WO2024066213A1 - 一种包络检波光子毫米波太赫兹通信系统及方法 - Google Patents

一种包络检波光子毫米波太赫兹通信系统及方法 Download PDF

Info

Publication number
WO2024066213A1
WO2024066213A1 PCT/CN2023/080765 CN2023080765W WO2024066213A1 WO 2024066213 A1 WO2024066213 A1 WO 2024066213A1 CN 2023080765 W CN2023080765 W CN 2023080765W WO 2024066213 A1 WO2024066213 A1 WO 2024066213A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization
signal
optical
carrier
sideband
Prior art date
Application number
PCT/CN2023/080765
Other languages
English (en)
French (fr)
Inventor
朱敏
蔡沅成
孙梦凡
华炳昌
张教
雷明政
田亮
邹昱聪
余建军
黄永明
尤肖虎
Original Assignee
网络通信与安全紫金山实验室
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 网络通信与安全紫金山实验室 filed Critical 网络通信与安全紫金山实验室
Publication of WO2024066213A1 publication Critical patent/WO2024066213A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/90Non-optical transmission systems, e.g. transmission systems employing non-photonic corpuscular radiation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/5165Carrier suppressed; Single sideband; Double sideband or vestigial
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection

Definitions

  • the present application relates to the field of millimeter wave terahertz communication technology, for example, to an envelope detection photon millimeter wave terahertz communication system and method.
  • the photonic millimeter-wave terahertz communication system can better coordinate optical fiber transmission and millimeter-wave terahertz wave wireless transmission, not only giving full play to its advantages in wireless communication, but also combining the advantages of optical fiber communication, playing an important role in the development of long-distance, large-capacity and wide-coverage mobile communications.
  • envelope-detected photonic millimeter-wave terahertz communication systems based on direct detection have advantages in terms of wide deployment and practical application, due to their relatively low cost, simple system structure, and passive devices that can significantly reduce power consumption.
  • the current envelope-detected photonic millimeter-wave terahertz communication systems are limited by the characteristics of envelope detection and mainly carry information through amplitude modulation, resulting in low spectrum efficiency and limited system capacity, which is insufficient to support the ultra-bandwidth, large-capacity, and wide-coverage high-speed wireless communication scenarios of B5G/6G.
  • the use of high-order vector signal modulation and polarization multiplexing technology is an effective means.
  • the mainstream solution for polarization multiplexing in the direct detection system of traditional optical fiber communication is either unable to be promoted and applied in the envelope detection photon millimeter wave terahertz communication system, or although it can be applied, the hardware cost is extremely high and not suitable for large-scale deployment; or the transmitter is based on the single-sideband modulation method with carrier light.
  • the optical carrier attenuation problem is caused, and artificial active polarization control is required to effectively improve the transmission capacity of the system.
  • the present application provides an envelope detection photon millimeter wave terahertz communication system and method, so as to improve the spectrum efficiency and transmission capacity of the low-cost envelope detection photon millimeter wave terahertz communication system, and avoid the optical carrier fading caused by random polarization rotation of the polarization multiplexed single-sideband vector signal with carrier after optical fiber transmission in the related art.
  • an envelope detection photon millimeter wave terahertz communication system comprising:
  • An optical transmitter configured to generate a polarization-multiplexed optical twin single-sideband vector signal without a carrier and transmit the signal to an optical wireless conversion module via an optical fiber;
  • the optical wireless conversion module is configured to extract the left-band polarization multiplexing signal and the right-band polarization multiplexing signal of the polarization multiplexing optical twin single-sideband vector signal, and respectively perform carrier coupling and optical heterodyne beat frequency on the polarization multiplexing signals of the left and right sidebands to generate millimeter-wave terahertz single-sideband vector signals with carriers in the X and Y polarization directions;
  • the wireless receiving module is configured to perform down-conversion operation on the millimeter-wave terahertz single-sideband vector signals in the X and Y polarization directions of the left and right sidebands through envelope detection direct detection, and perform vector reconstruction, polarization crosstalk elimination and demodulation operations on the signals after the down-conversion operation to obtain the X-polarization signal and Y-polarization signal of the left and right sidebands.
  • an envelope detection photon millimeter wave terahertz communication method comprising:
  • a polarization-multiplexed optical twin single-sideband vector signal without a carrier is generated through an optical transmitter and transmitted to an optical wireless conversion module through an optical fiber;
  • the left-side polarization multiplexing signal and the right-side polarization multiplexing signal of the polarization multiplexing optical twin single-sideband vector signal are extracted through the optical wireless conversion module, and the polarization multiplexing signals of the left and right sidebands are respectively subjected to carrier coupling and optical heterodyne beat frequency to generate millimeter-wave terahertz single-sideband vector signals with carriers in the X and Y polarization directions;
  • the millimeter-wave terahertz single-sideband vector signals in the X and Y polarization directions of the left and right sidebands are down-converted by envelope detection and direct detection, and the down-converted signals are vector reconstructed, polarization crosstalk is eliminated, and demodulated to obtain the X-polarization signal and Y-polarization signal of the left and right sidebands.
  • FIG1 is a schematic structural diagram of an envelope detection photon millimeter wave terahertz communication system provided in an embodiment of the present application
  • FIG. 2 is a schematic diagram of the structure of an envelope detection photon millimeter-wave terahertz communication system based on polarization multiplexed optical twin single-sideband signal modulation provided in an embodiment of the present application;
  • FIG3 is a schematic diagram of the structure of a vector signal polarization multiplexing optical transmitter provided in an embodiment of the present application
  • FIG4 is a schematic diagram of the structure of a polarization diversity photoelectric conversion module provided in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a spectrum of a dual-polarization vector signal during envelope detection processing provided by an embodiment of the present application
  • FIG. 6 is an example diagram of an envelope detection photon millimeter-wave terahertz communication system supporting polarization multiplexed optical twin single-sideband vector signals provided in an embodiment of the present application;
  • FIG. 7 is a flow chart of an envelope detection photon millimeter-wave terahertz communication method provided in an embodiment of the present application.
  • the multiple marks in FIG2 respectively represent: vector signal polarization multiplexing optical transmitter 11, standard single mode optical fiber 12, first optical filter 13, first polarization diversity photoelectric conversion module 15, first MIMO antenna module 17, first wireless receiving module 19, second optical filter 14, second polarization diversity photoelectric conversion module 16, second MIMO antenna module 18, second wireless receiving module 20.
  • the first wireless receiving module 19 includes: a first envelope detector 191, a second envelope detector 192, a first analog-to-digital converter 193, a second analog-to-digital converter 194 and a first DSP processing module 195.
  • the second wireless receiving module 20 includes: a third envelope detector 201, a fourth envelope detector 202, a third analog-to-digital converter 203, a fourth analog-to-digital converter 204 and a second DSP processing module 205.
  • the multiple marks in FIG. 3 respectively represent: a transmitting laser 111 , a first optical polarization beam splitter 112 , a first optical twin single sideband modulation module 113 , a second optical twin single sideband modulation module 114 , and a first optical polarization coupler 115 .
  • the second polarization beam splitter 151 respectively represent: the second polarization beam splitter 151, the carrier laser 152, A local oscillator laser 153 , a first optical coupler 154 , a third optical polarization beam splitter 155 , a second optical coupler 156 and a third optical coupler 157 , a first photodetector 158 and a second photodetector 159 .
  • FIG1 is a schematic diagram of the structure of an envelope detection photon millimeter wave terahertz communication system provided in an embodiment of the present application. This embodiment can be applied to the case where the spectrum efficiency and transmission capacity of a low-cost envelope detection photon millimeter wave terahertz communication system are improved by using twin single sideband and vector signal polarization multiplexing technology.
  • the system includes:
  • An optical transmitter 11 is configured to generate a polarization multiplexed optical twin single-sideband vector signal without a carrier and transmit it to an optical wireless conversion module via an optical fiber;
  • the optical wireless conversion module 120 is configured to extract the left-band polarization multiplexing signal and the right-band polarization multiplexing signal of the polarization multiplexed optical twin single-sideband vector signal, and perform carrier coupling and optical heterodyne beat frequency on the polarization multiplexing signals of the left and right sidebands, respectively, to generate millimeter-wave terahertz single-sideband vector signals with carriers in the X and Y polarization directions;
  • the wireless receiving module 130 is configured to detect the left and right sides of the wireless receiver by direct detection through envelope detection.
