热。
上述热系统回路还可以包括第一节流阀E1。第一节流阀E1连接于乘员舱空调箱的第一通路的出口Ha2与压缩机的进口之间,并且用于导通或关闭乘员舱空调箱的第一通路的出口Ha2与压缩机的进口。当第一节流阀E1开启时,乘员舱空调箱的第一通路的出口Ha2与压缩机的进口导通,也就是说,第一冷却介质可以同时在第一环路L1和第二环路L2中循环流动。当第一节流阀E1关闭时,乘员舱空调箱的第一通路的出口Ha2与压缩机的进口关闭,也就是说,第一冷却介质仅在第一环路L1中循环流动。这样,通过控制第一节流阀E1可以控制第一冷却介质的循环流动路径以及流量。
在上述热管理系统中,加热器可以单独对第一环路L1中的第一冷却介质加热,或者可以单独对第二环路L2中的第一冷却介质加热,或者也可以同时对第一环路L1和第二环路L2中的第一冷却介质加热。因此,加热器的具体位置不限。例如,如图1所示,在一个可选的实施例中,加热器可以设置在冷却器与压缩机之间,其中,加热器的进口与冷却器的第一通路的出口Ca2连接,加热器的出口与压缩机的进口连接,使加热器可以对第一环路L1中的第一冷却介质进行加热。图2为本申请实施例一的热管理系统的另一种结构示意图。如图2所示,在另一个可选的实施例中,加热器也可以直接设置在压缩机的进口处,其中,加热器的进口连接于冷却器的第一通路的出口Ca2和乘员舱空调箱的第一通路的出口Ha2,加热器的出口与压缩机的进口连接,使加热器可以对第一环路L1和第二环路L2中的第二冷却介质进行加热。图3为本申请实施例一的热管理系统的另一种结构示意图。如图3所示,在另一个可选的实施例中,加热器的进口连接于冷却器的第一通路的出口Ca2和乘员舱空调箱的第一通路的出口Ha2,加热器的出口与压缩机的进口连接,并且冷却器的第一通路的进口Ca1与加热器的进口之间设 置有一条支路。该支路可以设置有第一阀,通过控制第一阀,可以使从第一环路L1中循环流动的第一冷却介质分为两部分,一部分通过冷却器的第一通路,另一部分通过第一阀直接流入加热器。图4为本申请实施例一的热管理系统的另一种结构示意图。如图4所示,在另一个可选的实施例中,相比于图3中的热管理系统,加热器也可以设置在支路。
在本申请的实施例中,加热器可以为独立的加热装置,即可以单独地设置在热系统回路中。或者,加热器可以设置于压缩机。具体的,加热器可以包括相连接的压缩机电机以及电机控制器。压缩机可以包括压缩机本体以及设置在压缩机本体的涡盘。其中,压缩机电机与涡盘连接。压缩机电机用于向压缩机提供动力源。由于压缩机电机在低效模式下产生的热量比正常工作状态下更多,因此该技术方案可以利用压缩机电机在低效模式产生的热量来对第一冷却介质进行加热,从而可以简化热管理系统的结构。
图5为本申请实施例一的压缩机与加热器的控制示意图。如图5所示,在上述实施例中,压缩机和加热器的控制器可以集成在一起。其中,图5中所示的压缩机本体设置有压缩机电机。如图5中(a)所示,在一个可选的实施例中,压缩机中的电机控制器与加热器的高压控制器可以集成在一个单独的第一控制器中。第一控制器可以采用水冷或者风冷进行散热,并且第一控制器可以直接通过三相线驱动压缩机电机。第一控制器与加热器连接有高压输入(高压输入例如可以包括开关调节、档位调节或者功率脉宽调制(Pulse Width Modulation,PWM)调节),同时还可以对加热器内部的温度采样,此处不作一一赘述。如图5中(b)所示,在一个可选的实施例中,加热器的高压控制器可以集成在压缩机中的电机控制中,形成第二控制器。第二控制器与第一控制器的区别在于,第二控制器与压缩机集成在一体,并且通过压缩机制冷剂的吸气端来进行冷却。第二控制器对加热器的连接可以包括高压输入(高压输入例如可以包括开关调节、档位调节或者功率脉宽调制调节)或加热器内部的温度采样。第二控制器的输入端可以包括低压输入(包括控制信号、PWM、局域互联网络(Local Interconnect Network,LIN)或者控制器局域网络(Controller Area Network,CAN)等总线)和高压输入。
请继续参考图1,热系统回路还可以包括第一冷凝器,第一冷凝器具有第一通路。第一冷凝器的第一通路的进口Wa1与压缩机的出口连接,第一冷凝器的第一通路的出口Wa2连接于冷却器的第一通路的进口Ca1和乘员舱空调箱的第一通路的进口Ha1。此时,第一环路L1包括压缩机、第一冷凝器的第一通路、以及冷却器的第一通路;第二环路L2包括压缩机、第一冷凝器的第一通路、以及乘员舱空调箱。在该实施例中,从压缩机的出口流出的第一冷却介质为高温高压的气体,通过第一冷凝器进行初次换热。第一冷凝器输出的第一冷却介质为高温高压的液体,该第一冷却介质随后可以分为两部分,一部分流入冷却器进行二次换热,另一部分进入乘员舱空调箱,在乘员舱空调箱内进行热交换后变为低温低压的气液两相介质,并且可以吸收乘员舱的热量,实现对乘员舱的降温。
图6为本申请实施例一的热管理系统的另一种结构示意图。如图6所示,在可选的实施例中,乘员舱空调箱还可以具有第二通路,其中,乘员舱空调箱的第一通路与第二通路相隔离。具体的,乘员舱空调箱的第一通路可以设置有蒸发器,乘员舱空调箱的第二通路可以设置有暖风芯体。第一冷凝器还可以具有第二通路,第一冷凝器的第一通路与第二通路相隔离。另外,热管理系统还可以包括第一阀体V1。第一阀体V1包括第一通路,第一通路具有第一端口1和第二端口2。热系统回路还可以包括第一泵B1。第一阀体V1的第二端口2与第一泵B1的进口连接,第一泵B1的出口与暖风芯体的进口Hb1连接,暖风芯体的出口Hb2与第一冷凝器的第二通路的进口Wb1连接,第一冷凝器的第二通路的出口Wb2与第一阀体V1的第一端口1连接。热系统回路还设置有第二冷却介质,第一泵B1用于驱动第二冷却介质在第一冷凝器的第二通路与暖风芯体之间形成的第三环路L3中循环流动。这种方式可以将第二冷却介质在第一冷凝器中交换的热量,经由暖风芯体吹出,从而对乘员舱的空气进行升温。
如图6所示,上述实施例的热系统回路还可以包括第一储液罐。第一储液罐的进口连接于第一冷凝器的第一通路的出口Wa2,第一储液罐的出口连接于冷却器的第一通路的进口Ca1和蒸发器的进口Ha1。第一储液罐可以储存热系统回路中的一定量的液态冷却介质,以确保冷却介质一定的年泄露量。
图7为本申请实施例一的热管理系统的另一种结构示意图。如图7所示,热系统回路也可以包括气液分离器。气液分离器的进口连接于冷却器的第一通路的出口Ca2与蒸发器的出口Ha2,气液分离器的出口与压缩机的进口连接。该设计不仅可以使用气液分离器实现存储液体的功能,还能使用气液分离器将气液混合体中的液体留下,而只让气体流入压缩机,以提高压缩机的压缩效果。
图8为本申请实施例一的热管理系统的另一种结构示意图。如图8所示,乘员舱空调箱也可以具有第二通路,其中,乘员舱空调箱的第一通路与乘员舱空调箱的第二通路相隔离。具体的,乘员舱空调箱 的第一通路设置有蒸发器,乘员舱空调箱的第二通路设置有第二冷凝器。第二冷凝器的进口Hb1与压缩机的出口连接,第二冷凝器的出口Hb2连接于冷却器的第一通路的进口Ca1和蒸发器的进口Ha1。第一冷凝器还具有第二通路,第一冷凝器的第一通路与第一冷凝器的第二通路相隔离。另外,热管理系统还包括第一阀体V1,第一阀体V1包括第一通路,第一阀体V1的第一通路具有第一端口1和第二端口2。热系统回路还包括第一泵B1。第一阀体V1的第二端口2与第一泵B1的进口连接,第一泵B1的出口与第一冷凝器的第二通路的进口Wb1连接,第一冷凝器的第二通路的出口Wb2与第一阀体V1的第一端口1连接。热系统回路还设置有第二冷却介质,第一泵B1用于驱动第二冷却介质在第一冷凝器的第二通路循环流动。当第一冷凝器停止工作时,从压缩机的出口流出的第一冷却介质可以流入第二冷凝器。在乘员舱空调箱中,第二冷凝器用于对乘员舱进行加热。第一冷却介质从压缩机的出口流出,并变为高温高压的液体,随后可以通过节流阀进入冷却器,然后经加热器加热后变为低温低压的气态冷却介质,并进入压缩机。
在上述实施例中,热系统回路还可以包括第二储液罐。第二储液罐的进口连接于第一冷凝器的第一通路的出口Wa2和第二冷凝器的出口Hb2,第二储液罐的出口连接于冷却器的第一通路的进口Ca1和蒸发器的进口Ha1。如此,第二储液罐可以储存冷第一冷凝器的第一通路中多余的液态冷却介质,以确保第一回路中的年泄露量。
上述第一冷凝器的第一通路的出口Wa2与第二储液罐的进口之间还可以设置有第一单向阀CV1,第一单向阀CV1用于将第一冷凝器的第一通路的出口Wa2与第二储液罐的进口单向导通。第二冷凝器的出口Hb2与第二储液罐的进口之间设置有第二单向阀CV2,第二单向阀CV2用于将第二冷凝器的出口Hb2与第二储液罐的进口单向导通。这样,通过控制第一单向阀CV1和第二单向阀CV2,可以控制第一冷却介质在热系统回路的流动路径。
在上述实施例中,加热器还可以设置在第三环路L3中的任意位置。图9为本申请实施例一的热管理系统的另一种结构示意图。如图9所示,在一个可选的实施例中,加热器可以设置在第一泵B1与乘员舱空调箱的第二通路之间。具体的,加热器的进口与第一泵B1的出口连接,加热器的出口与乘员舱空调箱的第二通路的进口Hb1连接。这种方式可以使加热器对第二冷却介质直接加热,加热后的第二冷却介质进入第二泵B2,并通过第二三通阀后进入冷却器的第二通路,从而在冷却器中与第一冷却介质进行热交换,实现对第一冷却介质的加热。当然,加热器也可以设置在乘员舱空调箱的第二通路与第一冷凝器的第二通路之间,或者还可以设置在第一冷凝器的第二通路与第一泵B1之间。
图10为本申请实施例一的热管理系统的另一种结构示意图。如图10所示,在另一个可选的实施例中,加热器也可以设置在第一冷凝器与乘员舱空调箱之间。具体的,加热器的进口与第一冷凝器的第一通路的出口Wa2连接,加热器的出口与乘员舱空调箱的第一通路的进口Ha1连接。如此,加热器可以直接对进入乘员舱空调箱的第一通路的第一冷却介质进行加热。图11为本申请实施例一的热管理系统的另一种结构示意图,图12为本申请实施例一的热管理系统的另一种结构示意图。如图11和图12所示,在其他可选的实施例中,加热器也可以设置于第一冷凝器与压缩机之间。具体的,加热器的进口与第一冷凝器的第一通路的出口Wa2连接,加热器的出口与压缩机的进口连接。这种方式可以将从第一冷凝器的第一通路的出口Wa2流出的第一冷却介质中的一部分直接流入压缩机的进口,并且加热器可以对这部分第一冷却介质直接加热。如图10和图11所示的实施例中,加热器为独立设置在回路中的加热装置。当然,在不改变热系统回路的情况下,加热器可以设置于压缩机。具体的,加热器可以包括相连接的压缩机电机以及电机控制器。压缩机可以包括压缩机本体以及设置在压缩机本体的涡盘。其中,压缩机电机与涡盘连接。压缩机电机用于向压缩机提供动力源。由于压缩机电机在低效模式下产生的多余热量比正常工作状态下更多,因此该技术方案可以利用压缩机电机在低效模式产生的多余热量来对第一冷却介质进行加热,从而可以简化热管理系统的结构。
在本申请的实施例中,热管理系统还可以包括电池换热回路。电池换热回路可以包括电池和第二泵B2。第一阀体V1还可以包括第二通路和第三通路。第一阀体V1的第二通路具有第三端口3和第六端口6,第一阀体V1的第三通路具有第四端口4和第五端口5。具体的,第一阀体V1的第三端口3与第二泵B2的进口连接,第二泵B2的出口与电池的进口连接,电池的出口与第一阀体V1的第四端口4连接。冷却器还具有第二通路,冷却器的第一通路与冷却器的第二通路相隔离。第一阀体V1的第五端口5与冷却器的第二通路的进口Cb1连接,冷却器的第二通路的出口Cb2与第一阀体V1的第六端口6连接。第二泵B2用于驱动第三冷却介质在电池换热回路与冷却器的第二通路之间循环流动。如此,通 过控制第一阀体V1的端口,可以使电池换热回路与热系统回路的第三环路L3连通或关闭。在该实施例中,第三冷却介质与第二冷却介质可以为同一冷冻液。
上述第一阀体V1还可以包括第四通路和第五通路。第一阀体V1的第四通路具有第一端口1和第三端口3,第一阀体V1的第五通路具有第二端口2和第四端口4。当第一阀体V1的第四通路和第五通路导通时,电池换热回路与热系统回路的第三环路L3连通。
