WO2024065858A1 - Techniques for using predicted beams in wireless communications - Google Patents

Techniques for using predicted beams in wireless communications Download PDF

Info

Publication number
WO2024065858A1
WO2024065858A1 PCT/CN2022/123668 CN2022123668W WO2024065858A1 WO 2024065858 A1 WO2024065858 A1 WO 2024065858A1 CN 2022123668 W CN2022123668 W CN 2022123668W WO 2024065858 A1 WO2024065858 A1 WO 2024065858A1
Authority
WO
WIPO (PCT)
Prior art keywords
processor
downlink beam
srs
resource
aoa
Prior art date
Application number
PCT/CN2022/123668
Other languages
French (fr)
Inventor
Qiaoyu Li
Tao Luo
Mahmoud Taherzadeh Boroujeni
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2022/123668 priority Critical patent/WO2024065858A1/en
Publication of WO2024065858A1 publication Critical patent/WO2024065858A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • aspects of the present disclosure relate generally to wireless communication systems, and more particularly, to techniques for using beams based on beam predictions.
  • Wireless communication systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be multiple-access systems capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include code-division multiple access (CDMA) systems, time-division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, and orthogonal frequency-division multiple access (OFDMA) systems, and single-carrier frequency division multiple access (SC-FDMA) systems.
  • CDMA code-division multiple access
  • TDMA time-division multiple access
  • FDMA frequency-division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • 5G communications technology can include: enhanced mobile broadband addressing human-centric use cases for access to multimedia content, services and data; ultra-reliable-low latency communications (URLLC) with certain specifications for latency and reliability; and massive machine type communications, which can allow a very large number of connected devices and transmission of a relatively low volume of non-delay-sensitive information.
  • URLLC ultra-reliable-low latency communications
  • an apparatus for wireless communication includes a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions are operable, when executed by the processor, to cause the apparatus to receive, from a network node, a configuration indicating spatial relationship information associated with at least one of: a virtual downlink beam resource; or an AoA or AoD associated with a channel between the apparatus and the network node, and transmit, to the network node, a sounding reference signal (SRS) based on at least one of the virtual downlink beam resource or the AoA or AoD associated with the channel and according to the spatial relationship information.
  • SRS sounding reference signal
  • an apparatus for wireless communication includes a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions are operable, when executed by the processor, to cause the apparatus to transmit, for a user equipment (UE) , a configuration indicating spatial relationship information associated with at least one of: a virtual downlink beam resource; or an AoA or AoD associated with a channel between the UE and the apparatus, and receive, for the UE, a SRS based on at least one of the virtual downlink beam resource or the AoA or AoD associated with the channel and according to the spatial relationship information.
  • UE user equipment
  • a method for wireless communication at a UE includes receiving, from a network node, a configuration indicating spatial relationship information associated with at least one of: a virtual downlink beam resource; or an AoA or AoD associated with a channel between the UE and the network node, and transmitting, to the network node, a SRS based on at least one of the virtual downlink beam resource or the AoA or AoD associated with the channel and according to the spatial relationship information.
  • a method for wireless communication at a network node includes transmitting, for a UE, a configuration indicating spatial relationship information associated with at least one of: a virtual downlink beam resource; or an AoA or AoD associated with a channel between the UE and the network node, and receiving, for the UE, a SRS based on at least one of the virtual downlink beam resource or the AoA or AoD associated with the channel and according to the spatial relationship information.
  • an apparatus for wireless communication includes a transceiver, a memory configured to store instructions, and one or more processors communicatively coupled with the transceiver and the memory. The one or more processors are configured to execute the instructions to perform the operations of methods described herein.
  • an apparatus for wireless communication is provided that includes means for performing the operations of methods described herein.
  • a computer-readable medium is provided including code executable by one or more processors to perform the operations of methods described herein.
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
  • FIG. 1 illustrates an example of a wireless communication system, in accordance with various aspects of the present disclosure
  • FIG. 2 is a diagram illustrating an example of disaggregated base station architecture, in accordance with various aspects of the present disclosure
  • FIG. 3 is a block diagram illustrating an example of a user equipment (UE) , in accordance with various aspects of the present disclosure
  • FIG. 4 is a block diagram illustrating an example of a base station, in accordance with various aspects of the present disclosure
  • FIG. 5 is a flow chart illustrating an example of a method for receiving and using spatial relationship information for virtual downlink beam resources or angle-of-arrival (AoA) /angle-of-departure (AoD) associated with a channel, in accordance with aspects described herein;
  • AoA angle-of-arrival
  • AoD angle-of-departure
  • FIG. 6 is a flow chart illustrating an example of a method for configuring spatial relationship information for virtual downlink beam resources or AoA/AoD associated with a channel, in accordance with aspects described herein;
  • FIG. 7 illustrates an example of a system for sending uplink beam recommendations based on downlink beam predictions, in accordance with aspects described herein;
  • FIG. 8 is a block diagram illustrating an example of a multiple-input multiple-output (MIMO) communication system including a base station and a UE, in accordance with various aspects of the present disclosure.
  • MIMO multiple-input multiple-output
  • the described features generally relate to using predicted beams in wireless communications.
  • nodes of the network such as user equipment (UEs) , network nodes, etc.
  • UEs user equipment
  • NR new radio
  • nodes of the network can perform wireless communications using beams by beamforming antenna elements to achieve a beam communicated in a spatial direction.
  • the devices can use artificial intelligence (AI) /machine learning (ML) -based techniques to derive a beam to be used.
  • the devices can perform beam prediction in time and/or spatial direction for overhead and latency reduction otherwise associated with performing signal measurements to select the beam.
  • a UE and/or gNB can collaborate to derive a beam to use, which can include deriving a beam for the gNB to use and a reciprocal beam for the UE to use.
  • the AI/ML approaches for the selected use cases can be diverse enough to support various requirements on gNB/UE collaboration levels.
  • beam qualities/failures are identified via measurements, where more power/overhead can be needed to achieve good performance, beam accuracy maybe limited due to restrictions on power/overhead, latency/throughput can be impacted by beam resuming efforts, etc.
  • Predictive beam management in space division (SD) /time division (TD) /frequency division (FD) ) can lead to power/overhead reduction or accuracy/latency/throughput improvement.
  • predicting non-measured beam qualities can lead to lower power/overhead or better accuracy, and/or predicting future beam blockage/failure can lead to better latency/throughput.
  • Beam prediction can be a highly non-linear problem. For example, predicting future transmit beam qualities can depend on a UE’s moving speed/trajectory, receive beams used or to be used, interference, etc., which can be difficult to model via conventional statistical signaling processing methods.
  • beams can be predicted using AI/ML, where prediction can occur at the UE and/or the gNB. Where the beams are predicted can provide tradeoff between performance and UE power. For example, to predict future downlink transmission beam qualities, UE has more observations (via measurements) than gNB (via UE feedback) , thus prediction at the UE may outperform prediction at the gNB, by consuming more UE power for the inference efforts. Whether training is performed at the gNB or the UE can balance efforts on data collection with efforts on UE computation. For training at the gNB, data can be collected via (enhanced) air interface or via application-layer approaches. For training at the UE, additional UE computation/buffering efforts can be used by model training and may use necessary data storage.
  • AI/ML-based beam prediction can be based on one or more of SD+TD compressive beam measurements that can use less beam measurements and provide UE power reduction using a codebook based SD selection, or raw channel extraction that can provide better beam management accuracy without excessive beam sweeping using a non-codebook based SD selection, or a combination thereof.
  • AI/ML-based beam prediction can include TD prediction for predicting future physical uplink shared channel (PUSCH) transmit beams for the UE, which can use less frequency sounding reference signal (SRS) transmission at the UE, leading to UE power reduction and SRS overhead reduction.
  • PUSCH physical uplink shared channel
  • SRS frequency sounding reference signal
  • AI/ML-based beam prediction can include SD+TD prediction for predicting future PUSCH transmit beams for the UE in non-sounded directions, which can use spatially sparse SRS transmission at the UE, leading to UE power reduction and SRS overhead reduction, as well as a more accurate uplink transmit beam.
  • AI/ML-based beam prediction can include FD prediction for predicting higher frequency uplink transmit beams for the UE via lower frequency SRS, which can provide better coverage or less radio frequency (RF) phase shifting at lower frequency, leading to UE power reduction, and a less number of beams needed at lower frequency, leading to SRS overhead reduction.
  • RF radio frequency
  • a UE can perform uplink beam prediction based on predicted downlink beams when the UE has beam correspondence (e.g., such that the UE can use a beam that is reciprocal of the downlink beam) .
  • the associated receive beam may also be predicted by the UE.
  • the UE can use the receive (Rx) spatial filter receiving a downlink reference signal (DL-RS) to derive the transmit (Tx) spatial filter for transmitting the associated SRS.
  • DL-RS downlink reference signal
  • the beams may be in virtual resources and/or may be associated with angle-of-arrival (AoA) /angle-of-departure (AoD) channel characteristics of the channel between the network and the UE, such that the network may not transmit, and the UE may not receive, the downlink beam.
  • AoA angle-of-arrival
  • AoD angle-of-departure
  • the UE may not have a signal from which to derive the Rx spatial filter for receiving the downlink beam.
  • the UE can use a predicted Rx spatial filter for receiving such predicted downlink beam, and/or can derive the Tx spatial filter for transmitting the associated SRS.
  • the network can configure SRS spatial relation information for the UE, where the SRS spatial relation information can be associated with virtual resources or AoA/AoD that can be predicted or reported by the UE or network indicated as beam prediction results.
  • the UE can derive the SRS spatial relation information for the predicted downlink beam and accordingly transmit an associated SRS using a Tx spatial filter that is based on the SRS spatial relation information for the predicted downlink beam. This can result in less overhead needed for the UE to transmit the SRS, which can conserve radio resources and UE processing requirements. This can accordingly improve user experience with using the network and/or the UE, etc.
  • a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device can be a component.
  • One or more components can reside within a process and/or thread of execution and a component can be localized on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • the components can communicate by way of local and/or remote processes such as in accordance with a signal having one or more data packets, such as data from one component interacting with another component in a local system, distributed system, and/or across a network such as the Internet with other systems by way of the signal.
  • a CDMA system may implement a radio technology such as CDMA2000, Universal Terrestrial Radio Access (UTRA) , etc.
  • CDMA2000 covers IS-2000, IS-95, and IS-856 standards.
  • IS-2000 Releases 0 and A are commonly referred to as CDMA2000 1X, 1X, etc.
  • IS-856 (TIA-856) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc.
  • UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA.
  • a TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM) .
  • GSM Global System for Mobile Communications
  • An OFDMA system may implement a radio technology such as Ultra Mobile Broadband (UMB) , Evolved UTRA (E-UTRA) , IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM TM , etc.
  • UMB Ultra Mobile Broadband
  • E-UTRA Evolved UTRA
  • Wi-Fi Wi-Fi
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM TM
  • UTRA and E-UTRA are part of Universal Mobile Telecommunication System (UMTS) .
  • 3GPP Long Term Evolution (LTE) and LTE-Advanced (LTE-A) are new releases of UMTS that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, and GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) .
  • CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • the techniques described herein may be used for the systems and radio technologies mentioned above as well as other systems and radio technologies, including cellular (e.g., LTE) communications over a shared radio frequency spectrum band.
  • LTE/LTE-A system for purposes of example, and LTE terminology is used in much of the description below, although the techniques are applicable beyond LTE/LTE-Aapplications (e.g., to fifth generation (5G) new radio (NR) networks or other next generation communication systems) .
  • 5G fifth generation
  • NR new radio
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100.
  • the wireless communications system (also referred to as a wireless wide area network (WWAN) ) can include base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and/or a 5G Core (5GC) 190.
  • the base stations 102 may include macro cells (high power cellular base station) and/or small cells (low power cellular base station) .
  • the macro cells can include base stations.
  • the small cells can include femtocells, picocells, and microcells.
  • the base stations 102 may also include gNBs 180, as described further herein.
  • some nodes of the wireless communication system may have a modem 340 and UE communicating component 342 for receiving spatial relationship information for virtual downlink beam resources or AoA/AoD associated with a channel, in accordance with aspects described herein.
  • some nodes may have a modem 440 and BS communicating component 442 for configuring spatial relationship information for virtual downlink beam resources or AoA/AoD associated with a channel, in accordance with aspects described herein.
  • a UE 104 is shown as having the modem 340 and UE communicating component 342 and a base station 102/gNB 180 is shown as having the modem 440 and BS communicating component 442, this is one illustrative example, and substantially any node or type of node may include a modem 340 and UE communicating component 342 and/or a modem 440 and BS communicating component 442 for providing corresponding functionalities described herein.
  • the base stations 102 configured for 4G LTE (which can collectively be referred to as Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN) ) may interface with the EPC 160 through backhaul links 132 (e.g., using an S1 interface) .
  • the base stations 102 configured for 5G NR (which can collectively be referred to as Next Generation RAN (NG-RAN) ) may interface with 5GC 190 through backhaul links 184.
  • NG-RAN Next Generation RAN
  • the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, head compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages.
  • NAS non-access stratum
  • RAN radio access network
  • MBMS multimedia broadcast multicast service
  • RIM RAN information management
  • the base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or 5GC 190) with each other over backhaul links 134 (e.g., using an X2 interface) .
  • the backhaul links 134 may be wired or wireless.
  • the base stations 102 may wirelessly communicate with one or more UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102.
  • a network that includes both small cell and macro cells may be referred to as a heterogeneous network.
  • a heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group, which can be referred to as a closed subscriber group (CSG) .
  • eNBs Home Evolved Node Bs
  • HeNBs Home Evolved Node Bs
  • CSG closed subscriber group
  • the communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104.
  • the communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity.
  • the communication links may be through one or more carriers.
  • the base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc.
  • the component carriers may include a primary component carrier and one or more secondary component carriers.
  • a primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
  • D2D communication link 158 may use the DL/UL WWAN spectrum.
  • the D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • D2D communication may be through a variety of wireless D2D communications systems, such as for example, FlashLinQ, WiMedia,
  • the wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154 in a 5 GHz unlicensed frequency spectrum.
  • AP Wi-Fi access point
  • STAs Wi-Fi stations
  • communication links 154 in a 5 GHz unlicensed frequency spectrum.
  • the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
  • CCA clear channel assessment
  • the small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ NR and use the same 5 GHz unlicensed frequency spectrum as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • a base station 102 may include an eNB, gNodeB (gNB) , or other type of base station.
  • Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave (mmW) frequencies, and/or near mmW frequencies in communication with the UE 104.
  • mmW millimeter wave
  • mmW millimeter wave
  • mmW base station Extremely high frequency (EHF) is part of the RF in the electromagnetic spectrum. EHF has a range of 30 GHz to 300 GHz and a wavelength between 1 millimeter and 10 millimeters.
  • Radio waves in the band may be referred to as a millimeter wave.
  • Near mmW may extend down to a frequency of 3 GHz with a wavelength of 100 millimeters.
  • the super high frequency (SHF) band extends between 3 GHz and 30 GHz, also referred to as centimeter wave. Communications using the mmW /near mmW radio frequency band has extremely high path loss and a short range.
  • the mmW base station 180 may utilize beamforming 182 with the UE 104 to compensate for the extremely high path loss and short range.
  • a base station 102 referred to herein can include a gNB 180.
  • the EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172.
  • MME Mobility Management Entity
  • MBMS Multimedia Broadcast Multicast Service
  • BM-SC Broadcast Multicast Service Center
  • PDN Packet Data Network
  • the MME 162 may be in communication with a Home Subscriber Server (HSS) 174.
  • HSS Home Subscriber Server
  • the MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160.
  • the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172.
  • IP Internet protocol
  • the PDN Gateway 172 provides UE IP address allocation as well as other functions.
  • the PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176.
  • the IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
  • the BM-SC 170 may provide functions for MBMS user service provisioning and delivery.
  • the BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions.
  • PLMN public land mobile network
  • the MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
  • MMSFN Multicast Broadcast Single Frequency Network
  • the 5GC 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195.
  • the AMF 192 may be in communication with a Unified Data Management (UDM) 196.
  • the AMF 192 can be a control node that processes the signaling between the UEs 104 and the 5GC 190.
  • the AMF 192 can provide QoS flow and session management.
  • User Internet protocol (IP) packets (e.g., from one or more UEs 104) can be transferred through the UPF 195.
  • the UPF 195 can provide UE IP address allocation for one or more UEs, as well as other functions.
  • the UPF 195 is connected to the IP Services 197.
  • the IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
  • the base station may also be referred to as a gNB, Node B, evolved Node B (eNB) , an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology.
  • the base station 102 provides an access point to the EPC 160 or 5GC 190 for a UE 104.
  • Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device.
  • SIP session initiation protocol
  • PDA personal digital assistant
  • IoT devices e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc.
  • IoT UEs may include machine type communication (MTC) /enhanced MTC (eMTC, also referred to as category (CAT) -M, Cat M1) UEs, NB-IoT (also referred to as CAT NB1) UEs, as well as other types of UEs.
  • MTC machine type communication
  • eMTC also referred to as category (CAT) -M, Cat M1
  • NB-IoT also referred to as CAT NB1 UEs
  • eMTC and NB-IoT may refer to future technologies that may evolve from or may be based on these technologies.
  • eMTC may include FeMTC (further eMTC) , eFeMTC (enhanced further eMTC) , mMTC (massive MTC) , etc.
  • NB-IoT may include eNB-IoT (enhanced NB-IoT) , FeNB-IoT (further enhanced NB-IoT) , etc.
  • the UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
  • a network node a network entity, a mobility element of a network, a radio access network (RAN) node, a core network node, a network element, or a network equipment, such as a base station (BS, e.g., BS 102) , or one or more units (or one or more components) performing base station functionality, may be implemented in an aggregated or disaggregated architecture.
  • BS base station
  • BS 102 base station
  • a BS such as a Node B (NB) , evolved NB (eNB) , NR BS, 5G NB, access point (AP) , a transmit receive point (TRP) , or a cell, etc.
  • NB Node B
  • eNB evolved NB
  • NR BS 5G NB
  • AP access point
  • TRP transmit receive point
  • a cell etc.
  • a BS may be implemented as an aggregated base station (also known as a standalone BS or a monolithic BS) or a disaggregated base station.
  • An aggregated base station may be configured to utilize a radio protocol stack that is physically or logically integrated within a single RAN node.
  • a disaggregated base station may be configured to utilize a protocol stack that is physically or logically distributed among two or more units (such as one or more central or centralized units (CUs) , one or more distributed units (DUs) , or one or more radio units (RUs) ) .
  • a CU may be implemented within a RAN node, and one or more DUs may be co-located with the CU, or alternatively, may be geographically or virtually distributed throughout one or multiple other RAN nodes.
  • the DUs may be implemented to communicate with one or more RUs.
  • Each of the CU, DU and RU also can be implemented as virtual units, i.e., a virtual central unit (VCU) , a virtual distributed unit (VDU) , or a virtual radio unit (VRU) .
  • VCU virtual central unit
  • VDU virtual distributed
  • Base station-type operation or network design may consider aggregation characteristics of base station functionality.
  • disaggregated base stations may be utilized in an integrated access backhaul (IAB) network, an open radio access network (O-RAN (such as the network configuration sponsored by the O-RAN Alliance) ) , or a virtualized radio access network (vRAN, also known as a cloud radio access network (C-RAN) ) .
  • Disaggregation may include distributing functionality across two or more units at various physical locations, as well as distributing functionality for at least one unit virtually, which can enable flexibility in network design.
  • the various units of the disaggregated base station, or disaggregated RAN architecture can be configured for wired or wireless communication with at least one other unit.
  • BS communicating component 442 can transmit, and/or UE communicating component 342 can receive, spatial relationship information for virtual downlink beam resources and/or AoA/AoD channel characteristics.