  • the millimeter-wave terahertz single-sideband vector signal in the X and Y polarization directions of the band is down-converted, and the signal after the down-conversion operation is vector reconstructed, polarization crosstalk is eliminated, and demodulated to obtain the X polarization signal and Y polarization signal of the left and right sidebands.
  • the optical transmitter 11 generates a polarization-multiplexed optical twin single-sideband vector signal without a carrier, and the detailed structure of the optical transmitter 11 is shown in FIG3 .
  • the polarization-multiplexed optical twin single-sideband vector signal without a carrier generated by the optical transmitter 11 is divided into two branches after being transmitted through the standard single-mode optical fiber 12 , which correspond to the signal processing flow of the left-band polarization-multiplexed signal and the right-band polarization-multiplexed signal, respectively.
  • the left-band polarization-multiplexed signal is extracted through the first optical filter 13 in the optical wireless conversion module 120
  • the right-band polarization-multiplexed signal is extracted through the second optical filter 14 in the optical wireless conversion module 120.
  • the polarization multiplexing signal of the left band extracted by the first optical filter 13 completes carrier coupling and optical heterodyne beat frequency through the first polarization diversity optoelectronic conversion module 15 in the optical wireless conversion module 120, thereby generating a millimeter-wave terahertz left band vector signal with a carrier.
  • the detailed structure of the first polarization diversity optoelectronic conversion module 15 is shown in Figure 4.
  • the first polarization diversity optoelectronic conversion module 15 can generate millimeter-wave terahertz left band vector signals in the two polarization directions of X and Y.
  • the two left-band millimeter-wave terahertz signals complete the wireless path transmission through the first MIMO antenna module 17, and are received and processed by the first wireless receiving module 19 through envelope detection direct detection.
  • the processing procedures of the left and right band signals are basically the same, the only difference is that the signal spectrum is distributed in the optical domain, one is the left band signal and the other is the right band signal. Therefore, the processing procedure of the polarization multiplexing signal of the right band will not be described here.
  • the optical transmitter 11 includes: a transmitting laser 111, configured to output light waves; a first optical polarization beam splitter 112, configured to divide the light waves output by the transmitting laser 111 into two polarization directions, X and Y; a first optical twin single-sideband modulation module 113, configured to perform high-order vector signal modulation operations in the X polarization direction to generate an X-polarized light twin single-sideband vector signal without a carrier; a second optical twin single-sideband modulation module 114, configured to perform high-order vector signal modulation operations in the Y polarization direction to generate a Y-polarized light twin single-sideband vector signal without a carrier; a first optical polarization coupler 115, configured to couple the X-polarized light twin single-sideband vector signal without a carrier and the Y-polarized light twin single-sideband vector signal without a carrier, and output a polarization-multiplexed light twin single-sideband vector signal without a
  • the first optical twin single-sideband modulation module and the second optical twin single-sideband modulation module use IQ modulators, and the polarization-multiplexed optical twin single-sideband vector signals generated do not carry optical carriers, thereby avoiding carrier fading effects after the signals are transmitted through optical fibers.
  • the optical wireless conversion module 120 includes: a first optical filter 13 and a second optical filter 14, which are configured to respectively extract polarization multiplexed light transmitted through the optical fiber; A left-band polarization multiplexing signal and a right-band polarization multiplexing signal of a twin single-sideband vector signal; a first polarization diversity optoelectronic conversion module 15, configured to perform carrier coupling and optical heterodyne beat frequency on the left-band polarization multiplexing signal, respectively, to generate a millimeter-wave terahertz left-band vector signal with carriers in the two polarization directions of X and Y; a second polarization diversity optoelectronic conversion module 16, configured to perform carrier coupling and optical heterodyne beat frequency on the right-band polarization multiplexing signal, respectively, to generate a millimeter-wave terahertz right-band vector signal with carriers in the two polarization directions of X and Y.
  • the first polarization diversity optoelectronic conversion module 15 comprises: a second optical polarization beam splitter 151, configured to split the left-band polarization multiplexed signal into signal light waves in two polarization directions, X and Y; a first optical coupler 154, configured to couple the carrier light output by the carrier laser 152 and the local oscillator light output by the local oscillator laser 153; a third optical polarization beam splitter 155, configured to split the signal output by the first optical coupler into synthetic double carriers in two polarization directions, X and Y; a second optical coupler 156, configured to couple the synthetic double carrier in the X polarization direction with the signal light wave in the X polarization direction, and send it to the first photodetector 158 to complete the optoelectronic conversion, and generate a millimeter-wave terahertz left-band vector signal with a carrier in the X polarization direction; a third optical coupler
  • the carrier light output by the carrier laser has the same center frequency as the signal light wave; the center frequency interval between the local oscillator light output by the local oscillator laser and the signal light wave is: the carrier frequency of the millimeter-wave terahertz single-sideband vector signal with carrier in the X or Y polarization direction.
  • an optical carrier component is provided for the optical twin single-sideband vector signal; by setting the center frequency interval of the local oscillator light and the signal light wave to be: the carrier frequency size of the millimeter-wave terahertz single-sideband vector signal with carrier in the X or Y polarization direction, the required millimeter-wave terahertz single-sideband vector signal is generated through the heterodyne beat frequency of the single-ended photodetector.
  • the signal processing procedures of the first polarization diversity optoelectronic conversion module 15 and the second polarization diversity optoelectronic conversion module 16 are basically the same, and the only difference is that the first polarization diversity optoelectronic conversion module 15 processes the left-band polarization multiplexing signal and generates a millimeter-wave terahertz left-band vector signal, while the second polarization diversity optoelectronic conversion module 16 processes the right-band polarization multiplexing signal and generates a millimeter-wave terahertz right-band vector signal. Therefore, the processing procedure of the second polarization diversity optoelectronic conversion module 16 for the polarization multiplexing signal of the right band is not repeated here.
  • the carrier light and the local oscillator light are added in the optical wireless conversion module 120, they do not experience the random polarization rotation caused by optical fiber transmission. Therefore, they can be added equally in the X and Y polarization directions, thereby avoiding the optical carrier fading that exists in the scheme of generating/adding optical carriers at the transmitting end.
  • This lays a favorable foundation for the present embodiment to support polarization demultiplexing of vector signals under the condition of arbitrary optical fiber length transmission, without the need for active polarization control operations, and greatly simplifies high-order vector signal modulation and polarization Operational complexity of multiplexing techniques applied in envelope-detected photonic millimeter-wave terahertz communication systems.
  • the system further includes: a MIMO antenna module configured to wirelessly transmit the millimeter-wave terahertz single-sideband vector signals in the X and Y polarization directions of the left and right sidebands output by the optical wireless conversion module to the wireless receiving module.
  • a MIMO antenna module configured to wirelessly transmit the millimeter-wave terahertz single-sideband vector signals in the X and Y polarization directions of the left and right sidebands output by the optical wireless conversion module to the wireless receiving module.
  • the MIMO antenna module may include a first MIMO antenna module 17 and a second MIMO antenna module 18.
  • the first MIMO antenna module 17 is configured to transmit the millimeter-wave terahertz left band vector signal with carrier in the two polarization directions of X and Y generated by the first polarization diversity photoelectric conversion module 15 to the first wireless receiving module 19 in the wireless receiving module.
  • the second MIMO antenna module 18 is configured to transmit the millimeter-wave terahertz right band vector signal with carrier in the two polarization directions of X and Y generated by the second polarization diversity photoelectric conversion module 16 to the second wireless receiving module 20 in the wireless receiving module.
  • the wireless receiving module 130 includes: a first envelope detector 191, which is configured to perform a down-conversion operation on the millimeter-wave terahertz single-sideband vector signal in the X polarization direction of the left band from a millimeter-wave terahertz signal to a low-frequency signal; a first analog-to-digital converter 193, which is configured to perform digital sampling on the signal output by the first envelope detector; a second envelope detector 192, which is configured to perform a down-conversion operation on the millimeter-wave terahertz single-sideband vector signal in the Y polarization direction of the left band from a millimeter-wave terahertz signal to a low-frequency signal; a second analog-to-digital converter 194, which is configured to perform digital sampling on the signal output by the second envelope detector; and a first DSP processing module 195, which is configured to perform vector reconstruction, polarization crosstalk elimination, and demodulation operations on the two digital signals output by the first analog-to