如图9所示,上述第二泵B2的进口与第一冷凝器的第二通路的进口Wb1连接。第一冷凝器的第二通路的进口Wb1与第一泵B1的出口之间设置有第一三通阀,第一三通阀具有第一端口、第二端口和第三端口,第一三通阀的第一端口与第一冷凝器的第二通路的进口Wb1连接,第一三通阀的第二端口与第一泵B1的出口连接,第一三通阀的第三端口与第二泵B2的进口连接。通过控制第一三通阀的端口导通或关闭,可以控制从第一泵B1流出的冷却介质分别流入第一冷凝器和第二泵B2的流量。在本申请的实施例中,第一三通阀的第二端口与第一泵B1的出口的连接可以包括直接连接和间接连接。如图8所示,第一三通阀的第二端口与第一泵B1的出口直接连接。如图9所示,第一三通阀的第二端口与乘员舱空调箱的第二通路的出口Hb2连接,乘员舱空调箱的第二通路的进口Hb1与第一泵B1的出口连接。
在另外的实施例中,上述第一三通阀也可以设置在其他位置。图13为本申请实施例一的热管理系统的另一种结构示意图。如图13所示,在一个可选的实施例中,第一三通阀的第一端口连接于电池的出口,第一三通阀的第二端口连接于第一阀体V1的第四端口4,第一三通阀的第三端口连接于第二泵B2的进口。在该实施例中,加热器对第二冷却介质进行加热。第二冷却介质从第一冷凝器的第二通路流出,经过第一阀体V1的第一端口1和第三端口3后流至第二泵B2的进口处,从电池的出口流出的第三冷却介质(即第二冷却介质)经过第一三通阀,其中一部分可以在第二泵B2的进口处与高温的第二冷却介质混合成适宜温度,随后进入电池。在该实施例中,利用加热器可以对乘员舱和电池同时制热。图14为本申请实施例一的热管理系统的另一种结构示意图。如图14所示,在另一个可选的实施例中,第一三通阀的第一端口连接于第一阀体V1的第三端口3,第一三通阀的第二端口连接于第一冷凝器的第二通路的出口Wb2,第一三通阀的第三端口连接于第二泵B2的进口。
在一个可选的实施例中,第二泵B2的进口与第一冷凝器的第二通路的进口Wb1之间可以设置有第三单向阀,第三单向阀用于将第二泵B2的进口与第一冷凝器的第二通路的进口Wb1单向导通,避免冷却介质倒流。
基于相同的技术构思,本申请还提供一种电动汽车。电动汽车包括控制器和上述实施例一中的热管理系统。控制器与热管理系统连接,控制器用于控制热管理系统以乘员舱单独制热的模式运行。通过该设计,电动汽车能够实现乘员舱单独制热的模式,有助于在低温环境下制热乘员舱,提高用户的驾驶体验。
当热管理系统还可以包括第一阀体V1和电池换热回路时,控制器可以与第一阀体V1连接。控制器可以用于控制第一阀体V1的端口的导通或关闭,实现如下模式中的任一模式:乘员舱单独制热的模式、电池单独制热的模式、乘员舱和电池同时制热的模式。通过该设计,电动汽车能够实现乘员舱单独制热、电池单独制热、乘员舱和电池同时制热中的任一模式的自由切换,有助于使电动汽车能满足各种用户的不同需求,提高用户的驾驶体验。下面对电动汽车的不同运行阶段进行描述。
以图6中的热管理系统为例,热管理系统可以包括低温启动阶段和稳定阶段。
M11:低温启动阶段
当电动汽车的外部环境温度过低时,由于压缩机的进口压力低于1个大气压,压缩机无法正常启动,使得热系统回路无法运转。图15为图6的热管理系统在低温启动阶段的示意图。如图15所示,开启加热器后,加热器可以对从冷却器的第一通路的出口Ca2流出的第一冷却介质进行加热,同时压缩机以较低的转速启动。此时,乘员舱的温度逐渐上升。随着压缩机的进口压力逐渐升至1大气压以上,压缩机可以逐渐提升转速。该阶段可以实现乘员舱单独制热的模式。
对于低温启动阶段,在开启热系统回路进行制热时,除了采用独立设置的加热器加热第一冷却介质的方式,还可以采用压缩机的低效模式来产生热源。具体的,加热器可以包括相连接的压缩机电机以及电机控制器。压缩机可以包括压缩机本体以及设置在压缩机本体的涡盘。其中,压缩机电机与涡盘连接。压缩机电机用于向压缩机提供动力源。由于压缩机电机在低效模式下产生的热量比正常工作状态下更多,因此该技术方案可以利用压缩机电机在低效模式产生的多余热量来对第一冷却介质进行加热,从而可以 简化热管理系统的结构。然而,采用这种方式,无法通过控制吸气状态来控制冷却器的第一通路的进口Ca1处的节流阀或者加热器的进口处的节流阀,需要控制压缩机的出口处的第一冷却介质的状态来保证压缩机不液击。
M12:稳定阶段
图16为图15的热管理系统在一种稳定阶段的示意图。如图16所示,当乘员舱的温度大于一定温度时,乘员舱可以开启全内循环。从压缩机的出口流出的第一冷却介质进入第一冷凝器的第一通路的进口Wa1,然后从第一冷凝器的第一通路的出口Wa2流出。之后,第一冷却介质经过节流阀节流后进入蒸发器的进口Ha1。从蒸发器的出口Ha2流出的第一冷却介质经过第一节流阀E1后进入压缩机的进口。其中,蒸发器的进口Ha1处的节流阀可以控制蒸发器的出口Ha2的第一冷却介质的过热度,第一节流阀E1可以通过第一冷却介质的流量来控制蒸发器的出风温度,使出风温度维持在预定温度范围内,从而防止蒸发器结霜。此时,压缩机可以控制乘员舱空调箱的出风温度,从而控制乘员舱内的温度。此外,为了减少热系统回路中热量的消耗,第二泵B2可以不工作,使电池换热回路不参与热系统回路中的热交换。
在该稳定阶段中,由于蒸发器也在工作,这样采用乘员舱的内循环可以使乘员舱空调箱吹出的空气全部来自乘员舱的内部,而不用采用舱内外的混合空气,这样既可以减少电动汽车的启动负荷,降低热管理系统的能耗,又可以改善低温环境下乘员舱出现的起雾现象。
图17为图15的热管理系统在另一种稳定阶段的示意图。如图17所示,在该稳定阶段,从压缩机的出口流出的第一冷却介质进入第一冷凝器的第一通路的进口Wa1,然后从第一冷凝器的第一通路的出口Wa2流出。之后,第一冷却介质分为两路循环,一路经过节流阀节流后进入蒸发器的进口Ha1。从蒸发器的出口Ha2流出的第一冷却介质经过第一节流阀E1后进入压缩机的进口;另一路节流阀节流后进入冷却器的第一通路,经过加热器后进入压缩机。其中,冷却器的第一通路的进口Ca1处的节流阀可以控制压缩机的吸气过热度,或者控制加热器的出口过热度。冷却器的第一通路的进口Ca1处的节流阀与蒸发器的进口Ha1处的节流阀可以采用不同的节流阀。蒸发器的进口Ha1处的节流阀可以控制蒸发器的出口Ha2的第一冷却介质的过热度,第一节流阀E1可以通过第一冷却介质的流量来控制蒸发器的出风温度,使出风温度维持在预定温度范围内,从而防止蒸发器结霜。此时,压缩机可以控制乘员舱空调箱的出风温度,从而控制乘员舱内的温度。此外,为了减少热系统回路中热量的消耗,电池换热回路可以不参与热系统回路中的热交换。
在上述稳定阶段中,热管理系统可以以乘员舱单独制热的模式运行。
当然,加热器在不同位置时,也可以在稳定阶段对乘员舱进行制热。图18为本申请实施例中另一热管理系统在稳定阶段的示意图。如图18所示,在冷却器的第一通路的出口Ca2与第一节流阀E1出口的管路汇合点,加热器设置于该汇合点与压缩机的进口之间。图19为图10中热管理系统在稳定阶段的示意图。如图19所示,加热器设置在蒸发器的进口Ha1处的节流阀与蒸发器的进口之间。在稳定阶段,图18和图19中的热管理系统可以以乘员舱单独制热的模式运行。图20为图11中热管理系统在稳定阶段的示意图。如图20所示,加热器设置于第一储液罐与压缩机之间的支路。从第一储液罐流出的第一冷却介质可以流入该支路,通过节流阀和加热器后流入压缩机。图21为图12中热管理系统在稳定阶段的示意图。如图21所示,在冷却器的第一通路的出口Ca2与第一节流阀E1出口的管路汇合点,加热器设置于该汇合点与压缩机的进口之间。另外,加热器的进口与第一储液罐的出口通过节流阀连接。图22为图9中热管理系统在稳定阶段的示意图。如图22所示,加热器设置在第一泵B1的出口与暖风芯体的进口Hb1之间。在稳定阶段,图20、图21和图22中的热管理系统可以以乘员舱和电池同时制热的模式运行。需要说明的是,图20、图21和图22中的加粗直线、加粗点划线和加粗虚线仅表示冷却介质的循环路径,并不限定各部件的连接关系。
请继续参考图22,当加热器启动时,可以对乘员舱开启全冷循环,使得加热器的热量传递给冷却器,使得压缩机快速启动,后面空调箱可以逐渐变为全热循环。具体的,在热管理系统的启动阶段,加热器启动,从加热器流出的热的第二冷却介质进入暖风芯体,第二冷却介质从暖风芯流出并进入三通阀,其中一路从d13通过汇合点P2进入电池换热回路,另一路从d12经过P1进入第一冷凝器的第二通路的进口Wb1,再从第一冷凝器的第二通路的出口Wb2流出,然后经过第一阀体V1的第一端口1和第二端口2,进入第一泵B1。对于电池换热回路,第二冷却介质从P2进入电池换热回路,并与第三冷却介质进入第二泵B2,然后经过第二三通阀进入汇合点PT,之后从汇合点PT经过第一阀体V1的第四 端口4和第五端口5,进入冷却器的第二通路的进口Cb1。从冷却器的第二通路的出口Cb2流出的冷却介质通过第一阀体V1的第六端口6和第三端口3,然后分为两路,其中一路经过单向阀进入P1,另一路经过P2进入第二泵B2。同时,这里还有另外一种控制方式,加热器流出的热的第二冷却介质可以进入暖风芯体,第二冷却介质从暖风芯体流出后进入第一三通阀。第一三通阀的第一端口d11与第三端口d13完全导通,第二端口d12关闭。如此,热的第二冷却介质经过第一三通阀的第三端口d13进入P2,经过第二泵B2后通过第二三通阀进入PT,之后进入第一阀体V1的第四端口4,而后经过第一阀体V1的第五端口5进入冷却器的第二通路的进口Cb1。从冷却器的第二通路的出口Cb2流出的冷却介质通过第一阀体V1的第六端口6和第三端口3,最终经过单向阀进入P1。在该实施例中,第二冷却介质与第三冷却介质为同一介质。
图23为图9中热管理系统在冷媒系统故障情况下的乘员舱制热的示意图。如图23所示,当热管理系统中的压缩机、冷却器和第一冷凝器发生故障而不能正常工作时,热管理系统仍然可以以乘员舱单独制热的模式运行。具体的,空调箱开启全热模式,加热器可以直接加热第二冷却介质,加热后的第二冷却介质通过暖风芯体,使乘员舱空调箱吹出的风为热风,从而对乘员舱进行制热。
图24为图9中热管理系统在冷媒系统故障情况下的乘员舱采暖和电池加热的示意图。如图24所示,当热管理系统中的压缩机、冷却器和第一冷凝器发生故障而不能正常工作时,热管理系统仍然可以以乘员舱和电池同时制热的模式运行。具体的,加热器可以直接加热第二冷却介质,加热后的第二冷却介质通过暖风芯体,使乘员舱空调箱吹出的风为热风,从而对乘员舱进行制热。从暖风芯体流出的第二冷却介质通过第一冷凝器的第二通路,然后经过第一阀体V1的第一端口1和第三端口3进入电池换热回路,并且通过第二泵B2和第二三通阀后进入电池,随后经过PT进入第一阀体V1的第四端口4和第二端口2,到达热系统回路的第三环路,从而实现对电池的制热。此时可以使乘员舱空调箱以全冷模式运行,如此,暖风芯体中的热量无法散出,即可实现单电池加热模式。
图25为图6中热管理系统在稳定工况下的乘员舱制热的示意图。如图25所示,当乘员舱的温度达到预定温度时,制热模式处于稳定状态,此时,电驱散热回路的温度或电驱散热回路的第四冷却介质的温度不低于一定温度。在该稳定工况下,热管理系统可以采用图25的回路方式对乘员舱进行制热。具体的,在稳定工况下,电驱散热回路处于高于一定的温度下的循环模式。其中,冷媒环路流向为:压缩机出来的第一冷却介质进入第一冷凝器,第一冷却介质从第一冷凝器出来后分为两路,一路进入蒸发器的进口Ha1的节流阀进行节流,进入蒸发器,第一冷却介质从蒸发器出来后进入第一节流阀E1;另外一路为进入冷却器的第一通路的进口Ca1的节流阀节流后进入冷却器,第一冷却介质从冷却器出来后进入加热器,接着与第一路从第一节流阀E1出来的第一冷却介质汇合后进入压缩机的进口。针对乘员舱单独制热,此时乘员舱空调箱采用内循环模式,暖风液冷回路走向为:第一泵B1出来的第二冷却介质进入乘员舱空调箱中的暖风芯体,随后进入三通阀进入第一冷凝器的第二通路,第二冷却介质从第一冷凝器出来后进入第一阀体V1的第一端口1,再从第二端口2回到第一泵B1。这里,第一阀体V1不限于九通阀,只要使第一冷凝器出来的第二冷却介质进入第一泵B1即可。对于从电驱散热回路流向为:电驱装置的出口流出的第四冷却介质进入第三泵B3后进入第一阀体V1的第八端口8,然后从第五端口5流出并进入冷却器的第二通路后,经过Tp2进入第一阀体V1的第六端口6,根据Tp2的温度大小判断是否经过第七端口7进入前舱热管理组件的散热器还是经过第九端口9直接进入电驱装置。对于冷媒环路,冷却器的第一通路的进口Ca1处的节流阀可以控制加热器的出口的冷却介质状态,蒸发器的进口Ha1的节流阀可以直接控制蒸发器的出口状态。第一节流阀E1可以控制压缩机吸气压力至一定的状态,以平衡乘员舱内热源和电驱(或电池)热源的压力。上述循环可以称为“次级热泵”循环,换句话说,低温热源可以分别为乘员舱和电驱(或电池)余热。采用这种方式,蒸发器工作,乘员舱可以采用全内循环,即为不引入车外新风,如此既可以防止乘员舱除雾的风险,还可以降低乘员舱的负荷,同时,低压侧热源也可以采用电驱散热回路的余热,整体降低热管理系统的总能耗。