  • the UE 104 and/or base station 102 can predict a downlink beam for communications between the UE 104 and the base station 102, and the UE 104 can derive a Tx spatial filter for transmitting a SRS corresponding to the predicted downlink beam.
  • the predicted downlink beam can be indicated as a virtual downlink beam resource that is not actually transmitted by the base station, or as AoA/AoD associated with the channel characteristics between the UE 104 and base station 102.
  • UE communicating component 342 can obtain the spatial relationship information associated with the virtual downlink beam resource or the AoA/AoD, and can accordingly transmit a SRS using a Tx spatial filter that is based on the spatial relationship information.
  • FIG. 2 shows a diagram illustrating an example of disaggregated base station 200 architecture.
  • the disaggregated base station 200 architecture may include one or more central units (CUs) 210 that can communicate directly with a core network 220 via a backhaul link, or indirectly with the core network 220 through one or more disaggregated base station units (such as a Near-Real Time (Near-RT) RAN Intelligent Controller (RIC) 225 via an E2 link, or a Non-Real Time (Non-RT) RIC 215 associated with a Service Management and Orchestration (SMO) Framework 205, or both) .
  • a CU 210 may communicate with one or more distributed units (DUs) 230 via respective midhaul links, such as an F1 interface.
  • DUs distributed units
  • the DUs 230 may communicate with one or more radio units (RUs) 240 via respective fronthaul links.
  • the RUs 240 may communicate with respective UEs 104 via one or more radio frequency (RF) access links.
  • RF radio frequency
  • the UE 104 may be simultaneously served by multiple RUs 240.
  • Each of the units may include one or more interfaces or be coupled to one or more interfaces configured to receive or transmit signals, data, or information (collectively, signals) via a wired or wireless transmission medium.
  • Each of the units, or an associated processor or controller providing instructions to the communication interfaces of the units can be configured to communicate with one or more of the other units via the transmission medium.
  • the units can include a wired interface configured to receive or transmit signals over a wired transmission medium to one or more of the other units.
  • the units can include a wireless interface, which may include a receiver, a transmitter or transceiver (such as a radio frequency (RF) transceiver) , configured to receive or transmit signals, or both, over a wireless transmission medium to one or more of the other units.
  • a wireless interface which may include a receiver, a transmitter or transceiver (such as a radio frequency (RF) transceiver) , configured to receive or transmit signals, or both, over a wireless transmission medium to one or more of the other units.
  • RF radio frequency
  • the CU 210 may host one or more higher layer control functions.
  • control functions can include radio resource control (RRC) , packet data convergence protocol (PDCP) , service data adaptation protocol (SDAP) , or the like.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • SDAP service data adaptation protocol
  • Each control function can be implemented with an interface configured to communicate signals with other control functions hosted by the CU 210.
  • the CU 210 may be configured to handle user plane functionality (i.e., Central Unit –User Plane (CU-UP) ) , control plane functionality (i.e., Central Unit –Control Plane (CU-CP) ) , or a combination thereof.
  • the CU 210 can be logically split into one or more CU-UP units and one or more CU-CP units.
  • the CU-UP unit can communicate bidirectionally with the CU-CP unit via an interface, such as the E1 interface when implemented in an O-RAN configuration.
  • the CU 210 can be implemented to communicate with the DU 230, as necessary, for network control and signaling.
  • the DU 230 may correspond to a logical unit that includes one or more base station functions to control the operation of one or more RUs 240.
  • the DU 230 may host one or more of a radio link control (RLC) layer, a medium access control (MAC) layer, and one or more high physical (PHY) layers (such as modules for forward error correction (FEC) encoding and decoding, scrambling, modulation and demodulation, or the like) depending, at least in part, on a functional split, such as those defined by the third Generation Partnership Project (3GPP) .
  • the DU 230 may further host one or more low PHY layers. Each layer (or module) can be implemented with an interface configured to communicate signals with other layers (and modules) hosted by the DU 230, or with the control functions hosted by the CU 210.
  • Lower-layer functionality can be implemented by one or more RUs 240.
  • an RU 240 controlled by a DU 230, may correspond to a logical node that hosts RF processing functions, or low-PHY layer functions (such as performing fast Fourier transform (FFT) , inverse FFT (iFFT) , digital beamforming, physical random access channel (PRACH) extraction and filtering, or the like) , or both, based at least in part on the functional split, such as a lower layer functional split.
  • the RU (s) 240 can be implemented to handle over the air (OTA) communication with one or more UEs 104.
  • OTA over the air
  • real-time and non-real-time aspects of control and user plane communication with the RU (s) 240 can be controlled by the corresponding DU 230.
  • this configuration can enable the DU (s) 230 and the CU 210 to be implemented in a cloud-based RAN architecture, such as a vRAN architecture.
  • the SMO Framework 205 may be configured to support RAN deployment and provisioning of non-virtualized and virtualized network elements.
  • the SMO Framework 205 may be configured to support the deployment of dedicated physical resources for RAN coverage requirements which may be managed via an operations and maintenance interface (such as an O1 interface) .
  • the SMO Framework 205 may be configured to interact with a cloud computing platform (such as an open cloud (O-Cloud) 290) to perform network element life cycle management (such as to instantiate virtualized network elements) via a cloud computing platform interface (such as an O2 interface) .
  • a cloud computing platform such as an open cloud (O-Cloud) 290
  • network element life cycle management such as to instantiate virtualized network elements
  • a cloud computing platform interface such as an O2 interface
  • Such virtualized network elements can include, but are not limited to, CUs 210, DUs 230, RUs 240 and Near-RT RICs 225.
  • the SMO Framework 205 can communicate with a hardware aspect of a 4G RAN, such as an open eNB (O-eNB) 211, via an O1 interface. Additionally, in some implementations, the SMO Framework 205 can communicate directly with one or more RUs 240 via an O1 interface.
  • the SMO Framework 205 also may include a Non-RT RIC 215 configured to support functionality of the SMO Framework 205.
  • the Non-RT RIC 215 may be configured to include a logical function that enables non-real-time control and optimization of RAN elements and resources, Artificial Intelligence/Machine Learning (AI/ML) workflows including model training and updates, or policy-based guidance of applications/features in the Near-RT RIC 225.
  • the Non-RT RIC 215 may be coupled to or communicate with (such as via an A1 interface) the Near-RT RIC 225.
  • the Near-RT RIC 225 may be configured to include a logical function that enables near-real-time control and optimization of RAN elements and resources via data collection and actions over an interface (such as via an E2 interface) connecting one or more CUs 210, one or more DUs 230, or both, as well as an O-eNB, with the Near-RT RIC 225.
  • the Non-RT RIC 215 may receive parameters or external enrichment information from external servers. Such information may be utilized by the Near-RT RIC 225 and may be received at the SMO Framework 205 or the Non-RT RIC 215 from non- network data sources or from network functions. In some examples, the Non-RT RIC 215 or the Near-RT RIC 225 may be configured to tune RAN behavior or performance. For example, the Non-RT RIC 215 may monitor long-term trends and patterns for performance and employ AI/ML models to perform corrective actions through the SMO Framework 205 (such as reconfiguration via O1) or via creation of RAN management policies (such as A1 policies) .
  • SMO Framework 205 such as reconfiguration via O1
  • A1 policies such as A1 policies
  • BS communicating component 442 can be at least partially implemented within a CU 210, and can transmit spatial relationship information, beam predictions, etc. to UEs via one or more DUs 230, and/or the like.
  • BS communicating component 442, as described herein can be at least partially implemented within a DU 230, and can transmit spatial relationship information, beam predictions, etc. to UEs via one or more RUs 240, and/or the like.
  • FIGS. 3-8 aspects are depicted with reference to one or more components and one or more methods that may perform the actions or operations described herein, where aspects in dashed line may be optional.
  • FIGS. 5 and 6 are presented in a particular order and/or as being performed by an example component, it should be understood that the ordering of the actions and the components performing the actions may be varied, depending on the implementation.
  • the following actions, functions, and/or described components may be performed by a specially programmed processor, a processor executing specially programmed software or computer-readable media, or by any other combination of a hardware component and/or a software component capable of performing the described actions or functions.
  • one example of an implementation of UE 104 may include a variety of components, some of which have already been described above and are described further herein, including components such as one or more processors 312 and memory 316 and transceiver 302 in communication via one or more buses 344, which may operate in conjunction with modem 340 and/or UE communicating component 342 for receiving spatial relationship information for virtual downlink beam resources or AoA/AoD associated with a channel, in accordance with aspects described herein.
  • the one or more processors 312 can include a modem 340 and/or can be part of the modem 340 that uses one or more modem processors.
  • the various functions related to UE communicating component 342 may be included in modem 340 and/or processors 312 and, in an aspect, can be executed by a single processor, while in other aspects, different ones of the functions may be executed by a combination of two or more different processors.
  • the one or more processors 312 may include any one or any combination of a modem processor, or a baseband processor, or a digital signal processor, or a transmit processor, or a receiver processor, or a transceiver processor associated with transceiver 302. In other aspects, some of the features of the one or more processors 312 and/or modem 340 associated with UE communicating component 342 may be performed by transceiver 302.
  • memory 316 may be configured to store data used herein and/or local versions of applications 375 or UE communicating component 342 and/or one or more of its subcomponents being executed by at least one processor 312.
  • Memory 316 can include any type of computer-readable medium usable by a computer or at least one processor 312, such as random access memory (RAM) , read only memory (ROM) , tapes, magnetic discs, optical discs, volatile memory, non-volatile memory, and any combination thereof.
  • RAM random access memory
  • ROM read only memory
  • tapes such as magnetic discs, optical discs, volatile memory, non-volatile memory, and any combination thereof.
  • memory 316 may be a non-transitory computer-readable storage medium that stores one or more computer-executable codes defining UE communicating component 342 and/or one or more of its subcomponents, and/or data associated therewith, when UE 104 is operating at least one processor 312 to execute UE communicating component 342 and/or one or more of its subcomponents.
  • Receiver 306 may include hardware, firmware, and/or software code executable by a processor for receiving data, the code comprising instructions and being stored in a memory (e.g., computer-readable medium) .
  • Receiver 306 may be, for example, a radio frequency (RF) receiver.
  • RF radio frequency
  • receiver 306 may receive signals transmitted by at least one base station 102. Additionally, receiver 306 may process such received signals, and also may obtain measurements of the signals, such as, but not limited to, Ec/Io, signal-to-noise ratio (SNR) , reference signal received power (RSRP) , received signal strength indicator (RSSI) , etc.
  • SNR signal-to-noise ratio
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • Transmitter 308 may include hardware, firmware, and/or software code executable by a processor for transmitting data, the code comprising instructions and being stored in a memory (e.g., computer-readable medium) .
  • a suitable example of transmitter 308 may including, but is not limited to, an RF transmitter.
  • UE 104 may include RF front end 388, which may operate in communication with one or more antennas 365 and transceiver 302 for receiving and transmitting radio transmissions, for example, wireless communications transmitted by at least one base station 102 or wireless transmissions transmitted by UE 104.
  • RF front end 388 may be connected to one or more antennas 365 and can include one or more low-noise amplifiers (LNAs) 390, one or more switches 392, one or more power amplifiers (PAs) 398, and one or more filters 396 for transmitting and receiving RF signals.
  • LNAs low-noise amplifiers
  • PAs power amplifiers
  • LNA 390 can amplify a received signal at a desired output level.
  • each LNA 390 may have a specified minimum and maximum gain values.
  • RF front end 388 may use one or more switches 392 to select a particular LNA 390 and its specified gain value based on a desired gain value for a particular application.
  • one or more PA (s) 398 may be used by RF front end 388 to amplify a signal for an RF output at a desired output power level.
  • each PA 398 may have specified minimum and maximum gain values.
  • RF front end 388 may use one or more switches 392 to select a particular PA 398 and its specified gain value based on a desired gain value for a particular application.
  • one or more filters 396 can be used by RF front end 388 to filter a received signal to obtain an input RF signal.
  • a respective filter 396 can be used to filter an output from a respective PA 398 to produce an output signal for transmission.
  • each filter 396 can be connected to a specific LNA 390 and/or PA 398.
  • RF front end 388 can use one or more switches 392 to select a transmit or receive path using a specified filter 396, LNA 390, and/or PA 398, based on a configuration as specified by transceiver 302 and/or processor 312.
  • transceiver 302 may be configured to transmit and receive wireless signals through one or more antennas 365 via RF front end 388.
  • transceiver may be tuned to operate at specified frequencies such that UE 104 can communicate with, for example, one or more base stations 102 or one or more cells associated with one or more base stations 102.
  • modem 340 can configure transceiver 302 to operate at a specified frequency and power level based on the UE configuration of the UE 104 and the communication protocol used by modem 340.
  • modem 340 can be a multiband-multimode modem, which can process digital data and communicate with transceiver 302 such that the digital data is sent and received using transceiver 302.
  • modem 340 can be multiband and be configured to support multiple frequency bands for a specific communications protocol.
  • modem 340 can be multimode and be configured to support multiple operating networks and communications protocols.
  • modem 340 can control one or more components of UE 104 (e.g., RF front end 388, transceiver 302) to enable transmission and/or reception of signals from the network based on a specified modem configuration.
  • the modem configuration can be based on the mode of the modem and the frequency band in use.
  • the modem configuration can be based on UE configuration information associated with UE 104 as provided by the network during cell selection and/or cell reselection.
  • UE communicating component 342 can optionally include an configuration processing component 352 for receiving and/or processing a configuration indicating spatial relationship information for a virtual downlink beam resource or AoA/AoD channel characteristics of a channel with a base station, an SRS component 354 for transmitting a SRS based on the spatial relationship information, and/or beam predicting component 356 for predicting a downlink beam for use in communicating with a network node, in accordance with aspects described herein.
  • an configuration processing component 352 for receiving and/or processing a configuration indicating spatial relationship information for a virtual downlink beam resource or AoA/AoD channel characteristics of a channel with a base station
  • SRS component 354 for transmitting a SRS based on the spatial relationship information
  • beam predicting component 356 for predicting a downlink beam for use in communicating with a network node, in accordance with aspects described herein.
  • the processor (s) 312 may correspond to one or more of the processors described in connection with the UE in FIG. 8.
  • the memory 316 may correspond to the memory described in connection with the UE in FIG. 8.
  • base station 102 may include a variety of components, some of which have already been described above, but including components such as one or more processors 412 and memory 416 and transceiver 402 in communication via one or more buses 444, which may operate in conjunction with modem 440 and BS communicating component 442 for configuring spatial relationship information for virtual downlink beam resources or AoA/AoD associated with a channel, in accordance with aspects described herein.
  • components such as one or more processors 412 and memory 416 and transceiver 402 in communication via one or more buses 444, which may operate in conjunction with modem 440 and BS communicating component 442 for configuring spatial relationship information for virtual downlink beam resources or AoA/AoD associated with a channel, in accordance with aspects described herein.
  • the transceiver 402, receiver 406, transmitter 408, one or more processors 412, memory 416, applications 475, buses 444, RF front end 488, LNAs 490, switches 492, filters 496, PAs 498, and one or more antennas 465 may be the same as or similar to the corresponding components of UE 104, as described above, but configured or otherwise programmed for base station operations as opposed to UE operations.
  • BS communicating component 442 can optionally include a configuring component 452 for generating and/or transmitting a configuration indicating spatial relationship information for a virtual downlink beam resource or AoA/AoD channel characteristics of a channel with a UE 104, and/or a beam predicting component 454 for predicting a downlink beam for use in communicating with a UE 104, in accordance with aspects described herein.
  • the processor (s) 412 may correspond to one or more of the processors described in connection with the base station in FIG. 8.
  • the memory 416 may correspond to the memory described in connection with the base station in FIG. 8.
  • FIG. 5 illustrates a flow chart of an example of a method 500 for receiving and using spatial relationship information for virtual downlink beam resources or AoA/AoD associated with a channel, in accordance with aspects described herein.
  • FIG. 6 illustrates a flow chart of an example of a method 600 for configuring spatial relationship information for virtual downlink beam resources or AoA/AoD associated with a channel, in accordance with aspects described herein.
  • a UE 104 can perform the functions described in method 500 using one or more of the components described in FIGS. 1 and 3.
  • a base station 102 e.g., a gNB, a monolithic base station, a portion of a disaggregated base station, etc.
  • Methods 500 and 600 can perform the functions described in method 600 using one or more of the components described in FIGS. 1 and 4.
  • Methods 500 and 600 are described in conjunction with one another for ease of explanation; however, the methods 500 and 600 are not required to be performed together and indeed can be performed independently using separate devices.
  • a configuration indicating spatial relationship information associated with a virtual downlink beam resource or a AoA/AoD associated with a channel between the UE and the network node can be transmitted for a UE.
  • configuring component 452 e.g., in conjunction with processor (s) 412, memory 416, transceiver 402, BS communicating component 442, etc., can transmit, for a UE (e.g., UE 104) , the configuration indicating spatial relationship information associated with the virtual downlink beam resource or the AoA/AoD associated with the channel between the UE and the network node.
  • configuring component 452 can transmit the configuration in radio resource control (RRC) signaling, media access control-control element (MAC-CE) , downlink control information (DCI) , and/or the like.
  • RRC radio resource control
  • MAC-CE media access control-control element
  • DCI downlink control information
  • a configuration indicating spatial relationship information associated with a virtual downlink beam resource or a AoA/AoD associated with a channel between the UE and the network node can be received from a network node.
  • configuration processing component 352 e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, UE communicating component 342, etc., can receive, from the network node (e.g., base station 102) , the configuration indicating spatial relationship information associated with the virtual downlink beam resource or the AoA/AoD associated with the channel between the UE and the network node.
  • configuring component 452 can transmit, and/or configuration processing component 352 can receive, the spatial relationship information in RRC signaling.
  • an information element (IE) for indicating spatial relationship information such as the SRS-SpatialRelationInfo IE defined in 5G NR, can be used to convey the spatial relationship information.
  • the SRS-SpatialRelationInfo IE can be extended to allow for specifying spatial relationship information for downlink reference signals that can include virtual downlink beam resources, AoA/AoD of a channel, etc., where the virtual downlink beam resources, AoA/AoD of a channel, etc.
  • the UE 104 can be predicted and/or reported by the UE 104, indicated by the network node as downlink beam prediction results, indicated by the UE 104 as a recommendation for a new uplink beam (which may be based on recommending a predicted downlink beam by indicating the virtual downlink beam resources, AoA/AoD of a channel, etc. ) , and/or the like.
  • the configuration can assign virtual resource or AoA/AoD-based spatial relationships for SRS resources, which can be configured at the SRS resource level (e.g., per SRS resource) .
  • the UE 104 can also be configured by the network node with an SRS resource for transmitting SRS to the network node.
  • the SRS-SpatialRelationInfo can be associated with the SRS resource and can be indicated as at least one of the following: 1) a virtual resource that is not actually transmitted by the network node, but can be predicted and reported (e.g., through channel state information (CSI) reports) by the UE 104 or indicated by the network node as beam prediction results; or 2) an AoA/AoD associated with the channel characteristics between the UE 104 and the network node, where the AoA/AoD can be reported by the UE 104 or indicated by the network node as spatial beam prediction results.
  • CSI channel state information
  • the configuration can include an identifier associated with the virtual resource or with the AoA/AoD characteristics, such that configuration processing component 352 can derive the spatial relationship information from the configuration given an identifier of the virtual resource or the AoA/AoD received in a beam prediction (e.g., at the UE 104 or from the network node) .
  • the configuration can assign virtual resource or AoA/AoD-based spatial relationships for a set of multiple SRS resources (e.g., per SRS resource set) . In one example, this may be conditioned on the configured usage parameter for the SRS resource set being nonCodebook or a new type of usage for the SRS resource set.
  • a SRS that is based on at least one of the virtual downlink beam resource or the AoA/AoD associated with the channel and according to the spatial relationship information can be transmitted to the network node.
  • SRS component 354 e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, UE communicating component 342, etc., can transmit, to the network node, the SRS that is based on at least one of the virtual downlink beam resource or the AoA/AoD associated with the channel and according to the spatial relationship information.