  • the first DSP processing module 195 is configured to: reconstruct the left-band vector signal using the KK algorithm for the two digital signals output by the first analog-to-digital converter 193 and the second analog-to-digital converter 194; jointly perform polarization demultiplexing processing on the reconstructed left-band vector signals in the two polarization directions of X and Y to eliminate polarization crosstalk; perform baseband recovery, channel equalization and symbol demapping processing on the two signals after polarization demultiplexing processing to obtain the X polarization signal and the Y polarization signal of the left band.
  • the wireless receiving module is actually divided into a first wireless receiving module 19 and a second wireless receiving module 20, which are configured to process the left and right sideband millimeter-wave terahertz single-sideband vector signals respectively.
  • the first wireless receiving module 19 and the second wireless receiving module 20 have the same structure, that is, they are both composed of two envelope detectors, two analog-to-digital converters and a DSP processing module, the processing flow of the millimeter-wave terahertz single-sideband vector signals for the two is also basically the same.
  • the wireless receiving module 130 includes: a third envelope detector 201, configured to perform a down-conversion operation of the millimeter-wave terahertz single-sideband vector signal in the X polarization direction of the right band to a low-frequency signal; a third analog-to-digital converter 203, configured to perform digital sampling on the signal output by the third envelope detector; a fourth envelope detector 202, configured to perform a millimeter-wave terahertz single-sideband vector signal in the Y polarization direction of the right band to A down-conversion operation of a Hertz signal to a low-frequency signal; a fourth analog-to-digital converter 204, configured to digitally sample the signal output by the fourth envelope detector; a second DSP processing module 205, configured to perform vector reconstruction, polarization crosstalk elimination and demodulation operations on the two digital signals output by the third analog-to-digital converter and the fourth analog-to-digital converter to obtain an X-polarization signal and
  • the second DSP processing module 205 is configured to: reconstruct the right-band vector signals using the KK algorithm for the two digital signals output by the third analog-to-digital converter 203 and the fourth analog-to-digital converter 204; jointly perform polarization demultiplexing processing on the reconstructed right-band vector signals in the two polarization directions of X and Y to eliminate polarization crosstalk; perform baseband recovery, channel equalization and symbol demapping processing on the two signals after the polarization demultiplexing processing to obtain the X-polarization signal and the Y-polarization signal of the right band.
  • the signal received by the first wireless receiving module 19 from the first polarization diversity photoelectric conversion module 15 is actually a mixture of the X-polarization left-band millimeter-wave terahertz signal and the Y-polarization left-band signal.
  • the mixed signal on the two polarizations is down-converted through the envelope detector. Under the effect of the square law characteristic of the envelope detection, the two output signals contain five major components.
  • the X-polarization envelope detection output includes 1) the X-polarization signal itself, 2) the Y-polarization signal crosstalk, 3) the X-polarization signal and the signal beat frequency crosstalk (X-SSBI), 4) the Y-polarization signal and the signal beat frequency crosstalk (Y-SSBI) and 5) the X-polarization signal and the Y-polarization signal cross-beat frequency crosstalk (C-SSBI).
  • X-SSBI the first item is expected
  • the second item belongs to the first-order crosstalk
  • the third, fourth, and fifth items belong to the second-order crosstalk.
  • These four items are all unnecessary crosstalk items, and their existence will degrade the signal-to-noise ratio of the X polarization signal and reduce the system demodulation performance.
  • the same is true for Y polarization.
  • the first DSP processing module 195 performs the following DSP signal processing flow: (1) The two polarization signals X and Y with crosstalk are reconstructed using the KK algorithm to complete the vector left-band signal reconstruction. Using the KK algorithm, the three second-order crosstalk terms X-SSBI, Y-SSBI and C-SSBI can be perfectly eliminated, and the restored left-band vector signal only has the first-order crosstalk term of another polarization. (2) The X and Y polarization left-band vector signals reconstructed by the KK algorithm are jointly subjected to 2 ⁇ 2 MIMO polarization demultiplexing. Polarization demultiplexing can use a constant modulus algorithm or a cascaded multi-mode algorithm.
  • This operation can eliminate the first-order crosstalk term caused by polarization rotation and output two pure left-band signals.
  • the two left-band signals obtained above are demodulated, including: baseband recovery, channel equalization and symbol demapping, to obtain the X polarization signal and Y polarization signal of the left band, and calculate the bit error rate.
  • baseband recovery refers to converting the single-sideband signal of the intermediate frequency into a baseband signal through frequency shift processing
  • channel equalization refers to using a direct decision least mean square algorithm equalizer to perform channel equalization on the baseband signal
  • symbol demapping refers to mapping the baseband signal after signal equalization from QAM symbols to binary code elements. To calculate the bit error rate.
  • the envelope detection photon millimeter wave terahertz communication system of the embodiment of the present application can make full use of the bandwidth of the analog-to-digital/digital-to-analog converter at the transmitting and receiving end by adopting high-order vector optical twin single-sideband modulation, and based on the KK algorithm, can restore its vector field signal from the signal amplitude information obtained by envelope detection, and eliminate the signal beat frequency crosstalk introduced by square-law detection, so that the photon millimeter wave terahertz communication system based on envelope detection can be expanded from the one-dimensional amplitude modulation in the related technology to the two-dimensional vector field modulation, and at the same time has the ability of vector signal polarization demultiplexing, which significantly improves the capacity potential of the envelope detection photon millimeter wave terahertz communication system.
  • this embodiment can make the low-cost envelope detection photon millimeter-wave terahertz communication system similar to the mixed coherent photon millimeter-wave terahertz communication system, and can make full use of the multi-dimensional modulation of light such as amplitude, phase and polarization state to provide high-speed and large-capacity communication capabilities, which will help promote the practical development of B5G/6G photon millimeter-wave terahertz systems.
  • FIG6 shows an example diagram of an envelope detection photonic millimeter-wave terahertz communication system supporting polarization-multiplexed optical twin single-sideband vector signals provided in an embodiment of the present application.
  • both signals use 16QAM modulation format with a baud rate of 5.75Gbaud/s, and are transmitted back-to-back through 60 kilometers of optical fiber and wireless.
  • the entire system consists of optical transmitters, optical fiber transmission links, optical splitters (OS), left/right band optical filters, left/right band optical-to-wireless conversion modules, MIMO antenna modules, and left/right band wireless receivers.
  • OS optical splitters
  • left/right band optical filters left/right band optical-to-wireless conversion modules
  • MIMO antenna modules and left/right band wireless receivers.
  • two IQMZMs are used to generate optical twin single-sideband vector signals without carriers, and polarization multiplexing is performed through an optical polarization coupler (PBC), and then transmitted to the optical wireless conversion end through optical fiber, and the optical left/right band polarization multiplexing signals are filtered out through two bandpass filters with different center frequencies.
  • the two signals are processed in the same way. Taking one of them as an example, the carrier light and the local oscillator light are coupled, and the required millimeter-wave terahertz single-sideband vector signal is generated based on the optical heterodyne detection technology of polarization diversity.
  • the obtained millimeter-wave terahertz signal carrier frequency can be portable and adjustable according to the center wavelength of the local oscillator light.
  • the target millimeter-wave terahertz signal is down-converted by an envelope detector, and sent to the receiving DSP processing module for processing after passing through the amplifier and analog-to-digital conversion module.
  • the KK algorithm is used to reconstruct the vector signal
  • the polarization demultiplexing algorithm is used to eliminate polarization crosstalk
  • the X-polarization signal and the Y-polarization signal are demodulated.
  • This system avoids the optical carrier fading caused by random polarization rotation in optical fiber transmission by adding an optical carrier at the optical wireless conversion end, and greatly improves the capacity potential of the envelope-detected photonic millimeter-wave terahertz communication system through twin single-sideband and vector signal polarization multiplexing technology.
  • FIG7 is a flow chart of an envelope detection photon millimeter wave terahertz communication method provided in an embodiment of the present application. This embodiment is applicable to the case where the spectrum efficiency and transmission capacity of a low-cost envelope detection photon millimeter wave terahertz communication system are improved by using twin single sideband and vector signal polarization multiplexing technology.