在上述实施例中,当乘员舱温度达到一定值,电驱或者电池水温达到一定值,此时加热器可以不开启,整个热泵系统的低温热源有两种,一种是乘员舱的室温环境,另一种是电驱或者电池的废热。当这两个低温热源的温度不一致时,采用第一节流阀E1平衡这两者压力。图26为图25的热管理系统的压力-比焓图。针对上述实施例中,热管理系统采用R134a制冷剂作为第一冷却介质,对热管理系统的压力-比焓进行模拟。如图26所示,制冷剂经过压缩机压缩(①-②)后,温度升高且压力变大。压缩后的制冷剂进入第一冷凝器,将热量传递给冷却液,同时自身状态由高压高温变气态为高压高温液态(② -③)。冷凝后的制冷剂分为两部分:一部分经过电池侧的膨胀阀,发生等焓节流过程(③-⑤),此后低温低压制冷剂吸收冷却器中冷却液的热量,冷却液的热量可以来自外界空气、电驱或者电池,并经过加热器后温度进一步提升(如果加热器开启),当然加热器也可以不用开启,这样加热器只作为通路;另一部分制冷剂经过乘员舱空调箱的膨胀阀,发生等焓节流过程(③-④),此后低温低压制冷剂与空气换热(④-⑥)。从蒸发器流出的制冷剂经过第一节流阀E1(即吸气节流阀)后压力降低,并与从冷却器的出口流出的制冷剂混合,状态变为压力低、过热度大的状态(①)后,进入压缩机压缩,完成一次循环。对于乘员舱而言,空气侧可利用内循环,流动空气先经过蒸发器(制冷剂侧④-⑥)后湿度、温度均降低,也即降温除湿的过程。再经过暖风芯体,与暖风芯体中的高温冷却液换热,温度提升,达到制热采暖的效果。该实施例可以采用全内循环,如此,没有新风进入乘员舱,这样可以降低乘员舱所需要的热负荷;同时,蒸发器开启,可以起到抗起雾的作用。同时,低温热源(如空气、电驱或者电池)通过冷却器吸入,采用第一节流阀E1来平衡蒸发器(第二低温热源)处的压力。此时,低温热源包括两种,一种是乘员舱,一种是外界空气、电驱或者电池。
图27为图6中热管理系统在低温情况下的电池制热的一种示意图,图28为图6中热管理系统在低温情况下的电池制热的另一种示意图,图29为图6中热管理系统在低温情况下的电池制热的另一种示意图,图30为图6中热管理系统在低温情况下的电池制热的另一种示意图。如图27所示,该热管理系统可以以电池单独制热的模式运行,或者也可以以乘员舱和电池同时制热的模式运行。在压缩机开启的阶段,热管理系统可以采用图27所示的模式运行。具体的,加热器开启,压缩机可以随后开启或者同时开启。从第一冷凝器的第二通路的出口Wb2流出的高温第二冷却介质进入第一阀体V1的第一端口1,然后从第二端口2流出并进入第一泵B1,随后进入暖风芯体。从暖风芯体的出口Hb2流出的第二冷却介质通过三通阀后分为两路,其中一路进入汇合点P1,另一路进入电池换热回路。电池换热回路的第三冷却介质可以从第一阀体V1的第三端口3进入单向阀流入汇合点P1,随后进入第一冷凝器的第二通路。当乘员舱温度达到一定温度时,可以采用图28、图29和图30的模式运行,此时乘员舱采用内循环模式。其中,图28和图29中所示的热管理系统可以以乘员舱和电池同时制热的模式运行。当蒸发器的进口Ha1处的节流阀开启时,热管理系统可以从乘员舱吸收热量,实现对乘员舱的除湿,从而防止起雾。
在极低温的环境下,上述热管理系统还可以以电池快充加热的模式运行。图31为图6中热管理系统在极低温情况下的电池制热的另一种示意图。如图31所示,热管理系统可以以电池单独制热的模式运行。压缩机出来的第一冷却介质进入第一冷凝器以及第一储液罐,第一冷却介质从第一储液罐出来后进入冷却器的第一通路的进口Ca1处的节流阀,经过节流后进入冷却器后进入加热器,第一冷却介质经过加热器加热后进入压缩机。对于电驱散热回路:由于在极低环境温度,第三泵B3不运行或者以较低的转速运转。从电驱装置出来的第四冷却介质进入第三泵B3后进入第一阀体V1的第八端口8,然后经过第一阀体V1的第五端口5进入冷却器的第二通路,第四冷却介质从冷却器出来后进入第一阀体V1的第六端口6,最后从第一阀体V1的第七端口7或者第九端口9出来回到电驱散热回路。对于电池换热回路,第三冷却介质从第一冷凝器加热后出来进入第一阀体V1的第一端口1,再从第一阀体V1的第三端口3出来并通过第二泵B2进入电池,从电池出来进入第一阀体V1的第四端口4,再从第一阀体V1的第二端口2出来并通过第一泵B1进入暖风芯体,第二冷却介质进入第一冷凝器的第二通路。图32为图6中热管理系统在极低温情况下对乘员舱和电池同时制热的另一种示意图。如图32所示,热管理系统可以以乘员舱和电池同时制热的模式运行。此时,在热系统回路中,一部分第一冷却介质可以从第一储液罐出来并进入节流阀后,进入蒸发器后进入第一节流阀E1与从加热器出来的另一部分第一冷却介质汇合进入压缩机,这时候乘员舱空调箱可以以全内循环的模式运行。另外,第一冷凝器出来的第二冷却介质进入第一阀体V1的第一端口1,然后从第一阀体V1的第二端口2出来后进入第一泵B1,随后进入暖风芯体。第二冷却介质从暖风芯体出来后进入三通阀。在三通阀中,第二冷却介质分为两路,一路从P2进入电池换热回路,另外一路经过P1进入第一冷凝器。对于电池换热回路,从第二泵B2出来的第三冷却介质进入电池,随后第三冷却介质从电池出来后进入第一阀体V1的第四端口4,再通过第一阀体V1的第三端口3。在汇合点P3处,第三冷却介质分为两路,一路经过单向阀进入P1,另一路经过P2进入第二泵B2。
以图8中的热管理系统为例,热管理系统可以包括低温启动阶段和稳定阶段。
M21:低温启动阶段
当电动汽车的外部环境温度过低时,由于压缩机的进口压力低于1个大气压,压缩机无法正常启动,使得热系统回路无法运转。图33为图8的热管理系统在低温启动阶段的示意图。如图33所示,开启加热器后,可以打开调节开度的电磁阀V2并关闭V3,压缩机出来的高温第一冷却介质进入第二冷凝器,而后经过单向阀CV2进入第二储液罐后通过节流阀并进入冷却器,经过加热器的加热后,第一冷却介质经过Pt1进入压缩机。该阶段可以实现乘员舱单独制热的模式。
M22:稳定阶段
当乘员舱温度达到一定温度,热管理系统达到稳定阶段,可以以不同的模式运行。图34为图8的热管理系统在稳定阶段的一种示意图。如图34所示,在一个可选的实施例中,压缩机排出的第一冷却介质经过打开的电磁阀V2,进入第二冷凝器,随后经过单向阀CV2进入第二储液罐。从第二储液罐出来的第一冷却介质经过节流阀进入蒸发器,随后通过第一节流阀E1进入压缩机。第一节流阀E1可以为开启至管路内径的节流阀,换句话说,第一节流阀E1最大口径可以与连接管路的内径一致。这时候,乘员舱空调箱为全内循环。图35为图8的热管理系统在稳定阶段的另一种示意图。如图35所示,在另一个可选的实施例中,压缩机出来的制冷剂经过电磁阀V2,进入第二冷凝器并进行散热,随后经过单向阀CV2进入第二储液罐,之后分为两路,一路经过节流阀后进入蒸发器,随后通过第一节流阀E1;另一路从第二储液罐出来经过节流阀进入冷却器,而后进入加热器加热,第一冷却介质从加热器出来后与第一节流阀E1出来的第一冷却介质汇合后进入压缩机。
在极低温的环境下,上述热管理系统还可以以电池快充加热的模式运行,此时电驱散热回路中的第三泵B3可以不转或者以较低的转速运行。图36为图8的热管理系统在电池快充加热模式的一种示意图。如图36所示,热管理系统可以以电池单独制热的模式运行。其中,可以调节开度的电磁阀V3全开,可以调节开度的电磁阀V2全关,从压缩机出来的第一冷却介质经过V3进入第一冷凝器的第一通路,随后经过单向阀CV1和节流阀,进入冷却器,而后进入加热器被加热,再进入压缩机,完成一个循环。对于电池换热回路,从第一冷凝器的第二通路出来的第二冷却介质进入第一阀体V1的第一端口1并从第三端口3进入第二泵B2,随后冷却介质从电池出来后进入第一阀体V1的第四端口4,再从第一阀体V1的第二端口2流出,经过第一泵B1后进入第一冷凝器的第二通路的进口Wb1。
图37为图8的热管理系统在电池快充加热模式的另一种示意图。如图37所示,热管理系统可以以乘员舱和电池同时制热的模式运行。第一冷却介质从压缩机出来分为两路,一路经过电磁阀V2进入第二冷凝器出来经过单向阀V3进入储液罐;另外一路经过电磁阀V3进入第一冷凝器出来经过单向阀V4进入第二储液罐。第一冷却介质从第一储液罐出来后分为两路,一路经过节流阀节流后进入冷却器并缑进入加热器,另一路经过节流阀节流后进入蒸发器,第一冷却介质从蒸发器出来后进入第一节流阀E1。从第一节流阀E1出来的第一冷却介质与从加热器出来的第一冷却介质混合后进入压缩机。此时,乘员舱空调箱可以全内循环,以降低乘员舱负荷。另外,蒸发器的进口Ha1处节流阀或第一节流阀E1也可以关闭,这样从第二储液罐出来的第一冷却介质只有一路,即进入冷却器的第一通路的进口Ca1的节流阀。这时候,乘员舱需要使用部分/全部外循环来降低车内起雾风险。对于电池换热回路,从第一冷凝器的第二通路出来的第二冷却介质进入第一阀体V1的第一端口1,从第一阀体V1的第二端口2出来后进入第一泵B1,随后进入三通阀TV1,三通阀TV1将第二冷却介质分为两路,一路从P2进入电池换热回路,另一路经过P1进入第一冷凝器的第二通路。对于电池换热回路,从第二泵B2出来的第三冷却介质进入电池,第三冷却介质从电池出来后进入第一阀体V1的第四端口4,并从第一阀体V1的第三端口3流出,在P3处分为两路,一路经过单向阀CV3进入P1,另一路经过P2进入第二泵B2。
图38为图8的热管理系统在电池快充加热模式的另一种示意图。如图38中(a)所示,对于乘员舱和电池同时制热的模式,热管理系统还可以以其他循环方式实现。此时,电池换热回路与图36中所示循环方式相同,即第一冷凝器的第二通路流出的第二冷却介质对电池进行加热。如图38中(b)所示,在上述实施例中,通过控制可调节电磁阀开度的V2和V3来控制乘员舱空调箱的出风温度和电池的进口水温。这意味着三通阀TV1与P2之间的管路、以及P1至P3段的管路可以省去。
在行车过程中,热管理系统也可以进行制热。图39为图8的热管理系统在行车混合加热模式的一种示意图。如图39所示,热管理系统此时处于开启阶段的运行模式。加热器启动后,压缩机启动,压缩机出来的第一冷却介质分为两路,一路经过V2进入第二冷凝器后,而后经过单向阀CV2进入第二储液罐,另一路经过V3进入第一冷凝器的第一通路,而后经过单向阀CV1进入第二储液罐。从第二储液罐出来的第一冷却介质经过节流阀后进入冷却器,随后在加热器中被加热后进入压缩机的进口。对 于电池换热回路,刚开始第一泵B1和第二泵B2不运行或者以较小的转速运行,这样使得压缩机低压侧的压力快速提升至一定的压力以上,使得热管理系统能够稳定运行,第二泵B2或者第三泵B3以正常的转速运行。对于热系统回路:第二冷却介质从第一冷凝器的第二通路加热出来后经过第一阀体V1进入第一泵B1,在三通阀TV1中被分为两路,一路从三通阀TV1进入P2与电池换热回路汇合,另一路从三通阀TV1出来经过P1点进入第一冷凝器的第二通路的进口Wb2。对于电池换热回路:第二泵B2出来的第三冷却介质进入电池,加热电池后经过第一阀体V1进入冷却器的第二通路的进口Cb1,从冷却器的第二通路的出口Cb2出来后经过第一阀体V1分为两路,一路经过单向阀CV3进入P1与热系统回路汇合,另一路经过P2进入第二泵B2。图40为图8的热管理系统在行车混合加热模式的另一种示意图,图41为图8的热管理系统在行车混合加热模式的另一种示意图,图42为图8的热管理系统在行车混合加热模式的另一种示意图。当乘员舱温度达到一定温度,除了图39所示的循环方式,热管理系统也可以以图40、图41和图42所示的循环方式运行。图40和图41中电池换热回路的循环方式相同,而对于热系统回路,第一冷却介质从第二储液罐出来后进入节流阀后再进入蒸发器,而后经过第一节流阀E1(节流或者不节流)进入压缩机吸的进口。如图41所示,冷却器的第一通路的进口Ca1处的节流阀关闭,加热器也关闭,此时无冷却介质进入冷却器和加热器。如图42所示,热系统回路与图41中所示的循环相同,而对于电驱散热回路,从电驱装置出来的第四冷却介质经过第三泵B3进入第一阀体V1进入冷却器的第二通路的进口Cb1,从冷却器的第二通路的出口Cb2出来后进入第一阀体V1,第四冷却介质经过第一阀体V1的第九端口9可以直接进入电驱装置,或者也可以通过第一阀体V1的第七端口7进入前端热管理组件,而后再进入电驱装置。对于电池换热回路:第二泵B2出来的第三冷却介质进入电池,从电池出来后进入第一阀体V1,再从第一阀体V1出来分为两路,一路经过单向阀CV3进入P1点与热系统回路汇合,另一路经过P2进入第三泵B3。同时,这时候如果电驱散热回路的水温高于一定值,冷却器的第一通路的进口Ca1处的节流阀可以打开,电驱散热回路也可以作为热系统回路的低温热源。