  • SRS component 354 can derive a spatial domain Tx filter used for transmitting the SRS resource, based on the (predicted) Rx spatial filter for receiving the quantities configured in the associated configuration (e.g., in the SRS-SpatialRelationInfo IE) .
  • a SRS that is based on at least one of the virtual downlink beam resource or the AoA/AoD associated with the channel and according to the spatial relationship information can be received for the UE.
  • BS communicating component 442 e.g., in conjunction with processor (s) 412, memory 416, transceiver 402, etc., can receive, for the UE (e.g., UE 104) , the SRS that is based on at least one of the virtual downlink beam resource or the AoA/AoD associated with the channel and according to the spatial relationship information.
  • the UE can perform beam prediction to predict a downlink beam or a corresponding uplink beam.
  • UE communicating component 342 can predict the beam using AI/ML-based beam prediction, as described above.
  • SD prediction UE communicating component 342 can predict, based on measurements of one or more beams of a first width, one or more beams of a second more narrow width.
  • TD prediction and/or SD prediction
  • UE communicating component 342 can predict, based on location or change in location of the UE, velocity or direction of movement of the UE, etc., and based on a current beam for the UE, a next beam for the UE.
  • UE communicating component 342 can predict, based on raw channel extraction, a beam for the UE.
  • the network node can perform beam prediction to predict the downlink beam for the UE based on similar considerations or measurements of the UE and/or can indicate the predicted beam to the UE by indicating a virtual downlink beam resource identifier, AoA/AoD channel characteristics (or an associated identifier) , etc.
  • a beam prediction result for the virtual downlink beam resource or for the AoA/AoD associated with the channel can be reported to the network node.
  • beam predicting component 356, e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, UE communicating component 342, etc., can report, to the network node (e.g., base station 102) , the beam prediction result for the virtual downlink beam resource or for the AoA/AoD associated with the channel.
  • the network node e.g., base station 102
  • beam predicting component 356 can predict the downlink beam out of a first collection of narrower beams using SD prediction based on measurements of a second collection of a lesser number of wide beams.
  • beam predicting component 356 can predict the downlink beam based on a current beam and a movement parameter of the UE 104, such as speed, direction, etc. a current location of the UE 104, and/or the like. In such examples, beam predicting component 356 can obtain a virtual downlink beam resource or associated identifier for the predicted downlink beam. In this example, SRS component 354 can obtain the spatial relationship information from the configuration based on the virtual downlink beam resource or associated identifier, as indicated in the configuration.
  • beam predicting component 356 can report the beam prediction result to the network node, which can include reporting the virtual downlink beam resource or associated identifier to the network node (e.g., with the SRS, in uplink control signaling, etc. ) .
  • beam predicting component 356 can discern the AoA/AoD characteristics of the channel with the network node, and SRS component 354 can obtain the spatial relationship information from the configuration based on the AoA/AoD characteristics of the channel, as indicated in the configuration. In addition, for example, beam predicting component 356 can report the AoA/AoD characteristics to the network node (e.g., with the SRS, in uplink control signaling, etc. ) . SRS component 354 can configure the beam for transmitting the SRS, for receiving downlink communications from the network node, for transmitting uplink communications to the network node, etc.
  • a beam prediction result for the virtual downlink beam resource or for the AoA/AoD associated with the channel can be received for the UE.
  • beam predicting component 454 e.g., in conjunction with processor (s) 412, memory 416, transceiver 402, BS communicating component 442, etc., can receive, for the UE, the beam prediction result for the virtual downlink beam resource or for the AoA/AoD associated with the channel.
  • beam predicting component 454 can receive the beam prediction result along with the SRS, in uplink control signaling, etc.
  • Beam predicting component 454 can use the beam prediction result to configure a beam for communicating with the UE 104, such as to receive the SRS from the UE 104, transmit downlink communications to the UE 104, receive uplink communications from the UE 104, etc.
  • a beam prediction result for the virtual downlink beam resource or for the AoA/AoD associated with the channel can be reported for the UE.
  • beam predicting component 454 e.g., in conjunction with processor (s) 412, memory 416, transceiver 402, BS communicating component 442, etc., can report, for the UE, the beam prediction result for the virtual downlink beam resource or for the AoA/AoD associated with the channel.
  • beam predicting component 454 can predict the downlink beam out of a first collection of narrower beams using SD prediction based on measurements received of a second collection of a lesser number of wide beams.
  • beam predicting component 454 can predict the downlink beam based on a current beam and a movement parameter of the UE 104, such as speed, direction, etc. a current location of the UE 104, and/or the like. In such examples, beam predicting component 454 can obtain a virtual downlink beam resource or associated identifier for the predicted downlink beam, which BS communicating component 442 can use in communicating with the UE 104. In addition, for example, beam predicting component 454 can report the beam prediction result to the UE 104, which can include reporting the virtual downlink beam resource or associated identifier to the UE 104 (e.g., in MAC-CE, DCI, etc. ) .
  • beam predicting component 454 can discern the AoA/AoD characteristics of the channel with the UE 104, and BS communicating component 442 can use a beam associated with the AoA/AoD characteristics of the channel for communicating with the UE 104. In addition, for example, beam predicting component 454 can report the AoA/AoD characteristics to the UE (e.g., in MAC-CE, DCI, etc. ) .
  • a beam prediction result for the virtual downlink beam resource or for the AoA/AoD associated with the channel can be received from the network node.
  • beam predicting component 356 e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, UE communicating component 342, etc., can receive, from the network node, the beam prediction result for the virtual downlink beam resource or for the AoA/AoD associated with the channel.
  • SRS component 354 can obtain the spatial relationship information for the beam prediction result (e.g., based on the virtual downlink beam resource or associated identifier, the AoA/AoD characteristics, etc. ) and can transmit the SRS using the spatial Tx filter based on the spatial relationship information, as described.
  • an uplink beam recommendation can be transmitted based on downlink beam predictions.
  • beam predicting component 356, e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, UE communicating component 342, etc. can transmit the uplink beam recommendation based on downlink beam predictions.
  • beam predicting component 356 can receive downlink beam predictions for multiple downlink beams from the network node (e.g., at Block 508) .
  • beam predicting component 356 can send an uplink beam recommendation to the network node, which can be one of the downlink beam predictions that beam predicting component 356 may select.
  • SRS component 354 can transmit the SRS based on the uplink beam recommendation.
  • MPE maximum permissible exposure
  • UE communicating component 342 e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, etc., can detect MPE at the UE 104, which can include detecting power or radiation above a threshold.
  • beam predicting component 356 can provide the uplink beam recommendation to the network node, where the uplink beam may mitigate the MPE at the UE 104.
  • an uplink beam recommendation based on downlink beam predictions can be received.
  • beam predicting component 454 e.g., in conjunction with processor (s) 412, memory 416, transceiver 402, BS communicating component 442, etc., can receive the uplink beam recommendation based on the downlink beam prediction.
  • beam predicting component 454 can transmit downlink beam predictions for multiple downlink beams to the UE (e.g., at Block 608) .
  • beam predicting component 454 can receive an uplink beam recommendation from the UE 104, which can be one of the downlink beam predictions.
  • BS communicating component 442 can receive the SRS based on the uplink beam recommendation. An example is shown in FIG. 7.
  • FIG. 7 illustrates an example of a system 700 for sending uplink beam recommendations based on downlink beam predictions, in accordance with aspects described herein.
  • System 700 includes a UE 104 that can communicate with a gNB 704.
  • gNB 704 can transmit, to the UE 104, a set-B beams for downlink beam predictions at 706, and UE 104 can transmit, to the gNB 704, a preferred set-A beams as beam prediction results, which can include a virtual resource identifier or AoA/AoD characteristics, at 708.
  • the preferred set-A beams can be a subset of the set-B of beams.
  • UE 104 can measure the set-B beams or can determine or otherwise predict set-A beams as next beams for the UE 104 based on the set-B beams.
  • gNB 704 can transmit, to the UE 104, downlink beam prediction results, which may include a virtual resource identifier or AoA/AoD characteristics, at 710.
  • gNB 704 can provide prediction result information for the preferred set-Abeams, such as virtual resource identifier or AoA/AoD characteristics, or can select or indicate a subset of the downlink beam prediction results, etc.
  • the UE 104 can transmit an uplink beam recommendation report to the gNB 704 (e.g., at 714 or 716) .
  • the UE 104 can recommend to gNB 704 a new UL beam, where the recommendation can be based on indicating at least one of the following: 1) a virtual resource that is not actually transmitted by the gNB 704, but can be predicted and reported (e.g., through CSI reports) by the UE 104 or gNB 704 indicated as beam prediction results; or 2) an AoA/AoD associated with the channel characteristics between the UE 104 and the gNB 704, where the AoA/AoD can be reported by the UE 104 or indicated by the gNB 704 as spatial beam prediction results.
  • providing the uplink beam recommendation can be conditioned on MPE.
  • the UE 104 can transmit the uplink beam recommendation report (e.g., at 714 or 716) conditioned on that the UE has recently reported a power headroom (PHR) MAC-CE carrying power management-maximum power reduction (P-MPR) terms.
  • PHR power headroom
  • P-MPR power management-maximum power reduction
  • the UE 104 can transmit the uplink beam recommendation report at 714 after (e.g., and/or within a predefined timer after) transmitting the PHR carrying M-MPR terms at 712.
  • the uplink beam recommendation reported can be carried by MAC-CE, DCI, etc.
  • the UE 104 can transmit the PHR MAC-CE carrying P-MPR terms, and also carrying the uplink beam recommendation report at 716.
  • FIG. 8 is a block diagram of a MIMO communication system 800 including a base station 102 and a UE 104.
  • the MIMO communication system 800 may illustrate aspects of the wireless communication access network 100 described with reference to FIG. 1.
  • the base station 102 may be an example of aspects of the base station 102 described with reference to FIG. 1.
  • the base station 102 may be equipped with antennas 834 and 835, and the UE 104 may be equipped with antennas 852 and 853.
  • the base station 102 may be able to send data over multiple communication links at the same time.
  • Each communication link may be called a “layer” and the “rank” of the communication link may indicate the number of layers used for communication. For example, in a 2x2 MIMO communication system where base station 102 transmits two “layers, ” the rank of the communication link between the base station 102 and the UE 104 is two.
  • a transmit (Tx) processor 820 may receive data from a data source.
  • the transmit processor 820 may process the data.
  • the transmit processor 820 may also generate control symbols or reference symbols.
  • a transmit MIMO processor 830 may perform spatial processing (e.g., precoding) on data symbols, control symbols, or reference symbols, if applicable, and may provide output symbol streams to the transmit modulator/demodulators 832 and 833.
  • Each modulator/demodulator 832 through 833 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream.
  • Each modulator/demodulator 832 through 833 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a DL signal.
  • DL signals from modulator/demodulators 832 and 833 may be transmitted via the antennas 834 and 835, respectively.
  • the UE 104 may be an example of aspects of the UEs 104 described with reference to FIGS. 1 and 3.
  • the UE antennas 852 and 853 may receive the DL signals from the base station 102 and may provide the received signals to the modulator/demodulators 854 and 855, respectively.
  • Each modulator/demodulator 854 through 855 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples.
  • Each modulator/demodulator 854 through 855 may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols.
  • a MIMO detector 856 may obtain received symbols from the modulator/demodulators 854 and 855, perform MIMO detection on the received symbols, if applicable, and provide detected symbols.
  • a receive (Rx) processor 858 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, providing decoded data for the UE 104 to a data output, and provide decoded control information to a processor 880, or memory 882.
  • the processor 880 may in some cases execute stored instructions to instantiate a UE communicating component 342 (see e.g., FIGS. 1 and 3) .
  • a transmit processor 864 may receive and process data from a data source.
  • the transmit processor 864 may also generate reference symbols for a reference signal.
  • the symbols from the transmit processor 864 may be precoded by a transmit MIMO processor 866 if applicable, further processed by the modulator/demodulators 854 and 855 (e.g., for single carrier-FDMA, etc. ) , and be transmitted to the base station 102 in accordance with the communication parameters received from the base station 102.
  • the UL signals from the UE 104 may be received by the antennas 834 and 835, processed by the modulator/demodulators 832 and 833, detected by a MIMO detector 836 if applicable, and further processed by a receive processor 838.
  • the receive processor 838 may provide decoded data to a data output and to the processor 840 or memory 842.
  • the processor 840 may in some cases execute stored instructions to instantiate a BS communicating component 442 (see e.g., FIGS. 1 and 4) .
  • the components of the UE 104 may, individually or collectively, be implemented with one or more ASICs adapted to perform some or all of the applicable functions in hardware.
  • Each of the noted modules may be a means for performing one or more functions related to operation of the MIMO communication system 800.
  • the components of the base station 102 may, individually or collectively, be implemented with one or more application specific integrated circuits (ASICs) adapted to perform some or all of the applicable functions in hardware.
  • ASICs application specific integrated circuits
  • Each of the noted components may be a means for performing one or more functions related to operation of the MIMO communication system 800.
  • Aspect 1 is a method for wireless communication at a UE including receiving, from a network node, a configuration indicating spatial relationship information associated with at least one of: a virtual downlink beam resource; or an AoA or AoD associated with a channel between the UE and the network node, and transmitting, to the network node, a SRS based on at least one of the virtual downlink beam resource or the AoA or AoD associated with the channel and according to the spatial relationship information.
  • the method of Aspect 1 includes where the configuration indicates the spatial relationship information per SRS resource.
  • the method of Aspect 2 includes reporting, to the network node, a beam prediction result for the virtual downlink beam resource, where transmitting the SRS includes transmitting the SRS based on the virtual downlink beam resource and according to the spatial relationship information specified in the configuration for the virtual downlink beam resource.
  • the method of any of Aspects 2 or 3 includes receiving, from the network node, a beam prediction result for the virtual downlink beam resource, where transmitting the SRS includes transmitting the SRS based on the virtual downlink beam resource and according to the spatial relationship information specified in the configuration for the virtual downlink beam resource.
  • the method of any of Aspects 2 to 4 includes reporting, to the network node, a beam prediction result for the AoA or AoD associated with the channel, where transmitting the SRS includes transmitting the SRS based on the virtual downlink beam resource and according to the spatial relationship information specified in the configuration for the AoA or AoD associated with the channel.
  • the method of any of Aspects 2 to 5 includes receiving, from the network node, a beam prediction result for the AoA or AoD associated with the channel, where transmitting the SRS includes transmitting the SRS based on the virtual downlink beam resource and according to the spatial relationship information specified in the configuration for the AoA or AoD associated with the channel.
  • the method of any of Aspects 1 to 6 includes where the configuration indicates the spatial relationship information per SRS resource set of multiple SRS resources.
  • the method of Aspect 7 includes where transmitting the SRS based on at least one of the virtual downlink beam resource or the AoA or AoD associated with the channel is based on a configured usage for the SRS resource set indicating nonCodebook.
  • the method of any of Aspects 7 or 8 includes where transmitting the SRS based on at least one of the virtual downlink beam resource or the AoA or AoD associated with the channel is based on a configured usage for the SRS resource set indicating a type of usage for the virtual downlink beam resource or the AoA or AoD associated with the channel.
  • the method of any of Aspects 1 to 9 includes transmitting, to the network node, an uplink beam recommendation based on downlink beam predictions, where the uplink beam recommendation includes one of the virtual downlink beam resource, or the AoA or AoD associated with the channel.
  • the method of Aspect 10 includes where transmitting the uplink beam recommendation is based on detecting, at the UE, a MPE event.
  • the method of Aspect 11 includes where detecting the MPE event is based on detecting, at the UE and within a period of time before transmitting the uplink beam recommendation, transmitting of a PHR MAC-CE with P-MPR terms.
  • the method of any of Aspects 11 or 12 includes where transmitting the uplink beam recommendation is in a MAC-CE or DCI.
  • Aspect 14 is a method for wireless communication at a network node including transmitting, for a UE, a configuration indicating spatial relationship information associated with at least one of: a virtual downlink beam resource; or an AoA or AoD associated with a channel between the UE and the network node, and receiving, for the UE, a SRS based on at least one of the virtual downlink beam resource or the AoA or AoD associated with the channel and according to the spatial relationship information.
  • the method of Aspect 14 includes where the configuration indicates the spatial relationship information per SRS resource.
  • the method of Aspect 15 includes receiving, for the UE, a beam prediction result for the virtual downlink beam resource, where receiving the SRS includes receiving the SRS based on the virtual downlink beam resource and according to the spatial relationship information specified in the configuration for the virtual downlink beam resource.
  • the method of any of Aspects 15 or 16 includes transmitting, for the UE, a beam prediction result for the virtual downlink beam resource, where receiving the SRS includes receiving the SRS based on the virtual downlink beam resource and according to the spatial relationship information specified in the configuration for the virtual downlink beam resource.
  • the method of any of Aspects 15 to 17 includes receiving, for the UE, a beam prediction result for the AoA or AoD associated with the channel, where receiving the SRS includes receiving the SRS based on the virtual downlink beam resource and according to the spatial relationship information specified in the configuration for the AoA or AoD associated with the channel.
  • the method of any of Aspects 15 to 18 includes transmitting, for the UE, a beam prediction result for the AoA or AoD associated with the channel, where receiving the SRS includes receiving the SRS based on the virtual downlink beam resource and according to the spatial relationship information specified in the configuration for the AoA or AoD associated with the channel.
  • the method of any of Aspects 14 to 19 includes where the configuration indicates the spatial relationship information per SRS resource set of multiple SRS resources.
  • the method of Aspect 20 includes where receiving the SRS based on at least one of the virtual downlink beam resource or the AoA or AoD associated with the channel is based on a configured usage for the SRS resource set indicating nonCodebook.
  • the method of any of Aspects 20 or 21 includes where receiving the SRS based on at least one of the virtual downlink beam resource or the AoA or AoD associated with the channel is based on a configured usage for the SRS resource set indicating a type of usage for the virtual downlink beam resource or the AoA or AoD associated with the channel.
  • the method of any of Aspects 14 to 22 includes receiving, for the UE, an uplink beam recommendation based on downlink beam predictions, where the uplink beam recommendation includes one of the virtual downlink beam resource, or the AoA or AoD associated with the channel.
  • the method of Aspect 23 includes where receiving the uplink beam recommendation is based on a MPE event at the UE.
  • the method of any of Aspects 23 or 24 includes where receiving the uplink beam recommendation is in a MAC-CE or DCI.
  • Aspect 26 is an apparatus for wireless communication including a processor, memory coupled with the processor, and instructions stored in the memory and operable, when executed by the processor, to cause the apparatus to perform any of the methods of Aspects 1 to 25.
  • Aspect 27 is an apparatus for wireless communication including means for performing any of the methods of Aspects 1 to 25.
  • Aspect 28 is a computer-readable medium including code executable by one or more processors for wireless communications, the code including code for performing any of the methods of Aspects 1 to 25.
  • Information and signals may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, computer-executable code or instructions stored on a computer-readable medium, or any combination thereof.
  • a specially programmed device such as but not limited to a processor, a digital signal processor (DSP) , an ASIC, a field programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic, a discrete hardware component, or any combination thereof designed to perform the functions described herein.
  • DSP digital signal processor
  • FPGA field programmable gate array
  • a specially programmed processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a specially programmed processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a non-transitory computer-readable medium. Other examples and implementations are within the scope and spirit of the disclosure and appended claims. For example, due to the nature of software, functions described above can be implemented using software executed by a specially programmed processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage medium may be any available medium that can be accessed by a general purpose or special purpose computer.
  • computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • any connection is properly termed a computer-readable medium.
  • Disk and disc include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Aspects described herein relate to receiving, from a network node, a configuration indicating spatial relationship information associated with at least one of a virtual downlink beam resource, or an angle-of-arrival (AoA) or angle-of-departure (AoD) associated with a channel between the UE and the network node. A sounding reference signal (SRS) can be transmitted to the network node based on at least one of the virtual downlink beam resource or the AoA or AoD associated with the channel and according to the spatial relationship information. Other aspects relate to transmitting the configuration and receiving the SRS.