  • the method can be performed by an envelope detection photon millimeter wave terahertz communication system. As shown in FIG7 , the method includes:
  • the technical solution of the embodiment of the present application generates a polarization-multiplexed optical twin single-sideband vector signal without a carrier through an optical transmitter, and transmits it to an optical wireless conversion module through an optical fiber; extracts the left-band polarization-multiplexed signal and the right-band polarization-multiplexed signal of the polarization-multiplexed optical twin single-sideband vector signal through the optical wireless conversion module, and performs carrier coupling and optical heterodyne beat frequency on the polarization-multiplexed signals of the left and right sidebands, respectively, to generate millimeter-wave terahertz single-sideband vector signals with carriers in the X and Y polarization directions; and directly detects the left sideband polarization-multiplexed signal through an envelope detection method through a wireless receiving module.
  • the millimeter-wave terahertz single-sideband vector signals in the X and Y polarization directions of the left and right sidebands are down-converted, and vector reconstruction, polarization crosstalk elimination and demodulation are performed on the down-converted signals to obtain the X-polarization signal and Y-polarization signal of the left and right sidebands, thereby avoiding the situation that the related technology cannot effectively improve the transmission capacity of the system, improving the spectrum efficiency and transmission capacity of the low-cost envelope detection photonic millimeter-wave terahertz communication system, and avoiding the optical carrier fading caused by random polarization rotation of the polarization-multiplexed single-sideband vector signal with carrier after optical fiber transmission in the related technology.
  • a polarization multiplexed optical twin single-sideband vector signal without a carrier is generated by an optical transmitter, including:
  • the light wave output by the transmitting laser is divided into two polarization directions, X and Y, by a first optical polarization beam splitter;
  • a high-order vector signal modulation operation is performed in the X-polarization direction through the first optical twin single-sideband modulation module to generate an X-polarization optical twin single-sideband vector signal without a carrier;
  • a high-order vector signal modulation operation is performed in the Y polarization direction through the second optical twin single sideband modulation module to generate a Y polarization optical twin single sideband vector signal without a carrier;
  • the X-polarized twin single-sideband vector signal without carrier and the Y-polarized twin single-sideband vector signal without carrier are coupled by a first optical polarization coupler to output a polarization complex signal without carrier.
  • the first optical twin single sideband modulation module and the second optical twin single sideband modulation module use IQ modulators.
  • the left-side polarization multiplexing signal and the right-side polarization multiplexing signal of the polarization multiplexing optical twin single-sideband vector signal are extracted through an optical wireless conversion module, and the polarization multiplexing signals of the left and right sidebands are respectively subjected to carrier coupling and optical heterodyne beat frequency to generate millimeter-wave terahertz single-sideband vector signals with carriers in the X and Y polarization directions, including:
  • carrier coupling and optical heterodyne beat frequency are respectively performed on the left-band polarization multiplexing signal to generate a millimeter-wave terahertz left-band vector signal with carrier in the two polarization directions of X and Y;
  • the right-band polarization multiplexing signal is respectively subjected to carrier coupling and optical heterodyne beat frequency through the second polarization diversity optoelectronic conversion module to generate millimeter-wave terahertz right-band vector signals with carriers in the two polarization directions of X and Y.
  • the left-band polarization multiplexing signal is subjected to carrier coupling and optical heterodyne beat frequency respectively through the first polarization diversity photoelectric conversion module to generate a millimeter-wave terahertz left-band vector signal with carrier in the two polarization directions of X and Y, including:
  • the left-side polarization multiplexed signal is split into signal light waves in two polarization directions, X and Y, by a second optical polarization beam splitter;
  • the carrier light output by the carrier laser and the local oscillator light output by the local oscillator laser are coupled by a first optical coupler;
  • the signal output by the first optical coupler is divided into synthetic double carriers in two polarization directions, X and Y, by a third optical polarization beam splitter;
  • the synthesized dual carrier wave in the X polarization direction is coupled with the signal light wave in the X polarization direction through the second optical coupler, and sent to the first photodetector to complete the photoelectric conversion, so as to generate a millimeter-wave terahertz left band vector signal with carrier wave in the X polarization direction;
  • the synthesized dual carrier in the Y polarization direction is coupled with the signal light wave in the Y polarization direction through the third optical coupler and sent to the second photodetector to complete the photoelectric conversion, thereby generating a millimeter-wave terahertz left band vector signal with carrier in the Y polarization direction.
  • the carrier light output by the carrier laser has the same center frequency as the signal light wave
  • the center frequency interval between the local oscillator light output by the local oscillator laser and the signal light wave is: the carrier frequency of the millimeter-wave terahertz single-sideband vector signal with carrier in the X or Y polarization direction.
  • the wireless receiving module uses envelope detection to detect the left and right The millimeter-wave terahertz single-sideband vector signals in the X and Y polarization directions of the right two sidebands are down-converted, and the signals after the down-conversion operation are vector reconstructed, polarization crosstalk is eliminated, and demodulated to obtain the X polarization signal and Y polarization signal of the left and right sidebands, including:
  • a millimeter-wave terahertz single-sideband vector signal in the X-polarization direction of the left band is down-converted from the millimeter-wave terahertz signal to a low-frequency signal;
  • a millimeter-wave terahertz single-sideband vector signal in the Y polarization direction of the left band is down-converted from the millimeter-wave terahertz signal to a low-frequency signal;
  • the first DSP processing module performs vector reconstruction, polarization crosstalk elimination and demodulation operations on the two digital signals output by the first analog-to-digital converter and the second analog-to-digital converter to obtain the X polarization signal and the Y polarization signal of the left band.
  • the first DSP processing module performs polarization crosstalk elimination and demodulation operations on the two digital signals output by the first analog-to-digital converter and the second analog-to-digital converter to obtain the X polarization signal and the Y polarization signal of the left band, including:
  • the reconstructed left-side vector signals in the two polarization directions of X and Y are jointly depolarized to eliminate polarization crosstalk;
  • the two signals after polarization demultiplexing are subjected to baseband recovery, channel equalization and symbol demapping to obtain the X-polarization signal and the Y-polarization signal of the left band.
  • the method further comprises:
  • the millimeter wave terahertz single sideband vector signals in the X and Y polarization directions of the left and right sidebands output by the optical wireless conversion module are wirelessly transmitted to the wireless receiving module through the MIMO antenna module.
  • the technical solution of the embodiment of the present application generates a polarization-multiplexed optical twin single-sideband vector signal without a carrier through an optical transmitter, and transmits it to an optical wireless conversion module through an optical fiber; extracts the left-band polarization-multiplexed signal and the right-band polarization-multiplexed signal of the polarization-multiplexed optical twin single-sideband vector signal through the optical wireless conversion module, and performs carrier coupling and optical heterodyne beat frequency on the polarization-multiplexed signals of the left and right sidebands, respectively, to generate millimeter-wave terahertz single-sideband vector signals with carriers in the X and Y polarization directions; and detects the X and Y polarization directions of the left and right sidebands through the wireless receiving module through envelope detection direct detection.
  • the millimeter-wave terahertz single-sideband vector signals in two polarization directions are down-converted, and the signals after the down-conversion operation are vector reconstructed, polarization crosstalk is eliminated, and demodulated to obtain the X-polarization signal and the Y-polarization signal of the left and right sidebands, thereby avoiding the situation that the related technology cannot effectively improve the transmission capacity of the system.
  • the high-order vector optical twin single-sideband modulation is realized through the optical wireless conversion module, and the polarization demultiplexing of the high-order vector signal is realized through the wireless receiving module to improve the spectrum efficiency and transmission capacity of the low-cost envelope detection photonic millimeter-wave terahertz communication system; by adding an optical carrier at the optical wireless conversion end, the random polarization rotation caused by the optical fiber transmission is avoided, thereby avoiding the optical carrier fading caused by the random polarization rotation of the polarization multiplexed single-sideband vector signal with a carrier after optical fiber transmission in the related technology.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)