当然,加热器在不同位置时,也可以在稳定阶段对乘员舱进行制热。图43为本申请实施例中另一热管理系统的冷却介质循环模式的示意图,图44为本申请实施例中另一热管理系统的冷却介质循环模式的示意图,图45为本申请实施例中另一热管理系统的冷却介质循环模式的示意图,图46为本申请实施例中另一热管理系统的冷却介质循环模式的示意图。如图43所示,加热器可以设置在压缩机的进口处。如图44所示,加热器可以设置在节流阀和蒸发器之间。如图45所示,第二储液罐连接至加热器支路中的节流阀,节流阀与加热器连接。与图45相比,图46中的加热器设置在压缩机与汇合点之间。在上述热管理系统中,加热器均可以直接对第一冷却介质进行加热,从而通过乘员舱空调箱将热量吹入乘员舱。另外,对于低温环境下热系统回路的开启状态,除了采用独立设置的加热器的方式,加热器可以设置于压缩机。具体的,加热器可以包括相连接的压缩机电机以及电机控制器。压缩机可以包括压缩机本体以及设置在压缩机本体的涡盘。其中,压缩机电机与涡盘连接。压缩机电机用于向压缩机提供动力源。由于压缩机电机在低效模式下产生的热量比正常工作状态下更多,因此该技术方案可以利用压缩机电机在低效模式产生的多余热量来对第一冷却介质进行加热,从而可以简化热管理系统的结构。然而,此时无法通过控制吸气状态来控制冷却器的第一通路的进口Ca1处的节流阀或者加热器的进口处的节流阀,而是需要根据压缩机的出口的第一冷却介质的状态来控制这些阀,从而防止第一冷却介质进入压缩机而出现压缩机控制器过热或者压缩机液击的现象。
实施例二
图47为本申请实施例二的热管理系统的一种结构示意图。如图47所示,热管理系统可以包括热系统回路、第一阀体V1、电池换热回路和加热器,加热器设置于电池换热回路。其中,第一阀体V1包括第二通路和第三通路。第一阀体V1的第二通路具有第三端口3和第六端口6,第一阀体V1的第三通路具有第四端口4和第五端口5。另外,热系统回路包括压缩机和冷却器。冷却器具有相隔离的第一通路和第二通路。具体的,冷却器的第一通路的进口Ca1与压缩机的出口连接,冷却器的第一通路的出口Ca2与压缩机的进口连接。冷却器的第二通路的进口Cb1与第一阀体V1的第五端口5连接,冷却器的第二通路的出口Cb2与第一阀体V1的第六端口6连接。热系统回路中设置有第一冷却介质,第一冷却介质在压缩机与冷却器的第一通路之间循环流动。此外,电池换热回路可以包括第二泵B2、第二三通阀和电池。第二三通阀具有第一端口、第二端口和第三端口。其中,第二泵B2的进口与第一阀体 V1的第三端口3连接,第二泵B2的出口与第二三通阀的第一端口连接,第二三通阀的第二端口与电池的进口连接,第二三通阀的第三端口和电池的出口连接于第一阀体V1的第四端口4。第二泵B2用于驱动第三冷却介质在电池换热回路与冷却器的第二通路之间循环流动。
在上述热管理系统中,加热器用于加热第三冷却介质,使第三冷却介质在电池换热回路中循环流动时能够在冷却器中与第一冷却介质热交换,并加热第一冷却介质,从而可以提高进入压缩机的第一冷却介质的温度和压力。如此,即使在低温环境下,压缩机也能够正常启动,使热管理系统能够对电动汽车的乘员舱进行制热。
具体设置加热器时,加热器的位置不作限制。例如,如图47所示,在一个可选的实施例中,加热器的进口可以与第二三通阀的第三端口连接,加热器的出口可以与第一阀体V1的第四端口4连接。图48为本申请实施例二的热管理系统的另一种结构示意图。如图48所示,在另一个可选的实施例中,加热器的进口也可以连接于第二三通阀的第三端口和电池的出口,加热器的出口可以与第一阀体V1的第四端口4连接。图49为本申请实施例二的热管理系统的另一种结构示意图。如图49所示,在另一个可选的实施例中,加热器的进口也可以与第一阀体V1的第五端口5连接,加热器的出口可以与冷却器的第二通路的进口Cb1连接。
如图47所示,当热管理系统以乘员舱和电池同时加热模式运行时,第二泵B2出口连接第二三通阀。第二三通阀包括两个出口,其中一个出口连接电池的进口,另一个出口连接加热器。加热器的出口连接汇合点PT,经过汇合点PT连接至第一阀体V1的第四端口4。图47中的热管理系统处于启动阶段的运行模式,加热器加热出来的第三冷却介质经过第一阀体V1进入冷却器的第二通路的进口Cb1,并在冷却器中被加热,然后从冷却器的第二通路的出口Cb2流出,经过第一阀体V1后进入第二泵B2。此时,第三冷却介质可以不通过电池。在热系统回路中,从压缩机流出的第一冷却介质进入第一冷凝器,随后进入第一储液罐,从第一储液罐出来进入冷却器的节流阀节流,随后冷却器并吸收第三冷却介质的热量后回到压缩机。其中,在第三通路中,第二冷却介质在第一冷凝器中被加热后流出,经过第一阀体V1后进入第一泵B1,随后进入乘员舱空调箱的第二通路,最后回到第一冷凝器。
图50为图47中热管理系统在冷媒系统故障情况下对乘员舱制热的示意图。如图50所示,当热管理系统中的压缩机、冷却器和第一冷凝器发生故障而不能正常工作时,热管理系统仍然可以对乘员舱进行制热。具体的,冷媒系统故障时,热管理系统可以以采暖模式运行。其中,第三冷却介质进入加热器加热后进入PT,再经过第一阀体V1进入第一泵B1,从第一泵B1进入乘员舱空调箱的第二通路,第三冷却介质(即第二冷却介质)从乘员舱空调箱的第二通路出来经过第一三通阀,而后进入第一冷凝器的第二通路的进口Wb2。再从第一冷凝器的第二通路的出口Wb2出来,经过第一阀体V1进入第二泵B2。第二泵B2出来的第三冷却介质进入第二三通阀。这样加热器的热量可以用于乘员舱采暖。
图51为图47中热管理系统在冷媒系统故障情况下对电池制热的示意图。如图51所示,当热管理系统中的压缩机、冷却器和第一冷凝器发生故障而不能正常工作时,热管理系统仍然可以对电池进行制热。具体的,第三冷却介质经过第二泵B2后分为两路,一路经由加热器加热后进入PT,另一路通过电池,并在汇合点PT处回合进入第一阀体V1的第四端口4,随后经第一阀体V1进入冷却器的第二通路,再通过第一阀体V1流回第二泵B2。
图48和图49中所示的循环方式类似,第二泵B2的出口连接第二三通阀。第二三通阀包括两个出口,其中一个出口连接电池的进口,另一个出口连接汇合点PT,电池的出口经过PT点连接至第一阀体V1的第四端口4。图48中的加热器设置在汇合点PT与第一阀体V1的第四端口4之间,图49中的加热器设置在冷却器的第二通路的进口Cb1与第一阀体V1的第五端口5之间。
在本申请的实施例中,第一阀体V1还可以包括第一通路。第一阀体V1的第一通路包括第一端口1和第二端口2。热系统回路还可以包括第一冷凝器、乘员舱空调箱和第一泵B1。第一冷凝器具有相隔离的第一通路和第二通路,乘员舱空调箱包括蒸发器和第一暖风芯体。第一冷凝器的第一通路的进口Wa1与压缩机的出口连接,第一冷凝器的第一通路的出口Wa2连接于冷却器的第一通路的进口Ca1和蒸发器的进口Ha1,蒸发器的出口Ha2与压缩机的进口连接。第一阀体V1的第二端口2与第一泵B1的进口连接,第一泵B1的出口与第一暖风芯体的进口Hb1连接,第一暖风芯体的出口Hb2与第一冷凝器的第二通路的进口Wb1连接,第一冷凝器的第二通路的出口Wb2与第一阀体V1的第一端口1连接。热系统回路还设置有第二冷却介质,第一泵B1用于驱动第二冷却介质在第一冷凝器的第二通路与乘员舱空调箱的第二通路之间循环流动。这种方式可以将第二冷却介质在第一冷凝器中交换的热量,经 由第一暖风芯体吹出,从而对乘员舱的空气进行升温。
在一个可选的实施例中,上述热系统回路还可以包括第一储液罐,第一储液罐的进口与第一冷凝器的第一通路的出口Wa2连接,第一储液罐的出口连接于冷却器的第一通路的进口Ca1和蒸发器的进口Ha1。第一储液罐可以储存热系统回路中的一定量的液态冷却介质,以确保冷却介质一定的年泄露量。
图52为本申请实施例二的热管理系统的另一种结构示意图。如图52所示,在另一个可选的实施例中,热系统回路也可以包括气液分离器,气液分离器的进口连接于冷却器的第一通路的出口Ca2与蒸发器的出口Ha2,气液分离器的出口与压缩机的进口连接。该设计不仅可以使用气液分离器实现存储液体的功能,还能使用气液分离器将气液混合体中的液体留下,而只让气体流入压缩机,以提高压缩机的压缩效果。
图53为本申请实施例二的热管理系统的另一种结构示意图。如图53所示,在本申请的实施例中,第一阀体V1也可以包括第一通路。第一阀体V1的第一通路具有第一端口1和第二端口2。热系统回路还包括第一冷凝器、乘员舱空调箱和第一泵B1。第一冷凝器具有相隔离的第一通路和第二通路,乘员舱空调箱包括蒸发器和第二冷凝器。压缩机的出口连接于第一冷凝器的第一通路的进口Wa1与第二冷凝器的进口Hb1,第一冷凝器的第一通路的出口Wa2连接于冷却器的第一通路的进口Ca1和蒸发器的进口Ha1,第二冷凝器的出口Hb2连接于冷却器的第一通路的进口Ca1和蒸发器的进口Ha1,蒸发器的出口Ha2与压缩机的进口连接。第一阀体V1的第二端口2与第一泵B1的进口连接,第一泵B1的出口与第一冷凝器的第二通路的进口Wb1连接,第一冷凝器的第二通路的出口Wb2与第一阀体V1的第一端口1连接。热系统回路还设置有第二冷却介质,第一泵B1用于驱动第二冷却介质在第一冷凝器的第二通路中循环流动。当第一冷凝器停止工作时,从压缩机的出口流出的第一冷却介质可以流入第二冷凝器。在乘员舱空调箱中,蒸发器中的低温低压的第一冷却介质与第二冷凝器中的高温高压的第一冷却介质进行热交换,使乘员舱空调箱吹出的风可以维持在相对适宜的温度。
图54为本申请实施例二的热管理系统的另一种结构示意图。如图54所示,在一个可选的实施例中,乘员舱空调箱还可以包括第二暖风芯体。第二暖风芯体的进口与第一泵的出口连接,第二暖风芯体的出口与第一冷凝器的第二通路的进口连接。图55为图54中热管理系统在冷媒系统故障情况下对电池制热的示意图。如图55所示,在冷媒系统故障的情况下,加热器在电池换热回路中对第三冷却介质进行加热,从而实现对电池加热。图56为图54中热管理系统在制冷剂环路失效情况下对乘员舱制热的示意图。如图56所示,在制冷剂环路失效的情况下,加热器对电池换热回路中的第三冷却介质进行加热。第三冷却介质经过第一阀体V1的第四端口4和第二端口2后进入第一泵B1。从第一泵B1流出的第三冷却介质(即第二冷却介质)经过第二暖风芯体。第二暖风芯体将第四冷却介质的热量吹向乘员舱,从而实现对乘员舱加热。
在一个可选的实施例中,上述热系统回路还包括第二储液罐,第二储液罐的进口连接于第一冷凝器的第一通路的出口Wa2和第二冷凝器的出口Hb2,第二储液罐的出口连接于冷却器的第一通路的进口Ca1和蒸发器的进口Ha1。如此,第一储液罐可以储存热系统回路中的一定量的液态冷却介质,以确保冷却介质一定的年泄露量。
上述第一冷凝器的第一通路的出口Wa2与第二储液罐的进口之间设置有第一单向阀CV1,第一单向阀CV1用于将第一冷凝器的第一通路的出口Wa2与第二储液罐的进口单向导通。第二冷凝器的出口Hb2与第二储液罐的进口之间设置有第二单向阀CV2,第二单向阀CV2用于将第二冷凝器的出口Hb2与第二储液罐的进口单向导通。这样,通过控制第一单向阀CV1和第二单向阀CV2,可以控制第一冷却介质在热系统回路的流动路径。