Description

TECHNIQUES FOR USING PREDICTED BEAMS IN WIRELESS COMMUNICATIONS
FIELD OF THE DISCLOSURE
Aspects of the present disclosure relate generally to wireless communication systems, and more particularly, to techniques for using beams based on beam predictions.
DESCRIPTION OF RELATED ART
Wireless communication systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be multiple-access systems capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include code-division multiple access (CDMA) systems, time-division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, and orthogonal frequency-division multiple access (OFDMA) systems, and single-carrier frequency division multiple access (SC-FDMA) systems.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. For example, a fifth generation (5G) wireless communications technology (which can be referred to as 5G new radio (5G NR) ) is envisaged to expand and support diverse usage scenarios and applications with respect to current mobile network generations. In an aspect, 5G communications technology can include: enhanced mobile broadband addressing human-centric use cases for access to multimedia content, services and data; ultra-reliable-low latency communications (URLLC) with certain specifications for latency and reliability; and massive machine type communications, which can allow a very large number of connected devices and transmission of a relatively low volume of non-delay-sensitive information.
SUMMARY
The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive  overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.
According to an aspect, an apparatus for wireless communication is provided that includes a processor, memory coupled with the processor, and instructions stored in the memory. The instructions are operable, when executed by the processor, to cause the apparatus to receive, from a network node, a configuration indicating spatial relationship information associated with at least one of: a virtual downlink beam resource; or an AoA or AoD associated with a channel between the apparatus and the network node, and transmit, to the network node, a sounding reference signal (SRS) based on at least one of the virtual downlink beam resource or the AoA or AoD associated with the channel and according to the spatial relationship information.
In another aspect, an apparatus for wireless communication is provided that includes a processor, memory coupled with the processor, and instructions stored in the memory. The instructions are operable, when executed by the processor, to cause the apparatus to transmit, for a user equipment (UE) , a configuration indicating spatial relationship information associated with at least one of: a virtual downlink beam resource; or an AoA or AoD associated with a channel between the UE and the apparatus, and receive, for the UE, a SRS based on at least one of the virtual downlink beam resource or the AoA or AoD associated with the channel and according to the spatial relationship information.
In another aspect, a method for wireless communication at a UE is provided that includes receiving, from a network node, a configuration indicating spatial relationship information associated with at least one of: a virtual downlink beam resource; or an AoA or AoD associated with a channel between the UE and the network node, and transmitting, to the network node, a SRS based on at least one of the virtual downlink beam resource or the AoA or AoD associated with the channel and according to the spatial relationship information.
In another aspect, a method for wireless communication at a network node is provided that includes transmitting, for a UE, a configuration indicating spatial relationship information associated with at least one of: a virtual downlink beam resource; or an AoA or AoD associated with a channel between the UE and the network node, and  receiving, for the UE, a SRS based on at least one of the virtual downlink beam resource or the AoA or AoD associated with the channel and according to the spatial relationship information.
In a further aspect, an apparatus for wireless communication is provided that includes a transceiver, a memory configured to store instructions, and one or more processors communicatively coupled with the transceiver and the memory. The one or more processors are configured to execute the instructions to perform the operations of methods described herein. In another aspect, an apparatus for wireless communication is provided that includes means for performing the operations of methods described herein. In yet another aspect, a computer-readable medium is provided including code executable by one or more processors to perform the operations of methods described herein.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
BRIEF DESCRIPTION OF THE DRAWINGS
The disclosed aspects will hereinafter be described in conjunction with the appended drawings, provided to illustrate and not to limit the disclosed aspects, wherein like designations denote like elements, and in which:
FIG. 1 illustrates an example of a wireless communication system, in accordance with various aspects of the present disclosure;
FIG. 2 is a diagram illustrating an example of disaggregated base station architecture, in accordance with various aspects of the present disclosure;
FIG. 3 is a block diagram illustrating an example of a user equipment (UE) , in accordance with various aspects of the present disclosure;
FIG. 4 is a block diagram illustrating an example of a base station, in accordance with various aspects of the present disclosure;
FIG. 5 is a flow chart illustrating an example of a method for receiving and using spatial relationship information for virtual downlink beam resources or angle-of-arrival  (AoA) /angle-of-departure (AoD) associated with a channel, in accordance with aspects described herein;
FIG. 6 is a flow chart illustrating an example of a method for configuring spatial relationship information for virtual downlink beam resources or AoA/AoD associated with a channel, in accordance with aspects described herein;
FIG. 7 illustrates an example of a system for sending uplink beam recommendations based on downlink beam predictions, in accordance with aspects described herein; and
FIG. 8 is a block diagram illustrating an example of a multiple-input multiple-output (MIMO) communication system including a base station and a UE, in accordance with various aspects of the present disclosure.
DETAILED DESCRIPTION
Various aspects are now described with reference to the drawings. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of one or more aspects. It may be evident, however, that such aspect (s) may be practiced without these specific details.
The described features generally relate to using predicted beams in wireless communications. In some wireless communication technologies, such as fifth generation (5G) new radio (NR) , nodes of the network, such as user equipment (UEs) , network nodes, etc., can perform wireless communications using beams by beamforming antenna elements to achieve a beam communicated in a spatial direction. The devices can use artificial intelligence (AI) /machine learning (ML) -based techniques to derive a beam to be used. For example, the devices can perform beam prediction in time and/or spatial direction for overhead and latency reduction otherwise associated with performing signal measurements to select the beam. In some examples, a UE and/or gNB can collaborate to derive a beam to use, which can include deriving a beam for the gNB to use and a reciprocal beam for the UE to use. The AI/ML approaches for the selected use cases can be diverse enough to support various requirements on gNB/UE collaboration levels.
For example, without using AI/ML prediction, beam qualities/failures are identified via measurements, where more power/overhead can be needed to achieve good performance, beam accuracy maybe limited due to restrictions on power/overhead, latency/throughput can be impacted by beam resuming efforts, etc. Predictive beam  management (in space division (SD) /time division (TD) /frequency division (FD) ) can lead to power/overhead reduction or accuracy/latency/throughput improvement. For example, predicting non-measured beam qualities can lead to lower power/overhead or better accuracy, and/or predicting future beam blockage/failure can lead to better latency/throughput. Beam prediction can be a highly non-linear problem. For example, predicting future transmit beam qualities can depend on a UE’s moving speed/trajectory, receive beams used or to be used, interference, etc., which can be difficult to model via conventional statistical signaling processing methods.
Accordingly, beams can be predicted using AI/ML, where prediction can occur at the UE and/or the gNB. Where the beams are predicted can provide tradeoff between performance and UE power. For example, to predict future downlink transmission beam qualities, UE has more observations (via measurements) than gNB (via UE feedback) , thus prediction at the UE may outperform prediction at the gNB, by consuming more UE power for the inference efforts. Whether training is performed at the gNB or the UE can balance efforts on data collection with efforts on UE computation. For training at the gNB, data can be collected via (enhanced) air interface or via application-layer approaches. For training at the UE, additional UE computation/buffering efforts can be used by model training and may use necessary data storage.
AI/ML-based beam prediction can be based on one or more of SD+TD compressive beam measurements that can use less beam measurements and provide UE power reduction using a codebook based SD selection, or raw channel extraction that can provide better beam management accuracy without excessive beam sweeping using a non-codebook based SD selection, or a combination thereof. In another example, AI/ML-based beam prediction can include TD prediction for predicting future physical uplink shared channel (PUSCH) transmit beams for the UE, which can use less frequency sounding reference signal (SRS) transmission at the UE, leading to UE power reduction and SRS overhead reduction. In another example, AI/ML-based beam prediction can include SD+TD prediction for predicting future PUSCH transmit beams for the UE in non-sounded directions, which can use spatially sparse SRS transmission at the UE, leading to UE power reduction and SRS overhead reduction, as well as a more accurate uplink transmit beam. In another example, AI/ML-based beam prediction can include FD prediction for predicting higher frequency uplink transmit beams for the UE via lower frequency SRS, which can provide better coverage or less radio frequency (RF) phase  shifting at lower frequency, leading to UE power reduction, and a less number of beams needed at lower frequency, leading to SRS overhead reduction.
In aspects described herein, a UE can perform uplink beam prediction based on predicted downlink beams when the UE has beam correspondence (e.g., such that the UE can use a beam that is reciprocal of the downlink beam) . For example, when predicting a DL beam (s) , the associated receive beam may also be predicted by the UE. In general, if UE has beam correspondence, the UE can use the receive (Rx) spatial filter receiving a downlink reference signal (DL-RS) to derive the transmit (Tx) spatial filter for transmitting the associated SRS. For predicted downlink beams, however, the beams may be in virtual resources and/or may be associated with angle-of-arrival (AoA) /angle-of-departure (AoD) channel characteristics of the channel between the network and the UE, such that the network may not transmit, and the UE may not receive, the downlink beam. In this example, the UE may not have a signal from which to derive the Rx spatial filter for receiving the downlink beam. In accordance with aspects described herein, the UE can use a predicted Rx spatial filter for receiving such predicted downlink beam, and/or can derive the Tx spatial filter for transmitting the associated SRS.
In one example, the network can configure SRS spatial relation information for the UE, where the SRS spatial relation information can be associated with virtual resources or AoA/AoD that can be predicted or reported by the UE or network indicated as beam prediction results. Thus, when a downlink beam is predicted (e.g., by the UE, or by the network and provided to the UE) , the UE can derive the SRS spatial relation information for the predicted downlink beam and accordingly transmit an associated SRS using a Tx spatial filter that is based on the SRS spatial relation information for the predicted downlink beam. This can result in less overhead needed for the UE to transmit the SRS, which can conserve radio resources and UE processing requirements. This can accordingly improve user experience with using the network and/or the UE, etc.
The described features will be presented in more detail below with reference to FIGS. 1-8.
As used in this application, the terms “component, ” “module, ” “system” and the like are intended to include a computer-related entity, such as but not limited to hardware, firmware, a combination of hardware and software, software, or software in execution. For example, a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or  a computer. By way of illustration, both an application running on a computing device and the computing device can be a component. One or more components can reside within a process and/or thread of execution and a component can be localized on one computer and/or distributed between two or more computers. In addition, these components can execute from various computer readable media having various data structures stored thereon. The components can communicate by way of local and/or remote processes such as in accordance with a signal having one or more data packets, such as data from one component interacting with another component in a local system, distributed system, and/or across a network such as the Internet with other systems by way of the signal.
Techniques described herein may be used for various wireless communication systems such as CDMA, TDMA, FDMA, OFDMA, single carrier-FDMA, and other systems. The terms “system” and “network” may often be used interchangeably. A CDMA system may implement a radio technology such as CDMA2000, Universal Terrestrial Radio Access (UTRA) , etc. CDMA2000 covers IS-2000, IS-95, and IS-856 standards. IS-2000 Releases 0 and A are commonly referred to as CDMA2000 1X, 1X, etc. IS-856 (TIA-856) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc. UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA. A TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM) . An OFDMA system may implement a radio technology such as Ultra Mobile Broadband (UMB) , Evolved UTRA (E-UTRA) , IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM TM, etc. UTRA and E-UTRA are part of Universal Mobile Telecommunication System (UMTS) . 3GPP Long Term Evolution (LTE) and LTE-Advanced (LTE-A) are new releases of UMTS that use E-UTRA. UTRA, E-UTRA, UMTS, LTE, LTE-A, and GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) . CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . The techniques described herein may be used for the systems and radio technologies mentioned above as well as other systems and radio technologies, including cellular (e.g., LTE) communications over a shared radio frequency spectrum band. The description below, however, describes an LTE/LTE-A system for purposes of example, and LTE terminology is used in much of the description below, although the techniques are applicable beyond LTE/LTE-Aapplications (e.g., to  fifth generation (5G) new radio (NR) networks or other next generation communication systems) .
The following description provides examples, and is not limiting of the scope, applicability, or examples set forth in the claims. Changes may be made in the function and arrangement of elements discussed without departing from the scope of the disclosure. Various examples may omit, substitute, or add various procedures or components as appropriate. For instance, the methods described may be performed in an order different from that described, and various steps may be added, omitted, or combined. Also, features described with respect to some examples may be combined in other examples.
Various aspects or features will be presented in terms of systems that can include a number of devices, components, modules, and the like. It is to be understood and appreciated that the various systems can include additional devices, components, modules, etc. and/or may not include all of the devices, components, modules etc. discussed in connection with the figures. A combination of these approaches can also be used.
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100. The wireless communications system (also referred to as a wireless wide area network (WWAN) ) can include base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and/or a 5G Core (5GC) 190. The base stations 102 may include macro cells (high power cellular base station) and/or small cells (low power cellular base station) . The macro cells can include base stations. The small cells can include femtocells, picocells, and microcells. In an example, the base stations 102 may also include gNBs 180, as described further herein. In one example, some nodes of the wireless communication system may have a modem 340 and UE communicating component 342 for receiving spatial relationship information for virtual downlink beam resources or AoA/AoD associated with a channel, in accordance with aspects described herein. In addition, some nodes may have a modem 440 and BS communicating component 442 for configuring spatial relationship information for virtual downlink beam resources or AoA/AoD associated with a channel, in accordance with aspects described herein. Though a UE 104 is shown as having the modem 340 and UE communicating component 342 and a base station 102/gNB 180 is shown as having the modem 440 and BS communicating component 442, this is one illustrative example, and substantially any  node or type of node may include a modem 340 and UE communicating component 342 and/or a modem 440 and BS communicating component 442 for providing corresponding functionalities described herein.
The base stations 102 configured for 4G LTE (which can collectively be referred to as Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN) ) may interface with the EPC 160 through backhaul links 132 (e.g., using an S1 interface) . The base stations 102 configured for 5G NR (which can collectively be referred to as Next Generation RAN (NG-RAN) ) may interface with 5GC 190 through backhaul links 184. In addition to other functions, the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, head compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages. The base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or 5GC 190) with each other over backhaul links 134 (e.g., using an X2 interface) . The backhaul links 134 may be wired or wireless.
The base stations 102 may wirelessly communicate with one or more UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102. A network that includes both small cell and macro cells may be referred to as a heterogeneous network. A heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group, which can be referred to as a closed subscriber group (CSG) . The communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104. The communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity. The communication links may be through one  or more carriers. The base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc. MHz) bandwidth per carrier allocated in a carrier aggregation of up to a total of Yx MHz (e.g., for x component carriers) used for transmission in the DL and/or the UL direction. The carriers may or may not be adjacent to each other. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or less carriers may be allocated for DL than for UL) . The component carriers may include a primary component carrier and one or more secondary component carriers. A primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
In another example, certain UEs 104 may communicate with each other using device-to-device (D2D) communication link 158. The D2D communication link 158 may use the DL/UL WWAN spectrum. The D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) . D2D communication may be through a variety of wireless D2D communications systems, such as for example, FlashLinQ, WiMedia, Bluetooth, ZigBee, Wi-Fi based on the IEEE 802.11 standard, LTE, or NR.
The wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154 in a 5 GHz unlicensed frequency spectrum. When communicating in an unlicensed frequency spectrum, the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
The small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ NR and use the same 5 GHz unlicensed frequency spectrum as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
base station 102, whether a small cell 102' or a large cell (e.g., macro base station) , may include an eNB, gNodeB (gNB) , or other type of base station. Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave (mmW) frequencies, and/or near mmW frequencies in communication with the UE 104. When the gNB 180 operates in mmW or near mmW frequencies, the gNB 180 may  be referred to as an mmW base station. Extremely high frequency (EHF) is part of the RF in the electromagnetic spectrum. EHF has a range of 30 GHz to 300 GHz and a wavelength between 1 millimeter and 10 millimeters. Radio waves in the band may be referred to as a millimeter wave. Near mmW may extend down to a frequency of 3 GHz with a wavelength of 100 millimeters. The super high frequency (SHF) band extends between 3 GHz and 30 GHz, also referred to as centimeter wave. Communications using the mmW /near mmW radio frequency band has extremely high path loss and a short range. The mmW base station 180 may utilize beamforming 182 with the UE 104 to compensate for the extremely high path loss and short range. A base station 102 referred to herein can include a gNB 180.
The EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172. The MME 162 may be in communication with a Home Subscriber Server (HSS) 174. The MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160. Generally, the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172. The PDN Gateway 172 provides UE IP address allocation as well as other functions. The PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176. The IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services. The BM-SC 170 may provide functions for MBMS user service provisioning and delivery. The BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions. The MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
The 5GC 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195. The AMF 192 may be in communication with a Unified Data  Management (UDM) 196. The AMF 192 can be a control node that processes the signaling between the UEs 104 and the 5GC 190. Generally, the AMF 192 can provide QoS flow and session management. User Internet protocol (IP) packets (e.g., from one or more UEs 104) can be transferred through the UPF 195. The UPF 195 can provide UE IP address allocation for one or more UEs, as well as other functions. The UPF 195 is connected to the IP Services 197. The IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
The base station may also be referred to as a gNB, Node B, evolved Node B (eNB) , an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology. The base station 102 provides an access point to the EPC 160 or 5GC 190 for a UE 104. Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device. Some of the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) . IoT UEs may include machine type communication (MTC) /enhanced MTC (eMTC, also referred to as category (CAT) -M, Cat M1) UEs, NB-IoT (also referred to as CAT NB1) UEs, as well as other types of UEs. In the present disclosure, eMTC and NB-IoT may refer to future technologies that may evolve from or may be based on these technologies. For example, eMTC may include FeMTC (further eMTC) , eFeMTC (enhanced further eMTC) , mMTC (massive MTC) , etc., and NB-IoT may include eNB-IoT (enhanced NB-IoT) , FeNB-IoT (further enhanced NB-IoT) , etc. The UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
Deployment of communication systems, such as 5G new radio (NR) systems, may be arranged in multiple manners with various components or constituent parts. In a 5G NR system, or network, a network node, a network entity, a mobility element of a network, a radio access network (RAN) node, a core network node, a network element, or a network equipment, such as a base station (BS, e.g., BS 102) , or one or more units (or one or more components) performing base station functionality, may be implemented in an aggregated or disaggregated architecture. For example, a BS (such as a Node B (NB) , evolved NB (eNB) , NR BS, 5G NB, access point (AP) , a transmit receive point (TRP) , or a cell, etc. ) may be implemented as an aggregated base station (also known as a standalone BS or a monolithic BS) or a disaggregated base station.
An aggregated base station may be configured to utilize a radio protocol stack that is physically or logically integrated within a single RAN node. A disaggregated base station may be configured to utilize a protocol stack that is physically or logically distributed among two or more units (such as one or more central or centralized units (CUs) , one or more distributed units (DUs) , or one or more radio units (RUs) ) . In some aspects, a CU may be implemented within a RAN node, and one or more DUs may be co-located with the CU, or alternatively, may be geographically or virtually distributed throughout one or multiple other RAN nodes. The DUs may be implemented to communicate with one or more RUs. Each of the CU, DU and RU also can be implemented as virtual units, i.e., a virtual central unit (VCU) , a virtual distributed unit (VDU) , or a virtual radio unit (VRU) .