Abstract

本申请公开了一种包络检波光子毫米波太赫兹通信系统及方法。系统包括:光发射机,生成不带载波的偏振复用光孪生单边带矢量信号;光无线转换模块,对光纤传输后的光孪生单边带矢量信号的左、右边带的偏振复用信号,进行载波耦合和光外差拍频,生成X、Y偏振上的毫米波太赫兹单边带矢量信号;无线接收模块,通过包络检波直接探测方式,对左、右边带的X、Y偏振上的毫米波太赫兹单边带矢量信号进行下变频、矢量重建、偏振串扰消除和解调,得到左、右边带的X、Y偏振信号。

Description

一种包络检波光子毫米波太赫兹通信系统及方法
本申请要求在2022年9月29日提交中国专利局、申请号为202211194630.8的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及毫米波太赫兹通信技术领域,例如涉及一种包络检波光子毫米波太赫兹通信系统及方法。
背景技术
光子毫米波太赫兹通信系统可以更好地协同光纤传输和毫米波太赫兹波无线传输,既发挥其在无线通信中的优势,又可以结合光纤通信的优点,在远距离、大容量和广覆盖的移动通信发展中发挥重要的作用。
目前,由于基于直接探测的包络检波毫米波太赫兹接收机的成本相对低廉、系统结构简单并且无源器件可显著降低功耗,因此包络检波光子毫米波太赫兹通信系统在广泛部署和实用化方面更具优势。然而,当前的包络检波光子毫米波太赫兹通信系统受限于包络检波特性,主要通过幅度调制来承载信息,导致低频谱效率和限制的系统容量,不足以支撑B5G/6G超带宽、大容量和广覆盖的高速无线通信场景。
为了提升系统传输容量,采用高阶矢量信号调制以及偏振复用技术是一种有效的手段。然而,目前传统光纤通信直接检测系统实现偏振复用的主流方案,或者无法在包络检波光子毫米波太赫兹通信系统中推广应用,或者虽然能适用但硬件成本极高,不适合大规模部署;或者发送端基于带载波光单边带调制方式,经过光纤传输后,由于随机偏振旋转带来光载波衰落问题,需要人为的主动偏振控制才能有效地提升系统的传输容量。
发明内容
本申请提供了一种包络检波光子毫米波太赫兹通信系统及方法,以实现提升低成本包络检波光子毫米波太赫兹通信系统的频谱效率和传输容量,并且避免相关技术中带载波的偏振复用单边带矢量信号在光纤传输后由随机偏振旋转带来的光载波衰落情况。
根据本申请的一方面,提供了一种包络检波光子毫米波太赫兹通信系统,包括:
光发射机,设置为生成不带载波的偏振复用光孪生单边带矢量信号,并通过光纤传输到光无线转换模块;
光无线转换模块,设置为提取所述偏振复用光孪生单边带矢量信号的左边带偏振复用信号和右边带偏振复用信号,并针对左、右两个边带的偏振复用信号,分别进行载波耦合和光外差拍频,生成X、Y两个偏振方向上的带载波的毫米波太赫兹单边带矢量信号;
无线接收模块,设置为通过包络检波直接探测方式,对左、右两个边带的X、Y两个偏振方向上的毫米波太赫兹单边带矢量信号进行下变频操作,并对下变频操作后的信号进行矢量重建、偏振串扰消除以及解调操作,得到左、右两个边带的X偏振信号和Y偏振信号。
根据本申请的另一方面,提供了一种包络检波光子毫米波太赫兹通信方法,包括:
通过光发射机,生成不带载波的偏振复用光孪生单边带矢量信号,并通过光纤传输到光无线转换模块;
通过光无线转换模块,提取所述偏振复用光孪生单边带矢量信号的左边带偏振复用信号和右边带偏振复用信号,并针对左、右两个边带的偏振复用信号,分别进行载波耦合和光外差拍频,生成X、Y两个偏振方向上的带载波的毫米波太赫兹单边带矢量信号;
通过无线接收模块,通过包络检波直接探测方式,对左、右两个边带的X、Y两个偏振方向上的毫米波太赫兹单边带矢量信号进行下变频操作,并对下变频操作后的信号进行矢量重建、偏振串扰消除以及解调操作,得到左、右两个边带的X偏振信号和Y偏振信号。
附图说明
图1是本申请实施例提供的一种包络检波光子毫米波太赫兹通信系统的结构示意图;
图2是本申请实施例提供的基于偏振复用光孪生单边带信号调制的包络检波光子毫米波太赫兹通信系统的结构示意图;
图3是本申请实施例提供的一种矢量信号偏振复用光发射机的结构示意图;
图4是本申请实施例提供的一种偏振分集光电转换模块结构示意图;
图5是本申请实施例提供的一种双偏振矢量信号包络检波处理过程中的频谱示意图;
图6是本申请实施例提供的一种支持偏振复用光孪生单边带矢量信号的包络检波光子毫米波太赫兹通信系统的实例图;
图7是本申请实施例提供的一种包络检波光子毫米波太赫兹通信方法的流程图。
附图标记说明
图2中的多个标记分别表示:矢量信号偏振复用光发射机11,标准单模光
纤12,第一光滤波器13,第一偏振分集光电转换模块15,第一MIMO天线模块17,第一无线接收模块19,第二光滤波器14,第二偏振分集光电转换模块16,第二MIMO天线模块18,第二无线接收模块20。其中,第一无线接收模块19包括:第一包络检波器191、第二包络检波器192、第一模数转换器193、第二模数转换器194和第一DSP处理模块195。第二无线接收模块20包括:第三包络检波器201、第四包络检波器202、第三模数转换器203、第四模数转换器204和第二DSP处理模块205。
图3中的多个标记分别表示:发送激光器111,第一光偏振分束器112,第
一光孪生单边带调制模块113和第二光孪生单边带调制模块114,第一光偏振耦合器115。
图4中的多个标记分别表示:第二光偏振分束器151,载波激光器152,
本振激光器153,第一光耦合器154,第三光偏振分束器155,第二光耦合器156和第三光耦合器157,第一光电探测器158和第二光电探测器159。
具体实施方式
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
图1是本申请实施例提供的一种包络检波光子毫米波太赫兹通信系统的结构示意图。本实施例可适用于通过孪生单边带和矢量信号偏振复用技术,提高低成本的包络检波光子毫米波太赫兹通信系统的频谱效率和传输容量的情况。该系统包括:
光发射机11,设置为生成不带载波的偏振复用光孪生单边带矢量信号,并通过光纤传输到光无线转换模块;
光无线转换模块120,设置为提取所述偏振复用光孪生单边带矢量信号的左边带偏振复用信号和右边带偏振复用信号,并针对左、右两个边带的偏振复用信号,分别进行载波耦合和光外差拍频,生成X、Y两个偏振方向上的带载波的毫米波太赫兹单边带矢量信号;
无线接收模块130,设置为通过包络检波直接探测方式,对左、右两个边 带的X、Y两个偏振方向上的毫米波太赫兹单边带矢量信号进行下变频操作,并对下变频操作后的信号进行矢量重建、偏振串扰消除以及解调操作,得到左、右两个边带的X偏振信号和Y偏振信号。
本实施例中,如图2所示的包络检波光子太赫兹通信系统的具体结构,光发射机11产生不带载波的偏振复用光孪生单边带矢量信号,光发射机11详细结构如图3所示。光发射机11产生的不带载波的偏振复用光孪生单边带矢量信号经过标准单模光纤12传输后分成两个分支,分别对应左边带偏振复用信号和右边带偏振复用信号的信号处理流程。左边带偏振复用信号通过光无线转换模块120中的第一光滤波器13提取,右边带偏振复用信号通过光无线转换模块120中的第二光滤波器14提取。
以左边带的偏振复用信号为例,第一光滤波器13提取的左边带的偏振复用信号,通过光无线转换模块120中的第一偏振分集光电转换模块15完成载波耦合和光外差拍频,从而生成带载波的毫米波太赫兹左边带矢量信号。第一偏振分集光电转换模块15详细结构如图4所示。第一偏振分集光电转换模块15可产生X、Y两个偏振方向上的毫米波太赫兹左边带矢量信号,该两路左边带毫米波太赫兹信号通过第一MIMO天线模块17完成无线路径传输,并由第一无线接收模块19通过包络检波直接探测方式进行接收并处理。
其中,左、右边带信号处理流程基本一致,区别仅在于信号频谱分布在光域一个是左边带信号,另一个是右边带信号,因此,此处不再赘述对右边带的偏振复用信号的处理流程。
在一个实施例中,如图3所示,所述光发射机11,包括:发送激光器111,设置为输出光波;第一光偏振分束器112,设置为将所述发送激光器111输出的光波划分到X、Y两个偏振方向上;第一光孪生单边带调制模块113,设置为进行X偏振方向上的高阶矢量信号调制操作,生成不带载波的X偏振光孪生单边带矢量信号;第二光孪生单边带调制模块114,设置为进行Y偏振方向上的高阶矢量信号调制操作,生成不带载波的Y偏振光孪生单边带矢量信号;第一光偏振耦合器115,设置为将所述不带载波的X偏振光孪生单边带矢量信号和所述不带载波的Y偏振光孪生单边带矢量信号耦合,输出一个不带载波的偏振复用光孪生单边带矢量信号,即一个具备高频谱效率的双偏振复用光孪生单边带信号。
其中,所述第一光孪生单边带调制模块和所述第二光孪生单边带调制模块,采用IQ调制器,产生的偏振复用光孪生单边带矢量信号不携带光载波,避免信号经光纤传输后出现载波衰落效应。