当然,当乘员舱空调箱包括蒸发器和第二冷凝器时,加热器在电池换热回路中的位置也不作具体限制。例如,如图53所示,在一个可选的实施例中,加热器的进口可以与第二三通阀的第三端口连接,加热器的出口可以与第一阀体V1的第四端口4连接。图57为本申请实施例二的热管理系统的另一种结构示意图。如图57所示,在另一个可选的实施例中,加热器的进口也可以连接于第二三通阀的第三端口和电池的出口,加热器的出口可以与第一阀体V1的第四端口4连接。图58为本申请实施例二的热管理系统的另一种结构示意图。如图58所示,在另一个可选的实施例中,加热器的进口也可以与第一阀体V1的第五端口5连接,加热器的出口可以与冷却器的第二通路的进口Cb1连接。
基于相同的技术构思,本申请还提供一种电动汽车。电动汽车包括控制器和上述实施例的热管理系统。其中,控制器与热管理系统的第一阀体V1连接。控制器用于控制第一阀体V1的端口的导通或关 闭,使热管理系统以乘员舱单独制热、电池单独制热、乘员舱和电池同时制热中的任一模式运行。通过该设计,电动汽车能够实现乘员舱单独制热、电池单独制热、乘员舱和电池同时制热中的任一模式的自由切换,有助于在低温环境下制热乘员舱,提高用户的驾驶体验。
实施例三
图59为本申请实施例三的热管理系统的一种结构示意图。如图59所示,热管理系统包括热系统回路、第一阀体V1、电驱散热回路和加热器,加热器设置于电驱散热回路。具体的,第一阀体V1包括第十通路、第九通路和第十二通路。第一阀体V1的第十通路具有第五端口5和第八端口8。第一阀体V1的第九通路具有第六端口6和第七端口7。第一阀体V1的第十二通路具有第六端口6和第九端口9。热系统回路可以包括压缩机和冷却器。冷却器具有相隔离的第一通路和第二通路。冷却器的第一通路的进口Ca1与压缩机的出口连接,冷却器的第一通路的出口Ca2与压缩机的进口连接。冷却器的第二通路的进口Cb1与第一阀体V1的第五端口5连接,冷却器的第二通路的出口Cb2与第一阀体V1的第六端口6连接。热系统回路设置有第一冷却介质,第一冷却介质在压缩机与冷却器的第一通路之间循环流动。电驱散热回路包括电驱装置、第三泵B3、水箱和第三三通阀。电驱装置的进口连接于第一阀体V1的第七端口7和第一阀体V1的第九端口9,电驱装置的出口连接于水箱和第三泵B3的进口,加热器的出口与第三泵B3的进口连接。第三泵B3用于驱动第四冷却介质在电驱散热回路与冷却器之间循环流动。第三三通阀具有第一端口、第二端口和第三端口。第三三通阀的第二端口与电驱装置的进口连接,第三三通阀的第三端口与加热器的进口连接。第三三通阀的第一端口与第一阀体V1的第九端口9连接,或者,第三三通阀的第一端口与第一阀体V1的第七端口7连接。在该热管理系统中,热器用于加热第四冷却介质,使第四冷却介质在电驱散热回路与冷却器之间循环流动时能够在冷却器中与第一冷却介质热交换,并加热第一冷却介质,从而可以提高进入压缩机的第一冷却介质的温度和压力。如此,即使在低温环境下,压缩机也能够正常启动,使热管理系统能够对电动汽车的乘员舱进行制热。
在一个可选的实施例中,电驱散热回路还可以包括前舱热管理组件,前舱热管理组件的进口与第一阀体V1的第七端口7连接,前舱热管理组件的出口与电驱装置的进口连接。图60为本申请实施例三的热管理系统的另一种结构示意图。如图59和图60所示,第三三通阀的第二端口可以与前舱热管理组件的进口连接。图61为本申请实施例三的热管理系统的另一种结构示意图,图62为本申请实施例三的热管理系统的另一种结构示意图。如图61和图62所示,在另外可选的实施例中,第三三通阀的第二端口连接于前舱热管理组件的出口与电驱装置的进口。
在实施例三中,热系统回路和电池换热回路的具体架构可以与实施例一、实施例二相同。
如图59和图61所示,在可选的实施例中,热系统回路具体可以包括压缩机、冷却器、第一冷凝器和乘员舱空调箱。冷却器具有相隔离的第一通路与第二通路。第一冷凝器具有相隔离的第一通路与第二通路。乘员舱空调箱具有相隔离的第一通路与第二通路。乘员舱空调箱的第一通路设置有蒸发器,第二通路设置有暖风芯体。热系统回路还可以包括第一泵B1。第一阀体V1的第二端口2与第一泵B1的进口连接,第一泵B1的出口与暖风芯体的进口Hb1连接,暖风芯体的出口Hb2与第一冷凝器的第二通路的进口Wb1连接,第一冷凝器的第二通路的出口Wb2与第一阀体V1的第一端口1连接。热系统回路还设置有第二冷却介质,第一泵B1用于驱动第二冷却介质在第一冷凝器的第二通路与暖风芯体之间形成的第三环路L3中循环流动。这种方式可以将第二冷却介质在第一冷凝器中交换的热量,经由暖风芯体吹出,从而对乘员舱的空气进行升温。
如图59和图61所示,上述实施例的热系统回路还可以包括第一储液罐。第一储液罐的进口连接于第一冷凝器的第一通路的出口Wa2,第一储液罐的出口连接于冷却器的第一通路的进口Ca1和蒸发器的进口Ha1。第一储液罐可以储存热系统回路中的一定量的液态冷却介质,以确保冷却介质一定的年泄露量。在另外的可选实施例中,热系统回路也可以包括气液分离器。气液分离器的进口连接于冷却器的第一通路的出口Ca2与蒸发器的出口Ha2,气液分离器的出口与压缩机的进口连接。该设计不仅可以使用气液分离器实现存储液体的功能,还能使用气液分离器将气液混合体中的液体留下,而只让气体流入压缩机,以提高压缩机的压缩效果。
如图60和图62所示,在可选的实施例中,热系统回路具体可以包括压缩机、冷却器、第一冷凝器和乘员舱空调箱。冷却器具有相隔离的第一通路与第二通路。第一冷凝器具有相隔离的第一通路与第二通路。乘员舱空调箱具有相隔离的第一通路与第二通路。乘员舱空调箱的第一通路设置有蒸发器,第二 通路设置有第二冷凝器。第二冷凝器的进口Hb1与压缩机的出口连接,第二冷凝器的出口Hb2连接于冷却器的第一通路的进口Ca1和蒸发器的进口Ha1。第一冷凝器的第一通路与第一冷凝器的第二通路相隔离。热系统回路还包括第一泵B1。第一阀体V1的第二端口2与第一泵B1的进口连接,第一泵B1的出口与第一冷凝器的第二通路的进口Wb1连接,第一冷凝器的第二通路的出口Wb2与第一阀体V1的第一端口1连接。热系统回路还设置有第二冷却介质,第一泵B1用于驱动第二冷却介质在第一冷凝器的第二通路与乘员舱空调箱的第二通路之间循环流动。当第一冷凝器停止工作时,从压缩机的出口流出的第一冷却介质可以流入第二冷凝器。在乘员舱空调箱中,蒸发器中的低温低压的第一冷却介质与第二冷凝器中的高温高压的第一冷却介质进行热交换,使乘员舱空调箱吹出的风可以维持在相对适宜的温度。
在上述实施例中,热系统回路还可以包括第二储液罐。第二储液罐的进口连接于第一冷凝器的第一通路的出口Wa2和第二冷凝器的出口Hb2,第二储液罐的出口连接于冷却器的第一通路的进口Ca1和蒸发器的进口Ha1。如此,第二储液罐可以储存冷第一冷凝器的第一通路中多余的液态冷却介质,以确保第一回路中的年泄露量。
上述第一冷凝器的第一通路的出口Wa2与第二储液罐的进口之间还可以设置有第一单向阀CV1,第一单向阀CV1用于将第一冷凝器的第一通路的出口Wa2与第二储液罐的进口单向导通。第二冷凝器的出口Hb2与第二储液罐的进口之间设置有第二单向阀CV2,第二单向阀CV2用于将第二冷凝器的出口Hb2与第二储液罐的进口单向导通。这样,通过控制第一单向阀CV1和第二单向阀CV2,可以控制第一冷却介质在热系统回路的流动路径。
基于相同的技术构思,本申请还提供一种电动汽车。电动汽车包括控制器和上述实施例的热管理系统。其中,控制器与热管理系统连接,控制装置用于控制第一阀体V1的端口的导通或关闭,使热管理系统以乘员舱单独制热的模式运行。通过该设计,电动汽车能够实现乘员舱单独制热的模式,有助于在低温环境下制热乘员舱,提高用户的驾驶体验。
实施例四
图63为本申请实施例四的热管理系统的一种结构示意图。如图63所示,热管理系统包括第一阀体V1、水管路、冷却器、压缩机和加热单元。具体的,水管路的进口和出口分别与第一阀体V1连接。冷却器具有相隔离的第一通路和第二通路。冷却器的第一通路的进口Ca1与压缩机的出口连接,冷却器的第一通路的出口Ca2与压缩机的进口连接,以形成第一液冷回路。冷却器的第二通路的进口Cb1和冷却器的第二通路的出口Cb2分别与第一阀体V1连接。第一阀体V1可以被配置为在不同的连通状态之间切换。不同的连通状态可以包括连通冷却器的第二通路和水管路,以形成第一水回路,使第一水回路与第一液冷回路热交换。加热单元可以设置在第一液冷回路、冷却器的第二通路的进口Cb1处或水管路。在上述热管理系统中,加热单元可以对压缩机所在的第一液冷回路进行直接加热,或者也可以对冷却器的第二通路或水管路进行加热,以对压缩机进行间接加热,从而可以提高压缩机内的温度和压力,使得在低温环境下,压缩机也能够正常启动,进而使热管理系统能够对电动汽车的乘员舱进行制热。
具体的,第一阀体V1可以包括第一端口1、第二端口2、第五端口5和第六端口6。热管理系统还可以包括乘员舱空调箱、第一冷凝器和第一泵B1。冷却器的第二通路的进口Cb1与第一阀体V1的第五端口5连接,冷却器的第二通路的出口Cb2与第一阀体V1的第六端口6连接。第一冷凝器具有相隔离的第一通路和第二通路。第一冷凝器的第一通路位于压缩机与冷却器的第一通路之间,并且第一冷凝器的第一通路的进口Wa1与压缩机的出口连接,第一冷凝器的第一通路的出口Wa2与冷却器的第一通路的进口Ca1连接。乘员舱空调箱具有相隔离的第一通路和第二通路。乘员舱空调箱的第一通路的进口Ha1与压缩机的出口连接,乘员舱空调箱的第一通路的出口Ha2与压缩机的进口连接,以形成第二液冷回路。水管路包括第一管路,第一管路依次经过第一泵B1、乘员舱空调箱的第二通路、第一冷凝器的第二通路。第一泵B1的进口与第一阀体V1的第二端口2连接,第一冷凝器的第二通路的出口Wb2与第一阀体V1的第一端口1连接。
在上述实施例中,连通冷却器的第二通路和水管路具体可以包括连通冷却器的第二通路和第一管路,即连通。另外,不同的连通状态还可以包括连通第一管路,以使第一管路通过第一阀体V1形成第二水回路,实现自循环,使第二水回路可以通过乘员舱空调箱与第一液冷回路热交换。
此外,第一阀体V1还可以包括第三端口3和第四端4。热管理系统还可以包括第二泵B2和电池。 除了第一管路之外,水管路还可以包括第二管路。第二管路可以依次经过第二泵B2和电池,其中,第二泵B2的进口与第一阀体V1的第三端口3连接,第二泵B2的出口与电池的进口连接,电池的出口与第一阀体V1的第四端口4连接。
在上述实施例中,水管路还可以包括第二三通阀,第二三通阀具有第一端口、第二端口和第三端口,第二三通阀可以将第二管路分成两个支路。具体的,第二三通阀的第一端口与第二泵B2的出口连接,第二三通阀的第二端口与电池的进口连接,第二三通阀的第三端口与第一阀体V1的第四端口4连接。
在本申请中,水管路的第一管路和第二管路可以通过第一阀体V1连通,或者也可以通过其他阀体连通。例如,在一个具体的实施例中,水管路还可以包括第一三通阀。第一三通阀具有第一端口、第二端口和第三端口,第一三通阀的第一端口与第一冷凝器的第二通路的进口Wb1连接,第一三通阀的第二端口与第一泵B1的出口连接,第一三通阀的第三端口与第二泵B2的进口连接。
此外,在上述实施例中,第二泵B2的进口与第一冷凝器的第二通路的进口Wb1之间可以设置有第三单向阀。第三单向阀用于将第二泵B2的进口与第一冷凝器的第二通路的进口Wb1单向导通。
在上述实施例中,当第一阀体V1切换至连通冷却器的第二通路和水管路的连通状态时,具体可以包括连通冷却器的第二通路和第二管路。当然,第一阀体V1也可以切换至其他的连通状态。例如,不同的连通状态还可以包括分别连通第一管路和第二管路,以形成第三水回路。在该连通状态中,第一管路和第二管路可以各自循环,并且可以通过第一三通阀连通第一管路和第二管路,使第三水回路通过乘员舱空调箱与第一液冷回路热交换。或者,第一管路和第二管路可以通过第一阀体V1直接连通,也就是说,不同的连通状态还可以包括连通第一管路和第二管路,以形成第四水回路,使第四水回路通过乘员舱空调箱与第一液冷回路热交换。
上述第一阀体V1还可以包括第七端口7、第八端口8和第九端口9。热管理系统还可以包括第三泵B3和电驱装置。水管路还可以包括第三管路,第三管路经过电驱装置和第三泵B3,其中,电驱装置的进口与第一阀体V1的第七端口7和/或第一阀体V1的第九端口9连接,电驱装置的出口与第三泵B3的进口连接,第三泵B3的出口与第一阀体V1的第八端口8连接。