Base station-type operation or network design may consider aggregation characteristics of base station functionality. For example, disaggregated base stations may be utilized in an integrated access backhaul (IAB) network, an open radio access network (O-RAN (such as the network configuration sponsored by the O-RAN Alliance) ) , or a virtualized radio access network (vRAN, also known as a cloud radio access network (C-RAN) ) . Disaggregation may include distributing functionality across two or more units at various physical locations, as well as distributing functionality for at least one unit virtually, which can enable flexibility in network design. The various units of the disaggregated base station, or disaggregated RAN architecture, can be configured for wired or wireless communication with at least one other unit.
In an example, BS communicating component 442 can transmit, and/or UE communicating component 342 can receive, spatial relationship information for virtual  downlink beam resources and/or AoA/AoD channel characteristics. In this example, the UE 104 and/or base station 102 can predict a downlink beam for communications between the UE 104 and the base station 102, and the UE 104 can derive a Tx spatial filter for transmitting a SRS corresponding to the predicted downlink beam. For example, the predicted downlink beam can be indicated as a virtual downlink beam resource that is not actually transmitted by the base station, or as AoA/AoD associated with the channel characteristics between the UE 104 and base station 102. In this example, UE communicating component 342 can obtain the spatial relationship information associated with the virtual downlink beam resource or the AoA/AoD, and can accordingly transmit a SRS using a Tx spatial filter that is based on the spatial relationship information.
FIG. 2 shows a diagram illustrating an example of disaggregated base station 200 architecture. The disaggregated base station 200 architecture may include one or more central units (CUs) 210 that can communicate directly with a core network 220 via a backhaul link, or indirectly with the core network 220 through one or more disaggregated base station units (such as a Near-Real Time (Near-RT) RAN Intelligent Controller (RIC) 225 via an E2 link, or a Non-Real Time (Non-RT) RIC 215 associated with a Service Management and Orchestration (SMO) Framework 205, or both) . A CU 210 may communicate with one or more distributed units (DUs) 230 via respective midhaul links, such as an F1 interface. The DUs 230 may communicate with one or more radio units (RUs) 240 via respective fronthaul links. The RUs 240 may communicate with respective UEs 104 via one or more radio frequency (RF) access links. In some implementations, the UE 104 may be simultaneously served by multiple RUs 240.
Each of the units, e.g., the CUs 210, the DUs 230, the RUs 240, as well as the Near-RT RICs 225, the Non-RT RICs 215 and the SMO Framework 205, may include one or more interfaces or be coupled to one or more interfaces configured to receive or transmit signals, data, or information (collectively, signals) via a wired or wireless transmission medium. Each of the units, or an associated processor or controller providing instructions to the communication interfaces of the units, can be configured to communicate with one or more of the other units via the transmission medium. For example, the units can include a wired interface configured to receive or transmit signals over a wired transmission medium to one or more of the other units. Additionally, the units can include a wireless interface, which may include a receiver, a transmitter or  transceiver (such as a radio frequency (RF) transceiver) , configured to receive or transmit signals, or both, over a wireless transmission medium to one or more of the other units.
In some aspects, the CU 210 may host one or more higher layer control functions. Such control functions can include radio resource control (RRC) , packet data convergence protocol (PDCP) , service data adaptation protocol (SDAP) , or the like. Each control function can be implemented with an interface configured to communicate signals with other control functions hosted by the CU 210. The CU 210 may be configured to handle user plane functionality (i.e., Central Unit –User Plane (CU-UP) ) , control plane functionality (i.e., Central Unit –Control Plane (CU-CP) ) , or a combination thereof. In some implementations, the CU 210 can be logically split into one or more CU-UP units and one or more CU-CP units. The CU-UP unit can communicate bidirectionally with the CU-CP unit via an interface, such as the E1 interface when implemented in an O-RAN configuration. The CU 210 can be implemented to communicate with the DU 230, as necessary, for network control and signaling.
The DU 230 may correspond to a logical unit that includes one or more base station functions to control the operation of one or more RUs 240. In some aspects, the DU 230 may host one or more of a radio link control (RLC) layer, a medium access control (MAC) layer, and one or more high physical (PHY) layers (such as modules for forward error correction (FEC) encoding and decoding, scrambling, modulation and demodulation, or the like) depending, at least in part, on a functional split, such as those defined by the third Generation Partnership Project (3GPP) . In some aspects, the DU 230 may further host one or more low PHY layers. Each layer (or module) can be implemented with an interface configured to communicate signals with other layers (and modules) hosted by the DU 230, or with the control functions hosted by the CU 210.
Lower-layer functionality can be implemented by one or more RUs 240. In some deployments, an RU 240, controlled by a DU 230, may correspond to a logical node that hosts RF processing functions, or low-PHY layer functions (such as performing fast Fourier transform (FFT) , inverse FFT (iFFT) , digital beamforming, physical random access channel (PRACH) extraction and filtering, or the like) , or both, based at least in part on the functional split, such as a lower layer functional split. In such an architecture, the RU (s) 240 can be implemented to handle over the air (OTA) communication with one or more UEs 104. In some implementations, real-time and non-real-time aspects of control and user plane communication with the RU (s) 240 can be controlled by the  corresponding DU 230. In some scenarios, this configuration can enable the DU (s) 230 and the CU 210 to be implemented in a cloud-based RAN architecture, such as a vRAN architecture.
The SMO Framework 205 may be configured to support RAN deployment and provisioning of non-virtualized and virtualized network elements. For non-virtualized network elements, the SMO Framework 205 may be configured to support the deployment of dedicated physical resources for RAN coverage requirements which may be managed via an operations and maintenance interface (such as an O1 interface) . For virtualized network elements, the SMO Framework 205 may be configured to interact with a cloud computing platform (such as an open cloud (O-Cloud) 290) to perform network element life cycle management (such as to instantiate virtualized network elements) via a cloud computing platform interface (such as an O2 interface) . Such virtualized network elements can include, but are not limited to, CUs 210, DUs 230, RUs 240 and Near-RT RICs 225. In some implementations, the SMO Framework 205 can communicate with a hardware aspect of a 4G RAN, such as an open eNB (O-eNB) 211, via an O1 interface. Additionally, in some implementations, the SMO Framework 205 can communicate directly with one or more RUs 240 via an O1 interface. The SMO Framework 205 also may include a Non-RT RIC 215 configured to support functionality of the SMO Framework 205.
The Non-RT RIC 215 may be configured to include a logical function that enables non-real-time control and optimization of RAN elements and resources, Artificial Intelligence/Machine Learning (AI/ML) workflows including model training and updates, or policy-based guidance of applications/features in the Near-RT RIC 225. The Non-RT RIC 215 may be coupled to or communicate with (such as via an A1 interface) the Near-RT RIC 225. The Near-RT RIC 225 may be configured to include a logical function that enables near-real-time control and optimization of RAN elements and resources via data collection and actions over an interface (such as via an E2 interface) connecting one or more CUs 210, one or more DUs 230, or both, as well as an O-eNB, with the Near-RT RIC 225.
In some implementations, to generate AI/ML models to be deployed in the Near-RT RIC 225, the Non-RT RIC 215 may receive parameters or external enrichment information from external servers. Such information may be utilized by the Near-RT RIC 225 and may be received at the SMO Framework 205 or the Non-RT RIC 215 from non- network data sources or from network functions. In some examples, the Non-RT RIC 215 or the Near-RT RIC 225 may be configured to tune RAN behavior or performance. For example, the Non-RT RIC 215 may monitor long-term trends and patterns for performance and employ AI/ML models to perform corrective actions through the SMO Framework 205 (such as reconfiguration via O1) or via creation of RAN management policies (such as A1 policies) .
In an example, BS communicating component 442, as described herein, can be at least partially implemented within a CU 210, and can transmit spatial relationship information, beam predictions, etc. to UEs via one or more DUs 230, and/or the like. In another example, BS communicating component 442, as described herein, can be at least partially implemented within a DU 230, and can transmit spatial relationship information, beam predictions, etc. to UEs via one or more RUs 240, and/or the like.
Turning now to FIGS. 3-8, aspects are depicted with reference to one or more components and one or more methods that may perform the actions or operations described herein, where aspects in dashed line may be optional. Although the operations described below in FIGS. 5 and 6 are presented in a particular order and/or as being performed by an example component, it should be understood that the ordering of the actions and the components performing the actions may be varied, depending on the implementation. Moreover, it should be understood that the following actions, functions, and/or described components may be performed by a specially programmed processor, a processor executing specially programmed software or computer-readable media, or by any other combination of a hardware component and/or a software component capable of performing the described actions or functions.
Referring to FIG. 3, one example of an implementation of UE 104 may include a variety of components, some of which have already been described above and are described further herein, including components such as one or more processors 312 and memory 316 and transceiver 302 in communication via one or more buses 344, which may operate in conjunction with modem 340 and/or UE communicating component 342 for receiving spatial relationship information for virtual downlink beam resources or AoA/AoD associated with a channel, in accordance with aspects described herein.
In an aspect, the one or more processors 312 can include a modem 340 and/or can be part of the modem 340 that uses one or more modem processors. Thus, the various functions related to UE communicating component 342 may be included in modem 340  and/or processors 312 and, in an aspect, can be executed by a single processor, while in other aspects, different ones of the functions may be executed by a combination of two or more different processors. For example, in an aspect, the one or more processors 312 may include any one or any combination of a modem processor, or a baseband processor, or a digital signal processor, or a transmit processor, or a receiver processor, or a transceiver processor associated with transceiver 302. In other aspects, some of the features of the one or more processors 312 and/or modem 340 associated with UE communicating component 342 may be performed by transceiver 302.
Also, memory 316 may be configured to store data used herein and/or local versions of applications 375 or UE communicating component 342 and/or one or more of its subcomponents being executed by at least one processor 312. Memory 316 can include any type of computer-readable medium usable by a computer or at least one processor 312, such as random access memory (RAM) , read only memory (ROM) , tapes, magnetic discs, optical discs, volatile memory, non-volatile memory, and any combination thereof. In an aspect, for example, memory 316 may be a non-transitory computer-readable storage medium that stores one or more computer-executable codes defining UE communicating component 342 and/or one or more of its subcomponents, and/or data associated therewith, when UE 104 is operating at least one processor 312 to execute UE communicating component 342 and/or one or more of its subcomponents.
Transceiver 302 may include at least one receiver 306 and at least one transmitter 308. Receiver 306 may include hardware, firmware, and/or software code executable by a processor for receiving data, the code comprising instructions and being stored in a memory (e.g., computer-readable medium) . Receiver 306 may be, for example, a radio frequency (RF) receiver. In an aspect, receiver 306 may receive signals transmitted by at least one base station 102. Additionally, receiver 306 may process such received signals, and also may obtain measurements of the signals, such as, but not limited to, Ec/Io, signal-to-noise ratio (SNR) , reference signal received power (RSRP) , received signal strength indicator (RSSI) , etc. Transmitter 308 may include hardware, firmware, and/or software code executable by a processor for transmitting data, the code comprising instructions and being stored in a memory (e.g., computer-readable medium) . A suitable example of transmitter 308 may including, but is not limited to, an RF transmitter.
Moreover, in an aspect, UE 104 may include RF front end 388, which may operate in communication with one or more antennas 365 and transceiver 302 for receiving and  transmitting radio transmissions, for example, wireless communications transmitted by at least one base station 102 or wireless transmissions transmitted by UE 104. RF front end 388 may be connected to one or more antennas 365 and can include one or more low-noise amplifiers (LNAs) 390, one or more switches 392, one or more power amplifiers (PAs) 398, and one or more filters 396 for transmitting and receiving RF signals.
In an aspect, LNA 390 can amplify a received signal at a desired output level. In an aspect, each LNA 390 may have a specified minimum and maximum gain values. In an aspect, RF front end 388 may use one or more switches 392 to select a particular LNA 390 and its specified gain value based on a desired gain value for a particular application.
Further, for example, one or more PA (s) 398 may be used by RF front end 388 to amplify a signal for an RF output at a desired output power level. In an aspect, each PA 398 may have specified minimum and maximum gain values. In an aspect, RF front end 388 may use one or more switches 392 to select a particular PA 398 and its specified gain value based on a desired gain value for a particular application.
Also, for example, one or more filters 396 can be used by RF front end 388 to filter a received signal to obtain an input RF signal. Similarly, in an aspect, for example, a respective filter 396 can be used to filter an output from a respective PA 398 to produce an output signal for transmission. In an aspect, each filter 396 can be connected to a specific LNA 390 and/or PA 398. In an aspect, RF front end 388 can use one or more switches 392 to select a transmit or receive path using a specified filter 396, LNA 390, and/or PA 398, based on a configuration as specified by transceiver 302 and/or processor 312.
As such, transceiver 302 may be configured to transmit and receive wireless signals through one or more antennas 365 via RF front end 388. In an aspect, transceiver may be tuned to operate at specified frequencies such that UE 104 can communicate with, for example, one or more base stations 102 or one or more cells associated with one or more base stations 102. In an aspect, for example, modem 340 can configure transceiver 302 to operate at a specified frequency and power level based on the UE configuration of the UE 104 and the communication protocol used by modem 340.
In an aspect, modem 340 can be a multiband-multimode modem, which can process digital data and communicate with transceiver 302 such that the digital data is sent and received using transceiver 302. In an aspect, modem 340 can be multiband and be configured to support multiple frequency bands for a specific communications  protocol. In an aspect, modem 340 can be multimode and be configured to support multiple operating networks and communications protocols. In an aspect, modem 340 can control one or more components of UE 104 (e.g., RF front end 388, transceiver 302) to enable transmission and/or reception of signals from the network based on a specified modem configuration. In an aspect, the modem configuration can be based on the mode of the modem and the frequency band in use. In another aspect, the modem configuration can be based on UE configuration information associated with UE 104 as provided by the network during cell selection and/or cell reselection.
In an aspect, UE communicating component 342 can optionally include an configuration processing component 352 for receiving and/or processing a configuration indicating spatial relationship information for a virtual downlink beam resource or AoA/AoD channel characteristics of a channel with a base station, an SRS component 354 for transmitting a SRS based on the spatial relationship information, and/or beam predicting component 356 for predicting a downlink beam for use in communicating with a network node, in accordance with aspects described herein.
In an aspect, the processor (s) 312 may correspond to one or more of the processors described in connection with the UE in FIG. 8. Similarly, the memory 316 may correspond to the memory described in connection with the UE in FIG. 8.
Referring to FIG. 4, one example of an implementation of base station 102 (e.g., a base station 102 and/or gNB 180, as described above) may include a variety of components, some of which have already been described above, but including components such as one or more processors 412 and memory 416 and transceiver 402 in communication via one or more buses 444, which may operate in conjunction with modem 440 and BS communicating component 442 for configuring spatial relationship information for virtual downlink beam resources or AoA/AoD associated with a channel, in accordance with aspects described herein.
The transceiver 402, receiver 406, transmitter 408, one or more processors 412, memory 416, applications 475, buses 444, RF front end 488, LNAs 490, switches 492, filters 496, PAs 498, and one or more antennas 465 may be the same as or similar to the corresponding components of UE 104, as described above, but configured or otherwise programmed for base station operations as opposed to UE operations.
In an aspect, BS communicating component 442 can optionally include a configuring component 452 for generating and/or transmitting a configuration indicating  spatial relationship information for a virtual downlink beam resource or AoA/AoD channel characteristics of a channel with a UE 104, and/or a beam predicting component 454 for predicting a downlink beam for use in communicating with a UE 104, in accordance with aspects described herein.
In an aspect, the processor (s) 412 may correspond to one or more of the processors described in connection with the base station in FIG. 8. Similarly, the memory 416 may correspond to the memory described in connection with the base station in FIG. 8.
FIG. 5 illustrates a flow chart of an example of a method 500 for receiving and using spatial relationship information for virtual downlink beam resources or AoA/AoD associated with a channel, in accordance with aspects described herein. FIG. 6 illustrates a flow chart of an example of a method 600 for configuring spatial relationship information for virtual downlink beam resources or AoA/AoD associated with a channel, in accordance with aspects described herein. In an example, a UE 104 can perform the functions described in method 500 using one or more of the components described in FIGS. 1 and 3. In an example, a base station 102 (e.g., a gNB, a monolithic base station, a portion of a disaggregated base station, etc. ) can perform the functions described in method 600 using one or more of the components described in FIGS. 1 and 4.  Methods  500 and 600 are described in conjunction with one another for ease of explanation; however, the  methods  500 and 600 are not required to be performed together and indeed can be performed independently using separate devices.
In method 600, at Block 602, a configuration indicating spatial relationship information associated with a virtual downlink beam resource or a AoA/AoD associated with a channel between the UE and the network node can be transmitted for a UE. In an aspect, configuring component 452, e.g., in conjunction with processor (s) 412, memory 416, transceiver 402, BS communicating component 442, etc., can transmit, for a UE (e.g., UE 104) , the configuration indicating spatial relationship information associated with the virtual downlink beam resource or the AoA/AoD associated with the channel between the UE and the network node. For example, configuring component 452 can transmit the configuration in radio resource control (RRC) signaling, media access control-control element (MAC-CE) , downlink control information (DCI) , and/or the like.
In method 500, at Block 502, a configuration indicating spatial relationship information associated with a virtual downlink beam resource or a AoA/AoD associated with a channel between the UE and the network node can be received from a network  node. In an aspect, configuration processing component 352, e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, UE communicating component 342, etc., can receive, from the network node (e.g., base station 102) , the configuration indicating spatial relationship information associated with the virtual downlink beam resource or the AoA/AoD associated with the channel between the UE and the network node.
As described, in one example, configuring component 452 can transmit, and/or configuration processing component 352 can receive, the spatial relationship information in RRC signaling. In one example, in the RRC signaling, an information element (IE) for indicating spatial relationship information, such as the SRS-SpatialRelationInfo IE defined in 5G NR, can be used to convey the spatial relationship information. In this example, the SRS-SpatialRelationInfo IE can be extended to allow for specifying spatial relationship information for downlink reference signals that can include virtual downlink beam resources, AoA/AoD of a channel, etc., where the virtual downlink beam resources, AoA/AoD of a channel, etc. can be predicted and/or reported by the UE 104, indicated by the network node as downlink beam prediction results, indicated by the UE 104 as a recommendation for a new uplink beam (which may be based on recommending a predicted downlink beam by indicating the virtual downlink beam resources, AoA/AoD of a channel, etc. ) , and/or the like.
In one example, the configuration can assign virtual resource or AoA/AoD-based spatial relationships for SRS resources, which can be configured at the SRS resource level (e.g., per SRS resource) . For example, the UE 104 can also be configured by the network node with an SRS resource for transmitting SRS to the network node. The SRS-SpatialRelationInfo can be associated with the SRS resource and can be indicated as at least one of the following: 1) a virtual resource that is not actually transmitted by the network node, but can be predicted and reported (e.g., through channel state information (CSI) reports) by the UE 104 or indicated by the network node as beam prediction results; or 2) an AoA/AoD associated with the channel characteristics between the UE 104 and the network node, where the AoA/AoD can be reported by the UE 104 or indicated by the network node as spatial beam prediction results. In one example, the configuration can include an identifier associated with the virtual resource or with the AoA/AoD characteristics, such that configuration processing component 352 can derive the spatial relationship information from the configuration given an identifier of the virtual resource or the AoA/AoD received in a beam prediction (e.g., at the UE 104 or from the network  node) . In another example, the configuration can assign virtual resource or AoA/AoD-based spatial relationships for a set of multiple SRS resources (e.g., per SRS resource set) . In one example, this may be conditioned on the configured usage parameter for the SRS resource set being nonCodebook or a new type of usage for the SRS resource set.
In method 500, at Block 504, a SRS that is based on at least one of the virtual downlink beam resource or the AoA/AoD associated with the channel and according to the spatial relationship information can be transmitted to the network node. In an aspect, SRS component 354, e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, UE communicating component 342, etc., can transmit, to the network node, the SRS that is based on at least one of the virtual downlink beam resource or the AoA/AoD associated with the channel and according to the spatial relationship information. For example, SRS component 354 can derive a spatial domain Tx filter used for transmitting the SRS resource, based on the (predicted) Rx spatial filter for receiving the quantities configured in the associated configuration (e.g., in the SRS-SpatialRelationInfo IE) .
In method 600, at Block 604, a SRS that is based on at least one of the virtual downlink beam resource or the AoA/AoD associated with the channel and according to the spatial relationship information can be received for the UE. In an aspect, BS communicating component 442, e.g., in conjunction with processor (s) 412, memory 416, transceiver 402, etc., can receive, for the UE (e.g., UE 104) , the SRS that is based on at least one of the virtual downlink beam resource or the AoA/AoD associated with the channel and according to the spatial relationship information.