在一个实施例中,如图2所示,所述光无线转换模块120,包括:第一光滤波器13和第二光滤波器14,设置为分别提取经过光纤传输的、偏振复用光 孪生单边带矢量信号的左边带偏振复用信号和右边带偏振复用信号;第一偏振分集光电转换模块15,设置为对左边带偏振复用信号分别进行载波耦合和光外差拍频,生成X、Y两个偏振方向上的带载波的毫米波太赫兹左边带矢量信号;第二偏振分集光电转换模块16,设置为对右边带偏振复用信号分别进行载波耦合和光外差拍频,生成X、Y两个偏振方向上的带载波的毫米波太赫兹右边带矢量信号。
在一个实施例中,如图4所示,所述第一偏振分集光电转换模块15,包括:第二光偏振分束器151,设置为将左边带偏振复用信号分成X、Y两个偏振方向上的信号光波;第一光耦合器154,设置为将载波激光器152输出的载波光和本振激光器153输出的本振光进行耦合;第三光偏振分束器155,设置为将第一光耦合器输出的信号分成X、Y两个偏振方向上的合成双载波;第二光耦合器156,设置为将X偏振方向上的合成双载波与X偏振方向上的信号光波进行耦合,并发送到第一光电探测器158完成光电转换,生成X偏振方向上的带载波的毫米波太赫兹左边带矢量信号;第三光耦合器157,设置为将Y偏振方向上的合成双载波与Y偏振方向上的信号光波进行耦合,并发送到第二光电探测器159完成光电转换,生成Y偏振方向上的带载波的毫米波太赫兹左边带矢量信号。
在一个实施例中,所述载波激光器输出的载波光与信号光波的中心频率相同;所述本振激光器输出的本振光与信号光波的中心频率间隔为:X或Y偏振方向上的带载波的毫米波太赫兹单边带矢量信号的载频大小。
其中,通过设置载波光与信号光波的中心频率相同,为光孪生单边带矢量信号提供光载波分量;通过设置本振光与信号光波的中心频率间隔为:X或Y偏振方向上的带载波的毫米波太赫兹单边带矢量信号的载频大小,以便通过单端光电探测器外差拍频,产生所需的毫米波太赫兹单边带矢量信号。
其中,第一偏振分集光电转换模块15和第二偏振分集光电转换模块16的信号处理流程基本一致,区别仅在于第一偏振分集光电转换模块15处理的是左边带偏振复用信号,生成的是毫米波太赫兹左边带矢量信号,而第二偏振分集光电转换模块16处理的是右边带偏振复用信号,生成的是毫米波太赫兹右边带矢量信号,因此,此处不再赘述第二偏振分集光电转换模块16对右边带的偏振复用信号的处理流程。
需要说明的是,由于载波光和本振光是在光无线转换模块120中添加的,没有经历光纤传输带来的随机偏振旋转,因此,可以均等地添加到X、Y两个偏振方向上,从而可以避免发送端产生/添加光载波方案所存在的光载波衰落情况。这为本实施例支持任意光纤长度传输情况下的矢量信号偏振解复用奠定了有利基础,无需进行主动偏振控制操作,大大简化了高阶矢量信号调制和偏振 复用技术在包络检波光子毫米波太赫兹通信系统中应用的操作复杂性。
在一个实施例中,所述系统还包括:MIMO天线模块,设置为将所述光无线转换模块输出的左、右两个边带的X、Y两个偏振方向上的毫米波太赫兹单边带矢量信号,无线传输到所述无线接收模块。
本实施例中,如图2所示,MIMO天线模块可以包括第一MIMO天线模块17和第二MIMO天线模块18。第一MIMO天线模块17,设置为将第一偏振分集光电转换模块15产生的X、Y两个偏振方向上的带载波的毫米波太赫兹左边带矢量信号,传输到无线接收模块中的第一无线接收模块19。第二MIMO天线模块18,设置为将第二偏振分集光电转换模块16产生的X、Y两个偏振方向上的带载波的毫米波太赫兹右边带矢量信号,传输到无线接收模块中的第二无线接收模块20。
在一个实施例中,所述无线接收模块130,包括:第一包络检波器191,设置为对左边带的X偏振方向上的毫米波太赫兹单边带矢量信号,进行毫米波太赫兹信号到低频信号的下变频操作;第一模数转换器193,设置为对所述第一包络检波器输出的信号进行数字采样;第二包络检波器192,设置为对左边带的Y偏振方向上的毫米波太赫兹单边带矢量信号,进行毫米波太赫兹信号到低频信号的下变频操作;第二模数转换器194,设置为对所述第二包络检波器输出的信号进行数字采样;第一DSP处理模块195,设置为对第一模数转换器和第二模数转换器输出的两路数字信号,进行矢量重建、偏振串扰消除以及解调操作,得到左边带的X偏振信号和Y偏振信号。
在一个实施例中,所述第一DSP处理模块195设置为:对第一模数转换器193和第二模数转换器194输出的两路数字信号,分别采用KK算法进行左边带矢量信号重建;将重建后的X、Y两个偏振方向上的左边带矢量信号联合进行解偏振复用处理,以消除偏振串扰;对解偏振复用处理后的两路信号进行基带恢复、信道均衡和符号解映射处理,得到左边带的X偏振信号和Y偏振信号。
需要说明的是,如图2所示,无线接收模块实际上被分为第一无线接收模块19和第二无线接收模块20,设置为分别处理左、右边带的毫米波太赫兹单边带矢量信号。由于第一无线接收模块19和第二无线接收模块20的组成结构相同,即都是由两个包络检波器、两个模数转换器和一个DSP处理模块组成,因此,两者对毫米波太赫兹单边带矢量信号的处理流程也基本相同。
在一个实施例中,如图2所示,所述无线接收模块130,包括:第三包络检波器201,设置为对右边带的X偏振方向上的毫米波太赫兹单边带矢量信号,进行毫米波太赫兹信号到低频信号的下变频操作;第三模数转换器203,设置为对所述第三包络检波器输出的信号进行数字采样;第四包络检波器202,设置为对右边带的Y偏振方向上的毫米波太赫兹单边带矢量信号,进行毫米波太 赫兹信号到低频信号的下变频操作;第四模数转换器204,设置为对所述第四包络检波器输出的信号进行数字采样;第二DSP处理模块205,设置为对第三模数转换器和第四模数转换器输出的两路数字信号,进行矢量重建、偏振串扰消除以及解调操作,得到右边带的X偏振信号和Y偏振信号。
在一个实施例中,所述第二DSP处理模块205,设置为:对第三模数转换器203和第四模数转换器204输出的两路数字信号,分别采用KK算法进行右边带矢量信号重建;将重建后的X、Y两个偏振方向上的右边带矢量信号联合进行解偏振复用处理,以消除偏振串扰;对解偏振复用处理后的两路信号进行基带恢复、信道均衡和符号解映射处理,得到右边带的X偏振信号和Y偏振信号。
为了进一步说明第一DSP处理模块195的工作原理,以双偏振左边带毫米波太赫兹信号为例,给出从包络检波到DSP信号处理过程中关键步骤的频谱示意图,如图5所示。首先,由于光纤传输的随机偏振旋转,第一无线接收模块19从第一偏振分集光电转换模块15接收的信号,实际上是X偏振左边带毫米波太赫兹信号和Y偏振左边带信号的混合体。两个偏振上的混合信号通过包络检波器完成信号下变频,在包络检波平方律特性的作用下,两路输出信号都包含五大分量,以X偏振包络检波输出为例,包含1)X偏振信号本身,2)Y偏振信号串扰,3)X偏振信号与信号拍频串扰(X-SSBI),4)Y偏振信号与信号拍频串扰(Y-SSBI)和5)X偏振信号与Y偏振信号交叉拍频串扰(C-SSBI)。其中,对于X偏振来说,只有第一项是期望得到的,而第二项属于一阶串扰,第三、四、五项属于二阶串扰,这四项皆是不需要的串扰项,它们的存在会退化X偏振信号的信噪比,降低系统解调性能。相应的,对于Y偏振来说,也是如此。
为了消除上述这些串扰,第一DSP处理模块195进行以下DSP信号处理流程:(1)将带串扰的X、Y两路偏振信号分别采用KK算法完成矢量左边带信号重建。利用KK算法,可完美消除X-SSBI、Y-SSBI和C-SSBI三个二阶串扰项,恢复的左边带矢量信号仅存在另一个偏振的一阶串扰项。(2)把KK算法重建的X、Y偏振左边带矢量信号联合进行2×2 MIMO解偏振复用。解偏振复用可以采用恒模算法或者级联多模算法,该操作可消除偏振旋转带来的一阶串扰项,输出纯净的两个左边带信号。(3)对上述获取的两路左边带信号进行解调操作,包括:基带恢复、信道均衡以及符号解映射,得到左边带的X偏振信号和Y偏振信号,并计算误码率。
其中,基带恢复是指将中频的单边带信号经过移频处理变为基带信号,信道均衡是指采用直接判决最小均方算法均衡器对基带信号进行信道均衡,符号解映射是指将经过信号均衡的基带信号从QAM符号映射到二进制码元上,便 于计算误码率。
本申请实施例的包络检波光子毫米波太赫兹通信系统,通过采用高阶矢量光孪生单边带调制,可充分利用收发端模数/数模转换器的带宽,并且基于KK算法,可从包络检波获得的信号幅度信息恢复其矢量场信号,同时消除平方律探测引入的信号拍频串扰,使得基于包络检波的光子毫米太赫兹通信系统,从相关技术中的一维幅度调制可以扩展到二维的矢量场调制,同时具备矢量信号偏振解复用能力,显著提升了包络检波光子毫米太赫兹通信系统的容量潜力。此外,通过在光无线转换端耦合载波光和本振光,避免了相关技术中发送端的带载波光单边带信号存在的载波衰落情况,无需主动偏振控制即可实现任意光纤长度传输后矢量信号的偏振解复用。因此,本实施例可使得低成本的包络检波光子毫米太赫兹通信系统做到类似混频相干光子毫米波太赫兹通信系统一样,能够充分利用光的幅度、相位和偏振态等多维度调制提供高速大容量通信能力,有助于促进B5G/6G光子毫米波太赫兹系统的实用化发展。