在上述实施例中,当加热单元设置于第三管路时,水管路还可以包括第三三通阀,第三三通阀具有第一端口、第二端口和第三端口。第三三通阀的第一端口与第一阀体V1的第七端口7连接或第一阀体V1的第九端口9连接。第三三通阀的第二端口与电驱装置的进口连接,第三三通阀的第三端口与加热单元的进口连接,加热单元的出口与第三泵B3的进口连接。
此外,水管路还可以包括前舱热管理组件,前舱热管理组件的进口可以与第一阀体V1的第七端口7连接,前舱热管理组件的出口与电驱装置的进口连接。
在上述实施例中,当第一阀体V1切换至连通冷却器的第二通路和水管路的状态时,具体可以包括连通冷却器的第二通路和第三管路,使第三管路通过冷却器的第二通路与第一液冷回路热交换。或者,该连通状态也可以包括连通冷却器的第二通路、第二管路和第三管路,使该三个管路实现连通并循环。
在该实施例四中,乘员舱空调箱的第一通路可以设置有蒸发器,乘员舱空调箱的第二通路可以设置有暖风芯体。或者,乘员舱空调箱的第一通路可以设置有蒸发器,乘员舱空调箱的第二通路可以设置有第二冷凝器。
基于相同的技术构思,本申请提供一种电动汽车。电动汽车包括控制器、以及上述实施例四中的热管理系统。控制器与热管理系统的第一阀体V1连接。控制器用于控制第一阀体V1切换至不同的连通状态,使热管理系统以乘员舱单独制热、电池单独制热、乘员舱和电池同时制热中的任一模式运行。通过该设计,电动汽车能够实现乘员舱单独制热、电池单独制热、乘员舱和电池同时制热中的任一模式的自由切换,有助于在低温环境下制热乘员舱,提高用户的驾驶体验。
下面以加热单元设置于第一液冷回路、第二液冷回路或第一管路为示例,对第一阀体V1在不同连通状态之间切换进行说明。
如图15所示,当电动汽车的外部环境温度过低时,第一阀体V1可以切换至一种低温启动阶段(M11)的连通状态,即分别连通第一阀体V1的第一端口1和第二端口2、以及第七端口7和第八端口8。此时,加热单元可以包括单独设置于冷却器的第一通路的出口Ca2的加热器,并对从冷却器的第一通路的出口Ca2流出的第一冷却介质进行加热,同时压缩机以较低的转速启动。此时,乘员舱的温度逐渐上升。随着压缩机的进口压力逐渐升至1大气压以上,压缩机可以逐渐提升转速。该阶段可以实现乘员舱单独制热的模式。或者,加热单元也可以包括相连接的压缩机电机以及电机控制器。压缩机可以包括 压缩机本体以及设置在压缩机本体的涡盘。其中,压缩机电机与涡盘连接。
在上述低温启动阶段(M11)中,乘员舱的温度逐渐上升。当乘员舱的温度大于一定温度时,第一阀体V1可以从M11的连通状态切换至稳定阶段(M12)的一种连通状态。如图16至图19所示,第一阀体V1在该稳定阶段(M12)的连通状态可以与低温启动阶段(M11)的连通状态相同。加热单元可以设置在冷却器的第一通路的出口Ca2处、或者设置在压缩机的进口处、或者设置在乘员舱空调箱的第一通路的进口Ha1处。如图20至图22所示,第一阀体V1可以从M11的连通状态切换至稳定阶段(M12)的另一种连通状态。即分别连通第一阀体V1的第一端口1和第二端口2、第三端口3和第六端口6、第四端口4和第五端口5、以及第七端口7和第八端口8。加热单元可以设置在压缩机的进口与第一冷凝器的第一通路的出口Wa2之间、或者设置在压缩机的进口处、或者设置在第一泵B1与乘员舱空调箱的第二通路的进口Hb1之间。
如图23所示,在冷媒系统故障情况下,加热单元可以设置在第一泵B1与乘员舱空调箱的第二通路的进口Hb1之间。第一阀体V1可以切换至连通第一端口1和第二端口2;或者,如图24所示,第一阀体V1也可以切换至分别连通第一端口1和第三端口3、以及第二端口2和第四端口。
如图25所示,在上述冷媒系统故障加热的过程中,当乘员舱的温度达到预定温度时,制热模式处于稳定状态。此时,第一阀体V1可以切换至分别连通第一端口1和第二端口2、第五端口5和第八端口8、以及第六端口6和第七端口7。加热单元可以设置在冷却器的第一通路的出口Ca2处。
在低温情况下,当加热单元设置在冷却器的第一通路的出口Ca2处时,如图27至图29所示,第一阀体V1可以切换至分别连通第一端口1和第二端口2、第三端口3和第六端口6、第四端口4和第五端口5、以及第七端口7和第八端口8;或者,如图30所示,第一阀体V1也可以切换至分别连通第一端口1和第二端口2、第三端口3和第四端口4、第五端口5和第八端口8、以及第六端口6和第七端口7。
在极低温的环境下,当加热单元设置在冷却器的第一通路的出口Ca2处时,如图31所示,第一阀体V1可以切换至分别连通第一端口1和第三端口3、以及第二端口2和第四端口4;或者,如图32所示,第一阀体V1可以切换至分别连通第一端口1和第二端口2、以及第三端口3和第四端口4。
如图33所示,当电动汽车的外部环境温度过低时,第一阀体V1还可以切换至一种低温启动阶段(M21)的状态,即不连通任意两个端口。此时,加热单元设置在冷却器的第一通路的出口Ca2处。打开电磁阀V2并关闭V3,压缩机出来的高温第一冷却介质进入第二冷凝器,而后经过单向阀CV2进入第二储液罐后通过节流阀并进入冷却器,经过加热器的加热后,第一冷却介质经过Pt1进入压缩机。当乘员舱温度达到一定温度,热管理系统达到稳定阶段(M22)。此时,第一阀体V1的状态保持不变。
在极低温的环境下,当加热单元设置在冷却器的第一通路的出口Ca2处时,如图36和图28所示,第一阀体V1可以切换至分别连通第一端口1和第三端口3、以及第二端口2和第四端口4;或者,如图37所示,第一阀体V1可以切换至分别连通第一端口1和第二端口2、以及第三端口3和第四端口4。
在行车过程中,热管理系统也可以进行制热。如图39至图41所示,第一阀体V1可以切换至分别连通第一端口1和第二端口2、第三端口3和第六端口6、以及第四端口4和第五端口5。如图42所示,第一阀体V1可以切换至分别连通第一端口1和第二端口2、以及第三端口3和第四端口4。
加热器在不同位置时,也可以在稳定阶段对乘员舱进行制热。如图43至图46所示,第一阀体V1可以切换至不连通任意两个端口。
下面以加热单元设置于第二管路为示例,对第一阀体V1在不同连通状态之间切换进行说明。
在低温环境下,如图47所示,第一阀体V1可以切换至分别连通第一端口1和第三端口3、以及第二端口2和第四端口4。或者,如图48和图49所示,第一阀体V1可以切换至分别连通第一端口1和第二端口2、第三端口3和第六端口6、以及第四端口4和第五端口5。
在冷媒系统故障情况下,热管理系统可以对乘员舱制热。如图50所示,第一阀体V1可以切换至分别连通第一端口1和第三端口3、以及第四端口4和第五端口5。热管理系统可以对电池制热。第一阀体V1可以切换至分别连通第三端口3和第六端口6、以及第四端口4和第五端口5。
如图53、图57和图58所示,第一阀体V1可以切换至不连通任意两个端口。当第一冷凝器停止工作时,从压缩机的出口流出的第一冷却介质可以流入第二冷凝器。在乘员舱空调箱中,蒸发器中的低温低压的第一冷却介质与第二冷凝器中的高温高压的第一冷却介质进行热交换,使乘员舱空调箱吹出的风可以维持在相对适宜的温度。
如图55所示,在冷媒系统故障的情况下,加热器在电池换热回路中对第三冷却介质进行加热,从而实现对电池加热。第一阀体V1可以切换至分别连通第三端口3和第六端口6、以及第四端口4和第五端口5。
如图56所示,在制冷剂环路失效情况下,热管理系统可以对乘员舱制热。第一阀体V1可以切换至分别连通第一端口1和第三端口3、以及第二端口2和第四端口4。
下面以加热单元设置于第三管路为示例,对第一阀体V1在不同连通状态之间切换进行说明。
如图59所示,在低温环境下,热管理系统可对电动汽车的乘员舱进行制热。此时,第一阀体V1可以切换至分别连通第一端口1和第二端口2、第五端口5和第八端口8、以及第六端口6和第七端口7。或者,如图60所示,第一阀体V1可以切换至分别连通第六端口6和第七端口7、以及第五端口5和第八端口8,或分别连通第六端口6和第七端口7、第六端口6和第九端口9、以及第五端口5和第八端口8。或者,如图61所示,第一阀体V1可以切换至分别连通第一端口1和第二端口2、第五端口5和第八端口8、以及第六端口6和第九端口9。如图62所示,第一阀体V1可以切换至分别连通第五端口5和第八端口8、以及第六端口6和第九端口9。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (45)

  1. 一种热管理系统,其特征在于,所述热管理系统包括水管路、第一阀体、冷却器、压缩机和加热单元,其中:
    所述水管路的进口和出口分别与所述第一阀体连接;
    所述冷却器具有相隔离的第一通路和第二通路;所述冷却器的第一通路的进口与所述压缩机的出口连接,所述冷却器的第一通路的出口与所述压缩机的进口连接,以形成第一液冷回路;所述冷却器的第二通路的进口和出口分别与所述第一阀体连接;
    所述第一阀体被配置为在不同的连通状态之间切换;所述不同的连通状态包括连通所述冷却器的第二通路和所述水管路,以形成第一水回路,使所述第一水回路与所述第一液冷回路热交换;
    所述加热单元设置于所述第一液冷回路、所述冷却器的第二通路的进口或所述水管路。
  2. 如权利要求1所述的热管理系统,其特征在于,所述第一阀体包括第一端口、第二端口、第五端口和第六端口;所述热管理系统还包括乘员舱空调箱、第一冷凝器和第一泵;
    所述冷却器的第二通路的进口与所述第一阀体的第五端口连接,所述冷却器的第二通路的出口与所述第一阀体的第六端口连接;
    所述第一冷凝器具有相隔离的第一通路和第二通路;所述第一冷凝器的第一通路位于所述压缩机与所述冷却器的第一通路之间,并且所述第一冷凝器的第一通路的进口与所述压缩机的出口连接,所述第一冷凝器的第一通路的出口与所述冷却器的第一通路的进口连接;
    所述乘员舱空调箱具有相隔离的第一通路和第二通路;所述乘员舱空调箱的第一通路的进口与所述压缩机的出口连接,所述乘员舱空调箱的第一通路的出口与所述压缩机的进口连接,以形成第二液冷回路;
    所述水管路包括第一管路,所述第一管路依次经过所述第一泵、所述乘员舱空调箱的第二通路、所述第一冷凝器的第二通路;所述第一泵的进口与所述第一阀体的第二端口连接,所述第一冷凝器的第二通路的出口与所述第一阀体的第一端口连接。
  3. 如权利要求2所述的热管理系统,其特征在于,所述不同的连通状态还包括连通所述第一管路,以形成第二水回路,使所述第二水回路通过所述乘员舱空调箱与所述第一液冷回路热交换。
  4. 如权利要求2或3所述的热管理系统,其特征在于,所述第一阀体还包括第三端口和第四端;所述热管理系统还包括第二泵和电池;
    所述水管路还包括第二管路,所述第二管路依次经过第二泵和电池,其中,所述第二泵的进口与所述第一阀体的第三端口连接,所述第二泵的出口与所述电池的进口连接,所述电池的出口与所述第一阀体的第四端口连接。
  5. 如权利要求4所述的热管理系统,其特征在于,所述水管路还包括第二三通阀,所述第二三通阀具有第一端口、第二端口和第三端口;
    所述第二三通阀的第一端口与所述第二泵的出口连接,所述第二三通阀的第二端口与所述电池的进口连接,所述第二三通阀的第三端口与所述第一阀体的第四端口连接。
  6. 如权利要求4或5所述的热管理系统,其特征在于,所述水管路还包括第一三通阀,所述第一三通阀具有第一端口、第二端口和第三端口,所述第一三通阀的第一端口与所述第一冷凝器的第二通路的进口连接,所述第一三通阀的第二端口与所述第一泵的出口连接,所述第一三通阀的第三端口与所述第二泵的进口连接。
  7. 如权利要求6所述的热管理系统,其特征在于,所述第二泵的进口与所述第一冷凝器的第二通路的进口之间设置有第三单向阀,所述第三单向阀用于将所述第二泵的进口与所述第一冷凝器的第二通路的进口单向导通。
  8. 如权利要求7所述的热管理系统,其特征在于,所述连通所述冷却器的第二通路和所述水管路,包括:连通所述冷却器的第二通路和所述第二管路;
    所述不同的连通状态还包括分别连通所述第一管路和所述第二管路,以形成第三水回路,使所述第三水回路通过所述乘员舱空调箱与所述第一液冷回路热交换;