As described, in an example, the UE can perform beam prediction to predict a downlink beam or a corresponding uplink beam. For example, UE communicating component 342 can predict the beam using AI/ML-based beam prediction, as described above. For example, using SD prediction, UE communicating component 342 can predict, based on measurements of one or more beams of a first width, one or more beams of a second more narrow width. In another example, using TD prediction (and/or SD prediction) , UE communicating component 342 can predict, based on location or change in location of the UE, velocity or direction of movement of the UE, etc., and based on a current beam for the UE, a next beam for the UE. In yet another example, UE communicating component 342 can predict, based on raw channel extraction, a beam for the UE. In an example, the network node can perform beam prediction to predict the downlink beam for the UE based on similar considerations or measurements of the UE  and/or can indicate the predicted beam to the UE by indicating a virtual downlink beam resource identifier, AoA/AoD channel characteristics (or an associated identifier) , etc.
In one example, in method 500, optionally at Block 506, a beam prediction result for the virtual downlink beam resource or for the AoA/AoD associated with the channel can be reported to the network node. In an aspect, beam predicting component 356, e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, UE communicating component 342, etc., can report, to the network node (e.g., base station 102) , the beam prediction result for the virtual downlink beam resource or for the AoA/AoD associated with the channel. For example, beam predicting component 356 can predict the downlink beam out of a first collection of narrower beams using SD prediction based on measurements of a second collection of a lesser number of wide beams. In another example, beam predicting component 356 can predict the downlink beam based on a current beam and a movement parameter of the UE 104, such as speed, direction, etc. a current location of the UE 104, and/or the like. In such examples, beam predicting component 356 can obtain a virtual downlink beam resource or associated identifier for the predicted downlink beam. In this example, SRS component 354 can obtain the spatial relationship information from the configuration based on the virtual downlink beam resource or associated identifier, as indicated in the configuration. In addition, for example, beam predicting component 356 can report the beam prediction result to the network node, which can include reporting the virtual downlink beam resource or associated identifier to the network node (e.g., with the SRS, in uplink control signaling, etc. ) .
In another example, beam predicting component 356 can discern the AoA/AoD characteristics of the channel with the network node, and SRS component 354 can obtain the spatial relationship information from the configuration based on the AoA/AoD characteristics of the channel, as indicated in the configuration. In addition, for example, beam predicting component 356 can report the AoA/AoD characteristics to the network node (e.g., with the SRS, in uplink control signaling, etc. ) . SRS component 354 can configure the beam for transmitting the SRS, for receiving downlink communications from the network node, for transmitting uplink communications to the network node, etc.
In an example, in method 600, optionally at Block 606, a beam prediction result for the virtual downlink beam resource or for the AoA/AoD associated with the channel can be received for the UE. In an aspect, beam predicting component 454, e.g., in  conjunction with processor (s) 412, memory 416, transceiver 402, BS communicating component 442, etc., can receive, for the UE, the beam prediction result for the virtual downlink beam resource or for the AoA/AoD associated with the channel. For example, beam predicting component 454 can receive the beam prediction result along with the SRS, in uplink control signaling, etc. Beam predicting component 454 can use the beam prediction result to configure a beam for communicating with the UE 104, such as to receive the SRS from the UE 104, transmit downlink communications to the UE 104, receive uplink communications from the UE 104, etc.
In another example, in method 600, optionally at Block 608, a beam prediction result for the virtual downlink beam resource or for the AoA/AoD associated with the channel can be reported for the UE. In an aspect, beam predicting component 454, e.g., in conjunction with processor (s) 412, memory 416, transceiver 402, BS communicating component 442, etc., can report, for the UE, the beam prediction result for the virtual downlink beam resource or for the AoA/AoD associated with the channel. For example, beam predicting component 454 can predict the downlink beam out of a first collection of narrower beams using SD prediction based on measurements received of a second collection of a lesser number of wide beams. In another example, beam predicting component 454 can predict the downlink beam based on a current beam and a movement parameter of the UE 104, such as speed, direction, etc. a current location of the UE 104, and/or the like. In such examples, beam predicting component 454 can obtain a virtual downlink beam resource or associated identifier for the predicted downlink beam, which BS communicating component 442 can use in communicating with the UE 104. In addition, for example, beam predicting component 454 can report the beam prediction result to the UE 104, which can include reporting the virtual downlink beam resource or associated identifier to the UE 104 (e.g., in MAC-CE, DCI, etc. ) .
In another example, beam predicting component 454 can discern the AoA/AoD characteristics of the channel with the UE 104, and BS communicating component 442 can use a beam associated with the AoA/AoD characteristics of the channel for communicating with the UE 104. In addition, for example, beam predicting component 454 can report the AoA/AoD characteristics to the UE (e.g., in MAC-CE, DCI, etc. ) .
In one example, in method 500, optionally at Block 508, a beam prediction result for the virtual downlink beam resource or for the AoA/AoD associated with the channel can be received from the network node. In an aspect, beam predicting component 356,  e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, UE communicating component 342, etc., can receive, from the network node, the beam prediction result for the virtual downlink beam resource or for the AoA/AoD associated with the channel. SRS component 354 can obtain the spatial relationship information for the beam prediction result (e.g., based on the virtual downlink beam resource or associated identifier, the AoA/AoD characteristics, etc. ) and can transmit the SRS using the spatial Tx filter based on the spatial relationship information, as described.
In one example, in method 500, optionally at Block 510, an uplink beam recommendation can be transmitted based on downlink beam predictions. In an aspect, beam predicting component 356, e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, UE communicating component 342, etc., can transmit the uplink beam recommendation based on downlink beam predictions. For example, beam predicting component 356 can receive downlink beam predictions for multiple downlink beams from the network node (e.g., at Block 508) . In an example, beam predicting component 356 can send an uplink beam recommendation to the network node, which can be one of the downlink beam predictions that beam predicting component 356 may select. In an example, SRS component 354 can transmit the SRS based on the uplink beam recommendation.
In one specific example, in method 500, optionally at Block 512, maximum permissible exposure (MPE) can be detected. In an aspect, UE communicating component 342, e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, etc., can detect MPE at the UE 104, which can include detecting power or radiation above a threshold. Based on detecting the MPE (e.g., an MPE event) , for example, beam predicting component 356 can provide the uplink beam recommendation to the network node, where the uplink beam may mitigate the MPE at the UE 104.
In an example, in method 600, optionally at Block 610, an uplink beam recommendation based on downlink beam predictions can be received. In an aspect, beam predicting component 454, e.g., in conjunction with processor (s) 412, memory 416, transceiver 402, BS communicating component 442, etc., can receive the uplink beam recommendation based on the downlink beam prediction. For example, beam predicting component 454 can transmit downlink beam predictions for multiple downlink beams to the UE (e.g., at Block 608) . In an example, beam predicting component 454 can receive an uplink beam recommendation from the UE 104, which can be one of the downlink  beam predictions. In an example, BS communicating component 442 can receive the SRS based on the uplink beam recommendation. An example is shown in FIG. 7.
FIG. 7 illustrates an example of a system 700 for sending uplink beam recommendations based on downlink beam predictions, in accordance with aspects described herein. System 700 includes a UE 104 that can communicate with a gNB 704. In an example, gNB 704 can transmit, to the UE 104, a set-B beams for downlink beam predictions at 706, and UE 104 can transmit, to the gNB 704, a preferred set-A beams as beam prediction results, which can include a virtual resource identifier or AoA/AoD characteristics, at 708. In an example, the preferred set-A beams can be a subset of the set-B of beams. For example, UE 104 can measure the set-B beams or can determine or otherwise predict set-A beams as next beams for the UE 104 based on the set-B beams. In an example, gNB 704 can transmit, to the UE 104, downlink beam prediction results, which may include a virtual resource identifier or AoA/AoD characteristics, at 710. For example, gNB 704 can provide prediction result information for the preferred set-Abeams, such as virtual resource identifier or AoA/AoD characteristics, or can select or indicate a subset of the downlink beam prediction results, etc.
In an example, the UE 104 can transmit an uplink beam recommendation report to the gNB 704 (e.g., at 714 or 716) . For example, the UE 104 can recommend to gNB 704 a new UL beam, where the recommendation can be based on indicating at least one of the following: 1) a virtual resource that is not actually transmitted by the gNB 704, but can be predicted and reported (e.g., through CSI reports) by the UE 104 or gNB 704 indicated as beam prediction results; or 2) an AoA/AoD associated with the channel characteristics between the UE 104 and the gNB 704, where the AoA/AoD can be reported by the UE 104 or indicated by the gNB 704 as spatial beam prediction results.
In one example, providing the uplink beam recommendation can be conditioned on MPE. For example, the UE 104 can transmit the uplink beam recommendation report (e.g., at 714 or 716) conditioned on that the UE has recently reported a power headroom (PHR) MAC-CE carrying power management-maximum power reduction (P-MPR) terms. In one example, the UE 104 can transmit the uplink beam recommendation report at 714 after (e.g., and/or within a predefined timer after) transmitting the PHR carrying M-MPR terms at 712. The uplink beam recommendation reported can be carried by MAC-CE, DCI, etc. In another example, the UE 104 can transmit the PHR MAC-CE carrying P-MPR terms, and also carrying the uplink beam recommendation report at 716.
FIG. 8 is a block diagram of a MIMO communication system 800 including a base station 102 and a UE 104. The MIMO communication system 800 may illustrate aspects of the wireless communication access network 100 described with reference to FIG. 1. The base station 102 may be an example of aspects of the base station 102 described with reference to FIG. 1. The base station 102 may be equipped with  antennas  834 and 835, and the UE 104 may be equipped with  antennas  852 and 853. In the MIMO communication system 800, the base station 102 may be able to send data over multiple communication links at the same time. Each communication link may be called a “layer” and the “rank” of the communication link may indicate the number of layers used for communication. For example, in a 2x2 MIMO communication system where base station 102 transmits two “layers, ” the rank of the communication link between the base station 102 and the UE 104 is two.
At the base station 102, a transmit (Tx) processor 820 may receive data from a data source. The transmit processor 820 may process the data. The transmit processor 820 may also generate control symbols or reference symbols. A transmit MIMO processor 830 may perform spatial processing (e.g., precoding) on data symbols, control symbols, or reference symbols, if applicable, and may provide output symbol streams to the transmit modulator/ demodulators  832 and 833. Each modulator/demodulator 832 through 833 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream. Each modulator/demodulator 832 through 833 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a DL signal. In one example, DL signals from modulator/ demodulators  832 and 833 may be transmitted via the  antennas  834 and 835, respectively.
The UE 104 may be an example of aspects of the UEs 104 described with reference to FIGS. 1 and 3. At the UE 104, the  UE antennas  852 and 853 may receive the DL signals from the base station 102 and may provide the received signals to the modulator/ demodulators  854 and 855, respectively. Each modulator/demodulator 854 through 855 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples. Each modulator/demodulator 854 through 855 may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols. A MIMO detector 856 may obtain received symbols from the modulator/ demodulators  854 and 855, perform MIMO detection on the received symbols, if applicable, and provide detected symbols. A receive (Rx) processor 858 may process (e.g., demodulate,  deinterleave, and decode) the detected symbols, providing decoded data for the UE 104 to a data output, and provide decoded control information to a processor 880, or memory 882.
The processor 880 may in some cases execute stored instructions to instantiate a UE communicating component 342 (see e.g., FIGS. 1 and 3) .
On the uplink (UL) , at the UE 104, a transmit processor 864 may receive and process data from a data source. The transmit processor 864 may also generate reference symbols for a reference signal. The symbols from the transmit processor 864 may be precoded by a transmit MIMO processor 866 if applicable, further processed by the modulator/demodulators 854 and 855 (e.g., for single carrier-FDMA, etc. ) , and be transmitted to the base station 102 in accordance with the communication parameters received from the base station 102. At the base station 102, the UL signals from the UE 104 may be received by the  antennas  834 and 835, processed by the modulator/ demodulators  832 and 833, detected by a MIMO detector 836 if applicable, and further processed by a receive processor 838. The receive processor 838 may provide decoded data to a data output and to the processor 840 or memory 842.
The processor 840 may in some cases execute stored instructions to instantiate a BS communicating component 442 (see e.g., FIGS. 1 and 4) .
The components of the UE 104 may, individually or collectively, be implemented with one or more ASICs adapted to perform some or all of the applicable functions in hardware. Each of the noted modules may be a means for performing one or more functions related to operation of the MIMO communication system 800. Similarly, the components of the base station 102 may, individually or collectively, be implemented with one or more application specific integrated circuits (ASICs) adapted to perform some or all of the applicable functions in hardware. Each of the noted components may be a means for performing one or more functions related to operation of the MIMO communication system 800.
The following aspects are illustrative only and aspects thereof may be combined with aspects of other embodiments or teaching described herein, without limitation.
Aspect 1 is a method for wireless communication at a UE including receiving, from a network node, a configuration indicating spatial relationship information associated with at least one of: a virtual downlink beam resource; or an AoA or AoD associated with a channel between the UE and the network node, and transmitting, to the  network node, a SRS based on at least one of the virtual downlink beam resource or the AoA or AoD associated with the channel and according to the spatial relationship information.
In Aspect 2, the method of Aspect 1 includes where the configuration indicates the spatial relationship information per SRS resource.
In Aspect 3, the method of Aspect 2 includes reporting, to the network node, a beam prediction result for the virtual downlink beam resource, where transmitting the SRS includes transmitting the SRS based on the virtual downlink beam resource and according to the spatial relationship information specified in the configuration for the virtual downlink beam resource.
In Aspect 4, the method of any of Aspects 2 or 3 includes receiving, from the network node, a beam prediction result for the virtual downlink beam resource, where transmitting the SRS includes transmitting the SRS based on the virtual downlink beam resource and according to the spatial relationship information specified in the configuration for the virtual downlink beam resource.
In Aspect 5, the method of any of Aspects 2 to 4 includes reporting, to the network node, a beam prediction result for the AoA or AoD associated with the channel, where transmitting the SRS includes transmitting the SRS based on the virtual downlink beam resource and according to the spatial relationship information specified in the configuration for the AoA or AoD associated with the channel.
In Aspect 6, the method of any of Aspects 2 to 5 includes receiving, from the network node, a beam prediction result for the AoA or AoD associated with the channel, where transmitting the SRS includes transmitting the SRS based on the virtual downlink beam resource and according to the spatial relationship information specified in the configuration for the AoA or AoD associated with the channel.
In Aspect 7, the method of any of Aspects 1 to 6 includes where the configuration indicates the spatial relationship information per SRS resource set of multiple SRS resources.
In Aspect 8, the method of Aspect 7 includes where transmitting the SRS based on at least one of the virtual downlink beam resource or the AoA or AoD associated with the channel is based on a configured usage for the SRS resource set indicating nonCodebook.
In Aspect 9, the method of any of Aspects 7 or 8 includes where transmitting the SRS based on at least one of the virtual downlink beam resource or the AoA or AoD associated with the channel is based on a configured usage for the SRS resource set indicating a type of usage for the virtual downlink beam resource or the AoA or AoD associated with the channel.
In Aspect 10, the method of any of Aspects 1 to 9 includes transmitting, to the network node, an uplink beam recommendation based on downlink beam predictions, where the uplink beam recommendation includes one of the virtual downlink beam resource, or the AoA or AoD associated with the channel.
In Aspect 11, the method of Aspect 10 includes where transmitting the uplink beam recommendation is based on detecting, at the UE, a MPE event.
In Aspect 12, the method of Aspect 11 includes where detecting the MPE event is based on detecting, at the UE and within a period of time before transmitting the uplink beam recommendation, transmitting of a PHR MAC-CE with P-MPR terms.
In Aspect 13, the method of any of Aspects 11 or 12 includes where transmitting the uplink beam recommendation is in a MAC-CE or DCI.
Aspect 14 is a method for wireless communication at a network node including transmitting, for a UE, a configuration indicating spatial relationship information associated with at least one of: a virtual downlink beam resource; or an AoA or AoD associated with a channel between the UE and the network node, and receiving, for the UE, a SRS based on at least one of the virtual downlink beam resource or the AoA or AoD associated with the channel and according to the spatial relationship information.
In Aspect 15, the method of Aspect 14 includes where the configuration indicates the spatial relationship information per SRS resource.
In Aspect 16, the method of Aspect 15 includes receiving, for the UE, a beam prediction result for the virtual downlink beam resource, where receiving the SRS includes receiving the SRS based on the virtual downlink beam resource and according to the spatial relationship information specified in the configuration for the virtual downlink beam resource.
In Aspect 17, the method of any of Aspects 15 or 16 includes transmitting, for the UE, a beam prediction result for the virtual downlink beam resource, where receiving the SRS includes receiving the SRS based on the virtual downlink beam resource and  according to the spatial relationship information specified in the configuration for the virtual downlink beam resource.
In Aspect 18, the method of any of Aspects 15 to 17 includes receiving, for the UE, a beam prediction result for the AoA or AoD associated with the channel, where receiving the SRS includes receiving the SRS based on the virtual downlink beam resource and according to the spatial relationship information specified in the configuration for the AoA or AoD associated with the channel.
In Aspect 19, the method of any of Aspects 15 to 18 includes transmitting, for the UE, a beam prediction result for the AoA or AoD associated with the channel, where receiving the SRS includes receiving the SRS based on the virtual downlink beam resource and according to the spatial relationship information specified in the configuration for the AoA or AoD associated with the channel.
In Aspect 20, the method of any of Aspects 14 to 19 includes where the configuration indicates the spatial relationship information per SRS resource set of multiple SRS resources.
In Aspect 21, the method of Aspect 20 includes where receiving the SRS based on at least one of the virtual downlink beam resource or the AoA or AoD associated with the channel is based on a configured usage for the SRS resource set indicating nonCodebook.
In Aspect 22, the method of any of Aspects 20 or 21 includes where receiving the SRS based on at least one of the virtual downlink beam resource or the AoA or AoD associated with the channel is based on a configured usage for the SRS resource set indicating a type of usage for the virtual downlink beam resource or the AoA or AoD associated with the channel.
In Aspect 23, the method of any of Aspects 14 to 22 includes receiving, for the UE, an uplink beam recommendation based on downlink beam predictions, where the uplink beam recommendation includes one of the virtual downlink beam resource, or the AoA or AoD associated with the channel.
In Aspect 24, the method of Aspect 23 includes where receiving the uplink beam recommendation is based on a MPE event at the UE.
In Aspect 25, the method of any of Aspects 23 or 24 includes where receiving the uplink beam recommendation is in a MAC-CE or DCI.
Aspect 26 is an apparatus for wireless communication including a processor, memory coupled with the processor, and instructions stored in the memory and operable, when executed by the processor, to cause the apparatus to perform any of the methods of Aspects 1 to 25.
Aspect 27 is an apparatus for wireless communication including means for performing any of the methods of Aspects 1 to 25.
Aspect 28 is a computer-readable medium including code executable by one or more processors for wireless communications, the code including code for performing any of the methods of Aspects 1 to 25.
The above detailed description set forth above in connection with the appended drawings describes examples and does not represent the only examples that may be implemented or that are within the scope of the claims. The term “example, ” when used in this description, means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, well-known structures and apparatuses are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
Information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, computer-executable code or instructions stored on a computer-readable medium, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a specially programmed device, such as but not limited to a processor, a digital signal processor (DSP) , an ASIC, a field programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic, a discrete hardware component, or any combination thereof designed to perform the functions described herein. A specially programmed processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A specially programmed processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP  and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a non-transitory computer-readable medium. Other examples and implementations are within the scope and spirit of the disclosure and appended claims. For example, due to the nature of software, functions described above can be implemented using software executed by a specially programmed processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations. Also, as used herein, including in the claims, “or” as used in a list of items prefaced by “at least one of” indicates a disjunctive list such that, for example, a list of “at least one of A, B, or C” means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) .
Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A storage medium may be any available medium that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data  optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
The previous description of the disclosure is provided to enable a person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the common principles defined herein may be applied to other variations without departing from the spirit or scope of the disclosure. Furthermore, although elements of the described aspects and/or embodiments may be described or claimed in the singular, the plural is contemplated unless limitation to the singular is explicitly stated. Additionally, all or a portion of any aspect and/or embodiment may be utilized with all or a portion of any other aspect and/or embodiment, unless stated otherwise. Thus, the disclosure is not to be limited to the examples and designs described herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims (30)