图6给出了本申请实施例提供的一种支持偏振复用光孪生单边带矢量信号的包络检波光子毫米波太赫兹通信系统的实例图。
其中,两路信号都采用16QAM调制格式,波特率为5.75Gbaud/s,经过60公里光纤以及无线背靠背传输。整个系统由光发射机、光纤传输链路、光分束器(OS)、左/右边带光滤波器、左/右边带光无线转换模块、MIMO天线模块、左/右边带无线接收机几大模块构成。
在光发射机中,利用两个IQMZM产生不带载波的光孪生单边带矢量信号,并通过光偏振耦合器(PBC)进行偏振复用,然后通过光纤传输到光无线转换端,分别经过两个中心频率不一样的带通滤波器滤出光左/右边带偏振复用信号。两个信号分别经过相同的处理,以其中一路为例,耦合载波光和本振光,基于偏振分集的光外差探测技术产生所需的毫米波太赫兹单边带矢量信号,获得的毫米波太赫兹信号载波频率可根据本振光中心波长便携可调。在左/右边带无线接收机中,目标毫米波太赫兹信号利用包络检波器进行下变频变换,经放大器和模数转换模块后送给接收DSP处理模块进行处理。在DSP中利用KK算法重建矢量信号,采用偏振解复用算法消除偏振串扰,最后解调得到X偏振信号和Y偏振信号。
本系统通过在光无线转换端添加光载波,避免了光纤传输随机偏振旋转带来的光载波衰落情况,并通过孪生单边带和矢量信号偏振复用技术,大幅提升了包络检波光子毫米波太赫兹通信系统的容量潜力。
图7是本申请实施例提供的一种包络检波光子毫米波太赫兹通信方法的流程图,本实施例可适用于通过孪生单边带和矢量信号偏振复用技术,提高低成本的包络检波光子毫米波太赫兹通信系统的频谱效率和传输容量的情况,该方 法可以由包络检波光子毫米波太赫兹通信系统来执行。如图7所示,该方法包括:
S710、通过光发射机,生成不带载波的偏振复用光孪生单边带矢量信号,并通过光纤传输到光无线转换模块。
S720、通过光无线转换模块,提取所述偏振复用光孪生单边带矢量信号的左边带偏振复用信号和右边带偏振复用信号,并针对左、右两个边带的偏振复用信号,分别进行载波耦合和光外差拍频,生成X、Y两个偏振方向上的带载波的毫米波太赫兹单边带矢量信号。
S730、通过无线接收模块,通过包络检波直接探测方式,对左、右两个边带的X、Y两个偏振方向上的毫米波太赫兹单边带矢量信号进行下变频操作,并对下变频操作后的信号进行矢量重建、偏振串扰消除以及解调操作,得到左、右两个边带的X偏振信号和Y偏振信号。
本申请实施例的技术方案,通过光发射机,生成不带载波的偏振复用光孪生单边带矢量信号,并通过光纤传输到光无线转换模块;通过光无线转换模块,提取所述偏振复用光孪生单边带矢量信号的左边带偏振复用信号和右边带偏振复用信号,并针对左、右两个边带的偏振复用信号,分别进行载波耦合和光外差拍频,生成X、Y两个偏振方向上的带载波的毫米波太赫兹单边带矢量信号;通过无线接收模块,通过包络检波直接探测方式,对左、右两个边带的X、Y两个偏振方向上的毫米波太赫兹单边带矢量信号进行下变频操作,并对下变频操作后的信号进行矢量重建、偏振串扰消除以及解调操作,得到左、右两个边带的X偏振信号和Y偏振信号,避免了相关技术不能有效提升系统传输容量的情况,提升了低成本包络检波光子毫米波太赫兹通信系统的频谱效率和传输容量,避免了相关技术中带载波的偏振复用单边带矢量信号在光纤传输后由随机偏振旋转带来的光载波衰落情况。
在一个实施例中,通过光发射机,生成不带载波的偏振复用光孪生单边带矢量信号,包括:
通过发送激光器,输出光波;
通过第一光偏振分束器,将所述发送激光器输出的光波划分到X、Y两个偏振方向上;
通过第一光孪生单边带调制模块,进行X偏振方向上的高阶矢量信号调制操作,生成不带载波的X偏振光孪生单边带矢量信号;
通过第二光孪生单边带调制模块,进行Y偏振方向上的高阶矢量信号调制操作,生成不带载波的Y偏振光孪生单边带矢量信号;
通过第一光偏振耦合器,将所述不带载波的X偏振光孪生单边带矢量信号和所述不带载波的Y偏振光孪生单边带矢量信号耦合,输出不带载波的偏振复 用光孪生单边带矢量信号。
在一个实施例中,所述第一光孪生单边带调制模块和所述第二光孪生单边带调制模块,采用IQ调制器。
在一个实施例中,通过光无线转换模块,提取所述偏振复用光孪生单边带矢量信号的左边带偏振复用信号和右边带偏振复用信号,并针对左、右两个边带的偏振复用信号,分别进行载波耦合和光外差拍频,生成X、Y两个偏振方向上的带载波的毫米波太赫兹单边带矢量信号,包括:
通过第一光滤波器和第二光滤波器,分别提取经过光纤传输的、偏振复用光孪生单边带矢量信号的左边带偏振复用信号和右边带偏振复用信号;
通过第一偏振分集光电转换模块,对左边带偏振复用信号分别进行载波耦合和光外差拍频,生成X、Y两个偏振方向上的带载波的毫米波太赫兹左边带矢量信号;
通过第二偏振分集光电转换模块,对右边带偏振复用信号分别进行载波耦合和光外差拍频,生成X、Y两个偏振方向上的带载波的毫米波太赫兹右边带矢量信号。
在一个实施例中,通过第一偏振分集光电转换模块,对左边带偏振复用信号分别进行载波耦合和光外差拍频,生成X、Y两个偏振方向上的带载波的毫米波太赫兹左边带矢量信号,包括:
通过第二光偏振分束器,将左边带偏振复用信号分成X、Y两个偏振方向上的信号光波;
通过第一光耦合器,将载波激光器输出的载波光和本振激光器输出的本振光进行耦合;
通过第三光偏振分束器,将第一光耦合器输出的信号分成X、Y两个偏振方向上的合成双载波;
通过第二光耦合器,将X偏振方向上的合成双载波与X偏振方向上的信号光波进行耦合,并发送到第一光电探测器完成光电转换,生成X偏振方向上的带载波的毫米波太赫兹左边带矢量信号;
通过第三光耦合器,将Y偏振方向上的合成双载波与Y偏振方向上的信号光波进行耦合,并发送到第二光电探测器完成光电转换,生成Y偏振方向上的带载波的毫米波太赫兹左边带矢量信号。
在一个实施例中,所述载波激光器输出的载波光与信号光波的中心频率相同;
所述本振激光器输出的本振光与信号光波的中心频率间隔为:X或Y偏振方向上的带载波的毫米波太赫兹单边带矢量信号的载频大小。
在一个实施例中,通过无线接收模块,通过包络检波直接探测方式,对左、 右两个边带的X、Y两个偏振方向上的毫米波太赫兹单边带矢量信号进行下变频操作,并对下变频操作后的信号进行矢量重建、偏振串扰消除以及解调操作,得到左、右两个边带的X偏振信号和Y偏振信号,包括:
通过第一包络检波器,对左边带的X偏振方向上的毫米波太赫兹单边带矢量信号,进行毫米波太赫兹信号到低频信号的下变频操作;
通过第一模数转换器,对所述第一包络检波器输出的信号进行数字采样;
通过第二包络检波器,对左边带的Y偏振方向上的毫米波太赫兹单边带矢量信号,进行毫米波太赫兹信号到低频信号的下变频操作;
通过第二模数转换器,对所述第二包络检波器输出的信号进行数字采样;
通过第一DSP处理模块,对第一模数转换器和第二模数转换器输出的两路数字信号,进行矢量重建、偏振串扰消除以及解调操作,得到左边带的X偏振信号和Y偏振信号。
在一个实施例中,通过第一DSP处理模块,对第一模数转换器和第二模数转换器输出的两路数字信号,进行偏振串扰消除以及解调操作,得到左边带的X偏振信号和Y偏振信号,包括:
对第一模数转换器和第二模数转换器输出的两路数字信号,分别采用KK算法进行左边带矢量信号重建;
将重建后的X、Y两个偏振方向上的左边带矢量信号联合进行解偏振复用处理,以消除偏振串扰;
对解偏振复用处理后的两路信号进行基带恢复、信道均衡和符号解映射处理,得到左边带的X偏振信号和Y偏振信号。
在一个实施例中,所述方法还包括:
通过MIMO天线模块,将所述光无线转换模块输出的左、右两个边带的X、Y两个偏振方向上的毫米波太赫兹单边带矢量信号,无线传输到所述无线接收模块。
应该理解,可以使用上面所示的多种形式的流程,重新排序、增加或删除步骤。例如,本申请中记载的多个步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本申请的技术方案所期望的结果,本文在此不进行限制。
本申请实施例的技术方案,通过光发射机,生成不带载波的偏振复用光孪生单边带矢量信号,并通过光纤传输到光无线转换模块;通过光无线转换模块,提取所述偏振复用光孪生单边带矢量信号的左边带偏振复用信号和右边带偏振复用信号,并针对左、右两个边带的偏振复用信号,分别进行载波耦合和光外差拍频,生成X、Y两个偏振方向上的带载波的毫米波太赫兹单边带矢量信号;通过无线接收模块,通过包络检波直接探测方式,对左、右两个边带的X、Y 两个偏振方向上的毫米波太赫兹单边带矢量信号进行下变频操作,并对下变频操作后的信号进行矢量重建、偏振串扰消除以及解调操作,得到左、右两个边带的X偏振信号和Y偏振信号,避免了相关技术不能有效提升系统传输容量的情况,通过光无线转换模块实现高阶矢量光孪生单边带调制,以及通过无线接收模块实现高阶矢量信号的偏振解复用,来提升低成本包络检波光子毫米波太赫兹通信系统的频谱效率和传输容量;通过在光无线转换端添加光载波,避免经历光纤传输带来的随机偏振旋转,从而避免相关技术中带载波的偏振复用单边带矢量信号在光纤传输后由随机偏振旋转带来的光载波衰落情况。