    所述不同的连通状态还包括连通所述第一管路和所述第二管路,以形成第四水回路,使所述第四水回路通过所述乘员舱空调箱与所述第一液冷回路热交换。
  9. 如权利要求4至8中任一项所述的热管理系统,其特征在于,所述第一阀体还包括第七端口、第八端口和第九端口;所述热管理系统还包括第三泵和电驱装置;
    所述水管路还包括第三管路,所述第三管路经过电驱装置和第三泵,其中,所述电驱装置的进口与所述第一阀体的第七端口和/或所述第一阀体的第九端口连接,所述电驱装置的出口与所述第三泵的进口连接,所述第三泵的出口与所述第一阀体的第八端口连接。
  10. 如权利要求9所述的热管理系统,其特征在于,当所述加热单元设置于所述第三管路时,所述水管路还包括第三三通阀,所述第三三通阀,所述第三三通阀具有第一端口、第二端口和第三端口;
    所述第三三通阀的第一端口与所述第一阀体的第七端口连接或所述第一阀体的第九端口连接;所述第三三通阀的第二端口与所述电驱装置的进口连接,所述第三三通阀的第三端口与所述加热单元的进口连接,所述加热单元的出口与所述第三泵的进口连接。
  11. 如权利要求10所述的热管理系统,其特征在于,所述水管路还包括前舱热管理组件,所述前舱热管理组件的进口与所述第一阀体的第七端口连接,所述前舱热管理组件的出口与所述电驱装置的进口连接。
  12. 如权利要求10所述的热管理系统,其特征在于,所述连通所述冷却器的第二通路和所述水管路,包括:
    连通所述冷却器的第二通路和所述第三管路;或者,连通所述冷却器的第二通路、所述第二管路和所述第三管路。
  13. 一种电动汽车,其特征在于,包括控制器、以及如权利要求1至12中任一项所述的热管理系统,其中:
    所述控制器与所述热管理系统的第一阀体连接;所述控制器用于控制所述第一阀体切换至不同的连通状态,使所述热管理系统以乘员舱单独制热、电池单独制热、乘员舱和电池同时制热中的任一模式运行。
  14. 一种热管理系统,其特征在于,包括热系统回路和加热器,所述加热器设置于所述热系统回路,其中:
    所述热系统回路包括压缩机、冷却器和乘员舱空调箱;所述冷却器具有第一通路,所述乘员舱空调箱具有第一通路;所述压缩机的出口连接于所述冷却器的第一通路的进口和所述乘员舱空调箱的第一通路的进口;所述压缩机的进口连接于所述冷却器的第一通路的出口和所述乘员舱空调箱的第一通路的出口;
    所述热系统回路设置有第一冷却介质,所述第一冷却介质在所述压缩机与所述冷却器的第一通路之间、以及所述压缩机与所述乘员舱空调箱的第一通路之间循环流动;所述加热器用于加热所述第一冷却介质。
  15. 如权利要求14所述的热管理系统,其特征在于,所述热系统回路还包括第一节流阀,第一节流阀连接于所述乘员舱空调箱的第一通路的出口与所述压缩机的进口之间,所述第一节流阀用于导通或关闭所述乘员舱空调箱的第一通路的出口与所述压缩机的进口。
  16. 如权利要求14或15所述的热管理系统,其特征在于,所述加热器为独立设置的加热装置;
    所述加热装置设置于所述冷却器与所述压缩机之间,所述加热装置的进口与所述冷却器的第一通路的出口连接,所述加热装置的出口与所述压缩机的进口连接;或者,所述加热装置设置于所述压缩机的进口,所述加热装置的进口连接于所述冷却器的第一通路的出口和所述乘员舱空调箱的第一通路的出口,所述加热装置的出口与所述压缩机的进口连接。
  17. 如权利要求14或15所述的热管理系统,其特征在于,所述加热器设置于所述压缩机;所述加热器包括相连接的压缩机电机和电机控制器,所述压缩机包括压缩机本体、以及设置于所述压缩机本体的涡盘,所述压缩机电机与所述涡盘连接。
  18. 如权利要求14或15所述的热管理系统,其特征在于,所述热系统回路还包括第一冷凝器,所述第一冷凝器具有第一通路;所述第一冷凝器的第一通路的进口与所述压缩机的出口连接,所述第一冷凝器的第一通路的出口连接于所述冷却器的第一通路的进口和所述乘员舱空调箱的第一通路的进口。
  19. 如权利要求18所述的热管理系统,其特征在于,所述乘员舱空调箱还具有第二通路,所述乘员舱空调箱的第一通路与所述乘员舱空调箱的第二通路相隔离;所述乘员舱空调箱的第一通路设置有蒸发器,所述乘员舱空调箱的第二通路设置有暖风芯体;所述第一冷凝器还具有第二通路,所述第一冷凝器 的第一通路与所述第一冷凝器的第二通路相隔离;
    所述热管理系统还包括第一阀体,所述第一阀体包括第一通路,所述第一阀体的第一通路具有第一端口和第二端口;
    所述热系统回路还包括第一泵;所述第一阀体的第二端口与所述第一泵的进口连接,所述第一泵的出口与所述暖风芯体的进口连接,所述暖风芯体的出口与所述第一冷凝器的第二通路的进口连接,所述第一冷凝器的第二通路的出口与所述第一阀体的第一端口连接;
    所述热系统回路还设置有第二冷却介质,所述第一泵用于驱动所述第二冷却介质在所述第一冷凝器的第二通路与所述暖风芯体之间循环流动。
  20. 如权利要求19所述的热管理系统,其特征在于,所述热系统回路还包括第一储液罐,所述第一储液罐的进口连接于所述第一冷凝器的第一通路的出口,所述第一储液罐的出口连接于所述冷却器的第一通路的进口和所述蒸发器的进口。
  21. 如权利要求19或20所述的热管理系统,其特征在于,所述热系统回路还包括气液分离器,所述气液分离器的进口连接于所述冷却器的第一通路的出口与所述蒸发器的出口,所述气液分离器的出口与所述压缩机的进口连接。
  22. 如权利要求18所述的热管理系统,其特征在于,所述乘员舱空调箱还具有第二通路,所述乘员舱空调箱的第一通路与所述乘员舱空调箱的第二通路相隔离;所述乘员舱空调箱的第一通路设置有蒸发器,所述乘员舱空调箱的第二通路设置有第二冷凝器;所述第二冷凝器的进口与所述压缩机的出口连接,所述第二冷凝器的出口连接于所述冷却器的第一通路的进口和所述蒸发器的进口;
    所述第一冷凝器还具有第二通路,所述第一冷凝器的第一通路与所述第一冷凝器的第二通路相隔离;
    所述热管理系统还包括第一阀体,所述第一阀体包括第一通路,所述第一阀体的第一通路具有第一端口和第二端口;
    所述热系统回路还包括第一泵;所述第一阀体的第二端口与所述第一泵的进口连接,所述第一泵的出口与所述第一冷凝器的第二通路的进口连接,所述第一冷凝器的第二通路的出口与所述第一阀体的第一端口连接;
    所述热系统回路还设置有第二冷却介质,所述第一泵用于驱动所述第二冷却介质在所述第一冷凝器的第二通路循环流动。
  23. 如权利要求22所述的热管理系统,其特征在于,所述热系统回路还包括第二储液罐,所述第二储液罐的进口连接于所述第一冷凝器的第一通路的出口和所述第二冷凝器的出口,所述第二储液罐的出口连接于所述冷却器的第一通路的进口和所述蒸发器的进口。
  24. 如权利要求23所述的热管理系统,其特征在于,所述第一冷凝器的第一通路的出口与所述第二储液罐的进口之间设置有第一单向阀,所述第一单向阀用于将所述第一冷凝器的第一通路的出口与所述第二储液罐的进口单向导通;
    所述第二冷凝器的出口与所述第二储液罐的进口之间设置有第二单向阀,所述第二单向阀用于将所述第二冷凝器的出口与所述第二储液罐的进口单向导通。
  25. 如权利要求19至24中任一项所述的热管理系统,其特征在于,所述加热器的进口与所述第一泵的出口连接,所述加热器的出口与所述第一冷凝器的第二通路的进口连接;
    或者,所述加热器的进口与所述第一冷凝器的第二通路的出口连接,所述加热器的出口与所述第一泵的进口连接。
  26. 如权利要求18至24中任一项所述的热管理系统,其特征在于,所述加热器设置于所述第一冷凝器与所述乘员舱空调箱之间,所述加热器的进口与所述第一冷凝器的第一通路的出口连接,所述加热器的出口与所述乘员舱空调箱的第一通路的进口连接;或者
    所述加热器设置于所述第一冷凝器与所述压缩机之间,所述加热器的进口与所述第一冷凝器的第一通路的出口连接,所述加热器的出口与所述压缩机的进口连接。
  27. 如权利要求19至25中任一项所述的热管理系统,其特征在于,所述热管理系统还包括电池换热回路,所述电池换热回路包括电池和第二泵;
    所述第一阀体还包括第二通路和第三通路;所述第一阀体的第二通路具有第三端口和第六端口;所述第一阀体的第三通路具有第四端口和第五端口;
    所述第一阀体的第三端口与所述第二泵的进口连接,所述第二泵的出口与所述电池的进口连接,所 述电池的出口与所述第一阀体的第四端口连接;
    所述冷却器还具有第二通路,所述冷却器的第一通路与所述冷却器的第二通路相隔离;所述第一阀体的第五端口与所述冷却器的第二通路的进口连接,所述冷却器的第二通路的出口与所述第一阀体的第六端口连接;
    所述第二泵用于驱动第三冷却介质在所述电池换热回路与所述冷却器的第二通路之间循环流动。
  28. 如权利要求27所述的热管理系统,其特征在于,所述第一阀体还包括第四通路和第五通路;所述第一阀体的第四通路具有所述第一端口和所述第三端口;所述第一阀体的第五通路具有所述第二端口和所述第四端口。
  29. 如权利要求27或28所述的热管理系统,其特征在于,所述第二泵的进口与所述第一冷凝器的第二通路的进口连接;所述第一冷凝器的第二通路的进口与所述第一泵的出口之间设置有第一三通阀,所述第一三通阀具有第一端口、第二端口和第三端口,所述第一三通阀的第一端口与所述第一冷凝器的第二通路的进口连接,所述第一三通阀的第二端口与所述第一泵的出口连接,所述第一三通阀的第三端口与所述第二泵的进口连接。
  30. 如权利要求29所述的热管理系统,其特征在于,所述第二泵的进口与所述第一冷凝器的第二通路的进口之间设置有第三单向阀,所述第三单向阀用于将所述第二泵的进口与所述第一冷凝器的第二通路的进口单向导通。
  31. 一种电动汽车,其特征在于,包括控制器、以及如权利要求14至30中任一项所述的热管理系统,其中,所述控制器与所述热管理系统连接,所述控制器用于控制所述热管理系统以乘员舱单独制热的模式运行。
  32. 如权利要求31所述的电动汽车,其特征在于,所述热管理系统还包括第一阀体和电池换热回路,所述控制器与所述第一阀体连接;所述控制器用于控制所述第一阀体的端口的导通或关闭,使所述热管理系统以乘员舱单独制热、电池单独制热、乘员舱和电池同时制热中的任一模式运行。
  33. 一种热管理系统,其特征在于,包括热系统回路、第一阀体、电池换热回路和加热器,所述加热器设置于所述电池换热回路,其中:
    所述第一阀体包括第二通路和第三通路;所述第一阀体的第二通路具有第三端口和第六端口;所述第一阀体的第三通路具有第四端口和第五端口;
    所述热系统回路包括压缩机和冷却器;所述冷却器具有相隔离的第一通路和第二通路;所述冷却器的第一通路的进口与所述压缩机的出口连接,所述冷却器的第一通路的出口与所述压缩机的进口连接;所述冷却器的第二通路的进口与所述第一阀体的第五端口连接,所述冷却器的第二通路的出口与所述第一阀体的第六端口连接;所述热系统回路设置有第一冷却介质,所述第一冷却介质在所述压缩机与所述冷却器的第一通路之间循环流动;
    所述电池换热回路包括第二泵、第二三通阀和电池;所述第二三通阀具有第一端口、第二端口和第三端口;所述第二泵的进口与所述第一阀体的第三端口连接,所述第二泵的出口与所述第二三通阀的第一端口连接,所述第二三通阀的第二端口与所述电池的进口连接,所述第二三通阀的第三端口和所述电池的出口连接于所述第一阀体的第四端口;所述第二泵用于驱动第三冷却介质在所述电池换热回路与所述冷却器的第二通路之间循环流动;
    所述加热器用于加热所述第三冷却介质,使所述第三冷却介质在所述电池换热回路中循环流动时能够在所述冷却器中与所述第一冷却介质热交换,以加热所述第一冷却介质。
  34. 如权利要求33所述的热管理系统,其特征在于,所述加热器的进口与所述第二三通阀的第三端口连接,所述加热器的出口与所述第一阀体的第四端口连接;或者,
    所述加热器的进口连接于所述第二三通阀的第三端口和所述电池的出口,所述加热器的出口与所述第一阀体的第四端口连接;或者,
    所述加热器的进口与所述第一阀体的第五端口连接,所述加热器的出口与所述冷却器的第二通路的进口连接。