  1. An apparatus for wireless communication, comprising:
    a processor;
    memory coupled with the processor; and
    instructions stored in the memory and operable, when executed by the processor, to cause the apparatus to:
    receive, from a network node, a configuration indicating spatial relationship information associated with at least one of:
    a virtual downlink beam resource; or
    an angle-of-arrival (AoA) or angle-of-departure (AoD) associated with a channel between the apparatus and the network node; and
    transmit, to the network node, a sounding reference signal (SRS) based on at least one of the virtual downlink beam resource or the AoA or AoD associated with the channel and according to the spatial relationship information.
  2. The apparatus of claim 1, wherein the configuration indicates the spatial relationship information per SRS resource.
  3. The apparatus of claim 2, wherein the instructions are operable, when executed by the processor, to cause the apparatus to report, to the network node, a beam prediction result for the virtual downlink beam resource, wherein the instructions are operable, when executed by the processor, to cause the apparatus to transmit the SRS based on the virtual downlink beam resource and according to the spatial relationship information specified in the configuration for the virtual downlink beam resource.
  4. The apparatus of claim 2, wherein the instructions are operable, when executed by the processor, to cause the apparatus to receive, from the network node, a beam prediction result for the virtual downlink beam resource, wherein the instructions are operable, when executed by the processor, to cause the apparatus to transmit the SRS  based on the virtual downlink beam resource and according to the spatial relationship information specified in the configuration for the virtual downlink beam resource.
  5. The apparatus of claim 2, wherein the instructions are operable, when executed by the processor, to cause the apparatus to report, to the network node, a beam prediction result for the AoA or AoD associated with the channel, wherein the instructions are operable, when executed by the processor, to cause the apparatus to transmit the SRS based on the virtual downlink beam resource and according to the spatial relationship information specified in the configuration for the AoA or AoD associated with the channel.
  6. The apparatus of claim 2, wherein the instructions are operable, when executed by the processor, to cause the apparatus to receive, from the network node, a beam prediction result for the AoA or AoD associated with the channel, wherein the instructions are operable, when executed by the processor, to cause the apparatus to transmit the SRS based on the virtual downlink beam resource and according to the spatial relationship information specified in the configuration for the AoA or AoD associated with the channel.
  7. The apparatus of claim 1, wherein the configuration indicates the spatial relationship information per SRS resource set of multiple SRS resources.
  8. The apparatus of claim 7, wherein the instructions are operable, when executed by the processor, to cause the apparatus to transmit the SRS based on at least one of the virtual downlink beam resource or the AoA or AoD associated with the channel based on a configured usage for the SRS resource set indicating nonCodebook.
  9. The apparatus of claim 7, wherein the instructions are operable, when executed by the processor, to cause the apparatus to transmit the SRS based on at least one of the virtual downlink beam resource or the AoA or AoD associated with the channel based on a configured usage for the SRS resource set indicating a type of usage for the virtual downlink beam resource or the AoA or AoD associated with the channel.
  10. The apparatus of claim 1, wherein the instructions are operable, when executed by the processor, to cause the apparatus to transmit, to the network node, an uplink beam recommendation based on downlink beam predictions, wherein the uplink beam recommendation includes one of the virtual downlink beam resource, or the AoA or AoD associated with the channel.
  11. The apparatus of claim 10, wherein the instructions are operable, when executed by the processor, to cause the apparatus to transmit the uplink beam recommendation based on detecting, at the apparatus, a maximum permissible exposure (MPE) event.
  12. The apparatus of claim 11, wherein the instructions are operable, when executed by the processor, to cause the apparatus to detect the MPE event based on detecting, at the apparatus and within a period of time before transmitting the uplink beam recommendation, transmitting of a power headroom report (PHR) media access control-control element (MAC-CE) with power management-maximum power reduction (P-MPR) terms.
  13. The apparatus of claim 11, wherein the instructions are operable, when executed by the processor, to cause the apparatus to transmit the uplink beam recommendation in a media access control-control element (MAC-CE) or downlink control information (DCI) .
  14. An apparatus for wireless communication, comprising:
    a processor;
    memory coupled with the processor; and
    instructions stored in the memory and operable, when executed by the processor, to cause the apparatus to:
    transmit, for a user equipment (UE) , a configuration indicating spatial relationship information associated with at least one of:
    a virtual downlink beam resource; or
    an angle-of-arrival (AoA) or angle-of-departure (AoD) associated with a channel between the UE and the apparatus; and
    receive, for the UE, a sounding reference signal (SRS) based on at least one of the virtual downlink beam resource or the AoA or AoD associated with the channel and according to the spatial relationship information.
  15. The apparatus of claim 14, wherein the configuration indicates the spatial relationship information per SRS resource.
  16. The apparatus of claim 15, wherein the instructions are operable, when executed by the processor, to cause the apparatus to receive, for the UE, a beam prediction result for the virtual downlink beam resource, wherein the instructions are operable, when executed by the processor, to cause the apparatus to receive the SRS based on the virtual downlink beam resource and according to the spatial relationship information specified in the configuration for the virtual downlink beam resource.
  17. The apparatus of claim 15, wherein the instructions are operable, when executed by the processor, to cause the apparatus to transmit, for the UE, a beam prediction result for the virtual downlink beam resource, wherein the instructions are operable, when executed by the processor, to cause the apparatus to receive the SRS based on the virtual downlink beam resource and according to the spatial relationship information specified in the configuration for the virtual downlink beam resource.
  18. The apparatus of claim 15, wherein the instructions are operable, when executed by the processor, to cause the apparatus to receive, for the UE, a beam prediction result for the AoA or AoD associated with the channel, wherein the instructions are operable, when executed by the processor, to cause the apparatus to receive the SRS based on the virtual downlink beam resource and according to the spatial relationship information specified in the configuration for the AoA or AoD associated with the channel.
  19. The apparatus of claim 15, wherein the instructions are operable, when executed by the processor, to cause the apparatus to transmit, for the UE, a beam prediction result for the AoA or AoD associated with the channel, wherein the instructions are operable, when executed by the processor, to cause the apparatus to receive the SRS  based on the virtual downlink beam resource and according to the spatial relationship information specified in the configuration for the AoA or AoD associated with the channel.
  20. The apparatus of claim 14, wherein the configuration indicates the spatial relationship information per SRS resource set of multiple SRS resources.
  21. The apparatus of claim 20, wherein the instructions are operable, when executed by the processor, to cause the apparatus to receive the SRS based on at least one of the virtual downlink beam resource or the AoA or AoD associated with the channel based on a configured usage for the SRS resource set indicating nonCodebook.
  22. The apparatus of claim 20, wherein the instructions are operable, when executed by the processor, to cause the apparatus to receive the SRS based on at least one of the virtual downlink beam resource or the AoA or AoD associated with the channel based on a configured usage for the SRS resource set indicating a type of usage for the virtual downlink beam resource or the AoA or AoD associated with the channel.
  23. The apparatus of claim 14, wherein the instructions are operable, when executed by the processor, to cause the apparatus to receive, for the UE, an uplink beam recommendation based on downlink beam predictions, wherein the uplink beam recommendation includes one of the virtual downlink beam resource, or the AoA or AoD associated with the channel.
  24. The apparatus of claim 23, wherein the instructions are operable, when executed by the processor, to cause the apparatus to receive the uplink beam recommendation based on a maximum permissible exposure (MPE) event at the UE.
  25. The apparatus of claim 23, wherein the instructions are operable, when executed by the processor, to cause the apparatus to receive the uplink beam recommendation in a media access control-control element (MAC-CE) or downlink control information (DCI) .
  26. A method for wireless communication at a user equipment (UE) , comprising:
    receiving, from a network node, a configuration indicating spatial relationship information associated with at least one of:
    a virtual downlink beam resource; or
    an angle-of-arrival (AoA) or angle-of-departure (AoD) associated with a channel between the UE and the network node; and
    transmitting, to the network node, a sounding reference signal (SRS) based on at least one of the virtual downlink beam resource or the AoA or AoD associated with the channel and according to the spatial relationship information.
  27. The method of claim 26, wherein the configuration indicates the spatial relationship information per SRS resource.
  28. The method of claim 27, further comprising reporting, to the network node, a beam prediction result for the virtual downlink beam resource, wherein transmitting the SRS includes transmitting the SRS based on the virtual downlink beam resource and according to the spatial relationship information specified in the configuration for the virtual downlink beam resource.
  29. A method for wireless communication at a network node, comprising:
    transmitting, for a user equipment (UE) , a configuration indicating spatial relationship information associated with at least one of:
    a virtual downlink beam resource; or
    an angle-of-arrival (AoA) or angle-of-departure (AoD) associated with a channel between the UE and the network node; and
    receiving, for the UE, a sounding reference signal (SRS) based on at least one of the virtual downlink beam resource or the AoA or AoD associated with the channel and according to the spatial relationship information.
  30. The method of claim 29, wherein the configuration indicates the spatial relationship information per SRS resource.
PCT/CN2022/123668 2022-10-01 2022-10-01 Techniques for using predicted beams in wireless communications WO2024065858A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/123668 WO2024065858A1 (en) 2022-10-01 2022-10-01 Techniques for using predicted beams in wireless communications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/123668 WO2024065858A1 (en) 2022-10-01 2022-10-01 Techniques for using predicted beams in wireless communications