Claims (10)

  1. 一种包络检波光子毫米波太赫兹通信系统,包括:
    光发射机,设置为生成不带载波的偏振复用光孪生单边带矢量信号,并通过光纤传输到光无线转换模块;
    光无线转换模块,设置为提取所述偏振复用光孪生单边带矢量信号的左边带偏振复用信号和右边带偏振复用信号,并针对左、右两个边带的偏振复用信号,分别进行载波耦合和光外差拍频,生成X、Y两个偏振方向上的带载波的毫米波太赫兹单边带矢量信号;
    无线接收模块,设置为通过包络检波直接探测方式,对左、右两个边带的X、Y两个偏振方向上的毫米波太赫兹单边带矢量信号进行下变频操作,并对下变频操作后的信号进行矢量重建、偏振串扰消除以及解调操作,得到左、右两个边带的X偏振信号和Y偏振信号。
  2. 根据权利要求1所述的系统,其中,所述光发射机,包括:
    发送激光器,设置为输出光波;
    第一光偏振分束器,设置为将所述发送激光器输出的光波划分到X、Y两个偏振方向上;
    第一光孪生单边带调制模块,设置为进行X偏振方向上的高阶矢量信号调制操作,生成不带载波的X偏振光孪生单边带矢量信号;
    第二光孪生单边带调制模块,设置为进行Y偏振方向上的高阶矢量信号调制操作,生成不带载波的Y偏振光孪生单边带矢量信号;
    第一光偏振耦合器,设置为将所述不带载波的X偏振光孪生单边带矢量信号和所述不带载波的Y偏振光孪生单边带矢量信号耦合,输出不带载波的偏振复用光孪生单边带矢量信号。
  3. 根据权利要求2所述的系统,其中,所述第一光孪生单边带调制模块和所述第二光孪生单边带调制模块,采用IQ调制器。
  4. 根据权利要求1所述的系统,其中,所述光无线转换模块,包括:
    第一光滤波器和第二光滤波器,用于分别提取经过光纤传输的、偏振复用光孪生单边带矢量信号的左边带偏振复用信号和右边带偏振复用信号;
    第一偏振分集光电转换模块,设置为对左边带偏振复用信号分别进行载波耦合和光外差拍频,生成X、Y两个偏振方向上的带载波的毫米波太赫兹左边带矢量信号;
    第二偏振分集光电转换模块,设置为对右边带偏振复用信号分别进行载波耦合和光外差拍频,生成X、Y两个偏振方向上的带载波的毫米波太赫兹右边带矢量信号。
  5. 根据权利要求4所述的系统,其中,所述第一偏振分集光电转换模块,包括:
    第二光偏振分束器,设置为将左边带偏振复用信号分成X、Y两个偏振方向上的信号光波;
    第一光耦合器,设置为将载波激光器输出的载波光和本振激光器输出的本振光进行耦合;
    第三光偏振分束器,设置为将第一光耦合器输出的信号分成X、Y两个偏振方向上的合成双载波;
    第二光耦合器,设置为将X偏振方向上的合成双载波与X偏振方向上的信号光波进行耦合,并发送到第一光电探测器完成光电转换,生成X偏振方向上的带载波的毫米波太赫兹左边带矢量信号;
    第三光耦合器,设置为将Y偏振方向上的合成双载波与Y偏振方向上的信号光波进行耦合,并发送到第二光电探测器完成光电转换,生成Y偏振方向上的带载波的毫米波太赫兹左边带矢量信号。
  6. 根据权利要求5所述的系统,其中,
    所述载波激光器输出的载波光与信号光波的中心频率相同;
    所述本振激光器输出的本振光与信号光波的中心频率间隔为:X或Y偏振方向上的带载波的毫米波太赫兹单边带矢量信号的载频大小。
  7. 根据权利要求1所述的系统,其中,所述无线接收模块,包括:
    第一包络检波器,设置为对左边带的X偏振方向上的毫米波太赫兹单边带矢量信号,进行毫米波太赫兹信号到低频信号的下变频操作;
    第一模数转换器,设置为对所述第一包络检波器输出的信号进行数字采样;
    第二包络检波器,设置为对左边带的Y偏振方向上的毫米波太赫兹单边带矢量信号,进行毫米波太赫兹信号到低频信号的下变频操作;
    第二模数转换器,设置为对所述第二包络检波器输出的信号进行数字采样;
    第一DSP处理模块,设置为对第一模数转换器和第二模数转换器输出的两路数字信号,进行矢量重建、偏振串扰消除以及解调操作,得到左边带的X偏振信号和Y偏振信号。
  8. 根据权利要求7所述的系统,其中,所述第一DSP处理模块设置为:
    对第一模数转换器和第二模数转换器输出的两路数字信号,分别采用KK算法进行左边带矢量信号重建;
    将重建后的X、Y两个偏振方向上的左边带矢量信号联合进行解偏振复用处理,以消除偏振串扰;
    对解偏振复用处理后的两路信号进行基带恢复、信道均衡和符号解映射处理,得到左边带的X偏振信号和Y偏振信号。
  9. 根据权利要求1所述的系统,还包括:
    多输入多输出MIMO天线模块,设置为将所述光无线转换模块输出的左、 右两个边带的X、Y两个偏振方向上的毫米波太赫兹单边带矢量信号无线传输到所述无线接收模块。
  10. 一种包络检波光子毫米波太赫兹通信方法,包括:
    通过光发射机,生成不带载波的偏振复用光孪生单边带矢量信号,并通过光纤传输到光无线转换模块;
    通过光无线转换模块,提取所述偏振复用光孪生单边带矢量信号的左边带偏振复用信号和右边带偏振复用信号,并针对左、右两个边带的偏振复用信号,分别进行载波耦合和光外差拍频,生成X、Y两个偏振方向上的带载波的毫米波太赫兹单边带矢量信号;
    通过无线接收模块,通过包络检波直接探测方式,对左、右两个边带的X、Y两个偏振方向上的毫米波太赫兹单边带矢量信号进行下变频操作,并对下变频操作后的信号进行矢量重建、偏振串扰消除以及解调操作,得到左、右两个边带的X偏振信号和Y偏振信号。
PCT/CN2023/080765 2022-09-29 2023-03-10 一种包络检波光子毫米波太赫兹通信系统及方法 WO2024066213A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211194630.8 2022-09-29
CN202211194630.8A CN115296749B (zh) 2022-09-29 2022-09-29 一种包络检波光子毫米波太赫兹通信系统及方法

Publications (1)

Publication Number Publication Date
WO2024066213A1 true WO2024066213A1 (zh) 2024-04-04

Family

ID=83833566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080765 WO2024066213A1 (zh) 2022-09-29 2023-03-10 一种包络检波光子毫米波太赫兹通信系统及方法

Country Status (2)

Country Link
CN (1) CN115296749B (zh)
WO (1) WO2024066213A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115296749B (zh) * 2022-09-29 2023-02-03 网络通信与安全紫金山实验室 一种包络检波光子毫米波太赫兹通信系统及方法
CN116128702B (zh) * 2022-12-20 2024-03-22 中国人民解放军军事科学院国防科技创新研究院 基于频分复用技术的光子集成计算芯片及图像处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110069964A1 (en) * 2009-09-18 2011-03-24 Nec Laboratories America, Inc. Optical Signal Sideband Millimeter-Wave Signal Generation for Super-Broadband Optical Wireless Network
CN106533573A (zh) * 2016-10-26 2017-03-22 北京大学 一种非对称孪生单边带调制、解调方法和系统
CN110350981A (zh) * 2019-07-19 2019-10-18 南京航空航天大学 一种基于光子学的宽带调频微波信号生成方法及装置
CN114070399A (zh) * 2022-01-17 2022-02-18 网络通信与安全紫金山实验室 矢量信号直接探测系统、方法、电子设备及存储介质
CN115296749A (zh) * 2022-09-29 2022-11-04 网络通信与安全紫金山实验室 一种包络检波光子毫米波太赫兹通信系统及方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3382910B1 (en) * 2017-03-31 2020-09-09 Nokia Solutions and Networks Oy Optical transceiver and method of operating an optical transceiver
CN113765589B (zh) * 2021-09-03 2022-07-01 网络通信与安全紫金山实验室 一种太赫兹无线光纤扩展装置及其实时传输系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110069964A1 (en) * 2009-09-18 2011-03-24 Nec Laboratories America, Inc. Optical Signal Sideband Millimeter-Wave Signal Generation for Super-Broadband Optical Wireless Network
CN106533573A (zh) * 2016-10-26 2017-03-22 北京大学 一种非对称孪生单边带调制、解调方法和系统
CN110350981A (zh) * 2019-07-19 2019-10-18 南京航空航天大学 一种基于光子学的宽带调频微波信号生成方法及装置
CN114070399A (zh) * 2022-01-17 2022-02-18 网络通信与安全紫金山实验室 矢量信号直接探测系统、方法、电子设备及存储介质
CN115296749A (zh) * 2022-09-29 2022-11-04 网络通信与安全紫金山实验室 一种包络检波光子毫米波太赫兹通信系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHEHATA MOHAMED; WANG KE; WITHAYACHUMNANKUL WITHAWAT: "Carrierless I-Q Mixing for Terahertz Communications", 2022 47TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES (IRMMW-THZ), IEEE, 28 August 2022 (2022-08-28), pages 1 - 2, XP034197731, DOI: 10.1109/IRMMW-THz50927.2022.9895872 *

Also Published As

Publication number Publication date
CN115296749A (zh) 2022-11-04
CN115296749B (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
WO2024066213A1 (zh) 一种包络检波光子毫米波太赫兹通信系统及方法
Zhang et al. Multichannel 120-Gb/s Data Transmission Over 2$\,\times\, $2 MIMO Fiber-Wireless Link at W-Band
Li et al. Demonstration of ultra-capacity wireless signal delivery at W-band
US20100086303A1 (en) High speed polmux-ofdm using dual-polmux carriers and direct detection
JP5437858B2 (ja) 光伝送システム
CN107395288B (zh) 一种偏振分集的光外差相干接收方法及系统
Li et al. Delivery of 54-Gb/s 8QAM W-band signal and 32-Gb/s 16QAM K-band signal over 20-km SMF-28 and 2500-m wireless distance
CN108566250B (zh) 一种基于载波正交偏置单边带信号的调制解调方法及系统
CN104410462B (zh) 基于偏振复用的光信号调制与直接检测的方法及装置
CN105281862A (zh) 一种偏振复用直接检测系统及方法
CN112087248B (zh) 基于偏振复用光调制器产生PDM-m2QAM射频信号的光纤-无线通信系统
KR20140059850A (ko) 위상-결합된 광 변형들을 통한 통신
KR20120062805A (ko) 멀티?캐리어 광 신호의 디지털 코히어런트 검출
CN113765589B (zh) 一种太赫兹无线光纤扩展装置及其实时传输系统
CN109067468B (zh) 应用于直检光通信系统的kk传输方法及直检光通信系统
CN108234061B (zh) 一种基于斯托克斯空间直接检测的偏振复用系统
CN108768540A (zh) 光信号接收装置、方法及具有该装置的相干光传输系统
CN111010236A (zh) 一种基于直调直检和偏振复用的低复杂度高速光通信系统
US9621270B2 (en) System and methods for fiber and wireless integration
CN116996128B (zh) 光纤传输系统及装置
Li et al. Antenna polarization diversity for 146Gb/s polarization multiplexing QPSK wireless signal delivery at W-band
CN111464240A (zh) 基于偏振复用强度调制器的矢量射频信号发生系统
CN105071894A (zh) 一种基于相位追踪的非正交偏振复用相位调制信号传输方案
CN105490749A (zh) 一种偏振复用直接检测系统及方法
CN111313976A (zh) 脉冲幅度调制信号外差相干pon系统及收发方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23869475

Country of ref document: EP

Kind code of ref document: A1