  35. 如权利要求33或34所述的热管理系统,其特征在于,所述第一阀体还包括第一通路,所述第一通路具有所述第一端口和所述第二端口;
    所述热系统回路还包括第一冷凝器、乘员舱空调箱和第一泵;所述第一冷凝器具有相隔离的第一通路和第二通路,所述乘员舱空调箱包括蒸发器和第一暖风芯体;
    所述第一冷凝器的第一通路的进口与所述压缩机的出口连接,所述第一冷凝器的第一通路的出口连接于所述冷却器的第一通路的进口和所述蒸发器的进口,所述蒸发器的出口与所述压缩机的进口连接;所述第一阀体的第二端口与所述第一泵的进口连接,所述第一泵的出口与所述第一暖风芯体的进口连接,所述第一暖风芯体的出口与所述第一冷凝器的第二通路的进口连接,所述第一冷凝器的第二通路的出口与所述第一阀体的第一端口连接;
    所述热系统回路还设置有第二冷却介质,所述第一泵用于驱动所述第二冷却介质在所述第一冷凝器的第二通路与所述乘员舱空调箱的第二通路之间循环流动。
  36. 如权利要求35所述的热管理系统,其特征在于,所述热系统回路还包括第一储液罐,所述第一储液罐的进口连接于所述第一冷凝器的第一通路的出口,所述第一储液罐的出口连接于所述冷却器的第一通路的进口和所述蒸发器的进口。
  37. 如权利要求35所述的热管理系统,其特征在于,所述热系统回路还包括气液分离器,所述气液分离器的进口连接于所述冷却器的第一通路的出口与所述蒸发器的出口,所述气液分离器的出口与所述压缩机的进口连接。
  38. 如权利要求33或34所述的热管理系统,其特征在于,所述第一阀体还包括第一通路,所述第一通路具有所述第一端口和所述第二端口;
    所述热系统回路还包括第一冷凝器、乘员舱空调箱和第一泵;所述第一冷凝器具有相隔离的第一通路和第二通路,所述乘员舱空调箱包括蒸发器和第二冷凝器;
    所述压缩机的出口连接于所述第一冷凝器的第一通路的进口与所述第二冷凝器的进口,所述第一冷凝器的第一通路的出口连接于所述冷却器的第一通路的进口和所述蒸发器的进口,所述第二冷凝器的出口连接于所述冷却器的第一通路的进口和所述蒸发器的进口,所述蒸发器的出口与所述压缩机的进口连接;所述第一阀体的第二端口与所述第一泵的进口连接,所述第一泵的出口与所述第一冷凝器的第二通路的进口连接,所述第一冷凝器的第二通路的出口与所述第一阀体的第一端口连接;
    所述热系统回路还设置有第二冷却介质,所述第一泵用于驱动所述第二冷却介质在所述第一冷凝器的第二通路中循环流动。
  39. 如权利要求38所述的热管理系统,其特征在于,所述乘员舱空调箱还包括第二暖风芯体,所述第二暖风芯体的进口与所述第一泵的出口连接,所述第二暖风芯体的出口与所述第一冷凝器的第二通路的进口连接。
  40. 如权利要求38或39所述的热管理系统,其特征在于,所述热系统回路还包括第二储液罐,所述第二储液罐的进口连接于所述第一冷凝器的第一通路的出口和所述第二冷凝器的出口,所述第二储液罐的出口连接于所述冷却器的第一通路的进口和所述蒸发器的进口。
  41. 如权利要求40所述的热管理系统,其特征在于,所述第一冷凝器的第一通路的出口与所述第二储液罐的进口之间设置有第一单向阀,所述第一单向阀用于将所述第一冷凝器的第一通路的出口与所述第二储液罐的进口单向导通;
    所述第二冷凝器的出口与所述第二储液罐的进口之间设置有第二单向阀,所述第二单向阀用于将所述第二冷凝器的出口与所述第二储液罐的进口单向导通。
  42. 一种电动汽车,其特征在于,包括控制器、以及如权利要求33至41中任一项所述的热管理系统,其中:
    所述控制器与所述热管理系统的第一阀体连接;所述控制器用于控制所述第一阀体的端口的导通或关闭,使所述热管理系统以乘员舱单独制热、电池单独制热、乘员舱和电池同时制热中的任一模式运行。
  43. 一种热管理系统,其特征在于,包括热系统回路、第一阀体、电驱散热回路和加热器,所述加热器设置于所述电驱散热回路,其中:
    所述第一阀体包括第十通路、第九通路和第十二通路;所述第一阀体的第十通路具有第五端口和第八端口,所述第一阀体的第九通路具有第六端口和第七端口,所述第一阀体的第十二通路具有第六端口和第九端口;
    所述热系统回路包括压缩机和冷却器;所述冷却器具有相隔离的第一通路和第二通路;所述冷却器的第一通路的进口与所述压缩机的出口连接,所述冷却器的第一通路的出口与所述压缩机的进口连接;所述冷却器的第二通路的进口与所述第一阀体的第五端口连接,所述冷却器的第二通路的出口与所述第一阀体的第六端口连接;所述热系统回路设置有第一冷却介质,所述第一冷却介质在所述压缩机与所述 冷却器的第一通路之间循环流动;
    所述电驱散热回路包括电驱装置、第三泵、水箱和第三三通阀;所述电驱装置的进口连接于所述第一阀体的第七端口和所述第一阀体的第九端口,所述电驱装置的出口连接于所述水箱和所述第三泵的进口,所述加热器的出口与所述第三泵的进口连接;所述第三泵用于驱动第四冷却介质在所述电驱散热回路与所述冷却器之间循环流动;
    所述第三三通阀具有第一端口、第二端口和第三端口;所述第三三通阀的第一端口与所述第一阀体的第九端口连接,或者,所述第三三通阀的第一端口与所述第一阀体的第七端口连接;所述第三三通阀的第二端口与所述电驱装置的进口连接,所述第三三通阀的第三端口与所述加热器的进口连接;
    所述加热器用于加热所述第四冷却介质,使所述第四冷却介质在所述电驱散热回路与所述冷却器之间循环流动时能够在所述冷却器中与所述第一冷却介质热交换,并加热所述第一冷却介质。
  44. 如权利要求43所述的热管理系统,其特征在于,所述电驱散热回路还包括前舱热管理组件,所述前舱热管理组件的进口与所述第一阀体的第七端口连接,所述前舱热管理组件的出口与所述电驱装置的进口连接;
    所述第三三通阀的第二端口与所述前舱热管理组件的进口连接;或者,所述第三三通阀的第二端口连接于所述前舱热管理组件的出口与所述电驱装置的进口。
  45. 一种电动汽车,其特征在于,包括控制器、以及如权利要求43或44所述热管理系统,其中,所述控制器与所述热管理系统连接,所述控制装置用于控制所述第一阀体的端口的导通或关闭,使所述热管理系统以乘员舱单独制热的模式运行。
PCT/CN2023/108739 2022-09-30 2023-07-21 一种热管理系统及电动汽车 WO2024066696A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211217086 2022-09-30
CN202211217086.4 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024066696A1 true WO2024066696A1 (zh) 2024-04-04

Family

ID=90475979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108739 WO2024066696A1 (zh) 2022-09-30 2023-07-21 一种热管理系统及电动汽车

Country Status (1)

Country Link
WO (1) WO2024066696A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017125170A1 (de) * 2017-10-26 2019-05-02 Borgward Trademark Holdings Gmbh Wärememanagementsystem für ein elektrofahrzeug und ein elektrofahrzeug
CN112543709A (zh) * 2020-09-22 2021-03-23 华为技术有限公司 一种热管理系统及电动汽车
KR20220016652A (ko) * 2020-08-03 2022-02-10 현대위아 주식회사 차량의 통합 열관리 시스템
CN114683804A (zh) * 2022-04-15 2022-07-01 北京京深深向科技有限公司 一种电动车的多源热泵系统
CN114734778A (zh) * 2022-04-13 2022-07-12 浙江银轮机械股份有限公司 一种集成式模块化整车热管理系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017125170A1 (de) * 2017-10-26 2019-05-02 Borgward Trademark Holdings Gmbh Wärememanagementsystem für ein elektrofahrzeug und ein elektrofahrzeug
KR20220016652A (ko) * 2020-08-03 2022-02-10 현대위아 주식회사 차량의 통합 열관리 시스템
CN112543709A (zh) * 2020-09-22 2021-03-23 华为技术有限公司 一种热管理系统及电动汽车
CN114734778A (zh) * 2022-04-13 2022-07-12 浙江银轮机械股份有限公司 一种集成式模块化整车热管理系统
CN114683804A (zh) * 2022-04-15 2022-07-01 北京京深深向科技有限公司 一种电动车的多源热泵系统

Similar Documents

Publication Publication Date Title
WO2021169946A1 (zh) 电动汽车热管理系统
US20230226877A1 (en) Thermal Management System and Electric Vehicle
EP1059182B1 (en) Vehicular air conditiioner
KR101313593B1 (ko) 차량용 히트 펌프 시스템
US6928831B2 (en) Combined cooling plant/heat pump for cooling, heating and dehumidifying a motor vehicle interior
CN110154683A (zh) 一种热管理系统及其新能源汽车
KR101235039B1 (ko) 차량용 히트 펌프 시스템
KR20120103054A (ko) 차량용 히트 펌프 시스템
KR20160110063A (ko) 자동차의 공조 시스템, 그리고 공조 시스템의 작동 방법
US10350964B2 (en) Air conditioning device for vehicle
KR20130121051A (ko) 히트 펌프 기능과 재가열 기능을 갖춘 에어컨의 냉매 회로
US11358438B2 (en) Automotive air conditioning system
KR20220040794A (ko) 차량용 히트펌프 시스템
CN109982877B (zh) 车辆热泵系统
WO2022252653A1 (zh) 热管理系统和具有该热管理系统的电动汽车
WO2024066696A1 (zh) 一种热管理系统及电动汽车
WO2020134371A1 (zh) 热泵系统
JP2004182109A (ja) 車両用空調装置
KR102603497B1 (ko) 차량용 공조장치
CN112543856B (zh) 复合阀及使用该复合阀的车用空调装置
KR101703666B1 (ko) 차량용 히트 펌프 시스템
CN220096081U (zh) 用于机动车辆的空调系统
KR101342933B1 (ko) 차량용 히트 펌프 시스템
WO2024067851A1 (zh) 热管理系统和具有其的车辆
CN219154183U (zh) 车辆及其热管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23869943

Country of ref document: EP

Kind code of ref document: A1