Publications (1)

Publication Number Publication Date
WO2024065858A1 true WO2024065858A1 (en) 2024-04-04

Family

ID=90475696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123668 WO2024065858A1 (en) 2022-10-01 2022-10-01 Techniques for using predicted beams in wireless communications

Country Status (1)

Country Link
WO (1) WO2024065858A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190182013A1 (en) * 2015-07-29 2019-06-13 Samsung Electronics Co., Ltd. Method and apparatus for csi reporting
US20200280934A1 (en) * 2017-10-02 2020-09-03 Lenovo (Singapore) Pte. Ltd. Uplink power control
US20210242991A1 (en) * 2020-02-04 2021-08-05 Qualcomm Incorporated Using medium access control control elements to schedule semi-persistent sounding reference signals for positioning
WO2022012691A1 (en) * 2020-07-17 2022-01-20 FG Innovation Company Limited Wireless communication method and user equipment for sounding reference signal resources

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190182013A1 (en) * 2015-07-29 2019-06-13 Samsung Electronics Co., Ltd. Method and apparatus for csi reporting
US20200280934A1 (en) * 2017-10-02 2020-09-03 Lenovo (Singapore) Pte. Ltd. Uplink power control
US20210242991A1 (en) * 2020-02-04 2021-08-05 Qualcomm Incorporated Using medium access control control elements to schedule semi-persistent sounding reference signals for positioning
WO2022012691A1 (en) * 2020-07-17 2022-01-20 FG Innovation Company Limited Wireless communication method and user equipment for sounding reference signal resources

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO: "Discussion on UE and gNB measurements for NR positioning", 3GPP DRAFT; R1-1910239, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 4 October 2019 (2019-10-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051789044 *

Similar Documents

Publication Publication Date Title
US11134397B2 (en) Techniques for selecting backhaul nodes for connecting to an integrated access and backhaul network
US11570640B2 (en) Techniques for coordinating scheduling wireless communications using a repeater
WO2024065858A1 (en) Techniques for using predicted beams in wireless communications
US20240080819A1 (en) Techniques for allocating synchronization signal block (ssb) frequency in wireless communications
WO2024011336A1 (en) Techniques for configuring transmission configuration indicator (tci) states for multiple transmission/reception points
US20230421237A1 (en) Techniques for selecting beams in full duplex wireless communications
US20240114540A1 (en) Techniques for sending assistance information for cancelling interference in wireless communications
US20240057037A1 (en) Techniques for transmission configuration indicator (tci) state indication for component carriers in different modes
WO2024045164A1 (en) Techniques for artificial intelligence (ai) -based reference signal (rs) processing using multiple rs densities
US20240155621A1 (en) Techniques for linking periodic resource grants in wireless communications
US20240057143A1 (en) Techniques for mitigating inter-user equipment (ue) interference in wireless communications
US20240072917A1 (en) Techniques for measuring self-interference in full duplex wireless communications
US20240098603A1 (en) Techniques for performing layer 1/layer 2 mobility based on multiple secondary cell group configurations
US20240040388A1 (en) Techniques for mitigating inter-network node interference in wireless communications
WO2023206583A1 (en) Techniques for training devices for machine learning-based channel state information and channel state feedback
US20240129064A1 (en) Techniques for transmitting repetitions in wireless communications
US20240056798A1 (en) Techniques for downloading models in wireless communications
WO2023159530A1 (en) Techniques for discovering devices that support cooperation in wireless communications
US20230292258A1 (en) Techniques for reducing resource usage for dual subscription dual active wireless communications
US20240064618A1 (en) Techniques for identifying synchronization signals from repeaters in wireless communications
US20220361119A1 (en) Techniques for requesting message repetition in random access procedures
US20230412223A1 (en) Techniques for reporting channel state information based on a report size
US20230254871A1 (en) Techniques for communicating over configured grant resources with high round trip times
US20230309098A1 (en) Techniques for scheduling multi-user sidelink communications in multiple time periods
US20230300821A1 (en) Techniques for wireless communications using fixed transport block size